
PURELY FUNCTIONAL DATA STRUCTURES

Most books on data structures assume an imperative language like C or C++.
However, data structures for these languages do not always translate well to
functional languages such as Standard ML, Haskell, or Scheme. This book
describes data structures from the point of view of functional languages, with
examples, and presents design techniques so that programmers can develop
their own functional data structures. It includes both classical data structures,
such as red-black trees and binomial queues, and a host of new data structures
developed exclusively for functional languages. All source code is given in
Standard ML and Haskell, and most of the programs can easily be adapted to
other functional languages.

This handy reference for professional programmers working with functional
languages can also be used as a tutorial or for self-study.
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Preface

I first began programming in Standard ML in 1989. I had always enjoyed
implementing efficient data structures, so I immediately set about translating
some of my favorites into Standard ML. For some data structures, this was
quite easy, and to my great delight, the resulting code was often both much
clearer and much more concise than previous versions I had written in C or
Pascal or Ada. However, the experience was not always so pleasant. Time after
time, I found myself wanting to use destructive updates, which are discouraged
in Standard ML and forbidden in many other functional languages. I sought
advice in the existing literature, but found only a handful of papers. Gradually,
I realized that this was unexplored territory, and began to search for new ways
of doing things.

Eight years later, I am still searching. There are still many examples of data
structures that I just do not know how to implement efficiently in a functional
language. But along the way, I have learned many lessons about what does
work in functional languages. This book is an attempt to codify these lessons.
I hope that it will serve as both a reference for functional programmers and
as a text for those wanting to learn more about data structures in a functional
setting.

Standard ML Although the data structures in this book can be implemented
in practically any functional language, I will use Standard ML for all my ex-
amples. The main advantages of Standard ML, at least for presentational pur-
poses, are (1) that it is a strict language, which greatly simplifies reasoning
about how much time a given algorithm will take, and (2) that it has an excel-
lent module system that is ideally suited for describing these kinds of abstract
data types. However, users of other languages, such as Haskell or Lisp, should
find it quite easy to adapt these examples to their particular environments. (I
provide Haskell translations of most of the examples in an appendix.) Even

IX
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C or Java programmers should find it relatively straightforward to implement
these data structures, although C's lack of automatic garbage collection can
sometimes prove painful.

For those readers who are not familiar with Standard ML, I recommend
Paulson's ML for the Working Programmer [Pau96] or Ullman's Elements of
ML Programming [U1194] as introductions to the language.

Other Prerequisites This book is not intended as a first introduction to data
structures in general. I assume that the reader is reasonably familiar with ba-
sic abstract data types such as stacks, queues, heaps (priority queues), and
finite maps (dictionaries). I also assume familiarity with the basics of algo-
rithm analysis, especially "big-Oh" notation (e.g., O(ralogn)). These topics
are frequently taught in the second course for computer science majors.

Acknowledgments My understanding of functional data structures has been
greatly enriched by discussions with many people over the years. I would
particularly like to thank Peter Lee, Henry Baker, Gerth Brodal, Bob Harper,
Haim Kaplan, Graeme Moss, Simon Peyton Jones, and Bob Tarjan.



1
Introduction

When a C programmer needs an efficient data structure for a particular prob-
lem, he or she can often simply look one up in any of a number of good
textbooks or handbooks. Unfortunately, programmers in functional languages
such as Standard ML or Haskell do not have this luxury. Although most
of these books purport to be language-independent, they are unfortunately
language-independent only in the sense of Henry Ford: Programmers can use
any language they want, as long as it's imperative.! To rectify this imbalance,
this book describes data structures from a functional point of view. We use
Standard ML for all our examples, but the programs are easily translated into
other functional languages such as Haskell or Lisp. We include Haskell ver-
sions of our programs in Appendix A.

1.1 Functional vs. Imperative Data Structures
The methodological benefits of functional languages are well known [Bac78,
Hug89, HJ94], but still the vast majority of programs are written in imperative
languages such as C. This apparent contradiction is easily explained by the fact
that functional languages have historically been slower than their more tradi-
tional cousins, but this gap is narrowing. Impressive advances have been made
across a wide front, from basic compiler technology to sophisticated analyses
and optimizations. However, there is one aspect of functional programming
that no amount of cleverness on the part of the compiler writer is likely to mit-
igate — the use of inferior or inappropriate data structures. Unfortunately, the
existing literature has relatively little advice to offer on this subject.

Why should functional data structures be any more difficult to design and
implement than imperative ones? There are two basic problems. First, from

f Henry Ford once said of the available colors for his Model T automobile, "[Customers] can
have any color they want, as long as it's black."
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the point of view of designing and implementing efficient data structures, func-
tional programming's stricture against destructive updates (i.e., assignments) is
a staggering handicap, tantamount to confiscating a master chef's knives. Like
knives, destructive updates can be dangerous when misused, but tremendously
effective when used properly. Imperative data structures often rely on assign-
ments in crucial ways, and so different solutions must be found for functional
programs.

The second difficulty is that functional data structures are expected to be
more flexible than their imperative counterparts. In particular, when we update
an imperative data structure we typically accept that the old version of the data
structure will no longer be available, but, when we update a functional data
structure, we expect that both the old and new versions of the data structure will
be available for further processing. A data structure that supports multiple ver-
sions is called persistent while a data structure that allows only a single version
at a time is called ephemeral [DSST89]. Functional programming languages
have the curious property that all data structures are automatically persistent.
Imperative data structures are typically ephemeral, but when a persistent data
structure is required, imperative programmers are not surprised if the persis-
tent data structure is more complicated and perhaps even asymptotically less
efficient than an equivalent ephemeral data structure.

Furthermore, theoreticians have established lower bounds suggesting that
functional programming languages may be fundamentally less efficient than
imperative languages in some situations [BAG92, Pip96]. In light of all these
points, functional data structures sometimes seem like the dancing bear, of
whom it is said, "the amazing thing is not that [he] dances so well, but that
[he] dances at all!" In practice, however, the situation is not nearly so bleak.
As we shall see, it is often possible to devise functional data structures that are
asymptotically as efficient as the best imperative solutions.

1.2 Strict vs. Lazy Evaluation
Most (sequential) functional programming languages can be classified as either
strict or lazy, according to their order of evaluation. Which is superior is a topic
debated with sometimes religious fervor by functional programmers. The dif-
ference between the two evaluation orders is most apparent in their treatment
of arguments to functions. In strict languages, the arguments to a function are
evaluated before the body of the function. In lazy languages, arguments are
evaluated in a demand-driven fashion; they are initially passed in unevaluated
form and are evaluated only when (and if!) the computation needs the results
to continue. Furthermore, once a given argument is evaluated, the value of that
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argument is cached so that, if it is ever needed again, it can be looked up rather
than recomputed. This caching is known as memoization [Mic68].

Each evaluation order has its advantages and disadvantages, but strict eval-
uation is clearly superior in at least one area: ease of reasoning about asymp-
totic complexity. In strict languages, exactly which subexpressions will be
evaluated, and when, is for the most part syntactically apparent. Thus, rea-
soning about the running time of a given program is relatively straightforward.
However, in lazy languages, even experts frequently have difficulty predicting
when, or even if, a given subexpression will be evaluated. Programmers in
such languages are often reduced to pretending the language is actually strict
to make even gross estimates of running time!

Both evaluation orders have implications for the design and analysis of data
structures. As we shall see, strict languages can describe worst-case data struc-
tures, but not amortized ones, and lazy languages can describe amortized data
structures, but not worst-case ones. To be able to describe both kinds of data
structures, we need a programming language that supports both evaluation or-
ders. We achieve this by extending Standard ML with lazy evaluation primi-
tives as described in Chapter 4.

1.3 Terminology
Any discussion of data structures is fraught with the potential for confusion,
because the term data structure has at least four distinct, but related, meanings.

• An abstract data type (that is, a type and a collection of functions on that
type). We will refer to this as an abstraction.

• A concrete realization of an abstract data type. We will refer to this as an
implementation, but note that an implementation need not be actualized
as code — a concrete design is sufficient.

• An instance of a data type, such as a particular list or tree. We will
refer to such an instance generically as an object or a version. However,
particular data types often have their own nomenclature. For example,
we will refer to stack or queue objects simply as stacks or queues.

• A unique identity that is invariant under updates. For example, in a
stack-based interpreter, we often speak informally about "the stack" as
if there were only one stack, rather than different versions at different
times. We will refer to this identity as a persistent identity. This issue
mainly arises in the context of persistent data structures; when we speak
of different versions of the same data structure, we mean that the differ-
ent versions share a common persistent identity.
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Roughly speaking, abstractions correspond to signatures in Standard ML, im-
plementations to structures or functors, and objects or versions to values. There
is no good analogue for persistent identities in Standard ML.f

The term operation is similarly overloaded, meaning both the functions sup-
plied by an abstract data type and applications of those functions. We reserve
the term operation for the latter meaning, and use the terms function or opera-
tor for the former.

1.4 Approach

Rather than attempting to catalog efficient data structures for every purpose (a
hopeless task!), we instead concentrate on a handful of general techniques for
designing efficient functional data structures and illustrate each technique with
one or more implementations of fundamental abstractions such as sequences,
heaps (priority queues), and search structures. Once you understand the tech-
niques involved, you can easily adapt existing data structures to your particular
needs, or even design new data structures from scratch.

1.5 Overview

This book is structured in three parts. The first part (Chapters 2 and 3) serves
as an introduction to functional data structures.

• Chapter 2 describes how functional data structures achieve persistence.
• Chapter 3 examines three familiar data structures—leftist heaps, bino-

mial heaps, and red-black trees—and shows how they can be imple-
mented in Standard ML.

The second part (Chapters 4-7) concerns the relationship between lazy evalu-
ation and amortization.

• Chapter 4 sets the stage by briefly reviewing the basic concepts of lazy
evaluation and introducing the notation we use for describing lazy com-
putations in Standard ML.

• Chapter 5 reviews the basic techniques of amortization and explains why
these techniques are not appropriate for analyzing persistent data struc-
tures.

f The persistent identity of an ephemeral data structure can be reified as a reference cell, but this
approach is insufficient for modelling the persistent identity of a persistent data structure.
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• Chapter 6 describes the mediating role lazy evaluation plays in combin-
ing amortization and persistence, and gives two methods for analyzing
the amortized cost of data structures implemented with lazy evaluation.

• Chapter 7 illustrates the power of combining strict and lazy evaluation
in a single language. It describes how one can often derive a worst-
case data structure from an amortized data structure by systematically
scheduling the premature execution of lazy components.

The third part of the book (Chapters 8-11) explores a handful of general tech-
niques for designing functional data structures.

• Chapter 8 describes lazy rebuilding, a lazy variant of global rebuild-
ing [Ove83]. Lazy rebuilding is significantly simpler than global rebuild-
ing, but yields amortized rather than worst-case bounds. Combining lazy
rebuilding with the scheduling techniques of Chapter 7 often restores the
worst-case bounds.

• Chapter 9 explores numerical representations, which are implementa-
tions designed in analogy to representations of numbers (typically bi-
nary numbers). In this model, designing efficient insertion and deletion
routines corresponds to choosing variants of binary numbers in which
adding or subtracting one take constant time.

• Chapter 10 examines data-structural bootstrapping [Buc93]. This tech-
nique comes in three flavors: structural decomposition, in which un-
bounded solutions are bootstrapped from bounded solutions; structural
abstraction, in which efficient solutions are bootstrapped from inefficient
solutions; and bootstrapping to aggregate types, in which implementa-
tions with atomic elements are bootstrapped to implementations with
aggregate elements.

• Chapter 11 describes implicit recursive slowdown, a lazy variant of the
recursive-slowdown technique of Kaplan and Tarjan [KT95]. As with
lazy rebuilding, implicit recursive slowdown is significantly simpler than
recursive slowdown, but yields amortized rather than worst-case bounds.
Again, we can often recover the worst-case bounds using scheduling.

Finally, Appendix A includes Haskell translations of most of the implementa-
tions in this book.
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A distinctive property of functional data structures is that they are always per-
sistent—updating a functional data structure does not destroy the existing ver-
sion, but rather creates a new version that coexists with the old one. Persistence
is achieved by copying the affected nodes of a data structure and making all
changes in the copy rather than in the original. Because nodes are never modi-
fied directly, all nodes that are unaffected by an update can be shared between
the old and new versions of the data structure without worrying that a change
in one version will inadvertently be visible to the other.

In this chapter, we examine the details of copying and sharing for two simple
data structures: lists and binary search trees.

2.1 Lists
We begin with simple linked lists, which are common in imperative program-
ming and ubiquitous in functional programming. The core functions supported
by lists are essentially those of the stack abstraction, which is described as a
Standard ML signature in Figure 2.1. Lists and stacks can be implemented
trivially using either the built-in type of lists (Figure 2.2) or a custom datatype
(Figure 2.3).

Remark The signature in Figure 2.1 uses list nomenclature (cons, head, tail)
rather than stack nomenclature (push, top, pop), because we regard stacks as
an instance of the general class of sequences. Other instances include queues,
double-ended queues, and catenable lists. We use consistent naming conven-
tions for functions in all of these abstractions, so that different implementations
can be substituted for each other with a minimum of fuss. O

Another common function on lists that we might consider adding to this sig-
nature is -H-, which catenates (i.e., appends) two lists. In an imperative setting,
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signature STACK =
sig

type a Stack

val empty
val isEmpty

val cons
val head
val tail

end

a Stack
a Stack bool

a x a Stack -t a Stack
a Stack -> a (* raises EMPTY if stack is empty *)
a Stack ->• a Stack (* raises EMPTY if stack is empty *)

Figure 2.1. Signature for stacks.

structure List: STACK =
struct

type a Stack = a list
val empty = []
fun isEmpty s = null s

fun cons (x, s) = x :: s
fun head s = hd s
fun tail s = tl s

end

Figure 2.2. Implementation of stacks using the built-in type of lists.

structure CustomStack: STACK =
struct

datatype a Stack = NIL | CONS of a x a Stack

val empty = N IL
fun isEmpty NIL = true | isEmpty _ = false

fun cons (x, s) = CONS (X, S)
fun head NIL = raise EMPTY

| head (CONS (X, S)) = x
fun tail N IL = raise EMPTY

| tail (CONS (X, S)) = s
end

Figure 2.3. Implementation of stacks using a custom datatype.
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xs-

zs-

(after)

Figure 2.4. Executing zs = xs -H- ys in an imperative setting. Note that this operation
destroys the argument lists, xs and ys.

this function can easily be supported in 0(1) time by maintaining pointers to
both the first and last cell in each list. Then -H- simply modifies the last cell
of the first list to point to the first cell of the second list. The result of this
operation is shown pictorially in Figure 2.4. Note that this operation destroys
both of its arguments—after executing zs = xs -H- ys, neither xs nor ys can be
used again.

In a functional setting, we cannot destructively modify the last cell of the
first list in this way. Instead, we copy the cell and modify the tail pointer of
the copy. Then we copy the second-to-last cell and modify its tail to point to
the copy of the last cell. We continue in this fashion until we have copied the
entire list. This process can be implemented genetically as

fun xs -4f ys = if isEmpty xs then ys else cons (head xs, tail xs -H- ys)

If we have access to the underlying representation (say, Standard ML's built-in
lists), then we can rewrite this function using pattern matching as

fun []-H-ys = ys
| (x :: xs) -H- ys = x :: (xs -H- ys)

Figure 2.5 illustrates the result of catenating two lists. Note that after the oper-



10 Persistence

xs-HO

(after)

Figure 2.5. Executing zs = xs -H- ys in a functional setting. Notice that the argument
lists, xs and ys, are unaffected by the operation.

ation, we are free to continue using the old lists, xs and ys, as well as the new
list, zs. Thus, we get persistence, but at the cost of O(n) copying.!

Although this is undeniably a lot of copying, notice that we did not have to
copy the second list, ys. Instead, these nodes are shared between ys and zs.
Another function that illustrates these twin concepts of copying and sharing is
update, which changes the value of a node at a given index in the list. This
function can be implemented as

fun update ([], /', y) = raise SUBSCRIPT
| update (x :: xs, 0, y) = y :: xs
| update (x :: xs, /', y) = x :: update (xs, / - 1 , y)

Here we do not copy the entire argument list. Rather, we copy only the node to
be modified (node i) and all those nodes that contain direct or indirect pointers
to node /. In other words, to modify a single node, we copy all the nodes on the
path from the root to the node in question. All nodes that are not on this path
are shared between the original version and the updated version. Figure 2.6
shows the results of updating the third node of a five-node list; the first three
nodes are copied and the last two nodes are shared.

Remark This style of programming is greatly simplified by automatic garbage
collection. It is crucial to reclaim the space of copies that are no longer needed,
but the pervasive sharing of nodes makes manual garbage collection awkward.

f In Chapters 10 and 11, we will see how to support -H- in O(l) time without sacrificing persis-
tence.
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xs—• o

Figure 2.6. Executing ys = update(xs, 2, 7). Note the sharing between xs and ys.

Exercise 2.1 Write a function suffixes of type a list -» a list list that takes a
list xs and returns a list of all the suffixes of xs in decreasing order of length.
For example,

suffixes [1,2,3,4] = [ [1,2,3,4] , [2,3,4], [3,4], [4], [ ] ]

Show that the resulting list of suffixes can be generated in O(n) time and rep-
resented in O(n) space.

2.2 Binary Search Trees
More complicated patterns of sharing are possible when there is more than one
pointer field per node. Binary search trees provide a good example of this kind
of sharing.

Binary search trees are binary trees with elements stored at the interior nodes
in symmetric order, meaning that the element at any given node is greater than
each element in its left subtree and less than each element in its right subtree.
We represent binary search trees in Standard ML with the following type:

datatype Tree = E | T of Tree x Elem x Tree

where Elem is some fixed type of totally-ordered elements.

Remark Binary search trees are not polymorphic in the type of elements
because they cannot accept arbitrary types as elements—only types that are
equipped with a total ordering relation are suitable. However, this does not
mean that we must re-implement binary search trees for each different element
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signature SET =
sig

type Elem
type Set
val empty :
val Insert :
val member:

end

Set
Elem x Set -* Set
Elem x Set ->»  bool

Figure 2.7. Signature for sets.

type. Instead, we make the type of elements and its attendant comparison
functions parameters of the functor that implements binary search trees (see
Figure 2.9). O

We will use this representation to implement sets. However, it can easily
be adapted to support other abstractions (e.g., finite maps) or fancier functions
(e.g., find the ith smallest element) by augmenting the T constructor with extra
fields.

Figure 2.7 describes a minimal signature for sets. This signature contains a
value for the empty set and functions for inserting a new element and testing for
membership. A more realistic implementation would probably include many
additional functions, such as deleting an element or enumerating all elements.

The member function searches a tree by comparing the query element with
the element at the root. If the query element is smaller than the root element,
then we recursively search the left subtree. If the query element is larger than
the root element, then we recursively search the right subtree. Otherwise the
query element is equal to the element at the root, so we return true. If we ever
reach the empty node, then the query element is not an element of the set, so
we return false. This strategy is implemented as follows:

fun member (x, E) = false
| member (x, T (a, y, b)) =

if x < y then member (x, a)
else if x > y then member (x, b)
else true

Remark For simplicity, we have assumed that the comparison functions are
named < and >. However, when these functions are passed as parameters
to a functor, as they will be in Figure 2.9, it is often more convenient to use
names such as It or leq, and reserve < and > for comparing integers and other
primitive types. O



2.2 Binary Search Trees 13

(after)

Figure 2.8. Execution of ys = insert ("e", xs). Once again, notice the sharing be-
tween xs and ys.

The insert function searches the tree using the same strategy as member, ex-
cept that it copies every node along the way. When it finally reaches an empty
node, it replaces the empty node with a node containing the new element.

fun insert (x, E) = T (E, x, E)
| insert (x, s as T (a, y, b)) =

if x < y then T (insert (x, a), y, b)
else if x > y then T (a, y, insert (x, b))
elses

Figure 2.8 illustrates a typical insertion. Every node that is copied shares one
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signature ORDERED =
(* a totally ordered type and its comparison functions •)

sig
typeT
val eq : T x T -> bool
valtt : T x T -> bool
val leq : T x T -+ bool

end

functor UnbalancedSet (Element: ORDERED) : SET =
struct

type Elem = ElementT
datatype Tree = E | T of Tree x Elem x Tree
type Set = Tree
val empty = E
fun member (x, E) = false

| member (x, T (a, y, b)) =
If Element.lt (x, y) then member (x, a)
else if Element.lt (y, x) then member (x, b)
else true

fun insert (x, E) = T (E, x, E)
| insert (x, s as T (a, y, b)) =

if Element.lt (x, y) then T (insert (x, a), y, b)
else if Element.lt (y, x) then T (a, y, insert (x, b))
elses

end

Figure 2.9. Implementation of binary search trees as a Standard ML functor.

subtree with the original tree—the subtree that was not on the search path. For
most trees, this search path contains only a tiny fraction of the nodes in the
tree. The vast majority of nodes reside in the shared subtrees.

Figure 2.9 shows how binary search trees might be implemented as a Stan-
dard ML functor. This functor takes the element type and its associated com-
parison functions as parameters. Because these same parameters will often be
used by other functors as well (see, for example, Exercise 2.6), we package
them in a structure matching the ORDERED signature.

Exercise 2.2 (Andersson [And91D In the worst case, member performs ap-
proximately 2d comparisons, where d is the depth of the tree. Rewrite member
to take no more than d + 1 comparisons by keeping track of a candidate ele-
ment that might be equal to the query element (say, the last element for which
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< returned false or < returned true) and checking for equality only when you
hit the bottom of the tree.

Exercise 23 Inserting an existing element into a binary search tree copies the
entire search path even though the copied nodes are indistinguishable from the
originals. Rewrite insert using exceptions to avoid this copying. Establish only
one handler per insertion rather than one handler per iteration.

Exercise 2.4 Combine the ideas of the previous two exercises to obtain a ver-
sion of insert that performs no unnecessary copying and uses no more than
d + 1 comparisons.

Exercise 2.5 Sharing can also be useful within a single object, not just be-
tween objects. For example, if the two subtrees of a given node are identical,
then they can be represented by the same tree.

(a) Using this idea, write a function complete of type Elem x int -> Tree
where complete (x, d) creates a complete binary tree of depth d with x
stored in every node. (Of course, this function makes no sense for the set
abstraction, but it can be useful as an auxiliary function for other abstrac-
tions, such as bags.) This function should run in O(d) time.

(b) Extend this function to create balanced trees of arbitrary size. These trees
will not always be complete binary trees, but should be as balanced as
possible: for any given node, the two subtrees should differ in size by at
most one. This function should run in 0(log n) time. (Hint: use a helper
function create2 that, given a size m, creates a pair of trees, one of size m
and one of size m+1.)

Exercise 2.6 Adapt the UnbalancedSet functor to support finite maps rather
than sets. Figure 2.10 gives a minimal signature for finite maps. (Note that the
NOTFOUND exception is not predefined in Standard ML—you will have to de-
fine it yourself. Although this exception could be made part of the FINITEMAP
signature, with every implementation defining its own NOTFOUND exception,
it is convenient for all finite maps to use the same exception.)

2.3 ChapterNotes
Myers [Mye82, Mye84] used copying and sharing to implement persistent bi-
nary search trees (in his case, AVL trees). Sarnak and Tarjan [ST86a] coined
the term path copying for the general technique of implementing persistent
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signature FINITEMAP =
sig

type Key
type a Map
val empty : a Map
vai bind : Key x a x a Map -»•  a Map
val lookup : Key x a Map -> a (* ra/se NOTFOUND /f /rey /s nof fo^nof *)

end

Figure 2.10. Signature for finite maps.

data structures by copying all affected nodes. Other general techniques for im-
plementing persistent data structures have been proposed by Driscoll, Sarnak,
Sleator, and Tarjan [DSST89] and Dietz [Die89], but these techniques are not
purely functional.



3
Some Familiar Data Structures in a Functional

Setting

Although many imperative data structures are difficult or impossible to adapt
to a functional setting, some can be adapted quite easily. In this chapter, we
review three data structures that are commonly taught in an imperative setting.
The first, leftist heaps, is quite simple in either setting, but the other two, bino-
mial queues and red-black trees, have a reputation for being rather complicated
because imperative implementations of these data structures often degenerate
into nightmares of pointer manipulations. In contrast, functional implementa-
tions of these data structures abstract away from troublesome pointer manipu-
lations and directly reflect the high-level ideas. A bonus of implementing these
data structures functionally is that we get persistence for free.

3.1 Leftist Heaps
Sets and finite maps typically support efficient access to arbitrary elements.
But sometimes we need efficient access only to the minimum element. A data
structure supporting this kind of access is called apriority queue or a heap. To
avoid confusion with FIFO queues, we use the latter name. Figure 3.1 presents
a simple signature for heaps.

Remark In comparing the signature for heaps with the signature for sets (Fig-
ure 2.7), we see that in the former the ordering relation on elements is included
in the signature while in the latter it is not. This discrepancy is because the
ordering relation is crucial to the semantics of heaps but not to the semantics
of sets. On the other hand, one could justifiably argue that an equality relation
is crucial to the semantics of sets and should be included in the signature. O

Heaps are often implemented as heap-ordered trees, in which the element at
each node is no larger than the elements at its children. Under this ordering,
the minimum element in a tree is always at the root.

17



18 Some Familiar Data Structures in a Functional Setting

signature HEAP =
sig

structure Elem: ORDERED

type Heap
val empty
val isEmpty

val insert
val merge
val findMin
val deleteMin

end

: Heap
: Heap ->• bool
: Elem.T x Heap -
: Heap x Heap ->•

: Heap ->• Elem.T
: Heap ->• Heap

-> Heap
Heap

(* raises EMPTY if heap is empty*)
(* raises EMPTY if heap is empty*)

Figure 3.1. Signature for heaps (priority queues).

Leftist heaps [Cra72, Knu73a] are heap-ordered binary trees that satisfy the
leftist property: the rank of any left child is at least as large as the rank of its
right sibling. The rank of a node is defined to be the length of its right spine
(i.e., the rightmost path from the node in question to an empty node). A simple
consequence of the leftist property is that the right spine of any node is always
the shortest path to an empty node.

Exercise 3.1 Prove that the right spine of a leftist heap of size n contains at
most [log(n + 1)J elements. (All logarithms in this book are base 2 unless
otherwise indicated.) O

Given some structure Elem of ordered elements, we represent leftist heaps
as binary trees decorated with rank information.

datatype Heap = E | T of int x Elem.T x Heap x Heap

Note that the elements along the right spine of a leftist heap (in fact, along any
path through a heap-ordered tree) are stored in sorted order. The key insight
behind leftist heaps is that two heaps can be merged by merging their right
spines as you would merge two sorted lists, and then swapping the children of
nodes along this path as necessary to restore the leftist property. This can be
implemented as follows:

fun merge (A?, E) = h
| merge (E, h) = h
| merge (Ah as T (_, x, au bi), Ab as T (_, y, a2, fe)) =

If Elem.leq (x, y) then makeT (x, au merge (bu Ab))
else makeT (y, a2, merge (hi, b7))
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where makeT is a helper function that calculates the rank of a T node and swaps
its children if necessary.

fun rank E = 0
| rank (T (r, _, _, _)) = r

fun makeT (x, a, b) = if rank a > rank b then T (rank b + 1, x, a, b)
else T (rank a + 1, x, b, a)

Because the length of each right spine is at most logarithmic, merge runs in
O(logn) time.

Now that we have an efficient merge function, the remaining functions are
trivial: insert creates a new singleton tree and merges it with the existing heap,
findMin returns the root element, and deleteMin discards the root element and
merges its children.

fun insert (x, h) = merge (T (1, x, E, E), h)
fun findMin (T (_, x, a, b)) = x
fun deleteMin (T (_, x, a, b)) = merge (a, b)

Since merge takes O(logn) time, so do insert and deleteMin. findMin clearly
runs in 0(1) time. The complete implementation of leftist heaps is given in
Figure 3.2 as a functor that takes the structure of ordered elements as a param-
eter.

Remark To avoid cluttering our examples with minor details, we usually ig-
nore error cases when presenting code fragments. For example, the above code
fragments do not describe the behavior of findMin or deleteMin on empty heaps.
We always include the error cases when presenting complete implementations,
as in Figure 3.2.

Exercise 3.2 Define insert directly rather than via a call to merge.

Exercise 3.3 Implement a function fromList of type Elem.T list ->• Heap that
produces a leftist heap from an unordered list of elements by first converting
each element into a singleton heap and then merging the heaps until only one
heap remains. Instead of merging the heaps in one right-to-left or left-to-right
pass using foldr or foldl, merge the heaps in [logn] passes, where each pass
merges adjacent pairs of heaps. Show that fromList takes only O(n) time.

Exercise 3.4 (Cho and Sahni [CS96]) Weight-biased leftist heaps are an al-
ternative to leftist heaps that replace the leftist property with the weight-biased
leftist property: the size of any left child is at least as large as the size of its
right sibling.
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functor LeftistHeap (Element: ORDERED) : HEAP =
struct

structure Elem = Element

datatype Heap = E | T of int x Elem.T x Heap x Heap

fun rank E = 0
| rank (T (r, _, _, _)) = r

fun makeT (x, a, b) = if rank a > rank b then T (rank b + 1, x, a, b)
else T (rank a + 1, x, b, a)

val empty = E
fun isEmpty E = true | isEmpty _ = false
fun merge (h, E) = h

| merge (E, h) = h
| merge (/7i as T (_, x, au fa), h2 as T (_, y, a2, b2)) =

if Elem.leq (x, y) then makeT (x, ai, merge (bi, h2))
else makeT (y, a2, merge {hi, b2))

fun insert (x, h) = merge (T (1, x, E, E), h)
fun findMin E = raise EMPTY

| findMin (T (_, x, a, b)) = x
fun deleteMin E = raise EMPTY

| deleteMin (T (_, x, a, b)) = merge (a, b)
end

Figure 3.2. Leftist heaps.

(a) Prove that the right spine of a weight-biased leftist heap contains at most
[log(n + 1)J elements.

(b) Modify the implementation in Figure 3.2 to obtain weight-biased leftist
heaps.

(c) Currently, merge operates in two passes: a top-down pass consisting of
calls to merge, and a bottom-up pass consisting of calls to the helper
function makeT. Modify merge for weight-biased leftist heaps to operate
in a single, top-down pass.

(d) What advantages would the top-down version of merge have in a lazy
environment? In a concurrent environment?

3.2 Binomial Heaps
Another common implementation of heaps is binomial queues [Vui78, Bro78],
which we call binomial heaps to avoid confusion with FIFO queues. Binomial
heaps are more complicated than leftist heaps, and at first appear to offer no
compensatory advantages. However, in later chapters, we will see ways in
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RankO Rank 1 Rank 2 Rank 3

Figure 3.3. Binomial trees of ranks 0-3.

which insert and merge can be made to run in O(l) time for various flavors of
binomial heaps.

Binomial heaps are composed of more primitive objects known as binomial
trees. Binomial trees are inductively defined as follows:

• A binomial tree of rank 0 is a singleton node.
• A binomial tree of rank r + 1 is formed by linking two binomial trees of

rank r, making one tree the leftmost child of the other.

From this definition, it is easy to see that a binomial tree of rank r contains
exactly 2r nodes. There is a second, equivalent definition of binomial trees
that is sometimes more convenient: a binomial tree of rank r is a node with
r children t\... tr, where each ti is a binomial tree of rank r —  i. Figure 3.3
illustrates binomial trees of ranks 0 through 3.

We represent a node in a binomial tree as an element and a list of children.
For convenience, we also annotate each node with its rank.

datatype Tree = Node of int x Elem.T x Tree list

Each list of children is maintained in decreasing order of rank, and elements
are stored in heap order. We maintain heap order by always linking trees with
larger roots under trees with smaller roots.

fun link (ti as Node (r, xu Ci), t2 as Node (_, x2, c2)) =
if Elem.leq (xi, x2) then Node (r+1, Xi, t2 :: Ci)
else Node (r+1, x2, fi :: c2)

We always link trees of equal rank.
Now, a binomial heap is a collection of heap-ordered binomial trees in which

no two trees have the same rank. This collection is represented as a list of trees
in increasing order of rank.

type Heap = Tree list
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Because each binomial tree contains 2r elements and no two trees have the
same rank, the trees in a binomial heap of size n correspond exactly to the
ones in the binary representation of n. For example, the binary representation
of 21 is 10101 so a binomial heap of size 21 would contain one tree of rank 0,
one tree of rank 2, and one tree of rank 4 (of sizes 1,4, and 16, respectively).
Note that, just as the binary representation of n contains at most [log(n + 1)J
ones, a binomial heap of size n contains at most [log(n + 1) J trees.

We are now ready to describe the functions on binomial heaps. We begin
with insert and merge, which are defined in loose analogy to incrementing or
adding binary numbers. (We will tighten this analogy in Chapter 9.) To insert
a new element into a heap, we first create a new singleton tree (i.e., a binomial
tree of rank 0). We then step through the existing trees in increasing order of
rank until we find a missing rank, linking trees of equal rank as we go. Each
link corresponds to a carry in binary arithmetic.

fun rank (Node (r, x, c)) = r
fun insTree (t []) = [t]

| insTree (f, ts as f :: te') =
if rank t < rank f then t:: ts else insTree (link (f, f ) . &')

fun insert (x, ts) = insTree (Node (0, x, []), ts)

The worst case is insertion into a heap of size n = 2k — 1, requiring a total of
k links and O(k) = 0(log n) time.

To merge two heaps, we step through both lists of trees in increasing order
of rank, linking trees of equal rank as we go. Again, each link corresponds to
a carry in binary arithmetic.

fun merge (tei, []) = tsi
| merge ([], te2) = te2
j merge (tsi as h :: ts[, ts2 as t2:: ts2) =

if rank h < rank t2 then h :: merge (ts[, ts2)
else if rank t2 < rank h then t2:: merge (tei, ts'2)
else insTree (link (tu t2), merge (tei, ts'2))

Both findMin and deleteMin call an auxiliary function removeMinTree that
finds the tree with the minimum root and removes it from the list, returning
both the tree and the remaining list.

fun removeMinTree [t] = (t, [])
| removeMinTree (t:: te) =

let val (tf, ts') = removeMinTree te
in if Elem.leq (root t, root f) then (f, te) else (?, t:: te') end

Now, findMin simply returns the root of the extracted tree.

fun findMin te = let val (t, _) = removeMinTree te in root t end



3.2 Binomial Heaps 23

The deleteMin function is a little trickier. After discarding the root of the ex-
tracted tree, we must somehow return the children of the discarded node to the
remaining list of trees. Note that each list of children is almost a valid binomial
heap. Each is a collection of heap-ordered binomial trees of unique rank, but
in decreasing rather than increasing order of rank. Thus, we convert the list of
children into a valid binomial heap by reversing it and then merge this list with
the remaining trees.

fun deleteMin ts = let val (Node (_, x, tsi), ts2) = removeMinTree ts
in merge (rev tsi, ts2) end

The complete implementation of binomial heaps is shown in Figure 3.4. All
four major operations require O(log n) time in the worst case.

Exercise 3.5 Define findMin directly rather than via a call to removeMinTree.

Exercise 3.6 Most of the rank annotations in this representation of binomial
heaps are redundant because we know that the children of a node of rank r
have ranks r - 1 , . . . , 0. Thus, we can remove the rank annotations from each
node and instead pair each tree at the top-level with its rank, i.e.,

datatype Tree = Node of Elem x Tree list
type Heap = (int x Tree) list

Reimplement binomial heaps with this new representation.

Exercise 3.7 One clear advantage of leftist heaps over binomial heaps is that
findMin takes only 0(1) time, rather than O(log n) time. The following functor
skeleton improves the running time of findMin to 0(1) by storing the minimum
element separately from the rest of the heap.

functor ExplicitMin (H : HEAP) : HEAP =
struct

structure Elem = H.EIem
datatype Heap = E | NE of Elem.T x H.Heap

end

Note that this functor is not specific to binomial heaps, but rather takes any
implementation of heaps as a parameter. Complete this functor so that findMin
takes 0(1) time, and insert, merge, and deleteMin take O(logn) time (assum-
ing that all four take O(log n) time or better for the underlying implementation
H).
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functor BinomialHeap (Element: ORDERED) : HEAP =
struct

structure Elem = Element

datatype Tree = Node of int x Elem.T x Tree list
type Heap = Tree list

val empty = []
fun isEmpty te = null te
fun rank (Node (r, x, c)) = r
fun root (Node (r, x, c)) = x
fun link (h as Node (r, xx, Ci), t2 as Node (_, x2, c2)) =

if Elem.leq (xi, x2) then Node (r+1, x i , t2 :: Ci)
else Node (r+1, x2, h :: c2)

fun insTree (f f[]) = M
| insTree (t, ts as t':: ts') =

if rank t < rank f then f:: ts else insTree (link (t, tf), ts')
fun insert (x, ts) = insTree (Node (0, x, []), ts)
fun merge (tei, []) = tsi

| merge ([j, ts2) = ts2
j merge (tei as fi :: fej, ts2 as f2 :: fs2) =

if rank h < rank t2 then fi :: merge (ts[, ts2)
else if rank t2 < rank fi then t2 :: merge (tei, te2)
else insTree (link (h, t2), merge (tei, te2))

fun removeMinTree [] = raise EMPTY
| removeMinTree [t] = (f, [])
| removeMinTree (t:: te) =

let val (t(, tsf) = removeMinTree te
in if Elem.leq (root t, root t') then (t, ts) else (f, t:: te7) end

fun findMin te = let val (f, _) = removeMinTree te in root t end
fun deleteMin te =

let val (Node (_, x, tei), te2) = removeMinTree te
in merge (rev tei, te2) end

end

Figure 3.4. Binomial heaps.

3.3 Red-Black Trees

In Section 2.2, we introduced binary search trees. Although these trees work
very well on random or unordered data, they perform very poorly on ordered
data, for which any individual operation might take up to O(n) time. The
solution to this problem is to keep each tree approximately balanced. Then no
individual operation takes more than O(logn) time. Red-black trees [GS78]
are one of the most popular families of balanced binary search trees.

A red-black tree is a binary search tree in which every node is colored either
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red or black. We augment the type of binary search trees from Section 2.2 with
a color field.

datatype Color = R | B
datatype Tree = E | T of Color x Tree x Elem x Tree

All empty nodes are considered to be black, so the empty constructor E does
not need a color field.

We insist that every red-black tree satisfy the following two balance invari-
ants:

Invariant 1. No red node has a red child.
Invariant 2. Every path from the root to an empty node contains the same

number of black nodes.

Taken together, these two invariants guarantee that the longest possible path
in a red-black tree, one with alternating black and red nodes, is no more than
twice as long as the shortest possible path, one with black nodes only.

Exercise 3.8 Prove that the maximum depth of a node in a red-black tree of
size n is at most 2[log(n + 1)J. O

The member function on red-black trees ignores the color fields. Except for
a wildcard in the T case, it is identical to the member function on unbalanced
search trees.

fun member (x, E) = false
| member (x, T (_, a, y, b)) =

if x < y then member (x, a)
else if x > y then member (x, b)
else true

The insert function is more interesting because it must maintain the two bal-
ance invariants.

fun Insert (x, s) =
»etfunlnsE = T(R, E,x, E)

| Ins (s as T (color, a, y, b)) =
if x < y then balance (color, ins a, y, b)
else if x > y then balance (color, a, y, ins b)
else s

val T (_, a, y, b) = ins s (* guaranteed to be non-empty *)
in T (B, a, y, b) end

This function extends the insert function for unbalanced search trees in three
significant ways. First, when we create a new node in the ins E case, we
initially color it red. Second, we force the final root to be black, regardless of
the color returned by ins. Finally, we replace the calls to the T constructor in
the x < y and x > y cases with calls to the balance function. The balance
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function acts just like the T constructor except that it massages its arguments
as necessary to enforce the balance invariants.

Coloring the new node red maintains Invariant 2, but violates Invariant 1
whenever the parent of the new node is red. We allow a single red-red violation
at a time, and percolate this violation up the search path toward the root during
rebalancing. The balance function detects and repairs each red-red violation
when it processes the black parent of the red node with a red child. This black-
red-red path can occur in any of four configurations, depending on whether
each red node is a left or right child. However, the solution is the same in every
case: rewrite the black-red-red path as a red node with two black children, as
illustrated in Figure 3.5. This transformation can be coded as follows:

fun balance (B,T (R,T (R,a,x,b),y,c),z,d) = T (R,T (B,a,x,b),y,J (B,c,z,d))
| balance (B,T (R,a,x,T (R,b,y,c)),z,d) = T (R,T (B,a,x,b),y,T (B,c,z,d))
| balance (B,a,x,T (R,T (R,b,y,c),z,d)) = T (R,T (B,a,x,b),y,T (B,c,z,d))
| balance (B,a,x,T (R,b,yJ (R,c,z,d))) = T (R,T (B,a,x,b),y,T (B,c,z,d))
| balance body = T body

It is routine to verify that the red-black balance invariants both hold for the
resulting (sub)tree.

Remark Notice that the right-hand sides of the first four clauses are iden-
tical. Some implementations of Standard ML, notably Standard ML of New
Jersey, support a feature known as or-patterns that allows multiple clauses with
identical right-hand sides to be collapsed into a single clause [FB97]. Using
or-patterns, the balance function might be rewritten

fun balance ((B,T (R,T (R,a,x,b),y,c),z,d)
| (B,T (R,a,x,T (R,b,y,c)),z,d)

(B,a,x,T (R,T (R,b,y,c),z,d))
| (B,a,x,T (R,b,y,T (R,c,z,d)))) = T (R,T (Bfa,x,b),y,T (B,c,z,d))

| balance body = T body
O

After balancing a given subtree, the red root of that subtree might now be the
child of another red node. Thus, we continue balancing all the way to the top
of the tree. At the very top of the tree, we might end up with a red node with a
red child, but with no black parent. We handle this case by always recoloring
the root to be black.

This implementation of red-black trees is summarized in Figure 3.6.

Hint to Practitioners: Even without optimization, this implementation of
balanced binary search trees is one of the fastest around. With appropriate [
optimizations, such as Exercises 2.2 and 3.10, it really flies!
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O = black
O=red

c d

b c

Figure 3.5. Eliminating red nodes with red parents.

Remark One of the reasons this implementation is so much simpler than typi-
cal presentations of red-black trees (e.g., Chapter 14 of [CLR90]) is that it uses
subtly different rebalancing transformations. Imperative implementations typ-
ically split the four dangerous cases considered here into eight cases, according
to the color of the sibling of the red node with a red child. Knowing the color
of the red parent's sibling allows the transformations to use fewer assignments
in some cases and to terminate rebalancing early in others. However, in a func-
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functor RedBlackSet (Element: ORDERED) : SET =
struct

type Elem = Element.T

datatype Color = R [ B
datatype Tree = E | T of Color x Tree x Elem x Tree
type Set = Tree

val empty = E
fun member (x, E) = false

| member (x, T (_, a, y, b)) =
if Element.lt (x, y) then member (x, a)
else if Element.lt (y, x) then member (x, b)
else true

fun balance (B,T (R,T (R,a,x,b),y,c),z,d) = T (R,T (B,a,x,fc),y,T (B,c,z,d))
| balance (B,T (R,a,x,T (R,b,y,c)),z,d) = T (R,T (B,a,x,fc),y,T (B,c,z,c/))
| balance (B,a,x,T (R,T (R,b,y,c),z,d)) = T (R,T (B,a,x,fc),y,T (B,c,z,d))
| balance (B,a,x,T (R,b,y,T (R,c,z,d))) = T (R,T (B,a,x,b),y,T (B,c,z,d))
I balance body = T body

fun insert (x, s) =
letfuninsE = T(R, E,x, E)

| ins (s as T (color, a, y, b)) =
if Element.lt (x, y) then balance (color, ins a, y, b)
else if Element.lt (y, x) then balance (color, a, y, ins b)
else s

val T (_, a, y, b) = ins s (* guaranteed to be non-empty *)
in T (B, a, y, b) end

end

Figure 3.6. Red black trees.

tional setting, where we are copying the nodes in question anyway, we cannot
reduce the number of assignments in this fashion, nor can we terminate copy-
ing early, so there is no point is using the more complicated transformations.

Exercise 3.9 Write a function fromOrdList of type Elem list -+ Tree that con-
verts a sorted list with no duplicates into a red-black tree. Your function should
run in O(n) time.

Exercise 3.10 The balance function currently performs several unnecessary
tests. For example, when the ins function recurses on the left child, there is no
need for balance to test for red-red violations involving the right child.

(a) Split balance into two functions, Ibalance and rbalance, that test for vio-
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lations involving the left child and right child, respectively. Replace the
calls to balance in ins with calls to either Ibalance or rbalance.

(b) Extending the same logic one step further, one of the remaining tests on
the grandchildren is also unnecessary. Rewrite ins so that it never tests
the color of nodes not on the search path.

3.4 Chapter Notes
Nunez, Palao, and Pefia [NPP95] and King [Kin94] describe similar implemen-
tations in Haskell of leftist heaps and binomial heaps, respectively. Red-black
trees have not previously appeared in the functional programming literature,
but several other kinds of balanced binary search trees have, including AVL
trees [Mye82, Mye84, BW88, NPP95], 2-3 trees [Rea92], and weight-balanced
trees [Ada93].

Knuth [Knu73a] originally introduced leftist heaps as a simplification of a
data structure by Crane [Cra72]. Vuillemin [Vui78] invented binomial heaps;
Brown [Bro78] examined many of the properties of this elegant data structure.
Guibas and Sedgewick [GS78] proposed red-black trees as a general frame-
work for describing many other kinds of balanced trees.





4
Lazy Evaluation

Lazy evaluation is the default evaluation strategy of many functional program-
ming languages (although not of Standard ML). This strategy has two essential
properties. First, the evaluation of a given expression is delayed, or suspended,
until its result is needed. Second, the first time a suspended expression is eval-
uated, the result is memoized (i.e., cached) so that, if it is ever needed again, it
can be looked up rather than recomputed. Both aspects of lazy evaluation are
algorithmically useful.

In this chapter, we introduce a convenient notation for lazy evaluation and
illustrate this notation by developing a simple streams package. We will use
both lazy evaluation and streams extensively in later chapters.

