

Drawing Programs: The Theory and Practice
of Schematic Functional Programming

Tom Addis · Jan Addis

Drawing Programs:
The Theory and Practice
of Schematic Functional
Programming

13

Tom Addis
University of Portsmouth
School of Computing
Portsmouth P01 3HE
United Kingdom

Jan Addis
Clarity Support
Southsea PO4 9QU
United Kingdom

ISBN 978-1-84882-617-5 e-ISBN 978-1-84882-618-2
DOI 10.1007/978-1-84882-618-2
Springer London Dordrecht Heidelberg New York

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2009927007

© Springer-Verlag London Limited 2010
Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,
or in the case of reprographic reproduction in accordance with the terms of licenses issued by the
Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to
the publishers.
The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.
The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Cover design: KuenkelLopka GmbH

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

To David Gooding
Who is a good friend and is a colleague who has
enhanced this work with his scholarship. He has
done more than most to make this book possible.
In particular, he listens and engages in real
debate.

Preface

Drawing programs is a personal response to some very practical problems. To
explain this I need to go back in time to when my greatest toy was the Mechano
set; a mechanical construction kit with instructions on how to build your own toys. I
soon found that although the kit was boundless in one sense it was also very limited.
I spent many hours trying to do things that were well beyond the intention of the
kit designer. Much later I found electronics where circuits provided me with a much
wider scope for model building but it still took a long time to make devices. It was
not until programming was introduced during my time at University that this really
flexible tool was made available. No more bleeding fingers from the iron work and
no more burnt ties from soldering irons. Modelling was going to be easy and fun.
However, there was snag. I had a natural inability to spell or even to construct coher-
ent written sentences. It is true that I had evolved many strategies to successfully
overcome this problem but the strategies only worked within a limited framework.
The problem with programs is that they are written and involve the accurate use of
characters. Most of my time was spent in pursuing typos and very little time on the
programming. Sometimes it was necessary to ask someone to look for me and usu-
ally they could identify the problem within seconds; natural ability is a wonderful
thing.

Functional programming in the form of LISP came along and the power of this
language for expressing formal systems in an elegant way was very exciting. It
was one move away from having to worry about the actual physical computer with
all its storage management problems and one step closer to a language designed
specifically for modelling. It was like stepping into an automatic car after years
of struggling with manual gears. Even though practical computer languages had
moved a long way from machine code it was still only a change from the crash
gearbox to synchromesh. The computer structure was still in the background in that
everything was forced into the framework of data and processes thus reflecting the
fundamental dual distinction within the machine itself. The problem with functional
programming was that it was constrained by its own formal framework and stopped
short of being able to extend itself. LISP overcame this problem, to some extent,
by slipping back into the computer framework by introducing special ‘program’
type functions. It also overcame another limitation by allowing the language to be

vii

viii Preface

extended beyond the original formal functional description. In some cases it was
still very clumsy and from my point of view still required being written.

As an engineer, electronic circuits had been no problem to read, to find errors
or to remember. If only programming could be made that easy. It was this drive to
create a tool that would sidestep issues of spelling and yet still provide a professional
tool for developing models and other kinds of programs. This led us to create Clarity,
or rather, led Jan to develop the Clarity environment for me. Also, while we were
at it, we could also eliminate some of the restrictions found in current text-based
languages.

Clarity has been introduced quite slowly in this book simply because it seems
to be slightly at odds with the normal windows approach. This is not too surprising
since it was developed well before windows had become generally available and
it was also driven by different requirements. The theory related to designing mod-
els has been included right from the beginning but for practical purposes it can be
skipped.

The justification for Clarity given in Chapter 1 is in response to criticism of
the diagrammatic approach to programming. These other diagrammatic approaches
have usually been stimulated by a desire to make programming available to non-
programmers. This is not the purpose behind Clarity. Clarity has been driven by a
need to provide a sophisticated tool for programmers that would rather work with
diagrams than with text. Projects are given at the end of each chapter. These follow
the style of the Mechano instruction book in that every step is described. The pur-
pose of doing it this way is to show how drawing programs should be done and to
give an illustration of good techniques.

Clarity has been developed over the last 23 years for a wide range of different
projects. It evolved out of an IKBS project (CARDS) in 1986–1990 with the Gen-
eral Electric Company, the University of Reading and the Imperial Cancer Research
Fund to build a special hardware device that would allow those involved with DNA
research to create models of DNA behaviour. For this a modelling language was
needed. Originally the researchers had used Prolog. The next SERC/ESRC/MRC
project in 1991–1996 was with the Universities of Bath, with Professor David Good-
ing, and the University of Reading with us, to construct a model of scientific discov-
ery from the history of science. This work is still going on. Another project started
in 1996 and funded by Ship Analytics (now MPRI, part of the L3 consortium) was
an expert system used as a teacher replacement for Mariners training on a ship sim-
ulation for gas and oil management. Work on the automatic assessment of these
students is also almost complete. Other work involving modelling of the negotiation
process (Billinge and Addis 2008) at the University of Portsmouth has come up with
some surprising results requiring us to reconsider the motivation behind reasons for
conversation.

We have also taken on some really good post graduate students from the Techni-
cal University of Delft, The Netherlands. These have been provided by Dr, Drs Leon
Rothkrantz almost every year between 1996 and 2006 to work on various projects.
Many of these projects have helped to start new research directions such as those
described in Chapter 10. In particular, Dr Bart-Floris Visscher was one of the visit-

Preface ix

ing students who led a team that used Clarity to construct a planning system for a
multi-legged robot (Portech Ltd). He was an outstanding student. He came back to
Portsmouth to do research with me and his Thesis (2005) ‘Exploring Complexity in
Software Systems: From an irrational model of software evolution to a theory of psy-
chological complexity and cognitive limitations based on empirical evidence’ went
well beyond my own work started in 1977. It was thrilling stuff. He also designed
the embellished Clarity icon on the front cover.

There have been many others that have helped us develop the Clarity Environ-
ment. Simon Gray (Sharp Edge Systems Ltd) was invaluable at the system level
while we working with Apple Macintosh computers and he was always a source
of new ideas. Dr. Carol Small introduced us to the functional database language
(Poulovassilis 1988) during the CARDS project and wrote the core interpreter for
the Sun UNIX system based on Field and Harrisons work (1988). John Chewter, an
undergraduate student at the University of Portsmouth, showed considerable pro-
gramming aptitude by constructing the Faith to Clarity interpreter for his final year
project in 1995. It has been surprisingly useful. Ray Gillett (Director, MPRI, UK)
has provided us with a set of excellent practical industrial projects since 1998. These
projects have not only tested the system to its limits but many of the techniques
developed for the belief system (model of science) have found a natural home. We
thank him for his patience in allowing us to develop the system in our own way.

The Clarity schema has allowed us to work closely with many technically com-
petent people. This close working with a fast implementation leads directly to
the models needed. Any system that is useful requires to be continually mod-
ified to keep pace with technology and changing perspectives. For this reason
we are giving away Clarity in all its forms with example databases and source
code. At the time of publishing these will be found at the publisher’s web site
http://www.springer.com/978-1-84882-617-5, the University of Portsmouth web
site http://userweb.port.ac.uk/_addist/978-1-84882-617-5.zip and a special Clarity
community web site http://www.clarity-support.com

Southsea, March 2009 Tom Addis

References

1. Billinge D. and Addis T., (2008) ‘Seeking Allies: Modelling how Listners Choose their Musical
Friends’, Special issue of Foundations of Science, Vol 13, No1, March, pp 53–66, ISSN
1233–1821.

2. Field A. J. and Harrison P. G., (1998) ‘Functional Programming’ pub Addis-Wesley Ltd, ISBN
0-201-19249-7.

3. Poulovassilis A., (1988), ‘FDL. An Integration of the functional database Model and the Func-
tional Computer Model’, BNCOD 6, CUP, Cambridge, pp 215–236.

Contents

1 Why Schematic Functional Programming? 1
Introduction . 1
The Collapse of Visual Languages [→ Page 12] 3
Engineering Drawings [→ Page 12] 4

Engineering Drawings Used for Programming [→ Page 12] 6
Different Types of Clarity . 11

A Brief History [→ Page 12] . 11
∗Getting Going . 12
A Little Bit About Functions [→ Page 17] 15
∗“Hello World” . 17
Exercise 1.1 . 18
An Example Schematic . 18
A First Attempt at a Schematic . 19
Exercise 1.2 . 24
Changing a Function . 24
Saving a Program/Database . 26
Loading a Program/Database . 27
Project: Creating a Simple Clarity Program DICE 28

Dice: Generating a Random Number 28
Exercises 1.3 . 32
Questions 1.1 . 32
References . 33

2 Making Changes . 35
Introduction . 35
Problems of Software Design [→ Page 42] 35

A Typical Example . 36
The Engineering Dimensions of Design 36
Some Definitions for Practical Results 38
Choice and Random Selection . 40

∗Over Your Shoulder . 42
List Manipulation [→ Page 44] . 43
∗Improving ‘Awake’ . 44

xi

xii Contents

A Little Bit More About Functions [→ Page 51] 48
Built-In Library and Function Types [→ Page 51] 49
Exercise 2.1 . 50
Questions 2.1 . 51
∗Great Functions Have Little Functions 51
More Schema Editing Features . 54
Exercise 2.2 . 58
Memory, Windows and You . 58
Exercise 2.3 . 61
Questions 2.2 . 61
Project: A Simple Interactive Program 62

Guess: Finding Your Number with Least Questions 62
Exercise 2.4 . 71
Questions 2.3 . 71
References . 72

3 In Pursuit of Elegance . 73
Introduction . 73
Inferring Internal Experience [→ Page 81] 74
A Philosophical View of Computing [→ Page 81] 75
Dual Semantics [→ Page 81] . 78
More on Functions [→ Page 81] . 80
∗Creating Components . 81
Constructors: The Packaging of Data 86
Looking Through the Function Window 89
Exercises 3.1 . 94
Questions 3.1 . 94
The Notion of Casting . 95
A Structure Process Diagram (SPD) 95
Exercise 3.2 . 101
Questions 3.2 . 102
Project: Playing a Simple Game . 102

Paper: Out Guess the Computer . 102
Exercise 3.3 . 108
Questions 3.3 . 109
References . 109

4 Mind MapsTM and Mechanisms . 111
Introduction . 111
Junctions, Colour and Organisation 112
Annotation . 115
List Processing and Constructors . 118
Dealing with Input . 120
Functions as Global Variables . 123
Excercises 4.1 . 124
Questions 4.1 . 124

Contents xiii

Details of Pattern-Matching [→Page 140] 125
Dealing with Conditionals (Ifs) [→Page 140] 126
The Engineering Coherences of Design [→Page 140] 127
Functional vs. Imperative Programming [→Page 140] 128
Creating a Schematic Language [→Page 140] 129

The Problems of a Functional Language 129
Solving the Problems . 130
Doing Without ‘Ifs’ [→Page 140] 132

Exploring ‘Real’ Programs [→Page 140] 135
The Approach, Results and Interpretation 135

Discussion on Results . 138
Consequences of the Experiments . 138
*PROJECT: A Minimalist Program 140

Digits: Doing Without the Built-In Library 140
Exercises 4.2 . 145
Questions 4.2 . 146
References . 146

5 Functional Thinking . 149
Introduction . 149
Loops and Recursion . 150
Tail Recursion and Auxiliary Functions 154
Exercise 5.1 . 156
Questions 5.1 . 157
Functions as Mappings [→ Page 160] 157
∗Programming by Numbers . 160
Exercises 5.2 . 165
Questions 5.2 . 166
Project: Using Pattern Matching . 166

Snake1: Snakes and Ladders . 166
Snake2: Snakes and Ladders . 177

Exercise 5.3 . 183
Reference . 183

6 Thinking Practically . 185
Introduction . 185
Conditional Control . 185
Higher-Order Functions . 191
Non-recursive Approach to Loops . 194
Creating Two Useful Functions . 196
Non-recursive Approach to Iteration 199

‘Lambda’: Controlling the Parameter Assignment 200
Editing out Sub-functions to a New Function Window 202

The Annotation Window . 202
Exercises 6.1 . 204
Questions 6.1 . 205

xiv Contents

Project: A Simple Learning Strategy 205
Oxo: The Game Player That Learns 205

7 Side Effect Programming and Schematic Design 223
Introduction . 223
Functions as Data . 224

Functions as Relations . 226
Stages of System Design . 227

Sequences . 230
Evaluation Control . 233
Benign and Malignant Side Effects 234

Schematic Design . 235
An Emergent Design Technique 235
Artificial Intelligence . 236
The General Problem Solver . 237
Graph Search . 238
The ‘And/Or’ Graph . 239
Emergent Analysis Stage . 240
Construction Stage . 246
In Summary . 253

Exercises 7.1 . 253
Questions 7.1 . 253
Project: Learning from Defeat . 254

Oxo2: The Game Player That Learns: A Continuation 254
Oxo3: The Game Player That Learns: Another Improvement 259
Oxo4: The Game Player That Does Even Better 262
Oxo5: Hindering the Opponent . 264

References . 266

8 Adult Things . 267
Introduction . 267
Graphics Operations . 267

gr_operations . 267
btn_operations . 270
Dialog . 270

Narrative Window (nar_) . 271
Automatic Junction Insertion for Dependency Networks 272
Converting Faith Code to Clarity Diagrams 274
File Operations . 275

Basics . 275
Lists and Tables . 277
Trees and Networks . 279

Casting and Code Generation . 281
Bayesian Decision Functions . 282

Introduction . 282

Contents xv

The Bayesian Theory of Classification [→ Page 285] 283
*The Bayesian Functions in Operation 285

Matrix Operations and Linear Simultaneous Equations 287
Set Operations . 288
Switches . 288
Project: Using Faith with Clarity . 289

Loans: A Loans Calculation Program 289
References . 300

9 Higher-Order Programming and Lower Level Activity 301
Special Function Classes . 301

Introduction . 301
Function and Constructor Handling 302
System . 306

Client/Server Facilities . 309
Overview of Network and Machine Organisation 309
Manual Networking . 310
Networking Through User Functions 313

Adding Users’ Own Code: Extending the Library 315
A Simple Approach . 315
Writing Application Extensions: (DLLs) 316
Creating an Interface to Clarity . 319

Some Additional Features . 322
Importing and Exporting Databases 322
Stacking Windows . 323
Re-numbering and Naming Function Components 323

The Clarity Source Code . 324
The C Files and Header Files . 326

Project: Problem Solving . 327
Sudoku: Searching for Answers 327

References . 341

10 Programming with Uncertainty: Theories, Models and Programs . 343
Models and Programs [→Page 349] 343

The Role of a Model . 345
∗ Solving Sudoku . 349
An Introduction to Game Theory [→ Page 364] 351

The Problem of the ‘Best’ Choice 351
The Old Shell Game . 352
Principles of Maximising . 353
Probabilistic Strategies . 353

Choosing Actions (or Calculating a Heuristic) 355
Maximum Security Level (MSL) 355
Generalised MSL for Actions . 356
Multiple Simultaneous Equations Matrix 356
Implementing MSL . 357

xvi Contents

The Act of Choosing . 359
Information and Choice . 362

A Brief Introduction to Information Theory 362
∗ Using Information to Choose . 364

Belief Adjustment −→ Page 372 . 367
The Impact of Evidence: Hypotheses and Theories 369
A Simple Example of Confidence Adjustment 370

∗ Belief Adjustment and Learning . 372
A Belief Keyword Retrieval System 372
Implementing a Belief Retrieval System 373

Final Word . 377
References . 377

Appendix A: A BNF Description of the Functional Data
Language Faith: The Faith Code Window 381
Fdb Section . 381
Function and Constructor Declarations 381
Function Expressions . 382
Function Definitions . 382
The Control Window . 382
Basics . 383

Appendix B: An Extension of Faith to the Schematic Language Clarity 385
A Schematic Extension of BNF . 385
The Constructor Window . 386
The Function Window . 386
The Network Window . 387

Appendix C: The .seg File Structure . 389
An Example .seg File . 389

End of Segement File Example . 391

Index . 393

Chapter 1
Why Schematic Functional Programming?

Though I speak with the tongues of men and of angels, and have
not charity,1 I am become as sounding brass, or a tinkling
cymbal.

Corinthians 13, 1.

Introduction

Schematic functional programming uses diagrams, or more precisely schema, to
specify a functional program. We will describe a particular example of such a pro-
gramming environment called Clarity. At the time of writing, and as far as we know,
this is the only example of a professional programming language that is based on a
combination of schema and functions.

Clarity was originally written by the authors simply because we were tired of
struggling with computer coding when all we wanted to do was to create computer
programs that solved our problems. The problems we had to solve were hard enough
without being worried by the difficulties of getting the coding right. We could spend
days hunting for some minor error such as a missing or misplaced bracket while the
real issue we were trying to solve was held up. This seemed a tremendous waste
of time.

Having had some experience of electronic engineering we had found the drawing
and design of electronic circuits not only fun but also very productive. The transla-
tion of a drawing into an actual implementation was never a problem, so it did seem
a good idea to try for something equivalent in programming. We needed the clarity
of diagrammatic representation so that we could cope with the complexity of large
programs. However, we were not the first to consider this and there are a few exam-
ples of successful electronic style diagrams that generate computer programs (e.g.
Prograph and Matlab). Unfortunately they hit several problems with their visual

1For meaning of the word ‘charity’ we prefer ‘generosity of heart’.

1T. Addis, J. Addis, Drawing Programs: The Theory and Practice of Schematic
Functional Programming, DOI 10.1007/978-1-84882-618-2_1,
C© Springer-Verlag London Limited 2010

2 1 Why Schematic Functional Programming?

approach as has been shown by those who study computer psychology (Addis and
Addis 2001). We will discuss this in the next section.

It would seem that with the complexity of professional programming there was a
danger of getting lost in the same way as a child might get lost in the puzzle “Who
is linked with which shape?” (Fig. 1.1). This and the view that visual programming
languages were only toy languages and not worthy of consideration are the two main
reasons for such languages not being adopted by serious or professional program-
mers. On the other hand many of those developing such languages have done so
with the explicit intention of opening up programming only to novices.

The exceptions are those languages that were specifically designed to create
interfaces to programs, such as Visual C++ or Visual Basic. This class of visual
languages still has the difficult job of programming the processes that lie behind
the constructed interfaces. The buttons or sliders still need to do something and to
describe this means delving into the details of C++, Fortran, Pascal or Basic pro-
gramming. So if we were to do anything serious with a truly visual language and
assuming that such a language would help us cope with the difficulties of construct-
ing large complex programs then the question arises as to what needs to be done to
take advantage of a schematic representation.

We will explore these and other questions while we introduce the schematic func-
tional language Clarity. It is possible to skip these explorations and just jump to the
sections concerned with the practicality of programming using diagrams (or schema,
etc.). Whether you skip or not we recommend that the exercises be attempted. We
will indicate those sections that can be skipped with an arrow followed by a page
number for those who want to just learn the practice of programming with diagrams.
An example of this is shown at the end of the next heading below. The start of the
practical headings on the page will be prefixed by ∗. Exercises and projects that are
designed to give the reader practical experience are provided in most chapters.

For the reader, what will eventually emerge from these explorations, tests and
a practical experience of Clarity is an elegant view of programming, a view, we
believe, that will benefit his or her designing ability with any style of programming
language.

Fig. 1.1 The problem with
pictures

The Collapse of Visual Languages 3

The Collapse of Visual Languages [→ Page 12]

First it is worth considering the problems and criticisms of a visual language of the
kind we had in mind. The arguments between the supporters of graphic and text pro-
gramming came to a head in June 1996 at the MIT Laboratory for Computer Science
which hosted a workshop on Strategic Directions in Computing Research. The 300
participants were divided into 22 working groups where each group explored differ-
ent topics. Their reports were eventually published in the ACM Computer Surveys
(Wegner and Doyle 1996). One of these reports was concerned with Visual Lan-
guages (Citrin 1996). The report noted that despite the great intuitive appeal of such
languages they have not been adopted except as curiosities. Citrin suggested that
there are three distinct areas that make visual languages unacceptable for program-
ming. They are

• Appropriateness of mapping; deciding which aspects of problems map naturally
into visual representations and which are best left as text.

• Scalability; the ability to construct and comprehend very large visual programs.
• Transparency of the interface; allowing changes and modifications of visual pro-

grams to be as easy as editing text.

The suggestion here is that if these were ‘solved’ then visual languages would
become more acceptable.

Some 6 years earlier, Green (1990) had already asked the question

Is there evidence that diagrammatic notations genuinely offer something that symbolic nota-
tions cannot match?

and noted that

It is disturbing to observe that many workers have not even asked this question, and instead
assert uncritically that ‘Pictures are more powerful than words. Pictures aid understanding
and remembering Pictures do not have language barriers. When properly designed, they
are understood by people regardless of what language they speak.’ If the more dewy-eyed
propositions of program visualisation enthusiasts are accepted, then we can expect diagrams
to be better for all purposes.

Soon after this observation Green with Petre (1996) published the results of a
series of careful studies exploring different graphical and text notations for ease of
programmer interpretation. They concluded that

• Overall, graphics was significantly slower than text to interpret.
• Moreover, graphics was slower than text in all conditions and the effect was uni-

form.
• The intrinsic difficulty of the graphics modes was the strongest effect observed.

These damning results were illustrated by selected observed behaviour and they
concluded that

4 1 Why Schematic Functional Programming?

Far from guaranteeing clarity and superior performance, graphical representations may be
more difficult to access.

Their most vivid description was concerned with ‘Knotty Structures and Working
Memory Load’:

Program structures can contain ‘knots’ which force working memory load on the reader. . . .
The sight of subjects crawling over the screen with mouse or fingers, talking aloud to keep
their working memory updated, was remarkable One of the distinctions between expert
and novice behaviour was that the experts made better use of their fingers, occasionally
using all 10 to mark points along a circuit.

These are indeed remarkable observations that were supported by further work
published in 1996 (Green and Petre 1996). These observations are particularly
remarkable since engineering of many flavours, such as car design, architecture or
electronics, would be impractical without diagrams.

On close inspection of their study it is evident that the experiments are only con-
cerned with interpretation. Even so this does not limit the apparent uselessness of
visual programming since it would seem reasonable that design should depend to a
large exent upon interpretation. So the questions needed to be asked are as follows:
‘What might be the difference between engineering a computer program and other
engineering practices that seems to cause diagrams to become a positive disadvan-
tage?’ ‘What is it about interpretation for programming that causes the problem?’ ‘Is
it possible to overcome these difficulties and obtain the gains that diagrams clearly
have in engineering, etc. for programming?’ ‘Is there something unique about pro-
gramming that is different from other design processes?’

It is worth noting at this point, and as we will show later, that knotty structures are
a result of imperative programming. Functional programming avoids this problem
because of its properties of referential transparency and pattern match (of compo-
nents). These properties will be fully explained (see pages 126 to 140).

Engineering Drawings [→ Page 12]

There is no problem in understanding the utility of an engineering drawing that
represents such things as the design of a bridge, engine or aeroplane. A scaled
schematic provides a means of trying out a design on paper and before the expense
of manufacture (Fig. 1.2). It is a skilled task involving considerable precision that
requires training from an expert in the field. The diagrams are drawn from views
employing many established conventions. There is no pretence that the diagrams
are easy to produce or necessarily simply understood. The drawings are scaled and
are surrogates for the real thing (Davis et al. 1993) providing images that allow
some direct measurements and that act as a guide for the creation of equations and
the construction of the item.

Electronic circuit diagrams are also surrogates, as are ordinance survey maps.
Icons that reflect something of the physics of how the component objects work rep-
resent switches, uniselectors, relays, electric motors, valves, transistors, resistors

Engineering Drawings 5

Section AA

A A

Fig. 1.2 Engineering drawings

and capacitors. There is sufficient in the abstract representation of these icons to
remind the engineer about the nature of the devices to the extent that their unusual
properties can be deployed. For example, screen grids of valves can be used to mix
signals, the coils of relays can replace an inductance, and transistors can be used
(with care) symmetrically (Figs. 1.3 and 1.4, first diagram). Logic circuits are also
surrogates even though they are not so well endowed with icons that represent their
workings. The logic gate in its entirety is too complex to represent its structure
compactly.

In this direct case of engineering drawings it would appear that the formal and
the informal semantics are folded into each other; what the notation represents in
the working system and what the engineer intends it to represent in the world are
one and the same thing. However, this simplicity diverges slightly when VLSI is
introduced to replace the normal components of electronic circuits. Transistors and
other components are now intersections of laminar areas of different materials (see
Fig. 1.4, last diagram). To cope with this, a new kind of diagram was introduced
to bridge the gap between the implemented device and the electronic circuit. This
is the ‘stick’ diagram (see Fig. 1.4, middle diagram) (Mead and Conway 1980).
Sometimes the engineers combine both kinds of notation into one diagram. The

+HT

in

Speaker

Fig. 1.3 Valve amplifier
(valve basics by Harry Lythall
SM0VPO)

6 1 Why Schematic Functional Programming?

Fig. 1.4 Different VLSI drawings of the same circuit

equivalence of the formal and the informal semantics no longer holds directly
because each kind of diagram now represents a different abstraction of the artefact
for a different purpose (problem domain).

However, in all cases of engineering drawings they are also used to help create
calculations and thus make predictions of behaviour or performance. This involves
looking up information in tables and deploying laws of physics, such as Newton’s
three laws for mechanical devices or Ohm’s and Kirchoff’s laws for electrical cir-
cuits. There is no need to carry out experiments to demonstrate the value of these
drawings for the design of artefacts. They may not be perfect but they would not be
used if there were any significantly better method.

Engineering Drawings Used for Programming [→ Page 12]

The notion of a surrogate has its place in software engineering. A typical set of dia-
grams are those used for systems analysis. The example analysis shown in the first
diagram of Fig. 1.5 is a variation of data dependency diagrams (Addis 1985). This
shows the many-to-one relationships between the set of catalogues and the set of
parts supplied by a set of suppliers. In this analysis suppliers must show at least one
part in their catalogue. As for VLSI each of the three diagrams is a different abstrac-
tion concerned with different aspects of the design procedure. The first diagram is
concerned with identifying classes of objects and their existence dependency. A part
cannot exist unless there is at least one supplier of the part. The key to the effective
design of this first diagram is familiarity with and the skilled use of the normalisa-
tion process as applied to data structures (Codd 1971, Maier 1983) just as Kirchoff’s
and Ohm’s laws are needed for electronic circuits. The last diagram describes the
actual physical pointer system in the memory that links information together. The
middle diagram, similar to the stick diagram for VLSI, bridges the gap between the
two abstractions.

Engineering Drawings 7

Fig. 1.5 Three
representations of the same
data

Something in the use of engineering diagrams has changed for systems analysis.
The change is that the elements referenced by the icons (e.g. PARTS) are fluid. They
are no longer easily identified objects, as is a logic gate or a switch. They are sets
or concepts. The focus of design has shifted towards the relationship between the
design process and the designed artefact. The involvement of the designer in decid-
ing what the nature of the elements of the world is to be, although rarely acknowl-
edged, is paramount to the ultimate design. What exactly is defined as a part or a
supplier or a catalogue item is never expressed except in terms of attributes. Cata-
logues is a part and supplier relationship that has a reality as separate catalogue lists
but these have disappeared. In the world in which we operate and in time this usually
leads to confusions. What attributes are common to every part? Do all parts have a
colour? Who may be defined as a supplier? Is your colleague with whom you work
a supplier because he supplies you with information? This problem of indefinable
sets is referred to as ‘irrational’ (see Addis et al. 2008 and c.f. page 76).

LabView, MatLab and Prograph are all graphical languages that draw upon the
circuit diagram as their representational paradigm. The obvious appeal is to the skills
that engineers already have in understanding and designing with such languages.
The advantage of such languages over normal engineering drawings is that a circuit
can be tried out before being built. This gives security of design; it ensures the
artefact works as expected.

The oddity about these languages is that people would ever choose to use them as
a general programming tool given that the elements have been fixed for reasons that
have little to do with the potential of a von Neuman machine or the possibility of
abstracting elements from a problem domain. It is thus not too surprising that they
are confined only to certain well-defined areas of work.

The current design methods for software such as SSADM which were developed
during the early days of computing (Stevens et al. 1974) are inadequate and do
not provide the same security of design as found in electronics. We will now ask
the question ‘Given complete freedom of choice on a representation, unbounded by
physical constraints, what would it be?’ As we will justify later the answer is an
approach to programming that can use simple diagrams to represent many levels
of abstraction that allows different perspectives of the same program and is based
on a handful of simple principles. This is the style of ‘functional’ programming,

8 1 Why Schematic Functional Programming?

a style that is tremendously powerful and capable of programming very complex
ideas compactly.

Functional programming is the process of programming using functions. Func-
tions map types (such as integers, reals, characters, strings, lists) into (or onto) other
types. An example is the function ‘integer-multiply’ which maps pairs of integers
into a set of single integers. An example of this mapping is 2 ∗ 3 → 6. More will be
said of this later (see pages 15 and 48).

The simplicity of functional programming comes from the fact that there are
really only four principles that need to be known. These are the function, type,
recursion and pattern matching of function components. In imperative programming
terms,

• Programs are functions and so are data, procedures and sub-routines.
• A class is a type such as Boolean or String but the strength of a functional lan-

guage is that you can also create your own types.
• The basic processing controls of programming showing when to stop, where to

loop and where to go next in a program are the self-referential mechanism for
looping. This is the recursion of functions.

• Pattern-triggered function calls, such as a case statement or an array indexing
(reference by index pattern), are governed by the pattern matching of function-
components. However, pattern matching goes beyond these examples and will be
described in detail later.

The snag with functional programming and another reason why it never really
caught on is because it appears too mathematical. However, we found that if you
convert such a language into its diagrammatic equivalent then the resulting pictures
are easier for non-mathematicians to follow than formulae once a user has learnt
how to interpret them. Figure 1.6 is a typical diagram used by those teaching func-
tional programming (e.g. Reade 1989). The function illustrated is to copy string S n
times. Here the string to be copied enters at the bottom left of the diagram (S) and
the number of times it is to be written at the top left (n). If the number n is zero (0)
then a blank string (“”) is returned and that is the end of the processing. If n is not
zero but is (say) one (1) then a one is subtracted from n and the string (S) is con-
catenated with whatever comes out of stringcopy [0 S]. In this case a blank string
(“”). For a number greater than one the process is repeated n times. So stringcopy
[3 “Fred”] → “FredFredFred”.

This suggests that diagrams like these should be used to program directly and we
have called this kind of programming ‘schematic functional programming’. So the
schematic programming is the process of programming a computer directly through
the construction of diagrams. Such diagrams are also referred to as schema, graph-
ics, visuals or pictures.

Functional programming can be compared with the normal imperative program-
ming that refers to named storage locations (memory) and processes (programs) on
the contents of these locations. Imperative programming is more in line with the
actual way that a computer works and is structured. Computers consist of distinct

Engineering Drawings 9

stringcopy

stringcopy

n

s

0

1

=

−

“”

if

then

else

Fig. 1.6 Stringcopy : int ×
string → string fun
stringcopy (n, s) = if n=0
then “” else stringcopy (n–1,
s)∧s

memory and a processor where the processor transforms information from memory
and returns the result to memory. Functional programming is derived from the math-
ematics of lambda calculus and does not necessarily correspond to the computer
structure. There is clearly a similarity in the respective practical outcome. Impera-
tive processes map computer memory-to-memory locations whereas functions map
typed values to typed values. It has been shown that these two styles of programming
are equivalent to each other in what they can do (Church–Turing Thesis: see Stan-
ford Encyclopaedia of Philosophy, 2002). In most programming languages there are
elements of both kinds of programming but with a major bias to one or other of the
methods.

Figure 1.7 shows the Clarity version and an exact functional replica of the typical
diagram shown in Fig. 1.6. Since Fig. 1.6 was constructed unbounded by program-
ming issues in order to provide a teaching aid to explain the workings of a formal
functional language and since such schemas have also been independently invented
elsewhere by others (e.g. Field and Harrison 1988) it seems reasonable to try to
adopt this method of representation as a schematic for a functional programming
language. Three examples of using this Clarity version of ‘stringcopy’ function are

QUERY> stringcopy #0 "Fred"
""
QUERY> stringcopy #1 "Fred"
"Fred"
QUERY> stringcopy #3 "Fred"
"FredFredFred"

Clarity is really a schematic functional program development environment that
has been built to provide all the tools, support and mechanisms the system/program
designer needs to have in order to make functional programs creatively. There are
lots of ideas or methods about how someone should go about designing creatively
and most of them have tried to provide a prescriptive set of steps that take a designer
onto good program structures.

An example of the method of design is the top-down approach. This suggests that
designers start as though they had a finished design. This is their ultimate goal. Then
they consider what the general mechanisms needed to achieve that goal are. The

10 1 Why Schematic Functional Programming?

Fig. 1.7 An exact equivalent
of Reade’s function
‘stringcopy’

designers then take each of their mechanisms in turn, consider them as sub-goals
and apply the same technique all over again until they reach predefined mechanisms
or computer code. The problem here is that it is not always clear where to start since
a finished product depends upon the available elements from which it is built.

Another popular method is ‘object-oriented’ where the designers first consider
all the ‘objects’ they are dealing with and the operations they want to apply to them.
All these methods work very well for some problems but completely fail for others.
In all cases, the chances of getting your design decisions correct or even passable
first time, such as the right choice of mechanisms or objects, are unlikely.

All these approaches are too rigid since ideas and more importantly perspective
of the problem to be solved arise from the activity of design. This in turn will trigger
not just minor adjustments but also major redesigns, redesigns that can be based on
completely new objectives. However, by using functions, such decisions as to what
elements are needed can be made at any time through a process of construction and
this gives the freedom to redesign at any stage. It is the ‘problem’ that dictates the
route to good design and not some independent notion of ‘good practice’.

Experience has shown us that you need at least seven or eight reassessments of
the problem domain before the design is good enough to do the job elegantly. Even
when designers do get their design right, every ‘living’ program will need to be
modified because life just goes on and things change. Therefore, we built an envi-
ronment that will allow designers to ‘play’ and try their ideas out without too much
effort. They can start in the middle and work outwards from many different simul-
taneous starting points. It is the same way many people solve jigsaw puzzles. They
do what is easy by finding the side edges and some of the major internal features of
the picture. Then they slowly fill in the rest. However, in the programming case a
designer can get the computer to do the work of checking out the designs. If a better
idea occurs or the requirements alter, then the environment will support them for all
their changes.

Different Types of Clarity 11

Different Types of Clarity

There are several kinds of Clarity environments available that are specialised for
different purposes. The professional environment (ClarityPro) provides all the facil-
ities for networking at the local level (TCP/IP), file-handling, dynamic link libraries
(DLLs), graphics interface functions and some other 300-plus library functions.

Clarity is essentially a development environment that allows a designer to run
programs while developing them without the need to commit them. This allows a
designer to do a quick test at every step in creating a program since the individ-
ual bits can be run at any time. Thus on-the-fly testing can be done since it is the
nature of functional programming that every function can be ‘run’ independently
of any programming environment or state. This characteristic is called ‘referential
transparency’ and it relies upon the fact that a function does not depend on external
values or flags set up by the program. However, there will be occasions when this is
not the case. We will deal with this in chapter 6 page 185.

When a program is finished, it is sometimes useful to disengage all the develop-
ment support. The schematic program is translated into a functional language called
Faith and the freestanding interpreter for Faith is ClarityEye. ClarityEye accepts
Clarity-developed programs and runs them without reference to the schema (the
Clarity pictures). There is also a version of ClarityEye that can be treated as a
DLL. This is FaithDLL and it runs without reference to Windows or other platform-
dependent interfaces. The ClarityDLL is written in C and can be compiled to run
under many different systems.

We found that all these facilities distracted some beginners from learning the
essential elements of functional thinking. It is learning to think about programming
in terms of functions that gives a designer the power to create simple solutions.
Once such a skill has been learnt, it will give the designer the potential to use this
functional thinking in all other programming languages. The result will be much
better designs than might have been achieved without this enhanced way of seeing
solutions.

So ClarityLite was created to provide a focus for learning functional program-
ming. Some of the facilities found in ClarityPro have been disabled and the library is
reduced to about 100 basic functions. We will initially use ClarityLite in this intro-
duction to schematic programming. ClarityPro, ClarityDLL or ClarityEye can run
any program developed in ClarityLite.

A Brief History [→ Page 12]

Clarity was first conceived in 1986 on the Sun-Unix workstations before the PC
Windows operating systems were generally available. It was created for a project
involving Reading University, the General Electric Company (GEC) and Imperial
Cancer Research Fund (ICRF). The main purpose of the project was to create a
super-fast database engine that could access complex database structures (Addis
and Nowell 1990). The concept of Clarity evolved in response to resolving the
difficulties in creating complex computer models of genetic structures in terms of a
formal logic language (Prolog) working with a large database.

12 1 Why Schematic Functional Programming?

In 1989 the Clarity environment was tested on first-year students to see how they
‘took’ to it. It was clear from our results that the schematic style of programming
could halve the time in model creation and reduces the error rate by a significant
factor (approximately one-quarter). This was particularly valuable not because of
the speed and error reduction but because functional languages of all kinds are very
difficult to teach. Clarity thus proved to be an excellent stepping stone to grasping
in practice the subtle ideas behind such languages; it was an excellent teaching tool.

In 1991–1996 Clarity was transferred to the Apple Macintosh OS7 and used in
a new project at the University of Bath to explore historical evidence and hence
model the science discovery process (Addis et al. 1991). During this time and for
a European project on Genetic Algorithms it was also transferred to work on a PC
operating system Windows 3.1 (Stender et al. 1993). Further Clarity developments
of the PC version under OS Windows XD Professional to date have since been
used in several major industrial projects. In particular MPRI Ship Analytics have
several products using a Clarity-constructed Expert System for the teaching and
the assessment of trainee mariners while they are using different ship simulations
(Addis et al. 2005). Other major works include the modelling of discourse (Billinge
and Addis 2008) and the explorations of complexity in program structures (Visscher
2005). It is this refined version that is described in this book.

∗Getting Going

As described above, Clarity was developed before Windows was established and so
many of the assumptions that now generally hold on how to interact with computers
do not necessarily hold for Clarity. Although we have moved towards the normal
culture of the computer interface there are a few things that are done differently.
Usually it is because the nature of schematic programming is better served by dif-
ferent procedures. It is for this reason that the practical descriptions given here make
few assumptions and detailed descriptions are given in the early stages. So if many
of the initial descriptions seem superfluous or obvious it is because we are ensuring
that the instructions are made clear.

The Clarity environment comes as a single program ‘Clarity.exe’ (we will use
Clarity.exe for all variations of Clarity: ClarityLite, ClarityPro, etc.) and is normally
recognised by the ‘eye of Horus2’ symbol

.

2The logo is the mirror image of the Egyptians ‘Eye of Horus’. The form is called the Udjat eye
representing the eye of the falcon god Horus that was torn from his head by the storm god Seth. It is
the combination of the human eye and the markings of the falcon eye. It is used as an amulet against
injury and is traditionally used by Egyptian doctors to sign prescriptions or letters. Elements of it
are also used to represent fractions. The eye without the markings simply means ‘seeing’.

Getting Going 13

The Control
Window

The Tool
Bar

The Menu
Bar

The Query
Prompt

The Built-In
functions

Table

Sorting Bar.
Press to sort
Table on that

column

Fig. 1.8 The initial opening of ClarityLite screen

The program should be placed on the main drive in its own folder. Double click
on this symbol and the Clarity work environment will open on your screen looking
something like Fig. 1.8 .

In Fig. 1.8 there are two Clarity windows (Control and Built-In Functions), a
menu bar at the top, which gives access to a range of possible actions, and a tool
bar. Each of these windows can be made larger or smaller in the normal way. There
are several different kinds of windows used by Clarity, some of which can be opened
by clicking on the window icons provided in the tool bar. The contents of the menu
bar will change depending on which kind of Clarity window has been activated (by
clicking once on the window somewhere). Each of the menus in the menu bar will
give access to a range of possible actions.

For example, Fig. 1.9 shows the menu ‘Window’ opened and the range of pos-
sible actions relating to the window is displayed. The top item ‘Commit. . .’ will
translate a drawing (schematic program)3 into code that can be run. The Ctrl+T
indicates that you can have exactly the same effect by pressing the key Ctrl, which
should be pressed first and then kept pressed, while pressing T. The ‘OK’ button
in the tool bar also commits. The ‘Constructors’, ‘Function’, ‘Network’ and ‘Faith
Code’ commands are all windows that can be opened and within which a designer
can develop, play or see the schema or code.

The window ‘User Functions’ can be opened once some code is committed and
saved on file or a program (referred to as a database in this language) has been

3This will also ‘commit’ Faith code put in the Faith Code window. So you can still ‘code’ if you
want to.

14 1 Why Schematic Functional Programming?

Fig. 1.9 The window menu
is opened

loaded. This will provide a list in one of two forms, ‘list view’ or ‘ tree view’, of
all the functions that are not library or built-in. They are all the other functions that
make the program. Double clicking4 on one of these in the ‘User Functions’ will
open the associated function window. The list can be sorted on function name, date
of last modification and output type.

The tool bar provides a useful subset of all these actions given by the menus.
These selected actions are all ready to use by simply clicking the icon button
required. If the main screen is active the ‘arrow’ cursor can be placed over a button
and then a message will appear showing what that icon button does. Figure 1.10
indicates what some of the icon buttons do.

Note that we have an icon for open and save a program. Sometimes we will
refer to the program as a database. This may seem strange but the reason for this
is derived from its history (see Page XX) and that the text version of the schematic
language Clarity (Faith) is based on a functional database language (Poulovassilis
1988, Poulovassilis & King 1990). This is where a function is considered as a query
to a database of functions. The idea comes from extending the concept of a relational

Open a
program

Save a
program

Constructor
Window

Function
Window

Annotation
Window

Commit a
Window

Query in
Control
Window

Network
Window

Cut, Copy & Paste selected
objects in Windows

Quit (X) Clarity
session

The selection of
shapes for Windows

Fig. 1.10 The tool bar commands

4In some systems (e.g. Windows 95) you require to highlight and press return instead.

A Little Bit About Functions 15

database. A ‘relation’, or a ‘set of relations’, which form a database (Date 1983) can
be extended to include functions because a relation is a particular kind of function.
We will explore this idea further in chapter 7.

A Little Bit About Functions5 [→ Page 17]

Most people are familiar with a mathematical function. The simple notion of adding
two numbers together such as 3 and 4 can be represented as

3 + 4 = 7

where the numbers 3 and 4 are the parameters of the function ‘+’ and the output is
the number ‘7’. Another way of looking at this is as a process ‘+’ that takes two
numbers and translates these numbers into another (the answer). This can be shown
as a grey box with inputs and outputs (Fig. 1.11).

In this diagram the order of the parameters of ‘+’ is defined clockwise from the
output and this will also be the case for Clarity functions. Order is important with
some functions such as ‘–’ and ‘/’. We could have written this in the normal prefix
functional notation where the function is always put first and its parameters are listed
in a round bracket afterwards. For example, this would become

+ (3 4) → 7

where ‘+’ forms a function followed by its two parameters (3 4). The result is 7. This
prefix form can be compared with a typical database relation PARTS (part# : name,
quantity) where the part# value is the parameter (key domain) and the result (own
domain) is a pair of values (name quantity) (see Fig. 1.5). The advantage of this
form is that all functions follow the same structure no matter how many parameters
they have, thus

+

3 4

7

Parameters are ordered
clockwise from output.

So this is + (3 4)

Fig. 1.11 The diagrammatic
representation of a function

5Those readers who are familiar with a strongly typed functional language such as Hope, ML or
Miranda may skip the next section. Others may wish to extend their understanding by reading Field
and Harrison (1988) or Reade (1989). However, the Faith language that underlies the work in this
introduction is a functional database language and is described by Poulovassilis and King (1990).
The version we are using is defined in Appendix A.

16 1 Why Schematic Functional Programming?

function (parameter1 parameter2 parameter3. ...parameterN)

Since the function is always first, we can move the first bracket so that the brack-
ets encompass the complete expression. This is being done to simplify the way
functions are put together. Thus, in the following example of the function ‘between’
we can present it as

(between 4 7 15) → True

where this asks the question “Is 7 between 4 and 15 (in value)” and in this case the
result is True. This form has the advantage that we can now nest the functions, thus

(between 4 (+ 3 4) 15) → True

where the calculation proceeds from the inner-bracketed expression outwards. Con-
sequently, the value of the function ‘+’ is determined before the function ‘between’.
We could also draw this expression as shown in Fig. 1.12.

+

4 15

3 4

True

between

Order of
Processing

Order of
Interpretation

Fig. 1.12 The combination
of two functions

Note that this schematic representation changes the description of the process-
ing of imbedded functions to top down rather than inside out. Superficially, the
top-down description follows the same form as a normal imperative programming
language and might be seen as such in a related ‘data flow diagram’. However, the
diagram formally remains functional and should never be confused with a data flow
diagram. This is because the diagram is always first interpreted from bottom to top.
In this example there are no ambiguities but in diagrams that contain a function ‘if’
(see Fig. 1.7) certain branches do not need to be evaluated. This elimination of effort
is part of the ‘lazy’ evaluation nature of the processing.

The ‘type’ of object the functions process in this case is an ‘integer’ (or ‘int’
for short and are just whole numbers). Other objects such as ‘strings’, ‘real num-
bers’ and ‘characters’ (‘str’, ‘real’ and ‘char’) can be processed. It is also possible
to define your own types (see Chapter 3). A function also has a ‘type’ and this

Hello World 17

is defined by the kind of object it produces (the output). So ‘+’ is type ‘int’ and
‘between’ is type ‘bool’ (short for ‘Boolean’).

∗“Hello World”

It is traditional in learning to program that the first program to be written is to get the
computer to print out “Hello World”. We will do the same. This first program will
also illustrate that Clarity is principally concerned with problem solving and has
only very primitive interface facilities. For the creation of sophisticated interfaces
a visual language such as Visual C++ should be used in conjunction with Clarity.
How this is done is described later in the book (Chapter 9).

The simplest approach is to use the control window and the built-in func-
tion ‘print’. So ‘print “Hello World”’ is typed into the Control Window opposite
the prompt QUERY> followed by the return key. Then the result will be “Hello
World”True as shown in (Fig. 1.13).

Fig. 1.13 Using the control window

Now this may not be exactly what is expected. The “Hello World” certainly was
printed in the control window but then it is immediately followed by ‘True’. The
reason for this is that the instruction was to print the phrase “Hello World” in the
Control Window. However, the result of the function ‘print’ is the Boolean value
‘True’. In this case, ‘True’ means “print operation succeeded” and ‘False’ means
“print operation failed”.

It is useful here to make a distinction between the two effects that occur when a
function is evaluated. The printing of “Hello World” is an example of a ‘side effect’.
That is, the function does something in the world that may (or may not) relate to the
function name. So the function ’print’ could have sounded an alarm, flashed a light
or sent a rocket to the moon. The ‘primary effect’ of function ‘print’ is to respond
to any string with the result ‘True’ (or ‘False’). From the functional programming
point of view, the primary effect is the important result. However, sometimes we
sneak in a bit of imperative programming, which is the manipulation of side effects.
It can be stated that functional programming manipulates mappings and imperative
programming focuses on side effects (see Chapter 7).

18 1 Why Schematic Functional Programming?

Exercise 1.1

1. Print out in the control window “Time flies like an arrow”.
Note that in Clarity an integer is always written so it is preceded by a #. Thus,
the integer 1 is written as #1 (no space) and the integer 46 is written as #46.
Knowing this, and using the built-in library functions ‘+’ and ‘–’, create queries
in the control window that do the following:

2. Add the two integers 23 and 48.
3. Add the above result to 32 in a single query (one line of code).
4. Subtract the integer 58 from 125.
5. Subtract the above query from 84 in a single query.
6. Add the three integers 5, 12 and 2 together as a single query (hint see example

‘between’ and ‘+’).
7. Add the result of adding the two numbers 57 and 32 with that of subtracting the

number 43 from 61. Do this as a single query.

An Example Schematic

OXO1A is a program that will learn to play noughts and crosses (OXO or Tic-Tac-
Toe) with a player. On opening a database (OXO1A in this case on page 205) a
network window may appear showing some of the different functions used in the
program and what functions rely on which others. The network window is shown
in Fig. 1.14 (left). By double clicking on any of these functions a function window
will appear with that function displayed. This is shown in Fig. 1.14 (right). Note that
the network does not necessarily show all the functions used. To keep the network
window uncluttered the designer can choose what functions are shown. You can
have a variety of network windows each showing different constructed views of the
program. In this case the complete program is shown for OXO.

The inputs of a function are the connecting arrows from either the out-
put of a function or a parameter. The output of a function is a single con-

A function with more
than one definition

Built-in functions
shown as light grey

Fig. 1.14 The network window of OXO1A and the function window ‘play’

A First Attempt at a Schematic 19

necting arrow directed outwards to another function, constructor or output
parameter.

The order of the parameters of a function or a constructor is strictly ordered from
the single output arrow (as reference start) in a clockwise direction (see Fig. 1.15).
Although a function has only a single output, it can provide many inputs to other
functions via a type (or hold) lozenge.

+

int int

int

1st

Fig. 1.15 The order of the
parameters is important

Figure 1.14 shows the function ‘play’ and this has its ‘input’ (the ‘input param-
eter’) at the top. What is shown is the ‘type’ of input expected and in this example,
it is a ‘mark’. A ‘mark’ is an example of a user-defined type and in this case has
been defined elsewhere (not shown here) to have only two possible values: an ‘x’ or
a ‘o’ in the same way that type ‘bool’ only has the values True or False. Since the
‘play’ refers to a function that chooses a move in noughts and crosses for a player
‘x’ or for a player ‘o’ a different action is required depending upon the input. The
function ‘choose_for’ does the actual choosing and ‘set_to’ places the ‘mark’ into
the noughts and crosses board.

The function ‘choose_for’ is a function that has more than one definition. This
means, in this example it will do something different to ‘x’ than for ‘o’. The function
‘progN’ is displayed slightly grey to show that it is a built-in or library function.
This particular function can have many input parameters6 and will ‘evaluate’ each
parameter in turn in a clockwise order starting with the parameter nearest the output.
For ‘progN’ the output will always be the same as the last parameter it evaluates. In
this case, the output of the function is a value of the user-defined type ‘mark’. Now
the function ‘other’ has the job of deciding who plays next and this has more than
one definition. Here it takes the input of type ‘mark’ with a value ‘x’ and returns the
‘mark’ value ‘o’ or takes an input ‘o’ and returns ‘x’. We will look at OXO in more
detail in a later chapter.

A First Attempt at a Schematic

Just to make sure the basics are understood we will further develop the idea of
“Hello World” using a schematic. The objective is to simply type in the word
‘awake’ and the response will be “Hello World”. Open a function window by click-

6A very few functions have a variable number of parameters. Another function is ‘makelist’ that
creates a list of all of its inputs. Functions should normally have a fixed number of inputs and a
single output. A single output is always the case.

20 1 Why Schematic Functional Programming?

ing on the function window icon button (see Fig. 1.10). This is a ‘pink’-coloured
window as shown in Fig. 1.16 (left). You will note that there is already an output
parameter lozenge placed in the output field at the bottom of the window. This is
because all functions must have one and only one output. We will deal with this
output parameter later.

Fig. 1.16 An empty function window and placing a function box in it

Next, select the function window and then go to the shapes for drawing in a
function window (see Fig. 1.10) and choose the function box. This is the middle of
the three box shapes in the tool bar. Bring the cursor back to the window and you
will note that the cursor has changed its form (Fig. 1.17). This cursor form reflects in
miniature the shape you can expect. Position the cursor where you want the function
to be (say in the middle – you can always move it later) and click the left key
(Fig. 1.16, right).

Only one function is required now but it is possible to keep clicking and
place as many functions as you like anywhere in the function window. If you
do put an extra function or two in the window then they can be removed.
Items in the window can be removed by selecting them (click to highlight or keep
shift depressed as you highlight more than one). Once highlighted then from the
edit menu choose ‘Clear Selection’ at the end or use ‘Ctrl+D’ on the keyboard.

If you wish, you can always return to the standard cursor (+) by moving the cursor
to the bottom section of the function window that contains the output lozenge and
left click the mouse. This is also true for other windows of this group even though
the bottom section is not always delineated with a line.

Having placed the box, the cursor can then be moved over the box. When you
type, it will turn into an I-bar, thus indicating that you can continue to type the

Fig. 1.17 Placing a function
cursor

A First Attempt at a Schematic 21

Fig. 1.18 Typing in a function name then return key accepts function

function name. While the typing state is active, the prompt ‘>’ will remain showing
(Fig. 1.18, left). After typing, the cursor will return to its previous shape.

Once the typed name is complete the return key will cause the prompt ‘>’ to
disappear and only the function name ‘print’ will remain (Fig. 1.18, right).

If the name is not recognised (say because of a spelling mistake or a function has
not been defined) then the name will appear in italics. There is only one exception
to this and that is the meta-function ‘lambda’. So when it is used the spelling must
be checked by human eye. In all other cases the italic mechanism identifies one of
the major sources of errors in programming (the typo). The function name can be
replaced at anytime by simply typing the name again. It is also possible to edit a
name rather than retype it by highlighting the box, move the cursor slightly to the
right or left and then click again. This will bring up the contents of the box into a
dialogue box that can then be edited.

The function ‘print’ is then joined onto the output parameter and ‘bool’ is written
in it (Fig. 1.19, left). The ‘bool’ shows that it will expect to have either True or False
as an output. Two objects (boxes or lozenges) are linked together by joining them

Fig. 1.19 Connecting to the output and the complete function

22 1 Why Schematic Functional Programming?

with an arrow. This linking is done by selecting the arrow (far right of shapes for
drawing a program, Fig. 1.10). This will cause the cursor to take on the top left-hand
shape shown in Fig. 1.20. This is meant to represent the tail of a dart or arrow as
seen from behind. The start of the arrow is specified by clicking on the first shape
(the function box ‘print’). This will turn the cursor into the arrow terminating shape
shown in Fig. 1.20 (top right). When this is clicked on the output parameter an arrow
will appear (Fig. 1.20, bottom). This is meant to represent the point of the arrow as
seen from the front. The cursor will then flip back to its start condition (Fig. 1.20,
top left).

Adjustments to the position of the boxes and lozenges can be done at anytime
by placing the cursor over the object to be moved and holding the left-hand mouse
button down. An iconic hand appears to show that the object positioning is under
your control. All arrows will redraw themselves to maintain the original connectivity
but be careful that the order of the parameters does not change.

The next step (Fig. 1.19, right) is to place a parameter lozenge in the body of the
function window (centre field). A parameter lozenge is the same kind as the output
lozenge. Of the two lozenge shapes in the tool bar it is the first and has the thick-
est lines. It is vital that the right kind of lozenge is chosen. There are two lozenges
available in the tool bar for you to choose, although there is a third one (plain lines)
that is normally inserted by Clarity. All lozenges are to do with indicating types of
variables and in principle all arrows should go to or from a lozenge of some kind.
In most cases the context is usually sufficient to determine the types but if there is
any doubt by the Clarity system on commit it will generate the required lozenge and
invite the designer to specify the type.

This parameter lozenge will contain the phrase “Hello World”. This is equivalent
to a local constant in imperative programming. Again note that the lozenge needed
for this job is the leftmost one in the tool bar (the thick one). Again, the cursor, when
it is moved back into the function window, will have changed shape. This time it
will be a small thick lozenge. The lozenge is then placed above the ‘print’ function
as shown in Fig. 1.19 (right). The phrase “Hello World” (including the quotation
marks) will be typed into the lozenge. Do not forget to finish by pressing the return
key (↵). Finally, the parameter lozenge is linked to ‘print’ (Fig. 1.19, right).

Place this over
the start object

and click mouse.

Place this over
the end object

and click mouse.

Then an arrow
connects the
two objects.

Fig. 1.20 The arrow cursors

A First Attempt at a Schematic 23

Fig. 1.21 What can be done
next

The new function is complete and all that is required to do now is to give it a
name. Click the icon ‘OK’ on the right of the tool bar and up will pop a menu of
possible actions (Fig. 1.21). The top bar of this menu is highlighted and is usually
the action to be done at this point. Click this bar and a dialogue box (Fig. 1.22, left)
will appear. Type in the name of this new function (say) ‘awake’ (Fig. 1.22, right)
and press the OK button on the dialogue box. The following information will be
printed in the control window:

QUERY> Good! awake declared as a new function
Translated function:

awake ::= print ("Hello World")
awake Good! A component of function awake defined
Translated OK

Fig. 1.22 Request to name function and the naming

The window heading (Fig. 1.23) at the top of the function window will change to
give the name, the components/definition number ‘of’ the total number of compo-
nents/definitions, date and time of commitment. Note that numbering starts at zero
(#0). Thus, #0 really means first as is the convention of programming. This process

24 1 Why Schematic Functional Programming?

Fig. 1.23 The heading of the function changes

of commitment is often referred to as ‘declaring’ and/or ‘defining’ a function. The
term declaration of a function is reserved to the limited process of simply stating to
Clarity what the input and output types are. Defining is describing how the input is
processed to produce the output. Defining implies declaration.

The function can now be tried out by typing ‘awake’ (note that Clarity is case
sensitive) into the control window thus:

QUERY> awake
"Hello World"True

The function responds by the line "Hello World"True.

Exercise 1.2

As for Exercise 1.1 but in schematic form.

Changing a Function

This is OK but it would be nice if the primary effect ‘True’ was on a different
line. What is needed is a ‘new line’ character to be included as a further side effect
of the function ‘awake’. It so happens we have a function ‘decode’ (and its reverse
‘encode’) as a built-in function. Click the sort bar (Fig. 1.8) over the function names

Fig. 1.24 Information about
a built-in function

Changing a Function 25

so you can find it easily. Double click7 the document icon next to the function
‘decode’ then a small information window will appear in the middle of your screen
(Fig. 1.24).

This tells us that ‘decode’ will transform an integer into a character. On a PC
‘#10’ is the new line character. The ‘#’ indicates that the characters following rep-
resent a whole number (see later). The function ‘decode #10’ in the control window
will confirm the new line by giving a new line.

QUERY> decode #10
‘
’

This seems to be what is needed. Note that the character marks ‘ ’ are placed
round the new line. The question now is, how should these be combined to work
with ‘print’? For this, we use the function ‘progN’ (Fig. 1.25) that will obey a
clockwise sequence of functions. Only the last (Nth) function will have its output
transferred to the output of ‘progN’. The only effect of the other functions will be
their side effects. If the ‘print’ output message is put first followed by a new line
character then ‘progN’ will return a character instead of a ‘bool’. The output of the
‘awake’ function must be changed to ‘char’ as shown in Fig. 1.25.

So changing the ‘awake’ function as shown in Fig. 1.25 and clicking ‘OK’ will
cause the action menu (Fig. 1.26) to appear. This is different from the last action
menu because the Clarity environment has detected that the declaration of the func-
tion has changed. Its output is ‘char’ not ‘bool’ and this could affect the functions
that use it. As before, the appropriate action is highlighted at the top of the list of
possible actions.

Fig. 1.25 The new ‘awake’
function after changing

7On some PCs the double click option will not work. An alternative method is to highlight the
document icon and press return.

26 1 Why Schematic Functional Programming?

Fig. 1.26 List of actions

The following report is printed in the control window:

QUERY> Good! awake declared as a new function
Translated function:

awake ::= progN (print ("Hello World")) (decode (#10))
awake Good! A component of function awake defined
Translated OK

When the function is tried, the following is the result.

QUERY> awake
"Hello World"
‘
’

This is better. However, we still have the extra character marks. It would be nice
to not have these. In Chapter 2, we will explore some other alternatives that might
be better than this, discover how to make our own types and create functions that
make decisions.

Saving a Program/Database

Having done all this work it should be saved. Mouse click the second icon button
in the tool bar8 (a floppy disc symbol) and this will open a standard dialogue box

8This can also be achieved by Ctrl+S.

Loading a Program/Database 27

Fig. 1.27 New database dialogue box

(Fig. 1.27) inviting you to give your program/database a name. Type your database
name (say HelloW) in the field indicated overwriting the message.

The control window will report what has happened. This shows the two files
being written – HelloW.ddb and HelloW.seg. This can be loaded in the next time as
shown below with OXO1A.ddb.

QUERY> Created: HelloW.ddb
Created: HelloW.seg
Loading HelloW.ddb. . . Loaded

QUERY> Saving. . . DataBase and Graphs Saved OK

Loading a Program/Database

You will note that a program is stored as two files. One of the files is the Faith code
and has the extension ‘.ddb’. This code is the functional program that has been con-
structed from the Clarity diagrams. The other file consists of Clarity diagrams. These
are coded in a picture language (a schematic) for the Clarity interpreter. This file has
the extension ‘.seg’. The two files together are referred to as the ‘database’. Both
files can be read as text and edited by a simple text editor. When opening a database,
only the .ddb file is shown (see Fig. 1.28) but both will be loaded into the Clarity
environment. This operation will be displayed in the control window as follows:

Loading picture segments. Loaded
Loading OXO1A.ddb. Loaded

QUERY>
Faith and Clarity constructors are synchronised.

28 1 Why Schematic Functional Programming?

Fig. 1.28 Opening a database (loading a program)

Project: Creating a Simple Clarity Program DICE

We can now go through a step-by-step process of creating a program. This sim-
ple program will illustrate several techniques. It is important that the directions are
followed while creating this program since the procedure will be used for other
exercises.

Dice: Generating a Random Number

Introduction

This is a simple project which will introduce the reader to one of the basic ideas
behind many games, the introduction of chance. The problem with a computer is
that it cannot really generate real random numbers. This is because everything is
defined and nothing is left to chance. What is done instead is to use a process that has
been devised to simulate a sequence of random numbers. The simulation produces
a number every time it is called. The sequence of numbers it produces has all the

Project: Creating a Simple Clarity Program DICE 29

statistical properties of a set of random integers.9 The problem is that it is always
the same sequence. However, we do have the opportunity to start this sequence
anywhere and we can do this by really choosing a single random number, a number
that will select a starting place (say 153rd number from the real start). Since we do
not know what this number will be, we cannot predict any number that follows. So
each time the process is run the result is just like a ‘real’ random number. Choosing
the initial random number is called ‘seeding’.

To Throw Dice

To simulate throwing dice we need to generate a random number between 1 and
6. There is a built-in function rand which will generate a random number, but the
number will be between 0 and about 30, 000, which is far too large for our purpose.
To generate a number no larger than a certain limit, we use a ‘modulus’, which is
the remainder after division by an integer. This is usually written in mathematics as
mod and is written between two integers (infix notation). For example, 31 mod 4
= 3 because 4 divided into 31 goes 7 times (= 28) and 31 – 28 = 3. Thus, 3 is the
remainder after the division. Other examples are

30 mod 4 = 2, 29 mod 4 = 1, 28 mod 4 = 0, 27 mod 4 = 3, etc.

In Clarity, the modulus is written ‘%’ and is a built-in function.
In the examples above, when mod 4 was used we got only four remainders – 0,

1, 2 and 3. For a dice, we need six values, so we will use mod 6. Our remainders
will be 0, 1, 2, 3, 4 and 5. If we add one, we will get the range 1–6. Look at Diagram
1.1. The diagram should be ‘read’ from the top down. The number 6 is written #6
to show it is an integer, to distinguish it from the symbol 6 or the character ‘6’. The
parameters to ‘%’ are read clockwise around the output arrow, i.e. rand then #6.
The function rand has no parameters.

For example, if rand returned #20, rand mod #6 would return #2. In Faith, ‘rand
mod #6’ will be written in the form ‘% rand #6’, i.e. the function ALWAYS comes
first, followed by its parameters. This form is also used in mathematics, e.g. sin x,
log n, etc.

After obtaining a random number between #0 and #5, we pass it to the built-in
function add1 to have it increased by #1, so it will be in the correct range. The
function returns a type int, i.e. an integer.

(1) ∗Define the function throw in Diagram 1.1

Test throw by calling it in the CONTROL window thus (Diagram 1.2):

9An integer is a positive whole number such as 3 or 56. No decimals or fractions are allowed. In a
set of random integers, between any specified range (say 1–100) means that all the integers in that
set have an equal chance of occurring.

30 1 Why Schematic Functional Programming?

Diagram 1.1 throw

Diagram 1.2 Testing the function ‘throw’

Communication

To introduce some communication between the computer and the user and to show
how to use the function throw inside another function, look at Diagram 1.3. The
functions putline, getchar and progN are all built-in functions. If we try to read the
diagram from the top down, there seems to be three things going on at once. More-
over, in Clarity, that can be possible. Here, all three things are passed on to progN.
Function progN ensures that the tasks represented by its parameters are done in a
specified order and the value it returns is the value returned by the last parameter.
All other values are thrown away, which means that, in general, the parameters to
progN have important side effects, such as reading and printing. So, take the param-
eters clockwise and call putline. The function ‘putline’ prints a string and returns
the value True. The side effect is the printing. A string is of type str and is a group
of characters enclosed by double quotes, e.g. “Hello”. The next parameter to progN
is getchar. The function getchar waits until the user presses a key. In this case we
are not interested in the value of the character, just the side effect of pressing the
key, so it is OK to ‘throw it away’. The last parameter is our new function throw.
The function ‘throw’ will return an integer, type int, and therefore so will the func-
tion go in Diagram 1.3.

Project: Creating a Simple Clarity Program DICE 31

Diagram 1.3 The user
interface function ‘go’

(2) ∗Define the function go in Diagram 1.3

Test go in the CONTROL window (Diagram 1.4). You now have a single die to
‘throw’.

Diagram 1.4 Testing the function ‘go’

Note that every time you reload a ‘dice’ it will start the same sequence all over again
from the beginning. This is because the random number generator will simply follow
the same calculations. To make it random (in the sense given in the introduction) just
call the built-in function ‘srand’ (it has no parameters) and this will use the time and
date to produce a ‘random’ seed. You need only call it once per session preferably
at the time you first load your database/program ‘dice’ or the first time you use ‘go’.
Alternatively a function could be written that contains ‘go’ and this new function is
called just once for multiple throws. This function would also do the seeding.

Finally

Save your database and call it ‘dice’. Create a network view by opening a network
window, go to the find ‘menu’ and click on ‘Create/Update network from database’
(Diagram 1.5). This may require a little rearranging to look neat and when you are
satisfied with its appearance commit it just like a function window.
Note that a network window uses the stored database. So in order to update a net-
work diagram the database must be saved first.

32 1 Why Schematic Functional Programming?

Diagram 1.5 The network
for program ‘dice’

Exercises 1.3

1. Change the dice program so that it always starts a sequence of throws with a
random number.

2. Change the above so that the invitation to throw is just “Throw!”.
3. Change the invitation to a ‘>’ character without using the function ‘putline’.
4. Change go to go2 so that the string “Your result is” precedes the resulting random

number but occurs after the key press. Make sure this answer appears on a new
line.

5. Put an extra new line after the resulting random number.
6. Change the program dice to dice2 so that it throws a 12-sided dice.
7. Change dice2 so that the dice only gives even numbers from 2 to 12.

Questions 1.1

1. Given a function (+ 3 (– 8 6)) what is the result?
2. Given a function (+ (–3 2) (– (+ 5 7) (– 7 3))) what is the result?
3. How many different outputs can a function have?
4. What are the types of #3, ‘s’, and ‘>’?
5. How do you determine the order of parameters of a function in a function

schematic? Illustrate this using subtraction ‘–’ showing the difference between

a) – #10 #2
b) – #2 #10

6. What is meant by ‘a function has referential transparency’?
7. Why is referential transparency a ‘good’ thing to have?
8. What are the differences between a functional and an imperative programming

language?

References 33

9. How many files are required for a Clarity program?
10. What extensions do these files have?
11. What do they contain?
12. How do you determine the ‘type’ of a function?
13. What happens if you misspell a function name in a Clarity function box?
14. Why are some boxes shaded?
15. What do the connecting arrows mean in

(a) A function window?
(b) A network window?

References

Addis T. R. (1985) ‘Designing Knowledge Based Systems’. Kogan Page/Prentice Hall/Chapman &
Hall, London/Englewood Cliffs, NJ/London, published October. Hardback ISBN 0 85038 859
7. Soft back ISBN 1 85091 251 3.

Addis T. R., Addis J. J., Billinge D., Gooding D. and Vissche B-F. (2008) ‘The
Abductive Loop: Tracking Irrational Sets’ Special Issue Tracking Irrational Sets Sci-
ence Technology, Ethics. Edited by Magnani L. Journal of Foundations of Science,
Vol. 13, No. 1 March pp 5–16, ISSN 1233–1821, Springer.

Addis T. R., Gooding D. C. and Townsend J. J. (1991) ‘Modelling Faraday’s Discovery of the
Electric Motor: An Investigation of the Application of a Functional Database Language’. Pub-
lished in the Proceedings of the Fifth European Knowledge Acquisition for Knowledge_Based
Systems Workshop, Crieff Hydro, Scotland, 20–24 May.

Addis T. R. and Nowell M. C. C. (1990) ‘Scaling Up Knowledge Systems: An Architecture for the
GigaKnowledge_base’. Proceedings of the BCS Specialist Group on Expert Systems, London,
September, pp. 238_251.

Addis T. R. and Townsend Addis J. J. (2001) ‘Avoiding Knotty Structures in Design: Schematic
Functional Programming’, Journal of Visual Languages and Computing, Vol. 12. pp. 689–715.

Addis T. R., Townsend-Addis J. J. and Gillett, R. (2005), ‘Wise Expert: An Expert System for
Monitoring Ship Cargo Handling’ SGAI AI 2005 Applications and Innovation in Intelligent
Systems XIII, ISBN 10: 1 84628–223 3, pp 137–150.

Billinge D. and Addis T. (2008) ‘Seeking Alies: Modelling how Listners Choose their Musical
Friends’, Special Issue of Foundations of Science. Vol 13, No 1. March pp. 53–66, ISSN
1233–1821.

Citrin W. (1996) ‘Strategic Directions in Visual Languages Research’, ACM Computing Surveys,
Vol. 28, No. 4. December.

Codd E. F. (1971) ‘Further Normalisationof the Database Relational Model’, IBM Research
Report 909, IBM Thomas J. Watson Research Center, Yorktown Heights, New York.

Davis R., Shrobe H. and Szolovitz P. (1993), ‘What is a Knowledge Representation’, AI Magazine,
Vol. 14, No. 1, pp. 17–33, Spring.

Field A. J. and Harrison P. G. (1988) ‘Functional Programming’, Addison-Wesley, New York.
Green T. R. G. (1990). ‘Programming Languages as Information Structures’, in Psychology

of Programming, edited by Hoc et al., Academic Press, New York, ISBN 0-12-350772-3.
pp. 117–137.

Green T. R. G. and Petre M. (1996) ‘Usability Analysis of Visual Programming Environments:
A ‘Cognitive Dimensions’ Framework’, Journal of Visual Languages and Computing Vol. 7,
pp. 131–174.

