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1 
Thinking differently about problems  

Functional programming is a paradigm that originated from ideas older than the first 
computers. The first functional programming language celebrated its 50th birthday in 2008. 
Functional languages are very succinct and expressible, yet everything is achieved using a 
minimal number of concepts. Despite their elegance, functional languages have largely been 
ignored by mainstream developers–until now. 

Today we are facing new challenges and trends that open the door to functional 
languages. There has never been a better time to learn them. We need to write programs 
that process large sets of data and scale to a large number of processors or computers. We 
want to write programs that can be easily tested. We want to be able to express our logic in 
a declarative way which expresses results without explicitly specifying execution details–
making the code easier to understand and reason about. All of these trends are embodied in 
functional programming, and we'll look at each of them later in this chapter. 

As a result, many mainstream languages now include some functional features. In the 
.NET world, generics in C# 2.0 were heavily influenced by functional languages, anonymous 
methods in C# 2.0 and lambda expressions in C# 3.0 are examples of the most fundamental 
concept in functional programming and the whole of LINQ is rooted in a declarative, 
functional approach. 

While the conventional languages are playing catch-up, truly functional languages have 
been receiving more attention too. The most significant example of this is probably F#, 
which is will be an official, fully supported Visual Studio language as of Visual Studio 2010. 
This evolution of functional languages on .NET is largely possible thanks to the common 
language runtime (CLR), which makes it possible to mix multiple languages when developing 
a single .NET application and also to access rich .NET libraries from new languages like F#. 
This makes it much easier to learn these new languages, as all of the platform knowledge 
that you've accumulated during your career can still be used in the new context of a 
functional language.  
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In this book, we'll look at the most important functional programming concepts and we'll 
demonstrate them using real-world examples from .NET. We'll start with the description of 
the ideas and then turn to the aspects that make it possible to develop large scale real-world 
.NET applications in a functional way. We'll use both F# and C# 3.0 in this book, because 
many of these ideas are directly applicable to C# programming. You certainly don't need to 
write in a functional language to use functional concepts and patterns. However, seeing the 
example in F# gives you a deeper understanding of how it works and F# often makes it 
easier to express and implement the solution. 

We'll start this chapter by looking at the functional concepts that make you more 
productive, and then explore several examples that demonstrate what those ideas look like 
in real source code. We won't go into any details in this chapter, however–the goal is just to 
show you an interesting and elegant example that we'll discuss more fully later in the book. 

1.1 Being productive with functional programming 
Many people find functional programming more elegant or even beautiful, but that's hardly a 
good reason to use it in a commercial environment. Elegance doesn't pay the bills, sadly. The 
key reason why for coding in a functional style is that it makes you and your team more 
productive.  

In this section, we'll look at the key benefits that functional programming gives you and 
how it solves some of the most important problems of modern software development. We'll 
start by looking at the declarative programming style, which gives us a richer vocabulary for 
describing our intentions. 

1.1.1 Declarative programming style 
When writing a program, we have to explain our goals to the computer using the vocabulary 
that it understands. In imperative languages, this consists of commands. We can add new 
commands, such as "show customer details", but the whole program is a step by step 
description saying how the computer should accomplish the overall task. An example of a 
program is "Take the next customer from a list. If the customer lives in UK, show their 
details. If there are more customers in the list, go to the beginning." 

Once the program grows, the number of commands in our vocabulary becomes too high, 
making it very difficult to use. This is where object-oriented programming makes our life 
easier, because it allows us to organize our commands in a better way. We can associate all 
commands that involve customer with some customer entity (a class), which makes the 
description a lot clearer. However, the program is still a sequence of commands specifying 
how it should proceed. 

Functional programming provides a completely different way of extending the 
vocabulary. We're not limited to adding new primitive commands; we can also add new 
control structures–primitives that specify how we can put commands together to create a 
program. In imperative languages, we were able to compose commands in a sequence or 
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using a limited number of built in constructs such as loops, but if you look at typical 
programs, you'll still see many recurring structures; common ways of combining commands.  

In our example we can see a pattern (or a control structure), which could be expressed 
as "Run the first command for every customer for which the second command returns true." 
Using this primitive, we can express our program simply by saying "Show customer details of 
every customer living in UK." In this sentence the part "living in UK" specifies the second 
command and the part "show customer details" represents the first command. 

SAYING "WHAT" RATHER THAN "HOW" 

If you compare these two sentences, you can see that the first describes exactly how to 
achieve our goal while the second describes what we want to achieve. This is the 
essential difference between imperative and declarative styles of programming. Hopefully 
you'll agree that the second sentence is far more readable and better reflected the aim of 
our "program".  

So far I've just been using an analogy, but we'll see how this idea maps to actual source 
code later in this chapter. However, this isn't the only aspect of functional programming that 
makes life easier. In the next section, we'll look at another concept that makes it much 
easier to understand what a program does. 

1.1.2 Understanding what a program does 
In the usual imperative style, the program consists of objects that have some internal state 
that can be changed either directly or by calling some method of the object. This means that 
when we call a method, it can be hard to tell what state is affected by the operation. For 
example, in the C# snippet in listing 1.1 we create an ellipse, get its bounding box and then 
call a method on the returned rectangle. Finally, we return the ellipse to whatever has called 
us. 

Listing 1.1 Working with ellipse and rectangle (C#) 
Ellipse el = new Ellipse(new Rectangle(0, 0, 100, 100)); 
Rectangle rc = el.BoundingBox; 
rc.Inflate(10, 10);                                         #1 
return el; 
#1 Is the original ellipse changed here? 
How do we know what the state of the ellipse el will be after the code runs, just by 

looking at it? This is really hard, because rc could be a reference to the bounding box of the 
ellipse and Inflate (#1) could modify the rectangle, changing the ellipse at the same 
time. Or maybe the Rectangle type is a value type (declared using the struct keyword 
in C#) and it's copied when we assign it to a variable. Perhaps the Inflate method 
doesn't actually modify the rectangle at all, and returns a new rectangle as a result, so the 
third line has no effect at all. 
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In functional programming, most of the data structures are immutable, which means 
that we cannot modify them. Once the Ellipse or Rectangle is created, we can't 
change it. The only thing we can do is to create a new Ellipse with a new bounding box. 
This makes it easy to understand what a program does. In listing 1.2 you can see how we 
could rewrite the previous snippet if Ellipse and Rectangle were immutable. As you'll 
see, understanding the program's behavior becomes much easier. 

Listing 1.2. Working with immutable ellipse and rectangle (C#) 
Ellipse el = new Ellipse(new Rectangle(0, 0, 100, 100)); 
Rectangle rc = el.BoundingBox; 
Rectangle rcNew = rc.Inflate(10, 10);                       #1 
return new Ellipse(rcNew);                                  #2 
#1 Returns a new rectangle 
#2 Return a new ellipse with the new bounding box 
When writing program using immutable types, the only thing a method can do is to 

return a result. It cannot modify state of any objects. You can see that for example 
Inflate returns a new rectangle as a result (#1) and that we construct a new ellipse to 
return an ellipse with a modified bounding box (#2). This may feel a bit unfamiliar for the 
first time, but keep in mind that this isn't a new idea to .NET developers. String is 
probably the best known immutable type in the .NET world, but there are many examples 
such as DateTime and other value types.  

Functional programming takes this idea further, which makes it a lot easier to see what 
a program does, because the result of method gives us full specification of what the method 
does. We'll talk about immutability in a more detail later, but let's first look at one area 
where it is extremely useful: implementing multi-threaded applications. 

1.1.3 Concurrency-friendly application design 
When writing a multi-threaded application using the traditional imperative style we have to 
face two problems. First of all, it is difficult to turn existing sequential code into parallel code, 
because we have to modify large portions of the code-base to use threads explicitly. The 
second problem is that using shared state and locks is difficult. You have to carefully 
consider how to use locks to avoid race conditions and deadlocks, but leave enough space for 
parallel execution. Functional programming gives us answers to these two problems: 

1) A declarative programming style makes it easier to introduce parallelism into 
existing code. We can just replace a few primitives that specify how to combine 
commands with a version that executes commands in parallel. 

2) Thanks to the immutability, we cannot introduce race conditions and we can write 
lock-free code. This style makes it easy to see which parts of the program are 
independent and we can easily modify the program to run those tasks in parallel. 

These two aspects influence how we design our applications and as a result make it a lot 
easier to write code that executes in parallel, taking full advantage of the power of multi-core 
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machines. This isn't the only change you should expect to see in your design when you start 
thinking functionally, either… 

1.1.4 Elegant thought leads to elegant code 
The functional programming paradigm no doubt influences how you design and implement 
applications. This doesn't mean that you have to throw away anything from your existing 
knowledge, because many of the programming principles that you're using today are 
applicable to functional applications as well. This is true especially at the design level in the 
way how you structure the application. 

On the other hand, functional programming can cause a radical transformation of how 
you approach problems at the implementation level. However, when learning how to use 
functional programming ideas, you don't have to make any radical steps. In C# you just 
learn how to efficiently use the new features. In F#, you can often use direct equivalents of 
C# constructs while you're still getting your feet wet. As you become a more experienced 
functional developer, you'll learn more efficient and concise ways to express yourself. 

The following list summarizes how functional programming influences your programming 
style, working down from a design level to actual implementation. 

3) Functional programs on .NET still use object-oriented design as a great way for 
structuring applications and components. Larger number of types and classes are 
designed as immutable, but it is still possible to create standard classes especially 
when collaborating with other .NET libraries. 

4) Thanks to functional programming, you can simplify many of the standard OO 
design patterns, because some of them correspond to language features in F# or 
C# 3.0. Also, some of the design patterns simply aren't needed any more when the 
code is implemented in the functional way. We'll see many examples of this 
throughout the book, especially in chapters 7 and 8. 

5) Perhaps the larger influence of functional programming is at the lowest level. 
Thanks to the combination of a declarative style, succinct syntax and type 
inference, functional languages make it easier to concisely express algorithms in a 
more readable way.  

We'll talk about all of these aspects later in the book - but building up from the lowest 
level. We'll start with the functional values used to implement methods and functions, before 
raising our sights to design and architecture. We'll see new patterns that are specific to 
functional programming, as well as looking at how the object-oriented patterns you're 
already familiar with either fit in with the functional world or are no longer required. The 
functional world from the previous sentence isn't a strictly delimited technology, because the 
functional ideas can appear in different forms.   

1.1.5 The functional paradigm 
Functional programming is a programming paradigm. This means that it defines the concepts 
that we can use when thinking about problems. However, it doesn't precisely specify how 
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exactly these concepts should be represented in the programming language. As a result, 
there are many functional languages and they put more emphasis on different features and 
aspects of the functional style. 

We can use an analogy with a paradigm you're already familiar with: object-oriented 
programming. In the object-oriented style, we think about problems in terms of objects. 
Each object-oriented language has some notion of what an object is, but the details vary 
between languages. For instance C++ has multiple inheritances and JavaScript has  
prototypes. Moreover, you can still use an object-oriented style in language which isn't 
object-oriented such as C. It is less comfortable, but you'll still get some of the benefits. 

However, programming paradigms are not exclusive. The C# language is primarily 
object-oriented, but in the 3.0 version it supports several functional features, so we can use 
some techniques from the functional style directly. On the other side, F# is primarily a 
functional language, but it fully supports the .NET object model. The great thing about 
combining paradigms is that we can choose the approach that best suits the problem.  

Finally, learning the functional paradigm is worthwhile even if you're not planning to use 
a functional language. By learning a functional style, you'll gain concepts that make it easier 
to think about and solve your daily programming problems. Interestingly, many of the 
standard object-oriented patterns describe how to encode some clear functional concept in 
the object-oriented programming style. 

So far, we have only talked about functional programming in a very general sense. It's 
important to have some broad idea about what makes functional programming different and 
why it's worth learning, but there's nothing like seeing actual code to bring things into focus. 
In the next section, we'll take a quick look at a couple of more specific examples. 

1.2 Functional programming by example  
The goal of the upcoming few examples is to show you that functional programming isn't by 
any means a theoretical discipline. Instead, you'll see that you've already seen and maybe 
even used some functional ideas. Reading about functional programming will help you to 
understand these technologies at a deeper level and use them more efficiently. We'll also 
look at a couple of examples from later parts of the book that show important practical 
benefits of the functional style. In the first set of examples, we'll look at declarative 
programming. 

1.2.1 Expressing intentions using declarative style 
In the previous section, I described how a declarative coding style makes you more 
productive. Programming languages that support a declarative style allow us to add new 
ways of composing basic constructs. When using this style, we're not limited to basic 
sequences of statements or built-in loops, so the resulting code describes more "what" the 
computer should do rather than "how" to do it. 

Licensed to Curtis J Pitts <beop.love@gmail.com>

Download at Boykma.Com



 9 

©Manning Publications Co. Please post comments or corrections to the Author Online forum: 
http://www.manning-sandbox.com/forum.jspa?forumID=460 

I'm talking about this style in a general way because the idea is universal and not tied to 
any specific technology. However, it's best to demonstrate it using a few examples that you 
may know already to show how it's applied in specific technologies. In the first two 
examples, we'll look at the declarative style of LINQ and XAML. If you don't know these 
technologies, don't worry. The examples are simple enough to understand without 
background knowledge. In fact, the ease of understanding code–even in an unfamiliar 
context–is one of the principal benefits of a declarative style! 

WORKING WITH DATA IN LINQ 
If you're already using LINQ then this example will be just a reminder. However, I'll use it to 
show something more important. Let's first look at an example of code that works with data 
using the standard imperative programming style. 

Listing 1.3 Imperative data processing (C#) 
List<string> res = new List<string>();                                 #1 
foreach(Product p in Products) {                                       #2 
   if (p.UnitPrice > 75.0M) { 
      res.Add(String.Format("{0} - ${1}", 
         p.ProductName, p.UnitPrice));                                 #3 
   } 
} 
return res; 
#1 Create resulting list 
#2 Iterate over products 
#3 Add information to list of results  
You'll probably need to read the code carefully to understand what it does, but that's not 

the only aspect we want to improve. The code is written as a sequence of some basic 
imperative commands. For example, the first statement creates new list (#1), the second 
iterates over all products (#2) and a later one adds element to the list (#3). However, we'd 
like to be able to describe the problem at a higher level. In more abstract terms, the code 
just filters a collection and returns some information about every returned product. 

In C# 3.0, we can write the same code using query expression syntax. This version is 
closer to our real goal–it uses the same idea of filtering and transforming the data. You can 
see the code in listing 1.4.  

Listing 1.4 Declarative data processing (C#) 
var res = from p in Products 
          where p.UnitPrice > 75.0M                                    #1 
          select string.Format("{0} - ${1}",  
             p.ProductName, p.UnitPrice);                              #2 
return res; 
#1 Filter products using predicate 
#2 Return information about product 
The expression that calculates the result (res) is composed from basic operators such 

as where or select. These operators take other expressions as an argument, because 
they need to know exactly what we want to filter or select as a result. Using the previous 
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analogy, these operators give us a new way for combining pieces of code to express our 
intention with less writing. It is worth noting that the whole calculation in the listing 1.3 is 
written just as a single expression that describes the result rather than a sequence of 
statements that constructs it. You'll see this become a trend repeated throughout the book. 
In more declarative languages such as F#, everything you write is an expression. 

Another interesting aspect is that many technical details of the solution are now moved 
to the implementation of the basic operators. This makes the code simpler, but also more 
flexible, because we can easily change implementation of these operators without making 
larger changes to the code that uses them. As we'll see later, this makes it much easier to 
parallelize code that works with data. However, LINQ is not the only mainstream .NET 
technology that relies on declarative programming. Let's turn our attention to Windows 
Presentation Foundation and the XAML language. 

DESCRIBING USER INTERFACES IN XAML 
Windows Presentation Foundation is a .NET library for creating user interfaces that supports 
the declarative programming style. It separates the part that describes the user interface 
from the part that implements the imperative program logic. However, the best practice in 
WPF is to minimize the program logic and create as much as possible in the declarative way.  

The declarative description is represented as a tree-like structure created from objects 
that represent individual GUI elements. It can be created in C#, but WPF also provides a 
more comfortable way using an XML based language called XAML. Nevertheless, we'll see 
that there are many similarities between XAML and LINQ. The listing 1.5 shows how the code 
in XAML compares with code that implements the same functionality using the imperative 
Windows Forms library. 

Listing 1.5 Creating user interface using imperative and declarative style (C#) 
<Canvas Background="Black"> 
   <Ellipse x:Name="el" 
      Width="75" 
Height="75"  
      Canvas.Left="0"  
      Canvas.Top="0"  
      Fill="LightGreen" /> 
</Canvas> 

protected override void OnPaint 
      (PaintEventArgs e) { 
   Graphics gr = e.Graphics; 
   Brush lg = Brushes.LightGreen; 
   Brush bl = Brushes.Black; 
   gr.FillRectangle(bl, 
ClientRectangle); 
   gr.FillEllipse(lg, 0, 0, 75, 75); 
} 

It isn't difficult to identify what makes the code on the left side more declarative. The 
XAML code describes the user interface by composing various primitives and specifying their 
properties. The whole code is a single expression that creates a black canvas containing a 
green ellipse. On the other hand, the imperative version specifies how to create the user 
interface. It is a sequence of statements that specify what drawing operations should be 
executed to get the required GUI. This example clearly demonstrates the difference between 
saying "what" using the declarative style and saying "how" in the imperative style. 
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Also, in the declarative version we don't need as much knowledge about the underlying 
technical details. If you just look at the code, you don't really need to know how WPF will 
represent and draw the GUI. On the other hand, when looking at the WinForms example, all 
the technical details such as representation of brushes and order of the drawing are visible in 
the code. In the example above, the correspondence between XAML and the drawing code 
was quite clear, but we can use XAML with WPF to describe more complicated runtime 
aspects of the program. Let's look at the following example: 

<DoubleAnimation 
   Storyboard.TargetName="el"  
   Storyboard.TargetProperty="(Canvas.Left)" 
   From="0.0" To="100.0" Duration="0:0:5" /> 

This single expression creates an animation that changes the Left property of the 
ellipse (specified by the name el) from value 0 to value 100 in 5 seconds. The code is 
implemented using XAML, but we could as well write it by constructing the object tree 
explicitly in C#. Under the hood, DoubleAnimation is a class, so we would just specify 
its properties. The XAML language adds a more declarative syntax for writing the 
specification. In either case, the code would be declarative thanks to the nature of WPF. On 
the other hand, the traditional imperative version of code that implements an animation 
would be rather complex. It would have to create some timer, register an event handler that 
would be called every couple of milliseconds and it would have to calculate new location of 
the ellipse.  

DECLARATIVE CODING IN .NET 

WPF and LINQ are two main-stream technologies that use a declarative style, but there 
are many others. The goal of LINQ is to simplify working with data in a general-purpose 
language. It draws on ideas from many data manipulating languages that use the 
declarative style, so you can find the declarative approach for example in SQL or XSLT. 

Another area where the declarative style is used in C# or VB.NET is when using .NET 
attributes.  Attributes give us a way to annotate a class or its members and specify how 
they can be used in specific scenarios, such as editing a GUI control in a designer. This is 
declarative, because we just specify what we expect from the designer when working with 
the control and we don't have to write the code that would imperatively configure the 
designer. 

So far we've seen several technologies that are based on the declarative style and how 
they make problems easier to solve. However, you may be asking yourself how we use it for 
solving our own kinds of problems. In the next section we'll take a brief look at an example 
from chapter 15 that demonstrates this. 

DECLARATIVE FUNCTIONAL ANIMATIONS 
Functional programming gives you the ability to write your own library that allows you to 
solve problems in the declarative style. We've seen how LINQ does that for data 
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manipulation and how WPF does that for user interfaces, but in functional programming, we'll 
often create libraries for our own problem domain. 

When I earlier mentioned that declarative style makes it possible to ignore 
implementation details, I wasn't really saying the full truth. When we're designing our own 
declarative library, we of course need to implement all the technical details. However, the 
great thing about the functional style is that it allows us to hide the implementation from 
developers (just like LINQ does) and makes it possible to solve the general problem once 
and for all. 

The listing 1.6 shows a code that uses a declarative library for creating animations that 
we'll develop in chapter 15. You don't have to fully understand the code to see the benefits 
that we get thanks to the declarative style. It is similar to WPF in a sense that it describes 
how the animation should look rather than how to draw it using a timer.  

Listing 1.6 Creating functional animation (C#) 
var green = Anims.Circle(Brushes.OliveDrab, 100.0f.Anim());             #A 
var blue  = Anims.Circle(Brushes.SteelBlue, 100.0f.Anim());             #A 
 
var animatedPos = Time.Wiggle * 100.0f.Anim();                          #1 
 
var greenMove = green.MoveXY(animatedPos, 0.0f.Const());                #B 
var blueMove = blue.MoveXY(0.0f.Const(), animatedPos);                  #B 
 
var animation = Anims.Compose(greenMove, blueMove);                     #C 
#A Create green and blue ellipse 
#1 Value animated from -100 to +100 
#B Animate X or Y coordinates of ellipses 
#C Compose animation from both ellipses 
We'll explain everything in detail later in chapter 15. However, you can probably guess 

that the animation creates two ellipses. Later, it creates animated ellipses and composes 
them into an animation (represented as animation value). If we render this animation to 
a form, we get a result that is displayed in figure 1.1. 

 

Licensed to Curtis J Pitts <beop.love@gmail.com>

Download at Boykma.Com



 13 

©Manning Publications Co. Please post comments or corrections to the Author Online forum: 
http://www.manning-sandbox.com/forum.jspa?forumID=460 

Figure 1.1 The green ellipse is moving from the left to the right and the blue ellipse is moving from the top 
to the bottom. 

The entire declarative description is based on animated values. There is a primitive 
animated value called Time.Wiggle, which has a value that swings between -1 and +1. 
Another primitive construct is x.Anim() creates an animated value that has always the 
same value. If we multiply Wiggle by 100, we'll get an animated value that ranges 
between -100 and +100 (#1). These animated values can be used for specifying animations 
of graphical objects such as our two ellipses. The screenshot shows them in a state where X 
coordinate of the green one and Y coordinate of the blue one are close to the -100 state.  

In the code we wrote, we don't need to know anything about the representation of 
animated values, because we're describing the whole animation just by calculating with the 
primitive animated value. Another aspect of the declarative style that you can see in the 
code is that the animation is in principle described using a single expression. We made it 
more readable by declaring several local variables, but if you replaced occurrence of the 
variable with its initialization code, the animation would remain exactly the same. 

COMPOSITIONALITY 

An important feature of declarative libraries is that we can use them in a compositional 
manner. In LINQ, you can move a part of a complex query into a separate query and 
reuse it. Similarly, our previous sample is very compositional. We can declare animated 
values such as animatedPos and compose primitive animated objects using 
Anim.Compose. 

On the last couple of pages, we looked at the declarative programming, which is an 
essential aspect of the functional style. The last example shows how this style can be used in 
an advanced library for describing animations. In the next section, we'll turn our attention to 
more technical, but also very interesting functional aspect which is immutability. 

1.2.2 Understanding code using immutability 
We discussed immutability before when talking about benefits of the functional style. We 
used an example with bounding box of an ellipse, where it wasn't clear how the code 
behaved. Once we rewrote the code using immutable objects, it became easier to 
understand. We'll talk about this topic in detail in later chapters. The purpose of this example 
is just to satisfy your curiosity and show how an immutable object would look in practice. 

Again, don't worry if you won't understand everything in detail, because we'll talk about 
everything more fully later. Now, let's imagine we're writing a game with some characters 
that we can shoot at. Listing 1.7 shows a part of the class that represents the character. 

Listing 1.7 Immutable representation of a game character (C#) 
class GameCharacter { 
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   readonly int health;                                          #1 
   readonly Point location;                                      #1 
 
   public Character(int health, Point location) { 
      this.health = health;                                      #2 
      this.location = location;                                  #2 
   } 
   public Character HitByShooting(Point target) { 
      int newHealth = CalculateHealth(target); 
      return new GameCharacter(newHealth, this.location);        #3 
   } 
   public bool IsAlive { 
      get { return health > 0; }  
   } 
   // Other methods and properties omitted 
} 
#1 All fields are declared as readonly 
#2 Initialize immutable fields only once 
#3 Return a game character with updated health 
In C#, we can explicitly mark a field as immutable using the readonly keyword. This 

means that we cannot change the value of the field, but we could still modify the target 
object if the field is a reference to a mutable class. When creating a truly immutable class, 
we need to make sure that all fields are marked as readonly and also that the types of 
these fields are also primitive types, immutable value types or other immutable classes.  

According to these conditions, our GameCharacter class is immutable. All its fields 
are marked using the readonly modifier (#1), int is a primitive type and Point is an 
immutable value type. When a field is read-only it can be set only when creating the object, 
so we can only set the health and location of the character only in the constructor (#2). This 
means that we can't modify the state of the object once it is initialized. So, what can we do 
when an operation needs to modify the state of the game character? 

You can see the answer when you look at the HitByShooting method (#3). It 
implements a reaction to a shot being fired in the game. It uses the CalculateHealth 
method (not shown in the sample) to calculate the new health of the character. In an 
imperative style, it would then update the state of the character, but that's not possible since 
the type is immutable. Instead, the method creates a new GameCharacter instance to 
represent the modified character and returns it as a result.  

The class from the previous example represents a typical design of immutable C# 
classes and we'll use it (with minor modifications) throughout the book. Now that we know 
what immutable types look like, let's see some of the consequences. 

READING FUNCTIONAL PROGRAMS 
We've already seen an example that used immutable types when looking at the code with 
bounding box of an ellipse. However, that was very briefly and we just concluded that it 
makes the code more readable. In this section, we're going to look at two snippets that we 
could find somewhere in our functional game. 
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Listing 1.8 shows two separate examples, each with two game characters: player and 
monster. The first one shows how we could execute the monster AI to perform a single 
step and then test whether the player is in danger and the second shows how we could 
handle a gunshot. 

Listing 1.8 Code snippets form a functional game (C#) 
// Move the monster & test if the player is in danger 
var movedMonster = monster.PerformStep();                  #1 
var inDanger = player.IsCloseTo(movedMonster);             #2 
 
// Did gunshot hit a monster or the player? 
var hitMonster = monster.HitByShooting(gunShot);           #3  
var hitPlayer = player.HitByShooting(gunShot);             #3 
#1 Move the monster 
#2 Test distance from the moved monster 
#3 Create new monster and player 
All objects in our functional game are immutable, so when we call method on an object, 

it cannot modify itself or any other object. If we know that, we can make several interesting 
observations about the previous examples. In the first snippet, we start by calling the 
PerformStep method of the monster (#1). The method returns a new monster and we 
assign it to a variable called movedMonster. On the next line, we use this monster to 
check whether the player is close to it and so is in danger. 

One interesting point to note here is that we can see that the second line of the code 
relies on the first one. If we changed the order of these two lines, the program wouldn't 
compile because movedMonster wouldn't be declared on the first line. On the other hand, 
if you implemented this in the imperative style, the method would modify the state of the 
monster object. In that case, we could rearrange the lines and the code would compile, but 
it would change the meaning of the program and it could start behaving incorrectly. 

Now, what can we learn by looking at the second snippet? It consists of two lines that 
create a new monster and a new player objects with updated health property when a 
shooting occurs in the game. The two lines are independent, meaning that we could change 
their order. Can this operation change the meaning of the program? It appears that it 
shouldn't and when all objects are immutable it doesn't. Surprisingly, it might change the 
meaning in the imperative version if gunShot were mutable. The first of those objects 
could change some property of the gunshot and the behavior would depend on the order of 
these two statements. 

The previous example was quite simple, but it already shows how immutability 
eliminates many possible difficulties. In the next section, we'll see another great example, 
but let me just briefly review what you'll find later in the book.  

REFACTORING AND UNIT TESTING 

We've already seen that immutability helps us to understand what a program does. This 
is very helpful when refactoring the code. Another interesting functional refactoring is 
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changing when some code actually executes. It may run when the program hits it for the 
first time, but it may as well execute when its result is actually needed. As we'll see in a 
few pages, this way of evolving programs is very important in F# and immutability makes 
refactoring easier in C# too. We'll talk about refactoring later in chapter 11. 

Another area where immutability helps a lot is when creating unit tests for functional 
programs. The only thing that a method can do in an immutable world is to return a 
result, so we only have to test whether a method returns the right result for specified 
arguments. You'll find more information about this topic in chapter 18. 

When discussing how functional programming makes you more productive, I mentioned 
immutability as an important aspect that makes it easier to write parallel programs. In the 
next section we'll briefly look at that and also at other related topics. 

1.2.3 Writing efficient parallel and asynchronous programs 
I said earlier that functional programming makes it easier to write parallel programs. This is 
one of the most important aspects of this paradigm nowadays and maybe it is also the 
reason why you picked this book. In this section, we'll look at a couple of samples 
demonstrating how functional programs can be easily parallelized. In the first two examples, 
we'll use Parallel Extensions to .NET. This is a new technology from Microsoft for writing 
parallel applications, shipping as part of .NET 4.0. As you might expect, it lends itself 
extremely well to functional code. As always in this chapter, we won't go into the details. I 
just want to demonstrate that parallelizing functional programs is significantly easier and 
more importantly, less error prone than it is for the imperative code. 

PARALLELIZING IMMUTABLE PROGRAMS 
First we'll take another look at the previous example. We've seen two snippets from a game 
written in a functional way. In the first snippet, the second line uses the outcome of the first 
line (state of the monster after movement). Thanks to the use of immutable classes, we can 
see that this doesn't give us any space for introducing parallelism. 

On the other hand, the second snippet consists of two independent lines of code. I said 
earlier that in functional programming, we can run independent parts of the program in 
parallel. Now you can see that immutability gives us a great way to spot which parts of the 
program are independent. Even without knowing any details, we can look at the change that 
makes these two operations run in parallel. The change to the source code is minimal: 

var hitMonster = Future.Create(() => 
   monster.HitByShooting(gunShot)); 
var hitPlayer = Future.Create(() => 
   player.HitByShooting(gunShot)); 

The only thing that we did is that we wrapped the computation in a Future type from 
the Parallel Extensions library. We'll talk about Future in detail in chapter 14. Interestingly, 
the benefit isn't only that we have to write less code, but also that we have a guarantee that 
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the code is correct. If you did a similar change in an imperative program, you'd have to 
carefully review the HitByShooting method (and any other method it calls) to find all 
places where it accesses some mutable state and add locks to protect the code that modifies 
shared state. In functional programming everything is immutable, so we don't need to add 
any locks. 

The example in this section is a form of lower a level task based parallelism, which is 
one of three approaches that we'll see in chapter 14. In the next section we'll take a brief 
look at the second approach, which benefits from the declarative programming style. 

DECLARATIVE PARALLELISM USING PLINQ 
Declarative programming style gives us another great technique for writing parallel 
programs. I have already stated that the code written using the declarative style is 
composed using primitives. In LINQ, these primitives are query operators such as where 
and select. In the declarative style, we can easily replace the implementation of these 
primitives and that's exactly what PLINQ does. It allows us to replace standard query 
operators with query operators that run in parallel. 

In the listing 1.9, you can see a query that updates all monsters in our fictive game and 
remove those that died in the last step of the game. The change is extremely simple, so I 
can show you both of the versions in a single listing. 

Listing 1.9 Parallelizing data processing code using PLINQ (C#) 
var updated =  
   from m in monsters 
   let nm = m.PerformStep() 
   where nm.IsAlive select nm;

var updated =  
   from m in monsters.AsParallel()   #1 
   let nm = m.PerformStep() 
   where nm.IsAlive select nm; 

The only change that we made in the parallel version on the right side is that we added 
a call to AsParallel method (#1). This call changes the primitives that are used when 
running the query and makes the whole fragment run in parallel. We'll see how this works in 
chapter 11, where we'll talk about declarative computations like this in general and in 
chapter 14 which focuses on parallel programming specifically. 

You may have already seen this demo and you were perhaps thinking that you don't use 
LINQ queries that often in your programs. This is definitely a valid point, because in 
imperative programs, LINQ queries are used less frequently. However, functional programs 
do most of their data processing in the declarative style. In C#, this can be written using 
query expressions whereas F# provides higher order list processing functions that we'll see 
in chapters 5 and 6. This means that after you'll read this book, you'll be able to use 
declarative programming more often when working with data. As a result, your programs will 
be more easily parallelizable. The technique I just described also inspired an algorithm used 
internally by Google for massive parallel data processing. 

Microsoft PLINQ and Google MapReduce 
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Google has developed a framework called MapReduce [Dean, Ghemawat, 2004] for 
processing of massive amounts of data in parallel. This framework distributes the work 
between computers in large clusters and uses exactly the same ideas as PLINQ. The basic 
idea of MapReduce is that the user program describes the algorithm using two operations 
(somewhat similar to where and select in PLINQ). The framework takes these two 
operations and the input data, and runs the computation. You can see a diagram 
visualizing the computation in figure 1.2.  

 

Figure 1.2 In the MapReduce framework an algorithm is described by specifying map task and a reduce 
task. The framework automatically distributes the input across servers and processes the tasks in parallel 

The framework splits the input data into partitions and executes the map task (using the 
first operation from the user) on each of the partitions. For example, a map task may find 
the most important keywords in a web page. The results returned by map tasks are then 
collected and grouped by a specified key (for example the name of the domain) and the 
reduce task is executed for each of the groups. In our example, the reduce task may 
summarize the most important keywords for every domain. 

We've briefly seen two ways in which functional programming makes parallelization 
simpler. However, there is one more related area where functional programming helps us to 
write more efficient and scalable code with respect to multi-threading. It is important 
especially when the code uses long running I/O operations.  

WRITING NON-BLOCKING CODE USING F# 
Long running operations are quite frequent in modern software. Many applications use HTTP 
requests to load some data from the internet or communicate using web services. When an 
application performs an operation like this, it is very hard to predict when the operation will 
complete, and if this is not handled properly the application will become unresponsive. 

However, writing the code that performs I/O operations without blocking is very difficult 
using the current techniques. In F#, this is largely simplified thanks to a feature called 
asynchronous workflows. Interestingly, this is one of the F# features that are really hard to 
implement in C#, so it's a good reason for looking at F#. We'll talk about asynchronous 
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workflows in detail later in chapter 13, but I can show you at least a brief example to 
demonstrate how interesting this feature is. Let's start by looking at listing 1.10, which 
shows a C# example that downloads source of a web page. 

Listing 1.10 Downloading web pages (C#) 
var req = HttpWebRequest.Create("http://manning.com"); 
var resp = req.GetResponse();                                  #1 
var stream = resp.GetResponseStream(); 
var reader = new StreamReader(stream); 
var html = reader.ReadToEnd();                                 #2 
Console.WriteLine(html); 
#1 Initialize HTTP connection 
#2 Download the web page content 
The listing shows a fairly simple code that downloads HTML source code of a specified 

web page. You'd also have to add some using directives to reference the necessary .NET 
namespaces if you wanted to compile the code, but we'll show this properly in later chapters. 
The program needs to perform HTTP communication in two places. In the first (#1) it needs 
to initialize HTTP connection with the server and in the second (#2) it downloads the web 
page. 

Both of these operations could potentially take quite a long time and each of them could 
block the active thread, causing our application to become unresponsive. We could run the 
download on a separate thread, but using threads is expensive, so this would limit the 
number of downloads we can run in parallel. Also, most of the time, the thread would be just 
waiting for the response, so we'd be consuming thread resources for no good reason. To 
implement this properly, we need to use asynchronous .NET methods that allow us to trigger 
the request and call some code that we provide when the operation completes. This version 
of code is quite difficult to write. Even if we use anonymous delegates from C# 2.0, the code 
still looks quite complicated: 

var req = HttpWebRequest.Create("http://manning.com"); 
req.BeginGetResponse(delegate(IAsyncResult ar) { 
   var rsp = req.EndGetResponse(ar); 
   // TODO: Use the response to read the HTML 
}); 

Anonymous delegates or lambda expressions make this a bit nicer, because we don't 
have to write a method to handle the response, but we still have to change the structure of 
the code. In fact, if we decide to change a synchronous version of the code into 
asynchronous, we'll have to rewrite it almost completely. 

The previous snippet isn't complete, but if we tried to finish it, we'd find another issue. 
There is no BeginReadToEnd method, so we'd have to implement this functionality 
ourselves. This is quite difficult, because we need to download the page in a buffered way. If 
we want to write this in an asynchronous style, we can't use any of the built-in constructs 
such as while loop.  

In F#, it's common to start with the simplest possible solution to a problem and then 
turn it into a more sophisticated version. We'll talk about this principle later in this chapter, 
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but we can see it in action right now. One of the things you may want to do is to take 
synchronous code that downloads a web page and make it asynchronous. When working with 
.NET libraries, the F# code is quite similar to C#, so you can just imagine that the listing 
1.10 was in F# (you'd just delete semicolons and change the var keyword to let). The 
listing 1.11 shows an asynchronous version using F# asynchronous workflows. 

Listing 1.11 Downloading web page asynchronously (F#) 
let op =  
   async {                                                           #1 
      let req = HttpWebRequest.Create("http://manning.com") 
      let! resp = req.AsyncGetResponse()                             #2 
      let stream = resp.GetResponseStream() 
      let reader = new StreamReader(stream) 
      let! html = reader.AsyncReadToEnd()                            #A 
      Console.WriteLine(html)  
   } 
Async.Run(op)                                                        #B 
#1 Wrap in an asynchronous workflow 
#2 Run operation asynchronously 
#A Asynchronous download 
#B Run the workflow 
The process of turning a synchronous code into asynchronous in F# is quite easy. First 

of all, we wrap the whole computation into an async block (#1). The next thing to do is to 
identify all asynchronous operations in the block and to change the method to a 
corresponding asynchronous version. The workflow needs to know which of the methods 
should be executed in a non-blocking way, so we also change the usual value declaration 
using let into a workflow-specific declaration that uses let! syntax (#2). What is even 
more interesting is that methods like AsyncReadToEnd are quite easy to implement, 
because asynchronous workflows can use while loops and other basic constructs*. 

This feature is very easy to use but it isn't easy to see how the code actually executes at 
first glance. We'll explain everything in detail in chapter 13, but it's worth noting that 
asynchronous workflows aren't a built-in feature of the F# language. It is just a very useful 
instance of a more general feature that allows you to write non-standard computations. This 
feature is also covered in this book and we'll talk about it in chapter 12.  

                                                            

 

* There are projects that attempt to simplify this problem in C# such as the Concurrency and 
Coordination Runtime (CCR), but all of them rely on using some C# language features in an 
unexpected and slightly unnatural ways. We'll mention a couple of these projects briefly 
when discussing asynchronous workflows in chapter 13. 
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Asynchronous workflows are very important. They allow us to write programs that wait 
for an operation to complete without using a dedicated thread (which consumes valuable 
resources). This also enables us to use different models for concurrency, such as the 
message passing style which is used in a successful functional language called Erlang. 

Message passing in the Erlang language 

Erlang is a language developed and heavily used by Ericsson for developing large scale 
real-time systems. It can be found in many of the Ericsson's telecommunication 
equipment. Erlang has been used commercially by Ericsson for programming their 
network hardware used concurrently by hundreds of users as well as by other companies. 

Concurrent applications in Erlang are described using independent processes (written in a 
functional way) that can communicate with each other using messages. The process waits 
for a message and when a message arrives, it processes it. We'll see how to use this style 
in F# using asynchronous workflows in chapter 13. 

Before we take a look at the F# language and talk about the F# programming style, let's 
briefly talk about the history of functional programming, which is surprisingly rich.  

1.3 The path towards real-world functional programming 
The history of functional programming goes as far back as the 1930s when Alonzo Church 
and Stephen C. Kleene introduced a theory called Lambda calculus as part of their 
investigation of the foundations of mathematics. Even though it didn't fulfill their original 
expectations, it is still used in some branches of logic and has evolved into a very useful 
theory of computation. For curiosity and to show the basic principles of functional 
programming, you'll find a brief introduction to lambda calculus in the next chapter. 
However, lambda calculus escaped its original domain when computers were invented and 
served as an inspiration for the first of functional programming languages. 

1.3.1 Functional languages 
The LISP language, created by John McCarthy in 1958, was based on lambda calculus. LISP 
is an extremely flexible language, and it pioneered many programming ideas that are still 
used today, including data structures, garbage collection and dynamic typing. 

In the 1970s, Robin Milner developed a language called ML. This was the first of a family 
of languages which now includes F#. Inspired by typed lambda calculus, it added the notion 
of types and even allowed writing "generic" functions in a same way as we can do now with 
.NET generics. ML was also equipped with a powerful type inference mechanism, which is 
now essential for writing terse programs in F#. OCaml, a pragmatic extension to the ML 
language appeared in 1996. It was one of the first languages that allowed the combination of 
object-oriented and functional approaches. OCaml was a great inspiration for F#, which has 
to mix these paradigms in order to be a first-class .NET language and a truly functional one.  
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Other important functional languages include Haskell (a language with surprising 
mathematical purity and elegance) and Erlang, which I have already mentioned in a sidebar. 
We'll learn more about some of these languages in the rest of the book, when talking about 
topics where they have some interesting benefits over F#–but first, let's finish our story by 
looking at the history of F#.  

1.3.2 Functional programming on the .NET platform 
The first version of .NET was released in 2002 and the history of the F# language dates back 
to the same year. F# started off as a Microsoft Research project by Don Syme and his 
colleagues, with the goal of bringing functional programming to .NET. F# and typed 
functional programming in general gave added weight to the need for generics in .NET and 
the designers of F# were deeply involved in the design and implementation of generics in 
.NET 2.0 and C# 2.0. 

With generics implemented in the core framework, F# began evolving more quickly and 
the programming style used in F# also started changing. It began as a functional language 
with some support for objects, but as the language matured, it seemed more and more 
natural to take the best from both of these styles. As a result F# can be now more precisely 
described as a multi-paradigm language, which combines functional and object-oriented 
approach, together with a great set of tools that allow using F# interactively for scripting.  

F# has been a first-class .NET citizen since its early days. This means that not only can 
it access any of the standard .NET components, but equally importantly any other .NET 
language can access code developed in F#. This makes it possible to use F# to develop 
standalone .NET applications as well as parts of larger projects. F# has always come with 
support in Visual Studio, and in 2007 a process was started to turn F# from a research 
project to a full production-quality language. In 2008 it was announced that F# will become 
one of the languages shipped with Visual Studio 2010. Now we know its origins, let's take a 
look at the language itself. 

1.4 Introducing F# 
We'll introduce F# in stages throughout the book, as and when we need to. In this section 
we'll just look at the very basics, writing a couple of short examples so you can start to 
experiment for yourself. We'll examine F# more carefully after summarizing important 
functional concepts in chapter 2. Our first real-world F# application will come in chapter 4. 

After discussing the "Hello world" sample, I'll talk a little bit about F# to explain what 
you can expect from the language. We'll also discuss the typical development process used 
by F# developers, because it is quite different to what you're probably used to with C#.  

1.4.1 Hello world in F# 
The easiest way to start using F# is to create a new script file. Scripts are lightweight F# 
sources that don't have to belong to a project and usually have an extension "fsx". In Visual 
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Studio, you can go to "File" - "New" - "File…" (Ctrl + N) and then select "F# Script File" from 
the "Scripts" category. Once we have the file, we can jump directly to the "Hello world" code.  

Listing 1.11 Printing hello world (F#) 
let message = "Hello world!"        #1 
printfn "%s" message                #2 
#1 Value binding for 'message' 
#2 Call to the 'printfn' function 
I admit that this isn't the simplest possible "Hello world" in F#, but it would be fairly 

difficult to write anything interesting about the single line version. The listing 1.11 starts with 
a value binding (#1). This is similar to variable declaration, but there is one important 
difference - the value is immutable and we cannot change its value later. This matches with 
the overall functional style to make things immutable and we'll talk about this in detail in the 
next two chapters. 

After assigning a value "Hello world" to a symbol message, the program continues with 
a call to a printfn function. It is important to note that arguments to F# functions are 
usually just separated spaces with no commas between them or surrounding parentheses. 
We'll sometimes write parentheses when it makes the code more readable, such as when 
writing cos(1.57), but even in this case the parentheses are optional. I'll explain the 
convention that I'll use as we learn the core concepts of F# in the next couple of chapters. 

The first argument to the printfn function is a format string. In our example, it 
specifies that the function should take only one additional parameter, which will be a string. 
The type is specified by the %s in the format string (the letter "s" stands for "string") and the 
types of arguments are even checked by the compiler. Now that we understand the code, 
let's look how we can run it. 

INTERACTIVE PROGRAMMING IN F# 

The easiest way to run the code is to use the interactive tools provided by F# tool chain. 
These tools allow you to use the interactive style of development. This means that you 
can easily try what code would do and verify whether it behaves correctly by running it 
with a sample input. Some languages have an interactive console, where you can paste 
code and execute it. This is called read-eval-print loop (REPL), because the code is 
evaluated immediately.  

In F#, we can use a command prompt called F# interactive, but the interactive 
environment is also integrated inside the Visual Studio environment. This means that one 
can write the code with the full IDE and IntelliSense support, but also select a block of 
code and execute it immediately to test it.  

Let's have a look at the results that we get when we run the code. If you're using F# 
interactive from command line, you'd just paste the previous code and type ";;" to execute 
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it. If you're using Visual Studio, you can select the code and hit Alt + Enter to send it to the 
interactive window. Listing 1.12 shows the result that you'll get. 

Listing 1.12 Running the Hello world program (F# interactive) 
MSR F# Interactive, (c) Microsoft Corporation, All Rights Reserved 
F# Version 1.9.4.10, compiling for .NET Framework Version v2.0.50727 
 
> (...);;                                                            #A 
 
val message : string                                                 #1 
Hello world!                                                         #2 
#A Source code goes here 
#1 Information about value binding 
#2 Printed output of 'printfn' call 
The first line (#1) is generated by the value binding. It reports that a value called 

message was declared and that the type of the value is string. We didn't explicitly specify 
the type, but F# uses a technique called type inference to deduce the types of values, so the 
program is statically typed, just as in C#. The second line (#2) is an output from the 
printfn function, which prints the string and doesn't return any value.  

Writing something like "Hello world" example doesn't demonstrate how working with F# 
looks at the larger scale. Let's now briefly look at the usual development process, because is 
quite interesting. 

1.4.2 From simplicity to robustness 
When starting a new project, you don't usually know at the beginning how the code will look 
at the end. At this stage, the code evolves quite rapidly. However, as it becomes more 
mature, the architecture becomes more solid and we're more concerned with the robustness 
of the solution rather than with the flexibility. Interestingly, these requirements aren't 
reflected in the programming languages and tools that you use. F# is very appealing from 
this point of view, because it reflects this in both tools and the language. 

F# development process in a nutshell 

I have already mentioned the F# interactive tool. It allows you to verify and test your 
code immediately while writing it. This tool is extremely useful at the beginning of the 
development process, because it encourages you to quickly try various different 
approaches and choose the best one. Also, when solving some problem where you're not 
100% sure, you can immediately try the code. When writing F# code, you'll never spend 
a large time debugging the program. Once you first compile and run your program, 
you've already tested substantial part of it interactively.  

When talking about "testing" in the early phase, I mean that you tried to execute the 
code with various inputs a couple of times to interactively verify that it works. In the later 
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phase, we can turn these snippets into unit tests, so the term "testing" means a different 
thing in the later phase. When working with the mature version of the F# code, we can 
use tools such as Visual Studio debugger or various unit testing frameworks.  

Moreover, F# as a language reflects this direction as well. When you start writing a 
solution to some problem, you start with only the most basic functional constructs, 
because they make writing the code as easy as possible. Later, when you find the right 
way to approach the problem and you face the need to make the code more polished, you 
end up using more advanced features that make the code more robust, easier to 
document and also accessible from other .NET languages like C#.  

Let's see what the development process might look like in action. I'll use a few more F# 
constructs, but we won't focus primarily on the code. The more important aspect is how the 
development style changes as the program evolves. 

STARTING WITH SIMPLICITY 
When starting a new project, you'll usually create a new script file and try implementing the 
first prototype or experiment with the key ideas. At this point, the script file contains sources 
of various experiments, often in an unorganized order. The figure 1.3 shows how your Visual 
Studio IDE might look like at this stage. 

 

Figure 1.3 Using F# interactive we can first test the code and then wrap it into a function. 
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The screenshot shows only the editor and the F# interactive window, but that's really all 
we need now, because we don't yet have any project. As you can see, I first wrote a few 
value bindings to try how string concatenation works in F# and entered the code to the F# 
interactive window to verify that it works as expected. Once I knew how to use string 
concatenation, I wrapped the code in a function. We'll talk about functions in chapter 3. 

Next, I selected the function and hit Alt + Enter to send it to the F# interactive. After 
that, I entered an expressions sayHello("world") to test the function I just wrote. 
Note that the commands in F# interactive are terminated with ";;". This allows you to easily 
enter multi-line commands. 

Once we start writing more interesting examples, you’ll see that the simplicity is greatly 
supported by using of the functional concepts. Many of them allow you to write the code in a 
surprisingly terse way and thanks to the ability to immediately test the code F# is very 
powerful in the first phase of the development. We'll talk about the easy-to-use functional 
constructs mostly in the part 2 of this book. However, as the program grows larger, we need 
to write it in a more polished way and make it coherent with the usual .NET techniques. 
Fortunately, F# helps us to do this too. 

ENDING WITH ROBUSTNESS 
Unlike many other languages that are popular for their simplicity, F# lives on the other side 
as well. In fact, it can be used for writing very mature, robust and safe code. The usual 
process is that you start with very simple code, but as the codebase becomes larger you 
refactor it in a way that makes it more accessible to other F# developers, enables writing 
better documentation and supports better interoperability with .NET and C#.  

Perhaps the most important step in order to make the code well accessible from other 
.NET languages is to encapsulate the functionality into .NET classes. The F# language 
supports the full .NET object model, and classes authored in F# appear just like ordinary 
.NET classes with all the usual accompaniments such as static type information and XML 
documentation.  

We'll talk about F# object types in chapter 9 and you'll see many of the robust 
techniques in part 4, but let me just shortly demonstrate this, to prove that you can use F# 
in a traditional .NET style as well. The listing 1.13 shows how to wrap the sayHello 
function in a C# style class and add Windows Forms user interface. 

Listing 1.13 Object-oriented Hello world using Windows Forms (F#) 
open System.Drawing                                                     #1 
open System.Windows.Forms                                               #1 
 
type HelloWindow() =                                                    #2 
   let frm = new Form(Width = 400, Height = 140)                        #A 
   let fnt = new Font("Times New Roman", 28.0f)                         #A 
   let lbl = new Label(Dock = DockStyle.Fill, Font = fnt,               #A 
                       TextAlign = ContentAlignment.MiddleCenter)       #A 
   do frm.Controls.Add(lbl)                                             #A 
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   member x.SayHello(name) =                                            #3 
      let msg = "Hello " + name + "!" 
      lbl.Text <- msg                                                   #A 
 
   member x.Run() =                                                     #4 
      Application.Run(frm) 
#1 Import necessary .NET namespaces 
#2 F# class declaration 
#A Constructor initializes the user interface 
#3 Builds and displays the hello message 
#4 Method that runs the application 
#A Modify property of a .NET type 
The example starts with several open directives (#1) that import types from .NET 

namespaces. Next, we declare the HelloWindow class (#2), which wraps the code to 
constructs the user interface and exposes two methods. The first method (#3) wraps the 
functionality for concatenating hello world messages that we interactively developed earlier. 
The second one runs the form as a standard windows forms application (#4). The class 
declaration appears just like ordinary C# class, with the difference that F# has a more 
lightweight syntax for writing classes. The code that uses the class in F# will look just like 
your usual C# code: 

let hello = new HelloWindow() 
hello.SayHello("dear reader") 
hello.Run() 

At this stage, we're developing the application in a traditional .NET style, so we'll run it 
as a standalone application. However, the interactive style helped us, because we had 
already interactively tested a part of the application. You can see how the resulting 
application looks in figure 1.4.  

 

Figure 1.4 Running WinForms application created using object-oriented programming style in F# 

In this section, we've had a quick taste of what the typical F# development process feels 
like. I haven't explained every F# construct we've used, because we'll see how everything 
works in detail in later chapters. We used a very simple example, so the second version of 
the code was still quite simple. However, it demonstrated that you can use F# language for 
writing a pretty standard .NET programs. 

What can F# offer to a C# developer? 
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As I said earlier, F# is well suited for writing code using simple concepts at the beginning 
and turning it into a traditional .NET version later, while C# is largely oriented towards 
the traditional .NET style. If you're C# developer, creating real-world applications you can 
easily take advantage of F# in two ways. 

The first option is to use F# for rapid prototyping and experimenting with the code as well 
for exploring how .NET libraries work. As you've seen, using F# interactively is very easy, 
so writing a first sketch of the code can be done in F# and you save a lot of time when 
trying several approaches to a problem or exploring how a new library works. If you 
require code written in C#, then you can rewrite your prototype to C# later and still save 
a lot of development time. 

However, F# is a fully compiled .NET language, so there are no technical reasons for 
preferring C# source code. This means that you can simply make sure that your library 
can be easily accessed from C# by turning the code from a simple to a traditional .NET 
version and use F# for example for writing parts of a larger .NET solution. 

That should be enough about F# for now. It's possible that you're still finding some of 
the F# language constructs puzzling, but the purpose of this introduction wasn't to teach you 
F# in 4 pages, but I wanted to show you how F# looks and feels, so you can experiment with 
it as we'll look at more interesting examples in the subsequent chapters. 

1.5 Summary 
This chapter gave you a very brief overview of what makes functional programming 
interesting. We've talked about the declarative programming style, which is used when 
writing applications and libraries in a functional style. We've seen that this is already used in 
many successful technologies such as WPF and LINQ, but I also demonstrated that we can 
use it for writing functional solutions to other kinds of problems in C# 3.0. 

We've also looked at parallel and asynchronous programming, which is a big challenge 
for modern software development. Using a functional approach makes it significantly easier 
thanks to the use of immutability and declarative programming. The first one gives us 
guarantees about the code and helps us writing correct and safe code and the second one is 
more expressive when solving problems. 

In the next chapter, you'll see a much broader picture of functional programming. We'll 
look at all of the important ideas from a high-level perspective and you'll also see how they 
relate to each other. Even though we won't look at much real code yet, the next chapter will 
give you a solid foundation we can build on in the rest of the book. 

Licensed to Curtis J Pitts <beop.love@gmail.com>

Download at Boykma.Com



 29 

©Manning Publications Co. Please post comments or corrections to the Author Online forum: 
http://www.manning-sandbox.com/forum.jspa?forumID=460 

2 
Core concepts in functional 

programming 

If you ask two functional programmers what they consider the most essential aspect of the 
functional paradigm, you’ll probably get three different answers. The reason for this is that 
functional programming has existed for a long time and there is a wide range of diverse 
programming languages. Every language emphasizes a different set of aspects while giving 
less importance to others. However, most of the concepts are to some extent present in all 
functional languages. 

The central part of this chapter focuses on these common ideas, discussing the basic 
features and techniques that functional programmers have in their toolset. We'll look at the 
concepts from a high level perspective, but you'll see how they fit together to form one 
coherent way of thinking about and tackling problems.  

We'll start by discussing how functional programs represent program state and how they 
change it. In object-oriented programming, the state is carried by objects while in functional 
programming the key role is played by functions and data types. Next, we'll look at language 
features that support the declarative programming style we looked at in the first chapter. 
Finally, we'll talk about types and how they help to verify program correctness. This aspect 
isn't shared by all functional languages, but is essential for many of them including F# and 
others such as Haskell. Their implementation of type checking is very advanced and is 
different to what you may be used to from C# in many ways. 

We won't go into much programming yet. Instead you'll get a general understanding of 
the key concepts and a bit better feeling about how functional programs look. The first group 
of concepts that we'll talk about are related to the representation of data in functional 
programs. These concepts heavily influence how a program works with data.  
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2.1 How functional programs calculate 
In the first chapter we saw that functional programs use immutable data structures to 
represent their state. The functional approach to make things immutable doesn't just 
influence data structures (or classes in C#), but also extends to local variables.  

I wouldn't be surprised if you were wondering how the program can do anything at all 
when everything is immutable. The short answer is that functional programs aren't described 
as a sequence of statements that change the state but rather as computations. In this 
section, we'll shed some light on how these calculations are written. Let's start from the 
simple code that works with variables. 

2.1.1 Working with immutable values 
The first of the common features  is that functional programs rarely have typical variables as 
we know them from other programming languages. The key difference is that functional 
languages prefer immutable variables, meaning the variable can’t change its value once it is 
initialized. Thus using a term variable is quite inappropriate and functional programmers 
prefer the term value. 

Let me demonstrate what I mean using an example. Let’s say we want to write a 
program that takes some initial value, reads two numbers from the console, adds the first 
number to the initial value and multiplies the result by the second number. A typical 
implementation of something like this in C# would look like this (we’ll use hypothetical 
methods GetInitialValue, ReadInt32 and WriteInt32, but you could easily 
implement them if you want to play with this example): 

int res = GetInitialValue(); 
res = res + ReadInt32(); 
res = res * ReadInt32(); 
WriteInt32(res); 

As you can see, we declared a variable res to hold the initial value. Then we modified it 
two times, using an input value read from the console. Now, let’s look at the same code 
implemented without modifying the value of any variables: 

int res0 = GetInitialValue(); 
int res1 = res0 + ReadInt32(); 
int res2 = res1 * ReadInt32(); 
WriteInt32(res2); 

Because we couldn't modify the value of the first variable we declared a new variable 
every time we wanted to calculate a new value (res0, res1, res2). The key difference is 
that in the second example, we didn’t use the assignment operator (written as an equal sign 
in C#). The only occurrence of this symbol in a second example is when initializing a variable 
value, which has a different meaning then assignment operator. Instead of changing a value 
of an existing variable it creates a new variable with the specified initial value. 

I already mentioned that the term "variable" is inappropriate. Working with values is 
different in many ways, so it isn't just a change in the terminology, but a different concept. 
For this reason we'll use the functional terminology in the rest of the book, but you may 
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sometimes find the analogy between variables and values useful. We'll also use a term value 
binding, which refers to a declaration of a value, which assigns (binds) the value to a 
symbol. 

Of course, using immutable values instead of variables requires us to express many 
problems in a different way. We'll get back to this topic in the section 2.1.3. First, let's look 
at how immutable values relate to the concept of immutable types that we discussed in 
chapter 1. 

2.1.2 Using immutable data structures 
When representing data in functional programs, we'll work with data structures. We'll discuss 
data structures in chapters 5 and 7. For now, you can imagine that I'm talking about any 
composite data type, for example a C# value type or even a class, even though data 
structures are generally a simpler concept. As mentioned in chapter 1, in functional 
programming these data structures are immutable. 

The concept of immutable data structures is very closely related to the concept of 
immutable value bindings. A typical data structure contains field declarations. If we extend 
the idea of immutability from variable declarations to field declarations, we get a world 
where everything is immutable. In C#, you can write immutable class fields using the 
readonly modifier, whereas in F# all data structures are immutable by default. However, 
F# isn't a strictly functional language, so it allows you to create mutable types too. 

We've already seen how to work with immutable data structures and how to create an 
immutable class in C#. Methods of a class or functions working with the data structure 
cannot modify its state. The only thing that they can do is to return something, so all the 
operations that work with the data structure return a new value as the result. In C# the 
string type behaves exactly like this. If you write for example str.Substring(0, 
5), you'll get a new string value as the result and the original string remains unchanged. 

Another thing that I briefly mentioned in the first chapter is that functional code is often 
written as a single expression rather than a sequence of statements. This makes the code 
more declarative, so the use of immutable data structures supports this aspect of functional 
style as well. Let's say we have a class that represents a functional collection. It'll come with 
an operation that creates an empty list and an operation that "adds" a number to the list. As 
the list is immutable, adding an element to a list cannot change the original list. Instead, the 
operation returns a new list containing the items from the original list and the newly added 
element. If we wanted to create a list and add some elements to it, we could write 
something like this:  

var res = ImmutableList.Empty().Add(1).Add(3).Add(5).Add(7); 

If we wanted to do the same thing with a mutable list, we'd have to create it and then 
modify it by calling the imperative Add method that would modify the list. As a result we'd 
write one variable declaration and four statements (perhaps 5 lines of source code in total). 
This example shows that the immutable data structures often help you to write more 
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succinct code. Of course, there are ways for getting similar benefits in imperative languages, 
but in the functional style, you'll get them without any additional effort.  

So far, we've seen that functional languages use immutable data structures and 
immutable values instead of mutable variables. You can probably imagine how to write some 
extremely simple programs without using traditional variables and the assignment operator, 
but once you start thinking about slightly more complicated problems, things become difficult 
until you change the way you look at the world. In the next section, we'll look how to encode 
some more sophisticated calculation in the functional style. 

2.1.3 Changing program state using recursion 
Now, let's look how to write more complicated functions just using values. For example, we'll 
implement a function that sums numbers in a specified range. This could be of course 
calculated directly, but we’ll use it as an example of a calculation which uses a loop and later 
we'll also see how to change this code into a more generally useful function:  

int SumNumbers(int from, int to) { 
    int res = 0; 
    for (int i = from; i <= to; i++) 
        res = res + i; 
    return res; 
} 

In this case, we just can’t directly replace variable with value bindings, because we need 
to modify the value during every evaluation of the loop. The program needs to keep certain 
state, and that state changes on each iteration of the loop, so we can’t declare a new value 
for every change of the state as we did in our earlier example. This means that we need to 
do a fundamental change in the code and use a technique called recursion instead of using 
loops: 

int SumNumbers(int from, int to) { 
    if (from > to) return 0; 
    int sumRest = SumNumbers(from + 1, to); 
    return from + sumRest; 
} 

As you probably already know, recursion means that a function (SumNumbers in our 
case) calls itself. In our case this is when we calculate the value of the sumRest variable. 
In this code we’re using only value bindings, so it is purely functional. The state of the 
computation, which was originally stored in a mutable variable, is now expressed using 
recursion. When I originally mentioned that we can’t declare a new variable for every change 
of the state I was in some sense wrong, because this is what our new recursive 
implementation does. Every time the function recursively calls itself, it skips a first number 
and calculates a sum of the remaining numbers. This result is bound to a variable sumRest, 
which is declared as a new variable during every execution of the recursive function. 

Of course, writing the recursive part of computation every time would be difficult, so 
functional languages provide a way for "hiding" the difficult recursive part and expressing 

Licensed to Curtis J Pitts <beop.love@gmail.com>

Download at Boykma.Com



 33 

©Manning Publications Co. Please post comments or corrections to the Author Online forum: 
http://www.manning-sandbox.com/forum.jspa?forumID=460 

most of the problems without explicitly using recursion. We'll get back to this topic in section 
2.2.1 after we finish our discussion of calculation of functional programs. 

2.1.4 How is the calculation written? 
In imperative languages, an expression is simply a piece of code that can be evaluated and 
yields a result, so for example a method call or any use of a boolean or integer operator is an 
expression. Conversely, a statement is usually a piece of code that affects the state of the 
program and doesn’t have any result. For example a call to a method that doesn’t return any 
value is a statement, because it just affects the state of the program, depending on 
whatever the method does. An assignment also changes the state (by changing a value of a 
variable), but in the simplest version, it doesn’t return any value.  

NOTE 

Actually, an assignment in C# returns a value, so you can write for example 
a = (b = 42); but in the most simple form, which we're discussing here, it is a 
statement that assigns a value to a variable, without returning anything (e.g. b = 
42;). 

Another example of a typical statement may be returning from a function using return 
or escaping a loop using break. Both of these constructs do not have any “return value” 
and instead, their only meaning is that they change the state of the program – in case of 
return and break they change the currently executing statement of the code (return 
by jumping to back to the code which the method and break by jumping to just after the 
end of the loop). 

As we already said, in functional languages the state is represented by what a function 
returns and the only way to modify a state is to return a modified value. Following this logic, 
in functional languages everything is interpreted as expression with some return value. The 
practical consequence of this can be nicely demonstrated with the previous example that 
sums numbers in a specified range. Here is the original version of the code, which uses 
recursion, but is still not fully functional, because it is written as a series of two statements: 

int SumNumbers(int from, int to) { 
   if (from > to) return 0; 
   return from + SumNumbers(from + 1, to); 
} 

We can turn this into a more functional version using the C# conditional operator ( ?: ). 
This is of course possible only for relatively simple code samples, but we can use it to 
demonstrate a couple of important points about the syntax of functional language. The listing 
2.1 shows the function above rewritten in a more functional way from the syntactical point of 
view. 

Listing 2.1 Summing numbers in the specified range in a “functional C#” 
int SumNumbers(int from, int to) { 
   return                                              #1 
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      (from > to) 
         ? 0                                           #2 
         : (from + SumNumbers(from + 1, to));          #3 
} 
#1 The method body contains only 'return'  
#2 Value for the 'then' case 
#3 Expression calculating the 'else' case 
There are quite a lot of restrictions that we need to obey to write the code only using 

expressions in C#, because most of the control flow constructs such as conditional or loops 
are statements. Even though the example is quite minimalistic, it gives us many useful hints 
about what we can write in a functional language:  

6) The whole body of the method is a single expression which returns a value. In C# 
this means that the body has to start with return (#1). Also, we can't use 
return anywhere else in the code, because that would require jumping to the end 
of the method from a middle of an expression, which isn't possible.  

7) Since "if-then-else" is a statement, we have to use the conditional operator instead. 
This also means that we have to provide code for both of the cases ((#2) and 
(#3)). The expression returns a value, but if we omitted the "else" branch and the 
condition was false, we wouldn't know what to return! 

8) The biggest limitation is that a variable declaration in C# is a statement, so we 
don't have any way for creating variables. The F# language treats value bindings 
differently and the let keyword isn't alone a valid expression. It always has to be 
attached to some other expression. 

We'll get back to value bindings in the beginning of the chapter 3, so you'll see how F# 
solves the problem we had with variables. Another notable difference in F# is that there is a 
type that represents "nothing". The void keyword in C# isn't an actual type, so you can't 
for example declare a variable of type void. On the other hand, the F# type unit is a real 
type, which has only a single value that doesn't carry any information. All the imperative 
constructs in F# use this type, so when calling for example the Console.WriteLine 
method, F# treats it as an ordinary expression that returns a value of type unit. The fact 
that everything is an expression makes it easier to reason about the code. We’ll take a look 
at one very interesting technique in the next section. 

2.1.5 Computation by calculation 
The approach discussed in the last two sections gives us a completely new way of thinking 
about program execution. To understand how an imperative program executes, we have to 
understand how its state changes. In a program written using an object-oriented imperative 
language, the state is not only the internal state of all the objects, but also the currently 
executing statement (in each thread!) and the state of all the local variables in every stack 
frame. The fact that the currently executing statement is part of the state is important, 
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because it makes it hard to trace the state when writing the program execution down on 
paper.  

In functional programming, we can use an approach called computation by calculation. 
This is particularly important for Haskell and is described in more detail in The Haskell School 
of Expression [Hudak, 2000]. Using this approach we start with the original expression (for 
example a call to a function) and perform a single step, such as replacing the call with a 
declaration of the function or calculating a result of a primitive mathematical operation. By 
repeating this step several times, we can directly analyze how the program executes and it is 
also very intuitive to write this process down.  

Listing 2.2 demonstrates how we can use this mechanism to analyze how the 
SumNumbers function computes its result. 

The following listing is only pseudo-code displaying sequence of 
steps, so I'd like to use [CA] (or some other arrow character) here 
not as a line continuation, but as a continuation of the example.  

Listing 2.2 Functional evaluation of an expression SumNumbers(5,5) 
[CA]Start with call "SumNumbers(5,5)" 
  SumNumbers(5, 5) 
 
[CA]Expand SumNumbers(5,5)  
  if (5 > 5) 0 else { int sumRest = SumNumbers(6, 5) in 5 + sumRest }  
 
[CA]Evaluate the condition, expand the "else" branch 
  int sumRest = SumNumbers(6, 5) in 5 + sumRest 
 
[CA]Expand SumNumbers(6, 5) 
  int sumRest =  
     if (6 > 5) 0  
     else { int sumRest = SumNumbers(7, 5) in 1 + sumRest } in 
  5 + sumRest 
 
[CA]Evaluate the condition, expand the "then" branch 
  int sumRest = 0 in 5 + sumRest 
 
[CA]Replace occurrences of "sumRest" with the actual value  
  5 + 0 
 
[CA]Evaluate the expression 
  5 

As you can see, this way of writing down the computation of some functional code is 
very easy and even though functional programmers don’t spend their lives by writing down 
how their program executes, it is very useful to get used to this kind of computations, 
because it gives us a very powerful way of thinking about functional code. 

Of course, this example is very simple and it didn’t discuss many important details. Rest 
assured, we will get to all of these problems in the next chapter. Another interesting aspect 
of the computation shown in listing 2.2 is deciding which part of the expression should be 
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evaluated next. In this example we used the innermost part of the expression, so we 
evaluate all arguments of an expression first. This is how most functional languages work, 
including F#, and is similar to executing the code statement by statement. Before we 
continue, let me briefly talk a little more about Haskell, a popular functional language known 
for its close relation to mathematics. 

Mathematical purity in Haskell 

Haskell appeared in 1990 and has been very popular in the academic community. In this 
section we've seen that in functional languages, we work with immutable data structures 
and use immutable values rather than mutable variables. This isn't strictly true in F# 
because we can still declare mutable values. This is particularly useful for .NET 
interoperability, because most of the .NET libraries rely on mutable state.  

On the other hand, Haskell very strictly enforces mathematical purity. This means it can 
be very flexible about the order in which programs execute. In the example above, I 
mentioned that F# evaluates the innermost part of an expression first. In Haskell, there 
are no side effects so the order of evaluation doesn't (and can't) matter. As long as we're 
reordering parts of the code that don't depend on each other, it will not change the 
meaning of the program. As a result, Haskell uses a technique called lazy evaluation, 
which doesn't evaluate the result of an expression until it is actually needed (for example 
to be printed on a console).  

The ability to make a change in the program without changing its meaning is very 
important in F# too and we'll see how we can use it to refactor F# programs in chapter 
11. We'll also see that lazy evaluation can be used in F# as well and it can be very useful 
optimization technique. 

In the last few sections, we were talking about program state and writing calculations 
using recursion. I promised that we'd see how to write the difficult part of the code in a 
reusable way, so that's the primary topic for our next section. 

2.2 Writing declarative code 
In the first chapter, we saw what it means to use a declarative programming style from a 
high level perspective. Now, we'll talk about more technical concepts of the functional style 
that enable declarative programming. From this point of view, there are two important 
aspects that lead to the declarative style. We talked about the first one in the preceding 
section - we've seen that every language construct is an expression. This shows that 
functional languages try to minimize the number of built-in concepts and are very succinct 
and extensible. When talking about recursion, I said that writing every operation using 
explicit recursion would be difficult. The second aspect gives the answer to this problem, so 
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let's start by looking how to write a single function that can be used in many variations for 
different purposes. 

2.2.1 Functions as values 
The question that motivates this section is: "How can we separate the functionality that will 
vary with every use from the recursive nature of the code which always stays the same?" 
The answer is simple – we will write the recursive part as a function with parameters and 
these parameters will specify the “unique operation” that the function should perform. 

Let me demonstrate the idea on the SumNumbers function. We wrote a function that 
takes an initial value, looping through a specified numeric range. It calculates a new “state” 
of the calculation for each iteration using the previous state and the current number from the 
range. So far we have used zero as an initial value and we used addition as an operation that 
is used to aggregate the numbers in the range, so a resulting computation for a range from 5 
to 10 would look like 5 + (6 + (7 + (8 + (9 + (10 + 0))))).  

What if we now decided to modify this function to be more general and allow us to 
perform computations using different operations? For example, we could then multiply all the 
numbers in the range together, generating the following computation: 5 * (6 * (7 * (8 * (9 * 
(10 * 1))))). If you think about the differences between these two computations, you’ll see 
that there are only two changes. First, we changed the initial value from 0 to 1 (because we 
don’t want to multiply any result of a call by zero!) and we changed the operator used during 
the computation from + to *. Let's see how we could write a function like this in C#: 

int AggregateNumbers(Func<int, int, int> op, int init, int from, int to) { 
    if (from > to) return init; 
    int sumRest = AggregateNumbers(op, init, from + 1, to); 
    return op(from, sumRest); 
} 

We added two parameters to the function – the initial value (init) and an operation 
(op) that specifies how to transform the intermediate result and a number from the range 
into the next result. To specify the second parameter, we're using a delegate Func<int, 
int, int>, which represents a function which has two parameters of type int and 
returns an int. This delegate type is available in .NET 3.5 and we'll talk about it in chapter 
3. 

In functional languages, we don't have to use delegates, because they have a much 
simpler concept - a function. This is exactly what the term “functions as values” refers to – 
the fact that we can use functions in the same way as any other data type available in the 
language. We can write functions that take functions as parameters (as we did in this 
example), but also return a function as the result or even create a list of functions and so on. 
Functions are also very useful as a mental concept when approaching a problem. 

Thinking about problems using functions 

For many people who know functional programming, the most important thing isn't that 
functional languages have some particular useful features, but that the whole 
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environment encourages you to think differently and more simply about problems that 
you encounter when designing and writing applications regardless of the language you 
use. 

The idea of using functions as ordinary values is one of these very useful concepts. Let 
me demonstrate this using an example. Suppose we have a list of customers and we 
want to sort it in a particular way. The classical object oriented way to think about this 
problem is to use a Sort method that takes a parameter of some interface type (in .NET 
this would be IComparer<Customer>). The parameter specifies how to compare 
two elements. Now, if we want to sort the list using customer name, we'd create a class 
that implements this interface and we'd use it as an argument. 

In functional programming, we can use the concept of a function. We've seen that C# can 
represent similar idea using a delegate, which is definitely simpler than interfaces, but 
functions are even simpler. They don't have to be declared in advance and the only thing 
that matters about them is what arguments they take and what results do they return. 
The generic Func delegate in .NET 3.5 is very close to the idea of a function, but once 
you get used to think about functions, you'll see them more often than when thinking 
about delegates. 

The argument of the functional Sort method would be a function that takes two 
customers as arguments and returns an integer. This is quite brief way to specify the 
argument. On the other hand, when using an interface or a delegate, we have to declare 
some type in advance and then refer to it whenever we want to use the object-oriented 
Sort method. Using a function is more straightforward, because when you look at the 
functional Sort method, you immediately see what argument it expects. However, the 
concept of a function is useful even if you end up implementing the code using interfaces. 
It gives you a terser way to think about the problem, so the number of elements that 
you'll have to keep in mind will be lower. 

In the first chapter, I said that the declarative style gives us a new way for extending 
the vocabulary we can use to specify a solution to a class of problems. This is usually best 
approached by using functions that take other functions as parameters. We'll talk about 
these in the next section. 

2.2.2 Higher order functions 
We've seen that we can treat functions as values and also write functions that take other 
function as parameters. There are several terms that are often used when talking about 
these kinds of functions. The first concept is treating a function as an ordinary value. This 
includes the fact that functions have a type (in C# this is a delegate type) and that you can 
use function as an argument to another function. Frankly, you can just use a function in any 
place where you can use for example an integer or a string including returning a function as 
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a result or storing functions in a list. This language feature is usually called first-class 
functions, meaning that a function is a value just like any other. 