4.1 $-notation
Unfortunately, the definition of Standard ML [MTHM97] does not include
support for lazy evaluation, so each compiler is free to provide its own set of
lazy evaluation primitives. We present here one such set of primitives, called
$-notation. Translating programs written with $-notation into other notations
for lazy evaluation should be straightforward.

In $-notation, we introduce a new type a susp to represent suspensions. This
type has a single, unary constructor called $. To a first approximation, a susp
and $ behave as if defined by the ordinary datatype declaration

datatype a susp = $ of a

We create a new suspension of type r susp by writing $e, where e is an ex-
pression of type r. Similarly, we extract the contents of an existing suspension
by matching against the pattern $p. If the pattern p matches values of type r,
then $p matches suspensions of type r susp.

The main difference between $ and ordinary constructors is that $ does not

31



32 Lazy Evaluation

immediately evaluate its argument. Instead, it saves whatever information it
will need to resume the evaluation of the argument expression at a later time.
(Typically, this information consists of a code pointer together with the val-
ues of the free variables in the expression.) The argument expression is not
evaluated until and unless the suspension is matched against a pattern of the
form $p. At that time, the argument expression is evaluated and the result is
memoized. Then the result is matched against the pattern p. If the suspension
is later matched against another pattern of the form $//, the memoized value
of the suspension is looked up and matched against p1.

The $ constructor is also parsed differently from ordinary constructors. First,
the scope of the $ constructor extends as far to the right as possible. Thus,
for example, the expression $f x parses as $(f x) rather than ($f) x, and the
pattern $CONS (X, XS) parses as $(CONS (X, XS)) rather than ($CONS) (X, XS).
Second, $ does not constitute a valid expression by itself—it must always be
accompanied by an argument.

As an example of $-notation, consider the following program fragment:

val s = $primes 1000000 (* fast *)

val $x = s (* slow *)

val $y=s (* fast *)

This program computes the one millionth prime. The first line, which simply
creates a new suspension, runs very quickly. The second line actually com-
putes the prime by evaluating the suspension. Depending on the algorithm
for computing primes, it might take a long time. The third line looks up the
memoized value and also runs very quickly.

As a second example, consider the fragment

let val s = $primes 1000000
in 15 end

This program never demands the contents of the suspension, and so never eval-
uates primes 1000000.

Although we can program all the examples of lazy evaluation in this book
using only $-expressions and $-patterns, two forms of syntactic sugar will be
convenient. The first is the force operator, defined as

fun force ($x) = x

This is useful for extracting the contents of a suspension in the middle of an
expression, where it might be awkward to introduce a pattern matching con-
struct.
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The second form of syntactic sugar is useful for writing certain kinds of
lazy functions. For example, consider the following function for addition of
suspended integers:

fun plus ($/T7, %ri) = $m+n

Although this function seems perfectly reasonable, it is in fact not the function
that we probably intended. The problem is that it forces both of its arguments
too early. In particular, it forces its arguments when plus is applied, rather than
when the suspension created by plus is forced. One way to get the desired
behavior is to explicitly delay the pattern matching, as in

fun plus (x, y) = $case (x, y) of ($m, %n) => m+n

However, this idiom is common enough that we provide syntactic sugar for it,
writing

fun lazy/p = e

instead of

fun / x = $case x of p => force e

The extra force ensures that the lazy keyword has no effect on the type of a
function (assuming that the result was a susp type to begin with), so we can
add or remove the annotation without changing the function text in any other
way. Now we can write the desired function for addition of suspended integers
simply as

fun lazy plus ($m, $n) = $m+n

Expanding this syntactic sugar yields

fun plus (x, y) = $case (x, y) of ($A77, $n) =^ force ($m+n)

which is exactly same as the hand-written version above except for the extra
force and $ around the m+n. This force and $ would be optimized away by a
good compiler since force ($e) is equivalent to e for any e.

The plus function uses the lazy annotation to delay pattern matching, so that
$-patterns are not matched prematurely. However, the lazy annotation is also
useful when the right-hand side of the function is an expression that returns a
suspension as the result of a possibly long and involved computation. Using
the lazy annotation in this situation delays the execution of the expensive com-
putation from the time the function is applied until the time that its resulting
suspension is forced. We will see several functions in the next section that use
the lazy annotation in this fashion.
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The syntax and semantics of $-notation are formally defined in [Oka96a].

4.2 Streams
As an extended example of lazy evaluation and $-notation in Standard ML, we
next develop a small streams package. These streams will be used in several
of the data structures in subsequent chapters.

Streams (also known as lazy lists) are similar to ordinary lists, except that
every cell is systematically suspended. The type of streams is

datatype a StreamCell = NIL | CONS of a x a Stream
withtype a Stream = a StreamCell susp

A simple stream containing the elements 1, 2, and 3 could be written

$CONS (1, $CONS (2, $CONS (3, $NlL)))

It is illuminating to contrast streams with suspended lists of type a list susp.
The computations represented by the latter type are inherently monolithic—
once begun by forcing the suspended list, they run to completion. The com-
putations represented by streams, on the other hand, are often incremental—
forcing a stream executes only enough of the computation to produce the out-
ermost cell and suspends the rest. This behavior is common among datatypes
such as streams that contain nested suspensions.

To see this difference in behavior more clearly, consider the append function,
written s -H- t. On suspended lists, this function might be written

fun s -H-1 = $(force s @ force t)

or, equivalently,

fun lazy ($xs) -H- ($ys) = $(xs @ ys)

The suspension produced by this function forces both arguments and then
appends the two lists, producing the entire result. Hence, this suspension is
monolithic. We also say that the function is monolithic. On streams, the ap-
pend function is written

fun lazy($Nii_)-H- t=t
| ( $ C O N S (x, s)) -H-1 = $ C O N S (x, s -H-1)

This function immediately returns a suspension, which, when forced, demands
the first cell of the left stream by matching against a $-pattern. If this cell
is a CONS, then we construct the result from x and s -H- t. Because of the
lazy annotation, the recursive call simply creates another suspension, without
doing any extra work. Hence, the computation described by this function is
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incremental; it produces the first cell of the result and delays the rest. We also
say that the function is incremental.

Another incremental function is take, which extracts the first n elements of
a stream.

fun lazy take (0, s) = $NIL
| take (n, $NIL) = $NIL
j take (n, $CONS (X, S)) = $CONS (X, take ( n - 1 , s))

As with -H-, the recursive call to take (n-1 , s) immediately returns a suspension,
rather than executing the rest of the function.

However, consider the function to delete the first n elements of a stream,
which could be written

fun lazy drop (0, s) = s
| drop (n, $NIL) = $NIL
| drop (n, $CONS (x, s)) = drop ( n - 1 , s)

or more efficiently as

fun lazy drop (n, s) = let fun drop7 (0, s) = s
|drop'(n,$NiL) = $NiL
| drop' (n, $CONS (x, s)) = drop' ( n - 1 , s)

In drop7 (n, s) end

This function is monolithic because the recursive calls to drop7 are never de-
layed—calculating the first cell of the result requires executing the entire func-
tion. Here we use the lazy annotation to delay the initial call to drop7 rather
than to delay pattern matching.

Exercise 4.1 Use the fact that force ($e) is equivalent to e to show that these
two definitions of drop are equivalent. O

Another common monolithic stream function is reverse.

fun lazy reverse s =
let fun reverse7 ($NIL, r) = r

| reverse7 ($CONS (X, S), r) = reverse7 (s, $CONS (X, r))
in reverse7 (s, $NIL) end

Here the recursive calls to reverse7 are never delayed, but note that each recur-
sive call creates a new suspension of the form $CONS (x, r). It might seem then
that reverse does not in fact do all of its work at once. However, suspensions
such as these, whose bodies contain only a few constructors and variables,
with no function applications, are called trivial. Trivial suspensions are de-
layed, not for any algorithmic purpose, but rather to make the types work out.
We can consider the body of a trivial suspension to be executed at the time the
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signature STREAM =
sig

datatype a StreamCell = NIL | CONS of a x a Stream
withtype a Stream = a StreamCell susp
val -H-
val take
val drop
val reverse

a Stream x a Stream -» a  Stream (* stream append*)
int x a Stream -> a Stream
int x a Stream -^ a Stream
a Stream ->> a Stream

end
structure Stream : STREAM =
struct

datatype a StreamCell = NIL | CONS o1a x a Stream
withtype a Stream = a StreamCell susp
fun lazy ($NiL)-H-f=f

| ($CONS (x, s)) -H-1 = $CONS (x, s -H-1)
fun lazy take (0, s) = $NIL

|take(n, $NIL) = $N IL
| take (n, $CONS (X, S)) = $CONS (X, take ( n - 1 , s))

fun lazy drop (n, s) =
let fun drop' (0, s) = s

|drop/(n,$NiL) = $NiL
| drop7 (/?, $CONS (x, s)) = drop' ( n - 1 , s)

in drop7 (n, s) end
fun lazy reverse s =

let fun reverse7 ($NIL, r) = r
| reverse7 ($CONS (X, S), r) = reverse7 (s, $CONS (X, r))

in reverse7 (s, $NIL) end
end

Figure 4.1. A small streams package.

suspension is created. In fact, a reasonable compiler optimization is to cre-
ate such suspensions in already-memoized form. Either way, forcing a trivial
suspension never takes more than 0(1) time.

Although monolithic stream functions such as drop and reverse are com-
mon, incremental functions such as -H- and take are the raison d'etre of streams.
Each suspension carries a small but significant overhead, so for maximum ef-
ficiency laziness should be used only when there is a good reason to do so.
If the only uses of lazy lists in a given application are monolithic, then that
application should use simple suspended lists rather than streams.

Figure 4.1 summarizes these stream functions as a Standard ML module.
Note that this module does not export functions such as isEmpty and cons, as
one might expect. Instead, we deliberately expose the internal representation
in order to support pattern matching on streams.
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Exercise 4.2 Implement insertion sort on streams. Show that extracting the
first k elements of sort xs takes only O(n- k) time, where n is the length of xs,
rather than O(n2) time, as might be expected of insertion sort.

4.3 Chapter Notes
Lazy Evaluation Wadsworth [Wad71] introduced lazy evaluation as an opti-
mization of normal-order reduction in the lambda calculus. Vuillemin [Vui74]
later showed that, under certain restricted conditions, lazy evaluation is an op-
timal evaluation strategy. The formal semantics of lazy evaluation has been
studied extensively [Jos89, Lau93, OLT94, AFM+95].

Streams Landin introduced streams in [Lan65], but without memoization.
Friedman and Wise [FW76] and Henderson and Morris [HM76] extended Lan-
din 's streams with memoization.

Memoization Michie [Mic68] coined the term memoization to denote the
augmentation of functions with a cache of argument-result pairs. The argu-
ment field is dropped when memoizing suspensions by regarding suspensions
as nullary functions—that is, functions with zero arguments. Hughes [Hug85]
later applied memoization, in the original sense of Michie, to functional pro-
grams.

Algorithmics Both components of lazy evaluation—delaying computations
and memoizing the results—have a long history in algorithm design, although
not always in combination. The idea of delaying the execution of potentially
expensive computations (often deletions) is used to good effect in hash tables
[WV86], priority queues [ST86b, FT87], and search trees [DSST89]. Memo-
ization, on the other hand, is the basic principle of such techniques as dynamic
programming [Bel57] and path compression [HU73, TvL84].





5
Fundamentals of Amortization

Over the past fifteen years, amortization has become a powerful tool in the
design and analysis of data structures. Implementations with good amortized
bounds are often simpler and faster than implementations with comparable
worst-case bounds. In this chapter, we review the basic techniques of amorti-
zation and illustrate these ideas with a simple implementation of FIFO queues
and several implementations of heaps.

Unfortunately, the simple view of amortization presented in this chapter
breaks in the presence of persistence—these data structures may be extremely
inefficient when used persistently. In practice, however, many applications do
not require persistence, and for those applications, the implementations pre-
sented in this chapter are excellent choices. In the next chapter, we will see
how to reconcile the notions of amortization and persistence using lazy evalu-
ation.

5.1 Techniques of Amortized Analysis
The notion of amortization arises from the following observation. Given a
sequence of operations, we may wish to know the running time of the entire
sequence, but not care about the running time of any individual operation. For
instance, given a sequence of n operations, we may wish to bound the total
running time of the sequence by O(n) without insisting that every individual
operation run in 0(1) time. We might be satisfied if a few operations run in
O(logn) or even 0(n) time, provided the total cost of the sequence is only
0(n). This freedom opens up a wide design space of possible solutions, and
often yields new solutions that are simpler and faster than worst-case solutions
with equivalent bounds.

To prove an amortized bound, one defines the amortized cost of each oper-
ation and then proves that, for any sequence of operations, the total amortized

39
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cost of the operations is an upper bound on the total actual cost, i.e.,

where az is the amortized cost of operation i, t{ is the actual cost of operation i,
and m is the total number of operations. Usually, in fact, one proves a slightly
stronger result: that at any intermediate stage in a sequence of operations, the
accumulated amortized cost is an upper bound on the accumulated actual cost,
i.e.,

for any j . The difference between the accumulated amortized costs and the
accumulated actual costs is called the accumulated savings. Thus, the accu-
mulated amortized costs are an upper bound on the accumulated actual costs
whenever the accumulated savings is non-negative.

Amortization allows for occasional operations to have actual costs that ex-
ceed their amortized costs. Such operations are called expensive. Operations
whose actual costs are less than their amortized costs are called cheap. Ex-
pensive operations decrease the accumulated savings and cheap operations in-
crease it. The key to proving amortized bounds is to show that expensive op-
erations occur only when the accumulated savings are sufficient to cover the
remaining cost.

Tarjan [Tar85] describes two techniques for analyzing amortized data struc-
tures: the banker's method and the physicist's method. In the banker's method,
the accumulated savings are represented as credits that are associated with in-
dividual locations in the data structure. These credits are used to pay for future
accesses to these locations. The amortized cost of any operation is defined to
be the actual cost of the operation plus the credits allocated by the operation
minus the credits spent by the operation, i.e.,

a. = U + Ci - Ci

where c,- is the number of credits allocated by operation i and ~C{ is the num-
ber of credits spent by operation i. Every credit must be allocated before it is
spent, and no credit may be spent more than once. Therefore, J2 c* > J2 c«»
which in turn guarantees that J2ai > J2U, as desired. Proofs using the
banker's method typically define a credit invariant that regulates the distri-
bution of credits in such a way that, whenever an expensive operation might
occur, sufficient credits have been allocated in the right locations to cover its
cost.
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In the physicist's method, one describes a function $ that maps each object
d to a real number called the potential of d. The function $ is typically chosen
so that the potential is initially zero and is always non-negative. Then, the
potential represents a lower bound on the accumulated savings.

Let di be the output of operation i and the input of operation i + 1 . Then, the
amortized cost of operation i is defined to be the actual cost plus the change in
potential between di-i and di, i.e.,

as-=

The accumulated actual costs of the sequence of operations are

Sums such as X^(^(^- i ) ~ *(d*))»  w n e r e alternating positive and negative
terms cancel each other out, are called telescoping series. Provided $ is chosen
in such a way that #(do) is zero and $(dj) is non-negative, then ®(dj) >
$(do) and J2ai > Z)̂ »»  s o m e accumulated amortized costs are an upper
bound on the accumulated actual costs, as desired.

Remark This is a somewhat simplified view of the physicist's method. In
real analyses, one often encounters situations that are difficult to fit into the
framework as described. For example, what about functions that take or return
more than one object? However, this simplified view suffices to illustrate the
relevant issues. O

Clearly, the two methods are very similar. We can convert the banker's
method to the physicist's method by ignoring locations and taking the potential
to be the total number of credits in the object, as indicated by the credit invari-
ant. Similarly, we can convert the physicist's method to the banker's method
by converting potential to credits, and placing all credits on the root. It is per-
haps surprising that the knowledge of locations in the banker's method offers
no extra power, but the two methods are in fact equivalent [Tar85, Sch92]. The
physicist's method is usually simpler, but it is occasionally convenient to take
locations into account.

Note that both credits and potential are analysis tools only; neither actually
appears in the program text (except maybe in comments).
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signature QUEUE
sig

type a Queue

val
val
val
val
val

end

empty : a
isEmpty : a

snoc : a
head : a
tail : a

Fundamentals of Amortization

—

Queue
Queue -

Queue x
Queue -
Queue -

•> bool

: a -» a  Queue
•> a (* raises EMPTY
•> a Queue (* raises EMPTY

if queue is empty *)
if queue is empty *)

Figure 5.1. Signature for queues.
(Etymological note: snoc is cons spelled backward and means "cons on the right".)

5.2 Queues
We next illustrate the banker's and physicist's methods by analyzing a simple
functional implementation of the FIFO queue abstraction, as specified by the
signature in Figure 5.1.

The most common implementation of queues in a purely functional setting
is as a pair of lists, f and r, where f contains the front elements of the queue in
the correct order and r contains the rear elements of the queue in reverse order.
For example, a queue containing the integers 1... 6 might be represented by the
lists f = [1,2,3] and r - [6,5,4]. This representation is described by the following
type:

type a Queue = a list x a list

In this representation, the head of the queue is the first element of f, so head
and tail return and remove this element, respectively.

fun head (x :: f, r) = x
fun tail (x :: f, r) = (f, r)

Similarly, the last element of the queue is the first element of r, so snoc simply
adds a new element to r.

fun snoc ((/; r), x) = (f, x :: r)

Elements are added to r and removed from f, so they must somehow migrate
from one list to the other. This migration is accomplished by reversing r and
installing the result as the new f whenever f would otherwise become empty,
simultaneously setting the new r to [ ]. The goal is to maintain the invariant that
f is empty only if r is also empty (i.e., the entire queue is empty). Note that,
if f were empty when r was not, then the first element of the queue would be
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structure BatchedQueue: QUEUE =
struct

type a Queue = a list x a list

val empty = ([],[])
fun isEmpty (f, r) = null f
fun checkf ([], r) = (rev r, [])

| checkf q = q

fun snoc ((f, r), x) = checkf (f, x :: r)

fun head ([], _) = raise EMPTY
| head (x :: f, r) = x

fun tail ([], _) = raise EMPTY
| tail (x :: f, r) = checkf (f, r)

end

Figure 5.2. A common implementation of purely functional queues.

the last element of r, which would take O(n) time to access. By maintaining
this invariant, we guarantee that head can always find the first element in 0(1)
time.

snoc and tail must now detect those cases that would otherwise result in a
violation of the invariant, and change their behavior accordingly.

fun snoc (([],_), x) = ([x], [])
| snoc ((f, r), x) = (f, x :: r)

fun tail ([x], r) = (rev r, [])
| tail (x :: f, r) = (f, r)

Note the use of the wildcard in the first clause of snoc. In this case, the r field
is irrelevant because we know by the invariant that if f is [ ], then so is r.

A slightly cleaner way to write these functions is to consolidate into a single
function checkf those parts of snoc and tail that are devoted to maintaining the
invariant, checkf replaces f with rev r when f is empty, and otherwise does
nothing.

fun checkf ( [ ] , r) = (rev r, [])
| checkf q = q

fun snoc ((f, r), x) = checkf (f, x :: r)
fun tail (x :: f, r) = checkf (/, r)

The complete code for this implementation is shown in Figure 5.2. snoc and
head run in 0(1) worst-case time, but tail takes O(n) time in the worst-case.
However, we can show that snoc and tail both take 0(1) amortized time using
either the banker's method or the physicist's method.

Using the banker's method, we maintain a credit invariant that every element
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in the rear list is associated with a single credit. Every snoc into a non-empty
queue takes one actual step and allocates a credit to the new element of the
rear list, for an amortized cost of two. Every tail that does not reverse the rear
list takes one actual step and neither allocates nor spends any credits, for an
amortized cost of one. Finally, every tail that does reverse the rear list takes
m + 1 actual steps, where m is the length of the rear list, and spends the m
credits contained by that list, for an amortized cost of m + 1 — m = 1.

Using the physicist's method, we define the potential function $ to be the
length of the rear list. Then every snoc into a non-empty queue takes one actual
step and increases the potential by one, for an amortized cost of two. Every tail
that does not reverse the rear list takes one actual step and leaves the potential
unchanged, for an amortized cost of one. Finally, every tail that does reverse
the rear list takes m + 1 actual steps and sets the new rear list to [ ], decreasing
the potential by m, for an amortized cost of ra + 1 — m = 1.

In this simple example, the proofs are virtually identical. Even so, the physi-
cist's method is slightly simpler for the following reason. Using the banker's
method, we must first choose a credit invariant, and then decide for each func-
tion when to allocate or spend credits. The credit invariant provides guidance
in this decision, but does not make it automatic. For instance, should snoc
allocate one credit and spend none, or allocate two credits and spend one? The
net effect is the same, so this freedom is just one more potential source of
confusion. On the other hand, using the physicist's method, we have only one
decision to make—the choice of the potential function. After that, the analysis
is mere calculation, with no more freedom of choice.

Hint to Practitioners: These queues cannot be beat for applications that do
not require persistence and for which amortized bounds are acceptable.

Exercise 5.1 (Hoogerwoord [Hoo92]) This design can easily be extended to
support the double-ended queue, or deque, abstraction, which allows reads and
writes to both ends of the queue (see Figure 5.3). The invariant is updated to
be symmetric in its treatment of f and r: both are required to be non-empty
whenever the deque contains two or more elements. When one list becomes
empty, we split the other list in half and reverse one of the halves.

(a) Implement this version of deques.
(b) Prove that each operation takes 0(1) amortized time using the potential

function $ (f, r) = abs (| f\ — | r\), where abs is the absolute value function.
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signature DEQUE =
sig

type a Queue

val empty
val isEmpty

* insert, inspect, and remove the front element *)
val cons
val head
val tail

val snoc
val last
val init

a Queue
a Queue -> bool

x a Queue ->• a Queue
a Queue -» a (* raises  EMPTY if queue is empty *)
a Queue -» a Queue (* ra/ses  EMPTY /? gaeue /s eA?7p/y *)

* insert, inspect, and remove the rear element *)

end

a Queue x a -»• a Queue
a Queue -* a (* raises EMPTY if queue is empty *)
a Queue ->• a Queue (* ra/ses EMPTY if queue is empty *)

Figure 5.3. Signature for double-ended queues.

5.3 Binomial Heaps
In Section 3.2, we showed that insert on binomial heaps runs in O(\ogn)
worst-case time. Here, we prove that insert actually runs in 0(1) amortized
time.

We use the physicist's method. Define the potential of a binomial heap to
be the number of trees in the heap. Recall that this is equivalent to the number
of ones in the binary representation of n, the number of elements in the heap.
Now, a call to insert takes k + 1 steps where k is the number of calls to link. If
there were initially t trees in the heap, then after the insertion, there are t —  k 4-1
trees. Thus, the change in potential is (2 —  /? +1) —  t = l —  k and the amortized
cost of the insertion is (k -f 1) + (1 —  k) = 2.

Exercise 5.2 Repeat this proof using the banker's method. O

To be complete, we must also show that the amortized costs of merge and
deleteMin are still 0(log n). deleteMin poses no particular problem, but merge
requires a minor extension to the physicist's method. Previously, we defined
the amortized cost of an operation to be

where din is the input to the operation and dout is the output. However, if an
operation takes or returns more than one object, then we generalize this rule to
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where In is the set of inputs and Out is the set of outputs. For the purposes of
this rule, we consider only inputs and outputs of the type(s) being analyzed.

Exercise 5.3 Prove that the amortized costs of merge and deleteMin are still
O(logn).

5.4 Splay Heaps
Splay trees [ST85] are perhaps the most famous and successful of all amortized
data structures. Splay trees are a close relative of balanced binary search trees,
but they maintain no explicit balance information. Instead, every operation
blindly restructures the tree using some simple transformations that tend to
increase balance. Although any individual operation can take as much as O(n)
time, we will show that every operation runs in O(log n) amortized time.

A major difference between splay trees and balanced binary search trees
such as the red-black trees of Section 3.3 is that splay trees are restructured
even during queries (e.g., member) instead of only during updates (e.g., insert).
This property makes it awkward to use splay trees to implement abstractions
such as sets or finite maps in a purely functional setting, because the query
would have to return the new tree along with the answer, f For some abstrac-
tions, however, the queries are limited enough to avoid these problems. A good
example is the heap abstraction, where the only interesting query is findMin. In
fact, as we will see, splay trees make an excellent implementation of heaps.

The representation of splay trees is identical to that of unbalanced binary
search trees.

datatype Tree = E | T of Tree x Elem.T x Tree

Unlike the unbalanced binary search trees of Section 2.2, however, we allow
duplicate elements within a single tree. This is not a fundamental difference
between splay trees and unbalanced binary search trees; rather, it reflects a
difference between the set abstraction and the heap abstraction.

Consider the following strategy for implementing insert: partition the ex-
isting tree into two subtrees, one containing all the elements smaller than or
equal to the new element and one containing all the elements bigger than the
new element, and then construct a new node from the new element and the
two subtrees. Unlike insertion into ordinary binary search trees, this procedure
adds the new element at the root of the tree rather than at the leaves. The code
for insert is simply

f In a language like Standard ML, it is possible to store the root of each splay tree in a ref cell,
and then update the ref cell after each query, but this is not purely functional.
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fun insert (x, t) = T (smaller (x, t), x, bigger (x, t))

where smaller and bigger extract the appropriate subtrees. In analogy to the
partitioning phase of quicksort, we call the new element the pivot.

We could implement bigger naively as

fun bigger (pivot, E) = E
| bigger (pivot, T (a, x, b)) =

if x < pivot then bigger (pivot, b)
else T (bigger (pivot, a), x, b)

but this makes no attempt to restructure the tree to make it more balanced.
Instead, we use a very simple restructuring heuristic: every time we follow
two left branches in a row, we rotate those two nodes.

fun bigger (pivot, E) = E
| bigger (pivot, T (a, x, b)) =

if x < pivot then bigger (pivot, b)
else case a of

E ^ T ( E , x, b)
|T (a i ,y ,a 2 )^

if y < pivot then T (bigger (pivot, a*), x, b)
else T (bigger (pivot, ai), y, T (a2, x, b))

Figure 5.4 illustrates the effect of bigger on a very unbalanced tree. Although
still not balanced in the usual sense, the new tree is much more balanced than
the original tree; the depth of every node has been reduced by about half, from
d to [d/2\ or [d/2\ + 1. Of course, we cannot always halve the depth of every
node in the tree, but we can always halve the depth of every node along the
search path. In fact, this is the guiding principle of splay trees: search paths
should be restructured to reduce the depth of every node in the path by about
half.

Exercise 5.4 Implement smaller. Keep in mind that smaller should retain
equal elements (but do not make a separate test for equality!). O

Notice that smaller and bigger both traverse the same search path. Rather
than duplicating this traversal, we can combine smaller and bigger into a single
function called partition that returns the results of both as a pair. This function
is straightforward, but somewhat tedious.
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Figure 5.4. Calling bigger with a pivot element of 0.

fun partition (pivot, E) = (E, E)
| partition (pivot, t as T (a, x, £>)) =

if x < p/Vof then
case bof

E =* (t E)

if y < p/Vof then
let val (sma//, big) = partition (p/Vof, fc)
in (T (T (a, x, bx), y, small), big) end

else
let val (small, big) = partition (pivot, bi)
in (T (a, x, small), T (big, y, b2)) end

else
case a of
E=>(E.f)

|T(ai,y, a 2 ) ^
if y < pivot then

let val (small, big) = partition (pivot, a2)
in (T (ai, y, small), T (fc/g, x, b)) end

else
let val (small, big) = partition (pivot, ai)
in (small, T (big, y, T (a2, x, b))) end

Remark This function is not exactly equivalent to smaller and bigger because
of phase differences: partition always processes nodes in pairs whereas smaller
and bigger sometimes process only a single node. Thus, smaller and bigger
sometimes rotate different pairs of nodes than partition. However, these differ-
ences are inconsequential. O

Next, we consider findMin and deleteMin. The minimum element in a splay
tree is stored in the leftmost T node. Finding this node is trivial.
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fun findMin (T (E, x, b)) = x
| findMin (T (a, x, b)) - findMin a

deleteMin should discard the minimum node, and at the same time, restructure
the tree in the same style as bigger. Since we always take the left branch, there
is no need for comparisons.

fun deleteMin (T (E, x, b)) = b
| deleteMin (T (T (E, x, b), y, c)) = T (b, y, c)
| deleteMin (T (T (a, x, b), y, c)) = T (deleteMin a, x, T (b, y, c))

Figure 5.5 summarizes this implementation of splay trees. For completeness,
we have included the merge function on splay trees even though it is rather
inefficient, taking up to O(n) time for many inputs.

Next, we show that insert runs in O(log n) time. Let #2 denote the size of
t plus one and note that if t = T(a, x, b) then #< = # a + #6. Define the
potential <j>(t) of an individual node to be log(#t) and the potential ®(t) of an
entire tree be the sum of potentials of all the individual nodes in the tree. We
will need the following elementary fact about logarithms:

Lemma 5.1 For all positive x,y,z such that y + z < x,

1 + log y + log z < 2 log x

Proof Without loss of generality, assume that y < z. Then y < x/2 and
z < x, so 1 + log y < log x and log z < log x. •

Let T(t) denote the actual cost of calling partition on tree t, defined as the
total number of recursive calls to partition. Let A(t) denote the amortized cost
of calling partition on t, defined as

A(T) = T{t) + *(a)

where a and b are the subtrees returned by partition.

Theorem 5.2 A(t) < 1 + 2<f>(t) = 1 + 21og(||t).

Proof There are two interesting cases, called the zig-zig case and the zig-
zag case, depending on whether a particular call to partition follows two left
branches (symmetrically, two right branches) or a left branch followed by a
right branch (symmetrically, a right branch followed by a left branch).

For the zig-zig case, assume that the original tree and the resulting trees have
the shapes
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functor SplayHeap (Element: ORDERED) : HEAP =
struct

structure Elem = Element

datatype Heap = E | T of Heap x Elem.T x Heap
val empty = E
fun isEmpty E = true | isEmpty _ = false

fun partition (pivot, E) = (E, E)
| partition (pivot, t as T (a, x, b)) =

if Elem.leq (x, pivot) then
case bof

E => (t, E)
\J(b1,y,b2)^

if Elem.leq (y, pivot) then
let val (small, big) = partition (pivot, b2)
in (T (T (a, x, b{), y, small), big) end

else
let val (small, big) = partition (pivot, bi)
in (T (a, x, small), T (big, y, ft>)) end

else
case a of

E =» (E, t)
\T(auy, a 2 ) ^

if Elem.leq (y, pivot) then
let val (small, big) = partition (pivot, a2)
in (T (au y, small), T (big, x, b)) end

else
let val (small, big) = partition (pivot, ai)
in (small, T (big, y, T (a2, x, b))) end

fun insert (x, t) = let val (a, b) = partition (x, t) in T (a, x, b) end
fun merge (E, t) = t

| merge (T (a, x, b), t) =
let val (ta, tb) = partition (x, t)
in T (merge (ta, a), x, merge (tb, b)) end

fun findMin E = raise EMPTY
| findMin (T (E, x, b)) = x
| findMin (T (a, x, b)) = findMin a

fun deleteMin E = raise EMPTY
| deleteMin (T (E, x, b)) = b
| deleteMin (T (T (E, x, b), y, c)) = T (b, y, c)
| deleteMin (T (T (a, x, b), y, c)) = T (deleteMin a, x, T (b, y, c))

end

Figure 5.5. Implementation of heaps using splay trees.
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u c c dwhere a and 6 are the results of partition (pivot, u). Then,

A(s)
= { definition of A }

T(s) + $(a) + *(*') - $(^)

{ T{u) = *
A(u) - $(a)

{ expand $(s') and $(s) and simplify }

< { inductive hypothesis: A(u) < 1 + 2<f>(u) }
2 + 2^(ti) + </>(8f) + 0 ( 0 - 0(5)

< { (t« + Jt̂  < tt« a n d Lemma 5.1 }
1 + 2<t>(s)

The proof of the zig-zag case is left as an exercise. •

Exercise 5.5 Prove the zig-zag case. O

The additional cost of insert over that of partition is one actual step plus the
change in potential between the two subtrees returned by partition and the final
tree. This change in potential is simply <j) of the new root. Since the amortized
cost of partition is bounded by 1 + 21og(jft), the amortized cost of insert is
bounded by 2 + 2 logfltt) + log(||* + 1 ) ^ 2 + 3 logfllt).

Exercise 5.6 Prove that deleteMin also runs in O(log n) time. O

Now, what about findMin? For a very unbalanced tree, findMin might take
up to O(n) time. But since findMin does not do any restructuring and therefore
causes no change in potential, there is no way to amortize this cost! However,
since findMin takes time proportional to deleteMin, if we double the charged
cost of deleteMin then we can essentially run findMin for free once per call
to deleteMin. This suffices for those applications that always call findMin and
deleteMin together. However, some applications may call findMin several times



52 Fundamentals of Amortization

per call to deleteMin. For those applications, we would not use the SplayHeap
functor directly, but rather would use the SplayHeap functor in conjunction
with the ExplicitMin functor of Exercise 3.7. Recall that the purpose of the
ExplicitMin functor was to make findMin run in 0(1) time. The insert and
deleteMin functions would still run in 0(log n) amortized time.

Hint to Practitioners: Splay trees, perhaps in combination with the Ex-
plicitMin functor, are the fastest known implementation of heaps for most
applications that do not depend on persistence and that do not call the merge
function.

A particularly pleasant feature of splay trees is that they naturally adapt to
any order that happens to be present in the input data. For example, using splay
heaps to sort an already sorted list takes only 0(n) time rather than 0(n log n)
time [MEP96]. Leftist heaps also share this property, but only for decreasing
sequences. Splay heaps excel on both increasing and decreasing sequences, as
well as on sequences that are only partially sorted.

Exercise 5.7 Write a sorting function that inserts elements into a splay tree
and then performs an inorder traversal of the tree, dumping the elements into a
list. Show that this function takes only O(n) time on an already sorted list.

5.5 Pairing Heaps
Pairing heaps [FSST86] are one of those data structures that drive theoreticians
crazy. On the one hand, pairing heaps are simple to implement and perform
extremely well in practice. On the other hand, they have resisted analysis for
over ten years!

Pairing heaps are heap-ordered multiway trees, as defined by the following
datatype:

datatype Heap = E | T of Elem.T x Heap list

We allow only well-formed trees, in which E never occurs in the child list of a
T node.

Since these trees are heap-ordered, the findMin function is trivial.

fun findMin (T (x, hs)) = x

The merge and insert functions are not much harder, merge makes the tree
with the larger root the leftmost child of the tree with the smaller root, insert
first creates a new singleton tree and then immediately calls merge.
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fun merge (h, E) = h
| merge (E, h) = h
| merge (A7X as T (x, hsi), h2 as T (y, hs2)) =

if Elem.leq (x, y) then T (x, h2 :: hsi) else T (y, A?i :: /7s2)
fun insert (x, h) = merge (T (x, []), h)

Pairing heaps get their name from the deleteMin operation. deleteMin discards
the root and then merges the children in two passes. The first pass merges
children in pairs from left to right (i.e., the first child with the second, the third
with the fourth, and so on). The second pass merges the resulting trees from
right to left. These two passes can be coded concisely as

fun mergePairs [] = E
| mergePairs [h] = h
| mergePairs (hi :: h2 :: hs) = merge (merge (hi, h2), mergePairs hs)

Then, deleteMin is simply

fun deleteMin (T (x, hs)) = mergePairs hs

The complete implementation appears in Figure 5.6.
Now, it is easy to see that findMin, insert, and merge all run in 0(1) worst-

case time. However, deleteMin can take up to 0(n) time in the worst case. By
drawing an analogy to splay trees (see Exercise 5.8), we can show that insert,
merge, and deleteMin all run in O(log n) amortized time. It has been conjec-
tured that insert and merge actually run in O(l) amortized time [FSST86], but
no one has yet been able to prove or disprove this claim.

Hint to Practitioners: Pairing heaps are almost as fast in practice as splay
heaps for applications that do not use the merge function, and much faster
for applications that do. Like splay heaps, however, they should be used only
for applications that do not take advantage of persistence.

Exercise 5.8 Binary trees are often more convenient than multiway trees. For-
tunately, there is an easy way to represent any multiway tree as a binary tree.
Simply convert every multiway node into a binary node whose left child repre-
sents the leftmost child of the multiway node and whose right child represents
the sibling to the immediate right of the multiway node. If either the leftmost
child or the right sibling of the multiway node is missing, then the correspond-
ing field in the binary node is empty. (Note that this implies that the right
child of the root is always empty in the binary representation.) Applying this
transformation to pairing heaps yields half-ordered binary trees in which the
element at each node is no greater than any element in its left subtree.
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functor PairingHeap (Element: ORDERED) : HEAP =
struct

structure Elem = Element

datatype Heap = E | T of Elem.T x Heap list
val empty = E
fun isEmpty E = true | isEmpty _ = false

fun merge (h, E) = h
| merge (E, h) = h
| merge (/7i as T (x, hSi), h2 as T (y, hs2)) =

if Elem.leq (x, y) then T (x, h2 :: hsi) else T (y, hi :: hs2)
fun insert (x, h) = merge (T (x, []), h)
fun mergePairs [] = E

| mergePairs [h] = h
| mergePairs (hi :: h2 :: hs) = merge (merge (hi, h2), mergePairs hs)

fun findMin E = raise EMPTY
| findMin (T (x, hs)) = x

fun deleteMin E = raise EMPTY
| deleteMin (T (x, hs)) = mergePairs hs

end

Figure 5.6. Pairing heaps.

(a) Write a function toBinary that converts pairing heaps from the existing
representation into the type

datatype BinTree = E' | T of Elem.T x BinTree x BinTree

(b) Reimplement pairing heaps using this new representation.
(c) Adapt the analysis of splay trees to prove that deleteMin and merge run

in O(log n) amortized time for this new representation (and hence for the
old representation as well). Use the same potential function as for splay
trees.

5.6 The Bad News
As we have seen, amortized data structures are often tremendously effective
in practice. Unfortunately, the analyses in this chapter implicitly assume that
the data structures in question are used ephemerally (i.e., in a single-threaded
fashion). What happens if we try to use one of these data structures persis-
tently?

Consider the queues of Section 5.2. Let q be the result of inserting n ele-
ments into an initially empty queue, so that the front list of q contains a single
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element and the rear list contains n - 1 elements. Now, suppose we use q
persistently by taking its tail n times. Each call of tail q takes n actual steps.
The total actual cost of this sequence of operations, including the time to build
Q, is n2 + n. If the operations truly took 0(1) amortized time each, then the
total actual cost would be only 0(n). Clearly, using these queues persistently
invalidates the 0(1) amortized time bounds proved in Section 5.2. Where do
these proofs go wrong?

In both cases, a fundamental requirement of the analysis is violated by per-
sistent data structures. The banker's method requires that no credit be spent
more than once, while the physicist's method requires that the output of one
operation be the input of the next operation (or, more generally, that no output
be used as input more than once). Now, consider the second call to tail q in
the example above. The first call to tail q spends all the credits on the rear list
of q, leaving none to pay for the second and subsequent calls, so the banker's
method breaks. And the second call to tail q reuses q rather than the output of
the first call, so the physicist's method breaks.

Both these failures reflect the inherent weakness of any accounting system
based on accumulated savings—that savings can only be spent once. The tra-
ditional methods of amortization operate by accumulating savings (as either
credits or potential) for future use. This works well in an ephemeral setting,
where every operation has only a single logical future. But with persistence,
an operation might have multiple logical futures, each competing to spend the
same savings.

In the next chapter, we will clarify what we mean by the "logical future"
of an operation, and show how to reconcile amortization and persistence using
lazy evaluation.

Exercise 5.9 Give examples of sequences of operations for which binomial
heaps, splay heaps, and pairing heaps take much longer than indicated by their
amortized bounds.

5.7 Chapter Notes
The techniques of amortization presented in this chapter were developed by
Sleator and Tarjan [ST85, ST86b] and popularized by Tarjan [Tar85]. Schoen-
makers [Sch92] has shown how to systematically derive amortized bounds in
a functional setting without persistence.

Gries [Gri81, pages 250-251] and Hood and Melville [HM81] first proposed
the queues in Section 5.2. Burton [Bur82] proposed a similar implementation,
but without the restriction that the front list be non-empty whenever the queue
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is non-empty. Burton combines head and tail into a single function, and so
does not require this restriction to support head efficiently.

Several empirical studies have shown that splay heaps [Jon86] and pairing
heaps [MS91, Lia92] are among the fastest of all heap implementations. Stasko
and Vitter [SV87] have confirmed the conjectured 0(1) amortized bound on
insert for a variant of pairing heaps.



Amortization and Persistence via Lazy
Evaluation

The previous chapter introduced the idea of amortization and gave several ex-
amples of data structures with good amortized bounds. However, for each
these data structures, the amortized bounds break in the presence of persis-
tence. In this chapter, we demonstrate how lazy evaluation can mediate the
conflict between amortization and persistence, and adapt both the banker's and
physicist's methods to account for lazy evaluation. We then illustrate the use
of these new methods on several amortized data structures that use lazy evalu-
ation internally.

6.1 Execution Traces and Logical Time
In the previous chapter, we saw that traditional methods of amortization break
in the presence of persistence because they assume a unique future, in which
the accumulated savings will be spent at most once. However, with persistence,
multiple logical futures might all try to spend the same savings. But what
exactly do we mean by the "logical future" of an operation?

We model logical time with execution traces, which give an abstract view
of the history of a computation. An execution trace is a directed graph whose
nodes represent operations of interest, usually just update operations on the
data type in question. An edge from v to vf indicates that operation vf uses
some result of operation v. The logical history of operation v, denoted v, is the
set of all operations on which the result of v depends (including v itself). In
other words, v is the set of all nodes w such that there exists a path (possibly
of length 0) from w to v. A logical future of a node v is any path from v to
a terminal node (i.e., a node with out-degree zero). If there is more than one
such path, then node v has multiple logical futures. We sometimes refer to
the logical history or logical future of an object, meaning the logical history or
logical future of the operation that created the object.

57
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Exercise 6.1 Draw an execution trace for the following set of operations. An-
notate each node in the trace with the number of logical futures at that node.

val a = snoc (empty, 0)
val b = snoc (a, 1)
val c = tail b
val d = snoc (b, 2)
val e = c -H- d
val f = tail c
val g = snoc (d, 3)

O

Execution traces generalize the notion of version graphs [DSST89], which
are often used to model the histories of persistent data structures. In a version
graph, nodes represent the various versions of a single persistent identity and
edges represent dependencies between versions. Thus, version graphs model
the results of operations and execution traces model the operations themselves.
Execution traces are often more convenient for combining the histories of sev-
eral persistent identities (perhaps not even of the same type) or for reasoning
about operations that do not return a new version (e.g., queries) or that return
several results (e.g., splitting a list into two sublists).

For ephemeral data structures, the out-degree of every node in a version
graph or execution trace is typically restricted to be at most one, reflecting
the limitation that objects can be updated at most once. To model various
flavors of persistence, version graphs allow the out-degree of every node to
be unbounded, but make other restrictions. For instance, version graphs are
often limited to be trees (forests) by restricting the in-degree of every node to
be at most one. Other version graphs allow in-degrees of greater than one, but
forbid cycles, making every graph a dag. We make none of these restrictions
on execution traces for persistent data structures. Nodes with in-degree greater
than one correspond to operations that take more than one argument, such
as list catenation or set union. Cycles arise from recursively defined objects,
which are supported by many lazy languages. We even allow multiple edges
between a single pair of nodes, as might occur if a list is catenated with itself.

We will use execution traces in Section 6.3.1 when we extend the banker's
method to cope with persistence.

6.2 Reconciling Amortization and Persistence
In this section, we show how the banker's and physicist's methods can be re-
paired by replacing the notion of accumulated savings with accumulated debt,
where debt measures the cost of unevaluated lazy computations. The intuition
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is that, although savings can only be spent once, it does no harm to pay off
debt more than once.

6.2.1 The Role of Lazy Evaluation

Recall that an expensive operation is one whose actual costs are greater than
its (desired) amortized costs. For example, suppose some application f x is
expensive. With persistence, a malicious adversary might call f x arbitrarily
often. (Note that each operation is a new logical future of x.) If each opera-
tion takes the same amount of time, then the amortized bounds degrade to the
worst-case bounds. Hence, we must find a way to guarantee that if the first
application of f to x is expensive, then subsequent applications of f to x will
not be.

Without side-effects, this is impossible under call-by-value (i.e., strict eval-
uation) or call-by-name (i.e., lazy evaluation without memoization), because
every application of f to x takes exactly the same amount of time. Therefore,
amortization cannot be usefully combined with persistence in languages sup-
porting only these evaluation orders.

But now consider call-by-need (i.e., lazy evaluation with memoization). If
x contains some suspended component that is needed by f, then the first appli-
cation of f to x forces the (potentially expensive) evaluation of that component
and memoizes the result. Subsequent operations may then access the memo-
ized result directly. This is exactly the desired behavior!

Remark In retrospect, the relationship between lazy evaluation and amor-
tization is not surprising. Lazy evaluation can be viewed as a form of self-
modification, and amortization often involves self-modification [ST85, ST86b].
However, lazy evaluation is a particularly disciplined form of self-modification
— not all forms of self-modification typically used in amortized ephemeral
data structures can be encoded as lazy evaluation. In particular, splay trees do
not appear to be amenable to this technique.

6.2.2 A Framework for Analyzing Lazy Data Structures

We have just shown that lazy evaluation is necessary to implement amortized
data structures purely functionally. Unfortunately, analyzing the running times
of programs involving lazy evaluation is notoriously difficult. Historically,
the most common technique for analyzing lazy programs has been to pretend
that they are actually strict. However, this technique is completely inadequate
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for analyzing lazy amortized data structures. We next describe a basic frame-
work to support such analyses. In the remainder of this chapter, we adapt the
banker's and physicist's methods to this framework, yielding both the first tech-
niques for analyzing persistent amortized data structures and the first practical
techniques for analyzing non-trivial lazy programs.