Maier D. (1983) ‘The Theory of Relational Databases’, Computer Science Press, New York. ISBN
0-914894-42-0.

34 1 Why Schematic Functional Programming?

Mead C. and Conway L. (1980), ‘Introduction to VLSI Systems’, Addison-Wesley, New York,
ISBN 0-201-04358-0.

Poulovassilis A. (1988) ‘FDL: An Integration of the Functional Data Model and the Functional
Computational Model’, BNCOD6, CUP, Cambridge, pp. 215–236.

Poulovassilis A. and King P. (1990) ‘Extending the Functional Data Model to Computational Com-
pleteness’. EDBT-90 (ref. Department of Computer Science, Birkbeck College, University of
London).

Reade C. (1989) ‘Elements of Functional Programming’, Addison Wesley, New York, ISBN
0-201-12915-9.

Stender J., Addis T. R. and Spenceley S. E. (1993). Principle-Based Engineering and Eco-
nomic Modelling. ‘Parallel Genetic Algorithms’, ed. Stender J., IOS Press, Amsterdam, ISSN:
0922-6389, pp. 117–128.

Stevens W., Myers G. and Constantine L. (1974), ‘Structured Design’, IBM Systems Journal
Vol. 13, No. 2, pp. 115–139.

Visscher B-V. (2005) ‘Exploring Complexity in Software Systems’, PhD Thesis, University of
Portsmouth, UK. June.

Wegner P. and Doyle J. (1996) ‘Editorial: Strategic Directions in Computing Research’, ACM
Computing Surveys, Vol. 28, No. 4. December.

Chapter 2
Making Changes

And though I have the gift of prophecy, and understanding all
mysteries, and all knowledge; and though I have faith, so that
I could remove mountains, and have not charity, I am nothing.

Corinthians 13, 2.

Introduction

One of the criticisms against schematic programming is the issue of ‘transparency
of the interface ’. It was considered that changes and modifications of a visual pro-
gram are not anywhere near as easy as editing text. In this chapter we will illustrate
that this is not an issue and that editing schema is simple and easy; it is certainly as
easy as text editing as provided by any program development environment.

In this chapter, we will explore two alternatives in creating a response of “Hello
World”. In the process of this exploration we will introduce the mechanisms for edit-
ing and changing schema . Cutting, copying and pasting schema parts between and
within a function, a type and a network window will be described. The equivalent
of the spell-check function in document creation has already been described (e.g. an
unknown function is given in italic). Also in this chapter we will describe annota-
tion. However, during the development of simple projects the environment may warn
but it will never stop you from doing what you want, provided it is grammatically
correct.

In the first part of this book we will assume that ClarityLite is being used. This
has many restrictions and a limited built-in library of functions. In order to prevent
clashes when using your program (your functional database) with ClarityPro some
of the library functions are recreated with the prefix ‘my’.

Problems of Software Design [→ Page 42]

It is worth considering why changes are needed anyway. The problem does not lie
in the design process but in the non-conformity of the world being modelled by a
simple formal system. It is always beneficial to consider carefully the nature of that

35T. Addis, J. Addis, Drawing Programs: The Theory and Practice of Schematic
Functional Programming, DOI 10.1007/978-1-84882-618-2_2,
C© Springer-Verlag London Limited 2010

36 2 Making Changes

bit of the world to be modelled and doing a design of the program to be created.
It is beneficial because it is easier to correct mistakes and misperceptions while
the construct is still fluid and uncommitted simply because it is ‘cheaper’ in time
and effort. Usually, design is considered literally to be a paper exercise but greater
flexibility and speed can be achieved through using a suitable computer-aided design
tool. However, despite care and consideration problems in design can still occur.
One of the useful stepping stones for good design is relational analysis (Codd 1970,
Addis 1985). Relational analysis will be considered later (see Chapter 7).

A Typical Example

A typical example of the problems encountered in design is in a company for which
we did some work. The company makes specialised automata for industry (e.g.
multi-legged robots). The designs require considerable flexibility because their cus-
tomers wish to run manufacturing systems that are constantly changing to keep pace
with the competition and new requirements. The company would like to allow its
users to interface easily with their machine systems to facilitate modification to the
system during use. However, based on the normal design techniques each bespoke
variant is costly to produce. Every item has to be individually programmed for each
customer. The programs are non-trivial and in many cases cannot be tested until on
the customer’s site.

This example is typical of the difficulties with which industry is faced given
present approaches to software systems: development, design, maintenance and
modification costs. Complex systems are open to continuous modification through-
out their lifetime; it is rare to have a final design in any working application.

The Engineering Dimensions of Design

In order to be able to evaluate possible program representations and the design envi-
ronment in which they are used we propose eight dimensions and four relationships.
These describe the potential for change that can be designed into an artefact. They
give a language with which to relate important properties of design with a nota-
tion or a programming style. They suggest the effects that this potential has on the
subsequent quality of the artefact where this quality can be detected through ‘indi-
cators’. Indicators are observable characteristics of the program or the environment
(see pages 127, 128, 135 to 140).

The first four properties are very similar in that they all have the effect of
fragmenting the functions (e.g. sub-routines) into small units:

• Referential transparency The advantage of referential transparency is that a
function can be tested as an isolated unit.

Indicators: There will be no side effect programming, e.g. no assignments,
no global variables and no sequential (order-dependent) groups of functions.

Problems of Software Design 37

• Functional decomposition of a problem will reduce the design to a set of func-
tions that may be either intensional (composed of other functions) or extensional
(in effect a lookup table such as an array or switch statement). Such decomposi-
tion should be independent of any particular computer architecture since com-
puter architectures impose a restriction on what can be represented and on how
designs are perceived.

Indicators: There will be a network of user-defined functions that will tend to
form a hierarchy. Relatively long path lengths might be expected between top-
level functions (i.e. functions with no parents) and basic language functions (i.e.
machine code). This is because the problem domain concepts will need to be rep-
resented as functional units. These units are likely to be very different from that
of the computer; the greater the difference the longer the expected path length.

• Interoperability indicates that designs can be responsive to change (O’Reilly,
1999) and in particular it means creating systems of independent working units.
Such independent working units can then be used with different systems.

Indicators: Combines referential transparency with functional decomposition
and it is not easily distinguishable from them.

• System flexibility refers to the artefact’s capacity to be changed or to cope with
extensions of its use. It reflects the system’s ability to be modified. Flexibility
depends on the generality built in to each function. Input parameters should
be tested and strategies devised to cope with a range of possible inputs. Thus
functions are built to always explore the assumptions about their use. Functions
would use functions to analyse the data (e.g. counts on lists, data type testing,
conditionals).

Indicators: Input parameter pattern sensitive (pattern match) extensions
could be expected which trigger different strategies. Good referential trans-
parency. Older programs would show traces of change through large numbers
of redundant top-level functions.
The next two properties are consequences or give extra benefits that depend on
the first four.

• Reversibility is the possibility of reconstruction or reverse engineering a design.
This ensures that nothing of the basic mechanism is lost in going from design to
implementation or from one design representation to another. What losses there
are should be easily reinstated or at least detected. Reversibility can also refer to
the inverse of a function, going from result to the range of parameter values.

Indicators: In the design case this depends on referential transparency
and in the function case this depends on the existence of an ‘inverse’
function.

• Design transparency is the ease of comprehending the overall structure of a
system.

Indicators: Local understanding achieved through simple functions (i.e. func-
tions with few children). This will also result in longer ‘call’ path lengths since
it will involve functional decomposition. The potential for clear overviews of
the software through the design environment should also be available. This latter
indicator is a representation issue.

38 2 Making Changes

The last two properties are concerned with reducing the effort needed by the
designer to create an artefact.

• Environment reactivity is the immediate responsiveness of the design environ-
ment to the designer’s decisions and actions.

Indicators: An interpreter is used.
• Language extensibility is how a particular language or representation may be

augmented through its own constructions. A measure of this is based on know-
ing the ‘ground state’ of the language. The ground state identifies the minimum
set of primitives from which all other functions can be derived (see later for fur-
ther explanation and illustration). The ground state of a functional language1 has
only three primitive elements, other than the function itself; these are construc-
tor definitions, parameter pattern match and recursion (Addis and Addis 1998).
However, what these three primitives cannot do is provide the side effects that
link the abstract functions with the world. This requires engineered code.

Indicators: The smallest number of elements that provides total control over
the machine. Thus the notation should be simple with a minimal grammar involv-
ing few symbol types. The machine may be ‘virtual’ as in the case of the func-
tional language.

Some Definitions for Practical Results

An analysis of program structure in terms of program behaviour using these
indicators was done as part of the AMUSE project (EPSRC GR/R11919/01 &
GR/R12152/01). Some of them were used as source material for a PhD thesis by
Visscher Exploring Complexity in Software Systems (Visscher 2005).

Visscher defines Software Structure as any component within the software either
composed or elementary that has some definable behaviour. Elementary will be pro-
cedures such as the programming language’s library functions and, at the more prim-
itive level, the machine code. At whatever level you start the task of programming
you use these primitives to build new units that perform new behaviours. The range
of tasks you can build is in effect infinite since most programming languages are
designed to allow primitives and composed procedures to be combined in an infinite
number of ways. However, despite this access to an infinite number of behaviours
the behaviours are bounded by what the primitives provide. So you cannot print with
a printer if, for example, it is not attached to the computer or the printer driver is not
installed.

A functional dependency is the relation between how the mapping of one func-
tion influences the mapping of another (see Fig. 2.1). When function A relies on
function B for its own functionality, A is then said to be functionally dependent on B.

1 A functional language is derived from lambda calculus. This calculus ensures its coherence as a
tool for abstraction and applicability.

Problems of Software Design 39

Fig. 2.1 An example of a
software structure showing
functional dependencies

An example of a common functional dependency is where a function A ‘calls’ a
function B as part of its processing. This will be depicted as

A → B

So we can say, for example, that the function ‘sort’ is functionally dependent on
‘greater_than’; thus

‘sort’→‘greater_than’

since if we were to change ‘greater_than’ (or ‘>’) to behave like ‘less_than’ (or
‘<’) then ‘sort’ would do its sorting in a different way and produce the reverse of
what would be expected.

There can be many functions that are dependent on B and A may rely on
many different functions (see Fig. 2.2). However, the functionality (the operational
behaviour) of A will imply the functionality of B but not the other way around; the
existence of A depends on the existence of B. We will call a function A the depen-
dent and function B the enabler because function B enables function A to have the
desired range of behaviour. The terms ‘enabler’ and ‘dependent’ replaces the parent
and child relationship because there is some potential confusion of meaning.2

Software structure decomposition is the separation of a function or program into
its constituent or elemental software structure and a software structure usage is the
fact of a program constituent or elements being used by some software structure to
build up its new behaviour. In other words the decomposition of an element is all
its enablers (or the elements of behaviour used to create an element) and the usage
of an element is all its dependents (or what an element of behaviour is used for).

2 This is because during the activation of a function there is the converse interpretation that the
existence of A depends on the existence of B. This interpretation would imply that the parent is the
child and the child is the parent.

40 2 Making Changes

Fig. 2.2 The network window shows the functional dependencies

Given a global interpretation, if there is the possibility of a behaviour changing
another element’s behaviour, they are called behaviour dependent The element
whose behaviour is changed is called the dependent and the other element is the
enabler. Two elements are only behaviour dependent if the link is direct and not
through another element. We can then measure the decomposition frequency of an
element as the number of elements from which it is composed divided by the total
number of behaviour dependencies and similarly the usage frequency of an element
as the number of elements used by it divided by the total number of behaviour
dependencies.

Choice and Random Selection

There are two distinct forms of rank-frequency distributions that can be observed
in human affairs. The first is the well-known Zipf distribution that characterises
word usage, peoples’ salaries (also called Pareto’s law) and city population size.
This Zipf distribution implies some kind of constraint in the selection process when
people create meaningful structures from a set of items (such as words from charac-
ters) and is distinct from the Whitworth distribution that characterises a choice of
composing items from a fixed set of items (such as the frequency of characters used
in written English).

Visscher created two rank frequency graphs for a range of active commercial
programs by first counting the number of dependents that have one, two, etc (n)
enablers; this is the distribution for decomposition. Then second he counted the
number of enablers that have one, two, etc (k) dependents; this is the distribution
for usage. These numbers are ranked and divided by the total number of elements
to obtain their frequency (see Fig. 2.3).

For comparison purposes he also created a structure through a random selection
of directed links using the typical frequency of linkages normally found in all the

Problems of Software Design 41

Combined Projects (2741 functions)

0.001

0.01

0.1

1

1 10 100

Ordered Frequency

Enablers

Dependents

P
ro

ba
bi

lit
y

E
na

bl
es

/D
ep

en
de

nt
s

pe
r

fu
nc

tio
n

fr
eq

ue
nc

y

Fig. 2.3 The distribution
difference between enablers
(call children) and dependents
(call parents)

programs examined. This random selection structure shows a Whitworth distribu-
tion of the frequency against the rank for the number of distinct elements in both
decomposition and usage. So if there is a difference between these two views of an
organisation then it is not because it is a natural consequence of a network.

Over 2.5 K of program elements (e.g. functions) was examined from a range of
five commercial programs developed over periods varying from 3 to 20 years by
different teams. All these programs were used to simulate different types of cargo
ships (such as liquid gas cargo ships). They had all been developed using a mix
of languages from FORTRAN, C, C++, and CLARITY. All of these commercial
programs show a Zipf distribution for the number of distinct elements in usage
and a Whitworth distribution for the number of distinct elements in decomposition
(Fig. 2.3). This suggests that the selection of the dependents is not random. We can
infer that decomposition is arbitrary while usage is constrained. We can assume
that designers make the process of understanding more effective by creating new
abstractions from the behaviour elements. These abstractions are most likely to be
useful when they are created by grouping elements together based on their usage
and not on their decomposition.

The key to a good environment is in flexibility of design where changes can
be made easily. In some cases a change can have extensive effects requiring many
other changes that snowball through the program because of the chains of behaviour
dependencies The computer-aided design environment should detect the required
changes to be done and ensure that these changes are followed through so as to
form a consistent system. This will only work sensibly through usage by finding the
dependent functions rather than through decomposition by finding all the enablers.
So functions are not really ‘decomposed’ but are ‘constructed’. It is also clear that
program structure is not symmetrical via its dependency links. So although we will
use the term ‘functional decomposition’ we will take this to mean that functions
are composed of selected behaviour elements rather than decomposed into arbitrary
sub-functions. This is important because it suggests something valuable about how
programs are created and made the choices you should make in the simplification

42 2 Making Changes

of a complex function. For example, it is only by considering the potential usage of
the resulting component parts should one simplify.

∗Over Your Shoulder

To continue our practical example we note that so far, the ‘Hello World’ function
is very simple and uncomplicated. If we wish to have a better-printed message, the
function ‘awake’ needs to be adjusted. This adjustment will illustrate how the Clar-
ity system tries to look after you and make sure no mistakes or inconsistent functions
are made. This is one of the ways that Clarity supports functional decomposition and
system flexibility.

The problem we had with the original method was that we could not explicitly
type a new-line anywhere because it is taken as a terminator. Our only chance is
to generate a new-line and use that. We can do this using the function ‘decode’ as
shown in Fig. 2.4. This works but it leaves some extra quote marks we would rather
not have. So what can be done?

Some useful functions can be found in the built-in functions list. These are
‘explode’, ‘implode’ and ‘reverse’. To explore what they do, you can double click
on them in the built-in list as well as ‘interrogate’ these functions by trying them out
in the query window, thus

QUERY> explode "Hello World"
[‘H’ ‘e’ ‘l’ ‘l’ ‘o’ ‘W’ ‘o’ ‘r’ ‘l’ ‘d’]
QUERY> implode [‘H’ ‘e’ ‘l’ ‘l’ ‘o’ ‘ ’ ‘W’ ‘o’ ‘r’ ‘l’ ‘d’]
"Hello World"
QUERY> reverse [‘H’ ‘e’ ‘l’ ‘l’ ‘o’ ‘ ’ ‘W’ ‘o’ ‘r’ ‘l’ ‘d’]
[‘d’ ‘l’ ‘r’ ‘o’ ‘W’ ‘ ’ ‘o’ ‘l’ ‘l’ ‘e’ ‘H’]

Fig. 2.4 The original
‘awake’ function’

List Manipulation 43

List Manipulation [→ Page 44]

Before we continue with the process of change, we need to look at the object type
‘list’. These types of object have many uses and there is a functional language Lisp
(List Processing) that devotes itself to list manipulation. Lisp was the key to Artifi-
cial Intelligence in the 1960s (McCarthy et al. 1965). We will use the same functions
they used for manipulating lists of things.

There is a ‘constructor’ symbolised by the colon ‘:’ (called ‘cons’) that in effect
adds a new item to the front of a list. A constructor is a kind of function that does
apparently nothing other than inform the user that a special type of object is being
referenced and provides some structure to the object. In this case, the ‘:’ indicates
a ‘list’ type of object so the structure must be designed so that it can represent any
length of list. We have already used the special built-in constructor # that shows
an integer type. More will be said of constructors later. In the ‘:’ case we note
that a list of any length can always be considered to consist of just two objects
(except in one particular case, the empty list). The first object is the ‘head’ of a list,
which is the first item in a list, and the second object is a ‘tail’. The tail is just the
rest of the list and is itself a list. This is a definition of a type and is ‘recursive’
since the definition contains a reference to itself. A recursively defined constructor
allows lists, in this case, to be ‘constructed’ of indefinite length. However, lists are
normally represented, for both convenient and conventional, with a pair of square
brackets, thus

[‘H’ ‘e’ ‘l’ ‘l’ ‘o’ ‘ ’ ‘W’ ‘o’ ‘r’ ‘l’ ‘d’]

But we can represent this list using a ‘:’ as the two objects head and tail

:‘H’ [‘e’ ‘l’ ‘l’ ‘o’ ‘ ’ ‘W’ ‘o’ ‘r’ ‘l’ ‘d’]

We can try this out in the control window, thus

QUERY> : ‘H’ [‘e’ ‘l’ ‘l’ ‘o’ ‘ ’ ‘W’ ‘o’ ‘r’ ‘l’ ‘d’]
[‘H’ ‘e’ ‘l’ ‘l’ ‘o’ ‘ ’ ‘W’ ‘o’ ‘r’ ‘l’ ‘d’]

Of course, we can do this again with the tail (because the constructor definition
is recursive), thus

QUERY> : ‘H’ (: ‘e’ [‘l’ ‘l’ ‘o’ ‘ ’ ‘W’ ‘o’ ‘r’ ‘l’ ‘d’])
[‘H’ ‘e’ ‘l’ ‘l’ ‘o’ ‘ ’ ‘W’ ‘o’ ‘r’ ‘l’ ‘d’]

Note the different uses of square brackets and round brackets. The round bracket
delineates a function or constructor whereas the square brackets identify a list. We
can continue this process of decomposing a list until we reach the last item. The last
item becomes an empty list []. The empty list, the special case of a list that is not
two objects, is represented by the constructor ‘nil’. So nil ≡ [].

44 2 Making Changes

QUERY> ‘H’ (: ‘e’(:‘l’(:‘l’(:‘o’(:‘ ’(:‘W’(:‘o’(:‘r’(:‘l’(:‘d’nil))))))))))
[‘H’ ‘e’ ‘l’ ‘l’ ‘o’ ‘ ’ ‘W’ ‘o’ ‘r’ ‘l’ ‘d’]

Associated with constructors are functions that manipulate that type of object.
The basic pair of functions for list processing is ‘head’ and ‘tail’. As you would
expect ‘head’ will take the head of a list and ‘tail’ will return the tail, thus

QUERY> head [‘H’ ‘e’ ‘l’ ‘l’ ‘o’ ‘ ’ ‘W’ ‘o’ ‘r‘ ’l‘ ’d‘]
‘H’
QUERY> tail [‘H’ ‘e’ ‘l’ ‘l’ ‘o’ ‘ ’ ‘W’ ‘o’ ‘r’ ‘l’ ‘d’]
[‘e’ ‘l’ ‘l’ ‘o’ ‘ ’ ‘W’ ‘o’ ‘r’ ‘l’ ‘d’]

There are also some complementary functions, which are provided for conve-
nience.

QUERY> front [‘H’ ‘e’ ‘l’ ‘l’ ‘o’ ‘ ’ ‘W’ ‘o’ ‘r’ ‘l’ ‘d’]
[‘H’ ‘e’ ‘l’ ‘l’ ‘o’ ‘ ’ ‘W’ ‘o’ ‘r’ ‘l’]
QUERY> last [‘H’ ‘e’ ‘l’ ‘l’ ‘o’ ‘ ’ ‘W’ ‘o’ ‘r’ ‘l’ ‘d’]
‘d’

The functions ‘explode’ and ‘implode’ are symmetrical functions whose sole
purpose is to convert a string type into a list-of-chars and back again. Functions
that change the type of an object into another are called ‘casting’ functions.

∗Improving ‘Awake’

Figure 2.5 uses list manipulation and casting functions. Here we reasoned that if we
could put the new-line character, which is only obtainable through ‘decode’, at the
end of the string “Hello World” then this would get rid of the new-line appearing
as a single character. The function ‘explode’ will convert the single string into a
list of characters. Unfortunately, the constructor ‘:’ will only add a character to the
front of a list. We need a function called ‘tag’ that will add a character to the end
of list. This is an example of decomposing a function into useful sub-functions. The
‘tag’ function is available in ClarityPro. So, if we reverse the list, add the new-line
and reverse again then the new-line will, in effect, be added to the end of the list
of characters. We can then ‘implode’ the character list into a single string with the
new-line as part of it and ‘print’.

We can edit the original awake by deleting the function ‘progN’ and the arrow
connecting the string “Hello World” to the function ‘print’. To delete a line or icon
we can first highlight it by clicking on it and then from the pull down menu Edit
we select ‘Clear Selection’. Several items can be selected by selecting with the shift
key down (as for files in Windows – see later). We can then move the ‘decode’ and
#10 to the other side. Both can be moved together by clicking on one and with the
shift key down click on the other. Then hold (depress left-hand mouse button but do
not release) one of them and move to the new position. This is similar to moving
files in windows. Create the function as shown in Fig. 2.5. There is a mistake – can
you spot it?

Improving ‘Awake’ 45

Fig. 2.5 An edited version of
‘awake’ with an error

Click ‘OK’ on the tool bar (commit window) and the pop-up menu, as shown in
Fig. 2.6, will appear. Click on the top bar ‘Replace Component’.

Fig. 2.6 The choice of
actions

Figure 2.7 shows the warning message that appears indicating that the output
of the defined function ‘awake’ is not what it says in the output lozenge. It should
be ‘bool’ not ‘char’, as it was originally. It will still work (that is why it is just
a warning) but it should be kept consistent. Note that its output type defines the
function ‘type’. So we will need to change this function type from ‘char’ to ‘bool’.
Click the ‘OK’ button on the warning box.

Another ‘warning’ message immediately ‘pops up’ showing that you ought to be
more specific about the type of object going into the function ‘implode’ (Fig. 2.8).

46 2 Making Changes

Fig. 2.7 The error detected

Fig. 2.8 Testing for a
specific type

Click ‘OK’. The following appears in the control window, which is a reminder of
what you should check out and change:

QUERY> WARNING: print has output char when bool expected
WARNING: implode has parameter list ?0 when list char expected
Translated function:

awake ::= print (implode (reverse (: (decode(#10)) (reverse (explode ("Hello World"))))))
awake Good! A component of function awake defined
Translated OK

The function window has also been changed and a ‘type’ lozenge is inserted for
you to alter to ‘list char’ (see Fig. 2.9). As before, you will still have to shift the

Fig. 2.9 The result of first commitment

Improving ‘Awake’ 47

function boxes around to get it looking neat and fit in the new lozenge. Note that ?0
(or ?1, etc.) is used here to denote a general type of object (int or str or char, etc.).
The meanings of these ‘? variables’ are dependent on the context in which they
are used.

So the two changes should be made are first to alter the output lozenge from
‘char’ to ‘bool’ and then, after adjusting the function boxes and type lozenge to
look neater, the new output of reverse should be changed to ‘list char’. The result is
shown in Fig. 2.10.

Fig. 2.10 A tidied up version of ‘awake’

Click ‘OK’ to commit the function and Fig. 2.11 will appear giving you a choice
of actions. Click the top one ‘Redefine Function’.

The control window will report the following:

QUERY> Good! Function awake re-declared
Translated function:
awake ::= print (implode (reverse (: (decode(#10)) (reverse (explode ("Hello World"))))))
awake Good! A component of function awake defined
Translated OK

It is now possible to try the function ‘awake’ again.

QUERY> awake
"Hello World
"True

This is better, but we still have the double quotes. We can do even better
than this.

48 2 Making Changes

Fig. 2.11 A set of possible
actions

A Little Bit More About Functions [→ Page 51]

Before we explore the other possible option, there is little bit more about functional
programming that should be known.

In the example given in Fig. 2.12 we could replace any of the integers with oth-
ers of the same kind (we could not use ‘words’ or ‘Boolean values’ for example).
A function is said to map from a domain consisting of all possible combinations
of the input parameter values (i.e. cross product of the domains) to values of the
output parameter (called the co-domain of the function). So if we were to define the
function ‘+’, for example, we would have to specify what sort of input parameters it
has and what kind of output it produces. In a functional language this might be done
as follows:

fdec
+ ::= integer X integer → integer ;

;

+

3 4

4

between

15

True

Order of
Processing

Fig. 2.12 The combination
of two functions

Built-In Library and Function Types 49

where X represents the cross product. That is, every example of one type is paired
with every example of the other type. In the above example, it means every possible
pairing of integers. However, we can also make an ‘add 3’ function by leaving the
last parameter blank so it may be used as follows:

(+3)(4) → 7
or

(+3)(5) → 8

The functions (that are kind of incomplete functions) are called Curried func-
tions (after the mathematician H. B. Curry). Because we can place the second
bracket anywhere, it means that we can make a mapping occur anywhere. Thus,
we can write the above declaration as follows:

fdec
+ ::= integer → integer → integer ;

;

Built-In Library and Function Types [→ Page 51]

Figure 2.13 shows the built-in library function window in Clarity that gives this
kind of information about the built-in functions. For example, the maths function
‘%’ means the ‘mod’ of a number. That is, the remainder after an integer has been
divided into another a whole number of times (see Chapter 1, dice project). So 3
divides into 7 two times with a remainder of one, thus

QUERY> % #7 #3
#1

Fig. 2.13 The built-in library function window

50 2 Making Changes

The declaration of the function ‘%’ is

% ::= int → int → int

This tells us that the function ‘%’ takes just two integers as its parameters and
will return an integer. This is straightforward but there are some more complicated
descriptions, such as the function ‘filter’, thus

filter ::= (?0 → bool) → list ?0 → list ?0

The first parameter of ‘filter’ is a function of the form ‘?0 → bool’, such as ‘odd’,
‘even’ or the ‘curried’ function ‘(> #34)’. Another example of a function that takes
a function as a parameter is ‘map’. This function takes a function that has a single
parameter and applies it one at a time to each item in a list. Map is declared as

map ::= (?0 → ?1) → (list ?0) → (list ?1)

and is used for example, thus

QUERY> map add1 [#1 #3 #2]
[#2 #4 #3]

The functions that use other functions for their parameters are called ‘higher-
order functions’.

The second parameter of ‘filter’ is the list of items (‘list ?0’) required to be filtered
and the result will be yet another list of similar items (‘list ?0’). If you double click
on a built-in function in the built-in window, a window will pop up with an example
of how that function is used.

Note that we are using a naming convention such that all functions start with a
lower case character and all constructors (a function that does no mapping) starts
with an upper case letter. This is the case except for some built-in constructors such
as ‘nil’.

Exercise 2.1

1. Write queries that will:

a) give the first item of the list [‘a’ ‘b’ ‘c’ ‘d’]
b) give the last three items of list [‘a’ ‘b’ ‘c’ ‘d’]
c) give the second item of the list [‘a’ ‘b’ ‘c’ ‘d’]
d) give the first item list [[#1 #2 #3] [‘a’ ‘b’ ‘c’ ‘d’] [“Fred” “Jack” “Bob”]]
e) give the first item of the first list of the list [[#1 #2 #3] [‘a’ ‘b’ ‘c’ ‘d’] [“Fred”

“Jack” “Bob”]]
f) give the first item of the second list of the list [[#1 #2 #3] [‘a’ ‘b’ ‘c’ ‘d’]

[“Fred” “Jack” “Bob”]]
g) give the second item of the second list of the list [[#1 #2 #3] [‘a’ ‘b’ ‘c’ ‘d’]

[“Fred” “Jack” “Bob”]]

2. Write queries that will:

a) put ‘a’ at the beginning of the list [‘b’ ‘c’ ‘d’]
b) put ‘e’ at the end of the list [‘a’ ‘b’ ‘c’ ‘d’]

Great Functions Have Little Functions 51

c) put the list [#1 #2 #3] as an item at the beginning of the list [[‘a’ ‘b’ ‘c’ ‘d’]
[“Fred” “Jack” “Bob”]]

d) put the list [“Fred” “Jack” “Bob”] as an item at the end of the list [[#1 #2 #3]
[‘a’ ‘b’ ‘c’ ‘d’]]

3. Change the new version of ‘awake’ (Fig. 2.10) so that there is a new line at the
beginning of “Hello World” rather than at the end.

4. Change the ‘awake’ so that there is a new line at both the beginning and end of
“Hello World”.

5. Create a function (schematic) called ‘mytag’ that adds a single item to the end
of a list. The declaration (fdec) of ‘mytag’ should be:

mytag ::= (list ?0) → ?0 → (list ?0)

Questions 2.1

1. Put the following into normal list form:

a) : ‘a’ nil
b) : ‘x’ (: ‘y’ nil)
c) : (: #2 (: #4 nil)) (: (: #1 (: #3 nil)) nil)

2. Put the following into ‘cons’ form:

a) [#2 #3]
b) [[‘a’ ‘b’]]
c) [[[‘x’]]]
d) [[#3 #6][“Fred” “Jack” “Bob”]]
e) [‘a’ [#2 #1] [[“Bob”]]]

3. What does ‘casting ’ mean? Give an example.
4. What is the difference between the functions ‘prog1’ and ‘progN’?
5. What is a ‘Curried’ function?
6. What is a ‘higher-order’ function?
7. What is the ‘ naming convention ’ in Clarity?

∗Great Functions Have Little Functions

It would be nice if we could dispense with the double quotes representing the string.
Unfortunately, the current ‘print’ function insists on showing that strings are strings
and characters are characters. It will also precede numbers with # or #r depending
on whether they are integers or real numbers (Note #r uses two symbols together
to show a real/floating point/decimal number, e.g. #r34.67). This problem is over-
come in ClarityPro by having a special output ‘narrative’ window, which has several
output functions with names prefixed by ‘nar_’. However, the problem is a useful
exercise in ClarityLite.

52 2 Making Changes

The library function ‘putchar’ has the side effect of putting a single character
in the control window. The function returns ‘True’. So if we try it in the control
window we will get

QUERY> putchar ‘a’
aTrue

This time there are no single quote marks. The function ‘putchar’ really does put
out a single character. The ‘True’ afterwards, of course, is the result of the ‘putchar’
function. This result will be hidden if called by another function and only the side
effect , the printing of a single unadorned character, will be in the control window.
It looks good.

Figure 2.14 shows the initial construction before commitment (‘OK’) of the func-
tion ‘myprint’. This function will accept a list of characters and the function ‘map’
will apply ‘putchar’ to every character in the list. Each character is replaced in the
list by a ‘True’. In the end, we will have a list of ‘True’s such as

[True True True True True True True True]

Fig. 2.14 The initial version
of ‘myprint’

The function ‘and’ will simple ‘and’ the list together to form a single ‘True’.
This last bit is done for tidiness. It is not necessary but it is good practice .

On committing the function ‘myprint’ two warnings will appear.
The first one (Fig. 2.15) will require us to use a type (dotted) lozenge as found

on the tool bar. This is needed to reassure Clarity that we do know there is a missing
parameter on ‘putchar’ and we know what it is.

It is missing, of course, because the function ‘map’ is going to supply the charac-
ter and will do so as many times as there are items in the list. In this case, ‘putchar’
is just a type of object to be passed on to ‘map’. This ‘object’ is then used, inter-
nally, by the function ‘map’. The function ‘putchar’ cannot be interpreted before

Great Functions Have Little Functions 53

Fig. 2.15 A warning about
absent types

‘map’ can use it and this will be when ‘putchar’ has its parameter fulfilled by a
character (only one parameter in this case).

Figure 2.16 shows another warning message that comes next. This is similar
to the one we have had before where you are required to make the type lozenge
‘list ?1’ more specific, that is ‘list bool’. It could be left, since ‘list ?1’ means a list
of anything we like.

Fig. 2.16 A check for type
correctness

Figure 2.17 shows the final form of ‘myprint’ after all our corrections and
adjustments.

Fig. 2.17 The final form of
‘myprint’

54 2 Making Changes

Fig. 2.18 Using ‘myprint’ for better output

The function ‘myprint’3 can now be used in ‘awake’ instead of ‘implode’ and
‘print’. The modification is shown in Fig. 2.18.

We can now test ‘awake’ in the control window with a much superior result.

QUERY> awake
Hello World
True

More Schema Editing Features

There are other improvements we can make that is nothing to do with the final result.
These are to do with maintaining a representation that is understandable long after
the code has been written. Sometimes we have come back to code written in some
language such as ‘C’ or Lisp and despite careful annotation and layout we have
found the code almost uninterpretable. So as to prevent such situations happening
there are several Clarity features that can be used.

Figure 2.19 highlights some of the buttons on the tool bar that can be used to
organise or reorganise the schematic representation. We can use these to reduce
the complexity of the existing ‘awake’ function by creating a variation of the ‘tag’
function that adds an element to the end of a list. Such a function is not available in
ClarityLite. The built-in and the user functions in their list form can be highlighted

3 There is already a built-in function ‘putline’ that does exactly what ‘myprint’ does. The func-
tion ‘myprint’ has been created as an exercise and as an illustration of the features of the Clarity
environment.

More Schema Editing Features 55

Junction
Node

Connection
Arrow

Paste
Sub-

Schema

Parameter
lozenge

Function
Node

Cut
Sub-

Schema

Component
Index Window

Annotation Window

Copy
Sub-

Schema

Fig. 2.19 Another look at the tool bar

Fig. 2.20 Part of the ClarityPro built-in functions and user functions windows

(see ClarityPro Fig. 2.20) and then dropped into either a function window to appear
as nodes or the control window to appear as text.

We will produce our own tag function to show how a sub-schema (part of the
schema) can be extracted from a function window and copied to another window
in order to make it a separate function. This is the creation of a sub-schema into a
function in its own right and it is done because often many structures are repeated
in code within a particular application and, as such, take on the role of a language
extension of the problem domain . We know that ‘tag’ is useful in many domains
and it has become a library function. So it is worthwhile making it a function if it is
not already available.

Figure 2.21 shows the function ‘awake’ with the sub-schema that performs the
action of ‘tag’ selected by forming a ‘square’ around the elements. This is done by

56 2 Making Changes

Fig. 2.21 Selecting a sub- schema

putting the normal cursor on the background of the function window and holding
the left key down and pulling out a square. When the button is released the captured
functions will be highlighted for creating a new function in a new window, deletion,
copying or moving.

The selection can now be transferred to a new window by going to the menu item
‘edit’ and selecting ‘Copy Selection to New Window’. Alternatively, a new function
window can be opened by the tool bar and then using the tool bar buttons copy from
one window and paste into the other. If you wish to delete the selected items in the
old window then click ‘cut’ for that window. The combined process can be achieved
by simply dragging the selected items from one window to the new window.

The function ‘mytag’ requires the list parameter to be first (Fig. 2.22) if it is to
conform to the library function ‘tag’. This will result in the crossing of the link-
ing arrows that can too often lead to some very confusing schemas. To avoid such
crossings we draw upon mechanism of a labelled junction as used in electrical cir-
cuit diagrams. The source circle is automatically filled and the sink is an open circle.
The label is made similarly to a function in that it can be named, copied, pasted and
cut. More is said about the junction later.

All functions should be annotated to explain what they do (see Fig. 2.22). As
good practice the annotation should contain at least one test with an expected result.
This is so that if a function is replaced or extended then the original functionality
can be tested. It is also a quick way of explaining what is done since normal cut
and paste can be used between the control and annotation windows. We can test a
function by copying the query from the annotation window and pasting it as a Query
into the control window followed by ‘return’.

More Schema Editing Features 57

Fig. 2.22 Using the sub- schema and the junction ‘rev’

It is possible that a function may have been given the wrong name or there turns
out to be a better name. Any name of a symbol such as a function or type can be
globally edited. Clicking on the control window then pulling down the edit menu
can do this. In the last two items in the list are ‘Rename Symbol . . .’ and ‘Remove
Symbol . . .’. This has been done with ‘awake’ becoming ‘hi’ (Fig. 2.23). Note also
that this change is automatically extended to all schemas (Fig. 2.24)

Fig. 2.23 The function
‘awake’ renamed ‘hi’
globally

The purpose of these examples was to illustrate how schema can be edited as
easily as text. Clarity has the desired transparency of the interface required to
make it more acceptable (see criticism by Citrin 1996 given in Chapter 1).

58 2 Making Changes

Fig. 2.24 The global rename is reflected in all windows such as the network

Exercise 2.2

1. Create a function that will subtract #1 (see function ‘sub1’) from each number
in a list of numbers.

2. Create a function that will add #2 to each number in a list of numbers.
3. Create a function that will return a list of all the first items of a list of lists.
4. Create a function that will return the first letter of a list of words (e.g. [“All”

“Good” “Men” “Will” “Come” “To” “The” “Aid” “Of” “The” “Party”] → [‘A’
‘G’ ‘M’ ‘W’ ‘C’ ‘T’ ‘T’ ‘A’ ‘O’ ‘T’ ‘P’].

5. Do the same as above but for a sentence “All Good Men Will Come To The Aid
Of The Party” but return the string “AGMWCTTAOTP” (Hint: look at ‘casting’
functions).

6. Create a function that will do the following:

QUERY> I_am "Tom"
Hello Tom
True

(Hint: consider ‘progN’)

Memory, Windows and You

So far, we have committed functions and saved databases (or programs). These
actions are to do with the change of level at which a function or constructor def-
inition or Faith code is stored.

We can consider that the Clarity environment consists of three levels of mem-
ory. To understand what is happening when a change of commitment level occurs
we need to keep these three levels of memory in mind. The program or database

Memory, Windows and You 59

is normally stored in main memory during its development. However, in between
development stages, the current stage can be saved in a folder. What are saved are
two descriptions of the same database, the Faith code with the modifier .ddb and
the Clarity schema with the modifier .seg. Both of these are text files and can be
read and changed by any text editor. Note that the previous version of the .ddb and
the .seg files are saved in .dbk and .sbk respectively. The current database can be
replaced (see File menu) by this back-up database.

The advantage of having two different forms of the same thing is that it provides
a secure store for your work. If one or other of the files becomes corrupted then it
is possible to regenerate a version of the corrupt file from the uncorrupted file. So
Faith code can be regenerated from a Clarity schema and a Clarity schema can, in
a very limited sense, be regenerated from Faith code (the latter cannot be done with
ClarityLite). What is lost in the last transformation is that the internal representation
of the ‘hold’ function is used instead of the line lozenge and both the layout of the
diagrams and the annotation are lost.

The initial stage of creating a program is to construct it in one or more of the
windows in which the different types of schema are formed: Faith, Declarations,
Function and/or Network. The information placed in these windows is temporary
and not linked with the program at this stage other than through consistency checks.
The ‘running’ program is kept in main memory (Fig. 2.25). To include a function
or constructor created in one of the windows in main memory so that it connects to
the program is the act of commitment (tool bar ‘OK’). This action will translate the
Faith code and the Clarity schema into the main memory and integrate them into
the model. However, even this is not permanent and to ensure that the model is not
lost it has to be ‘saved’ to the database. Once this is done, the model is secure.

The Network window is unusual in that it is principally concerned with describ-
ing the state of the model as expressed in the database rather than in the main
memory.4 The Faith window describes each function in Faith code and its state in

Main MemoryDatabase

Window

Save database

Commit

Fig. 2.25 The three types of
memory

4 However, it can be used in reverse to place function frames into main memory.

60 2 Making Changes

Window

Faith Declarations Function Network

Model

Control

Queries Messages

Side Effects

Narrative Graphic

Environment

Annotation

Side Effects

Information

Library User
Functions

Working
Functions

Functions
to be

modified

List view Tree view

Fig. 2.26 Windows and their role

the main memory. So if changes have occurred through program side effects then
these changes will be shown for each function in the Faith window.

For the creation of a program or model there are three classes of windows that
can be identified (see Fig. 2.26):

1. Model – Includes all those windows that incorporate mechanisms for creating a
program. They are referred to as the class model because a program is considered
a model of something.

2. Environment – The control window informs us about the design environment and
provides the input to the program and some primitive output of the program. The
information windows provide details about the library functions (built-ins) and
the user’s program functions. The latter allows two possible views: List and Tree.

3. Side Effects – The windows that provide output for the program.
This class of windows is not available in ClarityLite. A ‘side effect’ is any
world event that occurs when a function is applied. In general, this includes some
of the physical events of the computer, such as the change of states of memory.

Figure 2.26 shows the complete set of windows separated by their roles. The
boxes indicate graphical windows and the others are text. The program is normally
formed in the declarations and function windows although the Network and Faith
windows will accept program structure and code respectively.

An annotation window contains text that is tied to a specific window as well as
the tokens in that window. This provides a means of keeping detailed comments,
descriptions and explanations about the program. In particular, these annotations
should link each function to its role in the program and what the function means
in the world it represents. The annotation window can be found under the menu
Features since it is considered a feature of a function. Names of functions should be
chosen with great care. There is a fourth memory, and that is yours. Today the func-
tion all seems simple but tomorrow, next week or in a year, it will not be so obvious.
These annotations are little messages in a bottle that you write to your future self.
Be kind to yourself and make the messages useful and clear.

Questions 2.2 61

There are currently four information windows. The library window contains 100
(ClarityLite) or 300+ (ClarityPro) built-in functions. The user functions window
contains all the functions committed by the user. The working functions window
provides a means of keeping useful library and user functions together in one short
list. This allows the user to have available frequently used functions that can be
clicked on and then clicked into (copied to in the right form) either the control
window or one of the model windows.

The final information window is a list of functions to be modified. This is a list
generated by ClarityPro in response to redefining a function. All the functions that
are enabled by the redefined function are listed. These are deleted from the user pro-
gram except for the associated function window, which allows the user to recommit
the dependent functions with the changes required to maintain functional constancy.
The list is a ‘to be modified’ list that must be used from bottom to top. This is
because as changes take place this list may grow through additions of functions to
the end of the list as more dependencies are discovered. Only when all these func-
tions have been dealt with and the modification list is empty will ClarityPro allow
the user to continue. Saving the database before the list is completed will create an
inconstant program and this program is liable to crash if reloaded.

Exercises 2.3

1. Construct a function called ‘hi’ such that the computer responds with ‘what is
your name?’

2. Construct another function so that if you type in

QUERY my_name_is “your name”

Then the computer responds with ‘Hello your name’. How are you?
For which another reply is needed from the user. For which the response will

be ‘Tell me why you are your reply’.
3. Construct a function that will print any message to the user but will include his

name. The user’s name is given as a parameter so the ‘function’ will be declared
as
a) ‘function’ ::= str → str → str

4. Construct a function using the above so that you type ‘hi’, it asks your name, you
give it your name and the function responds “Thank you your name”.

Questions 2.2

1. What is a ‘side effect’?
2. When you ‘commit’ a function what memories hold the function?
3. What is the ‘fourth’ memory?
4. Under what menu can you find the Annotation Window?
5. How many files does the database have?

62 2 Making Changes

6. Where are the last modified back-up database kept and how do you recover them.
7. What is lost if you regenerate a schematic from Faith?

Project: A Simple Interactive Program

Guess: Finding Your Number with Least Questions

Introduction

In this project we are going to use all that we have covered so far and introduce
three more techniques. The first will be the use of ‘pattern match’ with multiple
component functions. The second will be a ‘hold’ lozenge that allows you to have
local variables. The third is ‘mutual recursion’ where two functions call each other.
We will introduce these techniques through the process of writing a program that
will try to guess the number you are thinking.

The problem of determining a number that someone has chosen between some
fixed range of numbers (say between 0 and 100) with the minimum number of ques-
tions is quite easy. You just ask is it between 0 and 50 (say), if ‘yes’ is it between 0
and 25 and then if ‘no’, is it between 24 and 36 and so on. Each time we split the
remaining unknown set of numbers into half. We know that identifying a number
between 0 and 128 only requires at most six questions. This is interesting because a
similar question/answering approach could be used for anything (other than a num-
ber) if the features, characteristics or categories of that object are sufficient to iden-
tify it. In the game of 20 questions we are told that the unknown object or concept
is Animal, Vegetable or Mineral. This information starts the identifying process.

In this project, we simply consider the easy case of ‘figure out the number I
have chosen’. This is a special case of the more interesting question ‘figure out the
object/concept I have chosen’. The features of the numbers used are its value but we
could have asked questions such as ‘is it primary?’ or ‘is it odd?’.

One wonders why web-search engines do not use this technique (see
Chapter 10).

You will be given instructions that are preceded by a bracketed step number, and
an ∗ as well as underlined. For example,

(2) ∗Define the function ‘ think_of_number ’ in Diagram 2.1 .

This means that in step 2 you should create the function ‘think_of_number’
(note the underscores).

Project: A Simple Interactive Program 63

Diagram 2.1
‘think_of_number’

Guess a Number

You think of a number between 0 and 100 and the computer will ask you ques-
tions until it knows your number. In this program, there is an example of a mutu-
ally recursive pair of functions ‘find’ and ‘find_again’, i.e. ones that keep calling
each other, as the gap between the possibilities narrows. These two functions also
use the idea of a function with more than one definition (see Chapter 1, Fig. 1.14
‘choose_for’). Each definition of a function is called a ‘component’ and is distin-
guished from the other components by the pattern of input parameter values. This
mechanism (called ‘pattern match’) allows you to do some elegant programming.
This will be discussed further in Chapter 3.

An example of such a function is the function ‘if’. Now you may never have
thought of ‘if’ as a function since it is normally considered as a process controlling
operation. Since we only have functions in Clarity we have to simulate this control
process as an explicit ‘mapping’. An example of an explicit mapping is an array
(say int A[5]). This is an explicit mapping of the index into the values contained in
the array (say A[3] → 253 where the integer 253 was stored at some time). We can
do this in Clarity with the mechanism of ‘pattern match’ by declaring and defining
a function with more than one definition where each definition has a unique pattern
of input parameters. So we can define ‘if’ as follows:

fdec
if ::= bool → ?0 → ?0 → ?0;

;
fdef

if False ?0 ?1 ::= ?1;
if True ?0 ?1 ::= ?0;

;

This function works by matching the pattern such that if the first parameter has
the value ‘True’ then it will result in the second parameter, otherwise for everything
else it will result in the third parameter. It is a bit like a two-way switch but works

64 2 Making Changes

‘upside down’ compared to the normal imperative programming ‘if’. The reason
why this works is due to another efficiency device used in functional interpreters
called ‘lazy evaluation’. As you might expect, ‘lazy evaluation’ means that only the
necessary calculations are done. So, if the first parameter of ‘if’ is True then only
the set of functions required for the output of ‘if’ is needed and thus only the second
parameter is evaluated. If the first parameter had been False (or anything else other
than True in our alternative definition in Fig. 2.27) then only the third parameter
would be evaluated. In this way the ‘if’ function can switch between evaluating the
second or third parameters depending on the truth-value of the first parameter.

To illustrate this as a schematic we have to define a function ‘_if’ because we
are not allowed to declare and/or define a library function. However, this does show
how you can create your own control functions in Clarity. Figure 2.27 shows the
general case and Fig. 2.28 the special case when the first parameter is True. The
mechanism of ‘best’ match does the selection of a component where ‘best’ will be
explained in more detail in Chapter 3. Simply (but not completely), parameters are
matched from left to right, left-most taking precedence.

First, look at (do not do anything yet) the function ‘think_of_number’ in
Diagram 2.1.

Fig. 2.27 Declaration of
‘_if’ definition for ‘False’
condition. First (#0)
component of ‘_if’

Fig. 2.28 Declaration of
‘_if’ definition of second (#1)
component for ‘True’
condition

Project: A Simple Interactive Program 65

The parameters to the built-in ‘progN’ are evaluated in a clockwise order. The
function ‘putline’ is a built-in function to output a string (characters enclosed by
double quotes). The function ‘getchar’ is a built-in function. This function waits
for a keyboard input, but in this case we are not interested in what the key is, just the
fact that it has been pressed (for an example of a side effect, see Chapter 1). The
function ‘newline’ is the function in Diagram 2.2 to output a new-line character (see
Chapter 1).

Diagram 2.2 ‘newline’

Now do the following:

(1) ∗Define the function ‘ newline’ in Diagram 2.2.
(2) ∗Define the function ‘ think_of_number’ in Diagram 2.1.

Look at the function ‘find’ in Diagrams 2.4 to 2.6 . The function ‘find’ is
another example of a function with more than one definition. It has three parameters
like, but not the same types as, ‘if’. The first parameter is the lowest number in the
guessing range, the second is the highest, and the third is the difference between
them. There are three components to ‘find’. Each component represents a con-
dition we wish to identify in order to do something special. In this example, the
first component, component #0, is the general case. The general case is the default
pattern if none of the specified patterns fit. However, there are occasions when a gen-
eral case is not defined. We will explore that issue later. Here we find the ‘middle’
of the range (e.g. #50, for #0 to #100). The function interrogates the user through
the function ‘question’ (see Diagram 2.6) to see if their number is “less than” this
one. The process continues with the next guess in ‘find_again’ until it is found (the
termination condition).

Before we look at ‘find_again’, consider the special cases of ‘find’ when the
difference is #0 or #1. If the difference between the numbers is #0 both numbers
are the same, and we have found the answer. If the difference is #1, then the answer
must be one or the other. We ‘question’ the user to see if their number is “equal to”
the first parameter. The result will be True or False, which is the first parameter to

66 2 Making Changes

Diagram 2.3 ‘find’
component #0 before
committing

Diagram 2.4 ‘find’
component #0 after
committing

the built-in function ‘if’. If the answer is True, the result is the second parameter of
‘if’, i.e. it is the first number or else it is the second number (third parameter of ‘if’).

You will note when you commit ‘find’ (Diagram 2.3) something strange happens.
A new kind of lozenge (with ordinary lines) appears after the function ‘middle’
(Diagram 2.4). This is called a ‘hold’ lozenge and it serves two purposes. The first
purpose is simply representational in that we need to ensure that every function
has one and only one output. If this were not the case then the order of parameters
would become ambiguous since there would be more than one reference point. The
second purpose is that the ‘hold’ lozenge also reduces the amount of processing
by evaluating the function, to which it is attached, once only. In other words, the
lozenge acts like a local variable and stores the result. It works such that the first time
the function is called (in this case the function ‘middle’) the result will be stored.
Any subsequent use of this value during the activation of the parent function (‘find’
in this case) will use the stored value rather than recalculate the result. However, if a
recalculation is necessary then the hold lozenge can manually be replaced by a type
(dotted) lozenge. In both cases, you may be asked to specify the type of value that is
being stored or used at this point. You are expected to type it in replacing whatever
is there (usually a ?0).

Project: A Simple Interactive Program 67

Diagram 2.5 ‘find’
component #1

Diagram 2.6 ‘find’
component #2

The first parameter to ‘find_again’ will be the result of the ‘question’ in ‘find’.
If the result is True, the general case, component #0, of ‘find_again’ will be called
and if False the special case, component #1. Suppose the answer is ‘yes’ then the
number (in our example) will be less than #50 and we must guess again between #0
and #49.

The built-in ‘sub1’ subtracts #1 from the ‘middle’ parameter, and the function
‘find’ is called again. If however the result of ‘(question “less than”)’ is False, and
the number is not less than, say, #50, we must guess again between #50 and #100.
The function ‘find’ is called again with these new limits.

68 2 Making Changes

Now look at the function ‘find_again’ in Diagrams 2.7 and 2.8.
Before we can define ‘find’ and ‘find_again’ we will look at ‘middle’, ‘ques-

tion’ and ‘diff’. First look at ‘middle’ and ‘diff’ Diagrams 2.9 and 2.10.

Diagram 2.7 ‘find_again’
Component #0

Diagram 2.8 ‘find_again’
Component #1

Diagram 2.9 ‘middle’

Project: A Simple Interactive Program 69

Diagram 2.10 ‘diff’

The function ‘middle’ finds the integer nearest to the middle of two given inte-
gers. ‘diff’ finds the difference between the lowest and highest integers. Note that
‘diff’ in Diagram 2.10 has a new kind of symbol called a ‘junction’. A junction does
many things but in this case it allows us to put a bend in the link between the input
lozenge and the ‘-‘ function. We have to do this because we want the first param-
eter taken away from the second parameter. The junction is found under the menu

‘features’ or the tool bar symbol .

(3) ∗Define the functions ‘ middle’ and‘diff’ in Diagrams 2.9 and 2.10.

Now look at question in Diagram 2.11.

Diagram 2.11 ‘question’

Again, the parameters to progN are read in a clockwise order.
If the first parameter to question type str (string) is for example “equal to”, and

the second is, say, #50, then the whole message after the new line would be

Is your number equal to #50? (y or n):

The function ‘getchar’ waits for input, then ‘=’ compares that with ‘y’ and
returns the result.

(4) ∗Define the function‘ question’ in Diagram 2.11 .
(5) ∗Define the function ‘find’ in Diagrams 2.4 , 2.5 and 2.6 .

70 2 Making Changes

However, note that you create the component #0 of the function ‘find’ to look
like Diagram 2.3. You will find, as predicted, that on committing the function, it will
redraw itself to look like Diagram 2.4. Remember that the lozenge drawn is not a
parameter lozenge or a type lozenge; it is a ‘hold’ lozenge.

(6) ∗Define the function‘find_again’in Diagrams 2.7 and 2.8.

Note that the function ‘find_again’ contains underscores. Note also that you draw
the two arrows directly from ‘sub1’ to ‘find’ and ‘diff’. As before, the hold lozenge
will be drawn for you when the function ‘find_again’ is committed.

Look at the main function ‘guess’ in Diagram 2.12.

Diagram 2.12 ‘guess’

Reading this function from the top down and clockwise around each function
box, the function ‘think_of_number’ is evaluated first, then ‘find’. These are
parameters to the built-in function ‘progN’, which returns the last parameter, i.e. the
result returned from ‘find’ (which will be an integer). The next function to be eval-
uated is ‘newline’, then ‘putline’ that will print the message. The built-in ‘prog1’
will return the result of its first parameter, which will be the integer guessed. Con-
sequently, the last line printed, for example, would look something like this:

Your number is #88

(7) ∗Define the function ‘guess’ in Diagram 2.12.

Test the function by typing ‘guess’ in the CONTROL window.

Finally

Save your database and call it ‘guess’. And then create a network view by open-
ing a network window, go to the find ‘menu’ and click on ‘Create/Update network
from database’. This may require a little rearranging to look neat and when you are
satisfied with its appearance commit it just like a function window.

Diagram 2.13 shows a summary of the complete program in terms of functional
dependences. Thus the arrows indicate the called function (resources) needed by a
function. Note that a double-headed arrow shows the mutual recursion (and also
mutual dependency). Because neither function has precedence we chose to arrange

Questions 2.3 71

Diagram 2.13 The network
for ‘guess’

them at the same level. It is very important to draw schematics (function, constructor
and network) according to some simple rules. All arrows should point downwards
and, where possible, not cross or pass through other icons.

Exercise 2.4

1. Define a function ‘ans’ (as a schematic of course) that will switch (like ‘if’)
according to three possible strings “Yes”, “No” and “Do not know”, where

ans ::= str → ?0 → ?0 → ?0 → ?0;

2. Define a function ‘rand_one’ that will generate a list that contains the pair of a
random number and a two times that random number. The range of the number
does not matter.

3. Define a function ‘rand_two’ that will generate a list of just two random num-
bers. (Hint: consider a ‘type’ lozenge).

4. Change the function ‘guess’, and any other functions used by ‘guess’, so that it
will work for any number between 0 and 250.

Questions 2.3

1. What is meant by ‘mutual recursion’?
2. For what two reasons was the ‘hold’ lozenge introduced into Clarity?
3. What mechanism would you use to simulate an array with a function in Clarity?

Give an example.

72 2 Making Changes

4. What mechanism would you use to simulate a ‘control’ operation or ‘case’
statement in Clarity? Give an example.

5. What is ‘lazy evaluation’ and why is it important?

References

Addis T. R., (1985) ‘Designing Knowledge-Based Systems’, Kogan Page. Published, London,
October. Hardback ISBN 0 85038 859 7. Soft back ISBN 1 85091 251 3.

Addis T. R. and Townsend Addis J. J. (1998) ‘A Functional Schematic Interpreter: An Environment
for Model Design’, International Journal of Systems Research and Information Science, Vol. 7,
Pub Gordon Breach Science, ISSN 0882-3014, pp. 263–299.

Citrin W. (1996) ‘Strategic Directions in Visual Languages Research’, ACM Computing surveys,
Vol. 28, No. 4. December.

Codd E. F. (1970) ‘A Relational Model of Data for Large Shared Data Banks’ Communications of
ACM. Vol. 13, No. 6, June, pp. 377–387.

McCarthy J., Abrahams P. W., Edwards D. J., Hart T. P. and Levin M. I. (1965) ‘LISP 1.5
Programmer’s Manual’, MIT Press, Cambridge, MA, Twelfth printing 1980. ISBN 0 262
13011 4.

O’Reilly T. (1999) ‘Lessons from Open-Source Software Development’, Communications of ACM,
Vol. 42, No. 4. pp. 33–37.

Visscher B-F. (2005) ‘Exploring Complexity in Software Systems’, Ph.D. Thesis University of
Portsmouth. Available from: http://www.clarity-support.com/research/papers or The AMUSE
project: http://userweb.port.ac.uk/∼addist/amuse.html

Chapter 3
In Pursuit of Elegance

And though I bestow all my goods to feed the poor, and though
I give my body to be burned and have not charity, it profiteth me
nothing.

Corinthians 13, 3.

Introduction

Functional languages were designed to represent the formal operations required to
compute in a way that could be made elegant by a designer. There is a beauty in
a representation that can capture an idea in both its form and its expressiveness.
An example of such elegance is the familiar relationship between energy (E) and
mass (M):

E = MC2

This equation is elegant because it is so simple and yet expresses a truth that is
remarkable. Computation, in its most general form, is also more than just arithmetic
calculations; it involves everything we know about the mechanics of thinking. If
we can capture the complexity of thought processes elegantly then we will have
captured it simply.

The interactions between a computer and a person or a computer and an
operational mechanism are awkward processes that do not match well within the
functional representation. In this chapter, we will explore some simple ways of inter-
acting with the world in real time that can be achieved by ClarityLite. The intention
behind Clarity is for a designer to focus on the creation of functionality and mod-
elling in the first instance rather than providing nice interfaces. ClarityPro has more
sophisticated ways of linking with the world that can involve your favourite ‘visual’
interface language, which we shall not deal with in this chapter. Get the functionality
right and the rest will follow.

73T. Addis, J. Addis, Drawing Programs: The Theory and Practice of Schematic
Functional Programming, DOI 10.1007/978-1-84882-618-2_3,
C© Springer-Verlag London Limited 2010

74 3 In Pursuit of Elegance

Inferring Internal Experience [→ Page 81]

When preparing to design a program it often starts from the designer talking to the
expected users of the program so as to understand their problem in terms that they
will comprehend. That part of the world in which their problem exists is known as
the ‘problem domain’. This task of understanding and translation often comes under
the heading of ‘Systems Analysis’ or ‘Object Analysis’. The users’ views of their
problem domain are often inconsistent simply because each person has their own
notion of what exactly the shared world they have in common is like. It is then up
to the designer to find a representation of their problem that is acceptable to all the
users and also one that is formally consistent with a computer program.

Classical linguistic philosophy suggests that language understanding arrives from
denotational (referential) semantics. If we examine what people talk about we find
that many of the conversations are descriptions of their own internal life. Since
nobody can have direct access to another’s internal experiences, the only way in
which such experiences can be understood is indirectly through inference and exter-
nal reference. We can infer each other’s experience because we share the state of
being a person, in a culture, using a language and sharing external experiences (such
as a musical performance; see Billinge and Addis 2003). It is hence possible through
conversation to build an internal model of another person’s view of the world. The
only requirement for this model is to be able to make predictions from conversations
about such things as:

• one’s own possible future experiences,
• the way one should respond to another person,
• an interpretation of what is said in terms of your own actions,
• new ideas and ways of looking at the world.

For example, if the non-technical music literature is examined,1 it becomes evi-
dent that the common experience does not have to be even the music itself in order
for one person to describe an experience to another. The rich and extensive use
of metaphor suggests that emotional resonance and association with a commonly
understood situation can be employed to trigger what, to the author of the descrip-
tion, is his ‘accurate’ emotional response to a piece of music (Billinge and Addis
2003, Lakoff and Johnson 1980, Lakoff 1986). Communication, in this case, will
depend mostly on our shared humanity, sometimes on our personal experiences but
unlike computers, little on any referential semantics (Wittgenstain 1953). This iden-
tifies a problem of how we can relate a natural language description, whose nature
we do not fully understand, to a formal model, a model that can only depend on
reference to provide meaning.

1 Examples are record reviews, concert reports, descriptive, as opposed to analytical, music histo-
ries and biographies.

A Philosophical View of Computing 75

A Philosophical View of Computing [→ Page 81]

The implications of such observations on the communication of internal experience
are radical. We can take the step that predicate calculus and its philosophical bases
(Wittgenstein 1921) is a complete model of computing and further, a complete sys-
tem for any formal description. We can take this step because the Church–Turing
Thesis shows that the Turing Machine (the classical computer) is equivalent to
Lambda calculus involving recursive functions (Kleene 1967). Lambda calculus
and recursive functions together form the description of a functional programming
language (e.g. ML, Hope and Faith). As with all formal systems the descriptive form
is based on denotational (or referential) semantics. That is, the meaning of a word is
the object it represents in the world. However, if you look carefully at the require-
ments to be an object that can cope with the role of being a referent for a formal
system it must have some logically very strange properties. Objects must be

• independent in that they can freely combine to form ‘states of affairs’ that can be
described. You need this independence so that every object can participate freely
as a referent in any predicate calculus statement. So if we state that ‘for all A,
A implies B and we know that an example of A exists’ then we want to be able
to always infer that there will be an associated example of B. We do not want to
have to start making exceptions. If we do allow exceptions than how do we know
that the list of exceptions is either complete or finite.

• atomic in that there are no smaller constituents. If a referent is not atomic then
it can be decomposed and reconstructed into a different kind of object. This
produces the possibility that any inferences made that include this object could
become invalid under its reconstruction. All the statements that use this object
will change their meaning or if the object is destroyed the statements will become
meaningless. They become meaningless simply because the object is no longer
there to refer to. OK, it might exist in the past but formal systems only exist in
the present unless a time dimension is explicitly stated.

• in all possible worlds. This is required because you want your formal system
to describe all possible situations that might occur in all potentially describable
worlds; if you can think of it you should be able to describe it.

• immaterial. A material object is not always accessible and suffers from not being
atomic. An example of two non-material objects that describes the material world
is the Newtonian physicist’s view of force and mass. Both of these are suitable
candidates to be objects (see below) but neither of them can exist on their own in
isolation. So in this sense they must be:

• indescribable except by their behaviour (form). To be describable means that
they have constituent parts that are in a relationship, they form a statement built
from other elements and will thus be non- atomic.

• self governed in that they have their own internal rules of behaviour. So ‘Mass’
and ‘Force’ are only understood through their relative behaviour with each other
as a measurable and observable acceleration; thus

76 3 In Pursuit of Elegance

Force = Mass ∗ Acceleration

Function (with Constructor) and Type are also understood in the same way
through the process of transformation.

These referents (objects) are intended to be more than just elements of descrip-
tion; they form the real world. They provide the underlying constraints that make
us acknowledge ‘reality’ and ‘truth’ (of a statement). From these referents, the full
force of logic, predicate and propositional calculus retains stability of meaning
and sense. Such a stance results in the position that everything is potentially unam-
biguously describable provided we can always categorise the world in a way that
is unambiguous. There must always be a method of determining if an object or
observation belongs to a named set since without that possibility we cannot apply
deductive logic or make any certain inferences about the world.

We now introduce here the idea of a ‘rational’ set.2

A ‘rational’ set is a set where there is a finite set of rules that can include
unambiguously any member of that set and unambiguously excludes any non-
member of that set.

It should be noted that all the sets used by formal systems are assumed to be
rational where set membership is always specifiable and context independent or
has an explicit context that is also rational. If we cannot do this then there will be
no atomic objects and no description of compound objects expressible that makes
any sense. There is the notion of ‘fuzzy’ sets but these are also rational in that
membership for a particular ‘fuzzy’ distinction is defined (see Gegov 2007).

It might be argued that all sets are really rational; it is just that we do not yet
know all the rules. This may be the case but, from a practical point of view, if we
do not have access to the rules that define membership of an element to a set then it
is impossible for us to determine when a statement is applicable. Such a statement
remains meaningless or at best has a very limited and constrained sense.

You might also say, “but what about ‘Unicorns’?” The Unicorn is a mythical ani-
mal and does not exist and yet we can describe it and talk about it. The fact that
we can describe it is a clue that it is not an object but ‘a description’. The argu-
ment is that names (in practice signs, the visible part of an expression or name) in

2 Jan Addis proposed the term of rational and irrational sets (private communication February
2004). She related the irrational sets to Cantor’s (1845–1918) irrational numbers. In the case of
rational numbers the rule was a member number could be expressed as a ratio of integers and they
are countable. Irrational numbers are not countable. Examples of irrational numbers are

√
2 and π.

There are infinitely more irrational numbers than rational numbers. However, as for irrational num-
bers an irrational set can always be approximately represented by a rational set.

A Philosophical View of Computing 77

propositions do not always refer to primitive objects but are themselves referencing
propositions.

These propositions, often referred to as objects, in computer programs, in turn,
are complexes that finally end up as compound statements whose ultimate refer-
ent is the bit. For example, in computer languages we have seven bits of the
ASCII code identifying 1000001 as the character A and 1000010 as the char-
acter B and so on. There are also special characters that relate to actions such
as ‘delete’ 1111111 and ‘start’ 0000001. Here the bit is the mechanical equiva-
lent of a referent object. The bit, if taken as a detectable distinction, has all the
strange properties of an object.3 For example, a world cannot exist (or at least be
detectable) unless it contains at least one distinction. It so happens that a ‘bit’ is
a concept that can only be embodied in a distinction. A distinction is immaterial
since although physical phenomena may be used (voltage for example) it is the rela-
tionship between the physical phenomena that captures the ‘bit’. Further, it is at
the bit level that the program links to the world and has meaning; in normal prac-
tice they are voltage levels in silicon. It is this meaning that allows the program to
have “sense” with respect to the computer. Thus formal semantics and the ability
for programmers to create procedures and sub-routines (sub-propositions or expres-
sions) are the primary characteristic of all high level and assembler programming
languages.4

The consequence of such a formal model is that any set of names can be used in a
program to represent a proposition. All that is necessary is that there is a formal def-
inition that gives the name meaning within the program in terms of the proposition
it represents. Since a proposition can take on an infinite number of forms through
the use of tautologies and other formal equivalences there is an infinite but bounded
set of possible organisations that can be adopted for a program. One would expect
that there would be some minimum organisation or representation for any given
program. However, the additional adopted structure is also represented, in the end,
by bits on a computer. This will appear as a program overhead that is used to sup-
port a chosen program organisation or structure and in this sense only the program
interpretation has changed.

Note that we have introduced the option of choosing ‘names’ and ‘organisation’
in a program. A program is a formal statement and this means that a program has
‘meaning’ with reference to the atomic object ‘the bit’. We then might ask the
question: If the ‘meaning’ of the program is the same for different names and organ-
isations then why should we be bothered to make anything other than an arbitrary
choice of these names and organisation? The answer is that such a choice has con-
sequences.

3 For Wittgenstein a particular ‘bit’ is an argument place (Tractates paragraph 2.0131).
4 The original high level programming language COBOL in its initial form did not provide proce-
dures and sub-routines except those that were pre-constructed in assembler as library routines.

78 3 In Pursuit of Elegance

Dual Semantics [→ Page 81]

The choice of names and organisation in a program is not arbitrary but is a link
to the fact that computer languages have a dual semantics (Stepney et al 2005).
Dual semantics in that the program signs (e.g. the names/labels given to data items,
procedures and sub-routines) at the highest level also have referents in the problem
domain (Fig. 3.1) as well as bits in a computer. This set of referents is drawn from
the analysis of the problem domain in terms of records (as in database and program
structures), relations (as in normalised data structures) and objects (as in object-
orientation where the objects are usually propositions defined in terms of examples).
It is this analysis that identifies constructs in the world that are meant to be stable and
unchanging to which names can be given and meaning assigned. It is the purpose
of the analyst that the compound objects chosen to represent the problem domain
will be stable enough, and for long enough, to behave like atomic objects during
the lifetime of the program. In practice this purpose is rarely achieved.

Now it is acceptable that propositions can represent material properties, relation-
ships, and any complex model of the world but a proposition can have one and only
one complete analysis. If it has more than one analysis in the sense of an alternative
interpretation then it would be impossible to compute or to know what meaning to
give it. Meaning in this case means a predetermined and single result. So even such
functions as (sqrt #1), which have two possible answers #1 and #-1, is required to
give a single answer. This can either be #1 (as it is in Clarity) or the pair [#1 #-1].
The function ‘rand’ (generates a pseudo random number) is also specific and each
time it is called it will step through a predefined sequence of numbers. It is for this
reason that there is an additional related function ‘srand’ which starts the sequence
at different points so that a random element can be added. In Clarity the starting
position is chosen from the time and date. Even this random element has a single
analysis.

The analysis of a proposition or program is dependent on only the essential fea-
tures of the proposition or program that links it to the referent objects, which is the
bit in our case (Fig. 3.2). The essential features are those that identify the proposition
for what it is. In our case the uniqueness of the names we have used within the pro-
gram for our variables, relations and operations. How we have made the component
parts unique is not important other than its uniqueness is recognised. Accidental fea-
tures are all those other properties of the proposition that we can identify but have
not been used to identify it. So ‘colour’ of the characters may be accidental but the
choice and sequence of the letters may be an essential characteristic.