The second important term is higher order function. This refers to a function that takes a 
function as a parameter or returns it as a result. In the C# examples in this book, this will 
often be a method. For example the method AggregateNumbers from the previous 
section is higher order function. This kind of parameterization of code is used very often in 
functional languages, so as you'll see, many of the useful functions in the F# library are 
higher order functions. Let's look at an example that shows how higher order functions make 
our code more declarative. 

EXTENDING THE VOCABULARY USING HIGHER ORDER FUNCTIONS 
The best example of how higher order functions make your code more declarative is working 
with collections. This can be done in C# using the extension methods such as Where and 
Select that are provided as part of LINQ, because everything you can write using LINQ 
query can be also written using a method that takes a Func delegate as an argument. 

However, in this section we'll look how to write the same code using lists in F# to 
demonstrate a few interesting aspects of F#. We haven't yet seen enough from F# to fully 
explain what the code does, but we know enough to see the high-level picture. The first 
example in listing 2.3 shows how to filter only odd numbers from a list. The second one first 
filters numbers and then calculates square of every returned number. 

Listing 2.3 Working with lists using higher order functions (F# interactive) 
> let numbers = [ 1 .. 10 ] 
  let isOdd(n) = (n%2 = 1)                               #A 
  let square(n) = n * n                                  #B 
  ;; 
val numbers : int list                                   #C 
val isOdd : int -> bool                                  #C 
val square : int -> int                                  #C 
 
> List.filter isOdd numbers;;                            #1 
val it : int list = [1; 3; 5; 7; 9] 
 
> List.map square (List.filter isOdd numbers);;          #2 
val it : int list = [1; 9; 25; 49; 81] 
#A Is the number 'n' odd? 
#B Returns square of a number 
#C Type signatures inferred by F# interactive 
#1 Filter numbers using 'isOdd' function 
#2 Filter and apply 'square' to every number 
We first implemented two functions, which we'll use later when working with lists. As I 

mentioned in chapter 1, the F# compiler automatically deduces the types of expressions that 
we enter, so it also deduced the type of those functions. However, this isn't important for 
now. We'll talk about types in F# later in this chapter and we'll talk about the printed type 
signatures and function declarations in detail in chapter 3. 
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What I wanted to show with this example is how higher order functions extend our 
vocabulary when expressing some problem. In the first example, we're using a higher order 
function List.filter, which takes a function as the first argument and a list as the 
second argument (#1). We give it our function that tests whether a number is odd and a list 
of numbers from 1 to 10. As you can see on the next line, the result is a list containing all 
odd numbers in that range. 

In the usual imperative style, this could be implemented using a for loop or similar 
construct. As I wrote in the first chapter, imperative languages give us only a limited way to 
compose basic commands and for loop is one of them. The example we've just seen is 
interesting because it implements a new control structure for composing commands. The 
List.filter function is an abstract way for describing certain pattern for working with 
lists, but makes it reusable, because we can specify the behavior of the filter using a 
function. Higher order functions are essential concept of functional programming and we'll 
talk about them in chapter 6. We'll see that we can write very useful higher order functions 
for working with most of the data structures. 

In the second example (#2), we use the entire expression from the first example as an 
argument to another function. This time we use List.map, which applies the function given as 
the first argument to all values from the given list. In our example this means that it 
calculates squares of all odd numbers. The code is still very declarative, but it isn't as 
readable as it should be. One of the reasons for this is that the first construct of the 
expression is List.map, but that's actually the operation that's performed as the last one. 
However, F# is a very flexible language and it gives us ways to deal with this problem. Let's 
see how we can use another feature–pipelining–to make the code clearer. 

LANGUAGE ORIENTED PROGRAMMING 
The language oriented programming can be viewed as another programming paradigm, but 
it is less clearly defined. The principle is that we're trying to write the code in a way that 
makes it reads more naturally. This can be achieved in languages that provide more 
flexibility in how you can write the code. 

In this section, we'll see that a relatively simple syntactical change can give us a  
different point of view when thinking about the code. Listing 2.4 shows the new way of 
writing the same code–we're still returning squares of odd numbers. The example only 
demonstrates the idea, so you don't have to fully understand it. We'll talk about language 
oriented programming and list processing in later chapters. The point of this example is to 
show a different way of thinking about the task.  

Listing 2.4 Elegant way for working with functions (F# interactive) 
> let squared =  
     numbers                                     #A 
     |> List.filter isOdd                        #B 
     |> List.map square                          #C 
val it : int list = [1; 9; 25; 49; 81] 
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#A Take the list of numbers 
#B Select odd numbers 
#C Calculate square of each number 
Instead of nesting function calls, we're now using the pipelining operator (|>). This  

construct allows us to write expressions as a series of operations that are applied to the 
data. The code is of course still written in the usual F# language, but if you didn’t know that 
you could almost think that it is written in some data processing language. It is worth noting 
that from the F# point of view there is nothing special about the code. F# allows you to write 
custom operators and the pipelining operator is just an operator that we can define 
ourselves. The rest of the code is written just using the appropriate parameterized higher 
order functions. 

However, we can look at the list processing constructs (such as |>, List.map and 
others) as if it was a separate list processing language embedded in F#. This is what the 
term "language oriented programming" refers to. Even though the code is completely 
standard F# library, it looks like a language designed for this particular problem, which 
makes the code more readable. In fact, many well designed functional libraries look like 
declarative languages. 

The fact that functional libraries look like declarative languages for solving problems in 
some specific area is a very important aspect of the declarative style. Its great benefit is that 
it supports division of work in larger teams. You don't have to be an F# guru to understand 
how to use the list processing "language" or any other library that is already available. This 
means that even novice F# programmers can quickly learn how to solve problems using an 
existing library. Implementing the library is more difficult, so this is a task that would be 
typically done by more experienced F# developers in the team.  

Of course, this book aims to train functional masters, so we'll talk about 
this problem in later chapters. In chapter 6, we'll look at writing higher 
order functions for working with lists and other basic types. This is a basic 
technique used when designing functional libraries, but as we've seen in 
this section, it makes the code look very natural. In chapter 15, we'll make 
the next step and we'll design a library for creating animation with the goal 
to make the syntax as natural as possible. Language oriented programming 
in LISP 

LISP appeared in 1958 and is the oldest high-level language still in common use, other 
than FORTRAN. There are also some popular LISP dialects including Common Lisp and 
Scheme. The languages from this family are widely known for their extremely flexible 
syntax which allows LISP to mimic many advanced programming techniques. This 
includes object-oriented programming, but also some less widely known approaches that 
you may or may not have heard about, like aspect oriented programming (available today 
in languages like AspectJ or libraries such as PostSharp) or prototype-based object 
systems (also seen in JavaScript). 
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Anything you write in LISP is either a list or a symbol, so you can for example write (-
 n 1). This is a list containing three symbols: -, n and 1. However, it can be viewed 
as program code: a call to a function "-" (binary minus operator) with two arguments: n 
and 1. This makes the code a little bit difficult to read if you're not used to the syntax, 
but I wanted to show it here just to demonstrate how far the idea of making the language 
uniform can be taken. When solving some difficult problem in LISP, you almost always 
create your own language (based on LISP syntax), which is designed for solving the 
problem. You can simply define your own symbols with a special meaning and specify 
how the code written using these symbols executes. 

We've seen something slightly similar when talking about declarative animations in 
chapter 1, so you've seen that you can use a language oriented approach even when 
writing the code in C#. We'll talk about this example in chapter 15, where we'll see how 
language oriented programming looks in both C# and F#. 

In the declarative programming style, we're extending the vocabulary, which we can use 
to express our intentions. However, we also need to make sure that the primitives we're 
adding will be used in a correct way. In the next section, we'll briefly look at types, which 
serve as "grammar rules" for these primitives. 

2.3 Functional types and values 
The C# language is a statically typed programming language†. This means that every 
expression has a type known during the compilation. The compiler uses static typing to verify 
that when the program runs, it will use values in a consistent way. For example, it can 
guarantee that the program won't attempt to add a DateTime with an integer, because the 
"+" operator cannot be used with these two types. 

In C#, we have to specify the types explicitly most of the time. For example, when 
writing a method, we have to specify what the types of its parameters are and what the 
return type is. On the other hand, in F# we don't typically write any types. However, the F# 
language is also statically typed. In F#, every expression has type as well, but F# uses a 
mechanism called type inference to deduce the types automatically. In fact, static typing in a 
functional language such as F# guarantees even more than it does in C#. 

Types in functional programming 

                                                            

 

† The C# 4.0 adds support for some of the dynamic language features, but even with these 
features, C# is still a mostly statically typed language. 
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I said that functional languages treat any piece of code as an expression. As a result, 
saying that every expression has a type is a very strong statement. It means that any 
syntactically correct piece of F# code has some type. The type says what kind of results 
we can get by evaluating the expression, so the type gives us valuable information about 
the expression. 

I also mentioned that types can be viewed as grammar rules for composing primitives. In 
functional languages, a function (such as the square function from the last example) 
has a type. This type specifies how the function can be used - we can call it with an 
integer value as an argument to get an integer as the result.  

More importantly, the type also specifies how we can compose the function with higher 
order functions. For example, we couldn’t use square as an argument for 
List.filter, because filtering expects that the function returns a Boolean value and 
not an integer. This is exactly what I mean by a grammar rule–the types verify that we're 
using the functions in a meaningful way.  

We'll talk about values and their types primarily in chapter 5. In chapter 6, we'll see how 
types of higher order functions help us to write correct code. We'll also see that type 
information can often give us a good clue about what the function does. In the next section, 
we'll briefly look at the mechanism which allows us to use types without writing them 
explicitly. 

2.3.1 Type inference in C# and F# 
When most of the types have a simple name such as int or Random, there is only a small 
need for type inference, because writing the type names by hand isn't difficult. However, C# 
2.0 supports generics, so you can construct more complicated types. The types in functional 
languages like F# are also quite complicated, particularly because you can use functions as a 
value, so there must also be a type that represents a function.  

A simple form of type inference for local variables is now available in C# 3.0. When 
declaring a local variable in earlier versions of C# you had to specify the type explicitly. In 
C# 3.0 you can very often replace the type name with a new keyword var. Let's look at a 
couple of basic examples: 

var num = 10 
var str = "Hello world!" 

The first line declares a variable called num and initializes its value to 10. The compiler 
can easily infer that the expression on the right-hand side is of type int, so it knows that 
the type of the variable must also be int. Note that this code means exactly the same thing 
as if you had written the type explicitly. During the compilation, the C# compiler just 
replaces var with the actual type. As I already mentioned, this is particularly useful when 
working with complex generic types. We can for example write the following: 

var dict = new Dictionary<string, List<IComparable<int>>>(); 

Without the var keyword, you'd have to specify the type twice on a single line - when 
declaring the variable and when creating the instance of Dictionary class. The type 
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inference in C# is limited to local variable declarations. On the other hand, in F# you often 
don't write any types at all. If the F# type inference fails to deduce some type, then you can 
specify it explicitly, but this is a relatively rare. 

To give you a better idea of how this works, we'll look at a single example. Listing 2.5 
shows a simple function that takes two parameters, adds them and formats the result using 
the String.Format method. The listing first shows valid F# code, and then how you 
could write it in C# if implicit typing were extended to allow you to use the var keyword in 
other places. 

Listing 2.5 Implementing methods with type inference 
let add a b =                                                   #1 
   let res = a + b                                              #2 
   String.Format("{0} + {1} = {2}", a, b, res)                  #3 
 
var Add(var a, var b) {                                         #4 
   var res = a + b;                                             #4 
   return String.Format("{0} + {1} = {2}", a, b, res);          #4 
} 
#1 F# version with no types 
#2 Add two numbers 
#3 Format the returned string 
#4 Pseudo-C# version using 'var' 
As you can see, the F# syntax is designed in a way that you don't have to write any 

types at all in the source code (#1). In the pseudo-C# version (#2), we just used the var 
keyword instead of any types and this is in principle what the F# compiler sees when you 
enter the code. If you paste the code for this function into F# interactive, it will be processed 
correctly and the F# interactive will report that the function takes two integers as arguments 
and returns a string. Let's now look how can the F# compiler figure this out. 

The first hint which it has is that we're adding the values a and b. In F#, we can use 
"+" to add any numeric types or to concatenate strings, but if the compiler doesn't know 
anything else about the types of values, it assumes that we're adding two integers. From this 
single expression, the compiler can deduce that both a and b are integers. Using this 
information, it can find the appropriate overload of the String.Format method. The 
method returns string, so the compiler can deduce that the return type of the add 
function is also a string. 

Thanks to the type inference, we can avoid many errors and use all other benefits of 
static typing (like hints to developers when writing the code), but for almost no price, as the 
types are inferred automatically in most of the cases. When using F# in Visual Studio, the 
type inference is running in the background, so when you hover over a value with a mouse 
pointer, you'll instantly see its type. The background compilation also reports any typing 
errors instantly, so you'll get the same experience as when writing C# code. 

You may be used to using types from other programming languages and you probably 
already know that there are primitive types (like integer, character or floating point number) 
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and more complicated types composed from these primitive types. Functional languages 
have usually slightly different set of composed types. We'll talk about all these types in detail 
in chapter 5, but let me briefly talk about one type which is particularly interesting and used 
quite frequently. 

2.3.2 Introducing the discriminated union type 
In this section, we'll talk about the discriminated union type, which is one of the basic 
functional types. Let's start by looking at a sample where it would be useful. Imagine that 
you're writing an application that works with graphical shapes. We'll use a simple 
representation of shape, so it will be a rectangle, an ellipse (defined by the corners of 
bounding rectangle) or a shape composed from two other shapes. 

If you try to think about this problem using the object oriented concepts, you'll probably 
say that we need an abstract class to represent a shape (let's call it Shape) and three 
derived classes to represent the three different cases (Ellipse, Rectangle and 
Composed). Using the OO terminology, we now have in our mind four classes that describe 
the problem. Also, we don't yet know what we'll want to do with shapes. We'll probably want 
to draw them, but we don't know yet what arguments will we need to do the drawing, so we 
can't yet write any abstract method in the Shape class. 

However the original idea was simpler than this full-blown type hierarchy: we just 
needed to have a representation of a shape with three different cases. We want to define a 
very simple data structure that we could use to represent the shape–and F# allows us to do 
exactly that: 

type Shape =  
   | Rectangle of Point * Point       #A 
   | Ellipse of Point * Point         #B 
   | Composed of Shape * Shape        #C 
#A Rectangle with left-upper and right-lower point 
#B Ellipse with the bounding rectangle  
#C A shape composed from two shapes 
This code creates a discriminated union type called Shape, which is closer to the 

original intention we had when describing the problem to start with. As you can see, the type 
declaration contains three different cases that cover three possible representations of the 
shape. When working with values of this type in F#, we'll write code such as 
Rectangle(pt1, pt2) to create a rectangle. Unlike unions in the C language, the value 
is tagged, which means that we always know which of the options it represents. As we'll see 
in the next section, this is quite important for working with discriminated union values.  

The usual development process in F# starts by designing data structures needed to keep 
the program data. We'll talk about this problem in more detail in chapters 7 to 9. In the next 
section, we'll talk about pattern matching, which is a concept that makes many typical 
functional programming tasks easy. Even though pattern matching doesn't look like a 
concept related to types, we'll see that there are some very important connections. Among 
other things, we can use pattern matching for implementing functions that work with 
discriminated unions. 
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2.3.3 Pattern matching 
When using functional data types, we know much more about the structure of the type that 
we're working with. A nice demonstration of this property is a discriminated union – when 
working with this type, we always know what kind of values we can expect to get (in our 
previous example, it could be either a rectangle, an ellipse or a composed shape). 

When writing functions that work with discriminated unions, we need to specify what the 
program should do for each of the case. This is in many ways similar to the switch 
statement from C#, but there are several important differences. First let's see how we could 
use the switch statement to work with a data structure mimicking a discriminated union in 
C#. Listing 2.6 shows how we could print some information about the given shape. 

Listing 2.6 Testing cases using 'switch' statement (C#) 
switch(shape.Tag) {                                                #1 
   case ShapeType.Rectangle: 
      var rc = (Rectangle)shape;                                   #2 
      Console.WriteLine("rectangle {0}-{1}", rc.From, rc.To); 
      break; 
   case ShapeType.Composed: 
      Console.WriteLine("composed"); 
      break; 
} 
#1 Switch over the type of the shape value 
#2 Cast to the appropriate type 
The code assumes that the shape type has a property Tag (#1), which specifies what 

kind of shape it represents. This corresponds to F# discriminated unions, where we can also 
test which of the possible cases the value represents. When the value is a rectangle, we 
want to print some information about the rectangle. To do this in C#, we first have to cast 
the shape (which has a type of the abstract base class Shape) to the type of the derived 
class (in our example, it's Rectangle) and then we can finally access the properties that 
are specific for the rectangle. In functional programming we use this type of construct more 
often than in regular C#, so we'll need an easier way for accessing properties of the specific 
cases. 

The last thing that is worth noting about the example above is that it contains code only 
for two of the three cases. If the shape represents an ellipse, the switch statement won't 
do anything. This may be the right behavior in C#, but it is not appropriate for functional 
programs. I said that everything is an expression in functional program, so we could return 
some value from the functional version switch. In that case, we definitely need to cover all 
cases, because otherwise the program wouldn't know what value to return. 

In the listing 2.7, we'll look at the F# alternative to the C# switch statement. The 
construct is called match and we'll use it to calculate the area occupied by the shape. 

Listing 2.7 Calculating area using pattern matching (F#) 
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match shape with 
| Rectangle(pfrom, pto) -> 
     rectangleArea(pfrom, pto)                                      #1 
| Ellipse(pfrom, pto) -> 
     ellipseArea(pfrom, pto) 
| Composed(Rectangle(from1, to1), Rectangle(from2, to2))            #2 
        when isNestedRectangle(from2, to2, from1, to1) ->           #2 
     rectangleArea(from1, to1)                                      #A 
| Composed(shape1, shape2) ->                                       #3 
     let area1 = shapeArea(shape1)                                  #B 
     let area2 = shapeArea(shape2)                                  #B 
     area1 + area2 - (intersectionArea(shape1, shape2))             #B 
#1 Calculate area of a rectangle 
#2 Case for a rectangle nested inside another 
#A Optimized version 
#3 Remaining case 
#B Calculate area of composed shape 
The first important difference from the C# switch construct is that in F#, we can 

deconstruct the value that we're matching against the patterns. In the listing above, it is 
used in all the cases. The different cases (denoted using the "|" symbol) are usually called 
patterns (or guards). 

When calculating area of a rectangle (#1), we need to get the two points that specify 
the rectangle. When using match, we can just provide two names (from and to) and the 
match construct assigns a value to these names when the shape is represented as a 
rectangle and the branch is executed. The listing above is very simplified, so it just uses a 
utility function to calculate the actual number.  

The second case is for an ellipse and it is very similar to the first one. However, the next 
case is more interesting (#2). The pattern that specifies conditions under which the branch 
should be followed (which is specified between the bar symbol and the arrow "->") is quite 
complicated for this case. The pattern only matches when the shape is of type Composed, 
and both of the shapes that form the composed shape are rectangles. Instead of giving 
names for values inside the Composed pattern, we specify another two patterns (two times 
Rectangle). This is called a nested pattern and it proves very useful. Additionally, this 
pattern also contains a when clause which allows us to specify any arbitrary condition. In 
our example, we call isNestedRectangle function, which tests whether the second 
rectangle is nested inside the first one. If this pattern is matched, we get information about 
two rectangles. We also know that the second one is nested inside the first one, so we can 
optimize the calculation and just return the area of the first rectangle. 

The F# compiler has full information about the structure of the type, so it can verify that 
we're not missing any case. If we forgot the last one (#3) it would warn us that there are 
still valid shapes that we're not handling (for example a shape composed from two ellipses). 
The implementation of the last case is more difficult, so if our program often composes two 
rectangles, the optimization in the third case would be quite useful. Similar to first-class 
functions, discriminated unions and pattern matching are other functional concepts that allow 
us to think about problems in simple terms.  
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Thinking about problems using functional data structures 

Even though there is no simple way to create a discriminated union type in C#, the 
concept is still very useful even for C# developers. Once you become more familiar with 
them, you'll find that many of the programming problems that you face can be 
represented using discriminated unions.  

If you know object oriented design pattern called Composite, than you may recognize it in 
the example above. The shape can be composed from two other shapes, which represents 
the composition. In functional programming, we'll use discriminated unions more often to 
represent program data, so in many cases the Composite design pattern will disappear. 

If you end up implementing the problem in C#, you can encode a discriminated union as 
a class hierarchy (with a base class and a derived class for every case). However, 
mentally, you can still work with the simple concept, which makes thinking about the 
application architecture easier. In functional programming, this kind of data structure is 
used more frequently, which is also a reason why functional languages support more 
flexible pattern matching constructs. The example above demonstrated that the F# 
match expression can simplify implementation of rather sophisticated constructs. We'll 
see this type of simplification repeatedly throughout the book: an appropriate model and 
a bit of help from the language can go a long way to keeping code readable. 

I mentioned that the F# compiler can verify that we don't have any missing cases in the 
pattern matching. This is one of the benefits that we get thanks to the static typing of the F# 
language, but there are many other areas where it helps too. In the next section, we'll briefly 
review the benefits and we'll look at one example that highlights the goals of compile-time 
checking in F#. 

2.3.4 Compile-time program checking 
The well known benefits of using types are that it prevents many of the common mistakes 
and that the compiled code is more efficient. However, in functional languages there are 
several other benefits. Most importantly, types are used to specify how functions can be 
composed with each other. This is not only useful for writing correct code, but it serves as 
valuable information to the developer as part of the documentation or to the IDE, which can 
use types to provide useful hints when writing the code. Types in functional languages tell us 
even more than they do in imperative languages such as C#, because the functional code 
uses generics more often. In fact, most of the higher order functions are generic. We've seen 
that thanks to type inference, the types can be very non-intrusive and you often don't have 
to think about them when coding. 

In the next section, I'll show you one example of a feature which nicely demonstrates 
the goal of types and compile-time program checking in F#. The goal is to make sure that 
your code is correct as early as possible and to provide useful hints when writing it.  
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UNITS OF MEASURE 
In 1999 NASA's Climate Orbiter was lost because part of the development team used the 
metric system and another part used imperial units of measure. This was one of the 
motivations for a new F# feature called units of measure which allows us to avoid this kind of 
issue. We'll talk about units of measure later in chapter 17, but in this section I want to use 
it to demonstrate how type checking helps when writing F# code. I chose this example 
because it is easy to explain, but the compile time checking is present when writing any F# 
code. 

The listing 2.8 shows a brief session from the F# interactive. The code shows a 
calculation that tests whether an actual speed of a car is violating a specified maximum 
speed. 

Listing 2.8 Calculating with speed using units of measure (F# interactive) 
> let maxSpeed = 50.0<km/h>                                             #A 
  let actualSpeed = 40.0<mile/h>                                        #B 
  ;; 
val maxSpeed : float<km/h>                                              #1 
val actualSpeed : float<mile/h>                                         #1 
 
> if (actualSpeed > maxSpeed) then                                      #2 
     printfn "Speeding!";; 
Error FS0001: Type mismatch.  
Expecting a float<mile/h> but given a float<km/h>.                      #3 
The unit of measure 'mile/h' does not match the unit of measure 'km/h'  #3 
 
> let mphToKmph(speed:float<mile/h>) =                                  #4 
     speed * 1.6<km/mile>;;                                             #4 
val mphToKmph : float<mile/h> -> float<km/h>                            #4 
 
> if (mphToKmph(actualSpeed) > maxSpeed) then                           #5 
     printfn "Speeding!";; 
Speeding! 
#A Maximal allowed speed in km/h 
#B Actual speed in mph 
#1 Units are part of the type 
#2 Is the speed larger? 
#3 The types are not compatible 
#4 Implement conversion of units 
#5 Correct comparison using conversion 
The listing starts by declaring two values (maxSpeed and actualSpeed). The 

declaration annotates these values with units, so you can see that the first is in kilometers 
per hour and the second is in miles per hour. This information is captured in the type (#1), 
so the type of these two values isn't just a float, but it is a float with additional 
information about the units. 

Once we have these values, we try to compare the actual speed with the speed limit 
(#2). In a language without units of measure, this would be perfectly valid and the result 
would be false (because 40 is less than 50), so the driver would escape without a penalty. 
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However, the F# compiler reports (#3) that we cannot compare these numbers, because 
km/h is a different unit than mile/h. 

To solve the problem, we have to implement a function that converts the speed from 
one unit to another. The function takes an argument of type float<mile/h>, which 
means that the speed is measured in miles per hour and returns a float representing speed 
in kilometers per hour. Once we use this conversion function in the condition (#5) the code 
compiles correctly and it reports that the actual speed is in fact larger than the allowed 
speed. If we implemented this as a standalone application (without using F# interactive) 
we'd get an error complaining about units during the compilation. Additionally, you can see 
the units in Visual Studio, so it helps you to verify that your code is doing the right thing. If 
you see that a value that should represent the speed has a type float<km^2>, then you 
very quickly realize that there is something wrong with the equation. 

As I mentioned earlier, static type checking isn't present in all functional languages, but 
it's extremely important for F#. In the last few sections, we quickly looked at the concepts 
that are important for functional languages and we've seen how some functional constructs 
differ from similar constructs in the common imperative and object-oriented languages. 
Some of the features may still feel a bit unfamiliar, but we'll discuss every concept in detail 
later in the book, so you may return to this overview to regain the "big picture" after you 
learn more about functional programming details. To round off this overview, I'll briefly talk 
about lambda calculus which is a foundation of functional programming and the source of 
many of the concepts we've just seen.  

2.4 The foundation of functional programming 
As I mentioned in the first chapter, lambda calculus originated in 1930s as a mathematical 
theory. Nowadays, it is a very important part of theoretical computer science. In logic it is 
used in tools that assist with the proving and verification of systems (for example in CPU 
design). It is also used as a simple formal programming language that can be used for 
explaining precisely how other languages behave. 

In the next section, I'll show you a few sample "programs" written in lambda calculus. 
We'll see that many of the concepts that we just introduced are appear in this "language" in 
this chapter appear there in their purest and cleanest form. In lambda calculus, the whole 
"program" is an expression, and functions can take other functions as parameters. By now, 
both of these should sound very familiar. 

I've included this background material because it demonstrates some of the ideas in 
their purest form. Hopefully you'll find it as interesting as I do–but it's not essential in order 
to understand the rest of the book. 

2.4.1 Introduction to λ-calculus 
When Alonzo Church introduced lambda calculus, he attempted to formalize every 
mathematical construct just using the most essential mathematical concept, a function. 
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When you write a mathematical function (let's call it for example f), which adds ten to any 
given argument, you write something like this: 

f(x) = x+10 

However, Church wanted to use functions everywhere. In fact, everything in his 
formalism was a function. Assigning a name to every function would be impractical, because 
when everything is written as a function, many functions are used only once. He introduced a 
notation that allowed a function to be written without giving it a name: 

(λx.x+10) 

This expression represents a function that takes a single parameter, denoted by the 
Greek letter lambda followed by the variable name (in our case "x"). The declaration of the 
parameters is followed by a dot and by the body of the function (in our case "x+10"). 
Actually, in the pure lambda calculus, numerals (such as 10) and mathematical operators 
(such as "+") are also defined using functions, so there is really nothing except functions, 
which is quite surprising. To make the discussion clear, we'll just use standard numbers and 
operators. Let's continue with our example function that adds 10 to a given number. Let's 
say we want to set 32 as an argument and see what the result will be:  

(λx.x+10) 32 = 32 + 10 = 42 

As we can see, giving an argument to a function (which is called the application of a 
function in lambda calculus) is done by writing the function followed by the argument. When 
a function is called with some value as an argument, it simply replaces all occurrences of the 
variable (in our case "x") with the value of the argument (in our example "32"). This is the 
expression that follows the first equal sign. Finally, if we look at "+" as a built-in function, 
then it will be called in the next step, yielding 42 as a result. 

The most interesting aspect about lambda calculus–and the cornerstone of functional 
programming languages–is that any function can take a function as an argument. This 
means that we can write a function that takes a function (binary operator) and a value as 
parameter and calls the binary operator with the value as both arguments: 

(λop.λx.(op x x)) 

As you can see, we wrote a function that takes "op" and "x" as arguments. When writing 
a function with more arguments, we just use the lambda symbol multiple times to declare 
more variables. In the body of the lambda function we use "op" in a position of a function 
and "x" in a place of the first and second argument to the "op" function. Let's see what the 
code does if we give it plus operator as a first argument and 21 as a second argument: 

(λop.λx.(op x x)) (+) 21 = (λx.((+) x x)) 21 = (+) 21 21 = 42 
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A function with multiple arguments is actually a function that takes the first argument 
(in our case "op") and returns a lambda expression, which may be again a function. This 
means that in the first step, we apply the function (which takes "op" as an argument) to the 
argument "(+)". This yields a result that you can see after the first equals sign - as you can 
see, the "op" variable was replaced with a plus sign. The result is however still a function 
with arguments, so we can continue with the evaluation. The next step is to apply the 
function with "x" as a parameter to a value 21. The result is an expression "(+) 21 21", 
which is just a little bit odd notation for adding two numbers and it means exactly the same 
thing as "21 + 21", so our final result of this calculation is 42. As you can see, the calculation 
in lambda calculus continues until there is no function application (a function followed by its 
arguments) that could be evaluated. Lambda calculus is interesting from a theoretical point 
of view or to see where the functional ideas came from, but we'll now turn our attention back 
to the real world and I'll summarize how functional programming looks in F#. 

Note: equations in this section look quite ugly using the default 
font, so please find some nice way to format this. Thanks! 

2.5 The F# point of view 
Even though F# has its roots in traditional functional languages, it follows a very pragmatic 
approach. It was influenced primarily by OCaml, but also by Haskell and C# and it was 
designed as a functional language intended for the .NET platform. This means that it can 
interoperate very easily with the outside world and also that it can fully access the object 
oriented features of .NET if you need them. Another implication is that F# can use a large 
number of libraries available for .NET including, but not limited to advanced 3D graphics and 
game development technologies (DirectX, XNA), web development tools (ASP.NET, ASP.NET 
"MVC" Framework) and windows user interface frameworks (Windows Forms, WPF), but is 
also compatible with the Mono runtime and can be used to develop Mono based applications 
(for example using Gtk#). 

When thinking about F#, you should be aware of the fact that it is primarily a functional 
language. This means that most of the typical aspects of functional languages discussed in 
the earlier sections are essential for F# and well written F# programs usually use most of 
these features together. 

The only aspect where F# isn't as strict as other languages is that it doesn't strictly 
enforce the use of immutable values and immutable data types, even though their use is still 
the preferred way where possible. This means that you can define a mutable value and also 
work with objects that have an internal changing state. The reason for this is to allow easy 
access to all .NET functionality and libraries, which don't always follow the functional style of 
thinking; using them fluently from a purely functional language would be a bit cumbersome. 
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This means that F# allows side-effects and doesn't have any mechanism for controlling 
them. In practice, this means that when you want to rely on the mathematical purity of a 
part of F# program for some reason, you have to explicitly think about side-effects and make 
sure that they will not cause any problems. 

As already mentioned, F# also supports full .NET object-oriented features, but in a way 
which is orthogonal to the functional approach, so you can take the best from both worlds. In 
this book, we focus more on functional programming, so we'll discuss only those object-
oriented features that are often used together with functional programming and we'll omit 
some of the advanced object-oriented features of F# that are not used frequently in a well 
designed F# program.  

2.6 Summary 
In this chapter, we talked about functional programming in general terms, including its 
mathematical foundation in lambda calculus. You've learned about the elements that are 
essential for functional programming languages such as immutability, recursion and using 
functions as values. We briefly introduced the ideas that influenced the design of these 
languages and that are to some extent present in almost all of them. These ideas include 
making the language extensible, writing programs using a declarative style and avoiding 
mutable state to make it easier to read and also parallelize programs. Even though all of the 
languages we've discussed are primarily "functional", there are still important differences 
between them. This is because each of these languages puts emphasis to slightly different 
combination of the essential concepts mentioned earlier. Some of the languages are 
extremely simple and extensible, while others give us more guarantees about the program 
execution. 

In the next chapter, we'll see how some of the functional concepts look in practice in F# 
and how the same ideas can be expressed in C#, so you can see familiar C# code with a 
functional F# equivalent side-by-side. In particular, we'll talk about functional data 
structures and look at tuple, which is a basic F# immutable data structure as well at its 
equivalent in C#. We'll also look at collections of data (called lists in functional languages) 
and how you can work with them using recursion. We’ve seen that a single recursive function 
can be used for various purposes when it takes another function as an argument, so we’ll 
use this technique for writing a universal list processing code.  
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3 
Meet tuples, lists and functions 

in F# and C# 

In the previous chapter we looked at the most important concepts of functional 
programming, but we did this from a high-level perspective. You haven't seen any real 
functional code yet, aside from quick examples to demonstrate the ideas. The purpose of the 
introduction was for you to see how various concepts relate to each other and how the result 
is a very different approach to programming.  

In this chapter we'll finally look at some real functional F# code, but we'll focus on 
examples that can be also nicely explained and demonstrated using C#. We will not yet go 
into the deep details of everything; you'll see more information about most of the concepts 
in the second part of the book. 

First we'll look at value bindings in F# and how we can use them to declare a value or a 
function, so we can write some real F# code later. After this intermezzo we'll turn our 
attention to aspects that are language neutral starting with immutability–the fact that values 
cannot be changed after they’ve been initialized. Next we'll look at the humble list, which 
proves to be a very useful data structure. I'll demonstrate how you can work with lists 
recursively–as you might remember from the introduction, recursion is another key aspect of 
functional programming. Aside from that, we'll also use pattern matching in several 
examples, so I'll introduce it along the way. Finally, we'll look at how we can treat functions 
as values, which is the feature that gave the name to the whole functional programming 
paradigm. 

3.1 Value and function declarations 
We've already seen several examples of value binding (written using the let keyword in 
F#) in Chapter 1. As you'll see, value binding isn't just a value declaration. It is a very 
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powerful and common construct, used for declaring both local and global values as well as 
functions. Before writing examples that show functional programming in F#, we need to look 
at other uses of value binding as well. 

3.1.1 Value declarations and scope 
As we already know, the let keyword can be used for declaring immutable values. We 
haven't yet talked about a scope of the value, but it's easier to do that with a concrete 
example. Listing 3.1 is extremely simple, but it's amazing how many nuances can hide in 
just four lines of code. 

Listing 3.1 The scope of a value (F#) 
let num = 42                              #1 
printfn "%d" num                                
let msg = "Answer: " + (num.ToString())   #2 
printfn "%s" msg                                

The code is quite straightforward. It declares two values, where the second (#2) is 
calculated using the first (#1); it then prints them to the console. What is important for us is 
the scope of the values–that is, the area of code where the value can be accessed. As you 
would probably expect, the value num is accessible after we declared it on the first line (#1) 
and the value msg is accessible only on the last line. You can look at the code and verify that 
we're using the values only when they are in scope, so our code is correct. 

I'll use this code to demonstrate one more thing. The example in listing 3.1 looked quite 
like C# code, but it's important to understand that F# treats the code very differently. We 
already touched this topic in previous chapter in section 2.1.4 (How is the calculation 
written?) where we attempted to write some code in C# only using expressions. We've seen 
that value bindings have to be treated specially, if we want every valid F# code to be an 
expression. Indeed, if you wrote code to do the same thing as listing 3.1 in C#, the compiler 
would see it as a sequence of four statements. Let's now look how F# understands the code. 
To demonstrate this, I've made few syntactical changes in the code to produce listing 3.2. 

Like vertical hedgehog; [Ch_03_Listing_2.2.png] shows what I 
mean; I can do it in Visio, but I'd prefer leaving it to professionals. 

Listing 3.2 Example with let binding with explicit scopes (F#) 
let num = 42 in 
(                                             #1 
   printfn "%d" num;                       #2 #1 
   let msg = "Answer: " +                     #1 #3 
             (num.ToString()) in              #1 #3 
   (                                          #1 #3  
      printfn "%s" msg                        #1 #3  
   )                                          #1 #3  
)                                             #1 
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Annotations below the code with bullets on the left side (as in the 
guide; [WritingDevices_BulletsSample.vsd] shows an example) 

#1 The whole block in the parentheses is an expression inside the first let binding. The binding 
declares a value 'num', which is in scope in the expression enclosed by parentheses. 
#2 Sequencing of expressions can be done explicitly using semicolon. By linking two expressions in 
a sequence using semicolon, we get a single expression. 
#3 The whole let binding is an expression. It declares a value 'msg' which is in scope in the nested 
expression in parentheses. 
There are several obvious changes to the layout, but it's also worth noting the 

introduction of the in keyword after every let binding. This is required if you turn off the 
default syntax where whitespace is significant‡. The other change is that a block of the code 
following the let binding is enclosed in parentheses. This example is closer to how F# 
compiler actually understands the code that we wrote. Interestingly, the code in listing 3.2 is 
still valid F# code with same meaning as earlier. This is because sometimes you may want to 
be more explicit about the code and using in keywords and braces enable this. 

What becomes more obvious in listing 3.2 is that the let binding actually assigns a value 
to a symbol and specifies that the symbol can be used inside of an expression. The first let 
binding states that the symbol num refers to a value 42 in the expression following the in 
keyword, which is enclosed in braces (#1). The whole let binding is treated as an expression, 
which returns the value of the inner expression, so for example the whole let binding that 
defines the value msg (#3) is an expression that returns a result of printfn. This function 
has unit as a return type, so the result of the whole expression will be a unit. 

The expression (#3) is preceded by another expression (#2) and as you can see, we 
added semicolon between these two. The semicolon works as a sequencing operator in F# 
and when using the lightweight syntax, we don't have to write it. It specifies that the 
expression preceding the semicolon should be evaluated before the one following it. In our 
example that means #2 will be evaluated before #3. The expression preceding the 
sequencing operator should also return a unit, because otherwise the returned value would 
be lost.  

So far we have only seen ordinary bindings that declare an ordinary value, but the same 
let binding is also used for declaring functions and for nested bindings as we'll see in the next 
section. 

                                                            

 

‡ The default setting is sometimes called "lightweight syntax". However, F# also supports 
OCaml-compatible syntax, which is more schematic and which we use in the example. We 
will not use it in the rest of the book, but in case you want to experiment with it, you can 
turn it on by adding #light "off" directive to the beginning of F# source file. 
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3.1.1 Function declarations 
As noted earlier, we can use let bindings to declare functions. Let's demonstrate this on a 
fairly simple function that multiplies two numbers given as the arguments. This is how you 
would enter it to the F# interactive tool: 

> let multiply n1 n2 = 
     n1 * n2;; 
val multiply : int -> int -> int 

To write a function declaration, the name of the symbol has to be followed by one or 
more argument names. In our example, we're writing a function with two arguments, so the 
name of the function (multiply) is followed by two arguments (n1 and n2). Let's now 
look at the body of the function. It can be simply viewed as an expression that is bound to 
the symbol representing a name of the function (multiply in our case), with the 
difference that the symbol doesn't represent a simple value, but instead represents a 
function with several arguments.  

In the previous chapter, we've seen that functions in F# are also just values. This means 
that when using the let construct, we're always creating a value, but if we specify 
arguments, we declare a special type of value-a function. From a strictly mathematical point 
of view, an ordinary value is just a function with no arguments, which also sheds more light 
on the F# syntax. If you omit all the arguments in function declaration, you'll get a 
declaration of a simple value. 

When writing a function, the body of the function has to be properly indented. The 
indentation is required so that you don't have to use other, more explicit, ways to specify 
where the function declaration ends, which are used in the OCaml-compatible syntax. 

FUNCTION SIGNATURES 
One part of the previous example that we haven't discussed yet is the output printed by the 
F# interactive. It reports that we declared a new value and its inferred type. Because we're 
declaring a function, the type is a function type written as int -> int -> int. This 
type represents a function that has two arguments of type int (two ints before the last 
arrow sign) and returns a result of type int (the type after the last arrow sign). We've 
already seen that F# uses type inference to deduce the type and in this example, it used the 
default type for numeric calculations (which is an integer). We'll get back to function types in 
chapter 5 and we'll also explain why parameters are separated using same symbol as the 
return value.  

NESTED FUNCTION DECLARATIONS 
Let's now look at slightly more complicated function declaration in listing 3.3, which also 
demonstrates another interesting aspect of let bindings - the fact that they can be nested.  

Listing 3.3 Nested let bindings (F# interactive) 
> let printSquares msg n1 n2 = 
     let printSqUtility n =                   #1  
        let sq = n * n                  #3 #2 #1 
        printfn "%s %d: %d" msg n sq    #4 #2 #1 
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     printSqUtility n1                        #1 
     printSqUtility n2;;                      #1       
val printSquares : string -> int -> int -> unit 
 
> printSquares "Square of" 14 27;; 
Square of 14: 196 
Square of 27: 729 

One more vertical hedgehog diagram (#3, #4 are ordinary bullets) 

The code shows an implementation of a function printSquares. As you can see from 
its signature (string -> int -> int -> unit), it takes a string as its first 
argument (msg) and two numbers (n1 and n2) as the second and third arguments. The 
function prints squares of the last two arguments using the first argument to format the 
output. It doesn't return any value, so the return type of the function is unit. 

The body of the printSquares function (#1) contains a nested declaration of a 
function printSqUtility. This utility function takes a number as an argument, 
calculates its square and prints it together with the original number. Its body (#2) contains 
one more nested let declaration which declares an ordinary value called sq (#3) which is 
assigned the square of the argument, just to make the code more readable. It ends with a 
printfn call that prints the message, the original number and the squared number. The 
first argument specifies the format and types of the arguments (%s stands for a string and 
%d stands for an integer). 

There is one more important aspect about nested declarations that can be demonstrated 
with this example. I have already mentioned that the parameters of a function are in scope 
(meaning that they can be accessed) anywhere in the body of a function. For example, the 
parameter msg can be used anywhere in the range (#1). This also means that it can be used 
in the nested function declaration and this is exactly what we do inside printSqUtility 
on the fourth line (#4) when we output the numbers using the msg value. The nested 
declarations are of course accessible only inside the scope where they are declared–for 
example, you cannot use printSqUtility directly from other parts of the program. This 
also guarantees that the msg argument will always have a value. 

One last aspect of value declarations in F# is that they can be used for declaring 
mutable values as well. Even though we usually work with immutable values in functional 
programs, it is sometimes useful to be able to create a mutable value as well. 

3.1.2 Declaring mutable values 
In the earlier section, we declared a value of type integer by writing let num = 10. If 
you were curious and tried to modify it, you may have tried writing something like num = 
10. This doesn't work because a single equal's sign outside a let binding is used to compare 
values in F#. It would be valid code, but it would probably return false (unless num 
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happened to have the value 10). This makes it seem that modifying an existing value in F# 
isn't even possible. 

This isn't actually true, since F# is very pragmatic and sometimes you may need to use 
mutable values in F#. This is most likely to happen when optimizing code or using mutable 
.NET objects. Listing 3.4 shows how immutable and mutable values can be used in F# and 
what the operator for mutating values looks like. 

Listing 3.4 Declaring mutable values (F# interactive) 
> let n1 = 22;;                           #1 
val n1 : int 
 
> n1 <- 23;;                              #2 
error FS0027: This value is not mutable.  #2 
 
> let mutable n2 = 22;;                   #3 
val mutable n2 : int 
 
> n2 <- 23;;                              #4 
> n2;;                                    #4 
val it : int = 23 

Annotations below the code with bullets on the left side  

#1 Declare standard value 
#2 Immutable values cannot be modified 
#3 Declare mutable variable 
#4 Modify and show the new value 
All values in F# are immutable by default, so when we declare a value using the usual 

let binding syntax (#1) and then try to modify it using the assignment operator ("<-") we 
get a compile-time error message (#2). To declare a mutable variable, we have to explicitly 
state this using the mutable keyword (#3). We can later change this value using the 
assignment operator and when we print it, we can see that the value has changed (#4). 

You should try to get into the habit of using immutable values wherever possible in F# - 
only use mutable values when you really have to. This is not because they're necessarily 
wrong as such, but they're not idiomatic. If you can "think functionally" it will lead to more 
concise code which will be easier to read and reason about. Don't expect this to happen 
overnight, but the more you work with the language instead of fighting its normal idioms, 
the more you're likely to get out of it. 

As I said in chapter 1, the default use of immutability doesn't just influence local value 
declarations, but also extends to data structures. In the next section we'll look at the most 
basic immutable types that we use in functional programming. 

3.2 Using immutable data structures 
An immutable data structure (or object) is a structure whose value doesn't change after it is 
created. When declaring a data structure that contains some values, these values are stored 

Licensed to Curtis J Pitts <beop.love@gmail.com>

Download at Boykma.Com



60   

©Manning Publications Co. Please post comments or corrections to the Author Online forum: 
http://www.manning‐sandbox.com/forum.jspa?forumID=460 

in slots such as field or value declaration. In functional programming, all these slots are 
immutable, which leads to the use of immutable data structures. In this section, we'll 
demonstrate the simplest built-in immutable data type. You'll see more common functional 
data structures in the upcoming chapters. 

I pointed out earlier how we can write a function for processing data using immutable 
data types or objects. Instead of changing the internal state of the object (which isn't 
possible, because it is immutable) the processing function simply creates and returns a new 
object. The internal state of this new object will be initialized to a copy of the original object 
with a few differences in places where we wanted to change the state. This sounds a little 
abstract, but you'll see what I mean shortly in an example. 

3.2.1 Introducing tuple type 
The simplest immutable data structure in F# is a tuple§ type. Tuple is a simple type that 
groups together several values of (possibly) different types. The following example shows 
how to create a value (called tp), which contains two values grouped together:  

> let tp = ("Hello world!", 42) 
val tp : string * int 

Creating a tuple value is fairly easy: we just write a comma separated list of values 
enclosed in parentheses. But let's look at the code in more detail - on the first line, we create 
a tuple and assign it to a tp value. The type inference mechanism of the F# language is 
used here, so you don't have to explicitly state what the type of the value is. The F# 
compiler infers that the first element in the tuple is of type string and the second is an 
integer, so the type of the constructed tuple should be something like "a tuple containing a 
string as the first value and an integer as the second value". Of course, we don't want to lose 
any information about the type and if we represented the result just using some type called 
for example Tuple, we wouldn't know that it contains string and integer.  

The inferred type of the expression is printed on the second line. You can see that a type 
of a tuple is in F# written as string * int. In general, a tuple type is written as types of 
its members separated by an asterisk. In the next few sections, we'll see how tuples can be 
used in F#, but I'll also show you how you can implement exactly the same functionality in 
C#. If you don't immediately understand everything after reading the F# code, don't worry; 
just continue with the C# examples, which should make everything clearer. 

So, how can we implement the same type in C#? The answer is that we can use C# 2.0 
generics and implement a generic Tuple type with two type arguments. The C# equivalent 

                                                            

 

§ The word “tuple” is usually pronounced with “u” such as in “cup”.  
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of the F# type string * int will then be Tuple<string, int>. We'll get to the C# 
version shortly after discussing one more F# example.  

WORKING WITH TUPLES IN F# 
Let's now look at some more complicated F# code that uses tuples. In listing 3.5, we use 
tuples to store information about a city. The first member is a string (the name of the city) 
and the second is an integer, containing a number of people living there. We implement a 
function printCity which outputs a message with the city name and its population, and 
finally we create and print information about two cities. 

Listing 3.5 Working with tuples (F# interactive) 
> let printCity cityInfo =                            #1 
     printfn "Population of %s is %d."                #1 
             (fst cityInfo) (snd cityInfo)            #1 
  ;; 
val printCity : string * int -> unit                  #2 
 
> let prague  = ("Prague", 1188126)                   #3 
  let seattle = ("Seattle", 594210)                   #3 
  ;; 
val prague : string * int                             #4 
val seattle : string * int                            #4 
 
> printCity prague                                    #5 
  printCity seattle;;                                 #5 
Population of Prague is 1188126. 
Population of Seattle is 594210. 
#1 Function that prints information about the city 
#2 Inferred type of the function 
#3 Create tuples representing Prague and Seattle 
#4 Types of created tuples 
#5 Print information about the cities 
The listing shows a session from the F# interactive, so you can easily try it for yourself. 

The first piece of code (#1) declares a function printCity, which takes information about 
the city as an argument and prints its value using the standard F# printfn function. The 
formatting string specifies that the first argument is a string and the second is an integer. To 
read first and second element of the tuple, we use two standard F# functions, fst and snd 
respectively (which are obviously acronyms for "first" and "second").  

The next line (#2) shows the type of the function deduced by the F# type inference. As 
we can see, the function takes a tuple as an argument (denoted using asterisk as string 
* int) and doesn't return any value (denoted as unit type on the right side of functional 
arrow symbol). This is exactly what we wanted. 

Next, we create two tuple values (#3) that store population information about Prague 
and Seattle. After these lines are entered, the F# interactive shell prints the types of the 
newly declared values (#4) and we can see that the values are of the same tuple type that 
the printCity function takes as argument. That means we can pass both of these two 
values as an argument to our printing function and get the expected result (#5). 
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The fact that types of the tuple match the parameter type of the function is important, 
because otherwise the two types would be incompatible and we wouldn't be able to call the 
function. To demonstrate this, you can try entering the following code in the F# interactive 
console: 

let newyork = ("New York", 7180000.5) 
printCity newyork 

I'm not sure how New York could have 7180000 and half of inhabitants, but if this were 
the case then the type of the tuple newyork wouldn't be string * int anymore and 
would instead be string * float, as the type inference would correctly deduce that the 
second element of the tuple is a floating-point number. If you try it, you'll see that the 
second line isn't valid F# code and the compiler will report an error saying that the types are 
incompatible. 

WORKING WITH TUPLES IN C#  
I promised that we'd implement exactly the same code as the previous example in C# as 
well, so now it's the time to fulfill this promise and write some C#. As I already mentioned, 
we will represent tuples in C# using a generic type with two type arguments 
Tuple<TFirst, TSecond>, where TFirst and TSecond are generic type 
parameters.  

The type will have a single constructor with two parameters of types TFirst and 
TSecond respectively, so that we can construct tuple values. It will also have two 
properties for accessing the values of its members, so unlike in F# where we accessed the 
elements using functions fst and snd, in C# we'll use properties First and Second. We 
skip the implementation for a minute, and instead look at how we can use the type. Listing 
3.6 has the same functionality as listing 3.5, but written in C#.  

Listing 3.6 Working with tuples (C#) 
void PrintCity(Tuple<string, int> cityInfo) {             #1 
   Console.WriteLine("Population of {0} is {1}.",         
      cityInfo.First, cityInfo.Second);                   #2 
}                                                          
 
var prague  = new Tuple<string, int>("Prague", 1188000);  #3 
var seattle = new Tuple<string, int>("Seattle", 582000);  #3 
 
PrintCity(prague);                                        #4 
PrintCity(seattle);                                       #4 
#1, #2 The 'PrintCity' method takes a tuple of string and int as an argument; in C# we the types of 
method arguments have to be specified explicitly, so you can see that the type of 'cityInfo' is 
'Tuple<string, int>' (#1). The method prints the information using .NET 'Console.WriteLine' method 
and uses properties of the tuple type ('First' and 'Second') to read its value (#2). 
 
#3, #4 Declares two variables ('prague' and 'seattle') and creates a tuple that stores information 
about the cities using a constructor with two arguments (#3); The city information are later printed 
using the 'PrintCity' method (#4)  
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Annotations with bullets on the left as in previous cases. 

The translation from F# code to C# is very straightforward once we have an equivalent 
for the F# tuple type in C#. The code is slightly more verbose, mainly because we have to 
explicitly specify the type several times, whereas in the F# example, the type inference 
mechanism was able to infer the type everywhere. However, we’ll shortly see that this can 
be improved a little bit. We used a new C# 3.0 feature (var), which at least lets us use type 
inference when declaring the prague and seattle variables (#3), because we're 
initializing the variables and C# can automatically infer the type from the right-hand side of 
the assignment.  

Just like in the F# code, if we declared a tuple with an incompatible type (for example 
Tuple<string, double>) we wouldn't be able to use it as an argument to the 
PrintCity method. This is more obvious in C#, because we have to explicitly state what 
the type arguments for the generic parameters of the Tuple type are. 

3.2.2 Implementing a tuple type in C# 
The implementation of the tuple type in C# is quite straightforward. As already mentioned, 
we're using generics, so that one can create a tuple containing values of any two types. The 
complete code is shown in listing 3.7. 

Listing 3.7 Implementing the tuple type (C#) 
public sealed class Tuple<TFirst, TSecond> { 
   private readonly TFirst  first;                     #1 
   private readonly TSecond second;                    #1 
 
   public TFirst  First  { get { return first;  } } 
   public TSecond Second { get { return second; } } 
     
   public Tuple(TFirst first, TSecond second) { 
      this.first = first;                              #2 
      this.second = second;                            #2 
   } 
} 

Probably the most notable thing is that the type is immutable. We've already seen how 
to create an immutable class in C# in the first chapter. In short, we mark all fields of the 
type using the readonly modifier (#1) and provide only getter for both of the properties. 
Interestingly, this is somewhat opposite to F# where you have to explicitly mark values as 
mutable.  Read-only fields can be set only from the code of the constructor (#2), which 
means that once the object is created, its internal state cannot be mutated as long both of 
the values stored in the tuple are immutable as well. 

BETTER TYPE INFERENCE FOR C# TUPLES  
Before moving forward, I'd like to show you one C# trick that makes our further examples 
that use tuples much more concise. In the earlier examples, we had to create instances of 
our tuple type using a constructor call which required explicit specification of type 
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arguments. We used the new C# 3.0 var keyword, so that the C# compiler inferred the 
type of variables for us, but we can do even better.  

There is one more place where C# supports type inference and that is when calling a 
generic method. If you're calling a generic method and its type parameters are used as types 
of the method parameters then the compiler can use the compile-time types of the method 
arguments when the method is called to infer the type arguments**. To clarify this, let's look 
at the code showing this in listing 3.8. 

Listing 3.8 Improved type inference for tuples (C#) 
public static class Tuple { 
   public static Tuple<TFirst, TSecond>  
         Create<TFirst, TSecond>(TFirst first, TSecond second) { 
      return new Tuple<TFirst, TSecond>(first, second); 
   } 
} 
 
var prague  = Tuple.Create("Prague", 1188000);  #1 
var seattle = Tuple.Create("Seattle", 582000);  #1 

The code shows an implementation of a static method Create, which has two generic 
parameters and creates a tuple with values of these types. We need to place this method in 
a non-generic class, because otherwise we would have to specify the generic parameters 
explicitly. Luckily, C# allows us to use the name Tuple, because types can be overloaded 
by the number of their type parameters (so Tuple and Tuple<TFirst, TSecond> are 
two distinct types).  

The body of the method is very simple and its only purpose is to make it possible to 
create a tuple by calling a method instead of calling a constructor. This allows the C# 
compiler to use type inference as shown at (#1). The full syntax for calling a generic method 
includes the type arguments, so using the full syntax we would have to write 
Tuple.Create<string, int>(...). As the types can be inferred automatically we 
can omit the type arguments. In the next section, we'll look at writing code that calculates 
with tuples and since we've just implemented the tuple type in C# we'll start with the C# 
version of the code and then move on to the F# alternative. 

                                                            

 

** Sincere apologies for the mess of "type arguments", "method arguments" and so forth in 
this sentence. Sometimes the terminology defined in specifications just doesn't allow for 
elegant but accurate prose. 
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3.2.3 Calculating with tuples 
In the examples so far we have just created several tuples and printed the values, so let's 
perform some calculation now. For example we might want to increment the number of 
inhabitants by adding a number of newborns for the last year.  

As already discussed, the tuple type is immutable, so we cannot set the properties of the 
C# tuple class. In F#, we can read the values using two functions (fst and snd), but there 
are no functions for setting the value, so the situation is similar. This means that our 
calculation will have to return a new tuple formed by the original name of the city copied 
from the initial tuple and the incremented size of population.  

Let's first see how this can be done in C#. The listing 3.9 shows a new method that we'll 
add to the generic Tuple<TFirst, TSecond> class and several lines of C# code that 
show how to use this new functionality. 

Listing 3.9 Incrementing population of a city (C#) 
class Tuple<TFirst, TSecond> { 
   // ... 
   public Tuple<TFirst, TSecond> WithSecond(TSecond nsnd) {  #1 
      return Tuple.Create(this.first, nsnd);  
   } 
} 
 
var prague0 = Tuple.Create("Prague", 1188000);                #A 
var prague1 = prague0.WithSecond(prague0.Second + 13195);     #B 
PrintCity(prague1);                                           #C 
#1 Returns tuple with the second value changed 
#A Create city information about Prague 
#B Create information with incremented population 
#C Print the new information 
The WithSecond method (#1) takes a new value of the second element as an 

argument and uses the Tuple.Create method to create a new tuple with the first 
element copied from the current tuple (this.first) and the second element set to the 
new value nsnd. 

Now we'd like to do the same thing in F#. Here, we will write a function withSecond, 
which will do the same thing as a WithSecond method from our earlier C# example. It will 
take a tuple and a new value of the second element and return a new tuple with the first 
element copied from the original tuple and the second element set to a given value. The 
code for F# is shown in listing 3.10. 

Listing 3.10 Incrementing population of a city (F#) 
let withSecond tuple nsnd =  
   let (f, s) = tuple                                     #1 
   (f, nsnd)                                              #2 
 
let prague0 = ("Prague", 1188000)                         #A 
let prague1 = withSecond prague0 ((snd prague0) + 13195)  #A 
printCity prague1                                         #A 
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#1 Decompose a tuple into two values: 'f' and 's' 
#A Increment population and print the new information 
The code first shows an implementation of the function withSecond. We could 

implement it simply using the fst function, which reads a value of the first element in the 
tuple, but I wanted to demonstrate one more F# feature that can be used with tuples: 
pattern matching. You can see that inside the function, we first decompose the tuple given 
as the argument into two separate values (#1) and we call these two values f and s (for 
first and second). This is where the pattern matching occurs; on the left-hand side of the 
equals sign you can see a language construct called a pattern and on the right-hand side we 
have an expression that is matched against the pattern. Pattern matching takes the value of 
an expression and decomposes it into a values used inside the pattern.  

On the next line (#2) we can use the value f extracted from the tuple using pattern 
matching. We reconstruct the tuple using the original value of the first element and the new 
value of the second element given as an argument (nsnd). We will look at more examples 
of pattern matching on tuples in the next section. Aside from using pattern matching, the 
code doesn't show anything new, but pattern matching is an important topic and F# provides 
other ways of using it with tuples, too. Let's take a closer look. 

3.2.4 Pattern matching with tuples 
In the last example we decomposed a tuple using pattern matching in a let binding. We can 
slightly improve the code in listing 3.10. Since we didn't actually use the second element of 
the tuple, we only need to assign a name the first one. To do this, we can write an 
underscore for the second value in the pattern like this: 

let (f, _) = tuple 

The underscore is a special pattern that matches any expression and ignores the value 
assigned to it. Using pattern matching in let bindings is often very useful, but there are other 
places you can use it too. In fact, patterns can occur almost anywhere an expression is 
assigned to some value. For example, another place where pattern matching is extremely 
useful is when we're specifying the parameters of a function. Instead of parameter names, 
we can use patterns. This makes our setSecond function even simpler: 

let withSecond (f, _) nsnd = (f, nsnd) 

Now we've shortened our declaration from three lines to one. The result doesn't use any 
unnecessary values and clearly shows how the data flows in the code. Just from looking at 
the code, you can see that the first element of the original tuple is copied (by tracing the use 
of symbol f) and that the second function argument is used as a second element of the 
returned tuple (by following uses of nsnd). This is the preferred way of working with tuples 
in most of the F# functions that we'll write. 

One other common use for pattern matching is in an F# match expression, which we 
saw earlier in section 2.3.3. We could rewrite our withSecond function to use a match 
expression like this: 

let withSecond tuple nsnd = 
   match tuple with 
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   | (f, _) -> (f, nsnd) 

The match construct lets us match the specified expression (tuple) against one or 
more patterns starting with the bar symbol. In our example, we have only one pattern and 
because any tuple with two elements can be deconstructed into two values containing its 
elements, the execution will always follow this single branch. The F# compiler analyzes the 
pattern matching to deduce that the argument tuple is a tuple type containing two 
elements. 

NOTE 

Keep in mind that you cannot use pattern matching for example to determine whether a 
tuple has two or three elements. This would lead to a compile-time error, because the 
pattern has to have the same type as the expression that we're matching against the 
pattern and the type of a tuple with three elements (for example int * int * int) 
isn't compatible with a tuple that has two elements (for example int * int). Pattern 
matching can be used only for determining run-time properties of values; the number of 
elements in a tuple is specified by the type of the tuple, which is checked at compile time. 
If you're wondering how to represent some data type that can have several distinct 
values then you'll have to wait until chapter 5, where we'll look at unions. 

In the previous example we used a pattern that cannot fail, because all tuples of two 
elements can be deconstructed into individual elements. This is called a complete pattern in 
F#. The match construct is particularly useful when working with patterns that are not 
complete and can fail, because we can specify several different patterns (every pattern on a 
new line, starting with the bar symbol) and if the first pattern fails, the next one is tried until 
a successful pattern is found.   

What would be an incomplete pattern for tuples? Well, we could write a pattern that 
matches only when the first element (a city name) is some specific value. Let's say for 
example there are 100 people in New York that are never counted by any statistical study, so 
when setting the second element of a tuple (the population of the city) we want to add 100 
when the city is New York. You could of course write this using an if expression, but listing 
3.11 shows a more elegant solution using pattern matching: 

Listing 3.11 Pattern matching with multiple patterns (F# interactive) 
> let setSecond tuple nsnd = 
     match tuple with 
     | ("New York", _) -> ("New York", nsnd + 100)    #1 
     | (f, _) -> (f, nsnd)                            #2 
  ;; 
val setSecond : string * 'a -> int -> string * int 
 
> let prague = ("Prague", 123) 
  setSecond prague 10;;  
val it : string * int = ("Prague", 10)                #A 
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> let ny = ("New York", 123) 
  setSecond ny 10;; 
val it : string * int = ("New York", 110)             #B 
 
#1 Pattern that matches only New York 
#2 Pattern that matches all other values 
#A The expected result for Prague 
#B Returned population is incremented by 100 
You can see that in this example, the match expression contains two distinct patterns. 

The first pattern contains a tuple with a string "New York" as the first element and 
underscore as a second (#1). This means that it only matches tuples with a first element set 
to "New York" and with any value for the second element. When this pattern is matched, we 
return a tuple representing New York, but with a population which is 100 more than the 
given argument. The second pattern (#2) is the same as in previous examples and it just 
sets the second element of the tuple. 

The examples following the function declaration shows the code behaving as expected. If 
we try to set a new population of Prague, the new value of population is used, but when we 
try to do this for New York, the new value of population is incremented by one hundred. 

Tuples are used particularly frequently during the early phase of development, because 
they are so simple. In the next section, we'll look at another elementary immutable data 
type: a list. We've seen that a tuple represents a known number of elements with diverse 
types. Lists work the other way round: a list represents an unknown number of elements of 
the same type. 

3.3 Lists and recursion 
Tuple is a very good example of an immutable functional data type, but there is one more 
property of many functional data types that is worth discussing in this chapter and that is 
recursion. Let's start with a classic programming joke: What's the dictionary definition of 
recursion? "Recursion. See recursion."  

Recursion appears in functional programming in different forms. It can be present in the 
structure of the type such as lists. The type that represents functional list is either an empty 
or it is composed from an element and a list. You can see that the type “list” that we’re 
describing is recursively used in its definition. The second form of recursion is probably more 
widely know and is used when writing recursive functions. Let’s start by looking at one 
example of the second form and then we’ll focus on lists to demonstrate the first form.  

3.3.1 Recursive computations 
The most common example of a recursive function is probably calculating the factorial of a 
number. If you're not already familiar with it, here's a short definition: the factorial of a non-
negative number n is 1 if n is one or zero; for larger n, the result is factorial of n - 1 
multiplied by n. This function can be implemented essentially in two ways. In C# you can do 
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it using a for loop, which iterates over numbers in the range between 2 and n and 
multiplies some temporary variable by the number in each iteration: 

int Factorial(int n) { 
    int res = 1; 
    for(int i = 2; i <= n; i++)  
        res = res * i;  
    return res; 
} 

This is a correct implementation, but it isn't easy to see that it corresponds to the 
mathematical definition of the function. The second way to implement this function is, of 
course, to use a recursion and write a method in C# or a function in F# that recursively calls 
itself. These two implementations are surprisingly similar, so you can see both of them side-
by-side in listing 3.12. 

Listing 3.12 Recursive implementation of factorial in C# and F# 
int Factorial(int n) {             #1 
    if (n <= 1)  
        return 1;                  #2 
    else  
        return n * Factorial(n-1); #3 
} 
 

let rec factorial(n) =         
#1 
    if (n <= 1) then  
        1                      
#2 
    else  
        n * factorial(n - 1)   
#3 

#1 Declaration of recursive function or method; In F# we have to explicitly declare that it is recursive 
by using the 'let rec' binding instead of ordinary 'let' 
#2 A case which terminates the recursion and returns 1 immediately 
#3 A case which performs the recursive call to a 'factorial' function or 'Factorial' method 

Annotations below the code with bullets on the left as earlier 

The C# version of the code is very straightforward. The F# version is also quite clear, 
but as noted in the code comments, we have to explicitly state that the function is recursive 
using the rec  keyword. This specifies that the let binding is recursive, making it possible to 
refer to the name of the value (factorial) within the declaration of the function. 

In general, every recursive computation should have two branches - a branch where the 
computation performs a recursive call and a branch where the computation terminates. You 
can see both of them marked in the previous code listing. Usually, the recursive calculation 
performs the recursive call several times until a termination condition occurs (in our case this 
is when we're calculating the factorial of 1) and then returns some constant value or 
calculates the result using non-recursive code. If the termination condition is incorrect, then 
the code can keep looping forever or can eventually crash with a stack overflow exception.  

Since recursion is absolutely essential for functional programming, functional languages 
have developed several ways for avoiding stack overflows even for very deep recursive calls 
and some other optimization mechanisms. This and other advanced topics will be discussed 
later in the book in Chapter 10. 
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3.3.2 Introducing functional lists 
Now that we're a bit more comfortable with the general principle of recursion, we can look at 
functional lists in more detail. Earlier I wrote that a list is either empty or composed from an 
element and another list. This means that we need a special value to represents an empty 
list, and a way of constructing a list by taking an existing list and prepending an element at 
the beginning. The first option (an empty list) is sometimes called nil and the second option 
produces  a cons cell (short for constructed list cell). You can see a sample list constructed 
using an empty list and cons cells in Figure 3.1. 

 

Figure 3.1 Functional list containing 6, 2, 7 and 3. Rectangle represents cons cell, which contains a value 
and a reference to the rest of the list. Last cons cell references a special value representing an empty list.  

 [Functional_Ch_03_Figure_3.1.vsd] 

As you can see in the figure, every cons cell stores a single value from the list (called 
head) and a reference to the rest of the list (called tail), which can be either another cons 
cell or an empty list (nil). Let's now look at several ways that F# offers for creating lists: 

> let ls1 = [] 
val ls1 : 'a list = [] 
 
> let ls2 = 6::2::7::3::[] 
val ls2 : int list = [6; 2; 7; 3] 
 
> let ls3 = [6; 2; 7; 3] 
val ls3 : int list = [6; 2; 7; 3] 
 
> let ls4 = [1 .. 5] 
val ls4 : int list = [1; 2; 3; 4; 5] 
 
> let ls5 = 0::ls4 
val ls5 : int list = [0; 1; 2; 3; 4; 5] 

At first, we created an empty list, which is written as [] in F#. If you look at the result, 
you can see that F# created a value containing empty list. The type of the list is a bit 
unclear, because we don't know yet what is the type of values contained in the list, so F# 
infers that the type is a list of "something". This is called a generic value and we'll talk about 
it in chapter 5. The second example is much more interesting for now - you can see how lists 
are created under the covers: we take an empty list and use an operator for creating a cons 
cell "::". Unlike many other operators such as "+", the "::" operator is right associative, 
which means that it composes values from the right to the left. If you read the expression in 
that direction, you can see that we construct a list cell from a value 3 and an empty list, than 
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use the result together with a value 7 to construct another cell and so on. After entering the 
expression, F# interactive reports that we created a list of type int list. This means that 
the type of the ls2 value is a list which contains integers. This is again done using generic 
types that you may know from C# and we will see how to use them in F# in detail later. In 
the next two examples, we use a piece of syntactic sugar F# provides for creating lists. The 
first one uses square braces with list elements separated by a semicolon and the second 
uses dot-dot to create a list containing a sequence of numbers. Finally, the last example 
shows how we can use cons cell to create a list by appending values at the beginning of 
another list. You can see that ls5 contains 0 at the beginning and then all elements from 
the ls4 list. 

An important fact about functional lists which I've already mentioned but is worth 
repeating, is that they are immutable. This means that we can construct a list (as in the 
previous example) but we cannot take an existing list and modify it, for example by adding 
or removing an element. Functions that need to add new elements or remove existing ones 
always return a new list without modifying the original one, because modifying a list is in fact 
impossible. We'll see more examples of these functions in chapter 8, but for now, let's look 
at processing the elements in an existing list. 

When working with lists in functional languages, the typical code to process a list 
contains two branches - one branch that performs something when the given list is an empty 
list and a second branch which performs an operation when the argument is a cons cell. The 
latter branch generally performs a calculation using the head value and recursively processes 
the tail of the list. We will see all these common patterns later in this chapter, but first let's 
see how we can write code that chooses between these two branches using pattern 
matching. 

DECOMPOSING LISTS USING PATTERN MATCHING 
When talking about pattern matching on tuples in section 3.3.4, we saw two distinct ways for 
using it. One method was to write the pattern directly in the let binding, either when 
assigning the result of an expression to a value, or in the declaration of function parameters. 
The other method was using the match keyword. The important difference between these 
two is that using match we can specify multiple patterns with multiple branches. For lists, 
we'll need to use the second option, because we need to specify two distinct branches every 
time we write list processing code (one for an empty list and one for a list which was created 
using cons cell). 

The following code demonstrates pattern matching on lists and prints a message with 
the value of the first element or "Empty list" when the list is empty: 

match l with  
| []     -> printfn "Empty list" 
| hd::tl -> printfn "List starting with %d" hd 

You can see the pattern that matches an empty list on the second line and a pattern 
that extracts a head (the value of the first element) and a tail (the list appended after the 
head) on the third line. Both of these patterns are written with exactly the same syntax that 
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we used earlier for creating the list. An empty list is matched using [] and a cons cell is 
deconstructed using :: operator. The second pattern is much more interesting, because it 
assigns a value to two new symbols, hd and tl. These will contain a number and the rest of 
the list obtained by decomposing the first cons cell. An empty list doesn't carry any value, so 
the first pattern doesn't bind a value to any symbol; it just informs us that the original list 
was empty. 

If you look back to figure 3.1, you can see that the first pattern corresponds to the "nil 
ellipse", which doesn't contains any value. The second pattern matches the "cons cell 
rectangle" and takes out the contents of its two parts.  

As in the example with tuples, the list of patterns is complete, meaning that it can't fail 
to choose a branch for any given list. Let's now see what happens if we try using an 
incomplete pattern in listing 3.13. 

Listing 3.13 An incomplete pattern matching on lists (F# interactive) 
> let squareFirst l = 
     match l with 
     | hd::_ -> hd * hd 
  ;; 
Warning FS0025: Incomplete pattern matches on this     #1 
expression. The value '[]' will not be matched.        #1 
val squareFirst : int list -> int                       #A 
 
> squareFirst [4; 5; 6];;                              #2 
val it : int = 16 
 
> squareFirst []                                       #3 
Exception of type 'Microsoft.FSharp.Core.              #B 
  MatchFailureException' was thrown.                   #B 
(...) 
#1 F# detects possible failure 
#A Takes list and returns an integer 
#2 Success for a non-empty list 
#3 Failure for an empty list  
#B Exception is thrown on failure 
We start by declaring a function called squareFirst, which contains a pattern match 

that matches a cons cell and returns square of the first element from the list. However, this 
pattern doesn't handle the situation when a list is empty. We can see that the F# compiler is 
quite smart and when we write a pattern match that can possibly fail it detects this situation 
and even gives us an example when the match will fail (#1). You shouldn't ignore this 
warning unless you're absolutely sure that the situation can never occur. Even if the function 
doesn't have any reasonable meaning for empty lists, it is better to add a handler for the 
remaining case (you can use underscore character as a pattern that matches any value) and 
either throw an exception with additional information or just do nothing. (Of course, if the 
function's return type is anything other than unit, you'll have to work out a suitable value 
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to return if you do nothing. Throwing an exception is generally a better idea if the function 
really shouldn't be called with an empty list.) 

Even though there was a warning, F# interactive is willing to crunch the function, so we 
can try calling it. First, we try a case that should work (#2) and we can see that it behaves 
as expected. If we call the function with an empty list as an argument (#3) the match 
construct doesn't contain any matching pattern, so it throws an exception. This is a normal 
.NET exception and can be caught using try construct in F#. 

You should have some idea what we can expect from functional lists, so in the next 
section we'll turn our attention to C# and we'll use it to explain lists in detail as well as to 
write our first list processing code.  

3.3.3 Functional lists in C# 
To show you how a functional list type works, let's now look how we can implement the 
same functionality in C#. There are several ways for representing the fact that list can be 
either empty list or a list with a head and a tail. The clear object oriented solution, would be 
to write an abstract class FuncList with two derived classes for representing the two 
cases - for example EmptyList and ConsList. However, to make the code as simple as 
possible, we'll use just a single class, with a property IsEmpty that will tell us whether the 
instance contains a value or not. Note that every instance of the FuncList type contains 
just a single value, when it is a cons cell or no value at all, when it is an empty list. You can 
see the implementation in listing 3.14. 

Listing 3.14 Functional list (C#) 
public class FuncList<T> { 
   public FuncList() {                                       #1 
      IsEmpty = true; 
   } 
   public FuncList(T head, FuncList<T> tail) {               #2 
      IsEmpty = false; 
      Head = head; 
      Tail = tail; 
   } 
   public bool IsEmpty { get; private set; }                 #3 
   public T Head { get; private set; }                       #A 
   public FuncList<T> Tail { get; private set; }             #A 
} 
 
public static class FuncList {                               #4 
    public static FuncList<T> Empty<T>() { 
        return new FuncList<T>(); 
    } 
    public static FuncList<T> Cons<T>(T head, FuncList<T> tail) { 
        return new FuncList<T>(head, tail); 
    } 
} 
#1 Constructor that creates an empty list 
#2 Constructor that creates a cons cell 
#3 Empty list or a cons cell? 
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#A Properties of the cons cell 
#4 Utility class for constructing lists 
The FuncList<T> class is a generic C# class, so it can store values of any type. It 

has a property called IsEmpty (#3), which is set to true when we're creating an empty 
list using the parameter-less constructor (#1). The second constructor (#2) takes two 
arguments, creates a cons cell and sets IsEmpty to false. The first argument (head) is 
a value that we're storing in the cons cell. The second argument (tail) is a list following 
the cons cell that we're creating. The tail has the same type as the list we're creating, which 
is written as FuncList<T>. The first constructor corresponds to the F# empty list (written 
as []) and the second one creates cons cell in the same way as the double colon operator 
(head::tail). 