We classify the costs of any given operation into several categories. First,
the unshared cost of an operation is the actual time it would take to execute
the operation under the assumption that every suspension in the system at the
beginning of the operation has already been forced and memoized (i.e., under
the assumption that force always takes 0(1) time, except for those suspensions
that are created and forced within the same operation). The shared cost of an
operation is the time that it would take to execute every suspension created
but not evaluated by the operation (under the same assumption as above). The
complete cost of an operation is the sum of its shared and unshared costs. Note
that the complete cost is what the actual cost of the operation would be if lazy
evaluation were replaced with strict evaluation.

We further partition the total shared costs of a sequence of operations into
realized and unrealized costs. Realized costs are the shared costs for suspen-
sions that are executed during the overall computation. Unrealized costs are
the shared costs for suspensions that are never executed. The total actual cost
of a sequence of operations is the sum of the unshared costs and the realized
shared costs—unrealized costs do not contribute to the actual cost. Note that
the amount that any particular operation contributes to the total actual cost is at
least its unshared cost, and at most its complete cost, depending on how much
of its shared cost is realized.

We account for shared costs using the notion of accumulated debt. Ini-
tially, the accumulated debt is zero, but every time a suspension is created, we
increase the accumulated debt by the shared cost of the suspension (and any
nested suspensions). Each operation then pays off a portion of the accumulated
debt. The amortized cost of an operation is the unshared cost of the operation
plus the amount of accumulated debt paid off by the operation. We are not
allowed to force a suspension until the debt associated with the suspension is
entirely paid off.

Remark An amortized analysis based on the notion of accumulated debt
works a lot like a layaway plan. In a layaway plan, you find something—a
diamond ring, say—that you want to buy, but that you can't afford to pay for
yet. You agree on a price with the jewelry store and ask them to set the ring
aside in your name. You then make regular payments, and receive the ring only
when it is entirely paid off.
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In analyzing a lazy data structure, you find a computation that you can't
afford to execute yet. You create a suspension for the computation, and assign
the suspension an amount of debt proportional to its shared cost. You then pay
off the debt a little at a time. Finally, when the debt is entirely paid off, you are
allowed to execute the suspension. O

There are three important moments in the life cycle of a suspension: when
it is created, when it is entirely paid off, and when it is executed. The proof
obligation is to show that the second moment precedes the third. If every
suspension is paid off before it is forced, then the total amount of debt that has
been paid off is an upper bound on the realized shared costs, and therefore the
total amortized cost (i.e., the total unshared cost plus the total amount of debt
that has been paid off) is an upper bound on the total actual cost (i.e., the total
unshared cost plus the realized shared costs). We will formalize this argument
in Section 6.3.1.

One of the most difficult problems in analyzing the running time of lazy
programs is reasoning about the interactions of multiple logical futures. We
avoid this problem by reasoning about each logical future as if it were the only
one. From the point of view of the operation that creates a suspension, any
logical future that forces the suspension must itself pay for the suspension.
If two logical futures wish to force the same suspension, then both must pay
for the suspension individually—they may not cooperate and each pay only
a portion of the debt. An alternative view of this restriction is that we are
allowed to force a suspension only when the debt for that suspension has been
paid off within the logical history of the current operation. Using this method,
we sometimes pay off a debt more than once, thereby overestimating the total
time required for a particular computation, but this does no harm and is a small
price to pay for the simplicity of the resulting analyses.

6.3 The Banker's Method

We adapt the banker's method to account for accumulated debt rather than
accumulated savings by replacing credits with debits. Each debit represents
a constant amount of suspended work. When we initially suspend a given
computation, we create a number of debits proportional to its shared cost and
associate each debit with a location in the object. The choice of location for
each debit depends on the nature of the computation. If the computation is
monolithic (i.e., once begun, it runs to completion), then all debits are usu-
ally assigned to the root of the result. On the other hand, if the computation
is incremental (i.e., decomposable into fragments that may be executed inde-
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pendently), then the debits may be distributed among the roots of the partial
results.

The amortized cost of an operation is the unshared cost of the operation
plus the number of debits discharged by the operation. Note that the number
of debits created by an operation is not included in its amortized cost. The
order in which debits should be discharged depends on how the object will
be accessed; debits on nodes likely to be accessed soon should be discharged
first. To prove an amortized bound, we must show that, whenever we access a
location (possibly triggering the execution of a suspension), all debits associ-
ated with that location have already been discharged (and hence the suspended
computation has been entirely paid off). This guarantees that the total number
of debits discharged by a sequence of operations is an upper bound on the re-
alized shared costs of the operations. The total amortized costs are therefore
an upper bound on the total actual costs. Debits leftover at the end of the com-
putation correspond to unrealized shared costs, and are irrelevant to the total
actual costs.

Incremental functions play an important role in the banker's method because
they allow debits to be dispersed to different locations in a data structure, each
corresponding to a nested suspension. Then, each location can be accessed as
soon as its debits are discharged, without waiting for the debits at other loca-
tions to be discharged. In practice, this means that the initial partial results of
an incremental computation can be paid for very quickly, and that subsequent
partial results may be paid for as they are needed. Monolithic functions, on the
other hand, are much less flexible. The programmer must anticipate when the
result of an expensive monolithic computation will be needed, and set up the
computation far enough in advance to be able to discharge all its debits by the
time its result is needed.

6.3.1 Justifying the Banker's Method

In this section, we justify the claim that the total amortized cost is an upper
bound on the total actual cost. The total amortized cost is the total unshared
cost plus the total number of debits discharged (counting duplicates); the total
actual cost is the total unshared cost plus the realized shared costs. Therefore,
we must show that the total number of debits discharged is an upper bound on
the realized shared costs.

We can view the banker's method abstractly as a graph labelling problem,
using the execution traces of Section 6.1. The problem is to label every node
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in a trace with three (multi)sets, s(v), a(v), and r(v), such that

(I) v±v' => s(v) ns(u') = 0
(II) a(t;) C \JW€€ s(w)
(III) r(t>) C [jwed a(w)

s(v) is a set, but a(v) and r(v) may be multisets (i.e., may contain duplicates).
Conditions II and III ignore duplicates.

s(v) is the set of debits allocated by operation v. Condition I states that
no debit may be allocated more than once. a(v) is the multiset of debits dis-
charged by v. Condition II insists that no debit may be discharged before it is
created, or more specifically, that an operation can only discharge debits that
appear in its logical history. Finally, r(v) is the multiset of debits realized by
v—that  is, the multiset of debits corresponding to the suspensions forced by
v. Condition III requires that no debit may be realized before it is discharged,
or more specifically, that no debit may realized unless it has been discharged
within the logical history of the current operation.

Why are a(v) and r(v) multisets rather than sets? Because a single operation
might discharge the same debits more than once or realize the same debits more
than once (by forcing the same suspensions more than once). Although we
never deliberately discharge the same debit more than once, it could happen if
we were to combine a single object with itself. For example, suppose in some
analysis of a list catenation function, we discharge a few debits from the first
argument and a few debits from the second argument. If we then catenate a list
with itself, we might discharge the same few debits twice.

Given this abstract view of the banker's method, we can easily measure vari-
ous costs of a computation. Let V be the set of all nodes in the execution trace.
Then, the total shared cost is J2vev \s(v) I ̂ d m e to tal number of debits dis-
charged is Ylvtv \a{v)\- Because of memoization, the realized shared cost is
not J2vev \r(v)\> but rather | \JveV r(v)\, where \J discards duplicates. Thus,
a suspension that is forced multiple times contributes only once to the actual
cost. By Condition III, we know that [jveV r(v) C \JveV a(v). Therefore,

a(v)\
So the realized shared cost is bounded by the total number of debits discharged,
and the total actual cost is bounded by the total amortized cost, as desired.

Remark This argument once again emphasizes the importance of memoiza-
tion. Without memoization (i.e., if we were using call-by-name rather than
call-by-need), the total realized cost would be Y^vev \r(v)\, and there is no
reason to expect this sum to be less than Ylvev \a(v)\-
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6.3.2 Example: Queues
We next develop an efficient persistent implementation of queues, and prove
that every operation runs in 0(1) amortized time using the banker's method.

Based on the discussion in the previous section, we must somehow incorpo-
rate lazy evaluation into the design of the data structure, so we replace the pair
of lists in the simple queues of Section 5.2 with a pair of streams.f To simplify
later operations, we also explicitly track the lengths of the two streams.

type a Queue = int x a Stream x int x a Stream

The first integer is the length of the front stream and the second integer is
the length of the rear stream. Note that a pleasant side effect of maintaining
this length information is that we can trivially support a constant-time size
function.

Now, waiting until the front list becomes empty to reverse the rear list does
not leave sufficient time to pay for the reverse. Instead, we periodically rotate
the queue by moving all the elements of the rear stream to the end of the
front stream, replacing f with f -H- reverse r and setting the new rear stream to
empty. Note that this transformation does not affect the relative ordering of the
elements.

When should we rotate the queue? Recall that reverse is a monolithic func-
tion. We must therefore set up the computation far enough in advance to be
able to discharge all its debits by the time its result is needed. The reverse
computation takes \r\ steps, so we allocate \r\ debits to account for its cost.
(For now we ignore the cost of the -H- operation). The earliest the reverse sus-
pension could be forced is after | f | applications of tail, so if we rotate the queue
when \r\ « \f\ and discharge one debit per operation, then we will have paid
for the reverse by the time it is executed. In fact, we rotate the queue whenever
r becomes one longer than f, thereby maintaining the invariant that \f\ > \r\.
Incidentally, this guarantees that f is empty only if r is also empty, as in the
simple queues of Section 5.2. The major queue functions can now be written
as follows:

fun snoc ((lent, f, lenr, r), x) = check (lent, f, lenr+\, $CONS (X, r))
fun head (lenf, $CONS (X, f), lenr, r) = x
fun tail (lenf, $CONS (X, f), lenr, r) = check (lenf-1, f, lenr, r)

w h e r e t h e h e l p e r f u n c t i o n c h e c k g u a r a n t e e s t ha t \f\ > \r\.

fun check (q as (lenf, f, lenr, r)) =
if lenr < lenf then q else (lenf+lenr, f -H- reverse r, 0, $NIL)

f Actually, it would be enough to replace only the front list with a stream, but we replace both
for simplicity.
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structure BankersQueue : QUEUE =
struct

type a Queue = int x a Stream x int x a Stream

val empty = (0, $NIL, 0, $NIL)
fun isEmpty (lenf, _, _, _) = (lenf = 0)
fun check (q as (lenf, f, lenr, r)) =

if lenr < lenf then q else (lenf+lenr, f -H- reverse r, 0, $NIL)
fun snoc ((lenf, f, lenr, r), x) = check (lenf, f, lenr^, $CONS (X, r))

fun head (lenf, $NIL, lenr, r) = raise EMPTY
| head (lenf, $CONS (X, f), lenr, r) = x

fun tall (lenf, $NIL, lenr, r) = raise EMPTY
| tail (lenf, $CONS (X, f), lenr, r) = check (lenf-1, f, lenr, r)

end

Figure 6.1. Amortized queues using the banker's method.

The complete code for this implementation appears in Figure 6.1.
To understand how this implementation deals efficiently with persistence,

consider the following scenario. Let q0 be some queue whose front and rear
streams are both of length ra, and let qx — tail  qy_x, for 0 < i < m + 1. The
queue is rotated during the first application of tail, and the reverse suspension
created by the rotation is forced during the last application of tail. This reversal
takes m steps, and its cost is amortized over the sequence q1.. .qm. (For now,
we are concerned only with the cost of the reverse—we ignore  the cost of the
-H-.)

Now, choose some branch point k, and repeat the calculation from qk to
Qm+1. (Note that qk is used persistently.) Do this d times. How often is the
reverse executed? It depends on whether the branch point k is before or after
the rotation. Suppose k is after the rotation. In fact, suppose k = m so that
each of the repeated branches is a single tail. Each of these branches forces the
reverse suspension, but they each force the same suspension, so the reverse is
executed only once. Memoization is crucial here—without memoization,  the
reverse would be re-executed each time, for a total cost of m(d-\-1) steps, with
only m + 1 + d operations over which to amortize this cost. For large d, this
would result in an O(m) amortized cost per operation, but memoization gives
us an amortized cost of only 0(1) per operation.

It is possible to re-execute the reverse however. Simply take k = 0 (i.e.,
make the branch point just before the rotation). Then the first tail of each branch
repeats the rotation and creates a new reverse suspension. This new suspension
is forced in the last tail of each branch, executing the reverse. Because these
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are different suspensions, memoization does not help at all. The total cost of
all the reversals is m •  d, but now we have (ra+1) (d+1) operations over which
to amortize this cost, again yielding an amortized cost of 0(1) per operation.
The key is that we duplicate work only when we also duplicate the sequence
of operations over which to amortize the cost of that work.

This informal argument shows that these queues require only 0(1) amor-
tized time per operation even when used persistently. We formalize this proof
using the banker's method.

By inspection, the unshared cost of every queue operation is 0(1). There-
fore, to show that the amortized cost of every queue operation is 0(1), we
must prove that discharging 0(1) debits per operation suffices to pay off every
suspension before it is forced. In fact, only snoc and tail discharge any debits.

Let d(i) be the number of debits on the ith node of the front stream and let
^ (0 = Yl]=o d{j) be the cumulative number of debits on all nodes up to and
including the ith node. We maintain the following debit invariant:

The 2i term guarantees that all debits on the first node of the front stream have
been discharged (since d(0) = D(0) < 2 • 0 = 0), so this node may be forced
at will (for instance, by head or tail). The \f\ — \r\  term guarantees that all
debits in the entire queue have been discharged whenever the streams are of
equal length, which happens just before the next rotation.

Theorem 6.1 snoc and tail maintain the debit invariant by discharging one
and two debits, respectively.

Proof Every snoc that does not cause a rotation simply adds a new element
to the rear stream, increasing \r\ by one and decreasing \f\ — \r\by one.  This
violates the invariant at any node for which D(i) was previously equal to | f \ —
\r\. We can restore the invariant by discharging the first debit in the queue,
which decreases every subsequent cumulative debit total by one. Similarly,
every tail that does not cause a rotation simply removes an element from the
front stream. This decreases \f\ by one (and hence \f\ —  \r\ by one), but, more
importantly, it decreases the index i of every remaining node by one, which
in turn decreases 2i by two. Discharging the first two debits in the queue
restores the invariant. Finally, consider a snoc or tail that causes a rotation.
Just before the rotation, we are guaranteed that all debits in the queue have
been discharged, so, after the rotation, the only undischarged debits are those
generated by the rotation itself. If \f\ = m and \r\ = m + 1 at the time of
the rotation, then we create m debits for the append and m + 1 debits for the
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reverse. The append function is incremental so we place one of its debits on
each of the first m nodes. On the other hand, the reverse function is monolithic
so we place all m + 1 of its debits on node m, the first node of the reversed
stream. Thus, the debits are distributed such that

{ 1 if i<m , . . . „ .

IT- J n / - \ « + 1  ill < m
m + 1 ifi = m and D(i) = <
n . . . { 2 m + l i f i > m0 if i > m K ~

This distribution violates the invariant at both node 0 and node m, but dis-
charging the debit on node 0 restores the invariant at both locations. •

The format of this argument is typical. Debits are distributed across several
nodes for incremental functions, and all on the same node for monolithic func-
tions. Debit invariants measure, not just the number of debits on a given node,
but the number of debits along the path from the root to the given node. This
reflects the fact that accessing a node requires first accessing all its ancestors.
Therefore, the debits on all those nodes must be zero as well.

This data structure also illustrates a subtle point about nested suspensions—
the debits for a nested suspension may be allocated, and even discharged, be-
fore the suspension is physically created. For example, consider how -H- works.
The suspension for the second node in the stream is not physically created until
the suspension for the first node is forced. However, because of memoization,
the suspension for the second node will be shared whenever the suspension
for the first node is shared. Therefore, we consider a nested suspension to
be implicitly created at the time that its enclosing suspension is created. Fur-
thermore, when considering debit arguments or otherwise reasoning about the
shape of an object, we ignore whether a node has been physically created or
not. Rather we reason about the shape of an object as if all nodes were in their
final form, i.e., as if all suspensions in the object had been forced.
Exercise 6.2 Suppose we change the invariant from \f\ > \r\ to 2\f\ > \r\.

(a) Prove that the O(l) amortized bounds still hold.
(b) Compare the relative performance of the two implementations on a se-

quence of one hundred snocs followed by one hundred tails.

6.3.3 Debit Inheritance
We frequently create suspensions whose bodies force other, existing suspen-
sions. We say that the new suspension depends on the older suspensions. In
the queue example, the suspension created by reverse r depends on r, and the
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suspension created by f -H- reverse r depends on f. Whenever we force a sus-
pension, we must be sure that we have discharged not only all the debits for
that suspension, but also all the debits for any suspensions on which it depends.
In the queue example, the debit invariant guarantees that we create new sus-
pensions using -H- and reverse only when the existing suspensions have been
entirely paid off. However, we will not always be so lucky.

When we create a suspension that depends on an existing suspension with
undischarged debits, we reassign those debits to the new suspension. We say
that the new suspension inherits the debits of the older suspension. We may not
force the new suspension until we have discharged both the new suspension's
own debits and the debits it inherited from the older suspension. The banker's
method makes no distinction between the two sets of debits, treating them all as
if they belong to the new suspension. We will use debit inheritance to analyze
data structures in Chapters 9, 10, and 11.

Remark Debit inheritance assumes that there is no way to access the older
suspension in the current object other than through the new suspension. For
example, debit inheritance could not be used in analyzing the following func-
tion on pairs of streams:

fun reverseSnd (xs, ys) = (reverse ys, ys)

Here, we can force ys through either the first component of the pair or the
second component of the pair. In such situations, we either duplicate the debits
on ys and let the new suspension inherit the duplicates, or keep one copy of
each debit and explicitly track the dependencies.

6.4 The Physicist's Method

Like the banker's method, the physicist's method can also be adapted to work
with accumulated debt rather than accumulated savings. In the traditional
physicist's method, one describes a potential function 3> that represents a lower
bound on the accumulated savings. To work with debt instead of savings, we
replace 3> with a function \£ that maps each object to a potential representing
an upper bound on the accumulated debt (or at least, an upper bound on this
object's portion of the accumulated debt). Roughly speaking, the amortized
cost of an operation is then the complete cost of the operation (i.e., the shared
and unshared costs) minus the change in potential. Recall that an easy way to
calculate the complete cost of an operation is to pretend that all computation is
strict.
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Any changes in the accumulated debt are reflected by changes in the poten-
tial. If an operation does not pay any shared costs, then the change in potential
is equal to its shared cost, so the amortized cost of the operation is equal to its
unshared cost. On the other hand if an operation does pay some of its shared
cost, or shared costs of previous operations, then the change in potential is
smaller than the shared cost (i.e., the accumulated debt increases by less than
the shared cost), so the amortized cost of the operation is greater than its un-
shared cost. However, the amortized cost of an operation can never be less than
its unshared cost, so the change in potential is not allowed to be more than the
shared cost.

We can justify the physicist's method by relating it back to the banker's
method. Recall that in the banker's method, the amortized cost of an operation
was its unshared cost plus the number of debits discharged. In the physicist's
method, the amortized cost is the complete cost minus the change in potential,
or, in other words, the unshared cost plus the difference between the shared
cost and the change in potential. If we consider one unit of potential to be
equivalent to one debit, then the shared cost is the number of debits by which
the accumulated debt could have increased, and the change in potential is the
number of debits by which the accumulated debt did increase. The difference
must have been made up by discharging some debits. Therefore, the amortized
cost in the physicist's method can also be viewed as the unshared cost plus the
number of debits discharged.

Sometimes, we wish to force a suspension in an object when the potential
of the object is not zero. In that case, we add the object's potential to the
amortized cost. This typically happens in queries, where the cost of forcing the
suspension cannot be reflected by a change in potential because the operation
does not return a new object.

The major difference between the banker's and physicist's methods is that,
in the banker's method, we are allowed to force a suspension as soon as the
debits for that suspension have been paid off, without waiting for the debits for
other suspensions to be discharged, but in the physicist's method, we can force
a shared suspension only when we have reduced the entire accumulated debt of
an object, as measured by the potential, to zero. Since potential measures only
the accumulated debt of an object as a whole and does not distinguish between
different locations, we must pessimistically assume that the entire outstanding
debt is associated with the particular suspension we wish to force. For this
reason, the physicist's method appears to be less powerful than the banker's
method. However, when it applies, the physicist's method tends to be much
simpler than the banker's method.

Since the physicist's method cannot take advantage of the piecemeal execu-
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tion of nested suspensions, there is no reason to prefer incremental functions
over monolithic functions. In fact, a good hint that the physicist's method
might be applicable is if all or most suspensions are monolithic.

6.4.1 Example: Binomial Heaps
In Chapter 5, we showed that the binomial heaps of Section 3.2 support insert
in 0(1) amortized time. However, this bound degrades to O(log n) worst-case
time if the heaps are used persistently. With lazy evaluation, we can restore the
0(1) amortized time bound such that it holds regardless of whether the heaps
are used persistently.

The key is to change the representation of heaps from a list of trees to a
suspended list of trees.

type Heap = Tree list susp

Then we can rewrite insert as

fun lazy insert (x, $ts) = $insTree (NODE (0, x, []), ts)

or, equivalently, as

fun insert (x, h) = $insTree (NODE (0, x, []), force h)

The remaining functions are equally easy to rewrite, and are shown in Fig-
ure 6.2.

Next, we analyze the amortized running time of insert. Since insert is mono-
lithic, we use the physicist's method. First, we define the potential function to
bc^(h) = Z(|A|), where Z(n) is the number of zeros in the (minimum length)
binary representation of n. Next, we show that the amortized cost of inserting
an element into a binomial heap of size n is two. Suppose that the lowest k
digits in the binary representation of n are ones. Then the complete cost of in-
sert is proportional to k + 1 , eventually including k calls to link. Now, consider
the change in potential. The lowest k digits change from ones to zeros and the
next digit changes from zero to one, so the change in potential is Ar — 1. The
amortized cost is therefore (k + 1) — (k — 1) = 2.

Remark Note that this proof is dual to the one given in Section 5.3. There the
potential was the number of ones in the binary representation of n; here it is
the number of zeros. This reflects the dual nature of accumulated savings and
accumulated debt.

Exercise 6.3 Prove that findMin, deleteMin, and merge also run in O(logn)
amortized time.
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functor LazyBinomialHeap (Element: ORDERED) : HEAP =
struct

structure Elem = Element

datatype Tree = NODE of int x Elem.T x Tree list
type Heap = Tree list susp

val empty = $[]
fun isEmpty ($te) = null ts
fun rank (NODE (r, x, c)) = r
fun root (NODE (r, x, c)) = x
fun link (h as NODE (r, xu d), t2 as NODE (_, x2, c2)) =

if Elem.leq (xi, x2) then NODE (r+1, x i , t2 :: Ci)
else NODE (r+1, x2, h :: c2)

fun insTree (t, []) = [t]
| insTree (t, ts as t':: ts') =

if rank t < rank f' then t:: te else insTree (link (t, t'), ts')

funmrg(tei, []) = tei
I mrg([], ts2) = ts2
j mrg (fsi as h :: fsj, te2 as t2 :: fs2) =

if rank U < rank t2 then fi :: mrg (ts[, ts2)
else if rank t2 < rank fi then t2 :: mrg (fei, fe2)
else insTree (link (h, t2), mrg (fsi, ts'2))

fun lazy insert (x, $ts) = $insTree (NODE (0, x, []), ts)
fun lazy merge ($tei, $ts2) = $mrg (tei, ts2)

fun removeMinTree [] = raise EMPTY
| removeMinTree [t] = (t, [])
| removeMinTree (t:: ts) =

let val (f, ts') = removeMinTree ts
in if Elem.leq (root t, root tf) then (t, ts) else (f, t:: te7) end

fun findMin ($ts) = let val (t, _) = removeMinTree ts in root ? end
fun lazy deleteMin ($ts) =

let val (NODE (_, x, tsi), ts2) = removeMinTree ts
in $mrg (rev tsi, ts2) end

end

Figure 6.2. Lazy binomial heaps.

Exercise 6.4 Suppose that we remove the lazy keyword from the definitions
of merge and deleteMin, so that these functions evaluate their arguments im-
mediately. Show that both functions still run in O(log n) amortized time.

Exercise 6.5 An unfortunate consequence of suspending the list of trees is that
the running time of isEmpty degrades from 0(1) worst-case time to O(log n)
amortized time. Restore the 0(1) running time of isEmpty by explicitly main-
taining the size of every heap. Rather than modifying this implementation
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directly, implement a functor SizedHeap, similar to the ExplicitMin functor of
Exercise 3.7, that transforms any implementation of heaps into one that explic-
itly maintains the size.

6.4.2 Example: Queues

We next adapt our implementation of queues to use the physicist's method.
Again, we show that every operation takes only 0(1) amortized time.

Because there is no longer any reason to prefer incremental suspensions over
monolithic suspensions, we use suspended lists instead of streams. In fact, the
rear list need not be suspended at all, so we represent it with an ordinary list.
Again, we explicitly track the lengths of the lists and guarantee that the front
list is always at least as long as the rear list.

Since the front list is suspended, we cannot access its first element without
executing the entire suspension. We therefore keep a working copy of a prefix
of the front list to answer head queries. This working copy is represented as
an ordinary list for efficient access, and is non-empty whenever the front list is
non-empty. The final type is

type a Queue = a list x int x a list susp x int x a list

The major functions on queues may then be written

fun snoc ((w, lent, f, lenr, r), x) = check (w, lenf, f, /enr+1, x :: r)
fun head (x :: w, lent f, lenr, r) = x
fun tail (x :: w, lenf, f, lenr, r) = check (w, lenf-1, $tl (force f), lenr, r)

The helper function check enforces two invariants: that r is no longer than f,
and that w is non-empty whenever f is non-empty.

fun checkw ([], lenf, f, lenr, r) = (force f, lenf, f, lenr, r)
| checkw q = q

fun check (q as (w, lenf, f, lenr, r)) =
if lenr < lenf then checkw q
else let val f = force f

in checkw (f, lenf+lenr, $(f @ rev r), 0, []) end

The complete implementation of these queues appears in Figure 6.3.
To analyze these queues using the physicist's method, we choose a potential

function ^ in such a way that the potential is zero whenever we force the
suspended list. This happens in two situations: when w becomes empty and
when r becomes longer than f. We therefore choose \P to be

*(Q)=min(2 | iv | , | f | - | r | )
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structure PhysicistsQueue: QUEUE =
struct

type a Queue = a list x int x a list susp x int x a list

val empty = ([], 0, $[], 0, [])
fun isEmpty (_, lenf, _, _, _) = (lent = 0)
fun checkw ([], lenf, f, lenr, r) = (force f, lenf, f, lenr, r)

| checkw q = q
fun check (q as {w, lenf, f, lenr, r)) =

if lenr < lenf then checkw q
else let val f = force f

in checkw (f, lenf+lenr, $(f @ rev r), 0, []) end
f u n s n o c ((w, lenf, f, lenr, r), x) = c h e c k (w, lenf, f, l e n r + ] , x \ \ r )

fun head ([], lenf, f, lenr, r) = raise EMPTY
| head (x :: w, lenf, f, lenr, r) = x

fun tail ([], lenf, f, lenr, r) = raise EMPTY
| tail (x :: w, lenf, f, lenr, r) = check (w, lenf-1, $tl (force f), lenr, r)

end

Figure 6.3. Amortized queues using the physicist's method.

Theorem 6.2 The amortized costs of snoc and tail are at most two and four,
respectively.

Proof Every snoc that does not cause a rotation simply adds a new element
to the rear list, increasing \r\ by one and decreasing \f\ — \r\ by one. The
complete cost of the snoc is one, and the decrease in potential is at most one,
for an amortized cost of at most 1 — (—1) = 2. Every tail that does not cause
a rotation removes the first element from the working list and lazily removes
the same element from the front list. This decreases | w\ by one and | f \ — \ r\ by
one, which decreases the potential by at most two. The complete cost of tail
is two, one for the unshared costs (including removing the first element from
w) and one for the shared cost of lazily removing the head of f. The amortized
cost is therefore at most 2 — (—2) =4.

Finally, consider a snoc or tail that causes a rotation. In the initial queue,
\f\ = \r\, so ^ = 0. Just before the rotation, |f| = m and \r\ = m + 1. The
shared cost of the rotation is 2m + 1 and the potential of the resulting queue
is 2m. The amortized cost of snoc is thus 1 -h (2m + 1) — 2m = 2. The
amortized cost of tail is 2 + (2m + 1) — 2m — 3. (The difference is that
tail must also account for the shared cost of removing the first element of f.)

•



74 Amortization and Persistence via Lazy Evaluation

signature SORTABLE =
sig

structure Elem : ORDERED

type Sortable
val empty : Sortable
val add : Elem.T x Sortable -> Sortable
val sort : Sortable -> Elem.T list

end

Figure 6.4. Signature for sortable collections.

Exercise 6.6 Show why each of the following proposed "optimizations" actu-
ally breaks the 0(1) amortized time bounds. These examples illustrate com-
mon mistakes in designing persistent amortized data structures.

(a) Observe that check forces f during a rotation and installs the result in w.
Wouldn't it be lazier, and therefore better, to never force f until w becomes
empty?

(b) Observe that, during a tail, we replace f with $tl (force f). Creating and
forcing suspensions have non-trivial overheads that, even if 0(1), can
contribute to a large constant factor. Wouldn't it be lazier, and therefore
better, to not change f, but instead to merely decrement lent to indicate
that the element has been removed? O

6.4.3 Example: Bottom-Up Mergesort with Sharing
The majority of examples in the remaining chapters use the banker's method
rather than the physicist's method. Therefore, we give one more example of
the physicist's method here.

Imagine that you want to sort several similar lists, such as xs and x :: xs,
or xs @ zs and ys @ zs. For efficiency, you wish to take advantage of the
fact that these lists share common tails, so that you do not repeat the work of
sorting those tails. We call an abstract data type for this problem a sortable
collection. A signature for sortable collections is given in Figure 6.4.

Now, if we create a sortable collection xs' by adding each of the elements in
xs, then we can sort both xs and x:: xs by calling sort xs' and sort (add (x, xs')).

We could implement sortable collections as balanced binary search trees.
Then add and sort would run in O(logn) worst-case time and 0(n) worst-
case time, respectively. We achieve the same bounds, but in an amortized
sense, using bottom-up mergesort.
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Bottom-up mergesort first splits a list into n ordered segments, where each
segment initially contains a single element. It then merges equal-sized seg-
ments in pairs until only one segment of each size remains. Finally, segments
of unequal size are merged, from smallest to largest.

Suppose we take a snapshot just before the final cleanup phase. Then the
sizes of all segments are distinct powers of 2, corresponding to the one bits of
n. This is the representation we will use for sortable collections. Then simi-
lar collections share all the work of bottom-up mergesort except for the final
cleanup phase merging unequal-sized segments. The complete representation
is a suspended list of segments, each of which is list of elements, together with
an integer representing the total size of the collection.

type Sortable = int x Elem.T list list susp

The individual segments are stored in increasing order of size, and the elements
in each segment are stored in increasing order as determined by the comparison
functions in the Elem structure.

The fundamental operation on segments is mrg, which merges two ordered
lists.

fun mrg ([],ys) = ys
|mrg(xs, []) = xs
| mrg (xs as x :: xs', ys as y :: ys') =

if Elem.leq (x, y) then x :: mrg (xs', ys) else y :: mrg (xs, ys')

To add a new element, we create a new singleton segment. If the smallest
existing segment is also a singleton, we merge the two segments and continue
merging until the new segment is smaller than the smallest existing segment.
This merging is controlled by the bits of the size field. If the lowest bit of size
is zero, then we simply cons the new segment onto the segment list. If the
lowest bit is one, then we merge the two segments and repeat. Of course, all
this is done lazily.

fun add (x, (size, segs)) =
let fun addSeg (seg, segs, size) =

if size mod 2 = 0 then seg:: segs
else addSeg (mrg (seg, hd segs), tl segs, size div 2)

in (s/ze+1, $addSeg ([x], force segs, size)) end

Finally, to sort a collection, we merge the segments from smallest to largest.

fun sort (size, segs) =
let fun mrgAII (xs, []) = xs

| mrgAII (xs, seg :: segs) = mrgAII (mrg (xs, seg), segs)
in mrgAII ([], force segs) end
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Remark mrgAII can be viewed as computing

where S{ is the ith segment and M is left-associative, infix notation for mrg.
This is a specific instance of a very common program schema, which can be
written

for any c and left-associative 0 . Other instances of this schema include sum-
ming a list of integers (c = 0 and 0 = +) or finding the maximum of a list
of natural numbers (c = 0 and 0 = max). One of the greatest strengths of
functional languages is the ability to define schemas like this as higher-order
functions (i.e., functions that take functions as arguments or return functions
as results). For example, the above schema might be written

f u n fo ld l (f, c, []) = c
| foldl (f, c, x :: xs) = foldl (f, f (c, x), xs)

Then sort could be written

fun sort (size, segs) = foldl (mrg, [], force segs)

O

The complete code for this implementation of sortable collections appears
in Figure 6.5.

We show that add takes O(log n) amortized time and sort takes O(n) amor-
tized time using the physicist's method. We begin by defining the potential
function \P, which is completely determined by the size of the collection:

i=0

where &,- is the ith bit of n. Note that \P(ra) is bounded above by 2n and that
\p(n) = 0 exactly when n = 2k — 1 for some k.

Remark This potential function can be a little intimidating. It arises from
considering each segment to have a potential proportional to its own size mi-
nus the sizes of all the smaller segments. The intuition is that the potential of a
segment starts out big and gets smaller as more elements are added to the col-
lection, reaching zero at the point just before the segment in question is merged
with another segment. However, note that you do not need to understand the
origins of a potential function to be able to calculate with it. O

We first calculate the complete cost of add. Its unshared cost is one and its
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functor BottomUpMergeSort (Element: ORDERED) : SORTABLE =
struct

structure Elem = Element

type Sortable = int x Elem.T list list susp
fun mrg([ ],ys) = ys

|mrg(xs, []) = xs
| mrg (xs as x :: xsf, ys as y:: ys') =

if Elem.leq (x, y) then x :: mrg (xsf, ys) else y :: mrg (xs, ys')
val empty = (0, $[])
fun add (x, (size, segs)) =

let fun addSeg (seg, segs, size) =
if size mod 2 = 0 then seg:: segs
else addSeg (mrg (seg, hd segs), tl segs, size div 2)

in (s/ze+1, $addSeg ([x], force segs, size)) end
fun sort (size, segs) =

let fun mrgAII (xs, []) = xs
| mrgAII (xs, seg:: segs) = mrgAII (mrg (xs, seg), segs)

in mrgAII ([], force segs) end
end

Figure 6.5. Sortable collections based on bottom-up mergesort.

shared cost is the cost of performing the merges in addSeg. Suppose that the
lowest k bits of n are one (i.e., &«•  = 1 for i < k and 6/* = 0). Then addSeg
performs k merges. The first combines two lists of size 1, the second combines
two lists of size 2, and so on. Since merging two lists of size m takes 2ra steps,
addSeg takes

k-1

2*"1 + 2k~l) =(1 + 1) + (2 + 2) H h (2*"1 + 2k~l) = 2(Y, 21") = 2(2* - 1)
«=o

steps. The complete cost of add is therefore 2(2* - 1) + 1 = 2*+1 - 1.
Next, we calculate the change in potential. Let nf = n + 1 and let 6J be the

ithbitof nf. Then,

= 2n' - 2 J^Zo b'i(n' m o d 2s" + 1) - (2n - 2 £ ? ^o 6,-(n mod 2*' + 1))
= 2 + 2 J2Zo(bi(n m o d 2s' + 1) - 6-(n; mod 2*' + 1))

where <$(i) = 62- (n mod 2* +1) —  6J- (rc' mod 22 +1) . We consider three cases:
i < k, i = /?, and i > /?.
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• (i < k): Since &,- = 1 andfc- = O,S(k) = n mod 2* + l. Butn mod 2* =
2{ -lsoS(k) = 2 \

• (i = k): Since 6^ = 0 and bf
k = 1, <f(Ar) = -{nf mod 2fe + 1). But

n ; mod 2k = 0 so <5(Ar) = — 1 = —b'k.

• (i > Ar): Since 6J. = 6,-, J(jfe) = 6(.(n mod 22 - n' mod 2*). But n ' mod
2* = (n + 1) mod 2*" = n mod 2* + 1 so S(i) = 6J-(-l) = -&•.

Therefore,

where B' is the number of one bits in n'. Then the amortized cost of add is

(2*+! - 1) - (2 /c+1 - 2B') = 2B' - 1

Since I?' is O(log n), so is the amortized cost of add.
Finally, we calculate the amortized cost of sort. The first action of sort is

to force the suspended list of segments. Since the potential is not necessarily
zero, this adds ^f(n) to the amortized cost of the operation, sort next merges
the segments from smallest to largest. The worst case is when n — 2k — 1, so
that there is one segment of each size from 1 to 2k~1. Merging these segments
takes

(1 + 2 ) + (1 + 2 + 4 ) + (1 + 2 + 4 + 8 )+ - . . + (1 + 2 + . . . + 2k~l)
k-l i k-1

2f '+1 - X) = (2*+1 - 4) - (* - 1) = 2n - * - 1

steps altogether. The amortized cost of sort is therefore O(n) + ty(n) = O(n).

Exercise 6.7 Change the representation from a suspended list of lists to a list
of streams.

(a) Prove the bounds on add and sort using the banker's method.
(b) Write a function to extract the k smallest elements from a sortable collec-

tion. Prove that your function runs in no more than O(k log n) amortized
time.
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6.5 Lazy Pairing Heaps
Finally, we adapt the pairing heaps of Section 5.5 to cope with persistence. Un-
fortunately, analyzing the resulting data structure appears to be just as hard as
analyzing the original. However, we conjecture that the new implementation is
asymptotically as efficient in a persistent setting as the original implementation
of pairing heaps is in an ephemeral setting.

Recall that, in the previous implementation of pairing heaps, the children of
a node were represented as a Heap list. Deleting the minimum element threw
away the root and then merged the children in pairs using the function

fun mergePairs [] = E
| mergePairs [h] = h
| mergePairs (hi :: h2 :: hs) = merge (merge (hi, h2), mergePairs hs)

If we were to delete the minimum element of the same heap twice, mergePairs
would be called twice, duplicating work and destroying any hope of amortized
efficiency. To cope with persistence, we must prevent this duplicated work.
We once again turn to lazy evaluation. Instead of a Heap list, we represent the
children of a node as a Heap susp. The value of this suspension is equal to
$mergePairs cs. Since mergePairs operates on pairs of children, we extend the
suspension with two children at once. Therefore, we include an extra Heap
field in each node to hold any partnerless children. If there are no partnerless
children (i.e., if the number of children is even), then this extra field is empty.
Since this field is in use only when the number of children is odd, we call it the
odd field. The new datatype is thus

datatype Heap = E | T of Elem.T x Heap x Heap susp

The insert and findMin operations are almost unchanged.

fun insert (x, a) = merge (T (x, E, $E), a)
fun findMin (T (x, a, m)) = x

Previously, the merge operation was simple and the deleteMin operation was
complex. Now, the situation is reversed—all the complexity of mergePairs has
been shifted to merge, which sets up the appropriate suspensions. deleteMin
simply forces the heap suspension and merges it with the odd field.

fun deleteMin (T (x, a, $b)) = merge (a, b)

We define merge in two steps. The first step checks for empty arguments and
otherwise compares the two arguments to see which has the smaller root.

fun merge (a, E) = a
| merge (E, b) = b
| merge (a as T (x, _, _), b as T (y, _, _)) =

if Elem.leq (x, y) then link (a, b) else link (b, a)
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functor LazyPairingHeap (Element: ORDERED) : HEAP =
struct

structure Elem = Element

datatype Heap = E | T of Elem.T x Heap x Heap susp
val empty = E
fun isEmpty E = true | isEmpty _ = false

fun merge (a, E) = a
| merge (E, b) = b
| merge (a as T (x, _, _), b as T (y, _, _)) =

if Elem.leq (x, y) then link (a, b) else link (b, a)
and link (T (x, E, m), a) = T (x, a, m)

| link (T (x, b, m), a) = T (x, E, $merge (merge (a, b), force m))
fun insert (x, a) = merge (T (x, E, $E), a)
fun findMin E = raise EMPTY

| findMin (T (x, a, m)) = x
fun deleteMin E = raise EMPTY

| deleteMin (T (x, a, $b)) = merge (a, b)
end

Figure 6.6. Persistent pairing heaps using lazy evaluation.

The second step, embodied in the link helper function, adds a new child to a
node. If the odd field is empty, then this child is placed in the odd field.

fun link (T (x, E, m), a) = T (x, a, m)

Otherwise, the new child is paired with the child in the odd field, and both
are added to the suspension. In other words, we extend the suspension m =
$mergePairs cs to $mergePairs (a :: b :: cs). Observe that

$mergePairs (a :: b :: cs)
= $merge (merge (a, b), mergePairs cs)
= $merge (merge (a, b), force ($mergePairs cs))
= $merge (merge (a, b), force m)

so the second clause of link may be written

fun link (T (x, b, m), a) = T (x, E, $merge (merge (a, b), force m))

The complete code for this implementation appears in Figure 6.6.
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Hint to Practitioners: Although it now deals gracefully with persistence,
this implementation of pairing heaps is relatively slow in practice because of
overheads associated with lazy evaluation. It shines, however, under heavily
persistent usage, where we reap maximum benefit from memoization. It is
also competitive in lazy languages, where all data structures pay the over-
heads of lazy evaluation regardless of whether they actually gain any benefit.

6.6 Chapter Notes
Debits Some analyses using the traditional banker's method, such as Tarjan's
analysis of path compression [Tar83], include both credits and debits. When-
ever an operation needs more credits than are currently available, it creates a
credit-debit pair and immediately spends the credit. The debit remains as an
obligation that must be fulfilled. Later, a surplus credit may be used to dis-
charge the debit, f Any debits that remain at the end of the computation add
to the total actual cost. Although there are some similarities between the two
kinds of debits, there are also some clear differences. For instance, with the
debits introduced in this chapter, any debits leftover at the end of the computa-
tion are silently discarded.

It is interesting that debits arise in Tarjan's analysis of path compression
since path compression is essentially an application of memoization to the find
function.

Amortization and Persistence Until this work, amortization and persistence
were thought to be incompatible. Several researchers [DST94, Ram92] had
noted that amortized data structures could not be made efficiently persistent
using existing techniques for adding persistence to ephemeral data structures,
such as [DSST89, Die89], for reasons similar to those cited in Section 5.6.
Ironically, these techniques produce persistent data structures with amortized
bounds, but the underlying data structure must be worst-case. (These tech-
niques have other limitations as well. Most notably, they cannot be applied to
data structures supporting functions that combine two or more versions. Ex-
amples of offending functions include list catenation and set union.)

The idea that lazy evaluation could reconcile amortization and persistence
first appeared, in rudimentary form, in [Oka95c]. The theory and practice of
this technique were further developed in [Oka95a, Oka96b].

f There is a clear analogy here to the spontaneous creation and mutual annihilation of particle-
antiparticle pairs in physics. In fact, a better name for these debits might be "anticredits".
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Amortization and Functional Data Structures In his thesis, Schoenmak-
ers [Sch93] studies amortized data structures in a strict functional language,
concentrating on formal derivations of amortized bounds using the traditional
physicist's method. He avoids the problems of persistence by insisting that
data structures only be used in a single-threaded fashion.

Queues and Binomial Heaps The queues in Section 6.3.2 and the lazy bi-
nomial heaps in Section 6.4.1 first appeared in [Oka96b]. The analysis of
lazy binomial heaps can also be applied to King's implementation of binomial
heaps [Kin94].

Time-Analysis of Lazy Programs Several researchers have developed theo-
retical frameworks for analyzing the time complexity of lazy programs [BH89,
San90, San95, Wad88]. However, these frameworks are not yet mature enough
to be useful in practice. One difficulty is that these frameworks are, in some
ways, too general. In each of these systems, the cost of a program is calcu-
lated with respect to some context, which is a description of how the result of
the program will be used. However, this approach is often inappropriate for a
methodology of program development in which data structures are designed as
abstract data types whose behavior, including time complexity, is specified in
isolation. In contrast, our analyses prove results that are independent of context
(i.e., that hold regardless of how the data structures are used).
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Most of the time, we do not care whether a data structure has amortized bounds
or worst-case bounds; our primary criteria for choosing one data structure over
another are overall efficiency and simplicity of implementation (and perhaps
availability of source code). However, in some application areas, it is important
to bound the running times of individual operations, rather than sequences
of operations. In these situations, a worst-case data structure will often be
preferable to an amortized data structure, even if the amortized data structure is
simpler and faster overall. Raman [Ram92] identifies several such application
areas, including

• Real-time systems: In real-time systems, predictability is more impor-
tant than raw speed [Sta88]. If an expensive operation causes the system
to miss a hard deadline, it does not matter how many cheap operations
finished well ahead of schedule.

• Parallel systems: If one processor in a synchronous system executes an
expensive operation while the other processors execute cheap operations,
then the other processors may sit idle until the slow processor finishes.

• Interactive systems: Interactive systems are similar to real-time sys-
tems — users often value consistency more than raw speed [But83]. For
instance, users might prefer 100 1-second response times to 99 0.25-
second response times and 1 25-second response time, even though the
latter scenario is twice as fast.

Remark Raman also identified a fourth application area — persistent data
structures. As discussed in the previous chapter, amortization was thought to
be incompatible with persistence. But, of course, we now know this to be
untrue. O

83
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Does this mean that amortized data structures are of no interest to program-
mers in these areas? Not at all. Since amortized data structures are often
simpler than worst-case data structures, it is sometimes easier to design an
amortized data structure, and then convert it to a worst-case data structure,
than to design a worst-case data structure from scratch.

In this chapter, we describe scheduling — a technique for converting lazy
amortized data structures to worst-case data structures by systematically forc-
ing lazy components in such a way that no suspension ever takes very long to
execute. Scheduling extends every object with an extra component, called a
schedule, that regulates the order in which the lazy components of that object
are forced.