Program

Problem Domain

Computer States (bits)Fig. 3.1 The problem of dual
semantics

Dual Semantics 79

Program

Computer States (bits)

Fig. 3.2 The only rational
interpretation of a computer
program

A computer program, as we have already seen, has such an analysis with respect
to the computational engine (Fig. 3.2), where the meaning of the program in terms
of its propositions maps eventually to the pattern of bits in store. But we can have
an alternative interpretation of a program provided we use only the remaining acci-
dental features. We can use other features such as colour, capital and italic letters.
We can use layout, the organisation (decomposition) and the alternative tautologies
of the logic to reflect the domain. In particular:

We can use the concept of constructor and ‘type’ in a functional program to be
functions interpreted by the user whereas we use the concept of extensional
(lookup table) and intensional (composed) functions to be left to the computer
to interpret.

This necessity for a dual semantics develops a peculiar tension in program
design that is hard to keep stable, particularly with respect to the informal, and often
undefined, mechanism which links the program names with the user’s domain. It
is undefined because it relies on people to invoke meaning from these accidental
characteristics. To make matters worse, the ‘objects’ that are usually chosen to be
referenced in the informal analysis of the problem domain are not normally rational
sets. They are propositions posing as atomic objects (rational sets). The reason for
this is that most practical programs would require an unacceptable level of complex-
ity and computation to fulfil the ideal to be only referencing objects in the sense we
have just described.

So we have computer programs with a semantics based on computer bits but we
create programs that cannot rationally be assigned meaning for the very problem
domain for which they have been written. Programs must remain in the domain of
rational sets if they are to be implemented on a machine (Addis et al 2008). How-
ever, we do have the freedom to use the program’s accidental properties without
affecting the program’s meaning with respect to the computer. We can choose the
names we use and select the computer organisation from the possibilities bounded
by the essential program. The tension caused by the dual semantics that pivots on
the essential and accidental meaning of the signs used in programs is the under-
lying stimulus for the continued search for new languages, new program structur-
ing and new systems design methods (e.g. Java, conceptual modelling and object
orientation).

80 3 In Pursuit of Elegance

More on Functions [→ Page 81]

In the description of functions, so far, we have not outlined any functional
mechanism of carrying out arithmetic operations, such as addition, other than the
built-in functions ‘+’ and ‘add1’. For these built-in functions, we use the computer
machinery; often special high-speed arithmetic units. In this case, the arithmetic
operations are side effects in that the process is done as a world event. Such opera-
tions are not functional in principle though in practice they have the same outcome.
This is fine, but the functional language, in its pure form (i.e. not using side effects),
does not assume that there is a computer handy. If we did not have a computer to
do this arithmetic (i.e. adding) the best we could do is simply list all the possible
combinations (pairs of integers), thus

fdef
+ 1 1 ::= 2 ;
+ 1 2 ::= 3 ;
+ 2 5 ::= 7 ;
+ 3 4 ::= 7 ;

;

and so on. Then all we do is look up the pattern of parameters in the table. As we
stated earlier each pattern is referred to as a component of the function ‘+’ and is
a set of pattern-sensitive definitions of the function. The set of components that
are specifically defined with constants (as in this case) is called the extension of the
function. If a pattern cannot be found then the function is returned, thus

(+ 3 5) → (+ 3 5)

So if a function cannot be evaluated it is simply returned unevaluated (it is not an
error5). There is a way round this particular problem of defining addition by using
the idea behind the Curried function (+1):

(+ 1) number → next number

We would have to define a mechanism for generating the next number in a series
of infinite numbers. As we have seen, the computer system already has this function

5 In fact, such an unevaluated function can be used just like a constructor; it may be used to package
information and may be accessed in the same way.

Creating Components 81

‘add1’ as one of the built-in library functions. In this case we have to use the integers
provided by the computer and we indicate these types of integers by preceding them
with the symbol # (an example of a basic constructor with a single parameter). We
have to interpret what an integer means in the problem domain ourselves.

(+ #3 #4) → #7

The computer’s arithmetic unit carries out the calculation and the result returned.
This calculation is also considered a ‘side effect’ because it is triggered by the call-
ing of the function ‘+’ (in this case) and as we have suggested, the calculation is
done ‘on the side’. Remember that side effects happen in the world and are beyond
the range of defining events within a functional language.

However, if we wanted to define our own numbers we can do so by introduc-
ing our own type where each integer is a ‘constructor’ with no parameters. These
constructors define what is called an ‘enumerated’ type.

cdec
0 ::= digit
1 ::= digit
2 ::= digit
3 ::= digit
.

;

We would then have to define the way in which numbers are concatenated to
form new numbers in an infinite series followed by the arithmetic functions (see
Chapter 4 for a complete implementation of integer arithmetic). However, we have
a perfectly good set of mathematical (side effect) mechanisms associated with the
computer. What we have shown, and this is important, is that the functional language
is capable of defining from first principles any kind of mathematics or calculus. It is
important because it proves, by induction, that the functional language can express
any formal system in its minimum form of just the three mechanisms of pattern
match, function definition6 and recursion .

∗Creating Components

We have already created functions with more than one component (Chapter 2).
However, it is worth noting that in many cases you can define a component by using

6 Function definition is really the use of ‘lambda’ that will be covered later. The term ‘function’
also includes the term ‘constructor’.

82 3 In Pursuit of Elegance

the first component as a template (or form). In the example, for explicitly defining
‘+’ we can define a ‘_+’ using ClarityLite (‘underscore’ to distinguish it from the
built in +). Figures 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10 and 3.11 illustrate the steps
you go through.

First (Fig. 3.3),7 we open a function window (pink) and then second, we place
two parameter lozenges (thick line) in the input field. The types are then typed into
these lozenges and the output lozenge. In these cases, they are all ‘int’. This is then

Fig. 3.3 Input/output types

Fig. 3.4 Declare function
‘OK’

7 In most cases the windows have been reduced in size via the edit menu. This reduced size can
then be stored and allows many more windows to be on the desk top at the same time. It is ‘good
practice’ to not expand the size of a window larger than the pre-set size. This encourages keep-
ing functions simple. Functions that are getting complicated (more than seven to nine different
functions) should be decomposed into simpler functions.

Creating Components 83

Fig. 3.5 Put input/output
values

Fig. 3.6 Commit new
component

Fig. 3.7 First component
accepted

84 3 In Pursuit of Elegance

Fig. 3.8 First component

Fig. 3.9 Change first to
second component

Fig. 3.10 Second component
accepted

Creating Components 85

Fig. 3.11 Second component

committed so as to register the declaration of the function ‘_+’. We do this because
we do not want a general case. Anything not explicitly defined must fail by simply
returning the unevaluated function (e.g. (_+ #7 #5)). The control window responds
with ‘Good! Function _+ declared’ (see Fig. 3.7) and the function window changes
to show that a declaration only has been made either with ‘_+ [#-1 of –1]’ or ‘_+
[#-1 of 0]’ in the banner (Fig. 3.4). The difference depends on the opportunity the
function window has to update itself.

Second (Fig. 3.5) the first explicit component can now use the declaration as
a template for the first component. However, we need to explicitly give an output
value for the function and using a parameter lozenge to feed the output does this.
Figure 3.5 shows how we alter the input lozenges and add the explicit value we
require to the output. This is then committed (Fig. 3.6). Note that Clarity detects the
change in the input parameters and infers that you are defining a new component.
The function is then translated (next line in Fig. 3.7) and the new component is
marked by a change in the banner of the function window to ‘_+ [#0 of 0]. This is
the first actual component of the function.

Another component can then be created from this first component by simply
altering the values in the lozenges (Fig. 3.9) and committing it (Fig. 3.10) giving
you a new component (Fig. 3.11). The second component is marked ‘_+ [#1 of 1]’
in the banner.

There are several combinations worth trying. These will help you understand the
behaviour of such a description that does not have a general case. Consider

QUERY> _+ #1 #2
#3
QUERY> _+ #1 #1
#2
QUERY> _+ #2 #3
(_+ #2 #3)

86 3 In Pursuit of Elegance

QUERY> (_+ (_+ #1 #1) (_+ #1 #2))
(_+ #2 #3)
QUERY> (_+ (_+ #1 #3) (_+ #1 #2))
(_+ (_+ #1 #3) #3)
QUERY> (_+ (_+ #1 #3) (_+ #1 #5))
(_+ (_+ #1 #3) (_+ #1 #5))

Note how the interpreter evaluates what it can and simply leaves the rest for you
to interpret. We will see this effect again for constructors.

What you may notice is that we have, in effect, a two-dimensional array where
the element values are the sums of the indices. These values, of course, could be
anything, including functions. Further, the indexing does not have to be limited to
integers but can be ‘strings’, ‘characters’, ‘lists’, ‘reals’, ‘own data types’ and even
‘structures’. One advantage of using a function as an array is that you can store
sparse arrays very efficiently. Sparse arrays are arrays with few elements that are
scattered over large range of index values. This is because you do not have to store
those elements of no value. The general-case (i.e. any index combination not speci-
fied) can be used for all ‘no values’. It will return a null value. Assignment to arrays
will be considered in Chapter 4. The accessing of such functions is quick. The
limitation (if you can call it that) is that an array of this kind is restricted to 250
dimensions (i.e. 250 parameters).

Constructors: The Packaging of Data

Constructors are a valuable mechanism for creating our own types of objects. They
wrap up into a single package a collection of data that has some fixed and humanly
understood relationship.

In Clarity, we declare a new type of object normally through a constructor win-
dow (see Figs. 3.12, 3.13 and 3.14). This must first be opened (yellow background).
An empty output lozenge will appear in the output field of the window. The new
type name (e.g. ‘co_ord’) should be placed in this single output (dotted) lozenge at
the bottom of the constructor window (Fig. 3.12). The associated constructor (e.g.
‘Co_Ord’) is placed in a dotted box in the body of the window. New types (all lower
case, e.g. ‘x’ and ‘y’) with their constructors (that start with a capitol letter, e.g. ‘X’
and ‘Y’) can then also be declared in the body of the window using dotted lozenges
and boxes respectively. New constructors and types will appear italic at this point
showing that they are not known to the system.

There is no need of a new window for related new constructors and types pro-
vided they are connected to the final output type (Fig. 3.12). The boxes and lozenges
are joined to create a structured ‘package’ that is used both for passing informa-
tion from function to function. You must make a careful choice of names for these
types and constructors, for self-documentation purposes. It is normal to give the
same name to the constructor and its output type. The only difference is that the
constructor should start with a capital letter. This is done as ‘good practice’ but it is

Constructors: The Packaging of Data 87

Fig. 3.12 Defining
constructors

Fig. 3.13 Commit the
constructors

not an essential requirement. It is ‘good practice’ because it helps us to distinguish
the role of a symbol (e.g. as a function name) and helps avoid clashes of names
(Clarity is case sensitive). However, all names for any symbol whether it is a type,
constructor or function must be distinct. Also, note that in this window both the
boxes and lozenges are dotted. An annotation window can be used for both describ-
ing the complete window and any of the icons (boxes, arrows, etc.).

Figures 3.12, 3.13 and 3.14 show how we may, for example, define a co-ordinate
vector. A co-ordinate is a package of data that identifies the single idea of a position.
In this definition, we can send a single package of data of a co-ordinate by using the
constructors as follows:

(Co_Ord (X #r4.2) (Y #r3.6))

88 3 In Pursuit of Elegance

Window title. Derived
automatically from the

principle data type

0th (first) window of this type

Total (number -1) of windows of this type

The type co_ord declared
The constructor Co_Ord

for this type

Another type also
declared in this

window

The constructor Y
for type y.

A basic type
real. This is

shared to save
space.

Date and Time of declaration

Fig. 3.14 The declaration of types co_ord, x and y.

Note that the parameters of the constructor ‘Co_Ord’ are also constructed and
are of type ‘x’ and ‘y’ (note lowercase). These types then use the constructors ‘X’
and ‘Y’ respectively (note uppercase). If you type this in at the query level, you
will get

QUERY> (Co_Ord (X #r4.2) (Y #r3.6))
(Co_Ord (X #r4.200000) (Y #r3.600000))

What you will notice is the real numbers that are interpreted but do not really
change except for some additional zeros. The rest of the expression responds in the
same way as a function, which has a set of inputs that do not match any of the
predefined cases, and has no general case (see above). As we have suggested earlier
this is because the interpretation or the meaning of a constructor depends on the user
whereas a function has its meaning defined in terms of the computer. This makes a
nice distinction between what is modelled and what is not.

Positions in space may be defined in many different ways, such as using angle
and distance, as well as the normal x and y distances from a fixed origin. So we
could have the alternative structure

(Radial (Radius #r42.3) (Angle #r3.2))

If we are constructing something complicated with positions, and we do not
really want to worry about the details of how that position is defined, we can use

Looking Through the Function Window 89

either or both forms in our processing and then, using pattern match, recognise the
construction form to know how to handle it. We will show how this is done in the
next section.

We can also use different constructors to define the different types of co-ordinate.
We can then create some functions that combine positions or extract the information
from them no matter in what form they are. Here position is used as though it was
a single idea, which it is really. New forms can be added without changing the
structure of the program that uses them. This is a very useful freedom to have and
it is why the idea of ‘objects’ was originally proposed for programming. Position or
co-ordinate, along with its set of conversion and extraction functions, is a generic
object. It is a generic object because it represents the structure of an infinite number
of actual positions (specific objects).

Another example where the same data type may have more than one constructor
associated with it is the type ‘date’. This may have both UK and USA form. To
avoid an overcrowded diagram each variant of a type can be placed in a different
constructor window (constructor component).

Looking Through the Function Window

We can imagine the function window as a palette on which a function can be
declared, defined and modified. The generic type (e.g. ?0) input and output param-
eters, we have used before, declare what the function takes as input and what it will
deliver as output. The body (the middle part of the window) of the function is its
definition and expresses how it will deliver its output from the inputs. All functions
have to be declared but it is also possible to declare a function without commitment
to its generic form. That is, you can insist that the function will only do things with
particular examples of the input types.

What we mean by the generic form of a function is the particular component of
a function (if it exists) that has all its input parameters specified as a type (e.g. as int
or str or ?0, etc.). So there are no actual values such as #3 or “Fred” specified in the
input parameters. The output parameter can only be specified as a type in all cases.

To recap we have:

1. A generic object, which is the general class of a set of objects that is related to
object-oriented programming.

2. A generic type (e.g. ?0), which is the general class of all types including user
defined types.

3. A generic function, which is the general case of a function definition.

Once a function has been declared or defined, it may then be used actively in the
declaration or definition of other functions. In practice, it is possible to use functions
before they have been declared or defined but only as placeholders.

90 3 In Pursuit of Elegance

There are other tokens or aids that can be used to make a function or type decla-
ration and definition clear in the problem domain . These do not provide any further
functionality but they do provide a means of assigning the informal semantics (the
problem domain meaning) to the schema (the graphs that represent a program).
These include labelled join nodes (junctions) and colour.

When a function is declared without a body (a definition), as in Fig. 3.15, then
it adopts the segment number –1. The reason for making an isolated declaration
of this kind is to establish the input and output types when the intended finally
declared function will rely only on specific ‘patterns’ of input (i.e. no general case).
In this case we need a function that will allow us to ‘unpack’ the constructor so
that we can use its contents. We will need a set of functions whose job is to extract
specific items from the constructor. We do this by being very explicit about the item
we want returning by showing the system where it is through the use of generic
values/variables (e.g. ?0 , ?1, etc.). Note that it is possible to name each component
with an individual heading. This facility is particularly useful if there are a large
number of components . An index of component headings will be displayed if you
double click on the background.

In the function ‘x_co_ord’, shown in Fig. 3.16, we only use this function compo-
nent for the specific pattern shown. Other components of this function can be used
for alternative patterns. Here we identify the real value of x that is ‘wrapped-up’
in the constructor formation of ‘Co_Ord’ and pluck it out as a returned result of
this function. Other pattern sensitive components can do different things but they
must all return the same output type (i.e. ‘real’ in this case). Figure 3.17 shows an
alternative measure for position using a Radial definition. Figure 3.18 shows how
the second component of ‘x_co_ord’ can be used for both types of vectors.

So applying this we can see from the following that we get whatever result we
need without worrying what kind of vector is involved. This extension of function-
ality over different objects is referred to as ‘overloading’.

Function name. −1th window indicating that the
function has only been declared.

Total (number −1) of
components of this function.

Output type of
function.

Input type. This must
be declared for all

functions at some time.
Place for

component
name

Fig. 3.15 The initial declaration of a function

Looking Through the Function Window 91

Constructor of co-ord type
as ‘seen’ by the function

The ‘real’ value of the x co-ordinate

The output type
declared

The ‘real’ value of the x co-
ordinate selected for output.

The y co-ordinate. The inner
structure is not required.

The input pattern.
Must be distinct for

each component

Constructor X of x type

Fig. 3.16 A specific function for extracting the real value of an x co-ordinate

Fig. 3.17 Defining
constructors

Fig. 3.18 Commit the
constructors

QUERY> x_co_ord (Co_Ord (X #r4.2) (Y #r3.6))
#r4.200000
QUERY> x_co_ord (Radial (Radius #r4.2) (Angle #r3.6))
#r4.191712

92 3 In Pursuit of Elegance

We also need to create a function that will do the same kind of task for the other
value in the vector. The function ‘y_co_ord’ will extract the second value from a
co-ordinate system (Figs. 3.19, 3.20 and 3.21).

Another common use of an ‘object’ needing overloading is ‘date’ since there
are many different forms that can be used. However, for each vector we build a set

Fig. 3.19 ‘y_co_ord’ for
Co_Ord vector

Fig. 3.20 ‘y_co_ord’ for
Radial vector

First parameter of
function showing type.

Second parameter of
function showing type.

The X constructor

The output type
of + in this case

(might have
been basic type

int).

Library function
that adds two

numbers together.

A function to
extract the real

value of the y co-
ordinate.

The function to
extract the real
value of the x
co-ordinate.

The function that will provide
the ‘Co_Ord’ constructor

needed to ‘package the values
into a single.‘value’.

Fig. 3.21 The declaration and definition of a function

Looking Through the Function Window 93

of manipulation functions. For example, we will need to add two vectors together.
We may also require at some point a function that will take two elements and put
them together to construct a vector. At one level we have the pre-decision that certain
elements can be put together. So X can only go with Y to form a Co_Ord and Radius
can only go with Angle to form Radial. However, there is no mechanism that can
choose for us the co-ordinate systems. Only we can do that and that is why we have
to use constructor sensitive decisions at this point.

The function in Fig. 3.21 is an example of a generic function declaration (saying
what the input and output types are) and the definition (what to do with the input
and what to return as a value). The function’s purpose is to add two co-ordinates
together (i.e. vector addition). Note that we have to ‘construct’ the output so that
it is packaged into a single (but complex) value. The function can also be made to
respond specifically to other forms of co-ordinate provided we use the constructor
to create pattern-match parameters instead of the generic input shown in Fig. 3.21.
This works because specific patterns are always favoured against the generic form.

The function ‘add_co_ord’ can be tested by ‘calling’ it with some example input
in the control window as follows:

QUERY> add_co_ord (Co_Ord (X #r3.7) (Y #r5.6)) (Co_Ord (X #r4.2) (Y #r9.6))
(Co_Ord (X #r7.900000) (Y #r15.200001))

QUERY> add_co_ord (Radial (Radius #r3.7) (Angle #r5.6)) (Radial (Radius #r4.2) (Angle #r9.6))
(Radial (Radius #r7.895206) (Angle #r7.726620))

Fig. 3.22 The specific case
for ‘add_co_ord’

94 3 In Pursuit of Elegance

Note that in Fig. 3.22 we have introduced another kind of lozenge which is
generated by Clarity when it detects two outputs from a function. More of this will
described later. The function ‘acos’ may not be available in ClarityLite.

Exercises 3.1

Do the following in schematic form unless otherwise stated.

1. Declare a type <month> that enumerates all the months of the year: January,
February, etc.

2. Declare a type <day> that enumerates all the days of the week.
3. Define a function that translates an integer into a month so that #1 returns Jan-

uary.
4. Define a function that translates an integer into a day so that #1 is Sunday.
5. Declare a <date> type and a constructor <Date> so that (Date <day> <month>

<year>) is its structure. Note: It is ‘good practice’ to have an ‘Unknown_date’
constructor to deal with errors.

6. Define a function that returns <day> given <date>.
7. Define a function that returns <month> given <date>.
8. Define a function that returns <year> given <date>.
9. Extend the declaration <type> date to have an alternative form of (Int_Date

<integer> <integer> <integer>).
10. Define a function that translates an Int_Date to a Date.
11. Define a function that translates a Date to an Int_Date.
12. Define a function that will always return Date for either Date or Int_Date.
13. Define a function that will always return Int_Date for either Date or Int_Date.
14. Define a function that changes a Month or Day to a string. So that January

becomes “January” or Monday becomes “Monday”.
15. Define a function that takes a given year from a limited set of years and returns

a string. Thus #2001 will return “2001”. Any years outside the set will be unde-
fined.

Questions 3.1

1. What three mechanisms in a functional language ensure that it can represent any
formal system?

2. When does a function behave like a constructor?
3. What is an enumerated type?
4. Give two reasons why you need a constructor for function output?
5. What is the theoretical limit to the number of constructors for a given type?
6. What are the three uses of the word ‘generic’ in programming?
7. When do you need to declare a function without a definition?

A Structure Process Diagram (SPD) 95

The Notion of Casting

We have already considered a mechanism for printing a string of characters by
creating the function ‘myprint’ in Chapter 2. This works well for characters
but we may want to print out a number. This is a problem because the internal
representation is not characters or strings, it is a number. A further complication is
that there are two kinds of numbers: integers and reals. The integers are marked
by a preceding ‘#’ and a real by a preceding ‘#r’. So 34 can be represented in
Faith/Clarity by

A string “34”
A list of characters [‘3’ ‘4’]
An integer #34
A real #r34

What we need is a function that will transform an integer or real to a string and
the inverse transformation of a string representation of a number to an integer or
real. This process of changing the type of data is called ‘casting’. Such ‘casting’
functions are available as built-in functions in ClarityPro. However, we are able
do number transformations, in principle, without special library functions for three
good reasons:

1. All numbers are based on a finite set of primitives (e.g. the numerals 0–9) that
can be used together to create any number.

2. The rules of creating a number from these primitives are very simple.
3. A function can be made extensional to represent any finite mapping of any type

(composite or simple) to any type.

We know from our experience with printing a string that the trick was to represent
the string as a list of characters (using the built-in function ‘explode’) and then print
the characters to the control window. If we can convert an integer into a list of
characters then we could use the same technique. But how do we do that?

A Structure Process Diagram (SPD)

We need to break down an integer into a list of numerals (i.e. the numbers 0–9) and
then convert each numeral by an extensional function into its character equivalent.
The problem is then solved. To capture the process just described we can draw
Structure Process Diagram (SPD).

Figure 3.23(a) shows a solution to the printing of a number as a SPD. Such
diagrams might be usable for an initial design but here we are using it as an alter-
native to Clarity for describing the process. SPD, in a way, combine the objectives
of annotation (to explain in English) with the objectives of a program (to describe

96 3 In Pursuit of Elegance

To Print
an Integer

Convert the integer
into a list of
Characters

Break up
integer into a

list of numerals

Print list of
Charactersthen

then

Consists
of

Consists
of

Consists
of

(Integer mod 10)
 -> last numeral

(Integer divide by 10)
-> all but last numeral

Repeat

(a) SP diagram (b) Clarity Network Diagram

Convert numerals to
their Character

equivalents

Fig. 3.23 The process of printing an integer

as instructions). We interpret the diagram from the top. To print an integer we need
two processes. The first process converts an integer into a list of characters and then
each character in the list is printed (in the correct order).

The process of converting an integer into a list of characters is done by converting
an integer into a list of numerals and then using an extensional function to translate
each numeral into a character (see Fig. 3.24). That is, we just look each number up
in a table and output its character equivalent.

Finally, the process of converting an integer into a list of numerals comes from
the built-in functions ‘%’ (modulus or mod) and ‘/’ (divide by).

‘int_to_char’, Declaration ‘int_to_char’, Component 1 ‘int_to_char’, Component 2

Fig. 3.24 An extensional function ‘int_to_char’

A Structure Process Diagram (SPD) 97

This breakdown (deconstruction) of operations into simpler operations can con-
tinue until we reach the built-in functions or functions we have already defined.
These are marked in grey.

Note that a SPD can only be constructed if you already know what primitives
you are going to use. Many alternative solutions would use different primitives (see
Chapter 6). SPDs are a useful summary of a solution once it is known. SP diagrams
should not be relied on as a design method but may be helpful on occasions.

Starting our implementation halfway up the SPD (see Fig. 3.23), we can construct
the extensional function ‘int_to_char’. So we first do

Convert numerals to
their Character

equivalents

Since we are not interested in a general case because all numerals must have a
character equivalent then we start by making a declaration only. This can be done by
creating a function window that has only input and output parameter information, as
shown in Fig. 3.24. By pressing ‘OK’ the system will respond with a list of actions
(see Chapter 1) the first of which will be ‘Save Declaration Only’. This is the action
you choose. You will then be asked to provide a name as before (see Chapter 1).

As we have described previously the function window ‘int_to_char’ can be
altered to provide the first component and committed (press OK again). Clarity
will then respond with a list of actions with ‘Save New Component’ at the top;
this you chose. The window we showed can be used as a kind of form, where the
lozenges and functions are fields to be changed. This allows you to repeat the pro-
cess to produce the remaining set of components. 8 The following Faith code will
be generated:

fdec
int_to_char ::= int->char ; int_to_char #4 ::= ‘4’ ;

; int_to_char #5 ::= ‘5’ ;
fdef int_to_char #6 ::= ‘6’ ;

int_to_char #0 ::= ‘0’ ; int_to_char #7 ::= ‘7’ ;
int_to_char #1 ::= ‘1’ ; int_to_char #8 ::= ‘8’ ;
int_to_char #2 ::= ‘2’ ; int_to_char #9 ::= ‘9’ ;
int_to_char #3 ::= ‘3’ ; ;

The next mechanism to construct is the function that will convert a number into
a list of numerals. Therefore, from Fig. 3.23 we have Fig. 3.25.

8 An alternative method is to type in an empty Faith window the code as shown and then commit
the faith window (i.e. press OK).

98 3 In Pursuit of Elegance

Break up
integer into a

list of numerals

Consists
of

(Integer mod 10)
-> last numeral

(Integer divide by 10)
-> all but last numeral

Repeat

Fig. 3.25 Converting a
number into a list of numerals

This is going to be a loop in that the same process is going to be repeated on
the result of the previous application of the process. This requires that we have to
consider three distinct phases of this process:

1. An initial phase at the start of the process where the first result is generated.
2. The process itself.
3. The terminating conditions .

Beginning with the process, we can assume that we have a list of characters; it
will be characters rather than numerals because we will do the simple conversion
while new numerals are generated. We can also assume that we have an integer
to work on and finally (and remarkably) we will assume that we already have the
function that will do this process.

Fig. 3.26 The general
condition of
‘int_to_lchar_aux’

A Structure Process Diagram (SPD) 99

The ‘int_to_lchar_aux’9 in Fig. 3.26 shows what we then do. We take the integer
in the second parameter and find the modulus 10. Modulus gives the remainder after
an integer division. For example, 10 goes into 34 three times and the remainder is 4.
So we have for example

% #34 #10 → #4
% #567 #10 → #7

On the other hand if we integer-divide the same numbers by 10 we get

/ #34 #10 → #3
/ #567 #10 → #56

These two operations together have the effect of separating the last numeral from
the number. We thus go on to the next application of this operation by transferring
the new reduced number (#3 or #56) to the second parameter. We also attach the
new numeral (#4 or #7), converted to a character, to a growing list of characters.
For example, the function will transform #256 into the character equivalent of the
following list of numerals, given in mathematical form, thus

#256 → [((#256 /100) mod 10) ((#256/10) mod 10) (#256/1 mod 10)]

When implementing this function you choose the function box with the thick-
est line to represent the function you assume to exist (which is the function you are
creating). As we have shown before a function that calls itself in this way is a ‘recur-
sive’ function. There is no need to name a recursive function within the definition
since Clarity will insert the name into the thick lined box when you finally commit
the function and give it a name.

The next thing to consider, and must never be forgotten, are the terminating con-
ditions (see Figs. 3.27 and 3.28). In this case, there are two:

1. A situation where the original integer is #0.
2. The condition when the integer reaches #0 because it consists of no more numer-

als (Fig. 3.29).

Figure 3.28 shows the first situation; the list is empty because this is the first time
the function has been called and the integer is #0. Here, the character ‘0’ is required.
Figure 3.27 shows the more general situation where there is a list of characters but

9 It is called ‘int_to_lchar_aux’ because it is an auxiliary function to ‘int_to_lchar’. An auxiliary
function performs the process on behalf of the function that calls it. Auxiliary functions are usually
unique to one function and are never called by another.

100 3 In Pursuit of Elegance

Fig. 3.27 The first
terminating condition. of
‘int_to_lchar_aux’

Fig. 3.28 The second
terminating condition of
‘int_to_lchar_aux’

To Print
an Integer

Convert the integer
into a list of
Characters

Print list of
Characters

then

Consists
of

Fig. 3.29 Starting conditions

the integer given to the function is now #0. In the second case, we do not want ‘0’ to
be placed at the beginning of our number; here we just output the numbers we have.

Next, we consider the starting conditions:
One of the primitives we have not yet included was the negative sign (‘-‘). If

the integer is negative then the resulting string is to start with a negative character.
Otherwise, nothing else is required. In ‘int_to_lchar’ (Fig. 3.30) we assume that the
function ‘int_to_lchar_aux’ has finished its job and will return the list of characters
correctly. To this list, we add a negative character provided (‘if’) the original integer

Exercise 3.2 101

Fig. 3.30 The function
‘int_to_lchar’

is negative. We then present a positive integer to ‘int_to_lchar_aux’ by negating
the negative number. In both cases, the function ‘int_to_lchar_aux’ must start with
an empty list.

Finally, the function ‘print_int’ follows the same structure as in Chapter 2 for
‘myprint’. The difference being that the integer to be printed is processed by
‘int_to_lchar’ first in order to generate the required list of characters. Note the func-
tion ‘eval’. This function gives the output of ‘if’ in this case another run through the
interpreter. This is not necessary but we do it here just so that you get the final list
in a more readable form. If you do not put the extra evaluation in then the list will
appear in ‘cons’ form. The function ‘eval’ should be replaced by ‘print_int’.

Exercise 3.2

1. Write a recursive function that adds a number to every element in a list of
integers.

2. Write a recursive function that counts the number of items in a list.
3. Write a recursive function that returns ‘True’ if a particular given integer is in a

list of numbers.
4. Modify ‘3’ so that it will work with any list of objects (i.e. strings, characters,

reals, integers, etc.).
5. Write a recursive function that will add up a list of integers.
6. Write a function that will divide two integers and will return a list where the

first item is the number of times the second integer goes into the first a whole
number of times. The second item in the list is the remainder. The third item is
a real number that represents the real division of first by the second. Note that
you will have to use the casting functions ‘float’ and ‘fix’.

7. Write a function that will find the average of a list of numbers (see 2 and 5).
8. Write a function that will find the largest number in a list of numbers.
9. Finish the process of printing out an integer.

10. Change the printing process so that it can print a real number. Note that you
will have to introduce the decimal point into the list of numbers.

102 3 In Pursuit of Elegance

Questions 3.2

1. What is a ‘casting’ function?
2. What are the three reasons why casting numerals does not require special library

functions?
3. What advantage does a Structured Process diagram have over other representa-

tions?
4. When making a recursive function what is the most important thing to remember

to do?

Project: Playing a Simple Game

Paper: Out Guess the Computer

Introduction

We will now illustrate some of these techniques at work in a simple playground
guessing game. There is something odd about playing a computer at a guessing
game. This game of ‘out guessing’ your opponent is very simple. It is normally
played by two people. The people hold their hands behind their backs and on the
command ‘go!’ each person puts their hand in front of them to form one of the signs
‘paper’ – a flat hand, ‘scissors’ – two extended figures or ‘stone’ – a fist. ‘Paper’
beats ‘stone’ because paper can wrap around stone. ‘Stone’ beats ‘scissors’ because
stone will blunt scissors. Scissors beats ‘paper’ because scissors can cut paper. It is
a simple way of deciding between two options if you do not have a coin to toss. It
is a draw if each opponent shows the same sign.

It is odd playing with a computer because a person will have some idea about
how a person might make a ‘random’ choice since you really do have to decide
what you are going to display. Playing with someone will give you some insight as

Project: Playing a Simple Game 103

Diagram 3.1 ‘item’

to how they might make the choice given the history of the game and their insights
as to how you might be thinking.10

Since the computer does not really think but just chooses at ‘random’ (however,
see project ‘Dice’) then such an out-guessing game cannot really be played. Still
building it does illustrate some valuable techniques.

Paper, Scissors and Stone

First, we must define the three items Paper, Scissors, and Stone. Look at
Diagram 3.1. The diagram defines the new type ‘item’. Here we define four new
values (actually constructors) of that type (an enumerated type), ‘Paper’, ‘Scis-
sors’, ‘Stone’ and ‘Unknown’ (it is often useful to have an ‘Unknown’). Do not
forget that it is good practice to always start a constructor with a capital letter and a
type or function with a lower case letter.

(1) *Define the type item as shown by Diagram 3.1 in a constructors window.

Now, we need a function to play the game.
First, look at the function ‘choose’ in Diagram 3.10. The simplest way to read

this is from the top and the inputs of the functions in clockwise order around the
output. The built-in function ‘rand’ is the first function to be called. This function
will return an integer, which is the basic type ‘int’. The built-in function ‘%’ (mod-
ulus) takes this integer and the integer #3, and will return an integer in the range 0
to 2. The function ‘!’ (Shriek) is a built-in function that returns the nth item of a list,
where n begins at 0, so one of the list [Paper Scissors Stone] will be selected at
random. The computer will choose this way (see project Dice).

(2) *Define the function ‘choose’ in a function window.

Remember that the function components start at #0 as is a convention with Clar-
ity for the general case. The special cases start at #1.

10 It is possible that people actually do display the fallacious ‘law of averages’ when forced to
make random decisions.

104 3 In Pursuit of Elegance

Now look at the function ‘outcome’ in Diagrams 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8
and 3.9. For each pair of items, where the computer is the first, there is a string
(basic type str) indicating the result.

(3) *Define all eight components of the function ‘outcome’.

Before considering the game itself, look at the function ‘char_to_item’ in
Diagram 3.12, e.g. ‘x’.

Diagram 3.2 ‘outcome’
component #0

Diagram 3.3 ‘outcome’
component #1

Diagram 3.4 ‘outcome’
component #2

Diagram 3.5 ‘outcome’
component #3

Project: Playing a Simple Game 105

Diagram 3.6 ‘outcome’
component #4

Diagram 3.7 ‘outcome’
component #5

Diagram 3.8 ‘outcome’
component #6

Diagram 3.9 ‘outcome’
component #7

106 3 In Pursuit of Elegance

Diagram 3.10 ‘choose’

Diagram 3.11
‘char_to_item’

Diagram 3.12
‘char_to_item’

The function ‘char_to_item’ takes a ‘char’ and returns an ‘item’. Now we can
see the reason for having an ‘item’ value called ‘Unknown’. The purpose of this
casting function is so that the user will be able to select from the list [Paper, Scis-
sors, Stone] by simply keying in one character.

(4) *Define the function ‘char_to_item’ as shown in Diagram 3.11, 3.12, 3.13,
and 3.14.

Note the underscores in the function ‘char_to_item’.
Now look at function ‘call’ in Diagram 3.15. The function ‘outcome’ will input

the ‘items’ chosen by the computer and by the user and return a message indicating
the result. The second parameter for ‘outcome’ is the result of ‘progN’.

Project: Playing a Simple Game 107

Diagram 3.13
‘char_to_item’

Diagram 3.14
‘char_to_item’

Diagram 3.15 ‘call’

There are three functions driven by ‘progN’. These are ‘putline’, ‘newline’
and ‘getchar’. The function ‘progN’ evaluates its parameters in order such that
‘putline’ is done first, then ‘newline’ and finally ‘getchar’. The function ‘progN’
returns the result of the last function. In this example it is the ‘char’ returned from
‘getchar’ and is whatever the user/player chooses.

The function ‘putline’ is a built-in function, which prints out its parameter of
type ‘str’, i.e. a string, which is a group of characters enclosed by double quotes

108 3 In Pursuit of Elegance

Diagram 3.16 ‘newline’

Diagram 3.17 Network for
Paper

(e.g. “Hello”). The function ‘getchar’ is a built-in function that waits for keyboard
input.

The function ‘newline’ is the function shown in Diagram 3.16.
The integer ‘#10’ is the internal code for the newline character. The built-in func-

tion ‘decode’ returns a newline character for output by ‘putchar’.

(5) *Define the function ‘newline’ in Diagram 3.16.

(6) *Define the function ‘call’ in Diagram 3.15.

Do not forget to save your program (call it ‘Paper’). You can play the game by
typing ‘call’ in the CONTROL window.

Finally

Create a network view by opening a network window, go to the find ‘menu’ and click
on ‘Create/Update network from database’. This may require a little rearranging
to look neat and when you are satisfied with its appearance commit it just like a
function window. Again, save your program (Diagram 3.17).

Exercise 3.3

1. Create two functions, and any supporting functions if needed, for the cast-
ings from an American style date to a UK date ‘usa_to_uk’ and its reverse
‘uk_to_usa’. Hint: use pattern component extraction.

References 109

2. Create two functions, and any supporting functions if needed, for the
castings from radial to x, y co-ordinate systems ‘rad_to_coord’ and its reverse
‘coord_to_rad’. Hint: use trigonometric functions.

3. Create a function, and any further supporting functions if needed, to convert
‘print_int’ (see end of section ‘A structure Process Diagram’) to ‘print_hex’.
That is an integer to the base 16 rather than 10 where the numbers are [0 to 9 A
B C D E F].

4. Change the game ‘Paper’ to ‘Man’ so that it works for Man, Fox, Goose and
Corn. Where Man beats Fox, Fox beats Goose, Goose beats Corn and Corn beats
Man (do not ask why).

5. Change the game ‘Paper’ so that two people and the computer can play it. A
score for a player is the number of wins minus the number of loses.

6. Add an accumulating score to ‘Paper’ for the two people and the computer.
7. Change ‘Paper’ so that it can work for any number of people at any time.

Questions 3.3

1. What important extra constructor is usually needed in an enumerated type?
2. Describe one situation where you need a general case for a function.
3. Describe one situation where you should not have a general case for a function.

References

Addis T. R., Townsend-Addis J. J., Billinge D., Gooding, D. C. and Vissher, B. (2008) ‘The Abduc-
tive Loop: Tracking Irrational Sets’, Special issue on Tracking Irrational Sets, Science, Tech-
nology, Ethics, Volume 13, No. 1, March, ISSN 1233-1821, edited by Lorenzo Magnani.

Billinge D. and Addis T. (2003) ‘The Functioning of Tropic Communication: A Mechanism for
Consistent Figurative Descriptions of Artistic Effect’, AISB’03 Symposium on AI and Creativ-
ity in Arts and Science, University of Wales at Aberystwyth.

Gegov A. (2007) ‘Complex Management in Fuzzy Systems: A Rule Base Compression Approach’,
Springer, New York, ISBN-10 3-540-38883-4.

Kleene, S. C. (1967). ‘Journal of Mathematical Logic’, Wily, New York.
Lakoff G. (1986) ‘Women, Fire, and Dangerous Things’, University of Chicago Press,

Chicago, IL.
Lakoff G. and Johnson M. (1980) ‘Metaphors We Live By’, University of Chicago Press,

Chicago, IL.
Stepney S., Braunstein S. L., Clark J, A., Tyrrell A., Adamatzky A., Smith R. E., Addis T R.,

Johnson C., Timmis J., Welcj P., Milner R. and Partridge D. (2005) ‘Journeys in Non-classical
Computation I: A Grand Challenge for Computing Research’, International Journal of Parallel,
Emergent and Distributed Systems, Vol. 20, No. 1, April ISSN 1744-5760, Taylor & Francis
pp. 5–19, March.

Wittgenstein L. (1921) ‘Tractatus Logico-Philosophicus’ edition 1961, Routledge and Kegan Paul,
London.

Wittgenstein L. (1953) ‘Philosophical Investigations’, Blackwell, Oxford.

Chapter 4
Mind MapsTM and Mechanisms

Charity suffereth long and is kind; charity envieth not; charity
vaunteth not itself, is not puffed up;

Doth not behave itself unseemly, seeketh not her own, is not
easily provoked, thinketh no evil;

Corinthians 13,4-5

Introduction

Mind Maps are diagrams that show how ideas and concepts are linked together. The
idea was first proposed by Tony Buzen (1993) in order to provide a different way of
making notes other than through just writing. He points out that the problems1with
standard notes are:

1. They obscure key words and this prevents you from making appropriate associ-
ations between the important concepts.

2. They make it difficult to remember. In particular, notes are boring and are
unstructured; they look like lists.

3. They waste time since you have to search for what you want to know. All con-
cepts are uniformly represented (see point 1).

4. They fail to stimulate creatively. Linear presentations prevent you from making
associations, thus counteracting creativity and memory. Specifically, reading a
list implies an ‘end’ or ‘finish’ whereas a mind map encourages you to build on
existing thoughts and ideas.

The diagrams start with a central idea and branch outward through links (lines)
that indicate associated ideas. The types of associations can be coded by using dif-
ferent kinds of line (e.g. dotted or simply labelled). The value of the Mind Maps is
through the organisation of the way the map is laid out showing grouping of ideas.

1Information obtained from internet sites on mind maps.

111T. Addis, J. Addis, Drawing Programs: The Theory and Practice of Schematic
Functional Programming, DOI 10.1007/978-1-84882-618-2_4,
C© Springer-Verlag London Limited 2010

112 4 Mind MapsTM and Mechanisms

Clarity

Faith

Diagrams

Annotation

Mind Maps

Words

JunctionsFeatures

Program Reports

Components

Headings
& Indices

Fig. 4.1 Part of a mind map centred upon Clarity

Further, the act of creating the diagrams also helps in remembering its content and
structure. They are particularly useful for groups to be creative through the construc-
tion of such maps. Figure 4.1 is an example of a Mind Map centred upon Clarity. The
arrows indicate simple connectivity relationships (such as belongs to) and colours
can suggest grouping of ideas (such as generic concept). Any relationship can be
labelled next to the arrow.

The Clarity diagrams (and in particular the Network diagrams) can be used in
a similar way to that of Mind Maps except instead of growing outwards we con-
strain the Clarity diagrams to always flow downwards. This is so that we use the
up/down direction to show the order of processing or functional dependency. In
this chapter, we will examine some of the ways in which a Clarity diagram can be
enhanced to display more than just the program mechanism. We will be deliberately
expanding the secondary semantic links between the accidental (not formally sig-
nificant) features of the program representation and the problem domain. We will
also show some alternative semi-formal ways of representing ideas that are related
to the program but are distinct from it.

Junctions, Colour and Organisation

The junction was introduced in the Guess project in Chapter 2, Diagram 2. 10. In this
case, the junction was used to simply provide a bend in the line. More importantly,
the bend in the line was necessary to ensure that the first parameter of the function
‘diff’ arrived at the right place of the function ‘–’. The function ‘diff’ is the same as
‘–’ except the parameters are swapped around.

Figures 4.2, 4.3 and 4.4 show three ways in which the junction can be used
to change direction. Figures 4.3 and 4.4 use two junctions. The first junction is a

Junctions, Colour and Organisation 113

Fig. 4.2 Using a junction to
‘bend’ a line

Fig. 4.3 Using a junction to
‘jump’ a line

Fig. 4.4 Using a junction to
‘bridge’ a line

‘source’ and to show this, the system retains its filled colour. It is called a ‘source’
because this is where the ‘signal’ is coming from. The second junction is the ‘sink’
and the system does not fill the junction with any colour. A ‘sink’ receives the signal.

114 4 Mind MapsTM and Mechanisms

Fig. 4.5 ‘Multiple sinks’

Fig. 4.6 ‘Bunching’ inputs

The junction can be given ‘multiple sinks’ by repeating a label (Fig. 4.5). The
converse of this is ‘bunching’ where a single arrow (link) can represent a bunch of
arrows in a given order (Fig. 4.6). Figure 4.7 is an example of the two sums coming
together and fed to the function ‘+’ through a single arrow. The order of the inputs
is retained so that functions such as ‘–’ would work as expected.

The junction label can also be a string including spaces. Junctions can be inserted
as a mechanism for making simple notes (see Fig. 4.6). Since these are also labels
and provided the string, including spaces, is the same then these notes can also
bridge bunches with both single and multiple sinks (Fig. 4.7). These particular
examples do not really improve the presentation a great deal but there are cases
where this can be very effective.

Colour can also be used effectively to show up paths and groups (Fig. 4.8). Every
icon can be coloured from a limited list of colours selected from the menu ‘colour’.
These colours remain permanent in that they will be saved when the function, con-

Annotation 115

Fig. 4.7 ‘Bunching’ and
‘Bridging’

Fig. 4.8 Colouring groups

structor or network is committed (toolbar ‘OK’). It is also possible to change the
colour of all function or network or constructor windows (Fig. 4.9). This, however,
will only remain for the session and it is currently not saved but can be useful to copy
into documents. The background colour can be chosen from a very wide selection.

Annotation

Annotation is very important. It is important because, as we have shown, a com-
puter language has two meanings. We have referred to the different interpreta-
tions as formal and informal. The formal meaning of a statement in a computer
language is what happens in the computer when it is obeyed and the reference
objects are the bits. The informal meaning is what the program means to the

116 4 Mind MapsTM and Mechanisms

Fig. 4.9 Changing
background

Fig. 4.10 General labels

programmer in terms of what it represents in the world (the problem domain).
Thus the simple machine code

add 2 146

formally means to increase register 2 in the computer by the contents of word 146
or it could informally mean (say) a car is changing its acceleration by a prefixed
amount. The formal semantics is always clear but the informal semantics could
mean anything. It is because it could ‘mean’ anything that a good choice of names
and annotation is the only way the program can be ‘understood’. That is, what it
means to the programmer or users in its role within the problem domain.

Junctions give a simple upfront method of annotation but it is very limited in what
it can do. Figure 4.10 shows a coloured junction not attached to anything being used
as general label in a function. An alternative to this is a function heading. Such a

Annotation 117

Fig. 4.11 General annotation

Fig. 4.12 I/O arrow
annotation

heading is particularly useful when there are a large number of function compo-
nents. Each component can be briefly described and the list of these headings with
component number is obtained on double clicking the function background. The
annotation window can also be used to indicate much more description (Fig. 4.11).
Only a single annotation window can be opened at any one time. To view other
annotations you need to either click on a function window or a function box in a
window. Arrows, lozenges and even junctions can have their own individual anno-
tation (Fig. 4.12).

The annotation is picked up when you choose a function box in a window (see
Fig. 4.13) by ‘see-through’. Such ‘see-through’ can be locally adjusted or changed
without affecting the original. ‘See-through’ is marked by two parallel lines (see
Fig. 4.14).

118 4 Mind MapsTM and Mechanisms

Fig. 4.13 The function
‘distance’

Fig. 4.14 ‘See-through’
annotation

List Processing and Constructors

We introduced list manipulation in Chapter 2. We described the effect of the con-
structor ‘:’ (in a dotted box) to do what appears to be the function of placing an item
at the start of a list. Lists are one of the most important types of objects since they
can represent so many things. Lists are used to represent any collection of things
from the contents of a bag to groups of people. A list can also be used, by having
lists of lists, to represent structures such as the componentsof a bicycle or a family
tree or even a collection of family trees. It is even possible to describe electronic
circuits or maps by using lists. In these cases, the lists are collections of lists where
each of the sub-lists represents junctions. An example of this description of connec-
tivity is given in Fig. 4.15.

We showed that lists in Clarity and Faith are represented in one of two ways. The
usual way is as a list of items between open and closed square brackets. Therefore,
a list of characters would be

List Processing and Constructors 119

(a) Konigsberg Bridges (b) Konigsberg Graph

[[1 A D]

[2 A B]

[3 A B]

[4 B C]

[5 B C]

[6 B D]

[7 C D]

]

(c) Konigsberg List

Fig. 4.15 Three different representations of the Konigsberg bridges2

[‘A’ ‘ ’ ‘n’ ‘i’ ‘c’ ‘e’]

We also showed that an alternative way is in its basic constructor form, thus

(:‘A’(:‘ ’(:‘n’(:‘i’(:‘c’(:‘e’ nil))))))

We noted that this latter form is because a list is really a construction made with
the repeated use of the special cons constructor ‘:’. If the constructor ‘:’ was not
already part of the language it might have been defined in Clarity/Faith as shown in
Fig. 4.16 (a) and (b) respectively.

The constructor window shown in Fig. 4.16(a) shows how the type list (dotted
lozenge at the bottom) can be two alternative constructors: the ‘_:’ or ‘_nil’.The ‘_:’
takes two parameters: the first of type generic3(?0) and the second is a type ‘list’.

(a) Recursive Constructor
declaration for type list

cdec

: ::= ?0->list ->list;

nil ::= list;

;

(b) Faith code equivalent

Fig. 4.16 An imaginary constructor declaration for object type ‘list’

2The Konigsberg bridges cross over the river Pregel in Germany. The question arose as to how you
might plan a walk so as to cross all seven bridges but only cross each bridge once. It can be proved
that it cannot be done unless the graph contains 2n odd vertices where n is any integer. The addition
of a bridge AC or the removal of BD would provide a solution (Kasner and Newman 1949).
3Generic because you can have a list of anything.

120 4 Mind MapsTM and Mechanisms

The ‘_nil’ has no parameters since it defines an empty list. In this way, a list can be
constructed from embedded list constructors.

This explains why ‘:’ is not a function in the operational sense of the word. It
does the more passive job of binding information/data/objects together into a single
package, called a list, which can be dealt with as a single item. Such an object relies
upon the user and programmer to interpret.

We showed in Chapter 3 how information can be read from a constructed ‘pack-
age’ such as ‘Co_Ord’ and we have also shown how different componentsof a func-
tion can be created and selected through pattern match. We can also use these tech-
niques on lists in both its forms

(:?0 ?1) can be used to select the head or tail of a list.
[?0 ?1] can be used to identify a list of exactly two elements.

Dealing with Input

ClarityLite is limited to single character input to the control window. ClarityPro can
handle all the normal kinds of input that you might expect from any programming
language (e.g. files, other programs and the graphic interface). For understanding
the principles behind schematic functional programming such complications are not
necessary and can just be distracting. However, more can be done with such a prim-
itive input just as for the single character. The art is to build up useful primitives in
terms of functions that, in effect, make a special language designed for your own
needs.

Since we are reversing the process of printing, we can look upon creating the
reverse processes for some of the other functions we created. In particular, we can
consider the problem of reading an integer typed in the control window. First let us
try the primitive function ‘getchar’ that reads a single character.

QUERY>getchar
‘k’

When you type the function ‘getchar’ followed by the return key, the Clarity
environment will hang and wait (listening) for your next character to be typed. On
typing (say) ‘k’ Clarity stops hanging and returns the character you typed. We will
use this function to convert a string of characters typed in from the control window
into an integer that can be used by a program.

The SP diagram in Fig. 4.17 (a) can be compared with the SP diagram Fig. 3.26
in Chapter 3. As can be seen one process is almost an inversion of the other. This
illustrates the important rule that for every casting (conversion from one type of
object to another) there should be an inverse. In mathematics, division is the inverse
of multiplication and subtraction is the inverse of addition. We nearly have this
inverse relationship with the last two operations of the diagrams. The reason that

Dealing with Input 121

To Read
an Integer

Compose list of
Numerals into

an integer

Convert Characters
to their Numerical

equivalents

Read a list of
Characters then

then

Consists
of

Consists
of

Consists
of

Sum until list
empty

Numeral ∗ 10
index

Index = reverse list position of numeral
Repeat

(a) SP diagram for reading an integer (b) Network diagram

Convert the list of
Characters

into an integer

Fig. 4.17 Reading an integer from the control window

there is not an exact conversion is to do with simplicity of implementation; you
go with the language. In most cases, the process order has been swapped and the
sentence describing the process has swapped its object with its subject.

The network diagram is also changed in response to the SP diagram. You
will note that the initial process refers to the parent of the second process
in some cases and not in others (see Fig. 3.26(a), Chapter 3). However, the
inverse of ‘print_int’ (‘read_chars’) becomes a secondary process, the inverse of
‘int_to_lchar’ (‘read_int’) becomes a parent and the inverse of ‘int_to_lchar_aux’
(‘chars_to_int’) becomes a child.

Figure 4.18 (a) shows another inverse that is made explicit by the built-in function
‘inverse’. This is a function whose first parameter is the name of a function and the
second parameter is a result or value of that function. Provided the function is an
extensional function then this can look up the parameters that would give the result
in its second parameter. In general, there can be zero or more possible answers so
the result of ‘inverse’ is a list and that is why we take the ‘head’. This is a useful
function in that it saves you having two conversions of ‘int’ to ‘char’ and back again.
It also avoids the possibility of error in constructing the inverse. Here we use it to
find the inverse of numeral to character; only one answer is expected in this case.
A function, such as ‘inverse’, that requires a function as a parameter is called a
higher-order function.

Another higher order function ‘map’ is introduced later. The function ‘map’
applies a function (its first parameter) to every item in a given list (its second param-
eter). It is a very useful function and it can be used as an alternative to some recursive
definitions; in these cases it is quicker and uses less memory.

Figure 4.18 (b) shows how each character in the list is converted to a numeral.
This is an example of a recursive function in that it refers to itself. More will be
said about how to design recursive functions. Then each character is multiplied by

122 4 Mind MapsTM and Mechanisms

(a) char_to_int (b) chars_to_int (c) chars_to_int

Fig. 4.18 Casting a list of characters to an integer

10index where the ‘index’ of the list is counted in reverse. This is so that the most sig-
nificant figure of the number is multiplied by the power of its index.4 For example,
the function will convert

[‘2’ ‘5’ ‘6’] → [#2 ∗ 100 + #5 ∗ 10 + #6 ∗ 1] → #256

Figure 4.19 (a) shows the two elements of the process come together. The reading
of the characters follows the pattern of reading recursively (a loop), adding each new

(a) read_int (b) read_chars (c) read_aux

Fig. 4.19 Reading an integer from the control window

4An ‘index’ of a list is another list of numbers starting at #0 and increasing by #1 until the list
terminates. The ‘index’ of an item in that list is the corresponding number.

Functions as Global Variables 123

character to the head of a growing list until a new-line character (decode5 #13) is
reached. Note that there is no check to see if these characters are in fact numerals.

Functions as Global Variables

Figure 3.27 shows an extensional function ‘int_to_char’. This maps the numerals
onto their character equivalent. Another way of looking at this function is as a global
character array called ‘int_to_char’ that is indexed from #0 to #9. Instead of calling
the process a mapping of the function ‘int_to_char’ we can call it an access to an
array of the global array ‘int_to_char’. In each case, the result is the same and the
process is the same; it is just a question of how you wish to describe it.

However, we do have a big advantage over a normal array access because the
indexing can be on any type or pattern we like provided it is unique and identifies
only one result. The usefulness of this flexibility of indexing will become apparent
later.

We do have a higher-order function ‘setq’ that behaves like an assignment. In
functional terms, it simply maps a specified function component to a Boolean value.
In practice and as a side effect, it will change the extensional result of the specified
component. It alters the definition of a function by changing the mapping of an index
to a result. This is very non-functional but necessary to keep programming easier
than it might be otherwise. In an array-like view, we have in the control window the
following sequence:

QUERY> int_to_char #3
‘3’
QUERY> setq (int_to_char #3) ‘A’
True
QUERY> int_to_char #3
‘A’

Such ‘arrays’ are global variables in that they are accessible at any place in the
program. There is a range of function and constructor creators that make these alter-
ations: ‘set’, ‘setq’, ‘deny’, ‘denyall’, ‘forget’ and ‘remember’. We will describe
these in more detail later. There are still others in ClarityPro.

As a rule, global variables of this kind should be limited to information associ-
ated with the world model and not used for processes. Too many global variables
will lead to programs that are difficult to debug or test. You lose the independence
of a function when you rely too much on global information (see side-effect pro-
gramming later).

So what does this exercise in creating input and output functions tell us about
elegance? Each of our functions is simple and easy to understand. What is also
rather nice is that we have been able to construct the reading of an integer through

5‘decode’ is the inverse of ‘encode’.

124 4 Mind MapsTM and Mechanisms

the simple process of inverting the functions of printing an integer. This was not just
by chance because we chose a particular approach; it was because of our choice in
the solution structure. Later, we will show other ways of achieving elegance and
efficiency.

Excercises 4.1

1. Write a function ‘read_string’ that reads characters from the control window
and returns a string.

2. Write a function ‘print_string’ that takes a string and prints it to the control
window as a sequence of characters.

3. Alter the function ‘read_int’ so that it can accept negative numbers.
4. Alter the function ‘read_int’ so that it will also accept numbers beginning with

‘#’ and #r (i.e. real).
5. Write a function ‘read_float’ which reads a decimal number from the control

window (hint: numbers are symmetrical about the decimal point). It should be
able to accept negative numbers and number variations (such as beginning with
or #r).

6. Write a function ‘print_float’ which will print a decimal number to the control
window (hint: numbers are symmetrical about the decimal point).

7. Write a function ‘print_it’ which will recognise the different requirements to
print data to the control window.

8. Write a function ‘read_it’ which will automatically interpret data from the input
correctly.

9. Extend the function ‘read_it’ so that it prints the information as it is read.
10. Extend the function ‘read_it’ so that wrong characters can be deleted.

Questions 4.1

1. What direction should the ‘flow’ of Clarity diagrams be where possible?
2. What three ways can a ‘junction’ be used to change the direction of a connecting

arrow?
3. What are the two junctions called that form a ‘jump’?
4. What is the difference between a ‘jump’ and a ‘bridge’ junction pairing?
5. What does ‘bunching’ mean and how would you implement it?
6. What are permanently coloured and what are only coloured for a session?
7. What are the two kinds of meaning that are associated with computer code?
8. What semantics is being referenced by the annotation window?
9. What does ‘see through’ mean and how is it marked?

10. What do you use to ‘package’ different information so that it can be used as
single item?

11. How is an ‘array’ represented in Faith/Clarity?
12. How do you assign a new value to an ‘array’ element?
13. Are there any limitations on what you use for an ‘array’ index?

Details of Pattern-Matching 125

Details of Pattern-Matching [→Page 140]

This is a good place to expand the rules regarding pattern matching, which, in any
but the simplest cases, can seem quite complicated. Moreover, this example is not a
simple case. The basic rule is that the function will take the ‘best’ match to the
parameter list. However, the parameter order is more important than the number
of matches. In fact, matching the first parameter only would override all the other
parameters taken together.

One way to reason about this is to convert the matches to a binary number. The
example we choose is the function used in a Snakes and Ladders game (Chapter 5)
called ‘mark_str’ (see Figs. 4.20 and 4.21 below). In this function there are four
parameters that define a square’s status and in the game there are six possible out-
comes (pictorial representations) for this function. The outcomes are identified by
parameter matches for components #0 to #6, where a match for a parameter is des-
ignated by a 1 and no match is designated by a 0, are as follows:

component #0 0000 (no matches) [The generic case]
component #1 1100 (2 matches) [Only the first two parameters are fixed]
component #2 1101 (3 matches) [Only the first two and last parameters]
component #3 1110 (3 matches) [Only the first three parameters]
component #4 1111 (4 matches) [All the parameters are fixed]
component #5 0100 (1 match) [Only the second parameter]
component #6 1000 (1 match) [Only the first parameter]

If we order these matches as binary numbers we have 1111, 1110, 1101,
1100, 1000, 0100, 0000. Therefore, the component order in which the function
‘mark_str’ will try to match is #4 (highest binary number), #3, #2, #1, #6,
#5, #0 (lowest binary number). Component #0 is usually the default. Neverthe-
less, the important thing to remember is that the match sequence 1000,
which has only one match, would override the match sequence 0111 which has thr-
ee matches. So matching the first parameter only will override all the other
parameters despite the case where they all matched perfectly. This is a program-
ming trap that can cause some worries in that all seems correct but only if the
concept of ‘best’ match is assumed to be ‘most’ match. But in Clarity/Faith it is not.

Fig. 4.20 ‘mark_str’,
component #0. General case

126 4 Mind MapsTM and Mechanisms

Fig. 4.21 All the extensional components of ‘mark_str’

Dealing with Conditionals (Ifs) [→Page 140]

As we introduced in the first chapter, the psychologists Petre and Green (1993)
have investigated schematic programming for imperative languages such as Basic
or C. In particular they have studied the use of conditionals (if) using a standard
test (see Fig. 4.22) over a range of notations. The ability of people (the subjects) to
understand these different notations of imperative programs was tested. They were
asked questions about a program written in these different notations and then their
performance assessed in terms of speed and errors. The results were used to assess
each of the notations as a means of describing the given process clearly to other
people.

The task for the subject when faced with such a program was to determine what
it does and what given results might be implied about a given input condition. A
further task was to compare programs in the same and different notations. The ques-
tions are then to do with explaining how the programs differ. Every attempt was
made to layout each notation at its best. Experts in each notation were used to design
the test programs. It was a good experiment, fair and well designed. As we stated in
Chapter 1 they concluded that:

• Overall, graphics was significantly slower than text to interpret.
• Moreover, graphics was slower than text in all conditions and the effect was uni-

form.
• The intrinsic difficulty of the graphics modes was the strongest effect observed.

But why are Mind Maps , for example, so successful as a way of recording ideas?
Perhaps it is because Mind Maps are not describing processes as a sequence of

The Engineering Coherences of Design 127

if high:
if wide:

if deep: weep
not deep:

if tall: weep
not tall: click
end tall

end deep
not wide

if long:
if thick: gasp
not thick: roar
end thick

not long
if thick: sigh
not thick: gasp
end thick

end long
end wide
not high
if tall: burp
not tall: hiccup
end tall
end high

Fig. 4.22 One of the
problems in Nest-INE
notation from Petre and
Green (1993)

instructions. Further, it should be noted that these experiments are only concerned
with imperative programming and functional programming was never explored or
even discussed. It is worth considering what differences there are between these
two forms of programming. Before we do this we need to understand the notion of
coherence as related to design.

The Engineering Coherences of Design [→Page 140]

Coherences describe the similarity relationship between a programming language
and elements of design. There are four elements of design where the coherence or
lack of it (incoherence) has practical consequences (the observable effects are given
as ‘indicators’ described in Chapter 2 page 36):

• Operation: This relates language with the engine it controls.
Indicators: The language reflects the actual operations being done by the
machine. The further away the language is from these operations the less a
designer is able to predict the performance of the machine from the sequence
of instructions given.

• Semantic: There are two kinds of semantics. The formal semantics and the infor-
mal semantics.
Indicators: The semantic coherencebetween the two semantics can be achieved
by the introduction of one or more abstracting layers in the program. These layers

128 4 Mind MapsTM and Mechanisms

are translations that reform the formal instruction set into recognisable actions
and objects in the problem domain. This will be indicated in a similar way to
decomposition. The formal semantic are assumed to be different to the informal
semantics and that this is overcome to some extent by the introduction of mediat-
ing functions and extensive use of the accidental properties of the languages that
provide this translation. New concepts would be introduced through construc-
tors that are used to create new types of variables and objects. Also, there will
also be extensive use of annotation, variable and function naming with program
restructuring.

• Representation: This coherence occurs with computers, which are primar-
ily sequential, and a sequential programming language is used. However,
time-ordered tasks, in general, are both sequential and parallel and as such
a two-dimensional representation would be more consistent. Representa-
tional coherence is related to the match–mismatch hypothesis (Gilmore and
Green 1984).
Indicators: If there is good coherence then the degrees of freedom of the rep-
resentation are the same as its functionality. Thus the notation will be used to
represent only the functionality. For example, in the incoherent case of text nota-
tion there are variables used to make links; links that do not, in themselves, take
part in the processing except to pass information. These variables may cause
unwanted side effects.

• Design: Design coherence ensures a well-formed representation at the formal
level through the structure of the language and support of the design environment.
Indicators: An indication of design incoherence is when there are type mis-
matches or redundant code. With good coherence there will be a reduction of
errors during implementation and we would expect simple functions with few
children.

Functional vs. Imperative Programming [→Page 140]

Essentially, we have only two major choices in programming styles: functional or
imperative. Logic programming has the functional style and OO has functional
properties embedded in an imperative style.

A pure functional approach has advantages over a pure imperative approach in
having referential transparency. This makes for clear design structures and thus it
does not require very sophisticated error tracing facilities. However, a strictly correct
(pure) functional language has two disadvantages:

1. It requires that the links to real world operations (such as ‘read’ or ‘print’) are
side effects. That is the inputs from the world to a function, and the outputs to
the world from a function are not definable within the formal structure of a pure

Creating a Schematic Language 129

functional language. These side effects are events that are not expressible within
the formal semantics.

2. The problem domain states must be passed/copied between functions (also see
interoperability). That is, if many functions process the data then each function
can have access only through one of its input parameters.

Imperative languages have good operation coherence in that they reflect the
computer processes in their syntax and semantics. Thus machine code maps directly
into the computer device and describes exactly what is done within the machinery.
Operation coherence begins to be reduced as higher-level languages are introduced.
Unfortunately, because the state of such an imperative program depends on its his-
tory and because communication is done through side effects, problems arise when
errors occur or changes have to be made. Consequently, the cause of an error may
be many thousands of operations distant from its observed symptoms. In particular,
changes can have effects that are not traceable until a problem arises, and that may
be measured in years.

Creating a Schematic Language [→Page 140]

When we started to consider alternative ways of programming we asked ourselves
the question ‘Given complete freedom of choice on a representation, unbounded
by physical constraints, what would it be?’ One puzzle was that if there are good
reasons for choosing a functional language then why are we not all using such a
language style now? We concluded that some of the problem lies in the history of
computing rather than based on any real current cause.

The Problems of a Functional Language

Notwithstanding the lack of take-up of functional languages to date, we will argue
that in principle, they offer many of the desired attributes we need for design and
are a good starting place to resolve many of the difficulties encountered. However,
we must consider why functional languages have failed, thus far, to find acceptance.

The three major problems with a functional language are the three incoherence
classes of operation, semantics and representation. The three problems are:

1. Functional languages do not match the computer architectures on which they
run. This can lead to unexpected massive processes, sequential changes of oper-
ations and heavy main memory demands. Links with the real world are indirect
and have the reduced status of being just ‘side effects’. The need, from an engi-
neering point of view, for operational coherence soon becomes apparent if you
try to run the program Digits (see later) with any large number. In this example,

130 4 Mind MapsTM and Mechanisms

the performance for any calculation is dependent upon the size of the number; a
very peculiar behaviour that does not correspond to the normal computer.

2. The formal assumption behind a pure functional language is that the informal
world for which a program is to be implemented is completely known and defin-
able. Although this gives a language in which all formal concepts may be rep-
resented (a powerful property) it creates a barrier to many practical applications
where not everything can ever be known. So even processes that depend on time,
a basic assumption with imperative languages, require a laborious and explicit
description of time itself. The representation becomes unwieldy as soon as the
complexities of the world are included.

3. The mathematical parentage of a pure functional language makes it obscure to
many people. Processes are described as relationships and although in many
cases the representation is the same there are some important differences (e.g.
the use of recursion instead of iteration).

Solving the Problems

We will consider the three incoherence classes of operation, semantic and represen-
tation together with the possible options of ameliorating their difficulties and then
explore the effect of these choices on design and design support.

Operation Incoherence

This will be exaggerated through the use of an interpreter but an interpreter needs to
be used in order to retain the reactivity and the flexibility of the design environment.
Experience has shown that there is an ideal engineering balance between imper-
ative and functional specifications that optimise the advantages of both styles of
expression (e.g. LISP). If we can take a small step away from a pure functional lan-
guage and invoke ‘side effect’ programming as a clear and distinct activity then we
can support operation coherence when and where required. Such a decision should
remain under the designer’s control. However, to retain the semantic coherence such
a step would still have to operate through an interpreter.

In many cases, and with advances in technology, the performance overhead of an
interpreter is not as significant as it was (say) 20 years ago. However, in cases where
the real time performance becomes critical and because of referential transparency,
interoperability and decomposition then any function on the critical path could be
translated into its imperative form without much loss of design transparency. Such
a modification would neither alter the original design nor interfere with the design
coherence. It would also allow the natural integration of already existing software.

Informal-Semantic Incoherence

This is mainly caused by the need to refer to a world that is continually changing. If
an extensional function is allowed to have its extension changed dynamically (using

Creating a Schematic Language 131

the function ‘setq’, as in Lisp or ‘assertq’ as in Prolog (see Bramer 2005)) then
this function can act as a global variable. The parameters of such a function would
then behave like an array index with the additional advantage that this index can
be any conceivable type.6 In this way real world data can be represented without
the need to pass it around as parameters. If this is combined with both ‘side effect’
programming and the functional notation then this combination will increase the
extensibilityof the representation into another dimension and still retain semantic
coherence in both.

Representation Incoherence

This can be alleviated by representing the two dimensions of a process as a set
of diagrams. To aid the transfer of design skills of engineers and imperative pro-
grammers graphical equivalent representations have been used (Reade 1989). These
graphs have three characteristics: first it makes clear the relationship between the
component parts of a user-constructed function, second the directed graphs are at
their most transparent when they have few elements connected together and finally
functions are best constructed from only a few component functions. Given this
match and the observation that many designers choose to use a graphical representa-
tion to explore design options a functional language that can be directly interpreted
through a graphical representation seems to provide the optimum design environ-
ment (Larkin and Simon 1995). In this way we have good representational coher-
ence, design coherence and transparency.

Exploring Possibilities

We originally considered combining and extending SQL and its pictorial form
(Elleby and Addis 1987, Addis and Bull 1988) but the problem with this is that
the range of constraints to be imposed by the language had to be preset to cope
with what amounted to an infinite range of constraints between and normalisations
of data (Codd 1971, Maier 1983). A further disadvantage is that very few people
were able to comprehend the extended normalisation process required to use such a
language. The real breakthrough was the adoption of an alternative perception of a
database as a set of extensional functions rather than just relations (a relation may be
considered as an extensional function) as proposed by Carol Small, who joined our
team and was a PhD student of Poulovassilis (1988) (see Addis and Nowell 1990).
It was Carol Small who constructed the first Faith interpreter. This view left open

6We can see an example of this in the function ‘respond’ (Fig. 4.26) which behaves as an array
indexed on the type ‘list feature’, feature being a user defined enumerated type. Functions can also
be used as an index either evaluated to a type or unevaluated. In the latter case, the function behaves
like a constructor. The ‘best-fit’ pattern match allows variables to be used. In the rare instances of
ambiguity, the ‘best-fit’ rule makes a selection based upon a well-defined criterion.

132 4 Mind MapsTM and Mechanisms

the possibility of extending constraints between data as functions provided the data
was represented also as functions.

We thus chose, in the form of Clarity, an approach that will combine graphi-
cal (schematic) and functional representation. Taking our lead from those in VLSI
design (Mead and Conway 1980, also compare Crowther et al. 1995, and Davis
et al. 1993) we have given the designer the option to select and mix any combi-
nation of the two representation schemes (graphical or text). We should also ask,
to ensure that Clarity in its current form is still the best we can do, ‘what kind of
diagrams should we use?’