As already mentioned, functional lists are immutable, so all properties of the class are 
read-only. We're implementing all of them using C# 3.0 automatic property feature, which 
generates getter and setter of the property for us, but we're specifying that the setter should 
be private, so they cannot be modified from outside. To make the type truly read-only, we 
set the values of the properties only in constructors, so once a list cell is created, none of its 
properties can change. This demonstrates that immutability is really just a concept that we 
can use in different ways and not a language feature. When using automatic properties, we 
will lose the checking that the C# compiler can do when we use fields marked using 
readonly as a tradeoff for a more convenient syntax.  

Just like with our previous tuple example, I've included a non-generic utility class 
FuncList (#4) with static methods that simplify creation of generic lists by providing 
methods for creating an empty list (Empty) and one for creating a cons cell (Cons). The 
advantage of using this class is that C# can infer the type arguments for a method call, so 
we don't have to specify what type is carried by the type if it is obvious from the context. 
Now that we have a C# implementation of the list, we can write some code that uses lists to 
perform some computation. 

3.3.4 Functional list processing 
So far we have discussed what the functional list type looks like and how it can be 
implemented in C#. Now it's the time to write code that actually does something with 
functional lists. Suppose that we wanted to implement a method SumList in C# (or a 
sumList function in F#) that sums all the numbers in a list.  

SUMMING NUMBERS IN A LIST WITH C#  
If you were used to imperative programming in C# and were working with the standard .NET 
array or the List<T> class from System.Collections.Generic, you'd probably 
create a variable called total initialized to zero and write a for loop that iterates over all 
the elements adding every element to the total (something like total += list[i]). 
Alternatively, you could do this using foreach loop, which is a syntactic sugar that makes 
this a bit easier to write, but the idea is still the same. 
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But how can we do this using our functional list, where we can't access elements by 
index and which doesn't support foreach††? To do this, we can use recursion and write a 
method with code for the two cases - when the list is empty and when the list is a cons cell. 
You can see the code for the C# version of SumList in listing 3.15. 

Listing 3.15 Summing list elements (C#) 
int SumList(FuncList<int> numbers) { 
   return numbers.IsEmpty ? 0 :                                    #1 
      numbers.Head + SumList(numbers.Tail);                        #2 
} 
 
var list = FuncList.Cons(1, FuncList.Cons(2, FuncList.Cons(3,      #A 
   FuncList.Cons(4, FuncList.Cons(5, FuncList.Empty<int>())))));   #A 
 
int sum = SumList(list);                                           #B 
Console.WriteLine(sum);                                            #B 
#1 Sum of empty list is 0 
#2 A branch for a cons cell #A Create a list storing 1,2,3,4,5 
#B Calculate the sum and prints '15' 
The SumList method first checks whether the list is empty. If the list is non-empty, 

the branch that matches cons cell (#2) is executed. It recursively calls SumList to 
calculate the sum of elements in the tail (which is a list) and adds this result to the value 
stored in the head. This recursive call is performed until we reach the end of the list and find 
an empty list as a tail. For an empty list (#1), the function terminates and returns zero. 

Later in the listing, we create a list using the utility methods Cons and Empty from the 
non-generic FuncList class. The creation is a bit cumbersome, but you could make it 
simpler by implementing a method to create a functional list from a normal .NET collection, 
for example. 

SUMMING NUMBERS IN A LIST WITH F#  
Now that we know how the code looks in C#, we can try implementing exactly the same 
functionality in F#. Let's look at the listing 3.16, which shows an F# function sumList and 
a few F# interactive commands for testing it.  

Listing 3.16 Summing list elements (F# interactive) 
> let rec sumList(lst) = 
     match lst with                                    #A 
     | []         -> 0                                 #1 

                                                            

 

†† We could of course add support for the foreach statement to our code and it would be 
desirable to do so for a real-world FuncList<T> type. However, let's first look at the key 
concepts for list processing from functional programming. 
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     | hd::tl -> hd + sumList(tl)                      #2 
val sumList : int list -> int                          #3 
 
> let list = [ 1 .. 5 ]                                #B 
val list : int list 
 
> sumList(list)                                        #C 
val it : int = 15 
#A Pattern matching on the list 
#1 Sum of empty list is 0 
#2 A branch for a cons cell  
#3 Takes list of integers and returns an integer 
#B Create list for testing 
#C Calculate the sum and print it 
If you compare the code with the previous C# implementation you'll find many 

similarities. As in the previous case, there are two branches, one for an empty list (#1) and 
one for a cons cell (#2), which is implemented using recursion. The notable difference is that 
in F# we can use pattern matching for selecting an execution path. Pattern matching also 
extracts values from the cons cell, so once the execution enters the second branch, head 
and tail values are already available. This adds to the robustness of the code: you can't 
use values which haven't been matched by a pattern. It sounds trivial, but it prevents the 
code from accidentally trying to access the (non-existent) elements of an empty list. Pattern 
matching is a very natural construct in functional languages and there is no corresponding 
feature in C#, so we had to use an if statement to implement the same behavior. 

Also, F# type inference was helpful once again: we didn't have to specify the types 
explicitly anywhere in the code. As you can see it correctly inferred that the function takes a 
list of integers and returns an integer (#3). It used the fact that we're testing whether lst 
value is an empty list or a cons cell to deduce that it is a list. Because one branch returns 
zero it knows that the whole function returns an integer and because we're adding elements 
of the list together, it deduces that the argument is a list containing integers.  

The recursion which we used in this section is very important, but writing everything 
using recursion explicitly would be difficult. In the next section we're going to look at a 
mechanism that allows us to hide the difficult recursive parts of the code. 

3.4 Using functions as values 
In the last section, we were talking about immutable lists and we've seen how to write a 
function that processes a list recursively. In this chapter, we'll look at one more essential 
concept of functional programming and that is treating functions as values. In this section, 
we'll see why it is so useful to work with functions this way and what it actually means to 
treat a function as a value. More information about functions will follow later in chapter 5.  

3.4.1 Processing lists of numbers 
Imagine that we wanted to write a method similar to the SumList discussed in the 
previous section, but which instead of adding all the numbers together, would multiply them. 
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Making this change looks quite easy. We can just copy the SumList method and then 
tinker with it a bit. There are in fact only two changes in the modified method: 

int MultiplyList(FuncList<int> numbers) { 
   if (numbers.IsEmpty) return 1;                           #1 
   else return numbers.Head * MultiplyList(numbers.Tail);   #2 
} 

The first change is that we're using multiplication instead of addition in the branch that 
does the recursive call (#2) and the second change is that the value returned for an empty 
list is now one instead of zero (#1). As I mentioned in chapter 2, this solution works, but 
copying blocks of code is a bad practice. Instead, we'd like to write a parameterized method 
or function that can do both adding and multiplying of the list elements depending on the 
parameters. This allows us to hide the difficult recursive part of the list processing routine in 
a re-usable function and writing SumList or MultiplyList will become a piece of cake.  

This example is similar to one that we discussed in section 2.2.1. The solution is to write 
a method or a function that takes two arguments: the initial value and the operation which 
should be performed when aggregating the elements. Let's look how we can implement this 
idea in C#. 

PASSING A FUNCTION AS AN ARGUMENT IN C# 
We've seen that in C#, this can be done using delegates and in particular using the Func 
delegate. In listing 3.17, the delegate will have two arguments of type int and will return 
an int as a result. The code shows how we can implement the aggregation as a recursive 
method that takes a delegate as a parameter.  

Listing 3.17 Adding and multiplying list elements (C#) 
int AggregateList(FuncList<int> list, int init, Func<int,int,int> op) { 
   if (list.IsEmpty) 
      return init;                                                  #1 
   else { 
      int rest = AggregateList(list.Tail, init, op);                 #2 
      return op(rest, list.Head);                                    #2 
   } 
} 
 
static int Add(int a, int b) { return a + b; }                      #A 
static int Mul(int a, int b) { return a * b; }                      #A 
 
var list = FuncList.Cons(1, FuncList.Cons(2, FuncList.Cons(3,       #B 
    FuncList.Cons(4, FuncList.Cons(5, FuncList.Empty<int>())))));   #B 
 
Console.WriteLine(AggregateList(list, 0, Add));                     #C 
Console.WriteLine(AggregateList(list, 1, Mul));                     #C 
#1 Return initial value for empty list 
#2 Branch for a non-empty list  
#A Methods for testing 'AggregateList' 
#B Initialize a sample list  
#C Summing prints 15 and multiplying 120 
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Let's look at the AggregateList method in a detail first. It takes the input list to 
process as the first parameter and the next two parameters of specify what should be done 
with the input. The second parameter is the initial value, which is an integer. It is used in the 
case when a list is empty (#1) and we just want to return the initial value from the method. 

The last parameter is a delegate and is used in the other branch (#2). Here we first 
recursively calculate the aggregate result for the rest of the list and then call the op delegate 
to calculate the aggregate of that result and the head of the list. In the examples later, it 
would either add or multiply the given parameters. The delegate type that we're using here 
is generic Func<T1, T2, TResult> delegate from .NET 3.5, which is further discussed 
in chapter 5. Briefly, it allows us to specify what the number and types of the arguments as 
well as the return type using .NET generics. This means that when we call f (#2) the 
compiler knows we should provide two integers as arguments and it will return an integer as 
a result. 

Later in the code, we declare two simple methods that are compatible with the delegate 
type - one for adding two numbers and one for multiplying them. The rest of the code shows 
how to call the AggregateList method to get the same results as those returned by 
SumList and MultiplyList in the earlier examples. 

Of course, writing the helper methods this way is a bit tedious, because they are not 
used anywhere else in the code. In C# 2.0, you can use anonymous methods to make the 
code nicer and in C# 3.0 we have even more elegant way for writing this code using lambda 
expressions. Lambda expressions and the corresponding feature in F# (called lambda 
functions) are used almost everywhere in a real functional code, so we'll discuss them much 
more fully in chapter 5. In the next section, we're going to look at the last code example in 
this chapter and we'll see how to implement the same behavior in F#. 

PASSING A FUNCTION AS AN ARGUMENT IN F# 
The function aggregateList in F# will be quite similar to the method that we've already 
implemented. The important distinction is that F# supports passing functions as arguments 
to other functions naturally, so we don't have to use delegates for this. 

Function is a special kind of type in F#. Similarly to tuples, the type of a function is 
constructed from other basic types. In case of tuple, the type was specified in code using an 
asterisk between the types of the elements (e.g. int * string). In the case of 
functions, the type is specified in terms of the types of arguments and the return type. This 
gives type safety in the same way as delegates do in C#. For example a function that takes a 
number and adds 1 to it would be of type int -> int, meaning that it takes integer and 
returns an integer. The type of a function that takes two numbers and returns a number 
would be of type int -> int -> int and this is exactly the type of the first parameter 
in our aggregateList function. Listing 3.18 shows the F# version of the example. 

Listing 3.18 Adding and multiplying list elements (F# interactive) 
> let rec aggregateList (f:int -> int -> int) init list =           #1 
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     match list with 
     | []     -> init                                               #2 
     | hd::tl -> 
         let rem = aggregateList f init tl                          #3 
         f rem hd                                                   #3 
    ;; 
val aggregateList : (int -> int -> int) -> int -> int list -> int   #4 
 
> let add a b = a + b                                               #A 
  let mul a b = a * b                                               #A 
  ;; 
val add : int -> int -> int                                         #B 
val mul : int -> int -> int                                         #B 
 
> aggregateList add 0 [ 1 .. 5 ];;                                  #C 
val it : int = 15                                                   #C 
> aggregateList mul 1 [ 1 .. 5 ];;                                  #C 
val it : int = 120                                                  #C 
#1 The 'f' argument is a function 
#2 Empty list branch 
#3 Non-empty list branch 
#4 Inferred signature of the function 
#A Functions for addition and multiplication 
#B Signature is compatible with the 'f' argument 
#C Test the function immediately 
Just like the C# version of the code, the first two parameters of the function specify how 

the elements in the list are aggregated. The second parameter is the initial value and the 
first one is an F# function. In this example, we wanted to make the function only work with 
integers to make the code more straightforward, so we added a type annotation for the first 
parameter (#1). It specifies that the type of the f function is a function taking two integers 
and returning an integer.  

Next we see the familiar pattern for list processing: one branch for an empty list (#2) 
and one for a cons cell (#3). After entering the code for the aggregateList function in 
the F# interactive, it prints a signature of the function (#4). This kind of signature may look 
a bit daunting the first time you see it, but you'll soon become familiar with them. In figure 
3.2 you can see what each part of the signature means in a graphical form.  

 

Figure 3.2 Type signature of the aggregateList function in detail. The first argument specifies how two 
numbers are aggregated, the second is an initial value and the third argument is a list to be processed. 
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Finally, we write two simple functions (add and mul) that both have a signature 
corresponding to the type of the first parameter of aggregateList and verify that the 
function works as expected. I wrote these two functions just to make the sample look exactly 
like the previous C# version, but F# allows us to take any binary operator and work with it 
as if it were an ordinary function. This means that we don't need to write the add function 
and we can instead just use the plus symbol directly: 

> aggregateList (+) 0 [ 1 .. 5 ];; 
val it : int = 15 

This is often quite helpful and working with operators makes F# code very succinct. 
There are also several operators for working with lists that don't have any corresponding 
equivalent in C#; we'll see some of them in chapter 8. Note that when using an operator in 
place of a function, it has to be enclosed in parentheses, so instead of just writing "+", we 
had to write "(+)". 

You may be thinking that aggregateList isn't a particularly useful function and that 
there aren't many other uses for it other than adding and multiplying elements in a list, but 
the next section shows one surprising example. 

BENEFITS OF PARAMETERIZED FUNCTIONS 
Let's look at one additional example that will use this function for something very different–
something that at first glance seems very different to adding or multiplying the elements of a 
list. Let's see if we can work out the largest value… 

> aggregateList max (-1) [ 4; 1; 5; 2; 8; 3 ];; 
val it : int = 8 

The function that we used as a first argument (max) is a built-in F# function that 
returns the larger from two numbers given as arguments. We used -1 as an initial value, 
because we expect that the list contains only positive numbers. The program first compares -
1 with 3 and returns the larger of these two. In the next iteration it takes the current value 
(the result of the previous comparison, which is 3), compares it with 8 and returns the 
larger. In the next step, 8 is compared with 2, then with 5 and so on. Similarly, you could 
easily find the smallest element in a list by using min as a first argument and some large 
number (for example Int32.MaxValue) as the second argument. 

In fact, the function can be made even more useful by allowing the caller to use 
something other than an integer during the aggregation. You can see that the body of 
aggregateList function doesn't state anywhere that the aggregated value should be 
integer and the only place where this is specified is in the type annotation for the f 
parameter. It specifies that the function returns an integer, so F# knows that the aggregated 
value will be an integer, but we could simply remove the type annotation and make the code 
more general. This is a powerful feature of the F# language called generalization and we'll 
see how to use it in chapter 6.  
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3.5 Summary 
In this chapter we've looked at some of the essential functional constructs and techniques in 
practice. We started with value and function declarations using let bindings, showing how F# 
minimizes the number of concepts that you have to work with–from a strictly mathematical 
point of view, an immutable value is just a function with no arguments. 

Next, we looked at the simplest immutable data structure used in functional languages: 
the tuple. We used it to demonstrate how you can work with immutable data structures–
when you perform a calculation with an immutable data structure, you can't modify the 
existing instance, but you can create a new instance by copying the original values and 
replacing those that were newly calculated. The next interesting immutable data type that 
we encountered was a list. This helped us to explore recursion, both in terms of how to 
construct one list from another and in using pattern matching to process a list recursively. 

Writing the same recursive processing whenever we want to perform an operation on 
lists would be inconvenient, so we looked at a mechanism that allows us to make the code 
general and useful for a broader range of similar use cases. The mechanism is called higher 
order functions. It means that a function can be simply parameterized by another function 
which is given to it as an argument. 

Altogether, this chapter was just a sneak preview showing some of the most important 
functional techniques in action in their most simplistic form. We've also seen that most of 
them can be quite well written in C# too. Now that you have an idea of the "look and feel" of 
functional programming, we'll examine the F# language and tools in more detail, so that you 
can play with them and try writing some code on your own.  

The examples from this chapter we're just a brief overview, so we'll get back to all of the 
concepts mentioned here later in the book. Other common functional data types will be 
discussed in chapter 5 and in chapter 6 we'll talk mostly about higher order functions that 
can be used for working with them. In these two chapters, we'll also see how to make the 
code more general by using not only generic types, but also generic functions. 
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4 
Exploring F# and .NET libraries  

by example 

Even though we've looked only at the most basic F# language features so far, we already 
know enough to write a simple application. In this chapter we won't introduce any new 
functional language constructs; instead we'll look at practical aspects of developing .NET 
applications in F#. You probably already know how to write a similar application in C#, so all 
code in this chapter will be in F#.  

As we write our first real-world application in F#, we'll explore several functions from the 
F# library and also learn how to access .NET classes. The .NET platform contains many 
libraries and all of them can be used from F#. In this chapter we'll look at several examples, 
mainly in order to work with files and create the user interface for our application. We'll 
come across several other .NET libraries in the subsequent chapters, but after reading this 
one you'll be able to use most of the functionality provided by .NET from your F# programs, 
because the technique is usually the same.  

4.1 Drawing pie charts in F# 
The application we'll develop can be used for drawing pie charts. You can see the screenshot 
of the finished program in figure 4.1. It loads data from a CSV file and performs some pre-
processing in order to calculate percentage of every item in the data source. Then it plots the 
chart and allows the user to save it as a bitmap file. We could of course use some library to 
display the chart (and we'll do exactly that in chapter 13), but by implementing the 
functionality ourselves, we'll learn quite a lot about F# programming and using .NET libraries 
from F# code. 

The implementation of the application is divided into three parts. In section 4.2 we 
implement loading information from a file and performing basic calculations on the data. In 
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this first section, we'll use the tuple and list types that we introduced in the previous chapter. 
Next, in section 4.3 we add some simple console-based output, so we can see the results of 
the calculations in a human-readable form. Finally, in section 4.4 we add a graphical user 
interface, drawing charts of the data. We'll use the standard .NET Windows Forms library to 
implement the user interface, and the System.Drawing namespace for drawing. 

 

Figure 4.1 Running F# application for drawing pie charts developed in this chapter. It shows distribution of 
the world population between continents. 

Even though you're only reading the fourth chapter out of sixteen, the code that we'll 
write will be very close to what you'd do if you wanted to develop an application like this 
after reading the entire book. You wouldn’t probably use recursion explicitly as often, 
because this can be achieved in a simpler way which we’ll see in the next chapters but the 
rest would be the same. This is because F# code is often developed in an iterative way: you 
start with the simplest possible way to solving the problem and later refine it to fit your 
advanced needs. Many people prefer developing F# code like this because it allows you to 
get interesting results as soon as possible. Of course, unless you're writing the code just as a 
script for a single use, you have to do some refactoring later to make the code well 
organized and more readable, but the ability to quickly write a working prototype for a 
problem is very useful. 

One benefit of iterative development is that you can easily test your application when 
writing the first version as we'll see in this chapter. Another benefit is that it is much easier 
to correctly design the whole application if you already know how the core parts look in the 
prototype. Also, F# and the Visual Studio IDE are perfect tools for this kind of development. 
You can simply start writing the code in Visual Studio and execute it using F# interactive to 
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see whether it works as you expected and later start wrapping this experimental code in 
modules or types.  

4.2 Loading and processing data 
From the previous description you probably already have a good idea of what kind of data 
we'll use in our application. It works with a series of elements containing a title to be 
displayed in the chart and a number. It will load the data from a simplified CSV file which 
contains a single element per line in the format which you can see in listing 4.1. 

Listing 4.1 CSV file with population information 
Asia,44579000 
Africa,30065000 
North America,24256000 
South America,17819000 
Antarctica,13209000 
Europe,9938000 
Australia/Oceania,7687000 

CSV files like this one are supported by many spreadsheet editors including Excel, so if 
you save the file with CSV extension, you can easily edit it. Our application will only support 
basic files. We'll assume that values are separated using commas and that there are no 
commas or quotation marks in the titles. This would make the file format more complicated, 
leading to more complex parsing code. 

Let's start off by writing F# functions to read the file in this format and perform basic 
calculations on the loaded data. We'll develop the code interactively, which will allow us to 
test every single function immediately after writing it.  

4.2.1 Writing and testing code in FSI 
As a first step, we'll implement a function convertDataRow, which takes a single row 
from the CSV file as a string and returns two components from the row in a tuple. 
Immediately after implementing the function, we test it by giving it a sample input that 
should be correctly parsed (a string "Testing reading,1234"). You can see the code for this 
function and the result of our test in listing 4.2. 

Listing 4.2 Parsing a row from the CSV file (F# interactive) 
> open System;; 
> let convertDataRow(str:string) =                      #1 
     let cells = List.of_seq(str.Split(','))      #2 
     match cells with 
     | lbl::num::_ ->                                   #A 
        let numI = Int32.Parse(num) 
        (lbl, numI) 
     | _ -> failwith "Incorrect data format!"           #B 
  ;; 
val convertDataRow : string -> string * int             #3 
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> convertDataRow("Testing reading,1234");;              #4 
val it : string * int = ("Testing reading", 1234)  
#1 Type annotation specifies the type of the parameter 
#2 Split the string into a list 
#A It should have two or more cells 
#B Otherwise report an error 
#3 Inferred signature of the function 
#5 Test the function immediately 
After starting the F# interactive, we first import functionality from the .NET System 

namespace. We need to open the namespace because the code uses the .NET functions 
Int32.Parse and String.Split. These have to be imported explicitly, whereas the 
functions from the core F# libraries, such as List.of_seq are available implicitly. 

The function convertDataRow takes a string as an argument and splits it into a list 
of values using comma as a separator. We're using standard the .NET Split method to do 
this (#3). The F# compiler needs to know that str is a string before we can use this 
method and in this case, type inference doesn't have any way to infer this, so we're using 
type annotation (#2) to explicitly state the type of str.  

The method is declared using the C# params keyword and takes a variable number of 
characters as arguments. We specify only a single separator and that's the comma character. 
The result of this method is an array of strings, but we want to work with lists, so we convert 
the result to list using the of_seq function from the F# List module. We'll talk about 
arrays and other collection types later in chapters 10 and 12. 

Once we have the list, we use the match construct to test whether it is in correct 
format. If it contains two or more values it will match the first case (lbl::num::_). The 
title will be assigned to a value lbl, the numeric value to num and the remaining columns 
(if any) will be ignored. In this branch we use Int32.Parse to convert a string to an 
integer and return a tuple containing the title and the value. The second branch throws a 
standard .NET exception. 

If you look at the signature (#4), you can see that the function takes a string and 
returns a tuple containing a string as the first value and an integer as the second value. This 
is exactly what we expected - the title is returned as a string and the numeric value from the 
second column is converted to an integer. The next line demonstrates how easy it is to test 
the function using F# interactive (#5). The result of our sample call is a tuple containing 
"Testing reading" as a title and 1234 as a numeric value. 

Working with .NET strings in F# 

When working with strings in F#, you'll usually use the normal .NET methods. Let's see 
how we can use them from F#, starting with a few selected static methods available in 
the String class. We can use these as if they were ordinary F# functions (using the 
String prefix). The arguments to these functions should be specified in parentheses as 
a comma separated tuple. In the type signatures, tuples are written using asterisks: 

9) String.Concat (overloaded) Accepts variable number of arguments of type string or 
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object and returns a string obtained by concatenating all of them: 

    > String.Concat("1 + 3", 3);; 
    val it : string = "1 + 33" 

10) String.Join (sep:string * strs:string[] -> string) Concatenates 
an array of strings supplied as the strs parameter using a separator specified by 
sep; we can use the [| ... |] syntax to construct an array literal: 

    > String.Join(", ", [| "1"; "2"; "3" |]);; 
    val it : string = "1, 2, 3" 

Strings in .NET are also objects and they also have instance members too. These can be 
used from F# using the typical dot-notation. We've already seen this in the previous 
example when splitting a string using str.Split. The following examples assume that 
we have a string value str containing "Hello World!": 

11) str.Length Property that returns the length of the string; properties are accessed in 
F# a same way as in C#, so the call reading the property is not followed by braces: 

    > str.Length;; 
    val it : int = 12 

12) str.[int index] Indexing into a string, which can be written using 
square braces; returns the character at the location specified by index idx. Note 
that you still need the dot before the opening brace, 
unlike in C#: 

    > str.[str.Length - 1];; 
    val it : char = '!' 

We can also use various functions that are available in the FSharp.PowerPack.dll library. 
These are partly available for compatibility with OCaml, but some of them are still useful, 
because they are designed with F# in mind. However, most of the string processing code 
in F# can be implemented using .NET methods. 

In the previous listing we implemented the convertDataRow function, which takes a 
string containing a line from the CSV file and returns a tuple containing a label and a numeric 
value. As a next step we'll implement a function that takes a list of strings and converts each 
string to a tuple using convertDataRow. Listing 4.3 shows the function–and a test 
immediately afterwards, of course, parsing a sample list of strings. 

Listing 4.3 Parsing multiple lines from the input file (F# interactive) 
> let rec processLines(lines) =                       #1 
     match lines with 
     | [] -> []                                       #2 
     | str::tail ->                                   #3 
        let row = convertDataRow(str)                 #A 
        let rest = processLines(tail)                 #B 
        row :: rest 
  ;; 
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val processLines : string list -> (string * int) list #4 
 
> let tst = processLines ["Test1,123"; "Test2,456"];; #5 
val tst : (string * int) list =  
    [("Test1", 123); ("Test2", 456)] 
#1 Recursive function 
#2 A branch for an empty list 
#3 A branch for a cons cell  
#A Process the head of the list 
#B Recursively process the tail 
#4 Inferred type signature 
#5 Test the processLines function 
This function is in many ways similar to functions for processing lists that we 

implemented in the previous chapter. As you can see, the function is declared using let 
rec keyword (#1), so it is recursive. It takes a list of strings as an argument (lines) and 
uses pattern matching to test whether the list is an empty list or a cons cell. For an empty 
list, it directly returns an empty list of tuples (#2). If the pattern matching executes the 
branch for a cons cell (#3), it assigns a value of the first element from the list to value str 
and list containing the remaining elements to value tail. The code for this branch first 
processes a single row using the convertDataRow function from previous listing and then 
recursively processes the rest of the list. Finally the code constructs a new cons cell: it 
contains the processed row as a head and the recursively processed remainder of the list as 
a tail. This means that the function executes convertDataRow for each string in the list 
and collects the results into a new list. 

To understand better what the processLines function does, we can also look at the 
type signature printed by F# interactive (#4). It says that the function takes a list of strings 
(list string type) as an argument and returns a list containing tuples of type string 
* int. This is exactly the type returned by the function that parses a row, so it seems that 
the function does the right thing! Of course, we verify this by calling it with a sample list as 
an argument (#5). You can see the result of the call printed by F# interactive - it is a list 
containing two tuples with a string and a number, so the function works well. 

Now we have a function for converting a list of strings to a data structure that we'll use 
in our chart drawing application. Before writing the code to read data from a file and print 
labels together with the proportion of the chart occupied by each item (as a percentage), we 
need to implement one more utility function. The function countSum in listing 4.4 sums the 
numeric values of all the items in the list. Later, we'll need this sum when calculating 
percentage of each item.  

Listing 4.4 Calculating a sum of numeric values in the list (F# interactive) 
> let rec countSum(rows) = 
     match rows with 
     | [] -> 0                                  #A 
     | (_, n)::tail ->                          #1 
        let sumRest = countSum(tail)            #B 
        n + sumRest  
  ;; 
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val countSum : ('a * int) list -> int           #2 
 
> let sum = countSum tst;;                      #C 
val sum : int = 579 
> 100.0 / float(sum) * 123.0;;                  #3 
val it : float = 21.24352332 
#A For an empty list return zero 
#1 Pattern to extract the current value 
#B Recursively sum elements of the tail 
#2 Inferred type signature 
#C Test the function 
#3 Calculating percentage 
This function exhibits the recurring pattern for working with lists yet again. Of course, 

writing code that follows the same pattern over and over may suggest that we're doing 
something wrong (as well as being boring–repetition is rarely fun). Ideally, we should only 
write the part that makes each version of the code unique without repeating ourselves. This 
objection is valid for the previous example and we can write it in a more elegant way. We'll 
learn how to do this in the upcoming chapters and you can find the improved version (as 
you'd write it after reading the whole book) on the book's web site. Nevertheless, you'll still 
need both recursion and pattern matching in many functional programs, so it's useful to look 
at one more example and become familiar with these concepts. 

For an empty list, the function countSum simply returns 0. For a cons cell, it 
recursively sums values from the tail (the original list minus the first element) and adds the 
result to a value from the head (the first item from the list). The pattern matching in this 
code demonstrates one interesting pattern that is worth discussing. In the second branch 
(#1), we need to decompose the cons cell, so we match the list against head::tail 
pattern. However, the code is more complicated than that, because at the same time, it also 
matches the head against pattern for decomposing tuples, which is written as (first, 
second). This is because the list contains tuples storing title as the first argument and 
numeric value as the second argument. In our example, we want to read the numeric value 
and ignore the title, so we can use the underscore pattern to ignore the first member of the 
tuple. If we compose all these patterns into a single one, we get (_, n)::tail, which is 
what we used in the code.  

If we look at the function signature printed by the F# interactive (#2), we can see that 
the function takes a list of tuples as an input and returns an integer. The type of the input 
tuple is 'a * int, which means that the function is generic and works on lists containing 
any tuple whose second element is an integer. The first type is not relevant, because the 
value is ignored in the pattern matching. The F# compiler makes the code generic 
automatically in situations like this using a feature called automatic generalization. We'll 
learn more about writing generic functions and automatic generalization in chapters 5 and 6. 

The last command from listing 4.3 prepared the way for the test in listing 4.4–why enter 
test data more than once? Having calculated the sum to test the function, we finally calculate 
the percentage occupied by the record with a value 123. Because we want to get the precise 
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result (21.24%), we convert the obtained integer to a floating point number using a function 
called float.  

Converting and parsing numbers 

F# is a .NET language, so it works with the standard set of numeric types available within 
the platform. The following list shows the most useful types that we'll work with. You can 
see the name of the .NET class in bold and the name used in F# in braces: 

13) Int32, UInt32 (int, uint32) Standard 32-bit integer types; literals are written in F# 
as 42 or 42u (unsigned); there are also 16 and 64bit variants written as 42s and 
42us for 16bit and 1L or 1UL for 64bit 

14) Double, Single (float/float32) Represent a double precision and a single precision 
floating point number; the literals are written as 3.14 and 3.14f respectively. 
Note the difference between F# and C# here - double in C# is float in F#; 
float in C# is float32 in F#. 

15) SByte, Byte (sbyte/byte) Signed and unsigned 8-bit integers; the literals are 
written as 1y (signed) and 1uy (unsigned) 

16) Decimal (Decimal) Floating decimal point type, appropriate for financial calculations 
requiring large numbers of significant integral and fractional digits. Literals are 
written as 1M. 

17) BigInteger, Math.BigNum (bigint/bignum) Types for manipulating with numbers 
of an arbitrary size; literals are written as 1I (for an integer) and 1N (for a 
rational). The BigInt type is new in .NET 4.0,  the BigNum type is available in the F# 
library. 

Conversion from a string to a standard .NET numeric type can be done using the Parse 
method. This method is available in a .NET class corresponding to the numeric type that 
can be found in a System namespace. For example, to convert a string to an integer 
you can write Int32.Parse("42"). This method throws an exception on failure, so 
there is also a second method called TryParse. Using this method, we can easily test 
whether the conversion succeeded or not as you can see in the following example: 

let (succ, num) = Int32.TryParse(str) 
if succ then  
   Console.Write("Succeeded: {0}", num)  
else  
   Console.Write("Failed") 

Unlike C#, the F# compiler doesn't insert automatic conversions between distinct numeric 
types when precision cannot be lost. F# also doesn't use a type-cast syntax for explicit 
conversions, so we have to write all conversions as function calls. The F# library contains 
a set of conversion functions that typically have a same name as the F# name of the 
target type. The following list shows a few of the most useful conversion functions: 
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18) int - Converts any numeric value to an integer - the function is polymorphic, which 
means that it works on different argument types; we can for example write (int 
3.14) for converting float value to an integer or (int 42uy) for converting a 
byte value 

19) float, float32 - Convert a numeric value to a double-precision or a single-precision 
floating point number; it is sometimes confusing that float corresponds to .NET 
Double type and float32 to .NET Single type 

This is by no means a comprehensive reference for working with numbers in F# and .NET. 
It should contain information about the most commonly used numeric types and 
functions. For more information you can refer to the standard .NET reference or the F# 
online reference [F# Website]. 

In listing 4.4 we ended with an equation that calculates the percentage of one item in 
our test data set. This is another example of iterative development in F#, because we'll need 
exactly this equation in the next section. We tried writing the difficult part of the computation 
to make sure we could do it in isolation: now we can use it in the next section. We'll start by 
writing code to read the data from a file and then use this equation as a basis for code to 
print the data set to the console.  

4.3 Creating a console application 
Writing a simple console-based output for our application is a good start, because we can do 
it relatively easily and we'll see the results quickly. In this section, we'll use several 
techniques that will be important for the later graphical version as well. Even if you don't 
need console-based output for your program, you can still start with it and later adapt it into 
a more advanced, graphical version as we'll do in this chapter. 

4.3.1 Working with input and output 
We have already finished most of the program in previous section by writing common 
functionality shared by both the console and graphical versions. We have a function 
processLines that takes a list of strings loaded from the CSV file and returns a list of 
parsed tuples and a function countSum, which sums the numerical values from the data 
set. In the last listing, we also tried to write the equation for calculating the percentage, so 
the only remaining tasks are reading data from a file and printing output to a console 
window. You can see how to put everything together in the listing 4.5. 

Listing 4.5 Putting the console-based version together (F# interactive) 
> open System.IO;; 
  
> let lines = List.of_seq(File.ReadAllLines(@"C:\Ch03\data.csv"));;    #1 
val lines : string list 
 
> let data = processLines(lines);;                                     #A 

Licensed to Curtis J Pitts <beop.love@gmail.com>

Download at Boykma.Com



 91 

©Manning Publications Co. Please post comments or corrections to the Author Online forum: 
http://www.manning-sandbox.com/forum.jspa?forumID=460 

val data : (string * int) list = 
  [("Asia", 44579000); ("Africa", 30065000); ("North America", 24256000); 
   ("South America", 17819000); ("Antarctica", 13209000);  
   ("Europe", 9938000); ("Australia/Oceania", 7687000)] 
 
> let sum = float(countSum(data));;                                    #B 
val sum : float = 147553000.0 
 
> for (lbl, num) in data do                                            #3 
     let perc = int((float(num)) / sum * 100.0)                        #C 
     Console.WriteLine("{0,-18} - {1,8} ({2}%)",                       #C 
                       lbl, num, perc)                                 #C 
  ;; 
Asia               - 44579000 (30%) 
Africa             - 30065000 (20%) 
North America      - 24256000 (16%) 
South America      - 17819000 (12%) 
Antarctica         - 13209000 (8%) 
Europe             -  9938000 (6%) 
Australia/Oceania  -  7687000 (5%) 
#1 Read the content as a list of lines 
#A Convert lines to a list of tuples 
#B Sum the numeric values 
#3 Iterate over all elements 
#C Calculate the percentage and print it 
The listing starts by opening the System.IO namespace, which contains .NET classes 

for working with file system. Next, we use the class File from this namespace and its 
method ReadAllLines (#1), which provides a very simple way for reading text content 
from a file, returning an array of strings. Again we use the of_seq function to convert the 
array to a list of strings. The next two steps are fairly easy, because they just use the two 
functions we implemented and tested in previous sections of this chapter–we process the 
lines and sum the resulting values. 

Let's now look at the last piece of code (#3). It uses a for loop to iterate over all 
elements in the parsed data set. This is similar to the foreach statement in C#. The 
expression between keywords for and in isn't just a variable though, it's a pattern. As you 
can see, pattern matching is more common in F# than you might expect! This particular 
pattern decomposes a tuple into a title (the value called lbl) and the numeric value (called 
num). In the body of the loop, we first calculate the percentage using the equation that we 
tested in listing 4.4 and then output the result using the familiar .NET 
Console.WriteLine method. 

Formatting strings in F# and .NET 

String formatting is an example of a problem that can be solved in two ways in F#. The 
first option is to use functionality included in the F# libraries. This is compatible with F# 
predecessors (the OCaml language), but it's also designed to work extremely well with 
F#. The other way is to use functionality available in .NET Framework, which is 
sometimes richer then the corresponding F# functions. The printfn function, which 
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we've used in earlier examples, represents the first group and Console.WriteLine 
from the last listing is a standard .NET method. 

When formatting strings in .NET we need to specify a composite format string as the first 
argument. This contains placeholders which are filled with the values specified by the 
remaining arguments. The placeholders contain index of the argument and optionally 
specify alignment and format. Two of the most frequently used formatting methods are 
Console.WriteLine for printing to console and String.Format, which returns 
the formatted string: 

> let s = String.Format("Hello {0}! Today is: {1:D}", name, date); 
val s : string = "Hello Tomas! Today is: Sunday, 15 March 2009" 

The format string is specified after the colon. For example {0:D} for date formatted 
using the long date format, {0:e} for scientific floating point or {0:x} for 
hexadecimal integer). The alignment is specified after the comma and it is one of the 
cases where .NET formatting is used from F#:  

> Console.WriteLine("Number with spaces: {0,10}!", 42);; 
Number with spaces:         42! 
> Console.WriteLine("Number with spaces: {0,-10}!", 42);; 
Number with spaces: 42        ! 

Aside from the specification of alignment and padding, the .NET libraries are frequently 
used from F# when formatting standard .NET data types such as the DateTime type or 
the DateTimeOffset, which represents the time relatively to the UTC time zone. The 
following example briefly recapitulates some of the useful formatting strings: 

> let date = DateTimeOffset.Now;; 
val date : DateTimeOffset = 03/15/2009 16:37:53 +00:00 
> String.Format("{0:D}", date);; 
val it : string = "Sunday, 15 March 2009" 
> String.Format("{0:T}", date);; 
val it : string = "16:36:09" 
> String.Format("{0:yyyy-MM-dd}", date);; 
val it : string = "2009-03-15" 

The F#-specific functions for formatting strings are treated specially by the compiler, 
which has the benefit that it can check that we're working correctly with types. Just like in 
.NET formatting, we specify the format as a first argument, but the placeholders in the 
format specify just the type of the argument. There is no index, so placeholders have to 
be in the same order as the arguments. In F#, you'll often work with printf and 
printfn that output the string to the console (printfn adds a line break) and 
sprintf, which returns a formatted string: 

printfn "Hello %s! Today is: %A" name date 
let s = sprintf "Hello %s! Today is: %A" name date 

The following list shows the most common types of placeholders: 
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20) %s - the argument is of type string  

21) %d - any signed or unsigned integer type (e.g. byte, int, ulong, …) 

22) %f - floating point number of type float or float32 

23) %A - outputs value of any type by calling the .NET ToString method 

Choosing between the .NET and F# approach is sometimes difficult. In general it is 
usually better to use the F# function, because it has been designed to work well with F#. 
If you need some functionality that isn't available or is hard to achieve using F# 
functions, you can switch to .NET formatting methods, because both can be easily used 
from F#. 

Instead of running everything from F# interactive, we could turn the code from the 
previous listing into a standard console application. If you we're writing the code in Visual 
Studio and executing it in F# interactive by hitting Alt+Enter, you already have the 
complete source code for the application. The only change that we can do to make it more 
useful is to read the file name from the command line. In F#, we can read command line 
arguments using the standard .NET Environment.GetCommandLineArgs method. 
The first element is the name of the running executable, so to read the first argument, we 
can write args.[1]. 

In this section, we added a simple console-based output for our data processing 
application. Now, it is the time to implement the graphical user interface using the Windows 
Forms library and finally to draw the pie chart using classes from the System.Drawing 
namespace. Thanks to our earlier experiments and the use of F# interactive during the 
development, we already know that a significant part of our code works correctly! If we were 
to write the whole application from a scratch, we would quite possibly already have several 
minor, but hard to find bugs in the code. Of course, in later phase of the development 
process, we could turn these interactive experiments into unit tests. We’ll talk about this 
topic briefly in chapter 11. 

4.4 Creating a Windows Forms application 
Windows Forms is a standard library for developing GUI applications for Windows and is 
nicely integrated with functionality from the System.Drawing namespace. This allows us, 
among other things, to draw graphics and display them on the screen. The .NET ecosystem 
is quite rich, so we could use other technologies as well. Windows Presentation Foundation 
(WPF) which is part of .NET 3.0 can be used for creating more visually attractive user 
interfaces that use animations, rich graphics or even 3D visualizations. 

4.4.1 Creating the user interface 
For this chapter we're using Windows Forms, which is in many ways simpler, but using other 
technologies from F# shouldn't be a problem for you. The user interface in Windows Forms is 
constructed using components (like Form, Button or PictureBox) so we're going to 
start by writing a code that builds the user interface controls. This task can be simplified by 
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using a graphical designer, but our application is quite simple, so we'll write the code by 
hand. In some user interface frameworks including WPF, the structure of controls can be 
described in an XML-based file, but in Windows Forms, we're just going to construct the 
appropriate classes and configure them by specifying their properties.  

Before we can start, we need to configure the project in Visual Studio. By default, the 
F# project doesn't contain references to the required .NET assemblies, so we need to add 
references to System.Windows.Forms and System.Drawing. This can be done 
using "Add Reference" option in the Solution Explorer. Also, we don't want to display the 
console window when the application starts. You can go to project properties and select 
"Windows application" option in the "Output type" drop-down list. After configuring the 
project, we can write the first part of the application as shown in listing 4.6. 

Listing 4.6 Building the user interface (F#) 
open System  
open System.Drawing 
open System.Windows.Forms 
 
let main = new Form(Width = 620, Height = 450, Text = "Pie Chart")   #1 
 
let menu = new ToolStrip()                                           #A 
let btnOpen = new ToolStripButton("Open")                            #B 
let btnSave = new ToolStripButton("Save", Enabled = false)           #B 
menu.Items.Add(btnOpen)                                              #B 
menu.Items.Add(btnSave)                                              #B 
 
let img =  
   new PictureBox                                                    #C 
      (BackColor = Color.White, Dock = DockStyle.Fill,               #C 
       SizeMode = PictureBoxSizeMode.CenterImage)                    #C 
 
main.Controls.Add(menu)                                              #D 
main.Controls.Add(img)                                               #D 
 
// TODO: Drawing of the chart & user interface interactions          #2 
 
[<STAThread>]                                                        #3 
do 
   Application.Run(main)                                             #F 
#1 Create the main application form 
#A Construct the application menu 
#B Add two buttons to the menu 
#C Construct control for displaying pie chart 
#D Add controls to the main form 
#3 Needed for all WinForms applications 
#F Start application with a main form 

#B, #C, #D inline annotations with vertical lines (if possible), #2 
cueball without inline text 
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The listing starts by opening .NET namespaces that contain classes used in our program. 
Next, we start creating the controls that represent the user interface. We start with 
constructing the main window (also called form) (#1). We're using an F# syntax that allows 
us to specify properties of the object directly during the initialization. This makes the code 
shorter, but also hides side-effects in the code. Internally, the code first creates the object 
using a constructor and then sets the properties of the object specified using this syntax, but 
we can view it as single operation that creates the object. When creating the form, we're 
using parameterless constructor, but it is of course possible to specify arguments to the 
constructor too. You can see this later in the code when creating btnSave, whose 
constructor takes a string as an argument. A similar syntax for creating objects is now 
available in C# 3.0 as well and has an interesting history on the .NET platform. 

The listing continues by constructing the menu and PictureBox control, which we'll 
use for showing the pie chart. We're not using F# interactive this time, so there is a 
placeholder in the listing (#2) marking the spot where we'll add code for drawing the charts 
and for connecting the drawing functionality to the user interface.  

The final part of listing 4.6 is a standard block of code for running Windows Forms 
applications (#3). It starts with a specification of threading model for COM technology, which 
is internally used by Windows Forms. This is specified using a standard .NET attribute 
(STAThreadAttribute) so you can find more information about it in the .NET reference. 
In C#, we would place this attribute before the Main method, but in F# the source can 
contain code to be executed in any place. Since we need to apply this attribute, we're using 
a do block, which groups together the code to be executed when the application starts. 

Constructing classes in F#, C# 3.0, and Cω 

We already mentioned that some GUI frameworks use XML to specify how the controls 
should be constructed. This is a common approach, because constructing objects and 
setting their properties is very similar to constructing an XML node and setting its 
attributes. This similarity was a motivation for researchers working on a language Cω 
[Meijer et. al, 2003] in Microsoft Research in 2003, which later motivated many features 
that are now present in C# 3.0. In Cω, we could write a code to construct 
ToolStripButton control like this: 

ToolStripButton btn = <ToolStripButton> 
                        <Text>Save</Text> 
                        <Enabled>True</Enabled> 
                        <Image>{saveIco}</Image> 
                      </ToolStripButton> 

In Cω, the XML syntax was integrated directly in the language. The elements nested in 
the ToolStripButton node specify properties of the object and the syntax using 
curly braces allows us to embed usual non-XML expressions in the XML-like code. The 
ease of constructing objects in this way motivated C# 3.0 feature called object 
initializers: 
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var btn = new ToolStripButton("Save"){ Enabled = false, Image = saveIco }; 

It no longer uses XML based syntax, but the general idea to construct the object and 
specify its properties is essentially the same. Moreover, we can also specify arguments of 
the constructor using this syntax, because the properties are specified separately in curly 
braces. In listing 4.6 we've seen that the same feature is available in F# as well: 

let btn = new ToolStripButton("Save", Enabled = false, Image = saveIco) 

The only difference from C# 3.0 is that in F# we specify properties directly in the 
constructor call. The arguments of the constructor are followed by a set of key-value pair 
specifying the properties of the object. 

Another way to parameterize construction of a class, but also any ordinary method call, is 
to use named arguments. The key difference is that names of the parameters are part of 
the constructor or method declaration. Named parameters can also be used to initialize 
immutable classes, because they don’t rely on setting a property after the class is 
created. This feature is available in F# and you can find more information in the F# 
documentation. In C#, named arguments are being introduced in version 4.0 and the 
syntax is similar to specification of properties in F#. However, it is important to keep in 
mind that the meaning is quite different. 

So far, we've implemented a skeleton of the application, but it doesn’t actually do 
anything yet–at least, it doesn't do anything with our data. In the next section, we're going 
to fill in the missing part of the code to draw the chart and display it in the existing 
PictureBox called img. 

4.4.2 Drawing Graphics 
The application will draw the pie chart in a two steps. In the first step, it will draw the filled 
pie and in the second step it will add the text labels. This way we can be sure that the labels 
are never covered by the pie. 

A large part of the code that performs the drawing can be shared by both of the steps. 
For each step, we need to iterate over all items in the list to calculate the angle occupied by 
the segment of the pie chart. The functional solution to this problem is to write a function 
that performs the shared operations and takes a drawing function as an argument. The code 
calls this function twice. The drawing function in the first step fills segments of the pie chart 
and the one in the second step draws the text label. 

CREATING RANDOM COLOR BRUSHES 
Let's start by drawing the pie. We want to fill specified segments of the pie chart using 
random colors, so first we'll write a simple utility function that creates a randomly colored 
brush that we can use for filling the region, as shown in listing 4.7. 

Listing 4.7 Creating brush with random color (F#) 
let rnd = new Random()                                            #1 
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let randomBrush() =                                               #2 
   let r, g, b = rnd.Next(256), rnd.Next(256), rnd.Next(256)      #A 
   new SolidBrush(Color.FromArgb(r,g,b))                          #B 
#1 Initialize random number generator 
#2 Returns a brush with random color 
#A Generate R,G,B components of a color 
#B Return a solid brush 
The code declares two top-level values. The first one is an instance of a .NET class 

Random, which is used for generating random numbers (#1). The second top-level value is 
a function randomBrush (#2). It has a unit type as a parameter, which is an F# way of 
saying that it doesn't take any meaningful arguments. The only possible unit value is (), so 
when calling the function later in the code, we're actually giving it unit as an argument, even 
though it looks like a function call with no arguments at all. The randomBrush function 
uses the rnd value and generates System.Drawing object, which can be used for filling 
of specified regions. It has side-effects and as you already know, we should be careful when 
using side-effects in functional programs. 

Hiding the side-effects 

The function randomBrush is an example of a function with side-effects. This means 
that the function may return a different result every time it is called, because it relies on 
some changing value that other the function arguments. In this example, the changing 
value is the value rnd, which represents a random number generator and changes its 
internal state after each call to the Next method. The previous code listing declares 
rnd as a global value despite the fact that it is used only in function randomBrush. 
Of course this is a hint that we should declare it just locally to minimize the number of 
global values. We could try rewriting the code as follows: 

let randomBrush() = 
    let rnd = new Random() 
    let r, g, b = rnd.Next(256), rnd.Next(256), rnd.Next(256) 
    new SolidBrush(Color.FromArgb(r,g,b)) 

But this code doesn't work! The problem is that we're creating a new Random object 
every time the function is called and the change of the internal state is not preserved. 
When created, Random initializes the internal state using the current time, but since the 
drawing is performed very quickly the "current time" doesn't change enough and we end 
up with the whole chart being drawn in the same color. 

Of course, there is a way to write the code without declaring rnd as a global value, but 
which allows us to keep the mutable state represented by it between the function calls. 
To write this, we need two concepts that will be discussed in Chapter 5 - a closure and a 
lambda function. You can find this improvement in a more evolved version of the 
application available online. 

Now that we know how to create brushes for filling the chart, we can finally take a look 
at the first of the drawing functions.  
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DRAWING THE PIE CHART SEGMENTS 
Listing 4.9 implements a function called drawPieSegment. It fills the specified segment of 
the chart using a random color. This function will be used from a function that performs the 
drawing in two phases later in the application. The processing function will call it for every 
segment and it will get all the information it needs as arguments. 

Listing 4.8 Drawing a segment of the pie chart (F#) 
let drawPieSegment(gr:Graphics, lbl, startAngle, angle) =         #A 
    let br = randomBrush() 
    gr.FillPie(br, 170, 70, 260, 260, startAngle, angle) 
    br.Dispose()                                                  #B 
#A Fill the segment using random color 
#B Free resources used by the brush  
The function parameters are written as one big tuple containing 4 elements, because 

this helps to make the code more readable. The first argument of the function is written with 
a type annotation specifying that its type is Graphics. This is a System.Drawing class 
which contains functionality for drawing. We use its FillPie method within the function, 
but that's all that the compiler can tell about the gr value. It can't infer the type from just 
that information, which is why we need the type annotation. The next three tuple elements 
specify the title text (which isn't used anywhere in the code, but will be important for 
drawing labels), the starting angle of the segment and the total angle occupied by the 
segment (in degrees). Note that we also dispose the brush once the drawing is finished. F# 
has a nicer way to do this and we'll talk about it in chapter 9. 

Choosing which syntax to use when writing functions 

We've seen two ways for writing functions with multiple arguments so far. We can write 
the function arguments either as a comma separated list in parentheses or as a list of 
values separated just by spaces. Note that the first style isn't really special in any way: 

let add(a, b) = a + b 

This is actually just a function that takes a tuple as an argument. The expression (a, 
b) is the usual pattern, which we used for deconstructing tuples in chapter 3. The 
question is which of these two options is better. Unfortunately there isn't an authoritative 
answer and this is a personal choice. The only important thing is to use the choice 
consistently. 

In this book, we'll usually write function arguments using tuples, especially when writing 
some more complicated utility functions that work with .NET libraries. This will keep the 
code consistent with the syntax you use when calling .NET methods. On the other hand, 
we'll use spaces when writing simple utility functions that deal primarily with F# values.  
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We'll also write parentheses when calling or declaring a function that takes a single 
argument, so for example we'll write sin(x) even though parentheses are optional and 
we could write sin x. This decision follows the way functions are usually written in 
mathematics and also when calling .NET methods in C#. We'll get back to this topic 
briefly in chapters 5 and 6, when we discuss functions in more detail and also look at 
implementing and using higher order functions. 

The drawPieSegment function from the previous listing is one of the two drawing 
functions that we'll use as an argument to the function drawStep, which iterates over all 
the segments of the pie chart and draws them. Before looking at the code for drawStep, 
let's briefly look at its type. Even though we don’t need to write the types in the code, it is 
useful to see what the types of values used in the code are. 

DRAWING USING FUNCTIONS 
The first argument to this function is one of the two drawing functions, so we'll use a name 
DrawingFunc for the type of drawing functions for now and define what it exactly is later. 
Before discussing the remaining arguments, let's look at the signature of the function: 

drawStep : (DrawingFunc * Graphics * 
           float * (string * int) list  * int) -> unit 

We're again using the tuple syntax to specify the arguments, so the function takes a 
single big tuple. The second argument is the Graphics object for drawing which will be 
passed to the drawing function. The next two arguments specify the data set used for the 
drawing - a float value is the sum of all the numeric values, so we can calculate the angle 
for each segment and a value of type (string * int) list is our familiar data set 
from the console version of the application. It stores the labels and values for each item to 
be plotted.  

Let’s now look at the DrawingFunc type. It should be same as the signature of the 
drawPieSegment function from the previous listing. The second drawing function 
(drawLabel), which we’ll see shortly has exactly the same signature. We can look at the 
signatures and declare the DrawingFunc type to be exactly the same type as the types of 
these two functions: 

drawPieSegment : (Graphics * string * int * int) -> unit 
drawLabel      : (Graphics * string * int * int) -> unit 
 
type DrawingFunc = (Graphics * string * int * int) -> unit 

As I mentioned earlier, we don’t need to write these types in the code, but it will help us 
understand what exactly the code does. The most important thing that we already know is 
that the drawStep function takes a drawing function as a first argument and we know what 
arguments should be given to this function, because this is specified by its type 
(DrawingFunc). The listing 4.9 shows the code of the drawStep function. 

Listing 4.9 Drawing items using specified drawing function (F#) 
let drawStep(drawingFunc, gr:Graphics, sum, data) =  
   let rec drawStepUtil(data, angleSoFar) =                            #1 
      match data with  
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      | [] -> ()                                                       #2 
      | [lbl, num] ->                                                  #3 
         let angle = 360 - angleSoFar                                  #A 
         drawingFunc(gr, lbl, angleSoFar, angle)                       #B 
      | (lbl, num)::tail ->                                            #4 
         let angle = int((float(num)) / sum * 360.0)  
         drawingFunc(gr, lbl, angleSoFar, angle)                       #C 
         drawStepUtil(tail, angleSoFar + angle)                        #D 
   drawStepUtil(data, 0)                                               #5 
#1 Nested recursive function that processes the data 
#2 Matches an empty list  
#3 Matches a list with a single element 
#A Calculate the angle to add up to 360  
#B Draw the segment 
#4 Matches a list with non-empty tail 
#C Draw the segment 
#D Recursively draw the rest 
#5 Run the local utility function 

If #B+#C could be a single connected arrow it would be perfect 
(annotation is the same for these two) 

To make the code more readable, we implement the function that does the actual work 
as a nested function (#1). It iterates over all items that should be drawn on the chart. The 
items are stored in a standard F# list, so the code is quite like the familiar list processing 
pattern. There is however one notable difference, because the list is matched against three 
patterns instead of the usual two cases matching an empty list and a cons cell. 

The first branch in the pattern matching (#2) matches an empty list and doesn't do 
anything. As we've already seen, "doing nothing" is in F# expressed as a unit value, so the 
code just returns a unit value, written as (). This is because F# treats every construct as 
an expression and expressions always have to return a value. If the branch for the empty list 
were empty, it wouldn't be a valid expression. 

The second branch (#3) is what makes the list processing code unusual. As you can see, 
the pattern used in this branch is [lbl, num]. This is a nested pattern composed from a 
pattern that matches a list containing a single item [it] and a pattern that matches the 
item with a tuple containing two elements: (lbl, num). The syntax we’re using is a 
shorthand for [(lbl, num)], but it means exactly the same thing. The first pattern is 
written using the usual syntax for creating lists, so if you wanted to write a pattern to match 
lists with three items, you could write [a; b; c]. We included this special case, because 
we want to correct the rounding error: if we're processing the last item in the list, we want to 
make sure that the total angle will be exactly 360 degrees. In this branch we simply 
calculate the angle and call the drawingFunc function which was passed to us as an 
argument. 
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The last branch (#4) processes a list which didn't match any of the previous two 
patterns. The order of the patterns is important in this case, because any list matching the 
second pattern (#3) would also match the last one (#4) but with an empty list as the tail. 
The order of the patterns in the code guarantees that the last branch won't be called for the 
last item. 

The code for the last branch calculates the angle and draws the segment using the 
specified drawing function. This is the only branch that doesn't stop the recursive processing 
of the list, because it is used until there is a last element in the list, so the last line of the 
code is a recursive call. The only arguments that change during the recursion is the list of 
remaining elements to draw and the angleSoFar, which is an angle occupied by all the 
already processed segments. Thanks to the use of local function, we don't need to pass along 
the other arguments that do not change. The only thing that is done in the drawStep 
function itself is that it invokes the utility function with all the data and the argument 
angleSoFar set to zero.  

DRAWING THE WHOLE CHART 
Before looking at the second drawing function, let's look at how to put things together. 
Figure 4.2 shows each of the steps separately: the code that we've already written draws the 
left part of the figure; we still need to implement the function to draw the labels as shown on 
the right part. 

 

Figure 4.2 Two phases of drawing the chart - first pass using 'drawPieSegment' (left) and second pass 
using 'drawLabel' function (right). The chart shows distribution of world population in 1900. 

The code that draws the chart first loads data from a file and processes it is the same as in 
the console application. Instead of printing data to the console, we now use the functions 
described above to draw the chart. You can see the function drawChart that does the 
drawing in listing 4.10. 

Listing 4.10 Drawing the chart (F#) 
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let drawChart(file) =  
   let lines = List.of_array(File.ReadAllLines(file))   #A 
   let data = processLines(lines)                       #A 
   let sum = float(countSum(data))                      #A 
 
   let bmp = new Bitmap(600, 400)                       #B 
   let gr = Graphics.FromImage(bmp)                     #C 
   gr.FillRectangle(Brushes.White, 0, 0, 600, 400)   
   drawStep(drawPieSegment, gr, sum, data)              #1 
   drawStep(drawLabel, gr, sum, data)                   #2 
   gr.Dispose()                                         #D 
   bmp 
#A Load and process the data 
#B Create an in-memory bitmap 
#C Create object for drawing on the bitmap 
#1 Draw the pie chart 
#2 Draw the text labels 
#D Finalize the drawing 

#A refers to all three lines, could we do it as a vertical line? 

The function takes a name of the CSV file as an argument and returns an in-memory 
bitmap with the pie chart. In the code, we first load the file and process it using our existing 
processLines and countSum functions. We then draw the chart and on the last 
line we return the created bitmap as a result of the function. 

In order to draw anything at all, we first need to create a Bitmap object and then an 
associated Graphics object. We've used Graphics for drawing in all the previous 
functions, so once it is created we can fill the bitmap with a white background and draw the 
chart using the drawStep function. The first call (#1) draws the pie using 
drawPieSegment and the second call (#2) draws the text labels using drawLabel. You 
can try commenting out one of these two lines to draw only one of the steps and get the 
same results as we've seen in figure 4.2. We haven't implemented the drawLabel function 
yet, because I wanted to show how the whole drawing works first, but now we're ready to 
finish this part of the application.  

ADDING TEXT LABELS 
We've already implemented the first drawing function and the second one should have the 
same signature, so that we can use each of them as an argument to the universal 
drawStep function. The only thing that we have to fill in is the code for drawing the label 
and calculating its position as you can see in listing 4.11. 

Listing 4.11 Drawing text labels (F#) 
let fnt = new Font("Times New Roman", 11.0f)                           #A 
 
let centerX, centerY = 300.0, 200.0                                    #B 
let textDistance = 150.0                                               #C 
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let drawLabel(gr:Graphics, lbl, startAngle, angle) =                       
   let lblAngle = float(startAngle + angle/2)                          #1 
   let ra = Math.PI * 2.0 * lblAngle / 360.0                           #2 
   let x = centerX + labelDistance * cos(ra)  
   let y = centerY + labelDistance * sin(ra)  
   let size = gr.MeasureString(lbl, fnt)                               #D 
   let rc = new PointF(float32(x) - size.Width / 2.0f,                 #D 
                       float32(y) - size.Height / 2.0f)                #D 
   gr.DrawString(lbl, fnt, Brushes.Black, new RectangleF(rc, size))    #D 
#A Create font for drawing the text 
#B Center of the pie chart 
#C Distance of labels from the center 
#1 Compute angle for the label  
#2 Convert angle to radians 
#D Get the bounding box and draw the label 
We first declare a top-level font value used for drawing the text. We do this, because we 

don't want to initialize a new instance of the font every time the function is called. Since the 
font will be needed during the whole lifetime of the application, we don’t dispose it explicitly 
and we rely on .NET to dispose it when the application quits. The function itself starts with 
several lines of code that calculate location of the label.  

Briefly, the first line (#1) calculates the angle in degrees that specifies center of the pie 
chart sector occupied by the segment. We take the starting angle of the segment and add 
half of the segment size to move the label to the center. The second line (#2) converts the 
angle to radians. Once we have the angle in radians, we can compute the X and Y 
coordinates of the label using trigonometric functions cos and sin. Finally, we use 
MeasureString method to estimate the size of the text label and calculate location of the 
bounding box in which the text is drawn. The X and Y coordinates calculated earlier are used 
as a center of the bounding box. 

Now that we've finished the code for drawing text labels, we're done with the whole 
code for drawing the pie chart. We implemented the key function (drawChart), which 
performs the drawing of the chart earlier in listing 4.10. The function takes a file name of the 
CSV file as an argument and returns a bitmap with the chart. All we have to do now is add 
code which will call this function from our user interface. 

4.4.3 Creating Windows Application 
We started creating the GUI of the application earlier, so we already have code to create 
user interface controls. However we still have to specify user interaction logic for our 
controls. The user can control the application using two buttons. The first one (btnOpen) 
loads a CSV file and the second one (btnSave) saves the chart into an image file. We also 
have a PictureBox control called img which is where we'll show the chart. Listing 4.12 
shows how to connect the drawing code with our user interface. 

Listing 4.12 Adding user interaction (F#) 
let openAndDrawChart(e) =                                    #1 
   let dlg = new OpenFileDialog(Filter="CSV Files|*.csv")      

Licensed to Curtis J Pitts <beop.love@gmail.com>

Download at Boykma.Com



104   

©Manning Publications Co. Please post comments or corrections to the Author Online forum: 
http://www.manning‐sandbox.com/forum.jspa?forumID=460 

   if (dlg.ShowDialog() = DialogResult.OK) then 
      let bmp = drawChart(dlg.FileName)                      #2 
      img.Image <- bmp                                       #A 
      btnSave.Enabled <- true                                #B 
     
let saveDrawing(e) =                                         #3 
    let dlg = new SaveFileDialog(Filter="PNG Files|*.png") 
    if (dlg.ShowDialog() = DialogResult.OK) then 
        img.Image.Save(dlg.FileName)                         #C 
 
[<STAThread>] 
do                                                           #4 
   btnOpen.Click.Add(openAndDrawChart)                       #D 
   btnSave.Click.Add(saveDrawing)                            #D 
   Application.Run(main) 
#2 Draw the chart 
#A Display the bitmap 
#B Enable button for saving image 
#C Save the current chart 
#D Register event handlers 
The code first declares two functions that will be invoked when the user clicks on the 

"open" and "save" buttons respectively. For opening a file, we have a function 
openAndDrawChart (#1). The function first creates an OpenFileDialog, which is a 
Windows Forms class that shows standard dialog for selecting a file. If the user selects a file, 
the function calls drawChart (#2), which we implemented earlier. A result of this call is an 
in-memory bitmap, which can be assigned to the Image property of the PictureBox 
control. The second function is simpler, because it doesn't need to draw the chart. It saves 
the image currently displayed in the PictureBox to a file, which is specified by the user 
using SaveFileDialog. 

We've already talked about the code to execute a standard windows application, but 
listing 4.12 shows it again (#4), because we've added two lines of code. Before running the 
application, we specify that the openAndDrawChart function should be called when the 
user clicks on the btnOpen button and likewise for the second button. This is done by 
registering a function as a handler of the Click event using the Add method. Unlike in 
C#, where events are special language constructs, F# treats events as normal objects that 
have Add method. Events in F# also have AddHandler and RemoveHandler methods 
that serve exactly the same purpose as += and -= operators for events in C#. We’ll talk 
about this topic in more detail in chapter 16, but in most of the cases you can just use the 
Add method.  

4.5 Summary 
In this chapter we developed a simple but real-world application for drawing pie charts. 
We've seen basic F# and .NET numeric data types and explored both F# and .NET 
functionality for working with strings. We also demonstrated how to use usual .NET libraries 
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from F# and we've seen examples using Windows Forms, System.Drawing as well as 
basic I/O.  

What I really wanted to demonstrate in this chapter was a typical F# development 
process. In the beginning we started writing functions for working with the data and we 
immediately tested them in F# interactive. As we progressed, we implemented a function to 
load the real data from file and a simple console application to verify that the core functions 
work correctly. Finally, we added a graphical user interface and drew the chart using the 
functionality that we had already implemented and tested.  

We were able to implement the application in this way so early in the book mainly 
because it doesn't work with data extensively. The only data structures that we've used are 
tuples and lists that were both introduced in chapter 2. However, most real-world 
applications need to work with more complex data sets. This is a topic for part 2, where we'll 
see how to represent more complicated and structured data in a functional way and how to 
process it elegantly. 

Of course, the application is still quite simple and extending it (for example by adding 
different types of charts) would currently be difficult. To make the application more 
extensible, we need to perform one more iteration in our development approach. This 
requires many of the advanced functional techniques discussed in the rest of the book. After 
getting familiar with them, you can take a look at the book’s web site, which contains more 
evolved version of the application.  
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5 
Using functional values locally 

This chapter is about values. It's a term which is used a lot in different programming 
languages, so we ought to first define what we mean. When discussing the concepts of 
functional programming, you've seen that functional programs are described as a 
computation that takes some inputs and returns a result. In simple terms, a value is what 
you can use as an input or get as a result. This means that everything you'll work with inside 
the computations you implement is a value.  

When writing a function that performs some calculation, we can give it all the input 
values as input parameters, but what if the function needs to return multiple values as a 
result? In C#, we could either use "out" parameters or define a new class to group the 
values into a single object. This feels a bit inconsistent, because handling of input and output 
in this scenario is quite different. What we need is a simple way for combining multiple 
different values (for example item name of type string and a count of type integer) into a 
single value that could be used both as an input argument and as a result. In chapter 3, 
we've briefly talked about tuples that can be used exactly for this purpose, so we'll look at 
tuples in some more detail.  

Another example is when a computation can take one of various options as an input. A 
search function could for example take a name or an ID of the item. In C#, we would 
probably write a function that takes two parameters and set one of the argument to some 
invalid value (-1 as an ID or null instead of a name). However, there is a more elegant 
solution to this problem as well. We'll see how to combine values into an alternative value 
that can carry one of several options, but not both.  

Finally, in functional languages, functions are treated as values meaning that function is 
another (very important) kind of value. As you can tell, values are pretty fundamental to 
understanding functional programming, which is why I'm starting part 2 of the book with 
them. 
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5.1 What are values? 
Before we start by looking at various ways to create values and how to use them for 
controlling the program flow, let's try to clarify what a value is. Unfortunately, there is no 
simple definition, so the best way to understand that is to read this chapter. However, this 
section should make it a bit easier by drawing a distinction between values and data and also 
by explaining how values in functional languages relate to primitive types, value types and 
objects in languages like C#. 

15.1.1 Primitive types, value types and objects 
In C#, we can work with primitive value types such as integers or characters, a custom value 
types declared using the struct keyword (such as DateTime) and classes. The difference 
between value types and reference types is primarily in their behavior, but that's observable 
only when the class is mutable. For example string is a reference type that appears like a 
value type, because it is immutable. This means that by using only immutable types, we can 
almost eliminate the difference between value types and reference types. There are only 
differences in the performance, but the behavior will be the same. 

However, there is another measure that we can use to look at the differences between 
various types and that's their complexity. In C#, this distinction isn't that obvious, because 
even primitive types are standard value types that have methods and can implement 
interfaces. However, immutable value types are still considerably simple than objects that 
have virtual methods and mutable state. 

In functional languages, we start with a set of primitive types and we can then build 
more complicated types simply by composing the primitive types in various ways. This is 
different to object-oriented languages where we create types by defining their state in terms 
of primitive types and specifying their behavior using methods.  

The functional approach makes the whole type system a lot easier, because there is in 
principle no distinction between value types and reference types. It also makes the transition 
from simple values to complex composed types very smooth. In this range, values are all the 
primitive types and also most of the simple composed types. To understand when a 
composed type becomes too complex to be considered as a value, we need to look at what 
we'll call data. 

15.1.2 Recognizing values and data 
Values are usually used locally and you need to create and use them all the time. I've 
already mentioned tuple as one of the composed values that is used very frequently. Another 
example is option type that we'll discuss in section 5.3.3. It consists of two alternatives - 
one is some actual value and the other specifies that the value is missing. When working 
with option values, we have to explicitly check for both of the cases, so there is no danger 
of getting NullReferenceException. 

This should give you an idea that values are usually quite general purpose and are used 
for solving general programming tasks such as expressing that some argument is missing. 
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They can also be very simple (and locally used) utilities such as a value that would contain 
either ID or a name given as an argument to searching function. On the other hand, data is 
usually something large and represents information that is shared between several parts of 
the program. The programming language doesn't differentiate between the two, but we will 
occasionally our description. 

In this chapter, we're going to look at ways of working with values locally, which will 
include some basic F# type declarations. We'll come back to this discussion in chapter 7 
when we introduce the remaining type declarations that are typically used to represent data 
for the whole application. 

VALUES AND THEIR TYPES 

I've been using the terms value and type quite vaguely until now, so let me specify what 
I mean. To take a numeric example, "integer" is a type, whereas 43 is a value of that 
type. A type specifies an entire domain of values and value is always an element within 
the domain specified by its type.  

That's enough theory for now: let's look at our first way of composing values together. It 
should be familiar by now–it's time to revisit tuples. 

5.2 Multiple values 
You already know that the only thing a function can do is return a single value as its result. 
Once you start writing practical code, you're likely to face a common problem almost 
immediately: the need to return multiple values. This is the primary motivation for tuples, 
although as we've seen they can also be used to combine several values into a single 
argument for a function as well. 

5.2.1 Multiple values in F# and C# 
When we were discussing tuples earlier, we implemented a Tuple class in C# with the 
same behavior as F# tuples. This isn't the normal way to return multiple values from a C# 
method, although you may still find it very useful when writing C# code in a functional way. 
If you wanted to write this in C# without using tuples or declaring a new class for every 
method that returns multiple values, you would probably use "out" parameters. You can see 
both approaches side by side in listing 5.1, where we implement a simple function 
performing division with a remainder. 

Listing 5.1 Division with a remainder (F# and C#) 
> let divRem(a, b) = 
     (a / b, a % b);; 
val divRem : int * int ->  
             int * int 
 
 

int DivRem(int a, int b,  
           out int rem) { 
   rem = a % b;  
   return a / b; 
} 
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> let (res, rem) = divRem(10, 3);; 
val res : int = 3 
val rem : int = 1 

int rem; 
int res = DivRem(10, 3, out rem); 

The F# version of the code shows the F# interactive output, but if you ignore it you can 
see that the code is shorter. This is because returning multiple values from a function is 
much more important in F# than in C#. However, C# 3.0 adds one more way for 
representing multiple values called anonymous types. It is somehow limited, because it can 
be used only locally inside a single method, but it is still interesting. 

Anonymous types in C# 3.0 

The key feature added by LINQ is the ability to write queries. We'll talk about them later 
in chapter 11. Queries work with collections, so for example we might filter a collection of 
products and select only products from a particular category, then just return the name 
and price of each product. This is where anonymous types are needed, because when 
returning the name and price, we effectively need to return multiple values: 

var query = from p in data.Products 
            where p.CategoryID == 1 
            select new { Name = p.ProductName, Price = p.UnitPrice }; 
foreach(var result in query)  
   Console.WriteLine(result.Name); 

The difference between anonymous types and tuples is that elements of an anonymous 
type are named. The names are specified by the code creating the anonymous type in the 
query (#1) and can be used later to read the values of elements (#2). We could of course 
rewrite the example from previous listing using anonymous types: 

int a = 10, b = 3; 
var r = new { Remainder = a % b, Result = a / b }; 
Console.WriteLine("result={0}, remainder={1}", r.Result, r.Remainder); 

However, this isn't particularly useful, because anonymous types can be used only locally. 
When we return them from the method, we lose the compile-time type information and 
we can't easily access the properties any more. 

We've seen that in C# "out" parameters are often used for the same purpose as tuples 
in F#. You may be wondering how to use existing .NET methods with "out" parameters from 
F#... but fortunately the language has a nifty feature for exactly this purpose. 

USING TUPLES INSTEAD OF OUT PARAMETERS  
Even though you can use "out" parameters from F# if you really want to, tuples are 
generally preferred and so F# automatically exposes .NET methods with "out" parameters as 
methods that return a tuple. You don't have to do anything - it's just transparent. This 
means that your F# code can still look like idiomatic functional code even if it's calling into 
.NET code which has no concept of tuples. The most widely used method with an "out" 
parameter in .NET is probably TryParse, which is available in all of the numeric types such 
as Int32. Let's look at examples of using it from C# and F#: 
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// C# version using an "out" parameter 
int num; 
bool succ = Int32.TryParse("41", out num); 
 
// F# version using tuples 
let (succ, num) = Int32.TryParse("41");; 

The F# version is quite easy to write and if you want to use the default value when the 
parsing fails, you can simply use the snd function to extract the second element from the 
tuple, or use an underscore instead of the succ value in the pattern. When talking about 
functions for working with values in the next chapter, we'll also see a very simple function 
that allows us to specify the default value to use if the parsing within TryParse fails. 

Now, before looking at the best practices for using tuples in F#, let me just quickly get 
back to the discussion about values and types and revisit how tuple types and values of 
these types are constructed. 

5.2.2 Tuple type and value constructors 
You already know what the type of a tuple value looks like and we've seen it again in the 
previous code listing. The type is written using asterisk, so for example a type of a tuple 
storing an integer and a string is written as int * string. In the introduction, we talked 
about values and their types and I wrote that a type is a domain of all possible values. Let's 
use this point of view to look at the tuple type: how does this notation reflect the fact that 
tuple type is composed from several primitive types? 

The asterisk symbol plays a key role in this notation, because it serves as a type 
constructor. This means that you can use the asterisk symbol to construct tuple types from 
any other types. This means that the domain specifying values of the type int * string 
contains all possible combinations of integers and strings. You don't have to explicitly write 
types very often thanks to the wonders of type inference, but it's useful to see how types are 
constructed. 