7.1 Scheduling
Amortized and worst-case data structures differ mainly in when the compu-
tations charged to a given operation occur. In a worst-case data structure, all
computations charged to an operation occur during the operation. In an amor-
tized data structure, some computations charged to an operation may actually
occur during later operations. From this, we see that virtually all nominally
worst-case data structures become amortized when implemented in an entirely
lazy language because many computations are unnecessarily suspended. To
describe true worst-case data structures, we therefore need a strict language. If
we want to describe both amortized and worst-case data structures, we need a
language that supports both lazy and strict evaluation. Given such a language,
we can also consider an intriguing hybrid approach: worst-case data structures
that use lazy evaluation internally. We obtain such data structures by begin-
ning with lazy amortized data structures and modifying them in such a way
that every operation runs in the allotted time.

In a lazy amortized data structure, any specific operation might take longer
than the stated bounds. However, this only occurs when the operation forces
a suspension that has been paid off, but that takes a long time to execute. To
achieve worst-case bounds, we must guarantee that every suspension executes
in no more than the allotted time.

Define the intrinsic cost of a suspension to be the amount of time it takes to
force the suspension under the assumption that all other suspensions on which
it depends have already been forced and memoized, and therefore each take
only O(l) time to execute. (This is similar to the definition of the unshared
cost of an operation.) The first step in converting an amortized data structure
to a worst-case data structure is to reduce the intrinsic cost of every suspen-
sion to less than the desired bounds. Usually, this involves rewriting expensive
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monolithic functions to make them incremental, either by changing the under-
lying algorithms slightly or by switching from a representation that supports
only monolithic functions, such as suspended lists, to one that supports incre-
mental functions as well, such as streams.

Even if every suspension has a small intrinsic cost, some suspensions might
still take longer than the allotted time to execute. This happens when one sus-
pension depends on another suspension, which in turn depends on a third, and
so on. If none of the suspensions have been executed previously, then forcing
the first suspension results in a cascade of forces. For example, consider the
following computation:

(' ' - ( O l -H- S2) -H- S 3 ) -H- • •  •) -H- Sk

Forcing the suspension returned by the outermost •#•  triggers a chain reaction in
which every -H- executes a single step. Even though the outermost suspension
has an O(l) intrinsic cost, the total time required to force this suspension is
O(k) (or even more if the first node of si is expensive to force for some other
reason).

Remark Have you ever stood dominoes in a row so that each one knocks
over the next? Even though the intrinsic cost of knocking over each domino is
0(1), the actual cost of knocking over the first domino might be much, much
greater. O

The second step in converting an amortized data structure to a worst-case
data structure is to avoid cascading forces by arranging that, whenever we
force a suspension, any other suspensions on which it depends have already
been forced and memoized. Then, no suspension takes longer than its intrinsic
cost to execute. We accomplish this by systematically scheduling the execution
of each suspension so that each is ready by the time we need it. The trick is to
regard paying off debt as a literal activity, and to force each suspension as it is
paid for.

Remark In essence, scheduling is like knocking over a series of dominoes
starting from the rear, so that, whenever one domino falls on another, the sec-
ond domino has already been knocked over. Then the actual cost of knocking
over each domino is small. O

We extend every object with an extra component, called the schedule, that,
at least conceptually, contains a pointer to every unevaluated suspension in
the object. Some of the suspensions in the schedule may have already been
evaluated in a different logical future, but forcing these suspensions a second
time does no harm since it can only make an algorithm run faster than expected,
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not slower. Every operation, in addition to whatever other manipulations it
performs on an object, forces the first few suspensions in the schedule. The
exact number of suspensions forced is governed by the amortized analysis;
typically, every suspension takes 0(1) time to execute, so we force a number
of suspensions proportional to the amortized cost of the operation. Depending
on the data structure, maintaining the schedule can be non-trivial. For this
technique to apply, adding a new suspension to the schedule, or retrieving the
next suspension to be forced, cannot require more time than the desired worst-
case bounds.

7.2 Real-Time Queues

As an example of this technique, we convert the amortized banker's queues
of Section 6.3.2 to worst-case queues. Queues such as these that support all
operations in O(l) worst-case time are called real-time queues [HM81].

In the original data structure, queues are rotated using -H- and reverse. Since
reverse is monolithic, our first task is finding a way to perform rotations incre-
mentally. This can be done by executing one step of the reverse for every step
of the -H-. We define a function rotate such that

rotate (xs, ys, a) = xs -u- reverse ys-w a

Then

rotate (f, r, $NIL) = f 4f reverse r

The extra argument, a, is called an accumulating parameter and is used to
accumulate the partial results of reversing ys. It is initially empty.

Rotations occur when \r\ = \f\ + 1, so initially \ys\ = \xs\ + 1. This rela-
tionship is preserved throughout the rotation, so when xs is empty, ys contains
a single element. The base case is therefore

rotate ($NIL, $CONS (y, $NIL), a)
= ($NIL) 4f reverse ($CONS (y, $NIL)) -H- a
= $CONS (y, a)

In the recursive case,

rotate ($CONS (X, XS), $CONS (y, ys), a)
= ($CONS (x, xs)) -H- reverse ($CONS (y, ys)) -H- a
= $CONS (x, xs 4f reverse ($CONS (y, ys)) -H- a)
= $CONS (x, xs -H- reverse ys -H- $CONS (y, a))
= $CONS (x, rotate (xs, ys, $CONS (y, a)))

Putting these cases together, we get
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fun rotate ($NIL, $CONS (y _), a) = $CONS (y, a)
| rotate ($CONS (X, XS), $CONS (y, ys), a) =

$CONS (x, rotate (xs, ys, $CONS (y, a)))

Note that the intrinsic cost of every suspension created by rotate is O(l).

Exercise 7.1 Show that replacing f -H- reverse r with rotate (f, r, $NIL) in the
banker's queues of Section 6.3.2 reduces the worst-case running times of snoc,
head, and tail from O(n) to O(logra). (Hint: Prove that the longest chain
of dependencies between suspensions is O(log n).) If it makes your analysis
simpler, you may delay the pattern matching in the rotate function by writing
fun lazy instead of fun . O

Next, we add a schedule to the datatype. The original datatype was

type a Queue = int x a Stream x int x a Stream

We extend this type with a new field s of type a Stream that represents a
schedule for forcing the nodes of f. We can think of s in two ways, either as a
suffix of f or as a pointer to the first unevaluated suspension in f. To evaluate
the next suspension in the schedule, we simply force s.

Besides adding s, we make two further changes to the datatype. First, to
emphasize the fact that the nodes of r need not be scheduled, we change r
from a stream to a list. This involves minor changes to rotate. Second, we
eliminate the length fields. As we will see shortly, we no longer need the
length fields to determine when r becomes longer than f — instead, we can
obtain this information from the schedule. The new datatype is thus

type a Queue = a Stream x a list x a Stream

Remark The savings in space from using three-tuples instead of four-tuples
can make this change in representation worthwhile even if we don't care about
worst-case bounds. O

With this representation, the major queue functions are simply

fun snoc ((f, r, s), x) = exec (f, x :: r, s)
fun head ($CONS (X, f), r, s) = x
fun tail ($CONS (x, f), r, s) = exec (f, r, s)

The helper function exec executes the next suspension in the schedule and
maintains the invariant that \s\ = \f\ — \r\ (which incidentally guarantees that
|f| > \r\ since \s\ cannot be negative), snoc increases \r\ by one and tail de-
creases \f\ by one, so when exec is called, \s\ — \f\ — \r\ + 1. If s is non-empty,
then we restore the invariant simply by taking the tail of s. If s is empty, then
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structure RealTimeQueue : QUEUE =
struct

type a Queue = a Stream x a list x a Stream

val empty = ($NIL, [], $NIL)
fun isEmpty ($NIL, _, _) = true

| isEmpty _ = false

fun rotate ($NIL, y : : _, a) = $CONS (y, a)
| rotate ($CONS (X, XS), y :: ys, a) =

$CONS (x, rotate (xs, ys, $CONS (y, a)))

fun exec (f, r, $CONS (X, S)) = (f, r, s)
| exec (f, r, $NIL) = let val f = rotate (f, r, $NIL) in (f, [], f) end

fun snoc ((f, r, s), x) = exec (f, x :: r, s)
fun head ($NIL, r, s) = raise EMPTY

| head ($CONS (X, f), r, s) = x
fun tail ($NIL, r, s) = raise EMPTY

| tail ($CONS (x, f), r, s) = exec (f, r, s)
end

Figure 7.1. Real-time queues based on scheduling.

r is one longer than f, so we rotate the queue. In either case, the very act of
pattern matching against s to determine whether or not it is empty forces and
memoizes the next suspension in the schedule.

fun exec (f, r, $CONS (X, S)) - (f, r, s)
| exec tf r, $NIL) = let val f = rotate (/; r, $NIL) in (f, [], f) end

The complete code for this implementation appears in Figure 7.1.
By inspection, every queue operation does only 0(1) work outside of forc-

ing suspensions, and no operation forces more than three suspensions. Hence,
to show that all queue operations run in 0(1) worst-case time, we must prove
that no suspension takes more than 0(1) time to execute.

Only three forms of suspensions are created by the various queue functions.

• $NIL is created by empty and exec (in the initial call to rotate). This
suspension is trivial and therefore executes in O(l) time regardless of
whether it has been forced and memoized previously.

• $CONS (y, a) is created in both lines of rotate and is also trivial.
•  $CONS (x, rotate (xs, ys, $CONS (y, a))) is created in the second line of

rotate. This suspension allocates a CONS cell, builds a new suspension,
and makes a recursive call to rotate, which pattern matches against the
first node in xs and immediately creates another suspension. Of these
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actions, only the force inherent in the pattern match has even the possi-
bility of taking more than 0(1) time. But note that xs is a suffix of the
front stream that existed just before the previous rotation. The treatment
of the schedule s guarantees that every node in that stream was forced
and memoized prior to the rotation, so forcing this node again takes only
0(1) time.

Since every suspension executes in 0(1) time, every queue operation runs in
0(1) worst-case time.

Hint to Practitioners: These queues are by far the simplest of the real-time
implementations. They are also among the fastest known implementations—  |
worst-case or amortized—for applications that use persistence heavily.

Exercise 7.2 Compute the size of a queue from the sizes of s and r. How
much faster might such a function run than one that measures the sizes of f
andr?

7.3 Binomial Heaps
We next return to the lazy binomial heaps from Section 6.4.1, and use schedul-
ing to support insertions in O(l) worst-case time. Recall that, in the earlier
implementation, the representation of the heap was a Tree list susp, so insert
was necessarily monolithic. Our first goal is to make insert incremental.

We begin by substituting streams for suspended lists in the type of heaps.
The insert function calls the insTree helper function, which can now be written
as follows:

fun lazy insTree (f, $NIL) = $CONS (t, $NIL)
| insTree (t, ts as $CONS (f , ts')) =

if rank t < rank t' then $CONS (t, ts)
else insTree (link (t, t'), ts')

This function is still monolithic because it cannot return the first tree until it
has performed all the links. To make this function incremental, we need a way
for insTree to return a partial result after each iteration. We can achieve this by
making the connection between binomial heaps and binary numbers more ex-
plicit. The trees in the heap correspond to the ones in the binary representation
of the size of the heap. We extend this with an explicit representation of the
zeros.
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datatype Tree = NODE of Elem.T x Tree list
datatype Digit = ZERO | ONE of Tree
type Heap = Digit Stream

Note that we have eliminated the rank field in the NODE constructor because
the rank of each tree is uniquely determined by its position: a tree in the ith
digit has rank i, and the children of a rank r node have ranks r —  1 , . . . , 0. In
addition, we will insist that every non-empty digit stream end in a ONE.

Now insTree can be written
fun lazy insTree (t, $NIL) = $CONS (ONE t, $NIL)

| insTree (t, $CONS (ZERO, ds)) = $CONS (ONE t, ds)
| insTree (f, $CONS (ONE tf, ds)) =

$CONS (ZERO, insTree (link (t, f), ds))

This function is properly incremental since each intermediate step returns a
CONS cell containing a ZERO and a suspension for the rest of the computation.
The final step always returns a ONE.

Next, we add a schedule to the datatype. The schedule is a list of jobs, where
each job is a Digit Stream representing a call to insTree that has not yet been
fully executed.

type Schedule = Digit Stream list
type Heap = Digit Stream x Schedule

To execute one step of the schedule, we force the head of the first job. If the
result is a ONE, then this job is finished so we delete it from the schedule. If
the result is a ZERO, then we put the rest of the job back in the schedule.

fun exec [ ] = [ ]
| exec (($CONS (ONE t, _)):: sched) = sched
| exec (($CONS (ZERO, job)):: sched) =job :: sched

Finally, we update insert to maintain the schedule. Since the amortized cost of
insert was two, we guess that executing two steps per insert will be enough to
force every suspension by the time it is needed.

fun insert (x, (ds, sched)) =
let val ds' = insTree (NODE (X, []), ds)
in (ds7, exec (exec (dsf :: sched))) end

To show that insert runs in 0(1) worst-case time, we need to show that exec
runs in 0(1) worst-case time. In particular, we need to show that, whenever
exec forces a suspension (by pattern matching against it), any other suspen-
sions on which the first suspension depends have already been forced and
memoized.

If we expand the fun lazy syntax in the definition of insTree and simplify
slightly, we see that insTree produces a suspension equivalent to
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$case ds of
$NIL => CONS (ONE t, $NIL)

| $CONS (ZERO, ds') => CONS (ONE t, ds')
| $CONS (ONE t', ds') => CONS (ZERO, insTree (link (t, t'), ds'))

The suspension for each digit produced by insTree depends on the suspension
for the previous digit at the same index. We prove that there is never more
than one outstanding suspension per index of the digit stream and hence that
no unevaluated suspension depends on another unevaluated suspension.

Define the range of a job in the schedule to be the collection of digits pro-
duced by the corresponding call to insTree. Each range comprises a possibly
empty sequence of ZEROS followed by a ONE. We say that two ranges overlap
if any of their digits have the same index within the stream of digits. Every
unevaluated digit is in the range of some job in the schedule, so we need to
prove that no two ranges overlap.

In fact, we prove a slightly stronger result. Define a completed zero to be a
ZERO whose cell in the stream has already been evaluated and memoized.

Theorem 7.1 Every valid heap contains at least two completed zeros prior to
the first range in the schedule, and at least one completed zero between every
two adjacent ranges in the schedule.

Proof Let r\ and r2 be the first two ranges in the schedule. Let z\ and z2 be
the two completed zeros before r\, and let z3 be the completed zero between
r\ and r2. insert adds a new range r0 to the front of the schedule and then
immediately calls exec twice. Note that r0 terminates in a ONE that replaces
z\. Let m be the number of ZEROS in ro. There are three cases.

Case 1. m — 0. The only digit in r 0 is a ONE, SO r0 is eliminated by the first
exec. The second exec forces the first digit of r i . If this digit is ZERO,
then it becomes the second completed zero (along with z2) before the
first range. If this digit is ONE, then ri is eliminated and r2 becomes
the new first range. The two completed zeros prior to r2 are z2 and

Case 2. m = 1. The two digits in ro are ZERO and ONE. These digits are
immediately forced by the two execs, eliminating r0. The leading
ZERO replaces z\ as one of the two completed zeros before r\.

Case 3. m > 2. The first two digits of ro are both ZEROS. After the two
calls to exec, these digits become the two completed zeros before the
new first range (the rest of ro). z2 becomes the single completed zero
between ro and 7*1.

•
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Exercise 7.3 Show that it does no harm to the running time of insert to remove
the lazy annotation from the definition of insTree. O

Adapting the remaining functions to the new types is fairly straightforward.
The complete implementation is shown in Figure 7.2. Four points about this
code deserve further comment. First, rather than trying to do something clever
with the schedule, merge and deleteMin evaluate every suspension in the sys-
tem (using the function normalize) and set the schedule to []. Second, by
Theorem 7.1, no heap contains more than 0(log n) unevaluated suspensions,
so forcing these suspensions during normalization or while searching for the
minimum root does not affect the asymptotic running-times of merge, find-
Min, or deleteMin, each of which runs in O(log n) worst-case time. Third, the
helper function removeMinTree sometimes produces digit streams with trailing
ZEROS, but these streams are either discarded by findMin or merged with a list
of ONES by deleteMin. Finally, deleteMin must do a little more work than in
previous implementations to convert a list of children into a valid heap. In ad-
dition to reversing the list, deleteMin must add a ONE to every tree and then
convert the list to a stream. If c is the list of children, then this whole process
can be written

listToStream (map ONE (rev c))

where

fun listToStream [] = $NIL
| listToStream (x :: xs) = $CONS (X, listToStream xs)

fun map f [] = []
| map f (x :: xs) = (f x):: (map f xs)

map is the standard function for applying another function (in this case, the
ONE constructor) to every element of a list.

Exercise 7.4 Write an efficient, specialized version of mrg, called mrgWith-
List, so that deleteMin can call

mrgWithList (rev c, dsf)

instead of

mrg (listToStream (map ONE (rev c)), ds')
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functor ScheduledBlnomialHeap (Element: ORDERED) : HEAP =
struct

structure Elem = Element
datatype Tree = NODE of Elem.T x Tree list
datatype Digit = ZERO | ONE of Tree
type Schedule = Digit Stream list
type Heap = Digit Stream x Schedule
val empty = ($NIL, [])
fun isEmpty ($NIL, _) = true | isEmpty _ = false
fun link (h as NODE (X I , d), t2 as NODE (X2, C2)) =

if Elem.leq (xi,x2) then NODE (X I , t2 :: Ci) else NODE (X2, h :: c2)
fun insTree (t, $NIL) = $CONS (ONE t, $NIL)

| insTree (t, $CONS (ZERO, ds)) = $CONS (ONE t, ds)
| insTree (t, $CONS (ONE t', ds)) =

$CONS (ZERO, insTree (link (t, t'), ds))
fun mrg (dsi, $NIL) = dsi

| mrg ($NIL, ds2) = ds2

| mrg ($CONS (ZERO,C/SI), $CONS (d,ds2)) = $CONS (of,mrg (dsuds2))
| mrg ($CONS (d,dsi), $CONS (ZERO,ds2)) = $CONS (d,mrg (dsuds2))
| mrg ($CONS (ONE tu dsi), $CONS (ONE t2, ds2)) =

$CONS (ZERO, insTree (link (tu t2), mrg (dsu ds2)))
fun normalize (ds as $NIL) = ds

| normalize (ds as $CONS (_, ds')) = (normalize ds'; ds)
fun exec[] = []

| exec (($CONS (ZERO, job)):: sched) = job :: sched
| exec (_ :: sched) = sched

fun insert (x, (ds, sched)) =
let val ds' = insTree (NODE (X, []), ds)
in (ds', exec (exec (ds':: sched))) end

fun merge ((dsi, _), (ds2, _)) =
let val ds = normalize (mrg (dsi, ds2)) in (ds, []) end

fun removeMinTree ($NIL) = raise EMPTY
| removeMinTree ($CONS (ONE t, $NIL)) = (t, $NIL)
| removeMinTree ($CONS (ZERO, ds)) =

let val (t',dsf) = removeMinTree ds in (f;,$C0NS (ZERO,ds;)) end
| removeMinTree ($CONS (ONE (t as NODE (X, _)), ds)) =

case removeMinTree ds of
(f as NODE (X', _), ds') =>

if Elem.leq (x, x') then (t, $CONS (ZERO, ds))
else (f, $CONS (ONE t, ds'))

fun findMin (ds, _) =
let val (NODE (X, _), _) = removeMinTree ds in x end

fun deleteMin (ds, _) =
let val (NODE (X, C), ds') = removeMinTree ds

val ds" = mrg (listToStream (map ONE (rev c)), ds')
in (normalize ds", []) end

end

Figure 7.2. Scheduled binomial heaps.
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7.4 Bottom-Up Mergesort with Sharing
As a third example of scheduling, we modify the sortable collections from
Section 6.4.3 to support add in O(logn) worst-case time and sort in O(n)
worst-case time.

The only use of lazy evaluation in the amortized implementation is the sus-
pended call to addSeg in add. This suspension is monolithic, so the first task is
to perform this computation incrementally. In fact, we need only make mrg in-
cremental: since addSeg takes only O(log n) steps, we can afford to execute it
strictly. We therefore represent segments as streams rather than lists, and elim-
inate the suspension on the collection of segments. The new type for the col-
lection of segments is thus Elem.T Stream list rather than Elem.T list list susp.

Rewriting mrg, add, and sort to use this new type is straightforward, except
that sort must convert the final sorted stream back to a list. This is accom-
plished by the streamToList conversion function.

fun streamToList ($NIL) = []
| streamToList ($CONS (X, XS)) = x :: streamToList xs

The new version of mrg, shown in Figure 7.3, performs one step of the
merge at a time, with an 0(1) intrinsic cost per step. Our second goal is to
execute enough merge steps per add to guarantee that any sortable collection
contains only 0(n) unevaluated suspensions. Then sort executes at most 0(n)
unevaluated suspensions in addition to its own O(n) work. Executing these
unevaluated suspensions takes at most O(n) time, so sort takes only 0(n)
time altogether.

In the amortized analysis, the amortized cost of add was approximately 2B\
where B' is the number of one bits in n' = n-\-1. This suggests that add should
execute two suspensions per one bit, or equivalently, two suspensions per seg-
ment. We maintain a separate schedule for each segment. Each schedule is
a list of streams, each of which represents a call to mrg that has not yet been
fully evaluated. The complete type is therefore

type Schedule = Elem.T Stream list

type Sortable = int x (Elem.T Stream x Schedule) list

To execute one merge step from a schedule, we call the function exed.

fun exed [] = []
| exed (($NIL) :: sched) = exed sched
| exed (($CONS (x, xs)):: sched) = xs :: sched

In the second clause, we reach the end of one stream and execute the first step
of the next stream. This cannot loop because only the first stream in a schedule
can ever be empty. The function exec2 takes a segment and invokes exed
twice on the schedule.
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fun exec2 (xs, sched) = (xs, exed (exed sched))

Now, add calls exec2 on every segment, but it is also responsible for building
the schedule for the new segment. If the lowest k bits of n are one, then adding
a new element will trigger k merges, of the form

((s0 N si) N s2) N • • •  N sk

where so is the new singleton segment and si . . . Sk are the first k segments
of the existing collection. The partial results of this computation are s[ . . . s'k,
where s[ = s0 N si and s[ = st

i_l txi $,-. Since the suspensions in sf
{ depend

on the suspensions in s'i__1, we must schedule the execution of s'i_l before the
execution of s'j. The suspensions in s'{ also depend on the suspensions in s,-,
but we guarantee that si . . . Sk have been completely evaluated at the time of
the call to add.

The final version of add, which creates the new schedule and executes two
suspensions per segment, is

fun add (x, {size, segs)) =
let fun addSeg (xs, segs, size, rsched) =

if size mod 2 = 0 then (xs, rev rsched):: segs
else let val ((xs7, [ ] ) : : segs') = segs

val xs" = mrg (xs, xs')
in addSeg (xs", segs', size div 2, xs" :: rsched) end

val segs' = addSeg ($CONS (X, $NIL), segs, size, [])
in (s/ze+1, map exec2 segs') end

The accumulating parameter rsched collects the newly merged streams in re-
verse order. Therefore, we reverse it back to the correct order on the last step.
The pattern match in line 4 asserts that the old schedule for that segment is
empty, i.e., that it has already been completely executed. We will see shortly
why this true.

The complete code for this implementation is shown in Figure 7.3. add has
an unshared cost of O (log n) and sort has an unshared cost of O (n), so to prove
the desired worst-case bounds, we must show that the O(logn) suspensions
forced by add take 0(1) time each, and that the O(n) unevaluated suspensions
forced by sort take O(n) time altogether.

Every merge step forced by add (through exec2 and exed) depends on two
other streams. If the current step is part of the stream sj, then it depends on
the streams s[_l and s,-. The stream s/

i_1 was scheduled before sf
i9 so s/

i_1 has
been completely evaluated by the time we begin evaluating sf

{. Furthermore,
S{ was completely evaluated before the add that created s'. Since the intrinsic
cost of each merge step is 0(1), and the suspensions forced by each step have
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functor ScheduledBottomUpMergeSort (Element: ORDERED) : SORTABLE =
struct

structure Elem = Element

type Schedule = Elem.T Stream list
type Sortable = int x (Elem.T Stream x Schedule) list
fun lazy mrg ($NIL, ys) = ys

| mrg (xs, $NIL) = XS
| mrg (xs as $CONS (X, xsf), ys as $CONS (y, ys')) =

if Elem.leq (x, y) then $CONS (X, mrg (xs7, ys))
else $CONS (y, mrg (xs, ys'))

funexed [] = []
| exed (($NIL) :: sched) = exed sched
| exed (($CONS (x, xs)):: sched) = xs:: sched

fun exec2 (xs, sched) = (xs, exed (exed sched))

val empty = (0, [])
fun add (x, (size, segs)) =

let fun addSeg (xs, segs, size, rsched) =
If size mod 2 = 0 then (xs, rev rsched):: segs
else let val ((xs7, [ ] ) : : segs') = segs

val xs77 = mrg (xs, xs7)
in addSeg (xs", segs', size div 2, xs" :: rsched)

val segs' = addSeg ($CONS (X, $NIL), segs, size, [])
in (s/ze+1, map exec2 segs?) end

fun sort (size, segs) =
let fun mrgAII (xs, []) = xs

| mrgAII (xs, (xs', _ ) : : segs) = mrgAII (mrg (xs, xs7), segs)
in streamToList (mrgAII ($NIL, segs)) end

end

Figure 7.3. Scheduled bottom-up mergesort.

already been forced and memoized, every merge step forced by add takes only
0(1) worst-case time.

The following lemma establishes both that any segment involved in a merge
by addSeg has been completely evaluated and that the collection as a whole
contains at most O(n) unevaluated suspensions.

Lemma 7.2 In any sortable collection of size n, the schedule for a segment of
size m = 2k contains a total of at most 2m —  2(n mod m + 1) elements.

Proof Consider a sortable collection of size n, where the lowest k bits of n are
ones (i.e., n can be written c2k+1 + (2k — 1),  for some integer c). Then add
produces a new segment of size m = 2k, whose schedule contains streams of
sizes 2,4, 8 , . . . , 2*. The total size of this schedule is 2fe+1 - 2 = 2ra -2 . After
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executing two steps, the size of the schedule is 2m - 4. The size of the new
collection is n' = n + 1 = c2k+1 + 2*. Since 2m - 4 < 2m - 2(n' mod m +
1) = 2 m —  2, the lemma holds for this segment.

Every segment of size m' larger than m is unaffected by the add, except for
the execution of two steps from the segment's schedule. The size of the new
schedule is bounded by

2m' - 2(n mod m' + 1) - 2 = 2m' - 2(ri mod m' + 1),

so the lemma holds for these segments as well. •

Now, whenever the k lowest bits of n are ones (i.e., whenever the next add
will merge the first k segments), we know by Lemma 7.2 that, for any seg-
ment of size m = 2% where i < k, the number of elements in that segment's
schedule is at most

2m - 2(n mod m + 1) = 2m - 2((m - 1) + 1) = 0

In other words, that segment has been completely evaluated.
Finally, the combined schedules for all segments comprise at most

2 J2 H^ - (n m o d 2? + 1)) = 2n - 2 ^ bi{n mod ¥  + 1)
i=0 *=0

elements, where 62 is the ith bit of n. Note the similarity to the potential func-
tion from the physicist's analysis in Section 6.4.3. Since this total is bounded
by 2ra, the collection as a whole contains only O(n) unevaluated suspensions,
and therefore sort runs in O(n) worst-case time.

7.5 Chapter Notes
Eliminating Amortization Dietz and Raman [DR91, DR93, Ram92] have
devised a framework for eliminating amortization based on pebble games,
where the derived worst-case algorithms correspond to winning strategies in
some game. Others have used ad hoc techniques similar to scheduling to
eliminate amortization from specific data structures such as implicit binomial
queues [CMP88] and relaxed heaps [DGST88]. The form of scheduling de-
scribed here was first applied to queues in [Oka95c] and later generalized in
[Oka96b].

Queues The queue implementation in Section 7.2 first appeared in [Oka95c].
Hood and Melville [HM81] presented the first purely functional implemen-
tation of real-time queues, based on a technique known as global rebuild-
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ing [Ove83], which will be discussed further in the next chapter. Their im-
plementation does not use lazy evaluation and is more complicated than ours.



8
Lazy Rebuilding

The remaining four chapters describe general techniques for designing func-
tional data structures. We begin in this chapter with lazy rebuilding, a. variant
of global rebuilding [Ove83].

8.1 Batched Rebuilding
Many data structures obey balance invariants that guarantee efficient access.
The canonical example is balanced binary search trees, which improve the
worst-case running times of many tree operations from the O(n) required by
unbalanced trees to O(log n). One approach to maintaining a balance invariant
is to rebalance the structure after every update. For most balanced structures,
there is a notion of perfect balance, which is a configuration that minimizes
the cost of subsequent operations. However, since it is usually too expen-
sive to restore perfect balance after every update, most implementations set-
tle for approximations of perfect balance that are at most a constant factor
slower. Examples of this approach include AVL trees [AVL62] and red-black
trees [GS78].

However, provided no update disturbs the balance too drastically, an attrac-
tive alternative is to postpone rebalancing until after a sequence of updates,
and then to rebalance the entire structure, restoring it to perfect balance. We
call this approach batched rebuilding. Batched rebuilding yields good amor-
tized time bounds provided that (1) the data structure is not rebuilt too often,
and (2) individual updates do not excessively degrade the performance of later
operations. More precisely, condition (1) states that, if one hopes to achieve
a bound of O(f(n)) amortized time per operation, and the rebuilding trans-
formation requires O(g(n)) time, then the rebuilding transformation cannot be
executed any more frequently than every c • g(n)/f(n) operations, for some
constant c. For example, consider binary search trees. Rebuilding a tree to per-

99
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feet balance takes O(n) time, so if one wants each operation to take O(log n)
amortized time, then the data structure must not be rebuilt more often than
every c • nj log n operations, for some constant c.

Assume that a data structure is to be rebuilt every c • g{n)/f(n) operations,
and that an individual operation on a newly rebuilt data structure takes O(f(n))
time (worst-case or amortized). Then, condition (2) states that, after up to
c ' 9{n)l f{n) updates to a newly rebuilt data structure, individual operations
must still take only O(f(n)) time. In other words, the cost of an individual
operation can only degrade by a constant factor. Update functions satisfying
condition (2) are called weak updates.

For example, consider the following approach to implementing a delete
function on binary search trees. Instead of physically removing the specified
node from the tree, leave it in the tree but mark it as deleted. Then, whenever
half the nodes in the tree have been deleted, make a global pass removing the
deleted nodes and restoring the tree to perfect balance. Does this approach sat-
isfy both conditions, assuming we want deletions to take O(logn) amortized
time?

Suppose a tree contains n nodes, up to half of which are marked as deleted.
Then removing the deleted nodes and restoring the tree to perfect balance takes
O(n) time. We execute the transformation only every |rc delete operations, so
condition (1) is satisfied. In fact, condition (1) would allow us to rebuild the
data structure even more often, as often as every c • nj logn operations. The
naive delete algorithm finds the desired node and marks it as deleted. This
takes O(log n) time, even if up to half the nodes have been marked as deleted,
so condition (2) is satisfied. Note that, even if half the nodes in the tree are
marked as deleted, the average depth per active node is only about one greater
than it would be if the deleted nodes had been physically removed. The extra
depth degrades each operation by only a constant additive factor, whereas con-
dition (2) allows for each operation to be degraded by a constant multiplicative
factor. Hence, condition (2) would allow us to rebuild the data structure even
less often.

In the above discussion, we described only deletions, but of course binary
search trees typically support insertions as well. Unfortunately, insertions are
not weak because they can create a deep path very quickly. However, a hybrid
approach is possible, in which insertions are handled by local rebalancing after
every update, as in AVL trees or red-black trees, but deletions are handled via
batched rebuilding.

Exercise 8.1 Extend the red-black trees of Section 3.3 with a delete function
using these ideas. Add a boolean field to the T constructor and maintain es-
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timates of the numbers of valid and invalid elements in the tree. Assume for
the purposes of these estimates that every insertion adds a new valid element
and that every deletion invalidates a previously valid element. Correct the es-
timates during rebuilding. You will find Exercise 3.9 helpful in rebuilding the
tree. O

As a second example of batched rebuilding, consider the batched queues of
Section 5.2. The rebuilding transformation reverses the rear list into the front
list, restoring the queue to a state of perfect balance in which every element is
contained in the front list. As we have already seen, batched queues have good
amortized efficiency, but only when used ephemerally. Under persistent usage,
the amortized bounds degrade to the cost of the rebuilding transformation be-
cause it is possible to trigger the transformation arbitrarily often. In fact, this
is true for all data structures based on batched rebuilding.

8.2 Global Rebuilding

Overmars [Ove83] describes a technique for eliminating the amortization from
batched rebuilding. He calls this technique global rebuilding. The basic idea is
to execute the rebuilding transformation incrementally, performing a few steps
per normal operation. This can be usefully viewed as running the rebuilding
transformation as a coroutine. The tricky part of global rebuilding is that the
coroutine must be started early enough that it can finish by the time the rebuilt
structure is needed.

Concretely, global rebuilding is accomplished by maintaining two copies
of each object. The primary, or working, copy is the ordinary structure. The
secondary copy is the one that is being gradually rebuilt. All queries and up-
dates operate on the working copy. When the secondary copy is completed,
it becomes the new working copy and the old working copy is discarded. A
new secondary copy might be started immediately, or the object may carry on
for a while without a secondary structure, before eventually starting the next
rebuilding phase.

There is a further complication to handle updates that occur while the sec-
ondary copy is being rebuilt. The working copy will be updated in the norrhal
fashion, but the secondary copy must be updated as well or the effect of the
update will be lost when the secondary copy takes over. However, the sec-
ondary copy will not in general be represented in a form that can be efficiently
updated. Thus, these updates to the secondary copy are buffered and executed,
a few at a time, after the secondary copy has been rebuilt, but before it takes
over as the working copy.
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Global rebuilding can be implemented purely functionally, and has been sev-
eral times. For example, the real-time queues of Hood and Melville [HM81]
are based on this technique. Unlike batched rebuilding, global rebuilding has
no problems with persistence. Since no one operation is particularly expensive,
arbitrarily repeating operations has no effect on the time bounds. Unfortu-
nately, global rebuilding is often quite complicated. In particular, representing
the secondary copy, which amounts to capturing the intermediate state of a
coroutine, can be quite messy.

8.2.1 Example: Hood-Melville Real-Time Queues
Hood and Melville's implementation of real-time queues [HM81] is similar
in many ways to the real-time queues of Section 7.2. Both implementations
maintain two lists representing the front and rear of the queue, respectively,
and incrementally rotate elements from the rear list to the front list beginning
when the rear list becomes one longer than the front list. The differences lie in
the details of this incremental rotation.

First, consider how we might reverse a list in an incremental fashion by
keeping two lists and gradually transferring elements from one to the other.

datatype a ReverseState = WORKING of a list x a list | DONE of a list
fun startReverse xs = WORKING (XS, [])

fun exec (WORKING (X :: xs, xs')) = WORKING (XS, X :: xs')
| exec (WORKING ([], xs')) = DONE XS'

To reverse a list xs, we first create a new state WORKING (XS, []) and then
repeatedly call exec until it returns DONE with the reversed list. Altogether,
this takes n + 1 calls to exec, where n is the initial length of xs.

We can incrementally append two lists xs and ys by applying this trick twice.
First we reverse xs to get xs', then we reverse xs' onto ys.

datatype a AppendState =
REVERSING of a list x a list x a list

| APPENDING of a list x a list
| DONE of a list

fun startAppend (xs, ys) - REVERSING (XS, [], ys)
fun exec (REVERSING (X :: xs, xs', ys)) = REVERSING (XS, X :: xs', ys)

| exec (REVERSING ([], xs7, ys)) = APPENDING (XS', ys)
| exec (APPENDING (X :: xs', ys)) = APPENDING (XS7, X :: ys)
| exec (APPENDING ([], ys)) = DONE ys

Altogether, this takes 2m + 2 calls to exec, where m is the initial length of xs.
Now, to append f onto reverse r in this fashion, we perform a total of three
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reversals. First, we reverse f and r in parallel to get f and r' and then we
reverse f onto r'. The following code assumes that r is initially one longer
thanf.

datatype a RotationState =
REVERSING of a list x a list x a list x a list

| APPENDING of a list x a list
| DONE of a list

fun startRotation (f, r) = REVERSING (f, [], r, [])

fun exec (REVERSING (X :: f, f, y :: r, r')) = REVERSING (f, x :: f, r, y :: r')
| exec (REVERSING ([], f, [y], r')) = APPENDING (f, y :: r')
j exec (APPENDING (X :: f, r')) = APPENDING (f, x :: r')
| exec (APPENDING ([], r')) = DONE r-

Again, this finishes after a total of 2m + 2 calls to exec, where m is the initial
length of f.

Unfortunately, there is a major problem with this method of performing ro-
tations. If we only call exec a few times per call to snoc or tail, then by the
time the rotation finishes, the answer may no longer be the one we want! In
particular, if tail has been called k times during the rotation, then the first k
elements of the resulting list are invalid. There are two basic ways we can fix
this problem. One is to keep a count of the number of invalid elements and
extend RotationState with a third phase, Deleting, that deletes elements from
the list a few at a time until there are no more invalid elements. This is the ap-
proach that corresponds most closely with the definition of global rebuilding.
However, a better approach in this case is to avoid placing the invalid elements
on the answer list to begin with. We keep track of the number of valid elements
in f, and quit copying elements from f to r' when this number reaches zero.
Every call to tail during the rotation decrements the number of valid elements.

datatype a RotationState =
REVERSING of int x a list x a list x a list x a list

| APPENDING of int x a list x a list
| DONE of a list

fun startRotation (f, r) = REVERSING (0, f, [], r, [])

fun exec (REVERSING (ok, x :: f, f, y :: r, r')) =
REVERSING (O/C+1 , f, x :: f, r, y :: r')

| exec (REVERSING (ok, [], f, [y], r')) = APPENDING (ok, f, y :: r')
| exec (APPENDING (0, f, r')) = DONE r'
| exec (APPENDING (ok, x :: f, r')) = APPENDING (o/ r -1 , f, x\\ r')

fun invalidate (REVERSING (ok, f, f, r, r')) = REVERSING (o/ r -1 , f, f, r, r'))
| invalidate (APPENDING (0, f, x :: r1)) = DONE r'
| invalidate (APPENDING (ok, f, r')) = APPENDING (o/ r -1 , f, r')
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This process finishes after a total of 2m + 2 calls to exec and invalidate, where
m is the initial length of f.

There are three more tricky details to consider. The first is that, during a
rotation, the first few elements of the queue lie at the back of the f' field within
the rotation state. How then are we to answer a head query? The solution to
this dilemma is to keep a working copy of the old front list. We just have to
make sure that the new copy of the front list is ready by the time the working
copy is exhausted. During a rotation, the lent field measures the length of the
list that is under construction, rather than of the working copy f. In between
rotations, the lent field contains the length of f.

The second detail is exactly how many calls to exec we must issue per snoc
and tail to guarantee that the rotation completes before either the next rotation
is ready to begin or the working copy of the front list is exhausted. Assume that
f has length m and r has length m + 1 at the beginning of a rotation. Then, the
next rotation will begin after any combination of 2m+2 insertions or deletions,
but the working copy of the front list will be exhausted after just m deletions.
Altogether, the rotation requires at most 2m + 2 steps to complete. If we call
exec twice per operation, including the operation that begins the rotation, then
the rotation will complete at most m operations after it begins.

The third detail is that, since each rotation finishes long before the next
rotation begins, we add an IDLE state to RotationState, such that exec IDLE =
IDLE. Then we can blindly call exec without worrying about whether we are in
the middle of a rotation or not.

The remaining details are by now routine and the complete implementation
is shown in Figure 8.1.

Exercise 8.2 Prove that calling exec twice at the beginning of each rotation,
and once for every remaining insertion or deletion is enough to finish the rota-
tion on time. Modify the code accordingly.

Exercise 8.3 Replace the lent and lenr fields with a single diff field that main-
tains the difference between the lengths of f and r. diff may be inaccurate
during rebuilding, but must be accurate by the time rebuilding is finished.

8.3 Lazy Rebuilding
The implementation of physicist's queues in Section 6.4.2 is closely related to
global rebuilding, but there is an important difference. As in global rebuilding,
this implementation keeps two copies of the front list, the working copy, w,
and the secondary copy, f, with all queries being answered by the working



8.3 Lazy Rebuilding 105

structure HoodMelvilleQueue : QUEUE =
struct

datatype a RotationState =
IDLE

| REVERSING of int x a list x a list x a list x a list
| APPENDING of int x a list x a list
| DONE of a list

type a Queue = int x a list x a RotationState x int x a list

fun exec (REVERSING (ok, x :: f, f, y :: r, r')) =
REVERSING (O/C+1, f, x :: f, r, y :: r')

| exec (REVERSING (ok, [], f, [y], r')) = APPENDING (ok, f, y :: r')
| exec (APPENDING (0, f, r')) = DONE r'
| exec (APPENDING (ok, x:: f, r1)) = APPENDING (O/C-1 , f, x :: r')
| exec state = state

fun invalidate (REVERSING (ok, f, f, r, r')) = REVERSING (ok-'lj, f, r, r'))
| invalidate (APPENDING (0, f, x:: r')) = DONE r'
I invalidate (APPENDING (ok, f, r')) = APPENDING (O/C-1 , f, r')
| invalidate stete = state

fun exec2 (/enf, f, state, lenr, r) =
case exec (exec state) of

DONE newf =^ (/en/j nei^f, IDLE, lenr, r)
| newstate =j> (/en/j f, newstate, lenr, r)

fun check (Q as (lenf, f, state, lenr, r)) =
i f lenr < lenf t h e n e x e c 2 q
e l s e le t v a l newstate = R E V E R S I N G ( 0 , f, [], r, [])

in e x e c 2 (lenf+lenr, f, newstate, 0, []) e n d
val empty = (0, [ ] , IDLE, 0, [])
fun isEmpty (lenf, f, state, lenr, r) = (lenf = 0)
fun snoc ((lenf, f, state, lenr, r), x) = check (lenf, f, state, len^, x :: r)
fun head (lenf, [], state, lenr, r) = raise EMPTY

| head (lenf, x :: f, state, lenr, r) = x
fun tail (lenf, [], state, lenr, r) = raise EMPTY

| tail (lenf, x :: f, state, lenr, r) =
check (lenf-1, f, invalidate state, lenr, r)

end

Figure 8.1. Real-time queues based on global rebuilding.

copy. Updates to f (i.e., tail operations) are buffered, to be executed at the end
of the rotation, by writing

... $tl (force f)...

In addition, this implementation takes care to start (or at least set up) the ro-
tation long before its result is needed. However, unlike global rebuilding, this
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implementation does not execute the rebuilding transformation (i.e., the rota-
tion) concurrently with the normal operations; rather, it pays for the rebuilding
transformation concurrently with the normal operations, but then executes the
transformation all at once at some point after it has been paid for. In essence,
we have replaced the complications of explicitly or implicitly coroutining the
rebuilding transformation with the simpler mechanism of lazy evaluation. We
call this variant of global rebuilding lazy rebuilding.

The implementation of banker's queues in Section 6.3.2 reveals a further
simplification possible under lazy rebuilding. By incorporating nested suspen-
sions into the basic data structure — for instance, by using streams instead
of lists — we can often eliminate the distinction between the working copy
and the secondary copy and employ a single structure that combines aspects of
both. The "working" portion of that structure is the part that has already been
paid for, and the "secondary" portion is the part that has not yet been paid for.

Global rebuilding has two advantages over batched rebuilding: it is suitable
for implementing persistent data structures and it yields worst-case bounds
rather than amortized bounds. Lazy rebuilding shares the first advantage, but,
at least in its simplest form, yields amortized bounds. However, if desired,
worst-case bounds can often be recovered using the scheduling techniques of
Chapter 7. For example, the real-time queues in Section 7.2 combine lazy
rebuilding with scheduling to achieve worst-case bounds. In fact, the combi-
nation of lazy rebuilding and scheduling can be viewed as an instance of global
rebuilding in which the coroutines are reified in a particularly simple way using
lazy evaluation.

8.4 Double-Ended Queues
As further examples of lazy rebuilding, we next present several implementa-
tions of double-ended queues, also known as deques. Deques differ from FIFO
queues in that elements can be both inserted and deleted from either end of the
queue. A signature for deques appears in Figure 8.2. This signature extends
the signature for queues with three new functions: cons (insert an element at
the front), last (return the rearmost element), and init (remove the rearmost
element).

Remark Notice that the signature for queues is a strict subset of the signature
for deques — the same names have been chosen for the type and the overlap-
ping functions. Because deques are thus a strict extension of queues, Standard
ML will allow us to use a deque module wherever a queue module is expected.
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signature DEQUE =
sig

type a Queue

val empty
val isEmpty

(* insert, inspect, and remove the front element *)
valcons
val head
val tail

val snoc
val last
val init

a Queue
a Queue ->• bool

a x a Queue ->• a Queue
a Queue -> a (* raises EMPTY if queue is empty *)
a Queue -»•  a Queue (* raises EMPTY if queue is empty*)

(* insert, inspect, and remove the rear element *)

end

a Queue x a -> a Queue
a Queue -> a (* ra/ses EMPTY // qi/eae is empty *)
a Queue -> a Queue (* ra/ses EMPTY if queue is empty*)

Figure 8.2. Signature for double-ended queues.

8.4.1 Output-Restricted Deques
First, note that extending the queue implementations from Chapters 6 and 7 to
support cons, in addition to snoc, is trivial. A queue that supports insertions
at both ends, but deletions from only one end, is called an output-restricted
deque.

For example, we can implement a cons function for the banker's queues of
Section 6.3.2 as follows:

fun cons (x, (lenf, f, lenr, r)) = (ienf+^, $CONS (X, f), lenr, r)

Note that there is no need to call the check helper function because adding an
element to f cannot possibly make f shorter than r.

Similarly, we can easily implement a cons function for the real-time queues
of Section 7.2.

fun cons (x, (f, r, s)) = ( $ C O N S (X, f), r, $ C O N S (X, S))

We add x to s only to maintain the invariant that \s\ — \f\ — \r\.