Doing Without ‘Ifs’ [→Page 140]

As engineers and designers, our first instinct is to abandon all the schematic forms
investigated for the problem posed by Petre and Green (e.g. Fig. 4.22) (Petre and
Green 1993, Green and Petre 1996, Green 1990). They are all difficult to use for
this problem and the given graphical representations they used are particularly so.
Instead we chose to produce a decision tree/network (Fig. 4.23) as our common
interpretation of each notation.7 This matches the problem nicely. It shows that there
are two types of variables: features and actions. ‘Not’ may also be considered a
feature. In Clarity, these features can be represented by constructors that belong to
the types ‘feature’ and ‘action’. Under this representation choice ‘Not’ becomes a

Hiccup

Roar

Sigh

Gasp

Weep Click

Burp

High

Wide

Deep Long

Tall Thick Thick

Not

NotNot

NotNot

Not
Not Not

Tall

Fig. 4.23 A decision
tree/network that describes
the test problem

7Some designers may prefer a decision table. This really is a matter of choice and the designer’s
habits rather than any fundamental issue.

Creating a Schematic Language 133

Fig. 4.24 The set of type
‘feature’

Fig. 4.25 The set of type
‘action’

unique feature in that it takes a feature as a parameter. This is shown in Figs. 4.24
and 4.25.

Going down all the paths of the decision tree (Fig. 4.23) it is possible to list the
features that lead to a particular action. These lists of features can be used to index
an extensional function ‘respond’ the output of which is an action.8 This function
is equivalent to a look-up table. All non-specified sequences of features are caught
by the general case (Fig. 4.26a) that will respond ‘What?’. Such a nicety is optional.

Within the Clarity environment it is possible to look at the Faith code generated
from the schema (Fig. 4.27), flick through the extensions of ‘respond’ sequentially
or display all the extensions at the same time. It is also possible to ‘query’ the
function in the control window.

QUERY> respond [High Wide Deep]
Weep

8Each schema extension can be used as a pro forma to produce the next extension.

134 4 Mind MapsTM and Mechanisms

a b c d

Fig. 4.26 A sample of the extensions of the function ‘respond’

fdec
respond ::= list feature->action ; ;

fdef
respond ?0 ::= What? ;
respond (: High (: Wide (: Deep nil))) ::= Weep ;
respond (: High (: Wide (: (Not Deep) (: Tall nil)))) ::= Weep ;
respond (: High (: Wide (: (Not Deep) (: (Not Tall) nil)))) ::= Click ;
respond (: High (: (Not Wide) (: Long (: Thick nil)))) ::= Gasp ;
respond (: High (: (Not Wide) (: Long (: (Not Thick) nil)))) ::= Roar ;
respond (: High (: (Not Wide) (: (Not Long) (: Thick nil)))) ::= Sigh ;

Fig. 4.27 The complete Faith code generated by Clarity

QUERY> respond [High (Not Wide) Long (Not Thick)]
Roar
We can also ‘query’ the function in reverse

QUERY> inverse respond Weep
[[High Wide Deep]

[High Wide (Not Deep) Tall]]

The current arrangement requires that the features be listed in a particular order,
so the function ‘go’ was written to overcome this problem (see Fig. 4.28). The func-
tion ‘go’ can be used thus

QUERY> go [Tall (Not High)]
Burp
QUERY> go [Deep Thick]
What?

Note that this program has been written without a single ‘if’. It relies upon two
useful characteristics of a functional language: pattern match and constructors. We
doubt if any fingers will be required to answer questions on the behaviour of this
program other than to use the keyboard. The overall nature of the function ‘respond’

Exploring ‘Real’ Programs 135

Generates the ‘Not’
versions of the
features.

Lets through the
ordered features

that are common
to the input list.

The input list

Final Action Interweaves the two lists.
[High (Not High) Wide
(Not Wide)..........]

The required order
for ‘respond’

Fig. 4.28 A simple function ‘go’ to avoid feature sequence. It also shows the potential for further
decomposition

is that it responds to patterns, the details of which can be ignored or changed when
used within a larger context such as ‘go’ (Fig. 4.28).

The Digits project will further illustrate the extraordinary power of the trio of
pattern match, constructors and recursion.

Exploring ‘Real’ Programs [→Page 140]

The Approach, Results and Interpretation

Our objective in this section is to see if some of the indicators described in Chapter 2
and in this chapter (coherence) are observable in ‘real’ programs. In particular, we
will be looking for the differences of these indicators between functional and imper-
ative programs. With such a comparison, we hope to demonstrate that functional
programs encourage design properties that make a schematic representation a viable
form of representation.

All the programs we have chosen to examine are ‘real’ in the sense that they
were created to perform a job. In most cases they are programs paid for by business
and written by professional programmers. ‘Novice’ refers to inexperienced (months
rather than years) programmers in the language referenced. A further requirement
is that they are all non-trivial programs. We have selected a range of authors from
expert to novice.

The three programs X, Y, Z and Q have been written in Clarity. The lines of code
refer to the generated Faith. Approximately, 17 K of the lines of code of X are related
to the Expert System rule set and these have been discounted from the analysis since
they are not really part of the program design; they are data. These rules are stored
as the extensions of three functions. X was created in 1 year (Addis et al. 2005).
Y is non-commercial and is an ongoing and ever changing tool for exploring ‘agent’

136 4 Mind MapsTM and Mechanisms

group behaviour (Addis and Gooding 2008). At the time of these measurements Y is
about 7 years old but ‘cleaned’ by the removal of redundant functions from time to
time. Z is a new industrial control system that has been created in Clarity and written
by a novice in 2 months. Q is a program used to modify bridge designs through
Genetic Algorithms and written by a competent programmer over 2 years (Addis
et al. 1994). Four different authors have written the four C programs. They have not
been dealt with individually. Initially, they will be taken as a single source and used
as our standard (Fig. 4.29). Figures 4.30 and 4.31 are headed with the dimensions
for which the containing data are indicators. These dimensions and their indicators
are described in Chapter 2 and in this chapter, the Engineering Dimensions and
coherence of Design.

The natural unit for a functional program is the ‘function’. The composition of
a function consists of a selection of pre-defined library functions and a set of user
defined functions. What we need to show, in order to make a comparison between
programming styles, is that these user functions are equivalent to the functions in a
C program. We will assume that a designer has a completely free choice in the size
and content of a function within the constraints of the problem. The designers will
thus choose a ‘unit’ of design (the function) with which they are comfortable and
which can be handled easily. However, the aberrations of a particular problem to be
solved by a designer may demand a larger unit size than might be considered ‘com-
fortable’. Nevertheless, we would expect that the units should tend towards a norm.
The units, by their nature, will be defined in terms of other units and it is the number
of different9 units per function that we will use as our measure (Fig. 4.30). This is
the dimension of functional decomposition that can be measured by the statistics of
the children of a function (see Fig. 4.30).

By considering the number of parents of a function we can assess the nature of the
functional composition; this is the function’s deployment. If there is more than one
parent then we are detecting the existence of an intermediate conceptual layer. Such
a layer suggests that there is a tension between the formal and informal semantics
and that, in effect, a new set of concepts needs to be constructed to better match the

Y ‘Clarity’ Z ‘Clarity’ Q ‘Clarity’
Job Expert

System
Rules
(No Rules)

Agents
Model

Industrial
Control

Engineering
Genetic
Algorithms

Interpreter,
Statistics,
2 translators

Total Size Kb 946 (372) 58 65 72 139
Programmer Expert Expert Novice Competent 4 Programs
Code (lines) 31961

(15354)
2033 1838 413 5444

Tot Functions 194 176 90 52 125
Code/Function 80 12 20 8 44

X ‘Clarity’

Fig. 4.29 Summary of programs used for the analysis

9Rather than the total number.

Exploring ‘Real’ Programs 137

Functional decomposition, interoperability, design transparency,
semantic coherence, design coherence

X Y Z Q C

Number of children 4 Programs

Average All (Ω) 6.3 6.0 8.5 4.9 3.8 + 3.710 = 7.5
Sigma σa All 4.2 3.6 7.6 2.7 4.0
Standard Err εa All 0.30 0.27 0.80 0.37 0.36

Expected# User (μc) 2.0 2.0 4.0 1.2 1.9
Sigma σc User 2.0 1.9 4.9 1.4 2.2

Standard Er εc User 0.14 0.14 0.51 0.19 0.20

Expected# Library (μl) (4.3) (4.0) (4.5) (3.6) 5.6

Sigma σl Library11 (5.6) (4.7) (9.5) (3.5) (5.2)

Standard Err εc Library (0.40) (0.35) (1.00) (0.49) (0.47)

Fig. 4.30 The sets of children functions used to define a function

flexibility, functional composition, semantic coherence,

X Y Z Q C
Number of parents 4 Programs
Approximate age (years) 1.0 7.0 0.2 2.0 ?

Zero (α) 19% 24% 6% 34% 14%

One (β) 50% 44% 61% 47% 42%
Expected# (μp) 1.5 1.8 2.2 1.1 1.9
Sigma σp 1.5 2.6 2.4 1.5 2.3
Standard Err εp 0.11 0.14 0.25 0.20 0.20

Fig. 4.31 The sets of parent functions per function (usage)

problem domain. Many functions with zero parents indicate either that the program
itself is a kit of tools or that the functions have been created, replaced or abandoned.
This percentage of zero parents will be one of the indicators of System Flexibility
(Chapter 2) and should be positively correlated to usage and time. Therefore, if flex-
ibility is an issue then the number of the latter type of function should grow with age.

Functions with a single parent suggest that complex functions have been simpli-
fied. The simplification is by the removal of a set of functions within a function to
form a new single unit. For example, extracting one or more of the operations circled
in the function ‘go’ (see Fig. 4.28) could have done this. The results show that the
expected number of library children remains reasonably constant in all cases in that
they overlap within the standard error. This supports the hypothesis that the compo-
sition comes primarily from the user functions. Where there are a small number of
expected user children per function then this implies that either the library functions
are used more effectively or there is a better match of the notation with the problem.

10These are the language library functions such as ‘==’, ‘while’ and ‘for’.
11Use equation σ1 = √

[2σ 2
a (n − 1)/n − σ 2

c]

138 4 Mind MapsTM and Mechanisms

Design transparency, system flexibility

XYZQ C
Progs (Authors) 4 (4) 18 (10)
Ifs/Fun µp Average [0.17 0.17 0.26 0.38] = 0.25 3.38
Sigma σp (crctd) 0.086 (0.099) 2.04 (2.10)
Standard Err εp 0.05 0.49

Fig. 4.32 The number of ifs per function

The high value of expected children for Z suggests that the problem domain is not
well matched to a functional approach. In an informal support, the programmer and
his colleagues confirmed this observation.

The expected ‘ifs’ per function for C were determined by counting the number
of ‘if’s used per program for 18 different programs (Fig. 4.32). The population is
now based on programs rather than functions. These include the four programs used
in the function equivalence study (Fig. 4.29, 4.30, and 4.31), financial, utilities and
textbook C. The Snedecor’s F test for the difference between the variances = 450
which gives a significance better than 0.1% (1 in 1000 of the result happening by
chance). The difference between the two populations is greater than six standard
errors, a very significant difference.

Discussion on Results

We have shown for experienced programmers through these experiments that the
functional unit tends to consist of about six different child units. The expected num-
ber of library programs per unit for all programmers, problems and notations is
about four units. The observed variation in the number of user functions per unit
could be explained by differences in experience and the problem domain. In the lat-
ter case, the relevance of library functions becomes less, as more user functions are
developed to overcome the semantic tension experienced between the problem and
the resources of the language.

We have shown that the expected frequency of ‘if’s in a C program is an order of
magnitude higher than in a functional language. This seems to be the case for both
Expert and Novice programmer. Generally novice programmers will use more ‘ifs’
than experienced programmers. Even so, a novice Clarity programmer will still use
about eight times less ‘ifs’ than a C programmer.

Consequences of the Experiments

We can now respond to the deliberations in Chapter 1 given by Citrin, Green, Petre
et al. Consider the issue of ‘appropriateness of mapping’. So long as the formal
semantics of a range of notations are the same then the choice of notation is not

Consequences of the Experiments 139

relevant to the structure and size of a function. This we have demonstrated above
with our experiments. The choice of notation, whether it be schema or script, is
an independent matter; a matter of preference. Considering the potential to use the
informal features of the Clarity notation to some advantage we can make such a
choice. In the case of Clarity, the schema provides a useful transformation on the
layout of a functional language.

One of the difficulties with a functional programming language is that the func-
tions are imbedded in each other, the interpreter works from the outside in and it
evaluates from the inside out.12 Imperative languages are more straightforward in
that they evaluate in the order they are written unless explicitly commanded other-
wise. This is much more easily understood. Clarity, however, provides the option to
arrange the schema to place the inside of functions at the top and the outside of the
functions at the bottom. In this way the display of the functions has all the benefits
of the imperative ordering of functions and yet it also has all the formal equivalence
and the advantages of a functional language.

The issue of ‘scalability’ has been resolved partly through the use of a func-
tional language, partly through a good supporting environment that gives views of
children and parent functions and partly due to the reactivity of an interpreter. The
responsive environment of a functional database interpreter supports a designer by
allowing questions to be asked of the program during development. We have shown
that sizeable commercial programs are not only feasible but also quick to design and
create. Our current example (Program X), with a small team of three, took an idea
to a product in less than 18 months.

The issue of ‘transparency of the interface’ has also been resolved in that the
schema has the positive advantage of representing a form where the text in the
function boxes and parameter lozenges can be easily edited to produce functional
extensions or used to construct new functions. The manipulation and editing of the
schema, with modern GUI, is as simple as editing text. Move a function box and the
arrows change to follow, highlight a box to edit or delete (as in text), press a key and
any icon can be placed. The transmission of diagrams is now easy but the text code
representing the diagrams can also be transmitted where there might be problems
and regenerated by the Clarity interpreter at the receiver end.

The difficulty of ‘interpreting graphics’ depends on the graphics. The examples
used by Petre and Green were grossly mismatched to the problems they addressed.
Figure 4.23 shows that better diagrams do exist and may be used in preference to a
text representation.

Although we have not explored the issue of the speed in creating diagrams,
our experience supports the observations made by Green et al. Oddly, the expert
users tend to be slower than novices because the experts spend a lot of time doing
minor adjustments to the diagram, adjustments such as getting the lines straight or

12It is the case that not all evaluations may conform strictly to the process. Lazy evaluation is
designed to avoid unnecessary work. However, evaluation of any kind for any function cannot go
to completion unless all the parameters of that function have been evaluated to completion.

140 4 Mind MapsTM and Mechanisms

rearranging for minimum line cross-over or where that is not possible using labelled
junctions to span the schema (as used in engineering drawings of circuits). This is
an indication that ‘interpretation’ and long-term ‘understanding’ is a concern for
the experienced designer. Experienced users, thus confirming the concern for clear
interpretation, usually also add extensive annotation.

The source of the difficulties in the visual programming languages explored was
that they were derived from designing fixed physical devices whereas programming
in general is different. This was fully discussed in Chapter 1.

Finally, the major problem of ‘knots’ in program structures is created by an
excessive use of ‘ifs’. We have shown that using a functional programming language
through a graphical representation naturally reduces the number of ‘ifs’ used by an
order of magnitude. We have argued that this effect is a property of the functional
language rather than the visual interface. Despite the excellent design properties of
functional languages they have tended to be ignored for commercial program devel-
opment because of the operational incoherence. We have shown that the real advan-
tage of the graphical notation is that it makes a functional language easier to use
by reducing operational and the semantic incoherence. It is this marriage between
a functional language and its diagrammatic representation that unifies them into a
viable program development tool for industrial-sized applications.

*PROJECT: A Minimalist Program

Digits: Doing Without the Built-In Library

Introduction

The question addressed here is ‘what are the minimum set of mechanisms that are
required of a pure functional language so that it retains its full expressiveness?’ By
a ‘pure functional language’ we mean one that has no (useful) side effects. We will
illustrate this by using Clarity and through the creation of simple integer arithmetic
from which any calculus can be constructed using only the two basic mechanisms
of exact pattern match and recursion.13 These two mechanisms act on the notion of
a function and constructed types. We will illustrate the power of these two mecha-
nisms to express any calculus by constructing primitive objects (enumerated types)

13The significance and value of these two mechanisms for program creation is illustrated by Glaser
et al. (2000).

PROJECT: A Minimalist Program 141

and the operations on those primitive objects and thus showing that it leads, in our
example, to a complete integer arithmetic. By induction, we will argue that this pro-
cess will also lead to any formal system that has the same framework as integer
arithmetic.

The approach is based upon the three primitive ideas of Peano. These ideas were
the inspiration from which Whitehead and Russell (1910) constructed the first stages
of Principia Mathematica (see Russell 1919). These ideas are the zero (0), number
and successor. The function ‘successor’ refers to the next number in the natural
order such that 0 maps to 1 and 1 maps to 2 and so on. There are five primitive
propositions assumed by Peano:

1. Zero is a number.
2. The successor of any number is a number.
3. No two numbers have the same successor.
4. Zero is not the successor of any number.
5. All numbers inherit the properties of zero and the properties of the successors of

zero.

In addition, we wish to employ the Arabic representation of a number such
that all the numbers can be represented by concatenating the ten elementary
symbols 0–9.

The Digits

‘Digits’ is a Clarity/Faith program that uses no computer based or library functions.
However, we will use the notion of lists and the operations on lists for the sake of
brevity. We have shown that ‘lists’ and their associated operations can be defined
using just the two primitive mechanisms exact pattern match14 and recursion and
they are the only mechanisms we will allow ourselves to employ in this program.
Although a computer is used to perform the operations, integer arithmetic can be
specified independently of the computer’s in-built computational potential.15

The initial task is to form the basic ‘objects/symbols’ of manipulation by integer
arithmetic. These are the digits 0–9 and are specified as enumerated constructors
(Diagram 4.1).

The next stage is to introduce a simple extensional function ‘next_digit’; this is
the basic ‘successor’ function for ‘single’ digits. This function maps digits onto their
successors (Diagram 4.2). The odd one out in this sequence is 9 which maps back
to 0 (zero). The reason for this becomes clear in the ‘next_digits’ function (note
the ‘s’) which is the successor function for combined digits (lists of digits). Here

14In practice, we invoke ‘best fit’ pattern match and ‘lazy evaluation’.
15The final program can be very slow and expensive on memory. This illustrates the effect of
‘operational incoherence’ that exists between the computer and the functional language. Creat-
ing library functions in a language that is ‘operationally coherent’ (such as C) makes functional
programming fast and practical.

142 4 Mind MapsTM and Mechanisms

Diagram 4.1 Initial
definition of digits

a. Sequence of digits defined. b. Last in sequence.

Diagram 4.2 ‘next_digit’ gets the next digit

we depart slightly from Peano’s approach in order to take advantage of the Arabic
number representation.

The function ‘next’ (Diagram 4.3) splits the least significant digit (last in list)
from the rest of the number (front of digit list) and passes the two components to
‘next_digits’ (Diagram 4.4). This will then use ‘next_digit’ (Diagram 4.2) on the
lone digit and then tag the result to the list thus increasing the whole number by one.
However, in the special cases of the digit 9 this is dealt with through an exact pattern
match rather than a generic match. Note that ‘next’ and ‘next_digits’ are mutually
recursive in that they call each other in a loop. Recursion will be considered in detail
in Chapter 5.

A number is thus defined as a list of digits so that number 326 will be represented
by [3 2 6]. The in-built representation of a list is used for convenience but we do
know that it can be defined within the limitations we have imposed on ourselves.
We could have produced a recursively defined ‘Number’ constructor that would
link the digits together to form numbers in exactly the same way as a ‘list’. How-
ever, we would lose the simplicity and clarity of the in-built syntax of the square
bracketed list.

The ‘previous’ function uses the ‘inverse’ of ‘next_digit’ in a similar way in
order to achieve a count down rather than a count up. The two together can then
be used to make the arithmetic operation ‘+’ (‘add_digits’ – Diagram 4.5). The ‘–’
(‘subtract_digits’) is obtained by simply counting down and down simultaneously

PROJECT: A Minimalist Program 143

Diagram 4.3 ‘Next’
Numbers as list of digits

a. Next number defined. b. Dealing with carry. c. Special case of 9 to 10

Diagram 4.4 ‘next_digits’ creates next number

Diagram 4.5 ‘add_digits’ adding two numbers

until one list is empty. We use the built-in ‘inverse’ for convenience. Otherwise, we
could have simply created an inverse of digits as separate function.

Multiplication is simply repeated addition and division is repeated subtraction.
From here all integer arithmetic can be defined (Diagram 4.6). The network diagram
(Diagram 4.8) shows the overall Digits program in terms of the ‘uses’ relationships

144 4 Mind MapsTM and Mechanisms

a. Multiplying two numbers by repeated
addition.

d. Special case of no number. e. ‘multiply_digits’ The interface of
multiply: initial conditions

c. Special case of zero in multiply

b. Output final addition

Diagram 4.6 Multiplying two numbers

Diagram 4.7 ‘previous’ last
number

(dotted arrows). Note the symmetry of the functions. The following tests show the
expected results but it is bounded by stack depth using this technique.

QUERY> factorial_digits [5]
[1 2 0]

Exercises 4.2 145

Diagram 4.8 Overview of complete‘digits’ program

QUERY>factorial_digits [6]
[7 2 0]
QUERY>factorial_digits [7]
[5 0 4 0]

The method can be extended to include arithmetic for negative numbers and float-
ing point arithmetic by extending the digits to include the negation sign and the
decimal point. Boolean algebra can also be specified using the same technique and
combining with arithmetic such tests as ‘<‘ and ‘>‘ can be formed. This allows dif-
ferent comparisons other than exact match to be done. It requires only a few more
steps to produce ‘predicate calculus ’ or any other formal system of this kind.

Exercises 4.2

1. Make a function ‘xxx’ with three character parameters that will respond “yes”
for three character ‘x’s, “maybe” for any two ‘x’s and “possible” for any one ‘x’
and “no” for no ‘x’s.

2. Make a function ‘choice’ that will respond to:

(Thin or Fat) and (Blond or Dark) but not Old -> Star
(Green or Blue) and (Thin or Fat) -> Alien
Thin and Blond and not Old -> Model
Old and Fat and not Green -> Actor

3. Make a simple Roman Numeral calculator that can add and subtract Roman num-
bers for the numbers 1–9. (Hint: do all the calculations using the primitive i.) For

146 4 Mind MapsTM and Mechanisms

reasons of the internal workings of Clarity do not use the capital letters C B S
K and I. These are reserved characters called combinators and are used by the
interpreter.

Questions 4.2

1. Consider an extensional function with three parameters. The function had either
a match for the first parameter or two matches for the last two parameters. Which
is the one the interpreter would select?

2. Consider an extensional function with three parameters. The function either had
a match for the first parameter or had matches for the first and last parameters.
Which one would be selected by the interpreter?

3. What are the minimum operational elements needed to define any calculus using
a functional language?

References

Addis T. R., Gooding D. C. (2008) ‘Simulation Methods for an Abductive System in Science’,
Special issue called TRACKING IRRATIONAL SETS: Science, Technology, Ethics in Foun-
dations of Science (2008) The official Journal of the Association for Foundations of Science,
Language and Cognition, ISSN: 1233–1821 (print version), Springer Netherlands: Electronic
versions already published.

Addis T. R. and Bull S. P. (1988) ‘A Concept Language for Knowledge Elicitation’, Proceedings
of the Second European Workshop on Knowledge Acquisition. Bonn, pp. 1/1–1/11. June.

Addis T. R. and Nowell M. C. C. (1990) ‘Scaling Up Knowledge Systems: An Architecture for the
GigaKnowledge-base’, Proceedings of the BCS Specialist Group on Expert Systems, London,
September, ISBN 0-521-40403-7, pp. 238–251.

Addis T. R., Townsend Addis J. J. and Gillett, R. (2005), ‘Wise Expert: An Expert System for
Monitoring Ship Cargo Handling’ SGAI AI 2005 Applications and Innovation in Intelligent
Systems XIII, ISBN 10: 1 84628-223 3, pp. 137–150.

Addis T. R., Pretlove, A. J. and Townsend, J. J. (1994). ‘A Functional Approach to Creating Evo-
lutionary Models for Engineering Design Illustrated by a Bridge Design’, Proceedings of the
14th Annual Conference of the British Computer Specialists Group on Expert Systems (ES94),
ISBN 1-899621-01-6, pp. 275–284.

Bramer M. (2005) ‘Logic Programming with Prolog’, Springer, New York, ISBN 10: 1-85233-
938-1.

Buzen T. (1993) ‘The Mind Map Book: How to Use Radiant Thinking to Maximize Your Brain’s
Untapped Potential’, Penguin Group, Dutton, ISBN 0-525-93904-0.

Citrin W. (1996) ‘Strategic Directions in Visual Languages Research’, ACM Computing Surveys,
Vol. 28, No. 4, December.

Codd E. F. (1971) ‘Further Normalisation of the Database Relational Model’ , IBM Research
Report 909, IBM Thomas J. Watson Research Center, Yorktown Heights. New York.

Crowther W. J. et al. (1995). ‘Knowledge Acquisition for Engineering Systems using Bond Graphs’,
Research and Development in Expert Systems XII. Proceedings of Expert Systems 95, Cam-
bridge, December, pp. 41–56.

Davis R., Shrobe h. and Szolovitz P. (1993), ‘What is a Knowledge Representation’, AI Magazine,
Vol. 14, No. 1, pp. 17–33, Spring.

References 147

Elleby P. and Addis T. R., (1987) ‘A Conceptual Model for Transaction Integrity’, Proceedings of
MILCOMP 87, Microwave Publishers, pp. 381–386, October.

Gilmore D. J. and Green T. R. G., (1984) ‘Comprehension and Recall of Miniature Programs’
International Journal of Man-Machine Studies, Vol. 21, pp. 31–48.

Glaser H., Hartel P. H. and Garrett P. W., (2000), ‘Programming by Numbers’, The Computer
Journal, Vol 43, No 4. pp. 252–265.

Green T. R. G. and Petre M. (1996) ‘Usability Analysis of Visual Programming Environments: A
‘Cognitive Dimensions’ Framework’, Journal of Visual Languagesand Computing, Vol. 7, pp.
131–174.

Green T. R. (1990) ‘Programming Languages as Information Structures’ in Psychology of Pro-
gramming, edited by Hoc et al, pub Academic Press, ISBN 0-12-350772-3.pp. 117–137.

Kasner E. and Newman J. (1949) ‘Mathematics and the Imagination’ Bell G & Sons Ltd, London,
6th edition (1961).

Larkin J. H. and Simon H. A. (1995) ‘Why a Diagram is (Sometimes) Worth Ten Thou-
sand Words’ in Diagrammatic Reasoning: Cognitive and Computational Perspectives. eds.
Chandrasekaran B, Glasgow J. and Narayanan H. N. AAAI Press/ The MIT Press, Washington,
DC/Cambridge, MA, pp. 69–109

Maier D. (1983) ‘The Theory of Relational Databases’, Computer Science Press, Rockville, MD,
ISBN 0-914894-42-0.

Mead C. and Conway L. (1980) ‘Introduction to VLSI Systems’, Addison-Wesley, New York, ISBN
0-201-04358-0.

Petre M. and Green T. R. G. (1993). ‘Learning to Read Graphics: Some Evidence that ‘Seeing’ an
Information Display is an Acquired Skill’. Journal of Visual Languages and Computing, Vol. 4,
pp. 55–70.

Poulovassilis A. (1988), ‘FDL: An Integration of the Functional Data Model and the Functional
Computational Model’, BNCOD6, Cambridge University Press, Cambridge, pp. 215–236.

Reade C. (1989) ‘Elements of Functional Programming’, Addison Wesley, Boston, MA, ISBN
0-201-12915-9.

Russell B. (1919) ‘Introduction to Mathematical Philosophy’, George Allen & Unwin, London.
Whitehead A. N. and Russell B. (1910) ‘Principia Mathematica’, Vol. 1, Cambridge University

Press, Cambridge.

Chapter 5
Functional Thinking

Rejoiceth not in iniquity but rejoiceth in the truth;
Beareth all things, believeth all things, hopeth all things,
endureth all things.

Corinthians 13,6 to 7.

Introduction

We have shown how a simple function that adds two vectors together may be defined
and used. We have also shown that programming depends on much more involved
processes that require, in imperative terms, loops, iteration and jumps. Such opera-
tions tend to lead to very complex and obscure code. Such code is obscure because
the processes cause changes in flow of the program and thus radically alter the
behaviour of the processes themselves. Further, a change in the value of a stored
item can make many different functions that use that value to perform differently
from before it was changed. This, of course, may be what is required but the link
back to some global variable may be difficult to trace. Also, if an error or unexpected
result occurs it can require the tracing of instructions, which may be many millions,
to find out exactly when an erroneous jump or change occurred.

We have already seen that a functional language relies upon recursion and higher-
order functions to support loops, iteration and jumps. These techniques avoid the
above difficulties by hiding the processes that cause the problems to the user. Jumps
(gotos), where there is a change of control from one part of the program to another,
are definitely not allowed in functional programming. Jumps are well known to
cause problems in tracing the history of program instruction events and they cause
even more obscurity than many other imperative processes. Jumps make debugging
extremely difficult.

In functional programming recursion is the most important technique of all. It
might be said that to think recursively is to think functionally and we might add that
to think functionally is the way to good program design. We have also implied earlier
(Chapters 3 and 4) that there is more than one elegant solution to a problem. We will

149T. Addis, J. Addis, Drawing Programs: The Theory and Practice of Schematic
Functional Programming, DOI 10.1007/978-1-84882-618-2_5,
C© Springer-Verlag London Limited 2010

150 5 Functional Thinking

demonstrate this by producing a range of solutions for calculating the mathematical
function factorial. Factorial of N (sometimes written as N! – c.f. N2 for square of
N) is a function that multiplies together all the numbers from 1 to N. The function
factorial is chosen because despite its simplicity it has many of the characteristics
that might be found in the design of complex systems, such as control systems,
that requires feedback. Since such systems may be working for any length of time
then, from a functional point of view, we have to deal with the potential of an inde-
terminate number of calculation cycles. This means using an indefinite amount of
computational resources. This will be dealt with in Chapter 6.

We will show that, although Clarity is essentially functional in form, there are
many ways of obtaining the same efficiencies or the same kind of operations that
make imperative languages useful under these time-extended or time-dependent cir-
cumstances. However, what these studies will not show is the value of the Clarity
representation for exploring designs, controlling complexity and working closely
with others.

Let us first look at recursion and higher order functions in more detail.

Loops and Recursion

As we have seen, one of the many mechanisms for implementing a loop is recursion.
Recursion can be considered as a means of re-entering a function from the beginning
but with different parameter values. Just as with (say) a ‘for’ loop there needs to be
some kind of stopping condition. A simple example of recursion is the calculation
of ‘factorial’. Factorial is used in the statistics of combinations where, for example,
one might want to know how many ways there are of ordering a set of items. In
particular, there may be a three-letter code for opening a lock consisting of the
letters A, B and C. The question might arise as to how secure such a lock would be?
There are 3 ways of selecting the first letter, 2 ways of selecting the second letter
and only 1 way of selecting the last letter. So there are 3∗ 2∗ 1 = 3! = 6 possible
arrangements of these letters. So there is a one in six chance of getting the order
correct on the first try. If we were to do this imperatively, we might write

define factorial (N);
begin

X : = 1 ;
If N = 1 then (return N) else

for i := 1 step 1 until N do
X := X * i ;

return X ;
end ;

In the functional language, the approach is slightly different. We need to have
three kinds of insight that is usually the case for all recursive solutions. First, it is
useful to note that 3! = 3∗ 2! and in the general case N! = N∗ (N–1)! Second, we
can ‘pretend’ in a functional language that ‘factorial’ is assumed to work before it is

Loops and Recursion 151

defined so that the output of ‘factorial’ is certain. Then the third and fourth requires
us to figure out how factorial changes from one step to the next in the loop and how
it might terminate. It was observed from the nature of factorial that

factorial (N) = N ∗factorial (N - 1);{The generic case or the step}

and

factorial (0) = 1; {The terminating condition or simple case}

This latter condition must hold otherwise all factorials would be 0. Since the
above is a true relationship that holds for all N we can define it as shown in
Fig. 5.11.

The second component in Fig. 5.1b expresses the termination condition (N = #0
where, of course, # is used to mark an integer) whence it returns #1. The dotted
lozenge can be used to show the type of value being passed between functions.

If you were to trace out the actual order of processing you will find that this
suspends the calculations until the terminating condition is reached by running the
loop backwards (from N) until factorial (0). We thus have to arrange the calculation
so that the input condition to ‘factorial’ is stepped towards the specific case (i.e.
the terminating condition). At this point, it then returns up the loop completing the
calculations until the final answer is calculated at the point of starting.

Figure 5.2 illustrates this head recursion showing how each factorial is called
by subtracting #1 from each call until #0, the termination condition, is reached
(Fig. 1b). The answer to this termination condition is predefined and so the path
can now be retraced carrying out the multiplication as shown in Fig. 5.1a.

This technique of ‘holding’ an evaluation while continuing the evaluation pro-
cess, which may also require further ‘holding’, is called a ‘stack’. It is a ‘stack’ in

a. The general case1 b. The specific case

Fig. 5.1 Defining ‘Factorial’

1The line drawing versions of the function and network windows are created from Menu/File/Save
Win as PICT.... rather than using the system print screen.

152 5 Functional Thinking

Factorial 5

Factorial 4

Factorial 3

Factorial 2

Factorial 1

Factorial 0

Sub1

Sub1

Sub1

Sub1

Sub1

*

*

*

*

*

11

2

6

24

120

S
t
a
c
k

D
e
p
t
h

Fig. 5.2 An illustration of Head recursive factorial. Max. stack depth = N + 1

the sense that the evaluation is ‘stacked up’ and then dealt with from the last in first
out. This process of stacking is usually hidden from the programmer in a functional
language and is automatically invoked when required. Some imperative languages
such as C or C++ also provide such a service. Consider the query

QUERY> factorial #5
#120

This query will test the function factorial, which will work for all positive inte-
gers, or until the computer’s upper limit of an integer is reached. A little experiment
will show you what this limit is as follows:

QUERY> power #2 #30
#1073741824
QUERY> power #2 #31
#-2147483648

The number of bits allocated to an integer, in this case, is only 32 but that also
includes a negative ‘flag’ in the most significant (highest binary position) bit place.
This bit is just reached by the power of 31 as can be shown by

QUERY> sub1(power #2 #31)
#2147483647

Therefore, this will be the highest positive integer. When #2 is raised to the power
#32 the negative flag is ‘carried’ into a place where there are no bits to support the
number (i.e. position 33). This can be confirmed by

Loops and Recursion 153

QUERY> power #2 #32
#0

This recursive process of the function factorial is called head recursion. It can be
viewed in a different way to that shown in Fig. 5.2 by illustrating the process as an
extending Curried function as follows:

factorial #5 = * #5(factorial (sub1 #5)) = * #5 (factorial #4)

= * #5 (* #4 (factorial (sub1 #4))) = *#5 (* #4 (factorial #3))

= * #5 (* #4 (* #3 (factorial (sub1 #3)))) = * #5 (* #4 (* #3 (factorial #2)))

= * #5 (* #4 (* #3 (* #2 (factorial (sub1 #2)))))

= * #5 (* #4 (* #3 (* #2 (factorial #1))))

= *#5 (* #4 (* #3 (* #2 (* #1 (factorial (sub1 #1))))))

= * #5 (* #4 (* #3 (* #2 (* #1 (factorial #0))))) Termination condition

= * #5 (* #4 (* #3 (* #2 (* #1 #1))))

= * #5 (* #4 (* #3 (* #2 #1)))

= * #5 (* #4 (* #3 #2))

= * #5 (* #4 #6)

= * #5 #24

= #120

This is known as ‘expanding’ the evaluation. Notice that a step down the stack
only occurs when the function calls itself. The ‘sub1’ process occurs at the same
level. This process will always complete an evaluation of a function at a level in a
stack if (and only if) the function has all its parameters evaluated.

Recursion can be used whenever there is at least one clear termination condition
that can be guaranteed to be reached. This does not have to be numeric as can be
seen from the next example (Fig. 5.3). Here we are finding the difference in length
between two lists by pairing each item in one list with the other. When there is no
more pairings possible (i.e. one of the lists is empty), the remainder of the list, which
is not empty, is returned. In this function, the library function ‘tail’ is used which
removes the first item from the list and returns what is left.

A General b Specific c Specific

Fig. 5.3 The function showing more than one terminating case

154 5 Functional Thinking

The queries

QUERY> item_difference[‘a’‘a’‘a’][‘b’‘b’]
[‘a’]
QUERY> item_difference[‘a’][‘b’‘b’]
[‘b’]
QUERY> item_difference[][]
nil

test the definition. On an aside, it is tests like these that should be cut and pasted into
the function’s annotation so that there is a ready way it can be described and tested.
This form of ‘looping’ has the disadvantage of depending on the stack to process the
answer and thus the number of cycles is limited because the stack size is limited.2

As we have seen earlier, these examples also demonstrate the pattern matching
properties of the underlying functional language in that processes can be triggered
by a specific pattern of parameter values. As we have also noted before, another
way of looking at this is as a function that can be considered a potentially multidi-
mensional array of processes or values. This means it can be used as an array that
can have a generic index value for all those elements that are not part of a specified
collection of predetermined indices; such array elements do not have to be explicitly
saved as in normal arrays.

Therefore, the first component of ‘factorial’ is a generic response to all num-
bers except #0 where #0 triggers the specific response. Of course, we could have a
specific response (which could include a process) for other numbers as well.3 The
function ‘item_difference’ is an example of a two-dimensional array that uses this
facility. Thus, sparse arrays can be represented without resulting in large amounts
of empty storage. Further, the array can be indexed on any kind of type (e.g. integer,
string, lists) and if there is more than one dimension (more than one parameter) a
generic undefined dimension can also be declared.

Tail Recursion and Auxiliary Functions

A slightly more efficient process than head recursion is tail recursion. The idea
behind tail recursion is to avoid the reverse process of the stack by doing the calcu-
lation as you proceed. We can redesign ‘factorial’ so that it works as a tail recursive

2It is limited to about 120 cycles.
3There is a library function ‘remember’ that will automatically convert any generic function that
is used with a specific number into a component of that function. Thus every example gets added
to the (growing) list of specific cases. The process then changes to a simple table lookup. This is
particularly useful where the generic component of the function is expensive on computer resources
and it is used for only a narrow range of values at any one time. There is a reciprocal function
‘forget’ that deletes all the extensional components.

Tail Recursion and Auxiliary Functions 155

Fig. 5.4 Tail recursive factorial. Max. stack depth = N or = 2

function. The first component of the function ‘fact_tail_aux’ in Fig. 5.4 uses a
parameter to hold the accumulating value (the first parameter in this case). Note that
we use the post fix ‘_aux’ to indicate that this will become an auxiliary function.
The reason why it is ‘auxiliary’ is that it has an extra parameter that is not really of
interest to the user; it is only a local requirement for tail recursion. Therefore, we
will be wrapping this function up in another function to hide this extra parameter.

The advantage of tail recursion is that the stack will exit from the function at
termination instead of having to ‘bubble’ all the way back to the top (c.f. Fig. 5.2).
This roughly halves the processing time. The function can be tested in the Clarity
control window, thus

QUERY>fact_tail_aux#1#5

#120

The function can be used as a Curried function by combining its first parameter
in a bracketed expression, thus (fact_tail_aux #1). Otherwise, this Curried func-
tion can be made into a single parameter function by defining the Curried combi-
nation as an auxiliary function as shown in Fig. 5.5. Expanding the evaluation of
‘fact_tail_aux’ we have

fact_tail_aux #1 #5 = fact_tail_aux (* #1 #5) (sub1 #5) = fact_tail_aux #5 #4
= fact_tail_aux (* #5 #4) (sub1 #4) = fact_tail_aux #20 #3
= fact_tail_aux (* #20 #3) (sub1 #3) = fact_tail_aux #60 #2
= fact_tail_aux (* #60 #2) (sub1 #2) = fact_tail_aux #120 #1
= fact_tail_aux (* #120 #1) (sub1 #1) = fact_tail_aux #120 #0

Termination Condition
= #120

Note that in the auxiliary function ‘fact_tail_aux’ the termination condition
uses the generic dimension of the first parameter and the specific dimension of the
second parameter to terminate. The first parameter is returned as the result with the
final calculation.

156 5 Functional Thinking

Fig. 5.5 The function
‘fact_tail’ using an auxiliary
function ‘fact_tail_aux’

Exercise 5.1

1. Expand the function item_difference [‘a’] [‘b’ ‘b’]
2. Expand the function item_difference [‘a’ ‘a’ ‘a’] [‘b’ ‘b’]

Functions as Mappings 157

3. Expand the following Clarity head recursive definition of the function ‘ladd1’
4. Expand the following Clarity tail recursive definition of the function

‘tail_ladd1_aux’

Questions 5.1

1 Why does imperative programming make code obscure?
2 How does a functional language avoid the obscurity normally found in impera-

tive languages?
3 What is the imperative equivalent of recursion ?
4 What three insights are required for recursive solutions?
5 What advantage does tail recursion have over head recursion?
6 What is a stack?
7 How would you test for maximum integer possible for a particular computer?
8 Why do large integers go negative when increased beyond their maximum size?
9 What is meant by expanding a function?

10 Why should you need an auxiliary function ?

Functions as Mappings [→ Page 160]

There are some concepts we have used already that ought to be understood more
deeply before we go much further. In general, a function is considered a ‘mapping’
of one type of thing onto (or into) another. A ‘mapping’ is any mechanism that
relates a set of values to another set. A typical example is, not surprisingly, a map.
A map ‘maps’ a point on a piece of paper to a point on the earth. Another example
of ‘mapping’ is the relationship between people, which ‘maps’ a person to another
person. So if we had a set of people, we may propose a function (a lookup table
really) that shows who is married to whom. The function would simply answer a
question like

Is Tom married to Deborah?

We might expect the answer ‘Yes’ or ‘No’ or more formally ‘True’ or ‘False’.
The function (shown as a table in this case) could be constructed by taking every

man you know with every woman you know (the cross product of men and women)
and then assigning True (if married) and False (if not married). This cross product
is called the domain of the function ‘married_to’. The pair of possible resulting
values {Yes, No} or {True, False} is called the range of the function ‘married_to’.
An example of the table you get if you only know three men (Tom, Steve, Keith)
and only three women (Anna, Jan, Deborah) is given in Table 5.1.

158 5 Functional Thinking

Table 5.1 ‘ married_t o’

Parameter ?0, Parameter ?1, married_to,
type person type person type Boolean

Tom Anna False
Tom Jan True
Tom Deborah False
Steve Anna True
Steve Jan False
Steve Deborah False
Keith Anna False
Keith Jan False
Keith Deborah True

Another way of looking at this is as an array of Boolean values (True or False)
that are indexed on a pair of names. It so happens that True and False are built as
constructors (enumerated). We could have made our own constructors Yes and No
by bringing up a constructors window and creating a new type (say type ‘answer’)
that has these two values (Fig. 5.6).

We can visualise an array of data as equivalent to a mapping of an index (usually
given as integers) to a value. The flexibility we have by using functions is that we
can use other types than integers to index values and we can have values that are
structured data by using constructors that have arguments. In this case, Yes and No
do not have arguments.

The names of the people can also be defined in the same way (Fig. 5.7). In this
case we ignore the distinction between male and female since this distinction should
be made as a single argument function ‘male’ that returns ‘Yes or ‘No’.

Describing a mapping in such an exhaustive way, as ‘married_to’ above, can be
very inefficient and in most cases impossible. A simpler way would be to only keep
a table of married people and leave the other cases to return False or No. This uses
the property of a function that it can be defined for any value (the generic case) and

Fig. 5.6 Creating your own
answers

Functions as Mappings 159

Fig. 5.7 Creating people
(type person)

that particular cases will be chosen before a generic case. So putting these two ideas
together, the function ‘married-to’ can be represented as in Table 5.2.

Table 5.2 ‘ married_t o’

Parameter ?0, Parameter ?1, married_to,
type person type person type answer

?0 ?1 No
Tom Jan Yes
Steve Anna Yes
Keith Deborah Yes

So using best fit pattern match we could ask

(married_to Tom Jan) → Yes

(married_to Tom Deborah) → No

We thus have the set of pairs {(Tom Jan)(Steve Anna) (Keith Deborah)} that map
to Yes and all the other pairs that map to No (e.g. (Steve Deborah)). The generic
case is

married_to ?0 ?1 → No

where ‘?0’ or ?1 matches anything that is not already in the table. The simple
cases are the rest of the table. This also illustrates the principle of a ‘functional’
database used as a simple ‘relational’ database. A relation is an extensional function
and relational operations can be defined as higher-order functions.

160 5 Functional Thinking

∗Programming by Numbers

We have already indicated that there are three insights needed to create a recursive
solution to a problem4. We will now go into more detail on how recursion should
be approached by providing 10 steps.

Given a problem, such as the need to create the function ‘factorial’, how should
this be tackled? It is often helpful to proceed with problems in a methodical way
so that each step is clearly made (Glaser et al. 2000). This means that the valuable
mental ability to have ‘design insights’ is stimulated by the process.

To create a function, proceed as follows:

1. Bring up a function window: We are defining a function so we need a function
window (Fig. 5.8).

2. Insert the input parameters and their types: To know what you are dealing
with is important. A function is to do with a transformation of ‘something’ into
‘something’. ‘What is it that you are transforming?’ is the first question. In the
case of ‘factorial’ it is a single integer because that is sufficient to define the
list of numbers. So #5 is represent by the list [#1 #2 #3 #4 #5]. In this case, the
numbers always start from #1 and step through, in units of #1, to #n. Thus, we
have:

There is one input parameter that is an integer. The integer describes the list of
numbers to be multiplied together.

int → ????

Fig. 5.8 A function window

4Programming by numbers was proposed by H Glaser et al (Programming by Numbers: A Pro-
gramming Method for Novices – The Computer Journal Vol 43, No4, 2000, pp252 – 265). We have
modified this to conform with Clarity.

Programming by Numbers 161

Fig. 5.9 Defining the input
type

So we select a parameter lozenge (bold lozenge), place it in the input (parameter
or argument field) and type in ‘int’ into the lozenge (Fig. 5.9).

3. Insert the single output type: This describes what you are transforming the input
parameter(s) into. In the case of ‘factorial’ we are transforming it to a single
integer:

The output parameter is an integer
int → int

Therefore, we type into the single output parameter lozenge ‘int’ (Fig. 5.10).
4. Consider all cases: For any parameter type there is a set number of cases that

should be considered. There may be others but this will depend on the function.
For the type integer we have to consider the case of #0 and #n (where #n is any
integer). Thus, we need to consider the following transformations:

factorial #0 → ???? – The simple case.
factorial #n → ???? – The generic case.

Examples of cases for the built-in types are shown in Table 5.3.
5. Insert possible functions that might be useful in the generic case: Not all these

functions will be required (Fig. 5.11) and there may be some not initially

Fig. 5.10 Defining the
output type

162 5 Functional Thinking

Table 5.3 Cases for built-in types

Type Cases Step

Int #0 sub1/add1
#1
non-zero

Real #0.0 sub1/add1
#1.0
non-zero

Bool True &/ ||
False

String “” explode/implode
single character (treat as list)
non-empty

List nil head/tail
single element last/front
non-empty

Pair (Pair case) first/second
‘User defined’ See Constructor Window

Fig. 5.11 Selection of
possible functions needed to
define generic case

considered. Sorting the built-in functions in the library window into types will
list all those likely to be needed together. Possible ‘ingredients’ for ‘factorial’
are:

• the function itself (‘factorial’) given as an empty thick lined box,
• the parameter #n,
• constants of the same type as the domain and range of the function (e.g. #1),
• built-in functions over those types (e.g. ‘∗’ and ‘–’).

Figure 5.11 shows the potentially required functions to construct the
generic case of ‘factorial’.

6. Use the functions to ‘solve’ the generic case: Either there is a relatively easy
solution (Fig. 5.12) or the solution may be found by dividing the problem into
simpler sub-problems. A reference to the initial problem may provide a clue as
to how sub-problems can be determined.

Programming by Numbers 163

Fig. 5.12 The functions are
joined up into a process

A frequent sub-problem form that a function can take is where there are starting
conditions that are always the same. An example is the function ‘fact_tail_aux’
(see Fig. 5.4) where the first parameter always begins as #1. This parameter
is not really of interest in the final form of the function so we may define
‘fact_tail_aux’ as the function ‘factorial_aux’. Then call ‘(factorial_aux #1)’,
a Curried function, by the function ‘factorial’ where ‘factorial’ has only the
single integer parameter needed (Fig. 5.13). This gives the function the same
external form has the head recursive approach. We will now continue with this
head recursive approach.

7. Name the function: Naming the function is important (Fig. 5.14). A set of good
names will make the use of the functions read almost like an explanation of the
program. The name is a vital link between the formal program and the domain
to which it relates. As we keep saying, it is the informal strand that indicates
what the formal program means.

8. Correct type descriptions and insert missing information: Clarity does a type
check. Where there are inconsistencies, a request for user intervention is
called for. This intervention is requested by explicitly showing the types
proposed or by messages in the control window prefixed by ‘WARNING’.

Fig. 5.13 Factorial defined
with a ‘tail recursive’
auxiliary function

164 5 Functional Thinking

Fig. 5.14 Naming the
function

Fig. 5.15 Inserting missing
information on demand

These should never be ignored. It is important that the function is internally
consistent. In this case there is a clash between the input of factorial with the
output of ‘–’ (Fig. 5.15). The function ‘–’ can be used for both integer and
real numbers. This flexibility is expressed by the generic variable ?0.5 In this
case, ?0 should be replaced by ‘int’.

9. ‘Solve’ the simple case(s): As a rule, the simple cases are usually one or more
terminating conditions for the cycle created by recursion (see table above).
Simple solutions should be limited to the case under consideration. So for the
simple idea of ‘factorial’ #0 the only result required is #1 (Fig. 5.16). All other
cases should be ignored at this point. Other cases may have to be considered
but these should be dealt with separately.

10. Reconsider the solution: Simplification may be possible. Some of the special
cases may be incorporated in the generic case. Recheck the output type of
the function and write some test cases. A description of the function should
be written in an annotation window with at least one test case with its result
(Fig. 5.17). The annotation window is found in the tool bar with the other win-
dows or under the menu item ‘Features’.
The introduction of, or the renaming to, an ‘auxiliary’ or other sub-functions
may suggest better structures.

5or ?1 etc. note that the symbol drawn from the set ?0 to ?n can represent any type or is a variable
or refers to the parameter/argument position of the function. Context determines how it will be
interpreted by Clarity/Faith.

Exercises 5.2 165

Fig. 5.16 The simple case
for factorial

Fig. 5.17 Annotate the
function

Exercises65.2

The following exercises have been ordered according to difficulty. Some
of the early exercises will be very simple but are useful to do. See
how far you can get. There is no unique ‘correct’ answer. Some ‘cor-
rect’ solutions are better than others. Look for simplification. Do not forget
many of the solutions will require the specification of more than one function.

1 Write a function that provides the logical negation of its argument.
2 Write a function to provide the arithmetic negation of its argument.
3 Write a function to return a string that has a number of copies (first argument)

of (its second argument) a string.
4 Write the function ‘married_to’ as described earlier.
5 Extend the function ‘married_to’ so that the two people concerned can be put

in any order. Thus, ‘married_to Tom Jan’ will be the same as ‘married_to Jan
Tom’.

6 Write a function to return the last element of a list.
7 Write a recursive function that adds a number to each item of a list of integers.

6Examples drawn from Glaser et al (2000) ‘Programming by Numbers’ The computer Journal
Vol 43 No 4.

166 5 Functional Thinking

8 Write a recursive function that counts the number of items in a list.
9 Write a recursive function that returns ‘True’ if a particular given integer is in a

list of numbers.
10 Modify the last exercise so that it will work with any list of objects (i.e. strings,

characters, reals, integers, etc.).
11 Write a recursive function that will add up a list of integers.
12 Write a function that will find the average of a list of numbers (see points 8 and

11).
13 Write a function that will find the largest number in a list of numbers.
14 Write a function to add the elements of two lists together, for example, the

results of adding the lists [#1 #2 #3] and [#4 #5 #6] should be the list [#5 #7
#9].

15 Write a function to return a list that has an element (first argument) inserted into
the nth position (second argument) of a list (third argument).

16 Write a function to return the sorted version of its argument list (we will consider
integers in this example).

17 Write a function to sum the leaves of a tree.
18 Write a function to increment each element of a list.
19 Write a function to compute the nth element from the Fibonacci sequence #0,

#1, #1, #2, #3, #5, #8, . . ., in which each number is the sum of the previous two.
20 Write a function to compute an ascending sequence of integers n, n + #1, . . ., m.

Questions 5.2

1 What is a mapping?
2 Name the ten steps in order that should be followed to create a recursive function.

Project: Using Pattern Matching

Snake1: Snakes and Ladders

Project: Using Pattern Matching 167

Introduction

The odd thing about this game is that it is fun despite the fact that the computer,
in effect, does both players. Somehow, when you are identified with a token that
befalls all sorts of fate, it gives you feeling of involvement. In the same way, you
might get involved with a horse that is in a race. It is all very basic.

We will do this in two stages. Recursion is not used in the first stage but will be
used in a minor way in the second. A lot depends on pattern match , ‘progN’ and
‘map’.

Keeping Score and Making Snakes (and Ladders)

This is a simple version of the game of snakes and ladders. There are two players:
‘A’ and ‘B’. Their score is kept by the function score in Diagram 5.1.

The functions score ‘A’ and score ‘B’ will be updated as the game progresses.

(1) ∗Define the function score in Diagram 5.1.

The ‘snakes’ and ‘ladders’ are set up using functions called ‘snake’ and ‘ladder’.
For example, if ‘snake #83’ returns #21, that means a player landing on square
83 will go ‘down the snake’ to square 21. A similar rule applies to the function
‘ladder’. In this game, we have defined five snakes and six ladders. Part of the
definition is seen in Diagrams 5.2 and 5.3.

Diagram 5.1 score

Diagram 5.2 snake

168 5 Functional Thinking

Diagram 5.3 ‘ladder’

There are two components of ‘snake’ illustrated in Diagram 5.2. The others are
defined in a similar way

snake #73 returns #5
snake #59 returns #14
snake #24 returns #3
snake #90 returns #6

(2) ∗Define the function ‘snake’ in Diagram 5.2 plus the additional definitions.

(3) ∗Define the function ‘ladder’ in Diagram 5.3 plus the additional definitions.

ladder #10 returns #70
ladder #75 returns #82
ladder #55 returns #79
ladder #92 returns #94
ladder #4 returns #23

Drawing the Board

Since we only have a very primitive interface the best we can do is create a board
from characters. This will look like this:

.... l... <-
-> s.. s..
.... l... s.. <-
->
.... s.. l... <-
->
.... l... <-
-> s.. B..
.... A.. <-
-> l... l...

Project: Using Pattern Matching 169

The start of the game is at the bottom left-hand side and a little arrow is printed
to show the direction of movement of the tokens. In this example, Token A is at the
beginning of the second line from the bottom. B is ahead and half way through line
3 going from left to right. Each of these lines are made up of squares where each
square has to show empty or A, B and l or s.

Therefore, the next function to create will draw a given square. This function
is ‘draw_square’ in Diagram 5.4 and will be part of the drawing of the board on
which the game is played. Note that ‘putline’ is a built-in function that outputs a
string to the control window.

Diagram 5.4
‘draw_square’

Moving a Token

The input parameter to this function is an integer and is the number of the square.
The function will respond with the following side effects:

• If a snake starts on that square, we will mark it ‘s..’.
• If a ladder starts on the square, we will mark it ‘l. . .’.

Note that a snake and a ladder cannot both start on the same square.

• If player ‘A’ and/or player ‘B’ is on the square, we will mark it ‘A..’, ‘B..’ or
‘AB’..

Note that a player will not be found on a square where a snake or ladder starts.

• A blank square will be marked ‘....’.

Keeping all the above points in mind, look at the function ‘mark_str’ in
Diagram 5.5. There is a general component, #0, which returns the default mark.
The other six components correspond to the different combinations detailed above.

170 5 Functional Thinking

‘mark_str’, component #0.

‘mark_str’, component #1 ‘mark_str’, component #2

‘mark_str’, component #3 ‘mark_str’, component #4

‘mark_str’, component #5 ‘mark_str’, component #6

Diagram 5.5 ‘mark_str’

In ‘mark_str’, component #1 would correspond to a blank square. Components
#2 to #4 are the cases where there are no snake or ladder starting squares, but the
squares have A and/or B on them. Components #5 and #6 would correspond to a
square being a snake/ladder starting point. Component #0 is simply the default case.

As components #0 and #1 return the same result, it is tempting to think we can
do without one of them. However, if we leave out component #1, the combination
of parameters ‘#0, #0, False, False’ would match most closely to component #6,
thus all the blank squares would be marked ‘l. . .’. The only component we could do
without is component #0, but it is always a good idea to have a default case, even if
it is never expected to match.

(4) ∗Define the function ‘mark_str’ in Diagram 5.5.

(5) ∗Define the function ‘draw_square’ in Diagram 5.4.

Now let us move on with the rest of the drawing of the board. In a snakes and
ladders game the players move along 100 squares from bottom left to top left, like
this:

Project: Using Pattern Matching 171

100 99 98 97 96 95 94 93 92 91
81 82 83 84 85 86 87 88 89 90

.....................

.....................
20 19 18 17 16 15 14 13 12 11
1 2 3 4 5 6 7 8 9 10

There are 10 rows of 10 numbers each. If this is to be printed in the usual way,
from top to bottom, left to right, we will print row 10 down to row 1. If we are
printing an odd row then the numbers are increasing, if we are printing an even row
then the numbers are decreasing.

Look at function ‘draw_board’ in Diagram 5.6. The function ‘prog1’ calls
the function ‘newline’ first, which simply prints a newline character (see ‘Getting
Started’, Chapter 1). The function ‘list_of_int’ is a built-in function that creates a
list of integers, in this case starting at #10, ending at #1, and going down in steps of
#1. These are the row numbers. The built-in ‘map’ will apply ‘draw_row’ to each
of these row numbers in turn.

(6) ∗Define the function ‘newline’ in Diagram 5.7.

Look at function ‘draw_row’ in Diagram 5.8. If we consider a particular row,
say 2, then this row will end (as far as the player is concerned) in 20, and it will be
an even row.

The function ‘even_row’ will return ‘True’ or ‘False’. It does this by calculating
the remainder on division by #2 (mod #2, which is the built-in ‘%’) of the number
and compares this with #0.

Diagram 5.6 ‘draw_board’

Diagram 5.7 ‘newline’

172 5 Functional Thinking

Diagram 5.8 ‘draw_row’

Diagram 5.9 ‘even_row’

(7) ∗Define the function ‘even_row’ in Diagram 5.9.

The function ‘row_ending’ draws the squares in the row ending with the given
integer, and will have two components , one for an even row and one for an odd row.
The default case is the odd row.

The function ‘row_ending’ calls the simple function minus9.

(8) ∗Define the function ‘minus9’ in Diagram 5.11.

(9) ∗Define the function ‘row_ending’ in Diagram 5.10.

Diagram 5.10 ‘row_ending’

Project: Using Pattern Matching 173

Diagram 5.11 ‘minus9’

Diagram 5.12 ‘start’

(10) ∗Define the function ‘draw_row’ in Diagram 5.8.

(11) ∗Define the function ‘draw_board’ in Diagram 5.6.

At the start of the game the players will begin on square 1. The random number
generator ‘rand’ will be used later to simulate throwing the dice, so to seed the
generator we need to call the built-in ‘srand’.

(12) ∗Define the function ‘start’ in Diagram 5.12

After the game has been started, each player will throw a dice and move that
number of squares. If a player lands on a snake, they will go down the snake. For
example, if a player lands on square 83, they will immediately go to square 21. The
function ‘snake #3’ returns #21. For any ‘non-snake’ square N, ‘snake N’ will return
#0. A similar rule applies to ‘ladder’.

So to update a player’s score when they land on square N:

• if ‘snake N’ and ‘ladder N’ both return #0, the player’s new score is simply N,
• otherwise it is the value of ‘snake N’ + ‘ladder N’, as only one can be non-zero.

Look at function ‘update_score’ in Diagram 5.13.
The input parameters to this function ‘update_score’ are the value of the dice

throw, and the name of the player, A or B. The throw value is added to the existing
score and tested against 100, as we have to throw the exact value to win. There is a
new score for the player only if the test returns True.

174 5 Functional Thinking

Diagram 5.13
‘update_score’

Diagram 5.14 ‘new_score’

Diagram 5.15 ‘correct_score’

Now look at ‘new_score’ in Diagram 5.14. Here the new score for the player is
set to the correct score, depending on the values of ‘snake’ and ‘ladder’ for this
square.

(13) ∗Define the function ‘correct_score’ in Diagram 5.15

(14) ∗Define the function ‘new_score’ in Diagram 5.14.

(15) ∗Define the function ‘update_score’ in Diagram 5.13.

Project: Using Pattern Matching 175

Diagram 5.16 ‘go’

Diagram 5.17 ‘throw_dice’

Diagram 5.18 throw_six?

To play the game, we call the function ‘go’ in Diagram 5.16. The input parameter
to this function is the player ‘A’ or ‘B’. The function throws the dice, updates the
score, draws the board and then has another go if a six was thrown. The function
‘throw_dice’ in Diagram 5.17 is a function to generate a random number between
1 and 6, using ‘%’ (modulus).

(16) ∗Define function ‘throw_dice’ in Diagram 5.17.

The function ‘throw_six?’ will call ‘go’ again if the integer input parameter is
#6.

(17) ∗Define ‘throw_six?’ in Diagram 5.18.

The function ‘go’ will be declared at this stage but not defined yet.

(18) ∗Define the function ‘go’ in Diagram 5.16.

176 5 Functional Thinking

Diagram 5.19 Network of
selected functions for
‘snake1’

Now you can play the game. First, type ‘start’ in the CONTROL window,
followed by go ‘A’, then go ‘B’, and so on.

QUERY> go ‘A’
#4
.... l...
<- -> s.. s..
.... l... s.. <-
->
.... s.. l... <-
->
.... l... <-
-> s.. B..
.... A.. <-
-> l... l...

Finally, for Stage 1

Save your database and call it ‘snake1’. Create a network view by opening a net-
work window, go to the ‘find’ ‘menu’ and click on ‘Create/Update network from
database’ Diagram 5.19. This may require a little rearranging and the deletion of
some functions to look neat. A proposed arrangement is shown in Diagram 5.19.
When you are satisfied with its appearance, commit it just like a function window.
Other views of the network, showing different functionality, can be created in sepa-
rate network windows.

Project: Using Pattern Matching 177

Snake2: Snakes and Ladders

Introduction

It is tedious to type start, followed by go ‘A’, go ‘B’ and so on until the game is
over. Just hitting a key would be nice. So some kind of ‘loop’ is needed.

Controlling the Cycle

This cycling is achieved by the function play in Diagram 5.20.
The function ‘progN’ calls the function ‘start’, followed by ‘next_go’ which

will call itself, as long as the user selects the ‘go_ahead’ key ‘y’ (see Diagram
5.22). The function start has changed slightly to add information for the user.

(1) ∗Make the changes to ‘start’ as in Diagram 5.21.

The function ‘go_ahead?’ in Diagram 5.22 simply asks the user for confirmation
to carry on with the game.

(2) ∗Define the function ‘go_ahead’ in Diagram 5.22.

Diagram 5.20 ‘play’

178 5 Functional Thinking

Diagram 5.21 ‘start’

Diagram 5.22 ‘go_ahead?’

The function ‘next_go’ in Diagram 5.23 has three input parameters. The first
determines whether it carries on with the game, the second is the player for the next
go, and the third is the score of the opponent.

If the result of ‘go_ahead?’ is False, the game stops. If the score of the opponent
is 100 a message is printed and the game stops. Otherwise, the function ‘go’ is called
for the current player, then ‘next_go’ is called for the other player, along with the
‘score’ for the current player.

(3)∗Define the simple function ‘other_player’ in Diagram 5.24.

(4) ∗Define the function ‘next_go’ in Diagram 5.23.

(5) ∗Define the function ‘play’ in Diagram 5.20.

The other modification to this version is a clearer picture of the board. Instead
of this

.... l... <-
-> s.. s..
.... l... s.. <-
->
.... s.. l... <-
->
.... l... <-
-> s.. B..
.... A.. <-
-> l... l...

Project: Using Pattern Matching 179

‘next_go’ component #1 ‘next_go’ component #2

‘next_go’ component #0

Diagram 5.23 ‘next_go’

Diagram 5.24 other_player

we will print this:

.... 94 <- 91
81 -> 216
.... 825 <- 71
61 ->
.... 14 79 <- 51
41 ->
.... 63 <- 31
21 ->3 B...
.... A.. <- 11
01 -> 23 70

180 5 Functional Thinking

‘row_ending’, component #0

‘row_ending’, component #1

Diagram 5.25 row_ending

Instead of ‘s’ denoting the start of a snake we print the number of the square at
the end of the snake. We do the same for a ladder. The function ‘draw_row’ has an
extra newline. There are also changes for function ‘row_ending’ in Diagram 5.25.

We have added a new function here, called ‘int2_to_str’ in Diagram 5.27. This
function converts a 2-digit integer into a string for printing. It makes use of a func-
tion called ‘int_to_char’ defined in Diagram 5.26. ClarityPro has this as a built-in
function so this will not be required to be defined. This function simply converts a
single-digit integer into its character equivalent. So if running under ClarityLite:

Project: Using Pattern Matching 181

Diagram 5.26
‘int_to_char’

Diagram 5.27 ‘int2_to_str’

(6) ∗Define function ‘ int_to_char’ in Diagram 5.26.

(7) ∗Define function ‘ int2_to_str’ in Diagram 5.27.

(8) ∗Make the changes to ‘ row_ending’ in Diagram 5.25.

The function ‘mark_str’ has changed too. There are now only five components.
Components #1 to #4 are unchanged. The other two components can now be deleted.
So remove the old components #5 and #6. Go to the ‘Find’ menu and click on
‘Remove . . .’ then chose Remove picture and Faith code. Look at component #0 in
Diagram 5.28 and edit the existing component #0 to look like that.

This component alone will deal with all the squares that are the starting points
of a snake or a ladder. The ‘snake’ and ‘ladder’ functions are added together,
because only one of them is non-zero, and the result converted to a string. This
is then converted to two characters by the built-in function ‘explode’. The function
‘chars_to_mark’ in Diagram 5.29 converts these to the string to be printed.

(9) ∗Define the function ‘chars2_to_mark’ in Diagram 5.29.

(10) ∗Make the changes to ‘mark_str’ in Diagram 5.28.

182 5 Functional Thinking

Diagram 5.28 ‘mark_str’
component #0

Diagram 5.29 ‘chars2_to_mark’

Diagram 5.30 Network of
selected functions for
‘snake2’

Reference 183

Finally, for Stage 2

Save your database (chose ‘Save as ..’) and call it ‘snake2’.
As before create a network view. A proposed arrangement is shown in Diagram

5.30. When you are satisfied with its appearance, commit it. Other views of the net-
work, showing different functionality, can be created in separate network windows.

Exercise 5.3

1 Change Snake 3 players instead of two.
2 Change Snake for N players where N is a parameter of ‘play’. Do not worry about

the board layout.
3 Use a number to indicate more than one person on a position.
4 Indicate on the far right of the board the players on that line. Mark the position

number for each player.
5 Create a new hazard ‘trap’ which holds a player for n throws where n can vary

between 1 to 3.
6 Create a new advantage where a position will allow a player to leave a trap for

other players.
7 Create a ‘guard’ which allows a player to escape a ‘trap’ or at least reduce the

penalty a trap imposes.

Reference

Glaser H., Hartel P. H. and Garratt P. W. (2000) ‘Programming by Numbers’, The Computer
Journal, Vol. 43, No. 4. pp. 252–265

Chapter 6
Thinking Practically

Charity never faileth: but whether there be prophecies, they
shall fail; whether there be tongues they shall cease; whether
there be knowledge it shall vanish away.

Corinthians 13, 8.

Introduction

So far, we have mostly ignored how the machine interprets the functional
representation generated by Clarity. We have discussed the stack and noted that
this uses up different amounts of memory depending on what you do. We also note
that despite the efforts of the technologists to provide machines of infinite speed and
infinite memory computers are still limited. We will need to consider the practical
limitations of these computers by designing our solutions to minimise the use of the
computer’s resources.

We have also considered ‘elegance’ as a valuable concept that addresses our own
limitations as Homo sapiens. An elegant representation is also a simple one as well
as providing greater generality. The skill we have to achieve is to retain both ele-
gance and computational efficiency in program design.

Experience has shown us that there is a neat balance that can be retained between
the functional representation, as expressed in any functional language, and an imper-
ative representation, as might be expressed through an imperative language. For this
reason, we include functions that are really imperative procedures. We will intro-
duce some of these ‘imperative’ functions here and give some advice on how to
retain representational elegance.

Conditional Control

The flow of processing in a program needs conditional control that depends upon a
test so that some data items are treated differently to others. One of the kinds of test
often required is where a particular data item is equal to some form or structure.

185T. Addis, J. Addis, Drawing Programs: The Theory and Practice of Schematic
Functional Programming, DOI 10.1007/978-1-84882-618-2_6,
C© Springer-Verlag London Limited 2010

186 6 Thinking Practically

a General b Specific c Specific

Fig. 6.1 Pattern match

This can be dealt with by using the in-built pattern matching as in recursion
(Fig. 6.1).

In the example shown in Fig. 6.1 (Pattern Match) we have it such that when
the left-hand list is empty we stop the processing and return the right-hand list and
vice versa. This pattern match approach to control is by far the best because it is
both representationally neat and it is computationally efficient; it should be used
wherever possible. However, the tests for some situations do not conform to such a
simple pattern match.

Consider the problem of deciding when to round a number up or down. The nor-
mal assumption is that any number whose decimal part is greater than or equal to
0.5 should be rounded up. However, such a decision does not rely upon any exact
match. To resolve this explicitly (there is a better way of doing the same job by
adding 0.5 to the number and ‘fix’ing the result) we introduce an intermediate func-
tion that transforms the test (>= 0.5 in this case) to a category expressed in terms
of (say) an enumerated constructor (a constructor without arguments). The library
function ‘if’ is the simplest and most basic of this type of approach. The use of the
function ‘if’ to make the rounding decision by converting the test to a Boolean is
shown in Fig. 6.2. The function ‘if’ is defined in Faith such that

fdec fdef
if::=Bool→?0→?0→?0; if True?1?2::=?1;

; if False ?1?2::=?2;
;

This definition converts the inexact match into an exact match through the
Boolean values ‘True’ and ‘False’

The use of the function ‘round’ (see Fig. 6.2) can be shown by the following
example:

QUERY> round #r3.6
#4
QUERY> round #r3.4
#3

Conditional Control 187

Fig. 6.2 Conditional control

Another example of the use of the function ‘if’ is in the situation where we have
two objects on a plane each of a different size. Now suppose one of the objects was
to move to a new co-ordinate position. The question arises can we provide a function
that will show if the two circular objects collide if the move were to take place? A
collision in this case is considered where the two objects are within 0.1 cm of each
other (see Fig. 6.3a).