On the other hand, you'll work with value constructors when writing any code that uses 
a tuple. This is the syntax that allows you to create values of tuple types from other, simpler 
values. For example (1, "hello") demonstrates the use of a value constructor. It 
creates one particular value that belongs to the domain specifying all possible combinations 
of integers and strings. To demonstrate the correspondence between value and type 
constructors, let's look at one more example. The following code snippet shows how we could 
use tuples to represent a message and X, Y coordinates saying where on the screen it should 
be displayed: 

> let msgAt1 = (50, 100, "Hello world!") 
val msgAt1 : int * int * string 
 
> let msgAt2 = ((50, 100), "Hello world!") 
val msgAt2 : (int * int) * string 

The code shows two different representations. In the first case we're using a single tuple 
with three elements to store all the basic values together. As you can see, the printed type 
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signature reflects this and shows three basic types separated by asterisks. In the second 
case, we first construct a tuple to store the X and Y coordinates and then we compose 
another tuple from this value and the message. As you can see, the type again reflects this 
construction. You can also see that the types are different. The first one is a tuple of three 
elements, while the second one is a tuple containing tuple and a string. This means that you 
should always consider the available options when you construct tuples. In this case, I prefer 
the second option, because it seems logical that the X and Y values form a single coordinate 
value. Let's look at a few more guidelines of how to use tuples appropriately. 

5.2.3 Using tuples compositionally 
The key concern when thinking about what kind of a tuple should be returned from a 
function is compositionality. How do you expect the tuple to be used? What other functions 
might use a tuple of the same type? Is this consistent with similar situations in the rest of 
the program?  

Let me demonstrate this using an example. We'll use the two ways of representing 
message and screen coordinates from the previous example and we'll assume that we 
already have a function for printing the message. Our printMessage function has the 
following signature: 

val printMessage : int * int -> string -> unit 

The signature tells us that the function takes two arguments. The first argument is a 
tuple containing the coordinates and the second argument is the message. Now, we want to 
print the string "Test!" to a location specified by tuple that we used earlier. Listing 5.2 shows 
two different ways of doing this, depending on which representation we use for the message 
and coordinates. 

Listing 5.2 Different representations of a message with coordinates (F#) 
> let msgAt1 = (50, 100, "Hello!");; 
val msgAt1 : int * int * string                    #1 
 
> let (x, y, _) = msgAt1                           #2 
  printMessage (x, y) "Test!";;                    #2 
 
> let msgAt2 = ((50, 100), "Hello!");;             #3 
val msgAt2 : (int * int) * string 
  
> let (pt, _) = msgAt2                             #4 
  printMessage pt "Test!";;                        #4 
 
> printMessage (fst(msgAt2)) "Message Test!";;     #5 
#1 Tuple of three elements 
#2 We have to extract all elements 
#3 Using a nested tuple 
#4 We need to extract only the first element 
#5 The simplest way using the second representation 
As you can see, the tuple that we created in the first case (#1) isn't compatible with the 

printMessage function, so when we want to compose the code, we first have to 
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deconstruct the tuple into elements (#3) and then build a new tuple value when calling the 
function. Using the second representation, we can do much better. The first element of the 
tuple is itself a tuple (#2) and is compatible with the first parameter of printMessage.  

This is very helpful, because when we're deconstructing the tuple later (#4), we can just 
take the first element and use it directly as the first argument. Actually, as the last line 
demonstrates (#5), we can do even better and use the fst function to get the first element 
of the tuple directly when calling the function. I think this clearly shows why it is important 
to structure tuples logically. However, you also need to consider the complexity of the tuples 
you create… 

AVOIDING COMPLICATED TUPLES 
Clearly, returning the results as tuples with extremely large number of elements makes the 
code hard to read. In F#, you can replace tuples with too many elements with record types, 
which provide a simple way to create a type with labeled members. Records are usually used 
for storing program data, so we'll talk about them in chapter 7. 

The point at which a function becomes hard to use based on the number of elements in 
its return type will vary from person to person, but I recommend avoiding returning tuples 
with more than 3 or 4 elements. Of course there are exceptions, and in the early phases of 
development it may be worth prototyping with large tuples, refactoring later when you have 
a clearer idea of how the values should be structured. Also, if the tuple is only used 
internally, using a larger tuple may be a better option than declaring a record type for a 
single use. 

Now that you know everything you need to about tuples, let's move to another topic. In 
the next section, we're going to talk about a way of constructing values that can be used for 
representing types with several alternative values. 

5.3 Alternative values 
In the previous section, we looked at how to create values that combine several values into 
one. For example, we took a string value and a numeric value and created a composed value 
that contains both string and a number. In this section, you'll see how to construct a value 
that can contain either a string or a number. 

First, let's look at an example of when this could be useful. Imagine that you're writing 
an application to schedule tasks and meetings, and you want to have several ways for 
specifying the schedule. For an event that happens only once, we'd like to store the date and 
time. However, we also want to allow events that occur repeatedly. For this kind of event, 
we'll need to store the date and time of the first occurrence and the time span between 
repetitions of the event. Finally, we'll also support events that don't have specified time yet, 
which we'll call unscheduled events. 

This means we want to create a value with three different options to specify the 
schedule - once, repeatedly, or never. A typical way to represent several options in object-
oriented programming is to use a hierarchy of classes. In our case, we'd have an abstract 
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class Schedule with an inherited class for every of the three options. You can see a 
diagram showing the object-oriented solution in figure 5.1. 

 

Figure 5.1 Class hierarchy for representing three different types of schedule with different properties for 
every case. 

In this example, we don't expect to add new types of schedules later during the 
development. On the other hand, we'll probably add new modules to the application that will 
need to work with the schedule and will need to access the properties of the inherited types. 
To make this easier, the base class has a property called tag, which specifies what type of 
schedule the object represents. In this case, ScheduleType is a C# enumeration with 
three possible values (Once, Never and Repeatedly). This makes the code less 
extensible in one way (by adding new types of schedules), but it allows us to easily add 
methods that work with schedules. I'll talk about extensibility shortly, but first, we'll look at 
representing alternatives in F# using discriminated unions.  

5.3.1 Discriminated unions in F# 
Types like this crop up quite frequently in functional programming, so functional languages 
tend to make it easy to create and use them. In F# the supporting feature is called 
discriminated unions. Unlike tuples, discriminated unions have to be declared in advance, so 
before we can create a value representing the schedule, we first have to declare the type 
with its name and, most importantly, the options it can represent. The code in listing 5.3 
shows a type for representing schedules in F#. 

Listing 5.3 Schedule type using discriminated union (F#) 
type Schedule = 
   | Never                               #A 
   | Once of DateTime                    #B 
   | Repeatedly of DateTime * TimeSpan   #C 
#A Unscheduled event with no arguments 
#B Event with single occurrence 
#C Repeated event with first occurrence and periodicity 
When creating the Schedule type, we combine several alternatives. We need to be 

able to distinguish between the alternatives, so we also specify a name for each of them 
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(Never, Once and Repeatedly). These names are usually called discriminators, because 
they discriminate between the options. This means that every value of the Schedule type 
will carry its discriminator and the values stored for the selected option (such as DateTime 
and TimeSpan in the last case of our example). As you can see, we're using asterisk 
symbol when storing multiple values for a single option. This is exactly analogous to the 
syntax for creating tuples, so you can see how the two concepts (multiple and alternative 
values) play nicely together. 

We'll also need discriminators when creating values of the Schedule type, because the 
discriminator specifies which option we are using. Listing 5.4 shows several examples. 

Listing 5.4 Creating values of discriminated union (F# interactive) 
> open System;;                                         #A 
 
> let tomorrow = DateTime.Now.AddDays(1.0);;            #B 
val tomorrow : DateTime                                 #B 
> let noon = new DateTime(2008, 8, 1, 12, 0, 0);;       #B 
val noon : DateTime                                     #B 
> let daySpan = new TimeSpan(24, 0, 0);;                #B 
val daySpan : TimeSpan                                  #B 
 
> let schedule1 = Never;;                               #C 
val schedule1 : Schedule = Never 
> let schedule2 = Once(tomorrow);;                      #D 
val schedule2 : Schedule = Once(2.8.2008 17:29:07) 
> let schedule3 = Repeatedly(noon, daySpan);;           #E 
val schedule3 : Schedule = Repeatedly(1.8.2008 12:00:00, 1.00:00:00) 
#A Open namespace with DateTime and TimeSpan 
#B Create values representing times and periodicity 
#C Create schedule using discriminator 'Never' 
#D Event occurring once at specified time 
#E Event occurring repeatedly every day 
As you can see, creating values of the Schedule type is quite easy. We're using 

discriminators as value constructors. This is similar to our previous use of value constructors 
for creating tuples such as (7, "seven"). In this case, the syntax looks almost like 
calling a function. For an option with no additional arguments, we just write the discriminator 
name and for option with more arguments, we write the arguments as if they were a single 
tuple.  

Of course, creating a value is pointless unless we can actually use it. Let's try calculating 
something useful with a schedule… 

5.3.2 Working with alternatives 
So far we've seen how to declare a discriminated union type and how to create values using 
discriminators. Now we'll look how to write code that reads the value. When working with 
discriminated unions, we always have to write code for all possible alternatives, because we 
don't know which one is represented by the value.  
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You can remember a similar situation from earlier on – we had to test whether a list was 
an empty list or a cons cell. You may also remember that we've used pattern matching to do 
this: the match construct allows us to test the value against several patterns. We can use 
the same feature to work with discriminated unions, except this time we use discriminators 
to write the patterns. Listing 5.5 shows an example that tests whether a scheduled event 
occurs during a week following the current date. 

Listing 5.5 Does the event occur next week? (F#) 
let occursNextWeek(schedule) = 
   let isNextWeekDate dt =                                        #1 
      dt > DateTime.Now && dt < DateTime.Now.AddDays(7.0) 
 
   match schedule with 
   | Never -> false 
   | Once(dt) -> isNextWeekDate(dt) 
   | Repeatedly(dt, ts) -> 
      let q = (DateTime.Now - dt).TotalSeconds / ts.TotalSeconds  #A 
      let q = max q 0.0                                           #B 
      let next = dt.AddSeconds(ts.TotalSeconds *  
                               (Math.Floor(q) + 1.0))             #C 
      isNextWeekDate(next)                                        #D 
#1 Nested utility function  
#A How many times will it occur before today? 
#B Only consider future occurrences  
#C Calculate first occurrence after today  
#D Test whether it happens next week 
This example is quite complicated but it shows the typical structure of an F# program. 

We're using the standard .NET DateTime and TimeSpan structures to work with dates 
and times. First, we declare a utility function which tests whether a DateTime occurs 
during the next week from the present time. Next, we use pattern matching to test which of 
the alternative schedule representations has been given to us. For the first two cases, the 
calculation is quite simple, but for the last one (a repeated event), we calculate the first 
occurrence of the event after the present date and then test whether this occurs during the 
next week using the utility function written earlier. You can see that we declare the value q 
twice in the code. This is called hiding a value and it is useful if we want to split a 
complicated calculation into two or more steps and make sure that we won't accidentally use 
the intermediate values. 

As you can see, the pattern used for testing whether a value matches a specific 
discriminator is exactly the same as we've used to construct the value in the first place. The 
pattern also extracts the values stored as arguments and assigns them to new values (called 
dt and dt with ts respectively), so we can immediately use them. Again, this is the same 
syntax we used when matching patterns with lists. 

Next, we'll look at exactly the same functionality implemented in C#. We've already 
seen the classes involved in figure 5.1, so we'll assume they've already been implemented 
and just look at the code that uses them. We'll look at another example of alternative values 
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later, including the complete C# implementation, so you'll see how we can write a C# class 
hierarchy with the same properties as an F# discriminated union later in the chapter. 

TIP 

If you want to see the complete source code for this example including class declarations, 
you can download it from the book's web site: www.functional-programming.net. 

There is one important thing to note before we look at the C# version of the example in 
listing 5.6. It shows a situation when we already have the class hierarchy representing 
schedules implemented (for example in a shared library) and we're adding new functionality 
to a module in our application. This means that we can't easily add a virtual method to the 
base class Schedule. Also, we want to keep the functionality localized in a single place in 
the code, to keep everything related to the calculation in a same place and the same file. 

Listing 5.6 Does the event occur next week? (C#) 
bool IsNextWeekDate(DateTime dt) { 
   return dt > DateTime.Now && dt < DateTime.Now.AddDays(7.0); 
} 
bool OccursNextWeek(Schedule schedule) { 
   switch(schedule.Tag) {                                         #1 
   case ScheduleType.Never:                                       #A 
      return false; 
   case ScheduleType.Once:                                        #B 
      return IsNextWeekDate(((Once)schedule).When);               #C 
   case ScheduleType.Repeatedly:                                  #D 
      var rp = (Repeatedly)schedule;                              #E 
      double q1 = (DateTime.Now - rp.First).TotalSeconds  
                  / rp.Periodicity.TotalSeconds; 
      double q2 = Math.Max(q1, 0.0); 
      DateTime next = rp.First.AddSeconds 
          (rp.Periodicity.TotalSeconds * (Math.Floor(q2) + 1.0)); 
      return IsNextWeekDate(next); 
   } 
   throw new InvalidOperationException();                         #F 
} 
#1 Switch using the schedule type  
#A Schedule is 'Never' 
#B Schedule is 'Once' 
#C Accessing property of the 'Once' class 
#D Schedule is 'Repeatedly' 
#E Extract properties of the 'Repeatedly' class 
#F All code-path should return, but this one is unreachable 
The algorithm used in the C# version is exactly the same as in the F# version, so the 

only difference is how we distinguish between the options and how we read values stored for 
the option. In F#, this was done using pattern matching. In the C# version we're using the 
switch, which is a C# analogy of the match construct from F#. This is possible because 
we have a Tag property in the base class and an enumeration that tells us what kind of 

Licensed to Curtis J Pitts <beop.love@gmail.com>

Download at Boykma.Com

http://www.functional-programming.net/


 117 

©Manning Publications Co. Please post comments or corrections to the Author Online forum: 
http://www.manning-sandbox.com/forum.jspa?forumID=460 

schedule the object represents. Otherwise we would have to use if statement with a 
sequence of dynamic type tests. Also, reading of values, which was done automatically in F# 
is now a bit difficult. We have to cast the schedule to the concrete class to read its 
properties. 

In fact, the C# version of the code is very close to the .NET representation used by the 
F# compiler for discriminated unions. This means that the two examples above are 
essentially the same after compilation. However, functional programming puts a stronger 
emphasis on this kind of data type, which is why it was much easier to write this code in F#.  

ADDING TYPES VS. FUNCTIONS 
As I mentioned earlier, our Schedule data type isn't extensible: it's difficult to add a new 
type of event. In F#, the difficulty occurs because you have to modify the type declaration; if 
it's in a shared library you have to recompile the shared library. Similarly, in the C# version, 
we have a Tag property which makes adding new types difficult. On the other hand, the 
benefit of this design is that it allows us to very easily add new functionality for working with 
schedules. 

I'll explain this in more detail, but let's first look at the second way for representing a 
problem. This is the usual object-oriented way in which all the functionality is enclosed in 
virtual methods. You can see this version of class hierarchy in figure 5.2. 

 

Figure 5.2 Representation of schedule using the usual object-oriented design with functionality 
implemented using virtual methods. 

In this version, we'd implement the virtual method OccursNextWeek in each of the 
inherited classes. The following list shows the key differences between the functional 
programming style (FP) demonstrated earlier and the usual object-oriented style (OO) 
outlined in figure 5.2. 

24) The FP version makes it easier to add new functionality that works with the data 
type. This is done by writing a function using pattern matching. On the other hand, 
adding a new kind of representation to the type is difficult. 

25) The OO version makes it easier to add new types of representation. This is done by 
writing a new inherited class and implementing of its virtual methods. On the other 
hand, adding a new virtual method is difficult. 

26) In the FP version the code for a single functionality is localized, so all code related 
to one kind of computation is in a single function. 
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27) In the OO version the code for a single type is localized, meaning that all code 
which works with the type is inside one class declaration. 

As you can see, the key question is whether it you want to make it easier to add new 
types or new functions. Experience shows that in functional programming, it is more 
common to add new functionality to an existing type. 

If you're familiar with common design patterns then you may remember the Visitor 
pattern, which is an object-oriented way of implementing data structures like discriminated 
unions. We'll talk about it when we look at recursive discriminated unions in chapter 7, 
because it is usually used when working with complex program data rather than simple 
values. I'll also delay the discussion of whether to choose a discriminated union or not until 
chapter 7, because this question is more relevant when talking about program data.  

In this chapter, we're talking about simple values: for any simple value that is 
represented as limited set of alternatives, you should always choose discriminated union. 
This is because for simple values, you almost certainly want to add new functionality instead 
of adding new types. There's one discriminated union which is particularly useful in functional 
programming and is present in all functional languages - in F# it is called the option type. 

5.3.3 Using the option type in F# 
We often need to represent the idea that some computation may return an undefined value. 
In C#, this is usually done by returning null. Unfortunately using null is a frequent cause 
of bugs: you can easily write code that assumes that a method doesn't return null and 
when this assumption is false, you'll see the infamous NullReferenceException. Of 
course, properly written code always checks for null values where appropriate and when 
writing unit tests for the application, a large number of tests verify the behavior in this 
corner case. 

In F# use of the null value is minimized and it is often used only when interoperating 
with .NET types. For representing computations that may return an undefined result, we 
instead use the option type. When we use this as the return type of a function, it is an 
explicit statement that the result may be undefined; this also lets the compiler force the 
caller to handle an undefined result. 

The option type is a discriminated union with two alternatives. The discriminator Some 
is used for creating an option that carries a value and None is used for representing 
undefined value. Listing 5.7 shows a function which reads an input from the console and 
returns undefined value when the user doesn't enter a number. 

Listing 5.7 Reading input as an option value (F# interactive) 
> open System;; 
> let readInput() = 
     let s = Console.ReadLine() 
     let (succ, num) = Int32.TryParse(s) #A 
     if (succ) then  
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        Some(num)                        #1 
     else  
        None;;                           #2 
val readInput : unit -> int option       #3 
#A Try to parse the input 
#1 Return a value using 'Some' 
#2 Return an undefined value using 'None' 
#3 Signature of the function 
The code is quite simple - it first reads the input and uses the TryParse method to get 

a tuple representing whether the input was correct and the parsed number. If the parsing 
succeeded, we use Some discriminator (#1), which takes a single argument to return the 
value. Otherwise we return an undefined result using the None discriminator (#2). You can 
also see the signature printed by the F# interactive (#3) it says that the method returns 
int option. This means that the option type is generic and in this case it carries an 
integer as a value. We'll see how a generic type like this can be defined in section 5.3.2.  

First, let's look at the code that uses this function. Here we'll see the real benefit of 
using option type, which is that we're forced by the language to write code to hande the 
undefined value. This is because the only way to access the value is using pattern matching. 
You can see the example in listing 5.8. 

Listing 5.8 Processing input using option value (F# interactive) 
> let testInput() = 
     let inp = readInput()                            #1 
     match inp with                                   #2 
     | Some(v) ->                                     #A 
        printfn "You entered: %d" v 
     | None ->                                        #B 
        printfn "Incorrect input!";; 
val testInput : unit -> unit 
 
> testInput();;                                       #C    
42                                                    #C 
You entered: 42                                       #C 
 
> testInput();;                                       #D 
fortytwo                                              #D 
Incorrect input!                                      #D 
#1 We cannot use the value directly! 
#2 Check for alternatives using pattern matching 
#A Branch for correct input 
#B Branch for undefined input 
#C Testing the first case interactively 
#D Testing the second case interactively 
As you can see, we cannot use the value directly after we call the readInput function 

(#1). This is the key difference that makes the program safer, because when a function 
returns a null value, you don't have to check this possibility. To read the value in F#, we 
have to use pattern matching (#2) and we write a branch for each of the discriminators that 
can be used to construct a value of the option type. We already seen that F# verifies 
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whether pattern matching is complete; that is, whether it covers all possible options. This 
guarantees that we cannot accidentally write code that only contains a branch for the Some 
discriminator. Listing 5.8 also follows F# best practices by testing the code in F# interactive 
straight away, checking that it behaves correctly in both cases.  

NULLABLE AND OPTION TYPES 

The F# option type is in some ways similar to the Nullable<T> type in C#, but it 
is more universal and safer. When we want to represent a missing value in C#, we 
usually use the null value, but this is possible only for reference types. Nullable types 
can be used to create value type that also has null as a valid value. 

On the other hand, in F# null isn't valid value of any type declared in F# (though it is 
still valid for existing .NET reference types). This means that whenever we need to create 
any value that may be empty we wrap the actual type into option type. Thanks to the 
pattern matching, the compiler can also ensure that we always implement code that 
handles the case when the value is missing. 

Now that we've seen how to use option types and how they are important for F# 
programming, we'll discuss how to implement them. 

IMPLEMENTING SIMPLE OPTION IN F# 
In the previous example, we were working with option type carrying integers, so let's first 
look at somewhat simplified type IntOption which can carry only integer values. I'm sure 
you could write the declaration for the type on your own already, but here it is: 

> type IntOption =                  #A 
      | SomeInt of int 
      | NoneInt;; 
(...) 
> SomeInt(10);;                     #B 
val it : IntOption = SomeInt 10 
#A Declare discriminated union with two alternatives 
#B Create sample value of 'IntOption' type 
There is one important difference between our declaration and the option type from the 

F# library. The library type is generic, which means that you can use it to store any type of 
value, including .NET object references such as Some(new Button()). Writing generic 
types is very important, because it makes the code more widely applicable. Let's take a 
closer look now. 

5.4 Generic values 
In this section we'll talk about generic type declarations and you'll see that in many ways 
generic types in F# are similar to generic types in C#. We've only seen one kind of type 
declaration so far–the discriminated union, declared with the type construct. We'll see other 
type declarations that can be written using the same construct later (in particular in chapters 
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7 and 9), but the syntax for making them generic is exactly the same as the syntax we'll see 
now. 

Types that don't need prior declaration, such as tuples, are naturally generic because we 
can use the value constructor with any values. When creating tuples we can write (12, 
34) as well as ("Pi", 3.14). In this section we'll see how to make your own type 
constructors generic as well. We'll start by looking at how we can implement a generic option 
type in C#. 

5.3.1 Implementing the option type in C# 
As we've just seen, option types are very important in functional programming and since we 
want to be able to code in a functional style in C# too, we need a proper C# implementation 
for option type. We've already discussed how to encode discriminated unions in object 
oriented languages, so the code has similar structure as the Schedule type we talked 
about earlier. In case of Option<T>, we could create a single class (or value type) with 
HasValue property, which would be a bit simpler. However, I want to demonstrate the 
idea of encoding discriminated unions in general, so we'll create a base class Option<T>, 
with Tag property and two inherited classes for the two possible alternatives. 

TIP 

We will use this type in some of the later chapters, so we'll also add several utility 
methods that make it easier to use in routine C# programming. This makes the code 
slightly longer, so you can download it from the book web site. Moreover, you can also 
download a .NET library with this and several other classes that are discussed in this book 
directly from: www.functional-programming.net/library.  

To make the type generic, we'll implement it as a generic C# class Option<T>. An 
inherited class Some<T> represents an alternative with a value of type T and None<T> 
class represents an alternative with no value. You can see the source code in the following 
listing. 

Listing 5.9 Generic option type using classes (C#) 
enum OptionType { Some, None };                              #1 
 
abstract class Option<T> { 
   private readonly OptionType tag; 
   protected Option(OptionType tag) {                        #A 
      this.tag = tag; 
   } 
   public OptionType Tag { get { return tag; } }             #2 
} 
class None<T> : Option<T> {                                  #3 
   public None() : base(OptionType.None) { } 
} 
class Some<T> : Option<T> {                                  #4  
   public Some(T value) : base(OptionType.Some) { 
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      Value = value; 
   } 
   public T Value { get; private set; }                      #B 
} 
 
static class Option {                                        #5 
   public static Option<T> None<T>() {                       #C 
      return new None<T>(); 
   } 
   public static Option<T> Some<T>(T value) {                #D 
      return new Some<T>(value); 
   } 
} 
#1 Enumeration with possible alternative 
#A Derived class will specify the alterative 
#2 Alternative represented by the instance 
#3 Inherited class representing empty option 
#4 Inherited class representing option with value 
#B Value carried by the option 
#5 Utility class for creating options 
#C Creates empty option 
#D Creates option with a value 
The generic base class contains only Tag property (#1), which can have one of two 

values specified by enumeration OptionType (#2). The tag is set in the constructors of 
the two derived classes, None<T> (#3) and Some<T> (#4). The second derived class 
carries a value, so it has a property called Value of type T. As usual in functional 
programming, this property is immutable, so it is set only once in the constructor.  

Finally, the code also includes a non-generic utility class Option. We've already 
implemented similar classes in chapter 3 when implementing functional tuple and list types 
in C#. The purpose of this class is to simplify the construction of option values. Instead of 
using constructor directly (new Some<int>(10)), we can leverage C# type inference 
when calling generic methods and write just Option.Some(10).  

Now, how can we work with our option type in C#? The following snippet shows C# 
version of code from listing 5.5 which tries to read a number from the console: 

Option<int> ReadInput() { 
   string s = Console.ReadLine(); 
   int num; 
   if (Int32.TryParse(s, out num))  
      return Option.Some(num); 
   else  
      return Option.None<int>(); 
} 

Thanks to the use of our option type, the method can simply return a single result, 
which may or may not contain a value. Before we see how we can work with the returned 
value, we're going to add two useful methods to the Option<T> class. In F#, we used 
pattern matching to tell the options apart; the methods in listing 5.10 allow us to write 
similar code in C#. 
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Listing 5.10 "Pattern matching" methods for Option class (C#) 
public bool MatchNone() { 
   return Tag == OptionType.None;                              #A 
} 
public bool MatchSome(out T value) { 
   if (Tag == OptionType.Some) value = ((Some<T>)this).Value;  #1 
   else value = default(T); 
   return Tag == OptionType.Some;  
} 
#A Return true when the value is 'None' 
#1 For 'Some' value, return the value using 'out' parameter  
Both of the methods return boolean that tells us whether the instance represents the 

tested alternative. The second one has also one "out" parameter, which is set to the value 
carried by the option type when the object is an instance of the Some class (#1), otherwise 
the "out" parameter is set to a default value and false is returned. Listing 5.11 shows how 
we can work with ReadInput method using these two utility methods. 

Listing 5.11 Working with option type (C#) 
void TestInput() { 
   Option<int> inp = ReadInput(); 
   int num; 
   if (inp.MatchSome(out num))                         #A 
      Console.WriteLine("You entered: {0}", num); 
   else if (inp.MatchNone)                             #B 
      Console.WriteLine("Incorrect input!"); 
} 
#A Pattern matching for Some(num) 
#B Pattern matching for None 
Thanks to the MatchSome and MatchNone utilities, we don't have to explicitly cast 

the value to the inherited class (e.g. Some<T>) to access the value. However, it still lacks 
many useful features of pattern matching. First of all, the compiler doesn't verify that we're 
providing code for all of the branches. More importantly, it isn't possible to write nested 
patterns, which is a common pattern in F#. For example, you might want to create an option 
type carrying a tuple. This would be written simply as Some(1, "One") and the pattern 
used with match construct could read values directly from the tuple: Some(num, str). 

Now we've seen how to implement an option type using generics in C#, we can turn our 
attention back to F# and show how the built-in option type is declared in the F# library. 

5.4.2 Generic option type in F# 
Generic types in F# are essentially the same as generic classes in C#. They allow us to write 
more general and reusable types. We've seen this need in the case of the option type, 
because we'd like to be able to use exactly the same generic type for creating options that 
carry different types as a value. But of course, we want to write type-safe code, so we need 
to know what type is carried by the option type. 

Just as in C#, we declare the type with a type parameter and then use that as the type 
of the value stored in the Some alternative: 
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type Option<'T> = 
   | Some of 'T  
   | None 

The syntax for declaring generic type is similar to that used in C#–we write type 
parameters in angle brackets. Unlike in C#, we have to use special names for type 
parameters so the name of the type parameter always starts with an apostrophe.  

When creating an instance of generic class in C# or a value of generic type in F#, the 
type parameter is "replaced" by the actual type used when creating the value. In C#, you 
have to specify the type explicitly when calling the constructor, but in F# the type argument 
is usually inferred by the compiler. Let's look at an example: 

> Some("Hi there!");; 
val it : Option<string> = "Hi there!" 

In this example, the compiler infers that we're creating an option containing a string 
because we're giving it a string literal as the argument. It then deduces that the type 
argument is string and the inferred type is Option<string>. We'll talk about type 
inference in some more detail in the next section. 

We've seen other syntax for writing generic types earlier. This is because F# is 
compatible with OCaml which uses different notation. We'll use the .NET syntax when writing 
generic types, but it's useful to understand both forms because you'll occasionally encounter 
the OCaml syntax.  

OCaml syntax for writing generic types 

In OCaml syntax, type parameters are written before the name of the type, so our 
pervious example of the generic option type could be written like this: 

type 'T Option = (...) 

When creating a value of this type, F# also prints its type using this notation. For 
example, the type of Some(10) would be displayed as int option. When declaring 
types with more than one type argument, the arguments are written in braces (which 
resembles the syntax for creating tuple values): 

type ('T1, 'T2) OptLabeledTuple = (...) 

It is important to note that this is just a syntactical difference and F# treats both 
declarations equally. If you declare a type using OCaml syntax and later use the .NET 
syntax when working with it (or vice versa), your code is still absolutely correct. It is just 
a matter of style–but it's a good idea to be consistent just for the sake of readability. 

We can declare generic types with more than one type parameter in exactly the same 
way as in C#. The following example shows how to create a generic discriminated union with 
two discriminators that allows us to store two values and optionally specify labels for them: 

> type OptLabeledTuple<'T1, 'T2> =  
      | LabeledTuple of string * 'T1 * string * 'T2 
      | UnlabeledTuple of 'T1 * 'T2 
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(...) 
 
> LabeledTuple("Seven", 7, "Pi", 3.14);; 
val it : OptLabeledTuple<int, float> =  
             LabeledTuple ("Seven", 7, "Pi", 3.14) 

You can see that when we create the value, the F# compiler correctly infers a type for 
both of the type arguments. Type inference is one of the cornerstones of F#, so let's look at 
some more examples and compare it with the inference available in C# 3.0. 

5.4.3 Type inference for values 
In general, type inference is a mechanism that deduces types from the code. Its purpose is 
to simplify code by removing the need to specify all types explicitly. In this section, we'll look 
at type inference for values, which lets us create values easily without writing their types. 
This isn't the only place where type inference occurs–especially in F#–so this is just the first 
part of description of the type inference. We'll talk about type inference for functions (and 
methods) and about automatic generalization in the next chapter. 

TYPE INFERENCE IN C# 3.0 
In C#, type inference for values is primarily represented by the var keyword, which is a 
new feature in C# 3.0. We've seen it already, but listing 5.12 shows a few examples so we 
can discuss it in more detail. 

Listing 5.12 Type inference using 'var' keyword (C#) 
var num = 10 + (2 * 16);                                      #A 
var str = String.Concat(new string[] {"Hello ", "world!"});   #B 
var unk = null;                                               #1 
#A Infers type 'int' 
#B Infers type 'string' 
#1 Error CS0815! 
The type inference mechanism simply looks at the right side of the assignment operator 

and works out the type of the expression. It has to do this even when you're not using var, 
to make sure that the variable you're assigning to is compatible with the value you're trying 
to assign. However, in the last case (#1), the C# compiler refuses to infer the type and 
reports an error message. While the null literal can be implicitly converted to any .NET 
reference type (or even a nullable value type) it doesn't actually have a real .NET type itself. 
The compiler doesn't know which type we want for the unk variable, so we have to specify 
the type explicitly. We've been using the var keyword with our option type earlier, so let's 
analyze several examples in detail: 

var s1 = Option.Some<int>(10); 
var s2 = Option.Some(10);            #A 
var n1 = Option.None<int>(); 
var n2 = Option.None();              #B 
#A Type inference for 'Some' method call 
#B Error CS0411! 
The first and third lines are unsurprising: we're calling a generic method and specifying 

its type arguments explicitly, so the compiler deduces the return type. On the second line, 
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we're not specifying a type argument for the method, but the compiler knows that the type 
of the first argument has to be compatible with the type argument, and it correctly deduces 
that we want to create a value of type Option<int>‡‡. However, on the last line, we get 
an error saying "The type arguments for method '…' cannot be inferred from the usage." This 
is because here, the compiler doesn't have enough clues to know what the type should be. 

Type inference in C# is limited in many ways, but it's still pretty useful. In F#, the 
algorithm is smarter and can infer the type in more cases, so let's look at some F# 
examples. 

TYPE INFERENCE IN F# 
In F#, we can often write large swathes of code without explicitly specifying any types, 
because the type inference mechanism is more sophisticated. When creating values, we use 
the let keyword and, in fact, we haven't yet seen any example where we would need to 
specify the type explicitly with a let binding. Listing 5.13 shows some examples that you'd 
probably expect to work. 

Listing 5.13 Type inference for basic values (F#) 
let num = 123                                     #A 
let tup = (123, "Hello world")                    #B 
let opt = Some(10)                                #C 
let input = printfn "Calculating..."              #D 
            if (num = 0) then None 
            else Some(num.ToString()) 
#A int                              #B int * string                  #C int option                  #D string option  
Out of these bindings, only the last example is particularly interesting or surprising. As 

we already know, everything in F# is an expression, so type inference has to work with any 
F# expressions (meaning any F# code, because everything is an expression). In this case, 
we have code that first prints something to screen and then returns an option type using a 
conditional expression. Note that whitespace is significant in F#'s lightweight syntax, so the 
if expression should start at the same offset as the printfn call.  

It sees that the value assigned to input is returned from a conditional branch. From 
the true branch, it can see that it will be some option type (because we're returning None), 
but it doesn't yet know what is the type instantiation. That's inferred from the false branch, 
where we're returning Some value containing a string. 

                                                            

 

‡‡ That's not the only type which could be valid here - we could want Option<long> for 
example. The rules for type inference with generic methods in C# 3.0 are long and 
complicated, but if situations where the compiler is willing to perform the inference, it usually 
gets the desired result. 

Licensed to Curtis J Pitts <beop.love@gmail.com>

Download at Boykma.Com



 127 

©Manning Publications Co. Please post comments or corrections to the Author Online forum: 
http://www.manning-sandbox.com/forum.jspa?forumID=460 

I mentioned that the F# type inference is more sophisticated, so let's now look at 
several slightly tricky examples: 

let a = null                      #1 
let (a:System.Random) = null      #2 
let a = (null:System.Random)      #2 
#1 Inferred type is obj (System.Object) 
#2 Different ways for adding type annotations 
In the first case (#1), F# behaves differently to C#. Instead of reporting an error, F# 

automatically chooses the most general reference type, which is in this case .NET type 
System.Object abbreviated as obj in F#. The next two examples (#2) show two 
different ways for adding a type annotation. In general, you can place type annotation 
around any block of F# code if you need to. Now, let's look at one more interesting case: 

> let n = None 
val n : 'a option 

Interestingly, this doesn't cause an error and instead F# creates a generic value. This 
construct doesn't have a C# equivalent; it's a value with only partially specified type. Instead 
of a concrete type (such as int or obj), F# uses a type parameter (and you can see that 
F# automatically names type parameters using letters starting with "a"). The type is fully 
specified later when using the value. We can for example compare the value with different 
types of option values without getting an error: 

> Some("testing...") = n;; 
val it : bool = false 
> Some(123) = n;; 
val it : bool = false 

Now that we know how to declare and create generic values, we should also discuss how 
to write functions that use them! We'll talk about generic functions in detail them later, but 
for now I'll show you just one example to whet your appetite. 

5.4.4 Writing generic functions 
Most of the functions or methods that work with generic types are higher order, which means 
that they take another function as an argument. This is such an important topic that I've 
given it a whole chapter to itself, but we can already write a generic function without 
straying into higher order territory. We'll create a function that takes an option type and 
returns the contained value when it contains a value. If the option doesn't contain a value, 
the function throws an exception. We can start by looking at the C# version:  

T ReadValue<T>(Option<T> opt) {                 #A 
   T v;  
   if (opt.MatchSome(out v)) return v;  
   else throw new InvalidOperationException(); 
} 
#A Generic method with type parameter T 
As you can see, we have created a generic method with a single type parameter. The 

type parameter is used in the method signature as a return value and also as a parameter to 
the generic Option<T> type. Inside the body, we use it once again to declare a local 
variable of this type. 
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This is exactly the kind of situation where F#'s type inference really shines. Take a look 
at the same thing implemented in F#. Interestingly, we still don't have to specify any types: 

> let readValue(opt) = 
     match opt with 
     | Some(v) -> v 
     | None -> failwith "No value!";; 
val readValue : 'a option -> 'a        #A 
#A Inferred signature with type parameter 
As you can see from the inferred type signature, the function is generic in exactly the 

same way as the C# version. The feature that allows this is called automatic generalization 
and we'll discuss it in depth later, but for the moment, here's a 20 second description: The 
F# type inference algorithm searches for the most general way to assign the types and 
leaves everything else as a generic type parameter. In this case, it knows that the argument 
(opt) is an option type, because we're matching it against Some and None discriminators. 
It also knows that the function returns a value contained in the option type, but it doesn't 
know what type it is, so it makes this type a generic type parameter. 

Hopefully this has piqued your interest and you're looking forward to hearing more 
about both automatic generalization and higher order functions–but first we should really 
finish our tour of common functional values. In other languages you wouldn't normally think 
of a function as a value, but that's one of the essential aspects that make functional 
programming so powerful and elegant. 

5.5 Function values 
We've already seen an example of using functions as values in chapter 3, where we wrote a 
function to aggregate list elements using another function given as an argument. In this 
way, we were able to use the same aggregation for different purposes - once we used it to 
calculate the sum of all the elements in a list and later we found the largest element in a 
collection. 

Working with collections of data is probably the best way of showing why using functions 
as values is important. Having said that, it's far from the only scenario where this concept is 
useful, as you'll see in the rest of the book. Let's start by looking at an example of 
imperative code that selects even numbers from the given collection and returns them in 
another collection: 

var nums = new int[] {4,9,1,8,6}; 
var evens = new List<int>();       #A 
foreach(var n in nums)             #A 
    if (n%2 == 0)                  #B 
        evens.Add(n);              #A 
return evens; 
#A Boilerplate code 
#B The important part 

The annotation refers to all three lines marked with #A. 
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Imagine which lines of the above code you would need to modify if you wanted to filter 
the collection differently, for example to return all positive numbers. Perhaps surprisingly, 3 
of the 4 lines shown (not counting the first one which just initializes data) are just boilerplate 
code that would stay exactly the same. By using a function as a value and by accepting it as 
a parameter we can extract the common parts of the code as a reusable method. The calling 
code then just has to specify an argument which describes the part which varies for different 
filters: the predicate to apply to each element. 

In fact, many standard functions such as filtering are already available in F# and in .NET 
3.5 LINQ added almost the same functions for working with collections. Some of them are 
named differently though. In F# a function which takes a predicate and performs filtering is 
called filter, whereas in LINQ it's called Where (similar to a SQL WHERE clause) Listing 
5.14 shows an implementation of the previous example using these functions. 

Listing 5.14 Filtering using predicate 
// C# version 
using System.Linq;                                   #A 
 
var nums = new int[] {4,9,1,8,6}; 
var evens = nums.Where(n => n%2 == 0);               #1 
PrintNumbers(evens);                                 #B 
 
// F# version with output from F# interactive 
> let nums = [ 4; 9; 1; 8; 6 ] 
val nums : int list 
> let evens = List.filter (fun n -> n%2 = 0) nums    #2 
val evens : int list = [ 4; 8; 6 ] 
#A Required to find the 'Where' extension method 
#1 Filtering using predicate 
#B Print the results to the console 
#2 Filtering using predicate  
If we had to write the predicate as a normal method in C# or function (written using 

let) in F#, it wouldn't make the code any shorter. The key feature that makes the code 
brief is the ability to write the function (in this case the predicate) inline directly when calling 
Where method (#1) or filter function (#2).  

In C#, this notation is called a lambda expression and in F# it's a lambda function. As 
most of this book is about F#, I'll use the F# name consistently throughout. In both cases, 
the word "lambda" refers to the Greek letter from lambda calculus, which I mentioned briefly 
in chapter 2. 

What is a function value? 

In functional programming languages, the existence of functions is motivated by 
mathematical notion of a function. This is in many ways different to the way that 
programmers with an imperative background intuitively think about functions. In 
imperative programming, a function is a routine that takes some arguments, executes 
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some code and returns the result. However a function in this sense can do anything. Most 
importantly, it can use and modify global state, so the result of calling the same function 
with exactly the same arguments can differ. The most obvious example of this is probably 
a pseudo-random number generator - it wouldn't be very random if it always returned the 
same result! 

In math, a function is more a relation between the arguments and the result. This means 
that a mathematical function always returns the same result given the same arguments. 
Clearly, this is the way our predicate from the previous example works. It always returns 
the same result for the same argument (true for even numbers and false for odd 
ones). Most of the functions we'll write will behave like this, but we'll see some interesting 
and useful exceptions from this rule at the end of the next chapter. You might like to 
think about what a mathematical pseudo-random number generator function would have 
to look like… 

For those who come from an object-oriented background, there is one more way to look 
at functions. You can think of a function value as an object implementing a really simple 
interface with just a single method. Using this understanding, the predicate from the 
previous example corresponds to the following interface: 

interface Function_Int_Bool { 
    bool Execute(int arg); 
} 

In C#, delegates are somewhat similar to functions and C# 3.0 moves them very close to 
this simple concept. However, the concept of a function as it's used in F# and functional 
programming is based primarily on the notion from mathematics. In this sense, F# 
functions are a lot more straightforward then interfaces or delegates - they are just 
functions. 

In the earlier examples, we've seen that lambda functions are a key element that makes 
concise functional style of programming possible. We'll work with them all the time through 
the entire book, so let's look at them in more detail. 

5.5.1 Lambda functions 
In F#, lambda functions create exactly the same function as the usual declaration using a 
let binding. In C#, there is no built-in concept of a function, so we work either with 
methods or with delegates. When you write a lambda function it is converted into a delegate 
or an expression tree, but you cannot use lambda function in C# to declare an ordinary 
method. Vitally, delegates can be also used like any other value in C#, so you can pass them 
as arguments to other methods, which in turn means we can use them to write higher order 
functions in C#. Let's start by looking at a short F# interactive session, then write similar 
code in C#. Listing 5.15 shows how we can write a function in F# using a let binding and 
lambda function syntax.  
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Listing 5.15 Using lambda functions and let bindings (F# interactive) 
> let square1(a) = a * a;;           #A 
val square1 : int -> int             #1 
 
> let square2 = fun a -> a * a;;     #2 
val square2 : int -> int             #3 
 
> let add = fun a b -> a + b;;       #4 
val add : int -> int -> int 
 
> add 2 3                            #B 
val it : int = 5 
#A Square written using let binding 
#1 Its signature 
#2 Square written using lambda notation 
#3 Signature is the same 
#4 Adding two integers 
#B Calling the function 
We started off by writing a simple function called square1 that calculates square of 

the given number, in the same way we've seen several times before. After we've entered it, 
F# prints its signature (#1) (the type of the value) which tells us that it takes an integer and 
returns an integer. Next, we declare another value called square2 and initialize it to a 
function using lambda notation (#2). As you can see by looking at the output (#3), the two 
declarations are equivalent. Finally, we declare another value (#4) which shows the syntax 
for a lambda function with two parameters. After seeing these examples, you could probably 
rewrite any F# function written using a let binding to use the lambda notation and vice 
versa. 

Now, let's see how we can write the same thing using lambda functions in C#:  
Func<int, int> square =       #A 
    a => a * a; 
Func<int, int, int> add =     #B 
   (a, b) => a + b; 
#A Square as a delegate using lambda function 
#B Lambda function with multiple parameters 
We're using a delegate type called Func, which is available in .NET 3.5. This delegate 

represents a function and its type arguments specify the types of the parameters and the 
return type. Notable differences between the C# and F# syntax are that the F# version 
starts with fun keyword and that in C# you specify multiple arguments in parentheses and 
also that in C# you have to specify the type explicitly.  

From delegates to functions in C# 

As already mentioned, functions in C# are represented using delegates and in particular 
the new Func family of delegates. In one sense, lambda functions and this delegate are 
a revolutionary change adding functional programming to C#, but it can also be seen as  
just a natural evolution of features that were already available in C#. This book usually 
takes the former view, but we'll look at the evolutionary aspect just for a moment. 

Licensed to Curtis J Pitts <beop.love@gmail.com>

Download at Boykma.Com



132   

©Manning Publications Co. Please post comments or corrections to the Author Online forum: 
http://www.manning‐sandbox.com/forum.jspa?forumID=460 

In the first version of C#, we already had delegates, but without generics, you had to 
declare a separate delegate for every combination of return and parameter types. When 
creating delegates, we also had to write the code inside a named method, so we could 
write a code like this: 

delegate int FuncIntInt(int a, int b); 
FuncIntInt add = new FuncIntInt(Add); 

The code assumes that there is an Add method with two integer parameters and an 
integer return type. C# 2.0 was a big step forward. It added generics, so we could 
declare a generic delegate like Func and use the new anonymous methods feature to 
create them instead of writing named method: 

delegate R Func<T1, T2>(T1 arg1, T2 arg2); 
Func<int, int, int> add = delegate(int a, int b) { return a + b; } 

Finally, .NET 3.5 and C# 3.0 came with several other changes. The Func delegate was 
added to the system libraries, so you no longer have to declare it yourself, and C# added 
lambda expressions that allow us to write the same code in a much more succinct way: 

Func<int, int, int> add = (a, b) => a + b; 

Lambda expressions have another interesting feature, which is that they can be 
converted into expression trees when we declare them as the Expression type. this 
allow us to treat the code of the lambda expression as data and obtain some 
representation of the source code of the lambda expression. This is very important for 
using LINQ with databases, but it isn't a key feature for us now. Also, due to this feature, 
we can't use var keyword when declaring lambda expressions, because the compiler 
needs to decide whether to compile it as a delegate (Func) or whether to store the 
expression tree (Expression). You can find more information on our web site 
http://www.functional-programming.net. 

The Func delegate and lambda expressions in C# are very similar to functions in F#, 
but F# had functions right from its inception, so it has little need for delegates. It 
supports using delegates mainly for interoperability reasons, but you probably won't use 
them very often.  

We've looked at a few examples of lambda functions in both F# and C#, but there are 
still a few important things to look at.  

TYPE ANNOTATIONS, ACTIONS AND STATEMENT BLOCKS 
In the previous examples, we didn't have to specify the parameter types explicitly. This is 
the normal behavior in F#, because its type inference capabilities are very powerful and in 
the previous examples it had enough clues to deduce the type. The situation in C# is quite 
interesting in a different way. 

Func<int, string> toStr1 = num => num.ToString(); 
Func<int, string> toStr2 = (int num) => num.ToString(); 
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Both lines show exactly the same code, with the sole difference being that the second 
line explicitly specifies the type of the num parameter. Both lines are correct, so how does 
C# know the type of num in the first line? The answer is that it uses the type from the 
variable declaration. It knows that Func<int, string> is a delegate that takes an 
integer as an argument, so it infers that the type of num should be integer. 

Explicit parameter typing is rarely needed in C#. You can't use the var keyword to 
declare lambda functions anyway, so C# will usually be able to deduce the type. One 
exception is where we're using the lambda function as an argument to a specific generic 
method. Even in F# we may occasionally need to give the compiler more information, which 
we do with type annotations. Listing 5.16 shows lambda function with a typo annotation to 
explicitly state the type of its parameter. 

Listing 5.16 Advanced lambda functions (F# interactive, C#) 
// F# version of the code (using F# interactive) 
> let sayHello =  
     (fun (s:string) ->                              #1 
        let msg = String.Format("Hello {0}!", s)      
        Console.WriteLine(msg)                        
     )                                               #2 
val sayHello : string -> unit                        #3 
  
// C# version of the code 
Action<string> sayHello =                            #4 
   s => {                
      var msg = String.Format("Hello {0}!", s); 
      Console.WriteLine(msg); 
   };                                                #5 
#1 Using F# type annotation 
#2 Complex lambda function is enclosed in braces 
#3 Inferred function signature 
#4 Function declared as an Action 
#5 Lambda function written as a statement block 
This example shows several interesting things. The first is the use of a type annotation 

in the F# version (#1). The syntax for type annotations in lambda functions is exactly the 
same as anywhere else in the F# code. The reason why we have to use it in this case is that 
there are several overloads of the String.Format method (with arguments of type int, 
string, and so forth); F# wouldn't be able to determine which overload to use without the 
type annotation. 

Another notable thing is that the body of the lambda function isn't just a single 
expression. In F#, we added a single let binding and enclosed the whole lambda function in 
braces (#2). In the C# version, we added a variable declaration and changed the syntax to 
use statement block. A statement block means that the body of the lambda function is 
enclosed in curly braces (#5) which allows us to write several statements inside the body. To 
return a result from a lambda function using a statement block, you use the return 
keyword as if you were returning a result from a method. 
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However, in this example the lambda function doesn't return a result at all. In F# where 
unit is an ordinary type, the inferred signature of the function is string -> unit 
(#2). This is an ordinary F# function that returns unit (that is, nothing) as a result. In C#, 
we cannot write Func<string, void> because void isn't a real type. For this reason, 
C# has another family of delegate types called Action, which represents lambda functions 
with no return type. The Action and Func delegates are very useful and they are in many 
ways similar to the F# function type, so let's look at the type of a function value in more 
detail. 

5.5.2 The function type 
We've seen that the type of function values in F# is written using the arrow symbol. This is 
in many ways similar to the way tuples are constructed. Earlier, we've seen that a tuple type 
can be constructed from other simpler types using a type constructor with an asterisk (e.g. 
int * string). The function type is constructed in a similar way, but using the function 
type constructor (e.g. int -> string). Of course, there is no value constructor for 
functions. In some sense, a function is a relation that specifies return value for every 
possible input, so instead of specifying enormous number of all combinations of this relation, 
we specify code that calculates the result using lambda functions.  

In C#, you can see this similarity as well. If we use our generic Tuple type and Func 
delegate, we can write the examples from previous examples as Tuple<int, string> 
and Func<int, string>. Instead of using built-in types as we can in F#, we have 
similar constructs implemented as ordinary C# types using generics. However, there is a 
very important difference between the F# function type and C# Func (or Action) 
delegate. The difference is that the type of an ordinary F# function is exactly the same as 
the type of an equivalent function written as a lambda function. In C#, lambda functions are 
converted into delegates and a delegate isn't the same thing as method. The distinction is 
subtle but important: we'll see it more clearly when we consider functions with multiple 
parameters in F#. Before that, let's look how we can use function value as an argument or a 
return value. 

FUNCTIONS AS AN ARGUMENT AND RETURN VALUE 
We've already used a function as an argument in C# and F# in chapter 3, so the basic idea 
this shouldn't be new to you. However, we haven't used lambda functions in that way yet. 
Lambda functions are the easiest way to write a function this is just used as an argument to 
another function. Listing 5.17 provides a simple example. The function at the start of the 
listing takes a number and a function as arguments and calls the function twice, using the 
result of the first call as an argument for the second. 

Listing 5.17 Function as an argument in C# and F# 
// Using C# 
 

// Using F# interactive 
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int Twice                      #1 
   (int n, Func<int,int> f) {  #1   
   return f(f(n)); 
} 
 
var r = Twice(2, n => n * n);  #2 
// Result: r == 16 

> let twice n (f:int -> int) =  
     f(f(n))                   #3 
val twice :  
   int -> (int -> int)  
   -> int                      #4 
 
> twice 2 (fun n -> n * n)     #5 
val it : int = 16 

#1 C# method taking function as an argument 
#2 Calling using lambda function 
#3 F# function taking function as an argument 
#4 Type of the function 
#5 Calling using lambda function 
In this example, we can see all the important features in a single place. It shows how to 

declare a C# method and an F# function that takes a function as an argument (#1, #3) and 
how to call them using lambda functions (#2, #5). In F# we use type annotations to tell the 
F# compiler that we want to work only with integers. As we'll see in the next chapter, 
without this annotation it would automatically make the function more general. This is 
usually desirable, but I wanted to keep this example as simple as possible.  

In the C# version, Twice is a method with a delegate as a parameter, but in the F# 
version it is a function, so when we look at the F# signature (#4), we can see that it is 
constructed with just a function type constructor (arrow). The second parameter is a function 
taking an integer and returning an integer; the overall type is a function with two 
parameters. 

Since a function is an ordinary value, we can also write a function (or method in C#) 
that returns a function as a result. Listing 5.18 shows a function that takes a number as an 
argument and returns a function that adds this number to any given argument. 

Listing 5.18 Function as a return value in C# and F# 
// Using C# 
 
Func<int, int> Adder(int n) {  
    return (a) => a + n;      #1 
} 
 
Func<int, int> add10 =        #3 
    Adder(10); 
 
var r = add10(15);            #5 
// Result: r == 25 

// Using F# interactive 
 
> let adder(n) =      
      (fun a -> a + n)           #1 
val adder : int -> int -> int    #2 
 
> let addTen = adder 10           #3 
val addTen : int -> int          #4 
 
> addTen 15                       #5 
val it : int = 25 

#1 Adder takes an int as an argument and returns a function as a result. In C# the return type is 
specified explicitly and it is a Func delegate, while in F# the return type is deduced by type 
inference: it’s a function with type int -> int.   
#2 As we'll see later, the printed type signature represents a function taking integer and returning a 
function. We can see it more clearly if we add braces to the printed signature. Then it would be 
written as int -> (int -> int). 
#3, #4 Calling the function (or C# method) that returns a function. In C# the result is a delegate and in 
F# it is an ordinary function. As the printed type signature shows (#4) it takes integer as an argument 
and returns also an integer. 
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#5 Calling the returned function (or Func delegate in C#); in F# we're using it as an ordinary 
function and in C#, we're calling it as a delegate. 

Below the code with bullets [WritingDevices_BulletsSample.png] 

The listing shows returning function as a result using a very simple example, but we'll 
see in the next few chapters that returning one function from another can be very useful. 
There is however one thing about the code that deserves further explanation. If we look at 
the type signature of the F# adder function, we can see that its type is int -> int -> 
int. This looks like a function with two arguments, but it’s probably easier to think of it as 
int -> (int -> int). They mean exactly the same thing, because F# and functional 
languages in general have a different notion of functions with multiple parameters to the 
normal object-oriented understanding. 

5.5.3 Functions of multiple arguments 
First of all, let's quickly review what options we have when writing a function. In F#, we can 
use tuples when writing functions with multiple arguments. Let's look at an example of a 
function that adds two integers written in this style. I'll use the lambda function syntax, but 
you could get exactly the same results using simple let-binding in F# as well. 

> let add = fun (a, b) -> a + b;; 
val add : int * int -> int  

As you can see by looking at the type signature, the function takes a single argument 
which is a tuple of the form (int * int) and the return type is int. This corresponds to 
the C# lambda function written in this form: 

Func<int, int, int> add =  
    (a, b) => a + b 

The Func<int, int, int> delegate represents a method which has two 
arguments of type int and returns an int, so this is very similar to the F# version written 
using tuples. You can see this similarity when calling the functions as well: 

let n = add(39, 44)                   #A 
var n = add(39, 44)                   #B 
#A F#: Calling a function with type int * int -> int 
#B C#: Calling a Func<int, int, int> delegate 
The syntax is exactly the same to call an F# function with a tuple as an argument as it is 

to call a C# Func delegate. Now, let's write the same code in F# using the more idiomatic 
F# style for writing functions with multiple arguments: 

> let add = fun a b -> a + b;; 
val add : int -> int -> int  

This is the same signature we saw earlier when we were returning a function. We can 
read it as int -> (int -> int). That would be a function that takes the first argument for the 
addition and returns a function. The result is then a function taking the second argument. 
We can rewrite the code in this way using two lambda functions, nesting one inside the 
other: 

Licensed to Curtis J Pitts <beop.love@gmail.com>

Download at Boykma.Com



 137 

©Manning Publications Co. Please post comments or corrections to the Author Online forum: 
http://www.manning-sandbox.com/forum.jspa?forumID=460 

> let add = fun a -> fun b -> a + b;; 
val add : int -> int -> int 

If this is the first time you’ve come across this idea, it can seem very odd. How can a 
function returning another function be the same as a function returning an integer? How can 
a function with just one parameter be the same as a function with two parameters? Don’t 
worry too much if it doesn’t make sense right away–I promise it will make sense eventually. 

Tuples with more than two elements 

Earlier on we implemented a generic type Tuple<A, B> for representing tuples in C#, 
but this class supports only tuples with two elements–unlike the real F# tuple type. How 
could we use it to represent F# type int * string * bool for example? 
Instead of implementing another Tuple class with three elements, we can nest the 
tuples: 

Tuple<int, Tuple<string, bool>> tup = (...); 

When we declare a variable like this, it can carry three values. To get the integer value, 
we can write tup.First, string is stored in tup.Second.First and finally, 
boolean value in tup.Second.Second. 

This is similar to nested functions, such as F# type int -> (string -> bool). 
However, there is a difference between tuples and functions. The function type above 
means the same thing as int -> string -> bool, while an F# tuple with three 
elements (int * string * bool) is different to a nested tuple type such as int 
* (string * bool). 

You may be wondering if there's any way of rewriting our previous example in C# 3.0–
and indeed we can. Instead of creating a delegate of type Func<int, int, int> we 
can create a delegate of type Func<int, Func<int, int>>. This is closer to the F# 
understanding of a function with a signature of int -> (int -> int): 

Func<int, Func<int, int>> add =  
    a => b => a + b;                 #1 
int n = add(39)(44);                 #2 
#A Nested lambda functions 
#B Adding numbers 
The declaration is written using two lambda functions (#1) just like our previous F# 

example. When adding numbers using this delegate (#2), we first have to invoke the first 
delegate, which returns another delegate. We then invoke the second delegate. In F#, where 
this is an entirely normal way of working with functions, the compiler optimizes it to make it 
more efficient. 

This is all very interesting, I hear you say–but what’s the point of taking functions apart 
in this way? It turns out to be surprisingly powerful. 
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PARTIAL FUNCTION APPLICATION 
To show a situation where this new understanding of functions is useful, let's turn our 
attention back to lists. Imagine that we have a list of numbers and we want to add 10 to 
every number in the list.  

In F# this can be written using the List.map function; in C# we would use the 
Select method from LINQ: 

list.Select(n => n + 10)            #A 
List.map (fun n -> n + 10) list     #B 
#A C# version 
#B F# version 
That's pretty brief already, but we can be even more concise if we already have the add 

function from the previous examples. The function that List.map expects as a first argument 
is of type int -> int; that is a function taking an integer as an argument and returning 
another integer. The technique that we can use is called partial function application: 

> let add a b = a + b;; 
val add : int -> int -> int                                   #1 
 
> let addTen = add 10;; 
val addTen : int -> int                                       #2 
 
> List.map (addTen) [ 1 .. 10 ];;                             #3 
val it : int list = [11; 12; 13; 14; 15; 16; 17; 18; 19; 20] 
 
> List.map (add 10) [ 1 .. 10 ];;                             #4 
val it : int list = [11; 12; 13; 14; 15; 16; 17; 18; 19; 20] 

The add function has a type int -> int -> int (#1). Since we now know that it actually 
means that the function takes an integer and returns a function, we can simply create a 
function addTen (#2) that adds 10 to a given argument just by calling add with only the 
first argument. We can then use this function as an argument to the List.map function 
(#3). This is sometimes useful, but what is more interesting is that we can use partial 
function application directly when specifying the first argument for List.map (#4). 

If we look at the types involved then the type of the add function is int -> (int -
> int) and by calling it with a single number as an argument, we get the result of type 
int -> int which is exactly what the List.map function expects. Of course, we can 
write exactly the same code in C# as well if we declare the add function using nested 
lambda functions: 

Func<int, Func<int, int>> add =     #A 
    a => b => a + b; 
 
list.Select(add(10));               #B 
#A Declaration using nested lambda functions 
#B Calling 'Select' using partial function application 
Just as we saw in the F# version, we call the add delegate and get a result of type 

Func<int, int>, which is compatible with the Select method. However, in C# it is 
more convenient to use the Func delegate with multiple arguments and specify the 
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argument to the Select method using another lambda function, because the language 
supports this better.  

PARTIAL FUNCTION APPLICATION AND CURRYING 

A term that you can sometimes hear when using the partial function application is 
currying. This refers to converting a function that takes multiple arguments (as a tuple) 
into a function that takes the first argument and returns a function taking the next 
argument and so on. So, for example the function of type int -> int -> int is a 
curried form of a function that has a type (int * int) -> int. Partial function 
application is then the use of a curried function without specifying all the arguments. 

As I've already mentioned, choosing the right style in F# can be difficult. Code that is 
written using tuples is sometimes easier to read for a large number of arguments, but it can't 
be used with partial function application. In the rest of the book, we'll use the style that feels 
more appropriate in each case, so you can get the intuitive understanding of which one is 
better. Most importantly, we'll use tuples in cases where it makes the code more readable 
and the style allowing partial function application in situations where that gives us clear 
benefits. We'll see plenty of examples of the latter when we look at higher order functions in 
the next chapter. 

5.6 Summary 
In this chapter we've been talking about values–the fact that the discussion went into a 

lot of detail about functions just highlights the fact that in F# functions are values! We've 
seen several ways for creating different values and corresponding composed types. We 
started by looking at tuples, which gave us a way to store multiple values as one. Next, 
we've seen discriminated unions that allow us to represent values consisting of various 
alternatives. When declaring discriminated union, we specify what are the options and a 
value can then be one of the declared options. We also looked at generic types that are 
similar to generic classes in C#. We've used them to declare types that can be used for 
carrying different values, which makes the code more general and reusable. 

As well as looking at the theory behind these types, we've looked at some of the 
common uses of them in F#. We've seen that multiple values (tuples) are useful for 
returning multiple results from a single function, and how this can be more appealing than 
using C# "out" parameters. A particularly interesting alternative value (discriminated union) 
is the option type, which can represent values that can be undefined. This is a very useful 
alternative to using null values, as the language forces the calling code to write a case that 
handles the "undefined" case when we use pattern matching. 

Finally, we looked at the function type in F# and its equivalent in C# - the Func 
delegate. We've seen how functions can be created using lambda function syntax and how 
they can be used as arguments as well as return values from another function or a method. 
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In one last twist to function values, we've also seen a very useful technique called partial 
function application. 

In this chapter we've seen only the basic ways for working with values. This is because 
many of the operations aren't usually written directly and are instead use higher order 
functions. Working with values in this way is the main topic for the next chapter. Using 
higher order functions, we'll be able to hide the logic for working with the value in a function 
and specify just the most important part of the operation using a function value given as an 
argument. 
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6 
Processing values with higher 

order functions 

In the previous chapter, we introduced the most common functional values. We've seen how 
they can be constructed and how we can work with them using pattern matching. However, 
expressing all the logic explicitly like this can be tedious, especially if the type has a 
complicated structure. 

The types of values that are composed from one or more simpler values include tuples 
and options from the previous chapter, but also lists from chapter 3. Tuples are in general 
formed from values of different types, so they contain value of one type exactly once. 
Options can contain zero or one value and lists contain any finite number of elements. When 
working with these composed values, we often want to apply some operation to the 
underlying values. This involves recurring and boilerplate task of deconstructing the 
composed value into its components and reconstructing it after we apply the operation. 

In this chapter, we'll see how to process values in an easier way. We'll do this by writing 
functions that abstract us from the underlying structure of the value and can be simply 
parameterized to perform a particular operation with some part of the value. We'll see that 
this approach gives us more concise way than using pattern matching explicitly. 

We'll first look at higher order and generic functions from a technical point of view, to 
provide some background for our discussion about value processing. Then we'll talk about 
processing functions for all the values that we've discussed so far, and some interesting 
relationships between processing functions for different kinds of values. 

6.1 Generic higher order functions 
Higher order functions are a way for writing generic functional code, meaning that the same 
code can be reused for many similar but distinct purposes. This is a key of modern 
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programming, because it allows us to write fewer lines of code by factoring out the common 
part of the computation. 

Generic code in functional and object-oriented programming 

When writing generic code, we usually want to perform some operation on the value that 
we obtain, but since the code should be generic, we don't want to restrict the type of the 
value too much: we want to allow further extension of the code.  

The elementary (but not always the best) solution to this problem using object-oriented 
programming is to declare an interface. The actual value given to a method will have all 
operations required by the interface, so it will be possible to perform needed operations 
on the value. A trivial example in C# might look like this: 

interface ITestAndFormat {  
   bool Test(); 
   string Format(); 
} 
void CondPrint(ITestAndFormat tf) { 
   if (tf.Test()) Console.WriteLine(tf.Format()); 
} 

In functional programming, the approach is usually to work with generic methods that 
use type parameters and can work with any type. However, we don't know what 
operations can be performed on the value, since the type parameter can be substituted 
by any actual type. As a result, functional languages use a different method for specifying 
operations - they pass functions for working with the value as additional arguments. The 
functional version of the previous example in C# would look like this: 

void CondPrint<T>(T value, Func<T, bool> test, Func<T, string> format) { 
   if (test(value)) Console.WriteLine(format(value)); 
} 

For a small number of functions this is a very efficient method, because we don't need to 
declare the interface in advance. However, for more complicated processing functions, we 
can still use interfaces as we'll see in chapter 9. Also calling the function is easier, 
because we can implement the operations using lambda functions. As we'll see in section 
6.5, writing a code like this in F# is also largely simplified by the use of type inference. 

Higher order functions are very important for functional programming and we'll see how 
they can be used for working with several functional values shortly. Methods like 
CondPrint from the previous sidebar will be quite important for us, so let's look how we 
can implement the same functionality in F#. 

6.1.1 Writing generic functions in F# 
We've already seen a simple generic function in the previous chapter, but it only used a 
single argument which was a generic option type. Listing 6.1 shows an F# implementation of 
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the CondPrint method from the sidebar above. It takes three arguments - a value, a 
function that tests whether the value should be printed and a function for formatting the 
value. 

Listing 6.1 Generic function 'condPrint' (F# interactive) 
> let condPrint value test format =                             #1 
     if (test(value)) then printfn "%s" (format(value))         #A 
  ;; 
val condPrint : 'a -> ('a -> bool) -> ('a -> string) -> unit    #2 
 
> condPrint 10 (fun n -> n > 5)                                 #B 
               (fun n -> "Number: " + n.ToString());;           #B 
Number: 10 
#1 Function with three arguments 
#A Calling functions given as arguments 
#2 Inferred type signature 
#B Test the function 
As you can see, we've declared a function with three parameters using a let binding 

(#1), but we didn't need to specify the type of any of the parameters. This is because F# 
type inference works for functions too. We’ll see later just how sophisticated it can be. For 
now, we can just be content that it automatically infers the type signature of the function 
(#2), which corresponds to our previous generic method in C#. 

SYNTAX FOR WRITING HIGHER ORDER FUNCTIONS 

In chapter 4, we were discussing whether it is better to pass multiple pieces of data to a 
function as separate arguments (for example add 2 3) or as a tuple (for example 
add(2, 3)). When writing higher order functions, we'll use the first style, because this 
makes it easier to use lambda functions as arguments. It also supports the pipelining 
operator, which we'll see shortly. 

Another way of representing generic functionality in F# is to write custom operators. 
We'll want to use these later, so let's take a brief look now, and also introduce the pipelining 
operator–a particularly useful operator from the F# library. 

6.1.2 Custom operators 
Custom operators are defined using let bindings in a similar way to functions. They can use 
any characters from the usual F# mathematical (+/-*<>) or logical operators (!&|=) and 
also several other characters ($%.?@^~). When declaring an operator, you enclose its name 
in braces, which is the only difference from a normal let binding. Be careful when using an 
asterisk, because (* is a beginning of multi-line F# comment-the solution in that case is to 
add additional space between the parenthesis and asterisk. Listing 6.2 shows how to declare 
and use a simple operator for working with strings. 

Listing 6.2 Working with strings using custom operator (F# interactive) 
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> let (+>) a b = a + "\n>>" + b;;             #A 
val ( +> ) : string -> string -> string 
 
> printfn "%s" ("Hello world!" +>             #B 
                "How are you today?" +>       #B 
                "I'm fine!");;                #B 
>> Hello world! 
>> How are you today? 
>> I'm fine! 
#A Operator for concatenating strings in a special way 
#B Concatenate several messages 
The benefit of using a custom operator instead of a function is that you can use it with 

infix notation. This means that instead of concat "A" (concat "B" "C"), we can 
write "A" +> "B" +> "C". This is particularly useful when applying the operator several 
times as in our previous example, because then you don't have to wrap each call in braces.  

SIMULATING CUSTOM OPERATORS IN C# 
In C# you can't declare new operators, although you can overload existing ones. However, 
the same pattern can be achieved to some extent using extension methods. This is a new 
feature in C# 3.0, so we briefly introduce them in a sidebar. 

Extension methods 

In C#, every method has to be wrapped in a class and operations that work with object 
are part of the class declaration and can be called using dot-notation. Extension methods 
give us a way to add new method for working with an object, without modifying the 
original class declaration. Previously, this could be done by writing static method like this: 

StringUtils.Reverse(str); 

This is very impractical though, because finding a static method in some "Utils" class is 
quite difficult. In C# 3.0 we can implement Reverse as an extension method and then 
call it this way: 

str.Reverse(); 

Implementing an extension method is quite easy, because it is just an ordinary static 
method, with a special modifier. The only difference is that it can be invoked as an 
instance method using dot-notation. However, it is still static method, so it can neither 
add new fields nor access private state of the object: 

static class StringUtils { 
   public static string Reverse(this string str) { /* ... */ } 
} 

All extension methods have to be enclosed in a non-nested static class and they have to 
be static methods. The keyword this is used before the first parameter to tell the 
compiler to make it an extension method. 
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If we implement the string concatenation in the previous example as an extension 
method, we'll get syntax very similar to the original F# version. The listing 6.3 shows the 
same code written using standard static method call and using extension methods. 

Listing 6.3 Working with strings using extension methods (C#) 
public static string AddLine(this string str, string next) { #A 
   return str + "\n>>" + next; 
} 
 
Console.WriteLine(StringUtils.AddLine(                       #B 
   StringUtils.AddLine("Hello world!",                       #B 
                       "How are you today"),                 #B 
   "I'm fine!"));                                            #B 
 
Console.WriteLine("Hello world!"                             #C 
         .AddLine("How are you today")                       #C 
         .AddLine("I'm fine!"));                             #C 
#A 'this' keyword precedes the first parameter 
#B Using standard static method calls 
#C Concatenate strings using extension method 
The benefits are purely in terms of readability: we can write the method calls in the 

same order in which we want them to occur, we don't need to specify the class implementing 
the method, and we don't need extra bracing. As it is often the case, syntax makes quite an 
important difference.  

THE F# PIPELINING OPERATOR 
The pipelining operator (|>) allows us to write the first argument for a function on the left 
side; that is, before the function name itself. This is useful if we want to invoke a several 
processing functions on some value in sequence and we want to write the value that's being 
processed first. Let's look at an example, showing how to reverse a list in F# and then take 
its first element: 

List.hd(List.rev [1 .. 5]) 

This isn't very elegant, because the operations are written in opposite order then in 
which they are performed and the value that is being processed is on the right side, 
surrounded by several braces. Using extension methods in C#, we'd write: 

list.Reverse().Head(); 

In F#, we can get the same result by using the pipelining operator: 
[1 .. 5] |> List.rev |> List.hd 

Even though, this may look tricky, the operator is in fact very simple. It has two 
arguments - the second one (on the right side) is a function and the first one (on the left 
side) is a value. The operator gives the value as an argument to the function and returns the 
result.  

In some senses, pipelining is similar to calling methods using dot-notation on an object, 
but it isn't limited to intrinsic methods of an object. This is similar to extension methods, so 
when we write a C# alternative of an F# function that's usually used with the pipelining 
operator, we'll implement it as an extension method. 
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Now that we've finished our short introduction about generic higher order functions and 
operators, we can finally look how they can be used for solving daily functional programming 
problems. The first topic that we'll discuss is using higher order functions for working with 
tuples. 

6.2 Working with tuples 
We've been working with tuples from our first functional code in chapter 3, so you're already 
quite familiar with them. However, we haven't looked at how we can work with them using 
higher order functions. Tuples are really simple, so you can often use them directly, but in 
some cases the code isn't as concise as it could be. Tuples are a good starting point for 
exploring higher order functions because they're so simple. The principles we'll see here are 
applicable to other types, too. In chapter 3, we used tuples to represent a city and its 
population. When we wanted to increment the population, we had to write something like 
this: 

let (name, population) = oldPrague 
let newPrague = (name, population + 13195) 

This is very clear, but a bit longwinded. The first line deconstructs the tuple and the 
second one performs a calculation with the second element and then builds a new tuple. 
Ideally, we'd like to say that we want to perform a calculation on the second element 
deconstructing and re-constructing the tuple. First let's quickly look at the code we want to 
be able to write, in both F# and C#, and then we'll implement the methods which make it all 
work. This is what we're aiming for: 

let newPrague = oldPrague |> mapSecond ((+) 13195)   #A 
var newPrague = oldPrague.MapSecond(n => n + 13195); #B 
#A F# version 
#B C# version 
This version removes all the additional code to re-construct the tuple and specifies the 

core idea - that is, we want to add some number to the second element from the tuple. The 
idea that we want to perform calculation on the second element is expressed by using the 
mapSecond function in F#. Listing 6.4 shows the implementation of both this and the 
similar mapFirst function. 

Listing 6.4 Higher order functions for working with tuples (F# interactive) 
> let mapFirst  f (a, b) = (f(a), b)                    #1 
  let mapSecond f (a, b) = (a, f(b))                    #2 
  ;; 
val mapFirst  : ('a -> 'b) -> 'a * 'c -> 'b * 'c        #3 
val mapSecond : ('a -> 'b) -> 'c * 'a -> 'c * 'b        #3 
#1 Applies function to the first element 
#2 Applies function to the second element 
#3 Inferred type signatures 
Listing 6.4 implements two functions: one that performs an operation on the first 

element of the tuple (#1) and one that acts on the second element (#2). The 
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implementation of these functions is quite simple: we use pattern matching in the parameter 
list to deconstruct the given tuple, and then call the function on one of the elements. Finally, 
we return a new tuple with the result of the function call and the original value of the other 
element. Even though the body doesn't look difficult, the inferred type signatures (#3) look 
rather complicated when you see them for the first time. We'll come back to them shortly. 

MAP OPERATION 

I used the term map in the name of the functions above. A map (also called a projection) 
is a very common operation and we'll see that we can use it with many data types. In 
general, it takes a function as an argument and applies this function to one or sometimes 
more values that are stored in the data type. The result is then wrapped in a data type 
with the same structure and returned as a result of the map operation. The structure isn't 
changed, because the operation we specify doesn't tell us what to do with the composed 
value. It specifies only what to do with the component of the value and without knowing 
anything else the projection has to keep the original structure. This description may not 
be fully clear now, because it largely depends on the intuitive sense that you'll get after 
more similar operations later in this chapter. 

The signatures of these functions are useful for understanding what they do. Figure 6.1 
disassembles the signature of mapFirst and shows what each part of it means. 

 

Figure 6.1 The 'mapFirst' function takes a function as the first argument and applies it to the first element 
of a tuple that is passed as the second argument.  

Let's look at what the signature tells us about the function. First of all, it is a generic 
function and it has three type parameters, automatically named by F# compiler. It takes a 
function as the first parameter and a tuple containing values of types 'a and 'c as the 
second argument and the signature tells us that the returned tuple is composed from values 
of types 'b and 'c. 

Since the function doesn't have any safe way of working with values of type 'c, it is 
likely that the second element is just copied. The next question is how we can get a value of 
type 'b in the result. We have a value of type 'a (the first element of the tuple) and a 
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function that can turn a value of type 'a into a value of type 'b, so the most obvious 
explanation is that mapFirst applies the function to the first element of the tuple. 