Exercise 8.4 Unfortunately, we cannot extend Hood and Melville's real-time
queues with a cons function quite so easily, because there is no easy way to
insert the new element into the rotation state. Instead, write a functor that ex-
tends any implementation of queues with a constant-time cons function, using
the type

type a Queue = a list x a Q.Queue
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where Q is the parameter to the functor, cons should insert elements into the
new list, and head and tail should remove elements from the new list whenever
it is non-empty.

8.4.2 Banker's Deques
Deques can be represented in essentially the same way as queues, as two
streams (or lists), f and r, plus some associated information to help main-
tain balance. For queues, the notion of perfect balance is for all the elements
to be in the front stream. For deques, the notion of perfect balance is for the
elements to be evenly divided between the front and rear streams. Since we
cannot afford to restore perfect balance after every operation, we will settle
for guaranteeing that neither stream is more than about c times longer than
the other, for some constant c > 1. Specifically, we maintain the following
balance invariant:

| f | < c | r | + l A | r |<c | f | + l

The " + 1 " in each term allows for the only element of a singleton deque to be
stored in either stream. Note that both streams are non-empty whenever the
deque contains at least two elements. Whenever the invariant would otherwise
be violated, we restore the deque to perfect balance by transferring elements
from the longer stream to the shorter stream until both streams have the same
length.

Using these ideas, we can adapt either the banker's queues of Section 6.3.2
or the physicist's queues of Section 6.4.2 to obtain deques that support every
operation in 0(1) amortized time. Because the banker's queues are slightly
simpler, we choose to work with that implementation.

The type of banker's deques is precisely the same as for banker's queues.

type a Queue = int x a Stream x int x a Stream

The functions on the front element are defined as follows:
fun cons (x, (lent, f, lenr, r)) = check (/enf+1, $CONS (X, f), lenr, r)
fun head (lenf, $NIL, lenr, $CONS (X, _)) = x

| head (lenf, $CONS (x, f), lenr, r) = x
fun tail (lenf, $NIL, lenr, $CONS (X, _)) = empty

| tail (lenf, $CONS (X, f), lenr, r) = check (lenf-1, f, lenr, r)

The first clauses of head and tail handle singleton deques where the single
element is stored in the rear stream. The functions on the rear element —
snoc, last, and init — are defined symmetrically.

The interesting portion of this implementation is the check helper function,
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which restores the deque to perfect balance when one stream becomes too long
by first truncating the longer stream to half the combined length of both streams
and then transferring the remaining elements of the longer stream onto the back
of the shorter stream. For example, if |/| > c\r\ + 1, then check replaces f with
take (/, f) and r with r -H- reverse (drop (/, f)), where / = [(\f\ + |r | ) /2j . The
full definition of check is

fun check (q as (lent, f, lenr, r)) =
if lenf > c*lenr + 1 then

let val / = (lenf + lenr) div 2 val j = lenf + lenr - i
val f = take (/, f) val r' = r -H- reverse (drop (/, f))

In (/.f, 7 ,0 end
else if lenr > c*lenf + 1 then

let val j = (lenf + lenr) div 2 val / = lenf + lenr - j
val r' = take (j, r) val f = f -H- reverse (drop (J, r))

in (/, f'jy) end
else Q

This implementation is summarized in Figure 8.3.

Remark Because of the symmetry of this implementation, we can reverse a
deque in 0(1) time by simply swapping the roles of f and r.

fun reverse (lenf, f, lenr, r) = (lenr, r, lenf, f)

Many other implementations of deques share this property [Hoo92, CG93].
Rather than essentially duplicating the code for the functions on the front ele-
ment and the functions on the rear element, we could define the functions on
the rear element in terms of reverse and the corresponding functions on the
front element. For example, we could implement init as

fun inlt q = reverse (tail (reverse q))

Of course, init will be slightly faster if implemented directly. O

To analyze these deques, we again turn to the banker's method. For both
the front and rear streams, let d(i) be the number of debits on element i of the
stream, and let D(i) = ^*-_0 d(j). We maintain the debit invariants that, for
both the front and rear streams,

D(i) < min(ci + i, cs + 1 - t)

where s = min(|f|, \r\) and t = max(|f|, \r\). Since d(0) = 0, the heads of
both streams are free of debits and so can be accessed at any time by head or
last.

Theorem 8.1 cons and tail (symmetrically, snoc and init) maintain the debit
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functor BankersDeque (val c : int) : DEQUE = (* c> 1 *)
struct

type a Queue = int x a Stream x int x a Stream

val empty = (0, $NIL, 0, $NIL)
fun isEmpty {lent f, lenr, r) = (lenf+lenr = 0)
fun check (q as (lenf, f, lenr, r)) =

if lenf > c*lenr + 1 then
let val / = (lenf + lenr) div 2 val j = lenf + lenr - i

val f = take (/, f) val r' = r -H- reverse (drop (/, f))
in (/, f, j, r') end

else if lenr > c*lenf + 1 then
let val j = (lenf + lenr) div 2 val / = lenf + lenr - j

val r' = take (j, r) val f' = f -H- reverse (drop (/, r))
in(/, f',j, r;)end

else q
fun cons (x, (lenf, f, lenr, r)) = check (lenf+^, $CONS (X, f), lenr, r)
fun head (lenf, $NIL, lenr, $NIL) = raise EMPTY

| head (lenf, $NIL, lenr, $CONS (X, _)) = x
| head (lenf, $CONS (X, f), lenr, r) = x

fun tail (lenf, $NIL, lenr, $NIL) = raise EMPTY
| tail (lenf, $NIL, lenr, $CONS (X, _)) = empty
| tail (lenf, $CONS (X, f), lenr, r) = check (/enf-1, f7, lenr, r)

... snoc, last, and init defined symmetrically...
end

Figure 8.3. An implementation of deques based on lazy rebuilding and the banker's
method.

invariants on both the front and rear streams by discharging at most 1 and
c + 1 debits per stream, respectively.

Proof Similar to the proof of Theorem 6.1 on page 66. •

By inspection, every operation has an 0(1) unshared cost, and by Theo-
rem 8.1, every operation discharges no more than 0(1) debits. Therefore,
every operation runs in O(l) amortized time.

Exercise 8.5 Prove Theorem 8.1.

Exercise 8.6 Explore the tradeoffs in the choice of the balance constant c.
Construct a sequence of operations for which the choice c = 4 would be sig-
nificantly faster than c = 2. Now, construct a sequence of operations for which
c = 2 would be significantly faster than c = 4.
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8.4.3 Real-Time Deques

Real-time deques support every operation in 0(1) worst-case time. We obtain
real-time deques from the deques of the previous section by scheduling both
the front and rear streams.

As always, the first step in applying the scheduling technique is to convert
all monolithic functions to incremental functions. In the previous implemen-
tation, the rebuilding transformation rebuilt f and r as f -H- reverse (drop (/, r))
and take (J, r) (or vice versa), take and -H- are already incremental, but reverse
and drop are monolithic. We therefore rewrite f -H- reverse (drop (J, r)) as ro-
tateDrop (f, j , r) where rotateDrop performs c steps of the drop for every step
of the -H- and eventually calls rotateRev, which in turn performs c steps of the
reverse for every remaining step of the -H-. rotateDrop can be implemented as

fun rotateDrop (f, j, r) =
if y < cthen rotateRev (f, drop (J, r), $NIL)
else let val ($CONS (X, f')) = f

in $CONS (x, rotateDrop (f, j - c, drop (c, r))) end

Initially, \r\ = c\f\ + 1 + k where 1 < k < c. Every call to rotateDrop drops
c elements of r and processes one element of f, except the last, which drops
j mod c elements of r and leaves f unchanged. Therefore, at the time of the
first call to rotateRev, \r\ = c\f\ + 1 + k —  (j mod c). It will be convenient
to insist that \r\ > c\f\, so we require that 1 + k —  (j mod c) > 0. This is
guaranteed only for c < 4. Since c must be greater than one, the only values
of c that we allow are two and three. Then we can implement rotateRev as

fun rotateRev ($NIL, r, a) = reverse r -H- a
| rotateRev ($CONS (X, f), r, a) =

$CONS (x, rotateRev (f, drop (c, r), reverse (take (c, r)) -H- a))

Note that rotateDrop and rotateRev make frequent calls to drop and reverse,
which were exactly the functions we were trying to eliminate. However, now
drop and reverse are always called with arguments of bounded size, and there-
fore execute in O(l) steps.

Once we have converted the monolithic functions to incremental functions,
the next step is to schedule the execution of the suspensions in f and r. We
maintain a separate schedule for each stream and execute a few suspensions
per operation from each schedule. As with the real-time queues of Section 7.2,
the goal is to ensure that both schedules are completely evaluated before the
next rotation, so that the suspensions that are forced within rotateDrop and
rotateRev are guaranteed to have already been memoized.

Exercise 8.7 Show that executing one suspension per stream per insertion and
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functor RealTimeDeque (val c : int): DEQUE = (* c = 2orc= 3 *)
struct

type a Queue =
int x a Stream x a Stream x int x a Stream x a Stream

val empty = (0, $NIL, $NIL, 0, $NIL, $NIL)
fun isEmpty (lent, f, sf, lenr, r, sr) = (lenf+lenr = 0)

fun exed ($CONS (X, S)) = s
| exed s = s

fun exec2 s = exed (exed s)
fun rotateRev ($NIL, r, a) = reverse r -H- a

| rotateRev ($CONS (X, 0, r, a) =
$CONS (x, rotateRev (f, drop (c, r), reverse (take (c, r)) -H- a))

fun rotateDrop (f, j, r) =
if y < cthen rotateRev (f, drop (/, r), $NIL)
else let val ($CONS (X, f')) = f

in $CONS (x, rotateDrop (f, j - c, drop (c, r))) end
fun check {q as (lenf, f, sf, lenr, r, sr)) =

if lenf > c*lenr + 1 then
let val / = (lenf + lenr) div 2 val j = lenf + lenr - i

val f = take (/, 0 val r' = rotateDrop (r, i, f)
in (/, f,r, j,r',r') end

else if lenr > c*lenf + 1 then
let val j = (lenf + lenr) div 2 val / = lenf + lenr - j

val r1 = take (j, r) val f = rotateDrop (f, j, r)
i n ( / , f',f, j,r',r') end

else q
fun cons (x, (lenf, f, sf, lenr, r, sr)) =

check (lenf+"\, $CONS (X, f), exed sf, lenr, r, exed sr)
fun head (lenf, $NIL, sf, /enr, $NIL, sr) = raise EMPTY

| head (lenf, $NIL, sf, lenr, $CONS (X, _), sr) = x
j head (/enf, $CONS (X, f), sf, lenr, r, sr) = x

fun tail (lenf, $NIL, sf, /enr, $NIL, sr) = raise EMPTY
| tail (lenf, $NIL, sf, lenr, $CONS (X, _), sr) = empty
j tail (lenf, $CONS (X, f), sf, lenr, r, sr) =

check (lenf-A, f, exec2 sf, lenr, r, exec2 sr)

... snoc, last, and init defined symmetrically...
end

Figure 8.4. Real-time deques via lazy rebuilding and scheduling.

two suspensions per stream per deletion is enough to guarantee that both sched-
ules are completely evaluated before the next rotation. O

This implementation is summarized in Figure 8.4.
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8.5 Chapter Notes
Global Rebuilding Overmars introduced global rebuilding in [Ove83]. It has
since been used in many situations, including real-time queues [HM81], real-
time deques [Hoo82, GT86, Sar86, CG93], catenable deques [BT95], and the
order maintenance problem [DS87].

Deques Hood [Hoo82] first modified the real-time queues of [HM81] to ob-
tain real-time deques based on global rebuilding. Several other researchers
later duplicated this work [GT86, Sar86, CG93]. These implementations are
all similar to techniques used to simulate multihead Turing machines [Sto70,
FMR72, LS81]. Hoogerwoord [Hoo92] proposed amortized deques based on
batched rebuilding, but, as always with batched rebuilding, his implementation
is not efficient when used persistently. The real-time deques in Figure 8.4 first
appeared in [Oka95c].

Coroutines and Lazy Evaluation Streams (and other lazy data structures)
have frequently been used to implement a form of coroutining between the pro-
ducer of a stream and the consumer of a stream. Landin [Lan65] first pointed
out this connection between streams and coroutines. See Hughes [Hug89] for
some compelling applications of this feature.





9
Numerical Representations

Consider the usual representations of lists and natural numbers, along with
several typical functions on each data type.

datatype a List = datatype Nat =
NIL ZERO

| CONS o f a x a List | Succ of Nat

fun tail (CONS (X, XS)) = xs fun pred (Succ n) = n
fun append (NIL, ys) = ys fun plus (ZERO, n) = n

| append (CONS (X, XS), ys) = | plus (Succ m, n) =
CONS (X, append (xs, ys)) Succ (plus (m, n))

Other than the fact that lists contain elements and natural numbers do not, these
implementations are virtually identical. Binomial heaps exhibit a similar rela-
tionship with binary numbers. These examples suggest a strong analogy be-
tween representations of the number n and representations of container objects
of size n. Functions on the container strongly resemble arithmetic functions on
the number. For example, inserting an element resembles incrementing a num-
ber, deleting an element resembles decrementing a number, and combining
two containers resembles adding two numbers. This analogy can be exploited
to design new implementations of container abstractions — simply choose a
representation of natural numbers with certain desired properties and define
the functions on the container objects accordingly. Call an implementation
designed in this fashion a numerical representation.

In this chapter, we explore a host of numerical representations for two dif-
ferent abstractions: heaps and random-access lists (also known as flexible ar-
rays). These abstractions stress different sets of arithmetic operations. Heaps
require efficient increment and addition functions, whereas random-access lists
require efficient increment and decrement functions.

115
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9.1 Positional Number Systems

A positional number system [Knu73b] is a notation for writing a number as a
sequence of digits 60 . . . &m-i • The digit 60 is called the least significant digit
and the digit 6m_i is called the most significant digit. Except when writing
ordinary, decimal numbers, we will always write sequences of digits from least
significant to most significant.

Each digit 62 has weight Wi, so the value of the sequence b0 .. . 6m_i is
YlT^o1 ^iwi- F° r any given positional number system, the sequence of weights
is fixed, as is the set of digits A from which each 6« is chosen. For unary
numbers, wi = 1 and A = {1} for all i, and for binary numbers wi = T and
Di — {0,1}. (By convention, we write all digits in typewriter font except for
ordinary, decimal digits.) A number is said to be written in base B if wi — B%

and Di\ — { 0 , . . . , B — 1}. Usually, but not always, weights are increasing
sequences of powers, and the set A* is the same for every digit.

A number system is said to be redundant if there is more than one way to
represent some numbers. For example, we can obtain a redundant system of
binary numbers by taking wi = 2l and A = {0 ,1 , 2}. Then the decimal
number 13 can be written 1011, or 1201, or 122. By convention, we dis-
allow trailing zeros, since otherwise almost all number systems are trivially
redundant.

Computer representations of positional number systems can be dense or
sparse. A dense representation is simply a list (or some other kind of sequence)
of digits, including those digits that happen to be zero. A sparse representation,
on the other hand, elides the zeros. It must then include information on either
the rank (i.e., the index) or the weight of each non-zero digit. Figure 9.1 shows
two different representations of binary numbers in Standard ML—one dense
and one sparse—along with increment, decrement, and addition functions on
each. Among the numerical representations that we have already seen, sched-
uled binomial heaps (Section 7.3) use a dense representation, while binomial
heaps (Section 3.2) and lazy binomial heaps (Section 6.4.1) use sparse repre-
sentations.

9.2 Binary Numbers

Given a positional number system, we can implement a numerical representa-
tion based on that number system as a sequence of trees. The number and sizes
of the trees representing a collection of size n are governed by the represen-
tation of n in the positional number system. For each weight Wi, there are 6*
trees of that size. For example, the binary representation of 73 is 1001001,
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structure Dense =
struct

datatype Digit = ZERO | ONE
type Nat = Digit list (* increasing order of significance *)
fun inc[] = [ONE]

| inc (ZERO :: ds) = ONE :: ds
| inc (ONE :: ds) = ZERO :: inc ds

fun dec [ONE] = []
| dec (ONE :: ds) = ZERO :: ds
| dec (ZERO :: ds) = O N E :: dec ds

f u n a d d (ds, []) = ds
| add ([],ds) = ds
| add (d :: dsi, ZERO :: ds2) = d :: add
| add (ZERO :: dsi, d : : ds2) = d :: add
| add (ONE :: dsi, O N E :: ds2) =

ZERO :: inc (add (dsi, ds2))
end

(*

(*

(dsu
(dsu

(*

carry *)

borrow*)

ds2)
ds2)

carry*)

structure SparseByWeight =
struct

type Nat = int list (* increasing list of weights, each a power of two *)

fun carry (iv, []) = [w]
| carry (w, ws as w':: ws') =

if w < w' then w :: ws else carry (2*w, ws')

fun borrow (w, ws as w':: ws') =
if w = w' then ws! eise w :: borrow (2*w, ws)

fun inc ws = carry (1, ws)
fun dec ws = borrow (1, ws)
f u n a d d (ws, []) = ws

| add ([ ], ws) = ws
| add (m as W\ :: ws\, nasw2:: ws2) =

if ivi < w2 then Wi :: add (wsi, n)
else if w2 < wx then w2:: add (m, ws2)
else carry (2*wu add (wsu ws2))

end

Figure 9.1. Two implementations of binary numbers.

so a collection of size 73 in a binary numerical representation would contain
three trees, of sizes 1, 8, and 64, respectively.

Trees in numerical representations typically exhibit a very regular structure.
For example, in binary numerical representations, all trees have sizes that are
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(a)

Figure 9.2. Three trees of rank 3: (a) a complete binary leaf tree, (b) a binomial tree,
and (c) a pennant.

powers of two. Three common kinds of trees that exhibit this structure are com-
plete binary leaf trees [KD96], binomial trees [Vui78], and pennants [SS90].

Definition 9.1 (Complete binary leaf trees) A complete binary tree of rank 0
is a leaf and a complete binary tree of rank r > 0 is a node with two children,
each of which is a complete binary tree of rank r — 1. A leaf tree is a tree
that contains elements only at the leaves, unlike ordinary trees that contain
elements at every node. A complete binary tree of rank r has 2 r + 1 — 1 nodes,
but only 2r leaves. Hence, a complete binary leaf tree of rank r contains 2r

elements.

Definition 9.2 (Binomial trees) A binomial tree of rank r is a node with r
children c i . . . c r, where c,- is a binomial tree of rank r — i. Alternatively, a
binomial tree of rank r > 0 is a binomial tree of rank r — 1 to which another
binomial tree of rank r - 1 has been added as the leftmost child. From the
second definition, it is easy to see that a binomial tree of rank r contains 2r

nodes.

Definition 9.3 (Pennants) A pennant of rank 0 is a single node and a pennant
of rank r > 0 is a node with a single child that is a complete binary tree of
rank r — 1. The complete binary tree contains T — 1 elements, so the pennant
contains T elements.

Figure 9.2 illustrates the three kinds of trees. Which kind of tree is superior
for a given data structure depends on the properties the data structure must
maintain, such as the order in which elements should be stored in the trees. A
key factor in the suitability of a particular kind of tree for a given data structure
is how easily the tree supports functions analogous to carries and borrows in
binary arithmetic. When simulating a carry, we link two trees of rank r to form
a tree of rank r + 1. Symmetrically, when simulating a borrow, we unlink a
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(a) (b)

(c)

Figure 9.3. Linking two trees of rank r to obtain a tree of rank r + 1 for (a) complete
binary leaf trees, (b) binomial trees, and (c) pennants.

tree of rank r > 0 to obtain two trees of rank r —  1. Figure 9.3 illustrates the
link operation (denoted 0 ) on each of the three kinds of trees. Assuming that
elements are not rearranged, each of the three kinds of trees can be linked or
unlinked in 0(1) time.

We have already seen several variations of heaps based on binary arithmetic
and binomial trees. We next explore a simple numerical representation for
random-access lists. Then we discuss several variations of binary arithmetic
that yield improved asymptotic bounds.

9.2.1 Binary Random-Access Lists

A random-access list, also called a one-sided flexible array, is a data structure
that supports array-like lookup and update functions, as well as the usual cons,
head, and tail functions on lists. A signature for random-access lists is shown
in Figure 9.4.

We implement random-access lists using a binary numerical representation.
A binary random-access list of size n contains a tree for each one in the binary
representation of n. The rank of each tree corresponds to the rank of the corre-
sponding digit; if the zth bit of n is one, then the random-access list contains a
tree of size 2l. We can use any of the three kinds of trees, and either a dense or
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signature RANDOMACCESSLIST =
sig

type a RList
val empty
val isEmpty

val cons
val head
val tail

(* head
val lookup
val update

a RLIst
a RList ->• bool
a x a RList -> a RList
a RList ->• a
a RList ->• a RList
and tail raise EMPTY if list is empty*)
int x a RList -> a
int x a x a RList -> a RList

end
(* lookup and update raise SUBSCRIPT if index is out of bounds *)

Figure 9.4. Signature for random-access lists.

A ./Cx
0 1 2 3 4 5 6

Figure 9.5. A binary random-access list containing the elements 0... 6.

a sparse representation. For this example, we choose the simplest combination
of features: complete binary leaf trees and a dense representation. The type
a RList is thus

datatype a Tree = LEAF of a | NODE of int x a Tree x a Tree
datatype a Digit = ZERO | ONE of a Tree
type a RList = a Digit list

The integer in each node is the size of the tree. This number is redundant since
the size of every tree is completely determined by the size of its parent or by its
position in the list of digits, but we include it anyway for convenience. Trees
are stored in increasing order of size, and the order of elements is left-to-right,
both within and between trees. Thus, the head of the random-access list is the
leftmost leaf of the smallest tree. Figure 9.5 shows a binary random-access
list of size 7. Note that the maximum number of trees in a list of size n is
[log(n + 1) J and the maximum depth of any tree is [log n\.

Inserting an element into a binary random-access list (using cons) is analo-
gous to incrementing a binary number. Recall the increment function on dense
binary numbers:
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fun inc[] = [ONE]
| inc (ZERO :: ds) = O N E :: ds
| inc (ONE :: ds) = ZERO :: inc ds

To add a new element to the front of the list, we first convert the element into
a leaf, and then insert the leaf into the list of trees using a helper function
consTree that follows the rules of inc.

fun cons (x, ts) = consTree (LEAF X, ts)

fun consTree (t, []) = [ONE t]
| consTree (t, ZERO :: ts) = ONE t:: ts
| consTree (tu O N E t2 :: ts) = ZERO :: consTree (link (tu t2), ts)

The link helper function constructs a new tree from two equal-sized subtrees
and automatically calculates the size of the new tree.

Deleting an element from a binary random-access list (using tail) is analo-
gous to decrementing a binary number. Recall the decrement function on dense
binary numbers:

fun dec [ONE] = []
| dec (ONE :: ds) = ZERO :: ds
| dec (ZERO :: ds) = ONE :: dec ds

The corresponding function on lists of trees is unconsTree. When applied to a
list whose first digit has rank r, unconsTree returns a pair containing a tree of
rank r, and the new list without that tree.

fun unconsTree [ONE t] = (t, [])
| unconsTree (ONE t:: ts) = (t, ZERO :: ts)
| unconsTree (ZERO :: ts) =

let val (NODE (_, tu fc), ts') = unconsTree ts
in(f i ,ONEf2 " te;)end

The head and tail functions remove the leftmost leaf using unconsTree and
then either return its element or discard it, respectively.

fun head ts = let val (LEAF X, _) = unconsTree ts in x end
fun tail ts = let val (_, ts') = unconsTree ts in ts' end

The lookup and update functions do not have analogous arithmetic opera-
tions. Rather, they take advantage of the organization of binary random-access
lists as logarithmic-length lists of logarithmic-depth trees. Looking up an el-
ement is a two-stage process. We first search the list for the correct tree, and
then search the tree for the correct element. The helper function lookupTree
uses the size field in each node to determine whether the ith element is in the
left subtree or the right subtree.
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fun lookup (/, ZERO :: ts) = lookup (/, ts)
| lookup (/, ONE t:: ts) =

if / < size t then lookupTree (/, t) else lookup (/' - size t, ts)

fun lookupTree (0, LEAF X) = x
| lookupTree (/, NODE (W, h, t2)) =

if / < w div 2 then lookupTree (/, h)
else lookupTree (/ - w div 2, t2)

update works in same way but also copies the path from the root to the updated
leaf.

fun update (/, y, ZERO :: ts) = ZERO :: update (/', y, ts)
| update (/, y, O N E t:: ts) =

if / < size t then ONE (updateTree (/, y, t)):: ts
else ONE t:: update (/ - size t, y, ts)

fun updateTree (0, y, LEAF X) = LEAF y
| updateTree (/, y, NODE (W, tu t2)) =

if / < w div 2 then NODE (W, updateTree (/, y, h), t2)
else NODE (W, tlf updateTree (/ - w div 2, y, t2))

The complete code for this implementation is shown in Figure 9.6.
cons, head, and tail perform at most 0(1) work per digit and so run in

O(logn) worst-case time, lookup and update take at most O(log77) time to
find the right tree, and then at most O(log n) time to find the right element in
that tree, for a total of O(log n) worst-case time.

Exercise 9.1 Write a function drop of type int x a RList ->- a RList that deletes
the first k elements of a binary random-access list. Your function should run
in O(logn) time.

Exercise 9.2 Write a function create of type int x a -> a RList that creates a
binary random-access list containing n copies of some value x. This function
should also run in O(logn) time. (You may find it helpful to review Exer-
cise 2.5.)

Exercise 9.3 Reimplement BinaryRandomAccessList using a sparse represen-
tation such as

datatype a Tree = LEAF of a \ NODE of int x a Tree x a Tree
type a RList = a Tree list

9.2.2 Zeroless Representations
One disappointing aspect of binary random-access lists is that the list functions
cons, head, and tail run in O(logn) time instead of 0(1) time. Over the next
three sections, we study variations of binary numbers that improve the running
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structure BinaryRandomAccessList: RANDOMACCESSLIST =
struct

datatype a Tree = LEAF of a | NODE of int x a Tree x a Tree
datatype a Digit = ZERO | O N E of a Tree
type a RList = a Digit list

val empty = [ ]
fun isEmpty ts = null ts
fun size (LEAF X) = 1

| size (NODE (W, tu t2)) = w
fun link (tu t2) = NODE (size fi+size t2, h, t2)
fun consTree (t, []) = [ONE t]

| consTree (t, ZERO :: ts) = O N E t:: ts
| consTree (tu ONE t2:: ts) = ZERO :: consTree (link (tu t2), ts)

fun unconsTree [] = raise EMPTY
| unconsTree [ONE t] = (t, [])
| unconsTree (ONE t:: ts) = (t, ZERO :: ts)
| unconsTree (ZERO :: ts) =

let val (NODE (_, tu t2), tsf) = unconsTree ts
in(f i,ONE t2 :: ts') end

fun cons (x, ts) = consTree (LEAF X, ts)
fun head ts = let val (LEAF X, _) = unconsTree ts in x end
fun tail ts = let val (_, tsf) = unconsTree ts in ts' end
fun lookupTree (0, LEAF X) = X

| lookupTree (/, LEAF X) = raise SUBSCRIPT
| lookupTree (/, NODE (W, tu t2)) =

if / < w div 2 then lookupTree (/', ti)
else lookupTree (/ - w div 2, t2)

fun updateTree (0, y, LEAF X) = LEAF y
| updateTree (/, y, LEAF X) = raise SUBSCRIPT
| updateTree (/, y, NODE (W, f i , t2)) =

if / < w div 2 then NODE (W, updateTree (/, y, fi), ?2)
else NODE (W, h, updateTree (/ - w div 2, y, t2))

fun lookup (/, []) = raise SUBSCRIPT
| lookup (/', ZERO :: ts) = lookup (/, ts)
j lookup (/', ONE t:: te) =

if / < size t then lookupTree (/, t) else lookup (/' - size t, ts)
fun update (/, y, []) = raise SUBSCRIPT

| update (/, y, ZERO :: ts) = ZERO :: update (/, y, ts)
| update (/, y, ONE f:: ts) =

if / < size t then ONE (updateTree (/, y, f)) :: ts
else O N E f:: update (/ - size t, y, ts)

end

Figure 9.6. Binary random-access lists.
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times of all three functions to O(l). We begin in this section with the head
function.

Remark An obvious approach to making head run in O(l) time is to store
the first element separately from the rest of the list, a la the ExplicitMin functor
of Exercise 3.7. Another solution is to use a sparse representation and either
binomial trees or pennants, so that the head of the list is the root of the first tree.
The solution we explore in this section has the advantage that it also improves
the running times of lookup and update slightly. O

Currently, head is implemented via a call to unconsTree, which extracts the
first element and rebuilds the list without that element. This approach yields
compact code since unconsTree supports both head and tail, but wastes time
building lists that are immediately discarded by head. For greater efficiency,
we should implement head directly. As a special case, head can easily be made
to run in O(l) time whenever the first digit is non-zero.

fun head (ONE (LEAF X) :: _) = x

Inspired by this rule, we seek to arrange that the first digit is always non-zero.
There are quite a few ad hoc solutions that satisfy this criterion, but a more
principled solution is to use a zeroless representation, in which every digit is
non-zero.

Zeroless binary numbers are constructed from ones and twos instead of zeros
and ones. The weight of the ith digit is still 2l. Thus, for example, the decimal
number 16 can be written 2111 instead of 00001. We can implement the
increment function on zeroless binary numbers as follows:

datatype Digit = ONE | TWO
type Nat = Digit list
fun inc[] = [ONE]

| inc (ONE :: ds) = Two :: ds
| inc (Two :: ds) = ONE :: inc ds

Exercise 9.4 Write decrement and addition functions for zeroless binary num-
bers. Note that carries during additions can involve either ones or twos. O

Now, if we replace the type of digits in binary random-access lists with

datatype a Digit = ONE of a Tree | Two of a Tree x a Tree

then we can implement head as

fun head (ONE (LEAF X) :: _) = x
| head (TWO(LEAF X, LEAF y):: _) = x
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which clearly runs in O(l) worst-case time.

Exercise 9.5 Implement the remaining functions for this type.

Exercise 9.6 Show that lookup and update on element i now run in O(log i)
time.

Exercise 9.7 Under certain conditions, red-black trees (Section 3.3) can be
viewed as a numerical representation. Compare and contrast zeroless binary
random-access lists to red-black trees in which insertions are restricted to the
leftmost position. Focus on the cons and insert functions and on the shape
invariants of the structures produced by these functions.

9.2.3 Lazy Representations
Suppose we represent binary numbers as digit streams rather than digit lists.
Then, the increment function becomes

fun lazy inc ($NIL) = $CONS (ONE, $NIL)
| inc ($CONS (ZERO, ds)) = $CONS (ONE, ds)
| inc ($CONS (ONE, ds)) = $CONS (ZERO, inc ds)

Note that this function is incremental.
In Section 6.4.1, we saw how lazy evaluation could be used to make in-

sertions into binomial heaps run in 0(1) amortized time, so it should be no
surprise that this version of inc also runs in O(l) amortized time. We can
prove this using the banker's method.

Proof Allow one debit on each ZERO and zero debits on each ONE. Suppose
ds begins with k ONES followed by a ZERO. Then inc ds changes each of these
ONES to a ZERO and the ZERO to a ONE. Allocate a new debit for each of
these steps. Now, each of the ZEROS has a single debit, but the ONE has two
debits: the debit inherited from the original suspension at that location plus the
newly created debit. Discharging both debits restores the invariant. Since the
amortized cost of a function is its unshared cost (in this case 0(1)) plus the
number of debits it discharges (in this case two), inc runs in 0(1) amortized
time. •

Now, consider the decrement function.

fun lazy dec ($CONS (ONE, $NIL)) = $NIL
| dec ($CONS (ONE, ds)) = $CONS (ZERO, ds)
| dec ($CONS (ZERO, ds)) = $CONS (ONE, dec ds)
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Since this function follows the same pattern as inc, but with the roles of the dig-
its reversed, we would expect that a similar proof would yield a similar bound.
And, in fact, it does provided we do not use both increments and decrements.
However, if we use both functions, that at least one must be charged O(log n)
amortized time. To see why, consider a sequence of increments and decre-
ments that cycle between 2k —  I and 2k. In that case, every operation touches
every digit, taking O(n log n) time altogether.

But didn't we prove that both functions run in O(l) amortized time? What
went wrong? The problem is that the two proofs require contradictory debit
invariants. To prove that inc runs in 0(1) amortized time, we require that each
ZERO has one debit and each ONE has zero debits. To prove that dec runs in
0(1) amortized time, we require that each ONE has one debit and each ZERO

has zero debits.
The critical property that inc and dec both satisfy when used without the

other is that at least half the operations that reach a given position in the stream
terminate at that position. In particular, every inc or dec processes the first
digit, but only every other operation processes the second digit. Similarly,
every fourth operation processes the third digit, and so on. Intuitively, then,
the amortized cost of a single operation is approximately

0(1 + 1/2 + 1/4 + 1/8 +•••)  = 0(1).

Classify the possible values of a digit as either safe or dangerous such that
a function that reaches a safe digit always terminates there, but a function
that reaches a dangerous digit might continue on to the next digit. To achieve
the property that no two successive operations at a given index both proceed
to the next index, we must guarantee that, whenever an operation processes
a dangerous digit and continues on, it transforms the dangerous digit into a
safe digit. Then, the next operation that reaches this digit is guaranteed not to
continue. We can formally prove that every operation runs in O(l) amortized
time using a debit invariant in which a safe digit is allowed one debit, but a
dangerous digit is allowed zero debits.

Now, the increment function requires that the largest digit be classified as
dangerous, and the decrement function requires that the smallest digit be clas-
sified as dangerous. To support both functions simultaneously, we need a third
digit to be the safe digit. Therefore, we switch to redundant binary numbers,
in which each digit can be zero, one, or two. We can then implement inc and
dec as follows:

datatype Digit = ZERO | ONE | TWO
type Nat = Digit Stream
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fun lazy inc ($NIL) = $CONS (ONE, $NIL)
| inc ($CONS (ZERO, ds)) = $CONS (ONE, ds)
| inc ($CONS (ONE, ds)) = $CONS (TWO, ds)
| inc ($CONS (Two, ds)) = $CONS (ONE, inc ds)

fun lazy dec ($CONS (ONE, $NIL)) = $ N I L
| dec ($CONS (ONE, ds)) = $CONS (ZERO, ds)
| dec ($CONS (Two, ds)) = $CONS (ONE, ds)
| dec ($CONS (ZERO, ds)) = $CONS (ONE, dec ds)

Note that the recursive cases of inc and dec—on Two and ZERO, respectively—
both produce ONES. ONE is classified as safe, and ZERO and Two are classified
as dangerous. To see how redundancy helps us, consider incrementing the re-
dundant binary number 222222 to get 1111111. This operation takes seven
steps. However, decrementing this value does not return to 222222. Instead,
it yields 0111111 in only one step. Thus, alternating increments and decre-
ments no longer pose a problem.

Lazy binary numbers can serve as template for many other data structures.
In Chapter 11, we will generalize this template into a design technique called
implicit recursive slowdown.

Exercise 9.8 Prove that inc and dec both run in 0(1) amortized time using a
debit invariant that allows one debit per ONE and zero debits per ZERO or Two.

Exercise 9.9 Implement cons, head, and tail for random-access lists based on
zeroless redundant binary numbers, using the type

datatype a Digit =
ONE of a Tree

| Two of a Tree x a Tree
| THREE of a Tree x a Tree x a Tree

type a RList = Digit Stream

Show that all three functions run in 0(1) amortized time.

Exercise 9.10 As demonstrated by scheduled binomial heaps in Section 7.3,
we can apply scheduling to lazy binary numbers to achieve O(l) worst-case
bounds. Reimplement cons, head, and tail from the preceding exercise so that
each runs in 0(1) worst-case time. You may find it helpful to have two distinct
Two constructors (say, Two and Two7) so that you can distinguish between
recursive and non-recursive cases of cons and tail.

9.2.4 Segmented Representations
Another variation of binary numbers that yields 0(1) worst-case bounds is
segmented binary numbers. The problem with ordinary binary numbers is that
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carries and borrows can cascade. For example, incrementing 2^ —  1 causes
k carries in binary arithmetic. Symmetrically, decrementing 2k causes k bor-
rows. Segmented binary numbers solve this problem by allowing multiple
carries or borrows to be executed in a single step.

Notice that incrementing a binary number takes k steps whenever the num-
ber begins with a block of k ones. Similarly, decrementing a binary number
takes k steps whenever the number begins with a block of k zeros. Segmented
binary numbers group contiguous sequences of identical digits into blocks so
that we can execute a carry or borrow on an entire block in a single step. We
represent segmented binary numbers as alternating blocks of zeros and ones
using the following datatype:

datatype DigitBlock = ZEROS of int | ONES of int
type Nat = DigitBlock list

The integer in each DigitBlock represents the block's length.
We use the helper functions zeros and ones to add new blocks to the front of

a list of blocks. These functions merge adjacent blocks of the same digit and
discard empty blocks. In addition, zeros discards any trailing zeros.

fun zeros (/, []) = []
| zeros (0, blks) = blks
| zeros (/, Z E R O S ; :: blks) = ZEROS (/+/):: blks
| zeros (/', blks) = ZEROS /: : blks

fun ones (0, blks) = blks
| ones (/', O N E S / :: blks) = ONES (/+/):: blks
| ones (/, blks) = ONES /:: blks

Now, to increment a segmented binary number, we inspect the first block of
digits (if any). If the first block contains zeros, then we replace the first zero
with a one, creating a new singleton block of ones and shrinking the block of
zeros by one. If the first block contains i ones, then we perform i carries in a
single step by changing the ones to zeros and incrementing the next digit.

fun inc[] = [ONES 1]
| inc (ZEROS /:: blks) = ones (1, zeros ( / - 1 , blks))
| inc (ONES / : : blks) = ZEROS / : : inc blks

In the third line, we know the recursive call to inc cannot loop because the next
block, if any, must contain zeros. In the second line, the helper functions deal
gracefully with the special case that the leading block contains a single zero.

Decrementing a segmented binary number is almost exactly the same, but
with the roles of zeros and ones reversed.

fun dec (ONES /:: blks) = zeros (1, ones ( / - 1 , blks))
| dec (ZEROS / : : blks) = ONES / : : dec blks
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Again, we know that the recursive call cannot loop because the next block must
contain ones.

Unfortunately, although segmented binary numbers support inc and dec in
0(1) worst-case time, numerical representations based on segmented binary
numbers end up being too complicated to be practical. The problem is that
the idea of changing an entire block of ones to zeros, or vice versa, does not
translate well to the realm of trees. More practical solutions can be obtained by
combining segmentation with redundant binary numbers. Then we can return
to processing digits (and therefore trees) one at a time. What segmentation
gives us is the ability to process a digit in the middle of a sequence, rather than
only at the front.

For example, consider a redundant representation in which blocks of ones
are represented as a segment.

datatype Digits = ZERO | ONES of int | Two
type Nat = Digits list

We define a helper function ones to handle the details of merging adjacent
blocks and deleting empty blocks.

fun ones (0, ds) = ds
| ones (/, O N E S / :: ds) = ONES (/+/) :: ds
| ones (/, ds) = ONES / : : ds

Think of a Two as representing a carry in progress. To prevent cascades of
carries, we must guarantee that we never have more than one Two in a row.
We maintain the invariant that the last non-one digit before each Two is a
ZERO. This invariant can be characterized by either the regular expression
(0 111 01*2)* or, if we also take into account the lack of trailing zeros, the
regular expression (0*1 | 0+1*2)*. Note that the first digit is never a Two.
Thus, we can increment a number in 0(1) worst-case time by blindly incre-
menting the first digit.

fun simplelnc [] = [ONES 1]
| simplelnc (ZERO :: ds) = ones (1, ds)
| simplelnc (ONES / : : ds) = Two :: one (/-1,ds)

The third line obviously violates the invariant by producing a leading Two, but
the second line might also violate the invariant if the first non-one digit in ds
is a Two. We restore the invariant with a function fixup that checks whether
the first non-one digit is a Two. If so, fixup replaces the Two with a ZERO and
increments the following digit, which is guaranteed not to be Two.

fun fixup (Two :: ds) = ZERO :: simplelnc ds
| fixup (ONES / : : Two :: ds) = ONES / : : ZERO :: simplelnc ds
| fixup ds = ds
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The second line of fixup is where we take advantage of segmentation, by skip-
ping over a block of ones to check whether the next digit is a Two. Finally, inc
calls simplelnc, followed by fixup.

fun inc ds = fixup (simplelnc ds)

This implementation can also serve as template for many other data struc-
tures. Such a data structure comprises a sequence of levels, where each level
can be classified as green, yellow, or red. Each color corresponds to a digit in
the above implementation. Green corresponds to ZERO, yellow to ONE, and
red to Two. An operation on any given object may degrade the color of the
first level from green to yellow, or from yellow to red, but never from green
to red. The invariant is that the last non-yellow level before a red level is al-
ways green. A fixup procedure maintains the invariant by checking if the first
non-yellow level is red. If so, the fixup procedure changes the color of the level
from red to green, possibly degrading the color of the following level from
green to yellow, or from yellow to red. Consecutive yellow levels are grouped
in a block to support efficient access to the first non-yellow level. Kaplan and
Tarjan [KT95] call this general technique recursive slowdown.

Exercise 9.11 Extend binomial heaps with segmentation so that insert runs in
0(1) worst-case time. Use the type

datatype Tree = NODE of Elem.T x Tree list
datatype Digit = ZERO | ONES of Tree list | Two of Tree x Tree
type Heap = Digit list

Restore the invariant after a merge by eliminating all Twos.

Exercise 9.12 The example implementation of binary numbers based on re-
cursive slowdown supports inc in 0(1) worst-case time, but might require up
to O(logn) for dec. Reimplement segmented, redundant binary numbers to
support both inc and dec in 0(1) worst-case time by allowing each digit to be
0, 1, 2, 3, or 4, where 0 and 4 are red, 1 and 3 are yellow, and 2 is green.

Exercise 9.13 Implement cons, head, tail, and lookup for a numerical repre-
sentation of random-access lists based on the number system of the previous
exercise. Your implementation should support cons, head, and tail in 0(1)
worst-case time, and lookup in O(log i) worst-case time.

9.3 Skew Binary Numbers
In lazy binary numbers and segmented binary numbers, we have seen two
methods for improving the asymptotic behavior of the increment and decre-
ment functions from O(logn) to 0(1). In this section, we consider a third
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method, which is usually simpler and faster in practice, but which involves a
more radical departure from ordinary binary numbers.

In skew binary numbers [Mye83, Oka95b], the weight Wi of the zth digit is
2*+i _ i^ r a m e r than T as in ordinary binary numbers. Digits may be zero,
one, or two (i.e., A = {0,1,2}). For example, the decimal number 92 could
be written 002101 (least-significant digit first).

This number system is redundant, but, if we add the further constraint that
only the lowest non-zero digit may be two, then we regain unique represen-
tations. Such a number is said to be in canonical form. Henceforth, we will
assume that all skew binary numbers are in canonical form.

Theorem 9.1 (Myers [Mye83]) Every natural number has a unique skew bi-
nary canonical form.

Recall that the weight of digit i is 2 f + 1 - 1 and note that 1 + 2(2Z+1 - 1) =
2?+2 _ i. This implies that we can increment a skew binary number whose
lowest non-zero digit is two by resetting the two to zero and incrementing the
next digit from zero to one or from one to two. (The next digit cannot already
be two.) Incrementing a skew binary number that does not contain a two is
even easier — simply increment the lowest digit from zero to one or from one
to two. In both cases, the result is still in canonical form. And, assuming we
can find the lowest non-zero digit in 0(1) time, both cases take only 0(1)
time!

We cannot use a dense representation for skew binary numbers since scan-
ning for the lowest non-zero digit would take more than 0(1) time. Instead,
we choose a sparse representation, so that we always have immediate access
to the lowest non-zero digit.

type Nat = int list

The integers represent either the rank or weight of each non-zero digit. For
now, we use weights. The weights are stored in increasing order, except that
the smallest two weights may be identical, indicating that the lowest non-zero
digit is two. Given this representation, we implement inc as follows:

fun inc (ws as wx :: w2 :: rest) =
if wi = w2 then (1+Wi+w2):: rest else 1 :: ws

| inc ws= 1 :: ws

The first clause checks whether the first two weights are equal and then either
combines the weights into the next larger weight (incrementing the next digit)
or adds a new weight of 1 (incrementing the smallest digit). The second clause
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handles the case that ws is empty or contains only a single weight. Clearly, inc
runs in only O(l) worst-case time.

Decrementing a skew binary number is just as easy as incrementing a num-
ber. If the lowest digit is non-zero, then we simply decrement that digit from
two to one or from one to zero. Otherwise, we decrement the lowest non-zero
digit and reset the previous zero to two. This can be implemented as follows:

fun dec (1 :: ws) = ws
| dec (w :: ws) = (w div 2):: (w div 2):: ws

In the second line, note that if w = 2k+1 - 1, then [iv/2j = 2* - 1. Clearly,
dec also runs in only O(l) worst-case time.

9.3.1 Skew Binary Random-Access Lists
We next design a numerical representation for random-access lists, based on
skew binary numbers. The basic representation is a list of trees, with one tree
for each one digit and two trees for each two digit. The trees are maintained
in increasing order of size, except that the smallest two trees are the same size
when the lowest non-zero digit is two.

The sizes of the trees correspond to the weights in skew binary numbers, so
a tree representing the fth digit has size 2*+1 —  1. Up until now, we have mainly
considered trees whose sizes are powers of two, but we have also encountered
a kind of tree whose sizes have the desired form: complete binary trees. There-
fore, we represent skew binary random-access lists as lists of complete binary
trees.

To support head efficiently, the first element in the random-access list should
be the root of the first tree, so we store the elements within each tree in left-to-
right preorder and with the elements in each tree preceding the elements in the
next tree.