Figure 6.3b shows a solution using the user-defined co-ordinate operation ‘dis-
tance’. The function ‘distance’ gives the measure between the two centres of the
circular objects. If the distance is less than the sum of the two sizes (given as radii)
+ 0.1 then the constructor ‘Hit’ is returned otherwise ‘Miss’. The constructors ‘Hit’
and ‘Miss’ could be any pair of functions. The function ‘if’ can be considered to be

a. Object distance b. Detecting the collision of two objects.

Fig. 6.3 Colliding objects

188 6 Thinking Practically

equivalent to a Boolean controlled switch where the first parameter is the toggle and
the other two parameters the alternatives.1

A more extensive use of conditional control is where we need a function that will
divide a continuous variable into a set of discrete ranges. Clothes size, for exam-
ple, comes in discrete ranges of Sm, M, L, XL and XXL. This may depend on,
for example, the size of a chest measurement for jackets, which is a continuous
variable.2

The set of identifiers for these ranges is expressed as a set of constructors
(Fig. 6.4). This set of ranges is a type of scale.3 Scales normally form sets of con-
structors and it is usual to include in the set a name for the empty set. Here the empty
set is interpreted as any variable that is outside the range considered; so we add the
term ‘Not_Size’.

The most natural approach to the problem is to start using the function ‘if’ in
such a way that it is triggered by a test that compares the input value with the dif-
ferent ranges. If it fails one range then the value is passed onto the next test until it
passes and then the range name is given as a result. The problem with this is that
the function soon becomes cluttered with all the required tests. Further, most of the
tests are the same process repeated with different values.

It is always worth asking the question ‘Is there any way in which a pattern
of repeated operations can be written only once?’ The answer in this case is ‘yes’
and Fig. 6.5 is an example of a single element of the repeated pattern of functions.

Observe how in Figs. 6.3 and 6.5 the ‘junctions’ have been used to annotate the
parameters of the function as well as being used to link across the function ‘by

Fig. 6.4 The set of ranges
for clothes size

1Note that ‘if’ works in reverse (or upside down) to the normal flow diagram equivalent but is
similar to that found in spreadsheets.
2Note that the constructor ‘Sm’ is chosen rather than ‘S’ because ‘S ’ is already a special
built-in function referred to as a combinator (see Chapter 9).
3The naming of items is called a ‘nominal’ scale and if these names have a special order (as they
do here) then it is called an ‘ordinal’ scale. Other scales are ‘interval’ which have no absolute zero
(such as ‘date’) and ‘ratio’ which has an absolute zero (such as volume or time interval).

Conditional Control 189

Fig. 6.5 The function
‘chest_size’ that compares

name’ (e.g. ‘not size’) rather than by an arrow. This helps keep the function diagram
well laid out by:

• avoiding crossed arrows,
• ensuring that no arrows point up the diagram,
• not being restricted in the placement of function icons because of the order of

their input parameters.

Figure 6.6 shows how this test function is used in a cascade of the same function
‘chest_size’. The initial condition is ‘Not_Size’ and the entry into the lowest range
is #r35–#r38. If the measurement fits into this first range, then ‘Sm’ is passed for-
ward otherwise ‘Not_Size’ is passed on. This continues until the final stage whence
the identifier of what range fits is the result. If no range fits then ‘Not_Size’ will be
the result.

Fig. 6.6 A cascade of tests

190 6 Thinking Practically

The advantage of the function ‘chest’ (Fig. 6.6) is that it shows very clearly
the cascade, the ranges4 and their identifiers. However, the length of the cascade
is limited because the function diagram very quickly becomes cluttered. Therefore,
we evoke the question again whenever we see a repeated set of operations ‘Is there
any way in which a pattern of repeated operations can be written only once?’ Yet
again, the answer is ‘yes’ or at least nearly ‘yes’.

The solution here is to use the properties of ‘pattern match’. Instead of the func-
tion ‘chest_size’ being called in the same component of the function ‘chest’, it
can be called once by different components. We do this via the auxiliary function
‘chest_aux’ as shown in Fig. 6.7.

Each component of the auxiliary function is devoted to a particular range. It is
a constraint on this set of ranges that they must be contiguous. This is ensured by
the way in which the recursive call uses the upper bound of the current range to be
the lower bound of the next range. In this way, a cascade through the components is
achieved until either a range is found to satisfy the input value or the final component

a b The generic condition

c The start of the cascade d Next step in cascade

Fig. 6.7 Replacing the cascade bycomponents

4The ranges given have been taken from ‘Cotton Traders’ catalogue.

Higher-Order Functions 191

is reached. The final component, in the linked set of components, is where there is
no component that has the lower bound given by the last recursive call. This triggers
the generic component (Fig. 6.7b) that returns the answer. Note that the order of
parameters has been chosen to ensure that the pattern matching works primarily
with the lower bound measure rather than size.

This approach has the advantages of providing a simple and single representa-
tion of each range. This single template can be reused to generate new components
by simply changing the values in the icons and re-committing the component as a
new. It allows many extensions of the set of ranges at any time without any further
complexity. It is also a very efficient process in that it will drop out of the cascade
as soon as a satisfied test is reached. Some test queries are

QUERY> chest2 #42
L
QUERY> chest2 #37
Sm
QUERY> chest2 #30
Not_Size
QUERY> chest2 #50
XXL
QUERY> chest2 #55
Not_Size

However, such a mechanism relies heavily upon the properties of ‘best pattern
match’.

Higher-Order Functions

A higher-order function is simply one that has at least one parameter (argument)
that is a function. Higher-order functions give us another solution to overcoming
the problem of repeated program structures. For example, in Chapter 3 we defined
a function for adding two co-ordinates and this function forms a pattern of con-
nections that is almost identical for many other functions of the same kind. In this
case, we note that the addition and subtraction of two co-ordinates only differ by
a single function (i.e. the function ‘+’ is replaced by ‘–’, see Fig. 6.8). Therefore,
we could reason that if the function can be transferred across as a parameter then
we will only need to construct a single function that will perform a set of related
operations.

Thanks to the ability to create our own higher-order functions it is possible to
design a function that will accept a function as one of its parameter values. All we
need do is design a single function that will take a function from a range of potential
functions and apply it within itself to produce a unique result. However, a guard is
required to be placed on the type of function that can be passed over as a parameter

192 6 Thinking Practically

First parameter of
function showing type.

The Co_Ord constructor.
Needed to‘package the

values into a single.‘value’.

Second parameter of
function showing type.

The X constructor

The output type of + in
this case (might have
been basic type int).

Library function
that adds two

numbers together.

A function to
extract the real

value of the y co-
ordinate.

The function to
extract the real
value of the x
co-ordinate.

Fig. 6.8 The addition of two co-ordinates

value. So an extension of the type checking is needed to ensure that the correct form
of function (function type) is deployed.

The key to creating a higher-order function is the function ‘@’. This is usually
called the ‘apply’ function since it takes as its first parameter a function and applies
it to its second argument. At the query level, we note that

QUERY> add1 #5
#6
QUERY> @add1 #5
#6

At this level the function ‘@’ looks a waste of time but it is necessary if you wish
to express the function as a variable within the context of a function definition. In
certain special cases it is possible to get the same effect without the use of an ‘@’. If
the function and its parameters are, in their turn, parameters of the function within
which this operation is required we can reference the parameter by its position in a
parameter lozenge. Note that parameter positions always start at ?0. Thus because
the positions are reference by a variable ?N and when we wish to use a local variable
for purposes of pattern match of lambda functions we tend to always use a number
greater than the number of parameters. This is shown by the function ‘example’ in
Fig. 6.9. It is queried, thus

QUERY> example + #3 #5
#8

Higher-Order Functions 193

Fig. 6.9 Using parameter
position as a reference

Figure 6.10 illustrates a generalised vector operation (‘vop’) where any function
of the type (real → real → real) can be used to combine two co-ordinates to produce
a co-ordinate result. We have then

QUERY> vop − (Co_Ord (X #r3.7)(Y #r5.2)) (Co_Ord (X #r2.4)(Y #r3.71))
(Co_Ord (X #r1.300000)(Y #r1.490000))
QUERY> vop + (Co_Ord (X #r3.7)(Y #r5.2)) (Co_Ord (X #r2.4)(Y #r3.71))
(Co_Ord (X #r6.100000) (Y #r8.910000))
QUERY> vop / (Co_Ord (X #r3.7)(Y #r5.2)) (Co_Ord (X #r2.4)(Y #r3.71))
(Co_Ord (X #r1.541667)(Y #r1.401617))
QUERY> vop ∗ (Co_Ord (X #r3.7)(Y #r5.2)) (Co_Ord (X #r2.4)(Y #r3.71))
(Co_Ord (X #r8.880000)(Y #r19.292000))

Function
Declaration Type

Application of
Function

Application of
Function

First position

Second position

Fig. 6.10 The creation of a higher order function

194 6 Thinking Practically

Any function that takes on two real numbers and returns a real number can be
used, but not all of them will be useful.

Non-recursive Approach to Loops

There is a set of built-in higher-order library functions that help to perform what is,
in effect, a loop without resorting to recursion. This has the advantage in most cases
of not using the stack, which is limited in size. Consider ‘factorial’ again. Another
way of defining factorial is as

factorial (N) = [1 ∗ 2 ∗ 3 ∗∗ N]

In Clarity/Faith we have a library function (‘list_of_int’) that will generate a list
of integers from any number to any greater number in a specified step. What we need
is a means of multiplying these generated numbers together as per definition above.
For this, we have to call upon the higher-order function ‘foldr’. The name ‘foldr’
stands for the concept of ‘fold right’. It applies a two-argument function, given as its
first parameter, and to a list of arguments, given as its second argument. Because it is
applying a two-argument function, this function requires an initial second parameter.
This initial second parameter is provided by the second argument of ‘foldr’ (e.g. #1
in Fig. 6.11). The first argument of the applying function is taken as the last item of
the list. Once started, the result of the applied function is used to supply its second
argument for the next item on the list as it continues to repeatedly apply itself all the
way to the start of the list (N). The definition describes the mapping thus

foldr :: = (?0 → ?1 → ?1) → ?1→list?0 → ?1

An example of its application at the query level is

QUERY> foldr append [‘A’][[‘b’‘c’][‘d’‘e’]]
[‘b’‘c’‘d’‘e’‘A’]

In Fig. 6.11, it can be seen to move down the list (N–1) applying the result of the
operation to be folded (‘∗’ in this case) to each number until there are no more num-
bers in the list. The final result is returned as the answer to the completed process.
Fold left (‘foldl’) starts at the beginning of the list. In the example of Fig. 6.11, it
makes no difference but in some case, it might. For example,

foldl ::= (?0→?1→?1)→?1→list?0→?1

QUERY> foldl append [‘A’][[‘b’‘c’][‘d’‘e’]]
[‘d’‘e’‘b’‘c’‘A’]

Non-recursive Approach to Loops 195

The multiply ‘∗’
function to be run
through the list.

Higher order function
that ‘roles’ the function

∗through the list

Generates a list of
integers from 1 to int in

steps of 1

Start of the list an dinitial
first parameter for ∗

Size of step in
generatinglist.

One of two Type
lozenges to show

input types expected
for function

Fig. 6.11 Pre-generation factorial, max. stack depth = 2 and list int = N + 1

A range of higher-order functions is available (written in C) that helps avoid
recursion and thus are not stack limited. As we have seen Fig. 6.11 is an alterna-
tive method to calculate factorial as a list of integers from #1 to N in steps of #1
where they are all multiplied together (‘foldr’). Here the function ‘foldr’ has as its
first parameter the function ‘∗’ that is used to calculate the result by applying this
function to the list of numbers. There is no use of the stack but there is the need to
generate the list of numbers. This method places an upper limit on the operational
potential in that the list will be limited by memory.

A way of dealing with an unlimited number of cycles is to take charge of any
cumulating values. However, this can only be done in principle in the case of fac-
torial. This is because we are bounded by the maximum integer value within the
machine unless we define an alternative to the integer as a list of integers. Then the
maximum length of the list that can be stored would set limits.

We introduce a simple ‘data structure’ or ‘object’ by using the built-in constructor
‘Pair’ (we can define our own constructor if we wish). This constructor can take on
two specified types to make a completed object. To this end, we define a terminating
test (‘first_is_one’) which tests the operations done by the function ‘until’ to see if
the first of the pair is equal to unity (#1).

Note, in Fig. 6.12 (third picture), how the element ?1 of the pattern (Pair ?1 ?2) in
the specified input parameter can be accessed by direct reference by name (i.e. ?1).
The same technique is used in the function ‘reduce’ that not only multiplies the
second value by the first but also reduces the first value by #1 and replaces the
second value by the increasing result.

196 6 Thinking Practically

Fig. 6.12 Carry-forward factorial. Max. stack depth = 3

Factorial is finally calculated by the higher-order function ‘until’ which accepts
these two functions to test for termination, what to do each time and from where to
start. The definition

until ::= (?0→bool)→(?0→?0)→?0→?0

For example,

QUERY> until (<=#5) add1#1
#5

There is no expanding demand of computational resources with this version of
factorial since function ‘until’ does not call upon the use of the stack. A test of its
operation is

QUERY> fact #0 QUERY> fact #5

#1 #120

QUERY> fact #1 QUERY> fact #9

#1 #362880

Creating Two Useful Functions

ClarityLite has had the range of library functions much reduced. The main rea-
son for this is that it was found that a large library distracts from the principles of
learning Schematic Functional Programming. Further, many of the extended library
functions can be recreated using functions from the reduced range of ClarityLite. So
in one restricted sense, we are not limited (see Chapter 5). What cannot be created
is access to computer facilities such as file operations, graphics and links into other
languages. However, there are two useful functions that we can create: ‘combine’
and ‘zip’.

Creating Two Useful Functions 197

b Function ‘combine_aux’ c Terminating
‘combine_aux’

Fig. 6.13 The function ‘combine’

There are times when the parameter values we wish to apply a function to are
ordered in a list. The function ‘combine’ performs this task. Figure 6.13a defines
the function ‘combine’ in terms of ‘combine_aux’. However, we would recom-
mend that if you wish to use this combine with ClarityPro then you should give it
another name such as ‘my_combine’. The function ‘combine_aux’ takes a function
description in terms of a list, thus

QUERY> combine_aux [+ #3 #5]
#8
QUERY> combine_aux [– #3 #5]
#-2

In effect, it converts square brackets into round brackets (it does not really; at
least not straight away, that is just its effect). Note that ‘combine_aux’ has to be
applied backwards because the process is reversed due to the way in which the stack
is used for recursion (see also Chapter 4). Thus, expanding the process we have

combine_aux [+ #3 #5]
(@(combine_aux [+ #3]) #5)

(@(@(combine_aux [+]) #3) #5)
(@(@+ #3) #5)
(@(+ #3) #5)

(+ #3 #5)
#8

Note how the pattern match is used to define a list that contains a single element.
Such structure recognition is another very valuable tool derived directly from pattern
match. We use this technique again in defining the function ‘zip’ but in a slightly
modified form. Again, we advise you to use another name, such as ‘my_zip’, if you
wish to transfer your work to ClarityPro.

198 6 Thinking Practically

There are also many occasions when all the different values you wish to
‘combine’ with a function are in different lists. It would be nice to have a function
that ‘zips’ the lists together to form a set of lists that contain the different values,
each in a single list, and in the correct order.

We would like ‘zip’ to be as general purpose as possible (often the way to elegant
programs). We thus consider the most general case of its use where we wish to make
any set of lists (provided they are all the same lengths) into another set of lists (see
Fig. 6.14.). These new lists contain, in the same order, one example from each of
the other lists. If you consider that the set of lists is equivalent to a matrix, the ‘zip’
is equivalent to the matrix operation ‘transpose’.

QUERY> zip[[‘a’‘b’‘c’][#1 #2 #3][‘X’‘Y’‘Z’]]
[[‘a’#1‘X’][‘b’#2‘Y’][‘c’#3‘Z’]]5

The function ‘zip’ uses the built-in higher order function ‘map’. The function
‘map’ is a very valuable function since it will apply a function (its first parameter)
to a list of values (its second parameter). In this example we have

QUERY> map head [[‘a’‘b’‘c’][#1 #2 #3][‘X’‘Y’‘Z’]]
[‘a’#1‘X’]
QUERY> map tail [[‘a’‘b’‘c’][#1 #2 #3][‘X’‘Y’‘Z’]]
[[‘b’‘c’][#2 #3][‘Y’‘Z’]]

a Generic ‘zip’ b Empty list case c Terminating condition

Fig. 6.14 The function ‘zip’

5It is likely that the output will look like the following:

(:[‘a’ #1‘X’](:[‘b’ #2 ‘Y’](:[‘c’ #3 ‘Z’]nil)))
To get it in a readable form you have to query it again, thus

QUERY>(:[‘a’ #1 ‘X’](:[‘b’ #2 ‘Y’](:[‘c’ #3 ‘Z’]nil)))
[[‘a’ #1 ‘X’][‘b’ #2 ‘Y’][‘c’ #3 ‘Z’]]

A permanent solution for any particular function is to use the interpreter function ‘eval’ just
before the output.

Non-recursive Approach to Iteration 199

and of course

QUERY> zip[[‘b’‘c’][#2#3][‘Y’‘Z’]]
[[‘b’#2‘Y’][‘c’#3‘Z’]]

where

QUERY> : [‘a’#1‘X’][[‘b’#2‘Y’][‘c’#3‘Z’]]
[[‘a’#1‘X’][‘b’#2‘Y’][‘c’#3‘Z’]]

which, of course, is the result. The terminating case is where we have a list of empty
lists. Since we do not know how many lists this is likely to be we cannot just put
[nil nil nil . . .]. However, we can represent the list as a head and a tail, thus

:head tail

Now since all lists will become empty (nil) at the same time a list of indefinite
length can be represented as

:nil ?1

where ‘?1’ represents anything including a list or nil.

Non-recursive Approach to Iteration

There is a higher-order function called ‘iterate’ that captures all the essential ele-
ments of normal iteration. However, it is not often used since many of the desired
results can be done more directly with the higher-order function ‘map’. The func-
tion ‘map’, as we have seen, is used to apply a function to a list of items; items
which may be complex. For example, taking a list of paired integers and characters
by using the built-in constructor ‘Pair’. Then we can apply the built-in operation
‘first’ to each item giving us a list of integers, thus

QUERY> map first [(Pair #1 ‘a’)(Pair #2 ‘b’)(Pair #3 ‘c’)(Pair #4 ‘d’)]
[#1 #2 #3 #4]

Alternatively, we could have applied the function ‘second’ to each item to get a
list of characters.

QUERY> map second [(Pair #1 ‘a’)(Pair #2 ‘b’)(Pair #3 ‘c’)(Pair #4 ‘d’)]
[‘a’‘b’‘c’‘d’]

200 6 Thinking Practically

On the other hand, we may want a list of integer and character pairs but only
have lists of the items separately. The first step is to ‘pair’ the two lists together.
This can be done for two lists of the same length with the function ‘zip’. Zip takes
any number of lists as a list of lists and generates pairs, triples, or n-tuples depending
on how many lists there are. Therefore, we can get our sets of two items together as
follows:

QUERY> zip [[#1 #2 #3 #4][‘a’‘b’‘c’‘d’]]
[[#1 ‘a’][#2 ‘b’][#3 ‘c’][#4 ‘d’]]

However, this is not a constructed pair. To bind the set of items to a function or
constructor we need the function ‘combine’. This will convert a list of items into
the parameters of a function to create an expression. For example,

QUERY> combine + [#3 #2]
#5
QUERY> combine Pair [#3 ‘c’]
(Pair #3 ‘c’)

So we can ‘map’ the Curried function ‘(combine Pair)’ over the list of pairs to
produce the structure we need.

QUERY> map (combine Pair) [[#1 ‘a’][#2 ‘b’][#3 ‘c’][#4 ‘d’]]
[(Pair #1 ‘a’)(Pair #2 ‘b’)(Pair #3 ‘c’)(Pair #4 ‘d’)]

‘Lambda’: Controlling the Parameter Assignment

Now suppose we wanted to divide a number (#3 say) successively with a range of
numbers then we could use the notion of the Curried function and write

QUERY> map (/#r3) [#1 #2 #3 #4]
[#r3.000000 #r1.500000 #r1.000000 #r0.750000]

On the other hand, suppose we wanted to divide each integer in a list by a number
(say #3 again). We would have to somehow inform the interpreter that each num-
ber to which the function is applied must be placed in the first parameter position
of divide (‘/’) and not the second as was done above. For this operation, we need
the ‘interpreter instruction’ (it is not a function) ‘lambda’. Note, that in Clarity,
‘lambda’ always appears in italic since it is not recognised as a function or con-
structor. In the ‘control window’ we can write the function we need, thus

QUERY> map (lambda ?7 (/?7 #r3))[#1 #2 #3 #4]
[#r0.333333 #r0.666667 #r1.000000 #r1.333333]

Non-recursive Approach to Iteration 201

The use of all these functions (i.e. ‘try_move’, ‘combine’ and ‘zip’) and the type
‘co_ord’ can now be drawn together to produce the function ‘check_move’. This
function takes a list of ‘objects’ each of which is represented by a position and size
pair. ‘Check_move’ assesses if a move to a particular position is going to cause a
‘Hit’ with any of the objects and if so which one.

Figure 6.15 shows the final version in Clarity of the function we started to pro-
duce that determines if a set of objects will collide while trying to move one of
them. The list of objects is given in the second parameter and each of these is tested
with ‘try_move’ to see if there is a Hit or a Miss. Since ‘try_move’ was defined
with the position and size of each object as separate parameters then each object
has to be ‘unpacked’ to get at the individual values. Since this is a one-off function
lambda is used to provide the parameter identification in a temporary function. This
temporary (and unnamed) function is applied to each object in the list returning, for
each object, a Hit or a Miss.

The list of Hits and Misses are combined with a list of positions obtained by
applying the function ‘first’ to each of the pairs. The two lists then form a list of
lists through the function ‘makelist’. The function ‘makelist’ is one of the few
functions (e.g. progN) that can take on any number of parameters. It is unique to
Clarity/Faith because it services the diagrammatic representation and allows ‘lists’
to be expressed.

The function ‘zip’ pairs each item of each list in order returning another list
of lists, this time of position and contact sub-lists. Each sub-list is converted to a
position and contact pair using ‘combine’. An example of ‘check_move’ in use
where ‘realtoc’ is described in Chapter 7, Fig. 7.2:

Strips out the co-ordinate
for each object.

Pairs up the object
co-ordinates to a

Hit or a Miss

A Function that
makes a list of all

its parameters.

?7 is a local variable used
by lambda to pick up each

Pair in the object list. List of objects

Puts each of the
co-ordinate/contact pairs
into the constructor Pair

Each object is tested by
‘try_move’ to see if

there is a Hit or a Miss

Single object
to be moved

Fig. 6.15 A function to check over a range of objects for a Hit or a Miss

202 6 Thinking Practically

QUERY> check_move (Pair (realtoc #r3.7 #r5.2) #r1.5) [(Pair (realtoc #r2.3 #r4.6)

#r2.3)(Pair (realtoc #r7.3 #r8.1) #r0.5)]

[(Pair (Co_Ord (X #r2.300000)(Y #r4.600000)) Hit)(Pair (Co_Ord(X #r7.300000)(Y

#r8.100000)) Miss)]

Much more can be done in keeping this diagram simple. It is also always impor-
tant that function names are chosen to be meaningful. Both these strategies can be
applied to ‘check_move’ by replacing the lambda expression by a single function.
This function tests to see if there is a ‘hit_or_miss’ and will return ‘Hit’ if there is
contact with another object and ‘Miss’ otherwise.

Editing out Sub-functions to a New Function Window

The replacement process is made easy in Clarity. To save a sub-function we can
either highlight the collection of functions we wish to use by holding down shift
and clicking on each function or we can lasso the functions. If we highlight, then
we can then go to the edit window as in Fig. 6.16 otherwise we go straight to the
edit window and lasso the functions we want (Fig. 6.17a).

Fig. 6.16 Pull down Edit
menu

In either case, we end up with the functions and their connecting arrows in a new
window. These we can rearrange and add to in the normal way to create the sub-
function we want. Figure 6.17b shows the result and Fig. 6.18 shows the final form
of the function ‘check_move’.

The Annotation Window

The annotation window we have introduced before. We have shown examples where
it can be associated with a diagram and any token within the diagram. As we have
emphasised, the purpose of the annotation is to help keep a record of the informal

The Annotation Window 203

a Lassoed sub-function b Final completed sub-function

Lasso or
highlight sub

function

Fig. 6.17 The function ‘check_move’

Strips out the
co-ordinate for each object.

Pairs up the object
co-ordinates to a

Hit or a Miss

A Function that
makes a list of all

its parameters.

List of objects

Puts each of the co-
ordinate/contact pairs

into the constructor Pair

Each object is tested by
‘hit_or_miss’ to see if
there is a Hit or a Miss.

This replaces the
lambda expression and
makes ‘check_move’
easier to understand.

Single object
to be moved

Fig. 6.18 Replace lambda expression by a single function

semantics of the function. Figure 6.19 shows where to find the call to opening an
annotation window. It is not in the list of windows, as one might expect, but under
the menu item ‘features’. This is because it is a feature of a window rather than a
stand-alone window (Fig. 6.20).

The annotation window can be filled with text. Again as we have suggested it is
always a good idea to include in the annotation an actual example (cut and pasted
from the control window) of the function. This provides a ready-made test if the
function needs to be debugged at some future occasion. When the annotation is
completed, the function is recommitted to link it with the annotation. Annotation is

204 6 Thinking Practically

Fig. 6.19 Calling an
annotation Window

Fig. 6.20 An annotation window associated with the function ‘hit_or_miss’

important; they are little messages to your future self when you may have to come
back to this code. Remember that living programs never remain the same.

There are nearly 400 library functions in ClarityPro, many of them created to
provide freedom of expression. There are also mechanisms for creating and gener-
ating Faith code. It is worthwhile to simply browse through the manual of functions
during periods of low activity such as watching television. In this way, you can get
a grasp of the full capacity of programming in Clarity.

Exercises 6.1

The following questions must not include recursion. However, sometimes it is useful
to create a recursive version first as a means of getting clear what has to be function-
ally done. Make sure all functions are well annotated and referenced (using junctions
where applicable). Network diagrams should also be created where required.

1. Write a function that will find the larger, smaller or any alternative comparative
property of two numbers in a list.

2. Write a function that will find the biggest, smallest or any alternative compara-
tive property. Do this first as a recursive function then without using recursion.

3. Do 2 another way that is also not recursive.

Project: A Simple Learning Strategy 205

4. Write a function to return a string that has a number of copies (first argument)
of its (second argument) a string.

5. Write a function to return a list that has an element (first argument) inserted into
the nth position (second argument) of a list (third argument).

6. Write a function that will return a sorted version of its argument list (second
argument) according to a comparator function (first argument).

7. Construct a single comparison function that extends the notion of ‘>’ and ‘<’
to include strings and clothes sizes. Use this function to sort lists of all strings
and clothes sizes as well as numbers of any kind and characters.

Questions 6.1

1. What two benefits would you expect from ‘elegant’ programming?
2. What important question should you ask yourself in order to produce an elegant

definition of a function?
3. In what three ways does a junction help provide elegance?
4. In pattern match, for multi-parameter functions what is the most important fea-

ture of the matching process?
5. How do you represent a function as a parameter when declaring a higher-order

function. Why is this representation important?
6. What is the single most important reason for avoiding recursion?
7. When declaring functions in ClarityLite that may have equivalent functions

already in ClarityPro library why should you make sure the names are distinct?

Project: A Simple Learning Strategy

Oxo: The Game Player That Learns

X

XO

O O

XO

The Basic Game

In this project, we will take you through five stages. At the end of each stage, you
will have a working learning program, a program that will play you “noughts and
crosses” (sometimes called “TicTacToe”) and it will also learn from its (and your)
mistakes. The first stage will not be very clever and will not learn from its mistakes.

206 6 Thinking Practically

Each further stage you complete will make the program smarter so that at in the end
it will learn how to play at least as well as you.

The first stage is rather long because so many little bits have to be built to make it
work. However, once done it is done and you can use these bits again for your own
and future projects. Each stage makes a big difference in how smart the program
becomes but strangely enough, gets less and less difficult for you to do.

If you are working with ClarityPro rather than ClarityLite it is worth checking
such things as the casting functions to ensure that they are not already defined in the
library.

The Game: The First Version

We have called this game “oxo” because of the noughts and crosses used to play the
game. It is a game for two players, one is ‘x’ and the other is ‘o’. They start with
an empty square grid of nine squares. The two players take it in turns to put their
mark on an empty square on the grid. The first to complete a horizontal, vertical or
diagonal row wins.

Building Your Stage 1 Program

When we build the first simple (and dumb) Clarity version of ‘oxo’, we will make
the program oxo be ‘x’, the player will be ‘o’, and we will allow the program oxo to
go first.

We have to do the following:

• Define the marks ‘x’, ‘o’ and for an empty square we will use ‘.’ So we have your
move, oxo’s move and empty place.

• Make a function that will say who has won.
• Make a function that will output a message to you.
• Identify what is a winning arrangement of xs or os and detect when that occurs.
• Make a function that can output a grid so that the game can be played. In practice,

we will put out two grids. One gives the numbers that represent the grid positions
that are free for you to use and one to show the game.

• Make a function that shows oxo what moves it can make in response to your
move.

You will be given instructions that are preceded by a bracketed step number and
an ∗ and underlined. For example,

(8) ∗Define the function ‘win_this’, Diagram 8b.

This instruction means that at this step 8 in the construction you should create
the function win_this. This is done by recreating the associated diagram 8b that
shows the function win_this as it should be drawn in a Clarity function window.
The instructions are not always given in the order in which the diagrams appear.

Project: A Simple Learning Strategy 207

In the end, it will not matter in what order you create your functions but you may
not be able to test them as you go along. It is always a good idea to try out each
function in the control window to make sure it works before you proceed. Also, do
not forget that many functions consist of more than one component. That is, it has
more than one definition.

There is a lot to be done on the drawing of the grid and other ways the program
must communicate with you. Once done the fun of how the program makes a deci-
sion to play with you can be worked on. In the first stage the decision is made simply
at random. It will be very easy to beat. In stage 2 we will show you how to change
this first Oxo so that it can learn from its successes.

The First Step: Making Your Mark

First, we define the marks ‘x’ and ‘o’ that go on the grid. Look at Diagram 6.1. Here
we define the type mark. Notice the two extra marks, ‘.’ and ‘Unknown’. There are
two reasons for these:

(1) squares 1–9 on the grid can also be empty, and that has been defined as ‘.’, and
(2) square n, where n is less than 1 or n is greater than 9 does not have meaning,

so square n is Unknown.

Diagram 6.1 mark

(1) ∗Define the type mark Diagram 6.1.

This is done in a Constructor window as shown in Diagram 1 above.

Overview of the Program Oxo

Now look at the function oxo in Diagram 6.2. This function starts the game, plays
until the game is over, draws the grid and displays a message to say who won.
These four activities must be performed in the correct sequence, and we make sure
of that by using progN.

The function progN performs all the functions in a clockwise order (left to
right), and the result is the result of the last function, in this case bool. The term
bool references another basic type and it only takes two values, True and False.

208 6 Thinking Practically

Diagram 6.2 oxo

The reason for such a result is that win_or_draw returns True if the message is
printed successfully. Many functions return the simple type bool.

Now look at win_or_draw in Diagram 6.3. There are four versions of it, called
components. If you look at Diagram 6.2 you will see that win_or_draw is called
with two values. These are called input parameters. In this case, the parameters are
the results of the function calls ‘win x’ and ‘win o’. The function win returns the
value True or False. There are three possible outcomes: x wins, o wins, or there is
a draw. But, there are four combinations of True and False. We always make sure
we deal with all cases, and that is why we have four versions of win_or_draw.

Diagram 6.3 win_or_draw

Project: A Simple Learning Strategy 209

These four components will be numbered #0–#3 of 3. This may seem odd, but
it is usual practice in Clarity programs for the general case to be component #0,
and special cases to start at #1. Having different versions of a function is an exam-
ple of ‘pattern-matching’, that is, you will get the version of the function that best
matches your input parameters. In the case of win_or_draw the matches will be
exact.

Setting up Communications with Oxo

(2) ∗Define function newline Diagram 6.4.

The built-in functions decode and putchar will be described shortly.

Diagram 6.4 newline

(3) ∗Define the function message Diagram 6.5.

The type str is a string, i.e. characters enclosed by double quotes. putline is a
built-in function that prints a string. As you complete each function, try it out in the
CONTROL window to make sure that it works.

Diagram 6.5 message

210 6 Thinking Practically

Diagram 6.6 winnings

Detecting a Win

(4) ∗Define the function win_or_draw Diagram 6.3.

To complete this part of the program, we will look at the function win.
But first of all look at winnings in Diagram 6.6. This function returns a list of

lists of integers. An integer is another type. It represents positive and negative
whole numbers, and to distinguish it from a simple character it is preceded by ‘#’.
winnings makes a list of lists of the numbers of the squares in the grid that would
constitute a win, for example [#1 #2 #3] is the list of integers #1, #2 and #3 in the
top row. makelist is a ‘built-in’ function that makes a list for us, and will take any
number of input parameters. It is unusual in this, as the majority of built-in functions
and ALL the user-defined functions have a fixed number of input parameters.

(5) ∗Define the function winnings Diagram 6.6.

Remember to check it out by calling it in the control window.

Laying Out the Board

The next function to consider is square in Diagram 6.7. It takes an integer as an
input parameter and returns a type mark. Unknown is one of the marks. The func-
tion square is going to represent a square on the grid, for example, at some point in
the game, ‘square #3’ may be defined as ‘x’. Here we define the general case only,
as the other values for square will be changed as the game proceeds. More on that
later.

(6) ∗Define the function square Diagram 6.7.

Look at the function on_square in Diagram 6.8a. If its input parameters are x
and #1, for example, it will return True if ‘square #1’ returns x.

Project: A Simple Learning Strategy 211

Diagram 6.7 square

a ‘on_square’ b ‘win_this’

Diagram 6.8 ‘on_square’ and ‘win_this’ functions

Look at win_this in Diagram 6.8b. This function is defined as having mark
and list int as input parameters and returns bool (True or False). Suppose the input
parameter mark is x. map is a built-in function which applies ‘on_square x’ to each
of the integers in the list. For example if the list were [#1 #2 #3], the first application
would be ‘on_square x # 1’. The built-in and will return True if all the elements
in the list bool are True. So if all three squares have the same mark then win_this
returns the value True.

(7) ∗Define the function on_square Diagram 6.8a.

More About Winning

(8) ∗Define the function win_this Diagram 6.8b.

Look at function win in Diagram 6.9. The input parameter is mark (which will
be x or o), and the return value will be True or False. Suppose mark is x. ‘win x’ will
tell us if x has won. map applies ‘win_this x’ to all the lists of integers in winnings.
For example, ‘win_this x [#1 #2 #3]’ returns True if x is on squares #1, #2 and #3

212 6 Thinking Practically

Diagram 6.9 win

of the grid. map goes through all the winning lists and returns a list of bool. The
function or is a built-in that determines if one of the list is True, i.e. x has won.

(9) ∗Define the function win Diagram 6.9.

We cannot get very far with this game unless we draw the grid in some way. There
are some very basic built-in functions to input characters and output characters and
strings. These are putchar, putline and print. These are used to draw the grid in
two simple ways. For example,

x o 3 x o .

4 5 o . . o

7 x 9 . x .

Diagram 6.10 int_to_char

Project: A Simple Learning Strategy 213

Firstly, look at function int_to_char in Diagram 6.10. This function takes an
integer and converts it into the corresponding character, ready for output. char is
another type, for example ‘a’. The built-in function encode gives the internal code
for a character, for example, the internal code for ‘a’ is the number 97. The function
decode does the opposite and returns the character that an internal code represents,
for example, ‘decode #100’ returns ‘d’. The codes for the number characters run in
sequence, so we find the code for ‘0’, add our integer (say #3) and decode to give
the corresponding character (say ‘3’).

Handling the Opponent’s Moves

(10) ∗Define the function int_to_char Diagram 6.10.

Another example of decode is in the function newline in Diagram 6.4. The inter-
nal code for a new line character is the number 10. We decode that to output a new
line character. The new line is known as a ‘side effect’. newline actually returns a
bool, True. This is usually the case with side effect functions.

Next, look at the function print_square in Diagram 6.11. This function will
print the mark on the square if it is x or o, but otherwise will print the number of
the square. if is a built-in that takes three input parameters. The first is a bool, which
is usually the result of some function, in this case !=. The second is the return value
if the bool is True and the third is the return value if the bool is False. The return
values here will be the same in both cases (True), but the side effects are different.
print is used for the mark, as it can handle any type, but putchar is used for the
char to avoid print’s single quote marks. It is usually clearer to avoid the use of if,
by using pattern matching instead.

Diagram 6.11 print_square

(11) ∗Define the function print_square Diagram 6.11.

Look at draw_row in Diagram 12. Again the general definition is not interesting
but is there for completeness. Components #1–#6 draw rows 1–3 (LHS) and 4–6
(RHS) as illustrated in the above example of the picture of the grid.

214 6 Thinking Practically

draw_row #0

draw_row #1 draw_row #2

draw_row #3 draw_row #4

draw_row #5 draw_row #6

Put four spaces between
quotes here and also in all

the other components.

This one and its equivalent
in the other components has

six spaces.

Diagram 6.12 All the components of the function ‘draw_row’

Project: A Simple Learning Strategy 215

(12) ∗Define the function draw_row Diagram 6.12.

Do not forget you need to draw all seven components. This is the general case
and the six special cases.

(13) ∗Define the function ‘draw_grid’ Diagram 6.13.

The function draw_grid in Diagram 6.13 is the last function in this group. The
built in function map is used to apply the function draw_row to each of the numbers
in the list. This is done in the order they are given, i.e. 1, 4, 2, 5, 3, 6, and it will
generate two pictures of the grid, as illustrated above. The function newline is added
for neatness.

Diagram 6.13 ‘draw_grid’

Starting the Game

Look at ‘start’ in Diagram 6.14. It has three things to do: clear the grid, something
called ‘srand’, and print a message for the user. During the playing of the game
itself, random numbers will be used to select a square to mark. The built-in random
number generator ‘rand’ will generate these, but needs to be ‘seeded’ by calling the
built-in ‘srand’.

To clear the grid, ‘clear_square’ is applied to all the integers 1–9. Look at
‘clear_square’ in Diagram 6.15. ‘setq’ is a built-in which takes two parameters:
the first is another function (with its parameters if there are any) and the second is

Diagram 6.14 ‘start’

216 6 Thinking Practically

Diagram 6.15
‘clear_square’

a value that the function is set to. So here, if the input parameter is #1, square #1 is
set to ‘.’, i.e. it is cleared.

(14) ∗Define the function ‘clear_square’ Diagram 6.15.

Test it by calling ‘clear_square #1’, followed by ‘square #1’.

(15) ∗Define the function start Diagram 6.14.

Now let us look at the game itself. Look at Diagram 6.2 again. The built-in func-
tion ‘until’ takes three parameters, but processes ONE value only, in this case a
value of type ‘mark’. The first parameter, ‘game_over’, is a test on ‘mark’ to
determine if the function should stop. The second, ‘play’, is a function which inputs
‘mark’ and returns ‘mark’. In fact, if it inputs x, it returns o, and vice versa, so the
game can continue until it is over. The third parameter to ‘until’ is the starting value
of mark, i.e. x. As we said, x goes first.

Finishing the Game and Knowing Where to Move

Look at ‘game_over’ in Diagram 6.16. Supposing o was to go next. The game
would be over if either x had won, or there were no empty squares. The built-in
function || is ‘or’ as in ‘either ... or’.

The function, ‘other’, in Diagram 6.17 has three components, and simply means
the other mark.

Diagram 6.16 ‘game_over’

Project: A Simple Learning Strategy 217

Diagram 6.17 ‘other’

Diagram 6.18 ‘where?’

Look at function ‘where?’ in Diagram 6.18
It uses the built-in ‘inverse’ function which in this case will tell us which squares

have the mark ‘.’, i.e. empty. In ‘game_over’, the built-in ‘null’ is a test which
returns True for an empty list.

(16) ∗Define the functions ‘other’ Diagram 6.17.

(17) ∗Define the function ‘where’ Diagram 6.18.

(18) ∗Define the function ‘game_over’ Diagram 6.16.

Now look at ‘play’ in Diagram 6.19. There are three tasks here in order. ‘Choose
a square _ for’ x or o, ‘set that square _ to’ x or o, and return the ‘other’ mark for the
next play. The function ‘set_to’, in Diagram 6.20, is very similar to ‘clear_square’.
It sets a given square to x or o.

(19) ∗Define the function set_to Diagram 6.20.

Look at ‘choose_for’ in Diagram 6.21. This is a simple version of the game,
and so choosing a square for x, the computer, is just a matter of taking any free
square.

The function ‘any_free_square’ in Diagram 6.22 needs some explanation. The
built-in $ returns the number of items in a list. The built-in % returns the remainder

218 6 Thinking Practically

Diagram 6.19 ‘play’

Diagram 6.20 ‘set_to’

Diagram 6.21 ‘choose_for’

after integer division, e.g. ‘% #12 #5’ returns #2. This is to get a random number
within certain limits. The built-in ! selects an item in a list by order, beginning at 0,
e.g. ‘! #1 [#2 #4 #6]’ returns #4. Starting at the top and working down, supposing
‘where? .’ returns [#1 #3 #4 #8] as the free squares. ‘$ [#1 #3 #4 #8]’ will return #4,
and ‘% rand #4’ will return an integer between #0 and #3, say #2. ‘! #2 [#1 #3 #4
#8]’ will return #4, so square #4 will be chosen for x.

Project: A Simple Learning Strategy 219

Diagram 6.22
‘any_free_square’

(20) ∗Define the function ‘any_free_square’ Diagram 6.22.

The user has the mark ‘o’, and can choose a free square. ‘choose_for’ ‘o’ draws
the grid in two ways, with ‘draw_grid’ and then invites the user to choose from a
printed list of free squares. Look at ‘print_list’ in Diagram 6.23.

Diagram 6.23 ‘print_list’

The function ‘int_to_char’ turns an integer into its character equivalent (see
Diagram 6.10 again), and ‘map’ applies this to the list of free squares. The built-in
‘implode’ takes a list of characters and returns a string, e.g. ‘implode [‘1’ ‘3’ ‘4’
‘8’]’ returns “1348”. This is printed for the user.

(21) ∗Define the function ‘print_list’ Diagram 6.23.

The function ‘char_to_int’ in Diagram 6.24 does the opposite of ‘int_to_char’.

(22) ∗Define char_to_int Diagram 6.24.

The built-in ‘getchar’ waits for a character input from the user and the returns it
as a result.

220 6 Thinking Practically

Diagram 6.24
‘char_to_int’

The Final Steps

(23) ∗Define the functions ‘choose_for’ Diagram 6.21.

(24) ∗Define the functions ‘play’ Diagram 6.19.

(25) ∗Define, finally, ‘oxo’ Diagram 6.2.

To play the game, type in ‘oxo’ in the CONTROL window and follow the
instructions.

Finally

Save your database and call it ‘OXO1A’.
Create a network view by opening a network window, go to the find ‘menu’ and

click on ‘Create/Update network from database’. This may require a little rearrang-
ing and the deletion of some functions to look neat (see Diagram 6.25). A proposed

Diagram 6.25 Network of
selected functions for
‘OXO1A’

Project: A Simple Learning Strategy 221

arrangement is shown in Diagram 6.25. When you are satisfied with its appearance,
commit it just like a function window. Other views of the network, showing different
functionality, can be created in separate network windows.

You have finished stage 1. The next stages will be much easier in Chapter 7.

Chapter 7
Side Effect Programming and Schematic Design

For we know in part, and we prophesy in part.
But when that which is perfect is come, then that which is in part
shall be done away.

Corinthians 13, 9 & 10.

Introduction

Functional programming does not normally concern itself with the order in which
processes are executed; just that if a process can be completed it is done before
those that are still waiting for all their parameter values to be accessible. Thus,
parallel operations that are complete may be carried out in any order. In some cases,
the specific order of doing operations must be forced. Order is important in the case
where a program is controlling a process in real time. As you might expect, all
because it is possible (say) to steer left before right does not mean that it should be
done in that order.

One of the advantages of a functional language is that it avoids many of the
problems of imperative languages. In particular, the pure functional language gains
its advantage through the idea that a function will always respond exactly the same
way no matter when or how it is called. This characteristic of stable and predictable
results is referential transparency. The problem with imperative languages is that
they rely upon referencing stored data and this data may be changed anywhere and
at any time in a program. In many cases, this will result in a procedure (equivalent
to a function) responding differently at different times to the same input. Thus we
can note that imperative programs will perform differently depending upon their
history. This characteristic is fundamental to imperative programming since such
programming depends totally on side effects.

For this reason, much work has gone into debugging tools for imperative pro-
gramming that allows the programmer to trace the history of a process in order to
‘see’ at what point an ‘error’ occurs. Such tracing forms a major part of the activities
of a programmer. As we pointed out earlier, often the consequence of an error does

223T. Addis, J. Addis, Drawing Programs: The Theory and Practice of Schematic
Functional Programming, DOI 10.1007/978-1-84882-618-2_7,
C© Springer-Verlag London Limited 2010

224 7 Side Effect Programming and Schematic Design

not occur until many thousands of operations after the event. This entails that an
imperative programmer has to examine these steps in order to determine where an
error has manifested itself. One necessary skill an imperative programmer requires
is the ability to spot a wrong or changed pattern in masses of text. An interpreted
and pure functional language needs no such debugging tool since a function will
always behave in exactly the same way at all times unless one deliberately evokes
side effect programming. In pure functional programming an error is always only
one step away and thus errors are easy to find.

Functions as Data

There is a price to pay for referential transparency in that there seems to be no
place to ‘store’ data. All data that represents the ‘state’ of the world has to be passed
on from function to function through the parameters. In the simple case, this does
not matter but where the ‘state’ of the world is complex then there is one major
side effect that is present all the time that will catch the functional programmer out
and that is a stack overflow. This is because the computer is inherently a real and
limited imperative machine. The computer is not a functional machine even though
it is theoretically equivalent in potential. Further, the functions become very ‘busy’
as each function has to ‘handle’ and pass on the ‘state’ of the world in order to
access or update the data. The problems involved in handling such states can cause
the function definitions to be clumsy, unwieldy and inefficient. It is not surprising
that imperative programming was favoured in the early days of computing where
resources were limited. They had to be managed with care for even the simplest
programs. Despite the vast improvements of computer power the demand to ask for
almost infinite resources for what seems a simple task is easily and often done.

As we have shown earlier, we can define a function with no parameters such that
when it is called it will return a value. We can then use this function as a global
constant that is accessible anywhere in the programme. For example ‘constant1’ in
Fig. 7.1 can be used as a global constant.

As we have also demonstrated earlier, it is possible to change this constant at any
time by using the function ‘setq’, thus

Fig. 7.1 A function of
constant value

Functions as Data 225

QUERY> constant1
#r3.141700
QUERY> setq constant1 #r5.622
True
QUERY> constant1
#r5.622000

Functions can have parameters and as such each component of a function can
respond with a value. As we have used before in this way, a function becomes an
array with the option of having indices of any kind (integer, string, real or any user-
defined type). This gives considerable power to the expressiveness of the language.
Further, it allows the existence of sparse arrays without any overheads. To make
such an assignment the function ‘setq’ takes on two parameters1 such that the first
parameter is not evaluated2:

setq (<function> {<index>}) <body>

is its general form. So not only values but also expressions and constructed values
can be assigned to a function component within the program. For example, suppose
we wanted to model the behaviour of bacteria on a Petri dish and we need to keep
track of each individual bug such as its current position and size. Figure 7.2 shows
a component of the function ‘bug’ with a constructed set of information.

The size of the bug in
terms of radius

Function that turns two real
numbers into a properly
constructed co-ordinate

Index: This component is
information on bug #1

Fig. 7.2 A bug and its details

1 But not its alternatives ‘assertq’ (and other variants) which can take on a variable number of
parameters.
2 Note that ‘q’ stands for ‘quote’. There is also ‘set’ that does evaluate the first parameter.

226 7 Side Effect Programming and Schematic Design

New value of this
component

The function to which an
assignment is to be made

Index number: Shows the
component to be used for

the assignment.

Fig. 7.3 ‘update_bug’ is a function for changing a ‘bug’ position

A function can now be constructed which will assign a new value to a ‘bug’
where this value is some complex construct. Figure 7.3 is such a function.

Functions as Relations

If it is possible to use functions as arrays to store data then this opens the possibility
of considering a set of extensional functions as a relational database. Consider the
Faith code of the ‘bugs’ function described above. In the Faith window the function
would look like this:

fdec bug #3 ::=
bug ::= int->pair co_ord real ; Pair (Co_Ord (X #r11.4)(Y #r10.6)) #r2.5

; ;
fdef
bug #1 ::= bug #4 ::=

Pair (Co_Ord (X #r22.1)(Y #r17.6)) #r1.0 Pair (Co_Ord (X #r6.6)(Y #r12.1)) #r2.0 ;
;

bug#5 ::=
bug#2 ::= Pair (Co_Ord (X #r13.5)(Y #r14.2)) #r1.0

Pair (Co_Ord (X #r16.4)(Y #r19.9)) #r1.5 ;
; ;

where Pair <position> <radius> describes the body of the relation. These are the
non-key properties of the relation and sometimes referred to as own domains.

Now it is possible to convert this function into a list of lists by using the library
function ‘list_fdefs’. This function creates a list which is a special kind of relational

Stages of System Design 227

form that can be manipulated by all the list operations such as ‘head’, ‘tail’ and ‘:’.
The function ‘list_fdefs’ will convert ‘bug’ as follows:

QUERY>list_fdefs bug
[

[bug #1 (Pair (Co_Ord (X #r22.1) (Y #r17.6)) #r1.0)]
[bug #2 (Pair (Co_Ord (X #r16.4) (Y #r19.9)) #r1.5)]
[bug #3 (Pair (Co_Ord (X #r11.4) (Y #r10.6)) #r2.5)]
[bug #4 (Pair (Co_Ord (X #r6.6) (Y #r12.1)) #r2.0)]
[bug #5 (Pair (Co_Ord (X #r13.5) (Y #r14.2)) #r1.0)]

]

If ‘bug’ had been defined with a general case then this would normally be the
first n-tuple of this relation.

Stages of System Design

We can thus put forward an approach that supports the designing of all systems
using a functional schematic environment.

Computer systems design has been well served by relational analysis (Date
1995), an approach that can be harnessed from an object orientated perspective.
The notion of normalised objects (see Fig. 7.4), always in the context of activities
and the objects that are recognised, provides the key to the construction of a model.
In particular such a set of normalised objects with a set of dependency constraints is
referred to as a conceptual model (Addis 1985). A normalised object is characterised
by having a set of attributes that identify it from any other object of its type. These
attributes are usually assigned and artificially created by the analyst to be unique.

Identify
Normalised

Objects

Identify
Activities

Construct a
Conceptual

Model

Identify
Intensional
Functions

Identify
Constructors

Identify
Extensional
Functions

Fig. 7.4 Approaches to analysis

228 7 Side Effect Programming and Schematic Design

The most convenient means of assigning unique identifiers is to use numbers – such
as ‘part-number’ and ‘bug-number’. The other attributes, if they exist, are spe-
cific to the description of the object and are expected to be ‘simple’ values. How-
ever, an attribute may be an identifying attribute to another object. It is through
these foreign identifiers that the dependency constraints between objects can be
identified.

Such an approach leads to coherent system design. A less common approach,
and one that is not well documented, is through the analysis of activities.
These activities require a description of what they act upon and what the
actions produce. Such an analysis also leads to the emergence of normalised
objects.

The analysis provides a framework in the form of this conceptual model, this
conceptual model can be translated into a functional language Faith, and in our
case this is generated via the schematic interpreter Clarity. The important decisions
in a functional representation of such a model are what elements of this model
are functions or constructors. Some of these functions will naturally form exten-
sional functions that may or may not have a general component (see Fig. 7.4).

O

PS

SPO

PFig. 7.5 A conceptual model
of a purchasing system (An
Sfd graph)

Figure 7.5 is an example of a conceptual model where P, S, PS, O and PO are
normalised objects (i.e. conform to normalised relations). The conceptual model
shows a set of dependency constraints that exist between the elements of the object
sets. Thus, in this example P represents a set of parts where each part pi consists
of a set of attributes that describe that part and S represents a set of suppliers in the
same way. So we can say that pi ε P and sk ε S where PS is the link between parts
and suppliers such that pi sk ε PS recording which parts are obtainable from which
supplier. This link can also be taken as a normalised object in its own right and as
such is likely to have attributes specific to the linking. In this case, it might be the
attribute ‘price’ so that PS can be considered as a merged set of price lists for all
suppliers S. O are the orders to suppliers such that oj ε O for the parts given in PO.
Thus pi oj → oj. Note that an order O needs to have at least one part; the order has
to be for something.

The symbols that connect them show the mappings zero/many to one and
the one/many to one . Thus an order (oi) uniquely identifies a supplier (si)

Stages of System Design 229

although a supplier may have zero, one or many orders. This implies that an order
has to refer to at least one part, otherwise it is not an order.

As we have described (but see Appendices A and B) Faith is a direct derivative
of lambda calculus and can be represented (formally) as a set of diagrams that are
a form of schematic BNF which have a rich informal interpretation potential. This
potential can be used to aid understanding and hence improve the design or help sup-
port more complicated systems. The relationship between the diagrams supported
by Clarity and the formal language Faith is exact. Further, the diagrams command
the creation of a multi-layered abstraction of virtual mechanisms and because dia-
grams encourage simplicity (since too many items can confuse but a simple drawing
is insightful) each mechanism is easy to understand.

Consider a the normalised object

Part [PNo : Description, Size]

that represents parts in a database and records the parts available in store. It is nor-
malised because it has the simple set of functional dependencies PNo → description
and PNo → size. PNo is the identifier attribute (indicated by being to the left of the
colon :) and is an integer. This relation can be represented as a function ‘part’.
Given in Faith, the extensional component of a functional description3 of a set con-
taining only two parts would appear as

part #45672 ::= Part_Own (Description “Nut”) (Size #32);
part #3214 ::= Part_Own (Description “Screw”) (Size #24);

and this could be stored as a part relation with the value as shown in Table 7.1.
In this table bold and all lower case represents a function, Bold with initial

upper case a constructor and bold italic a type. Values are signified in normal case
and are type marked with # for type integer and " " for type string. Note that
any ‘constructor’ can be replaced in this extensional form by a ‘function’. How-
ever, if such a replacement was made it will need to be ‘normalised’ yet again
to make the description into its most atomic relational description. The decision
to terminate the detailed description at a type depends on the information needed

Table 7.1 A ‘Part’ relation or function

part_no part_own

#45672 Part_Own (Description “Nut”) (Size #32)
#3214 Part_Own (Description “Screw”) (Size #24)

3 The language used here is FAITH which is similar to HOPE.

230 7 Side Effect Programming and Schematic Design

by the program and the user requirements. As we have seen before ?0 repre-
sents a variable. This representation is consistent with representing an intensional
function that has an extensional component (the terminating condition) such as
‘factorial’:

factorial ?0 ::= multiply ?0 (factorial (sub1?0));
factorial (#1) ::= (#1);

It is thus possible to have many pattern sensitive components of a function that
override the general case. The patterns are chosen by a ‘best’ fit algorithm that we
have already described. Moreover, since a functional language is used, it is possible
to model at any level of abstraction, combining different levels of complexity in
the same representation.

We can now see that a function in extension can be considered as a relation. For
extensional functions the equivalencies are shown in the Table 7.2.

Table 7.2 Function and Relation equivalences

Functional data language Relational database

Function name Relation name
Parameters (domain) Key domain
Output (co- domain) Own domain
Constructor or function Domain or domain group

(e.g. own) generator

A function can be tested with examples by querying, thus

QUERY> part #3214
(Part_Own (Description “Screw”) (Size #24))

QUERY> part #4444
(Unknown_Part #4444)

The complete Faith code for our example will be as shown in Table 7.3:
So a good approach to design is to analyse the problem in terms of its normalised

relations. Make these normalised relations extensional functions and then tie up the
update constraints as a set of additional functions linked to the relations that form
the states of the model or domain being considered.

Sequences

Unless you are going to keep an explicit track of time or the ordering of events
a functional language will, as we stated before, apply functions in any order

Stages of System Design 231

Table 7.3 A Faith code relational model

tdec fdec
part_no ::= typeop #0 ; part ::= part_no → part_own ;
size ::= typeop#0 ; ;
description ::= typeop #0 ; fdef
part_own ::= typeop #0 ; part ?0 ::= Unknown_Part?0 ;
; part #45672 ::= Part_Own(Description “Nut”) (Size #32) ;
cdec part #3214 ::= Part_Own(Description “Screw”) (Size #24);
Size ::= int->size ; ;
Description ::= str->description ;
Part_No ::= int->part_no ;
Unknown_Part ::= part_no->part_own ;
Part_Own ::= description->size->part_own ;
;

provided the function is complete (has all the parameter values). Some control can
be achieved through the nesting of the ‘if’ function which can be arranged like
dominoes; the completion of one set of functions triggering off the next. However,
all this is very clumsy and as we have shown makes the tracing of a program difficult.
It would be better to provide a set of functions whose sole job is to order events. One
of the most useful is the function ‘progN’ and its variants.

The function ‘progN’ can take on any number of parameters and will evaluate
them in strict sequence starting from the first parameter and finishing on the last. In
this case the evaluation of ‘progN’ is the evaluation of the last parameter. All the
other evaluations are ignored. This means that the other evaluations do not exist as
far as the functional program is concerned. The only results will be through side
effects.

Figure 7.6 is an illustration of side effect programming for displaying the move-
ment of a bug on the screen. Most of the operations are benign and this limits the
risk involved in evoking side effect functions. In this example, it is vital that the
correct order of events happen. The moving of a ‘bug’ must involve the sequence of
eliminating its appearance in the old position. Then redrawing it in the new position
and at the same time updating its new position in the function ‘bug’ (potentially
malignant – see later – Benign and Malignant Side Effects).

Another example of using a global is with ‘factorial’. Here we can declare a
function with no parameters to act as a global working store to carry the interme-
diate results during calculation. This is equivalent to the second value of Pair in the
‘carry-forward’ method that uses a constructor to carry forward these calculations.
In the example we show here (see Fig. 7.7), the initial value of this working store
(‘working_value’) is set at the primary factorial parameter. The next operation is
to do the ‘until’ which continues until the factorial parameter is reduced to #1 or
less. At this point, the ‘working_value’ is returned (last parameter value).

The key to this is shown in Fig. 7.7 where the function ‘fact_step’ re-asserts
the value of ‘working_value’ by multiplying its current value by the incoming
integer less #1. The result of this function is the equivalent to just ‘sub1’ but it

232 7 Side Effect Programming and Schematic Design

New position for
this bug component

Function for ensuring
sequences. Each parameter is

evaluated in a clockwise
direction. ProgN can take on

any number of parameters

First: Change
‘forecolor’ to White

Second: Re-draw a
‘White’ bug to remove

from the graphics
window.

Third: Change
‘forecolor’ to Green.

Fourth: Store new
‘bug’ position in ‘bug’

component.

Fifth: Draw bug
in new position

Fig. 7.6 The ultimate in side effect programming ‘move_bug’

has the additional operation of producing a side effect by changing the value of
‘working_value’.

Note that the full-line lozenge indicates a ‘HOLDN’ operation. As we described
earlier, ‘HOLDN’ is a mechanism that combines the notion of a local variable and a

b. ‘fact_step’

Fig. 7.7 Side effect factorial. Max. stack depth = 6 for any N

Stages of System Design 233

local assignment. You can consider that the full-line lozenge contains the evaluated
result of the output function. However, unlike ‘let’ which does this job in most
functional languages the ‘HOLDN’ only comes into action when needed. In this
example, the subtraction of #1 from the incoming integer is done only once. The
result is stored as a local variable with no name. The advantage here is that this
holding of a value will occur only once no matter which order an operation is called
through ‘HOLDN’. This efficiency (and sometimes a logical necessity) is automati-
cally applied unless overridden by the user.4 It is a unique mechanism to Clarity and
is only practical because of the diagrammatic representation.

There may be many other ways of implementing factorial but the importance of
this study is that many valuable characteristics of ‘programming’ in Clarity have
been demonstrated with a very simple problem.5 We can infer from the exam-
ples that the functional form gives Clarity its representational power. However, the
schematics give its capability to keep complexity in check and support free form
design.

Evaluation Control

There are four functions that can be used in controlling the order of the evalua-
tion of functions. However, evaluation deferral is discussed in Chapter 8 under the
heading of Casting and Code Generation. The first function ‘progN’ and its variants
is an obvious candidate for controlling a fixed sequence of operations. Here lazy
evaluation is suspended and each task is done in a clockwise direction. The actual
value returned can be the first task with ‘prog1’, the last with ‘progN’ and any with
‘prog’. In Fig. 7.7b the second evaluation controlling function ‘HOLDN’ forces a
return of the new integer value after the assignment. However, it is also possible to
force an evaluation before it is required in the same way.

The third evaluation controlling function is ‘quote’ which suspends one eval-
uation step. A simple example is in the case of a zero parameter function such
as the constant shown in Fig. 7.1. This is required to be quoted by ‘setq’ so it
could be addressed and assigned a new value. Likewise, if a constant is to be
a parameter for a higher-order function then it will have to be quoted otherwise
it will be evaluated before it can be used. It is worth noting that at the query
level an extra step of evaluation is done before a function result is displayed. This
means that you do not always observe in the control window exactly what is used
internally.

4 To override the HoldN you replace the HoldN lozenge by a (dotted) type lozenge.
5 In ClarityPro links to the outside world are done through special ‘user_functions’ that will pro-
vide values (such as Boolean or integer) in real time. In the case of software that is used for pro-
cess control, such ‘user_functions’ provide the external links to the Clarity ‘program’ from other
processes.

234 7 Side Effect Programming and Schematic Design

The final evaluation controlling function is ‘eval’. This function does exactly the
reverse of ‘quote’ by applying an extra level of evaluation. It is worth noting that
functions that have a variable number of parameters such as ‘makelist’ evoke a full
evaluation on all its parameters. It can be useful to use instead the constructor ‘:’ to
minimise processing.

Benign and Malignant Side Effects

A functional program in its pure sense exists in the abstract world of mathematics.
In practice, it has effects on the world and in particular the states of a computation
engine. Benign side effects of a function do not interfere with the normal flow of
a functional program; the call of a function merely triggers events in the world. In
principle, these events could be anything and they may not have a sensible relation-
ship to the meaning of a function in a program. For example, an evaluation of the
function ‘add1’ might (but does not in our case) have a side effect of setting a ket-
tle to boil or causing an alarm to be sounded. However, most side effects do have
some sensible events attached to them. Examples are ‘print’, ‘setq’, ‘sysbeep’ and
‘trace’.

• The main issue of ‘malignant side effects’ is that they cause the mapping of a
function to be indeterminate.

Figure 7.8 illustrates the ultimate example of an indeterminate function. This one
calls the library function ‘rand’ that generates a random integer (needs to be seeded
by the function ‘srand’). This integer can be contained by the modulus function
‘%’. The function ‘%’ does an integer division and returns the remainder. In this
case, it integer divides the random number by #26 and therefore the remainder is
always going to be less than #26. #13 is subtracted so that we can obtain both posi-
tive and negative numbers. This function is called twice even though it is represented
only once, once for the x and once for the y co-ordinate position. This function is
used to move the bug in a random direction. The distance moved will vary between
0 and

√
(132 + 132)/10 for each cycle.

Figure 7.8 is also an example of a line of Faith code being used within the
schematic. In this case, the random number generator is so simple it is clearer to use
a bit of program text. However, the danger is that anything in a parameter lozenge
and used in the body of a function definition is not type checked.

Associated with Clarity is a method of analysis that depends on determining
the functional dependencies that exist in the problem domain and this is the major
process in finding the conceptual model. Next we will look at an emergent design
technique that works with the Clarity representation.

Schematic Design 235

A line of Faith code that
generates a number between

−1.2 and +1.2

The x co-
ordinated

constructor

Co-ordinate
constructor

Fig. 7.8 A function that
generates a random
co-ordinate change

What we have shown here is that there is considerable advantage to be gained
in balancing the functional and imperative approaches provided the functional lan-
guage element dominates.

Schematic Design

An Emergent Design Technique

An emergent design technique is an interactive process between the designer, the
problem domain and the implementation language. In our case the implementation
language is ClarityPro. As we have suggested, one of the valuable techniques of
bridging the gap between the problem domain and the implementation language is
the process of normalisation. Normalisation has been more fully covered elsewhere
[Addis 1985, Date 1995] but in essence it is a way of looking at the world in terms
of functional dependency and then reconstructing what is observed into the simplest
functional dependency units, units that contain no further functions and only a sin-
gle functional dependency. In addition to this normalisation is the requirement to
reconstruct the constraints between these simple units, again, in terms of functional
dependency. These constraints are usually in the form of zero- or one-to-many exis-
tence dependency (an A can only exist if there is a B).

In practice there are potentially an infinite number of different types of con-
straints across all possible databases. For example, it may be a requirement that an
even number of elements (such as a ballroom dancing class) is necessary. It was
because of this potentially infinite number of constraints that we abandoned the

236 7 Side Effect Programming and Schematic Design

relational view and moved to the functional view of which the relation is a subset.
Further, the design process requires some inventive insights into how best to cat-
egorise the problem domain in the light of the implementation requirements. The
design process is analogous to scientific discovery in that the final set of categories
of objects that make up the problem domain is always open to change; change that
will provide the greatest generalisation and the simplest implementation. The sim-
ple zero/one-to-many type of functional dependencies covers an important set of
constraints that is still worth considering in the initial design stages.

We will illustrate the design process by giving a description derived from the log
of ourselves designing a General Problem Solver. This will involve several attempts
at getting the abstraction of the formal description general enough to tackle possible
variants of the problem domains that might occur but still retaining a schematic
description that is elegant. But first we should look briefly at where the General
Problem Solver came from and what it does.

Artificial Intelligence

Traditional artificial intelligence has been primarily expressed as symbol processing
as described by the work of Newell and Simon (Newell and Simon 1963). This was
derived from their analysis of the statements made by people when asked to give a
running assessment of their thinking while solving a range of problems. It was pos-
sible to ‘explain’ these subjective assessments as state transformations that acted
directly on the symbol strings representing the problem. What was more impressive
was that in the late 1950s using primitive computers they were able to make a Logic
Theory (LT) machine (Newell et al. 1963) using this technique. This machine even-
tually evolved into the General Problem Solver (GPS) (Newell et al. 1963). At the
heart of the GPS is the mechanism for applying transformations to symbol strings
where the symbol strings represent the initial statement of the problem. These sym-
bols that represent the starting conditions of the problem are transformed into dif-
ferent and meaningful symbol strings that give a potential route to a solution. Each
transformation is linked to an acceptable step of reasoning about a problem. The
purpose of the mechanism was to find a sequence of transformations that led to a
‘solution’ (i.e. a symbol string recognised to be the goal conditions of the problem).

The important issue, from the system-engineering point of view, is that the fac-
tual knowledge represented in the computer is complemented by some method of
reasoning. The method of reasoning should be justified, accepted and expressible in
a mechanistic form. It ought to make no appeal to ‘understanding’ but exist upon its
own foundation. Further, it must be expressive enough to model successfully human
performance in problem solving. The task of the knowledge engineer is to create a
competence model that will give an acceptable response to a given state of affairs: a
response that can be equated with expert and rational activity. It is the competence
model in that it ultimately provides a service to people employed in a particular task
domain.

Schematic Design 237

Behind the skill, intellect and committed artistry of the AI programmers there
is a sound collection of techniques. The ‘hard’ school created a core method from
which most artificial intelligence programs are eventually shaped. This core consists
of production systems, graph search, rule-based inference (based on the Resolution
Principle) and heuristic control. These are all embodied in the General Problem
Solver.

The General Problem Solver

A General problem solver is formed from three distinct elements: the global
database, transformation rules (or production rules) and a control strategy (Nilson
1998). The global database represents the problem states, the transformation rules
express how a database may change to conform with the problem, and the control
strategy decides from all the applicable transformations which one should be applied
next to achieve the solution (goal state). All the rules can have access to the global
database at all times, but they must not act upon themselves or the control strategy.

Each rule has a precondition that relates to the global database and describes
when the rule can be used. If the precondition is satisfied, then the rule can be
applied to the database to transform it into a new state. The control strategy chooses
the rule by drawing upon some heuristic knowledge about the nature of the problem
and its solution. It is called ‘heuristic’ because it is ‘an aid to discovery’ (i.e. helps
find the goal). It does not necessarily have any analytic foundation but calls upon a
deeper understanding of the problem than that apparent in the representation alone.
The control strategy ceases computation when it reaches a termination condition; a
condition where the objectives are satisfied.

The principle of the production system can be illustrated by the problem of nav-
igating a car through the centre of a town in a foreign country, whose language is
unknown to the driver. The goal is to travel through the town from south to north
making as few wrong turnings as possible. Unfortunately, the town is old, large and
rambling with no regular structure. There is no map of the town available, but there
is a compass in the car that gives an approximate indication of north.

The global database represents the current junction giving the number of turn-
ings, the density of houses and a history of such junctions ordered according to their
encounter. The transformation rules are marked by the choice of turnings at each
junction. The transformation is the effect of taking a road from the current junction
to the next junction. The intermediate road connecting the junctions is the mapping
function from state to state. When the mapping function is (initially) unknown, it is
called ‘implicit’. The act of taking a route makes it ‘explicit’. The heuristic for the
control strategy is to make a choice that is governed by some crude generalisation
of this mapping. The heuristic control strategy could be, for example, ‘take the turn-
ing that is nearest the northern route’. This heuristic does not guarantee a correct
choice, since that route may change direction and even double back on itself. The
heuristic can be further enhanced by taking into account the distribution of houses

238 7 Side Effect Programming and Schematic Design

encountered at each junction on the basis that the density of houses usually increases
towards the centre of town. The goal is reached when all the houses are in the south
and the density of houses at the junction is zero. There may be several such goals
since there may be more than one road out of north end of the town.