Now that we've implemented the mapFirst and mapSecond functions, let's start 
using them. Listing 6.5 shows an F# interactive session demonstrating how they can be used 
to work with tuples. 

Listing 6.5 Working with tuples (F# interactive) 
> let oldPrague = ("Prague", 1188000);;  
val prague : string * int 
 
> mapSecond (fun n -> n + 13195) oldPrague;;       #1 
val it : string * int = ("Prague", 1201195) 
 
> oldPrague |> mapSecond ((+) 13195);;             #2 
val it : string * int = ("Prague", 1201195) 
#1 Using a lambda function as an argument 
#2 Using partial application and pipelining 
The example shows two ways for writing the same operation using the mapSecond 

function. In the first case, we directly call the function (#1) and give it a lambda function as 
the first argument and the original tuple as the second argument. If you look at the resulting 
tuple printed by F# interactive, you can see that the function was applied to the second 
element of the tuple as we wanted. 

In the second version (#2) we're using two powerful techniques. We're using partial 
function application, which was introduced in the previous chapter, to create a function which 
adds 13195 to the second element. Instead of writing lambda function explicitly, we just 
wrote (+) 13195. If an operator is used in braces, it behaves like an ordinary function, 
which means that we can add two numbers by writing (+) 10 5. If we use partial 
application and give it just one argument, we obtain a function of type int -> int that 
adds the number to any given argument and is compatible with the type expected by the 
mapSecond function. The type is 'a -> 'b and in this case int will be substituted for 
both 'a and 'b.  

Thanks to pipelining, we can write the original tuple and then the function to apply. This 
makes the code more readable, describing first what's we're going to manipulate and then 
what we're going to do with it–just like in C# where operations are typically of the form 
target.MethodToCall(). The use of pipelining is also a reason why mapSecond 
takes the lambda function as the first argument and tuple as the second one and not the 
other way round. 

I started this section by talking about F#, because showing the inferred type signature 
of a higher order function and using pipelining can be demonstrated very naturally in F#. Of 
course, we can use the same concepts in C# and we'll do so in the next section. 
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6.2.1 Methods for working with tuples in C# 
In this section, we'll be working with the generic Tuple class from chapter 3 and we'll add 
similar functionality to what we've just seen in F#. Listing 6.6 shows C# alternatives to 
higher order functions mapFirst and mapSecond. 

Listing 6.6 Extension methods for working with tuples (C#) 
public static class Tuple { 
   public static Tuple<B, C> MapFirst<A, B, C> 
          (this Tuple<A, C> t, Func<A, B> f) {   #1 
      return Tuple.New(f(t.First), t.Second);    #A 
   } 
   public static Tuple<C, B> MapSecond<A, B, C> 
          (this Tuple<C, A> t, Func<A, B> f) { 
      return Tuple.New(t.First, f(t.Second));    #B 
   } 
} 
#1 Create extension method using 'this' modifier 
#A Apply function to the first element 
#B Apply function to the second element 
The implementation of these methods is very straightforward, but we have to specify the 

types explicitly. I used the same names for the type parameters as in the previous F# 
version, so you can compare them. In C#, the type signature is mixed with the 
implementation, which makes the code harder to read, but we can look at the type signature 
separately: 

Tuple<B, C> MapFirst(Tuple<A, C>, Func<A, B>) 

This corresponds to the previous F# signature. You can see that the last argument is a 
function that turns a value of type A into a value of type B. We're using type A in the input 
tuple and B in the result. We also changed the order of parameters, so the original tuple is 
now the first argument. This is because we want to use the method as an extension method 
for tuples, so the tuple has to come first. (We also added this modifier to the first 
parameter (#1) to tell the compiler we wanted to make it an extension method.) Now we 
can use the method both directly and as an extension method: 

var oldPrague = Tuple.New("Prague", 1188000); 
var newPrague1 = Tuple.MapSecond(oldPrague, n => n + 13195); #A 
var newPrague2 = oldPrague.MapSecond(n => n + 13195);        #B 
#A Direct call 
#B Calling extension method 
When calling the method directly, the code is very similar to the first use in F#, because 

it calls a method with two arguments, and uses a lambda function for one of them. In F# we 
were then able to use the pipelining operator to write the original tuple first, and as you can 
see on the last line, extension methods play a similar role. Because MapSecond is written 
as an extension method, we can call it using dot-notation on the oldPrague object. 

In this section, we've seen two useful higher order functions for working with tuples and 
I'm sure you'd be now able to write other functions such as applying the same operation on 
both elements of a tuple and so on. After discussing multiple values in the previous chapter, 
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we talked about alternative values, so we'll follow the same pattern and look at writing 
higher order functions for alternative values now. 

6.3 Calculating with schedules 
In this section, we'll apply the techniques from previous section to alternative values. When 
working with tuples, we found it very helpful to write a function that works with one element 
from the tuple. Similarly, when working with alternative values, we'll need a higher order 
function that performs some operation on one or more of the alternatives. We'll follow the 
examples from the previous chapter, so we'll start with a schedule type and then we'll look at 
the option type.  

In the previous chapter, we implemented a type for representing schedule of an event. 
In F#, it is a discriminated union called Schedule that can contain one of three options. 
The three discriminators for the alternatives are Never, Once and Repeatedly. In C#, 
we represented it as an abstract class Schedule with a property called Tag and one 
derived class for representing each of the three options. In this section we'll add a higher 
order function for working with schedules.  

Now, imagine what the application might want to do with the schedule. The most 
common operation (especially in the today's busy world) could be rescheduling the events. 
For example, we may want to move all the events we know about by one week, or move 
events scheduled for Monday to Tuesday. Writing this explicitly would be difficult, because 
we'd have to provide code for each of the three different types of schedule.  

However, if you think about the problem, we only want to calculate a new time based on 
the original time, without changing any other property of the schedule. In listing 6.7, we 
implement a function that allows us to do exactly this. 

Listing 6.7 Map operation for schedule type (F# interactive) 
> let mapSchedule f sch = 
     match sch with 
     | Never -> Never                                            #A 
     | Once(dt) -> Once(f(dt))                                   #B 
     | Repeatedly(dt, ts) -> Repeatedly(f(dt), ts)               #C 
  ;; 
val mapSchedule : (DateTime -> DateTime) -> Schedule -> Schedule #1 
#A Unscheduled events remain unscheduled 
#B Reschedule event occurring once 
#C Reschedule repeated event 
I called the operation mapSchedule, because it performs some operation for all the 

date and time information that the schedule contains. When the alternative is Never, it 
simply returns Never with no re-calculation. When it is Once, the function given as an 
argument is used to calculate the new time. When the schedule is represented using 
Repeatedly, the function is used to calculate new time for the first occurrence, keeping 
the original period between occurrences. 
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If you look at the type signature (#1), you can see that the first parameter is a function 
that takes DateTime as an argument and returns a new DateTime. This is used for 
calculating the new time of scheduled events. The original Schedule is the last parameter. 
This parameter ordering makes it possible to call this function using the pipelining operator, 
just as we did with the tuple projections earlier. Listing 6.8 shows how we can manipulate a 
collection of schedules using this function. 

Listing 6.8 Rescheduling using 'mapSchedule' function (F# interactive)  
> let schedules =  
     [ Never; Once(DateTime(2008, 1, 1));  
       Repeatedly(DateTime(2008, 1, 2), TimeSpan(24*7, 0, 0)) ];;    #1 
val schedules : Schedule list 
 
> for s in schedules do 
     let ns = s |> mapSchedule (fun d -> d.AddDays(7.0))              #2 
     printfn "%A" ns;;                                                #A 
Never                                                                 #3 
Once 8.1.2008 0:00:00                                                 #3 
Repeatedly (9.1.2008 0:00:00,7.00:00:00)                              #3 
#1 Create list of schedules for testing 
#2 Add one week using 'mapSchedule' 
#A Print the new schedule  
#3 Schedules moved by one week 
We start by creating a list of schedules for testing (#1). One interesting thing to note 

here is that I omitted the new keyword when constructing DateTime and TimeSpan .NET 
objects. This is just a syntactical simplification that F# allows when working with simple 
types like these two. 

After creating the list, we iterate over all the schedules. In the next line (#2), we use 
the mapSchedule function to move each schedule by one week. The change in the date is 
specified as a lambda function that returns a new DateTime object. Of course, you could 
implement more complicated logic to perform different rescheduling inside this function. The 
original schedule is passed as the last argument using the pipelining operator. As you can 
see (#3) the operation changed the date of the Once schedule and the first occurrence of 
the schedule represented using Repeatedly option. 

6.3.1 Processing a list of schedules 
In the previous example we used an imperative for loop, because we just wanted to print 
the new schedule. If you wanted to create a list containing the new schedules, you could use 
List.map function and write something like this: 

let newSchedules =  
   List.map (fun s ->  
         s |> mapSchedule (fun d -> d.AddDays(7.0)) #A 
      ) schedules 
#A Calculate new schedule 
The first argument of the List.map function is another function that is used to obtain 

a new value using the original schedule. In this example, we calculate a new schedule called 
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ns and return it as the result of the function. However, the previous code can be simplified 
by using pipelining and partial function application like this: 

let newSchedules =  
    schedules |> List.map (mapSchedule (fun d -> d.AddDays(7.0))) 

When we specify just the first argument (a function for calculating the date) to the 
mapSchedule function, we get a function of type Schedule -> Schedule. This is 
exactly what the List.map operation expects as the first argument, so we don't have to 
write lambda function explicitly. This example shows another reason why many higher order 
functions take the original value as the last argument. That way we can use both pipelining 
and partial application when processing a list of values.  

Another option would be to use sequence expressions that are similarly succinct, but 
probably more readable for a newcomer. We'll look at sequence expressions in chapter 12, 
but now let's see how we could implement the same functionality in C#. 

6.3.2 Processing schedules in C# 
In C# we'll build a MapSchedule method which should be similar to the mapSchedule 
function in F#. Again, this will have two parameters: a function for calculating the new date, 
and the original schedule. As we're working with alternative values in C#, we'll use a 
switch block and the Tag property as shown in the previous chapter. Listing 6.9 shows 
the complete implementation. 

Listing 6.9 Map operation for schedule type (C#) 
public static Schedule MapSchedule 
     (this Schedule schedule, Func<DateTime, DateTime> calcDate) {    #1 
   switch(schedule.Tag) { 
      case ScheduleType.Never:  
         return new Never();         
      case ScheduleType.Once: 
         var os = (Once)schedule; 
         return new Once(calcDate(os.When));                          #A 
      case ScheduleType.Repeatedly: 
         var rs = (Repeatedly)schedule; 
         return new Repeatedly(calcDate(rs.First), rs.Periodicity);   #B 
      default: 
         throw new InvalidOperationException();                       #C 
   } 
} 
#1 Extension method using 'this' modifier 
#A Calculate new date 
#B Calculate new date for the first occurrence 
#C Unreachable code - no other option! 
The method simply provides a branch for each of the possible representations and 

returns a new value in each branch. When the option carries a date that can be processed 
(Once and Repeatedly), it first casts the argument to the appropriate type and then 
uses calcDate argument to calculate the new date. 
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The method is implemented as an extension method inside a ScheduleUtils class 
(for simplicity, the listing doesn't include the class declaration). This means that we can call 
it as a static method, but also more readably using dot-notation on any instance of the 
Schedule class. The following snippet shows how we can move every schedule in a list by 
one week: 

schedules.Select(s =>  
    s.MapSchedule(dt => dt.AddDays(7.0)) ) 

This is similar to our earlier F# code. We're using the LINQ Select method (instead of 
the List.map function) to calculate a new schedule for each schedule in the original list. 
Inside a lambda function, we call MapSchedule on the original schedule, passing it an 
operation that calculates the new date. 

When we have several similar operations that we need to perform with the value, it 
would be tedious to use the schedule type directly, because we'd have to provide the same 
unwrapping and wrapping code multiple times for each of the operations. In this section, 
we've seen that a well designed higher order function can simplify working with values quite 
a lot. Now, let's look at writing higher order functions for another alternative value that we 
introduced in the previous chapter: the option type.  

6.4 Working with the option type 
One of the most important alternative values in F# is the option type. To recap what we've 
seen in the previous chapter, it gives us a safe way to represent the fact that value may be 
missing. This safety means that we have to explicitly pattern match on option whenever we 
want to perform some operation with the actual value. In this section, we'll learn about two 
useful functions for working with the option type.  

F# LIBRARY FUNCTIONS 

The functions we saw earlier for working with tuples aren't part of the F# library, because 
they are extremely simple and using tuples explicitly is usually easy enough. However, 
the functions we'll see in this section for working with the option type are part of the 
standard F# library. 

First of all, let's quickly look at an example that demonstrates why we need higher order 
operations for working with the option type. We'll use the readInput function from the 
previous chapter, which reads user input from the console and returns a value of 
type option<int>. When the user enters a valid number, it returns Some(n); 
otherwise it returns None. Listing 6.10 shows how we could implement a function that reads 
two numbers and returns a sum of them or None when either of the inputs wasn't a valid 
number. 

Listing 6.10 Adding two options using pattern matching (F#) 
let readAndAdd1() = 
   match (readInput()) with 
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   | None    -> None 
   | Some(n) ->                     #A 
      match (readInput()) with 
      | None    -> None 
      | Some(m) ->                  #B 
         Some(n + m)                #C 
#A Extract value from the first input 
#B Extract value from the second input 
#C Add numbers and return the result 
The function calls readInput to read the first input, extracts the value using pattern 

matching and repeats this for the second input. When both of the inputs are correct, it adds 
them and returns Some, in all other branches it returns None. Unfortunately, the explicit 
use of pattern matching makes the code rather long. Let's now look at two operations that 
will help us to rewrite the code more succinctly. 

6.4.1 Using the map function 
I'll first introduce both of the operations and first show you how to use them from F#, where 
they are already available in the F# library. Later we'll also look at their implementation and 
how we can use them from C#. As we've already seen, the best way to understand what a 
function does in F# is often to understand its type signature. Let's first look at 
Option.map: 

> Option.map;; 
val it : (('a -> 'b) -> 'a option -> 'b option) = (...) 

I said that map operations usually apply a given function to values carried by the data 
type and wrap the result in the same structure. For the option type, this means that when 
the value is Some, the function given as the first argument ('a -> 'b) will be applied to a 
value carried by the second argument ('a option) and the result of type 'b will be 
wrapped inside an option type, so the overall result has type 'b option. When the 
original option type doesn't carry a value, the map function will simply return None. 

We can use this function instead of the nested match. When reading the second input, 
we want to 'map' the carried value to a new value by adding the first number: 

match (readInput()) with 
| None        -> None 
| Some(first) -> readInput() |> Option.map (fun second -> first + second  

On the second line we already have a value from the first number entered by the user. 
We then use readInput() to read the second option value from the console. Using 
Option.map, we project the value into a new option value, which is then returned as the 
result. The lambda function used as an argument adds the first value to a number carried by 
the option value (if there is one).  

6.4.2 Using the bind function 
As a next step, we'd like to eliminate the outer pattern matching. Doing this using 
Option.map isn't possible, because this function always turns input value None into 
output value None and input value Some into output Some carrying another value. 
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However, in the case above, we want to do something quite different. Even when the input 
value is Some, we still want to be able to return None when we fail to read the second 
input. This means that the type of the lambda function we specify as an argument shouldn't 
be 'T1 -> 'T2, but rather 'T1 -> option<'T2>. 

The operation like this is called bind in the functional programming terminology and it is 
provided by the standard F# library. Let's now take a look at the signature and at the 
specification of what this function actually does: 

> Option.bind;; 
val it : (('T1 -> option<'T2>) -> option<'T1> -> option<'T2>) = (...) 

The difference in the type signature of bind and map is only in the type of the function 
parameter as we discussed it in the previous paragraph. Understanding is a behavior of a 
function just using the type is a very important skill of functional programmers. In this case, 
the type gives us a very good clue of what the function does if we assume that it behaves 
reasonably. We can analyze all the cases to infer the specification of the function's behavior: 

28) When the input value is None, bind cannot run the provided function, because it 
cannot safely get value of type 'T1, and so it immediately returns None. 

29) When the input value is Some carrying some value x of type 'T1, bind can call the 
provided function with x as an argument.  It could of course still return None, but a 
more reasonable behavior is to call the function when possible. Now, there are two 
different cases what the function given as the argument can return: 

30) If the function returns None, the bind operation doesn't have any value of type 
'T2, so it has to return None as the overall result. 

31) If the function returns Some(y), then bind has a value y of type 'T2 and only in 
this case it can return Some as the result, so the result in this case is Some(y). 

Using bind we can now rewrite the outer pattern matching, because it gives us a way to 
return undefined value (None) even when we successfully read the first input. Listing 6.11 
shows the final version of readAndAdd. 

Listing 6.11 Adding two options using bind and map (F#) 
let readAndAdd2() = 
   readInput() |> Option.bind (fun num ->     #1 
      readInput() |> Option.map ((+) num) )   #2 
#1 Process first input using 'bind' 
#2 Process second input using 'map' 
After reading the first input, we pass it to the bind operation (#1), which executes the 

given lambda function only when the input contains a value. Inside this lambda function, we 
read the second input and project it into a result value (#2). The operation used for 
projection just adds the first input to the value. In this listing, we've written it using the plus 
operator and partial application instead of specifying the lambda function explicitly. If you 
compare the code with listing 6.10, you can see that it is definitely more concise. Let's now 
analyze how it works in some more detail. 
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6.4.3 Evaluating the example step-by-step 
It can take some time to become confident with higher order functions like these, especially 
when they are nested. We're going to examine how the code from the previous listing works 
by tracing how it runs for a few sample inputs. Moving from the abstract question of "what 
does this code do in the general case?" to the concrete question of "what does this code in 
this particular situation?" can often help to clarify matters. 

First let's see what happens if we enter an invalid value as the first input. In that case, 
the first value returned from readInput() will be None. To see what happens, we can 
use computation by calculation and show how the program evaluates step-by-step. You can 
see how the calculation proceeds in listing 6.12. 

Listing 6.12 Evaluation when the first input is invalid 
[CA] Read the first input from the user:            #A 
   None |> Option.bind (fun num ->  
      readInput() |> Option.map ((+) num) ) 
 
[CA] Evaluate the "Option.bind" call:               #B 
   None 
#A Replace the 'readInput()' call with the returned value 
#B Lambda function isn't called and None is returned 
In the first step, we simply replace the call with the None value that the function 

returns when we enter some invalid input (such as empty string). The second step is more 
interesting. Here, the Option.bind function gets None as its second argument. However, 
None doesn't carry any number, so bind cannot call the specified lambda function and the 
only thing it can do is to immediately return None. 

Now, how would the function behave if we entered "20" as the first input? Obviously, 
there will be two different options - one when the second input is correct and one when it is 
invalid. Listing 6.13 shows what happens if the second input is "22". 

Listing 6.13 Evaluation when both inputs are valid 
[CA] Read the first input from the user:            #A 
   Some(20) |> Option.bind (fun num ->  
      readInput() |> Option.map ((+) num) ) 
 
[CA] Evaluate the "Option.bind" call:               #1 
   readInput() |> Option.map ((+) 20) 
 
[CA] Read the second input from the user:           #B 
   Some(22) |> Option.map ((+) 20) 

 
[CA] Evaluate the "Option.map" call:                #2 
   Some( (+) 20 22 ) 

 
[CA] Evaluate the "+" operator:                     #C 
   Some(42) 
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#1 Replace 'readInput()' with the first input 
#2 'Option.bind' calls the lambda function and replaces 'n' with 20 
#3 Read the second input value 
#4 'Option.map' calls the provided function and wraps the result in 'Some' 
#5 Calculate 20 + 22 and wrap the result 
The first step is similar to the previous case, but this time, we call Option.bind with 

Some(20) as an argument. This option value carries a number that can be passed as the 
num argument to the lambda function we provided. Option.bind simply returns the 
result that it gets from this function, so the result in the next step will be the body of this 
function (#1). We also replace all occurrences of num with the actual value, which is 20. 

We then read the next input value with readInput() which returns Some(22). 
Having replaced readInput() with Some(22) we can evaluate the Option.map 
function. This operation evaluates the function it gets as an argument and in addition wraps 
the result in the Some discriminator, so our next step (#2) shows that we need to calculate 
the addition next and wrap the result in Some. After calculating the addition, we finally get 
the result, which is Some(42). 

After following this step-by-step explanation you should have pretty good idea how 
Option.bind and Option.map work. Equipped with this information, we can look at the 
implementation of these two operations in both F# and C#. 

6.4.4 Implementing operations for the option type 
The implementations of both bind and map have a similar structure, because they are both 
higher order functions that pattern match against an option value. We'll take a look at both 
F# and C# implementations, which is a good example of how to encode functional ideas in 
C#. Let's start with listing 6.14, which shows the implementation of map operation. 

Listing 6.14 Implementing the map in F# and C#  
> let map f opt =  
     match opt with  
     | Some(v) -> 
Some(f(v)) 
     | None -> None 
  ;; 
val map :  
   ('a -> 'b) ->  
   'a option -> 'b option 

static Option<R> Map<T, R>(this 
Option<T>  
      opt, Func<T, R> f) {           
   T v; 
   if (opt.MatchSome(out v)) 
      return Option.Some(f(v)); 
   else 
      return Option.None<R>(); 
} 
 
 
 
 

The implementation first examines the option value given as an argument. When the 
value is None, it immediately returns None as the result. Note that we cannot just return 
the None value that we got as an argument, because the types may be different. In the C# 
version the type of the result is Option<R>, but the type of the argument is Option<T>.  

When the value of the argument matches the discriminated union case Some, we get 
the value of type T and use the provided function (or Func delegate) to project it into a 
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value of type R. Since the value returned from the operation should have a type 
Option<R>, we need to wrap this value using the Some constructor again. 

The source code of map and bind operations is quite similar, but there are some 
important differences. Let's now look at the second couple of operations in listing 6.15. 

Listing 6.15 Implementing the bind operation in F# and C# 
> let bind f opt =  
     match opt with  
     | Some(v) -> f(v) 
     | None -> None 
  ;; 
val bind :  
   ('a -> 'b option) ->  
   'a option -> 'b option 
 
 
 
 
 
 
 

static Option<R> Bind<T, R>(this 
Option<T>    
      opt, Func<T, Option<R>> f) {        
   T v; 
   if (opt.MatchSome(out v)) 
      return f(v); 
   else 
      return Option.None<R>(); 
} 

Can we fit these two listings on a single page (so that the reader 
can compare them without turning pages)? 

The bind operation starts similarly by pattern matching on the option value given as the 
argument. When the option value is None, it immediately returns None just like in the 
previous case. The difference is in the case when the option carries some actual value. We 
again apply the function that we got as an argument, but this time we don't need to wrap 
the result inside Some constructor. This is because the value returned from the function is 
already option and as you can see from the type signature, it has exactly the type that we 
want to return. This means that even in the Some case, the bind operation can still return 
None, depending on the function provided by the user. 

As usual, the F# version takes the original value as a last argument to enable pipelining 
and partial application, while the C# version is an extension method. Let's now look how to 
rewrite the previous example in C# using the newly created methods.  

USING THE OPTION TYPE IN C# 
Extension methods give us a way to write the code that uses Bind and Map in a fluent 
manner. As the number of parentheses can be confusing, note that the call to Map is nested 
inside a lambda function that we give as an argument to Bind: 

Option<int> ReadAndAdd() { 
   return ReadInput().Bind(n => 
      ReadInput().Map(m => m + n)); 
} 
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In C# the difference between using higher order functions and working with option types 
explicitly is even more significant. This is because C# doesn't directly support types like 
discriminated unions, but if we supply our types with appropriate processing functions, the 
code becomes readable. This is the important point to keep in mind when writing functional-
style programs in C#: some of the low-level constructs may feel unnatural, but thanks to 
lambda functions, we can write elegant functional code in C# too. 

So far, we've seen how to use higher order functions to work with multiple values and 
alternative values. The last kind of value we talked about in the previous chapter was 
function. In the next section, we'll see that we can write surprisingly useful higher order 
functions for working with function values as well. 

6.5 Working with functions 
All the higher order functions we've discussed so far in this chapter have had a similar 
structure. They had two parameters: one was a value to be processed and the second was a 
function that specified how to process the value. When working with functions, the "value" 
parameter will be also a function, so our higher order functions will take two functions as 
arguments. 

6.5.1 Function composition 
Probably the most important operation for working with functions is function composition. 
Let's start by looking at an example where this will be very helpful. We'll use the example 
where we stored a name and population using a tuple. In listing 6.16 we create a function to 
determine the status of a settlement based on the size of the population. We also test it by 
determining the status of several places stored in a list.  

Listing 6.16 Working with city information (F# interactive) 
> let places = [ ("Grantchester", 552);  
                 ("Cambridge", 117900);  
                 ("Prague", 1188126); ];;  #A 
val places : (string * int) list 
 
> let statusByPopulation(population) =                            #B 
      match population with 
      | n when n > 1000000 -> "City" 
      | n when n >    5000 -> "Town" 
      | _                  -> "Village";; 
val statusByPopulation : int -> string 
 
> places |> List.map (fun (_, population) ->                      #1 
      statusByPopulation(population));;                           #2 
val it : string list = ["Village"; "Town"; "City"] 
#A Create a list with test data 
#B Returns status based on the population 
#1 Iterate over settlements and read population information 
#2 Calculate the status 
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The first parts of listing 6.16 (creating a list of test data and the declaration of the 
statusByPopulation function) are quite straightforward. The interesting bit comes in 
the last few lines. We want to obtain the status of each settlement using List.map. To do 
this we pass it a lambda function as an argument. The lambda function first extracts the 
second element from the tuple (#1) and then calls our statusByPopulation function 
(#2).  

The code works well but it can be written more elegantly. The key idea is that we just 
need to perform two operations in sequence. We first need to access the second element 
from a tuple and then perform the calculation using the returned value. Since the first 
operation can be done using snd function, we just need to compose these two functions. In 
F#, this can be written using function composition operator (>>) like this: 

snd >> statusByPopulation 

The result of this operation is a function that takes a tuple, reads its second element 
(which has to be an integer) and calculates the status based on this number. We can 
understand how the functions are composed from table 6.1, which shows their type 
signatures. 

Function value Type 

Snd ('a * 'b) -> 'b 

snd (after specification) ('a * int) -> int 

statusByPopulation int -> string 

snd >> 
statusByPopulation 

('a * int) -> string 

Table 6.1 Type signatures of 'snd', 'statusByPopulation' and a function obtained by composing 
these two functions using >> operator. 

On the second line, the table shows a specific type of the snd function after the 
compiler figures out that the second element of the tuple has to be an integer. We can get 
this type if we substitute type parameter 'b from the first row with a type int. Now we 
have two functions that can be composed, because the return type on the second row is 
same as the input type on the third row. Using composition, we join the functions together 
and get a function that calls the first one and passes the result of this call as an input to the 
second one. The resulting function has the same input type as the function on the second 
row and the same return type as the function on the third row. Listing 6.17 shows how we 
can rewrite the original code using function composition. 

Listing 6.17 Using function composition operator (F# interactive) 
> places |> List.map (fun x -> (snd >> statusByPopulation) x);;  #1 
val it : string list = ["Village"; "Town"; "City"] 
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> places |> List.map (snd >> statusByPopulation);;               #2 
val it : string list = ["Village"; "Town"; "City"] 
#1 Calling composed function explicitly 
#2 Using composed function as an argument 
On the first line (#1), we call the composed function explicitly by giving it the tuple 

containing city name and population as an argument. This is just to demonstrate that a 
result of composition is a function that can be called. However, the reason for using function 
composition is that we can use the composed function as an argument to other functions. In 
this case, the composed function takes a tuple and returns a string, so we can immediately 
use it as an argument to List.map to get a list of the statuses of the sample settlements. 

The implementation of the function composition operator is remarkably simple. Here's 
how we could define it if it didn't already exist in the F# library: 

> let (>>) f g x = g(f(x)) 
val (>>) : ('a -> 'b) -> ('b -> 'c) -> 'a -> 'c 

In this declaration, the operator has three parameters. However, when we were working 
with it earlier, we only specified only the first two parameters (the functions to be 
composed). We'll get better insight into how it works by looking at the two possible 
interpretations of the type signature in figure 6.2. 

   

Figure 6.2 Type signature of the function composition operator. If we specify three arguments (annotations 
above), it returns the result of calling them in sequence. If we specify only two arguments, it returns a 
composed function (annotations below).  

The operator behaves as function composition thanks to the partial application. If we 
specify just the first two arguments, the result is a composed function. When the operator 
receives the third argument, it uses it to call the first function and then calls the second 
function using the result. Clearly, specifying all three arguments to it isn't typically very 
useful - we could just call the functions directly, without using the operator! 

Now that we've seen how function composition works in F#, let's look at what it might 
look like in C#.  
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FUNCTION COMPOSITION IN C# 
Function composition in C# is possible, but it has only a very limited use. This is partly 
because partial application can't be used as easily in C#, but more importantly because most 
of operations are written as members instead of functions. However, we can at least 
demonstrate the same idea in C#. Listing 6.18 shows an implementation of the Compose 
method as well as an example of using it.   

Listing 6.18 Implementing and using Compose method (C#) 
static Func<A, C> Compose<A, B, C>(this Func<A, B> f, Func<B, C> g) {   #1 
   return (x) => g(f(x));                                               #2 
} 
 
// Using function composition in C# 
Func<double, double> square = (n) => n * n;                             #A 
Func<double, string> fmtnum = (n) => n.ToString("E");                   #A 
 
var data = new double[] { 1.1, 2.2, 3.3 }; 
var sqrs = data.Select(square.Compose(fmtnum));                         #3 
 
// Prints: "1.210000E+000"; "4.840000E+000"; "1.089000E+001" 
foreach (var s in sqrs) Console.Write(s); 
#1 Returns a function value 
#2 Construct the composed function using lambda function 
#A Two functions that can be composed 
#3 Using the composed function 
Function composition is implemented as an extension method for the Func<T, R> 

delegate, so we can call it on function values that take a single argument using dot-notation. 
In F# it was written as a function with three parameters, even though it's usually used just 
with two arguments. In C# we have to implement it as a method with two arguments that 
returns a Func delegate explicitly (#1). We construct a lambda function that takes an 
argument and calls functions that we're composing (#2), and then return this function as a 
delegate. 

To test the method, we create two functions that we want to compose. We use the 
composed function when processing numbers in a collection using Select. Instead of using 
it with an explicit lambda function we just call Compose to create a composed function 
value that we can use as an argument. 

Over the last few sections, we've seen that many of the useful processing functions are 
generic, some of them having even three type parameters. Writing functions like this in F# 
has been very easy because we haven't had to write the types explicitly: type inference has 
figured out the types automatically. It's time to take a closer look at how this mechanism 
works.  
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6.6 Type inference 
We have already talked a little bit about type inference for values. We've seen it in C# 3.0 
with the var keyword and in F# with let bindings. We'll start this section with another 
aspect that is shared by both C# and F#. When calling a generic method, such as 
Option.Some or Option.Map from listing 6.13 in C#, we can specify the type 
arguments explicitly like this: 

var dt = Option.Some<DateTime>(DateTime.Now); 
dt.Map<DateTime, int>(d => d.Year); 

That's very verbose though, and we've almost never written code in this style in the 
previous examples, because C# performs type inference for generic method calls. This 
deduces type arguments automatically, so in the previous example we could have written 
just dt.Map(d => d.Year). 

The exact process of type inference in C# is quite complicated, but it works very well 
and it usually isn't important to understand it at an intimate level. If you ever really need the 
details, you can find complete documentation in the C# Language specification [C# 
Specification]. In general, it deduces types of all values given as an argument, which is 
always possible and then treats lambda functions specially. From lambda functions, it can 
obtain return type and also types of the arguments. For example, when calling 
Option.Bind, it needs to deduce the return type of the lambda function, because this is 
the type of the second type parameter and there is no other hint that could be used. Types 
of the arguments can be used when they are specified explicitly such as in lambda function 
(DateTime d) => d.Year. Also note that in C# 3.0, the order of parameters doesn't 
matter. 

TYPE INFERENCE FOR FUNCTION CALLS IN F# 
Even though it is possible to specify type arguments in F# using angle brackets in a same 
way as in C#, this is used only very rarely. The reason is that when the compiler cannot infer 
all the information and needs some aid from the programmer, we can use add type 
annotation to the particular location where more information is needed. Let's demonstrate 
this using an example: 

> Option.map (fun v -> v.Year) (Some(DateTime.Now));; 
error FS0072: Lookup on object of indeterminate type. 
 
> Option.map (fun (v:DateTime) -> v.Year) (Some(DateTime.Now));; 
val it : int option = Some(2008) 

Unlike in C#, the order of arguments matters in F#, so the first case fails. The reason is 
that the F# compiler doesn't know that the value v is of type DateTime until it reaches the 
second argument and so it doesn't know whether the Year property exists when processing 
the first argument. To correct this, we added a type annotation in the second case, which 
specifies the type of the v value explicitly. However, this is one more interesting aspect of 
the pipelining operator: if we use pipelining to write the previous code snippet, we don't need 
type annotations either: 

> (Some(DateTime.Now)) |> Option.map (fun v -> v.Year);; 
val it : int option = Some(2008) 
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This works because the option value, which contains the DateTime value, appears 
earlier and so it is processed prior to the lambda function. When processing the lambda 
function, the compiler already knows that the type of v has to be DateTime, so it can find 
the Year property with no trouble. 

So far, we've just looked at the similarities between C# and F#, but type inference goes 
further in F#. Let's see how the F# compiler can help us when we write higher order 
functions.  

6.6.1 Automatic generalization 
We've already implemented several higher order functions in F# in this chapter and we've 
seen a few side-by-side implementations in F# and C# as well. The interesting fact about the 
F# implementations is that we didn't need to specify the types at all. This is thanks to 
automatic generalization, which is used when inferring the type of a function declaration. I'll 
explain how this process works using an implementation of the Option.bind function as 
an example: 

let bind func value =           #1 
   match value with             #2 
   | None    -> None            #3 
   | Some(a) -> func(a)         #4 

The type inference process for this function is described step by step below. It starts 
with the most general possible type and adds constraints as it processes the code, so the 
listing shows steps that are made while processing the function body. 

32) Use the type signature (#1) to infer that bind is a function with two arguments 
and assign a new type parameter to each of the arguments and to the return type: 

        func  : 't1 
        value : 't2 
        bind  : 't1 -> 't2 -> 't3 

33) Use the pattern matching (#2) to infer that value is an option type, because it is 
matched against Some and None patterns. Use (#3) to infer that the result of 
bind is also an option type, because it can have None as a value: 

        func  : 't1 
        value : option<'t4> 
        bind  : 't1 -> option<'t4> -> option<'t5> 

34) Use (#4) to infer that func is a function, because we're calling it with a single 
parameter: 

        func  : ('t6 -> 't7) 
        value : option<'t4> 
        bind  : ('t6 -> 't7) -> option<'t4> -> option<'t5> 

35) From (#4) we know that the parameter to the function has type 't4 and that the 
result has the same type as the result of bind function, so we add two following 
constraints: 

        't6 = 't4 
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        't7 = option<'t5> 

36) Now, we can replace types 't6 and 't7 using the constraints obtained in the 
previous step: 

        func  : ('t4 -> option<'t5>)  
        value : option<'t4> 
        bind  : ('t4 -> option<'t5>) -> option<'t4> -> option<'t5> 

37) Finally, we rename the type parameters according to the usual F# standards: 

        bind  : ('a -> option<'b>) -> option<'a> -> option<'b>  

This shows a process; I'm not sure how to format it the best, so 
use whatever formatting you'll find appropriate. Thanks! 

Even though implementing the F# type inference algorithm just using this description 
would be difficult, it should show you what kind of information F# can use when deducing a 
type of a higher order function. Probably the most interesting step in the process was 
deduction of the type of a function (func) used as a parameter. This is a very important 
step, because functions given as parameters represent operations that can be used on 
values. As we've seen earlier, these are in some sense similar to methods, but thanks to the 
type inference, writing code like this in F# doesn't require any additional type specification 
and still makes the code completely type-safe. 

After that short interlude about type inference and automatic generalization, we'll get 
back to writing and using higher order functions. We've discussed them for most of the types 
from chapter 5, but we're still missing one important functional value. In the next section 
we're going to look at higher order functions for working with lists. 

6.7 Working with lists 
We have already talked about lists in chapter 3 where we learned how to process lists 
explicitly using recursion and pattern matching. We also implemented a functional list type in 
C#. In the sample application in chapter 4, we used lists in this way, but noted that writing 
list processing explicitly isn't very practical. 

This is a recurring pattern of this chapter, so you probably already know what I'm going 
to say next. Instead of using pattern matching explicitly in every case, we can use higher 
order functions for working with lists. We've already seen some functions for working with F# 
lists such as List.map and similar methods for working with C# collections (Select). In 
this section, we'll look at these in some more detail, examining their type signatures and 
seeing how they can be implemented for a functional list. 

6.7.1 Implementing list in F# 
Even though we've been working with functional lists in F# and implemented the same 
functionality in C#, we haven't looked at how we might implement the list type in F#. When 
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we talked about lists earlier, we saw that a list is represented as either a nil value (for an 
empty list) or a cons cell containing an element and a reference to the rest of the list.  

Now, if we look at our gallery of values from the previous chapter, this is exactly like an 
alternative value with two options. There is one slight wrinkle, however: the list type is 
recursive, which means that a cons cell contains a value of type list itself. Listing 6.19 shows 
a type definition that creates a very similar list type to the one in the F# standard library. 

Listing 6.19 Definition of a functional list type (F#) 
> type List<'a> =                              #1 
      | Nil                                    #2 
      | Cons of 'a * List<'a>                  #3 
type List<'a> = (...) 
 
> let list = Cons(1, Cons(2, Cons(3, Nil)));;  #A 
val list : List<'a> 
#1 The type is generic 
#2 Represents an empty list 
#3 List with head and a tail 
#A Create list containing 1, 2, 3 
The type is written as a generic type with a single type parameter (#1). The type 

parameter represents the type of the values that are stored in the list. Alternatives in F# are 
represented using discriminated unions and this particular union has two discriminators. The 
first one (#2) represents an empty list and the second one (#3) is a list with an element (of 
type 'a) and a reference to the rest of the list, whose type is written recursively as 
List<'a>. 

The last line in the code sample shows how we can create a list with three elements. The 
first argument to the Cons constructor is always a number and the second argument is a list, 
which in turn is either constructed using another Cons or the Nil discriminator. The built-in 
F# list type is declared in exactly this way. Earlier on we worked with lists using two 
operators. The :: operator corresponds to Cons in our definition and [] represents the 
same value as Nil.  

In general, creating a recursive discriminated union type is a very common way to 
represent program data as we'll see in the next chapter. However, the list type lies 
somewhere between simple values and complex program data. It can be interpreted in both 
ways, depending how it is used in the program. We'll also see how recursive unions can also 
express many of the standard design patterns, but for now let's get back to the higher order 
functions which make it easier to work with lists. 

6.7.2 Understanding type signatures of list functions 
As I mentioned earlier, we were already using functions for filtering and projecting lists, but 
we were using them quite intuitively. In this section, we'll look at their type signature and 
we'll see how we can deduce what a higher order function does just using this information.  
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Of course, you can't tell what a function does just by looking at its type in general, but 
for generic and higher order functions, such as those for working with lists, this is very often 
possible. As we've seen earlier in this chapter, functions for working with generic values 
cannot do much with the value alone, because they don't know anything about it. As a 
result, they usually take a function as an extra argument and use it to work with the value. 
However, the type of the function gives some clues as to how the result will be used. Let's 
demonstrate this using type signatures displayed in listing 6.20. 

Listing 6.20 Types of functions and methods for working with lists (F# and C#) 
// F# function signatures 
List.map    : ('T -> 'R)   -> 'T list -> 'R list  #1 
List.filter : ('T -> bool) -> 'T list -> 'R list  #2 
 
// C# method declarations  
List<R> Select<T, R> (List<T>, Func<T, R>)        #1 
List<T> Where<T>     (List<T>, Func<T, bool>)     #2 
#1 Projection 
#2 Filtering 
Let's look at projection (#1) first. As you can see, the input parameter is a list of values 

of type T and the result is a list of values of type R. However, the operation doesn't know 
what R is and so it cannot create values of this type alone. The only way to creating a value 
of type R is to use a function given as an argument that turns a value of type T into a value 
of type R. This suggests that the only reasonable way for the operation can work is to iterate 
over the values in the input list, call the function for each of the values and return a list of 
results. Indeed, this is exactly what the projection operation does.  

It is also worth noting that the types of the input list and output list can differ. In the 
previous chapter we were adding a number 10 to a list of integers, so in that case, the input 
list had the same type as the output list. However, we could use a function that created a 
string from a number as an argument. In this case the input list would be a list of integers 
and the result will be a list of strings. 

The second operation is filtering (#2). In this case, the input and the resulting lists have 
the same type. The function given as an argument is a predicate that returns true or false for 
a value of type T, which is the same type as the elements in the input list. This gives us a 
good hint that the operation probably calls the function for each of the list elements and uses 
the result to determine whether the element should be copied to the returned list or not. 

WORKING WITH LISTS 
Let's look at a larger example showing the use of filtering and projection. Both of them are 
available in the F# library for various collection types, but we'll use lists as we're familiar 
with them. In C#, these methods are available for any collection implementing 
IEnumerable<T>, so we'll use generic .NET List<T> class. Listing 6.21 shows 
initialization of the data that we'll be working with. 

Listing 6.21 Data about settlements (F# and C#) 
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> let places =                #1 
    [  
      ("Seattle", 594210);  
      ("Prague", 1188126);  
      ("New York", 7180000); 
      ("Grantchester", 552);  
      ("Cambridge", 117900);  
    ];; 
 
val places : (string * int) list 

class CityInfo {                   #2 
   public CityInfo(string n, int p) { 
      Name = n; Population = p;  
   } 
   /* Properties omitted... */ 
} 
 
var places = new List<CityInfo>    #3 
  { new CityInfo("Seattle", 594210), 
    new CityInfo("Prague", 1188126), 
    /* more data... */ }; 

In F#, we'll use our usual example - a list with information about city with name and 
population (#1). Even though we could convert the F# tuple into the Tuple class that we've 
implemented, we're use a more typical C# representation this time. We declare a class 
CityInfo (#2) and use it to create a list containing city information (#3). 

In C#, we can work with the data using the Where and Select methods that are 
available in .NET 3.5. Both of these are extension methods so we can call them using the 
usual dot-notation: 

var names =  
    places.Where(city => city.Population > 1000000) 
          .Select(city => city.Name); 

Again, this shows the benefits of using higher order operations. The lambda functions 
given as arguments specify what the condition for filtering is (in the first case), or the value 
to return for each city (in the second case). However, this is all we have to specify. We don't 
need to know the underlying structure of the collection and we're not specifying how the 
result should be obtained. This is all encapsulated in the higher order operations.  

Let's perform the same operation in F#. We want to filter the data set first and then 
select only the name of the city. We can do this by calling List.filter and using the 
result as the last argument to the List.map function. As you can see, this looks quite ugly 
and hard to read: 

let names =  
    List.map fst  
             (List.filter (fun (_, pop) -> 1000000 < pop) places) 

Of course, F# can do better than this. The previous C# version was elegant because we 
could write the operations in the same order in which they are performed (filtering first, 
projection second) and we could write each of them on a single line. In F#, we can get the 
same code layout using pipelining: 

let names =  
    places |> List.filter (fun (_, pop) -> 1000000 < pop) 
           |> List.map fst  

In this case, the pipelining operator first passes the value on the left side (places) to 
the filtering function on the right side. In the next step, the result of the first operation is 
passed to the next operation (here projection). Even though we've been using this operator 
for quite some time already, this example finally shows why it is called "pipelining". The data 
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elements are processed in sequence as they go through the "pipe" and the pipe is created by 
linking several operations using the pipelining operator. 

Note that sometimes the order of operations is important and sometimes not. In this 
case we have to perform the filtering first. If we did the projection in the first step, we'd 
obtain a list containing only city names and we wouldn't have the information about 
population, which is needed to perform the filtering. 

C# 3.0 queries and F# sequence expressions 

You've probably already seen examples of data queries written in C# using query 
expressions. Using this feature, our previous code would look like this: 

var names = from c in places  
            where 1000000 < p.Population  
            select p.Name 

This is often demonstrated as a key new feature, but it wouldn't exist without the 
underlying machinery such as lambda functions and higher order operations. We've 
focused on using these explicitly, because when you learn to use them explicitly, you can 
use a similar functional approach for working with any data and not just collections. 

However the simplified syntax is quite useful and a similar feature called sequence 
expressions is available in F# too. We'll talk about this later in chapter 12, but just for the 
curious, here is the same query written in F#: 

let names =  
   seq { for (name, pop) in places do 
         if (1000000 < pop) then yield name } 

It looks almost like ordinary code enclosed in a block and marked with the word seq. 
This is the intention, because in F#, it is a more general language construct and it can be 
used for working with other values too. In chapter 12 we'll see how to use it when 
working with option values, but we'll also see how C# query expressions can sometimes 
be used for similar purposes. 

Having looked at how we can use two higher order list processing functions and seen 
how useful they are, let's take a deeper look at a third such function, and implement it 
ourselves. 

6.7.3 Implementing list functions 
Instead of showing how to implement the functions for filtering and projection which we've 
just seen, we'll look at a function that we started creating in chapter 3. Since all list 
processing functions have a very similar structure, you'll probably be able to implement any 
of the others after looking at the following example. 

In chapter 3, we wrote a function that could either sum or multiply all elements in a list. 
We later realized that it is more useful than it first appeared: we saw that it could also be 
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used to find the minimum or maximum elements as well. However, we hadn't covered 
generics at that point, so the function worked only with integers. In listing 6.22, we look at 
the same function without the type annotations which originally restricted automatic 
generalization. 

Listing 6.22 Generic list aggregation (F# interactive) 
> let rec foldLeft f init list =            
     match list with 
     | [] -> init                                              #A 
     | hd::tl ->  
        let rem = foldLeft f init tl                           #B       
        f rem hd                                               #C 
  ;;   
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a        #1 
#A Return initial value 
#B Recursively process the tail 
#C Aggregate using the given function 
#1 Type signature 
The implementation is the same as in chapter 3, but as we removed type annotations, 

the inferred signature is more general (#1). The function now takes a list with values of type 
'b and the value produced by aggregation can have a different type (type parameter 'a). 
The processing function takes the current aggregation result (of type 'a) and an element 
from the list ('b) and returns a new aggregated result. 

As we'll see very soon, the use of generics makes the aggregation far more useful. It is 
also available in the F# library under a name fold_left and the version that works with 
the immutable F# list type is located in the List module. The following snippet shows our 
original use from chapter 3, where we multiplied all the elements in a list together: 

> [ 1 .. 5 ] |> List.fold_left (*) 5 
val it : int = 120 

As we're working with generic function, the compiler had to infer the types for the type 
parameters first. In this case, we're working with a list of integers, so parameter 'b is int. 
The result is also an integer, so 'a is int too. Listing 6.23 shows some other interesting 
examples using fold_left. 

Listing 6.23 Examples of using fold_left (F# interactive) 
> places |> List.fold_left (fun sum (_, pop) -> sum + pop) 0;;    #1 
val it : int = 9080788 
 
> places |> List.fold_left (fun s (n, _) -> s + n + ", ") "";;    #2 
val it : string =  
  "Seattle, Prague, New York, Grantchester, Cambridge, " 
 
> places  
    |> List.fold_left (fun (b,str) (name, _) ->                   #3 
           let n = if b then name.PadRight(20) else name + "\n" 
           (not b, str+n)  
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       ) (true, "")                                               #A 
    |> snd                                                        #4 
    |> printfn "%s";;                                             #B 
Seattle             Prague 
New York            Grantchester 
Cambridge 
#1 Sum population into 'int' 
#2 Format into a 'string' 
#3 Aggregation using 'bool * string' value 
#A Initial tuple value  
#4 Drop the helper element from a tuple 
#B Print the formatted string  
In all the examples, we're working with our collection of city information, so the type of 

the list is always the same. This means that the actual type of parameter 'b is always 
(string * int) tuple. However, the result of aggregation differs. In the first case (#1), 
we're just summing population, so the type of the result is int. In the second example 
(#2), we want to build a string with names of the cities, so we start the aggregation with an 
empty string. The lambda function used as the first argument appends the name of the 
currently processed city and a separator.  

In the last example (#3) we implement a version with improved formatting–it writes the 
city names in two columns. This means that the lambda function performs two alternating 
operations. In the first case, it pads the name with spaces (to fill the first column) and in the 
second case it just adds a newline character (to end the row). This is done using a temporary 
value of type bool, which is initially set to true and then inverted in every iteration. The 
aggregation value contains this alternating temporary value and the resulting string, so at 
the end, we need to drop the temporary value from the tuple (#4).  

IMPLEMENTING FOLD IN C# 
An operation with the same behavior as fold_left is available in the .NET library as well, 
although it has the name Aggregate. As usual, it is available as an extension method 
working on any collection type and we can use it in the same way as the F# function. Let's 
rewrite the last example from listing 6.21 in C# 3.0, where we used a tuple to store the 
information during the aggregation. When we were talking about tuples in the previous 
chapters, I mentioned that C# 3.0 anonymous types can be sometimes used for the same 
purpose. This is an example of where they're a really good fit: 

var res =  
   places.Aggregate(new { StartOfLine = true, Result = "" },  
   (r, pl) => { 
      var n = r. StartOfLine ? pl.Name.PadRight(20) : (pl.Name + "\n"); 
      return new { StartOfLine = !r.StartOfLine, Result = r.Result + n }; 
    }).Result; 

In C#, the initial value is specified as the first argument. We create an anonymous type 
with properties StartOfLine (used as a temporary value) and Result, which stores the 
concatenated string. The lambda function used as the second argument does the same thing 
as in our previous F# example, but returns the result again as an anonymous type, with the 
same structure as the initial value. To make the code more efficient, we could also use the 
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StringBuilder class instead of concatenating strings, but I wanted to show the simplest 
possible example. Now that we know how to use the function in C#, we should also look how 
it is implemented. In listing 6.24 you can see two implementations. One is a typical 
functional implementation for the functional list from chapter 3 and the other is an 
imperative implementation for the generic .NET List type, which is in principle the same as 
the Aggregate extension method in .NET library.  

Listing 6.24 Functional and imperative implementation of FoldLeft (C#) 
R FoldLeft<T, R> 
    (this FuncList<T> ls,        #1
     Func<R, T, R> f, R init)    #1 
{ 
  if (ls.IsEmpty) return init;   #3  
  else return f( 
    ls.Tail.FoldLeft(f, init),   #4 
    ls.Head);                        
} 

R FoldLeft<T, R> 
    (this List<T> ls,          #2 
     Func<R, T, R> f, R init)  #2  
{ 
  R temp = init;               #5 
  foreach(var el in ls) 
    temp = f(temp, el);        #6 
  return temp;                      
} 

#1, #2 The signature of both methods is the same and it corresponds to the earlier declaration in F#, 
although we have to write the type parameters explicitly. Also note that the list is used as the first 
parameter and both methods are implemented as extension methods 
#3, #4 In the functional version, we have two branches - one to process the empty list case and 
another to recursively processes a cons cell and aggregate the result using the 'f' parameter 
#5, #6 The imperative version declares a local mutable value to store the current result during the 
aggregation. When processing an element, the new value is calculated using the 'f' parameter 

Annotations below the code with cueballs on the left. 

As I've already mentioned, implementing the other operations is quite a similar process. 
In the functional version of map or filter, you'd return an empty list in (#3) and in the 
imperative version, you'd use mutable list as a temporary value (#5). The other change 
would be on lines (#4) and (#6). When performing a projection, we'd just call the given 
function, while for filtering we'd decide whether to append the current element or not.  

To conclude our discussion of higher order functions, I'd like to highlight a few 
interesting relationships between the functions that we've used for manipulating lists and the 
functions available for working with option values. 

6.8 Common processing language  
We've seen a few recurring patterns over the course of this chapter, such as an operation 
called "map" which was available for both option values and lists. Actually, we also used it 
when we were working with tuples and implemented the mapFirst and mapSecond 
functions. 

It turns out that many different values share a similar set of processing functions, so it 
makes sense to think about these operations as a common language. However, the name of 
the operation can vary for different values: similarities in type signatures are often better 
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clues than similarities in names. Listing 6.23 shows the types of the map and filter 
functions for several types, including a function Option.filter that we haven't 
discussed yet. 

Listing 6.23 Signatures of filter and map functions (F#) 
mapFirst      : ('a -> 'b) -> 'a * 'c   -> 'b * 'c 
List.map      : ('a -> 'b) -> 'a list   -> 'b list 
Option.map    : ('a -> 'b) -> 'a option -> 'b option 
 
List.filter   : ('a -> bool) -> 'a list   -> 'a list 
Option.filter : ('a -> bool) -> 'a option -> 'a option 

The map operation can perform the function given as the first argument on any 
elements that are somehow enclosed in the composed value. For tuples, it is used exactly 
once; for an option value it can be called never or once; for a list it is called for each element 
in the list. In this light, an option value can be viewed as a list containing zero or one 
element. 

This also explains what the new Option.filter function does. For an option value 
with no elements it returns None; for an option with a single value it tests whether it 
matches the predicate and returns either Some or None depending on the result. Let's 
demonstrate this using an example that filters option values containing even numbers: 

> Some(5) |> Option.filter (fun n -> n%2 = 0);; 
val it : int option = None 

If we use the analogy between lists and options then this code filters a list containing 
one value and the result is an empty list. The analogy can work the other way round as well 
- we've already seen the bind operation for options, and we can apply the same concept to 
lists. 

6.8.1 The bind operation for lists 
We've only discussed the bind operation for option values, but as we'll see in chapter 12, it is 
an extremely important functional operation in general. Listing 6.24 shows the type 
signature of the bind operation for option values and also what it would look like if we 
defined it for lists. 

Listing 6.24 Signatures of bind operations (F#) 
Option.bind :  ('a -> 'b option) -> 'a option -> 'b option 
List.bind   :  ('a -> 'b list)   -> 'a list   -> 'b list 

The function List.bind is available in the F# library under a different name, so let's 
try to figure out what it does, just using the type signature. The input is a list and for each 
element, it can obtain a list with values of some other type. A list of this type is also returned 
as a result from the bind operation.  

In practice, this means that the operation calls the given function for each element and 
concatenates the lists returned from this function. The name that F# library uses reflects this 
use, so the function is called List.map_concat. We can use this function for example to 
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get a list of all files from a given list of directories. Note that a single directory usually 
contains a list of files. Listing 6.25 shows how we can list all source files for this chapter. 

Listing 6.25 Listing files using map_concat (F# interactive) 
> open System.IO;; 
> let directories =  
     [ "C:\Source\Chapter06\Chapter06_CSharp";  
       "C:\Source\Chapter06\Chapter06_FSharp";  
       "C:\Source\Chapter06\FunctionalCSharp" ];; 
val directories : string list 
 
> directories |> List.map_concat (fun d -> 
     Directory.GetFiles(d)                                  #A 
     |> List.of_seq                                         #A 
     |> List.map Path.GetFileName );;                       #A 
val it : string list =  
   [ "Chapter06_CSharp.csproj"; "Program.cs"; "Chapter06_FSharp.fsproj"; 
     "Script.fsx"; "FunctionalCSharp.csproj"; "List.cs";  
     "Option.cs"; "Tuple.cs" ] 
#A Get list of file names for the given directory 
The map_concat operation calls the given lambda function for each of the directory in 

the input list. The lambda function then gets all files from that directory, converts them from 
an array into a list and uses List.map to get the file name from the full path. The results 
are then collected into a single list that is returned as the overall result. You probably won't 
be surprised to hear that this operation is also available in .NET 3.5, where it's represented 
by the SelectMany method. This is the method used when you specify multiple from 
clauses in a C# 3.0 query expression. 

6.9 Summary 
This chapter together with chapter 5 discussed functional values. As we saw in the previous 
chapter, values are important for controlling the flow of the program and they allow us to 
write code in a functional way: that is, composing it from functions that take values as an 
argument and return values as the result. In this chapter we've seen a more convenient way 
for working with values. Instead of directly using the structure of the value, we used a set of 
higher order functions that are defined in the F# library. We've seen how they are 
implemented and also how we can implement similar functionality for our own types. 

In particular, we talked about functions that allowed us to perform an operation on the 
values carried by standard F# types such as tuples and option types, and also our type for 
representing schedules. We've learned how to construct a function from two functions using 
function composition and we've seen how all these features, together with partial application 
and the pipelining operator, can be used to write elegant and readable code that works with 
values. 

Finally, we looked at several functions for working with lists and we also observed 
interesting similarities between some of the higher order functions acting on different types. 
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For example, we saw that the map operation is useful for many distinct kinds of values and 
that the bind operation for an option type looks similar to the map_concat function for 
working with lists. We'll talk more about this relationship in chapter 12. 

When we started talking about using values in chapter 5, we made a distinction between 
local values and program data. In the next chapter, we'll turn our attention to program data, 
which represent the key information that the program works with. For example, this could be 
the structure of shapes in a vector graphics editor or the document in a text editor. In this 
chapter we introduced a convenient way for working with local values and we'll see that 
same ideas can be used for working with program data as well. We've already taken a step 
in this direction when we talked about lists, because many programs represent their data as 
a list of records.  
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7 
Designing data-centric programs 

The first thing to do when designing a functional program is to think about the data that the 
program works with. Since any non-trivial program uses data, this phase is extremely 
important in the application design. When implementing a program in a functional language, 
we also begin with the data structures that we'll use in the code and then write operations to 
manipulate the data as the second step.  

This is different to the object-oriented design, where data is encapsulated in the state of 
the objects; processing is expressed as methods that are part of the objects and interact 
with other objects involved in the operation. Most of functional programs are data-centric, 
which means that data is clearly separated from operations and adding a new operation to 
work with the data is a matter of writing a single function. 

DATA-CENTRIC AND BEHAVIOR-CENTRIC PROGRAMS 

Even though most functional programs are data-centric, there are some applications and 
components where we can't just think about the data, because the primary concern is 
behavior. For example, in an application that allows batch processing of images using 
filters, the primary data structure would be a list of filters and from a functional point of 
view, a filter is just a function.  

This shows that there are two primary ways of looking at functional code. These 
approaches are often combined together in different parts of a single application, but we'll 
talk about them separately. In this chapter, we'll look at data-centric programs and in 
chapter 8 we'll talk about behavior-centric programs. 

The primary aim of this chapter is to teach you how to think about application design in 
a functional way. We'll demonstrate the ideas in the context of an application which works 
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with simple documents containing text, images and headings. In this chapter, we'll use F# as 
our primary language. Although we can C# in a functional style, designing the structure of 
the application in a functional way would be somewhat inconvenient, because functional data 
structures rely heavily on data types like discriminated unions. However, I'll mention several 
related object-oriented design patterns and we'll also consider how we would work with 
immutable types in C#.  

USING DIFFERENT DATA REPRESENTATIONS 

In functional programming, it is very common to use multiple data structures to represent 
the same program data. This means that we design different data structures and then 
write transformations between the various representations. These transformations usually 
compute additional information about the data. 

This has several benefits. First of all, different operations can be more easily implemented 
using different data representations. You'll see an example in this chapter where we'll 
work with two representations of documents. In section 7.2, we'll implement a flat data 
structure, which is suitable for drawing of the document. Later, in section 7.3, we'll add 
structured representation, which is more appropriate for storing and processing of the 
document. Moreover, this approach also supports sharing work, because different 
representations can be developed and maintained to some extent independently by 
different developers. 

We'll start this chapter by talking about one more F# type that is important for 
representing program data and then we'll turn our attention to the example application.  

7.1 Functional data structures 
In functional programming, the data that the program manipulates is always stored in data 
structures. The difference between data structure and objects is that data structure exposes 
information about its structure (as the name suggests). The structure can be for example a 
list of some records, a list of alternative values (represented using discriminated unions in 
F#) or a recursive data structure such as tree. Knowing the structure of the data makes it 
easier to write code that manipulates with it, but as we'll see in chapter 9, F# also gives us a 
way to encapsulate the structure, just like in object-oriented programming, when we want to 
export the F# data structures from a library or make it available to C#. As we mentioned 
when we talked about functional concepts in chapter 2, these data structures are immutable.  

We'll look at two of the most common representations of program data in this chapter. 
We'll start with a list of records and later use a recursive data structure. We've already used 
lists in various examples, and in chapter 4 we used a list of tuples to draw a pie chart, where 
each tuple contained a title and a value. Using tuples is simple, but it's impractical for more 
complicated data. In this section we'll look at the F# record type, which is the one remaining 
core F# data type left to discuss.  
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7.1.1 Using the F# record type 
A simple description of records is that they are "labeled tuples". They store multiple different 
elements in a single value, but in addition, each of the elements has a name that can be 
used to access it. This is in many ways similar to records or struct constructs from C or to 
anonymous types in C#. Unlike anonymous types, records have to be declared in advance. 
Similarly to anonymous types, records in their basic form contain only properties to hold 
data; listing 7.1 shows one such declaration to represent a rectangle. 

Listing 7.1 Representing rectangle using record type (F# interactive) 
> type Rect =                                      #1 
     { Left   : float32                            #A 
       Top    : float32                            #A 
       Width  : float32                            #A 
       Height : float32 };;                        #A 
type Rect = (...) 
 
> let rc = { Left = 10.0f; Top = 10.0f;            #2 
             Width = 100.0f; Height = 200.0f; };;  #2 
val rc : Rect                                      #3 
 
> rc.Left + rc.Width;;                             #B 
val it : float32 = 110.0f 
#1 Declaration of 'Rect' record 
#A Elements of the record with name and a type 
#2 Creating a record value 
#3 Inferred type is 'Rect' 
#B Accessing elements using the name 

When declaring a record type (#1) we have to specify the types of the elements and their 
names. In this example, we're using float32 type, which corresponds to float in C# 
and the .NET System.Single type, because we'll need rectangles of this type later. To 
create a value of an F# record, we simply specify values for all its elements in curly braces 
(#2). Note that we don't have to write the name of the record type: this is inferred 
automatically using the names of the elements and as you can see, in our example the 
compiler correctly inferred that we're creating a value of type Rect (#3). 

When working with records we'll need to read their elements, but we'll also need to 
"change" values of the elements - for example when moving the rectangle to the right. 
However, as a record is a functional data structure and it is immutable, so we'll instead have 
to create a new record with the modified value. For example, moving a rectangle record to 
the right could be written like this: 

let rc2 = { Left = rc.Left + 100.0f; Top = rc.Top;  
            Width = rc.Width; Height = rc.Height } 

Writing all code like this would be awkward, because we'd have to explicitly copy values 
of all elements stored in the record. In addition, we may eventually need to add a new 
element to the record declaration, which would break all the existing code. Unsurprisingly, 
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F# lets us express the idea of "copy an existing record with some modifications" in a succinct 
manner: 

let rc2 = { rc with Left = rc.Left + 100.0f } 

Using the with keyword, we can specify just a value of the elements that we're going 
to change and all the remaining elements will be copied automatically. This has exactly the 
same meaning as the previous code, but it's much more practical. 

So far we've seen how to write "primitive" operations on records - but of course we're 
trying to write code in a functional style, so we really want to be able to manipulate records 
with functions. 

WORKING WITH RECORDS 
We'll use the Rect type later in this chapter and we'll need two simple functions to work 
with rectangles. The first function deflates a rectangle by subtracting the specified width and 
height from all its borders and the second one converts our representation to the 
RectangleF class from System.Drawing namespace. You can see both of them in 
listing 7.2. 

Listing 7.2 Functions for working with rectangles (F# interactive) 
> open System.Drawing;; 
> let deflate(rc, wspace, hspace) =  
     { Left = rc.Top + wspace                                #A 
       Top = rc.Left + hspace                                #A 
       Width = rc.Width - (2.0f * wspace)                    #A 
       Height = rc.Height - (2.0f * hspace) };;              #A 
val deflate : (Rect * float32 * float32) -> Rect             #1  
      
> let toRectangleF(rc) =  
     RectangleF(rc.Left, rc.Top, rc.Width, rc.Height);;      #B 
val toRectangleF : Rect -> RectangleF                        #2 
 
> { Left = 0.0f; Top = 0.0f; 
    Width = 100.0f; Height = 100.0f; };; 
val it : Rectangle = (...) 
 
> deflate(it, 20.0f, 10.0f);;                                #3 
val it : Rectangle = { Left = 20.0f;  Top = 10.0f;  
                       Width = 60.0f; Height = 80.0f;} 
 
#A Create and return deflated rectangle 
#1 Function signature 
#B Return a new instance of 'RectangleF' class 
#2 Function signature 
#3 Test 'deflate' using rectangle from the previous command 

As you can see from the printed type signatures (#1, #2), the F# compiler correctly deduced 
that the type of the rc parameter is of type Rect. The compiler uses the names of the 
elements that are accessed in the function body. However, if we had two record types and 
used only elements shared by both of them, we'd have to specify the type explicitly. We 
could use type annotations and write (rc:Rect) in the function declaration. As usual when 
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working with F# interactive, we immediately test the function (#3). We didn't use a let 
binding when creating the value, so later we access it using the automatically created value 
called it.  

If we were designing a functional data structure like this one in C# we would of course 
use classes or occasionally structs. However, F# record types are immutable and as we've 
seen, they can be easily cloned using the { x with ... } construct. In the next section, 
we'll briefly look how to design similar type in C#. 

7.1.2 Functional data structures in C# 
We've already implemented several functional immutable data types in C# such as 
FuncList or Tuple. In C#, we do this by writing a class in a particular way. Most 
importantly all its properties have to be immutable. This can be done either by using 
readonly field, or by declaring a property which has a private setter and is set only in the 
constructor of the class. We use the second approach in listing 7.3. 

Listing 7.3 Immutable 'Rect' type (C#) 
public sealed class Rect { 
   public float Left   { get; private set; }                         #A 
   public float Top    { get; private set; }                         #A 
   public float Width  { get; private set; }                         #A 
   public float Height { get; private set; }                         #A 
 
   public Rect(float left, float top, float width, float height) {   #B 
      Left = left; Top = top; Width = width; Height = height; 
   } 
 
   public Rect WithLeft(float left) {                                #1 
      return new Rect(left, this.Top, this.Width, this.Height);      #C 
   } 
   // Similarly: WithTop, WithWidth and WithHeight                   #2 
} 
#A Readonly properties of the type 
#B Construct the value 
#1 Returns 'Rect' with modified 'Left' property 
#C Create a copy of the object 
#2 'With' methods for other properties (Omitted) 
The class contains the usual declarations of read-only properties using the C# 3.0 

automatic properties feature and a constructor that initializes them. Since we're not 
modifying the value of the property anywhere from inside the class, they are all immutable. 

The more interesting part is the WithLeft method (#1), which can be used to create 
a clone of the object with a modified value of the Left property. I've omitted similar 
methods for other properties (#2), because they are all very similar. These methods 
correspond to the with keyword that we've seen earlier for F# records. You can see the 
similarity yourself:  

let moved = { rc with Left = 10.0f }   #A 
var moved = rc.WithLeft(10.0f);        #B 
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#A   F#: using 'with' keyword 
#B   C#: using 'WithLeft' method 
The important thing is that we don't have to explicitly read all properties of the Rect 

class and we just mention the property that we want to change. This syntax is actually quite 
elegant even if we want to modify more than one of the properties: 

var moved = rc.WithLeft(10.0f).WithTop(10.0f); 

Just as we've seen in this example, you'll often need to set two related properties at the 
same time. If this happens frequently, it is more convenient to add a new method that 
creates a clone and modifies all the related properties. In our example, we would likely also 
add methods WithPosition and WithSize, because they represent very common 
operations. This can also be necessary if each individual change would otherwise create an 
object in an invalid state, but the combined operation represents a valid state transition. 

That's all we need to know about F# record types for now. We'll get back to functional 
data types in .NET in chapter 9. In the next section, we'll start working on a larger sample 
application, which is the heart of this chapter, and we'll talk about one usual way of 
representing program data. 

7.2 Flat document representation 
As I wrote in the introduction, we'll develop an application for viewing documents in this 
chapter. We'll start by designing a representation of the document that is suitable for 
drawing it on the screen. In this representation, the document will be just a list of elements 
with some content (either text or an image) and a specified bounding box in which the 
content should be drawn. You can see an example of a document with three highlighted 
elements in figure 7.1. 

 

Figure 7.1 Sample document that consists of three elements; two of them display some text with different 
fonts and one shows an image. 
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Let's look at the data structures that represent the document in F#. Listing 7.4 
introduces a new discriminated union to represent the two alternative kinds of elements and 
a new record type for text elements. It uses the Rect type we defined earlier. 

Listing 7.4 Flat document representation (F#) 
open System.Drawing                         #A  
 
type TextContent =                          #1 
   { Text : string  
     Font : Font } 
 
type ScreenElement =                        #2 
   | TextElement  of TextContent * Rect     #B 
   | ImageElement of string * Rect          #C 
#A Contains the 'Font' class 
#1 Represents text with font 
#2 Represents element of the document 
#B Text content with bounding box 
#C Image file name with bounding box 
In this sample, we're defining two types. First of all, we define a record type called 

TextContent (#1) that represents some text and the font that should be used to draw it. 
The second type called ScreenElement (#2) is a discriminated union with two 
alternatives. The first alternative stores text content and the second one contains the file 
name of an image. Both of them also have a Rect to define the bounding box for drawing. 
Listing 7.5 shows the code to represent the sample document from figure 7.1 using our new 
data types. 

Listing 7.5 Sample document represented as a list of elements (F#)  
let fntText = new Font("Arial", 12.0f)  #A 
let fntHead = new Font("Arial", 15.0f)  #A 
 
let elements =                          #B 
   [ TextElement 
       ({ Text = "Functional programming in .NET"; Font = fntHead },  
        { Left = 10.0f; Top = 0.0f; Width = 400.0f; Height = 30.0f }); 
     ImageElement 
       ("cover.jpg",  
        { Left = 120.0f; Top = 30.0f; Width = 150.0f; Height = 200.0f }); 
     TextElement 
       ({ Text = @"In this book, we'll introduce you to the essential  
           concepts of functional programming, but thanks to the .NET  
           framework, we won't be limited to theoretical examples and we  
           will use many of the rich .NET libraries to show how functional 
           programming can be used in a real-world."; Font = fntText },  
        { Left = 10.0f; Top = 230.0f; Width = 400.0f; Height = 400.0f }) ] 
#A Create fonts for heading and for usual text 
#B Create a list of 'ScreenElement' values 
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First we define fonts for the two different text elements, and then just construct a list 
containing the elements. When creating elements, we create several F# record type values 
using the syntax discussed earlier. You can see that this way of constructing documents is a 
bit impractical and we'll design a different representation, more suitable for creating 
documents later. Before that, we'll implement a function to draw a document stored using 
this representation. 

7.2.1 Drawing documents 
Just like in chapter 4 when we drew a pie chart, we'll use the standard .NET 
System.Drawing library. The point of this example is to demonstrate that using the 
previous representation, drawing is extremely simple, so the core function in listing 7.6 has 
just a few lines of code. It simply iterates over all elements in a list and contains drawing 
code for the two different kinds of elements.  

Listing 7.6 Drawing document using flat representation (F# interactive) 
> let drawElements elements (gr:Graphics) =  
     for p in elements do                                            #A 
        match p with 
        | TextElement(te, rc) ->  
           let rcf = toRectangleF rc                                 #B 
           gr.DrawString(te.Text, te.Font, Brushes.Black, rcf) 
        | ImageElement(img, rc) -> 
           let bmp = new Bitmap(img)                                 #C 
           let wsp, hsp = rc.Width / 10.0f, rc.Height / 10.0f        #D 
           let rc = toRectangleF(deflate(rc, wsp, hsp))              #D 
           gr.DrawImage(bmp, rc);; 
val drawElements : seq<ScreenElement> -> Graphics -> unit            #1 
#A Imperative iteration over all elements 
#B Convert 'Rect' to .NET RectangleF 
#C Load image from the specified file 
#D Add border 10% of the image size 
#1 Function type signature 
The function draws the specified list of elements to the given Graphics object. The 

type of the first parameter is seq, which represents any collection. So far we've been 
working with lists, but you'll see some other collections (such as arrays) in chapters 10 and 
11. In the code, we only need to iterate over the elements in the collection using a for 
loop, so the compiler inferred the most general type for us. The type seq<'a> corresponds 
to the generic IEnumerable<T>, so in C# the type of the parameter would be 
IEnumerable<ScreenElement>. 

The code also uses the functions from the previous section to work with the Rect 
values. We use toRectangleF to convert our Rect value to the type which the 
DrawString method needs, and deflate to add space around the image. 

Our drawing function takes the Graphics object as an argument, so we need some 
way of creating one. As a final step, we'll write some code to create a form and draw the 
document onto it. 
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DRAWING TO A FORM 
The drawing will be similar to the example from chapter 4. Because the drawing can take 
some time, we'll create an in-memory bitmap, draw the document there and then display the 
document on a form rather than drawing the document every time form is invalidated. 
However, let's first look at one very useful functional programming pattern that we'll use in 
this section. 

The "Hole in the middle" pattern 

One very common situation when writing a code is that you perform some initialization, 
then the core part of the function and then some clean-up at the end. When you repeat 
similar operation in multiple places of the program, the initialization and clean-up don't 
change and only the core part is different. A sample that draws on an in-memory bitmap 
written in C# would look like this:  

var bmp = new Bitmap(width, height) 
using(var gr = Graphics.FromImage(bmp)) { 
   (...)                                 #A 
} 
#A Core part: drawing using 'gr' object 

The problem with this code is that using only object-oriented programming concepts, you 
can't simply wrap the code that performs the initialization and finalization into a 
subroutine and share it between all the places that do different drawing.  

In functional programming, the solution is trivial. You can simply write higher order 
function and wrap the core part into a lambda function and use it as an argument: 

var bmp = DrawImage(width, height, gr => { 
      (...)                                 #A 
   }); 
#A Core part inside a lambda function 

From a functional point of view, this is an uninteresting example of using a higher order 
function, but the case where we need to perform some initialization followed by the core 
part and then clean-up is very common, so it deserves a special name. The name was 
first used by Brian Hurt in a blog post "The 'Hole in the middle' pattern" [Hurt, 2007]. It 
nicely describes the fact that only the middle part needs to be filled in with a different 
functionality in every use of the code. 

Listing 7.7 shows an F# implementation of a function similar to the DrawImage from 
the previous sidebar. In addition to the two parameters that specify the size of the created 
bitmap, it also allows specifying additional margins from the border of the image. 

Listing 7.7 Function for drawing images (F# interactive) 
> let drawImage (wid:int, hgt:int) space f = 
     let bmp = new Bitmap(wid, hgt) 
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     let gr = Graphics.FromImage(bmp) 
     let rc = Rectangle(Point(0,0), Size(wid,hgt))                   #A 
     gr.FillRectangle(Brushes.White, rc)                             #A 
     gr.TranslateTransform(space, space)                             #B 
     f(gr)                                                           #1 
     gr.Dispose()                                                    #C 
     bmp;; 
val drawImage : int * int -> float32 -> (Graphics -> unit) -> Bitmap #2 
#A Fill the background with white color  
#B All drawing on graphics will be shifted 
#1 Call the core part of drawing 
#C Clean-up 
#2 Function type signature 
When we use this function to draw an image, the core part of the drawing will be 

specified in a function given as the last argument. The type signature (#2) shows that the 
function takes a Graphics as an argument and doesn't return a result. It is invoked in the 
middle of the code (#1) after the bitmap and Graphics object are created. We also call 
TranslateTransform in the initialization phase, to provide some padding for the 
drawing. Finally, the function ends with the clean-up code to release the resources used for 
drawing before returning the bitmap. In the listing above, we call the Dispose method 
explicitly, which isn't entirely correct. We'll look how to fix this in chapter 9 when we'll talk 
about using IDisposable type from F#.  