In previous examples, we have stored a size or rank in every node, even
when that information was redundant. For this example, we adopt the more
realistic approach of maintaining size information only for the root of each
tree in the list, and not for every subtree as well. The type of skew binary
random-access lists is therefore

datatype a Tree = LEAF of a | NODE of a x a Tree x a Tree
type a RList = (int x a Tree) list

Now, we can define cons in analogy to inc.

fun cons (x, ts as (wi, h):: (w2, t2):: rest) =
if iv: = w2 then (1+wi+w2, NODE (X, f i , t2)):: rest)
else(1, LEAFX) :: ts

| cons (x, ts) = (1, LEAF X) :: ts
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head and tail inspect and remove the root of the first tree, tail returns the chil-
dren of the root (if any) back to the front of the list, where they represent a new
two digit.

fun head ((1, LEAF X) :: ts) = x
| head ((w, NODE (X, h, t2)):: ts) = x

fun tail ((1, L E A F X ) : : ts) = ts
| tail ((iv, NODE (X, tu h)):: ts) = (w div 2, h):: (w div 2, t2):: ts

To lookup an element, we first search the list for the right tree, and then search
the tree for the right element. When searching a tree, we keep track of the size
of the current tree.

fun lookup (/', (w, t) :: ts) =
if / < w then lookupTree (w, i, t)
else lookup (i-w, ts)

fun lookupTree (1, 0, LEAF X) = X
| lookupTree (iv, 0, NODE (X, h, t2)) = x
| lookupTree (w, i, NODE (X, tu t2)) =

if / < w div 2 then lookupTree (w div 2, / - 1 , h)
else lookupTree (iv div 2, / - 1 - w div 2, t2)

Note that in the penultimate line, we subtract one from / because we have
skipped over x. In the last line, we subtract 1 + [w/2j from / because we
have skipped over x and all the elements in h. update and updateTree are
defined similarly, and are shown in Figure 9.7, which contains the complete
implementation.

It is easy to verify that cons, head, and tail run in 0(1) worst-case time. Like
binary random-access lists, skew binary random-access lists are logarithmic-
length lists of logarithmic-depth trees, so lookup and update run in O(logn)
worst-case time. In fact, every unsuccessful step of lookup or update discards
at least one element, so this bound can be reduced slightly to 0(min(i, log n)).

Hint to Practitioners: Skew binary random-access lists are a good choice
for applications that take advantage of both the list-like aspects and the array-
like aspects of random-access lists. Although there are better implemen-
tations of lists, and better implementations of (persistent) arrays, none are
better at both [Oka95b].

Exercise 9.14 Rewrite the HoodMelvilleQueue structure from Section 8.2.1 to
use skew binary random-access lists instead of regular lists. Implement lookup
and update functions on these queues.
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structure SkewBinaryRandomAccessList: RANDOMACCESSLIST =
struct

datatype a Tree = LEAF of a | NODE of a x a Tree x a Tree
type a RList = (int x a Tree) list (* integer is the weight of the tree *)
val empty = [ ]
fun isEmpty ts = null ts

fun cons (x, ts as (wi, h):: (w2, t2):: tsf) =
if Wi = w2 then (1+Wi+w2, NODE (X, h, t2)):: te'
else(1, LEAFX) :: ts

| cons (x, ts) = (1, LEAF X) :: ts
fun head [] = raise EMPTY

| head((1, L E A F X ) : : ts) = x
| head ((w, NODE (X, tu t2)):: ts) = x

fun tail [] = raise EMPTY
| tail ((1, L E A F X ) : : ts) = ts
I tail ((w, NODE (X, tu t2)) :: ts) = (w div 2, h):: (w div 2, t2):: te

fun lookupTree (1, 0, LEAF X) = X
| lookupTree (1, /, LEAF X) = raise SUBSCRIPT
| lookupTree (w, 0, NODE (X, tu t2)) = x
| lookupTree (w, i, NODE (X, fr, t2)) =

if / < w div 2 then lookupTree (w div 2, / - 1 , fi)
else lookupTree (i^ div 2, / - 1 - w div 2, f2)

fun updateTree (1, 0, y, LEAF X) = LEAF y
| updateTree (1, /', y, LEAF X) = raise SUBSCRIPT
| updateTree (w, 0, y, NODE (X, h, t2)) = NODE (y, f i , t2)
| updateTree (iv, /, y, NODE (X, f i , f2)) =

if / < w div 2 then NODE (X, updateTree (w div 2, / - 1 , y, fi), f2)
else NODE (X, h, updateTree (w div 2, / - 1 - w div 2, y, f2))

fun lookup (/', []) = raise SUBSCRIPT
| lookup (/, (w, t):: ts) =

if / < w then lookupTree (w, /, t)
else lookup (/'- w, ts)

fun update (/, y, []) = raise SUBSCRIPT
| update (/, y,(w, t) :: ts) =

if / < w then (w, updateTree (w, i, y, t)) :: ts
else (w, t):: update (i-w, y, ts)

end

Figure 9.7. Skew binary random-access lists.

9.3.2 Skew Binomial Heaps

Finally, we consider a hybrid numerical representation for heaps based on both
skew binary numbers and ordinary binary numbers. Incrementing a skew bi-
nary number is both quick and simple, and serves admirably as a template for
the insert function. Unfortunately, addition of two arbitrary skew binary num-
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bers is awkward. We therefore base the merge function on ordinary binary
addition, rather than skew binary addition.

A skew binomial tree is a binomial tree in which every node is augmented
with a list of up to r elements, where r is the rank of the node in question.

datatype Tree = NODE of int x Elem.T x Elem.T list x Tree list

Unlike ordinary binomial trees, the size of a skew binomial tree is not com-
pletely determined by its rank; rather the rank of a skew binomial tree deter-
mines a range of possible sizes.

Lemma 9.2 Iff is a skew binomial tree of rank r, then 2r < \t\ < 2 r + 1 - 1.

Exercise 9.15 Prove Lemma 9.2. O

Skew binomial trees may be linked or skew linked. The link function com-
bines two trees of rank r to form a tree of rank r + 1 by making the tree with
the larger root a child of the tree with the smaller root.

fun link (ti as NODE (r, x i , xsi, Ci), t2 as NODE (_, x2, xs2, c2)) =
if Elem.leq (xi, x2) then NODE (r+1, x i , xsi, t2 :: Ci)
else NODE (r+1, x2, xs2, h :: c2)

The skewLink function combines two trees of rank r with an additional element
to form a tree of rank r + 1 by first linking the two trees, and then comparing
the root of the resulting tree with the additional element. The smaller of the
two elements remains as the root, and the larger is added to the auxiliary list
of elements.

fun skewLink (x, tu t2) =
let val NODE (r, y, ys, c) = link (tu t2)
in

if Elem.leq (x, y) then NODE (r, x, y :: ys, c)
else NODE (r, y, x :: ys, c)

end

A skew binomial heap is represented as a list of heap-ordered skew binomial
trees of increasing rank, except that the first two trees may share the same rank.
Since skew binomial trees of the same rank may have different sizes, there is
no longer a direct correspondence between the trees in the heap and the digits
in the skew binary number representing the size of the heap. For example, even
though the skew binary representation of 4 is 11, a skew binomial heap of size
4 may contain one rank 2 tree of size 4; two rank 1 trees, each of size 2; a rank
1 tree of size 3 and a rank 0 tree; or a rank 1 tree of size 2 and two rank 0 trees.
However, the maximum number of trees in a heap is still (9(log n).
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The big advantage of skew binomial heaps is that we can insert a new ele-
ment in O (1) time. We first compare the ranks of the two smallest trees. If they
are the same, we skew link the new element with these two trees. Otherwise,
we make a new singleton tree and add it to the front of the list.

fun insert (x, ts as h :: t2 :: rest) =
if rank h = rank t2 then skewLink (x, tu t2):: rest
else NODE (0, x, [ ] , [ ] ) : : ts

| insert (x, ts) = NODE (0, x, [ ] , [ ] ) : : ts

The remaining functions are nearly identical to their counterparts from ordi-
nary binomial heaps. We change the name of the old merge function to merge-
Trees. It still walks through both lists of trees, performing a regular link (not a
skew link!) whenever it finds two trees of equal rank. Since both mergeTrees
and its helper function insTree expect lists of strictly increasing rank, merge
normalizes its two arguments to remove any leading duplicates before calling
mergeTrees.

fun normalize [] = []
| normalize (t:: ts) = insTree (t, ts)

fun merge (tei, te2) = mergeTrees (normalize tei, normalize ts2)

findMin and removeMinTree are completely unaffected by the switch to skew
binomial heaps since they both ignore ranks, being concerned only with the
root of each tree. deleteMin is only slightly changed. It begins the same by
removing the tree with the minimum root, reversing the list of children, and
merging the reversed children with the remaining trees. But then it reinserts
each of the elements from the auxiliary list attached to discarded root.

fun deleteMin ts =
let val (NODE (_, x, xs, tsi), ts2) = removeMinTree ts

funinsertAII([], ts) = ts
| insertAII (x :: xs, ts) = insertAII (xs, insert (x, ts))

in insertAII (xs, merge (rev tei, ts2)) end

Figure 9.8 presents the complete implementation of skew binomial heaps.
insert runs in 0(1) worst-case time, while merge, findMin, and deleteMin

run in the same time as their counterparts for ordinary binomial queues, i.e.,
O(log n) worst-case time each. Note that the various phases of deleteMin —
finding the tree with the minimum root, reversing the children, merging the
children with the remaining trees, and reinserting the auxiliary elements —
take O(log n) time each.

If desired, we can improve the running time of findMin to 0(1) using the
ExplicitMin functor of Exercise 3.7. In Section 10.2.2, we will see how to
improve the running time of merge to 0(1) as well.
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functor SkewBinomialHeap (Element: ORDERED) : HEAP =
struct

structure Elem = Element
datatype Tree = NODE of int x Elem.T x Elem.T list x Tree list
type Heap = Tree list
val empty = []
fun isEmpty ts = null ts
fun rank (NODE (r, x, xs, c)) = r
fun root (NODE (r, x, xs, c)) = x
fun link (ft as NODE (r, xu xsu Ci), t2 as NODE (_, x2, xs2, c2)) =

if Elem.leq (xi, x2) then NODE (r+1, xu xslf t2 :: Ci)
else NODE (r+1, x2, xs^, ft :: c2)

fun skewLink (x, ft, ft) =
let val NODE (r, y, ys, c) = link (ft, t2)
in

if Elem.leq (x, y) then NODE (r, x, y:: ys, c)
else NODE (r, y, x :: ys, c)

end
fun insTree (U ] ) = [fl

| insTree (f i, t2 :: fs) =
if rank h < rank t2 then fi :: t2 :: te else insTree (link (f i , f2), te)

fun mergeTrees (tsi, []) = tsi
| mergeTrees ([], te2) = ts2
| mergeTrees (tei as h :: ts[, ts2 as t2:: fs2) =

if rank h < rank f2 then h :: mergeTrees (fs}, ts2)
else if rank f2 < rank h then f2 :: mergeTrees (tei,te2)
else insTree (link (ft, f2), mergeTrees (tei, fs2))

fun normalize [] = []
| normalize (t:: te) = insTree (t, ts)

fun insert (x, ts as ft :: ft :: resf) =
if rank ft = rank ft then skewLink (x, ft, ft):: rest
else NODE (0, x, [ ] , [ ] ) : : ts

| insert (x, ts) = NODE (0, X, [ ] , [ ] ) : : ts
fun merge (tei, te2) = mergeTrees (normalize tei, normalize te2)

fun removeMinTree [] = raise EMPTY
| removeMinTree [f] = ( U D
| removeMinTree \t:: ts) =

let val (?, ts') = removeMinTree ts
in if Elem.leq (root t, root t') then (t, ts) else ( f , t:: ts') end

fun findMin ts = let val (f, _) = removeMinTree ts in root t end
fun deleteMin ts =

let val (NODE (_, x, xs, fsi), fe2) = removeMinTree ts
funinsertAII([], ts) = ts

| insertAII (x :: xs, ts) = insertAII (xs, insert (x, ts))
in insertAII (xs, merge (rev tei, ts2)) end

end

Figure 9.8. Skew binomial heaps.
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Exercise 9.16 Suppose we want a delete function of type Elem.T x Heap —>•
Heap. Write a functor that takes an implementation H of heaps and produces
an implementation of heaps that supports delete as well as all the other usual
heap functions. Use the type

type Heap = H.Heap x H.Heap

where one of the primitive heaps represents positive occurrences of elements
and the other represents negative occurrences. A negative occurrence of an ele-
ment means that that element has been deleted, but not yet physically removed
from the heap. Positive and negative occurrences of the same element cancel
each other out and are physically removed when both become the minimum
elements of their respective heaps. Maintain the invariant that the minimum
element of the positive heap is strictly smaller than the minimum element of
the negative heap. (This implementation has the curious property that an ele-
ment can be deleted before it has been inserted, but this is acceptable for many
applications.)

9.4 Trinary and Quaternary Numbers
In computer science, we are so accustomed to thinking about binary numbers,
that we sometimes forget that other bases are possible. In this section, we
consider uses of base 3 and base 4 arithmetic in numerical representations.

The weight of each digit in base k is kr, so we need families of trees with
sizes of this form. We can generalize each of the families of trees used in
binary numerical representations as follows.

Definition 9.4 (Complete fc-ary leaf trees) A complete Ar-ary tree of rank 0 is
a leaf and a complete ft-ary tree of rank r > 0 is a node with k children, each
of which is a complete ft-ary tree of rank r — 1. A complete &-ary tree of rank
r has (kr+1 — l)/(k — 1) nodes and kr leaves. A complete fc-ary leaf tree is a
complete &-ary tree that contains elements only at the leaves.

Definition 9.5 (A -nomial trees) A ft-nomial tree of rank r is a node with k — 1
children of each rank from r — 1 to 0. Alternatively, a Ar-nomial tree of rank
r > 0 is a &-nomial tree of rank r— 1 to which k—1 other ^-nomial trees of rank
r - 1 have been added as the leftmost children. From the second definition, it
is easy to see that a &-nomial tree of rank r contains kr nodes.

Definition 9.6 (&-ary pennants) A &-ary pennant of rank 0 is a single node
and a &-ary pennant of rank r > 0 is a node with k — 1 children, each of



9.4 Trinary and Quaternary Numbers 139

which is a complete Ar-ary tree of rank r — 1. Each of the subtrees contains
(kr - l)/(Ar — 1) nodes, so the entire tree contains kr nodes.

The advantage of choosing bases larger than 2 is that fewer digits are needed
to represent each number. Whereas a number in base 2 contains approxi-
mately log2 n digits, a number in base k contains approximately log^ n =
log2 nj log2 k digits. For example, base 4 uses approximately half as many
digits as base 2. On the other hand, there are now more possible values for
each digit, so processing each digit might take longer. In numerical represen-
tations, processing a digit in base k often takes about k + 1 steps, so an opera-
tion that processes every digit should take about (k + 1) log^ n = ^ \ log n
steps altogether. The following table displays values of (k + l) / log2 k for

l ) / l og 2 * 3.00 2.52 2.50 2.58 2.71 2.85 3.0

This table suggests that numerical representations based on trinary or quater-
nary numbers might be as much as 16% faster than numerical representations
based on binary numbers. Other factors, such as increased code size, tend to
make larger bases less effective as k increases, so one rarely observes speedups
that large in practice. In fact, trinary and quaternary representations often run
slower than binary representations on small data sets. However, for large data
sets, trinary and quaternary representations often yield speedups of 5 to 10%.

Exercise 9.17 Implement trinomial heaps using the type

datatype Tree = NODE of Elem.T x (Tree x Tree) list
datatype Digit = ZERO | ONE of Tree | Two of Tree x Tree
type Heap = Digit list

Exercise 9.18 Implement zeroless quaternary random-access lists using the
type

datatype a Tree = LEAF of a | NODE of a Tree vector
datatype a RList = a Tree vector list

where each vector in a NODE contains four trees, and each vector in a list
contains one to four trees.

Exercise 9.19 We can also adapt the notion of skew binary numbers to arbi-
trary bases. In skew &-ary numbers, the ith digithas weight (kt+1 - l)/(k -1).
Each digit is chosen from {0 , . . . , k — 1} except that the lowest non-zero digit
may be k. Implement skew trinary random-access lists using the type
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datatype a Tree = LEAF of a | NODE of a x a Tree x a Tree x a Tree
type a RList = (int x a Tree) list

9.5 Chapter Notes
Data structures that can be cast as numerical representations are surprisingly
common, but only rarely is the connection to a variant number system noted ex-
plicitly [GMPR77, Mye83, CMP88, KT96b]. Skew binary random-access lists
originally appeared in [Oka95b]. Skew binomial heaps originally appeared in
[BO96].



10
Data-Structural Bootstrapping

The term bootstrapping refers to "pulling yourself up by your bootstraps".
This seemingly nonsensical image is representative of a common situation in
computer science: problems whose solutions require solutions to (simpler) in-
stances of the same problem.

For example, consider loading an operating system from disk or tape onto a
bare computer. Without an operating system, the computer cannot even read
from the disk or tape! One solution is a bootstrap loader, a very tiny, incom-
plete operating system whose only purpose is to read in and pass control to
a somewhat larger, more capable operating system that in turn reads in and
passes control to the actual, desired operating system. This can be viewed as a
instance of bootstrapping a complete solution from an incomplete solution.

Another example is bootstrapping a compiler. A common activity is to write
the compiler for a new language in the language itself. But then how do you
compile that compiler? One solution is to write a very simple, inefficient in-
terpreter for the language in some other, existing language. Then, using the
interpreter, you can execute the compiler on itself, thereby obtaining an effi-
cient, compiled executable for the compiler. This can be viewed as an instance
of bootstrapping an efficient solution from an inefficient solution.

In his thesis [Buc93], Adam Buchsbaum describes two algorithmic design
techniques he collectively calls data-structural bootstrapping. The first tech-
nique, structural decomposition, involves bootstrapping complete data struc-
tures from incomplete data structures. The second technique, structural ab-
straction, involves bootstrapping efficient data structures from inefficient data
structures. In this chapter, we reexamine these two techniques, along with a
third technique for bootstrapping data structures with aggregate elements from
data structures with atomic elements.

141
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10.1 Structural Decomposition

Structural decomposition is a technique for bootstrapping complete data struc-
tures from incomplete data structures. Typically, this involves taking an imple-
mentation that can handle objects only up to some bounded size (perhaps even
zero), and extending it to handle objects of unbounded size.

Consider typical recursive datatypes such as lists and binary leaf trees:

datatype a List = NIL | CONS o1a x a List
datatype a Tree = LEAF of a | NODE of a Tree x a Tree

In some ways, these can be regarded as instances of structural decomposition.
Both consist of a simple implementation of objects of some bounded size (zero
for lists and one for trees) and a rule for recursively decomposing larger objects
into smaller objects until eventually each object is small enough to be handled
by the bounded case.

However, both of these definitions are particularly simple in that the recur-
sive component in each definition is identical to the type being defined. For
instance, the recursive component in the definition of a List is also a List.
Such a datatype is called uniformly recursive.

In general, we reserve the term structural decomposition to describe recur-
sive data structures that are non-uniform. For example, consider the following
definition of sequences:

datatype a Seq = NIL' | CONS7 of a x (a x a) Seq

Here, a sequence is either empty or a single element together with a sequence
of pairs of elements. The recursive component (a x a) Seq is different from
a Seq so this datatype is non-uniform.

Why might such a non-uniform definition be preferable to a uniform defi-
nition? The more sophisticated structure of non-uniform types often supports
more efficient algorithms than their uniform cousins. For example, compare
the following size functions on lists and sequences.

fun sizeL NIL = 0
| sizeL (CONS (X, XS)) = 1 + sizeL xs

fun sizeS NIL7 = 0
| sizeS (CONS' (X, ps)) = 1 + 2 * sizeS ps

The function on lists runs in O(n) time whereas the function on sequences
runs in O(log n) time.
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10.1.1 Non-Uniform Recursion and Standard ML

Unfortunately, we usually cannot implement structural decomposition directly
in Standard ML. Although Standard ML allows the definition of non-uniform
recursive datatypes, the type system disallows most of the interesting functions
on such types. For instance, consider the sizeS function on sequences. This
function would be rejected by Standard ML because the type system requires
that all recursive calls in the body of a recursive function have the same type
as the enclosing function (i.e., recursive function definitions must be uniform).
The sizeS function violates this restriction because the outer sizeS has type
a Seq ->»  int but the inner sizeS has type (a x a) Seq -> int.

It is always possible to convert a non-uniform type into a uniform type by
introducing a new datatype to collapse the different instances into a single type.
For example, by collapsing elements and pairs, the Seq type could be rewritten

datatype a EP = ELEM of a | PAIR of a EP x a EP
datatype a Seq = NIL' | CONS7 of a EP x a Seq

Then the sizeS function would be perfectly legal as written; both the outer
slzeS and the inner sizeS would have type a Seq -> int.

Since it is always possible to convert non-uniform types to uniform types,
structural decomposition really refers more to how we think about a datatype
than to how it is implemented. For example, consider the revised definition of
a Seq above. The a EP type is isomorphic to binary leaf trees, so the revised
version of a Seq is equivalent to a Tree list. However, we would tend to think
of a list of trees differently than we would think of a sequence of pairs — some
algorithms will seem simpler or more natural for one of the representations,
and some for the other. We will see some examples of this in the next section.

There are also several pragmatic reasons to prefer the non-uniform defini-
tion of a Seq over the uniform one. First, it is more concise; there is one
type instead of two, and there is no need to manually insert ELEM and PAIR

constructors everywhere. Second, depending on the language implementation,
it may be more efficient; there is no need to pattern match against ELEM and
PAI R constructors, nor to build run-time representations of these constructors in
memory. Third, and most importantly, it allows the type system to catch many
more programmer errors. The type in the non-uniform definition ensures that
the outermost CONS7 constructor contains a single element, the second a pair
of elements, the third a pair of pairs of elements, and so on. The type in the
uniform definition ensures neither that pairs are balanced nor that the nesting
depth of pairs increases by one per level. Instead, these restrictions must be
established by the programmer as system invariants. But if the programmer
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accidentally violates these invariants — say, by using an element where a pair
is expected — the type system will be of no help in catching the error.

For these reasons, we will often present code as if Standard ML supported
non-uniform recursive function definitions, also known as polymorphic recur-
sion [Myc84]. This code will not be executable but will be easier to read. It can
always be converted back into legal Standard ML using the kinds of coercions
described on the previous page.

10.1.2 Binary Random-Access Lists Revisited
For all of its virtues, the a Seq type that we have been discussing is useless for
representing sequences. The problem is that it can only represent sequences
with 2^ — 1 elements. Thinking in terms of numerical representations, the
CONS7 constructor gives us a way to write one bits, but there is no way to write
zero bits. This is easily corrected by adding another constructor to the type.
We also rename the CONS' constructor to emphasize the analogy to binary
numbers.

datatype a Seq = NIL | ZERO of (a x a) Seq | ONE o f a x ( a x a ) Seq

Now, we can represent the sequence 0... 10 as

ONE (0, ONE ((1,2), ZERO (ONE ((((3,4),(5,6)),((7,8),(9,10))), NIL))))

The size of this sequence is eleven, written 1101 in binary.
The pairs in this type are always balanced. In fact, another way to think of

pairs of elements or pairs of pairs of elements, etc., is as complete binary leaf
trees. Thus, this type is essentially equivalent to the type of binary random-
access lists from Section 9.2.1, but with the invariants of that structure made
manifest.

Let's reimplement the functions on binary random-access lists, this time
thinking in terms of elements and sequences of pairs rather than lists of com-
plete binary leaf trees. The functions all still run in O(logrc) time, but, as
we will see, this new way of thinking yields algorithms that are usually both
shorter and easier to understand.

We begin with the cons function. The first two clauses are easy.

fun cons (x, NIL) = ONE (X, NIL)
| cons (x, ZERO ps) = ONE (X, ps)

To add a new element to a sequence of the form ONE (y, ps), we pair the new
element with the existing element and add the pair to the sequence of pairs.

fun cons (x, ONE (y, ps)) = ZERO (cons ((x, y), ps))
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This is where we need polymorphic recursion—the outer cons has type

a x a Seq -> a Seq

while the inner cons has type

{a x a) x (a x a) Seq -> (a x a) Seq.

We implement the head and tail functions in terms of an auxiliary function
u neons that deconstructs a sequence into its first element and the remaining
sequence.

fun head xs = let val (x, _) = uncons xs in x end
fun tail xs = let val (_, xs') = uncons xs in xs* end

We obtain the uncons function by reading each of the clauses for cons back-
wards.

fun uncons (ONE (X, NIL)) = (x, NIL)
| uncons (ONE (X, ps)) = (x, ZERO ps)
| uncons (ZERO ps) = let val ((x, y), ps') = uncons ps

in (x, O N E (y, ps')) end

Next, consider the lookup function. Given a sequence ONE (X, ps), we either
return x or repeat the query on ZERO ps.

fun lookup (0, ONE (X, ps)) = x
| lookup (/, O N E (X, ps)) = lookup ( / - 1 , ZERO ps)

To lookup the element at index i in a sequence of pairs, we lookup the pair at
index [i/2j and then extract the appropriate element from that pair.

fun lookup (/', ZERO ps) = let val (x, y) = lookup (/ div 2, ps)
in if / mod 2 = 0 then x else y end

Finally, we turn to the update function. The clauses for the ONE constructor
are simply

fun update (0, e, O N E (X, ps)) = O N E (e, ps)
| update (/, e, O N E (X, ps)) = cons (x, update ( / - 1 , e, ZERO ps))

However, in trying to update an element in a sequence of pairs, we run into a
slight problem. We need to update the pair at index [i/2\, but to construct the
new pair, we need the other element from the old pair. Thus, we precede the
update with a lookup.

fun update (/, e, ZERO ps) =
let val (x, y) = lookup (/' div 2, ps)

val p = if / mod 2 = 0 then (e, y) else (x, e)
in ZERO (update ( / - 1 , p, ps)) end

Exercise 10.1 Prove that this version of update runs in O(log2 n) time. O
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To restore the O(logn) bound on the update function, we must eliminate
the call to lookup. But then how do we get the other element from which to
construct the new pair? Well, if we cannot bring Mohammed to the mountain,
then we must send the mountain to Mohammed. That is, instead of fetching the
old pair and constructing the new pair locally, we send a function to construct
the new pair from the old pair wherever the old pair is found. We use a helper
function fupdate that takes a function to apply to the ith element of a sequence.
Then update is simply

fun update (/, y, xs) = fupdate (fn x ^ y, /, xs)

The key step in fupdate is promoting a function f on elements to a function f
that takes a pair and applies f to either the first or second element of the pair,
depending on the parity of /'.

fun f (x, y) = if / mod 2 = 0 then (f x, y) else (x, f y)

Given this definition, the rest of fupdate is straightforward.

fun fupdate (f, 0, ONE (X, ps)) = ONE (f x, ps)
| fupdate (f, i, O N E (X, ps)) = cons (x, fupdate {f, / - 1 , ZERO ps))
| fupdate (f, /, ZERO ps) =

let fun f (x, y) = if / mod 2 = 0 then (f x, y) else (x, f y)
in ZERO (fupdate (f, i div 2, ps)) end

The complete implementation is shown in Figure 10.1.
Comparing Figures 10.1 and 9.6, we see that this implementation is signifi-

cantly more concise and that the individual functions are significantly simpler,
with the possible exception of update. (And even update is simpler if you
are comfortable with higher-order functions.) These benefits arise from recast-
ing the data structure as a non-uniform type that directly reflects the desired
invariants.

Exercise 10.2 Reimplement AltBinaryRandomAccessList so that cons, head,
and tail all run in 0(1) amortized time, using the type

datatype a RList =
NIL

| ONE of a x (a x a) RList susp
| Two of a x a x (a x a) RList susp
j THREE of a x a x a x (a x a) RList susp

10.1.3 Bootstrapped Queues
Consider the use of -H- in the banker's queues of Section 6.3.2. During a rota-
tion, the front stream f is replaced by f -H- reverse r. After a series of rotations,
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structure AltBinaryRandomAccessList: RANDOMACCESSLIST =
(* assumes polymorphic recursion! *)

struct
datatype a RList =

NIL I ZERO of (a x a) RList | ONE of a x (a x a) RList

val empty = NIL
fun isEmpty N IL = true | isEmpty _ = false
fun cons (x, NIL) = ONE (X, NIL)

| cons (x, ZERO ps) = ONE (X, ps)
| cons (x, ONE (y, ps)) = ZERO (cons ((x, y), ps))

fun uncons NIL = raise EMPTY
| uncons (ONE (X, NIL)) = (x, NIL)
| uncons (ONE (X, ps)) = (x, ZERO ps)
| uncons (ZERO ps) = let val ((x, y), ps') = uncons ps

in (x, ONE (y, ps')) end
fun head xs = let val (x, _) = uncons xs in x end
fun tail xs = let val (_, xs') = uncons xs in xs' end
fun lookup (/, NIL) = raise SUBSCRIPT

| lookup (0, ONE (X, ps)) = x
I lookup (/', ONE (X, ps)) = lookup ( / - 1 , ZERO ps)
| lookup (/, ZERO ps) = let val (x, y) = lookup (/' div 2, ps)

in if / mod 2 —  0 then x else y end
fun fupdate (f, i, NIL) = raise SUBSCRIPT

| fupdate (f, 0, ONE (X, ps)) = ONE (f x, ps)
| fupdate (f, i, O N E (X, ps)) = cons (x, fupdate (f, / - 1 , ZERO ps))
| fupdate (f, i, ZERO ps) =

let fun f (x, y) = if / mod 2 = 0 then (f x, y) else (x, f y)
in ZERO (fupdate (f, i div 2, ps)) end

fun update (/, y, xs) = fupdate (fn x => y, /, xs)
end

Figure 10.1. An alternative implementation of binary random-access lists.

the front stream has the form

( ( / -H- reverse r i ) -H- reverse r2) -H- • •  •  -H- reverse r̂

Append is well-known to be inefficient in left-associative contexts like this
because it repeatedly processes the elements of the leftmost streams. For ex-
ample, in this case, the elements of / will be processed k times (once by each
-H-), and the elements of r2 will be processed k —  i + 1 times (once by reverse
and once for each following 4f). In general, left-associative appends can eas-
ily lead to quadratic behavior. In this case, fortunately, the total cost of the
appends is still linear because each r; is at least twice as long as the one be-
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fore. Still, this repeated processing does sometimes make these queues slow
in practice. In this section, we use structural decomposition to eliminate this
inefficiency.

Given that the front stream has the described form, we decompose it into
two parts: f and the collection m = {reverse r i , . . . , reverse r /J . Then we
can represent f as a list and each reverse r2 as a suspended list. We also change
the rear stream r to a list. These changes eliminate the vast majority of sus-
pensions and avoid almost all of the overheads associated with lazy evaluation.
But how should we represent the collection ml As we will see, this collection
is accessed in FIFO order, so using structural decomposition we can repre-
sent it as a queue of suspended lists. As with any recursive type, we need a
base case, so we represent empty queues with a special constructor.! The new
representation is therefore

datatype a Queue =
E | Q of int x a list x a list susp Queue x int x a list

The first integer, lenfm, is the combined length of f and all the suspended
lists in m (i.e., what used to be simply lent in the old representation). The
second integer, lenr, is as usual the length of r. The usual balance invariant
becomes lenr < lenfm. In addition, we require that f be non-empty. (In the old
representation, f could be empty if the entire queue was empty, but now we
represent that case separately.)

As always, the queue functions are simple to describe.

fun snoc (E, x) = Q (1, [x], E, 0, [])
| snoc (Q (lenfm, f, m, lenr, r), x) = checkQ (lenfm, f, m, lenr+], x:: r)

fun head (Q (lenfm, x:: V, m, lenr, r)) = x
fun tail (Q (lenfm, x :: V, m, lenr, r)) = checkQ (lenfm-], V, m, lenr, r)

The interesting cases are in the helper function checkQ. If r is too long, checkQ
creates a suspension to reverse r and adds the suspension to m. After checking
the length of r, checkQ invokes a second helper function checkF that guaran-
tees that f is non-empty. If both f and m are empty, then the entire queue is
empty. Otherwise, if f is empty we remove the first suspension from m, force
it, and install the resulting list as the new f.

fun checkF (lenfm, [], E, lenr, r) = E
| checkF (lenfm, [], m, lenr, r) =

Q (lenfm, force (head m), tail m, lenr, r)
| checkF q = Qq

fun checkQ (q as (lenfm, f, m, lenr, r)) =
if lenr < lenfm then checkF q
else checkF (lenfm+lenr, f, snoc (m, $rev r), 0, [])

f A slightly more efficient alternative is to represent queues up to some fixed size simply as lists.
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structure BootstrappedQueue: QUEUE =
(* assumes polymorphic recursion! *)

struct
datatype a Queue =

E | Q of int x a list x a list susp Queue x int x a list

val empty = E
fun isEmpty E = true | isEmpty _ = false
fun checkQ (q as (lenfm, f, m, lenr, r)) =

if lenr < lenfm then checkF q
else checkF (lenfm+lenr, f, snoc (m, $rev r), 0, [])

and checkF (lenfm, [], E, lenr, r) = E
| checkF (lenfm, [], m, lenr, r) =

Q (lenfm, force (head m), tail m, lenr, r)
| checkF q = Qq

and snoc (E, x) = Q (1, [x], E, 0, [])
| s n o c ( Q (lenfm, f, m, lenr, r), x ) = c h e c k Q (lenfm, f, m, lenr+1 , x : : r )

and head E = raise EMPTY
| head (Q (lenfm, xv. V, m, lenr, r)) = x

and tail E = raise EMPTY
| tail (Q (lenfm, xv. f, m, lenr, r)) = checkQ (lenfm-1, f, m, lenr, r)

end

Figure 10.2. Bootstrapped queues based on structural decomposition.

Note that checkQ and checkF call snoc and tail, which in turn call checkQ.
These functions must therefore all be defined mutually recursively. The com-
plete implementation appears in Figure 10.2.

These queues create a suspension to reverse the rear list at exactly the same
time as banker's queues, and force the suspension one operation earlier than
banker's queues. Thus, since the reverse computation contributes only 0(1)
amortized time to each operation on banker's queues, it also contributes only
0(1) amortized time to each operation on bootstrapped queues. However, the
running times of snoc and tail are not constant! Note that snoc calls checkQ,
which in turn might call snoc on m. In this way we might get a cascade of
calls to snoc, one at each level of the queue. However, successive lists in m at
least double in size so the length of m is O(log n). Since the size of the middle
queue decreases by at least a logarithmic factor at each level, the depth of the
entire queue is at most O(log* n). snoc performs 0(1) amortized work at each
level, so in total snoc requires O(log* n) amortized time.

Similarly, tail might result in recursive calls to both snoc (from checkQ) and
tail (from checkF). Note that, when this happens, tail is called on the result of
the snoc. Now, the snoc might recursively call itself and the tail might again
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recursively call both snoc and tail. However, from Exercise 10.3, we know that
the snoc and tail never both recursively call snoc. Therefore, both snoc and tail
are called at most once per level. Since both snoc and tail do 0(1) amortized
work at each level, the total amortized cost of tail is also 0(log* n).

Remark (9 (log* n) is constant in practice. To have a depth of more than five, a
queue would need to contain at least 265536 elements. In fact, if one represents
queues of up to size four simply as lists, then queues with fewer than about
four billion elements have at most three levels.

Hint to Practitioners: In practice, variations on these queues are the fastest
known implementations for applications that use persistence sparingly, but |
that require good behavior even in pathological cases.

Exercise 10.3 Consider the expression tail (snoc (q, x)). Show that the calls to
tail and snoc will never both recursively call snoc.

Exercise 10.4 Implement these queues without polymorphic recursion using
the types

datatype a EL = ELEM of a | LIST of a EL list susp
datatype a Queue = E | Q of int x a EL list x a Queue x int x a EL list

Exercise 10.5 Another way to eliminate the need for polymorphic recursion
is to represent the middle using some other implementation of queues. Then
the type of bootstrapped queues is

datatype a Queue =
E | Q of int x a list x a list susp PrimQ.Queue x int x a list

where PrimQ is the other implementation of queues.

(a) Implement this variation of bootstrapped queues as a functor of the form

functor BootstrapQueue (PrimQ : QUEUE) : QUEUE

(b) Prove that if PrimQ is instantiated to some implementation of real-time
queues, then all operations on the resulting bootstrapped queues take
0(1) amortized time.
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10.2 Structural Abstraction

The second class of data-structural bootstrapping is structural abstraction,
which is typically used to extend an implementation of collections, such as
lists or heaps, with an efficient join function for combining two collections.
For many implementations, designing an efficient insert function, which adds
a single element to a collection, is easy, but designing an efficient join function
is difficult. Structural abstraction creates collections that contain other collec-
tions as elements. Then two collections can be joined by simply inserting one
collection into the other.

The ideas of structural abstraction can largely be described at the level of
types. Suppose a C is a collection type with elements of type a , and that this
type supports an efficient insert function, with signature

val insert: a x a C -» a C

Call a C the primitive type. From this type, we wish to derive a new datatype,
a B, called the bootstrapped type, such that a B supports both insert and join
efficiently, with signatures

val inserts : a x a B -> a B
val j o i n B \ aBxaB^aB

(We use the subscript to distinguish functions on the bootstrapped type from
functions on the primitive type.) The bootstrapped type should also support an
efficient unit function for creating a new singleton collection.

val units : a ->• a B

Then, inserts can be implemented simply as

fun inserts (x, b) = joinB (units x, b)

The basic idea of structural abstraction is to represent bootstrapped collections
as primitive collections of other bootstrapped collections. Then joinB can be
implemented in terms of insert (not inserts!) roughly as

fun joinB (bu b2) = insert (bu b2)

This inserts b\ as an element of bi. Alternatively, one could insert b2 as an
element of b\, but the point is that join has been reduced to simple insertion.

Of course, things are not quite that simple. Based on the above description,
we might attempt to define a B as

datatype a B = B of (a B) C
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This definition can be viewed as specifying an isomorphism

a B ^ (a B) C

By unrolling this isomorphism a few times, we can quickly spot the flaw in
this definition.

a B ̂  (a B) C ¥ ((a B) C) C ^  • • •  ^ ((• • •  C) C) C

The type a has disappeared, so there is no way to actually store an element
in this collection! We can solve this problem by making each bootstrapped
collection a pair of a single element with a primitive collection.

datatype a B = B of a x (a B) C

Then, for instance, units can be defined as

fun units x = B (x, empty)

where empty is the empty primitive collection.
But now we have another problem. If every bootstrapped collection con-

tains at least a single element, how do we represent the empty bootstrapped
collection? We therefore refine the type one more time.

datatype a B = E | B of a x (a B) C

Remark Actually, we always arrange that the primitive collection C contains
only non-empty bootstrapped collections. This situation can be described more
precisely by the types

datatype a B+ = B+ of a x (a B+) C
datatype a B = E | NE of B+

Unfortunately, definitions of this form lead to more verbose code, so we stick
with the earlier less precise, but more concise, definition. O

Now, we can refine the above templates for inserts and joinB as

fun inserts (x, E) = B (x, empty)
| inserts (x, B (y, c)) = B (x, insert (units y, c))

fun joinB (b, E) = b
| joinB (E, b) = b
I joinB (B (x, c), b) = B (x, insert (b, c))

These templates can easily be varied in several ways. For instance, in the
second clause of inserts, we could reverse the roles of x and y. Similarly, in
the third clause of joinB, we could reverse the roles of the first argument and
the second argument.
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signature CATENABLELIST =
sig

type a Cat

val empty
val isEmpty

valcons
val snoc
val-tf
val head
val tail

end

a
a

a
a
a

a
a

Cat
Cat

x a
Cat
Cat

-> bool

Cat-> a
x a ->• a
x a Cat -

Cat-* a
Cat -> a Cat

Cat
Cat

->• a Cat
(* raises EMPTY if list is empty*)
(* raises EMPTY if list is empty*)

Figure 10.3. Signature for catenable lists.

For any given collection, there is typically some distinguished element that
can be inspected or deleted, such as the first element or the smallest element.
The insert^ and joinB templates should be instantiated in such a way that the
distinguished element in the bootstrapped collection B (x, c) is x itself. The
creative part of designing a bootstrapped data structure using structural ab-
straction is implementing the deletes routine that discards the distinguished
element x. After discarding x, we are left with a primitive collection of type
(a B) C, which must then be converted into a bootstrapped collection of type
a B. The details of how this is accomplished vary from data structure to data
structure.

We next instantiate these templates in two ways. First, we bootstrap queues
to support catenation (i.e., append) efficiently. Second, we bootstrap heaps to
support merge efficiently.

10.2.1 Lists With Efficient Catenation
The first data structure we will implement using structural abstraction is caten-
able lists, as specified by the signature in Figure 10.3. Catenable lists extend
the usual list signature with an efficient append function (-H-). As a conve-
nience, catenable lists also support snoc, even though we could easily simulate
snoc (xs, x) by xs -H- cons (x, empty). Because of this ability to add elements
to the rear of a list, a more accurate name for this data structure would be
catenable output-restricted deques.

We obtain an efficient implementation of catenable lists that supports all op-
erations in 0(1) amortized time by bootstrapping an efficient implementation
of FIFO queues. The exact choice of implementation for the primitive queues
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e f g h n o p r s t

Figure 10.4. A tree representing the list a .. .t.

is largely irrelevant; any of the persistent, constant-time queue implementa-
tions will do, whether amortized or worst-case.

Given an implementation Q of primitive queues matching the QUEUE signa-
ture, structural abstraction suggests that we can represent catenable lists as

datatype a Cat = E | C of a x a Cat Q.Queue

One way to interpret this type is as a tree where each node contains an element,
and the children of each node are stored in a queue from left to right. Since we
wish for the first element of the list to be easily accessible, we store it at the
root of the tree. This suggests ordering the elements in a preorder, left-to-right
traversal of the tree. A sample list containing the elements a .. .t is shown in
Figure 10.4.

Now, head is simply

fun head (C (x, _)) = x

To catenate two non-empty lists, we link the two trees by making the second
tree the last child of the first tree.

fun xs -H- E = xs
| E -H- ys = ys
j xs -H- ys = link (xs, ys)

The helper function link adds its second argument to the child queue of its first
argument.

fun link (C (x, q), ys) = C (x, Q.snoc (q, ys))

cons and snoc simply call -H-.

fun cons (x, xs) = C (x, Q.empty) -H- XS
fun snoc (xs, x) = xs -H- C (X, Q.empty)
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I
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Figure 10.5. Illustration of the tail operation.

Finally, given a non-empty tree, tail should discard the root and somehow com-
bine the queue of children into a single tree. If the queue is empty, then tail
should return E. Otherwise we link all the children together.

fun tail (C (x, q)) = if Q.isEmpty q then E else linkAII q

Since catenation is associative, we can link the children in any order we desire.
However, a little thought reveals that linking the children from right to left, as
illustrated in Figure 10.5, will duplicate the least work on subsequent calls to
tail. Therefore, we implement linkAII as

fun linkAII q = let val t = Q.head q
val q' = Q.tail q

in if Q.isEmpty q' then t else link (t, linkAII q') end

Remark linkAII is an instance of the foldri program schema. O

In this implementation, tail may take as much as O(n) time. We hope to re-
duce this to 0(1) amortized time, but to achieve this in the face of persistence,
we must somehow incorporate lazy evaluation into the design. Since linkAII is
the only routine that takes more than 0(1) time, it is the obvious candidate.
We rewrite linkAII to suspend every recursive call. This suspension is forced
when a tree is removed from a queue.

fun linkAII q = let val $t = Q.head q
val q' = Q.tail q

in if Q.isEmpty q1 then t else link (t, $linkAII q') end

For this definition to make sense, the queues must contain tree suspensions
rather than trees, so we redefine the type as

datatype a Cat = E | C of a x a Cat susp Q.Queue
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functor CatenableList (Q : QUEUE) : CATENABLELIST =
struct

datatype a Cat = E | C of a x a Cat susp Q.Queue

val empty = E
fun IsEmpty E = true | isEmpty _ = false
fun link (C (x, q), $) = C (x, Q.snoc (q, s))
fun linkAII q = let val $t = Q.head q

val q' = Q.tail q
in if Q.isEmpty q' then t else link (t, $linkAII q') end

fun xs -H- E = xs
| E -H- XS = XS
I xs -H- ys = link (xs, $ys)

fun cons (x, xs) = C (x, Q.empty) -H- xs
fun snoc (xs, x) = xs -N- C (X, Q.empty)

fun head E = raise EMPTY
| head (C (x, _)) = x

fun tail E = raise EMPTY
| tail (C (x, q)) = if Q.isEmpty q then E else linkAII q

end

Figure 10.6. Catenable lists.

To conform to this new type, -H- must spuriously suspend its second argument.

fun xs -H- E = xs
| E 4f XS = XS
I xs -H- ys = link (xs, $ys)

The complete implementation is shown in Figure 10.6.
head clearly runs in O(l) worst-case time, while cons and snoc have the

same time requirements as -H-. We now prove that •++- and tail run in O(l)
amortized time using the banker's method. The unshared cost of each is 0(1),
so we must merely show that each discharges only 0(1) debits.

Let dt (i) be the number of debits on the ith node of tree t and let Dt (i) —
J2)=o dt{j) be the cumulative number of debits on all nodes of t up to and
including node i. Finally, let Dt be the total number debits on all nodes in t
(i.e., Dt = Dt(\t\ —  1)). We maintain two invariants on debits.

First, we require that the number of debits on any node be bounded by the
degree of the node (i.e., dt(i) < degreet(i)). Since the sum of degrees of all
nodes in a non-empty tree is one less than the size of the tree, this implies
that the total number of debits in a tree is bounded by the size of the tree (i.e.,
Dt < \t\). We maintain this invariant by incrementing the number of debits on
a node only when we also increment its degree.
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Second, we insist that Dt(i) be bounded by some linear function on i. The
particular linear function we choose is

Dt{i) < i +depth, (i)

where dept^i) is the length of the path from the root of t to node i. This
invariant is called the left-linear debit invariant. Notice that the left-linear
debit invariant guarantees that dt(0) = A(0) < 0 + 0 = 0, so all debits on
a node have been discharged by the time it reaches the root. (In fact, the root
is not even suspended!) The only time we actually force a suspension is when
the suspended node is about to become the new root.

Theorem 10.1 -H- and tail maintain both debit invariants by discharging one
and three debits, respectively.