There are two kinds of heuristics proposed to help find a solution to these prob-
lems. The compass provides a clue to the possibility of a particular transformation
being a good one to try (the pre-emptive heuristic), and the density of houses indi-
cates the effectiveness of a transformation once it has been tried. The second kind
of heuristic (density of houses) illustrates the ‘generate-and-test’ approach to prob-
lem solving where a possibility is explored and then matched against a requirement.
There is also the driver’s memory of the roads traversed so that going in a circle can
be avoided.

Graph Search

A problem space can be represented as a directed graph (see Fig. 7.9) where each
node is a particular state of the global database. Each directed arc that connects the
nodes is a transformation applied to one state and converts it into another. In the case
of the town, the problem space is topologically equivalent to the road map of the
town; the junctions are the states and the connecting roads are the transformations.
The arcs and nodes of the problem space are then set within the three-dimensional
reference space of the compass points, the distance and the house density.

One of the most used examples is the tiles problem space which consists of nodes
showing the distribution of tiles within the grid, and arcs indicating the moves that
take one pattern of tiles to the next. One of the tiles is missing so that the remaining
tiles can slide within a frame into that space. The tiles have to remain in the frame
so rearrangement of the tiles has to be done by using the space. Each tile has some

2 8
1

3
46

7 5

2 8
1

3
46

7 5

2 8

1

3
46

7 5

left
up

up

right

left

left

right

down

down

right

2 8
1

3
4

7 5

2 8
1

3
46

7 5

2 8
1

3

4
6

7 5

2 8
1

3
4

67 5

2
81

3
4

67 5

2 8
1

3
4
67 5

up down
up down

left right

2 8
1

3
4

67 5

Fig. 7.9 A segment of the
tiles problem space. Direct of
‘space’ given

Schematic Design 239

pattern on, in this case numbers, and the purpose is to reorganise the tiles so that
a specified goal pattern is achieved. Figure 7.9 shows a small segment of the tiles
problem space, and an examination of symmetries of such a problem spaces may
also imply some elegant solutions.

In practice, most complete problem spaces are too large to store within a com-
puter, and it is not necessary to have all the problem space since the solution is
only concerned with a small part. Itineraries given for holiday travel only plot ‘the
solution’ ignoring most of the surrounding terrain, and it is desirable, in the ‘town
problem’, to find the shortest route with minimum effort. What would be better is
some surety that the route is the shortest. One result from graph search theory is that
such an assurance is given provided certain conditions are met. These conditions
are that the heuristic rules must be ‘optimistic’ in that they should always underes-
timate the number of actual steps needed to solve the problem. The more accurate
this estimate the less ‘trial’ transformations are needed to find the shortest path.

The ‘And/Or’ Graph

The And/Or graph is a familiar procedure in many AI systems and it forms the
backbone to Expert Systems and Knowledge Based Systems in general. However,
the And/Or process, as described above, is complex enough to represent a design
challenge. If a design method introduces new mechanisms of achieving at least the
same result as others, it can suggest improvements and it proves to be useful then
that method is worth keeping as an approach.

The And/Or graph is already an abstraction of the process of problem solving.
The assumption is that the problem domain (task domain or World) can be expressed
as a set of groups of ‘facts’. These groups of facts describe different situations that
might occur in the task domain if the process of problem solving is actually carried
out. The problem is described in terms of an initial state and a goal situation. There
is also a set of actions that are dependent on the situation under consideration and
these actions change the facts so as to change the situation. These are referred to as
transformation rules. Consider a very simple illustration:

A boy collects stamps (M).

He has a:

• winning conker (C),
• bat (B),
• small toy animal (A).

We can describe the situation in problem space terms as
Initial State of Database = (C, B, A)
Transformation rules (value of different swaps he can make):

• IF C THEN (D, S)
• IF C THEN (B, M)

240 7 Side Effect Programming and Schematic Design

(C B A)

(A)

(D S) (B M) (M M) (B B M)

(D) (B) (M)

(M) (M)

(B)(S) (M) (M)

(M)

(M)

(M M)

(M) (M) (M)

(M M)(M M)

(B)

(B)(C)

Fig. 7.10 Swapping toys

• IF B THEN (M, M)
• IF A THEN (B, B, M)

Goal: to be left with only stamps M
How can he get all stamps M by swapping the toys he does not want?
Figure 7.10 shows the route to a solution where the boy accumulates a different

range of toys each of which can be further swapped.
This example is also a puzzle that can be deconstructed into smaller par-

allel puzzles each of which has to be solved before a complete solution is
obtained.

Emergent Analysis Stage

Figure 7.11 is an illustration of a problem solving activities of these kind showing
different possibilities (it is not the given example). Each node in the graph represents
a situation and each arrow an action that leads to a new situation. The ties between
the arrows indicate that the problem has been decomposed so that each of the tied
paths has to lead to a solution. In the illustration given in Fig. 7.11 the top node
(initial situation) has two possible decompositions. Other situations generated from
the first can also be decomposed. The tied arrows are referred to as ‘k-connectors’
and are considered to behave like a single multi-headed arrow (k number of heads).

If we now consider the And/Or Graph as an object in its own right irrespective of
its interpretation then there are clearly two kinds of objects that form the graph; these
are Nodes and K-Connectors. The initial Conceptual Model of the graph is shown in
Fig. 7.12. The cardinality relationship between the two objects is ‘many-to-many’

Schematic Design 241

k-connector

node

Fig. 7.11 And/Or Graph

Node K-Connector

Many toManyFig. 7.12 First attempt at a
conceptual model (see
Fig. 7.13)

in that a node can be associated with (connected to) many k-connectors and a
k-connector may be associated with (bound by) many nodes.

It is known that such a model where a many-to-many constraint is included that
this is likely to lead to difficulties; it does not lead to a good structure. However,
the data types can be defined for a functional specification and these are shown as
Clarity diagrams in Fig. 7.13.

Figure 7.13 defines a node as consisting of a value (a description of the situation
that may be complex) and a list of k-connectors associated with each node. The
list may be empty. A k-connector consists of a list of nodes. Each description is
bounded by a constructor (the dotted box) that packages (constructs) the objects;
these are ‘Node’ and ‘K_Connector’ in this example.

a. ‘node’ b. ‘k_connector’

Fig. 7.13 First attempt at a model

242 7 Side Effect Programming and Schematic Design

These data types, which are defined in Clarity, suggest a simple and obvious
structure, a structure that is mutually recursive. However, we know from experi-
ence that functions, which manipulate this structure, become very complex and
difficult to define unless the functions are only concerned with local informa-
tion. Thus, the control and use of such a structure where global information is
required for local decisions is awkward to achieve. Since in the And/Or graph
the cumulative costs of actions is used to make local decisions as to the viabil-
ity of a particular solution path and these costs also depend upon parallel paths
that have evolved from decomposition elsewhere in the graph, this structure is not
recommended.

The design problem we now have is how do we remove the many-to-many con-
straint. This can be done by reconsidering the And/Or graph by viewing it differ-
ently; do a further abstraction. Figure 7.14 shows how this new abstraction may
be visualised in that by encircling the k-connector it suggests a k-connector node
joining all nodes with a simple arrows. Thus if the objects are simplified to normal
binary arrows but incorporate the idea of the k-connector as another kind of node
(thus two types of node are now involved) then we will eliminate the mutual recur-
sive structure. However, to compensate we will need a structural grammar to ensure
that the two types of node alternate.

This new abstraction makes it possible to see a more general extension of the
concept of a k-connector to a jk-connector as shown in Fig. 7.15. A possible

K-Connector Node

a

K-Connector Node

b

Fig. 7.14 Introduce K-connector node

JK-Connector-Node

Fig. 7.15 A generalisation:
JK-connector node

Schematic Design 243

Arrow Node Type

Double Many-to-One Into Many-to-One Into

[n_id : t_id, value,n_cost]

[t_id, : f_cost]
[n_id, n_id : a_cost]

Fig. 7.16 Conceptual model of JK-And/Or Graph

interpretation of this extension is that an action may depend on several situations
to be merged before it can be decomposed into an alternative set of situations.

Figure 7.16 shows an alternative conceptual model to that of Fig. 7.12 where
no distinction is made between the two types of node except through the attribute
t_id (indicates type). The arrow is identified by its start node (arrow tail) and its
terminating node (arrow head). These nodes are distinguished by a number <n_id>
and so an arrow is distinguished by a unique pair of nodes. Each arrow also has a
cost associated with the transformation <a_cost>. The node contains a foreign key
that identifies its type (normal or jk node). It will have a value and a cost. The type
of node may also incur further costs <f_cost>. The Clarity description of this new
abstraction is given in Fig. 7.17.

a. Constructor ‘Arrow’

b. Constructor ‘Graph’ b

Fig. 7.17 Second attempt at model

244 7 Side Effect Programming and Schematic Design

Arrow
(K_Node)

Node

[n_id : value, f_cost]

[k_id :]

[n_id, k_id : direction, a_cost]

K-Connect

Fig. 7.18 Third attempt at
the conceptual model

This particular specification allows two nodes of the same type to be connected
and this can lead to the wrong structure being formed unless special construc-
tion functions inhibit this possibility. However, this potential for error suggests
a modification on the original conceptual model. Figure 7.18 separates out the
two different kinds of node into two different classes of object. This then encour-
ages different descriptions of these objects and allows these descriptions to be
expressed.

Figure 7.19 shows the Clarity description of these objects as constructor type def-
initions. However, the structure of k_node types can be simplified by deconstructing
the diagrams in Fig. 7.19 to the diagrams in Fig. 7.20. The ‘flattening’ of the types
into simple types is equivalent to the normalisation of relations. Graph now has to
carry all three lists of structures to describe all situations created by the process of
stepping through the And/Or graph.

a. Constructors ‘Node’ & ‘K_Node’

b. Constructor ‘Graph’

Fig. 7.19 Third attempt at model

Schematic Design 245

c. Constructor ‘K_Node’ d. Constructor ‘Graph’

a. Constructor ‘Node’ b. Constructor ‘K_Connect’

Fig. 7.20 Data types for And/Or Graph

The final form of the data types for the And/Or graph are shown in Fig. 7.21.
Adding additional structures to cope with other details that emerged during imple-
mentation required the modification of the types proposed in Fig. 7.20. However,

a. Constructor ‘Node’ b. Constructor ‘K_Connect’

Fig. 7.21 Data schema for And/Or Graph

246 7 Side Effect Programming and Schematic Design

they are both essentially the same. The final form of the objects is then represented
as a set of normalised relations:

Node[identifier: value, cost, solution state].

K_Connector[identifier: marked state, cost].

KNode[node and k-connector identifiers: direction (Up or Down), cost].

Graph[(lists of nodes), (lists of kconnectors), (lists of knodes)].| Null_Graph

Figure 7.21 is a schematic of each constructor.

Construction Stage

The design process now changes in style and purpose from the analysis stage to
the construction stage where the operations on the graph have to be defined. This
follows the accepted idea that we create a special mathematics/calculus for our prob-
lem and this mathematics/calculus requires a set of complete operations (transfor-
mations and combinations) to work on the types of objects that the analysis of the
task has proposed. Using the function notation for description, the general outline
of the major operations can be listed in Table 7.4. These functions are the primitives
from which all other operations may be constructed.

From these functions the final top-level view is given by the function ao_solve;
it is the system level view of the And/Or graph search system (Fig. 7.22).

This function takes the parameters list sym and ?0 where list sym describes
the environment in which the problem is specified, i.e. the rules, the goals and
the cost function. ?0 is the starting value. The output is a bool, i.e. True or False,
indicating if a solution is found or not. A side effect of the function is to draw
the solution paths. For example, consider a toy world that represents the rules by
which toys (letters in this case) can be swapped (Fig. 7.10). These rules would be as
follows:

x -> [c b a] thus x can be swapped for c b and a,

c -> [d s] or [b m m] that is c can be swapped for d and s or b and 2 ms (different
from the initial example in Fig. 7.10),

b -> [m m] hence b is swapped for 2 ms,

a -> [b b m] and a can be swapped for 2 bs and an m.

The purpose is to swap until all the toys are ‘m’s. The system will attempt to
minimise the cost so ‘m’ is worth zero and all else is 10 units. This is the heuristic to
aid finding the solution and is represented for our system as follows where QUERY
shows what each function provides (Fig. 7.23):

Schematic Design 247

Table 7.4 Major ‘And/Or’ operations

Function Declaration Description

expand graph -> node -> list node Expands a node by listing all the connecting
nodes. Each sub-list groups the nodes
together according to the intervening
k-connectors

kexpand graph -> node -> list
kconnect

To enable expand to work a finer step of
moving from a node to the list of
k-connectors

nexpand graph -> kconnect -> list
node

Also required to enable expand is the next
step from a k-connector to the list of
nodes

rule_expand rule -> node ->graph A rule takes a node (a situation) and
expands to a sub-graph

add_graphs graph -> graph -> graph This adds graphs together. It is a
consequence of rule_expand

get_newnid graph -> nid Graphs need to be created from the
elements of nodes and k-connectors

get_newkid graph -> kid as for get_newnid
term_test value -> bool This is a test that is applied to a node to

determine if the goal has been reached
goal_test (value -> bool) -> node ->

bool
This applies term_test to a node

update_solved_state (value -> bool) -> graph ->
graph

This modifies the costings in the graph

test_solved node -> bool Determines if a particular node is solved
(lead to a goal)

display_solved graph -> node -> graph Returns the sub-graph that is the solution
path

Fig. 7.22 Top-level function
ao_solve

248 7 Side Effect Programming and Schematic Design

a. ‘ao_start_graph’

b. ‘ao_solve_end’

Fig. 7.23 Subsidiary functions to ao_solve

QUERY> toy_world
[toy_rule toy_term_test toy_cost]
QUERY> list_fdefs toy_rule

[
[toy_rule ?0nil]
[toy_rule ‘x’[[‘c’‘b’‘a’]]]
[toy_rule ‘c’[[‘d’‘s’][‘b’‘m’‘m’]]]
[toy_rule ‘b’[[‘m’‘m’]]]
[toy_rule ‘a’[[‘b’‘b’‘m’]]]

]
QUERY> list_fdefs toy_term_test

[
[toy_term_test ?0 (= ?0 ‘m’)]

]
QUERY> list_fdefs toy_cost

[
[toy_cost ?0 #r10.000000]
[toy_cost ‘m’ #r0.000000]

]
QUERY> ao_solve toy_world ‘x’

True

And the side effect narrative showing the paths to the solution is given in
Fig. 7.24.

The function ‘ao_solve’ uses the built-in function ‘until’ to loop around growing
the graph until it contains the solution. ‘ao_solve_end’ delivers ‘True’ or ‘False’,
‘ao_grow_graph’ delivers a new graph, ‘ao_start_graph’ delivers a starting graph,

Schematic Design 249

Fig. 7.24 Output of ao-solve
for toy world

and ‘ao_solution’ shows the solution. The subsidiary functions are shown in
Fig. 7.23.

There are two components to ‘ao_grow_graph’. The first is used in the general
case, the second in the special case where the graph consists of one node only as
can be seen in Fig. 7.25 and 7.26.

Fig. 7.25 The original growing a graph from rules: general case

250 7 Side Effect Programming and Schematic Design

Fig. 7.26 The original
growing a graph from rules:
special case of no
K-connectors

The difference can be seen in the pattern of the parameters. In general it is best
to try to avoid function graphs that are over-complicated. For instance, it is a good
idea to keep the computation involved in part of a function separate from its role in
the function. As an example of this change, look at ‘ao_make_new_node’, used in
‘ao_start_graph’ in Fig. 7.27.

It would be cleaner to keep all components of Node at about the same level, i.e.
to rewrite as two functions. We can do this by using the schematic editing facili-
ties. You can either cut and paste into a new window using the tool bar facilities
or highlight the subset of functions to be made into a function and then go to

Fig. 7.27 Initial attempt at
making new nodes

Schematic Design 251

a. ‘ao_make_new_node’ b. ‘ao_new_node_cost’

Fig. 7.28 Second attempt at making a new node and keeping a conceptual level

edit menu and select ‘copy selection to new window’. The new window can then
be adapted to be a function and committed. The highlighted functions in the first
window can be cut and replaced by the new function. When this is done we get
Fig. 7.28.

The functional code generated in the general case is shown below. Note the
wide use of HOLDN generated by the schematic as a means of retaining efficient
operations.

Now the computation is separate, and ‘ao_make_new_node’ is more general as
the costing is now independent. Another example of simplification can be found in
ao_grow_graph. It is a good candidate for simplification because there is just too
much detail in the diagram. It can be replaced as shown in Fig. 7.29.

With a little redesign, ‘ao_node_graph’ will simplify the other component of
‘ao_grow_graph’ and we get Fig. 7.30.

a.‘ao_grow_graph’ b. ‘ao_node_graph’

Fig. 7.29 Second attempt at growing a graph and simplification

252 7 Side Effect Programming and Schematic Design

ao_grow_graph?0?1::=)
if(=nil)
(HOLDN#5)
(ao_growable_nodes?0)
(HOLDN#25)
(ao_mark_graph (HOLDN#25
(ao_unmark_graph?1) (ao_mark_graph
(Nid#1) (ao_unmark_graph?1)
) (Nid#1)

))
))

));
)

Null_Graph ao_grow_graph?0
(ao_node_graph?0 (Graph nil

(choose_node (:?2nil)
(HOLDN#5 nil)::=
(ao_growable_nodes?0 ao_node_graph?0?2
(HOLDN#25 (Graph nil
(ao_mark_graph [?2]
(ao_unmark_graph?1) Nil
(Nid#1))

;

a. ‘ao_node_graph’

b. ‘ao_grow_graph’

Fig. 7.30 Simplification through concept modification

Questions 7.1 253

And the function, which grows a graph from a single node, has been quite clearly
abstracted out.

In Summary

The environment of a Schema Interpreter such as Clarity fulfils the ideals of a spec-
ification language (in Chapter 1). The relational analysis is orientated to defining
normalised objects that can also be interpreted as functions. Both relations and
functions have a well-understood calculus and this suggests that some of this work
could be incorporated into a design method. Errors in the schema are rare because
the diagrams are kept simple and type checked. The diagrams also encourage the
multi-layering of concept domains. The seemingly natural law that has emerged is
that machine or library level functions will tend to devolve to the lower levels. At the
same time there is always a simple description available at each stage. The approach
is still evolving but even in its current form it provides a design method that is almost
complete; you still need insight.

Exercises 7.1

1. Draw a Conceptual Model of the chest size problem in Chapter 6.
2. Generalise it to include alternative measurements such as collar size and arm

length with price adjustment for non-normal combinations. Also include price.
3. Take the function ‘chest_aux’ as described in Chapter 6 (Fig. 6.7) and turn it

into a recursive function.
4. Make this function non-recursive by using a higher-order function (e.g. ‘foldr’)
5. Adapted ‘Chest2’ to include the generalisations and to print out an invoice.

Questions 7.1

1. Give one advantage and one disadvantage of a functional language compared
with an imperative language.

2. Why don’t you need any special de-bugging tools for Clarity?
3. Why should the model of a problem domain be represented by extensional func-

tions?
4. What is the difference between a relational database and a functional database?
5. What is a ‘malignant side effect’?
6. In what ways can evaluation be controlled and why should this control be

needed?
7. What can insure a solution, if it exists, to the graph search method of problem

solving and why?

254 7 Side Effect Programming and Schematic Design

Project: Learning from Defeat

Oxo2: The Game Player That Learns: A Continuation

×
×O

O O

×O

Develop a Simple Learning Strategy

We will not use the GPS in this project but we will show how to add a little interest
to the OXO game. We will make some modifications to allow x to remember, for
a given state of the grid, one move that resulted in a win. For example, if the grid
looks like this:

x . x 1 2 3
. o o 4 5 6
x o . 7 8 9

and x happens to choose square 2 it wins. It will remember that for [#1 #3 #7] the
best play is #2.

If, in another game, the grid looks like this:

x o x 1 2 3
. o o 4 5 6
x . . 7 8 9

x will ‘remember’ that square 2 would be a winning move, but x cannot make that
move. If x happens to choose square 4 and wins, it will still remember that for [#1
#3 #7] the best play is #2. From a GPS point of view the OXO program can learn
‘winning’ transformations.

Looking for a Win

Look at ‘best_play’ in Diagram 7.1. The general version will be used if there is no
match, and returns #0, which means there is no known best play here for a given
list. If the grid is empty, the input parameter to ‘best_play’ is ‘nil’ and the list is
empty then we allow x to occupy the centre of the grid. Here we cheat a little by
using some pre-knowledge. An alternative is to choose a square a random.

(1) ∗Define the function best_play.

Other components of ‘best_play’ will be built up as more games are played. This
is OXO’s memory.

Project: Learning from Defeat 255

a. ‘best_play’ general. b. ‘best_play’ specific.

Diagram 7.1 ‘best_play’
memory function

a. General case. b. A specific case.

Diagram 7.2 ‘save_play’

Remembering the Winning Moves

Look at function ‘save_play’ in Diagram 7.2.
The first parameter is the chosen square. The second parameter is the list of

squares already taken by the player, and the third parameter is the mark, x or o.
If ‘best_play’ returns #0, then this play has not been saved so far. In addition,
the play will only be worth saving if x has won. So the last two parameters to
‘save_best_play’ must be #0 and ‘True’ because ‘win’ returns ‘True’.

Look at save_best_play in Diagram 7.3.

a. save_best_play. b. save_best_play.

Diagram 7.3 ‘save_best_play’

256 7 Side Effect Programming and Schematic Design

The ‘best play’ is saved only when the last two parameters match #0 and ‘True’.
The saving is done by using ‘setq’, for example, if the first two parameters are #2
and [#1 #3 #7] then ‘best_play [#1 #3 #7]’ would return #2.

(2) ∗Define the function save_best_play.

(3) ∗Define the function save_play.

Choosing the Winning Move

The function ‘choose_for x’ has changed in Diagram 7.4. There is more to do
than choosing ‘any_free_square’. Working from the top, we find out ‘where x’
is already, and a list of integers is returned, representing the squares. Then we look
for a best play for that list by calling ‘best_play’, which will match if that play has
been remembered from a previous game. The function ‘best_play’ will either return
a number from #1 to #9 or #0. We can say ‘x will make a choice’ (i.e. ‘x_choice’)
depending on that number.

The function ‘x_choice’, in Diagram 7.5, is quite straightforward. If there is a
best play, choose it, otherwise choose any free square as in Version 1.

This is a good opportunity to illustrate the difference between ‘if’ and ‘pattern-
match’. The function ‘choose_for’ in Diagram 7.4 could have been constructed like
that in Diagram 7.6 instead of using the function ‘x_choice’. ‘best_play’ returns an
integer, which is tested against #0, and ‘if’ used to determine which result to return.

Diagram 7.4 ‘choose_for’

a. General case b. Choose any free squareDiagram 7.5 ‘x_choice’

Project: Learning from Defeat 257

Diagram 7.6 ‘choose_for’
(an alternative using ‘if’)

(4) ∗Define the function ‘ x_choice’.
(5) ∗Amend the function ‘ choose_for ’ as in Diagram 7.6

Pulling It All Together

Lastly, we must add a new component to the function ‘play’ for x. Look at
Diagram 7.7.

The function ‘progN’ has four tasks to do in order.
First, find out where x is BEFORE making a choice. It is important as it is this

list that is saved in ‘best_play’, not the new list with the latest choice added to it.
If we did not do this first, then ‘save_play’ would get the wrong parameter, as the
saving is done after the choice is made, and then ‘where?’ would return the new list.

This kind of situation can be complicated and cause errors that are sometimes
difficult to find.

Diagram 7.7 ‘play’ (extra
component)

258 7 Side Effect Programming and Schematic Design

The next task for ‘progN’ is to choose a square for x and to set it to x.
Then call ‘save_play’, which will save the choice if x has won, and the play is

not already saved.
Lastly ‘progN’ returns o for the next play in the game.

(6) ∗Add a new component to play as shown in Diagram 7.7

So if you play ‘oxo’ now, it will learn from the games you play on how to find
a winning move. If you wish to keep its learning for each session then you should
save the database. That way, all the extra components of ‘best_play’ will be retained
until next time. If you want ‘oxo’ to forget all it has learnt then type in the control
window:

QUERY>forget best_play
True

Finally for Stage 2

Save your database and call it ‘OXO2A’.
Create a network view by opening a network window, go to the find ‘menu’

and click on ‘Create/Update network from database’. This may require a little rear-
ranging and the deletion of some functions to look neat. A proposed arrangement
is shown Diagram 7.8. When you are satisfied with its appearance, commit it as
before. Other views of the network, showing different functionality, can be created
in separate network windows.

However, we can do better than this if we could remember all the winning com-
binations rather than just the first one. This is done in OXO version 3.

Diagram 7.8 Network of
selected functions for
‘OXO2A’

Project: Learning from Defeat 259

Oxo3: The Game Player That Learns: Another Improvement

×

×O

O O

×O

Improve the Simple Learning Strategy

In Stage 2, version 2, if x remembers that #2 is a winning play if you have squares
[#1 #3 #7], then winning with #4 later in the game is not remembered.

Remembering All the Winning Moves

In this version of the game, we can remember both. We replace the function
‘best_play’ with ‘best_plays’. For any of the squares already taken, we remem-
ber a list of winning plays rather than a single play.

(1) ∗Define the function ‘best_plays’ in Diagram 7.9.

Look at ‘save_play’ in Diagram 7.10, where ‘best_play’ is replaced by
‘best_plays’, and ‘save_best_play’ is replaced by ‘save_best_plays’.

The function ‘save_best_plays’ in Diagram 7.11 needs some explanation.
The second component uses the built-in function ‘filter’, which filters out all the

numbers in the third parameter that are not equal to the first parameter. For example,
‘filter (!= #3) [#1 #3 #7]’ will return [#1 #7]. Then the built-in Constructor ‘:’
(where the colon here is pronounced ‘cons’6) is used to attach this number to the
head of the filtered list. For example ‘: #3 [#1 #7]’ returns [#3 #1 #7]. This is to
ensure that there are no repeated numbers in the list. If #3 had not already been in
the list, this function would have the effect of adding it to the list.

a. General case b. Special case

Diagram 7.9 ‘best_plays’

6 This comes from the list processing language ‘LISP’.

260 7 Side Effect Programming and Schematic Design

Diagram 7.10 ‘save_play’
(amended)

The third component is the case where there are no best plays yet for a given grid
state for x. This component merely makes a list of one number by adding it to the
empty list nil.

(2) ∗Define the function ‘save_best_plays’ in Diagram 7.11.

(3) ∗Amend the function ‘save_play’ in Diagram 7.10.

Diagram 7.11
‘save_best_plays’

Project: Learning from Defeat 261

Selecting the Best

The function ‘choose_for’ x will be changed as in Diagram 7.12. The function
‘best_plays’ will return a list of remembered winning squares. These have to be ‘fil-
ter’ed to find the empty squares (see Diagram 7.13). The function ‘empty’ returns
True if a square is empty. Then x has to choose from a list of empty squares. This
new function, ‘x_choiceL’ in Diagram 7.14 is similar to ‘x_choice’. If the list is
empty, choose the head, i.e. the first in the list. Otherwise, choose any free square.

(4) ∗Define the function ‘empty’ Diagram 7.13.

(5) ∗Define the function ‘x_choiceL’ Diagram 7.14.

(6) ∗Amend the function ‘choose_for’ Diagram 7.12.

You are now ready to play OXO. After a while oxo begins to find most of the
winning moves. However, we can still do better than this. Try the stage 4.

Diagram 7.12 ‘choose_for’
(amended)

Diagram 7.13 ‘empty’

Diagram 7.14 ‘x_choiceL’

262 7 Side Effect Programming and Schematic Design

Diagram 7.15 Network of
selected functions for OXO3

Finally for Stage 3

Save your database and call it ‘OXO3A’. Create a network view by opening a net-
work window, go to the find ‘menu’ and click on ‘Create/Update network from
database’. This may require a little rearranging and the deletion of some functions
to look neat. A proposed arrangement is shown in Diagram 7.15. When you are
satisfied with its appearance, commit it just like a function window. Other views
of the network, showing different functionality, can be created in separate network
windows.

Oxo4: The Game Player That Does Even Better

×

×O

O O

×O

Learning from Opponents and Using Tactics

In this version, x not only remembers its own winning choices, but those of o too.
This is achieved by simply amending the function ‘play’ as in Diagram 7.16 to
proceed in the same way for both x and o.

Making Things Symmetrical

In Diagram 7.16 the symbol ‘?0’ stands for ‘mark’ since this is a way of referring
to the first parameter to the function ‘play’.

Project: Learning from Defeat 263

Diagram 7.16 ‘play’

(1) ∗Amend the general function ‘play’ as in Diagram 7.16

(2) ∗Remove the special case for x in ‘play ’.

Now x will learn from o so all the user’s winning moves will be remembered too.
This will not be any advantage unless x has the same grid state as o had when

o won. This will never happen if x always takes the centre first. For example,
‘best_plays [#1 #2]’ will probably return [#3] after a few games, but x will never
have [#1 #2]. The player x will always have #5 plus some other numbers. Player o
will never have #5.

(3) ∗Remove the special case for ‘nil’ in ‘best_play’.

Finally for Stage 4

Save your data base and call it ‘OXO4A’. Create a network view by opening a
network window, go to the find ‘menu’ and click on ‘Create/Update network from

Diagram 7.17 Network of
selected function for OXO4

264 7 Side Effect Programming and Schematic Design

database’. This may require a little rearranging and the deletion of some functions to
look neat. A proposed arrangement is shown Diagram 7.17. When you are satisfied
with its appearance, commit it just like a function window. Other views of the net-
work, showing different functionality, can be created in separate network windows.

Oxo5: Hindering the Opponent

In this final version of the game, if x cannot win it tries to stop o from winning. It
does this by looking for a winning move for o, i.e. choosing as if it were o and thus
blocking the winning move for o.

×

×O

O O

×O

Combining the Effort

As we need to look at the best plays for o as well as x, we introduce a new function,
‘best_plays_for’ in Diagram 7.18. This will be familiar as part of ‘choose_for’ in
Version 4.

(4) ∗Define ‘best_plays_for’ in Diagram 7.18.

The function ‘choose_for x’ will be amended as in Diagram 7.19.
This function ‘choose_fo r’ calls the function ‘x_choice_fo r’ instead of

‘x_choice L’ as in Version 3 and Version 4. The function ‘x_choice L’ had two
components, essentially a winning move for x or any free square. The function
‘x_choice_fo r’ has three components to correspond to three situations: a winning
move for x, a winning move for o, or any free square.

Diagram 7.18
‘best_plays_for’

Project: Learning from Defeat 265

Diagram 7.19 ‘choose for’
(amended)

a. b. c.

Diagram 7.20 ‘x_choice_for’

Diagram 7.21 Network of selected functions OXO5

266 7 Side Effect Programming and Schematic Design

Look at ‘x_choice_for’ in Diagram 7.20. On the first call, the ‘mark’ is ‘x’. If
the list is not empty, there is a winning move for x, and the first in the list is taken.
If the list is empty, ‘x_choice_for’ will be called with the ‘mark’ set to ‘o’. If the
list is not empty, the first one will be chosen. If the list of winning moves for o is
empty, any free square is chosen.

(5) ∗Define the function ‘x_choice_for’ in Diagram 7.20.

(6) ∗Amend the function ‘choice_for’ in Diagram 7.19.

You are all ready to play a smart oxo player that can only become smarter.

Finally for Stage 5

Save your database and call it ‘OXO5A’. Create a network view as shown in
Diagram 7.21.

References

Addis, T. R. (1985) ‘Designing Knowledge-Based Systems’ Prentice-Hall, Upper Saddle River, NJ,
ISBN 0-13-201823-3.

Date, C. J. (1995) ‘An Introduction to Database Systems’ Sixth edition, Addis-Wesley Publishing
Company, Boston, MA, ISBN 0-201-82458-2.

Newell, A. and Simon, H. A. (1963) GPS, a Program that Simulates Human Thought. Computers
and Thought edited by Feigenbaum, E. A. and Fieldman, J., McGraw-Hill Book Company,
New York, Library of Congress Catalog Card Number 63-17596.

Newell, A., Shaw, J. C. and Simon, H. A. (1963) ‘Empirical Explorations with the logic theory
machine: a case study in heuristics’, Computers and Thought, editied by Feigenbaum, E. A.
and Fieldman, J., McGraw-Hill Book Company, Library of Congress Catalog Card Number
63-17596.

Nilson, N. J., (1998) ‘Artificial Intelligence: A new Synthesis’, Morgan Kaufmann publishers Inc,
San Mateo, California, ISBN 1-55860-535-5.

Chapter 8
Adult Things

When I was a child, I spake as a child, I understood as a child, I
thought as a child; but when I became a man I put away childish
things.

Corinthians 13, 11

Introduction

The essential purpose behind Clarity is to provide a design environment within
which designs and ideas can be created, changed and explored with minimum effort.
The price for this flexibility is an over simplified input/output and reduction in per-
formance. However, once a suitable solution has been found then these limitations
can be side stepped by using a visual development language, such as MSVC, that
can be integrated with the Faith interpreter and the creation of one’s own C++ code
to replace some of the interpreted functions. This means that any Clarity developed
program can always be extended to incorporate any functionality that a computer
system can provide. There really are no limitations.

In addition to the possibility of creating your own functions, there is some use-
ful functionality that extends the development environment. Some of these extra
features are available via menu items and some are provided as built-in functions.
Since our philosophy is that everything you can do with a computer should be pos-
sible in the language we have made, in some cases the features are available in both
forms.

Graphics Operations

gr_operations

For the purposes of developing ideas quickly without the need to construct a full
graphics interface a simple graphics window is provided. There is a set of functions
that will allow simple shapes to be constructed and have some limited movement

267T. Addis, J. Addis, Drawing Programs: The Theory and Practice of Schematic
Functional Programming, DOI 10.1007/978-1-84882-618-2_8,
C© Springer-Verlag London Limited 2010

268 8 Adult Things

provided by the rapid redrawing of sequences of diagrams. This set includes setting
the colour for the graphics operations. It is possible to have a set of graphics win-
dows in which a drawing can be created by using a set of primitives. The graphics
window normally chosen by default is #1 otherwise the command

QUERY> gr_setcurrwin #2
True

will set the next gr_ function to the graphic 2 window. In this way you can draw
different drawings in separate windows. Figure 8.1 shows a function ‘drawGrid’
that produces a grid in graphics window 1 (the default).

Fig. 8.1 ‘drawGrid’ generates a grid in a graphics window

QUERY> drawGrid
True

Note that

QUERY> list_of_int #0 (∗ grid_size cell_size) cell_size
[#0 #20 #40 #60 #80 #100 #120 #140 #160 #180 #200 #220 #240
#260 #280 #300 #320 #340 #360 #380 #400]

QUERY> cell_size
#20

QUERY> grid_size
#20

The graphics functions work as though you were guiding a mechanically
operated pen over a sheet of paper. This means that the start position is always
where the pen was left. This is so that only the destination is needed in order to
draw a line with ‘gr_lineto’ <x> <y>. The position (#0 #0), by computer standards,
is the top left hand corner of the graphics window. Positive positions move to the
right and down (Fig. 8.2).

Graphics Operations 269

Fig. 8.2 ‘showCellBug’ displays a green or red circle in the graphics window

Fig. 8.3 The result of
‘showCellBug’

There are also a few primitive figures, such as ovals, rectangles and triangles
both filled and unfilled, that can be displayed. These are designed to follow a simple
scheme based on their position. The following query will show a green circle in the
second cell on the first line. The circle will fill the 20 × 20 cell and will appear as
shown in Fig. 8.3:

QUERY> showCellBug (Bugg (Pos #1 #2) #1 #2 #3 #2 Greenbug)
True

In this example ‘Bugg’ is a constructor that packages the information about a
bug, such as its position, size and colour. Text can also be written where the start
position is specified by the parameters as follows:

QUERY> gr_forecolor Black
True
QUERY> gr_text #85 #10 "A Green Bug"
True

Figure 8.3 shows the result. Movement is achieved by redrawing. The original
object image needs to be removed and this may be done by either clearing the
graphics window each time using ‘gr_clear’ or by overwriting the original figure
with (gr_forecolor White) before drawing it again in its new position.

270 8 Adult Things

btn_operations

There are a set of operations that put out tick boxes onto the desktop. Their position
is specified by a parameter and each is identified by an integer. They can be ‘ticked’
or ‘un-ticked’ manually by clicking in the small box or through a function (Fig. 8.4).

Fig. 8. 4 Buttons on the
desktop

• ‘btn_open’ opens a button with a given name and position.

QUERY> btn_open #1 ["Log" #100 #100 #80 #80]
True

• ‘btn_test’ returns True if the button is checked, False otherwise.

QUERY> btn_test #1
False

• ‘btn_set’ switches on the check in a button.

QUERY> btn_set #2
True

• ‘btn_reset’ switches off the check in a button.

QUERY> btn_reset #1
True

• ‘btn_attr’ returns button attributes, i.e. name and position.

QUERY> btn_attr #1
["fred" #675 #95 #112 #64]

• ‘btn_close’ deletes a button.

QUERY> btn_close #1
True

Dialog

Interaction with the terminal is clearly an important activity and as we have seen it
is not too easy to create a comfortable interface with our current primitives. We have
enhanced the primitive ‘getchar’ to ‘getline’ and also provided a special dialog box
(see Fig. 8.5).

Narrative Window (nar_) 271

Fig. 8.5 Dialog window for
collecting information

• ‘ getline’ reads a string of characters from the keyboard.

QUERY> getline
"Hello"

• ‘ gr_dialog’ pops up a modal dialog box and returns the user entered text as a
string or the null string ("") if cancelled.

QUERY> gr_dialog "What is your name?"
"Professor OddSocks"

To match ‘getline’ we have instead of ‘putchar’:

• ‘ putline’ output a string of characters to the control window.

QUERY> putline "Hello"
HelloTrue

• ‘ print’ prints a string, real, integer, list or symbol to the control window.

QUERY> print [#24 ′w′ "jim"]
[#24 ‘w’ "jim"]True

For programming we can also use for error messages (as well as the above):

• ‘error’ prints an error message in the control window. The output is also the error
message. Output is classed as generic.

QUERY> error "Wrong type"
User error: Wrong type
(error "Wrong type")

Narrative Window (nar_)

Text has its own window, as we have seen. This is another facility for quick
development of ideas where the initial user interface can be simple. This window
provides a separate output for text to that of the control window. It can be used

272 8 Adult Things

effectively for debugging since it allows the programmer to insert print statements
at critical points in the program.

The narrative window will remove all the built in syntactic constructors such as
and #r as well as double and single quotes. This can be seen from the examples
below in Fig. 8.6.

QUERY> nar_line "Some straight text"
True
QUERY> nar_line #32
True
QUERY> nar_line ["Mixed type in a list" #54 #r3.72 ‘A’(add1 #45)]
True
QUERY> nar_line "all good men"
True
QUERY> nar_text "come to the aid of the party"
True

Fig. 8.6 The narrative
window

To help with the creation of messages there are string manipulation functions that
treat every string as though it were a list of characters. So ‘str_head’ will return the
first character in the string and ‘str_tail’ the string without the first character. Most
of the list operations are represented in this group of functions. Another set of func-
tions that are useful are the casting functions ‘str_to_words’ and ‘words_to_str’
which uses the space character to delineate words. ‘str_concat’ is another useful
function.

Automatic Junction Insertion for Dependency Networks

Junctions serve the purpose of reducing the complexity of a diagram. In the case
of networks there is a facility that will automatically find all the places where a
junction will simplify the diagram and insert it. The general rule is that where there
are many to many links then these can be reduced by introducing a node. If there are
‘n’ sources and ‘m’ sinks then normally this will require n∗m links. Using a node,
this reduces to n+m links. The process may need to be repeated because the nodes

Automatic Junction Insertion for Dependency Networks 273

a. Hand-drawn before inserted junction

b. Redrawn with inserted junction.

Fig. 8.7 Changes made by automatic junction redrawing

will form new links which may need further reduction so the process can
then be repeated on the resulting diagram until no further changes can be made. The
menu item ‘Redraw Window with Junctions’ under ‘Features’ will perform the task.
The original diagram is not replaced by the new one unless you overwrite it through
‘commit’. The result can be seen in Fig. 8.7a and b after some rearrangement.

274 8 Adult Things

Converting Faith Code to Clarity Diagrams

Sometimes all that is available of a Clarity program is the Faith code. This is likely
to occur when a stand-alone Clarity-developed program has been constructed and
exported to another machine. It is useful to convert selected functions into the
schematic form and this can be done with the ‘Faith to Clarity’ menu item under
‘File’ during the display of the Faith window. There is the option of converting
all the Faith code to schematics. An example of this conversion is shown in
Fig. 8.8 beside a comparison with the hand-created diagram. The Faith code in a
highlighted Faith Window (menu Window/new/Faith code) can be generated in a
component window of the function through the menu by ‘File/Faith to Clarity’.
If the function schematic does not already exist as would normally be the case
then a schematic is generated. This schematic can then be shown by displaying the
function as normal.

a. Hand Drawn original b. Original Faith code c. Automatically
Generated

Fig. 8.8 A schematic generated from faith code

This generation is effective for simple functions. Where there is a reference to a
function parameter it uses the reference variable ‘?0’ for the first parameter and if
there are other parameters then this will use the variables ‘?1’, ‘?2’, etc. to indicate
the second and third parameters. We have used this as an alternative way of refer-
encing parameters and it is the reason why variables ‘?n’ must always be with an
‘n’ larger than the number of parameters to avoid confusion with this use of such a
variable.

The other inconvenience of the generation is that the HoldN lozenge will be
deconstructed by the analysis of the Faith code and then regenerated into its com-
ponent parts in the new schematic. This deconstruction can be rectified by manually
merging all HoldN lozenges that have their first input with the same integer and
deleting the redundant input structures. In Fig. 8.9 the integer is #13 (green) and
merging as described will remove the redundancy of the function ‘choose’. Also for
the other HoldN the integer is #15 (red) and here we can remove the repetition of
all the functions stemming upwards from ‘fix’ by a further merge so that we end up
with Fig. 8.9a.

File Operations 275

a. Original hand drawn b. Faith code of original c. Automatically generated

Fig. 8.9 The problem with ‘HoldN’ in schematic generation

File Operations

Basics

Figure 8.10 shows sets of file communication functions. The initial operation is
normally the need to open a file for reading or writing. So the function

Fig. 8.10 File operations organised according to type

276 8 Adult Things

• ‘file_open_read’ will open a file for reading only. This starts reading at the
beginning of the file where the file named "rainbow" contains (say):

My heart leaps up when I behold
A rainbow in the sky:
So was it when my life began,
So is it now I am a man,
So be it when I shall grow old,
Or let me die!

QUERY> file_open_read "rainbow"
True

• ‘file_open_write’ opens a new file for writing. If the file exists it returns False.
Once written to, a file can only be removed via the operating system or using the
function ‘file_delete’.

QUERY> file_open_write "new1"
True

• ‘file_read_char’ reads the next character in a named file that is open for read. If
the file is not opened the function is not evaluated. At end of file the EOF (decode
#–1) character is returned.

QUERY> file_read_char "rainbow"
‘M’

• ‘file_read_line’ reads the next line in a named file that is open for read. A line is
defined by the decoded character #13. At the end of file (EOF) the empty string
"" is returned.

QUERY> file_read_line "rainbow"
"y heart leaps up when I behold"

• ‘file_read_word’ reads the next word in a named file that is open for read. A
word is a string of characters followed by ‘white space’ (a non-printable charac-
ter). At end of file EOF the empty string "" is returned.

QUERY> file_read_word "rainbow"
"A"

• ‘file_cut’ given two strings, and a file name (rainbow), returns the text that lies
between. The output is in another named file (lines).

QUERY> file_cut "So" "," "rainbow" "lines"
"lines"

So was it when my life began,
So is it now I am a man,
So be it when I shall grow old,

File Operations 277

• ‘file_close’ closes a given file if open for read or write. Returns False if no file
open of given name.

QUERY> file_close "rainbow"
True

• ‘file_write’ writes an expression to a named file that is open for write. All single
and double quotes, ‘#’ and ‘?’ marks are retained. The files may have different
extensions and as such will behave differently. We have

.ddb are Faith files,

.seg are picture segment files,

.tmp are temporary and can always be written to but will overwrite the
contents,

.add can always be appended to.

QUERY> file_write "Table1" (nar_line "Good man")
True

• ‘file_write_char’ writes the next character in a named file that is open for write.

QUERY> file_write_char "new1" ‘A’
True

• ‘file_write_line’ writes the next string followed by a new line in a named file that
is open for write.

QUERY> file_write_line "new1" "rainbow in the sky"
True

• ‘file_write_string’ writes the next string in a named file that is open for write.

QUERY> file_write_string "new1" "So be it when I shall grow
old"
True

The file "new1" after the previous 3 function calls will be

A rainbow in the sky
So be it when I shall grow old

Lists and Tables

The file can be treated like a list of objects. An example of what this means is illus-
trated in the description of ‘file_filter’. The purpose of ‘file_filter’ is to filter words,
lines or characters through a specified function from one file to another. The first
parameter is a string and is one of the three possible strings "word", "line" or "char".
This specifies the atomic units (objects) to be considered (see ‘file_read_line’, etc.

278 8 Adult Things

for definitions of the atomic units). The second parameter is a filter function to be
applied to these units. The last two parameters are the input file and the output file.
The function returns the output file when finished. A null string ("") is returned if
failure.

QUERY> file_filter "word" (!="So") "rainbow" "new2"
"new2"

The file "new2":

My heart leaps up when I behold
A rainbow in the sky:
was it when my life began,
is it now I am a man,
be it when I shall grow old,
Or let me die!

The list processing operations that are represented for files are those that can be
done in sequence such as ‘map’, ‘takewhile’, ‘fold’ and ‘filter’. Other operations
such as ‘zip’ which involves the merging of two files were considered too expen-
sive at the time to be useful. The reason was that these operations are to handle
exceptionally long lists.

A table is different from a list in that it is a list of lists. Such a table is intended to
be compatible with such things as spread sheets or SQL relations or statistics tables.
The function ‘table_to_file’ converts a list of lists to a table, with items separated
by a given separator, True/False to specify if strings are to be enclosed in double
quotes, and lists separated by new lines. This gives sufficient flexibility to cover
many table formats.

QUERY> table_to_file (decode #9) False [["Start" "Stop" "Hours"] [#1000
#1800 #r6.0] [#1130 #2200 #r10.5]] "Table1"
"Table1"

The file "Table1" contains

Start Stop Hours

1000 1800 6.000000
1130 2200 10.500000

And in reverse we have ‘file_to_table’ which reads a file in a table format (with
a given separator) into a list of lists of strings.

QUERY> file_to_table (decode #9) "Table1"
[[“Start" "Stop" "Hours”] [“1000" "1800" "6.000000”] [“1130" "2200" "10.500000”]]

File Operations 279

Note that #9 decoded is a ‘Tab’

QUERY> decode #9
‘ ’

Trees and Networks

This set of file operations were derived from an earlier set which predated the use
of the NETWORK window. The advantage of these functions over the more direct
NETWORK window is that the results can be cascaded to produce results which are
particularly useful for debugging. The original (non-file) set was

• ‘link_build’ – builds a representation of the function and constructor linkages
of the current database without showing them. Returns an identifier for further
processing. The detail of what ‘Linkage’ looks like is hidden and for the purpose
of these set of functions it was, at the time, not important to know.

QUERY> link_build
(Linkage #1)

• ‘link_ffrom’ – filters out all links emanating from the given symbol where ‘let-
ter_ct’ is a predefined function that counts the number of letters in a word.

QUERY> link_ffrom (Linkage #1) letter_ct
(Linkage #2)

• ‘link_fto’ – filters out all links converging to the given symbol.

QUERY> link_fto (Linkage #1)∗
(Linkage #3)

• ‘link_show’ – displays the linkage. In this example it is all the connections from
the function ‘letter_ct’ and to the function‘∗’

QUERY> link_show (Linkage #3)
True

In the case of the file operations a file takes the role of (Linkage n). The
files are text files and contain lines of pairs of symbols. Suppose we had a file
called ‘linkfile1.txt’ that contained the list of pairs (they could be words) shown in
Fig. 8.11a, then the call

QUERY> file_link_show "linkfile1.txt"
True

will display the graph in a NETWORK window as shown in Fig. 8.11b. Since it
is a NETWORK window the network can be redistributed and coloured. The file
‘linkfile1.txt’ can then be used by ‘file_link_ffrom’ to generate a children’s file
which if we use ‘a’ as our starting symbol will be simply be a copy of the original
file because it is the root of this network.

280 8 Adult Things

a. List of symbols in text file b. The graph form of list

Fig. 8.11 Creating and displaying a network

QUERY> file_link_ffrom "linkfile1.txt" "a" "linkfile2.txt"
"linkfile2.txt"

QUERY> file_link_fto "linkfile2.txt" "k" "linkfile3.txt"
"linkfile3.txt"

The function ‘file_link_show’ of ‘linkfile3.txt’ will display just the sub-graph
shown in red in Fig. 8.11b. The function ‘File_tree_view’ will display a tree version
of the graph in an expandable file style window. So that

QUERY> file_tree_view "linkfile3.txt"
True

will become as shown in Fig. 8.12 (Tree view of red sub-graph (a → (d → (h → (j
(i → k))))((c → (g → k)))))

Fig. 8.12 Tree view of red
sub-graph

Casting and Code Generation 281

Casting and Code Generation

One of the most important operations is ‘casting’ where one type of object can be
‘cast’ into another. We have already come across castings such as ‘fix’ and ‘float’
but there are many more that allow some rather elegant ways to solve problems.
Figure 8.13 gives a map of the castings between established types. This does not
include the file castings that would naturally continue with the list to file and list to
table transformations.

Many of the castings are designed to allow the generation of Faith code . The
target type is an expression (expr). Faith can be generated initially as lists either by
hand or by a function. In this form it can be manipulated using the list functions
and then at the point when it has to be used it can be preceded by a list to expres-
sion transformation. This is sometimes referred to evaluation deferral. A simple
example is

QUERY> list_to_expr (:*[[add1 #34] [sub1 #23]])
#770

Here the round brackets are evaluated first and then the square brackets are, in
effect, changed to be round brackets and thus evaluated. Also note that variables
(e.g. ‘?2’) can be generated to be used so that functions may be created, defined
and then used. This allows a different level of programming which can be very
useful. It is also worth noting that the function ‘quote’ prevents the evaluation of an
expression. (see eval and @)

Fig. 8.13 A map of castings. Does not include file castings

282 8 Adult Things

QUERY> first (Pair (quote (+ #1 #2)) #5)
(+ #1 #2)

and ‘eval’ evaluates a quoted function.

QUERY> eval (quote (add1 #5))
#6

A primitive version of this evaluation is ‘@’ which applies a function to a variable
which at the query level seems pointless since

QUERY> @ + ?0
(+ ?0)

is the same as

QUERY> + ?0
(+ ?0)

Where it is important is when defining a higher-order function where the appli-
cation of a function is embodied in a variable.

Loosely related to @ is !@ which forces an order of evaluation but only returns
the value of the first parameter. The second parameter is evaluated first and then the
first parameter. So if we define a function ‘printstr’ in a Faith window, thus

fdec printstr ::= str -> str;;
fdef printstr ?0 ::= if (print ?0) ?0 (" ");;

then

QUERY> !@ (printstr "First") (printstr "Second")
"Second""First""First"

Its twin function is @! forces an order of the evaluation but only returns the value
of the first parameter. The first parameter is evaluated first and then the second
parameter, thus

QUERY> @! (printstr "First") (printstr "Second")
"First""Second""First"

These functions are primitives of the family of ‘prog’, ‘prog1’ and ‘progN’ that
provide controlled sequences of evaluations for functions. These are particularly
valuable for side effect programming.

Bayesian Decision Functions

Introduction

One of the valuable tools that can be used in decision making is the use of
Bayesian classification It uses countable or at least potentially countable features
and objects in order to be able to make rational decisions based on experience.

Bayesian Decision Functions 283

The Reverend Thomas Bayes FRS (1701–1761) produced a theorem that involved
determining a probability from the assumption that in ignorance all values are likely
to occur. This assumption caused the acceptance of his theorem to be delayed until
halfway through the twentieth century (Bellhouse 2004). In its modern form it is
considered as simply conditional probability and has been primarily used in pattern
recognition and decision theory.

The Bayesian Theory of Classification [→ Page 285]

The Bayesian Theory of Classification is devised from the elements of Decision
theory. Central to the theoretical treatment of Decision theory is the loss function
λ(i/j), where i is any one of R hypotheses and j is any one of the same set of hypothe-
ses. This function represents the loss (in terms of units) incurred when the decision
is made that the state of the world is i when, in fact, it is j. In terms of pattern recog-
nition, this represents the loss that occurs when the ‘machine’ places a pattern that
actually belongs to category j into category i.

One of the simplest expressions of this function is

λ(i/j) = 1 − δij (1)

where δij = 1 when i = j (Kronecker delta function).

= 0 otherwise.

This states that the loss when wrong will be 1 unit and that there will be no loss
when correct. If a machine classifies patterns such that the average value of λ(i/j) is
minimized, the machine is said to be optimum.

A pattern of evidence can be represented as a vector X in the feature space,
where the features are observations that represent the different items of evidence.
The probability of a pattern of evidence X implies a hypothesis i, where i is one of
R hypotheses, will be represented by the symbol P(X/i), and the probability of the
ith hypothesis will be given as P(i).

Now, it is likely that the features chosen are not perfect for distinguishing a
state of affairs given a pattern of evidence, and there will be an overlapping of the
hypotheses’ boundaries. The probability of a hypothesis j given a particular evidence
pattern X will be represented by P(j/X).

If the decision i is made (the basis for making this decision is immaterial at this
point), then the conditional average loss L(i/X) will be

L(i/X) = j=1�
Rλ(i/j)P(j/X) (2)

This will be the average loss (in units) for making this decision given the
particular pattern X. Combining Equations (1) and (2)

284 8 Adult Things

L(i/X) = j=1�
R(1 − δij)P(j/X)

and this becomes

L(i/X) = 1 − P(i/X) (3)

Therefore, to minimize the expected loss for a particular decision i, i should be
chosen so as to maximize P(i/X).

Now P(i/X) can be estimated by using Bayes’ rule , which is

P(i/X) =P(i/X).P(i)

P(X)
(4)

Now if X is described by the features xl, x2, x3, ,. . . xd, . . . xD, then

P(X/i) = P(x1/i).P(x2/x1, i).P(x3/x1, x2, i). . .etc

and

P(X) = P(x1).P(x2/x1).P(x3/x1, x2). . .etc

therefore

P(i/X) = P(i).P(x1/i).P(x2/x1, i)

P(x1) P(x2/x1)
............. (5)

This would take considerable computing power if X has many dimensions, and
there would need to be a large number of examples of each i to ensure the correct
determination of some of the more obscure probabilities.

If the transformations on the measurements (observations) are chosen so that the
features are independent of each other, then Equation (5) can be greatly simplified

P,(i/X) = P(i).P(x1/i).P(x2/i) P(x3/i)

P(x1)P(x2)P(x3)
............. etc

This means that dimension transformation that result in xn must do the work of
correlation.

If logs are taken and log (P’(i/X)) is considered as a discriminant function
G(i/X), then

G(i/X) =k=1�
Dlog(P(xk/i))−k=1�

Dlog(P(xk)) + log(P(i))

Since k=1�
Dlog(P(xk)) is a constant for each of the k hypotheses,

G′(i/X) =k=1�
Dlog(P(xk/i)) + log(P(i))

Bayesian Decision Functions 285

This is an extension of Bayes’ rule in log form. It is a simple linear equation
where the impact of all the evidence is the log sum of the impacts made by each
observation separately. The only requirement is that the observations must behave
as though they were independent. The individual elements (log P(xk/i)) can be cal-
culated for any ‘pattern of evidence’, and if there are several hypotheses to choose
from then maximum G’(i/X) is selected.

*The Bayesian Functions in Operation

Since the conceptual interface to the world should be defined in terms of construc-
tors so Fig. 8.14 shows an example of their use for classifying fruit in this way.

a. Set of fruit b. Features and values

Fig. 8.14 Setting up for Bayesian classification

The function ‘prob_learn’ modifies the internal probability tables through the
presentation of an example of a class of object and its list of feature value pairs
(not type pairs). The first parameter is an enumerated constructor that represents
the class of objects taken from a set of classes. The second parameter is a list of
constructor value pairs where the constructor is a feature and the value is one drawn
from a set of values. Initially we might need to reset the internal tables. The function
‘prob_reset’ clears the probability tables of all values.

QUERY> prob_reset
True

QUERY> prob_learn Apple [(Color Red)(Size Small)]
True

QUERY> prob_learn Orange [(Color Red)(Size Large)]
True

QUERY> prob_learn Apple [(Color Green)(Size Large)]
True

286 8 Adult Things

QUERY> prob_learn Orange [(Color Green)(Size Small)]
True
QUERY> prob_learn Orange [(Color Green)(Size Medium)]
True

The function ‘prob_classify’ will, given a list of feature value pairs (not type
pairs), calculate the discrimination value G’(i/X) of this combination of feature val-
ues determined from the information given.

QUERY> prob_classify [(Color Green)(Size Small)]
[(Pair Apple #r0.416667) (Pair Orange #r0.555556)]

Other functions are

• ‘prob_getclass’ the probability of a class (first parameter) is returned (see
prob_learn for further context).

QUERY> prob_getclass Apple
#r0.400000

• ‘prob_getcond’ the conditional probability (feature value given class is returned.

QUERY> prob_getcond (Color Red) Apple
#r0.500000

• ‘prob_getfeat’ the probability of a feature value pair (not type pair) for all classes
is returned.

QUERY> prob_getfeat (Size Small)
#r0.400000

Sometimes it is useful to be able to start with a set of probabilities and to this end
there are three useful functions:

• ‘prob_setclass’ the probability of a class (first parameter), given no further infor-
mation, is pre-set to second parameter. The head of the list is the new sum of the
individual probabilities of each class. The tail of the list is pairs (type pair) of the
class constructor and their respective probabilities.

QUERY> prob_setclass Apple #r0.7
[#r1.300000 (Pair Apple #r0.700000) (Pair Orange #r0.600000)]

• ‘prob_setcond’ the conditional probability (feature value given a class) is pre-
set. The first parameter is a constructor/value pair. The second is a class and the
last the probability to be set.

QUERY> prob_setcond (Color Red) Orange #r0.9
[#r1.566667 (Pair (Color Red) #r0.900000) (Pair (Color Green)
#r0.666667)]

Matrix Operations and Linear Simultaneous Equations 287

• ‘prob_setfeat’ the probability of a feature value pair (not type ‘pair’) without
any further information (i.e. across all classes) (first parameter) is pre-set (second
parameter).

QUERY> prob_setfeat (Size Small) #r0.3

[#r0.900000 (Pair (Size Small) #r0.300000) (Pair (Size Large) #r0.400000)

(Pair (Size Medium) #r0.200000)]

Matrix Operations and Linear Simultaneous Equations

Although list operations perform many of the operations required for Matrix manip-
ulation, where a matrix is simply a list of lists (or a table), it seems neater to express
these as special functions without eliminating the list operations. Of particular value
is the function for solving simultaneous equations .

• ‘mat_minus’ subtracts second matrix from the first.

QUERY> mat_minus [[#10 #5] [#20 #8]] [[#10 #4] [#19 #8]]
[[#0 #1] [#1 #0]]

• ‘mat_plus’ adds two matrices together.

QUERY> mat_plus [[#10 #5] [#20 #8]] [[#10 #4] [#19 #8]]
[[#20 #9] [#39 #16]]

• ‘mat_times’ multiplies two matrices together.

QUERY> mat_times [[#2] [#1]] [[#2 #1]]
[[#r4.000000 #r2.000000] [#r2.000000 #r1.000000]]

• ‘mat_trans’ transposes a matrix.

QUERY> mat_trans [[#3 #2] [#2 #1] [#1 #0]]
[[#r3.000000 #r2.000000 #r1.000000] [#r2.000000 #r1.000000 #r0.000000]]

• ‘mat_solve’ solves a set of linear equations that are expressed in the form of
a matrix. If the matrix has more equations than variables and the equations are
consistent then a single result is given. If the equations are inconsistent the NIL
is returned. If there are fewer equations than variables then a reduced matrix
(indicating the constraints between the variables) is returned. To solve the pair of
equations

2x + 5y = 16 and 3x - y = 7 for x and y:
QUERY> mat_solve [[#2 #5 #16] [#3 #-1 #7]]
[[#r3.000000 #r2.000000]]

288 8 Adult Things

When not enough information

2x + y + z = 1.2 and x + 2y - z = 0.3:
QUERY> mat_solve [[#2 #1 #1 #r1.2] [#1 #2 #-1 #r0.3]]
[[#r1.000000 #r0.500000 #r0.500000 #r0.600000]]

This function has been used extensively in the calculations of forces on bridges
built of rods.

Set Operations

Sets are simply lists of objects, usually of the same kind or type. Lists are assumed
to be non-redundant in the sense that no object appears more than once. The func-
tion ‘mkset’ ensures that this is the case. Otherwise the functions for set opera-
tions are ‘set_union’, ‘set_subtract’ and ‘set_intersect’. They all follow the same
pattern.

• ‘set_intersect’ set operation, intersection of two sets.

QUERY> set_intersect [‘a’ ‘b’ ‘c’] [‘b’ ‘c’ ‘d’]
[‘b’ ‘c’]

Switches

Each switch is literally a single computer bit. Currently 3 K words have been
reserved giving 96,000 switches ranging from 0 to 95,999. A switch is used as a
global flag and has been used to define different states of a complex simulation.

• ‘sw_set’ uses #–1 to specify all of them. This sets the switch(es) to ‘True’

QUERY> sw_set #–1
True

• ‘sw_reset’ resets the switch(es) as for sw_set.

QUERY> sw_reset #333
True

• ‘sw_test’ tests a switch.

QUERY> sw_test #334
False

Project: Using Faith with Clarity 289

Project: Using Faith with Clarity

Loans: A Loans Calculation Program

Introduction

This program will calculate different factors, depending on the user′s choice, relat-
ing to a loan, over a period measured in months, at a given rate of interest (to 2 dec-
imal places). If, for example, the user chooses the monthly repayment, the system
will ask the amount to be borrowed, how long the loan has to run and the interest
rate. It will return the monthly repayment. The main function is called start (see
Diagram 8.1.).

The program will require a lot of interaction with the user and some calculations.
The interactions will involve strings of characters, e.g. “Please choose one of the
following calculations:” The calculations will use the internal representations of
integers and decimal numbers, so conversion functions are used. [In the ClarityPro,
these conversions and a function ‘dialog’ are available as built-in functions.]

QUERY> start

Please choose one of the following calculations:

Your monthly payment in £ : 1

The time to repay your loan in months : 2

The amount you can borrow in £ : 3

Type in your choice now (followed by 'Enter') > 1

How much (whole ££) would you like to borrow? : 5000

How long (in months) for you to repay the loan? : 36

APR with 2 decimal places (e.g. 7.90): 7.50

Your monthly payment in £ : #155

User chooses
calculation 1 in

this case.

Final monthly
repayment given.

Diagram 8.1 The user interface for function ‘start’

290 8 Adult Things

Conversions

One of the simplest of these conversions is function ‘char_to_int’ in Diagram 8.2.
(Also defined in OXO.)

The function ‘char_to_int’ converts the character representation of a number,
e.g. ‘7’ into the internal representation of an integer e.g. #7. The difference is the
way it is stored by the computer.

(1) *Define the function char_to_int in Diagram 8.2.

Building on this function, we can define a function to translate a list of characters
into an integer. For example [‘4’ ‘5’] transforms into #45.

Look at function ‘chars_to_int’ in Diagram 8.3.
This function uses a running-total returned by the function ‘result’, which is

initially set to zero. Then for each item in the list, the function ‘add_to_result’
multiplies ‘result’ by 10 and adds the new item. So for [‘4’ ‘5’] the steps are as
follows:

result = 0;
result = 0 * 10 + 4 = 4;
result = 4 * 10 + 5 = 45;

(2) *Define the function ‘result’ in Diagram 8.4.

(3) *Define the function ‘add_to_result’ in Diagram 8.5.

(4) *Define the function ‘chars_to_int’ in Diagram 8.3.

Diagram 8.2 Function
‘char_to_int’

components #0 components #1

Diagram 8.3 Function ‘chars_to_int’

Project: Using Faith with Clarity 291

Diagram 8.4 ‘result’

Diagram 8.5
‘add_to_result’

Putting out Messages

As there are various messages to print out, we will make use of a function called
‘string’, which will return different strings, given different integer input parameters.
This will make a neater diagram for the functions that use these strings. The strings
may also be edited easily.

Look at function ‘string’ in Diagram 8.6. Two components are given, but we
need to define a further four components, according to the list of additional values

‘string #2’ returns "The time to repay your loan in months:"
‘string #3’ returns "The amount you can borrow in £:"
‘string #4’ returns "Please choose one of the following calculations:"
‘string #5’ returns "Type in your choice now (followed by ‘Enter’)>"

(5) *Define all 6 components of the function ‘string’ in Diagram 8.6 plus
additions.

There are some more simple printing functions to define.

(6) *Define the function ‘newline’ in Diagram 8.7.

(7) *Define the function ‘message’ in Diagram 8.8.

component #0 component #1
Diagram 8.6 The function
‘string’

292 8 Adult Things

The function ‘message#’ in Diagram 8.9 prints a message, followed by the char-
acter form of its integer identifier, to print out the choices described above.

This function makes use of function ‘int_to_char’ in Diagram 8.10, which does
the opposite of function ‘char_to_int’.

(8) *Define the function ‘int_to_char’ in Diagram 8.10.

(9) *Define the function ‘message#’ in Diagram 8.9.

Getting Input from the User

As was stated earlier, this program relies on a certain amount of interaction, and that
brings us to the function ‘dialog’ in Diagram 8.11. This function prints a message,
e.g. “What is your name? and then keeps reading characters until the ‘Enter’ key
is pressed. Characters can be deleted by using the ‘Backspace’ key, and the printed

Diagram 8.7 The function
‘newline’

Diagram 8.8 The function
‘message’

Diagram 8.9 ‘message#’

Project: Using Faith with Clarity 293

Diagram 8.10 The function
‘int_to_char’

Diagram 8.11 The function
‘dialog’

character ‘–’ will indicate the deletion. The function returns the list of characters
read. For example,

QUERY> dialog "What is your name?"
What is your name? Jannn–icc-e
[‘J’ ‘a’ ‘n’ ‘i’ ‘c’ ‘e’]

The function that keeps reading characters and adding them to a list is
‘get_reply’ in Diagram 8.12. This function takes an integer as input because it can-
not match an ‘Enter’ key or ‘Backspace’ key as an input parameter, but its integer
code can be matched. There are four components of ‘get_reply’.

Look carefully at ‘get_reply’. The input parameters are the integer code for the
character and the list of characters already read. In component #0, we are dealing
with an ordinary printable character. The built-in function ‘decode’ turns it into a
character and ‘putchar’ prints it for the user. Then the constructor ‘:’ (cons) adds it
to the head of the list of characters, and ‘get_reply’ is called again. The first param-
eter to ‘get_reply’ will be the new character read from the user with ‘getchar’,
which is then ‘encode’d into its internal integer form. The second parameter is the
new list of characters, with the latest one at the front.

We have to start with something, so in ‘dialog’, we call ‘get_reply’ with the
‘space’ character and an empty list (although it does not matter which character we
use).

Therefore, if the user types the word ‘fred’, the list is built up like this:

[‘ ‘], [‘f’ ‘ ‘], [‘r’ ‘f’ ‘ ‘], [‘e’ ‘r’ ‘f’ ‘ ‘], [‘d’ ‘e’ ‘r’ ‘f’ ‘ ‘]

294 8 Adult Things

Which is why ‘dialog’ then ‘reverse’s the list and takes the ‘tail’, that is every-
thing except the first item.

Getting back to ‘get_reply’ we see that component #1 deals with ‘Backspace’,
which has an internal code of #8. We print ‘’–’ to indicate a deleted character, and
carry on to the next read with only the tail of the list so far, i.e. we lose the last
character read. Component #2 deals with the case where someone types ‘Backspace’
as the first character. Component #3 deals with the ‘Enter’ key, which has internal
code #13. A ‘newline’ is printed and the list of characters returned.

(10) *Define the function ‘get_reply’ in Diagram 8.12.

(11) *Define the function ‘dialog’ in Diagram 8.11.

We can now consider the function that will print the choices for the user, and will
return the user′s choice as an integer. This is the function ‘choose’ in Diagram 8.13.

The function ‘choose’ will print ‘string #4’, followed by ‘strings #1’, ‘#2’ and
‘#3’ with their identifiers. Then the function dialog will be called to return a list
of characters, but we are only expecting one, so the head of the list is taken. This
character is converted to its integer equivalent and returned.

(12) *Define the function ‘choose’ in Diagram 8.13.

component #0 component #1

component #2 component #3

Diagram 8.12 The function ‘get_reply’

Project: Using Faith with Clarity 295

Diagram 8.13 The function
‘choose’

Diagram 8.14 The function
‘start’

Doing the Calculations

It is time to look at the main function ‘start’ in Diagram 8.14.
Evaluating the parameters of ‘progN’ from left to right, the first function to be

called is ‘choose’, which, as we have seen, prints out choices for the user, and returns
that choice as an integer. The function ‘calc_choice’ will perform the appropriate
calculation, then the string associated with the choice is printed followed by the
result, which is an integer.

Look at the function calc_choice in Diagram 8.15.
The only choices are #1, #2 and #3. Component #0 is there for completeness.

‘power’ is a built-in function, e.g. ‘power #r2.3 #2’ returns #r5.29. All three cal-
culations ‘calc1’, ‘calc2’ and ‘calc3’ depend on the functions ‘loan’, ‘apr_plus’,
‘term’ and ‘permonth’ (e.g. Diagram 8.16, 8.17, 8.18, and 8.19). They all involve
a dialog with the user.

(13) *Define the function ‘loan’ in Diagram 8.16.

(14) *Define the function ‘term’ in Diagram 8.17.

(15) *Define the function ‘permonth’ in Diagram 8.18.

296 8 Adult Things

The function ‘apr’ in Diagram 8.19 uses the conversion function ‘chars_to_real’
in Diagram 8.20.

component #0 component #1

component #2 component #3

Diagram 8.15 The function ‘calc_choice’

Diagram 8.16 The function
‘loan’

Project: Using Faith with Clarity 297

Diagram 8.17 The function
‘term’

Diagram 8.18 The function
‘permonth’

Diagram 8.19 The function
‘apr’

a. General case b. Special case
Diagram 8.20 The function
‘chars_to_real’

298 8 Adult Things

We are assuming that the user will type in the APR with exactly two decimal
places, as requested. So we will have a list of characters, e.g. [‘5’ ‘.’ ‘5’ ‘0’]. To
convert this to a real number, we ‘filter’ out the ‘.’, convert to an integer with
‘chars_to_int’, and then divide by the ‘real’ #r100, to return a real number #r5.50.