Finally we have everything we need to see our code in action. For now, we'll just create 
and test the form interactively. Listing 7.8 shows how to draw the screen elements from 
listing 7.5 and show the document on a form. 

Listing 7.8 Drawing the document using WinForms (F# interactive) 
> let docImg = drawImage (400, 450) 20.0f (drawElements elements)       #1 
val docImg : Bitmap 
 
> open System.Windows.Forms                                             #A 
  let main = new Form(Text = "Document", BackgroundImage = docImg)      #A 
  main.Show();;                                                         #A 
#1 Draw the document 
#A Create a form with the document 
The line where we draw the bitmap (#1) may require a little explanation. We're calling 

drawImage, which takes a function specifying the core part of the drawing as the last 
argument. Since we've already implemented this in the drawElements function, you 
might expect us to just be able to pass it directly as the last argument. However, 
drawElements has two parameters - whereas drawImage expects a function with only 
one (the Graphics object to draw on). We use partial function application to specify the 
list with ScreenElement values. The result of the partial application is a function that 
takes a Graphics object and draws the document, which is exactly what we need. You can 
see the result of our work in figure 7.2. 
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Figure 7.2 Sample document stored as a list of screen elements, drawn using 'drawElements' function to a 
Windows Forms form. 

As we've seen, our previous representation of the document allowed us to implement 
drawing very easily. However, the code we had to use to create the document in the first 
place was somewhat awkward. In functional programming, you'll often find that different 
contexts suggest different data structures: the desired usage determines the ideal 
representation to some extent. It's not uncommon for a functional program to have different 
representations for the same information in a single program. Now that we've got a suitable 
form for drawing, let's try to design one which is suitable for construction and processing–
and then write a transformation function to get from one representation to the other. 

7.3 Structured document representation 
The data structure that we'll design in this section is inspired by the HTML format, which is a 
familiar and successful language for creating documents. Just like HTML, our representation 
will have several different types of content and it will be possible to nest some parts within 
each other in appropriate ways. Figure 7.3 shows an annotated sample document, which 
should give you an idea of what the format will include. 
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Figure 7.3 Four different kinds of parts available in our document format; 'TitledPart' adds title to another 
part, and using 'SplitPart' we can create columns and rows. 'TextPart' and 'ImagePart' specify the actual 
content. 

There are two different types of parts. Simple parts like TextPart and ImagePart 
contain some content, but cannot contain nested parts. On the other side, TitledPart 
contains one nested part and adds a title to it, while SplitPart contains one or more 
nested parts and an orientation. As you may have guessed, we'll represent the different 
parts using a discriminated union. Because two of the parts can contain nested parts, the 
type will be recursive. Listing 7.9 shows the type declaration, giving us something more 
concrete to discuss in detail. 

Listing 7.9 Hierarchical document representation (F#) 
type Orientation =                                       #1 
   | Vertical 
   | Horizontal 
 
type DocumentPart =                                      #2 
   | SplitPart  of Orientation * list<DocumentPart>      #A 
   | TitledPart of TextContent * DocumentPart            #B 
   | TextPart   of TextContent                           #C 
   | ImagePart  of string                                #C 
#1 Represents orientation of the 'SplitPart'  
#2 Recursive type representing the document 
#A Columns or rows containing parts 
#B Other part with a title 
#C Simple content parts 
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The most important point to note is that the transcription of our informal specification to 
F# code is very straightforward. This is definitely one of the most attractive aspects of the 
standard F# type declarations. We first declare a simple discriminated union with just two 
options to represent an orientation for split parts (#1) and then declare the 
DocumentPart type with four alternative options.  

Two of the options recursively contain other document parts. SplitPart contains 
several other parts in a list and also an orientation to determine how the area should be 
divided; TitledPart consists of a single other part and a title to decorate it with. As you 
can see, the text is stored using the TextContent type from the previous section, which 
is a record containing a string together with a font. 

Note that the DocumentPart type represents the document as a whole. Because the 
type is recursive, we can nest any number of content parts inside a single document part. 
This is different to the previous approach, where we created a type for an element and then 
represented the document as a list of elements. In that representation, the list served as a 
"root" of the data structure and the elements were not further nested. Using the new data 
types, we can write the document from section 7.2 like this: 

let doc =  
   TitledPart({ Text = "Functional programming"; Font = fntHead },  
      SplitPart(Vertical,  
         [ ImagePart("cover.jpg"); 
           TextPart({ Text = "..."; Font = fntText }) ] 
      ) 
   ) 

I omitted the content of the TextPart located below the image, but you can still see 
that the representation is terser, because we don't need to calculate bounding rectangles. 
However, we don't have an implementation of drawing for this data type. We're not going to 
write one, either–why would we, when we've already got a perfectly good drawing function 
for the earlier representation? All we need to do is provide a translation from the "designed 
for construction" form to the "designed for drawing" one. 

7.3.1 Converting representations 
There are two key differences between the data types that we've just implemented. The first 
is that the data type from section 7.2 explicitly contains the bounding boxes specifying 
location of the content. Compare that with the second data type, which only indicates how 
the parts are nested. This means that when we translate the representation, we'll need to 
calculate each location based on the nesting of the parts. The second difference is that in the 
new representation, the document is just a single (recursive) value, while in the first case it 
is a list of elements. These two differences affect the signature of the translation function 
looks, so let's analyze that before we study the implementation: 

val documentToScreen : DocumentPart -> Rect -> list<ScreenElement> 

The function takes the part of the document to translate as the first argument and 
returns a list of ScreenElement values from the section 7.2. This means that both the 
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input argument and the result can represent the whole document. The function has also a 
second argument, which specifies the bounding rectangle of the whole document. During the 
translation, we'll need it to calculate positions of the individual parts. Listing 7.10 shows the 
implementation, which is (unsurprisingly) a recursive function. 

Listing 7.10 Translation between document representations (F#) 
let rec documentToScreen(doc, rc) =  
   match doc with 
   | SplitPart(Horizontal, parts) ->                              #1 
      let width = rc.Width / (float32 parts.Length)               #A 
      parts  
         |> List.mapi (fun i part ->                              #2 
               let left = rc.Left + (float32 i) * width           #2 
               let rc   = { rc with Left = left; Width = width }  #2 
            documentToScreen(part, rc))                           #2 
         |> List.concat                                           #3 
   | SplitPart(Vertical, parts) ->                                #4 
      let height = rc.Height / (float32 parts.Length) 
         parts  
         |> List.mapi (fun i part ->  
               let top = rc.Top + (float32 i) * height            #D 
               let rc  = { rc with Top = top; Height = height }   #D 
               documentToScreen(part, rc))                        #E 
         |> List.concat 
   | TitledPart(tx, doc) ->                                       #5 
      let titleRc = { rc with Height = 35.0f } 
      let restRc  = { rc with Height = rc.Height - 35.0f; 
                              Top = rc.Top + 35.0f } 
      TextElement(tx, titleRc)::(documentToScreen(doc, restRc))   #F 
   | TextPart(tx)  -> [ TextElement(tx, rc) ]                     #6 
   | ImagePart(im) -> [ ImageElement(im, rc) ]                    #6 
#A Calculate the size of individual parts 
#2 Recursively translate columns of part 
#3 Concatenate lists of screen elements 
#D Calculate bounding box of the row 
#E Recursive call 
#F Translate the body and append the title 
Let's start from the end of the code. It's easy to process parts that represent content 

(#6) because we just return a list containing a single screen element. We can use the 
rectangle that we've been provided as an argument to indicate the position and size. No 
further calculation is required. 

The remaining parts are more interesting, because they are composed from other parts. 
In this case, the function calls itself recursively to process all the sub-parts that form the 
larger part. This is where we have to perform some layout calculations, because when we call 
documentToScreen again, we give it a sub-part and the bounding box for the sub-part. 
We can't just copy the rc parameter, or all the sub-parts would end up in the same place! 
Instead we have to divide the rectangle we've been given into smaller rectangles, one for 
each sub-part. 
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TitledPart (#5) contains just a single sub-part, so we need to perform just one 
recursive call. Before that, we calculate one bounding box for the title (35 pixels at the top) 
and one for the body (everything except the top 35 pixels). Next, we process the body 
recursively and append a TextElement representing the title to the returned list of screen 
elements. 

We process a SplitPart using a separate branch for each of the orientations (#1, 
#4). First we calculate size of each of the column or row and then convert all its parts. We 
use List.mapi function (#2), which is just like List.map, but in addition it gives us an 
index of the part that we're currently processing. We can use the index to calculate the offset 
of the smaller bounding rectangle from the left or from the top of the main rectangle. The 
lambda function then calls documentToScreen recursively and returns a list of screen 
elements for every document part. This means that we get a list of lists as the result of the 
projection using List.mapi. The type of the result is list<list<ScreenElement>> 
rather than the flat list we need to return, so we use the standard F# library function 
List.concat (#3), which turns the result into a value of type 
list<ScreenElement>. 

TRANSLATION IN DETAIL 

The translation between different representations of the document is the most difficult 
part of this chapter, so you may want to download the source code and experiment with it 
to see how it works. The most interesting (and difficult) part is calculating the bounding 
rectangle for each recursive call. Likewise it's worth making sure you understand the list 
returned by the function, and how it's built up from each of the deep recursive calls. You 
may find it useful to work through an example with a pencil and paper, keeping track of 
the bounding rectangles and the returned screen elements as you go. 

Translation between different representations is often the key to the simplicity of a 
functional program, as it allows us to implement each of the other operations using the most 
appropriate data structure for the situation. We've seen that the first representation is 
perfect for drawing the document, but that the second make construction simpler. It turns 
out that the second form also makes manipulation easier, as we'll see in section 7.4. Before 
that though, we'll introduce one more representation: XML. 

7.3.3 XML document representation 
The XML format is very popular and is a perfect fit for storing hierarchical data such as our 
document from the previous section. Working with XML is important for many real-world 
applications, so in this section we'll extend our application to support loading documents 
from XML files. We'll use the .NET 3.5 LINQ to XML API to do most of the hard work–there's 
no point in writing yet another XML parser. LINQ to XML is a good example of how functional 
concepts are being used in mainstream frameworks: although it isn't a purely functional API 

Licensed to Curtis J Pitts <beop.love@gmail.com>

Download at Boykma.Com



 191 

©Manning Publications Co. Please post comments or corrections to the Author Online forum: 
http://www.manning-sandbox.com/forum.jspa?forumID=460 

(the types are generally mutable) it allows objects to be constructed in a recursive and 
declarative form. This can make the structure immediately apparent from the code, so it's 
much easier to read than typical code using the DOM API. 

In some sense, this is just another translation from one representation of the data into 
another. In this case the source representation is a structure of LINQ objects and the target 
is our document data type from section 7.3.1. The translation is a lot easier this time 
because both of the data structures are hierarchical. Listing 7.11 demonstrates the XML-
based format that we'll use for representing our documents. 

Listing 7.11 XML representation of a sample document (XML) 
<titled title="Functional Programming in .NET"  
        font="Times New Roman" size="18" style="bold">           #1 
   <split orientation="vertical">                                #2 
      <text>In this book, we'll introduce you (...)</text>       #A 
      <image url="C:\Tomas\Writing\Functional\Petricek.jpg" />   #A 
   </split> 
</titled> 
#1 Properties of the font used for the title 
#2 Vertical or horizontal split 
#A Sub-parts are nested XML elements 
Before looking at the core part of the translation, we need to implement some utility 

functions that parse the attribute values shown in the XML. In particular, we need a function 
for parsing a font name (#1) and the orientation of the SplitPart (#2). Listing 7.12 
shows these functions and also introduces several objects from the LINQ to XML library. 

Listing 7.12 Parsing font and orientation using LINQ to XML (F#) 
open System.Xml.Linq 
 
let attr(node:XElement, name, def) =                              #1 
   let attr = node.Attribute(XName.Get(name)) 
   if (attr <> null) then attr.Value else def 
 
let parseOrientation(node) =                                      #2 
   match attr(node, "orientation", "") with 
   | "horizontal" -> Horizontal 
   | "vertical" -> Vertical 
   | _ -> failwith "Unknown orientation!"                         #3   
 
let parseFont(node) =                                             #4 
   let str = attr(node, "style", "") 
   let style =  
      match str.Contains("bold"), str.Contains("italic") with     #A 
      | true,  false -> FontStyle.Bold 
      | false, true  -> FontStyle.Italic 
      | true,  true  -> FontStyle.Bold ||| FontStyle.Italic       #B 
      | false, false -> FontStyle.Regular 
   let name = attr(node, "font", "Arial") 
   new Font(name, float32(attr(node, "size", "12")), style) 
#1 Reads attribute or returns the specified default value 
#2 Parses value of the 'orientation' attribute 
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#3 Throw an exception 
#4 Parse a font node with specified style 
#A Tests whether the attribute contains specified strings 
#B Combine two options of .NET enumeration 
This code will only work with a reference to the System.Xml.Linq.dll assembly. In Visual 

Studio, you can use the usual "Add Reference" command from Solution Explorer. In F# 
interactive you can use the #r "(...)" directive and specify the path to the assembly as 
the argument, or just the assembly name if it's in the GAC. 

The listing starts with the attr function (#1) that we use for reading attributes. It 
takes an XElement (the LINQ to XML type representing an XML element) as the first 
argument and then the name of the attribute. The final parameter is the default value to use 
when the attribute is missing. The next function (#2) uses attr to read the value of the 
"orientation" attribute of an XML node that is passed into it. If the attribute contains an 
unexpected value, then the function throws an exception using the standard F# function 
failwith (#3). 

Finally, parseFont (#4) is used to turn attributes of an XML tag like title in listing 
7.11 into a .NET Font object. The most interesting part is the way that we parse the "style" 
attribute. It tests whether the attribute value contains two strings ("bold" and "italic") as 
substrings and then uses pattern matching to specify a style for each of the four possibilities. 
The function also converts a string representation of the size into a number using the 
float32 conversion function and creates an instance of the Font. 

Now that we have all the utility functions we need, loading the XML document is quite 
easy. List 7.13 shows a recursive function loadPart which performs the complete 
translation. 

Listing 7.13 Loading document parts from XML (F#) 
let rec loadPart(node:XElement) = 
   match node.Name.LocalName with                                       #1 
   | "titled" -> 
      let tx = { Text = attr(node, "title", ""); Font = parseFont node} 
      let body = loadPart(Seq.hd(node.Elements()))                      #A 
      TitledPart(tx, body) 
   | "split"  -> 
      let orient = parseOrientation node 
      let nodes = node.Elements() |> List.of_seq |> List.map loadPart   #B 
      SplitPart(orient, nodes)  
   | "text"   -> 
      TextPart({Text = node.Value; Font = parseFont node}) 
   | "image"  -> 
      ImagePart(attr(node, "url", "")) 
   | _ -> failwith "Unknown node!"                                      #2 
#1 Select branch using element name 
#A Recursively load the first child element 
#B Recursively load all children 
#2 Throw an exception 
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The function takes an XML element as an argument and we'll give it the root element of 
the XML document when we use it later. Its body is a single match construct (#1) that tests 
the name of the element against the known options and throws an exception if it encounters 
an unknown tag (#2). 

Loading image and text parts is easy because we just need to read their attributes using 
our functions utility function and create appropriate DocumentPart values. The remaining 
two document part types involve recursion, so they are more interesting.  

To create a TitledPart from a "titled" element we first parse the attributes for the 
title text and then recursively process the first XML element inside the part. To read the first 
child element, we call Elements() method, which returns all the child elements as a .NET 
IEnumerable collection. IEnumerable<T> is abbreviated as seq<'a> in F# and we 
can work with it using functions from the Seq module that are similar to functions for 
working with lists. In our example, we use Seq.hd, which returns the first element (the 
head) of the collection. If we were writing this code in C#, we could call 
Elements().First() to achieve the same effect. 

Finally, to create a SplitPart from a "split" element we need to parse all the 
children, so again we call the Elements() method but this time we convert the result to a 
functional list of XElement values. Next, we recursively translate each one into a 
DocumentPart value using a projection with the loadPart function as an argument.  

The function is very straightforward because it simply provides a few lines of code that 
parse the XML node for each of the supported tags. A lot of the simplicity is due to the fact 
that the XML document is hierarchical in the same way as the target representation. This lets 
us simply use recursion when a part has nested sub-parts.  

Now that we have a function to load the document from an XML element, we can finally 
see how the application displays a larger document: designing the document in an XML 
editor is easier than creating values in F#. Listing 7.14 shows the final piece of plumbing 
used to combine all the code that we've developed so far into a normal Windows Forms 
application. 

Listing 7.14 Putting the parts of the application together (F#) 
open System.Windows.Forms 
 
[<System.STAThread>] 
do 
   let doc = loadPart(XDocument.Load(@"C:\...\document.xml").Root) 
   let parts = documentToScreen(doc, { Left = 0.0f; Top = 0.0f;  
                                       Width = 500.0f; Height = 600.0f }) 
   let img = drawImage (550, 650) 25.0f (drawElements parts) 
   let main = new Form(Text = "Document", BackgroundImage = img 
                       ClientSize = Size(550, 650)) 
   Application.Run(main) 

The code starts by loading the document from a XML file using the XDocument class. 
We pass the document's root element to our loadPart function which converts it into the 
hierarchical document representation. Next, we convert this into the flat representation using 
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documentToScreen and then draw and display the document using the code we saw in 
listing 7.8. This time, we have also added the STAThread attribute which is needed for 
Windows Forms applications. The final line starts the application with the 
Application.Run method. You can see a screenshot showing the result in figure 7.3. 

 

Figure 7.3 Finished application displaying document with all four different kinds of document parts. 

Earlier I mentioned that the hierarchical representation is useful for manipulating the 
document as well as performing the initial construction. Let's take a look at that now, 
starting with a generally useful function for processing documents and then using it in a 
practical example. 

7.4 Writing operations 
There are many kinds of operations that we could perform with a document. We could 
capitalize all the titles in the document or perhaps merge text in multiple columns into a 
single column. All these operations have something in common and you may see a similarity 
between this and the map operation from the previous chapter. Just like mappings, they 
examine the document, perform some operation with certain parts of it and return a new 
document. 

Another kind of operation would return just a single value of different type. For example 
we could implement a function to count the words in the document or return all the 
document text as a single string. Again, this should sound familiar: the foldLeft function 
from section 6.6.3 does exactly the same job, but working with lists instead of documents. 
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As we learned in the previous chapter, writing a separate function for each operation 
would be impractical and we can get better results if we write a single higher order function 
that can be reused for different purposes. We'll start by implementing the function discussed 
in the first paragraph: the one reminiscent of the map operation. 

7.4.1 Updating using a map operation 
Even though the operation is similar to map, we'll implement it a bit differently this time. The 
function which is used to process each part should be able to give two kinds of result. It 
could return a new part which we'll use to replace the original part, or it return an empty 
value, in which case we'll use the original part and recursively process all its sub-parts. Keep 
in mind that there are several variations of this design. For example, we could also return 
special value to denote that the currently processed part should be removed from the parent. 
However, we'll continue and implement the simpler version. When thinking about higher 
order functions, one of the first aspects to consider is the signature. Here's the signature of 
the function we're going to implement: 

val mapDocument :  
    (DocumentPart -> option<DocumentPart>) -> DocumentPart -> DocumentPart 

Let's start from the end. The function takes the original document and returns an 
updated version. The first parameter is the processing function and as you can see, it returns 
an option value. This allows it to return Some value when replacing a part or None to leave 
the original part (and recursively map it). The function is implemented in listing 7.15. 

Listing 7.15 Map operation for documents (F#) 
let rec mapDocument f doc =  
   match f(doc), doc with                                       #1  
   | Some(newDoc), _ ->  
      mapDocument f newDoc                                      #2 
   | _, TitledPart(tx, cont) -> 
      TitledPart(tx, mapDocument f cont)                        #3 
   | _, SplitPart(orient, parts) -> 
      let updated = parts |> List.map (mapDocument f)           #4 
      SplitPart(orient, updated) 
   | _ -> doc 
#1 Tests the result and the original part 
#2 Function returned new document part 
#3 Recursively process the body 
#4 Process all columns or rows  
The code is implemented using handy pattern matching (#1). We combine the result of 

the call to the function given as an argument with the original document part, so we can 
write all the possible cases in a single match construct. When the function returns a new 
document part, we recursively process the part and then return it as the result (#2). This 
would be important for example if we wanted to change all titles in the document. In that 
case, we'd need to recursively process the body of the returned part to process all nested 
titles. When the function returns None, we look at the original document part. If the original 
part contains sub-parts, we need to process them recursively. For a titled part (#3), we just 
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process the body and return a new TitledPart with the original title. For a split part, we 
use List.map to obtain a new version of each of the columns or rows and then use the 
result to construct a new SplitPart. 

Now that we have a higher order function, let's try to use it. I mentioned earlier that we 
could merge several columns of text into a single part. This would be useful in an adaptive 
document layout: on a wide screen we want to view several columns, whereas on a narrow 
screen a single column is more readable. Listing 7.16 shows how to shrink a split part 
containing only text into a single part.  

Listing 7.16 Shrinking split part containing text (F#) 
let isText(part) =                                           #A 
   match part with | TextPart(_) -> true | _ -> false        #A 
 
let doc = loadPart(XDocument.Load(@"C:\...\document.xml").Root) 
let shrinkedDoc = doc |> mapDocument (fun part -> 
   match part with 
   | SplitPart(_, parts) when List.for_all isText parts ->   #1 
      let res =  
         List.fold_left (fun st (TextPart(tx)) ->            #2 
            { Text = st.Text + " " + tx.Text                 #B 
              Font = tx.Font } )  
            { Text = ""; Font = null } parts                 #C 
      Some(TextPart(res)) 
   | _ -> None )                                             #D 
#A Utility testing whether part is a 'TextPart' 
#1 Split part containing only text parts 
#2 Aggregate all parts using fold 
#B Concatenate text and return font 
#C Start with empty string and 'null' font 
#D Ignore other cases 
In the processing function, we need to check whether the given part is a SplitPart 

containing only text parts. The first condition can be checked directly using pattern matching 
and the second one is specified in a when clause of the pattern. We write a utility function 
isText that tests whether a part is TextPart and then use it from List.for_all to 
test whether all parts fulfill the condition (#1). 

Next, we use fold_left to aggregate all the parts in the list into a single part. We 
already know that each sub-parts is a TextPart, so we can use it directly as a pattern 
when we write the lambda function to aggregate the result (#2). However, the compiler 
cannot verify that this is correct, so it gives a warning. You should be always very careful 
when you spot a warning, but in this case we can safely ignore it. However, in larger projects 
where you want to eliminate all compiler warnings, you'd probably rewrite the code using 
match construct and call the failwith function in the unreachable branch. The 
aggregation implicitly uses the TextContent type and specifies an initial value with no 
text content and unset font. During every step, we concatenate the existing string with the 
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value in the current part, and use the current font. We do not process fonts in a 
sophisticated manner, so we'll just end up with the font used by the last part. 

You can see the final result of this operation in figure 7.5. 

 

Figure 7.5 Original and updated document; in the new document, split parts that contain only text are 
merged into a single text part 

I mentioned earlier that this map-like operation is just one of several useful operations 
that we can provide for our documents. In the next section, we'll look at another one, which 
aggregates the document into a single value. 

7.4.2 Calculating using an aggregate operation 
The idea behind aggregation is that we maintain some state that will be passed around over 
the course of the operation. We start with an initial state and calculate a new one using the 
given processing function for each part in the document. This idea is reflected in the 
signature of the function: 

val aggregateDocument :  
    ('a -> DocumentPart -> 'a) -> 'a -> DocumentPart -> 'a 

The reason I've used the broad notion of "some state" is that the state can be anything. The 
type of the state in the function signature is a type parameter 'a, so it depends on the user 
of the function. The processing function which calculates the new state based on the old 
state and a single document part is passed as the first argument; the initial state as the 
second argument, and the document as the third. Listing 7.17 shows the complete (and 
perhaps surprisingly brief) implementation. 

Listing 7.17 Aggregation of document parts (F#) 
let rec aggregateDocument f state doc =  
   let state = f state doc                                       #1 
   match doc with  
   | TitledPart(_, part) -> 
      aggregateDocument f state part                             #2 
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   | SplitPart(_, parts) -> 
      List.fold_left (aggregateDocument f) state parts           #3 
   | _ -> state 
#1 Calculate new state for the current part 
#2 Recursively process the body 
#3 Aggregate state over all subparts 
The code needs to walk over all the parts in the document. It first calls the function on 

the current part and then recursively processes all subparts. The ordering is relevant here: 
we could have designed the function to process all the sub-parts first and then the current 
part. The difference is that in the implementation above, the function is called on the "root" 
node of the tree, while in the other case it would first be called on the "leaf" nodes. For our 
purposes, both options would work fine, but for some advanced processing we'd have to 
consider what kind of traversal we wanted.  

When we call the aggregation function with the current part (#1) we use the same name 
for the value to hold the new state. The new value hides the old one, and in this case that's a 
useful safety measure: it means we can't accidentally use the old state by mistake after 
we've computed the new state. Next, we process the parts that can contain sub-parts. For a 
titled part, we just recursively process the body (#2). When we get a split with a list of sub-
parts, we aggregate it using normal aggregation on lists with the List.fold_left 
function (#3). 

Aggregation can be useful for a variety of things. The following snippet shows how to 
use this operation for counting a number of words in the whole document:  

let totalChars = 
    aggregateDocument (fun count part ->  
        match part with 
        | TextPart(tx) | TitledPart(tx, _) ->           #A 
            count + tx.Text.Split(' ').Length 
        | _ -> count) 0 doc 
#A Single case for both parts with text 
The function that we use as an argument only cares about parts that contain text. We 

have two parts like this and both of them contain the text as a value of type 
TextContent. F# pattern matching allows us to handle both cases just using a single 
pattern. This syntax is called an or-pattern and it can be used only when both patterns bind 
value to the same identifiers with the same type. In our case, we only need a single identifier 
(tx) of type TextContent. Finally, in the body for the pattern matching, we split the text 
into words using a space as the separator and then add the length of the returned array to 
the total count. 

TRY IT! 

You can try extending this example in many ways. Here are a few ideas that you'll find 
solved on the book web www.functional-programming.net. You can use mapDocument 
to split text parts with more than 500 characters into two columns. Using aggregation, 
you can collect a list of images that are used in the document. Moreover, you can 
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implement a filter-like operation that takes a function of type (DocumentPart -> 
bool) and creates document containing only parts for which the function returns true. 
Using this function, you can remove all the images from a document. 

We've seen that the second representation is very convenient for various operations with 
the document, especially if we implement useful higher order functions first. In the last 
section we'll get back to C# for a while and we'll discuss which of the ideas that we've just 
seen are applicable to C# and also about related design patterns.  

7.5 Object-oriented representations 
Standard design patterns are divided into three groups - creational, structural and 
behavioral. In this section we'll look at few patterns from the last two groups and we'll see 
that they are very similar to some of the constructs that we used in F# earlier in this 
chapter. Of course, the functional version of the patterns will not be exactly the same as 
object-oriented, because OOP puts more emphasis on adding new types and FP puts more 
emphasis on adding new functionality, but the structure will be very similar.  

TIP 

This section assumes that you know a bit about some of the design patterns. You can find 
links to good introductory articles on the book's web site. We also don't have space to 
show all the data structures in C#, but you can find the full implementation online. 

We'll start by discussing two structural patterns and later we'll look at one behavioral.  

7.5.1 Representing data with structural patterns 
If we talk about programs in terms of data structures instead of objects, we can say that 
structural patterns describe common and proved ways to design data structures. Design 
patterns as you know them are more concrete and specify how to implement these 
structures in object oriented languages using objects. In this chapter, we've seen functional 
ways to represent data. In the first representation we used a simple list of records, which is 
easy to write in any language, but the second representation using a discriminated union is 
more interesting. The first related pattern that we'll look at is the composite pattern. 

THE COMPOSITE DESIGN PATTERN 
This pattern allows us to compose several objects into a single composed object and work 
with it in a same way as with primitive objects. Figure 7.6 shows the usual object oriented 
way to implement this pattern. 

Licensed to Curtis J Pitts <beop.love@gmail.com>

Download at Boykma.Com



200   

©Manning Publications Co. Please post comments or corrections to the Author Online forum: 
http://www.manning‐sandbox.com/forum.jspa?forumID=460 

 

Figure 7.6 'CompositeComponent' is a class that contains collection of other components; it inherits from 
'AbstractComponent', so it can be used in place of primitive component in a same way as other 
components, such as 'ConcreteComponent' 

The composed object is represented by the Composite class. The program then works 
with objects just using the AbstractComponent class, so it doesn't need to understand 
the difference between primitive and composed object. You can also see an example of a 
virtual method, which is called Operation. In the CompositeComponent class, its 
implementation is usually very simple. It just iterates over all objects from the 
components collection and invokes Operation method on them.If you think about our 
document representation, you can find a very similar case there. When a part is split into 
multiple columns or rows using SplitPart, we treat it as an ordinary document part in 
exactly the same way as other parts. However, the part is just composed from other parts 
that are stored in a list. We can rewrite the general example from the figure 7.6 in the same 
way using recursive discriminated union type in F#: 

type AbstractComponent 
  | CompositeComponent of list<AbstractComponent> #A  
  | ConcreteComponent of (...) 
  | (...)                                #B 
#A Composite component 
#B Other primitive components 
In this example, the composite value is represented as one of the alternatives besides 

other primitive components. It recursively refers to the AbstractComponent type and 
stores values of this type in a list representing the composed object. When working with 
values of AbstractComponent type, we don't need to treat composed and primitive 
values separately, which is the primary aim of this design pattern. 

As I said in the introduction for this section, there are some important differences 
between functional and object-oriented version of the pattern. Most importantly, in functional 
programming, the composition is public aspect of the type. As a result, any user of the type 
knows that there is a component created by composition and can use this fact when writing 
primitive processing functions, just like we did when implementing the mapDocument 
operation.  
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When using functional data structures, the focus is on the ability to easily add new 
functionality to existing types, so making the composition public is a valid design decision. 
This means that the functional version of the code also doesn't need to define the 
Operation method, which was part of the AbstractComponent type in the object-
oriented representation. Any operation that uses the type can be implemented independently 
of the type as a processing function.  

In fact, F# has an advanced feature called active patterns that allows us to encapsulate 
the composition to some extent. This allows us to publicly expose the composition, but the 
whole discriminated union type, which can be useful for evolving F# libraries. We don't 
discuss details of this feature in the book, but you'll find more information on the book's web 
site. 

THE DECORATOR DESIGN PATTERN 
Another pattern that is closely related to composite is called the decorator pattern. The goal 
of this pattern is to allow adding of new behavior to an existing class at runtime. As you can 
see in figure 7.7, the structure looks similar to the composite pattern. 

Operation()

AbstractComponent

Operation()

component
decoration

DecoratedComponent

Operation()

ConcreteComponent

1

1

 

Figure 7.7 'DecoratedComponent' class wraps a component and adds new state to it; Implementation of 
the 'Operation' in decorated component calls the wrapped functionality and adds new behavior that uses 
the state of the decorated component 

Even though the patterns look similar, their purposes are completely different. While the 
composite pattern allows us to treat composed values in a same way as primitive values, the 
purpose of the decorator pattern is to add new a feature to the existing object. As you can 
see, the DecoratedComponent class in the diagram wraps a single other component 
that is decorated and can carry additional state (such as the decoration field). The 
decorated component can also add some behavior that uses the additional state in the 
Operation method.  

Again we can see a correspondence between this pattern and one of the parts in our 
document representation. The part that adds some decoration to another part in our 
application is TitledPart. The decoration is of course the title and the added state is the 
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text and font of the title. We can write F# code that corresponds to the diagram of Decorator 
pattern similarly simply as for the Composite pattern: 

type AbstractComponent = 
    | DecoratedComponent of AbstractComponent * (...)    #A 
    | ConcreteComponent of (...) 
    | (...)                                              #B 
#A Decorated component with additional state 
#B Other primitive components 
In this case, the data carried by the Decorator alternative is just a single decorated 

component (instead of list of components in the case of Composite) and also the additional 
state, which can vary between different decorators. I symbolized this using (...) syntax in 
the previous listing, but this is only pseudo-code. In real F# code you would specify the type 
of the actual state here, such as TextContent in our titled part. Just as with the 
composite pattern, the code that implements operations on the decorated component is 
located in the processing functions that we implement for our data structure. The code for 
the DecoratedComponent case in the processing function would call itself recursively to 
process the wrapped component and then execute the behavior added by the decorator, 
such as drawing a title of the document part. 

The F# implementation of both of the patterns in this section in relied on using a 
recursive discriminated union type. In the next section, we'll work with it again, but in a 
different way. We'll look at the object-oriented way for adding new operations to existing 
data types.  

7.5.2 Adding functions using the visitor pattern 
Adding new operations to an existing data structure is the primary way of implementing any 
code that works with data in a functional language. In object-oriented languages, this is 
more difficult to do, but it is also needed less frequently. In this section we'll talk about the 
visitor pattern that is designed for this purpose and we'll sketch how we could use it to add 
operations to our representation of document. Figure 7.7 shows the basic classes that we'll 
use in this section. 
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Figure 7.7 Diagram shows a class hierarchy that represents a document and a generic visitor class with 
state as a generic type parameter (T); all parts support the visitor via 'Accept' method 

The hierarchy of classes that inherit from an abstract class DocumentPart is a usual 
way to represent alternatives in object-oriented programming and it corresponds to the 
discriminated union type that we've used in F#.  

The main class of the visitor pattern is a generic DocumentVisitor<T> class. We're 
using a variant of the pattern that allows working with state, so the type parameter T 
represents the kind of state we need to maintain, such as arguments or the result of some 
computation performed by the visitor. The pattern also requires adding a virtual Accept 
method and implementing it in each of the derived classes. The method takes the visitor as 
an argument and calls it's appropriate Visit method, depending on which part it is. You 
can find the complete source code online, but let's briefly look at the code of the Accept 
method in ImagePart: 

public override T Accept<T>(DocumentPartVisitor<T> visitor, T state) { 
   return visitor.VisitImagePart(this, state); 
} 

The method only delegates the processing to the visitor. However, because it is 
implemented in every derived class, it can call VisitImagePart whose argument is a 
concrete class (in this case ImagePart). This means that when we'll implement a concrete 
visitor, we'll have an easy way to access properties of the different types that represent the 
document. 

The listing 7.18 shows how we can add an operation that counts words in the document 
to the object oriented representation using the Visitor pattern. 

Listing 7.18 Counting words in the document using Visitor (C#) 
class CountWords : DocumentPartVisitor<int> { 
   public override int VisitTitledPart(TitledPart p, int st) { 
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      return p.Text.Text.Split(' ').Length +  
             p.Body.Accept(this, st);                               #1 
   } 
   public override int VisitSplitPart(SplitPart p, int st) { 
      return p.Parts.Aggregate(st, (n, p) =>                        #A 
                p.Accept(this, n));                                 #2 
   } 
   public override int VisitTextPart(TextPart p, int st) { 
      return p.Text.Text.Split(' ').Length + st; 
   } 
   public override int VisitImagePart(ImagePart p, int st) { 
      return st; 
   } 
} 
#1 Recursively count words of the body 
#A Aggregate the count over all subparts 
#2 Count words in each part 
This code corresponds to writing a recursive F# function that uses pattern matching to 

test which of the parts we are currently processing. In an object-oriented way, this choice is 
done in the Accept methods from the Visitor pattern. The CountWords class inherits 
from the visitor and uses a single int value as the state. Methods that process different 
types of document parts just add the number of words to the current state and there are 
also two methods (#1, #2) that have to recursively invoke the visitor on certain subparts. 
The invocation is done by calling the Accept method on the subpart. This is similar to the 
code that we need to run the processing on the entire document: 

int count = doc.Accept(new CountWords(), 0); 

Here we just call the Accept method and give it a new instance of the visitor as an 
argument. If we wanted to add another operation, we would implement a new class similarly 
as CountWords and execute it by giving it as an argument to the Accept method. 

7.6 Summary 
Working with data and designing data structures in a way that matches how we want to use 
the data is an important part of functional program design. In this chapter, we completed our 
toolset of basic functional data types by looking at the F# record type. We used records, lists 
and recursive discriminated unions together to design and implement an application for 
working with documents. 

Functional programs often use multiple representations of data during processing and 
our application provided an example of this. One representation (a flat list of elements) 
allowed us to draw the document simply, whereas another (a hierarchy of parts) proved 
more useful for constructing and manipulating documents. We implemented a translation 
between these two representations, so the application could read the document from an XML 
file, process it in the hierarchical form, and then draw it using the flat form. 

We've also looked at design patterns that you'd probably use if you wanted to 
implement the same problem in C#. In particular, we’ve seen that the composite and 
decorator patterns correspond closely with the alternative values we used in the document 
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data structure. Finally, we've also seen a C# way to add a new "function" for processing an 
existing data structure using the visitor pattern. 

This chapter was primarily about data-centric programs, where we design the data 
structures first. However, as I mentioned in the introduction, there are also programs that 
are primarily concerned with behavior. Of course, in more complex applications these two 
approaches are combined. In the next chapter, we'll turn our attention to the second 
important aspect of functional program design and talk about behavior-centric applications. 
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8 
Designing behavior-centric 

programs 

In the previous chapter, we discussed data-centric applications and I wrote that the first step 
when designing functional programs is to think about the relevant data structures. However, 
there are also cases where the data structure contains some form of behavior. For example, 
this might be a command that the user can invoke or some tasks that the program executes 
at some point. Instead of hard-coding every behavioral feature, we want to work with them 
uniformly, so we need to keep them in a data structure which can be easily modified, either 
before the compilation or even at run-time. 

In the previous chapter, I gave the example of an application that processes images 
using graphical filters. The application needs to store the filters and add or remove them 
depending on what filters you want to apply. When representing this in the program, we 
could easily use a list for the actual collection of filters to apply–the harder question is what 
data structure we should use to represent the filters themselves? Clearly, a filter isn't really 
data, although it may be parameterized in some fashion. Instead, it denotes behavior and 
the simplest way for representing behavior in a functional language is to use a function.  

As we've seen in chapter 5, functions can be treated as values, so we can work with 
them as with any other data types. This means that a list of functions is a perfectly 
reasonable data structure for representing graphical filters. The difference between behavior-
centric and data-centric is more conceptual then technical. Understanding what kind of 
application you are designing is a helpful hint for creating a correct design. 

EXAMPLES OF BEHAVIOR-CENTRIC APPLICATIONS 
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In applications of a significant size, both approaches are usually combined. A larger 
graphical editor that supports vector graphics as well as image filtering might use a data-
centric approach for representing shapes and a behavior-centric approach for applying 
graphical filters to the image. Implementing graphical processing is beyond the scope of 
this chapter, but you can find a sample application for graphical processing on the book 
web www.functional-programming.net. 

The design of functional data-centric applications from the previous chapters relied 
heavily on functional data types, most importantly discriminated unions. These aren't 
particularly idiomatic in C#, so we mostly talked about F#. On the other side, using functions 
for representing simple behavior is perfectly possible in C# 3.0. Thanks to the Func 
delegate, which represents a function in C#, most of the examples you'll see in this chapter 
will be written in both C# and F#. 

In this chapter, we'll use a single example that we'll keep extending to demonstrate the 
look and feel of behavior-oriented applications. We're going to develop an application for 
testing the suitability of a client for a loan offer. Let's now look at probably the simplest way. 

8.1 Using collections of behaviors 
In this section, we'll write several conditions for testing whether a bank should offer a loan to 
the client or not and we'll store these conditions in a collection. This way, it is very easy to 
add new conditions later during the development, because we would just implement the 
condition and add it to the collection. One of the key aspects of behavior-oriented programs 
is the ability to add new behavior easily. 

8.1.1 Representing behaviors as objects 
This time, we'll start with the C# version, because working with collections of behaviors in a 
functional way is supported in C# 3.0 to a similar extent as in F#. However, before we'll look 
at the functional version, it is useful to consider how the same pattern might be written using 
a purely object oriented style. 

We would probably start by declaring an interface with a single method to execute the 
test and return whether or not it failed. In our loan example, a return value of true would 
indicate that the test suggests the loan offer should be rejected. Later we would implement 
the interface in several classes to provide concrete tests. Listing 8.1 shows the interface and 
a very simple implementation. 

Listing 8.1 Loan suitability tests using object oriented style (C#) 
interface IClientTest { 
   bool Test(Client client);              #1 
} 
class TestYearsInJob : IClientTest {      #A 
   public bool Test(Client client) { 
      return client.YearsInJob < 2;       #2 
   } 
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} 
#1 Method that tests the client 
#A Each test is represented by a single class 
#2 Body of the concrete test 
When working with tests implemented like this, we would create a collection containing 

elements of the interface type (#1) (for example List<IClientTest>) and then add an 
instance of each class implementing the interface to this collection. It is worth noting that we 
have to create a separate class for every test, even though the condition itself is just a 
simple expression (#2). 

8.1.2 Representing behaviors as functions in C# 
I mentioned earlier that an object-oriented way to understand a function is to think of it as 
an interface with a single method. If we look at the code from the previous listing, we can 
see that IClientTest is declared exactly like this. That means the test can easily be 
represented as just a simple function. In C#, we can write tests using lambda functions: 

Func<Client, bool> testYearsInJob = 
   client => client.YearsInJob < 2; 

Instead of using the interface type, we now use a type Func<Client, bool>, 
which represents a function that takes the Client as an argument and returns a Boolean 
value. By writing the code in this fashion, we have significantly reduced the amount of 
boilerplate code around the expression that represents the test. 

Just like we could store objects that implement some interface in a collection, we can 
also create a collection that stores function values and we'll look how to do this using the 
List<T> type in the listing 8.2. Note that we're creating a completely standard collection of 
objects - we can iterate over all the functions in the collection or change the collection later 
by adding or removing some of the function values.  

When initializing the collection, we can easily write the code to specify the default set of 
tests in a single method. We can add the tests using lambda function syntax without the 
need to declare the functions in advance and we can also use C# 3.0 feature called collection 
initializer that makes the syntax even more concise.  

Listing 8.2 Loan suitability tests using a list of functions (C#) 
class Client {                                 #1 
   public string Name { get; set; } 
   public int Income { get; set; } 
   public int YearsInJob { get; set; } 
   public bool UsesCreditCard { get; set; } 
   public bool CriminalRecord { get; set; } 
} 

 
static List<Func<Client, bool>> GetTests() {   #A 
   return new List<Func<Client, bool>> {       #2 
      cl => cl.CriminalRecord,                 #B 
      cl => cl.Income < 30000,                 #B 
      cl => !cl.UsesCreditCard,                #B 
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      cl => cl.YearsInJob < 2                  #B 
   }; 
} 
#1 Stores information about the client 
#A Returns a list of tests 
#2 Create new list using collection initializer 
#B Several test checking loan suitability 
The listing uses many of the new C# 3.0 features and thanks to them it is quite similar 

to the F# implementation we're about to write. First we declare a class to store information 
about the client using automatic properties (#1).  Next, we implement a method that returns 
a collection of tests. The body of the method is just a single return statement that creates a 
new .NET List type and initializes its elements using collection initializer (#2). This allows you 
to specify the values when creating a collection in the same way as for arrays. Under the 
cover, this calls the Add method of the collection, just as we did in the previous example, 
but it is clearer. 

The values stored in the collection are functions written using the lambda function 
syntax. Note that we don't have to specify the type of the cl argument. This is because the 
C# compiler knows that the argument to the Add method is the same as the generic type 
argument, which in our case is Func<Client, bool>. 

LOADING BEHAVIORS USING REFLECTION  

One frequent requirement for behavior-centric programs is the ability to load new 
behaviors dynamically from a library. For our application that would mean that someone 
could write a .NET class library with a type containing a GetTests method. This would 
return a list of tests just as in the earlier code; our program would call the method to get 
the tests at execution time, and then execute the tests without needing to know anything 
more about them.   

This can be done using the standard .NET classes from the System.Reflection 
namespace that support dynamic loading an assembly and executing a method based on 
its name. The sample application for working with graphical filters supports this 
functionality, so you can find more examples online. 

Now that we have a class for representing clients and a collection of tests that advises 
us whether to offer a loan to the client or not, we should also look how we can run the tests. 

8.1.3 Using collections of functions in C# 
When considering a loan for a client, we want to execute all the tests and count the number 
of tests that returned true (meaning a high risk). If the count is zero or one then the 
program will recommend the loan. The normal imperative solution would be to declare a 
variable and enumerate the tests using a foreach statement. In the body of the loop, we'd 
execute the test and increment the variable if it returned true. However, as you can see in 
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listing 8.3, this can be implemented more elegantly using the LINQ extension method 
Count. 

Listing 8.3 Executing tests (C#) 
void TestClient(List<Func<Client, bool>> tests, Client client) { 
   int issuesCount = tests.Count(f => f(client));             #1 
 
   bool suitable   = issuesCount <= 1;                        #A 
   Console.WriteLine("Client: {0}\nOffer a loan: {1}",        #A 
      client.Name, suitable ? "YES" : "NO");                  #A 
} 
 
var john = new Client {                                       #B 
      Name = "John Doe", Income = 40000, YearsInJob = 1, 
      UsesCreditCard = true, CriminalRecord = false  
   }; 
TestClient(GetTests(), john);                                 #C 
#1 How many tests does the client fail? 
#A Print the results of testing 
#B Create client using object initializer 
#C Offer a loan to the client? 
In functional terminology, Count is a higher order function. It takes a predicate as an 

argument and counts the number of elements for which the predicate returns true. We're 
using it to count how many tests consider the client to be unsuitable for a loan (#1). The 
element of the collection in our case is a function, so our predicate has to take a function and 
return a Boolean. The lambda function we wrote executes the function passed as its 
parameter, specifying it the client as the argument, and simply returns the result of the test 
as the predicate result. Once we count the tests that failed, calculating and printing the 
result is easy. Describing how it works (even in this relatively simple case) is complicated, 
but if you think about what you're trying to do with each element, it's not that hard to 
understand. 

I mentioned earlier that the F# version of the example will be essentially the same. This 
is because all the necessary features such as higher order functions, lambda functions and 
the ability to store functions in a collection are now available in C# 3.0 as well. Let's see 
what the F# code looks like. 

8.1.4 Using lists of functions in F# 
First of all, we'll declare a type to represent information about the client. A client has quite a 
lot of properties, so the most natural representation will be an F# record type that we've 
seen in the previous chapter. You can see the type declaration and a code to create sample 
client in the listing 8.4 

Listing 8.4 Client record type and sample value (F# interactive) 
> type Client =                                              #A 
     { Name : string; Income : int; YearsInJob : int 
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       UsesCreditCard : bool; CriminalRecord : bool };; 
type Client = (...) 
 
> let john =                                                 #B 
     { Name = "John Doe"; Income = 40000; YearsInJob = 1 
       UsesCreditCard = true; CriminalRecord = false };; 
val john : Client 
#A Declare 'Client' as an F# record type  
#B Create a value of the 'Client' type 
There's nothing new here - we're just declaring a type and creating an instance of it. To 

make the listing a bit shorter, I haven't used a separate line for each property, either when 
declaring the type or when creating the value. This is entirely valid F#, but we have to add 
semicolons between the properties. In the light-weight syntax, the compiler adds them 
automatically at the end of the line (when they are needed), but they have to be written 
explicitly when the line breaks aren't there to help the compiler. 

Listing 8.5 completes the example. First it creates a list of tests and then decides 
whether or not to recommend offering a loan to the sample client (John Doe) from the 
previous listing. 

Listing 8.5 Executing tests (F# interactive) 
> let tests =                                                          #1 
     [ (fun cl -> cl.CriminalRecord = true); 
       (fun cl -> cl.Income < 30000); 
       (fun cl -> cl.UsesCreditCard = false); 
       (fun cl -> cl.YearsInJob < 2) ];; 
val tests : (Client -> bool) list                                      #2 
 
> let testClient(client) =  
     let issues =  tests |> List.filter (fun f -> f client)            #3 
     let suitable = issues.Length <= 1                                 #A 
     printfn "Client: %s\nOffer a loan: %s (issues = %d)" client.Name  #A 
             (if (suitable) then "YES" else "NO") issues.Length;;      #A 
val testClient : Client -> unit 
 
> testClient(john);; 
Client: John Doe 
Offer a loan: YES (issues = 1) 
#1 Create a list of tests 
#2 Inferred signature of the list 
#3 Filter tests and get a list of issues 
#A Count the issues and print the result 
This uses the normal syntax for creating lists to initialize the tests (#1) and the tests are 

written using lambda function syntax. Interestingly, we don't have to write any type 
annotations and F# still infers the type of the list correctly (#2). F# type inference is smart 
enough to use the names of the accessed members in order to work out which record type 
we want to use. 

In the C# version, we used the Count method to calculate the number of the tests that 
failed. F# doesn't have an equivalent function; we could either implement it, or combine 
other standard functions to get the same result. We've taken the second approach in this 
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case. First we get a list of tests that considered the client to be unsafe; these are the tests 
which return true using List.filter (#3). Then we get the number of issues using the 
Length property. 

Point-free programming style 

We've seen many examples where we don't have to write lambda function explicitly when 
calling a higher order function, so you may be wondering whether this is possible in the 
previous listing as well. This way of writing programs is called "point-free", because we're 
working with data structure that contains values (for example a list), but we never assign 
any name to the value ("point") from that structure. Let's demonstrate this using a couple 
of examples that we've seen already: 

[1 .. 10] |> List.map ((+) 100) 
places |> List.map (snd >> statusByPopulation) 

In the first case, we're working with collection of numbers, but there is no symbol that 
would represent values from the list. The second case is similar, except we're working 
with list of tuples. Again, there are no symbols that would represent either the tuple or 
any element of the tuple. 

The point-free style is possible thanks to several programming techniques. The first line 
uses partial function application, which is a way to create a function with the required 
number of parameters based on a function with larger number of parameters. In our 
example, we also treat an infix operator (plus) as an ordinary function. The second line 
uses function composition, which is another important technique for constructing 
functions without explicitly referencing the values that the functions work with. 

Now, let's look how we could rewrite the example from listing 8.5. First of all, we'll 
rewrite the lambda function to use pipelining operator:  

Instead of:  (fun f -> f client) 
We'll write: (fun f -> client |> f) 

These two functions mean exactly the same thing. We're almost finished now, because 
the pipelining operator takes the client as the first argument and a function as the second 
argument. If we use partial application to specify just the first argument ('client'), we'll 
obtain a function that takes a function ('f') as an argument and applies it to the 'client': 

tests |> List.filter ((|>) client) 

Point-free programming style should be always used wisely. Even though it makes the 
code more succinct and elegant, it may be harder to read and the reasoning that I've 
demonstrated here isn't trivial. However, the point-free style is important for some areas 
of functional programming and in chapter 12 we'll see how it can be very useful when 
developing a domain-specific language. 
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In this section, we've seen how to design and work with a basic behavior-oriented data 
structures - a list of functions - in both C# and F#. We've also seen a common functional 
technique called point-free programming. In the next section, we'll continue talking about 
common practices as we look at two object-oriented design patterns and related functional 
constructs. 

8.2 Idioms for working with functions 
In the previous chapter, we talked about data structures and several related design patterns. 
We've seen two examples of structural patterns that are related to the problem of designing 
functional data structures. We've also seen one behavioral pattern that describes how 
objects communicate, which corresponds to how functions call each other in functional 
terminology.  

In this chapter, we're talking about behavior-oriented applications, so it seems natural 
that the relevant patterns will be behavioral ones. The first one is called the strategy pattern 
and is surprisingly simple from a functional point of view. 

8.2.1 The strategy design pattern 
The strategy pattern is useful if the application needs to choose between several algorithms 
or parts of an algorithm at run-time. One of the common situations is for example when 
several tasks that our application needs to perform differ only in one smaller subtask. Using 
the strategy pattern, we can write the common part of the task just once and parameterize it 
by giving it the subtask (primitive operation) as an argument. Figure 8.1 shows an object-
oriented representation of the strategy pattern.  

 

 

Figure 8.1 'Strategy' is an interface with a method representing the primitive operation. Two concrete 
strategies implement that operation differently and the 'Context' class can choose between the 
implementations. 

The idea of "parameterizing a task by giving it subtask as an argument" has probably 
made it fairly clear what the strategy pattern looks like in functional programming: it's just a 
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higher order function. The Strategy interface from the previous diagram has a single 
method which suggests that it is just a simple function; the two classes that implement it are 
effectively just concrete functions that can be created using lambda functions.  

In a language that supports functions, we can replace the Strategy interface with the 
appropriate function (a Func delegate in C# or a function type in F#). Usually, we also don't 
need to store the strategy in a local field of the Context class: instead, we pass it directly 
to the Operation method as an argument. Using the abstract names from the previous 
diagram, we could write: 

Context.Operation(arg => { 
      // concrete strategy #1 
   }); 

We’ve already seen a practical example of this pattern when filtering a list. In this case, 
the function that specifies the predicate is a concrete strategy (and we various different 
strategies to write different filters) and the List.filter function or the Where method 
is the operation of the context. This means that in a language that supports higher order 
functions, you can always replace the strategy pattern with a higher order function. 

Our next pattern is somewhat similar, but more related to our earlier discussion of 
behavior-centric applications that work with a list of behaviors. 

8.2.2 The command design pattern 
The command pattern describes a way to represent actions in an application. As opposed to 
the previous pattern, which is used to parameterize a known behavior (e.g. filtering of a list) 
with a missing piece (predicate), the command pattern is used to store some "unit of work" 
that can be invoked at some later point in time. We often see collections of commands that 
specify steps of some process or operations that the user can choose from. If you look at 
figure 8.2, you'll quickly recognize an interface which looks like a good candidate for being 
replaced with a single function. 

 

Figure 8.2 'Invoker' stores a collection of classes implementing the 'Command' interface. When invoked, 
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the concrete command uses a 'Receiver' object, which usually carries and modifies some state. 

The type that can be easily replaced with a function is the Command interface. Again, it 
has just a single method, which acts as a hint. The classes that implement the interface 
(such as ConcreteCommand) can be turned into a functions, either constructed using 
lambda function syntax or written as ordinary functions when they are more complex.  

I mentioned that the difference between the command and strategy patterns is that the 
Invoker works with a list of commands and executes them as and when it needs to. This is 
very similar to the "client loan" example. We had a collection of tests for checking the 
suitability of the client. However, instead of declaring the Command interface, our functional 
version used the Func<Client, bool> delegate in C# and a function type Client -> 
bool in F#. The invoker was the TestClient method, which used the tests to check a 
client.  

RECEIVER COMPONENT AND MUTABLE STATE 

Figure 8.2 also shows a Receiver class; I explained that it usually represents some 
state that is changed when the command is invoked. In a typical object-oriented 
program, this might be a part of the application state. For example in a graphical editor, 
we could use commands to represents undo history. In that case, the state would be the 
picture on which the undo steps can be applied.  

This is not the way in which you would use the pattern in a functional programming. 
Instead of modifying state, the command usually returns some result (such as the 
Boolean value in our client checking example). In purely functional programming, the 
Receiver can be a value captured by the lambda function. 

Although mutable state should usually be avoided in functional programming, there is 
one example where it is useful, even in F#. We'll see that a technique similar to the 
command pattern can help us to hide the state from the outside world, which is important if 
we still want to keep most of the program purely functional. First look at a similar idea in C# 
and then study the usual implementation using lambda functions in F#. 

CAPTURING STATE USING THE COMMAND PATTERN IN C# 
As I've explained, the command pattern often works with mutable state, encapsulated in 
something like the Receiver class of our example. Listing 8.6 shows an example of this, 
creating a more flexible income test for our financial application. The goal is to allow the test 
to be configured later without updating the collection of tests.  

Listing 8.6 Income test using the command pattern (C#) 
class IncomeTest {                                              #1 
   public int MinimalIncome { get; set; };                      #2  
   public IncomeTest() { 
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      MinimalIncome = 30000; 
   } 
   public bool TestIncome(Client client)  {                     #3 
      return client.Income < minimalIncome; 
   } 
} 
 
// Usage of 'IncomeTest' later in the program 
IncomeTest incomeTst = new IncomeTest();                        #B 
Func<Client, bool> command = cl => incomeTst.TestIncome(cl);    #4 
tests.Add(command)                                              #C 
#1 Corresponds to the 'Receiver' class 
#2 Publicly accessible mutable state  
#3 Operation used by the 'Command' 
#B Create 'Receiver' with the state 
#4 Create the 'Command' as a lambda function 
#C Add command to the list of tests ('Invoker') 
We start by creating a class that carries the mutable state and corresponds to the 

Receiver component from the Command design pattern (#1). The state is a 
recommended minimal income and the class has a method for modifying it (#2). The next 
method implements the test itself (#3) and compares whether the income of the given client 
is larger than the current minimal value stored in the test. 

The later part of the listing shows how we can create a new test. First we create an 
instance of the IncomeTest class containing the state and then we create a lambda 
function that calls its TestIncome method (#4). This function corresponds to the 
Command component and we add it to the collection of tests. We can later configure the test 
using the SetMinimalIncome method. Listing 8.6 creates the function explicitly with 
lambda syntax, just to demonstrate that it corresponds to the design pattern, but we can 
write it more concisely: 

IncomeTest incomeTst = new IncomeTest(); 
tests.Add(incomeTst.TestIncome); 

The C# compiler automatically creates a delegate instance that wraps the 
TestIncome method and can be added to the collection if the method has the right 
signature. Now that we've added the test to the collection, we can see how it behaves: 

TestClient(tests, john);             #A 
incomeTst.SetMinimalIncome(45000); 
TestClient(tests, john);             #B 
#A Result is YES 
#B Result is NO 
This is a common pattern which is widely used in imperative object-oriented 

programming. From a functional point of view, it should be used carefully: the code and 
comments should clearly document what calls can affect the mutable state. In the previous 
example, the state is modified using the incomeTst object and this is the reason why the 
same line of code can give different results when called at different times. In the next 
section, we'll look how to implement similar functionality in a simpler way using F#. 
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8.2.2 Capturing state using closures in F# 
In this section we're going to talk about closures, which is an important concept in functional 
programming. Closures are very common and most of the time they aren't used with 
mutable state. However, working with mutable state is sometimes needed for the sake of 
pragmatism and closures give us an excellent way to limit the scope of the mutable state. 

First let's look at a very simple piece of F# which we saw in chapter 5:  
> let createAdder num = 
     (fun m -> num + m) 
val createAdder : int -> (int -> int) 

When we were discussing this example earlier, we didn't see any difference between a 
function written like this and a function called add taking two parameters and returning their 
sum. This is because we can call the add function with a single argument: thanks to partial 
application, the result is a function that adds the specified number to any given argument.  

If you analyze what is returned in the previous example, it isn't just the code of the 
function! The code is just a bunch of instructions that add two numbers, but if we call 
createAdder twice with two different arguments the returned functions are clearly 
different, because they're adding different numbers. The key idea is that a function isn't just 
code, but also a closure which contains the values that are used by the function, but aren't 
declared inside its body. The values held by the closure are said to be captured. In the 
previous example, the only example of capturing is the num parameter.  

Of course, we've been using closures when creating functions since we started talking 
about lambda functions. We didn't talk about them explicitly, because usually you don't need 
to think about them–they just work. However, what if the closure captures some value that 
can be mutated? 

MUTABLE STATE USING REFERENCE CELLS 
In order to answer this question, we'll need to be able to create some mutable state to be 
capture. We can't do that with let mutable, because that kind of mutable value can be 
used only locally–it can't be captured by a closure. 

The second way to create mutable values is using a type called ref, which is a shortcut 
for a reference cell. Put simply, this is a small object (actually declared as an F# record type) 
that contains a mutable value. To understand how the ref type works, we can look how we 
could define exactly same type in C#. As you can see, it's fairly simple: 

class Ref<T> {  
   public Ref(T value) { Value = value; } 
   public T Value { get; set; } 
} 

The important point about the type is that the Value property is mutable, so when we 
create an immutable variable of type Ref<int>, we can still mutate the value it 
represents. The listing 8.7 shows an example of using reference cells in F# and also shows 
the corresponding code using C# type Ref<T>. In F#, we don't access the type directly, 
because there is a function–again called ref–that creates a reference cell, along with two 
operators for setting and reading its value. 
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Listing 8.7 Working with reference cell in F# and C# 
let st = ref 10 
 
st := 11                  #A 
printfn "%d" (!st)        #B 

var st = new Ref<int>(10); 
 
st.Value = 11;                   
#A 
Console.WriteLine(st.Value);     
#B 

 
 
 
 
 
 
#A Modify the value of reference cell 
#B Prints 11 
On the first line, we create a reference cell containing an integer. Just like the Ref<T> 

type we've just declared in C#, the F# ref type is generic, so we can use it to store values 
of any type. The next two lines demonstrate the operators which work with reference cells - 
assignment (:=) and dereference (!). The operators correspond to setting or reading value 
of the property, but give us a more convenient syntax. 

CAPTURING REFERENCE CELLS IN A CLOSURE 
Now we can write code that captures mutable state created using a reference cell in a 
closure. Listing 8.8 shows an F# version of the configurable income test. We create a 
createIncomeTests function that returns a tuple of two functions: the first changes the 
minimal required income and the second is the test function itself. 

Listing 8.8 Configurable income test using closures (F# interactive) 
> let createIncomeTest() = 
     let minimalIncome = ref 30000                                    #1 
     (fun (newMinimal) ->  
        minimalIncome := newMinimal),                                 #A 
     (fun (cl) ->  
        cl.Income < (!minimalIncome))                                 #B 
val createIncomeTest : unit -> (int -> unit) * (Client -> bool)       #2 
 
> let setMinimalIncome, testIncome = createIncomeTest()               #3  
val testIncome : (Client -> bool) 
val setMinimalIncome : (int -> unit) 
 
> let tests = [ testIncome; (* more tests... *) ]                     #C 
val tests : (Client -> bool) list 
#1 Declare local mutable value 
#A Set new minimal income 
#B Test client using the current minimal income 
#2 Returns a tuple of functions 
#3 Create functions for setting and testing income  
#C Store testing function in a list 
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Let's look at the signature of the createIncomeTest function (#2) first. It doesn't 
take any arguments and returns a tuple of functions as a result. In its body, we first create a 
mutable reference cell and initialize it to the default minimal income (#1). The tuple of 
functions to be returned is written using two lambda functions and both of them use the 
minimalIncome value. The first function (with signature int -> unit) takes a new 
income as an argument and modifies the reference cell. The second one compares the 
income of the client with the value stored by the reference cell and has the usual signature 
of a function used to testing a client (Client -> bool).  

When we later call createIncomeTest (#3), we get two functions as a result. 
However, we created only one reference cell, which means that it is shared by the closures of 
both of the functions. We can use setMinimalIncome to change the minimal income 
required by the testIncome function. 

Before moving to the next example, let's look at the analogy between the F# version 
and the command pattern with the C# implementation discussed earlier. The most important 
difference is that in F#, the state is automatically captured by the closure while in C# it was 
encapsulated in an explicitly written class. In some senses, the tuple of functions and the 
closure correspond to the receiver object from object-oriented programming. In fact, the F# 
compiler handles the closure by generating .NET code that is very similar to what we 
explicitly wrote in C#. The intermediate language used by .NET doesn't directly support 
closures, but it of course has classes for storing state. 

Listing 8.9 completes the example, demonstrating how to modify the test using the 
setMinimalIncome function. The example assumes that the testClient function 
now uses the collection of tests declared in the previous listing. 

Listing 8.9 Changing minimal income during testing (F# interactive) 
> testClient(john);; 
Client: John Doe, Offer a loan: YES 
 
> setMinimalIncome(45000);; 
val it : unit = () 
 
> testClient(john);; 
Client: John Doe, Offer a loan: NO 

Just as in the C# version, we first test the client using the initial tests (which the client 
passes) and then modify the income required by one of the tests. After this change, the 
client no longer fulfils the conditions and the result is negative.  

Closures in C# 

In the last section I used C# for writing object-oriented code and F# for writing functional 
code. This is because I wanted to demonstrate how the two concepts relate - that is how 
closures are similar to objects and in particular to the Receiver object in the 
Command design pattern.  
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However, closures are essential for lambda functions and the lambda expression syntax in 
C# 3.0 supports the creation of closures too. In fact, this was already present in C# 2 in 
the form of anonymous methods. The following example shows how to create a function 
which, when called several times, will return a sequence of numbers starting from zero: 

Func<int> CreateCounter() { 
   int num = 0; 
   return () => { return num++; }; 
} 

The variable num is captured by the closure and every call to the returned function 
increments its value. In C#, variables are mutable by default, so you should be extremely 
careful when you change the value of a captured variable like this. A common source of 
confusion is capturing the loop variable of a for loop. If you capture it during every 
iteration, at the end all of the closures will contain the same value, because we're working 
just with a single variable. 

In this section, we talked about object oriented patterns and related functional 
techniques. In some cases, we used a function instead of an interface with a single method. 
In the next section, we'll look at an example showing what we can do when the behavior is 
still very simple, but cannot be described by just one function. 

8.3 Working with composed behaviors 
In this chapter, we're talking about applications or components that work with behaviors and 
allow new behaviors to be added later in the development cycle or even at run-time. The key 
design principle is to make sure that adding new behaviors is as easy as possible. After we 
implement the new functionality, we should be able to register the function (for example by 
adding it to a list) and use the application without any other changes in the code. 

To simplify the implementation, it is better to minimize a number of functions that need 
to be implemented. Often, a single function is sufficient to represent the functionality, but in 
some cases it may not be enough; we may need to add some additional information or 
provide a few more functions. Of course, in a functional program another function is just 
'additional information'. It is just information we can run to provide richer feedback. 

An example of the first case may be a filter in a graphical editor. The filter itself is a 
function that works with pictures, but we could also provide a name of the filter (as a string). 
After all, the user of the editor would rather see a "friendly" name and description than 
whatever we happened to call our function, with all the inherent naming restrictions. 

In the next section, we're going to look at the second case described above, where more 
functions are required. We'll improve our loan application, so that a test can report the 
details of why it is recommending against a loan, if the client "fails" the test. This will be 
implemented using a second function that does the reporting. 
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8.3.1 Records of functions 
We've actually seen a way of working with multiple functions already. In the previous 
example, we returned a tuple of functions as a result. We could use the same technique to 
represent our application with the new reporting feature as well. Let's say that the reporting 
function takes the client, prints something to the screen and returns a unit as a result. Using 
this representation, the type of the list of behaviors would be: 

((Client -> bool) * (Client -> unit)) list 

This starts to look a bit scary. It's quite complicated and the functions don't have names, 
which makes the code less readable. In the previous example, it wasn't a big problem, 
because the function was used only locally, but this list is one of the key data structures of 
our application, so it should be as clear as possible. A simple solution that makes the code 
much more readable is to use a record type instead of a tuple. We can define it like this: 

type ClientTest =  
  { Check  : Client -> bool 
    Report : Client -> unit } 

This defines a record with two fields, both of which are functions. This is just another 
example of using functions in the same way as any other type. The declaration resembles a 
very simple object (or interface), but we'll talk about this similarity later. Before that, let's 
look at listing 8.10, which shows how we can create a list of tests represented using the 
record declared above. 

Listing 8.10 Creating tests with reporting (F#) 
let checkCriminal(cl) = cl.CriminalRecord = true                        #A 
let reportCriminal(cl) =                                                #A 
   printfn "Checking 'criminal record' of '%s' failed!" cl.Name         #A 
 
let checkIncome(cl) = cl.Income < 30000                                 #B 
let reportIncome(cl) =                                                  #B 
   printfn "Checking 'income' of '%s' failed (%s)!"                     #B 
           cl.Name "less than 30000"                                    #B 
 
let checkJobYears(cl) = cl.YearsInJob < 2                               #C 
let reportJobYears(cl) =                                                #C 
   printfn "Checking 'years in the job' of '%s' failed (%s)!"           #C 
           cl.Name "less than 2"                                        #C 
 
let testsWithReports =                                             #1 
  [ { Check = checkCriminal; Report = reportCriminal }; 
    { Check = checkIncome;   Report = reportIncome }; 
    { Check = checkJobYears; Report = reportJobYears }; 
    (* more tests... *) ] 
#A Checking and reporting for criminal record 
#B Check requires minimal income 
#C Check requires years in the current job 
#1 Create a list of records  
The listing is simply a series of let bindings. To make the code more readable, we 

haven't used lambda functions this time; instead we've define all the checks as ordinary F# 
functions. For each test, we've defined one function with the prefix "check" and one with the 
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prefix "report". If you enter the code in F# interactive, you can see that the function types 
correspond to the types from the ClientTest record type. The last operation is creating a 
list of tests (#1). We just need to create a record for each test to store the two related 
functions, and create a list containing the record values. 

We also need to update the function that tests a particular client. We'll first find those 
tests that fail (using the Check field) and then let them print the result (using the Report 
field). Listing 8.11 shows the modified function, as well as the output when we run it against 
our sample client. 

Listing 8.11 Testing a client with reporting (F# interactive) 
> let testClientWithReports(client) =   
     let issues =                                                   #1 
        testsWithReports                                            #1 
        |> List.filter (fun tr -> tr.Check(client))                 #1 
     let suitable = issues.Length <= 1                              #A 
     for i in issues do                                             #2 
        i.Report(client)                                            #2 
     printfn "Offer loan: %s" (if (suitable) then "YES" else "NO") 
  ;; 
val testClientWithReports : Client -> unit 
 
> testClientWithReports(john);; 
Years in the job of 'John Doe' is less than 2! 
Offer loan: YES 
#1 Get a list of tests that failed 
#A Calculate overall result 
#2 Report all found issues 
The testClient function has only changed slightly since listing 8.5. The first change 

is in the lines that select which tests have failed (#1). The list now a collection of records, so 
we have to test the client using a function stored in the Check field. The second change is 
that earlier, we were interested only in a number of failing tests. This time, we also need to 
print the detailed information about the failure (#2). This is implemented using an 
imperative for loop which invokes Report function of all the failing tests.  

One problem in the current version of the code is that we had to write very similar 
functions when creating some tests. Let's fix that, reducing unnecessary code duplication. 

8.3.1 Building composed behaviors 
In listing 8.10 there is some obvious code duplication in the testing and reporting functions 
that verify the minimal income and minimal years in the current job. This is because the 
tests have a very similar structure: both of them test whether some property of the client is 
smaller than a minimal allowed value.  

Identifying commonality is only the first step towards removing duplication. Then next 
one is to look at which parts of the checkJobYears and checkIncome functions 
(together with their reporting functions) are different: 
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38) They check different properties 

39) They use different minimal values 

40) They have slightly different messages 

To write the code more succinctly, we can create a function that takes these three 
different parts as its arguments and returns a ClientTest record. When we create the list 
of tests, we'll simply call this new function twice with different arguments to create two 
similar tests. Listing 8.12 shows both the extra function (lessThanTest) and the new 
way of creating the list of tests. 

Listing 8.12 Creating similar tests using a single function (F# interactive) 
> let lessThanTest f min property = 
     let report cl =                                                   #1  
        printfn "Checking '%s' of '%s' failed (less than %d)!"         #1 
                property cl.Name (f(cl)) min                           #1 
     { Test = (fun cl -> f(cl) < min)                                  #2 
       Report = report };; 
val lessThanTest : (Client -> int) -> int -> string -> ClientTest      #3 
 
> let tests =  
     [ (lessThanTest (fun cl -> cl.Income) 30000 "income")             #A 
       (lessThanTest (fun cl -> cl.YearsInJob) 2 "years in the job")   #A 
       (* more tests... *) ];; 
val tests : ClientTest list 
#1 Nested reporting function  
#2 Compare actual value with the minimal value 
#3 Function signature 
#A Creates two similar tests with reporting  
As usual, the type signature (#3) tells us a lot about the function. The lessThanTest 

function returns a value of type ClientTest, which contains the testing and reporting 
functions. The test is built using several arguments. The first reads a numeric property of the 
client, and the second specifies a minimal required value (in our case representing either an 
income or a number of years). The final argument is a description of the property, used in 
the reporting test. 

The code first declares a nested function called report (#1), which takes a Client 
as the argument and prints a reason why the test failed. Of course, the function uses the 
arguments of the lessThanTest function as well. This means that when report is later 
returned as a part of the result, all these arguments will be captured in a closure. When 
constructing a record value that will be returned (#1), we specify report as one of the 
function values and the second one is written inline using lambda function. 

Working with tuples or records of functions is common in functional programming and it 
reflects the F# development style, but in C#, we'd probably use a different approach to 
implement this example. Let's look back at the development process and also think how we 
would implement the example in C# and improve the current F# version. 

Licensed to Curtis J Pitts <beop.love@gmail.com>

Download at Boykma.Com



224   

©Manning Publications Co. Please post comments or corrections to the Author Online forum: 
http://www.manning‐sandbox.com/forum.jspa?forumID=460 

8.3.2 Further evolution of F# code 
In the last section, we moved from a simple piece of F# that stored a list of functions to a 
more sophisticated version that uses a list of records. This is a part of the F# programming 
style that we talked about in chapter 1. I wrote that F# programs often start as very simple 
scripts and then evolve into robust code that follows standard .NET programming guidelines 
and benefits from the .NET object model. 

We started with the most straightforward way to solve the problem using only what we 
knew at the beginning. When we later realized that we needed to add reporting using 
another function, we made some relatively small adjustments to the code (because this is 
quite easy to do in F#) resulting in a version with more features. However, the transition was 
not just in terms of features, but also in a sense of robustness and maintainability.  

When extending the initial version, I mentioned that we could have used a list containing 
tuples of functions. Representations like this are more likely to be used in the initial 
prototype than in a finished application, and using F# record types clearly make the code 
more readable. Even though we went straight to a record type, it's worth bearing in mind 
that there's nothing wrong with using a simple representation when you start writing an 
application that should turn into a complex product. This kind of change is quite easy to 
make in F#, and when you develop an initial version, you usually want to get it running with 
useful features as soon as possible rather than writing it in a robust way.  

Even though we have already made a few transitions on the road to the robust version 
of the application, there are still some improvements that are left to consider. Because F# is 
a language for .NET, we can use several object-oriented features to make the code more 
.NET-friendly. We'll return to this topic in the next chapter where we'll see how to turn our 
record into an F# abstract object type, which corresponds to C# interfaces.  

COMPOSED BEHAVIORS IN C# 
We started this chapter with an example of C# code that declared an interface with a single 
method representing the test, but then we used functions (and the Func delegate) as a 
more convenient way to write the code. If we wanted to implement a program that works 
with two functions, as we now have in F#, we'd probably turn back to interfaces. Using 
interfaces in C# is definitely more convenient and more reasonable than using a tuple or a 
class with functions as its members. Having said that, in C# we only have two options - for 
simple behaviors, we can use functions, but anything more complicated has to be written 
using an interface.  