Proof (-H-) The only debit created by -H- is for the trivial suspension of its second
argument. Since we are not increasing the degree of this node, we immediately
discharge the new debit. Now, assume that t\ and t2 are non-empty and let
t —  ^I-H-^2- Let n = \ti\. Note that the index, depth, and cumulative debits of
each node in ti are unaffected by the catenation, so for i < n

AW = AxW
< i + depthti(i)
= i + deptht{i)

The nodes in tf2 increase in index by n, increase in depth by one, and accumu-
late the total debits of 11, so

Dt(n + i) = Dtl+Dt2(i)
< n + Dt2{i)
< n + i -f deptht2 (i)
= n + i + deptht (n + i) —  1
< (n + i) + deptht(n + i)

Thus, we do not need to discharge any further debits to maintain the left-linear
debit invariant.

(tail) Let t' = tail t. After discarding the root of t, we link the children
tf o .. .tm-1 from right to left. Let tj be the partial result of linking t3•  ... tm_ i.
Then t' = t'o. Since every link except the outermost is suspended, we assign
a single debit to the root of each tj, 0 < j < m —  1. Note that the degree
of each of these nodes increases by one. We also assign a debit to the root of
t'm_1 because the last call to linkAII is suspended even though it does not call
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link. Since the degree of this node does not change, we immediately discharge
this final debit.

Now, suppose the ith node of t appears in tj. By the left-linear debit in-
variant, we know that Dt(i) < i + deptht(i), but consider how each of these
quantities changes with the tail, i decreases by one because the first element is
discarded. The depth of each node in tj increases by j — 1 (see Figure 10.5)
while the cumulative debits of each node in tj increase by j . Thus,

A'(i-l) - Dt{i)+j
< i + deptht(i) + j
= i + (deptht,(i - 1) - (j - 1)) + j
= (i-l) + depibt,(i-l) + 2

Discharging the first two debits restores the invariant, bringing the total to three
debits. •

Hint to Practitioners: Given a good implementation of queues, this is
the fastest known implementation of persistent catenable lists, especially for |
applications that use persistence heavily.

Exercise 10.6 Write a function flatten of type a Cat list ->• a Cat that catenates
all the elements in a list of catenable lists. Show that your function runs in
0(1 + e) amortized time, where e is the number of empty catenable lists in the
list.

10.2.2 Heaps With Efficient Merging

Next, we use structural abstraction on heaps to obtain an efficient merge oper-
ation.

Assume that we have an implementation of heaps that supports insert in
0(1) worst-case time and merge, findMin, and deleteMin in O(logn) worst-
case time. The skew binomial heaps of Section 9.3.2 are one such implementa-
tion; the scheduled binomial heaps of Section 7.3 are another. Using structural
abstraction, we improve the running time of both findMin and merge to 0(1)
worst-case time.

For now, assume that the type of heaps is polymorphic in the type of ele-
ments, and that, for any type of elements, we magically know the right com-
parison function to use. Later we will account for the fact that both the type of
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elements and the comparison function on those elements are fixed at functor-
application time.

Under the above assumption, the type of bootstrapped heaps can be given as

datatype a Heap = E | H of a x (a Heap) PrimH.Heap

where PrimH is the implementation of primitive heaps. The element stored at
any given H node will be the minimum element in the subtree rooted at that
node. The elements of the primitive heaps are themselves bootstrapped heaps.
Within the primitive heaps, bootstrapped heaps are ordered with respect to their
minimum elements (i.e., their roots). We can think of this type as a multiary
tree in which the children of each node are stored in primitive heaps.

Since the minimum element is stored at the root, findMin is simply

fun findMin (H (x, _)) = x

To merge two bootstrapped heaps, we insert the heap with the larger root into
the heap with the smaller root.

fun merge (E, h) = h
| merge (h, E) = h
I merge (hi as H (x, px), h2 as H (y, p2)) =

if x < y then H (x, PrimH.insert (h2, p j )
else H (y, PrimH.insert (hi, p2))

(In the comparison x < y, we assume that < is the right comparison function
for these elements.) Now, insert is defined in terms of merge.

fun insert (x, h) = merge (H (x, PrimH.empty), h)

Finally, we consider deleteMin, defined as

fun deleteMin (H (x, p)) =
if PrimH.isEmpty p then E
else let val (H (y, px)) = PrimH.findMin p

val p2 = PrimH.deleteMin p
in H (y, PrimH.merge (plf p2)) end

After discarding the root, we first check if the primitive heap p is empty. If
it is, then the new heap is empty. Otherwise, we find and remove the mini-
mum element in p, which is the bootstrapped heap with the overall minimum
element; this element becomes the new root. Finally, we merge p1 and p2 to
obtain the new primitive heap.

The analysis of these heaps is simple. Clearly, findMin runs in 0(1) worst-
case time regardless of the underlying implementation of primitive heaps, in-
sert and merge depend only on PrimH.insert. Since we have assumed that
PrimH.insert runs in 0(1) worst-case time, so do insert and merge. Finally,
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deleteMIn calls PrimH.findMin, PrimH.deleteMin, and PrJmH.merge. Since each
of these runs in O(log n) worst-case time, so does deleteMin.

Remark We can also bootstrap heaps with amortized bounds. For example,
bootstrapping the lazy binomial heaps of Section 6.4.1 produces an implemen-
tation that supports findMin in 0(1) worst-case time, insert and merge in 0(1)
amortized time, and deleteMin in O(log n) amortized time. O

Until now, we have assumed that heaps are polymorphic, but in fact the
HEAP signature specifies that heaps are monomorphic — both the type of el-
ements and the comparison function on those elements are fixed at functor-
application time. The implementation of a heap is a functor that is parame-
terized by the element type and the comparison function. The functor that we
use to bootstrap heaps maps heap functors to heap functors, rather than heap
structures to heap structures. Using higher-order functors [MT94], this can be
expressed as

functor Bootstrap (functor MakeH (Element: ORDERED)
: HEAP where type Elem.T = Element.T)

(Element: ORDERED) : HEAP

The Bootstrap functor takes the MakeH functor as an argument. The MakeH
functor takes the ORDERED structure Element, which defines the element type
and the comparison function, and returns a HEAP structure. Given MakeH,
Bootstrap returns a functor that takes an ORDERED structure Element and re-
turns a HEAP structure.

Remark The where type constraint in the signature for the MakeH functor
is necessary to ensure that the functor returns a heap structure with the desired
element type. This kind of constraint is extremely common with higher-order
functors. O

Now, to create a structure of primitive heaps with bootstrapped heaps as
elements, we apply MakeH to the ORDERED structure BootstrappedElem that
defines the type of bootstrapped heaps and a comparison function that orders
two bootstrapped heaps by their minimum elements. (The ordering relation is
undefined on empty bootstrapped heaps.) This is expressed by the following
mutually recursive structure declarations.

structure rec BootstrappedElem =
struct

datatype T = E | H of Elem.T x PrimH.Heap
fun leq (H (x, _), H (y, _)) = Elem.leq (x, y)
... similar definitions for eq and It...

end
and PrimH = MakeH (BootstrappedElem)
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functor Bootstrap (functor MakeH (Element: ORDERED)
: HEAP where type Elem.T = Element.T)

(Element: ORDERED) : HEAP =
struct

structure Elem = Element

(* recursive structures not supported in Standard ML! *)
structure rec BootstrappedElem =

struct
datatype T = E | H of Elem.T x PrimH.Heap
fun leq (H (x, _), H (y, _)) = Elem.leq (x, y)
... similar definitions for eq and It...

end
and PrimH = MakeH (BootstrappedElem)

open BootstrappedElem (* expose E and H constructors *)
type Heap = BootstrappedElem.T
val empty = E
fun isEmpty E = true | isEmpty _ = false
fun merge (E, h) = h

| merge (h, E) = h
| merge (hi as H (x, px), / b a s H (y, p2)) =

if Elem.leq (x, y) then H (x, PrimH.insert (h2, px))
else H (y, PrimH.insert (hi, p2))

fun insert (x, h) = merge (H (x, PrimH.empty), h)
fun findMin E = raise EMPTY

| findMin (H (x, _)) = x
fun deleteMin E = raise EMPTY

| deleteMin (H (x, p)) =
if PrimH.isEmpty p then E
else let val (H (y, p})) = PrimH.findMin p

val p2 = PrimH.deleteMin p
in H (y, PrimH.merge (p1, p2)) end

end

Figure 10.7. Bootstrapped heaps.

where Elem is the ORDERED structure specifying the true elements of the boot-
strapped heap. The complete implementation of the Bootstrap functor is shown
in Figure 10.7.

Remark Standard ML does not support recursive structure declarations, and
for good reason — this declaration does not make sense  for MakeH functors
that have effects. However, the MakeH functors to which we might consider
applying Bootstrap, such as SkewBinomialHeap from Section 9.3.2, are well-
behaved in this respect, and the recursive pattern embodied by the Bootstrap
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signature HEAPWITHINFO =
sig

structure Priority: ORDERED

type a Heap
val empty
val isEmpty

val insert
val merge

val flndMin
val deleteMin

a Heap
a Heap -* bool

Priority.T x a x a Heap -> a Heap
a Heap x a Heap ->• a Heap

a Heap ->• Priority.T x a
a Heap ->• a Heap

(* findMin and deleteMin raise EMPTY if heap is empty*)
end

Figure 10.8. Alternate signature for heaps.

functor does make sense for these functors. It is unfortunate that Standard ML
does not allow us to express bootstrapping in this fashion.

We can still implement bootstrapped heaps in Standard ML by inlining a par-
ticular choice for MakeH, such as SkewBinomialHeap or LazyBinomialHeap,
and then eliminating BootstrappedElem and PrimH as separate structures. The
recursion on structures then reduces to recursion on datatypes, which is sup-
ported by Standard ML.

Exercise 10.7 Inlining the LazyBinomialHeap functor of Section 6.4.1 as de-
scribed above yields the types

datatype Tree = Node of int x Heap x Tree list
datatype Heap = E | NE of Elem.T x Tree list susp

Complete this implementation of bootstrapped heaps.

Exercise 10.8 Elements in a heap frequently contain other information be-
sides the priority. For these kinds of elements, it is often more convenient to
use heaps that separate the priority from the rest of the element. Figure 10.8
gives an alternate signature for this kind of heap.

(a) Adapt either LazyBinomialHeap or SkewBinomialHeap to this new signa-
ture.

(b) Rewrite the Bootstrap functor as

functor Bootstrap (PrimH : HEAPWITHINFO) : HEAPWITHINFO = ...

You will need neither higher-order functors nor recursive structures.
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signature FINITEMAP =
sig

type Key
type a Map
val empty : a Map
val bind : Key x a x a Map -» a Map
val lookup : Key x a Map -> a (* ra/se NOTFOUND /7/cey /s nof found*)

end

Figure 10.9. Signature for finite maps.

10.3 Bootstrapping To Aggregate l^pes

We have now seen several examples where collections of aggregate data (e.g.,
heaps of heaps) were useful in implementing collections of non-aggregate data
(e.g., heaps of elements). However, collections of aggregate data are often
useful in their own right. As a simple example, strings (i.e., sequences of
characters) are frequently used as the element type of sets or the key type of
finite maps. In this section, we illustrate bootstrapping finite maps defined over
some simple type to finite maps defined over lists or even trees of that type.

10.3.1 Tries

Binary search trees work well when comparisons on the key or element type
are cheap. This is true for simple types like integers or characters, but may not
be true for aggregate types like strings. For example, consider representing a
phone book using a binary search tree. A query for " Smi t h , J o a n " might
involve multiple comparisons against entries for "Smi th , John" , each of
which inspects the first ten characters of both strings before returning.

A better solution for aggregate types such as strings is to choose a represen-
tation that takes advantage of the structure of that type. One such representa-
tion is tries, also known as a digital search trees. In this section, we will use
tries to implement the FINITEMAP abstraction, shown in Figure 10.9.

In the following discussion, we assume that keys are strings, represented as
lists of characters. We will often refer to characters as the base type. The ideas
can easily be adapted to other sequence representations and other base types.

Now, a trie is a multiway tree where each edge is labelled with a character.
Edges leaving the root of a trie represent the first character of a string, edges
leaving children of the root represent the second character, and so on. To find
the node associated with a given string, start at the root and follow the edges
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labelled by the characters of the string, in order. For example, the trie repre-
senting the strings " c a t " , " dog", " c a r " , and " c a r t " might be drawn

Note that entering a string into a trie also enters all the prefixes of that string
into the trie. Only some of these prefixes constitute valid entries. In this exam-
ple, " c " , "ca" , and " c a r " are all prefixes of " c a r t " but only " c a r " is
valid. We therefore mark each node as either valid or invalid. For finite maps,
we accomplish this with the built-in option datatype

datatype a option = NONE | SOME of a

If a given node is invalid, we mark it with NONE. If the node is valid, and the
corresponding string is mapped to the value x, then we mark it with SOME X.

The critical remaining question is how to represent the edges leaving a node.
Ordinarily, we would represent the children of a multiway node as a list of
trees, but here we also need to represent the edge labels. Depending on the
choice of base type and the expected density of the trie, we might represent the
edges leaving a node as a vector, an association list, a binary search tree, or
even, if the base type is itself a list or a string, another trie! But all of these are
just finite maps from edges labels to tries. We abstract away from the particular
representation of these edge maps by assuming that we are given a structure M
implementing finite maps over the base type. Then the representation of a trie
is simply

datatype a Map = TRIE of a option x a Map M.Map

The empty trie is represented by a single invalid node with no children.

val empty = TRIE (NONE, M.empty)

To lookup a string, we lookup each character in the appropriate edge map.
When we reach the final node, we check whether it is valid or invalid.

fun lookup ([], TRIE (NONE, m)) = raise NOTFOUND
| lookup ([], TRIE (SOME X, m)) = x
| lookup (k :: ks, TRIE (V, m)) = lookup (ks, M.lookup (/c, m))
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functor Trie (M : FINITEMAP) : FINITEMAP =
struct

type Key = M.Key list

datatype a Map = TRIE of a option x a Map M.Map
val empty = TRIE (NONE, M.empty)

fun lookup ([], TRIE (NONE, m)) = raise NOTFOUND
| lookup ([], TRIE (SOME X, mj) = x
| lookup (k :: ks, TRIE (V, m)) = lookup (ks, M.lookup (k, m))

fun bind ([], x, TRIE (_, AT?)) = TRIE (SOME X, m)
| bind (k :: ks, x, TRIE (V, m)) =

let val t = M.lookup (k, m) handle NOTFOUND ^ empty
val tf = bind (ks, x, t)

in TRIE (V, M.bind (k, t', m)) end
end

Figure 10.10. A simple implementation of tries.

Note that if a given string is not in the trie, then we may not even reach the final
node. For example, if we were to lookup " d a r k " in our example trie, then
the lookup of d would succeed but the lookup of a would fail. In that case,
M.lookup would raise the NOTFOUND exception. This is also the appropriate
response for lookup so we simply propagate the exception.

Remark This property of unsuccessful searches explains why tries can be
even faster than hashing. An unsuccessful search in a trie might exit after
examining only a few characters, whereas an unsuccessful search in a hash
table must examine the entire string just to compute the hash function! O

The bind function is similar to the lookup function, except that we do not
allow the call to M.lookup to fail. We force it to succeed by substituting the
empty node whenever it raises the NOTFOUND exception.

fun bind ([], x, TRIE (_, m)) = TRIE (SOME X, m)
| bind (k :: ks, x, TRIE (V, m)) =

let val t = M.lookup (k, m) handle NOTFOUND =^ empty
val f = bind (ks, x, t)

in TRIE (V, M.bind (k, t', m)) end

The complete implementation is shown in Figure 10.10.

Exercise 10.9 Very often, the set of keys to be stored in a trie has the property
that no key is a proper prefix of another. For example, the keys might all be
the same length, or the keys might all end in a unique character that occurs in
no other position. Reimplement tries under this assumption, using the type
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datatype a Map = Entry of a | TRIE of a Map M.Map

Exercise 10.10 Tries frequently contain long paths of nodes that each have
only a single child. A common optimization is to collapse such paths into a
single node. We accomplish this by storing with every node a substring that
is the longest common prefix of every key in that subtrie. The type of tries is
then

datatype a Map = TRIE of M.Key list x a option x a Map M.Map

Reimplement tries using this type. You should maintain the invariant that no
node is both invalid and an only child. You may assume that the structure M
provides an isEmpty function.

Exercise 10.11 (Schwenke [Sch97]) Another common data structure that in-
volves multiple layers of finite maps is the hash table. Complete the following
implementation of abstract hash tables.

functor HashTable (structure Approx : FINITEMAP
structure Exact : FINITEMAP
val hash : Exact.Key ->• Approx.Key): FINITEMAP =

struct
type Key = Exact.Key
type a Map = a Exact.Map Approx.Map

fun lookup (k, m) = Exact.lookup (k, Approx.lookup (hash k, m))

end

The advantage of this representation is that Approx can use an efficient key
type (such as integers) and Exact can use a trivial implementation (such as
association lists).

10.3.2 Generalized Tries
The idea of tries can also be generalized to other aggregate types, such as
trees [CM95]. First, consider how the edge maps of the previous section reflect
the type of the cons constructor. The edge maps are represented by the type
a Map M.Map. The outer map indexes the first field of the cons constructor
and the inner map indexes the second field of the cons constructor. Looking
up the head of a cons cell in the outer map returns the inner map in which to
lookup the tail of the cons cell.

We can generalize this scheme to binary trees, which have three fields, by
adding a third map layer. For example, given binary trees of type



10.3 Bootstrapping To Aggregate Types 167

datatype a Tree = E | T of a x a Tree x a Tree

we can represent the edge maps in tries over these trees as a Map Map M.Map.
The outer map indexes the first field of the T constructor, the middle map
indexes the second field, and the inner map indexes the third field. Looking up
the element at a given node in the outer map returns the middle map in which
to lookup the left subtree. That lookup, in turn, returns the inner map in which
to lookup the right subtree.

More formally, we represent tries over binary trees as

datatype a Map = TRIE of a option x a Map Map M.Map

Notice that this is a non-uniform recursive type, so we will need polymorphic
recursion in the functions over this type.

Now, the lookup function performs three lookups for each T constructor,
corresponding to the three fields of the constructor. When it reaches the final
node, it checks whether the node is valid.

fun lookup (E, TRIE (NONE, m)) = raise NOTFOUND
| lookup (E, TRIE (SOME X, m)) = x
| lookup (T (/c, a, b), TRIE (V, m)) =

lookup (b, lookup (a, M.lookup (k, m)))

The bind function is similar. It is shown in Figure 10.11, which summarizes
the entire implementation of tries over trees.

Exercise 10.12 Reimplement the TrieOfTrees functor without polymorphic re-
cursion using the types

datatype a Map = TRIE of a EM option x a Map M.Map
and a EM = ELEM of a | MAP of a Map

Exercise 10.13 Implement tries whose keys are multiway trees of type

datatype a Tree = T of a x a Tree list

O

With these examples, we can generalize the notion of tries to any recursive
type involving products and sums. We need only a few simple rules about
how to construct a finite map for a structured type given finite maps for its
component parts. Let a MapT be the type of finite maps over type r.

For products, we already know what to do; to lookup a pair in a trie, we first
lookup the first element of the pair and get back a map in which to lookup the
second element. Thus,

r = n x r 2 = > a MapT = a MapT2 MapTl
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datatype a Tree = E | T of a x a Tree x a Tree
functor TrieOfTrees (M : FINITEMAP) : FINITEMAP =

(* assumes polymorphic recursion! *)
struct

type Key = M.Key Tree

datatype a Map = TRIE of a option x a Map Map M.Map

val empty = TRIE (NONE, M.empty)

fun lookup (E, TRIE (NONE, m)) = raise NOTFOUND
| lookup (E, TRIE (SOME X, m)) - x
| lookup (T (k, a, b), TRIE (V, m)) =

lookup (b, lookup (a, M.lookup (k, m)))

fun bind (E, x, TRIE (_, m)) = TRIE (SOME X, m)
| bind (T (k, a, b), x, TRIE (V, m)) =

let val tt = M.lookup (k, m) handle NOTFOUND => empty
val t = lookup (a, tt) handle NOTFOUND => empty
val tf = bind (b, x, t)
val tt' = bind (a, f, tt)

in TRIE (V, M.bind (k, tt', m)) end
end

Figure 10.11. Generalized Tries.

Now, what about sums? Recall the types of trees and tries over trees:

datatype a Tree = E | T of a x a Tree x a Tree
datatype a Map = TRIE of a option x a Map Map M.Map

Obviously the type a Map Map M.Map corresponds to the T constructor, but
what corresponds to the E constructor? Well, the a option type is really nothing
more or less than a very efficient implementation of finite maps over the unit
type, which is essentially equivalent to the missing body of the E constructor.
From this, we infer the general rule for sums:

r —  r\ + r2 => a MapT = a MapTl x a MapT2

Exercise 10.14 Complete the following functors that implement the above
rules for products and sums.

functor ProductMap (Mi : FINITEMAP) (M2 : F INITEMAP) : FINITEMAP =
struct

type Key = Mi.Key x M2.Key

end
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datatype (a, f3) Sum = LEFT of a | RIGHT of p
functor SumMap (Mi : FINITEMAP) (M2 : FINITEMAP) : FINITEMAP =
struct

type Key = (Mi.Key, M2.Key) Sum

end

Exercise 10.15 Given a structure M that implements finite maps over the type
Id of identifiers, implement tries over the type Exp of lambda expressions,
where

datatype Exp = VAR of Id | LAM of Id x Exp | APP of Exp x Exp

You may find it helpful to extend the type of tries with a separate constructor
for the empty map.

10.4 ChapterNotes
Data-Structural Bootstrapping Buchsbaum and colleagues identified data-
structural bootstrapping as a general data structure design technique in [Buc93,
BT95, BST95]. Structural decomposition and structural abstraction had previ-
ously been used in [Die82] and [DST94], respectively.

Catenable Lists Although it is relatively easy to design alternative represen-
tations of persistent lists that support efficient catenation (see, for example,
[Hug86]), such alternative representations seem almost inevitably to sacrifice
efficiency of the head or tail functions.

Myers [Mye84] described a representation based on AVL trees that supports
all relevant list functions in O(logrc) time. Tarjan and colleagues [DST94,
BT95, KT95] investigated a series of sub-logarithmic implementations, cul-
minating in a implementation that supports catenation and all other usual list
functions in 0(1) worst-case time. The implementation of catenable lists in
Section 10.2.1 first appeared in [Oka95a]. It is much simpler than Kaplan and
Tarjan's, but yields amortized bounds rather than worst-case bounds.

Mergeable Heaps Many imperative implementations support insert, merge,
and findMin in O(l) amortized time, and deleteMin in O(logn) amortized
time, including binomial queues [KL93], Fibonacci heaps [FT87], relaxed
heaps [DGST88], V-heaps [Pet87], bottom-up skew heaps [ST86b], and pair-
ing heaps [FSST86]. However, of these, only pairing heaps appear to retain
their amortized efficiency when combined with lazy evaluation in a persistent
setting (see Section 6.5), and, unfortunately, the bounds for pairing heaps have
only been conjectured, not proved.
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Brodal [Bro95, Bro96] achieves equivalent worst-case bounds. His original
data structure [Bro95] can be implemented purely functionally (and thus made
persistent) by combining the recursive-slowdown technique of Kaplan and Tar-
jan [KT95] with a purely functional implementation of real-time deques, such
as the real-time deques of Section 8.4.3. However, such an implementation
would be both complicated and slow. Brodal and Okasaki simplify this imple-
mentation in [BO96], using skew binomial heaps (Section 9.3.2) and structural
abstraction (Section 10.2.2).

Polymorphic Recursion Several attempts have been made to extend Standard
ML with polymorphic recursion, such as [Myc84, Hen93, KTU93]. One com-
plication is that type inference is undecidable in the presence of polymorphic
recursion [Hen93, KTU93], even though it is tractable in practice. Haskell
sidesteps this problem by allowing polymorphic recursion whenever the pro-
grammer provides an explicit type signature.
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Implicit Recursive Slowdown

In Section 9.2.3, we saw how lazy redundant binary numbers support both
increment and decrement functions in 0(1) amortized time. In Section 10.1.2,
we saw how non-uniform types and polymorphic recursion afford particularly
simple implementations of numerical representations such as binary random-
access lists. In this chapter, we combine and generalize these techniques into
a framework called implicit recursive slowdown.

Kaplan and Tarjan [KT95, KT96b, KT96a] have studied a related frame-
work, called recursive slowdown, that is based on segmented binary numbers
(Section 9.2.4) rather than lazy binary numbers. The similarities and differ-
ences between implementations based on recursive slowdown and implemen-
tations based on implicit recursive slowdown are essentially the same as be-
tween those two number systems.

11.1 Queues and Deques

Recall the binary random-access lists of Section 10.1.2, which have the type

datatype a RList =

NIL I ZERO of (a x a) RList | ONE ola x (a x a) RList

To simplify later discussions, let us change this type to

datatype a Digit = ZERO | ONE of a
datatype a RList = SHALLOW of a Digit | DEEP of a Digit x (a x a) RList

A shallow list contains either zero or one elements. A deep list contains either
zero or one elements plus a list of pairs. We can play many of the same games
with this type that we played with binary random-access lists in Chapter 9.
For example, we can support head in 0(1) time by switching to a zeroless
representation, such as

171
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datatype a Digit = ZERO | ONE of a | Two of a x a
datatype a RList = SHALLOW of a Digit | DEEP of a Digit x (a x a) RList

In this representation, the digit in a DEEP node must be ONE or Two. The
ZERO constructor is used only in the empty list, SHALLOW ZERO.

Similarly, by suspending the list of pairs in each DEEP node, we can make
either cons or tail run in 0(1) amortized time, and the other in O(log n) amor-
tized time.

datatype a RList =
SHALLOW of a Digit

| DEEP of a Digit x (a x a) RList susp

By allowing a choice of three non-zero digits in each DEEP node, we can make
all three of cons, head, and tail run in 0(1) time.

datatype a Digit =
Z E R O | O N E o f a | T w o o f a x a | T H R E E o f a x a x a

Again, the ZERO constructor is used only in the empty list.
Now, extending this design to support queues and deques is simply a matter

of adding a second digit to each DEEP node.

datatype a Oueue =
SHALLOW of a Digit

| DEEP of a Digit x (a x a) Queue susp x a Digit

The first digit represents the first few elements of the queue, and the second
digit represents the last few elements. The remaining elements are stored in
the suspended queue of pairs, which we call the middle queue.

The exact choice of the digit type depends on what functions are to be sup-
ported on each end of the queue. The following table lists the allowable values
for the front digit of a queue that supports the given combination of functions.

supported functions
cons

cons/head
head/tail

cons/head/tail

allowable digits
ZERO, ONE

ONE, Two
ONE, Two

ONE, Two, THREE

The same choices apply to the rear digit.
As a concrete example, let us develop an implementation of queues support-

ing snoc on the rear end of the queue, and head and tail on the front end of the
queue (i.e., ordinary FIFO queues). Reading from the above table, we choose
to allow the front digit of a DEEP node to be ONE or Two and the rear digit to
be ZERO or ONE. We also allow the digit in a SHALLOW node to be ZERO or
ONE.
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To add a new element y to a deep queue using snoc, we look at the rear digit.
If it is ZE RO, then we replace the rear digit with ON E y. If it is ON E x, then we
replace the rear digit with ZERO and add the pair (x, y) to the middle queue.
We also need a few special cases for adding an element to a shallow queue.

fun snoc (SHALLOW ZERO, y) = SHALLOW (ONE y)
| snoc (SHALLOW (ONE X), y) = DEEP (TWO (X, y), $empty, ZERO)
| snoc (DEEP (f, m, ZERO), y) = DEEP (V, m, ONE y)
| snoc (DEEP (f, m, ONE X), y) =

DEEP (f, $snoc (force m, (x, y)), ZERO)

To remove an element from a deep queue using tail, we look at the front
digit. If it is Two (x, y), then we discard x and set the front digit to ONE y. If
it is ONE x, then we "borrow" a pair (y, z) from the middle queue and set the
front digit to Two (y, z). Again, there are several special cases dealing with
shallow queues.

fun tail (SHALLOW (ONE X)) = empty
| tail (DEEP (TWO (X, y), m, r)) = DEEP (ONE y, m, r)
| tail (DEEP (ONE X, $q, r)) =

if isEmpty q then SHALLOW r
else let val (y, z) = head q

In DEEP (TWO (y, z), $tail q, r) end
Note that we force the middle queue in the last clause of tail. The complete
code appears in Figure 11.1.

Next, we show that snoc and tail both run in 0(1) amortized time. Note that
snoc ignores the front digit and tail ignores the rear digit. If we consider each
function in isolation, then snoc is analogous to inc on lazy binary numbers
and tail is analogous to dec on zeroless lazy binary numbers. By adapting
the proofs for inc and dec, we can easily show that snoc and tail run in 0(1)
amortized time as long as each is used without the other.

The key idea of implicit recursive slowdown is that, when functions like
snoc and tail are almost independent, then we can combine their proofs by
simply adding the debits required by each proof. The proof for snoc allows
one debit if the rear digit is ZERO and zero debits if the rear digit is One. The
proof for tail allows one debit if the front digit is Two and zero debits if the
front digit is One. The following proof combines these debit allowances.

Theorem 11.1 snoc and tail run in 0(1) amortized time.

Proof We analyze this implementation using the banker's method. We assign
debits to every suspension, each of which is the middle field of some deep
queue. We adopt a debit invariant that allows each suspension a number of
debits governed by the digits in the front and rear fields. The middle field of a
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structure ImplicitQueue : QUEUE =
(* assumes polymorphic recursion! *)

struct
d a t a t y p e a Digi t = Z E R O | O N E o f a | T w o o f a x a
datatype a Queue =

SHALLOW of a Digit
| DEEP of a Digit x (a x a) Queue susp x a Digit

val empty = SHALLOW ZERO
fun isEmpty (SHALLOW ZERO) = true | isEmpty _ = false
fun snoc (SHALLOW ZERO, y) = SHALLOW (ONE y)

| snoc (SHALLOW (ONE X), y) = DEEP (TWO (X, y), $empty, ZERO)
| snoc (DEEP (f, m, ZERO), y) = DEEP (f, m, O N E y)
| snoc (DEEP (f, m, ONE X), y) =

DEEP (f, $snoc (force m, (x, y)), ZERO)

fun head (SHALLOW ZERO) = raise EMPTY
| head (SHALLOW (ONE X)) = x
j head (DEEP (ONE X, m, r)) = x
| head (DEEP (TWO (X, y), m, r)) = x

fun tail (SHALLOW ZERO) = raise EMPTY
| tail (SHALLOW (ONE X)) = empty
| tail (DEEP (TWO (X, y), m, r)) = DEEP (ONE y, m, r)
| tail (DEEP (ONE X, $q, r)) =

if isEmpty q then SHALLOW r
else let val (y, z) = head q

in DEEP (TWO (y, z), $tail q, r) end
end

Figure 11.1. Queues based on implicit recursive slowdown.

deep queue may have up to |f| — \r\ debits, where |f| is one or two, and \r\ is
zero or one.

The unshared cost of each function is 0(1), so we must merely show that
neither function discharges more than 0(1) debits. We describe only the proof
for tail. The proof for snoc is slightly simpler.

We argue by debit passing, which is closely related to debit inheritance.
Whenever a nested suspension has more debits than it is allowed, we pass
those debits to the enclosing suspension, which is the middle field of the pre-
vious DEEP node. Debit passing is safe because the outer suspension must be
forced before the inner suspension can be forced. Passing responsibility for
discharging debits from a nested suspension to the enclosing suspension en-
sures that those debits will be discharged before the outer suspension is forced,
and hence before the inner suspension can be forced.
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We show that every call to tail passes one debit to its enclosing suspension,
except the outermost call, which has no enclosing suspension. That call simply
discharges its excess debit.

Each cascade of tails ends in a call to tail that changes f from Two to ONE.
(For simplicity of presentation, we ignore the possibility of shallow queues).
This decreases the debit allowance of m by one, so we pass the excess debit to
the enclosing suspension.

Every intermediate call to tail changes f from ONE to Two and recurses.
There are two subcases:

• r is ZERO, m has one debit, which must be discharged before m can
be forced. We pass this debit to the enclosing suspension. We create
one debit to cover the unshared cost of the suspended recursive call. In
addition, this suspension is passed one debit by the recursive call. Since
this suspension has a debit allowance of two, we are done.

• r is ONE. m has zero debits, so we can force it for free. We create
one debit to cover the unshared cost of the suspended recursive call. In
addition, this suspension is passed one debit by the recursive call. Since
this suspension has a debit allowance of one, we keep one debit and pass
the other to the enclosing suspension.

•

Exercise 11.1 Implement lookup and update functions for these queues. Your
functions should run in O(logi) amortized time. You may find it helpful to
augment each queue with a size field.

Exercise 11.2 Implement double-ended queues using the techniques of this
section.

11.2 Catenable Double-Ended Queues
Finally, we use implicit recursive slowdown to implement catenable double-
ended queues, with the signature shown in Figure 11.2. We first describe a
relatively simple implementation that supports -H- in O(logrc) amortized time
and all other operations in O( 1) amortized time. We then describe a much more
complicated implementation that improves the running time of -H- to 0(1).

Consider the following representation for catenable double-ended queues, or
c-deques. A c-deque is either shallow or deep. A shallow c-deque is simply an
ordinary deque, such as the banker's deques of Section 8.4.2. A deep c-deque
is decomposed into three segments: a front, a middle, and a rear. The front and
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signature CATENABLEDEQUE =
sig

type a Cat

val empty
val isEmpty

val cons
val head
val tail

val snoc
val last
val init
val -H-

end

a
a

a
a
a

a
a
a

a

Cat
Cat-)> bool

x a Cat ->• a Cat
C a t ^ a
Cat -» a Cat
Cat x
Cat^
Cat->

Cat x

a -> a Cat
a
a Cat

a Cat -» a

(*
(*

(*
(*

Ca

raises
raises

raises
raises

t

EMPTY
EMPTY

EMPTY
EMPTY

if deque is empty *)
if deque is empty *)

if deque is empty *)
if deque is empty *)

Figure 11.2. Signature for catenable double-ended queues.

rear are both ordinary deques containing two or more elements each. The mid-
dle is a c-deque of ordinary deques, each containing two or more elements. We
assume that D is an implementation of deques satisfying the signature DEQUE,
and that all of the functions in D run in 0(1) time (amortized or worst-case).

datatype a Cat =
SHALLOW of a D.Queue

| DEEP of a D.Queue x a D.Queue Cat susp x a D.Queue

Note that this definition assumes polymorphic recursion.
To insert an element at either end, we simply insert the element into the front

deque or the rear deque. For instance, cons is implemented as

fun cons (x, SHALLOW d) = SHALLOW (D.cons (x, d))
| cons (x, DEEP (f, m, r)) - DEEP (D.cons (x, f), m, r)

To remove an element from either end, we remove an element from the front
deque or the rear deque. If this drops the length of that deque below two, then
we remove the next deque from the middle, add the one remaining element
from the old deque, and install the result as the new front or rear. With the
addition of the remaining element from the old deque, the new deque contains
at least three elements. For example, the code for tail is
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fun tail (SHALLOW d) = SHALLOW (D.tail d)
| tail (DEEP (f, m, r)) =

let val f = D.tail f
in

if not (tooSmall f) then DEEP (f, m, r)
else if isEmpty (force m) then SHALLOW (dappendL (f, r))
else DEEP (dappendL (f, head (force m)), $tail (force m), r)

end

where tooSmall tests if the length of a deque is less than two and dappendL
appends a deque of length zero or one to a deque of arbitrary length.

Note that calls to tail propagate to the next level of the c-deque only when
the length of the front deque is two. In the terminology of Section 9.2.3, we
say that a deque of length three or more is safe and a deque of length two is
dangerous. Whenever tail does call itself recursively on the next level, it also
changes the front deque from dangerous to safe, so that two successive calls to
tail on a given level of the c-deque never both propagate to the next level. We
can easily prove that tail runs in 0(1) amortized time by allowing one debit per
safe deque and zero debits per dangerous deque.

Exercise 11.3 Prove that both tail and init run in 0(1) amortized time by com-
bining their respective debit allowances as suggested by implicit recursive
slowdown. O

Now, what about catenation? To catenate two deep c-deques d and c2,
we retain the front of d as the new front, the rear of c2 as the new rear, and
combine the remaining segments into the new middle by inserting the rear of
Ci into the middle of cu and the front of c2 into the middle of c2, and then
catenating the results.

fun (DEEP (fu mu fi)) -H- (DEEP (f2, m2, r2)) =
DEEP (A, $(snoc (force mi, /*i) -H- cons (f2, force 7772)), r2)

(Of course, there are also cases where C\ or c2 are shallow.) Note that -H- re-
curses to the depth of the shallower c-deque. Furthermore, -H- creates O(l) deb-
its per level, which must be immediately discharged to restore the debit invari-
ant required by the tail and init. Therefore, -H- runs in O(min(log ni, log n2))
amortized time, where n; is the size of C{.

The complete code for this implementation of c-deques appears in Fig-
ure 11.3.

To improve the running time of -H- to O(l), we modify the representation of
c-deques so that -H- does not call itself recursively. The key is to enable 4f at one
level to call only cons and snoc at the next level. Instead of three segments,
we expand deep c-deques to contain five segments: (f, a, m, b, r). f, m, and
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functor SimpleCatenableDeque (D : DEQUE) : CATENABLEDEQUE =
(* assumes polymorphic recursion! *)

struct
datatype a Cat =

SHALLOW of a D.Queue
| DEEP of a D.Queue x a D.Queue Cat susp x a D.Queue

fun tooSmall d = D.isEmpty d orelse D.isEmpty (D.tail d)

fun dappendL (cfi, d2) =
if D.isEmpty di then d2 else D.cons (D.head du d2)

fun dappendR (di, d2) =
if D.isEmpty d2 then di else D.snoc (di, D.head d2)

val empty = SHALLOW D.empty
fun isEmpty (SHALLOW d) = D.isEmpty d

| isEmpty _ = false

fun cons (x, SHALLOW d) = SHALLOW (D.cons (x, d))
| cons (x, DEEP (f, m, r)) = DEEP (D.cons (x, f), m, r)

fun head (SHALLOW d) = D.head d
| head (DEEP (f, m, r)) = D.head f

fun tail (SHALLOW d) = SHALLOW (D.tail d)
| tail (DEEP (f, m, r)) =

let val f = D.tail f
in

if not (tooSmall f) then DEEP (f, m, r)
else if isEmpty (force m) then SHALLOW (dappendL (f, r))
else DEEP (dappendL (ff, head (force m)), $tail (force m), r)

end
... snoc, last, and init defined symmetrically...
fun (SHALLOW di) -H- (SHALLOW d2) =

if tooSmall di then SHALLOW (dappendL (du d2))
else if tooSmall d2 then SHALLOW (dappendR (di, d2))
else DEEP (di, $empty, d2)

| (SHALLOW d) 4f (DEEP (f, m, r)) =
if tooSmall d then DEEP (dappendL (d, f), m, r)
else DEEP (d, $cons (f, force AT?), r)

| (DEEP (f, m, r)) -H- (SHALLOW d) =
if tooSmall d then DEEP (f, m, dappendR (r, d))
else DEEP (f, $snoc (force m, r), d)

| (DEEP (fu mu rx)) -H- (DEEP (f2, m2, r2)) =
DEEP (f i , $(snoc (force mu r\) -H- cons (f2, force m2)), r2)

end

Figure 11.3. Simple catenable deques.
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r are all ordinary deques; f and r contain three or more elements each, and m
contains two or more elements, a and b are c-deques of compound elements. A
degenerate compound element is simply an ordinary deque containing two or
more elements. A full compound element has three segments: (f, c, r), where
f and r are ordinary deques containing at least two elements each, and c is a
c-deque of compound elements. This datatype can be written in Standard ML
(with polymorphic recursion) as

datatype a Cat =
SHALLOW of a D.Queue

| DEEP of a D.Queue (* > 3 *)
x a CmpdElem Cat susp
x a D.Queue (* > 2 *)
x a CmpdElem Cat susp
x a D.Queue (* > 3 *)

and a CmpdElem =
SIMPLE of a D.Queue (* > 2 *)

| CMPD of a D.Queue (* > 2 *)
x a CmpdElem Cat susp
x a D.Queue (* > 2 *)

Given c-deques Ci = DEEP (fi,ai,mi,bi,ri) and c2 = DEEP (f2,a2,m2,b2,r2),
we compute their catenation as follows: First, we retain f 1 as the front of the
result, and r2 as the rear of the result. Next, we build the new middle deque
from the last element of rx and the first element of f2. We then combine mu

bu and the rest of r\ into a compound element, which we snoc onto a\. This
becomes the new a segment of the result. Finally, we combine the rest of f2,
a2, and nh into a compound element, which we cons onto 62. This becomes
the new b segment of the result. Altogether, this is implemented as

fun (DEEP {fu au mu bu h)) -H- (DEEP (f2, a2, m2, b2, r2)) =
let val (r[, m, f2) = share (r i , f2)

val a[ = $snoc (force ai, CMPD (mi, bi, r[))
val b2 = $cons (CMPD (f2, a2, m2), force kh)

in DEEP (fu a[, m, b'2, r2) end

where
fun share (f, r) =

let val m = D.cons (D.last f, D.cons (D.head r, D.empty))
in (D.init f, m, D.tail r)

fun cons (x, DEEP (f, a, m, b, r)) = DEEP (D.cons (x, f), a, m, b, r)
fun snoc (DEEP (f, a, m, b, r), x) = DEEP (f, a, m, b, D.snoc (r, x))

(For simplicity of presentation, we have ignored all cases involving shallow
c-deques.)

Unfortunately, in this implementation, tail and init are downright messy.
Since the two functions are symmetric, we describe only tail. Given some
c-deque c = DEEP (f,a,m,b,r), there are six cases:
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• |/| > 3.
. \f\ = 3.

- a is non-empty.
o The first compound element of a is degenerate.
o The first compound element of a is full.

- a is empty and b is non-empty.
o The first compound element of b is degenerate.
o The first compound element of b is full.

- a and b are both empty.

Here we describe the behavior of tail c in the first three cases. The remaining
cases are covered by the complete implementation in Figures 11.4 and 11.5. If
|f| > 3 then we simply replace f with D.tail f. If \f\ — 3, then removing an el-
ement from f would drop its length below the allowable minimum. Therefore,
we remove a new front deque from a and combine it with the remaining two
elements of the old f. The new f contains at least four elements, so the next
call to tail will fall into the \f\ > 3 case.

When we remove the first compound element of a to find the new front
deque, we get either a degenerate compound element or a full compound
element. If we get a degenerate compound element (i.e., a simple deque),
then the new value of a is $tail (force A). If we get a full compound element
Cmpd (fl\d ,r'), then ? becomes the new f (along with the remaining elements
of the old 0> and the new value of a is

$(force d -H- cons (SIMPLE r', tail (force a)))

But note that the effect of the cons and tail is to replace the first element of a.
We can do this directly, and avoid an unnecessary call to tail, using the function
replaceHead.

fun replaceHead (x, SHALLOW d) = SHALLOW (D.cons (x, D.tail d))
| replaceHead (x, DEEP (f, a, m, b, r)) =

DEEP (D.cons (x, D.tail f), a, m, b, r)

The remaining cases of tail are similar, each doing 0(1) work followed by at
most one call to tail.

Remark This code can be written much more succinctly and much more per-
spicuously using a language feature called views [Wad87, BC93, PPN96],
which allows pattern matching on abstract types. See [Oka97] for further de-
tails. Standard ML does not support views. O

The cons, snoc, head, and last functions make no use of lazy evaluation,



11.2 Catenable Double-Ended Queues 181

functor ImplicitCatenableDeque (D : DEQUE) : CATENABLEDEQUE =
(* assumes that D also supports a size function *)

struct
datatype a Cat =

SHALLOW of a D.Queue
| DEEP of a D.Queue x a CmpdElem Cat susp x a D.Queue

x a CmpdElem Cat susp x a D.Queue
and a CmpdElem =

SIMPLE of a D.Queue
| CMPD of a D.Queue x a CmpdElem Cat susp x a D.Queue

val empty = SHALLOW D.empty
fun isEmpty (SHALLOW of) = D.isEmpty d

| isEmpty _ = false

fun cons (x, SHALLOW d) = SHALLOW (D.cons (x, d))
| cons (x, DEEP (f, a, m, b, r)) = DEEP (D.cons (x, f), a, m, b, r)

fun head (SHALLOW of) = D.head d
| head (DEEP (f, a, m, b, r)) = D.head f

... snoc anof last defined symmetrically...

fun share (f, r) =
let val m = D.cons (D.last f, D.cons (D.head r, D.empty))
in (D.init f, m, D.tail r)

fun dappendL (ofi, of2) =
if D.isEmpty ofi then d2

else dappendL (D.init ofi, D.cons (D.last ofi, d2))
fun dappendR (ofi, of2) =

if D.isEmpty d2 then ofi
else dappendR (D.snoc (ofi, D.head d2), D.tail d2)

fun (SHALLOW ofi) -H- (SHALLOW d2) =
if D.size ofi < 4 then SHALLOW (dappendL (ofi, d2))
else if D.size of2 < 4 then SHALLOW (dappendR (ofi, d2))
else let val (f, m, r) = share (ofi, of2)

in DEEP (f, $empty, m, $empty, r) end
| (SHALLOW d) -H- (DEEP {f, a, m, b, r)) =

if D.size of < 4 then DEEP (dappendL (d, f), a, m, b, r)
else DEEP (d, $cons (SIMPLE f, force a), m, b, r)

| (DEEP (£ a, m, b, r)) -H- (SHALLOW of) =
if D.size of < 4 then DEEP (f, a, m, b, dappendR (r, d))
else DEEP (f, a, m, $snoc (force b, SIMPLE r), of)

| (DEEP (fu au mu bu A ) ) -H- (DEEP (f2, a2, m2, fe, r2)) =
let val (r[, m, f2) = share (rlt f2)

val a[ = $snoc (force au CMPD (mi, bi, r[))
val b2 = $cons (CMPD (f'2, a2, m2), force b2)

in DEEP (flt a[, m, b2, r2) end

Figure 11.4. Catenable deques using implicit recursive slowdown (part I).
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fun replaceHead (x, SHALLOW d) = SHALLOW (D.cons (x, D.tail d))
| replaceHead (x, DEEP (f, a, m, b, r)) =

DEEP (D.cons (x, D.tail 0, a, m, b, r)
fun tail (SHALLOW d) = SHALLOW (D.tail d)

| tail (DEEP (f, a, m, fc, r)) =
if D.size f > 3 then DEEP (D.tail f, a, m, b, r)
else if not (isEmpty (force a)) then

case head (force a) of
SIMPLE d=>

iet val f = dappendL (D.tail f, d)
in DEEP ( f , $tail (force a), m, 6, r) end

| CMPD (f, d, r') =>
let val f" = dappendL (D.tail f, f)

val a" - $(force d -w replaceHead (SIMPLE r', force a))
in DEEP (f", a", m, b, r) end

else if not (isEmpty (force b)) then
case head (force b) of

SIMPLE d=>
let val f = dappendL (D.tail f, m)
in DEEP ( f , $empty, d, $tail (force b), r) end

| CMPD (f, c\ r') =*
let val f" = dappendL (D.tail f, m)

val a" = $cons (SIMPLE f, force d)
in DEEP (f", a", r', $tail (force /?), r) end

else SHALLOW (dappendL (D.tail f, m)) -H- SHALLOW r

... replaceLast and init defined symmetrically...
end

Figure 11.5. Catenable deques using implicit recursive slowdown (part II).

and are easily seen to take 0(1) worst-case time. We analyze the remaining
functions using the banker's method and debit passing.