NB: If we divide by the integer #100 the answer would be an integer, in this
example, #5, which is not what we want. If there is a real involved in the arithmetic,
then a real is returned.

(16) *Define the function ‘chars_to_real’ in Diagram 8.20.

(17) *Define the function ‘apr’ in Diagram 8.19.

The function ‘apr_plus’ is defined because it is used in all three calculations.

(18) *Define the function apr_plus in Diagram 8.21.

The calculations themselves show how it is possible to put an expression into
a parameter lozenge. Now look at ‘calc1’ in Diagram 8.22, which is called from
‘calc_choice #1’.

The function ‘calc1’ is called with three parameters: an integer and two reals.
These three parameters are represented inside the expression by the variables ?0, ?1
and ?2 respectively. These act in the same way as x, y and z in mathematics. The
expression is in pre-fix form, i.e. instead of writing for example ‘?0 + ?1’ we write
‘+ ?0 ?1’. ‘?0 + ?1’ is in-fix form and is more familiar. It is fine for two parameters
but for three or more pre-fix form is a consistent way of writing expressions. The
expression in ‘calc1’ in Diagram 8.22 would be more familiar in in-fix form as

(?0 ∗ (?2 ∗ (#1 – ?1))) / (#1 – ?2)

(19) *Define ‘calc1’ in Diagram 8.22.

(20) *Define ‘calc3’ in Diagram 8.23.

However, ‘calc2’ in Diagram 8.24 needs a little more explaining. If you choose
how much to borrow and how long to pay, your monthly payments can be calculated
and have no limit. If you choose how much to pay per month, and how long for then
the amount you can borrow on that basis can be calculated. But if you specify some
very large amount to borrow and a small monthly repayment, it is possible that it will

Diagram 8.21 The function
‘apr_plus’

Project: Using Faith with Clarity 299

Diagram 8.22 The function
‘calc1’

Diagram 8.23 The function
‘calc3’

Diagram 8.24 The function ‘calc2’

never be paid back, i.e. you will not even keep up with the interest. This amounts to
a check which is made in calc2 before calculating the result.

(21) *Define ‘calc2’ in Diagram 8.24.

(22) *Define calc_choice in Diagram 8.15.

(23) *Define start in Diagram 8.14.

You can now test your program by typing ‘start’ in the control window after the
prompt QUERY> (see Diagram 8.1).

Finally

Save your data base and call it ‘Loans’ then create a network view by opening
a network window, go to the find ‘menu’ and click on ‘Create/Update network
from database’. This may require a little rearranging and the deletion of some func-
tions to look neat. Two proposed arrangements are shown in Diagram 8.25 and in
Diagram 8.26. These different networks describe the different functionality required

300 8 Adult Things

by the program ‘Loans’. When you are satisfied with the appearance of each net-
work, commit them just like different components of a function window. Of course
you might like to produce other views of the network, showing further distinctions
of the functionality.

The popular functions ‘chars_to_int’, ‘dialog’, and ‘string’ have been left out
of Network 1, to make it clearer. They have been placed on Network 2, along
with their parent functions and descendent functions. Colours can also be chosen
(say red) to show those functions that appear in both networks. Just highlight the
functions (and arrows) and go to the colour menu. Chose the colour you want.

Diagram 8.25 Network #1 of the database ‘Loans’

Diagram 8.26 Network #2 of database ‘Loans’

References

Bellhouse D.R. (2004) ‘The Reverend Thomas Bayes, FRS: A Biography to Celebrate the Tercente-
nary of His Birth’ Statistical Science Vol. 19, No. 1, pp. 3–43.

Chapter 9
Higher-Order Programming and Lower
Level Activity

For now we see through a glass darkly;
but then face to face; now I know in part;
but then shall I know even as also I am known.

Corinthians 13, 12

Special Function Classes

Introduction

In the built-in window (‘help’) that shows all the library functions the 300+
functions have been grouped according to their speciality. Some we have already
described in detail in Chapter 8 but there are many others worth at least mention-
ing. Some groups such as Boolean and Boolean Hybrids, which refer to functions
that test, are not detailed in this book since many of them would be expected to
be available for any programming language (e.g. arithmetic functions). Here we
describe briefly some useful groups of functions that are not always found in other
programming languages.

There is another area of programming that needs to be covered. Clarity has been
built in the imperative language of C and C++. We have shown that although a
functional language is formally complete it does not relate physically to the world
except through side effects. Side effects are often the real reason for programming
in that computers are needed to link with the external world so that information can
be broadcast and mechanisms controlled. The way this is achieved with Clarity is
by ready made built-in functions (e.g. ‘print’) but this immediately puts a barrier to
further uses. We can overcome this barrier by creating new library functions in an
imperative language, a language that links intimately with the physical structure of
the computer.

We will first cover functions that emulate the imperative form of programming.
Then we will go on to links with the operating system and how to extend the library.
Finally we will summarise the source code and the underlying structure of Clarity.
With this knowledge anything is possible.

301T. Addis, J. Addis, Drawing Programs: The Theory and Practice of Schematic
Functional Programming, DOI 10.1007/978-1-84882-618-2_9,
C© Springer-Verlog London Limited 2010

302 9 Higher-Order Programming and Lower Level Activity

Function and Constructor Handling

These functions provide a means of manipulating other functions before they are
evaluated. Some have already been introduced such as ‘@’, ‘progN’ and “quote’.
Some of the other important function handlers are described here but it is worth
looking at the complete group under the function ‘help’.

Information

• ‘bagN’ list of function values for the function specified as an argument (see
‘range’).

fdec place ::= str ->str;;
fdef

place "Tom"::= "Aldbourne";
place "Jan" ::= "Aldbourne";
place "David" ::= "Bath";

;
QUERY> bagN place
["Aldbourne" "Aldbourne" "Bath"]

• ‘inventoryf’ returns a set of unique values that are used by the function given
as a parameter (sym). The integer (int) specifies the parameter number. #0 is the
function name and #1 is the first parameter. The greatest integer that can give a
response would be the ‘body’ of the function. Integers higher than that are unde-
fined. This uses ‘list_fdefs’ and there is a danger of infinite recursion in some
cases.
See example, for bagN

QUERY> inventoryf place #1
["Tom" "Jan" "David"]

• ‘inverse’ returns a list of the parameters of all the components of a function that
returns the given value, inverse mapping. This is limited to extensional functions
with a single parameter (see inverseN).

QUERY> inverse place "Aldbourne"
["Tom" "Jan"]

• ‘list_children’ lists the functions that are called by the given function. NB: The
information is taken from the database, not from memory. See also ‘list_parents’.

QUERY> list_children "factorial"
["sub1" "∗"]

• ‘list_fdefs’ lists all the components of a function where each component is in list
form (see ‘assertl’)

QUERY> list_fdefs place

[[place "Tom" "Aldbourne"] [place "Jan" "Aldbourne"] [place "David" "Bath"]]

Special Function Classes 303

• ‘list_parents’ lists the functions that call the given function. NB: The information
is taken from the database, not from memory. See also ‘list_children’.

QUERY> list_parents "factorial"
["main"]

• ‘show’ displays the Clarity function component window that represents the
expression.

QUERY> show (factorial #0)
True

• ‘tdefs’ returns a list of lists of str which expresses the definition of a type (sym)
(see ftypes).

QUERY> tdefs pair
[["Pair" "?0" "?1"]]

Manipulators

• ‘compose’ puts functions together. Each function must have a single argument
only. Also see the casting function ‘combine’.

QUERY> compose log10 sqrt add1 #99
#1

• ‘match’ finds the bindings of two expressions. This is Unification as required
for logic programming and A∗ search for searching for logic proofs (also see
‘matchq’):

QUERY> match (?0 ?1 ?2) (#1 ?1 #3)
[[?0 #1] [?2 #3]]

• ‘permute’ exchanges the argument positions of a two argument function.

QUERY> permute power #5 #2
#32

Creators

• ‘assert’ asserts a function from parameters but evaluates these parameters
before definition. There is a family of assert functions: ‘assertl’, ‘assertlcdec’,
‘assertlfdec’, ‘assertq’ and ‘assertql’; also see ‘set’ and ‘setq’.

fdec GP_of ::= str ->str;;
fdef

GP_of ?0 ::= "Unknown";
GP_of "Smith" ::= "Symon";
GP_of "Booth" ::= "Wills";

;

304 9 Higher-Order Programming and Lower Level Activity

QUERY> assert GP_of "Davies" "Wills"
True
QUERY> GP_of "Davies"
"Wills"

• ‘set’ similar to assert but function is given as a single parameter.

QUERY> set constant "Time"
True

• ‘deny’ removes a specified function component in FAITH but not CLARITY
(use remove component for the Clarity function window).
See example for ‘assert’

QUERY> deny [GP_of "Booth"]
True
QUERY> GP_of "Booth"
"Unknown"

• ‘denyall’ removes all traces of a function in FAITH but not CLARITY and
returns ‘False’ if not done. Note that ‘known’ is a built-in function which pro-
vides a test before a function is called. If the result is ‘False’ it means it is not
known and should not be used.
See examples, for ‘assert’

QUERY> denyall GP_of
True
QUERY> known "GP_of"
False
QUERY> denyall (quote coord)
True
QUERY> known "coord"
False

• ‘forget’ removes all traces of special, i.e. extensional , cases of a function in
FAITH but not in CLARITY and returns ‘False’ if not done.
See example for assert:

QUERY> forget GP_of
True
QUERY> GP_of "Smith"
"Unknown"
QUERY> GP_of "Booth"
"Unknown"

• ‘newtdec’ declares a new data type and if successful will return ‘True’.

QUERY> newtdec "weekday" "enum"
True

Special Function Classes 305

QUERY> newtdec "number" "nonlex"
True

• ‘nlcreate’ creates a new lexical type instance and populates a data type with
enumerated instances.
See examples, for ‘newtdec’

QUERY> nlcreate weekday "Sunday"
Sunday
QUERY> nlcreate number "one"
one

• ‘remember’ makes an extensional component of a function (sym) such that it
‘remembers’ the result. The function can have any number of parameters. This
means that the extensional component will be returned next time this function is
called. The function MUST be a user defined function. Also ‘keep’ is similar but
takes one parameter, which is an expression.

fdec series : := real ->real; ;

fdef series ?0 : := + (#1) (∗ ?0 (+ (#1) ?0)) ; ;

QUERY> remember series #r0.5

#r1.750000

QUERY> list_fdefs series

[[series ?0 (+ #1 (∗ ?0 (+ #1 ?0)))] [series #r0.500000 #r1.750000]]

Generators

These are functions that generate data.

• ‘factors’ generates a list of the factors of an integer

QUERY> factors #345
[#3 #5 #15 #23 #69 #115]

• ‘index’ generates a list of numbers 0 → list length

QUERY> index [‘a’ ‘b’ ‘c’]
[#0 #1 #2]

• ‘list_of_int’ returns a list of integers from the first to the second arguments in
steps of the third argument

QUERY> list_of_int #2 #13 #3
[#2 #5 #8 #11]

• ‘rand’ returns a random number. Note that ‘srand’ (no parameters) seeds the
random number generator with date and time.

QUERY> rand
#16838

306 9 Higher-Order Programming and Lower Level Activity

• ‘repeat’ returns a list of size int of ?0. ?0 is evaluated each time. Note that ‘repli-
cate’ is the same but evaluates only once and then the result is replicated.

QUERY> repeat #3 rand
[#10113 #17515 #31051]
QUERY> replicate #3 rand
[#5758 #5758 #5758]

Combinators

These are special functions used by the Faith interpreter for mapping a functional
language on to an imperative machine. It provides an alternative form of the Faith
code that is more efficient than using it directly. Details of this can be seen in Field
and Harrison’s book (Field and Harrison 1988, (also see Reade 1989)). They can
be used directly for programming and on occasions they appear when some func-
tions can only be partially interpreted. The problem is that it is a range of capital
letters that are reserved and so cannot be used for other things. Each of the combi-
nators has a name that describes its transformation.

• ‘B’ is the Compositor (?1 → ?2) → (?0 → ?1) → ?0 → ?2

QUERY> B add1 sqrt #400
#21

• ‘C’ is the Permutator (?0 → ?1 → ?2) → ?0 → ?1 → ?2

QUERY> C / #4 #20
#5

• ‘I’ is the Identity ?0 → ?0

QUERY> I ‘a’
‘a’

• ‘K’ is the Cancellator ?0 → ?1 → ?0

QUERY> K "yes" "no"
"yes"

• ‘S’ is the Distributor (?0 → ?1 → ?2) → (?0 → ?1) → ?0 →?2

QUERY> S + add1 #5
#11

System

Interacting directly with the system from within a program can be useful for such
things as triggering other programs or making the computer system respond or col-
lect information about the system. System functions themselves can be grouped.

Special Function Classes 307

Database

• ‘create’ creates a new database.
• ‘close’ clears the main memory of user’s database

QUERY> close
True

• ‘commit’ saves the current database

QUERY> create "extra"
Created :extra.ddb
True
QUERY> open "extra"
Loading extra.ddb...Loaded
True
fdec triArea ::= real->real->real ;;
fdef triArea ?0 ?1 ::= ∗ (/ ?0 #2) ?1 ;;
QUERY> commit
True

• ‘load’ reads into main memory a user’s database. When load and open (see
below) are used this way, the contents of the Faith window can be misleading.
See example for commit

QUERY> close
True
QUERY> known "triArea"
False
QUERY> load "extra"
Loading: extra.ddb...Loaded.
True
QUERY> known "triArea"
True

• ‘open’ opens a user’s database

QUERY> close
True
QUERY> open "extra"
Loading extra.ddb...Loaded
True

Function

• ‘delay’ introduces a delay in 1/60th of a second.

QUERY> delay #60
True

• ‘dump’ prints information on a symbol, information on all symbols if argument
is “fdef” or all symbol names if argument is “fdec”. Note the use of combinators.

308 9 Higher-Order Programming and Lower Level Activity

QUERY> dump "triArea"
∗∗∗ triArea :FUNCTION arity:2, max_var:1
TYPES real->real->real
:DEFS
:(@#1 (@#1triArea#1?0#1) ?1#1)
1:(@(@B∗)(@(@C/)#2)) (@(@∗(@(@/?0)#2))?1)
END-DEFS
True

• ‘escape’ allows the user to escape from the function evaluation loop when ‘esc’
key is pressed. Also see ‘trace’.

QUERY> escape True
True

• ‘export’ exports a list of functions and their dependences as a standalone
database (.ddb) with .seg file.

QUERY> export ["expert"]

It will then list all the dependencies and open up a file-saving window for you to
name the database and say where you want it kept.

• ‘gc’ performs garbage collect on the nodes of the evaluation tree. This activity
is normally triggered automatically by the interpreter. The problem is that the
triggering can cause unexpected delays as large amounts of memory are scanned
and cleaned. Calling the function under the programmers control will reduce such
surprises.

QUERY> gc
True

• ‘import’ opens a file accessing window for you to choose the database to load.

• ‘sysbeep’ sounds the warning noise.

QUERY> sysbeep
True

• ‘trace’ traces the spine of the apply tree during evaluation.

QUERY> trace True
redex :True
True

• ‘user’ calls a function that has been coded by the user as part of an applica-
tion extension, a DLL. The function is called by name from inside the DLL. Its
parameters are always passed as a list of strings, for example

QUERY> user "UsersDLL.dll" "average" ["1" "2" "3" "4"]
"2.500000"

The answer is always returned as a single string.

Client/Server Facilities 309

For information on how to create and use a simple DLL interface to Clarity, see
the section “Writing Application Extensions: (DLLs)” – Page 316.

External

• ‘exec’ executes an expression at system level.

QUERY> exec "C:\Clarity\clarity.exe"
True

• ‘exit’ will exit the Clarity program.

• ‘remote’ This function executes an application, waits for the result, and then
outputs this result as a list of string. This is explained on Page 315 – “Adding
users’ own code”.

Time

• ‘time_year’ gives the year as an integer, e.g. #9 (i.e. 2009).

QUERY> time_year
#9

• ‘time_month’ gives the month as an integer, e.g. #1 (i.e. January)

QUERY> time_month
#1

Other time functions follow exactly the same pattern: ‘time_dayofmonth’,
‘time_dayofweek’, ‘time_hour’, ‘time_minute’ and ‘time_second’.

Client/Server Facilities

Overview of Network and Machine Organisation

If there is another Clarity running on the same or a different computer capable of
communicating across a network then two or more Claritys can be linked together.
This provides the facility to send queries to Clarity on a different machine and
receive a result back. A query can be any function where such a function may rep-
resent complex processes. It is possible to have real parallel processing by using a
set of networked computers.

There are certain conditions that should be established before you start. The fire-
wall must be set up to accept ClarityPro or at most be switched off entirely. The
latter is fine provided you are isolated from the World Wide Web or other external
potential dangers. With windows XP and later there is the requirement that all the
computers on the network with which you wish to set up communication should

310 9 Higher-Order Programming and Lower Level Activity

be logged-on with all the same user name and password. It would also be advisable
that each is logged on as a single user.

All the machines can be set up to have several Claritys running (see Fig. 9.1).
Each of the Claritys (e.g. 1 and 2) can be both a client and a server. The client
requests a job to be done and the server does the job. The path between a partic-
ular Clarity on a machine and another Clarity on (possibly) a different machine is
defined by the IP address of the machine (e.g. 192.168.0.102) or alternatively the
name of the machine (e.g. Sidney), a port number (e.g. 3001) and a socket num-
ber (e.g. 182). The port number is assigned by the user to identify each Clarity (in
this case) in a machine. The same port number can be used in different machines.
The socket number is generated locally by the machine’s system to identify the
separate requests made to that particular Clarity (e.g. Clarity 1). Each path is a
named service (e.g. MathsCalcs) and will include the client’s socket number. So
the path MathsCalcs from a Client to a Server will be, for example, 136-224- (3001-
192.168.0.102). Although a path can be used many times, once set up and named,
the paths that share the same machine will queue jobs to be done in sequence. Paths
for different machines will be done in parallel.

Sidney
IP 192.168.0.102

Clarity(1)

Port
(3001)

Socket
(224)

Socket
(182)

Clarity(2)

Socket
(205)

Port
(3002)

Socket
(174)

Socket
(136)

From Client

To
Server

Fig. 9.1 An example of the internal networking organisation

Manual Networking

There are two ways of achieving communication. The first is manually via a pull-
down menu with the following choices:

• Control/Client Connect
• Control/Client Disconnect
• Control/Server Listen
• Control/Server Stop

Client/Server Facilities 311

The first requirement is to create at least one server in order to provide a service
to be requested. Go to the menu of the Clarity to be designated a Server. Note that a
Server can also be a Client. Then click on the following:

Control/Server Listen

This will produce the request box as shown in Fig. 9.2 where a particular active
Clarity (the server and Clarity 1 in the example) will perform whatever tasks
required within its range of active functions. For functions above and beyond the
library functions a database must be loaded. This loading of a database can be one
of the first requested tasks.

Fig. 9.2 The request for port
number

In ClarityPro the control window will display

QUERY> Server attempting to listen
Server is listening at port 3001

If you then chose to be a client (say Clarity 2) and want to have a function
performed on your behalf by another machine and the other machine is set up to
listen then you go to menu

‘Control/Client Connect’

This triggers off a sequence of requests for information as shown in Fig. 9.3. The
first is the unique name you want to give to the communication link for a particular
Clarity on a particular machine; this is the particular path name adopted for all
future communication (e.g. MathsCalcs) with that Clarity. The second request is
the IP address of the machine (or you can use the computer network name) on the
network that identifies the machine you want. The third is the port number used
by the server to link a particular Clarity. The last request is a time limit you will
impose before you give up listening for an answer. This is because while you are
listening you are not doing your own processing. The server will assign, privately,
a socket number for this particular task. Other sockets are used for other tasks from
(possibly) different machines that are using this particular Clarity on this particular
service machine.

312 9 Higher-Order Programming and Lower Level Activity

a. Give this request a name b. Identify the machine to do the request

c. Assign a port number to receive answer d. Give a time limit, in seconds, for an answer

Fig. 9.3 Sequence of information requests for client connect

If a there is a Clarity listening at the machine specified by the IP address on port
number 3001 (Fig. 9.3c) then you will get in the Client’s control window

QUERY> Client initiating a connection ...
Client has made the connection

You are then ready to make a request for a service from this machine. This can
be done manually in the control window using the function ‘joblist’, such as

QUERY> joblist #30 [(Job (sqrt #r2345) "MathsCalcs") (Job (nar_line "Thanks for the

use of your PC") "MathsCalcs")]

The first parameter of ‘joblist’ is a time-out limit in seconds for all the jobs
to be completed in the list. Each element of the list is a type ‘job’ indicated
by the constructor ‘Job’. Job has two parameters. The first is the task to be done
and the second by which server. The task name (e.g. ‘sqrt’) must be known by both
the server and the client. These jobs must be specifiable without failing the local
interpretation checks. However, the function name may be recognised by both but
be defined differently and thus associated with different processes in the client than
in the server. In our example this is not the case since we are using library functions
and these tend to remain the same. The above joblist will find the square-root of
#r2345 and will print out a message at the server end to say ‘Thanks . . .’ with the
result ‘True’ being returned in the answer list at the client end.

On the server the control window will report

QUERY> Server attempting to listen
Server is listening at port 3001
Client has requested a connection
Server accepted connection, socket= 224

Client/Server Facilities 313

Data is available for reading, socket=224
Data is available for reading, socket=224

Note the two different acknowledgements for each task to be done. The results
will be returned in a list in the same order as the original jobs.

[#r48.425201 True]

This networking operation makes very clear the distinction between side effects
and function results. Only side effects can be requested to happen at the server.
These will be the actual computation to perform the function and other machine
actions such as printing out a message.

At the end of all the jobs to be done and when networking to this server is no
longer required, then

Control/Client Disconnect

can be called. The result will be a request for which service you want to disconnect
as shown in Fig. 9.4.

The control window will report the following:

QUERY> Client has closed connection, socket=136
You may reconnect when server is listening

Fig. 9.4 A request for
service disconnection

When stopping the server from listening and ‘Control/Server Stop’ is called from
the menu then this produces the simple response in the server’s control window

QUERY> Server is closing all sockets

Networking Through User Functions

There are a set of built-in library functions devoted to network communication. In
summary these are:

• client_connect Local area network functions to share tasks. Tries to establish a
connection to a service. Parameters are a name chosen by the client, the server IP
address, the server port number and the timeout.

QUERY> client_connect "maths" "166.266.26.86" #1027 #50
True

314 9 Higher-Order Programming and Lower Level Activity

• client_disconnect– Local area network functions to share tasks. Breaks the con-
nection to a named service.

QUERY> client_disconnect "maths"
True

• client_getfile– For client/server applications. The client gets a file from the
named service; the other parameters are the names of the local and remote files,
and the timeout.

QUERY> client_getfile "maths" "myfile" "yourfile" #20
True

• client_putfile– For client/server applications. The client sends a file to the named
service; the other parameters are the names of the local and remote files, and the
timeout.

QUERY> client_putfile "maths" "myfile" "yourfile" #20
True

• joblist– For client/server applications. A client sends a list of jobs to various
services. The parameters are timeout and the list of Jobs, each of which consists
of an expression to evaluate and the name of the service.

QUERY> joblist #30 [(Job (sqrt #r2345) "maths")]
[#r48.425201]

• server_conns– For client/server applications. Returns the number of current
client connections.

QUERY> server_conns
#1

• server_listen– Local area network functions to share tasks. Listens for requests
for client connections. Takes the port number as a parameter.

QUERY> server_listen #1027
True

• server_stop– Local area network functions to share tasks. Breaks the client con-
nections, and stops listening.

QUERY> server_stop
True

Figure 9.5a and b are two examples of client to server communication. In
Fig. 9.5b a set of service names are used so that the same named database (ddb) is
loaded on all of them. If the services are on separate machines then this will happen
in parallel. The ‘joblist’ will be returned when all the services have responded or
when time-out is exceeded. In this case the function ‘load’ responds ‘True’ when
successful.

Adding Users’ Own Code: Extending the Library 315

a. Opening a Connection with a server b. Loading a database on several servers

Fig. 9.5 Two examples of client to server communication

Adding Users’ Own Code: Extending the Library

A Simple Approach

A very simple approach to extending the functionality of Clarity is to use the func-
tion ‘remote’. The mode of communication between Clarity and another program
can be through files. The function ‘remote’ executes an application, waits for the
result, and then outputs this result as a list of string. The application must be written
to expect an input file of information and must write its results onto an output file,
terminated by ‘$$$$’ (indicating end of file). The function ‘remote’ waits for this
output file to be complete, in this example it prints the results as a list, and finally
deletes the file.

The input and output file names are quite specific. For example, if the application
is called ‘fred’, remote will generate an input file from the input parameters called
‘fred1.txt’. The application must expect to read a file of this name. The application
should be written to generate an output file called ‘fred2.txt’. The last parameter is
the timeout in seconds, in case of any problems.

An Example

QUERY> remote "ParaRect" ["2" "3" "4"] #20
["52" "24"]
QUERY> remote "ParaRect" [] #15
["1012" "2184"]

‘remote’ generates file ParaRect1.txt from its input parameter list

2
3
4

316 9 Higher-Order Programming and Lower Level Activity

Fig. 9.6 A form generated by
application ‘ParaRect.exe’

And then executes ‘ParaRect.exe’, which in this example produces the form in
Fig. 9.6. ‘ParaRect’ was built using Borland Developer Studio 2006. The form is
shown after the user has pressed the “Calculate” button. In this case, if ‘remote’
is called with no parameters then the user is expected to type them in. ‘ParaRect’
generates this file ParaRect2.txt (the $$$$ is vital)

52
24
$$$$

The function ‘remote’ uses this file to generate its output results list.

Writing Application Extensions: (DLLs)

It is possible to extend the functionality of Clarity by including C or C++ code
written by the user and included in the style of a DLL. The functions are accessed
from Clarity via the built-in function user which takes as parameters the library, the
function, and its parameters, for example

QUERY> user "UsersDLL.dll" "mnemonic"["Read" "Only" "Memory"]
"ROM"

Here the DLL is called ‘UsersDLL.dll’, the function is ‘mnemonic’, and the
parameters to that function are in the list ["Read" "Only" "Memory"].

There is a standard interface to be adhered to, so that there is no confusion
about parameter types. The input is always a list of parameter strings, which may
be empty, and the output is always a single string. The input has to be correctly
interpreted by the DLL code, and the output has to be correctly interpreted by
Clarity. Below is an example of a C++ file ‘userlib.cpp’. This is used as part
of a Borland project to build a DLL that contains some simple functions. The
procedure to be followed is also included as comments at the beginning of the file.

Adding Users’ Own Code: Extending the Library 317

318 9 Higher-Order Programming and Lower Level Activity

Adding Users’ Own Code: Extending the Library 319

Creating an Interface to Clarity

Sometimes we may want to design a special interface to a function that has already
been created using Clarity, and which we have stored in a ddb. For example, a nice
interface to the Sudoku problem would be a grid of squares to be filled in by the user,
and where the solution appears. The interface in Fig. 9.7 was built using Borland
Developer Studio 2006. It can be used for general queries to Clarity, and also specif-
ically to solve a Sudoku problem.

There are three edit boxes, labelled QUERY>, REPLY and MESSAGES, and
called edtQuery, edtReply, and edtMessages, and two buttons, labelled Evaluate
and Quit, for the purposes of sending a general query to Clarity, receiving the reply,
and specifying an area for any messages from Clarity that occur during the evalua-
tion of the query. For example, if the user types the query + #4 #5 and presses the
Evaluate button, the reply #9 is received.

Type the query help for a list of all the available built-in functions. They can
be ordered alphabetically. Double-click on their icons for information on how to
use them.

The function that evaluates the queries in ClarityDLL is ask_query, which takes
three parameters, all strings. The first is a null-terminated string for the query itself,
the second is the area for the reply, and the third is the area for any messages from
Clarity.

The event function for clicking the Evaluate button is OnEvaluate(). This means
that the code in OnEvaluate() is executed when the user presses Evaluate.

320 9 Higher-Order Programming and Lower Level Activity

Fig. 9.7 An user-designed
interface to Clarity

The code shown in Fig. 9.8 should be added to OnEvaluate().
The ClarityDLL.lib file should be included as part of the project to create the

executable and ClarityDLL.dll should be in the same directory as the interface code.
If the database ‘sudoku81’ is in the same directory as the interface it can then be

loaded by pressing the Solve Sudoku button. This action will also read the values
in the grid, call ‘solve_sudoku’ with a list of strings, and insert the solution back
into the grid. The function ‘solve_sudoku’ takes a list of 9 “row” strings as input
and returns a list of 81 integers for the solution. For example, if we were to run
ClarityPro, load sudoku81, we can call via the Control Window ‘solve_sudoku’
like this:

QUERY> solve_sudoku ["009062050" "200001000" "005090603" "120000000" "803000204" "000000087"

"708020900" "000800005" "090340800"]

[#3 #8 #9 #4 #6 #2 #7 #5 #1 #2 #7 #6 #5 #3 #1 #4 #9 #8 #4 #1 #5 #7 #9 #8 #6 #2 #3 #1 #2 #7 #6 #8 #4 #5 #3 #9 #8

#5 #3 #9 #1 #7 #2 #6 #4 #9 #6 #4 #2 #5 #3 #1 #8 #7 #7 #3 #8 #1 #2 #5 #9 #4 #6 #6 #4 #2 #8 #7 #9 #3 #1 #5 #5 #9

#1 #3 #4 #6 #8 #7 #2]

This function was added solely for the purpose of this interface instead of
‘setup_squares’ and ‘solve_it’.

Adding Users’ Own Code: Extending the Library 321

static char query[1000];
static char reply[5000];
static char messages[5000];

extern "C" _declspec(dllexport)
 void far pascal ask_query(char *query, char *reply,

char *messages);

void __fastcall TForm1::OnEvaluate(TObject *Sender)
{

int len;

sprintf(query, "%s", edtQuery->Text);
len = strlen(query);
if(query[len-1] == '\n') {

if(query[len-2] == '\r')
query[len-2] = '\0';

}

ask_query(query, reply, messages);
edtReply->Text = reply;
edtMessages->Text = messages;

}

Fig. 9.8 The C++ code

Adding Users’ Own Code

Any Clarity query can be called from this interface, including user functions defined
in a DLL, as described in the section above entitled “Writing Application Exten-
sions”. The DLL can be created using the same development environment as that
used to create the simple interface. Make sure that the way the parameters are han-
dled inside the function code matches the list of parameters. Always return the reply
as a string, and deal with the string in Clarity, i.e. with the built-in casting functions
such as ‘str_to_int’, ‘str_to_real’, etc.

Opening a Database

Suppose a database has been created using Clarity as for example sudoku81.ddb.
To load it we type in the Control Window

QUERY> load "sudoku81"

And then we have access to all the functions in the ddb. (However, in the exam-
ple interface, sudoku81 is loaded once, the first time Solve Sudoku is pressed.)
In Figs. 9.9 and 9.10 the interface is shown before and after Solve Sudoku is
pressed.

We will not go into the details of this implementation since it is all standard C++
development. We hope that we have provided sufficient information for the reader
to complete an interface to ‘sudoku’.

322 9 Higher-Order Programming and Lower Level Activity

Fig. 9.9 Filling in the given
numbers

The advantage of this approach is that the same interface can be used for any
further development of ‘Sudoku81’. For an example of further development see
Chapter 10.

Some Additional Features

Importing and Exporting Databases

In addition to opening, creating and saving databases it is possible to import and
export parts or all of a program. ‘Export to Database . . .’ under menu ‘Filters’ will
export any set of highlighted functions and their dependencies to a file. ‘Import
Database . . .’ under menu ‘File’ will import a named database (program). Clashes
of function names are detected and will trigger a pop-up menu of possible actions
that might resolve the encountered clash.

This feature is valuable at the end of a development project when we require a
clean database (program) devoid of all the redundant functions that have been used
during its evolution to the final version.

Some Additional Features 323

Fig. 9.10 The solution

Stacking Windows

Function and network windows can be stacked automatically by menu item ‘Stack’
under ‘Window’. This helps to tidy up the work space. However, all open windows
are also listed under menu/window.

Re-numbering and Naming Function Components

Function components can be ‘Renumbered’ under ‘Find’. Normally, the order of the
components does not really matter but when there are several hundred components it
is useful to use the numbering as a form of indexing for data management purposes.
This also relates to component naming where the index will display this name. The
naming is done by

Menu/Find/Name or Rename
The index is displayed by double clicking on the background of any one of the

function’s components. Each component can also be associated with an annotation
window. This choice of junction labels provides a complete self-documentation ser-
vice. This is ideal for also keeping validation tests and results of functions during
the development phase. An example of an index for the function ‘factorial’ is shown
in Fig. 9.11.

324 9 Higher-Order Programming and Lower Level Activity

Fig. 9.11 The Index for ‘factorial’

The Clarity Source Code

Clarity is currently built using BDS 2006. It is mostly written in C, using C++ only
where the demands of the development environment must be satisfied. There are
four versions of Clarity:

ClarityPro.exe
ClarityLite.exe
ClarityEye.exe
ClarityDLL.dll

Fig. 9.12 ClarityPro with full functionality and libraries

Fig. 9.13 Some functionality is disabled for ClarityLite

The Clarity Source Code 325

ClarityDLL is a dll, to be used with a user-defined interface, as described on
page 25 – “Creating an Interface to Clarity”.

ClarityPro will look like Fig. 9.12 on opening. All built-in functions are
available.

ClarityLite will look like Fig. 9.13. A limited number of built-ins are available
(see Fig. 9.14).

ClarityEye will look like Fig. 9.15. The functionality is restricted. It is intended
to be used for queries only.

Fig. 9.14 Reduced library for ClarityLite

Fig. 9.15 ClarityEye for ‘customers’

326 9 Higher-Order Programming and Lower Level Activity

The C Files and Header Files

The structure of the Faith and Clarity interpreters with their libraries is described
under the following group of files. There are two header files of particular
interest:

target.h and platform.h

target.h can be edited to produce the different target versions described above, and
some others besides.

platform.h can be edited to produce versions of Clarity to run on differ-
ent platforms, e.g. Windows applications and Apple Mac applications. The latter
development ceased before the Apple Mac System X. Some transformations were
completed but only for the early non-Intel chip versions.

The following files describe the C or C++ source code files grouped, in general
and according to function.

ClaritySdiApp.cpp Contains the main entry point for Clarity, WinMain(). It
does the initialisation, and starts the message handling.

clr_∗.c For drawing functions in Clarity, creating and interpreting the Clarity
forms – Function, Constructor and Network.

net_∗.c Generating and displaying the function network diagrams.

pdecs.c, pfdef.c, plhs.c. Storing newly created functions in memory as part of a
database.

symbols.c, f_free.c, f_remove.c Dealing with the internal symbol table.

To query a function, the expression is parsed, and an apply tree built (Field and
Harrison 1988). This is then evaluated in an expansion and reduction process

cint.c, parse.c, parser.c and putils.c. The files involved in parsing.

evaluate.c, comb.c, enum.c, futils.c, matcher.c, mem.c The files involved in
the evaluation process of expanding and reducing the apply tree.

bi_∗.c For handling the built-in functions

print.c, printall.c Printing out the results of the query evaluation.

f_dbops.c commit.c To save newly created functions in memory to a database
as a file.

X_∗.c These cross-platform files contain code for two versions of Clarity, Win-
dows and Apple Mac. They mostly relate to interaction with the user in the
form of menus, buttons, graphics, etc.

mainDLLc.c, callquery.c, globals.c Extra files involved in making Clarity-
DLL.dll, which replace ClaritySdiApp.cpp.

Project: Problem Solving 327

Project: Problem Solving

Sudoku: Searching for Answers

Introduction

The Sudoku square is represented by a 9 X 9 grid that has a few integers apparently
randomly distributed. It will be noticed that the grid is subdivided into 3× 3 smaller
grids. The purpose of the game is to fill in the blank squares with the integers 1–9
so that each small sub-grid contains the entire number set and so do each row or
column (see Fig. 9.16a and b).

4 2
8 7

3 1 2 5 8

1 9 3
1 6 2

5

7 4 2 3 6
9 1

a. Easy Problem b. Very Hard Problem

2 3 8
3 1 9
6 8 7

6 5
4 3 8 6

1 3

5 3 2
3 2 6

2 9 8

Fig. 9.16 Two examples of a Sudoku problem

Prototyping: A Controlled Approach to Design

In this project we wish to introduce the mechanism of prototyping. This allows a
designer to design from the network diagram. It also provides a useful memory aid
by keeping track of what has been done, type checking and what has still to be done.
In this process the network and function windows will generate prototype schema
for you to fill in. As a project we will simply provide the Clarity schema and an
explanation of some of the important functions so that you can try out this technique.
While using prototyping it is possible to create the functions in any order but it will
not be possible to test them until all the supporting functions are present. A good
approach is to create a network of the functions such as shown in Diagram 9.1a.

328 9 Higher-Order Programming and Lower Level Activity

The names will remain in italic until they have been defined by you. The process of
prototyping will start with the call

Menu/Find/Create Functions from Network

This action will generate a prototype schema for all the functions in the net-
work. The record of this is shown in the Control Window (see Diagram 9.1b). The
prototype schema for the function ‘reduce’ will appear after double clicking on the
‘reduce’ box in the network window (see Diagram 9.2a). From the schema shown in
the project collection of schema the details can be filled in (see Diagram 9.2b). This
will include extra functions not given in the original network and when committed
a series of tests will be done by Clarity in order to collect information about the

b. Create Functions from Network

Diagram 9.1 The first steps to prototyping from the network

a. The initial prototype for ‘reduce’ b. The filled-in prototype before
commitment

Diagram 9.2 A prototype

Project: Problem Solving 329

coherence of the definition. In this case the commitment is started for (say) function
‘reduce’ by clicking

Menu/OK

This will respond with a set of choices, the top choice being ‘Replace Compo-
nent’. Click this and the set of tests for the prototype commences. Each stage will
require further OKs and ‘Replace Component’ until all the tests are accepted (see
Diagram 9.4a).

Diagram 9.3a shows the function ‘reduce’ after all the type checking has been
completed and the ‘holdN’ function inserted. This level of completion is marked by
the function ‘reduce’ not being in italic (see Diagram 9.3b). When the database is
saved at this stage then the children of ‘reduce’ can be found:

Menu/Filters/Children

a. The prototype after commitment b. The resulting Network

Diagram 9.3 Completed coherence check

a. The auto-checks done while committing b. After save, the children can be found

Diagram 9.4 Saving the database and new tasks found to be done

330 9 Higher-Order Programming and Lower Level Activity

The record of what is done is given in the control window as shown in Diagram
9.4a. The resulting new functions are displayed in Diagram 9.4b. New prototypes
are generated by this process from information drawn from the function window
Diagram 9.3a. The junctions in the network will also carry the information to the
prototype schema generation as shown in Diagram 9.5b.

The new functions can also set up a train of development. Once (say) ‘count_
done’ is written and all the type demands are satisfied, the database saved, then a
new addition to the evolving network can be found through Menu/Filter/Children.
Note that if the children are already in the network then the link will be made and
the new information added to the prototype ‘square’ (see Diagram 9.7a).

The function ‘count_done’ (see Diagram 9.6) can now be completed with the
functions ‘done’ (see Diagram 9.8c) and ‘square’ (see Diagram 9.7b). The func-
tion ‘success’ simply determines if all the squares have been resolved by adding

a. Prototype generated from function window b. Another prototype

Diagram 9.5 Other prototypes generated

a. Tests to see if all the squares have only
one number,

b. Further children generated

Diagram 9.6 Expanding new elements of the problem

Project: Problem Solving 331

a. Prototype ‘square’ b. Original version of ‘square’

Diagram 9.7 The new information is added to the prototype square

a. Check to see if all squares are
completed

c. Check on a square

Diagram 9.8 The other functions can now be completed

checking that the sum of all the associated numbers with each square adds to 81. So
this branch will not lead to any further development but ‘success’ will be used by
other functions such as the top level function ‘solve_it’.

We will now describe the main functions used to solve a Sudoku puzzle. The
interface problem can be resolved in many ways by using some of the techniques
described in this chapter. We used this simple interface so we can just get the main
problem solver working. The top function for this simple interface is shown in
Diagram 9.9. The function ‘set_row’ simply takes the string provided by the user
via ‘gr_dialog’ and creates a new set of squares for a line. Squares not fixed by
the user remain as the general case and therefore have all nine numbers assigned as
shown in Diagram 9.7b.

The Collection of Functions

Diagram 9.10 shows the top level functions that represent an overview of the whole
problem solving process. The function ‘setup_square’ resets the grid of squares
to empty and allows the user to input a new problem to be solved. At this stage
every small square in the grid will have associated with it all nine possible numbers
except those that have been specified by the user in setting up a specific problem to
be solved. The function ‘solve_it’ finds a solution to the problem and prints it out
using ‘show_square’.

332 9 Higher-Order Programming and Lower Level Activity

Diagram 9.9 A Function for setting up the initial problem state

The Diagram 9.10 was generated after the program was created and then it was
processed by

Menu/Features/Redraw Window with Junctions

Diagram 9.10 Top level functions for Sudoku

Project: Problem Solving 333

This reduces the number of lines by detecting the many-to-many used-on rela-
tionships. The junctions may be useful concepts as can be found through the
reduction of the many-to-many functional dependency relationships in the process
of normalisation of a set of relations (Addis 1985). The junctions are numbered
automatically and we have the following four new concepts discovered:

54: Stack, where potential solution paths are stored.
55: The Solution Path.
56: Potential Problem States.
57: Current problem state.

As we have proposed in Chapter 7 we usually make the problem state a set of
extensional functions. In this case it is the single function ‘square’ along with the
‘state_list’ and ‘tries_list’as shown in Diagram 9.10. The theory for solving this
problem is that every blank square is potentially capable of containing any one of
the nine numbers (see Diagram 9.7b). The numbers are just labels, so there will be
no arithmetic involved. The technique will be to identify the numbers in the list that
can be eliminated because they already exist in the same square, row or column.
So the general strategy is to ‘reduce’ these lists of numbers by analysis, until each
square is represented by a list of only one integer (see Diagram 9.3a). When that
occurs the puzzle is solved (see Diagram 9.8a) and the goal state reached. Since
there are likely to be many scans of square over the range 1–9 the constant ‘nine’ is
declared for that purpose (see Diagram 9.8b). The first thing the ‘solve_it’ function
does is to call the function ‘init’(see Diagram 9.11). The function ‘init’ initiates two
lists that help keep track of what states have been visited.

The function ‘count_done’ adds up the number of labels (numbers) for the
whole grid (see Diagram 9.12a). If this equals ‘81’ (test done by function ‘success’,
Diagram 9.8a) then this returns ‘True’ showing that the goal has been achieved.
Otherwise the function ‘reduce’ (see Diagram 9.3a) will reduce the list of possibil-
ities for each square by using the rules of Sudoku via the function ‘all_tests’ (see

a. The top most function b. The ‘init’ function

Diagram 9.11 The top function and first action

334 9 Higher-Order Programming and Lower Level Activity

a. Checking each small square b. Fail to find a solution

Diagram 9.12 Check and fail of problem

Diagram 9.13a). These rules, contained in function ‘all_tests’, will test each row,
column and 3∗3 box associated with every square in the grid. If a unique integer
appears on only one list, then that square must have that value. This reduction is
repeated until no more squares can be solved this way. If it cannot be solved by
this straight forward elimination then a new path will be explored, derived from the
stack, until there are no further possibilities. At this point ‘failure’ to find a solution
is reached. Otherwise ‘next_try’ is tried (see Diagram 9.13b).

a. Testing for completion for each feature b. Unknown or ‘success’ is ‘True’

Diagram 9.13 Trail and error

Project: Problem Solving 335

The function ‘next_try’ is pattern sensitive to ‘success’ and ‘failure’ outcomes
(see Diagrams 9.13b and 9.14). If the result is ‘success’ = ‘True’ then whatever
‘failure’ might be the result will be ‘True’ and the answer ‘square’ will be printed.
Otherwise, if the ‘success’ = ‘False’ and ‘failure’ = ‘False’ then ‘first_try’ will be
attempted followed by further tests (see Diagram 9.14a). The function ‘first_try’
will attempt to go back to the ‘tries_list’ to what numbers and squares can be
attempted next (see Diagram 9.15a). The final condition considered is no success
and also nothing to try next (see Diagram 9.15b). In this case all the attempts at this
level are forgotten and the world state is reset to the last no-failure state from the
‘state_list’ (see Diagrams 9.14b and 9.15b).

a. No ‘success’ but still numbers to try b. No ‘success’ and no numbers left

Diagram 9.14 What to do when there is no ‘success’

Diagram 9.15 What may be attempted next

336 9 Higher-Order Programming and Lower Level Activity

a. Nothing at this level b. Nothing at top level

Diagram 9.16 Two possibilities on trying something else

Diagram 9.17 General case for trying and resetting of current state to null

a. Records the current state of ‘square’ b. Records the try list

Diagram 9.18 Recording states and tries

Project: Problem Solving 337

a. Selecting next try b. Finding states not completed

Diagram 9.19 Selecting a list of things to try

a. Looking for the shorter of two lists b. Testing for the Sudoku rules

Diagram 9.20 Selecting shortest list and testing for Sudoku constraints

a. General test for a feature Box, Row or Col b. Looking for number repetition

Diagram 9.21 Starting the chain of tests for all the features of Row, Box and Col

338 9 Higher-Order Programming and Lower Level Activity

a. Inserts a possible solution into a square b. Pattern for solution already found

Diagram 9.22 Inserting solutions into the matrix of squares

a. Starting all the required checks if not
finished

b. Checking each feature in turn

Diagram 9.23 Starting the consistency checking

a. Attempt to reduce the number list b. Scanning each square of feature

Diagram 9.24 Reduction testing

Project: Problem Solving 339

a. A Column b. A Row

Diagram 9.25 Two feature definitions of a box in terms of a ‘square’ index

a. Unrecognisable feature b. A Box

c. A Row d. A Column

Diagram 9.26 Set of components for making a feature

The square index in Diagram 9.25 gives a row and col parameter in a 9×9 square
of a box in position (int, int), e.g. box(3, 5) has row 2 and col 8 (Diagrams 9.27 and
9.28).

340 9 Higher-Order Programming and Lower Level Activity

a. A non-feature b. A Box

c. A Row d. A Column

Diagram 9.27 Definition of all the features in terms of a square

Diagram 9.28 Complete overview of Sudoku ‘solve-it’

References 341

References

1. Addis T. R. (1985) ‘Designing Knowledge-Based Systems’, Kogan Page, London, ISBN
0-85038-859-7, ISBN 1-85091-251-3 also Prentice-Hall, Englewood Cliffs, NJ (1986) ISBN
0-13-201823-3.

2. Field A. J. and Harrison P. G. (1988) ‘Functional Programming’ Addison-Wesley Ltd, Boston,
MA, ISBN 0-201-19249-7.

3. Reade C. (1989) ‘Elements of Functional Programming’, Addison-Wesley Ltd, Boston, MA,
ISBN 0-201-12915-9.

Chapter 10
Programming with Uncertainty: Theories,
Models and Programs

And now abideth faith, hope, charity, these three;
but the greatest of these is charity

Corinthians 13, 13

Models and Programs [→Page 349]

We have seen in Chapter 7 how problem solving mechanisms can be constructed
from a general problem solver (GPS). The key to this is that the problem solving
activity is captured by functions that allow transformations to occur to a model of
a problem domain. The problem domain therefore has to be modelled. However,
this modelling is not an arbitrary activity since the kind of implementation depends
very much on the problem to be solved and the representation used. There are many
features of the problem domain that are not going to be valuable in the problem
solving process. But to know this suggests that some notion of what is considered to
be a solution is already known by the model designer. Further, to be able to do the
abstraction of the right collection of features, no matter how simple, suggests that
there is already some theory, regardless of how primitive, of the problem domain.

Once created the model also has to rely on a human agent (the user) who must
also be able to understand how to interact with the model. Such interactions may,
for example, require the user to perform actions in the problem domain. To have
such ability the user must be able to share the same, or at least a similar, theory to
that of the designer of the system. So the best one might expect from a computer
model is it to be an aid or intellectual assistant to an already knowledgeable user.
The position of model in the scheme of activities is shown in Fig. 10.1.

The process of deriving the model from the theory depends on abduction and
abstraction (Peirce 1934, 1966, Addis 1987, 1989, 1990, Addis and Gooding 2008,
Gooding 1990, 1996, Gooding and Addis 2008, Magnani 1998, 2001, Magnani et al.
1998). In summary, Charles S. Peirce proposed an alternative description of how
we gain useful knowledge of the world. His proposal suggested that there were
three different ways in which conclusions can be arrived at from observations of
the world. The first is through abduction which is concerned with noticing puzzling

343T. Addis, J. Addis, Drawing Programs: The Theory and Practice of Schematic
Functional Programming, DOI 10.1007/978-1-84882-618-2_10,
C© Springer-Verlag London Limited 2010

344 10 Programming with Uncertainty: Theories, Models and Programs

Theory

Knowledge 1

Knowledge 2

Model

Representation

Case
Abstraction

Induction

Problem
Domain

Deduction & ActionAbduction

Fig. 10.1 The role of a
model with respect to a
problem domain

and unexplained phenomena and to create a plausible and useful explanation of
these observations. How this is done is (ironically) not explained although a sub-set
of this activity has been described by others as an inverse implication (Charniak
1975). So in this case you might have A → B, B therefore possibly A where A
is a known hypothesis. How the hypothesis gets known is not usually explained.
The next stage is to use the normal deductive process to make predictions. It is the
predictions that determine if the theory is useful. Finally there is a modified view of
the normal induction. This view takes induction simply as the comparison between
these predictions and of actual observations.

The normal view of induction is that it is an inference to a generalisation (or
theory) from examples (Langley et al 1987). Peirce has split this normal view into
Abduction which is the generalisation process via a theory and a new version of
induction which is the observation of examples to support the generalisation. His
pragmatic description of a theory or generalisation is that it should serve a purpose
and in particular it should make the world a less surprising place. This is an excel-
lent definition because it immediately gives a mechanism that can assess a theory
without reference to the rather abstract notion of ‘truth’. We will come back to this
later in this chapter when discussing ‘belief’ as a technical measure. The model in
our diagram Fig.10.1 is a particular ‘case’ (or example) of a theory (Knowledge 2)
given in terms of some ‘representation’ scheme (Knowledge 1). The model is used
deductively to infer the results with which we are interested. Induction is used with
the results of the model and further observations to either confirm (justify) the model
or to stimulate a modification to the model.

The account we described by Newell and Simon as the GPS was a derivative
of a human problem-solving model (Newell and Simon 1956, 1973). In essence,
the theory states that problem solving is a process of exploring a “problem space”
for a solution. A problem space can be visualised as a directed graph. The nodes
of the graph represent the different possible states of a problem. There is usually a
single start state that indicates the current situation and a set of termination states
that indicate the desired result. The arrows that go from node to node represent the
actions that are available to an agent (the problem solver) in that state and these
actions transform the problem from one state to the next. Problem solving is the
discovery of a path from the start state to a termination state. The solution is the
sequence of transformations (arcs) that make up the path.

Models and Programs 345

The theory has its foundations in utility theory (Luce and Raiffa 1957). Utility
theory is a means through which choices can be assessed (their utility) and deci-
sions can be made. The utility of a state in Newell and Simon’s version of decision
theory is a measure of the proximity that a solution state has in terms of the esti-
mated number of transformations needed to reach it from the start position. Each
transformation has a cost, possibly in a measure of effort, so that the mini-
mum cost path is always the ideal solution. It is this utility, a measure of sum-
mated and estimated cost, that guides the inference system to select a route to a
solution.

We can say that the computer model of a problem solver is expected to consist of
three elements that are related to different kinds of knowledge:

1. a ‘representation’ that describes a set of problem states and has the potential to
describe all the problem states (the abstraction of the problem),

2. a ‘set of transformations’ that describes how any given state can be transformed
to a new state (the deductive system),

3. a ‘heuristic’ that provides guidance to a search algorithm through the problem
space (the heuristic knowledge).

These elements may be represented in a wide variety of forms depending on the
knowledge representation scheme used (e.g. clauses, rules).

The appeal of Newell and Simon’s theory, and as we illustrated in Chapter 7, is
that the states of the problem can be represented as propositions. These propositions
are formal representations of natural sentences that are written, thus

All(x) Elephant(x) -> Colour(Grey,x)
Exists(y) Name(Dumbo,y) and Elephant(y)

and the transformation from one state to the next is the application of deductive
inference to selected propositions drawn from a database of propositions. The
deductive inference step is an extension of Modus Ponens (all A are B, X is an A
therefore X is a B) called Resolution. The only requirement is that the propositions
must be normalised into clauses, a process that can also be done automatically.

The Role of a Model

As an illustration of a model and how it is normally used, consider the process
of designing a simple slide as shown in Fig. 10.2. Such a slide may form part of
the transportation system for a product in a factory. This product will have specific
dimensions, weight and composition. After the drawing of a sketch that shows the
spatial relationship of the product to the slide we now need to determine the accel-
eration of the product down the slide so that the velocity may be calculated at its
point of reception.

346 10 Programming with Uncertainty: Theories, Models and Programs

M

Fs

W

θ

Fig. 10.2 A spatial
representation of a slide

To do this we make reference to Newton’s ‘Theory’ of Dynamics. Some aspects
of this theory1 may be presented as a series of statements; thus

T1. Every Body travels in a straight line unless a force acts upon it.
T2. Momentum is the product of mass and velocity.
T3. Force is the rate of change of momentum.
T4. For every action there is an equal and opposite reaction.
T5. Gravity is an acceleration caused by the mutual attraction of mass.
T6. Weight is a force due to gravity.
T7. Forces (and hence velocities) will add as vectors.

From this theory, a dynamic model may be constructed using the ‘representation’
of mathematics. In this case a first attempt will appear as

M1. A Body of mass M is on the slide.
M2. The slide is at angle θ with respect to the horizontal.
M3. The weight of the Body is W = M∗G where G is the acceleration due to

gravity.
M4. The force down the slide Fs = W∗Sin(θ).

The slide is constructed as a particular ‘case’ where an angle and mass are cho-
sen. It is found that the actual acceleration is much less than that predicted. After
checking the calculations, reference is then made back to the ‘Theory’. The ‘The-
ory’ restricts the set of possible explanations for this discrepancy to that of a ‘force’
and this guides the designer to create a better model. In this case, the ‘Theory’
limits the set of possible proposals to the existence of other ‘forces’ acting on the
Body. Another single force can ‘explain’ the discrepancy between the model and
the observations; this force is usually referred to as friction.

1 A theory in this book does not necessarily mean a formal theory. Any set of statements that forms
some coherent description of the world that can be used to “render facts likely” (Peirce, 1934) will
be considered a theory. A theory is a set of propositions that reduces the uncertainty in the world
for an agent.

Models and Programs 347

The notion of friction does not come directly from the Theory but is an interpreta-
tion of both experience (i.e. there is a recognizable feeling of resistance when mov-
ing the Body on the slide which becomes greater with increased pressure between
the surfaces) and the theory (i.e. only forces can influence the motion of a Body).
The process that generates the insight (that these disparate experiences and con-
cepts should be amalgamated into a simple causal element identified as friction)
is “abductive” inference. An important component of abduction is that the agent
interacts with the world. The Model is modified, thus

M4’. The force down the slide Fs’ = W∗[Sin(θ − K∗Cos(θ)]

where K is the coefficient of friction for the materials in contact.
The coefficient of friction K is a concept that has evolved from the need to adjust

the model to fit the observations; it is a form of tweaking so that the observations
will fit the model. However, the notion of friction does not and cannot emerge from
only the manipulation of the sentences that make up the theory; it is not discoverable
by formal analytic means such as logic and deduction.

A precise relationship between a theory and a model cannot be easily defined
as they both represent an infinite range of possible interpretations and share many
of the same properties (c.f. Aris 1978). However, we may consider that there is
a continuum of theories and models ranging from the non-specific (most gen-
eral) to the identification of unique cases. The relationship between a theory and
a model is that a model will be associated with a more specific set of situa-
tions (cases) than a theory. The slide example could represent an infinite num-
ber of cases that are constrained by the model. It could represent a child sliding
on a sledge down a hill or the launching of a lifeboat. On the other hand, the
theory of dynamics can be applied to pendulums, planets and billiards. In line
with our use in functional programming, the complete range of cases derivable
from a model or theory will be called the “extension” of the model or theory
and the model or theory, from which a case is derived, is called its “intension”.
The problem is that both extensions, in principle, are infinite; their cardinality is
infinite.

Figure 10.3 shows the model as the end product of two simultaneous processes;
the empirical abstraction of significant features from the world and the descrip-
tion abducted from the formal world. In the formal case there are several stages of
abduction so that the model emerges from a potentially infinite set of possibilities
that may be presumed to exist within the abstract world of human imagination. In
the empirical case the model is also the end product of several stages of abstraction
of what is an infinite set of possible distinctions. The model can capture only a sub-
set of the possible features of an artefact (i.e. it does not, in the above case, show the
colour, texture, smell or structure of the materials); it is a subset that is coherent and
must serve a particular purpose. A model and a theory both together encapsulate an
understanding of the world that is the result of purpose and experience. A model and
its associated theory is ‘declarative knowledge’ if the model relates to at least one
feasible artefact (i.e. can be constructed). What is feasible and the method used to

348 10 Programming with Uncertainty: Theories, Models and Programs

Case Model Theory Meta-
Theory

World
Case

Model

Artefact

Experience

World

 Abduction. FORMAL

Abstraction

Range of
Interpretations

EMPIRICAL

∞n

←

↑

Fig. 10.3 The Model as a point of contact between Theory and Artefact

make such a judgement (such as the comparison of predictions with observations)
is another form of inductive inference.

Since the number of cases for a model is much less than the number of cases for
a theory because it is a subset and since both numbers are infinite then what we are
dealing with here are transfinite numbers. The z-axis of Fig. 10.3 is an ordinal and
increasing arrangement of these transfinite numbers (∞n) What we are comparing
is the relative volume of cases.

In the example of the slide the mathematical model will describe the active forces
of interest provided the right combination of calculations is applied. The right com-
bination of calculations is selected by the mathematician given the purpose of the
model. This understanding of how to use the model to make appropriate predictions
is ‘heuristic knowledge’. The design of this slide (the artefact) has utilised two
models: the model of forces represented in mathematical terms and the model of
spatial relationships that uses a scaled projection of the slide onto two-dimensions.
The two models are two different abstractions from experience and two different
abductions from theory. The models are related in that there is a clear mapping
between points of contact. In this case the points of contact are the angle of the
slope and the direction of the forces acting on the Body.2 Other design tasks, such

2 However, the triangle of forces is not shown.

Solving Sudoku 349

as the construction of VLSI chips, will use nine or ten different models to represent
different abstractions of the same object. Each of the models is related to some the-
ory that uses a generalisation of the characteristics to be controlled and formed in the
design. A theory is only useful if it provides this control. The control is incorporated
in the constraints (lawful behaviour) and in the procedures for deriving the conse-
quences of any design decision within the domain of the theory. Hence the laws of
electronics (e.g. Ohm’s law) provide a means through which particular circuits may
have predictable performance.

The theory for the slide example involves both the representation scheme (math-
ematics) and the generalisation of a particular aspect of the world (dynamics). The
theory is made explicit by the model in the form of equations (case). The model is
influenced by both the theory and the artefact. The model is interrogated through
calculations by a mathematician (usually the same person as the designer) who
may use a calculator or tables. The engineer must be able to interface with the
artefact (construct) through measurements (e.g. the angle of slope and the accel-
eration) in order to provide observations that can be compared with the predictions
of the designer; the artefact must engage the model. The mathematician, engineer
and designer indicate the skills (tacit knowledge) required to progress a simple
design.

Although the model is the main component to be altered in the design process,
the effectiveness of both the theory and the artefact are continually under review.
The theory will always be modified since models can rarely be made adequate
to reflect the artefacts and an artefact will always be reconsidered in the light of
predicted performance and the achievement of the purpose. This shows the value
of a model. None of this can begin unless there are both the beginnings of a
theory and the inklings of an artefact from which a case model can be created.
However, modifing a theory would seem to require the existence of a meta-theory
which has the same relationship to the theory as that the theory has to the model.
Model, theory and meta-theory will be referred to as different ‘levels’ of knowl-
edge. So we can conclude that a theory is abducted from a meta-theory and sup-
ported through induction by experience with its models. How this terminates is
not clear but the ultimate limitation must be determined by the inbuilt flexibility of
the human mind. However, see Addis (1990) for a wider discussion of this view
of design.

∗ Solving Sudoku

As a means of illustrating some of our modelling techniques we have fully explained
a Sudoku puzzle solver in Chapter 9 in the Project section. Sudoku has become a
very popular passtime for those that want an alternative to crossword puzzles. The
advantages of Sudoku for us is that it illustrates many of the issues we have covered
concerning modelling. For those unfamiliar with the game, the Sudoku square is
represented by a 9 × 9 grid that has a few integers apparently randomly distributed
(see Fig. 10.4, see also Chapter 9). It will be noticed that the grid is subdivided into

350 10 Programming with Uncertainty: Theories, Models and Programs

4 2
8 7

3 1 2 5 8

1 9 3
1 6 2

5

7 4 2 3 6
9 1

c. Easy Problem d. Very Hard Problem

2 3 8
3 1 9
6 8 7

6 5
4 3 8 6

1 3

5 3 2
3 2 6

2 9 8

Fig. 10.4 Two examples of a Sudoku problem

3 × 3 smaller grids (boxes). The purpose of the game is to fill in the blank squares
with the integers 1–9 so that each small sub-grid contains the entire number set and
so do each row or column.

What makes the ‘hard’ Sudoku puzzles ‘difficult’ is that they require some trial
and error process. This means that a path has to be chosen to see if it leads to a
solution. For this to work a list of ‘failed’ attempts must be kept to prevent repeating
a mistake and a list of states needs to be kept so that on a failed attempt it is possible
to reset the grid to the point of trying another possible route to the solution. A
transformation from one state to the next is the choice of number to place in an
empty square. This choice has to obey the Sudoku constraints.

The selection of a number is primarily done by the function ‘reduce’. This will
look for all those squares that have numbers that are so constrained by the rules that
only one answer is possible. Most ‘easy’ problems will need no further processing
except to continue cycling round as the new numbers lead to new squares with a
unique number. The ‘hard’ problems will involve some uncertainty in this process
as some situation will appear when simple elimination is not possible. In this case a
choice has to be taken from a small list of possibilities and if this does not lead to a
solution it requires resetting to when the choice was made and trying another route.
For this purpose a ‘state_list’ of the successive states of the grid is maintained. Each
state also records the current list of integers associated with each square, and a trace
of all the attempts at solving the puzzle. The trace of attempts is the list of numbers
tried for each square and this information is held in the function ‘tries_list’ (see
Project Chapter 9).

The fixed heuristic for solving the hard problems is to choose a square with the
shortest list, and then choose the first integer on that list so that the reduction process
can be tried again. A failure, tested by function ‘failure’, is indicated by one of the
lists associated with a square being reduced to nil. In this case, the previous state
of the squares must be retrieved (head of state_list), and the next item in this list
is tried. If there is only one integer left, it must be that one and another reduction
can take place. If there is a solution this process will find it. Figure 10.5b gives a
solution to the starting condition of numbers 1–9 set in the diagonal as shown in

An Introduction to Game Theory 351

a. The solution for Very Hard
problem

9 2 7 5 4 3 6 1 8
3 5 4 1 8 6 2 9 7
6 1 8 7 2 9 4 5 3

8 6 3 4 9 1 7 2 5
7 4 2 3 5 8 1 6 9
1 9 5 2 6 7 8 3 4

4 8 9 6 1 5 3 7 2
5 3 1 8 7 2 9 4 6
2 7 6 9 3 4 5 8 1

A Solution with diagonal 1 to 9

1 4 9 8 7 5 3 2 6
6 2 7 3 1 4 9 5 8
5 8 3 6 2 9 1 7 4

2 6 1 4 9 8 5 3 7
3 9 8 2 5 7 6 4 1
7 5 4 1 3 6 8 9 2

4 3 2 9 8 1 7 6 5
9 1 5 7 6 2 4 8 3
8 7 6 5 4 3 2 1 9

Fig. 10.5 Two Sudoku solutions

red. On inspection, there can be more than one solution. For example if the yellow
squares in Fig. 10.5b are exchanged with the orange squares along the same row then
this would be an alternative solution or the transpose of the grid along the diagonal.
There are several other sets of pairs where this can be done.

An Introduction to Game Theory [→ Page 364]

The Problem of the ‘Best’ Choice

The problem with the Sudoku program is that its method of making a decision is
fixed. It will always cycle through the tests in exactly the same way and will always
chose the shortest list to pursue an alternative set of possibilities. The list themselves
will always be examined in numeric sequence. The solution shown in Fig. 10.5b is
likely to be one of many possibilities but these will never be discovered no matter
how often the program is run. In some puzzles there is also the possibility that a
solution, even if it exists, will never be found since the same paths to a solution will
always be made and this may lead to a dead end. It turns out, from game theory
(Luce and Raiffa 1957), that always choosing the optimum path is not necessarily
the best way of getting a solution. In some cases it is sub-optimum.

There is also another issue in that the occasional random change in strategy is a
useful means of exploring your environment and that can be very useful for survival.
There is also another age old trap of local optima that can also be resolved by
random moves. You can get local optima where the problem solving path is always
chosen so as to improve the current position and never choosing a route that seems
to take the position further away from a solution. In the case of Sudoku, we have so
far, always chosen the squares that have the fewest potential lists of numbers to be
reduced. This is because the solution for a particular square is when the list consists
of a single number; the shorter the list the nearer a solution. The problem with this
approach is that it can reach local optima where no final solution can be found.

352 10 Programming with Uncertainty: Theories, Models and Programs

For Sudoku this situation is unlikely to occur but for the Tiles problem described in
Chapter 7 it is possible.

If we are to make a random move then what is the best way to assess when to
apply this jump? It must be done before the final solution is done simply because
there is then no need for it; you have reached your goal. To do it at other times
requires some theory. We start with examining some simple games.

The Old Shell Game

This is a well-known game where a ‘pea’ or small round token is placed under one
of three identical shells A, B and C. The shells are moved around and the prob-
lem for the punter is to say where the pea is. He has to place a bet of, say, C25
with the possibility of winning C40 from the showman if he gets it right other-
wise he loses his money. The rational approach is to draw up a table of gains and
losses for each of the possibilities. This table is referred to as the Pay-off Matrix.
Figure 10.6a shows this matrix. We would expect to have for each possibility two
values: what the punter wins or loses and what the showman wins or loses. However,
in this case the loss of one is exactly the gain of the other. This is known as a Zero
Sum Game (Fig. 10.6b) so that the Punter wins what the Showman loses, etc. So the
number in each position could be seen as negated for the showman. Figure 10.6b is
another example shown all from A’s view. What A wins, B loses. In the shell game
we do not have any information so, if it is fair, then the chance of winning are one
third. The expected or average winnings less the losses over a long period for any
particular move can be estimated as

(C40 – C25 – C25)/3 = – C3.33

This does not look like a game to enter into but if you do win the first time the
best bet is to never play the game ever again.

Showman

A B C

A 40 − 25 − 25

B −25 40 − 25

C −25 − 25 40

a. The shell game

B

A

b. A Zero Sum
Game

X Y

X 4 3

Y 0 − 2

B

A

A
c. game with a stable outcom

X Y Z

X 5 0 −3

Y 3 2 4

Z −2 1 6

P
un

te
r

Fig. 10.6 Payoff matrices for different games

An Introduction to Game Theory 353

Principles of Maximising

We assume that a reasonable player will always choose a move that will maximise
the pay-off so what a reasoning player does is “do as well as possible”. In some
games this is very clear because there is a Dominant Strategy. In Fig. 10.6c we
have the situation that:

• A chooses Y because no matter what B does A will do well.
• B wants to minimise the pay-off to A so B also chooses Y.

So we have the ‘Rationality Principle’ such that players will always use the domi-
nant strategy because we assume the other player is ‘rational’. In this case the centre
cell is the equilibrium cell because if either player changes row or column they will
be worse off. There are other strategies. These are

• MaxiMax: Choose highest possible outcome
• MaxiMin: Avoid worst payoff
• Maximum Average: Go for highest average
• MiniMax Regret: Minimise the regret

They are all shown in Fig. 10.7a. However, all these strategies will pick the Dom-
inant Strategy if one exists.

a. Different applied strategies

W X Y Z

W 4 3 1 0

X 2 2 2 2

Y 3 3 3 0

Z 3 2 2 1

B

A

b. No stable outcome

X Y

X 5 0

Y −4 3

Fig. 10.7 Pay-off matrices for different strategies

Probabilistic Strategies

Consider Fig. 10.7b. Here we have an unstable situation because there does not
seem to be any rational grounds to choose one action over the other. A may choose
X because there is no chance of losing only a possible chance of winning. However,
B, being rational will consider this, so will choose Action Y because there will

354 10 Programming with Uncertainty: Theories, Models and Programs

be no loss. A will realise that B is rational so with a ‘double think’ in progress
A will choose Y with the hope of winning a positive return. B, in turn, will have
already considered this possibility so will choose X instead with the hope of win-
ning through A’s double-think. A, on the other hand, being aware of his opponents
potential will change his mind and go for X after all. This loop of analysis will go
on forever. Since there is no telling where it might end the best strategy is to be
random and, say, toss a coin. In this way your opponent will never know what you
are doing and there is a chance you might win. If the game is repeated many times
A’s expected win can be calculated by the sum of the potential winnings multiplied
by the probability of the winning happening.

5 × 0.5 − 4 × 0.5 = 0.5 for action X by B
0 × 0.5 + 3 × 0.5 = 1.5 for action Y by B

If B is applying the same strategy of coin tossing then the expected gain for A
will be

0.5 × 0.5 + 1.5 × 0.5 = 1

However, is there a ‘best’ probability (biased coin) that could improve on this
expectation for A? The answer is ‘yes’ and it will be maximum if the two expecta-
tions for B’s X and Y moves are equal. This gives us a chance to calculate through a
set of three simultaneous equations where x and y are the probabilities of winning;
z is the expected win

5x – 4y = z, 3y = z, x + y = 1

5x – 4y = 3y both expectations equal
5x = 3y + 4y

= 7y
x = 7/5y

Now y = (1–x)

x = 7/5 (1–x)
x = (7–7x)/5

5x = 7–7x
5x + 7x = 7

12x = 7

x = 7/12 and so y = 5/12

So the expected pay-off will be 1.25 instead of 1 which is a definite improve-
ment. This calculation is the ‘Maximum Security Level’ (MSL) and is the preferred
probability (or relative frequency if repeated) of selecting the different actions.