In F#, the transition between the various representations is easier. Most importantly, 
thanks to the type inference we don't have to change the types everywhere in the source 
code. Also, turning a lambda function into a class is a larger change then just adding another 
function. Even when using abstract object types in F#, there is an easy way to turn a lambda 
function into something you can think of as a "lambda object". The actual name for this 
feature is object expression and we'll talk about it in the next chapter. 
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In this chapter, we've primarily talked about behavior-centric applications, but in the 
introduction I explained that data-centric and behavior-centric approaches are often used 
together. We're going to see that in action now, combining functions with the discriminated 
union type which was so important for representing data in chapter 7. 

8.4 Combining data and behaviors 
Our original algorithm for testing whether a client is suitable for a loan offer used only the 
count of the tests that failed. This isn't very sophisticated: if the client has large income, we 
may not be interested in some other aspects, whereas for a client with a smaller income the 
bank may want to ask several additional questions. In this section, we're going to implement 
a simple but powerful algorithm using decision trees and we'll also look at the declaration of 
a more interesting F# data structure. 

8.4.1 Decision trees 
Decision trees are one of the most popular algorithms in machine learning. They can be used 
for making decisions based on some data or for classifying input into several categories. The 
algorithm works with a tree that specifies what properties of the data should be tested and 
what to do for each of the possible answers. The reaction to the answer may be another test 
or the final answer. 

Machine learning theory provides sophisticated ways for building the tree automatically 
from the data, but for our example we'll create the tree by hand. The figure 8.3 shows a 
decision tree for our problem. 

 

Figure 8.3 Decision tree for testing loan suitability; each diamond represents a question to ask and the 
links are possible answers that lead to another question or to a conclusion (shown in a rectangle). 

We're going to start by implementing the F# version. In F#, it is usually very easy to 
write the code if we have an informal specification of the problem - in this case a data 
structure to work with. The specification for a decision tree could look like this: 
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DECISION TREE 

A decision tree is defined by an initial query which forms the root of the tree. A query 
consists of the name of a test and a function that executes it and can return several 
possible answers. In our implementation, we'll limit the answer to just true or false. 
For each answer, the node also contains a link to the next query or the final decision for 
this path through the tree. 

Equipped with this specification, we can now start writing the F# code. We'll look how to 
implement key parts of the problem in C# later: first I'd like to demonstrate how easy it is to 
rewrite a specification like this into F#.  

8.4.1 Decision trees in F# 
Let's now look what information we can gather from the specification. From the last sentence 
we can see that a link leads either to a query or to a final result. In F#, we can directly 
encode this using a discriminated union type with two options. The specification also talks 
about the query in more detail - it contains various fields, so we can represent it as an F# 
record type. 

We'll define an F# record type (QueryInfo) with information about the query and a 
discriminated union (called Decision) which can be either another query or a final result. 
An interesting observation about these data types is that they both reference each other. In 
functional terminology, we'd say that the types are mutually recursive. Listing 8.13 shows 
what this means for the F# source code. 

Listing 8.13 Mutually recursive types describing decision tree (F#) 
type QueryInfo =                  #1 
   { Title    : string 
     Check    : Client -> bool    #2 
     Positive : Decision          #3 
     Negative : Decision }        #3 
     
and Decision =                    #4 
   | Result of string   
   | Query  of QueryInfo          #B 
#1 Declare first type using 'type' keyword 
#2 Member representing the behavior 
#3 References to the second type 
#4 Make the declaration recursive using 'and' keyword  
#B Reference to the first type 
When writing type declarations in F#, we can only refer to the types declared earlier in 

the file (or in a file specified earlier in the compilation order or located higher in the Visual 
Studio solution). Obviously that's going to cause problems in this situation, where we want to 
define two types that reference each other. To get around this, F# includes the and 
keyword. The type declaration in the listing starts as usual with the type keyword (#1), but 
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it continues with and (#4) which means that the two types are declared simultaneously and 
can see each other. 

The QueryInfo declaration combines data and behavior in a single record. The name 
of the test is a simple data member, but the remaining members are more interesting. The 
Check member (#2) is a function (that is, a behavior). It can return a Boolean value which 
we'll use to choose one of the two branches to continue with (#3). These branches are 
composed values that may store a string or can recursively contain other QueryInfo 
values, so they can store both data and behavior. Note that we could return Decision value 
as a result from the function, but then we couldn't that easily report whether the checking 
failed or not - we'd only know what the next test to run is. In listing 8.14 we create a value 
representing the decision tree shown in figure 8.3. 

Listing 8.14 Decision tree for testing clients (F#) 
let rec tree =                                                   #1 
   Query({ Title = "More than $40k"  
           Check = (fun cl -> cl.Income > 40000) 
           Positive = moreThan40; Negative = lessThan40 }) 
and moreThan40 =                                                 #2 
   Query({ Title = "Has criminal record" 
           Check = (fun cl -> cl.CriminalRecord) 
           Positive = Result("NO"); Negative = Result("YES") }) 
and lessThan40 =                                                 #3 
   Query({ Title = "Years in job" 
           Check = (fun cl -> cl.YearsInJob > 1) 
           Positive = Result("YES"); Negative = usesCredit }) 
and usesCredit =                                                 #4 
   Query({ Title = "Uses credit card" 
           Check = (fun cl -> cl.UsesCreditCard) 
           Positive = Result("YES"); Negative = Result("NO") }) 
#1 Root node on level 1 
#2 First option on the level 2 
#3 Second option on the level 2 
#4 Additional question on level 3 
There is one new thing about the listing 8.14 that we haven't seen before. When 

declaring values, we're using the rec keyword in conjunction with the new and keyword. 
This is not exactly the same use of the keyword as when we declared two types together in 
the previous listing, but the goal is similar. The and keyword allows us to declare several 
values (or functions) that reference each other. For example, this is how we can use the 
value moreThan40 (#2) in the declaration of tree (#1), even though it is declared later 
in the code. 

The declaration order is the main reason for using let rec in this example, because 
we can start from the root node of the tree (#1), then create values for the two possible 
options on the second level (#2, #3) and finally declare one additional question for one case 
on the third level. We used let rec earlier for declaring recursive functions, which are 
functions that call themselves from their body (before they are declared). In general, F# also 
allows the declaration of recursive values, which can simplify many common tasks.  
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Initialization using recursive let bindings 

We've already seen several examples of recursive functions, but what would recursive 
value look like? One example might be some code to create a user interface using 
Windows Forms. Using a simplified API, it could look like this: 

let rec form = createForm "Main form" [ btn ] 
and btn = createButton "Close" (fun () -> form.Close()) 

The first line creates a form and gives it a list of controls to be placed on the form as the 
last argument. This list contains a button, which is declared on the second line. The last 
argument to the createButton function is a lambda function that will be invoked 
when the user clicks on the button. It should close the application, so it needs to 
reference the form value, which is declared on the first line. 

You may be wondering what's so difficult about this - after all, we could easily write code 
to do the same thing in C#, and we wouldn't think of it as being particularly recursive. 
However, in C# we'd be adding an event handler to the button after creating the form, or 
adding the button to the form after creating it - either way, we're mutating the objects. 
It's easy for two values to refer to each other via mutation, but the tricky bit comes when 
you want to make the values immutable. 

Using recursive let bindings we can create values that reference other values and the 
whole sequence is declared at once. However, even recursion has its limitations. Consider 
the following code snippet:  

let rec num1 = num2 + 1 
and num2 = num1 + 1 

In this case, we'd have to evaluate num1 in order to get the value of num2, but to do 
this we'd need a value of num1. The difference that made the first example correct is 
that the value form was used inside a lambda function, so it wasn't needed 
immediately. Luckily, the F# compiler can detect code like this which can't possibly work, 
and generates a compilation error. 

We've seen how to declare a record that mixes data with behaviors and how to create a 
value of this record type using lambda functions. In listing 8.15, we'll finish the example by 
implementing a function that tests the client using a decision tree. 

Listing 8.15 Recursive processing of the decision tree (F# interactive) 
> let rec testClientTree(client, tree) =                               #1 
     match tree with 
     | Result(msg) ->                                                  #2 
        printfn "  OFFER A LOAN: %s" msg 
     | Query(qi) ->                                                    #3 
        let s, case = if (qi.Check(client)) then "yes", qi.Positive    #A 
                      else "no", qi.Negative 
        printfn "  - %s? %s" qi.Title s 
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        testClientTree(client, case);;                                 #4 
val testClientTree : (Client * Decision) -> unit 
 
> testClientTree(john, tree);;                                         #B 
  - More than $60k? no 
  - Years in job? no 
  - Uses credit card? yes 
  OFFER A LOAN: YES 
val it : unit = () 
#1 Recursive function declaration 
#2 The case with the final result 
#3 The case containing a query 
#A A choice depending on the test result 
#4 Recursive call on the selected sub-tree 
#B Test the code interactively 
The program is implemented as a recursive function (#1). The decision tree can be 

either a final result (#2) or another query (#3). In the first case, it just prints the result. The 
second case is more interesting. It first runs the test and chooses one of the two possible 
sub-trees to process later based on the result. It then reports the progress to the console, 
and finally calls itself recursively to process the sub-tree (#4). In the listing, we also 
immediately test the code and as you can see which path in the decision tree the algorithm 
followed for our sample client. 

In this section, we’ve developed a pure functional decision tree in F#. As we’ve seen 
before, rewriting some functional constructs (particularly discriminated unions) in C# can be 
quite difficult, so in the next section we'll implement a similar solution by mixing object-
oriented and functional style in C# 3.0. 

8.4.2 Decision trees in C# 
In chapter 5 we discussed the relationship between discriminated unions in F# and class 
hierarchies in C#. In this example, we'll use another class hierarchy to represent a node in a 
decision tree, deriving two extra classes to represent the two different cases (a final result 
and a query).  

In the functional version, all the processing logic was implemented separately in the 
testClientTree function. Even though we can do this in object-oriented style too, for 
example using the Visitor pattern (as discussed in chapter 7), that isn't a particularly object-
oriented solution. In this case, we don't need to implement functions for working with the 
decision tree separately, so we can use the more normal object-oriented technique of 
inheritance and virtual methods.  

Listing 8.16 shows the base class (Decision) and the simpler of the two derived 
classes (ResultDecision) which represents the final result.  

Listing 8.16 Object oriented decision tree (C#) 
abstract class Decision { 
   public abstract void Evaluate(Client client);                      #1 
} 
class ResultDecision : Decision { 
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   public bool Result { get; set; } 
   public override void Evaluate(Client client) {                     #2 
      Console.WriteLine("OFFER A LOAN: {0}", Result ? "YES" : "NO"); 
   } 
} 
#1 Tests the given client  
#2 Print the final result 
This part of the code is quite simple. The base class contains only a single virtual 

method (#1), which will be implemented in the derived classes and which will test the client 
and print the result. Its implementation in the class representing the final result (#2) just 
prints the result to the console. 

The more interesting part is the implementation of the class representing a query. The 
problem is that we need to provide different code for each of the concrete queries (testing 
the income, the number of years in the current job and so on). We could create a new 
derived class for each of the query with a very similar implementation of the Evaluate 
method–but that doesn't feel like a good solution, as it involves code duplication. A 
somewhat better way for implementing this is to use the template method design pattern. 

THE TEMPLATE METHOD PATTERN 
In general, the template method pattern allows us to define the skeleton of an algorithm or a 
class and fill in the missing pieces later, by implementing them in an inherited concrete class. 
The base class defines operations to be filled in later and uses them to implement more 
complicated operations. Figure 8.4 shows this in diagram form. 

 

Figure 8.4 The base class contains abstract method 'PrimitiveOperation', which is used in the 
implementation of 'TemplateMethod'. This missing piece is filled in by inherited class 'ConcreteClass'. 

The abstract class from the Template method corresponds to our representation of the 
query (let's call the class QueryDecision). The primitive operation that needs to be 
supplied by the derived classes is the testing method, which would take a Client as an 
argument and return a Boolean value. The template method would be our Evaluate 
method, which would contain code to print the result to the console and recursively process 
the selected branch. However, we'd still have to implement a new concrete class for each of 
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the specific query, which would make the code quite lengthy. Using functions, we can 
simplify the pattern and remove this need.  

FUNCTIONAL IMPLEMENTATION 
Instead of representing the primitive operation as a virtual method that can be filled in by 
deriving a class, we'll represent it as a property, where the type of the property is the 
function type Func<Client, bool>. The function is then supplied by the user of the 
class. Listing 8.17 shows an implementation of the QueryDecision class as well as an 
example of how we can create a simple decision tree. 

Listing 8.17 Simplified implementation of Template method (C#) 
class QueryDecision : Decision { 
   public string Title { get; set; } 
   public Decision Positive { get; set; } 
   public Decision Negative { get; set; } 
   public Func<Client, bool> Check { get; set; }                        #1 
 
   public override void Evaluate(Client client) { 
      bool res = Check(client);                                         #2 
      Console.WriteLine("  - {0}? {1}", Title, res ? "yes" : "no"); 
      Decision next = res ? Positive : Negative;                        #3 
      next.Evaluate();                                                  #3 
    } 
} 
 
var tree =  
   new QueryDecision {                                                 #A 
      Title = "More than $40k",  
      Check = (client) => client.Income > 40000,                       #4 
      Positive = new ResultDecision { Result = true },                 #B 
      Negative = new ResultDecision { Result = false } };              #B 
#1 Primitive operation to be provided by the user 
#2 Test a client using the primitive operation 
#3 Select a branch to follow 
#A The tree is constructed from a query 
#4 Check is specified using lambda functions 
#B Sub-trees can be 'ResultDecision' or 'QueryDecision' 
The QueryDecision class represents a case where we want to perform another test 

regarding the client. If we had followed the template method pattern strictly then the test 
would be a virtual method, but we instead specified it as a property (#1). The type of the 
property is a function that takes a client and returns a Boolean value. This function is 
invoked when testing a client (#2) and depending on the result, the code follows one of the 
two possible branches (#3). When creating a decision tree, we don't have to write an extra 
class for every test, because we can simply provide the primitive testing functionality using 
lambda functions (#4). 

This example demonstrates how we can very effectively mix object-oriented and 
functional concepts. In fact, the types we created could be easily made immutable, which 
would make the example even more functional. The only reason why we didn't do that is that 
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using properties makes the code a bit more compact. We started with a standard object-
oriented design pattern and simplified it using lambda functions that are now available in C# 
3.0. The solution is somewhere between the traditional object-oriented solution and the 
functional version we implemented in F#. 

8.5 Summary 
In this chapter we have finished our exploration of the core functional concepts. After talking 
about basic principles such as functional values and higher order functions, we moved to a 
higher level perspective and discussed the architecture of functional applications. We divided 
applications (or components) into two groups: data-centric and behavior-centric. 

In this chapter we discussed behavior-centric programs. We've seen how to develop an 
application where behaviors aren't hard-coded and new behavior can be added very easily 
later, either during development or at run-time, simply by using a list of functions. Later, we 
investigated several ways to extend the data structure to combine functions and other 
functional data types to develop a decision tree, which combines data and behaviors in a 
single data type. 

We've also talked about design patterns that are related to behavior-centric programs. 
In particular we've seen how the strategy pattern corresponds to higher order functions and 
how the command pattern relates to closures in functional programming. Finally, we looked 
at how the template method pattern can be simplified using functions in C# 3.0. 

In the next part of the book, we'll focus on language features that are specific to F# and 
on advanced functional concepts. The next chapter starts with F# features that allow us to 
take the next step of the iterative development style. We'll see how to turn conceptually 
simple data types such as tuples of functions or discriminated unions into real-world types. 
This means that the types follow standard F# and .NET development guidelines, are easy to 
document and could be distributed in a commercial F# or .NET library. This also means that 
the library will be easily accessible from a C# application. 
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9 
Turning values into  

F# object types with members 

When I introduced F# in the first chapter, I said it was a multi-paradigm language that takes 
the best elements of several worlds. Most importantly, it takes ideas from both functional 
and object-oriented languages. In this chapter, we're going to look at several features that 
are inspired by object-oriented programming or allow fluent integration with object-oriented 
,NET languages like C# and VB.NET. 

This chapter is particularly important for the later steps in the F# development process. 
As I've mentioned before, functional simplicity allows us to write a program very quickly and 
provides great flexibility. On the other hand, object-oriented programming in F# is valuable 
because it gives the code a solid structure, encapsulates related functionality, and allows 
painless integration with other systems or programming languages. In this chapter, we'll see 
how to take some F# code that we developed earlier in the book and evolve it to make it 
easier to use in a team or in a larger project. 

In the previous two chapters, I've described two of the most common architectures of 
functional programs or components. Both of them can take advantage of some object-
oriented concepts, so we'll start off by revisiting data-centric applications before discussing 
going back to behavior-centric applications. Finally, we'll talk about interoperability between 
C# and F#. You'll learn how to work with .NET classes from F# and how to write F# code 
that can easily be used from a C# project.  

9.1Improving data-centric applications 
Let's go over a few of the important elements of behavior-centric applications that we 
covered in the previous chapters. In chapter 7 we saw that the key aspect of data-centric 
application design is creating the data structures that will be used by the application. 
Functional languages give us very simple and conceptually clear constructs for data 
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structures. We've seen all basic data types, namely tuples, discriminated unions and records. 
We've also seen how to declare generic types that can be reused by many applications and 
we talked about some of them that are available in the F# libraries such as the option type 
and functional list. 

Unlike in object-oriented programming, so far we've implemented operations separately 
from the data types. This has several advantages. First of all, it allows us to easily add 
operations , especially when we use discriminated unions. The functional application design 
and architecture is suited for this approach, so it is more common than in object-oriented 
style. Also, writing the code in this way makes the syntax is very succinct, so the code can 
be written faster and we can easily prototype various solutions. Code written in the 
functional style can for example take the full advantage of type inference. On the other 
hand, if we use object types with members, we'll very often need to provide type 
annotations. The lightweight functional style also makes it easier to run the code 
interactively using the F# interactive shell. 

DEVELOPING OPERATIONS INTERACTIVELY 

The data structure changes less frequently, so once you define the data structure, you 
can create values of that type and keep them "alive" in F# interactive. Then you can write 
the first version of the function, test it using F# interactive, correct possible errors, 
improve it, and test it again on the same data. If we were updating the data structure 
together with all its operations, this process would be a lot more difficult. 

On the other hand, there are many reasons in favor of keeping operations as part of the 
data structure too; you probably know most of them from experience with C#. Let's 
demonstrate this using an example. In chapter 7, we wrote a simple Rect type and two 
functions to work with it. You can see the code repeated in listing 9.1. The example uses 
some types from the System.Drawing namespace, so if you're creating a new project, 
you'll need to add a reference to the System.Drawing.dll assembly. 

Listing 9.1 'Rect' type with processing functions (F#) 
open System.Drawing 
 
type Rect =                                                            #A 
   { Left:  float32; Top:    float32 
     Width: float32; Height: float32 } 
 
let deflate(rc, wspace, hspace) =                                      #B 
   { Left = rc.Left + wspace; Width  = rc.Width - (2.0f * wspace) 
     Top  = rc.Top + hspace;  Height = rc.Height - (2.0f * hspace) }  
 
let toRectangleF(rc) =                                                 #C 
   RectangleF(rc.Left, rc.Top, rc.Width, rc.Height) 
#A Type declaration 
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#B Shrinks the rectangle 
#C Conversion to 'System.Drawing' representation 
First we declare the type, and then define two operations for working with rectangle 

values. The operations are implemented independently as F# functions. However, if we 
implement them as methods instead, it is much easier to discover them when writing the 
code. Instead of remembering the function name, you just type dot after the value name and 
Visual Studio's IntelliSense pops up with a list of operations. The code is also better 
organized, because you know what operations belongs to which type. The obvious 
conundrum is how to get the best from both of the approaches in F#. 

9.1.1 Adding members to F# types 
This is where the F# iterative style of development comes very handy. The ability to debug 
and test the code interactively is of course more important during the early phase of the 
development. As the code becomes more polished and we start sharing the project with 
other developers, it is more important to provide the common operations as members that 
can be invoked using dot notation. 

This means that in F#, encapsulation of data types with their operations is typically one 
of the last steps of the development process. This can be done using members, which can be 
added to any F# type and behave just like C# methods or properties. Listing 9.2 shows how 
to augment the Rect type with two operations using members. 

Listing 9.2 'Rect' type with operations as members (F#) 
type Rect =                                                            #1 
   { Left   : float32 
     Top    : float32 
     Width  : float32 
     Height : float32 } 
                                                                       #2 
   /// Creates a rectangle which is deflated by 'wspace' from the      #3 
   /// left and right and by 'hspace' from the top and bottom          #3 
   member x.Deflate(wspace, hspace) =                                  #4 
      { Left = x.Top + wspace 
        Top = x.Left + hspace 
        Width = x.Width - (2.0f * wspace) 
        Height = x.Height - (2.0f * hspace) } 
 
   /// Converts the rectangle to representation from 'System.Drawing' 
   member x.ToRectangleF() =                                           #5 
      RectangleF(x.Left, x.Top, x.Width, x.Height) 
#1 Familiar declaration of F# record type  
#2 Members have to be correctly indented! 
#3 Documentation comment 
#4 Member method with two arguments 
#5 Member method with no arguments 
To create an F# data type with members, you simply write the member declarations 

after the normal F# type declaration. As you can see in the example (#2) the member 
declarations have to be indented by the same number of spaces as the body of the type 
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declaration. In our example, we started with a normal F# record type declaration (#1) and 
then added two different methods as members.  

The member declaration starts with the keyword member. This is followed by the name 
of the member with a value name for the current instance. For example, x.Deflate 
means that we're declaring a method Deflate and that, inside the body, the value x will 
refer to the current instance of the record. This acts in a similar way to the C# this 
keyword - you can think of it as a way of being able to call this anything you like. 

The first member (#4) takes a tuple as an argument and creates a rectangle, which is 
made smaller by subtracting the specified length from its vertical and horizontal sides. When 
creating types with members, F# developers usually follow the .NET style and declare a 
member's parameters as a tuple. However, if you specify the parameters without braces, you 
can use standard functional techniques such as partial function application with members. 

Another thing to note in the example is that the comment preceding the member (#3) 
now starts with three slashes (///). This is a special kind of comment that specifies 
documentation for the member, analogous to C# XML comments. In F#, you can use similar 
XML-based syntax if you want, but if you just write plain non-XML text, the comment is 
automatically treated as a summary. 

Now let's see how we can use the members we've declared. After you select the code 
and run it in F# interactive, you'll see an interface of the type, which also includes available 
members and their type signatures. Listing 9.3 demonstrates calling both members. 

Listing 9.3 Working with types and members (F# interactive) 
> let rc = { Left = 0.0f; Top = 0.0f                                #A 
             Width = 100.0f; Height = 100.0f };;                    #A 
val rc : Rect 
 
> let small = rc.Deflate(10.0f, 30.0f);;                            #1 
val small : Rect = { Left = 30.0f; Top = 10.0f 
                     Width = 80.0f; Height = 40.0f } 
 
> small.ToRectangleF();;                                            #2 
val rcf : RectangleF = {X=30, Y=10, Width=80, Height=40} { ... } 
#A Create a 'Rect' value  
#1 The first member returns deflated rectangle 
#2 The second member returns 'RectangleF' value 
We start by creating a value of the Rect type. This hasn't changed; we still specify a 

value for each of the record type members. The next command (#1) invokes the Deflate 
member. As you can see, we can do this using standard object-oriented dot notation that 
we've already seen when working with .NET objects. In this case, the arguments are 
specified using a tuple, but if we specified them without braces in the declaration, the call 
would also use the F# function call syntax with parameters separated by a space. Finally, the 
last command converts the rectangle into a value of the RectangleF object from 
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System.Drawing. The example looks now very much like object-oriented code, but that 
doesn't mean that we're turning away from the functional programming style in any sense.   

FUNCTIONAL 'DEFLATE' MEMBER 

The code is still purely functional (as opposed to imperative), which means that there are 
no side-effects, despite its more object-oriented organization. If you implemented this in 
the imperative style, the Deflate method would probably modify the properties of the 
rectangle it was called on. However, our implementation doesn't do this. The Rect data 
type is still immutable: the property values can't be changed once the instance has been 
created. So, instead of modifying the value, the member returns a new Rect value with 
modified properties. This is the same behavior as the original deflate function had, 
but it is important to keep in mind that we can very nicely combine functional concepts 
(like immutability) with the object-oriented concepts (in this case, encapsulation). This 
isn't an alien concept in an imperative object-oriented world, of course - look at the 
System.String type, which takes exactly the same approach. 

I've already mentioned that one of the benefits when using members instead of 
functions is that you can easily discover operations for working with the value using 
IntelliSense. In figure 9.1 you can see the Visual Studio editor working with Rect type. 

 

Figure 9.1 Hint showing members of the 'Rect' type when editing F# source code inside Visual Studio IDE. 

Another important benefit is that types with members are naturally usable from other 
.NET languages like C#. For example, the Deflate member would look just like an 
ordinary method of the type if we were using it from C#, as we'll see later. 

When we turned functions into members in listing 9.2, we converted functions declared 
using let bindings into members declared using the member keyword. This worked, but we 
had to make quite large changes in the source code. Fortunately, we can avoid this and 
make the transition from a simple F# style to a more idiomatic .NET style smoother.  
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9.1.2 Appending members using type extensions 
In the previous section, I mentioned that you can add members to any F# data type. This 
time, we'll demonstrate it using a discriminated union. We'll use a technique that allows us to 
add members without making any changes to the original code. This means that we'll be able 
to leave the original type and original function declarations unmodified and add members to 
them later. 

We'll extend an example from chapter 5 where we declared a schedule type. The type 
can represent events that occur once, repeatedly or never. As well as the data type itself, we 
created a function that tests whether an event occurs during the upcoming week. Listing 9.4 
shows a slightly modified version of the code (to make it more compact). The original code 
was in listing 5.5, if you want to compare the two. 

Listing 9.4 Schedule data type with a function (F#) 
type Schedule =                                             #1 
   | Never 
   | Once of DateTime 
   | Repeatedly of DateTime * TimeSpan 
 
let isNextWeek(dt) =                                        #2 
   dt > DateTime.Now && dt < DateTime.Now.AddDays(7.0) 
 
let occursNextWeek(schedule) =                              #3 
   match schedule with 
   | Never -> false 
   | Once(dt) -> isNextWeek(dt) 
   | Repeatedly(dt, ts) -> 
      let q = max ((DateTime.Now - dt).TotalSeconds/ts.TotalSeconds) 0.0 
      isNextWeek(dt.AddSeconds(ts.TotalSeconds * (Math.Floor(q) + 1.0))) 
#1 Original type declaration 
#2 Utility function used by 'occursNextWeek' 
#3 We want to expose this as a member 
The most interesting change is that the utility function (#2) is now declared as an 

ordinary function instead of a nested function inside occursNextWeek (#3). I made this 
change just to demonstrate the choices available. The function is simple enough that it can 
reasonably be nested without impacting readability. In a more complicated project you may 
many large utility functions, where nesting would add too much complexity. 

The point is that in a typical F# source file, we start with the type declaration (#1), then 
have a bunch of utility (private) functions, then finally a couple of functions that we want to 
expose as members (#3). If we wanted to turn the last function into a member using the 
technique from the last section, it would be quite difficult. The members have to be written 
as part of the type declaration, but we usually want to put several utility functions between 
the type and its members! 
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The solution is to use intrinsic type extensions, which allow us to add members to a type 
declared earlier in the file. Listing 9.5 shows how we can use extensions with our schedule 
type. 

Listing 9.5 Adding members using intrinsic type extensions (F#) 
type Schedule = 
   | Never 
   | Once of DateTime 
   | Repeatedly of DateTime * TimeSpan 
 
let isWeek(dt) = 
   (...) 
let occursNextWeek(schedule) =                         #1 
   (...) 
 
type Schedule with                                     #2 
   member x.OccursNextWeek() = occursNextWeek x        #3 
#1 Function exposed via a member 
#2 Intrinsic type extension 
#3 Member just calls the function 
Most of the code hasn't changed since listing 9.4, so I've omitted it for brevity. We've 

just added the last two lines of code. The first one (#2) defines a type extension, which tells 
the F# compiler to add the following members to a type with the specified name. This is 
followed by the usual member declarations (#3). As we've already implemented the 
functionality as a function (#1), we can just call the function inside the member declaration.  

If you come from C# 3.0, you can see similarities between type extensions and 
extension methods. They are in general quite similar, and you can use type extensions to 
augment existing types from other assemblies as well. However, the case in the previous 
listing was different, because we used intrinsic type extension. This is a special case when we 
declare both the original type and the extension in a single file. In that case, the F# compiler 
merges both parts of the type into a single class and also allows us to access private 
members of the type in the type extension. 

 
Listing 9.6 demonstrates calling the members from in listing 9.5. Members added using 

type extensions behave in a same way as other members, so the listing shouldn't contain 
any surprised. 

Listing 9.6 Working with schedule using members (F# interactive) 
> let sch = Repeatedly(DateTime(2000, 9, 25), TimeSpan(365, 0, 0, 0));; #A 
val sch : Schedule 
 
> sch.OccursNextWeek();;                                                #B 
val it : bool = true 
 
> let sch = Never;;                                                     #C 
val sched : Schedule 
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> sch.OccursNextWeek();;                                                #D 
val it : bool = false 
#A Create a value as usual 
#B Invoke the member 
#C Redefine the 'sch' value 
#D Test the member again 
Just like when we were working with records, we create the F# value in the usual way. 

For the discriminated union in our example this means using the Repeatedly or Never 
discriminator. (We could have used the Once discriminator as well, of course.) Once we 
have the value, we can invoke its members using the object-oriented dot notation.  

As we've just seen, members are very useful when writing mature code, because they 
wrap the code into well-structured pieces and also it easier to use the types. In the F# 
development process, we don't usually start by writing code with members, but we add them 
later once the code is well tested and the API design is fixed. We've seen two ways of adding 
members:  

41) When the type is simple enough, we can append members directly to the type 
declaration.  

42) For more complex types, we can use intrinsic type extensions which require fewer 
changes to the code.  

Type extensions have the additional benefit that we can also test the type and its 
processing functions in the F# interactive tool before augmenting it, because we don't have 
to declare the whole type in one go. 

We've seen that members are very important for turning data-centric F# code into a 
real-world .NET application or component. Now we'll turn our attention to behavior-centric 
applications. 

9.2 Improving behavior-centric applications 
In the previous couple of chapters, I've shown that functional programming is based on 
several basic concepts which are then composed to get the desired result. We've seen this 
when discussing the ways to construct data types, with examples of tuples, functions, 
discriminated unions, and record types. 

When creating behavior-centric applications, we used a function type to represent the 
behavior and we composed it with other types. For example, we used a record type to store 
two related functions in a single value. 

9.2.1 Using records of functions 
Using records that store functions is a common technique in OCaml and to some extent also 
in F#. Before looking at possible improvements, listing 9.7 provides a reminder of the 
original solution in chapter 8. 

Listing 9.7 Testing clients using records of functions (F#) 
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type ClientTests =                                        #A 
   { Check : Client -> bool 
     Report : Client -> unit } 
     
let testCriminal(cl) = cl.CriminalRecord = true           #B 
let reportCriminal(cl) =                                  #B          
   printfn "'%s' has a criminal record!" cl.Name          #B 
 
let tests =                                                         
   [ { Check = testCriminal; Report = reportCriminal };   #C 
     (* more tests... *) ] 
#A Representation of the test 
#B Testing and reporting function 
#C Create a record value 
The code first creates a record type that specifies types of functions that form the 

checking and reporting part of the test. It then creates two functions and composes them to 
form a value of the record type. Using records of functions is conceptually very simple and 
it's also easy to refactor code using individual functions into a design using records. 
However, if we want to evolve this code into a more traditional .NET version, we can take 
one more step.  

I mentioned before that the function type is similar to an interface with a single method. 
It is not a surprise that a record consisting of two functions is quite similar to an interface 
with two methods. In C# you'd almost certainly implement this design using an interface, 
and F# lets us do the same thing.  

Similarly to members, interfaces are more important when creating robust applications 
or reusable .NET libraries. First of all, if we use an interface, we don't say how exactly it 
should be implemented. This gives us a lot of flexibility how to write the application. We'll 
talk about various ways to implement an interface in F# later in this chapter. Interfaces are 
also useful when developing a .NET library that should be callable from C#. If we declare an 
interface in F#, the C# code will see it as an ordinary interface. On the other hand, an F# 
record type with functions as members looks like a class with properties of some hard-to-use 
type. Let's see how we can adapt our record type into an interface while still using it in a 
natural way from F#.  

9.2.2 Using interface object types 
Just like records and discriminated unions, interfaces type are declared using the type 
construct. Listing 9.8 shows our earlier test record type converted to an interface type. 

Listing 9.8 Interface representing client test 
type ClientTest =                      #A 
   abstract Check : Client -> bool     #B 
   abstract Report : Client -> unit    #C 
#A Interface type declaration 
#B Member that tests the client 
#C Member that reports issues 

Licensed to Curtis J Pitts <beop.love@gmail.com>

Download at Boykma.Com



242   

©Manning Publications Co. Please post comments or corrections to the Author Online forum: 
http://www.manning‐sandbox.com/forum.jspa?forumID=460 

This declaration says that any type implementing the ClientTest interface will need 
to provide two members. In the interface declaration, the members are written using the 
abstract keyword, which means that they don't yet have an implementation. The 
declaration specifies the names and type signatures of the members. Even though we didn't 
explicitly say that we're declaring an interface, the F# compiler is smart enough to deduce 
that. If we for example provided implementation of one of the members, the compiler would 
realize that we want to declare an abstract class. However, in the usual F# programming 
practice, we'll need abstract classes and implementation inheritance very rarely, so we'll 
focus on working with interfaces in this chapter. 

However, if we wanted to create a test that checks for example the criminal record of 
the client in C#, we'd have to write a new class implementing the interface. F# supports 
classes as well, but provides another solution called object expressions. This is inspired by 
functional programming and is often more elegant, because we don't have to write any class 
declarations before creating useful values.  

OBJECT EXPRESSIONS AND LAMBDA FUNCTIONS 

The analogy between interface types and function types is very useful when explaining 
what an object expression is. The signature of a function types describes it in a very 
abstract sense. It specifies that the function takes some arguments and returns a result 
of some type. The concrete code of the function is provided when we're creating a 
function value. This can be done using a lambda function, which is an expression that 
returns a function, or a let-binding, which creates a named function. 

Similarly, an interface is an abstract description of a value. It just specifies that the value 
should have some members and what their signatures are. Again, we provide the actual 
code for the members when creating a concrete value. One option is to write a named 
class that implements the interface, which is similar to creating a named function. On the 
other hand, object expressions are similar to lambda functions. They can be used 
anywhere in the code and create a value that implements the interface without specifying 
the name of the type providing the actual code. 

In the following listing, we'll take a look at object expressions in practice. We'll create 
tests to check the client's criminal record and their income, and create a list of interface 
values just like our earlier lists of records. 

Listing 9.9 Implementing interfaces using object expressions (F# interactive) 
> let testCriminal = 
     { new ClientTest with                                            #1 
        member x.Check(cl) = cl.CriminalRecord = true                 #2 
        member x.Report(cl) =                                         #2 
           printfn "'%s' has a criminal record!" cl.Name };;          #2 
val testCriminal : ClientTest                                         #3 
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> let testIncome = 
     { new ClientTest with 
        member x.Check(cl) = cl.Income < 30000                        #A 
        member x.Report(cl) =                                         #B 
           printfn "Income of '%s' is less than 30000!" cl.Name };; 
val testCriminal : ClientTest 
 
> let tests = [ testCriminal; testIncome ];;                          #C 
val tests : ClientTest list 
#1 Object expression 
#2 Provides code for the interface members 
#3 A value of the interface object type 
#A Implements testing of a client 
#B Implements reporting 
#C Create a list of interface values 
The code creates two values implementing the ClientTest interface type using 

object expressions. Each object expression is enclosed in curly braces and starts with an 
initial header (#1) that specifies what interface we are implementing. This is followed by the 
with keyword and then by the member declarations (#2). Syntactically, this is quite similar 
to the type extensions that we discussed in the previous section. Member declarations give 
an implementation for the members specified by the interface, so the expressions in the 
previous listing implement members Check and Report. 

The whole object expression fulfils the normal definition of an F# expression: it does a 
single thing, which is returning a value. If we look at the output from F# interactive (#3), we 
can see that it returns a value of type ClientTest. This is the interface type, so the 
object expression returns a concrete value implementing the interface, just like a lambda 
function returns a function value implementing an abstract function type. 

SIMILARITY WITH ANONYMOUS TYPES 

Technically, the F# compiler creates a class that implements the interface and object 
expression returns a new instance of this class. However, the declaration of the class is 
only internal, so we cannot access this class directly. The only thing we need to know 
about it is that it implements the specified interface.  

This is similar to anonymous types in C# 3.0, where the compiler also creates a hidden 
class behind the scene that we cannot access directly. In C#, we know what the 
properties of the class are, but this is only available locally inside the method. On the 
other hand, in F# we know which interface the class implements, so we can work with it 
without any such limitations. 

In this section, we've seen how to use interface types to make one final step in the 
iterative development of behavior-oriented applications in F#. The key benefit of using 
interfaces is that they give us an idiomatic .NET solution, but F# provides features to allow 
us to work with interfaces in a natural way which is consistent with its functional style. 
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Thanks to the object expressions, it is easier to implement the interface than to construct a 
record of functions. 

Later in this chapter we'll also see that using interfaces makes it possible to call F# code 
comfortably from C#. We didn't talk about class declarations in F# yet, because ordinary 
classes aren't used that frequently in F#, but we'll look at them briefly later in section 9.4. 
Before that, let's have a look how we can take advantage of object expressions when using 
some common types from the .NET libraries.  

9.3 Working with .NET interfaces 
The .NET Framework is fully object-oriented, so we'll often work with interfaces when using 
.NET libraries from F#. In this section, we'll look at two examples. First we'll look how to 
implement an interface that can be used to customize equality of keys stored in the 
Dictionary object. in the second example, we'll work with the well-known interface for 
resource management: IDisposable. 

9.3.1 Using .NET collections 
So far, we've mostly used the built-in F# list type for storing collections of data. However, in 
some cases it's useful to work with other .NET types such as the Dictionary class from 
the System.Collections.Generic namespace. This type is particularly useful when 
we need very fast access based on some keys, because immutable types providing similar 
functionality (such as Map from the F# library) are less efficient. 

Note that that the Dictionary type is a mutable type. This means that methods like 
Add change the state of the object instead of returning a new, modified copy. This means 
we have to be careful when working with it in scenarios where we want to keep our code 
purely functional. 

Listing 9.10 shows how we can create a simple lookup table using Dictionary and 
how to specify custom way for comparing the keys by providing an implementation of the 
IEqualityComparer<T> interface. 

Listing 9.10 Implementing 'IEqualityComparer<T>' interface (F# interactive) 
> open System 
  open System.Collections.Generic;; 
 
> let equality =  
     let replace(s:string) = s.Replace(" ", "")                  #A 
     { new IEqualityComparer<_> with                             #1 
        member x.Equals(a, b) =                                  #B 
           String.Equals(replace(a), replace(b))                 #B 
        member x.GetHashCode(s) =                                #B 
           replace(s).GetHashCode() };;                          #B 
 
> let dict = new Dictionary<_, _>(equality)                      #2 
  dict.Add("100", "Hundred") 
  dict.Add("1 000", "thousand") 
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  dict.Add("1 000 000", "million");; 
 
> dict.["10 00"];; 
val it : string = "thousand" 
 
> dict.["1000000"];; 
val it : string = "million" 
#A Removes spaces from a string 
#1 Create custom comparison object 
#B Compare strings, ignoring the spaces 
#2 Create a dictionary using custom comparison 
This example demonstrates that object expressions can be quite useful when we need to 

call a .NET API that accepts an interface as an argument. In this case, the constructor of the 
Dictionary type (#2) accepts an implementation of the IEqualityComparer<T> 
interface as an argument. The interface is then used to compare keys when accessing 
elements stored in the dictionary. We created a value called equality, which implements 
the interface in advance (#1). Our implementation compares strings and ignores any spaces 
in the string. We did that by creating a utility function that removes spaces from any given 
string and then comparing the trimmed strings. We also implemented a method that 
calculates the hash code of the string, which is used by the Dictionary type to perform 
the lookup efficiently.  

It is also worth noting that F# type inference helped us again in this listing. We used an 
"_" instead of the actual type when writing the object expression (#1) as well as when 
creating an instance of the Dictionary class (#2). When the compiler sees the 
underscore, it uses other information to figure out what the actual type parameter is and in 
this particular example it had enough information from other parts of the code. 

Another very familiar interface for a .NET programmer is IDisposable, which is used 
for explicit cleaning of resources. Let's have a look how we can use it from F#. 

9.3.2 Cleaning resources using IDisposable 
We've already worked with several types that implement IDisposable, like Graphics 
and SolidBrush. I wanted to make the code as easy to follow as possible, so when we 
finished using the object, we explicitly called the Dispose method.  

C# contains syntactic sugar for this in the form of the using statement, which makes 
sure that Dispose is called even if an exception is thrown within the body of the 
statement. F# has a similar construct with the use keyword. Listing 9.11 shows a simple 
example that works with files. 

Listing 9.11 Working with files and the 'use' keyword (F# interactive) 
> open System.IO;; 
> let writeHello() = 
     use sw = new StreamWriter("C:\\test.txt")    #1 
     sw.WriteLine("Hello world!") 
     sw.WriteLine("Ahoj svete!")                   #2 
val writeHello : unit -> unit 
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> writeHello();; 
val it : unit = ()                                 #A 
#1 Declare the 'sw' value using the 'use' keyword 
#2 Dispose called after this line 
#A A file is written to the disk 
When creating a StreamWriter (which implements the IDisposable interface), 

we declare it using the use keyword (#1). Note that the syntax is very similar to the let 
keyword in a usual let binding. The difference is that the F# compiler automatically adds a 
call to the Dispose method at the end of the function (#2), so the StreamWriter is 
automatically disposed after we finish working with it. The compiler also inserts try-finally 
block to make sure that the cleanup is run even when an exception occurs. 

An important difference between the using construct in C# and the use keyword in 
F# is that in C# we have to specify the scope explicitly using curly braces. On the other 
hand, in F#, the Dispose method is simply called at the end of the function. This is usually 
what we need, so it makes a lot of code snippets easy to write. Listing 9.12 shows the C# 
and F# version side by side. 

Listing 9.12 Cleaning up resources in F# and C#  
let test() = 
   use sw = new StreamWriter(..)  
   // code...                   
#A 
   // some more code...         
#A 
                                
#B 

void Test() { 
   using(sw = new StreamWriter()) 
{ 
      // code...                #C 
   }                            #D 
   // some more code... 
} 

#A 'sw' is in scope here 
#B Object disposed here 
#C 'sw' is in scope here 
#D Object disposed here 
In both of languages, the object is disposed when the execution leaves the scope where 

the value sw is accessible. In F#, this happens at the end of the function by default, which is 
often what we need. However, when the function continues with some code that can run for 
a long time, it is better to make sure that the resource is disposed earlier. We can either 
refactor the code that uses the resource into a separate function, or we can specify the scope 
explicitly like this: 

let test() =  
   ( use sw = new StreamWriter(..) 
     foo(sw) ) 
   // some more code 

The syntax may be somewhat surprising, but it becomes clear once we realize that in F# 
every block of code is an expression. In the code above, we're just specifying the way in 
which the expression is constructed in the same way as when we write (1 + 2) * 3 
instead of the default 1 + (2 * 3). This way we can limit the scope of the sw value to 
the expression inside parentheses. 
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Even though the use keyword is primarily useful when working with .NET objects that 
keep some resources, it can be used for a wider range of scenarios. Let's look at an example. 

PROGRAMMING WITH THE 'USE' KEYWORD 
As we've seen, if we create a value using the use keyword the compiler will automatically 
insert a call to its Dispose method at the end of the function where it's declared. This is of 
course useful for resources, but there are other situations where we need to enclose a piece 
of code between two function calls.  

For example, suppose we want to output some text to a console in a different color and 
then restore the original color. Traditionally, we'd have to store the original color, set the 
new one, send the output to the console and finally restore the original color. 

However, the same thing can be done rather elegantly thanks to the use keyword. We 
can write a function that changes the color of the console and returns an IDisposable 
value. This value contains a Dispose method, which restores the original color when called 
and thanks to the use keyword, the method will be called automatically. Listing 9.13 shows 
the function and a demonstration of its use. 

Listing 9.13 Setting console color using IDisposable (F# interactive) 
> open System;; 
 
> let changeColor clr =  
     let orig = Console.ForegroundColor             #1 
     Console.ForegroundColor <- clr                 #2 
     { new IDisposable with                         #3 
        member x.Dispose() =  
           Console.ForegroundColor <- orig };;      #4 
val changeColor : ConsoleColor -> IDisposable 
 
> let hello() =  
     use clr = changeColor ConsoleColor.Red         #5 
     Console.WriteLine("Hello world!") 
     ;;                                             #6 
val hello : unit -> unit 
#1 Store the original color 
#2 Set the new color immediately 
#3 Create 'IDisposable' value 
#4 Restore the original color inside 'Dispose'  
#5 Color is changed to red 
#6 Original color is restored 
The most interesting part of the code is the changeColor function. We can imagine 

that it contains two pieces of code. The first part is executed immediately when the function 
is called and the second part is returned and executed at some later time. The first part of 
the code first stores the original color (#1) and then sets the new one (#2).  

The second part needs to be returned as a result. We could return it as a function 
(possibly using lambda function syntax), but then the caller would have to call it explicitly. 
Instead, we create an IDisposable value using an object expression (#3) and place the 
code that restores the original color in the Dispose method (#4). 
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When the changeColor function is used the first part (which sets the new color) is 
executed immediately (#5). However, we store the result using the use keyword, so at the 
end of the function (#6) the Dispose method is called and the original color is restored. 
You can see a screenshot showing the result of running this code in the F# interactive 
console window in figure 9.2. 

 

Figure 9.2 Changing the color of the console text using 'changeColor' function. You can see that the color 
is changed only inside the 'hello' function and then the original color is restored. 

The same idea is useful in other contexts, such as temporarily changing the cursor in a 
GUI to an appropriate "please wait" indicator, or temporarily changing the current thread's 
culture to a specific value when unit testing culture-specific code. The clue here is the word 
"temporarily" which suggests the "change something, do some work, restore the original 
value" pattern - ideal for the use keyword! 

In all the previous examples showing object-oriented features, we used the standard F# 
types, interfaces and object expressions. This is quite normal when using F# in a functional 
way, but the language supports other object-oriented features as well. As this book is 
primarily about functional programming we won't discuss all of them, but we'll look at a 
couple of the most important examples. 

9.4 Concrete object types 
The most important construct of object-oriented programming is a class declaration. In F#, 
this is very useful when writing a library that can be used from C#, because an F# class 
declaration looks just like a normal class when referenced from C#. However, classes are 
often used in F# for encapsulating data and behavior when we believe that the data 
structure or the behavior will change less frequently. Deciding whether this is the case is of 
course quite difficult, so classes are usually used in the later steps of the iterative 
development process. 
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Let's start with the simplest possible example. The listing 9.14 shows an implicit class 
declaration with a constructor, several properties and a method.  

Listing 9.14 Class with client information (F# interactive) 
> type ClientInfo(name, income, years) =             #1 
      let q = income / 5000 * years                  #A 
      do printfn "Creating client '%s'" name         #A 
 
      member x.Name = name                           #2 
      member x.Income = income                       #2 
      member x.Years = years                         #2 
 
      member x.Report() =                            #3 
          printfn "Client: %s, q=%d" name q          #3 
  ;; 
type ClientInfo = (...) 
 
> let john = new ClientInfo("John Doe", 40000, 2);;  #B 
val john : ClientInfo 
Creating client 'John Doe' 
 
> john.Report();;                                    #C 
Client: John Doe, q=16 
val it : unit = () 
#1 Class declaration with constructor arguments 
#A Code executed during construction 
#2 Property declarations 
#3 Method declaration 
#B Create the class and run the constructor 
#C Invoke method of the class 
The declaration starts with the class name and constructor arguments (#1). The next 

couple of lines before the first member declaration are executed during construction. This 
part of code forms an implicit constructor. The arguments to the constructor (such as name 
and others) and values declared in the initialization code (like q) are accessible from 
anywhere inside the class. This is quite useful, because a C# constructor often just copies its 
arguments to private fields, so they can be accessed from other places. It is also worth 
noting that if you use the parameter only inside the code of the constructor, it isn't stored as 
a field, because the compiler knows that we won't need it. 

Next, the class contains three member declarations that expose constructor arguments 
as properties of the client (#2) and a single method (#3). The "x." prefix in the member 
declarations means that the current instance of the class can be accessed using the "x" 
value. For example we might use it to call another method or reading other properties. 

CLASS DECLARATIONS IN F# 

F# provides a richer set of features for declaring classes than what we've seen in this 
example. The goal of the F# language is to be a first-class .NET citizen, so nearly 
everything you can write in C# can be also translated to F#. However, in the usual F# 
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programming, we don't need advanced .NET object model features such as overloaded 
constructors and methods or for example publicly accessible fields. 

The goal of this book is to introduce functional concepts and not to explain every F# 
feature, so we'll look only at the most useful object oriented constructs that F# provides 
and how they work with the functional style. You can find more information about class 
declarations on the book's web site and also in the [F# Documentation] and [F# 
Language Specification]. 

It is worth mentioning that the class from the previous example is still purely functional, 
in the sense that it doesn't have any mutable state. This demonstrates how object-oriented 
and functional paradigms can work very well together. 

9.4.1 Functional and imperative classes 
Just like the let bindings we've seen in other F# code, a let binding in a class or an argument 
to a class constructor is an immutable value. Also, a property declaration using the member 
keyword creates a read-only property (with just a getter). This means that if the class 
references only values of other immutable types, it will also become immutable.  

Let's say that we want to allow changes of the client's income in the previous example. 
This can be done in two different ways:  

43) In a purely functional style, the object will return a new instance with updated 
income and the original values of all other properties.  

44) Using the imperative style the income will be a mutable field.  

Listing 9.15 shows the functional version of the class (named ClientF) side by side 
together with the imperative class named ClassI. 

Listing 9.15 Functional and imperative version of Client type (F#) 
> type ClientF(name, inc) = 
     member x.Name = name       #1 
     member x.Income = inc      #1 
 
     member x.WithIncome(ninc) =#2 
        new ClientF(name, ninc) 
 
     member x.Report() = 
        printfn "%s %d" name inc 
type ClientF = (...) 
 
> let c = new ClientF("Joe", 30);; 
val c : ClientF 
 
> let c = c.WithIncome(40);;    #3 
val c : ClientF 
 

> type ClientI(name, inc) = 
     let mutable inc = inc     #4 
 
     member x.Name = name 
     member x.Income  
        with get() = inc       #5 
        and set(v) = inc <- v  #5 
     member x.Report() = 
        printfn "%s %d" name inc 
type ClientI = (...) 
 
> let c = new ClientI("Joe", 30);; 
val c : ClientI 
 
> c.Income <- 40;;              #6 
val it : unit = () 
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> c.Income;; 
val it : int = 40 

> c.Income;; 
val it : int = 40 

#1, #2, #3 In the functional version all properties remain read-only (#1). In addition, the class 
contains a method called 'WithIncome' (#2) that creates a copy of the object with income set to the 
new value. When using the method, we store the returned customer using let binding (#3). We can 
use the same name for the new value, which hides the original value and it becomes inaccessible.  
#4, #5, #6 The imperative version declares an updatable field for storing the income using the 
'mutable' keyword (#4). The field has a name 'inc', so it hides the immutable constructor argument 
with the same name. The income can be updated using a read/write property (#5) that we added to 
the class. This creates a standard .NET property, which can be used in the usual way (#6). 

Annotations below the code with bullets on the left (as in Ch. 03) 

When declaring a mutable field in the imperative version (#4), I used the same name 
for both the value and the constructor parameter. The new value hides the original one, 
meaning that we can no longer access the original value. This may seem strange at first, but 
it prevents you from accidentally using initial value when you actually intend to use the 
current (possibly changed) one. 

The next notable thing in the imperative version is the read/write property (#5). In F# 
syntax, the property is composed from a two members similar to method declaration. The 
get member doesn't have any parameters and returns the value, while the set member 
has a single parameter for the new value and should return unit as the result. Even though 
the syntax is slightly different from that of a C# property declaration, the principles are 
exactly the same. 

Even though we're concentrating on functional programming, it is sometimes useful to 
know how to write a mutable class like this. If you need to expose a larger piece of F# code 
to a C# client, you'll probably wrap your code in at least one class, because this makes it 
easier to use from C#. At this point, you can choose which style to follow - an imperative 
one with some mutable types, or a purely functional one where everything is mutable. The 
second solution is cleaner from the F# point of view, but developers who aren't used to 
dealing with libraries composed entirely of immutable types may find it easier to use a 
wrapper with mutable state. 

We're very nearly ready to show a complete example of calling F# code from C#, but we 
need to finish our tour of object-oriented F# features first. 

9.4.2 Implementing interfaces and casting 
We've already seen how to declare an interface in F# and how to create a value that 
implements the interface using object expressions. This is a very lightweight solution similar 
to lambda functions. However, just as lambda syntax isn't always the appropriate choice for 
creating functions, it sometimes makes sense to implement an interface in a named class. 

We're going to work with the same example as earlier in the chapter. We'll look at 
implementing interfaces in both C# and F#, so let's briefly recap the declaration of the 
interface in both of the languages: 

interface IClientTest { type ClientTest =  
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   bool Test(Client client); 
   void Report(Client client); 
} 

   abstract Test : Client -> bool 
   abstract Report : Client -> unit 

The interface just has two methods: one that tests the client and one that prints a report 
to the screen. Now let's suppose we want to implement the interface using a coefficient 
calculated from several properties. Earlier we created similar tests using object expressions, 
but when the code becomes more complex it is better to move it into a separate class 
declaration or possibly into a separate source file.  

One small point to note before we move on to look at the implementations: in F#, we 
didn't use the "I" prefix when declaring the interface; F# has various ways to declare a type 
and attempts to unify all of them. However, the C# version uses the standard .NET naming 
convention, so it implements an interface called IClientTest. If you're creating an F# 
library that is supposed to be used from other .NET languages, then it is of course a good 
idea to follow all the standard .NET coding conventions in all public API. 

Listing 9.16 shows the C# implementation testing a client's income and how many years 
they've been in their current job using weightings and a threshold, all specified in the 
constructor. The class uses explicit interface implementation, which is slightly unusual–but 
we'll see why when we look at the F# implementation. 

Listing 9.16 Client test using explicit interface implementation (C#) 
class CoefficientTest : IClientTest {                                  #A 
   readonly double income, years, min; 
   public CoefficientTest(double income, double years, double min) {   #B 
      this.income = income; this.years = years; this.min = min;        #B 
   }                                                                   #B 
   public void PrintInfo() { 
    Console.WriteLine("income*{0}+years*{1} >= {2}", income, years, min); 
   } 
   bool IClientTest.Test(Client cl) {                                  #1 
      return cl.Income*qIncome + cl.YearsInJob*qYrs < min;             #1 
   }                                                                   #1 
   void IClientTest.Report(Client cl) {                                #1 
      Console.WriteLine("Coefficient {0} is less than {1}.",           #1 
         cl.Income*income + cl.YearsInJob*years, min);                 #1 
   }                                                                   #1 
} 
#A Class implementing 'IClientTest' 
#B Store arguments in a private field 
#1 Private implementations of interface methods 
To implementing an interface member using the explicit syntax in C#, we include the 

name of the interface when writing the method (#1) and remove the access modifier. This is 
just a minor change, but the more important difference is how the class can be used. The 
methods from the interface (in our case Test and Report) are not directly accessible 
when using the class. To call them, we first have to cast the class to the interface type. Let's 
look at an example:  

var test = new CoefficientTest(0.001, 5.0, 50.0); 
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test.PrintInfo();                                 #A 
 
var cltest = (IClientTest)test;                   #B 
if (cltest.Test(john)) cltest.Report(john); 
#A Call method of the class 
#B Cast to the interface type 
We cannot just write test.Test(john), because Test is not directly available as a 

public method of the class. It is only usable a member of the interface, so we can access it 
using cltest value, which has a type IClientTest. We used an explicit cast and the 
var keyword in the code, because that will help understanding how interface 
implementations work in F#. Another option that we have is to declare the variable type as 
IClientTest and then just assign the test value to it, because the C# compiler would 
use implicit conversion to the interface type. 

Other than using explicit interface implementation, the class is wholly unremarkable. 
We’re really just using it as a point of comparison with the F# code. Speaking of which… 

IMPLEMENTING INTERFACES IN F# 
The reason listing 9.16 uses explicit interface implementation in C# is that this is the 

only style of interface implementation which F# allows. In the functional programming style, 
this is often adequate. If you really need to expose the functionality directly from the class, 
you can add an additional member that invokes the same code. Listing 9.17 shows an F# 
version of the previous example. 

Listing 9.17 Implementing interface in a class (F#) 
type CoefficientTest(income, years, min) =                          #1 
 
   let coeff cl =                                                   #2 
      ((float cl.Income)*income + (float cl.YearsInJob)*years)      #2 
   let report cl =                                                  #2 
      printfn "Coefficient %f is less than %f." (coeff cl) min      #2 
 
   member x.PrintInfo() =                                           #A 
      printfn "income*%f + years*%f > %f" income years min 
 
   interface ClientTest with                                        #3 
      member x.Report cl = report cl                                #3 
      member x.Test cl = (coeff cl) < min                           #3 
#1 Implicit class declaration 
#2 Local helper functions 
#A Standard public method of the class 
#3 Interface implementation using helpers 
 The listing uses implicit class syntax, so it specifies arguments to the constructor 

directly in the declaration (#1). It takes three arguments specifying various coefficients for 
the calculation. Since we're referring to these parameters later in the members, the F# 
compiler will automatically store them in class fields.  

Next, we defined two local helper functions using the standard let binding syntax (#2). 
These are not visible from outside of the class and we use them only for other members later 
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in the code. When implementing an interface (#3), we group all members from a single 
interface together using the interface ... with syntax and implement them using 
usual members. If we also wanted to expose some of the same functionality as a public 
method, we could simply add another member to the class declaration and call the local 
helper function. Alternatively we could implement the functionality in the public member and 
call that member from the interface implementation. 

Working with the class is very much like the previous C# version that was using explicit 
interface implementation. You can see the F# version of the code in listing 9.18. 

Listing 9.18 Working with F# classes and interfaces (F# interactive) 
> let test = new CoefficientTest(0.001, 5.0, 50.0)           #A 
val test : CoefficientTest 
 
> test.PrintInfo()                                           #B 
income*0.001000 + years*5.000000 > 50.000000 
 
> let cltest = (test :> ClientTest)                          #1 
val cltest : ClientTest 
 
> if (cltest.Test(john)) then cltest.Report(john)            #C 
Coefficient 45.000000 is less than 50.000000. 
#A Create an instance of the class 
#B Use method of the class 
#1 Cast to the interface type 
#C Use methods of the interface 
Most of the listing should be quite straightforward. The only exception is the code that 

casts the value to the interface type (#1), because we haven't yet talked about casts in F#. 
In F#, there are two kinds of casts. In this case, the compiler knows at the compilation that 
the cast will succeed, because it knows that the class (CoefficientTest) implements 
the interface (ClientTest). This is called an upcast. In the next section, we'll look at both 
of the casts in detail. 

UPCASTS AND DOWNCASTS IN F# 
When the conversion between the types cannot fail, it is called an upcast. We've seen that 
this is the case when converting a type to an interface implemented by that type. Another 
example is casting a derived class to its base class. In this case the compiler can also 
guarantee that the operation is correct and will not fail. 

On the other hand, if we have a value of a base type and we want to cast it to an 
inherited class, then the operation can fail. That's because the value of the base class may or 
may not be a value of the target class. In this case, we have to use a second type of casting, 
which is called a downcast. Let's demonstrate this using an example. We'll use the standard 
Random class, which is (just like any other .NET class) derived from the Object class: 

> open System;; 
> let rnd = new Random();; 
val rnd : Random 
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> let obj = (rnd :> Object);;                              #A 
val obj : Object 
 
> let rnd2 = (obj :> Random);;                             #B 
stdin(4,12): error: Type constraint mismatch.              #B 
The type 'Object' is not compatible with the type 'Random' #B 
 
> let rnd2 = (obj :?> Random);;                            #C 
val rnd2 : Random 
 
> let err = (obj :?> String);;                             #D 
val err : String 
System.InvalidCastException: Specified cast is not valid. 
#A Upcast - operation cannot fail 
#B This can't be written using an upcast! 
#C We have to use downcast 
#D Downcast to a wrong type throws an exception! 
As you can see, if we accidentally try to use an upcast inappropriately, the F# compiler 

reports this as an error. The error message says that Object isn't compatible with 
Random, which means that the compiler cannot guarantee that the value of type Object 
can be casted to the Random type. Finally, the listing shows that a downcast can fail and 
throw an exception if we try to cast an object to a wrong inherited class. 

A good way to remember the F# syntax for upcasts (:>) and downcasts (:?>) is to 
realize that there is some uncertainty when using downcasts, because the operation can fail. 
This uncertainty is a reason why downcast operator contains the question mark symbol and 
upcast doesn't. The F# language also provides an equivalent to the is operator known from 
C# that returns Boolean value specifying whether an object instance can be casted to the 
specified type. To test whether obj can be casted to String, we'd write obj :? 
String. 

It's worth thinking about the differences between F# and C# here. In C#, we didn't even 
need the cast in listing 9.16: when the compiler knows the conversion can succeed and it's 
not needed for disambiguation, you can just let it occur implicitly. F# doesn't convert 
implicitly conversions, so it makes sense for it to have a language construct just for this 
expressing conversions which are guaranteed to succeed. In C# it wouldn't make sense as 
you'd use it so rarely–it's simpler to use the same syntax for both kinds of conversion. 

It would be impossible to review all the object-oriented features of F# in just a single 
(reasonably sized!) chapter, but we've seen that the ones that are most important in order 
to evolve functional applications into real-world .NET code. 

I've said several times that these changes make our F# code more easily accessible 
from C#, and it's time to give proof of that, and show exactly how the interoperability hangs 
together. 

9.5 Using F# libraries from C# 
Like C#, F# is a statically typed language, which means that the compiler knows the type of 
every value as well as signatures of class methods and properties. This is very important for 
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interoperability with C#, because the compiler can generate code that looks just like an 
ordinary .NET library. 

Interoperability with other .NET languages 

This is not the case for dynamically typed languages that have a .NET implementation like 
Python, Ruby or JavaScript. In these languages, the compiler doesn't know whether a 
method takes an argument of type int or for example Customer, so using code 
written in these languages is more difficult when using C# 3.0. Often you don't even 
know whether an object contains a method with a particular name, so the C# has to look 
like this: 

obj.InvokeMethod("SayHello", new object[] { "Tomas" }); 

This example specifies the name of the method as a string and passes the arguments to 
the method in an array. This is of course an important problem for many languages, so 
C# 4.0 introduces the "dynamic" type that allows you to write something like: 

obj.SayHello("Tomas"); 
obj.SaiHello("Tomas"); 

The syntax is same as for normal method calls, but there is an important difference. I 
intentionally added another method call, but with a misspelled method name. This will 
compile correctly, because the method name is internally represented as a string just as 
in the previous example. The problem only comes to light at run-time. The fact that F# is 
statically typed means we don't have to worry about this: we can rely on the compiler to 
spot the same kinds of errors it would when calling into other C# code.  

We're going to start with a basic example. In the first section of this chapter, we saw 
how to add members to the Rect type that represents a rectangle. Now we're going to use 
the type from C#. First we need to create a new F# "Library" project and add a source file 
(for example "export.fs") containing the code from listing 9.19. 

Listing 9.19 Compiling F# types into a library (F#) 
namespace Chapter09.FSharpExport                                      #1 
 
open System 
open System.Drawing 
 
type Rect = 
   { Left : float32; Width : float32                                  #2 
     Top : float32; Height : float32 }                                #2 
 
   member x.Deflate(wspace, hspace) =                                 #3 
      { Top = x.Top + wspace; Height = x.Height - (2.0f * hspace)     #3 
        Left = x.Left + hspace; Width = x.Width - (2.0f * wspace) }   #3 
   member x.ToRectangleF () =                                         #3 
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      RectangleF(x.Left, x.Top, x.Width, x.Height)                    #3 
#1 Specifies namespace for the file 
#2 Record fields are compiled as properties 
#3 Methods of the 'Rect' class 
As you can see, we've just added a single line to specify the .NET namespace (#1). This 

namespace will contain all the type declarations from the file (in our case, there is only a 
single type called Rect). This type will easy to use from C# because the fields of the record 
(#2) will become properties and members (#3) will appear as methods. 

Next we're going to add a new C# project to the solution. Adding a reference to the F# 
project is done exactly as if you were referencing another C# class library, although you 
should also add a reference to the FSharp.Core assembly. This is an F# redistributable 
library that contains the F# core functions and types. After configuring the projects, you 
should see something similar to the figure 9.3. The figure also shows how other F# types 
from this chapter appear in IntelliSense from C#.  

 

Figure 9.3 After adding a reference to the F# library, we can see types from the F# project in IntelliSense. 
The F# record type 'Rect' is compiled as an ordinary class. 
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If you experiment with IntelliSense, you'll see that the F# type is present in the 
namespace we specified in its source code. IntelliSense also shows what properties and 
methods the type has, so you'd be probably able to use it without any further help. Just for 
completeness though, listing 9.20 gives a short example. 

Listing 9.20 Using types from the F# library (C#) 
using System; 
using Chapter09.FSharpExport;                               #A 
 
class Program { 
   static void Main(string[] args) { 
      var rc1 = new Rect(0.0f, 100.0f, 0.0f, 50.0f);        #1 
      var rc2 = rc1.Deflate(20.0f, 10.0f);                  #2 
      Console.WriteLine("({0}, {1}) - ({2}, {3})",          #B 
         rc2.Left, rc2.Top, rc2.Width, rc2.Height);         #B 
   } 
} 
#A Reference namespace from the F# library 
#1 Create an instance of the class 
#2 Invoke a functional member of the class 
#B Prints '(10, 20) - (60, 30)' 
The code in the listing first creates an instance of the Rect type. It uses a constructor 

that was automatically generated by the F# compiler (#1) and corresponds to the F# code 
for creating a record. We have to specify values for all the fields of the record at construction 
time–we can't change them later, as the type is immutable. The next step is to invoke the 
Deflate method (#2). This is just a perfectly ordinary method, although we're dealing 
with a purely functional so the method returns a new Rect value instead of mutating the 
existing one. Finally, we print the information about the returned rectangle. This is also easy, 
because record fields are exposed as .NET properties. 

USING F# LIBRARIES FROM F# 

We've looked at referencing F# projects from C# because this is a common scenario and 
I wanted to explicitly show how nicely the two languages play together when the F# code 
uses object types. However, you can also reference F# libraries from F# applications. The 
steps to do this would be the same: specify a namespace for the F# library, add a 
reference in Visual Studio and add an appropriate open directive to your F# application. 
It is worth noting that when referencing an F# library from F#, the compiler will 
recognize that the library is authored in F# and all constructs (such as discriminated 
unions or functions) will be accessible in the normal F# way. 

Using the Rect type from C# is quite simple, and figure 9.3 shows some other types 
from this chapter. For example an F# interface declaration (ClientTest) shows as an 
ordinary .NET interface, so the interoperability works very smoothly. However, what if we 
wanted to export a function or a value? What would these two constructs look like in C#? 
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9.5.1 Working with values and delegates 
In this section, we're going to look at using two more typical F# constructs from C#. We'll 
see how to export a value and a high order function. The latter is quite tricky, because F# 
uses quite a sophisticated internal representation for functions.  

For example if a function took int -> int -> int as an argument, a C# developer 
would see this as FastFunc<int, FastFunc<int, int>>. It is possible to work 
with this type, but it isn't very convenient; we'll use a different approach. If we're writing a 
higher order function that should be used from C# then we can use standard .NET delegates. 
This isn't as natural as using normal functions in F#, but the library will be much simpler to 
use from C#. 

There's another problem which crops up when we want to export a value or function 
directly. Methods (and fields) don't appear on their own in .NET, or even as part of a 
namespace–they're always part of a type. The very idea of a method existing with no 
containing type to love and nurture it is enough to make a compassionate C# developer 
distraught. Help is at hand in the form of F# modules. Listing 9.21 shows how a value and a 
utility function can be exported so they can be used from C#, and also demonstrates the 
previous point about using delegates for higher order functions. 

Listing 9.21 Exporting values and higher order functions (F#) 
type Client = 
  { Name : string; Income : int; YearsInJob : int 
    UsesCreditCard : bool; CriminalRecord : bool } 
   
module Tests =                                               #1 
    let John =  
      { Name = "John Doe"; Income = 25000; YearsInJob = 1 
        UsesCreditCard = true; CriminalRecord = false } 
 
    let WithIncome (f:Func<_, _>) client =                   #2 
        { client with Income = f.Invoke(client.Income) }     #3 
#1 Enclose values and functions in a module 
#2 Function taking delegate as an argument 
#3 Calls the delegate using 'Invoke' method 
The module declaration (#1) tells that F# compiler to enclose the values and functions 

into a class with static methods (when compiling functions) and static properties (for values). 
I've chosen to follow the C# naming conventions here (using Pascal case) as the reason for 
creating the module in the first place is to expose the values to C#. 

The next point to note is the WithIncome function. It's a higher order function, but 
instead of taking a normal F# function as an argument, it takes a .NET delegate Func with 
two generic arguments (#2). We're using an underscore so the F# compiler infers the actual 
types for us. When we need to invoke the delegate later in the code (#3), we use its 
Invoke method. This is somewhat inelegant compared with normal F# function calling, but 
it means the C# client can work with it in an idiomatic manner using lambda functions:  

var client = Tests.John;                                     #A 
client = Tests.WithIncome(income => income + 5000, client);  #B 
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Console.WriteLine("{0} - {1}", client.Name, client.Income); 
#A Use a value from 'Tests' module 
#B We can use a lambda function! 
The module which we called Tests is compiled into a class, so the value John 

becomes a static property of this class and WithIncome becomes a method. As you can 
see, it takes an argument of type Func<int, int>, so anyone who knows C# 3.0 can 
use it even though the code is actually written in F#. In reality, we could of course make the 
WithIncome a member of the Client type and the C# user would call it using the 
familiar dot-notation. However, I wanted to demonstrate that even basic F# functions can be 
used from C# with no problems. 

9.6 Summary 
In the last few chapters we we've talked about functional programming and implemented 
several sample applications in the functional style. We started with simple functional ideas 
such as combining values into "multiple values" or "alternative values", then we discussed 
ways of working with functions. Finally in chapters 7 and 8 we talked about the design of 
functional programs. This was not a haphazard decision: the structure of the book 
corresponds to the iterative F# development style. We started with very simple concepts that 
allowed us to solve problems succinctly and quickly. Finally, in this chapter we took the final 
step of the iterative development process, exposing our code in familiar .NET terms. 

We've seen members that allow us to encapsulate functionality related to a type with the 
type itself and intrinsic type extensions that can be used if we already have the code as 
ordinary functions. Next, we looked at abstract types (interfaces) that are quite useful when 
writing behavior-centric applications. We also talked about classes, which are particularly 
important in interoperability scenarios. 

However, there are still many things that we haven't covered. In the next few chapters, 
we're going to turn our attention from architectural aspects back to the core functional 
programming techniques. In the upcoming chapter, we're going to revisit lists and simple 
recursive functions and you'll see some essential techniques for writing efficient functional 
code. This is an important aspect that we skipped earlier to make the introduction as simple 
as possible. However, you've already mastered all the basic functional ideas, so we're now 
ready to dive into some important advanced techniques. 
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10 
Efficiency of data structures,  

tail recursion and continuations 

In the first parts of the book, we began using functional techniques such as recursion and 
functional data structures like immutable lists. We wrote the code in the most 
straightforward way we could, using the basic F# collection type (a list) and expressing our 
intentions very directly. This works very well in many situations, but when we come to 
process large data sets, "obvious" code sometimes leads to performance problems. In this 
chapter, we'll look at several techniques for writing code that works regardless of the size of 
the input and at the ways to optimize the performance of functions working with data. We'll 
still strive to keep the code as readable as possible though. 

If you've been developing for any significant length of time, you've almost certainly 
written a program that caused a stack overflow exception. In functional programming this 
error can easily be caused by a naively written recursive function, so we'll look at several 
ways for dealing with functions that can cause this error when processing large amounts of 
data. This will be our starting topic and we'll return to it at the end of the chapter. 

 In between these discussions on recursion, we'll talk about functional lists and arrays. 
When working with functional lists, it is important to understand how they work so you can 
use them efficiently. Finally, F# also supports arrays that can give us a better performance in 
some situations. Even though arrays are primarily imperative data types, we'll see that we 
can use them in a very functional way. 

10.1 Optimizing functions 
In the earlier chapters, we saw that recursion is the primary control flow mechanism for 
functions in F#. We first used it for writing simple functions that perform some calculation, 
such as adding up numbers in a specified range or a working out a factorial. Later we found 
it invaluable while working with recursive data structures - most importantly lists. 
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You may already be familiar with several limitations of recursion, the possibility of stack 
overflow being the most obvious one. As we'll see, some recursive computations can be very 
inefficient too. In imperative languages, you'd often use non-recursive function to avoid 
problems. However, functional languages have developed their own ways of dealing with 
these problems and can work with recursion very efficiently. First let's concentrate on 
correctness: it's no good being really efficient with up to 1K of data if an extra byte blows 
your stack… 

10.1.1 Avoiding stack overflows with tail recursion 
For every function call, the runtime allocates a stack frame. These frames are stored on a 
stack maintained by the system. A stack frame is removed when a call completes. If a 
function calls another function, then a new frame is added on top of the stack. The size of 
the stack is limited, so too many nested function calls leave no space for another stack 
frame, and the next function can't be called. When this happens in .NET, a 
StackOverflowException is raised. In .NET 2.0 and higher, this exception can't be 
caught and will bring down the whole process. 

Recursion is based on nested function calls, so it isn't surprising that you'll encounter 
this error most often when writing complex recursive computations. (Well, that may not be 
true. The most common cause in C# is probably writing a property which accidentally refers 
to itself instead of its backing field. We'll ignore such typos though, and only consider 
intentional recursion.) Just to show the kind of situation we're talking about, let's use the 
list-summing code from chapter 3, but give it a really big list. 

Listing 10.1 Summing list and stack overflow (F# interactive) 
> let test1 = [ 1 .. 10000 ]                           #A 
  let test2 = [ 1 .. 100000 ]                          #A 
val test1 : int list 
val test2 : int list 
 
> let rec sumList(lst) = 
     match lst with 
     | [] -> 0                                         #1 
     | hd::tl -> hd + sumList(tl)                      #2 
val sumList : int list -> int 
 
> sumList(test1)                                       #3 
val it : int = 50005000  
 
> sumList(test2)                                       #4 
Process is terminated due to StackOverflowException. 
#A Create lists for testing 
#1 Branch that returns immediately  
#2 Recursive branch 
#3 Stack size is sufficient 
#4 Too many nested function calls! 
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Just like every recursive function, sumList contains a case that terminates the 
recursion (#1) and a case where it recursively calls itself (#2). The function completes a 
certain amount of work before performing the recursive call (it performs pattern matching on 
the list and reads the tail), then it executes the recursive call (to sum the numbers in the 
tail). Finally, it performs a calculation with the result: it adds the value stored in the head 
with the total sum returned from the recursion. The details of the last step are particularly 
important as we'll see in a moment. 