As always, we assign debits to every suspension, each of which is the a
or b segment of a deep c-deque, or the middle (c) segment of a compound
element. Each c field is allowed four debits, but a and b fields may have from
zero to five debits, based on the lengths of the f and r fields, a and b have a
base allowance of zero debits. If f contains more than three elements, then the
allowance for a increases by four debits and the allowance for b increases by
one debit. Similarly, if r contains more than three elements, then the allowance
for b increases by four debits and the allowance for a increases by one debit.

Theorem 11.2 -H-, tail, and init run in 0(1) amortized time.
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Proof (4f) The interesting case is catenating two c-deques DEEP (d ,ai ,/T?I ,bi ji)
and DEEP (^2,82,^2,62/2). In that case, -H- does 0(1) unshared work and dis-
charges at most four debits. First, we create two debits for the suspended snoc
and cons onto ax and b2, respectively. We always discharge these two debits.
In addition, if bi or a2 has five debits, then we must discharge one debit when
that segment becomes the middle of a compound element. Also, if f i has only
three elements but f2 has more than three elements, then we must discharge
a debit from b2 as it becomes the new b. Similarly for T\ and r2. However,
note that if b\ has five debits, then f\ has more than three elements, and that if
a2 has five debits, then r2 has more than three elements. Therefore, we must
discharge at most four debits altogether, or at least pass those debits to an en-
closing suspension.

(tail and in it) Since tail and in it are symmetric, we include the argument only
for tail. By inspection, tail does 0(1) unshared work, so we must show that it
discharges only 0(1) debits. In fact, we show that it discharges at most five
debits.

Since tail can call itself recursively, we must account for a cascade of tails.
We argue by debit passing. Given some deep c-deque DEEP (f,a,m,b,r), there
is one case for each case of tail.

If \f\ > 3, then this is the end of a cascade. We create no new debits, but
removing an element from f might decrease the allowance of a by four debits,
and the allowance of b by one debit, so we pass these debits to the enclosing
suspension.

If \f\ = 3, then assume a is non-empty. (The cases where a is empty are
similar.) If \r\ > 3, then a might have one debit, which we pass to the enclos-
ing suspension. Otherwise, a has no debits. If the head of a is a degenerate
compound element (i.e., a simple deque of elements), then this becomes the
new f along with the remaining elements of the old f. The new a is a suspen-
sion of the tail of the old a. This suspension receives at most five debits from
the recursive call to tail. Since the new allowance of a is at least four debits,
we pass at most one of these debits to the enclosing suspension, for a total of
at most two debits. (Actually, the total is at most one debit since we pass one
debit here exactly in the case that we did not have to pass one debit for the
original a).

Otherwise, if the head of a is a full compound element CMPD (f',c',r'), then
f' becomes the new f along with the remaining elements of the old f. The new
a involves calls to -H- and replaceHead. The total number of debits on the new
a is nine: four debits from c', four debits from the +f, and one newly created
debit for the replaceHead. The allowance for the new a is either four or five,
so we pass either five or four of these nine debits to the enclosing suspension.
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Since we pass four of these debits exactly in the case that we had to pass one
debit from the original a, we always pass at most five debits. •

Exercise 11.4 Given an implementation D of non-catenable deques, imple-
ment catenable lists using the type

datatype a Cat =
SHALLOW of a D.Queue

| DEEP of a D.Queue x a CmpdElem Cat susp x a D.Queue
and a CmpdElem = CMPD of a D.Queue x a CmpdElem Cat susp

where both the front deque of a DEEP node and the deque in a CMPD node
contain at least two elements. Prove that every function in your implementation
runs in 0(1) amortized time, assuming that all the functions in D run in 0(1)
time (worst-case or amortized).

11.3 Chapter Notes
Recursive Slowdown Kaplan and Tarjan introduced recursive slowdown in
[KT95], and used it again in [KT96b], but it is closely related to the regu-
larity constraints of Guibas et al. [GMPR77]. Brodal [Bro95] used a similar
technique to implement heaps.

Catenable Deques Buchsbaum and Tarjan [BT95] present a purely functional
implementation of catenable deques that supports tall and init in O(log* n)
worst-case time and all other operations in 0(1) worst-case time. Our im-
plementation improves that bound to 0(1) for all operations, although in the
amortized rather than worst-case sense. Kaplan and Tarjan have independently
developed a similar implementation with worst-case bounds [KT96a]. How-
ever, the details of their implementation are quite complicated.
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Queues

module Queue (Queue(..)) where
import Prelude hiding (head,tail)

class Queue q where
empty
isEmpty
snoc
head
tail

qa
q a-* Bool

qa
q a-> a
q a-> qa

module BatchedQueue (BatchedQueue) where
import Prelude hiding (head,tail)
import Queue

data BatchedQueue a = BQ [a] [a]
check [ ] r = BQ (reverse r) [ ]
check f r = BQ f r

instance Queue BatchedQueue where
empty = B Q [ ] [ ]
isEmpty (BQ f r) = null f
snoc (BQ f r) x = check f (x : r)

head (BQ [] _) = error "empty queue11

head (BQ (x: f)r) = x
tail (BQ [] - ) = error "empty queue"
tail (BQ (x :f)r) = check f r

module BankersQueue (BankersQueue) where
import Prelude hiding (head,tail)
import Queue

data BankersQueue a = BQ Int [a] Int [a]
check lent f lenr r =

if lenr < lenf then BQ lent f lenr r
else BQ (lenf+lenr) (f -H- reverse r) 0 []

instance Queue BankersQueue where
empty = B Q 0 [ ] 0 [ ]
isEmpty (BQ lenf f lenr r) = (lenf == 0)

snoc (BQ lenf f lenr r) x = check lenf f (lenr^) (x : r)
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head (BQ lenf [] lenr r) = error "empty queue"
head (BQ lenf (x : f) lenr r) = x

tail (BQ lenf [] lenr r) = error "empty queue"
tail {BQ lenf (x : f) lenr r) = check (lenf-1) f lenr r

module PhysicistsQueue (PhysicistsQueue) where
import Prelude hiding (head,tail)
import Queue

data PhysicistsQueue a = PQ [a] Int [a] Int [a]

check w lenf f lenr r =
if lenr < lenf then checkw w lenf f lenr r
else checkw f (lenf+lenr) (f +f reverse r) 0 []

checkw [ ] lenf f lenr r = PQf lenf f lenr r
checkw w lenf f lenr r - PQ w lenf f lenr r

instance Queue PhysicistsQueue where
empty = P Q [ ] 0 [ ] 0 [ ]
isEmpty (PQ w lenf f lenr r) = (lenf == 0)
snoc (PQ w lenf f lenr r) x = check w lenf f (lenr+'l) (x : r)

head (PQ [] lenf f lenr r) = error "empty queue11

head (PQ (x : w) lenf f lenr r) = x

tail (PQ [ ] lenf f lenr r) = error " empty queue"
tail (PQ (x : w) lenf f lenr r) = check w (/enf-1) (Prelude.tail f) lenr r

module HoodMelvilleQueue (HoodMelvilleQueue) where
import Prelude hiding (head,tail)
import Queue

data RotationState a =
Idle

| Reversing Int [a] [a] [a] [a]
| Appending Int [a] [a]
| Done [a]

data HoodMelvilleQueue a = HM Int [a] (RotationState a) Int [a]

exec (Reversing ok (x : f) f (y : r) r') = Reversing (o/c+1) f (x : f) r (y : r')
exec (Reversing ok [] ff [y] r) = Appending ok f (y : r')
exec (Appending 0 f r') = Done r1

exec (Appending ok (x : f) r') = Appending (o/c-1) f (x : r')
exec state = state

invalidate (Reversing ok f f r r') = Reversing (o/c-1) f f r r'
invalidate (Appending 0 f' (x : r')) = Done r'
invalidate (Appending ok f r') = Appending (o/c-1) f rf

invalidate state = state
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exec2 lenf f state lenr r =
case exec (exec state) of

Done newf ->- HM lenf newf Idle lenr r
newstate ->• HM lenf f newstate lenr r

check lenf f state lenr r =
if lenr < lenf then exec2 lenf f state lenr r
e l s e let newstate = R e v e r s i n g O f [ ] r [ ]

in exec2 (lenf+lenr) f newstate 0 []
instance Queue HoodMelvilleQueue where

empty = HM0 [ ] Idle 0 [ ]
isEmpty (HM lenf f state lenr r) = (lenf == 0)
snoc (HM lenf f state lenr r) x = check lenf f state (/enr+1) (x : r)

head (HM _ [] ) = error "empty queue"
head (HM -(x:f) ) = x
tail (HM lenf [] state lenr r) = error "empty queue"
tail (HM lenf (x : f) state lenr r) =

check (lenf-1) f (invalidate state) lenr r

module BootstrappedQueue (BootstrappedQueue) where
import Prelude hiding (head,tail)
import Queue

data BootstrappedQueue a =
E | Q Int [a] (BootstrappedQueue [a]) Int [a]

checkQ,checkF:: Int ->»  [a] -^ (BootstrappedQueue [a]) -»Int -^ [a]
-^ BootstrappedQueue a

checkQ lenfm f m lenr r -
if lenr < lenfm then checkF lenfm f m lenr r
else checkF (lenfm+lenr) f (snoc m (reverse r)) 0 []

checkF lenfm [] E lenr f = E
checkF lenfm [] m lenr r = Q lenfm (head m) (tail m) lenr r
checkF lenfm f m lenr r = Q lenfm f m lenr r

instance Queue BootstrappedQueue where
empty = Q 0 [ ] E 0 [ ]
isEmpty E = True
isEmpty _ = False
snocEx= q 1 [x] E 0 [ ]
snoc (Q lenfm f m lenr r) x = checkQ lenfm f m (lenr^) (x : r)

head E = error" empty queue"
head (Q lenfm (x : f) m lenr r) = x

tail E = error " empty queue"
tail (Q lenfm (x : f) m lenr r) = checkQ (lenfm-1) f m lenr r
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module ImplicitQueue (ImplicitQueue) where
import Prelude hiding (head,tail)
import Queue

data Digit a = ZERO | ONE a | Two a a
data ImplicitQueue a =

SHALLOW (Digit a)
| DEEP (Digit a) (ImplicitQueue (a, a)) (Digit a)

instance Queue ImplicitQueue where
empty = SHALLOW ZERO
isEmpty (SHALLOW ZERO) = True
isEmpty _ = False

snoc (SHALLOW ZERO) y = SHALLOW (ONE y)
snoc (SHALLOW (ONE X)) y = DEEP (TWO X y) empty ZERO
snoc (DEEP f m ZERO) y = DEEP f m (ONE y)
snoc (DEEP f m (ONE X)) y = DEEP f (snoc m (x,y)) ZERO

head (SHALLOW ZERO) = error "empty queue11

head (SHALLOW (ONE X)) = x
head (DEEP (ONE X) m r) = x
head (DEEP (TWO x y) m r) = x

tail (SHALLOW ZERO) = error "empty queue"
tail (SHALLOW (ONE X)) = empty
tail (DEEP (TWO X y) m r) = DEEP (ONE y) m r
tail (DEEP (ONE x) m r) =

if isEmpty m then SHALLOW r else DEEP (TWO y z) (tail m) r
where (y,z) - head m

| Peglues

module Deque (Deque(..)) where
import Prelude hiding (head,tail,last,init)

class Deque q where
empty
isEmpty
cons
head
tail

snoc
last
init

qa
q a ->• Bool

a->> q
q a-> a
q a^ qa

qa

qa-> a-»  qa
qa-* a

qa

module BankersDeque (BankersDeque) where
import Prelude hiding (head,tail,last,init)
import Deque
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data BankersDeque a = BD Int [a] Int [a]

c = 3
check lenf f lenr r =

if lenf > c*lenr + 1 then
let / = (lenf+lenr) 'div' 2

j- lenf+lenr-\
f = take / f
r' = r -H- reverse (drop / f)

in BD / f j r'
else if lenr > c*lenf + 1 then

let j = (lenf+lenr) 'div' 2
/ = lenf+lenr—\
r' = take j r
f = f -H- reverse (drop j r)

in BD / f' j r'
else BD lenf f lenr r

instance Deque BankersDeque where
empty = B D 0 [ ] 0 [ ]
isEmpty (BD lenf f lenr r) = (lenf+lenr == 0)

cons x (BD lenf f lenr r) = check (/enf+1) (x : /) lenr r
head (BD lenf [ ] lenr r) = error ••  empty deque"
head (BD lenf (x : f) lenr r) = x

tall (BD lenf [] lenr r) = error "empty deque"
tall (BD lenf (x : f) lenr r) = check (lenf-A) f lenr r
snoc (BD lenf f lenr r) x = check lenf f (lenr+*\) (x : r)
last (BD lenf f lenr []) = error "empty deque"
last (BD lenf f lenr (x : r')) = x

init (BD lenf f lenr[]) = error "empty deque"
init (BD lenf f lenr (x : r')) = check lenf f (/enr-1) r'

Catenable Lists

module CatenableList (Catenablel_ist(..)) where
import Prelude hiding (head,tail,(-H-))
class CatenableList c where

empty
isEmpty
cons
snoc
(*)
head
tail

c a
c a -> Bool
a-^ca^ca
ca-^a-^ca
ca^ca^ca

ca-^a
ca-^ca
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module CatList (CatList) where
import Prelude hiding (head,tail,(-H-))
import CatenableList
import Queue (Queue)
import qualified Queue

data CatList q a = E | C a (q (CatList q a))

link (C x q) s = C x (Queue.snoc q s)
instance Queue q =*• CatenableList (CatList q) where

empty = E
isEmpty E = True
isEmpty _ = False

xs -H- E = xs
E -H- xs = xs
xs -H- ys = link xs ys
cons x xs = C x Queue.empty -H- XS
snoc xs x = xs -H- C x Queue.empty
head E = error "empty l i s t 1 1

head (C x q) = x

tail E = error "empty l i s t "
tail (C x Q) = if Queue.isEmpty qrthen E else linkAII q

where linkAII q = if Queue.isEmpty q1 then t else link t (linkAII q')
where t = Queue.head q

q' = Queue.tail q

Catenable Deques

module CatenableDeque (CatenableDeque(..)) where
import Prelude hiding (head,tail,last,init,(-H-))
import Deque

class Deque d => CatenableDeque d where
(-H-):: d a^ d a^ d a

module SimpleCatenableDeque (SimpleCatDeque) where
import Prelude hiding (head,tail,last,init,(-H-))
import CatenableDeque

data SimpleCatDeque d a =
SHALLOW (d a)

| DEEP (d a) (SimpleCatDeque d (d a)) (d a)

tooSmall d = isEmpty d || isEmpty (tail d)
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dappendL di d2 = if isEmpty cd then d2 else cons (head di) d2
dappendR di d2 = if isEmpty d2 then di else snoc di (head d2)
instance Deque d =>> Deque (SimpleCatDeque d) where

empty = SHALLOW empty
isEmpty (SHALLOW d) = isEmpty d
isEmpty _ = False

cons x (SHALLOW d) = SHALLOW (cons x d)
cons x (DEEP f m r) = DEEP (cons x f) m r

head (SHALLOW d) = head d
head (DEEP f m r) = head f

tail (SHALLOW d) = SHALLOW (tail d)
tail (DEEP f m r)

| not (tooSmall f) = DEEP f m r
| isEmpty m = SHALLOW (dappendL f r)
| otherwise = DEEP (dappendL f (head m)) (tail n?) r

where f = tail f

— snoc, last, and init defined symmetrically...

instance Deque d =^ CatenableDeque (SimpleCatDeque d) where
(SHALLOW di) -H- (SHALLOW d2)

| tooSmall di = SHALLOW (dappendL di d2)
| tooSmall d2 = SHALLOW (dappendR di d2)
| otherwise = DEEP di empty d2

(SHALLOW d) -H- (DEEP f m r)
| tooSmall d = DEEP (dappendL d f) m r
| otherwise = DEEP d (cons f /77) r

(DEEP f m r) -H- (SHALLOW d)
| tooSmall d = DEEP f m (dappendR r d)
| otherwise = DEEP f (snoc m r) d

(DEEP f i mi ri) -H- (DEEP f2 m2 r2) =
DEEP h (snoc mi r\ -H- cons f2 /7?2) r2

module ImplicitCatenableDeque (Sized(..), ImplicitCatDeque) where
import Prelude hiding (head,tail,last,init,(-H-))
import CatenableDeque
class Sized d where

size v. d a-± Int
data ImplicitCatDeque d a =

SHALLOW (d a)
| DEEP (d a) (ImplicitCatDeque d (CmpdElem d a)) (d a)

(ImplicitCatDeque d (CmpdElem d a)) (d a)

data CmpdElem d a =
SIMPLE (d a)

| CMPD (d a) (ImplicitCatDeque d (CmpdElem d a)) (d a)
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share f r = (init f, m, tail r)
where m = cons (last f) (cons (head r) empty)

dappendL c/i d2 =
if isEmpty di then d2 else dappendL (init di) (cons (last di) d2)

dappendR d\ di =
if isEmpty d2 then ofi else dappendR (snoc di (head d2)) (tail d2)

replaceHead x (SHALLOW d) = SHALLOW (cons x (tail d))
replaceHeadx(DEEP f a mb r) = DEEP (consx (tail f)) amb r

instance (Deque d, Sized d) => Deque (ImplicitCatDeque d) where
empty = SHALLOW empty
isEmpty (SHALLOW d) = isEmpty d
isEmpty _ = False

cons x (SHALLOW d) = SHALLOW (cons x d)
consx (DEEP f amb r) = DEEP (consx f) a mb r

head (SHALLOW d) = head d
head (DEEP f a m b r) = head f

tail (SHALLOW d) = SHALLOW (tail d)
tail (DEEP f ambr)

| size f > 3 = DEEP (tail f) am b r
| not (isEmpty a) =

case head a of
SIMPLE d - ^ DEEP f (tail a) m b r

where fx = dappendL (tail 0 d
CMPD f c; r; -> DEEP f" a " m / ) r

where f" = dappendL (tail f) f
a" = d -H- replaceHead (SIMPLE r') a

| not (isEmpty b) =
case head b of

SIMPLE d ->> DEEP f; empty d (tail b) r
where f = dappendL (tail 0 ^

CMPD f c' r1 -> DEEP f" a" r' (tail b) r
where f" = dappendL (tail 0 m

a11 = cons (SIMPLE f) d
| otherwise = SHALLOW (dappendL (tail f) m) -H- SHALLOW r

- - snoc, last, and init defined symmetrically...

instance (Deque d, Sized d) => CatenableDeque (ImplicitCatDeque d)
where

(SHALLOW di) * (SHALLOW d2)
size di < 4 = SHALLOW (dappendL di d2)
size d2 < 4 = SHALLOW (dappendR dx d2)
otherwise = let (f, m, r) = share d\ d2 in DEEP f empty m empty r

(SHALLOWd) -H-(DEEP f ambr)
| size d < 4 = DEEP (dappendL d f) amb r
| otherwise = DEEP d(cons(SIMPLE f) a) mbr

(DEEP f amb r) -H-(SHALLOWd)
| size d < 4 = DEEP f amb (dappendR r d)
| otherwise = DEEP / a m ( s n o c b ( S I M P L E r)) d
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( D E E P f i aY mi bi rx) -H- ( D E E P f2 a2 m2 b2 r2) = D E E P h a[ m b'2 r2

where (r[, m, f'2) = share rx f2
a[ = snoc ax ( C M P D mx bi r[)
b2 = cons ( C M P D f2 a2 m2) b2

Random-Access Lists

module RandomAccessList (RandomAccessList(..)) where
import Prelude hiding (head,tail,lookup)

class RandomAccessList r where
empty
isEmpty
cons
head
tail

lookup
update

r a
r a ->> Bool

a->- r a - * r a
r a->> a
r a->- r a

Int -^ r a ->» a
Int -^a^ra

module BinaryRandomAccessList (BinaryList) where
import Prelude hiding (head,tail,lookup)
import RandomAccessList

data Tree a = LEAF a | NODE Int (Tree a) (Tree a)
data Digit a = ZERO | ONE (Tree a)
newtype BinaryList a = BL [Digit a]
size (LEAF X) = 1
size (NODE W h t2) = w
link fi t2 = NODE (size h + size t2) h t2
consTree t [] = [ONE t]
consTree t (ZERO : ts) = O N E t: ts
consTree h (ONE t2 : te) = ZERO : consTree (link U t2) ts
unconsTree[] = error "empty l i s t "
unconsTree [ONE t] = (t, [])
unconsTree (ONE t:ts) = (t, ZERO : ts)
unconsTree (ZERO : ts) = (tu ONE t2 : tsf)

where (NODE _ fi t2, ts') = unconsTree ts

instance RandomAccessList BinaryList where
empty = BL[]
isEmpty (BL ts) = null ts

cons x (BL ts) = BL (consTree (LEAF X) ts)
head (BL ts) = let (LEAF X, _) = unconsTree ts in x
tail (BL ts) = let (_, ts') = unconsTree ts in BL ts'
lookup / (BL ts) = look / ts
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where
look / [] = error "bad subscr ip t"
look / (ZERO : ts) = look / ts
l o o k / ( O N E t: ts) =

if / < size t then lookTree / t else look (/ - size t) ts
lookTree 0 (LEAF X) = x
lookTree / (LEAF X) = error "bad subsc r i p t "
lookTree / (NODE W h t2) =

if / < w 'div' 2 then lookTree / h else lookTree (/ - w 'div' 2) t2
update / y (BL ts) = BL (upd / ts)

where
upd / [] = error "bad subscript"
upd / (ZERO : ts) = ZERO : upd / ts
u p d / ( O N E t:ts) =

if / < size t then ONE (updTree /1) : ts
else O N E t: upd (/ - size t) ts

updTree 0 (LEAF X) = LEAF y
updTree / (LEAF X) = error "bad subsc r i p t "
updTree / (NODE W h t2) =

if / < w 'div' 2 then NODE W (updTree / h) t2
else NODE W h (updTree (/ - w 'div' 2) t2)

module SkewBinaryRandomAccessList (SkewList) where
import Prelude hiding (head,tail,lookup)
import RandomAccessList
data Tree a = LEAF a | NODE a (Tree a) (Tree a)
newtype SkewList a = SL [(Int, Tree a)]
instance RandomAccessList SkewList where

empty = SL[]
isEmpty (SL ts) = null ts

cons x (SL ((wuti): (w2,t2): ts))
| wx == w2 = SL ((1+W!+w2, NODE X h t2): ts)

cons x (SL ts) = SL ((1 ,LEAF X) : ts)

head (SL []) = error "empty l i s t "
head(SL((1, L E A F X ) : ts))=x
head (SL ((w, NODE X h t2): ts)) = x

tail (SL []) = error "empty l i s t "
tail (SL((1, L E A F X ) : ts)) = SL ts
tail (SL ((w, NODE X h t2): ts)) = SL ((w 'div' 2, f i ) : (i^ 'div' 2,

lookup / (SL ts) = look / ts
where

look / [] = error "bad subscript"
look i((w,t) : ts) =

if / < w then lookTree w /1 else look (/-1^) ts
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lookTree 1 0 (LEAF X) = x
lookTree 1 / (LEAFX) = error "bad subsc r i p t "
lookTree w 0 (NODE X h t2) = x
lookTree w i (NODE X U t2) =

if / < w' then lookTree w' (/-1) h else lookTree w' (/ '-1-w') t2
where w' = w 'div' 2

update / y (SL ts) = SL (upd / ts)
where

upd / [] = error "bad subscript"
upd i((w,t): ts) =

if / < w then (iv,updTree wit): ts else (w,t): upd (i-w) ts

updTree 1 0 (LEAF X) = LEAF y
updTree 1 / (LEAF X) = error "bad subsc r i p t "
updTree w 0 (NODE X h t2) = NODE y h t2
updTree w i (NODE X h t2) =

if / < w' then NODE X (updTree w' (/-1) h) t2
else NODE X h (updTree w' (i-A-w1) t2)

where w' = w 'div' 2

module AltBinaryRandomAccessList (BinaryList) where
import Prelude hiding (head,tail,lookup)
import RandomAccessLlst
data BinaryList a =

Nil | ZERO (BinaryList (a,a)) | O N E a (BinaryList (a,a))
uncons:: BinaryList a ->• (a, BinaryList a)
unconsNil = error "empty l i s t "
uncons (ONE X Nil) = (x, Nil)
uncons (ONE X ps) = (x, ZERO ps)
uncons (ZERO ps) = let ((x,y), psf) = uncons ps in (x, O N E y ps')

fupdate :: (a ->> a) ->• Int -^ BinaryList a -^ BinaryList a
fupdate f i Nil = error "bad subsc r i p t "
fupdate f 0 (ONE X ps) = O N E (f x) ps
fupdate f i (ONE X ps) = cons x (fupdate f (/-1) (ZERO ps))
fupdate f i (ZERO ps) = ZERO (fupdate f (i 'div' 2) ps)

where f' (x,y) = if / 'mod' 2 == 0 then (f x, y) else (x, f y)

instance RandomAccessList BinaryList where
empty = Nil
isEmpty Nil = True
isEmpty _ = False

cons x Nil = O N E x Nil
cons x (ZERO ps) = O N E X ps
cons x (ONE y ps) = ZERO (cons (x,y) ps)

head xs = fst (uncons xs)
tail xs = snd (uncons xs)
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lookup / Nil = error "bad subsc r i p t "
lookup 0 (ONE X ps) = X
lookup / (ONE X ps) = lookup (/-1) (ZERO ps)
lookup / (ZERO ps) = if / 'mod' 2 == 0 then x else y

where (x,y) = lookup (/ 'div' 2) ps

update i y xs = fupdate (Ax -> y) / xs

I Heaps

module Heap (Heap(..)) where
class Heap h where

empty :
isEmpty :
insert :
merge :

findMin :
deleteMin :

: Ord
: Ord
: Ord
: Ord

: Ord
: Ord

module LeftistHeap
import Heap

a=> ha
a=> h a -)• Bool
a=> a->» ha-* ha

a^ ha-* a
a=> ha-* ha

(LeftistHeap) where

data LeftistHeap a = E | T Int a (LeftistHeap a) (LeftistHeap a)
rank E = 0
rank (T r ) = r
makeT x a b - if rank a > rank b then T (rank b+'\) x ab

else T (rank a + 1) x b a

instance Heap LeftistHeap where
empty = E
isEmpty E = True
isEmpty _ = False

insert x h = merge (T 1 x E E) h

merge h E = h
merge E h = h
merge /7i@(T _ x ax bi) h2@(T _ y a2 fe>) =

if x < y then makeT x ai (merge bi Ab)
else makeT y a2 (merge fti b2)

findMin E = error "empty heap"
findMin ( T _ x a 5 ) = x

deleteMin E = error "empty heap"
deleteMin (T -X a b) = merge a b
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module BinomialHeap (BinomialHeap) where
import Heap

data Tree a = NODE Int a [Tree a]
newtype BinomialHeap a = BH [Tree a]
rank (NODE r x c) = r
root (NODE r X C) = X

link fi@(NODE r Xi Ci) ?2@(NODE _ x2 c2) =
if x i < x2 then NODE (r+1) xi (t2: Ci) else NODE (r+1) X2 (fi : c2)

insTree f [] = [t]
insTree f ts@(t' : te') =

if rank t < rank t' then f: te else insTree (link 11') ts'

mrg fei [] = tei
mrg[] ts2 = ts2
mrg ts^ih-.tsi) ts2@(t2\ts2)

| rank h < rank t2 = h : mrg te( fs2
| rank t2 < rank fi = t2 : mrg tei fs2
| otherwise = insTree (link h t2) (mrg ts[ ts2)

removeMinTree [] = error "empty heap"
removeMinTree [t] = (t, [])
removeMinTree (t: ts) = if root t < root f then (t, ts) else (f;, f: ts')

where (t', ts') = removeMinTree ts

instance Heap BinomialHeap where
empty = BH []
isEmpty (BH ts) = null ts
insert x (BH ts) = BH (insTree (NODE 0 x []) ts)
merge (BH tsi) (BH te2) = BH (mrg tei te2)

findMin (BH ts) = root t
where (t, _) = removeMinTree te

deleteMin (BH ts) = BH (mrg (reverse fei) ts2)
where (NODE _ x tei, te2) = removeMinTree te

module SplayHeap (SplayHeap) where
import Heap

data SplayHeap a = E | T (SplayHeap a) a (SplayHeap a)
partition pivot E = (E, E)
partition pivot t@(T a x b) =

if x < p/Vof then
case £> of

E -> (t E)
T fc y fc ->

if y < p/Vof then
let (small, big) = partition pivot b2
in (J (T ax b) y small, big)
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else
let (small, big) = partition pivot bi
in (T a x small, T big y b2)

else
case a of

E -> (E, f)
T ai y a2 ^

if y < p/Vof then
let (small, big) = partition pivot a2
in (T a\ y small, T big x b)

else
let (small, big) = partition pivot ax
in (small, T big y (T a2 x b))

instance Heap SplayHeap where
empty = E
isEmpty E = True
isEmpty _ = False

insert x t = T a x b
where (a, b) = partition x t

merge E t = t
merge (T ax b) t = T (merge ta a) x (merge tb b)

where (fa, tb) = partition x t

findMin E = error "empty heap"
findMin (TEx b) = x
findMin (T ax b) = findMin a
deleteMin E = error "empty heap"
deleteMin (TEx b) = b
deleteMin (T (T Exb) y c) = T by c
deleteMin (T (T a x b) y c) = T (deleteMin a) x (T by c)

module PairingHeap (PairingHeap) where
import Heap
data PairingHeap a = E | T a [PairingHeap a]

mergePairs[] = E
mergePairs [h] = h
mergePairs (/?i : h2 : hs) = merge (merge hi h2) (mergePairs hs)
instance Heap PairingHeap where

empty = E
isEmpty E = True
isEmpty _ = False
insert x h = merge (T x[]) h

merge h E = h
merge E h = h
merge hi@(T x hsi) h2@(T y hs2) =

if x < y then T x (h2 : hsi) else T y (hi : hs2)
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flndMJn E = error "empty heap"
findMin (T x hs) = x

deleteMin E = error "empty heap"
deleteMin (T x hs) = mergePairs hs

module LazyPairingHeap (PairingHeap) where
import Heap

data PairingHeap a = E | T a (PairingHeap a) (PairingHeap a)
link (T x E m) a = T x a m
link (T xb m) a = T x E (merge (merge ab) m)

instance Heap PairingHeap where
empty = E
isEmpty E = True
isEmpty _ = False

insert x a = merge ( T x E E ) a
merge a E = a
merge E b = b
merge a@(T x ) b@(T y ) = if x < y then link a b else link b a
findMin E = error "empty heap"
findMin ( T x a m ) = x
deleteMin E = error "empty heap"
deleteMin (T x a m) = merge a m

module SkewBinomialHeap (SkewBinomialHeap) where
import Heap

data Tree a = NODE Int a [a] [Tree a]
newtype SkewBinomialHeap a = SBH [Tree a]
rank (NODE r x xs c) = r
root (NODE r X XS C) = X

link fi@(NoDE r Xi xsi Ci) ?2@(NODE _ x 2 xs2 c2) =
if xi < x2 then NODE (r+1) xx xsi (t2: Ci)
else NODE (r+1) x2 xs2 (fi : c2)

skewLink x 11 f2 =
let NODE r y ys c = link h t2
in if x < y then NODE r x (y : ys) c else NODE r y (x : ys) c

insTreef[] = [f]
insTreef ts@(t': ts') =

if rank t < rank f' then t: te else insTree (link 11') ts'
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mrg tei [] = tei
mrg[] te2 = ts2
mrg ts1@(t1:ts[)ts2@(t2:ts2)

| rank h < rank 12 = h : mrg ts[ ts2
| rank t2 < rank h = t2 : mrg tei te2
| otherwise = insTree (link h t2) (mrg ts[ te2)

normalize [ ] = [ ]
normalize (t: ts) = insTree t ts
removeMinTree [] = error "empty heap11

removeMinTree [t] = (t, [])
removeMinTree (t: ts) = if root t < root f then (f, ts) else (f, t: ts')

where (tf, ts') = removeMinTree ts

instance Heap SkewBinomialHeap where
empty = SBH[]
isEmpty (SBH ts) = null ts

insert x (SBH (h : t2 : ts))
| rank fi == rank t2 = SBH (skewLink x h t2 : te)

insert x (SBH ts) = SBH (NODE 0 x [] []: ts)

merge (SBH tei) (SBH ts2) = SBH (mrg (normalize tei) (normalize ts2))

findMin (SBH ts) = root f
where (f, _) = removeMinTree fs

deleteMin (SBH ts) = foldr insert (SBH ts') xs
where (NODE _ x xs tSi, ts2) = removeMinTree ts

ts' = mrg (reverse tei) (normalize te2)

module BootstrapHeap (BootstrapHeap) where
import Heap

data BootstrapHeap h a = E | H a (h (BootstrapHeap h a))

instance Eq a => Eq (BootstrapHeap h a) where
(Hx_)==(Hy_) = (x==y)

instance Ord a =j> Ord (BootstrapHeap h a) where
(H x _) < (H y _) = (x < y)

instance Heap h =^ Heap (BootstrapHeap h) where
empty = E
isEmpty E = True
isEmpty _ = False

insert x h = merge (H x empty) /?

merge E h= h
merge hE = h
merge Ah@(H * px) fr2@(H y p2) =

if x < y then H x (insert h2 px) else H y (insert hi p2)
findMin E = error "empty heap"
findMin (H x p) = x
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deleteMin E = error "empty heap"
deleteMin (H x p) =

if isEmpty p then E
else let H y px = findMin p

p2 = deleteMin p
In H y (merge px p2)

Sortable Collections

module Sortable (Sortable(..)) where
class Sortable s where

empty :
add :
sort :

Ord a=> s a
Ord a=> a^> s a-> sa
Ord a=> s a^[a]

module BottomUpMergeSort (MergeSort) where
import Sortable

data MergeSort a = MS Int [[a]]
mrg []ys = ys
mrgxs[] = xs
mrg xs@(x : xs') ys@(y : ys') =

if x < y then x : mrg xs' ys else y : mrg xs ysf

instance Sortable MergeSort where
empty = MS 0 [ ]

add x (MS size segs) = MS (s/ze+1) (addSeg [x] segs size)
where addSeg seg segs size =

if size 'mod' 2 == 0 then seg: segs
else addSeg (mrg seg (head segs)) (tail segs) (size 'div' 2)

sort (MS size segs) = foldl mrg [] segs

Sets

module Set (Set(..)) where
— assumes multi-parameter type classes!

class Set s a where
empty :
insert :
member:

s a

a^ sa-+
sa
Bool
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module UnbalancedSet (UnbalancedSet) where
import Set
data UnbalancedSet a = E | T (UnbalancedSet a) a (UnbalancedSet a)
instance Ord a ==> Set UnbalancedSet a where

empty = E
member x E = False
memberx (T ay b) =

if x < y then member x a
else if x > y then member x b
else True

insert x E = T E x E
insert x s@(T ay b) =

if x < y then T (insert x a) y b
else if x > y then T a y (insert x b)
elses

module RedBlackSet (RedBlackSet) where
import Set
data Color = R | B
data RedBlackSet a = E | T Color (RedBlackSet a) a (RedBlackSet a)
balance B (T R (T R a x b) y c) z d = T R (T B a x b) y (T B c z d)
balance B (T R a x (T R b y c)) z d = T R (T B a x b) y (T B c z d)
balance B a x (T R (T R b y c) z d) = T R (T B a x b) y (T B c z d)
balance B a x (T R b y (T R c z d)) = T R (T B a x b) y (J B c z d)
balance color a x b = T color ax b

instance Ord a => Set RedBlackSet a where
empty = E
member x E = False
member x ( T _ a y / ? ) =

if x < y then member x a
else if x > y then member x b
else True

insert x s = T B a y b
where ins E = T R E x E

ins s@(T co/or ay b) =
if x < y then balance color (ins a) y b
else if x > y then balance color a y (ins b)
else s

T _ a y b = inss — guaranteed to be non-empty
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Finite Maps

module FiniteMap (FiniteMap(..)) where
- - assumes multi-parameter type classes!
class FiniteMap m k where

empty :
bind :
lookup:

mk
k - > •

* - >

a
a -
m k

mk
a->

a-¥  m
Maybe

ka
a

module Trie (Trie) where
import FiniteMap
data Trie mk ks a = TRIE (Maybe a) (mk (Trie mk ks a))

instance FiniteMap m k => FiniteMap (Trie (m k)) [k] where
empty = TRIE NOTHING empty

lookup [] (TRIE b m) = b
lookup (k : ks) (TRIE b m) = lookup k m » = \m f -> lookup ks m'
bind [ ] X ( T R I E b m) = TR\E ( JUSTX) m
bind (k : ks) x (TRIE b m) =

let t = case lookup k mot
J U S T f - » t
NOTHING-> empty

t1 = bind ks x t
in TRIE b (bind k f m)

module TrieOfTrees (Tree(..), Trie) where
import FiniteMap

data Tree a = E | T a (Tree a) (Tree a)
data Trie mk ksa- TRIE (Maybe a) (mk (Trie mk ks (Trie m/c ks a)))
instance FiniteMap m k => FiniteMap (Trie (m k)) (Tree k) where

empty = TRIE NOTHING empty

lookup E (TRIE V m) = v
lookup (T k a b) (TRIE V m) =

lookup k m »=  A/7?7 -»
lookup a m' » = \m" ->
lookup b /7?"

bind E x (TRIE V m) = TRIE (JUST X) m
bind (T /c a b) x (TRIE V m) =

let tt = case lookup k m of
JUSTff-> ff
NOTHING -> empty
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t = case lookup a tt of
JUST t -> f
NOTHING -> empty

f = bind d x f
ft' = bind at' tt

in TRIE V (bind /c ff; m)
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(structure), 147
amortization

banker's method, see banker's method
eliminating, see scheduling
physicist's method, see physicist's

method
problem with persistence, 54-55
traditional, 39^1

anticredits, 81
assignments, 2

banker's method
justification of, 62-63
traditional, 40
with lazy evaluation, 61-62,69

BankersDeque (functor), 110
BankersQueue (structure), 65
batched rebuilding, 99-101
BatchedQueue (structure), 43
binary search trees, 99

delete, 100
red-black, 24-28,203
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binomial queues, see binomial heaps
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fc-nomial trees
BinomialHeap (functor), 24
Bootstrap (functor), 161
bootstrap loader, 141
BootstrappedQueue (structure), 149
bootstrapping, 141, see also

data-structural bootstrapping
bootstrapping a compiler, 141
bottom-up mergesort, 74-78,94-97,202
BottomUpMergeSort (structure), 77

c-deques, see catenable deques
caching, 3
call-by-name, 59,63
call-by-need, see lazy evaluation
call-by-value, see strict evaluation
catenable deques, 175-184,191,192

implicit, 177-184
signature, 176,191
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signature, 153,190

CATENABLEDEQUE (signature), 176
CatenableList (functor), 156
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cheap operations, 40
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complete binary leaf trees, 118
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complete cost, 60
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credits, 40, 41

dancing bear, 2
data structure, meanings of, 3—4
data-structural bootstrapping, 169
debit inheritance, 67-68
debit passing, 174, 183
dense representations, 116,117
DEQUE (signature), 45, 107
deques, 44, 106,113

banker's, 108-110,189
output-restricted, 107
real-time, 111-112,170
signature, 45, 107, 189

destructive updates, 2
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double-ended queues, see deques
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execution traces, 57,62-63
expensive operations, 40, 59, 62
ExplJcltMJn (functor), 23

FIFO queues, see queues
finite maps

over products, 167
over sums, 168
signature, 163, 204

FlNITEMAP (signature), 16,163
flexible arrays, see random-access lists
foldM, 155
Ford, Henry, 1
function (as opposed to operation), 4
functional programming, theoretical

efficiency of, 2
functors in Standard ML, 4
future, logical, 57

garbage collection, 10
global rebuilding, 98, 101-102,106, 113

hash table, 165, 166
HEAP (signature), 18
heap-ordered trees, 17
heaps, 169

binomial, 20-24,45-46,198
binomial, lazy, 70-71,162
binomial, scheduled, 89-93
bootstrapped, 158-162,201
delete, 138
leftist, 17-20,52, 197
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pairing, 52-54,56, 199
pairing, lazy, 79-81, 200
signature, 18, 162,197
skew binomial, 134-137,162, 170,

200
splay, 46-52, 56, 198

HEAP WITH INFO (signature), 162
higher-order functions, 76
higher-order functors, 160
hints to practitioners, 26, 44, 52, 53, 81,

89, 133,150, 158
history, logical, 57, 61
HoodMelvilleQueue (structure), 105

imperative data structures, 2
implementation, 3
implicit recursive slowdown, 171
ImplicitCatenableDeque (functor), 181,

182
ImplJcitQueue (structure), 174
incremental computations, 34, 61, 62, 67,

70
interactive systems, 83
intrinsic cost, 84

/c-nomial trees, 138
knives, 2

layaway plan, 60
lazy evaluation, 2, 31, 37, 59

syntax for, see $-notation
time analysis, 60, 82

lazy numerical representations, 125-127
lazy rebuilding, 104-106
LazyBinomialHeap (functor), 71
LazyPairingHeap (functor), 80
leaf tree, 118
left-associative appends, 147
leftist heaps, 17-20, 52, 197
LeftistHeap (functor), 20
life cycle of suspensions, 61
lists, 7-10
logical future, 57,59,61,85
logical history, 57, 61

memoization, 3, 37, 63
mergeable heaps, see heaps
mergesort, see bottom-up mergesort
Model T, 1
monolithic computations, 34, 61, 62, 67,
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nested suspensions, 60, 67, 106
non-uniform recursion, 142-144, see

also polymorphic recursion
normal-order reduction, 37
numerical representations, 115

object, 3
operation, meanings of, 4
operator, 4
or-patterns, 26
O R D E R E D (signature), 14

pairing heaps, 52-54, 56, 79-81,199,
200

PairingHeap (functor), 54
parallel systems, 83
particle-antiparticle annihilation, 81
path compression, 81
path copying, 15
pattern matching, 36

on abstract types, 180
pebble games, 97
pennants, 118,138
persistence

problem with amortization, 54-55
persistent data structures, 2, 7, 59, 83
persistent identity, 3
physicist's method

limitations, 69
traditional, 40-41,82
with lazy evaluation, 68-70

PhysicistsQueue (structure), 73
polymorphic recursion, 144, 170
positional number systems, 116
potential, 41
priority queues, see heaps

quaternary numbers, 138
QUEUE (signature), 42
queues, 97

banker's, 64-67, 86, 106,107, 186
batched, 42-44, 101,186
bootstrapped, 146-150,188
Hood-Melville, 102-105,107, 187
implicit, 172-175,189
physicist's, 72-73,104, 187
real-time, 86-89,106, 107
signature, 42, 186

random-access lists, 119
binary, 119-123,144-147,194, 196
signature, 120, 194

skew binary, 132-134,195
RANDOMACCESSLlST (signature), 120
real-time systems, 83
realized costs, 60
realized debits, 63
RealTimeDeque (functor), 112
RealTimeQueue (structure), 88
recursive modules, 160, 161
recursive slowdown, 130, 170,171, 184,

see also implicit recursive slowdown
red-black trees, 24-28,125, 203

delete, 100
RedBlackSet (functor), 28
redundant number system, 116
reference cell, 4

ScheduledBinomialHeap (functor), 93
ScheduledBottomUpMergeSort

(functor), 96
scheduling, 84-86,106
segmented representations, 127-130
self-modification, 59
SET (signature), 12
sets

signature, 202
shared cost, 60
sharing, 7
signatures in Standard ML, 4
SimpleCatenableDeque (functor), 178
skew binary numbers, 131-132

canonical form, 131
skew binomial trees, 135
skew fc-ary numbers, 139
SkewBinaryRandomAccessLJst

(structure), 134
SkewBinomialHeap (functor), 137
snoc, etymology of, 42
SORTABLE (signature), 74
sortable collections, 74

signature, 74, 202
sparse representations, 116, 117
splay trees, 46-52, 56, 59, 198
SplayHeap (functor), 50
STACK (signature), 8
steques, see output-restricted deques
Stream (structure), 36
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streams, 34-37

signature, 36
strict evaluation, 2, 59
structural abstraction, 151-153,170
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structural decomposition, 142
structures in Standard ML, 4
suspensions, 31

as nullary functions, 37
life cycle of, 61
nested, 60, 67,106
trivial, 35

telescoping series, 41
terminology, 3-4
Trie (functor), 165
TrieOfTrees (functor), 168
tries, 163-168,204
trinary numbers, 138
trivial suspensions, 35

UnbalancedSet (functor), 14
uniform recursion, 142
unrealized costs, 60
unshared cost, 60

values in Standard ML, 4
version, 3
version graphs, 58
views, 180

weak updates, 100
worst-case data structures, benefits of, 83

zeroless representations, 122-125