Choosing Actions (or Calculating a Heuristic) 355

Choosing Actions (or Calculating a Heuristic)

This is fine if you have a set of utilities (e.g. money) that clearly states what you
can gain or lose upon states of the game. In the case of Sudoku the choices do not
have a utility as such but they might have a probability of finding a direct route to a
solution and not a blind choice that requires backtracking. So is it possible to make
a calculation from such a set of probabilities?

Essentially we are in the same position of a mixed strategy situation since we
are dealing with what we could consider as the probabilistic choice of a mythical
opponent. If we are faced with two possible actions both of which could lead to
a WIN or a LOSE than how do we chose which one to take? In the case of two
choices and given no information we might as well toss a coin. If we are given
some information we can use this to our advantage. For example, the most likely
information we will have is some estimate of the probability of success for each of
the actions. Here we can use the same trick as was used in Bayes rule by making
an imaginary pay-off (of –1) if we select wrongly (LOSE) and (0) if we get it right
(WIN). Consider a simple two choice problem where we have to choose between
two actions X or Y as shown in Fig. 10.8 where fx and fy are the frequency of doing
action X and Y respectively.

Action (Maximum Security Level) WIN LOSE
X (fx) Px × (0) (1 – Px) × (−1)
Y (fy) Py × (0) (1 – Py) × (−1)

Fig. 10.8 Pay-off matrix for an unstable game

Then the expected loss for action X where Px is the probability of a WIN assum-
ing a zero sum game.

= Px × (0) + (1–Px) × (–1)

= – (1– Px)

Maximum Security Level (MSL)

Let fy be the frequency of choosing action Y and fx be the frequency of choosing
action X. Then,

(1–Px) × fx = (1–Py) × fy because both expected payoffs must be equal for
‘best’ fy and fx.

But fy = 1–fx because you have to do something so

(1–Px) × fx = (1–Py) × (1–fx)

So (after manipulation) fx = (1–Py) / {(1–Px) + (1–Py)}

It follows that fy = (1–Px) / {(1–Px) + (1–Py)}

356 10 Programming with Uncertainty: Theories, Models and Programs

Generalised MSL for Actions

Most problems will have more than two choices and where there is no opponent the
appropriate action can only be determined on probability grounds or on the basis
of some information such as a heuristic or model or theory. First we need to know
how to determine the MSL for several actions. Some games may have more than
one outcome such as win, lose and draw. Further, some puzzles can have more than
one solution. In the Sudoku case we will usually have only one solution but there
may be good or bad routes to this solution.

Multiple Simultaneous Equations Matrix

Because we are dealing with the case that an outcome is either a win or lose we
can take pairs of expected losses (say actions for X n , X n+1) that are equal where
the probability of a win for X n is P n and for X n+1 is P n+1. The probability that
should be invoked for action X n is f n such that the sum f n will add to 1. It adds up
to 1 because we can only take one action for the choice. We then have an expected
pay-off for each pair and each pair will be equal for the MSL. For example X1 and
X2 will be

(1 − P1) × f1 = (1 − P2) × f2
(1 − P1) × f1 − (1 − P2) × f2 = 0

This equation will be labelled X1–2 . We also have the equation for all pairings

�fn = 1 → �fn − 1 = 0

We need to solve for each f n and we have ‘n’ equations which is just enough.
In matrix form for solving equations using the function ‘mat_solve’, we require a
table of coefficients for all the equations as shown in Fig. 10.9.

We therefore have four equations with four unknowns so the probabilities to
apply to actions can be calculated.

f1 f2 f3 f4 =

1 1 1 1 1

X1–2 (1–P1) −(1–P2) 0 0 0

X2–3 0 (1–P2) −(1–P3) 0 0

X3–4 0 0 (1–P3) −(1–P4) 0Fig. 10.9 Coefficient matrix
for ‘mat_solve’

Choosing Actions (or Calculating a Heuristic) 357

Implementing MSL

The main problem in implementing the calculation for MSL is to translate a set of
probabilities into a form that can be solved by ‘mat_solve’. These probabilities do
not necessarily add up to 1 because the results are independent but the answer to
MSL does have to add up to 1 because only a single action can be chosen at a time.
Figure 10.10a shows the overview network for the calculation. The process is sim-
ple (see Fig. 10.10b) in that the list of probabilities of winning outcomes are listed
for all possible choices, these are organized into a matrix framework initiated by the
function ‘matrix_frame’. This function creates a matrix that has the right dimen-
sions to layout all the coefficients for ‘mat_solve’ with the first line all of ‘1’s.

Once the frame has been created then it is filled in by repeated use of the function
‘pairwise _place’ (see Figs. 10.11 and 10.12). This takes the first two probabilities
and the first line as shown in Fig. 10.9. It then generates the equation as shown

a. Overview of MSL implementation b. ‘max_sec_lev’ or MSL

Fig. 10.10 Network and main function ‘max_sec_lev’

a. ‘sim_eqns’ b. ‘matrix_frame’

Fig. 10.11 Top level of MSL

358 10 Programming with Uncertainty: Theories, Models and Programs

a. ‘pairwise_place’ b. Termination conditions

Fig. 10.12 The placing of equations in the matrix

a. ‘shift_circular’ b. Termination condition

Fig. 10.13 Moving through the sub-equations

which is placed in the growing matrix (first parameter) after it has been shifted to
be in the right column (‘shift_circular’ Fig. 10.13).

The function ‘max_sec_lev’ will take the probability of a successful outcome for
a set of actions. So if there are two actions both of which could be equally successful
then the choice of action is a toss of the coin.

QUERY> max_sec_lev [#r0.9 #r0.9]
[#r0.500000 #r0.500000]

If there are other possibilities involved that are less likely, then these are given
their chance even if it is small.

QUERY> max_sec_lev [#r0.9 #r0.9 #r0.5 #r0.1]
[#r0.432692 #r0.432692 #r0.086538 #r0.048077]

Choosing Actions (or Calculating a Heuristic) 359

To see how this function behaves in general then you can take a pair of prob-
abilities and change one of them over a wide range and leave the other constant.
This is only indicative of the trends since the behaviour of the equation with mul-
tiple choices is not simple. The following query will generate a list of 100 points
between 0 and 1 to test ‘max_sec_lev’ for action probability of success pairs [0.01
0.5] to [1.0 0.5].

QUERY> map nar_line (zip [(map(∗#r0.01)(list_of_int #1 #100 #1))
(map(lambda ?7(head(max_sec_lev [?7 #r0.5])))(map(∗#r0.01)
(list_of_int #1 #100 #1)))])

The results Fig. 10.14 show three distributions where the alternative success
probabilities are from 0.1, 0.5 and 0.9. As expected the 0.5 action probability is
achieved when the two success probabilities are equal (see red circles on graph).

The results shown in Fig. 10.14 also seem to fit Empirical studies, as referenced
by Gonzalez R. and Wu G. (1999), where people tend to overweight small proba-
bilities and underweight large probabilities during the process of decision making.
This has often been taken as a distortion of human perception but in fact it would
seem that this ‘distortion’ has positive survival value. This is because it not only
optimises the achieving of success in the long run but also the opportunity to learn
about the world as well. This is particularly important since the non-formal world
changes and so do the probabilities of success.

Action Probabilities .

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Success .

A
ct

io
n.

Action 0.5
Action 0.9
Action 0.1

Fig. 10.14 Three series of results for 0.1, 0.5 and 0.9 probabilities success

The Act of Choosing

We now need a function that will take the result of MSL and return a choice in accor-
dance to the probability distribution. The function ‘happen’ chooses as specified by

360 10 Programming with Uncertainty: Theories, Models and Programs

the ‘probability’ distribution represented by the list of probabilities. These proba-
bilities are expected to sum to 1. However, if the distribution list sums to zero it is
considered that no result is possible given the event. In this case the null result is
returned. The null result is defined as #0. The choice is indicated by giving the list
position, thus
QUERY> happen [#r0.2 #r0.3 #r0.5]
#1
QUERY> happen [#r0.2 #r0.3 #r0.5]
#3
QUERY> happen [#r0.2 #r0.3 #r0.5]
#2

Implementing this process involves a random number to probability conversion
based on the physical mechanism shown in Fig. 10.15. Here the position of the
ball with respect to the upper six slots is determined by the throw of a dice. In this
example the dice has come up with ‘3’. The probabilities are selected by relative
width of the three lower slots. If the total width of the mechanism is taken as 1
then the three slot positions in the figure would represent 0.167, 0.333 and 0.5. The
program network shown in Fig. 10.16a is a generalisation of this and will work for
any random number up to 512 instead of just 6 (Fig. 10.17).

1 2 3

1 2 3 4 5 6

Fig. 10.15 Random number
to probability conversion

a. Network of ‘happen’ b. The function ‘happen’

Fig. 10.16 A function for choosing from a list of mutually exclusive possibilities

Choosing Actions (or Calculating a Heuristic) 361

c. Setting up the lower slots d. Performs the accumulation

a. Termination condition b. Faces of the dice (see ‘happen’)

Fig. 10.17 Accumulating the probabilities and selecting a random cut of the range

So for 10,000 examples of ‘happen’, for the same distribution, the tendency is
for the count of choices to reflect the distribution probabilities. So for happen [#r0.2
#r0.3 #r0.5] we have the following:

QUERY> map (lambda ?7 ($(filter (= ?7) (repeat #10000(happen
[#r0.2 #r0.3 #r0.5])))))[#1 #2 #3]

[#1994 #3074 #5056]

And for Fig. 10.15 we have

QUERY> map (lambda ?8 ($(filter (= ?8) (repeat #10000(happen
[#r0.167 #r0.333 #r0.5])))))[#1 #2 #3]

[#1650 #3315 #4997]

The process is that the probabilities are accumulated from the first to the last.
The results are multiplied by 512 and changed to integers. The final result will be
an increasing list of integers thus [0, 102, 256, 512]. A random number is generated
between 0 and 512 (in this case) and then the list is scanned from lowest to highest
until the random integer is greater or equal to the list integer. Where it stops is
the choice. The number 512 can be increased to give a larger number of potential
choices.

362 10 Programming with Uncertainty: Theories, Models and Programs

So for 10,000 examples of ‘happen’, for the same distribution, the tendency is
for the count of choices to reflect the distribution probabilities. So for happen [#r0.2
#r0.3 #r0.5] we have the following:

QUERY> map (lambda ?7 ($(filter (= ?7) (repeat #10000(happen
[#r0.2 #r0.3 #r0.5]))))) [#1 #2 #3]

[#1994 #3074 #5056]

And from Fig. 10.15

QUERY> map (lambda ?8 ($(filter (= ?8) (repeat #10000(happen
[#r0.167 #r0.333 #r0.5]))))) [#1 #2 #3]

[#1650 #3315 #4997]

Information and Choice

A Brief Introduction to Information Theory

There are two important insights that support an explanation of a formal measure of
information. The first is the pragmatic definition of a hypothesis or theory given by
Charles S Peirce (1934, 1966). The second is the mathematical theory of communi-
cation by Claude E. Shannon and Warren Weaver (1964; first published circa 1948).
Peirce founded the American philosophy of Pragmatics. Central to this philosophy
was that an argument to support a Hypothesis or Theory should not necessarily
involve the notion of Truth, as such, but it should always be concerned with Use-
fulness. Within this framework, a theory or hypothesis is only useful if it serves a
purpose. Within science this purpose is primarily to make the world a less surprising
place; it reduces uncertainty. A nice example of this was given by Peirce’s friend
William James (1842–1910). He had gone on a picnic with a group of friends in a
wood. He decided to go for a walk and when he came back he found his friends in
a heated argument. He describes the problem as follows:

The corpus of the dispute was a squirrel – a live squirrel supposed to be clinging to one
side of a tree-trunk; while over against the trees opposite side a human being was imagined
to stand. This human witness tries to get sight of the squirrel by moving rapidly round the
tree, but no matter how fast he goes, the squirrel moves as fast in the opposite direction
and always keeps the tree between himself and the man, so that never a glimpse of him is
caught. The resultant metaphysical problem is this: Does the man go round the squirrel or
not?

From this he describes the pragmatic method as

• “. . . to try to interpret each notion by tracing its respective practical conse-
quences.”

• “. . .. Whenever a dispute is serious, we ought to be able to show some practical
difference that must follow from one side or the other’s being right.”

Information and Choice 363

In the case of the squirrel it depends what you want ‘to go round’ to mean. If you
mean that the man is first to the North, then West and then South, East and back to
North then the answer is ‘yes’. If you want it to mean that the man first is in front,
then to the side followed by back, side and front of the squirrel then the answer
is ‘no’.

We have taken the pragmatic view in this book so that the term ‘belief’ has
a practical meaning. It is associated with a model of the world that can be used
to predict a person’s actions in response to circumstance reflected in the model.
The Belief a person has in a model is measured by the probability of the person’s
observed actions as interpreted by that model being acted upon.

Shannon and Weaver, on the other hand, were primarily interested in developing
a useful theory of communication. In particular they had the model of a telegraph
system which transmitted a series of characters down a cable where each represents
a message. In this case the measure of information is taken to be one’s freedom of
choice when one selects a message. If there is no freedom of choice, then the ability
for the receiver of the message to predict what the message will be is certain. The
wider the message transmitter has for choice from the selection of messages the
greater the uncertainty. We can thus say that

• Uncertainty is a measure of information and will be inversely proportional to the
probability.

That is uncertainty will increase when the probability (p) of predicting an event
decreases. So we can say that a certain event provides no surprises and thus no
information

• We also require that information should be additive.

However, we have the problem that probabilities multiply. A solution to this is to
take the logarithm of the probability so that multiplication becomes addition. This
has the satisfactory consequence that it fits other psychometric related measures
such as for sound (the decibel).

So we have the following:

Uncertainty as a measure of information is = log (1/p)

This equation only tells us of the uncertainty of a single event for a particular
message with probability (p):

• What we want is some kind of measure for a whole set of messages

This is because it is only in the context of a set that such a probability has an
uncertainty; it is a set from which a choice can be made. The minimum set of choices
can only be two items and the maximum uncertainty with two items will be when
they are equally probable:

364 10 Programming with Uncertainty: Theories, Models and Programs

• We require a unit of information to be the simplest choice with maximum
uncertainty.

To make the measure to be equal to 1 for the minimum choice condition it
requires that the log has to be to the base of ‘2’. In information terms this is called
a ‘bit’ and as shown in Fig. 10.18 the log of 1 will be 0 with the log of 0.5 being -1
for such a base. Also note that for any base log(1/p) is equal to –log(p). So

Uncertainty(p) = − log2(p)

To make a measure of the set we can take the expected (or average) uncertainty.
This means adding up the uncertainty for each message where each has been multi-
plied by the probability of occurrence for that message. This results in

Expected uncertainty = −�npn log2(pn)

Expected uncertainty is referred to as Entropy and is measured in bits. The
antilog2 of this result will return an equivalent probability that will be the expected
uncertainty in terms of probability of guessing the message correctly before it
arrives.

Fig. 10.18 The change in
uncertainty of a single event
wrt to event probability

∗ Using Information to Choose

There are several places where choices are made in the Sudoku problem (see
Fig. 10.19a). A choice of square to be resolved if it has more than one number
associated with it and a number from that list ‘to try’ for a solution if there is no
immediate resolution found by the function ‘reduce’. In this function ‘reduce’ there
is the order in which the checks are carried out and if there is a failure then there
is a range of states to go back to and try again. We will just look at the choice of a
square (see Figs. 10.20 and 10.21)

Information and Choice 365

Where choices are made Selecting a square

Fig. 10.19 The places to consider improving search

a. Filtering the
potential choices

b. Making the choice

Fig. 10.20 The fixed mechanism for choosing a square to resolve

To calculate the entropy for each square the function takes each integer on the
squares list and determines where else it is being used in the box, column or row.
The maximum possible will be 3 × 9 less the 2 extra on the square itself; a total of
25. The number of repetitions of a number divided by 25 gives the probability of it
occurring. It is this set of probabilities that define the entropy of the square. This is
then used to calculate the maximum security level over all the potential squares. The
function ‘happen’ then chooses one of them as described. The function ‘tries’ no
longer needs to make the choice so ‘head’ can be deleted. The only other addition
is the function ‘srand’ in the function ‘init’ so that the random number generator
‘rand’ will not simply repeat its initial sequence each time the Sudoku program
is called. In practice it becomes effectively random. Figure 10.22 shows the new
functions required for this improved choice.

On implementation the new Sudoku program is slower for normal Sudoku prob-
lems that are designed for people to solve and have only a single solution. However
for problems that may have several solutions, such as shown in Fig. 10.5, it is on
average faster and will tend to find different solutions each time it is run.

366 10 Programming with Uncertainty: Theories, Models and Programs

Fig. 10.21 Opening the
choice to select using entropy

a. Finding the associated frequency of
numbers

b. Using the frequency to calculate
entropy

c. Reversing the entropy to probability

Fig. 10.22 New procedures for choice

Belief Adjustment 367

Belief Adjustment [→ Page 372]

We introduced Bayes’ Rule in Chapter 8 as a built-in library function. It was
originally concerned with arriving at a support for a theory through accumulating
evidence. Normally, Bayes’ Rule assumes a constant and unchanging world. In
practice the world in which we live changes and even what counts as evidence can
also change (see irrational sets (Addis et al. 2008)). So whatever features we have
chosen, a program needs to be designed to accept change. We can make the assump-
tion that, relative to the number of events that can occur during a process, all changes
in the world will be gradual. What exactly we mean by ‘gradual’ will become clear.

In practice a scientist (say) is always reluctant to give up a useful theory despite
a run of apparently falsifying observations (for examples see Gooding and Addis
1999, 2008). This observation is normal in scientific practice (see, e.g., Kuhn 1962,
1974, 1977a, and Lakatos 1970). There is another Bayesian assumption that may
be questioned in that it requires that the order in which events occur should be
irrelevant. This is very unlikely to be the case in an ever changing world except for
short periods of time.

People will tend to have a set of beliefs about the world they live in. These beliefs
are hypotheses, theories or models about the world. They also govern how people
will act to world events or even determine what events are perceived. The conse-
quences of people’s actions may not be the outcome expected and as such these
unexpected results will throw some doubt on their beliefs about the world. As we
have shown a good survival strategy is to have a random component in behaviour.
So if we are trying to assess the range of belief in associated models then a different
sequence of actions will produce different patterns of belief-revision (Gooding and
Addis 2008).

Figure 10.23 shows two possibilities (A and B) of keeping track of an event that
will happen (1) or not happen (0) with a changing probability. Since the event is
random you need a big enough sample that will ensure that a significant change in

10011001000111010101010001100101

???????????????????01010001100101

10 01001000111010100000

N = 14
E(H) = 6/14 = 0.43

Lose 1 Gain 0

E(H) = 7/14 = 0.5

? 01?????????????

(N – 1)

Lose 1*E(H)

(N – 1)*E(H)

Gain 0

E(H) = 13/14 * 0.5 + 0/14
= 0.46

A:

B:

Fig. 10.23 Running probabilities with and without memory of recent events

368 10 Programming with Uncertainty: Theories, Models and Programs

probability is detected but not too big that it will mask the change or too small that
the randomness itself is detected. Small sample theory can be used to consider what
that might be and M. J. Moroney (1963 (1951)) is a very good source on all matters
statistical and S. Ashcroft and C. Pereira (2002) has associated software. In practice,
it depends on what turns out to be useful and in human belief models a sample of
seven has worked well.

In the example A (Fig. 10.23) we keep a moving window of 14 samples. When a
new sample appears, we move the window forward in time. We do this by dropping
the oldest sample and add the most recent to the list. In this example the average
number of (1)s change from 0.5 to 0.43. In example B we do not have any memory
except for the current probability. If we imagined we had a sample N (such as 14)
then when we drop the oldest sample we do not know if that is going to be a (1)
or (0). We do know that if the average is probability is p (say 0.5) then the expected
sum of N will be N.p (say 14 × 0.5) so since we dropped one our expected current
sum will be (N–1).p (say 13 × 0.5). We know what our new event (e), which is (0) in
this case. So our new sum is the expected sum for one less plus the current situation
{(N–1).p + 0} and to get the new average (expected p) we need to divide this by N
(the sample size). This becomes

pn = {(N−1).p(n−1) + e}/N

Where (n) is the new time and (n–1) is the previous time. The value of (e) will
be either (1) or (0) depending on what happens. Since the amount of change to (p)
is governed by the value of N we can call 1/N flexibility. The larger N is the smaller
the change per time sample and the so the smaller the flexibility.

Figure 10.24 shows that the different flexibilities (Flex) govern the amount of
influence a past event has on the present. Since the scale is logarithmic this influence
of a past event never (in theory) disappears altogether but this influence does drop
off quite rapidly as event time moves forward. We now consider how this might be
used in practice.

0.001

0.01

0.1

1
161116212631364146

Flex= 0.667
Flex= 0.400
Flex= 0.222
Flex= 0.118

Number of past events

Log of weight
of event on
current belief

Fig. 10.24 The relative influence of past events on the present

Belief Adjustment 369

The Impact of Evidence: Hypotheses and Theories

It is the fate of all scientists to eventually be proved wrong or at best shown to be
misguided. It is a wise scientist to assume that hypotheses should not, in practice,
achieve absolute certainty and should remain hypothetical: scientists will classify
these hypotheses as a necessary postulate. So a hypothesis cannot be wholly, irre-
trievably disbelieved if there is counter evidence but it can simply be re-labelled as
an artefact, a fiction or non-fact, as a non-existent entity (phlogiston, the ether), or as
a false (though once-believed) principle (e.g. the immutability of chemical elements
and of biological species).

To call something a hypothesis, H is to say that there is some empirical support
for it (H) given the evidence (Re.). See Fig. 10.25 which shows where the evidence
from experiments enter into the cycle of events. This support is a ‘probability’ in
the sense that it is an expected chance that the hypothesis is correct and thus can be
acted upon with the confidence suggested by this expectation; it is a ‘belief’. We will
label this En–1 (H/Re) where n is the current numbered event and n–1 the previous
event so En–1 is the situation just before further evidence is available. As you might
expect, it has a value that lies somewhere between 0 and 1 for each hypothesis H. It is
also assumed that these hypotheses are mutually exclusive in that only one of them
can be chosen when considering an action and only one of them will eventually
be selected as representing the world and so the sum of these values will add up
to 1. Given a new result (Re) from carrying out an experiment (or action) e then the
expected probability concerning a particular hypothesis can be modified to En(H)
by following equation (see Addis 1985, p. 260):

Confidence Profile
Experiment3

R
E
S
U
L
T
S

Actual Event

Expected Result

Bayes’ Rule

Running
Probability

What the
Agent

believes

What it
expects

What it thinks it ‘saw’

Experiment2

R
E
S
U
L
T
S

Experiment1

R
E
S
U
L
T
S

R
E
S
U
L
T
S

R
E
S
U
L
T
S

R
E
S
U
L
T
S

Choose an
experiment

En–1(H/Re)

En–1(H)
En(H)

En–1(Re/H)

En–1(Re)

Re

Fig. 10.25 Belief adjustment derived from experimental results

370 10 Programming with Uncertainty: Theories, Models and Programs

En(H) = (N−1).En−1(H) + En−1(H/Re)

N

This is using the equation we derived earlier but substituting En–1(H/Re) for (e).
En–1(H/Re) is derived from using Bayes rule, where

En−1(H/Re) = {En−1(Re/H)}/{En−1(Re)}

and

En−1(Re/H) = p(H).p(Re/H)

This gets round the problems of Bayes rule by simply using it as a conversion
process to get our updating expectations in the right form for the running probability.
We now consider a simple example.

A Simple Example of Confidence Adjustment

Given a coin that is to be thrown we might consider two possible hypotheses:

• H1. The coin is good
• H2. The coin is double headed

Result P(Result/H1) P(Result/H2)

Heads 0.5 1.0
Tails 0.5 0.0

According to Peirce, knowing that one of these hypotheses is true “makes the
world a less surprising place”. Treating Entropy as a measure of surprise, we can
calculate the difference made by ‘knowing’ H2 is the case from the difference in
entropy of the two situations:

Entropy of H1 =−(0.5 Log2 (0.5) + 0.5 Log2 (0.5))=−((−0.5) + (−0.5)) = 1 bit
Entropy of H2 =−(1.0 Log2 (1.0) + 0.0 Log2 (0.0))=−((−0.0) + (−0.0)) = 0 bit

So the difference made by ‘knowing H2 rather than H1 is the case’ is (1 – 0) = 1
bit.

Since someone or something needs to have the beliefs about the world we will
use the generic term ‘agent’. So the effect of the new information is mediated by an
agent’s current beliefs about the world. Suppose that the initial confidences that an
agent has in each of these hypotheses are

Belief Adjustment 371

Agent

En–1(H1) 0.8
En–1(H2) 0.2

Total 1.0

Then we can calculate the effect of an experiment (tossing the coin) as follows.
Using

En−1(H) = (N − 1).En−1(H) + En−1(H/Re)

N

Agent

En−1(Re/H) = En−1(H) ∗ P(Re/H) E(Head/H) E(Tail/H) Total

En−1(H1) ∗ P(Result/H1) 0.8 ∗ 0.5 = 0.4 0.8 ∗ 0.5 = 0.4 0.8
En−1(H2) ∗ P(Result/H2) 0.2 ∗ 1.0 = 0.2 0.2 ∗ 0.0 = 0.0 0.2

E(R) 0.6 0.4 1.0

We can then calculate

Agent

E(H/R) Head Occurs Tail Occurs

En(H1/R) 0.4/0.6 = 0.67 0.4/0.4 = 1.0
En(H2/R) 0.2/0.6 = 0.33 0.0/0.4 = 0.0

Total 1.0 1.0

So from the update equation, we have

En(H) = (N − 1).En−1(H) + En−1(H/Re)

N

If we let N = 4 so (N–1)/N = 3/4 = 0.75 and 1/N = 0.25 for an agent’s flexibility,
then

Agent

Head Occurs Tail Occurs

En(H1) 0.75 ∗ 0.8 + 0.25∗0.67 = 0.77 0.75 ∗ 0.8 + 0.25∗1.0 = 0.85
En(H2) 0.75 ∗ 0.2 + 0.25∗0.33 = 0.23 0.75 ∗ 0.2 + 0.25∗0.0 = 0.15

Total 1.0 1.0

372 10 Programming with Uncertainty: Theories, Models and Programs

It is important to note that whereas on a purely Bayesian model the appearance
of a tail could eliminate the belief that the coin is double headed (H2), this model
does not produce such a conclusion. This response is not as irrational as it might
appear since it keeps open the possibility of alternative explanations, e.g. that there
has been a switch of the coin (say, for a double-tailed coin) or an observational error.
This is more like what is required for scientific investigation as suggested by David
Gooding and others (1990, Tweney 1985, Matthews 2004).

∗ Belief Adjustment and Learning

For the moment imagine scientists who have a set of theories about a particular
aspect of the world. They have available a set of experiments that they can choose
to perform which will help test which of the theories is the most useful in terms
of its ability to make predictions about the world. The notion of a theory here can
be extended to other things besides scientific theories held by scientists. It could be
our internal model of someone we are speaking to. In this case, the experiments are
sentences we construct and the results are the responses we get from the other person
(Addis and Billinge 2004, Billinge and Addis 2008). However, for this particular
explanation it is clearer to use the science model of discovery.

Figure 10.25 shows where the different parts of the equation for adjustment come
from. The confidence profile is the set of probabilities that represent the range of
beliefs in different hypotheses. For convenience we will call these probabilities
‘beliefs’. The symbols used in the diagram relate to the historical set of hypothe-
ses (circa 1843) during Faradays investigation of electromagnetism (see for more
detail Gooding 1990, Gooding and Addis 2008, Addis and Gooding 2008). Every
experiment will have a range of results associated with it that are specific to each
hypothesis. A good experiment should be expected to consistently produce quite
distinct results for each hypothesis. A bad experiment will be unpredictable for all
hypotheses. An experiment is chosen and the results (Re) of the experiment are
observed. Using the known probability of that result given a hypothesis E(Re/H)
and Bayes Rule then for each hypothesis a probability of it being that hypothesis
that ‘caused’ the result E(H/Re) can be calculated; Bayes’ rule is equivalent to a
casting function since it converts En–1(Re/H) to En–1(H/Re). This probability is
used in the running probability equation to adjust the belief. This calculation was
played out with the coin toss experiment above.

A Belief Keyword Retrieval System

The problem with keyword systems is that to be used effectively you need to know
what keywords to use. The difficulty arises from not knowing how people describe
a particular item, what words they use or even how they might have organised
their information. The retrieval systems used for the World Wide Web are fast and
effective. With a bit of experience it is possible to home in on items that match

Belief Belief Adjustment and Learning 373

your requirement. What you do not know is what you may have missed due to the
item not using the keywords you have chosen and that might be a better fit for your
requirements. One of the solutions that might deal with this problem is a ‘semantic’
system that extends each keyword to include similar keywords and integrates the
combination of keywords used to home in on some kind of common subset. This
can fail because not only do different people see a word to mean many different
things but time and culture will change the meaning of words. The word ‘cool’, for
example, has had many different meanings in our lifetime. Other approaches have
taken this into account by employing a dynamic list of ‘uses’ of words. Also they
record the way keywords have been used successfully together. This gives a form of
practical ‘meaning’ to a word.

In all these cases the user has to know at least some of the keywords within the
retrieval system that are appropriate for the item required. For areas of specialisa-
tion, as might be found in a University, someone external to the area will have some
difficulty in even guessing one appropriate keyword. One answer to this is a menu
system where general areas of specialisation are presented which lead onto more
detailed areas until after several moves you are guided to the required information.
The problem with this is that any mistake at any level will lead to the wrong item.
Further, not all levels will be interpreted correctly or even understood.

One possible solution is for the system to engage in some kind of ‘conversation’
with the user with the purpose of trying to elicit what is wanted. This cannot be
done by a natural language since the problem of natural language understanding by
a machine has not been generally resolved. The tree/menu approach is a kind of
simple ‘conversation’ but is too rigid in the way it works.

Implementing a Belief Retrieval System

It is possible to treat the situation as a discovery process where the items or at least
the item class could be discovered as though it is a scientific theory. Here we can
create a simple analogy where the item class is a theory, the keywords are different
experiments and the ‘result’ of a keyword is either ‘present’ or ‘absent’. This works
well with the belief system since the entire item classes can be pre-designated in the
same way that theories are pre-specified for the system. All the bits of the equations
can be found out from the database so that the probability of a keyword being present
or absent for any class can be derived from all the items recorded that belong to that
class. From this and the relative number of items in a class an initial estimate of the
probability (belief) of a class can be assumed. This might be later modified from
monitoring user requests. This latter process reflects something of the mechanism
of semantic retrieval mentioned above.

Such a system (called PRIZE) was tested in 2002 to see if this approach was
in principle workable for the University of Portsmouth. It used a database of the
Universities expertise and skills. This database was intended to be an online tool
for people outside the university to find an expert. The work was never published
or used. However, a commercial version of it has been adapted and is being used to

374 10 Programming with Uncertainty: Theories, Models and Programs

help expert systems’ knowledge base to be developed by the experts without the use
of a knowledge engineer.

The PRIZE system was a database of people whose skills were defined as a list
of keywords. The keywords are chosen by each individual and where a keyword is
a phrase, such as “Artificial Intelligence”. For this exercise no attempt was made to
detect spelling mistakes, variants of the same word and similes. Each person is a
researcher and was thus considered to belong to a research group (Group) even if it
was only a group of one. Of all the staff this was a subset of 350 people belonging
to 102 groups in 21 departments of five faculties. The group belongs to department
and each department belongs to a faculty. Normally research groups can belong to
more than one department but this was testing the principle so that complication was
ignored.

The SFD graph Fig. 10.26 shows the dependences between objects. This means
that there three choices for what may replace a ‘theory’. We can shift our definition
of what is meant by ‘theory’ from Group to Dept to Faculty. The first stage would be
to take the broader category of Faculty and when that has been reached to explore
Dept and then the Group and finally the Person. A Person’s desirable properties are
characterised by a set of Results for every Keyword. However, only the keywords
that are ‘present’ are stored. All the people are examples of the Group to which they
belong. It is the accumulation of these people and their Keywords that makes each
group an example of a Dept and so on. The people and their Keywords also provide
the probabilities of a result given a theory for each Keyword and the probability of a
Result. These three bits of information are sufficient to provide the raw material for
a Belief System. A small range of keywords, derived from the level of confidence
for each class (Group, Dept or Faculty) can be assessed as to their importance to
distinguish between the classes and then offered to the user. The user can then say
which of these should be present and which should be absent in the person they are
interested in finding. All the others offered that have not been chosen are considered
experiments not performed. The results given by the user are then used to modify
the initial set of ‘beliefs’ as for the running probability (Fig. 10.25). This will then
reflect back on the next set of experiments to be offered.

In practice, the stepping down to a different class such as Dept was found not
to be necessary. There is an alternative way of assessing the keywords and that is
for their ability to divide a database into components that will home in on a specific
item. Unlike the keywords as experiments that go for minimum entropy, keywords to

Person Group FacultyDept

Result Keyword

Person-Result

Fig. 10.26 An SFD graph of the ‘objects’ for PRIZE

Belief Belief Adjustment and Learning 375

identify should have maximum entropy. These will have maximum spread over class
and will also occur frequently. Such a list is offered under a separate heading for the
user to choose to use with the standard approach to retrieve data. The technique
uses best hits and is conditional on a chosen Faculty (or Dept, etc.) derived from the
first few belief revision cycles. In practice we found that one or two cycles of belief
revision was sufficient to home in on a short list of about 5–15 people.

The advantage of belief revision is that if the system seems to be moving away
from the desired results then the user can continue with other keywords and the
system will shift as the effect of any wrong decisions fade. In the final implementa-
tion the sorting was done by a user built_in (prefixed ‘ubi_’) ‘ubi_order_setups’.
This takes a single integer parameter #1 that represents the ‘faculty’ level. The
function accesses the current ‘confidence’ and ‘occurrence_prob’ and calculates
from these the new ‘perceived entropy’ or result expectation (En–1(Re) as shown
in Fig. 10.25 and then sorts them. We found the library Bayesian functions were
awkward to use and so we constructed our own versions. This is an extensive calcu-
lation since every keyword is an experiment. From this sorted list the set of search
keywords (green window in Fig. 10.27) and the best 15 are displayed for using to
adjust belief. The best keywords for normal retrieval are calculated by the function
‘order_keys’ in the pink window Fig. 10.27. Finally, the possible faculties are cal-
culated by ‘best_model’, ordered and displayed in the mauve window.

In the control window ‘init_query’ resets PRIZE to the start condition. Each of
the three levels of theories of Faculty, Dept, and Group is set to the initial expecta-
tions based on relative numbers of people in them. The total number of theories at
each level is listed. The function ‘get_best’ with the level number #1 (Faculty) is
then called and calculates and displays in the three-coloured windows information
for the user about keywords and possible faculties. The number given is some test
information and not relevant to the user. There are then two optional queries that
can be repeated with an optional ‘get_best’ in between

QUERY> ans_best #1 #1 [#512 #9 #296 #160]
[["Faculty of Technology" #r0.918627]
["University of Portsmouth Business School" #r0.027610]
["Faculty of Science" #r0.026305]
["Faculty of Humanities and Social Sciences" #r0.015111]
["Faculty of the Environment" #r0.013992]]

QUERY> ans_best #0 #1 [#723 #2 #48 #223 #45]
[["Faculty of Technology" #r0.919914]
["University of Portsmouth Business School" #r0.026360]
["Faculty of Science" #r0.026024]
["Faculty of Humanities and Social Sciences" #r0.014524]
["Faculty of the Environment" #r0.013742]]

The first query ‘ans_best’ with the first parameter #1 chooses a list of keywords
by using their internal code given in the windows that help identify positively the
person, the user is after. The second option is with the first parameter #0 to indicate

376 10 Programming with Uncertainty: Theories, Models and Programs

Fig. 10.27 Output of PRIZE

the keywords that definitely do not identify the person. These keywords are auto-
matically remembered and removed from any further Search Keywords offered. The
number gives after the faculty name is the confidence (belief) in this being the cor-
rect choice for the user and gives a guide as to when to stop refining the search. In
this case we would have stopped after the first request.

The last stage is to use a selection of the offered keywords to identify an indi-
vidual and these are displayed in the white window. There are 14 possible hits and
they are all relevant for expertise in Intelligent Systems. The response times for this
trial system are: ‘init_query’=15 secs, ‘get_best’=5 secs, ‘ans_best’=1 sec and
‘nar_staff’ << 1 sec using a 1.8 GHz Mac-mini under boot-camp.

There is certainly a different ‘feel’ with such a retrieval system. There is a feel-
ing that it is positively on your side and really trying to help. The interface is a bit
crude since it uses only what is easily available with the Clarity library. However, it
was sufficient to demonstrate that the principle worked and was effective. In 2008
the commercial version was built for a very specific purpose and has proved to be

References 377

useful. The interface was created through a C++ compiler and called as a DLL from
Clarity (see chapter 9). Alongside the belief system is a tree accessing retrieval sys-
tem that reflects the structure of the organisation. This is actually preferred because
it is quicker to respond and the people using it are familiar with the structure. Occa-
sionally, they cannot find what they want and the belief system has usually suc-
ceeded where the tree approach has failed. Most naive users prefer the belief system
until they get used to the organisation they are dealing with. It provides a smooth
transition from one retrieval mechanism to another. Once the speed of response of
the belief system has been improved the reason for using the alternative approach
may disappear.

Final Word

Although this is the last chapter of the book it is not the end of development for
Clarity or schematic languages derived from it. In Chapter 9 we have shown how the
existing system can be extended and how visual languages that are used to design
interfaces can be integrated. This is a clumsy process and it would be so much
neater to have a more direct access to these design languages so that it flowed natu-
rally with Clarity. There are many links of this kind such as integrating spreadsheets
and relational databases both of which are functional languages that have been well
established. There are also small things such as bringing the Faith to Clarity trans-
lator up to date so that it can handle the ‘HOLDN’ function in a more natural way.
There are a large number of special functions that could be made built-ins, such as
all the statistical functions.

One of the characteristics we have found with using Clarity over the last 20 years
is that there is a style of programming that is distinct from text based languages.
The solutions are subtly different and the structures of the programs are influenced
by diagram appearance. We also find that we do not write a program as such but
what we do is simply develop an environment that suits our interests and create
solutions that build upon our previous work. The effect is that Clarity behaves like
an emulation of a unique operating system for a functional machine. This would
suggest an interesting development.

As for any system that is alive and well there will be change and adaption. Much
more change than we can handle and it is for this reason that we are giving away
Clarity in all its forms, example databases and source code. At the time of publishing
this will be found at the publisher’s web site www.springer.com/978-1-84882-617
or www.clarity-support.com.

References

Addis T. R. (1985) ‘Designing Knowledge-Based Systems’ Kogan Page, London, ISBN
0-85038-859-7, ISBN 1-85091-251-3 also Prentice-Hall, Englewood Cliffs, NJ(1986) ISBN
0-13-201823-3.

378 10 Programming with Uncertainty: Theories, Models and Programs

Addis T. R. (1987) ‘A Framework for Knowledge Elicitation’, The First European Workshop on
Knowledge Acquisition for Knowledge-Based Systems, September, Reading University.

Addis T. R. (1989) ‘The Science of Knowledge: A Research Programme for Knowledge Engineer-
ing’, The Third European Workshop on Knowledge Acquisition for Knowledge-Based Sys-
tems, July, Paris.

Addis T. R. (1990) ‘Knowledge for Design’, Knowledge Acquisition, Vol. 2, pp. 95–105, Academic
Press.

Addis T. R., Addis J. T, Billinge D., Gooding D. and Visscher B-F. (2008) ‘The Abductive Loop:
Tracking Irrational Sets’, Special issue of Foundations of Science, Vol. 13, No. 1, pp. 5–16,
March, ISSN 1233-1821.

Addis, T. and Billinge, D. (2005), ‘Music to Our Ears: A Required Paradigm Shift in Computer
Science presented at ECAP04’, University of Pavia, Italy, in Computing, Philosophy and Cog-
nition, ed Manani L. and Dossena R. Vol. 4 ISBN 1-904987-24-9, pp 147–162, pub College
Publications.

Addis, T. R. and Gooding, D. C. (1999) ‘Learning as Collective Belief-Revision: Simulating Rea-
soning About Disparate Phenomena’, in: Proceedings: AISB’99 Symposium on Scientific Cre-
ativity, pp. 19–28.

Addis, T. R. and Gooding, D. C. (2008) ‘Simulation Methods for an Abductive System in Science.’
Special issue: Tracking Irrational Sets, Science, Technology, Ethics in Foundations of Science.
ISSN 1233-182, Springer, Netherlands.

Aris R. (1978) Mathematical Modelling Techniques. Research Notes in Mathematics 24, Pitman,
London.

Ashcroft S. and Pereira C. (2002) ‘Practical Statistics for the Biological Sciences: Simple Pathways
to Statistical Analysis’ Palgrave Macmillan, Basingstoke, ISBN-10: 0333960440.

Billinge D. and Addis T. R. (2008) Seeking Allies: Modelling How Listeners Choose Their Musical
Friends, Special issue of Foundations of Science, Vol. 13, No. 1, pp. 53–66, March, ISSN
1233-1821.

Charniak E. (1988) ‘Motivation Analysis, Abductive Unification and Non-Monotonic Equality’,
Artificial Intelligence, 34, pp 275–296.

Gonzalez R. and Wu G. (1999) On the Shape of the Probability Weighting Function, Cognitive
Psychology, Vol. 38, No. 1, pp. 129–166, February.

Gooding D. C. and Addis T. R. (2008) Modelling Experiments as Mediating Models, Special issue
of Foundations of Science, Vol. 13, No. 1, pp. 17–36, ISSN 1233-1821.

Gooding, D. and Addis, T. R. (1999) ‘A Simulation of Model-Based Reasoning About Disparate
Phenomena’, in: Magnani et al., eds., pp. 103–124 in Model-Based Reasoning, Scientific Dis-
covery, Kluwer Academic, NY.

Gooding, D. C. (1990) ‘Experiment and the Making of Meaning’, Kluwer Academic, Dordrecht
and Boston.

Gooding, D. C. (1996) Creative Rationality: Towards an Abductive Model of Scientific Change,
in: Philosophica: Creativity, Rationality and Scientific Change, J. Meheus, ed., Vol. 58: 73–101
ISSN 0379-8402, pub Ghent University.

Kuhn, T. S. (1962) The Structure of Scientific Revolutions, Chicago University Press, Chicago, IL,
2nd edition (1970).

Kuhn, T. S. (1974) ‘Second Thoughts on Paradigms’, in Kuhn, ed. (1977), pp. 293–319. The Essen-
tial Tension. ed Kuhn T.S, ISBN 0-226-45806-7, The University of Chicago Press, 1977.

Kuhn, T. S. (1977a) ‘Objectivity, Value Judgement and Theory Choice’, in Kuhn, ed. (1977),
pp. 320–339.

Kuhn, T. S. ed. (1977b) ‘The Essential Tension’, Chicago University Press, Chicago, IL.
Lakatos, I. (1970) ‘Falsification and the Methodology of Scientific Research Programmes, in

I. Lakatos and A. Musgrave, eds., Criticism and the Growth of Knowledge, Cambridge
University Press, Cambridge, pp. 91–196.

Langley P., Simon H. A., Bradshaw G. L. and Zytkow J. M. (1987) ‘Scientific Discovery: Compu-
tational Exploration of the Creative Process’, MIT Press, Cambridge, MA.

References 379

Luce R. D. and Raiffa H. (1957) ‘Games and Decisions: Introduction and Critical Survey’. John
Wiley & Sons Ltd, New York.

Magnani, L. (2001) Abduction, Reason and Science, Kluwer Academic, Dordrecht.
Magnani, L., Nersessian, N. and Thagard, P., eds. (1998) ‘Model-Based Reasoning in Scientific

Discovery’, Kluwer, Dordrecht / Plenum, New York.
Magnani, L. (1998) ‘Model-Based Creative Abduction’, in Magnani et al., eds., pp. 219–237.
Matthews, R. (2004) ‘Opposites Detract’, New Scientist, Vol. 181, No. 2438, pp. 39–43.
Moroney M. J. (1963) ‘Facts from Figures’, 3rd edition, Penguin Books, Baltimore, MD.
Newell A. and Simon H. A. (1956). ‘The Logic Theory Machine’. IRE Transactions on Information

Theory, Sept IT-2(3), pp 61–79.
Newell A. and Simon H. A. (1973) ‘Human Problem Solving’. Prentice-Hall, Englewood Cliffs,

NJ.
Peirce C. S. (1934) ‘Scientific Method’, in Collected papers of C. S. Peirce, Vol. VII, ed A. W.

Burks, Cambridge: Harvard University Press.
Peirce, C. (1966) ‘The fixation of belief’, in Weiner, P. P., ed. Charles S. Peirce: Selected Writings.

Dover, New York, pp. 92–260.
Shannon, C. E. and Weaver W. (1964) ‘The Mathematical Theory of Communication’, University

of Illinois Press, Urbana, IL (first published 1949).
Tweney, R. D. (1985) ‘Faraday’s Discovery Of Induction: A Cognitive Approach, in D. Good-

ing and F. James, eds., Faraday Rediscovered, Macmillan, London: / APA Press, New York,
pp. 189–209.

Appendix A: A BNF Description
of the Functional Data Language Faith:
The Faith Code Window

Fdb Section

<fdb section> ::= <fdb commands> <terminator>
<fdb commands> ::= <fdb command> <fdb commands> | <empty>
<fdb command> ::= <declaration section> |

<definition section> |
<query> |
<dbport> |
<memory events>

<terminator> ::= ;
<empty> ::=

Function and Constructor Declarations

<declaration section> ::= fdec <declarations> <terminator> |
cdec <declarations> <terminator> |
tdec <tdeclarations> <terminator>

<declarations> ::= <declaration> <declarations> | <empty>
<tdeclarations> ::= <tdeclaration> <tdeclarations> | <empty>
<declaration> ::= <function name> <is> <types> <terminator>
<tdeclaration> ::= <function name> <is> <typeop> <terminator>
<function name> ::= <symbol>
<is> ::= ::=
<types> ::= <type> <to> <types> | <type>
<typeop> ::= typeop <int val> | nonlex | enum
<to> ::= ->
<type> ::= <function type> | <list type> | <pair type> | <basic type> |
<variable>
<function type> ::= (<types>)
<list type> ::= (list <type>)

381T. Addis, J. Addis, Drawing Programs: The Theory and Practice of Schematic
Functional Programming, DOI 10.1007/978-1-84882-618-2,
C© Springer-Verlag London Limited 2010

382 Appendix A

<pair type> ::= (pair <type> <type>)
<basic type> ::= int | real | char | str | bool
<variable> ::= ?<natural number>

Function Expressions

<expression> ::= <fexpression> | <lambda expression> | <holdn expression> |
<constant>

<fexpression> ::= <function name> <arguments> | <combinator>
<arguments>

<lambda expression> ::= lambda <variable> <expression>
<holdn expression> ::= HOLDN <int val> <expression>
<arguments> ::= <argument> <arguments> | <empty>
<argument> ::= <constant> | <list arg> | (<expression>) | <function name> |

<variable>
<constant> ::= <int val> | <real val> | <char val> | <str val> | <bool val>
<list arg> ::= [<arguments>] | (makelist <arguments>) |

(: <argument> <list arg>) | nil
<int val> ::= #<integer>
<real val> ::= #r<real>
<char val> ::= ‘<char>’
<str val> ::= “<chars>”
<bool val> ::= True | False
<chars> ::= <char> <chars> |
<chars> ::= <char> <chars> | <empty>

Function Definitions

<definition section> ::= fdef <definitions> <terminator>
<definitions> ::= <definition><definitions> | <empty>
<definition> ::= <fexpression> <is> <expression> <terminator>

The Control Window

<query> ::= <expression> <cterminator> | <constant> <cterminator>
<dbport> ::= load <file name> <cterminator> |

open <file name> <cterminator> |
create <file name> <cterminator> |
exec <file name> <cterminator> |
close <cterminator> |
commit <cterminator>

Appendix A 383

<cterminator> ::= <terminator> | <newline>
<file name> ::= <str val>
<memory events> ::= trace <bool val> <terminator> |

dump <str val> <terminator> | dump <terminator> |
gc <terminator>

Basics

<integer> and <real> are read by C’s scanf, they are terminated by any of the characters:
: ; newline space () []

They are not terminated by ‘–’. The following are valid:
<integer> 0 –1 –100001 100021
<real> 3.14 2.0 –24.5 36.7e-15
<character> any printable character
<symbol> any sequence of printable characters except combinators and the following
reserved symbols:

::= ; -> () [] cdec, tdec, fdec, fdef, load trace open, creat, exec, close, commit,
lambda int real char str bool list pair and any other built in library functions

<combinator> ::= B | C | I | K | S

Appendix B: An Extension of Faith
to the Schematic Language Clarity

A Schematic Extension of BNF

The underlying structure of the Clarity schematic language is an acyclic bipartite
directed graph. The graph relates to the Faith code and this will be given in terms of
the BNF structure descriptors (Appendix A). The two types of node are a collection
of functions (F) and a collection of types (T). The nodes are connected via an input
mapping I and an output mapping O. The input mapping I maps a type node tj to a
collection of function nodes I(tj). The output mapping O maps a type node tj to a
collection of function nodes O(tj). A schema consists of a four-tuple, thus

<Schema> = (F, T, I, O)

The degrees of freedom of these mappings are governed by a syntax that will
be expressed in terms of a graphical extension of BNF. This extension introduces
a second dimension into the normal BNF meta-language that shows the context-
dependent cardinality constraints of the mappings. A graph that represents a Clarity
schema will be described such that the input mapping for a node is always placed
above the description of that node and the output mapping will always be placed
below. The resultant triple will be treated as single BNF symbol:

<input mapping cardinality to node>
<node>

<output mapping cardinality from node>

We will illustrate a mapping <mapping> by a collection of arrows. The input
mapping will converge onto a node and the output mapping will diverge away from
the node. A single arrow represents a 2-tuple either input { fi,tj} or output {tj,fk }
which maps a single node i or j onto another j or k.

<zero> ::= 1 to 0

::= 1 to 1

::= 1 to n where n is a positive integer

<mapping> ::= <zero>

The <mapping> is constrained by <types> (see Appendix A)

385

386 Appendix B

The Constructor Window

The window consists of two domains. A bottom strip is the output domain and the
remaining top part is the declaration domain.

<declaration schema> ::= (F ∋ <constructor node>, T ∋ <c_type node>, I, O)

<constructor node> ::=

<mapping>

<function name>

<mapping>

<function name>

<zero>

<file name> <empty>

<c_type node> ::=

<mapping>

<type>

<mapping>

<symbol> <cf_output domain>

<cf_output domain> ::=

<mapping>

<type>

<zero>

The Function Window

The function window consists of three domains. The top strip is the input domain
and the bottom strip is the output domain. The middle domain is the body of the
function.

<function schema> ::= (F ∋ <f_function node>, T ∋ <f_type node>, I, O)

<f_type node> ::= <input node> | <output domain> | <ftype> | <htype> | <ptype> |
<junction>

<f_function node> ::= <function node> | <junction> | <empty>

<input domain> ::= <input node><input domain> <empty>

<input node> ::=

<zero>

<type>

<mapping>

<zero>

<argument>

<mapping>

<zero>

<expression>

<mapping>

<output domain> ::= <type>

<zero>

<function
node>

::=

<mapping>

<function name>

<mapping>

<function name>

<mapping>

<function name>

<ftype> ::= <type>
<zero>
<type> <empty>

Appendix B 387

<empty> ::=

<htype> ::= <type>

<ptype> ::=
<zero>

<argument>

<junction> ::= <chars>
<mapping>

<zero>
<chars>

<function name> ::= <function name> <function name> <function name>

The Network Window

The network window has only one domain . A Clarity program can be designed as
a collection of functions without regard to the individual functional schemas. The
schema is simply a directed graph that may contain cycles. The mappings J and K
are now from function to function (no type nodes involved). The input function J
maps a function node fl to a collection of function nodes J(fl). The output mapping
maps a function node fl to a collection of function nodes K(fl).

<network schema> ::= (F <net_function node>, J, K)

<net_function> ::= <n_function> | <n_junction> | <empty>

<n_function
node>

::=

<n_mapping>

<function name>

<n_mapping>

<n_mapping>

<function name>

<n_mapping>

<n_mapping>

<function name>

<n_mapping>
<zero> ::= 1 to 0

::= 1 to 1

::= 1 to n where n is a positive integer

<n_mapping> ::= <zero>

<n_junction> ::= <chars>
<n_mapping>

<zero>
<chars>

Appendix C: The .seg File Structure

An Example .seg File

The following file represents one picture.
$$$$ marks the end of file.

LINE 1 gives a general description:-
name = display_type,
Component Number = 0,
number of picture segments = 17,
picture type = 1 (Function),
Text size = 12,
Top left corner = (10,40),
width = 400,
Height = 320,
Time of last update = 964077692 (seconds since some date),
No of lines of annotation = 2.
Optional field: Title = <string> Note words are sepertated by ‘∼’
e.g.“This∼is∼the∼first∼component”

LINES 2 and 3 are the annotation lines.
Then the lines come in groups of 3 (unless there is annotation), representing each
picture segment.

LINE 4
segment name (also label) = bool,
segment number = 1,
segment type = 1 (lozenge),
style = 2 (BOLD),
top left, bottom right = (197,298) (241, 313)
(If there is annotation, there would be another integer,
and that number of lines of annotation following.)

389

390 Appendix C

LINE 5
“Backward” connections, i.e. connection from B13 = connection from segment 13

LINE 6
“Forward” connections, i.e. connection to. There are none here.

Note that segment 13 is:

I/O 13 3 0 207 247 217 298
B11
F1
I/O means it is an arrow.
13 = segment number
type 3 = arrow,
style = 0 = SOLID.
top left, bottom right = (207, 247), (217, 298)
1 connection from segment 11
1 connection to segment 1 (see LINE 4)

Segment file example:
———————————-

display_type 0 17 1 12 10 40 400 320 964077692 2
Display all vehicles of a particular type, e.g.
QUERY> display_type Car
bool 1 1 2 197 298 241 313
B13

sym 2 1 2 78 7 114 22

F6
filter 3 2 0 160 158 220 173

B10B17
F15
veh_match 4 2 0 34 74 118 89
B6B7
F9
veh 5 1 1 152 48 188 63

F7
I/O 6 3 0 93 22 78 74
B2
F4

Appendix C 391

I/O 7 3 0 152 60 103 74
B5
F4
bool 8 1 1 107 119 151 134
B9
F10
I/O 9 3 0 84 89 120 119
B4
F8
I/O 10 3 0 140 134 178 158
B8
F3
display 11 2 0 172 232 240 247
B12
F13
I/O 12 3 0 202 211 205 232
B14
F11
I/O 13 3 0 207 247 217 298
B11
F1
list∼veh 14 1 1 164 196 240 211
B15
F12
I/O 15 3 0 192 173 199 196
B3
F14
vehicles 16 2 0 216 78 292 93

F17
I/O 17 3 0 248 93 196 158
B16
F3
$$$$

End of Segement File Example

Note: the built-in function ‘display’ will display ALL the pictures in a .seg file,
e.g. QUERY> display “abc.seg” or QUERY> display “abc”. If the database with
the networks in is already open, you just need to select a network window (the
green one) and type ‘<CTRL>n’. You have to save the database to keep the network
up-to-date.

Index

A
Abduction, 343, 344, 347, 348
Abstraction, 6, 7, 38, 41, 229, 230, 236, 239,

242, 243, 343, 344, 345
Accidental features, 78
And/Or graph, 239, 240, 241, 242, 243, 244,

245
Appropriateness of mapping, 3
Atomic, 75, 76, 77, 78, 229, 277
Auxiliary function, 99, 154, 155, 156, 157, 163

B
Bayesian classification, 282
Bayes’ rule, 284, 285, 355, 367
Behaviour dependencies, 40, 41
Behaviour dependent, 40
Belief, 34, 363, 367, 368, 369

C
Casting, 44, 51, 58, 95, 101, 102, 106, 108,

109, 120, 122, 206, 233, 272, 281
Casting functions, 44, 95, 101, 272, 321
Church-Turing Thesis, 9, 75
Components, 4, 5, 8, 23, 63, 65, 80, 81, 83, 85,

90, 97, 103, 112, 125, 142, 154, 168, 169,
170, 172, 181, 190, 191, 208, 209, 213,
214, 215, 249, 250, 253, 264, 290, 291,
293, 300, 302, 323, 339, 374

Conceptual model/modelling, 79, 227, 228,
234

Conditional control, 185, 187
Constructor, 19
Control Window, 13, 14, 299, 311, 312, 313
Curried function, 49, 80, 153, 155, 163, 200

D
Decomposition of an element, 39
Decomposition frequency, 40
Dependency diagrams, 6

Design coherence, 128
Design transparency, 37, 130, 137, 138
Detectable distinction, 77
Discriminant function, 284
Domain, 6, 7, 10, 15, 37, 48, 55, 74, 78, 79, 81,

90, 112, 116, 128, 129, 137, 138, 157, 162,
163, 226, 230, 234, 235, 236, 239, 253,
343, 344, 349, 386

Dominant strategy, 353
Dual semantics, 78, 79

E
Enabler, 39
Entropy, 364, 365, 366
Environment reactivity, 38
Essential features, 78
Evaluation deferral, 233, 281
Expert system, 12, 135, 136, 239, 374
Extensibility, 131
Extensional, 37, 79, 95, 96, 97, 121, 123, 126,

130, 131, 133, 141, 146, 154, 159, 226,
227, 228, 229, 230, 253, 302, 304, 305

F
Faith code, 13, 27, 58, 59, 97, 119, 133, 134,

181, 204, 226, 230, 231, 234, 274, 275,
281, 381

Functional decomposition, 37, 136
Functional dependency, 38, 112, 235, 333
Fuzzy, 76

G
General Problem Solver, 236, 237
Generic function, 89, 93, 154
Generic object, 89
Generic type, 89
Genetic algorithms, 12, 136
Global database, 237, 238
Good practice, 10, 52, 56, 82, 86, 87, 94

393

394 Index

H
Heuristic, 237, 238, 239, 345, 348, 350,

355
Heuristic control, 227
Higher order functions, 51, 121, 123, 150, 159,

191, 192, 193, 194, 195, 233, 282

I
Immaterial, 75, 77, 283
Imperative programming, 4, 8, 16, 17, 22, 32,

64, 127, 157, 223, 224
In all possible worlds, 75
Independent, 10, 37, 75, 76, 139, 251, 284,

285, 357
Indescribable, 75
Induction, 81, 141, 344, 349
Informal semantics, 5, 90, 116, 127, 128
Intensional, 37, 79, 227
Interoperability, 37, 129
Irrational, 7, 76, 367, 372

K
k-connector, 240, 241, 242, 246
Knots, 4, 140
Knotty structures, 4

L
Language extensibility, 38
Lazy evaluation, 64, 72, 139, 233
Linear equations, 287
List view, 14
Loans, 289–300
Local optima, 351

M
Malignant side-effects, 231, 234
Many-to-one, 6
Mind Maps, 111, 112
ML, 15, 75
Modus Ponens, 345

N
Naming convention, 50, 51
Normalisation, 6, 33, 131, 235, 244,

333

O
Object orientation, 79
Object-oriented, 10
Operation coherence, 129, 130
Overloading, 90
Oxo, 18, 27, 205–221

P
Pattern match/matching, 4, 8, 37, 62, 63, 81,

89, 120, 125, 131, 134, 135, 140, 141, 154,
167, 169, 171, 173, 175, 177, 186, 209

Pragmatic view, 363
Predicate calculus, 75, 145
Primary effect, 17, 24
Propositional calculus, 76
Propositions, 3, 77, 78, 79, 141, 345, 346
Psychometric, 363

R
Range of the function, 157, 162
Rational, 76, 79, 236, 282, 352, 353
Recursion, 8, 38, 62, 70, 81, 130, 135, 140,

141, 142, 149, 150, 151, 153, 154, 155,
167, 186, 194, 195, 197, 204, 302

Recursive functions, 99, 121
Referent(s), 75, 76, 77, 78
Referential semantics, 74
Referential transparency, 4, 11, 32, 36, 37, 128,

130, 223
Relational analysis, 36, 227, 253
Relational database, 226, 230
Representational coherence, 128
Resolution, 237, 345
Resolution principle, 237
Reversibility, 37

S
Scalability, 3
Schema, 1, 2, 8, 11, 13, 35, 37, 54, 55, 56, 57,

90, 120, 126, 129, 131, 301, 327, 328, 330,
343, 381

Self governed, 75
Semantic coherence, 127, 130
Side effect, 24, 30, 52, 80, 123, 128, 213, 223,

226, 230
Simultaneous equations, 287, 356
Small sample theory, 368
Software structure, 38
Software structure decomposition, 39
Software structure usage, 39
Structure Process Diagram (SPD), 95
Sudoku, 319, 320, 321, 322, 327–340,

349–351, 355, 356, 364, 365
Surrogates, 4
System flexibility, 37, 137, 138

T
Terminating conditions, 98, 99, 164
Theory of communication, 362, 363
Top-down, 16
Transfinite numbers, 348

Index 395

Transparency, 35, 36, 57, 128, 130
Transparency of the interface, 3, 35, 57, 139
Tree view, 14
Type, 76

U
Uncertainty, 343, 344, 346, 348, 350
Unexplained phenomena, 344
Usage of an element, 39

Usage frequency, 40
User functions, 13, 54
Utility theory, 345

V
Visual languages, 2, 3–4, 17, 377

W
Whitworth distribution, 40, 41

	1848826176
	Preface
	References

	Contents
	1 Why Schematic Functional Programming?
	 Introduction
	 The Collapse of Visual Languages Visual Languages [Page 12]
	 Engineering Drawings [Page 12]
	 Engineering Drawings Used for Programming [Page 12]

	 Different Types of Clarity
	 A Brief History [Page 12]

	 Getting Going
	 A Little Bit About Functions 5 [Page 17]
	 Hello World
	 Exercise 1.1
	 An Example Schematic
	 A First Attempt at a Schematic
	 Exercise 1.2
	 Changing a Function
	 Saving a Program/Database
	 Loading a Program/Database
	 Project: Creating a Simple Clarity Program DICE
	 Dice: Generating a Random Number
	 Introduction
	 To Throw Dice
	 Communication
	 Finally

	 Exercises 1.3
	 Questions 1.1
	References

	2 Making Changes
	 Introduction
	 Problems of Software Design [Page 42]
	 A Typical Example
	 The Engineering Dimensions of Design
	 Some Definitions for Practical Results
	 Choice and Random Selection

	 Over Your Shoulder
	 List Manipulation [Page 44]
	 Improving Awake
	 A Little Bit More About Functions [Page 51]
	 Built-In Library and Function Types [Page 51]
	 Exercise 2.1
	Questions 2.1
	 Great Functions Have Little Functions
	 More Schema Editing Features
	 Exercise 2.2
	 Memory, Windows and You
	 Exercises 2.3
	 Questions 2.2
	 Project: A Simple Interactive Program
	 Guess: Finding Your Number with Least Questions
	 Introduction
	 Guess a Number
	 Finally

	 Exercise 2.4
	 Questions 2.3
	References

	3 In Pursuit of Elegance
	 Introduction
	 Inferring Internal Experience [Page 81]
	 A Philosophical View of Computing [Page 81]
	 Dual Semantics [Page 81]
	 More on Functions [Page 81]
	 Creating Components
	 Constructors: The Packaging of Data
	 Looking Through the Function Window
	 Exercises 3.1
	 Questions 3.1
	 The Notion of Casting
	 A Structure Process Diagram Structure Process Diagram (SPD)
	 Exercise 3.2
	 Questions 3.2
	 Project: Playing a Simple Game
	 Paper: Out Guess the Computer
	 Introduction
	 Paper, Scissors and Stone
	 Finally

	 Exercise 3.3
	 Questions 3.3
	References

	4 Mind Maps and Mechanisms
	 Introduction
	 Junctions, Colour and Organisation
	 Annotation
	 List Processing and Constructors
	 Dealing with Input
	 Functions as Global Variables
	 Excercises 4.1
	 Questions 4.1
	 Details of Pattern-Matching [Page 140]
	 Dealing with Conditionals (Ifs) [Page 140]
	 The Engineering Coherences of Design [Page 140]
	 Functional vs. Imperative Programming [Page 140]
	 Creating a Schematic Language [Page 140]
	 The Problems of a Functional Language
	 Solving the Problems
	 Operation Incoherence
	 Informal-Semantic Incoherence
	 Representation Incoherence
	 Exploring Possibilities

	 Doing Without Ifs [Page 140]

	 Exploring Real Programs [Page 140]
	 The Approach, Results and Interpretation

	 Discussion on Results
	 Consequences of the Experiments
	 *PROJECT: A Minimalist Program
	 Digits: Doing Without the Built-In Library
	 Introduction
	 The Digits

	 Exercises 4.2
	 Questions 4.2
	References

	5 Functional Thinking
	 Introduction
	 Loops and Recursion
	 Tail Recursion and Auxiliary Functions
	 Exercise 5.1
	 Questions 5.1
	 Functions as Mappings [Page 160]
	 Programming by Numbers
	 Exercises 6 Examples drawn from Glaser et al (2000) Programming by Numbers The computer Journal Vol 43 No 4. 5.2
	 Questions 5.2
	 Project: Using Pattern Matching
	 Snake1: Snakes and Ladders
	 Introduction
	 Keeping Score and Making Snakes (and Ladders)
	 Drawing the Board
	 Moving a Token
	 Finally, for Stage 1

	 Snake2: Snakes and Ladders
	 Introduction
	 Controlling the Cycle
	 Finally, for Stage 2

	 Exercise 5.3
	Reference

	6 Thinking Practically
	 Introduction
	 Conditional Control
	 Higher-Order Functions
	 Non-recursive Approach to Loops
	 Creating Two Useful Functions
	 Non-recursive Approach to Iteration
	 'Lambda': Controlling the Parameter Assignment
	 Editing out Sub-functions to a New Function Window

	 The Annotation Window
	 Exercises 6.1
	 Questions 6.1
	 Project: A Simple Learning Strategy
	 Oxo: The Game Player That Learns
	 The Basic Game
	 The Game: The First Version
	 Building Your Stage 1 Program
	 The First Step: Making Your Mark
	 Overview of the Program Oxo
	 Setting up Communications with Oxo
	 Detecting a Win
	 Laying Out the Board
	 More About Winning
	 Handling the Opponent's Moves
	 Starting the Game
	 Finishing the Game and Knowing Where to Move
	 The Final Steps
	 Finally

	7 Side Effect Programming and Schematic Design
	 Introduction
	 Functions as Data
	 Functions as Relations

	 Stages of System Design
	 Sequences
	 Evaluation Control
	 Benign and Malignant Side Effects

	 Schematic Design
	 An Emergent Design Technique
	 Artificial Intelligence
	 The General Problem Solver
	 Graph Search
	 The 'And/Or' Graph
	 Emergent Analysis Stage
	 Construction Stage
	 In Summary

	 Exercises 7.1
	 Questions 7.1
	 Project: Learning from Defeat
	 Oxo2: The Game Player That Learns: A Continuation
	 Develop a Simple Learning Strategy
	 Looking for a Win
	 Remembering the Winning Moves
	 Choosing the Winning Move
	 Pulling It All Together
	 Finally for Stage 2

	 Oxo3: The Game Player That Learns: Another Improvement
	 Improve the Simple Learning Strategy
	 Remembering All the Winning Moves
	 Selecting the Best
	 Finally for Stage 3

	 Oxo4: The Game Player That Does Even Better
	 Learning from Opponents and Using Tactics
	 Making Things Symmetrical
	 Finally for Stage 4

	 Oxo5: Hindering the Opponent
	 Combining the Effort
	 Finally for Stage 5

	References

	8 Adult Things
	 Introduction
	 Graphics Operations
	 gr_operations
	 btn_operations
	 Dialog

	 Narrative Window (nar)
	 Automatic Junction Insertion for Dependency Networks
	 Converting Faith code to Clarity Diagrams
	 File Operations
	 Basics
	 Lists and Tables
	 Trees and Networks

	 Casting and Code Generation
	 Bayesian Decision Functions
	 Introduction
	 The Bayesian Theory of Classification [Page 285]
	 *The Bayesian Functions in Operation

	 Matrix Operations and Linear Simultaneous Equations
	 Set Operations
	 Switches
	 Project: Using Faith with Clarity
	 Loans: A Loans Calculation Program
	 Introduction
	 Conversions
	 Putting out Messages
	 Getting Input from the User
	 Doing the Calculations
	 Finally

	References

	9 Higher-Order Programming and Lower Level Activity
	 Special Function Classes
	 Introduction
	 Function and Constructor Handling
	 Information
	 Manipulators
	 Creators
	 Generators
	 Combinators

	 System
	 Database
	 Function
	 External
	 Time

	 Client/Server Facilities
	 Overview of Network and Machine Organisation
	 Manual Networking
	 Networking Through User Functions

	 Adding Users Own Code: Extending the Library
	 A Simple Approach
	 An Example

	 Writing Application Extensions: (DLLs)
	 Creating an Interface to Clarity
	 Adding Users' Own Code
	 Opening a Database

	 Some Additional Features
	 Importing and Exporting Databases
	 Stacking Windows
	 Re-numbering and Naming Function Components components

	 The Clarity Source Code
	 The C Files and Header Files
	 target.h and platform.h

	 Project: Problem Solving
	 Sudoku: Searching for Answers
	 Introduction
	 Prototyping: A Controlled Approach to Design
	 The Collection of Functions

	References

	10 Programming with Uncertainty: Theories, Models and Programs
	 Models and Programs [Page 349]
	 The Role of a Model

	 Solving Sudoku
	 An Introduction to Game Theory [Page 364]
	 The Problem of the 'Best' Choice
	 The Old Shell Game
	 Principles of Maximising
	 Probabilistic Strategies

	 Choosing Actions (or Calculating a Heuristic)
	 Maximum Security Level (MSL)
	 Generalised MSL for Actions
	 Multiple Simultaneous Equations Matrix
	 Implementing MSL
	 The Act of Choosing

	 Information and Choice
	 A Brief Introduction to Information Theory
	 Using Information to Choose

	Belief Adjustment [Page 372]
	 The Impact of Evidence: Hypotheses and Theories
	 A Simple Example of Confidence Adjustment

	Belief Adjustment and Learning
	 A Belief Keyword Retrieval System
	 Implementing a Belief Belief Retrieval System

	 Final Word
	References

	Appendix A: A BNF Description of the Functional Data Language Faith: The Faith Code Window
	 Fdb Section The Faith Code Window
	 Function and Constructor Declarations
	 Function Expressions
	 Function Definitions
	 The Control Window
	 Basics

	Appendix B: An Extension of Faith to the Schematic Language Clarity
	 A Schematic Extension of BNF
	 The Constructor Window
	 The Function Window
	 The Network Window

	Appendix C: The .seg File Structure
	 An Example .seg File
	 End of Segement File Example

	Index