As we might have predicted, there is a point when the code stops working. If we give it 
a list with tens of thousands of elements (#3), it works fine. However, for a list with 
hundreds of thousands of elements, the recursion goes too deep and F# interactive reports 
an exception (#4). Figure 10.1 shows what's happening: the arrows above the diagram 
represent the first part of the execution, before and during the recursive call. The arrows 
below the diagram represent the recursion returning the result. 

 

Figure 10.1 Stack frames when summing numbers in a list. In the first case, the stack frames fit within the 
limit, so the operation succeeds. In the second case, calculation reaches the limit and an exception is 
thrown. 

I used a notation [ 1.. ] to denote a list containing series that begins with 1. In the first 
case, F# interactive starts executing sumList with a list from 1 to 10000 as its argument. 
The figure shows how a stack frame is added to the stack for each call. Every step in the 
process takes the tail of the list and uses it as an argument for a recursive call to sumList. 
In the first case, the stack is a sufficient size, so we eventually reach a case where the 
argument is an empty list. In the second case, however, we use up all of the space after 
roughly 64,000 calls. The runtime reaches the stack limits and raises 
StackOverflowException.  

The figure shows how the calls proceed using arrows. Both arrows from the left to the 
right and backwards do some work. The first part of the operation is executed before the 
recursive call and decomposes a list into head and tail components. The second part, 
executed after the recursive call completes, adds the value from the head to the total. 
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Now we know why it's failing, what can we do about it? The essential idea is that we 
only need to keep the stack frame because we need to do some work after the recursive call 
completes. In our example, still need the value of the head element so we can add it to the 
result of the recursive call. If the function didn't have to do anything after the recursive call 
completed, it could jump from the last recursive call back, directly to the caller, without 
using anything from the stack frames in between. Let's demonstrate this with the following 
trivial function: 

let foo(arg) =  
   if (arg = 1000) then true 
   else foo(arg + 1) 

As you can see, the last operation that the foo function performs in the else branch is 
a recursive call. It doesn't need to do any processing with the result, it just returns it 
directly. This kind of recursive call is called tail recursion. Effectively, the result of the 
deepest level of recursion – which is a call to foo(1000)– can be directly returned to the 
caller, as shown in diagram 10.2. 

 

Figure 10.2 Recursive function 'foo' that doesn't do anything after the recursive call. The execution can 
jump directly to the caller (F# interactive) from the last recursive call, which is 'foo(1000)'. 

From the diagram, you can see that the stack frames created during the computation 
(while jumping from the left to the right) are never used on the way back. This means that 
the stack frame is only needed before the recursive call, but when we recursively call 
foo(2) from foo(1), we don't need the stack frame for foo(1). The runtime can 
simply throw it away to save the space. Figure 10.3 shows the real-world execution of tail 
recursive function foo. 

 

Licensed to Curtis J Pitts <beop.love@gmail.com>

Download at Boykma.Com



 265 

©Manning Publications Co. Please post comments or corrections to the Author Online forum: 
http://www.manning-sandbox.com/forum.jspa?forumID=460 

Figure 10.3 Execution of a tail-recursive function. The stack frame can be dropped during the recursive 
call, so only a single frame is actually needed at any point during the execution. 

This diagram shows how F# executes tail recursive functions. When a function is tail 
recursive, we need only a single slot on the stack. This is makes the recursive version as 
efficient as an iterative solution.  

TAIL RECURSION IN .NET LANGUAGES 

The idea of tail recursion is directly supported by IL, so in theory the C# compiler could 
spot when it was applicable and make use of it. At the moment, it doesn't do so–but the 
F# compiler does, as tail recursion is such an important aspect of functional 
programming. C# developers normally try to design their code such that recursion to an 
arbitrary depth doesn't occur, precisely because of this problem–whereas it's a core part 
of a functional programmer's toolkit. 

That's not to say that the runtime won't use tail call optimizations with code written in 
C#. Even if the IL doesn't contain explicit hints that it wants to use a tail call, the JIT may 
notice that it can do so safely and just go ahead. However, the rules for when this 
happens are complicated, and vary between the x86 and x64 JIT compilers. They're 
subject to change at any time. If your recursive code in C# happens to run when you'd 
expect it to blow up, that may be what's happening - but don't rely on it! 

You may be wondering whether every recursive function can be rewritten to use tail 
recursion. Unfortunately the answer is no–but it is possible for many of them. As a simple 
rule thumb, if a function executes just a single recursive call in each branch, it should be 
possible to rewrite it using tail recursion. 

USING AN ACCUMULATOR ARGUMENT 
Let's think about how we'd make the sumList function tail recursive. It only performs the 
recursive call once in the branch where the argument is a cons cell (a non-empty list). Our 
rule of thumb suggests that we should be able to make it tail recursive–but at the moment it 
does more than just returning the result of the recursive call: it adds the value from the 
head to the total number. 

To turn this into a tail recursive function, we can use a technique which supplies an 
accumulator argument. Instead of calculating the result as we jump from the right to the left 
(in the diagrams above, in other words as we're coming back towards the original function 
call), we can calculate the result as part of the operation that runs before the recursive call. 
We'll just need to add another parameter to the function to provide the current result. Listing 
10.2 shows this technique in action. 

Listing 10.2 Tail-recursive version of the 'sumList' function (F# interactive) 
> let rnd = new System.Random() 
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  let test1 = List.init 10000 (fun _ -> rnd.Next(101) - 50)    #1 
  let test2 = List.init 100000 (fun _ -> rnd.Next(101) - 50);; #1 
 
> let sumList(lst) = 
     let rec sumListUtil(lst, total) =                         #2 
        match lst with  
        | [] -> total                                          #3 
        | hd::tl ->   
           let ntotal = hd + total                             #4 
           sumListUtil(tl, ntotal)                             #A 
      sumListUtil(lst, 0);;                                    #B 
val sumList : int list -> int 
 
> sumList(test1);;                                             #C 
val it : int = -2120                                           #C 
 
> sumList(test2);;                                             #C 
val it : int = 8736                                            #C 
#1 Generate lists with random numbers 
#2 Private function with the accumulator 'total' 
#3 Return the accumulated value  
#4 Add current value to accumulator  
#A Recursive call 
#B Calls the helper with total=0 
#C Both calls compute the result now! 
The listing starts by generating two lists containing random numbers (#1). We're using 

a function List.init that takes the required length of the list as the first argument and 
then calls the provided function to calculate value of the element at specified index. We're 
not using the index in the computation, so we used "_" to ignore it. The reason why we need 
better testing input is that if we added all numbers between 1 and 100000, we'd get 
incorrect results, because the result wouldn't fit into a 32-bit integer. We're generating 
random numbers between -50 and +50, so in principle the sum should be very close to zero. 

More interesting part of the listing is the sumList function. When we use an 
accumulator argument, we need to write another function with an additional parameter. We 
don't usually want this to be visible to the caller, so we write it as a local function (#2). The 
accumulator argument (in our example named total) stores the current result. When we 
reach the end of the list, we already have the result, so we can just return it (#3). 
Otherwise, we add the value from the head to the result and perform a recursive call with 
the accumulator set to the new value (#4). Figure 10.4 shows how the new computation 
model works. Now if you look at the recursive call, we're returning the result immediately, so 
it can be executed using tail recursion.  
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Figure 10.4 Execution of the tail-recursive sumList' function. The stack frames displayed in gray are 
dropped. You can see the result of summing all preceding elements in the accumulator value ('total'). 

The sumList example isn't very difficult, but it demonstrates the idea of using an 
accumulator. We just add another parameter to the function and use it to calculate a 
temporary result before making the recursive call. When you're trying to make a function tail 
recursive, look at the information you're currently using after the recursive call, and try to 
find a way to pass it into the recursive call instead. 

We'll see some trickier examples when we talk about list processing, but we'll take a 
detour first, via another important optimization technique: memoization. 

10.1.2 Caching results using memoization 
Even though the name "memoization" may sound complicated, the technique is actually very 
simple. It can be simply described as caching the results of a function call. As I mentioned 
earlier, most functions in functional programming do not have side effects. This means that if 
we call a function with the same argument twice, we'll get the same result.  

If we're going to get the same result we got last time, why would we want to go to all 
the trouble of executing the function again? Instead, we can just cache the results. If we 
store the result of the first call in some dictionary, we won't need to recompute the value for 
the second call. We can read the result from the dictionary and return it straight away. 
Listing 10.3 shows an example for function that adds two integers. 

Listing 10.3 Adding numbers with memoization (F# interactive) 
> open System.Collections.Generic;; 
 
> let addSimple(a, b) =                          #1 
     printfn "adding %d + %d" a b                #A 
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     a + b;; 
val addSimple : int * int -> int 
 
> let add =                                      #2 
     let cache = new Dictionary<_, _>()          #B 
     (fun x ->                                   #3 
        match cache.TryGetValue(x) with          #C 
        | true, v -> v                           #C 
        | _ -> let v = addSimple(x)              #C 
               cache.Add(x, v)                   #C 
               v);;                              #C 
val add : (int * int -> int) 
 
> add(2,3);; 
adding 2 + 3                                     #D 
val it : int = 5                                 #D 
 
> add(2,3);; 
val it : int = 5                                 #E 
#1 Non-optimized addition 
#A Prints info for debugging purposes 
#2 Addition optimized using memoization 
#B Initialize the cache  
#3 Created function uses the private cache 
#C Read the value from the cache or calculate it 
#D Calls the 'addSimple' function 
#E Value is obtained from the cache 
The first part of the listing is just a normal addition function (#1) with the slight twist 

that it logs its execution to the console. Without this we wouldn't see any obvious differences 
between the original and memoized version, because the change in efficiency is really small 
for this example. 

The function that implements addition with caching is called add (#2). It uses the.NET 
Dictionary type to store the cached results. The cache is declared as a local value and is 
used from the lambda expression (#3) that is assigned to the add value. We used a similar 
pattern in chapter 8 when we were talking about capturing mutable state using closures. 
Here, the cache value is also mutable (because Dictionary is a mutable hash table) and 
is also captured by a closure. The point is that we need to use the same cache value for all 
calls to the add function, so we have to declare it before the function, but we don't want to 
make it a global value. 

The last part of the function is the lambda itself. It only uses the addSimple function 
when the result isn't cached already. As you can see from the F# interactive session, the 
function that does the actual calculation is executed only for the first time.  
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This technique is more widely applicable than tail recursion. It can be applied to any 
function which doesn't have any side effects§§. This means that we can use it successfully 
from C# 3.0 as well. In the next subsection, we're going to use C# 3.0 to write a bit more 
generic version of the code. 

REUSABLE MEMOIZATION IN C# AND F# 
If you look at the code that builds the add value from listing 10.3, you can see that it is 
doesn't really know about addition. It happens to use the addSimple function, but it could 
as well work with any other function. To make the code more general, we can turn this 
function into a parameter.  

We're going to write a function (or method in C#) that takes a function as an argument 
and returns a memoized version of this function. The argument is the function that does the 
actual work and the returned function is augmented with caching capability. You can see the 
C# version of the code in listing 10.4. 

Listing 10.4 Generic memoization method (C#) 
Func<T, R> Memoize<T, R>(Func<T, R> func) {               #1 
   var cache = new Dictionary<T, R>();                    #A 
   return arg => { 
      R val; 
      if (cache.TryGetValue(arg, out val)) return val;    #B 
      else { 
         val = func(arg);                                 #C 
         cache.Add(arg, val);                             #C 
          return val;                                     #C 
      } }; 
} 
#1 Returns memoized version of the 'func' function 
#A Cache captured by the closure 
#B Return cached value 
#C Calculate the value and add it to the cache 
The code is very similar to the addition-specific function in listing 10.3. Again, we first 

create a cache and then return a lambda function that captures the cache in the closure. This 
means that there will be exactly one cache for each returned function, which is just what we 
want. 

The method signature (#1) indicates that it takes a function Func<T, R> and returns 
a function of the same type. This means that it doesn't change the structure of the function; 

                                                            

 

§§ This may sound slightly confusing, because the function in the previous listing had a side 
effect (printing to the screen). However, this is just a "soft side effect" that we can safely 
ignore. The core requirement is that the result should depend only on the arguments passed 
to the function. 
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it just wraps it into another function that does the caching. The signature is also generic, so 
it can be used with any function which takes a single argument. We can overcome this 
limitation with tuples. The following code shows the C# version of the memoized function for 
adding two numbers: 

var addMem = Memoize((Tuple<int, int> arg) => { 
   Console.Write("adding {0} + {1}; ", arg.First, arg.Second); 
   return arg.First + arg.Second; }); 
 
Console.Write("{0}; ", addMem(Tuple.New(19, 23)));                      #A 
Console.Write("{0}; ", addMem(Tuple.New(19, 23)));                      #A 
Console.Write("{0}; ", addMem(Tuple.New(18, 24)));                      #A 
#A Prints "adding 19 + 23; 42; 42; adding 18 + 24; 42;" 
As we can see, the code that adds 19 and 23 is executed only once. This works because 

when the cache compares two tuple values, it will find a match when their elements are 
equal. This wouldn't work with our first implementation of Tuple because it didn't have any 
implementation of value equality, but the Tuple type in the source code for this chapter 
overrides Equals method to compare the component values. This behavior is called 
structural comparison and we'll talk about it in the next chapter. Another option to make the 
Memoize method work with functions with multiple parameters would be to overload it for 
Func<T1, T2, R>, Func<T1, T2, T3, R> and so on. 

Implementing the same functionality in F# is easy now that we've seen the C# version. 
Listing 10.5 shows the code, which is pretty much a direct translation of the C# method. 

Listing 10.5 Generic memoization function (F# interactive) 
> let memoize(f) =     
     let cache = new Dictionary<_, _>()       #A 
     (fun x -> 
        match cache.TryGetValue(x) with 
        | true, v -> v 
        | _ -> let v = f(x) 
               cache.Add(x, v) 
               v);; 
val memoize : ('a -> 'b) -> ('a -> 'b)         #1 
#A Initialize cache captured by the closure 
#1 Inferred type signature 
The only difference is that in the F# version, the type signature is inferred (#1), so we 

don't have to make the function generic by hand. The F# compiler uses generalization to do 
this for us; the inferred signature corresponds to the explicit one in the C# code. 

This time, we'll use a more interesting example to demonstrate how effective 
memorization can be. We'll go back to the world’s favorite recursion example: the factorial 
function. Listing 10.6 attempts to memorize this, but it doesn’t quite go according to plan…  

Listing 10.6 Difficulties with memoizing recursive function (F# interactive) 
> let rec factorial(x) =                                #1 
     printf "factorial(%d); " x 
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     if (x <= 0) then 1 else x * factorial(x - 1));;    #2 
val factorial : int -> int 
 
> let factorialMem = memoize factorial                  #3 
val factorial : (int -> int) 
 
> factorialMem(2);; 
factorial(2); factorial(1); factorial(0);               #A 
val it : int = 1 
 
> factorialMem(2);; 
val it : int = 1                                        #B 
 
> factorialMem(3);; 
factorial(3); factorial(2); factorial(1); factorial(0)  #4 
val it : int = 2 
#1 Standard recursive factorial 
#2 Recursive call 
#3 Memoize it using 'memoize' function 
#A Calculate 2! for the first time 
#B Use the cached value 
#4 Why is the value of 2! being recalculated?? 
At the first glance, the code seems correct. It first implements the factorial computation 

as a straightforward recursive function (#1) and then creates a version optimized using the 
memoize function (#3). When we test it later by running the same call twice, it still seems 
to work. The result is cached after the first call and it can be reused. 

However, the last call (#4) doesn't work correctly– or more precisely, it doesn't do what 
we'd like it to. The problem is that the memoization covers only the first call, which is 
factorialMem(3). The subsequent calls made by the factorial function during the 
recursive calculation call the original function directly instead of calling the memoized 
version. To correct this, we'll need to change the line that does the recursive call (#4) to use 
the memoized version (factorialMem). This function is declared later in the code, so we 
can use the "let rec... and..." syntax to declare two mutually recursive functions. 

A simpler option is to use lambda functions and only expose the memoized version as a 
reusable function. Listing 10.7 shows how we can do this with just a few lines of code. 

Listing 10.7 Correctly memoized factorial function (F# interactive) 
> let rec factorial = memoize(fun x -> 
     printfn "Calculating factorial(%d)" x 
     if (x <= 0) then 1 else x * factorial(x - 1));;                #1 
warning FS0040: This and other recursive references to the          #2 
object(s) being defined will be checked for initialization-         #2 
soundness at runtime through the use of a delayed reference...      #2 
 
val factorial : (int -> int) 
 
> factorial(2);; 
factorial(2); factorial(1); factorial(0);                           #A 
val it : int = 2 
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> factorial(4);; 
factorial(4); factorial(3);                                         #3 
val it : int = 6 
#1 Recursive reference to the 'factorial' value 
#2 There will be a runtime check 
#A Compute first few values 
#3 Compute only the missing value 
The factorial symbol in this example refers actually to a value. It is not syntactically 

defined as a function with arguments and instead it is a value (which happens to be a 
function) returned by the memoize function. This means that we're not declaring a 
recursive function, but a recursive value. We used let rec to declare recursive values in 
chapter 8 when creating the decision tree, but we only used it for writing nodes in a more 
natural order – there weren't any recursive calls within the code. 

This time, we're creating a truly recursive value, because the factorial value is used 
within its own declaration (#1). The difficulty with recursive values is that if we're not 
careful, we can write code that refers to some value during the initialization of that value, 
which is an invalid operation. An example of incorrect initialization looks like this: 

let initialize(f) = f() 
let rec num = initialize (fun _ -> num + 1) 

Here, the reference to the value num occurs in a lambda function which is invoked 
during the initialization when the initialize function is called. If we run this code, we'll 
get a run-time error at the point where num is declared. On the other hand, when using 
recursive functions, the function will always be defined at the time when we'll perform a 
recursive call. The code may keep looping forever, but that's a different problem. 

However, in our declaration of factorial, the reference to the factorial value 
occurs in a lambda function, which is not called during initialization, so it's a valid 
declaration. The F# compiler can't distinguish these two cases at compile time, so it emits a 
warning (#2) and adds some run-time time checks. Don’t be too scared by this! Just make 
sure that the lambda function containing the reference will not be evaluated during the 
initialization. 

Since the declaration of factorial uses the memoized version when it makes the 
recursive call, it can now read values from the cache for any step of the calculation. For 
example, when we calculate factorial of 4 (#3) after we've already calculated the factorial of 
2, we only need to compute the two remaining values.  

TAIL RECURSION, MEMOIZATION, AND ITERATIVE F# DEVELOPMENT  

So far we've seen two optimization techniques used in functional programming. Using tail 
recursion we can avoid stack overflows and write better recursive functions. Memoization 
can be used for optimizing any functions without side effects.  

Both of these techniques fit perfectly with the iterative development style that I consider 
an important aspect of F# programming. We can start with a straightforward 
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implementation–often a function, possibly recursive, with no side effects. Later on in the 
process, we can identify areas of code that need to be optimized. Just as we saw how it's 
easy to evolve the structure of the code earlier, the changes required for optimization are 
reasonably straightforward to do. The iterative process helps us to pay the small 
additional price in complexity only in places where the benefit is actually significant. 

So far we've seen some general-purpose tricks for writing efficient functions. There's 
one type of data structure which lends itself to very specific optimizations, however: 
collections. In the next section we'll talk about functional lists and also look at how we can 
use .NET arrays in a functional way. 

10.2 Working with large collections 
I mentioned that we'd come back to tail recursion and show some slightly more complicated 
situations involving lists. Hopefully by now any recursion-induced headaches will have worn 
off, and after a fresh cup of coffee you should be ready for the upcoming examples. 

As well as just making sure our programs don't blow up with stack overflow exceptions, 
we tend to want them to run in a reasonable amount of time, too. (What is it with employers 
making such unrealistic demands?) Functional lists are fabulously useful and can be used 
very efficiently, but if you use them in the wrong way you can end up with painfully slow 
code. I'll show you how to avoid these problems. 

10.2.1 Avoiding stack overflows with tail recursion (again!) 
Our naïve list processing functions in chapter 6 weren't tail recursive. If we passed them very 
large lists, they would fail with a stack overflow. We'll rewrite two of them (map and 
filter) to use tail recursion, which will remove the problem. Just for reference, I've 
included the original implementations in listing 10.8. To avoid name clashes, I've renamed 
them to mapN and filterN. 

Listing 10.8 Naïve list processing functions (F#) 
let rec mapN f ls = 
   match ls with 
   | [] -> [] 
   | x::xs ->  
      let xs = (mapN f xs)  #1 
      f(x) :: xs            #2 

let rec filterN f ls = 
   match ls with 
   | [] -> [] 
   | x::xs ->  
      let xs = (filterN f xs)     #1 
      if f(x) then x::xs else xs  #2 

Both of the functions contain a single recursive call (#1), which isn't tail recursive. In 
each case the recursive call is followed by an additional operation (#2). The general scheme 
is that the function first decomposes the list into a head and a tail. Then it recursively 
processes the tail and performs some action with the head. More precisely, mapN applies the 
f function to the head value and filterN decides whether the head value should be 
included in the resulting list or not. The last operation is appending the new head value (or 
no value in case of filtering) to the recursively processed tail, which has to be done after the 
recursive call.  
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To turn these into tail recursive functions, we use the same accumulator argument 
technique we saw earlier. We collect the elements (either filtered or mapped) as we iterate 
over the list and store them in the accumulator. Once we reach the end, we can return 
elements that we've collected. Listing 10.9 shows the tail recursive implementations for both 
mapping and filtering. 

Listing 10.9 Tail recursive list processing functions (F#) 
let map f ls = 
   let rec map' f ls acc = 
      match ls with 
      | [] -> List.rev(acc)  
#1 
      | x::xs ->  
         let acc = f(x)::acc 
#2 
         map' f xs acc       
#3 
   map' f ls [] 

let filter f ls = 
   let rec filter' f ls acc = 
      match ls with 
      | [] -> List.rev(acc)       #1 
      | x::xs ->  
         let acc =  
            if f(x) then x::acc   #2 
            else acc              #2 
         filter' f xs acc         #3 
   filter' f ls [] 

Let's start by looking at the branch that terminates the recursion (#1). I said that we 
just return the collected elements, but we're actually reversing their order first by calling 
List.rev. This is because we're collecting the elements in the "wrong" order. We always 
add to the accumulator list by prepending an element as the new head, so the first element 
we process ends up as the last element in the accumulator. The call to the List.rev 
function reverses the list, so we end up returning the results in the right order. 

The branch that processes a cons cell is now tail recursive. It processes the element 
from the head and updates the accumulator as a first step (#2). It then makes the recursive 
call (#3) and returns the result immediately. The F# compiler can tell that the recursive call 
is the last step, and optimize it using tail recursion. 

We can easily spot the difference between the two versions if we paste them into F# 
interactive and try to process a large list. For these functions, the depth of the recursion is 
the same as the length of the list, so we run into problems if we use the naïve version: 

> let large = [ 1 .. 100000 ] 
val large : int list = [ 1; 2; 3; 4; 5; ...] 
 
> large |> map (fun n -> n*n);;                       #A 
val it : int list = [1; 4; 9; 16; 25; ...]  
 
> large |> mapN (fun n -> n*n);;                      #B 
Process is terminated due to StackOverflowException. 
#A Tail recursive function works fine 
#B Non-tail recursive function causes stack overflow 
As you can see, tail recursion is an important technique for recursive processing 

functions. Of course, the F# libraries contain tail-recursive functions for working with lists, so 
you don't really have to write your own map and filter implementations like we have here. 
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However, in chapters 7 and 8 we saw that designing our own data structures and writing 
functions that work with them is the key of functional programming.  

Many of the data structures that you'll create will be reasonably small, but when working 
with a large amount of data, tail recursion is an essential technique. Using tail recursion we 
can write code that works correctly on large data sets. Of course, just because a function 
won't overflow the stack doesn't mean it will finish in a reasonable amount of time–which is 
why we need to consider how to handle lists efficiently, too. 

10.2.2 Processing lists efficiently 
Tail recursive functions usually improve efficiency slightly to start with, but usually the choice 
of algorithm is much more important than micro-optimization of its implementation. Let's 
demonstrate this with example where we want to add elements to an existing list. 

ADDING ELEMENTS TO A LIST 
So far we've seen how to append elements to the front of an existing (functional) list. 
However, what if we wanted to append elements at the end of the list? This sounds like a 
reasonable requirement, so let's try to implement it. Listing 10.10 shows the difference in 
performance between inserting at the front of a list and a naïve attempt to insert at the end.  

Listing 10.10 Adding elements to a list (F# interactive) 
> let appendFront el list = el::list                        #1 
val appendFront : 'a -> 'a list -> 'a list     
 
> let rec appendEnd el list =                               #2 
     match list with  
     | []    -> [el]                                        #A 
     | x::xs -> x::(appendEnd el xs)                        #B 
val appendEnd : 'a -> 'a list -> 'a list 
 
> #time;;                                                   #3 
> let l = [ 1 .. 30000 ];; 
val l : int list 
 
> for i = 1 to 100 do ignore(appendFront 1 l);;             #4 
Real: 00:00:00.000, CPU: 00:00:00.000 
 
> for i = 1 to 100 do ignore(appendEnd 1 l);;               #5 
Real: 00:00:00.434, CPU: 00:00:00.421 
#1 Appends simply using cons operator 
#2 Appends to the end using a recursive function  
#A Append to an empty list 
#B Recursive call append to the tail 
#3 Turns on time measuring in F# interactive 
#4 Executing 'appendFront' 100x takes almost no time 
#5 100x 'appendEnd' takes much longer 
The implementation of appendFront is trivial (#1), because we can just simply 

construct a new list cell using the cons operator (::). On the other hand, appending an 
element to the end of the list requires writing a recursive function (#2). This follows the 
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normal pattern for recursive list processing, with one case for an empty list and another for a 
cons cell.  

Next, we enter a very useful F# interactive command #time, which turns on timing 
(#3). In this mode, F# will automatically print the time taken to execute the commands that 
we enter. In this mode, we can see that appending element at the end of large list is much 
slower. We run this hundred times in a for-loop and the time needed for append to the front 
is still reported as zero (#4), but appending elements to the end takes a significant amount 
of time (#5). Any "simple" operation which takes half a second just for a hundred iterations 
is a concern. 

Our appending function isn't tail recursive, but that's not really a problem here. Tail 
recursion helps us to avoid stack overflow, but it only affects performance slightly. The 
problem is that functional lists are simply not suitable for the operation that we're trying to 
execute. Figure 10.5 shows why this operation simply can't be implemented efficiently for 
functional lists. 

 

Figure 10.5 When appending element to the front, we just create a new cons cell and reference the 
original list. However, to append element to the end, we need to iterate over and clone the whole list. 

The diagram shows that appending element to the front is easy. Because a list is an 
immutable data structure, we can create just a single cell and reference the original list. 
Immutability guarantees that nobody can mutate the original list later, changing the contents 
of the "new" list behind our back. Compare that with appending an element to the end, 
which requires changing the last element. Previously the last element "knew" it came last, 
whereas we need it to have the new element following it. The list is immutable so we can't 
actually change the information stored in the last element. Instead, we have to clone the last 
element, which also means cloning the previous element too (so it knows that it's followed 
by the cloned last element) and so on. 

Of course, there are various different data structures and each of them has different 
operations that can be executed very efficiently. There's always a tradeoff and that's why it 
is important to choose the right data structure for your problem. 
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Complexity of algorithms 

Computer scientists use very precise mathematical terms to talk about complexity of 
algorithms, but the concepts behind these terms are important even when we use them 
very informally. In general, the complexity of an operation tells us how the number of 
"primitive" steps the algorithm requires depends on the size of the input. It doesn't 
predict the exact number of steps–just its relationship to the size of the input. 

Let's analyze our previous example. Appending an element to the front of the list always 
involves a single step: creating a new list cons cell. In the formal notation this is written 
as O(1), which means that the number of steps is constant, no matter how large the list 
is. Adding an element to the start of a list with a million elements is as cheap as adding 
an element to the start of a list with just one element! 

Appending an element to the end of the list is trickier. If the list has N elements at the 
beginning, we'll need to process and duplicate N cons cells. This would be written as 
O(N), which means that the number of steps is roughly proportional to the size of the list: 
adding an element to the end of a list of size 1000 is roughly twice as expensive as 
adding an element to the end of a list of size 500. 

If we wanted to append for example M new elements to the list, the complexity would be 
multiplied by M. This means that appending to the front would require O(M) steps, 
because 1 * M = M. Using similar reasoning, appending to the end would require O(N*M) 
steps, which could be bigger by an order of magnitude.  

So far we've talked about functional lists, the most important collections in functional 
programming. Let's now take a big leap and look at the collection which exists in almost all 
imperative programming languages: the humble array. F# is a .NET language, so it can use 
normal .NET arrays too. 

10.2.3 Working with arrays  
Arrays correspond very closely to a simple model of computer memory–essentially a 
sequence of numbered boxes, where you can read or change the value in any box cheaply if 
you know the number. Arrays form continuous blocks of memory, so the overheads are small 
and they are very useful for storing larger data sets. However, arrays are allocated in 
advance: once they are created, the size is fixed. This means we can't add a new value to an 
existing array, for example. 

Arrays are mutable data structures, so we can easily update them. This is sometimes 
useful, but for a functional programmer, this means that we're losing many guarantees about 
the program state. First let's look at the basic F# syntax for arrays, as shown in listing 
10.11. 

Listing 10.11 Creating and using arrays (F# interactive) 
> let arr = [| 1 .. 5 |];;                #1 
val arr : int array = [|1; 2; 3; 4; 5|] 
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> arr.[2] <- 30;;                         #2 
val it : unit = () 
 
> arr;; 
val it : int array = [|1; 2; 30; 4; 5|] 
 
> let mutable sum = 0                     #3 
  for i in 0 .. 4 do                      #3 
     sum <- arr.[i] + sum;;               #3 
val mutable sum : int = 42 
#1 Initialize an array with 5 elements 
#2 Change the value at the specified index 
#3 Imperative code to sum the elements 
Arrays in F# support all basic operations that we'd expect from an array. We start by 

initializing arr using syntax very similar to list initialization (#1). Next, we use the 
assignment operator to mutate the array and set the value at specified index (#2). Note that 
when accessing an element in F#, we have to write "." before the square braces that specify 
the index. The next couple of lines show how we can process an array in an imperative style 
(#3). It uses a for loop to iterate over all the elements and a mutable value to store sum of 
them. 

Don't worry if you feel slightly dirty looking at listing 10.11–so do I. It just means you're 
becoming accustomed to the functional style. I wouldn't normally write code like this of 
course–it's just for the sake of demonstrating the syntax. 

Even though arrays are typically used in imperative programming, we can work with 
them in a very functional style. Aside from the basic operations we've just seen, F# also 
provides several higher order functions similar to those for working with lists. Let's see how 
we can use arrays without feeling dirty.  

USING ARRAYS IN A FUNCTIONAL WAY 
We'll start by looking at an F# example that shows couple of useful higher order functions for 
working with arrays from the F# library and then implement the same functionality in C#. 
Listing 10.12 shows a script that first initializes an array with random numbers and then 
calculates their squares. 

Listing 10.12 Functional way of working with arrays (F# interactive) 
> let rnd = new System.Random()    
val rnd : System.Random 
 
> let numbers = Array.init 5 (fun _ -> rnd.Next(10))       #1 
val numbers : int[] 
 
> let squares = numbers |> Array.map (fun n -> (n, n*n))   #2 
val squares : (int * int)[] 
 
> for sq in squares do                                     #A 
     printf "%A " sq                                       #A 
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(1, 1) (0, 0) (7, 49) (2, 4) (2, 4) 
#1 Initialize array using the given function 
#2 Calculate new element from the original 
#A Print tuples from the resulting array 
The first higher order function that we're working with is Array.init (#1). It takes 

the length of the array we want to create and a function as its arguments. The supplied 
function is called to calculate a value at every index of the array and it is given the index as 
an argument. In our example, we don't need the index, so we use the underscore pattern. In 
the body of the function, we just generate a new random number. 

The second function is Array.map (#2), which does exactly the same thing as the 
List.map function has become so familiar. In this example we use it to create an array of 
tuples where each element of the result contains the original integer and its square. 

The interesting thing about this example is that we don't use the assignment operator 
anywhere in the code. The first operation simply constructs a new array. The second one 
doesn't modify it, but instead returns another newly-created array. Even though arrays are 
mutable, we can work with them using high order functions which never actually mutate 
them in our code. This example would have worked in a very similar fashion if we had used 
functional lists.  

CHOOSING BETWEEN ARRAYS AND LISTS 

We've seen that arrays and lists can be used in a similar ways, so you need to know when 
to pick which option. The first point to consider is whether the type is mutable or not. 
Functional programming puts a strong emphasis on immutable data types and we'll see 
practical examples showing why this is valuable in the next chapter and in chapter 14. We 
can work with arrays in a very functional way, but lists give us much stronger guarantees 
about correctness of our programs. 

Another point is that some operations are easier or more efficient with one data type than 
the other. For example, appending an element to the front of a list is much easier than 
copying the contents of one array into a slightly bigger one–but on the other hand, arrays 
are much better for random access. Finally, operations that process arrays are often 
somewhat faster. We can see this with a simple example using the #time directive: 

let l = [  1 .. 100000  ] 
let a = [| 1 .. 100000 |];; 
for i in 1 .. 100 do ignore(l |> List.map  (fun n -> n))  #A 
for i in 1 .. 100 do ignore(a |> Array.map (fun n -> n))  #B 
#A Operation takes 885ms 
#B Operation takes 109ms 

In general, arrays are useful if you need to work efficiently with large data sets. However, 
in most situations you should use aim for clear and simple code first, and functional lists 
usually lead to greater readability. 
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The previous examples have shown us how to use some of the basic operations that are 
available for arrays. However we'll often need to write some similar operations ourselves. 
Listing 10.14 shows a function that works with arrays in a functional style: it takes one array 
as an argument and returns a new one calculated from the inputs. The function is used to 
"smooth" or "blur" an array of values, so that each value in the new array is based on the 
corresponding value in the original and the values either side of it. 

Listing 10.14 Functional implementation of blur for arrays (F#) 
let blurArray (arr:int[]) =                                            #A 
   let res = Array.create arr.Length 0                                 #B 
   res.[0] <- (arr.[0] + arr.[1]) / 2                                  #C 
   res.[arr.Length-1] <- (arr.[arr.Length-2] + arr.[arr.Length-1]) / 2 #C 
   for i in 1 .. arr.Length - 2 do 
      res.[i] <- (arr.[i-1] + arr.[i] + arr.[i+1]) / 3                 #2 
   res 
val blurArray : int[] -> int[] 
#A Type annotation, so we can use "Length" member 
#B Initialize empty result 
#1 Calculate value at borders 
#2 Calculate average over 3 elements 
The function starts by creating an array for storing the result, which has the same size 

as the input. It then calculates the values for the first and the last element (#1) of the new 
array, which are average value over two elements. These are calculated separately from the 
rest of the array because they're edge cases which don't quite fit the rest of the pattern. 
Finally it iterates over the elements in the middle of the array, taking the average of three 
values and writing the results to the new array (#2). 

The function uses mutation internally. It creates an array filled with zeros at the 
beginning and later writes the calculated values to this array. However, this mutation is not 
visible from outside: by the time the caller is able to use the array, we've finished mutating 
it. When we use this function, we can safely use all the normal functional techniques: 

> let ar = Array.init 10 (fun _ -> rnd.Next(20));;              #A 
val ar : int [] = [|14; 14; 4; 16; 1; 15; 5; 14; 7; 13|] 
 
> ar |> blurArray;;                                             #B 
val it : int [] = [|14; 10; 11; 7; 10; 7; 11; 8; 11; 10|] 
 
> ar |> blurArray |> blurArray |> blurArray;;                   #C 
val it : int [] = [|7; 8; 9; 9; 9; 9; 9; 9; 8; 8|] 
#A Initialize random array 
#B Blur the array once 
#C Blur three times using pipelining 
The blurArray function has type int[] -> int[], which makes it very 

compositional. In the second command, we use the pipeline operator to send a randomly 
generated array to this function as an input and the F# interactive console automatically 
prints the result. The final command shows that we can also call the function several times in 
a sequence in the same way we would use map or filter operations on a list. 
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You can probably imagine extending this example to process images, turning our 
blurArray function into a real blur filter working with bitmaps. If you want to try this out, 
you'll need to use the Array2 module which has functions for working with 2D arrays, and 
the .NET Bitmap class with functions such as GetPixel and SetPixel for reading and 
writing graphical data. We'll get back to this problem later in chapter 14 where we'll also 
discuss how to use parallelism to perform the operation more efficiently. 

Having seen how we can use arrays neatly in F#, we'll turn our attention back to C#. Of 
course all C# programmers already know the basics of how to use arrays–what we're 
interested in is how we can write C# code which uses arrays in a functional style. 

USING ARRAYS IN A FUNCTIONAL WAY IN C# 
You can already use many functional constructs with arrays in C# 3.0 thanks to LINQ to 
Objects. However, most LINQ operators don't return arrays: if you call 
Enumerable.Select on an array, it will return the result as IEnumerable<T>. In 
some situations we'd prefer to keep the results in an array, and we may wish to avoid the 
overhead of calling Enumerable.ToArray to copy the result sequence back into an 
array. Fortunately, we can implement our own Select method easily enough. Listing 10.13 
shows a C# implementation of the functions we used in the earlier F# example. 

Listing 10.13 Methods for functional array processing (C#) 
static class ArrayUtils { 
   public static T[] Create<T>(int length, Func<int, T> init) {     #1 
      T[] arr = new T[length]; 
      for (int i = 0; i < length; i++) arr[i] = init(i); 
      return arr; 
   } 
   public static R[] Select<T, R>(this T[] arr, Func<T, R> map) {   #2 
      R[] res = new R[arr.Length]; 
      for (int i = 0; i < arr.Length; i++) res[i] = map(arr[i]); 
      return res; 
   } 
} 
#1 Initializes array using the given function 
#2 Extension method that returns an array 
The Create method is a normal static method (#1). It takes a function fInit as an 

argument and uses it to initialize the elements of the array. The Select method is an 
extension method that applies a mapping function to each element in the original array, and 
returns the result as a new array. It hides the standard Select operation provided by 
LINQ. We can use these methods in a similar way to the earlier corresponding F# functions: 

var rnd = new Random(); 
var numbers = ArrayUtils.Create(5, n => rnd.Next(20));                #A 
var squares = numbers.Select(n => new { Number = n, Square = n*n });  #B 
 
foreach (var sq in squares) 
   Console.Write("({0}, {1}) ", sq.Number, sq.Square); 
#A Fill array with random numbers 
#B Store the results in an anonymous type 
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Just like in the F# version, we don't modify the array once it is created. From a high-
level perspective, it is a purely functional code working with an immutable data structure. Of 
course we are actually performing mutations–but only within the ArrayUtils class, and 
only on collections that haven't been exposed to any other code yet. The mutation isn't 
observable to the outside world. This way of writing code is even more valuable in C#, where 
functional lists are harder to use than they are in F#. 

Our final topic in the chapter deals with continuations. These can be somewhat hard to 
wrap your head around, but once you understand them there are some amazing possibilities. 
The good news is that if you've ever written any asynchronous code in .NET, you've already 
been using continuations in some sense - but F# makes them a lot easier. We'll look at them 
in more detail in chapter 13, but using continuations is an interesting optimization technique 
for recursive functions, which is the aspect we'll concentrate on here. 

10.3 Introducing continuations 
We started this chapter with a discussion about recursive calls. We've seen an important 
technique called tail recursion which allows us to perform a recursive call without allocating 
any space on the stack. Thanks to tail recursion, we can write functional list processing 
functions that can handle very large data sets without breaking into a sweat. 

Tail recursion isn't a silver bullet though; I mentioned earlier that not every function can 
be rewritten to use it. If a function needs to perform two recursive calls then it clearly cannot 
be written in this way. (They can't both be the very last thing to be executed before 
returning, after all.) 

10.3.1 What makes tree processing tricky? 
Let's take a simple example working with trees. Listing 10.14 declares a type representing a 
tree of integers, and shows a recursive function that sums all the values in the tree. 

Listing 10.14 Tree data structure and summing elements (F# interactive) 
> type IntTree =                                   #1 
     | Leaf of int 
     | Node of IntTree * IntTree 
type IntTree = (...) 
 
> let rec sumTree(tree) =                          #2 
     match tree with 
     | Leaf(n)    -> n                             #A 
     | Node(l, r) -> sumTree(l) + sumTree(r)       #B 
val sumTree : IntTree -> int 
#1 Tree is a leaf with value or a node containing sub-trees 
#2 Recursive function calculating sum of elements 
#A Sum of a leaf is its value 
#B Recursively sum values in the sub-trees 
The IntTree type (#1) used for representing the tree is a discriminated union with 

two options. Note that this is actually quite similar to the list type! A tree value can represent 
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either a leaf that contains an integer or a node. A node doesn't contain numeric value, but it 
has two sub-trees of type IntTree. The recursive function for calculating sum (#2) uses 
pattern matching to distinguish between these two cases. For a leaf, it simply returns the 
numeric value; for a node, it needs to recursively sum the elements of both the left and right 
sub trees and then add the two values together.  

If we look at the sumTree function, we can see that it isn't tail recursive. It performs a 
recursive call to sumTree to sum the elements of the left sub-tree and then needs to 
perform some additional operations. More specifically, it still needs to sum the elements of 
the right sub-tree and finally it has to add these two numbers. A function like this cannot be 
written in a tail recursive way, because it has two recursive calls to perform. The last of 
these two calls could be made tail-recursive with some effort (using some sort of 
accumulator argument), but we'd still have to do one ordinary recursive call! This is 
annoying, because for some kinds of large trees, this implementation will fail with a stack 
overflow. 

We need to think of a different approach. First let's think about what trees might 
actually look like. Figure 10.6 shows two different examples. 

 

Figure 10.6 Example of balanced and imbalanced trees. Dark circles correspond to the "Node" case and 
light circles containing values correspond to the "Leaf" case. 

The first tree in figure 10.6 is a fairly typical case where the elements of the tree are 
reasonably divided between the left and the right sub-trees. This isn't too bad, as we never 
end up recursing particularly deeply. (With our current algorithm, the maximum recursion 
depth is the longer path which exists between the root of the tree and a leaf.) The second 
example is much nastier. It has many Node elements on the right side, so when we process 
it recursively we'll have to make around 100 recursive calls. The difference between the 
handling of these two trees is shown in this code snippet: 

> let tree = Node(Node(Node(Leaf(5), Leaf(8)), Leaf(2)),  
                  Node(Leaf(2), Leaf(9)));; 
  sumTree(tree);; 
val it : int = 26 
 
> let imbalancedTree =  
     test2 |> List.fold_left(fun st v ->  
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        Node(Leaf(v), st)) (Leaf(0))                               #A 
  sumTree(imabalncedTree);; 
Process is terminated due to StackOverflowException.               #B 
#A Add node with previous tree on the right 
#B Deep recursion causes stack overflow! 
The first command creates a very simple tree and sums the leaf values. The second 

command uses the fold_left function to create a tree similar to the imbalanced example 
in figure 10.6, but bigger. It starts with a leaf containing zero and in each step appends a 
new node with a leaf on the left and the original tree on the right. It takes the numbers from 
the list that we've created earlier in listing 10.2 and that contains 100000 random numbers 
between -50 and +50. As a result, we'll get a tree with a height of 100000 nodes. When we 
try to sum leaves of this tree we get a stack overflow. Of course, this isn't a particularly 
typical situation, but we can still encounter it in our tree processing code. Luckily, 
continuations give us a way to write functions that work correctly even on trees like this one. 

10.3.2 Writing code using continuations| 
The problem is that we want to make a tail recursive call, but we still have some code that 
we want to execute after the tail recursive call completes. This looks like a very tricky 
problem, but there is an interesting solution. We'll take all the code that we want to execute 
after the recursive call completes and provide it as an argument to the recursive call. This 
means that function that we're writing will contain just a single recursive call. 

Don't worry if this all sounds a bit wacky. Think of it as just another sort of accumulator 
argument - instead of just accumulating values, we're accumulating "more code to run 
later". Now, how can we take the remaining code and use it as an argument to a function? 
This is of course possible thanks to first class functions and this last argument is called a 
continuation because it specifies how the execution should continue. 

This will all become much clearer after looking at some practical examples. Listing 10.15 
shows a simple function implemented first in the normal style and then using continuations. 
We're using C# here so that there's only one new concept to understand, but bear in mind 
that C# doesn't support tail recursion: this technique can't be used as an optimization for 
recursion in C#. (Continuations are still useful in C#, just not for recursion.) 

Listing 10.15 Writing code using continuations (C#) 
int StrLength(string s) {   #1
   return s.Length; 
} 
 
void TestLength() {         #4 
   int x1 = StrLength("One"); 
   int x2 = StrLength("Two"); 
   Console.WriteLine(x1 + x2);
} 

void StrLengthC(string s,  
     Action<int> cont) {             #2 
   cont(s.Length);                   #3 
} 
void TestLengthC() { 
   StrLengthC("One", x1 =>           #5 
      StrLengthC("Two", x2 =>        #6 
         Console.WriteLine(x1 + x2) 
   )); 
} 
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In both versions, we first declare a function that calculates length of the string. In the 
usual programming style (#1) it gives the result as a return value. When using continuations 
(#2), we add a function (continuation) as the last argument. To return the result, the 
StrLengthC function invokes this continuation (#3). 

The next function called TestLength (#4) first calculates length of two strings; adds 
these values and finally prints the result. In the version using continuations, it includes only 
a single top-level call to the StrLengthC function (#5). The first argument to this call is a 
string and the second one is a continuation. The top-level call is the last thing that the 
function does, so in F# it would be executed using a tail call and it wouldn't occupy any stack 
space.  

The continuation receives the length of the first string as an argument. Inside it, we call 
StrLengthC for the second string. Again, we give it a continuation as a last argument and 
once it is called, we can sum the two lengths and print the result. In F#, the call inside the 
continuation (#6) would be again a tail call, because it is the last thing that the code in the 
lambda function does. Let's now look how we can use this style of programming to optimize 
our previous function for summing elements of a tree. 

TREE PROCESSING USING CONTINUATIONS 
To change our previous implementation of the sumTree function into a version that uses 
continuations, we'll first add additional argument (continuation) to the function. We'll also 
need to update the way how the function returns the result. Instead of simply returning the 
value, we'll call the continuation given as the argument. The final version of the code is 
shown in the listing 10.16. 

Listing 10.16 Sum elements of a tree using continuations (F# interactive) 
> let rec sumTreeCont tree cont =  
     match tree with 
     | Leaf(n)    -> cont(n)                       #1 
     | Node(l, r) -> sumTreeCont l (fun n ->       #2 
        sumTreeCont r (fun m ->                    #3 
           cont(n + m)))                           #4 
val sumTreeCont : IntTree -> (int -> 'a) -> 'a     #5 
#1 Return value by calling the continuation 
#2 Recursively sum left sub-tree  
#3 Then recursively sum right sub-tree 
#4 Finally, call the continuation with the result 
#5 Inferred type signature 
Modifying the branch for the leaf case is quite easy, because it previously just returned 

the value from the leaf. The second case is far more interesting. We're using similar pattern 
to the one in the previous C# example. We call the function to sum the elements of the left 
sub-tree (#2) (note that this is a tail recursion!) and give it a lambda function as the second 
argument. Inside the lambda we do a similar thing for the right sub-tree (#3) (note that this 
is again a tail recursive call!). Once we have sums of the both sub-trees, we invoke the 
continuation that we originally got as the argument (#4). 
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Another interesting thing about the function that we've just written is its type signature 
(#5). As usual, we didn't write any types explicitly and F# inferred the types for us. The 
function takes the tree as the first argument and the continuation as the second one. 
However, the continuation now has a type int -> 'a and the overall result of the function 
is 'a. In other words, the return type of the whole function is the same as return type of the 
continuation. 

Earlier in the discussion, I highlighted that all recursive calls in the code are now tail-
recursive, so we can try this function on the imbalanced tree that failed in the previous 
version: 

> sumTreeCont imbalancedTree (fun r ->  
     printfn "Result is: %d" r)                              #A 
Result is: 8736                                              #B 
val it : unit = () 
 
> sumTreeCont imbalancedTree (fun a -> a)                    #C 
val it : int = 8736 
#A Print the result inside the continuation 
#B This version works fine on large trees! 
#C Returning sum from the continuation 
As you can see, the code now works on very large trees without any trouble. In the first 

example, we print the result directly in the continuation and the continuation doesn't return 
any value, so overall result of the expression is unit. In the second case we give it an 
identity function (a function which just returns its argument) as the continuation. The return 
type of the continuation is int and the value returned from the call to sumTreeCont is 
the sum of all the elements in the list. 

10.4 Summary 
In this chapter, we explored various topics related to the efficiency of functional programs 
and we discussed how to deal with large amounts of data in a functional way. Since most of 
the functional programs are implemented using recursion, a large part of the chapter was 
dedicated to this topic. 

We saw that when using recursion we have to write our code carefully to avoid errors 
caused by the stack overflowing if the recursion level becomes too deep. In the beginning of 
the chapter we looked at a technique called tail recursion that allowed us to rewrite some 
familiar list processing functions (such as map and filter) in a way that makes them 
resistant to stack overflow. However, tail recursion alone cannot help us in every situation, 
so we also looked at continuations and used them to write a robust version of a simple tree 
processing function. 

As well as avoiding stack overflow, we also looked at techniques for optimizing the 
performance of processing functions. In particular, we looked at memoization, which allows 
us to cache results of functions without side-effects. Effective optimization relies on 
complexity analysis, so we looked at functional data structures and their performance 
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characteristics. We have to be careful when choosing algorithms and operations, as some 
differences which look small–such as whether we add elements to the head or tail of 
functional lists–can have a very significant impact on performance. We also talked about 
arrays, which are not primarily functional data structures, but can be used functionally if 
we’re careful. 

In the next chapter, we'll continue our exploration of common tricks for implementing 
algorithms in a functional language. Many of the topics from the following chapter are related 
to the use of immutable data types and mathematical clarity of functional programming. 
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11 
Refactoring and testing 

functional programs 

One of the themes of this book is the claim that functional programming makes it easier to 
understand code just by reading it. This is particularly important when you need to modify an 
unfamiliar program or implement some behavior by composing existing functions. Function 
programming makes refactoring easier due to both clarity and modularity: you can make 
improvements to the code and be confident that the change doesn't break other parts of the 
program. 

Inspiration from mathematics 

As with many things in functional programming, the idea of modifying code without 
changing its meaning is closely related to math, because operations that don't change the 
meaning of an expression are basis of many mathematical tasks. For example, we can 
take a complex equation and simplify it to get an equation that is easier to read but 
means the same thing. Let's take the following equation: y = 2x + 3(5 - x). If we multiply 
the expression in parentheses by 3, we can write it as: y = 2x + 15 - 3x, which in turn 
can be simplified to: y = 15 - x.  

Another technique we can learn from math is substitution. For example if we have two 
equations y = x/2 and x = 2z, we can substitute the right-hand side of the second one 
into the first one and we'll get (after simplification) y = z. The important point is that by 
substituting correct equation into another one, the substituted equation cannot suddenly 
become incorrect. This technique appears in functional programming as composition. 
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Functional programming is closely related to mathematics, so it's unsurprising that some 
of the techniques used in algebra can be applied to functional programs too. In the 
programming world, the simplification of equations corresponds to refactoring, which is the 
centerpiece of this chapter. In particular, we'll look at reducing code duplication and discuss 
code dependencies. We'll see that immutability is the key that makes it possible to refactor 
code without changing its meaning. 

Substitution is also a form of refactoring, but we'll see that it has other important 
practical benefits, particularly when unit testing. Substitution allows us to focus on testing 
primitive functions and spend much less time testing functions that are composed from 
simple building blocks, because the composition can't break already tested components.  

Finally, we'll take a look at a topic that is very closely related to refactoring. When a 
program lacks side-effects, we should get the same result regardless of the order in which 
the individual parts are executed. A value can be calculated as soon as it is described, or we 
can delay execution until the value is really needed. This technique is called laziness (or lazy 
evaluation), and we'll see some of the practical benefits when we explore potentially-infinite 
data structures. 

11.1 Refactoring functional programs 
Refactoring is an integral part of many modern development methodologies. In some 
languages, this technique is also supported by IDEs such as the C# editor in Visual Studio. 
Most of the refactoring techniques have been developed for the object-oriented paradigm, 
but we'll be looking at it from a functional point of view. 

WHAT IS REFACTORING? 

Refactoring is the process of modifying source code to improve its design without 
changing its meaning. The goal of refactoring is to make the code more readable, easier 
to modify or extend in the future, or to improve its structure. A very simple example of 
refactoring is renaming a method to make the name more descriptive; another is turning 
a block of code into a method and reusing it to avoid code duplication. 

Refactoring allows us to write code that works first, and then make it "clean". 
Performing these two tasks separately simplifies testing because refactoring shouldn't affect 
the behavior of the application. While some changes such as renaming are fairly simple 
(particularly with help from tools), others can involve more thoughtful consideration. 

If you switch the order of two statements, will the code behave the same way 
afterwards? With imperative code using side-effects, you'd have to look carefully at the two 
statements. Functional programming makes reasoning about the code easier, so refactoring 
becomes easier too. We'll take a look at several examples in this section, but let's start with 
a very common functional refactoring that removes code duplication.  
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11.1.1 Reusing common code blocks 
One of the best programming practices is to avoid duplicating the same code in multiple 
places. If you have two routines that look very similar it is worth considering how they could 
be merged into one. The new routine would take a new argument that specifies what code 
path to follow in the part that was originally different. 

In functional programming, we have one very powerful weapon - the ability to use 
function values as arguments. This makes it much easier to parameterize a function or 
method. We'll demonstrate it using an example that works with location data. We've used 
this data structure already in previous chapters, so the following snippet is just for a 
reminder: 

let loadPlaces() = 
  [ ("Seattle", 594210);   ("Prague", 1188126) 
    ("New York", 7180000); ("Grantchester", 552) 
    ("Cambridge", 117900) ] 

The data structure is simple, but it's close to what we could use in a real-world 
application. Instead of using tuples for storing the name and the population, we'd probably 
use records or object types, and we might load the data from a database. 

Now that we have the data, we may want to run some kind of report on it. Listing 11.1 
shows two functions: one prints a list of cities with more than 200,000 inhabitants, and the 
other prints all the locations in alphabetical order. In a real application this might generate 
an HTML report, but we'll keep things simple and print it to the console as plain text.  

Listing 11.1 Printing information about places (F# interactive) 
> let printBigCities() = 
     let places = loadPlaces() 
     printfn "== Big cities ==" #1 
     let sel =  
        List.filter (fun (_, p) -> 
           p > 100000) places   #2 
     for n, p in sel do 
        printfn " - %s (%d)" n p;; 
val printBigCities : unit -> unit 
 
> printBigCities();; 
== Big cities == 
 - Seattle (594210) 
 - Prague (1188126) 
 - New York (7180000) 
 - Cambridge (117900) 

> let printAllByName() = 
     let places = loadPlaces() 
     printfn "== All by name =="#3 
     let sel = List.sort_by     #4  
                  fst places    #4 
     for n, p in sel do 
        printfn " - %s (%d)" n p;; 
val printAllByName : unit -> unit 
 
> printAllByName();; 
== All by name == 
 - Cambridge (117900) 
 - Grantchester (552) 
 - New York (7180000) 
 - Prague (1188126) 
 - Seattle (594210) 

The two functions have very similar structure, but there are some differences. The most 
important difference is that they select the list of places to print in different ways. The 
printBigCities function (#2) filters places using List.filter, while 
printAllNames (#4) uses List.sort_by to reorder them. They also differ in terms of 
the report title that's printed (#1) (#3). 
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On the other hand, there are many common aspects. Both functions first call 
loadPlaces to obtain the collection of places, then process this collection in some way 
and finally print the result to the screen. 

When refactoring the code, we want to write a single function that can be used for both 
tasks. We also want to make the code more extensible. It should be possible to use the 
printing function with a completely different strategy. For example, if we were creating a 
crossword, we might look for cities with the specified length starting with a particular letter. 
This means that we should be able to provide almost any strategy as an argument. 
Functional programming gives us a great way to do this kind of parameterization using 
functions. 

Listing 11.2 shows a higher order function printPlaces, and we'll soon see that we 
can use it to replace both of the functions from the previous listing.  

Listing 11.2 Reusable function for printing information (F# interactive) 
> let printPlaces title select = 
     let places = loadPlaces() 
     printfn "== %s ==" title                              #1 
     let sel = select(places)                              #2 
     for name, pop in sel do 
        printfn " - %s (%d)" name pop 
  ;; 
val printPlaces : string ->                                #3 
    ((string * int) list -> #seq<string * int>) -> unit    #3 
#1 Title is passed as an argument 
#2 Strategy for processing places is a function 
#3 Type signature inferred by F# 
Our new function has two parameters. These specify what to do in places where the 

original two functions were different from each other. The first is the report title (#1) and the 
second is a function which selects the places to be printed (#2). We can learn more about 
this function by looking at its type in the printed type signature (#3). 

The argument of the function is a list of tuples, each of which contains a string and an 
integer. This is our data structure for representing places. We would expect the return type 
of the function to be the same, because the function returns collection of places in the same 
data format, but the type inferred by F# is #seq<string * int>. The difference is that 
instead of list it inferred the #seq type. 

This choice is interesting for two reasons. First of all, seq<'a> is a common interface 
implemented by all collections and is an alias for the standard .NET IEnumerable<T> 
type. This means that the function can return a list, but could equally return an array, 
because the only thing we need is the ability to iterate over all the elements in the collection. 
We'll go into more detail about sequences in the next chapter, but if you're familiar with 
LINQ to Objects this should be familiar territory: most of the common operators work with 
(and return) IEnumerable<T>. 

The second interesting point is the hash symbol. It means that the returned collection 
doesn't have to be up-cast to the seq<'a> type explicitly. This means we can provide a 
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function which is actually typed to return a list<'a>, for example. In the strictly typed 
sense, this is a different type of function, but the hash symbol adds some very useful 
flexibility. Most of the time you don't need to worry about this very much - it just means that 
the compiler inferred that the code can be more generic. 

Now that we have the function, we need to show that it can really be used in place of 
the two functions that we started with. The following example shows arguments we can 
supply to get the same behavior as the original functions: 

Listing 11.3 Working with 'printPlaces' function (F#) 
printPlaces "Big cities" (fun places ->                             #1 
   List.filter (fun (_, s) -> s > 200000) places) 
 
printPlaces "Big cities" (List.filter (fun (_, s) -> s > 200000))   #2 
printPlaces "Sorted by name" (List.sort_by fst)                     #3 
#1 Printing only big cities 
#2 The same call using partial function application 
#3 Sorting using partial function application 
The only interesting aspect of the first example (#1) is the lambda function that we use 

as the second parameter. It takes the data set as an argument and filters it using 
List.filter to select only cities with more than 200 thousands inhabitants. The next 
example (#2) shows that we can write the call more succinctly using partial function 
application. Finally, in the last example (#3) we use List.sort_by to sort the collection.  

As you can see in the last listing, using the function that we created during refactoring is 
quite easy. It could be used to print different lists just by specifying another function as the 
second argument. 

The refactoring we performed in this section relied on the ability to use functions as 
arguments. C# has the same ability, so the same kind of refactoring can be applied very 
effectively there, using delegates. We could specify the transformation argument either as a 
lambda expression or by creating the delegate from another method with an appropriate 
signature. 

Another functional principle that is very valuable when refactoring code is the use of 
immutable data. The impact here is slightly more subtle than just being able to express 
differences in behavior using functions, but it's no less important. 

11.1.2 Tracking dependencies and side-effects 
One of the many benefits of immutability is the clarity it provides. If a function takes a list as 
an argument and returns a number, you can safely assume that it calculates the result based 
on the list content, but does not modify the list. We don't have to look at any code to reach 
that conclusion; we don't have to examine the implementation or any other functions that it 
calls. Let's start by looking at an example that demonstrates how easy it is to introduce 
errors when using mutable objects. 
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USING MUTABLE DATA STRUCTURES 
In listing 11.4 you can see two functions that work with a collection storing names of places 
from the previous example. This time, we're using C# and storing the names in the standard 
List<T> type, which is mutable. 

Listing 11.4 Working with places stored in List<T> (C#) 
List<string> LoadPlaces() {                                         #1 
   return new List<string> { "Seattle", "Prague",  
      "New York", "Grantchester", "Cambridge" }; 
} 
void PrintLongest(List<string> names) {                             #2 
   var longest = names[0];                                          #A 
   for(int i = 1; i < names.Count; i++) 
      if (names[i].Length > longest.Length) longest = names[i];     #B 
   Console.WriteLine(longest); 
} 
void PrintMultiWord(List<string> names) {                           #3 
   names.RemoveAll(s => !s.Contains(" "));                          #C 
   Console.WriteLine("With space: {0}", names.Count); 
} 
#1 Returns list containing names 
#2 Prints place with the longest name 
#A Start with the first place 
#B A name is longer than the longest so far 
#3 Print the count of multi-word names  
#C Remove all single-word names 
The code first shows a function that loads some sample data (#1). It's like our 

loadPlaces function from earlier, but without the population values. Next, we implement 
two processing functions. The first one (#2) finds the place with the longest name; the 
second (#3) determines how many names contain more than one word by removing any 
name that doesn't contain a space. Even though the method uses lambda function syntax, 
it's definitely not functional: the RemoveAll method modifies the names collection. If we 
wanted to use these functions later in our program, we could write the following code: 

PrintMultiWord(LoadPlaces());   #A 
PrintLongest(LoadPlaces());     #B 
#A Prints '1' 
#B Prints 'Grantchester' 
This gives the correct results. However we're calling the LoadPlaces function twice, 

which seems to be unnecessary. If the function actually loaded data from a database, it 
would be better to retrieve the data only once for performance reasons. A simple refactoring 
is to call the function once and store the places in a local variable: 

var places = LoadPlaces(); 
PrintMultiWord(places);      #A 
PrintLongest(places);        #B 
#A Prints '1' 
#B Prints 'New York' 
However, after this simple change we get incorrect results! If you've been following the 

source code carefully, you've probably already spotted the problem, but it's still subtle 
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enough to potentially cause confusion and head-scratching. The problem is that List<T> is 
a mutable data structure and the function PrintMultiWord accidentally mutates it when 
it calls RemoveAll. When we call PrintLongest later in the code, the collection places 
contains only a single item, which is "New York". Now let's look why we couldn't make similar 
mistake if we used immutable data structures.  

USING IMMUTABLE DATA STRUCTURES 
We implemented immutable lists for C# in chapter 3 and called the type FuncList<T>. 
We didn't implement all the standard .NET patterns, so the source code for this chapter 
(available on the book's web site) extends the type by implementing IEnumerable<T> 
and standard some LINQ methods including Where and Select. The implementation is 
relatively simple, so we won't look at it in detail.  

Using this improved version of the immutable list, we can rewrite the imperative code 
we've just seen. The LoadPlaces and PrintLongest methods don't change very 
much, so we've omitted them here. However, the PrintMultiWord method is more 
interesting: we can't use our previous strategy of using RemoveAll, because the 
FuncList type is immutable. Earlier we used this method to remove all single-word names 
from the collection. This side-effect made the method harder to reason about. Using 
immutable types, we can't introduce any side-effects in the same way, so if we want the 
same kind of results we have to be more explicit about it, as shown in listing 11.5. 

Listing 11.5 Implementation of 'PrintMultiWord' using immutable list (C#) 
FuncList<string> PrintMultiWord(FuncList<string> names) { 
   var namesSpace = names.Where(s => s.Contains(" "));             #1 
   Console.WriteLine("With space: {0}", namesSpace.Count()); 
   return namesSpace;                                              #2 
} 
#1 Create list containing names with spaces 
#2 Return the list 
We can't modifying a collection when we're working with immutable data structures, so 

the method first creates a new collection that contains only multi-word names (#1). We've 
also made the side-effect from the previous implementation explicit, so the method now 
returns the new collection. Of course, it isn't really a side-effect at all now - it's just a return 
value. However, it achieves the same result of making the multi-word names list available to 
the caller if they want it. 

Our first example was searching for the longest name from all the names and our 
second example (which printed "New York") returned the longest name containing a space. 
Listing 11.6 shows how both can be implemented both of these examples using our new 
function. 

Listing 11.6 Printing the longest and the longest multi-word name (C#) 
FuncList<string> pl =  
   LoadImmutablePlaces(); 

FuncList<string> pl1 =  
   LoadImmutablePlaces(); 
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PrintMultiWord(pl); 
PrintLongest(pl);         #1 

 
var pl2 = PrintMultiWord(pl1); #2 
PrintLongest(pl2);             #3 

#1 Prints 'Grantchester' 
#2 Returns filtered list 
#3 Prints 'New York' 
This example demonstrates that using immutable data types makes it more obvious how 

constructs depend on each other. If we know that none of the functions can alter the data 
structure, it's easier to reason about the program and we can say what kinds of refactorings 
are valid. In the example on the left side, we could change the order of PrintMultiWord 
and PrintLongest and they would still print the same results (just in the opposite order). 
On the other hand, we can't change the order of the calls in the right side of listing 11.6, 
because the value pl2 is result of the first call (#2). 

This means that when refactoring functional code, we can track dependencies of the 
computations more easily. We can see that a function depends on other calls if it takes a 
result of these calls as an argument. Because this is explicitly visible in the code, we can't 
make accidental refactoring errors because incorrectly modified code will not compile. This is 
also very useful when testing the code using unit tests. 

11.2 Testing functional code 
Neither functional programming nor any other paradigm can eliminate bugs entirely or 
prevent us from introducing bugs when making changes to existing code. This is one reason 
behind the widespread adoption of unit testing. The good news is that most of the unit 
testing techniques that you already use when testing C# code can be applied to F# programs 
as well. Additionally, functional programming and F# make testing easier in many ways. 

Choosing a unit testing framework for F# 

As we saw in chapter 9, we can write standard classes in F#, so any of the unit testing 
frameworks for .NET work as normal. On the other hand, why should we write unit tests 
in F# as members of a class rather than simply using functions declared with let 
bindings? Classes certainly have some benefits, such as enabling sophisticated setup and 
teardown code. However, most of the unit tests that we'll write benefit from using the 
simplest possible syntax. 

In this chapter we'll use the xUnit.net framework. This works with standard F# functions 
as well as F# classes. Under the hood, F# functions written using let bindings are 
compiled into static methods of a class. When we wrap the code inside a module, that 
module is used to contain the function. Otherwise, F# generates a class based on the 
name of the file. The xUnit.net framework supports unit tests that are implemented as 
static methods without applying a special attribute (such as TestFixture) to the 
class, which makes it friendlier to F# programmers. If you don't have xUnit.net installed, 
you can get the latest version from http://www.codeplex.com/xunit  
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When I've mentioned testing so far, I've usually talked about checking whether the code 
works immediately after writing it in the F# interactive shell. If you're a veteran of unit 
testing you may well have been mentally screaming that a test which can't be reproduced 
later on is hardly worth running. Well, let's see how this kind of test can evolve into a unit 
test. 

11.2.1 From the interactive shell to unit tests 
Testing code interactively is valuable when you're writing the initial implementation, but we'd 
also like to make sure that the code keeps giving the same results later even if change it. 
This can be done very easily by turning the one-off interactive test code into a solid unit test 
that we keep alongside our production code and run repeatedly. You may be surprised at 
how small a change is required to achieve this. 

TESTING PROGRAMS IN F# INTERACTIVE 
Let's demonstrate the whole process from the beginning. We'll use two functions similar to 
PrintLongest and PrintMultiWord from the previous section, but this time we'll 
implement them in F#. As you can see in listing 11.7, we'll use the interactive shell slightly 
differently.  

Listing 11.7 Testing code interactively using xUnit.net (F# interactive) 
> #if INTERACTIVE                                               #1 
  #r @"C:\Programs\Development\xUnit\xunit.dll"                 #1 
  #endif                                                        #1 
  open Xunit;; 
 
> let getLongest(names:list<string>) =                          #2 
     names |> List.max_by (fun name -> name.Length);;           #2 
val getLongest : list<string> -> string 
 
> let test = [ "Aaa"; "Bbbbb"; "Cccc" ];; 
val test : string list = ["Aaa"; "Bbbbb"; "Cccc"] 
 
> Assert.Equal("Bbbbb", getLongest(test));;                     #3 
val it : unit = () 
#1 Reference the xUnit.net library 
#2 Returns the longest name 
#3 Test the function using xUnit.net 
First of all, we need to place the code into a file with an extension of .fs such as 

Program.fs (as opposed to fsx files that represent interactive scripts) because we want 
to compile the program into a .NET assembly. Also, we need to add a reference to the 
xUnit.net core library and use some of its features interactively. This is simply a matter of 
using the normal "Add Reference" dialog box in Visual Studio. However, we also want to run 
the code interactively, so we need to load the library in F# interactive. We'd usually do that 
using #r directive, but this directive is allowed only in F# scripts (FSX files). Fortunately, F# 
supports conditional compilation and defines the INTERACTIVE symbol when running the 
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code from the command shell, which mean the initial part of the listing (#1) will work 
whether we're running it interactively or not. 

Next we implement the function for finding the longest name from a given list (#2). The 
code is quite simple because it uses a higher order function from the F# library. This function 
selects the element for which the given function returns the largest value. Once we have the 
function, we test it in the next two lines. The most interesting line is the last one (#3) where 
we use the Assert.Equals method. This is imported from the Xunit namespace and 
verifies that the actual value (given as the second argument) matches the expected value 
(the first argument). The method throws an exception if that's not the case–the fact that it 
just returned unit as the result means the test passed. 

WRITING UNIT TESTS IN F# 
If we write our immediate testing code in this manner, it's very easy to turn it into a unit test 
and make it part of a larger project. We'll see how to do that using xUnit.net soon, but first 
let's try to write another call that should be definitely covered by the unit tests: calling the 
getLongest function with a null value as the argument:  

> getLongest(null);; 
Program.fs(24,12): error FS0043: The type 'string list'  
does not have 'null' as a proper value 

We haven't tried that before, and as you can see F #interactive reports a compile-time 
error rather than an exception. This means that we can't even write code like that, which 
means that if we're only using the  function from F# we don't need to test that possibility. 
Values of types declared in F# (including discriminated unions, records but also class 
declarations) simply aren't allowed to be null. They always have to be initialized to a valid 
value. As we've seen in chapter 5, the right way to represent missing value in F# is to use 
the option type.  

UNCHECKED 'NULL' IN F# 

Unfortunately, other languages such as C# don't understand the restriction to disallow 
null as a value for an F# type. This means that an F# function such as getLongest 
still can receive null as an argument if it's called from C#. We can handle this case by 
using the generic Unchecked.defaultof<T> value, which gives us an unsafe way 
to create a null value of any reference type in F# or to get the default value of a value 
type. (In other words, it's the equivalent of default(T) in C#.) 

We only intend to use our simple function from F#, so we don't have to handle the case 
when a C# user calls it with a null argument. Listing 11.8 shows several other tests that we 
can add. Note that a large part of the listing is just a slightly modified version of the code 
that we wrote in listing 11.7 when testing the function interactively. The most notable 
differences are that we've wrapped the testing code inside functions and added an attribute 
that marks it as an xUnit.net test. 

Listing 11.8 Function with unit tests to verify its behavior (F#) 

Licensed to Curtis J Pitts <beop.love@gmail.com>

Download at Boykma.Com



298   

©Manning Publications Co. Please post comments or corrections to the Author Online forum: 
http://www.manning‐sandbox.com/forum.jspa?forumID=460 

#if INTERACTIVE 
#r @"C:\Programs\Development\xUnit\xunit.dll" 
#endif 
open Xunit 
 
let getLongest(names:list<string>) = 
   names |> List.max_by (fun name -> name.Length) 
 
module LongestTests =  
   [<Fact>]                                                 #1 
   let longestOfNonEmpty() =  
      let test = [ "Aaa"; "Bbbbb"; "Cccc" ]                 #A 
      Assert.Equal("Bbbbb", getLongest(test))               #A 
 
   [<Fact>] 
   let longestFirstLongest() =  
      let test = [ "Aaa"; "Bbb" ]                           #2 
      Assert.Equal("Aaa", getLongest(test))                 #2 
 
   [<Fact>] 
   let longestOfEmpty() =  
      let test = []                                         #3 
      Assert.Equal("", getLongest(test))                    #3 
#1 Mark tests using 'Fact' attribute 
#A Adjusted interactive test 
#2 Should return empty string for an empty list 
#3 Should return first of the longest elements 
In addition to wrapping every test into a function, we've also created a module to keep 

all the unit tests together in a single class. This isn't technically necessary, but it's a good 
idea to keep the tests separated from the main part of the program. Depending on your 
preferences, you can of course move the tests to the end of the file, to a separate file in a 
single project, or even to a separate project. 

The xUnit.net framework uses an attribute called Fact to mark methods that represent 
unit tests (#1). We can apply this to F# functions declared with let bindings, as they're 
compiled as methods. The first test in the module is just an adjusted version of the code we 
wrote when testing the code interactively, but we've also added two new tests. 

The second test (#2) verifies that the getLongest function returns the first of the 
elements that have the maximal length when there are several of them. The max_by 
function from the F# libraries follows this rule, but it isn't documented so it may depend on 
the implementation; testing it explicitly is a good idea. The last test (#3) checks that the 
function returns an empty string when we pass it an empty list. This is one of the corner 
cases that are worth considering. Returning an empty string may be the desired behavior 
when you're displaying the result in a user interface, for example. As you've probably 
guessed, our original implementation doesn't follow this rule. If you run the xUnit.net GUI on 
the compiled assembly, you'll get a result similar to the one in figure 11.1. 
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Figure 11.1 Instead of returning an empty string, the tested function throws an exception when given an 
empty list as its argument. 

Now that we've clarified the required behavior of the getLongest function, we can fix 
it very easily by adding a pattern to match the empty list:  

let getLongest(names:list<string>) = 
   match names with 
   | [] -> "" 
   | _ -> names |> List.maxBy (fun name -> name.Length) 

All three unit tests pass after this change. So far, the tests have been quite simple and 
we've only had to check whether the returned string matched the expected one. Often unit 
tests are more involved than this. Let's look at how we might test a more complicated 
function and in particular how to compare an actual value with an expected one when a 
function returns a list. 

11.2.2 Writing tests using structural equality 
Testing for equality with complicated data structures can be tricky in C#. If we simply 
construct a new object with the same properties and compare the two using the "==" 
operator, the result is likely be false, because we'd be comparing two distinct instances.  

The "==" operator can be overloaded in C#, and Object.Equals can be overridden, 
but both of these should usually only be done for immutable types. When you compare two 
different instances of mutable types, it is important to distinguish between them, because 
the data can change later on. On the other hand, if we have two immutable types storing the 
same values, we can treat them as equal. The data can’t change in the future, so the two 
objects will always be equal. 

STRUCTURAL EQUALITY AND COMPARISON 
As most of the types that we can declare in F# are immutable, the F# compiler automatically 
implements the IComparable<T> interface and overrides the Equals method if we 
don't provide an explicit implementation. It does this using a comparison for structural 
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equality. This isn't done automatically for F# classes; just for simple functional types like 
records, discriminated unions and also tuples, which don't have to be declared explicitly. 

Values of types that use this comparison are considered equal if they are either equal 
primitive types such as integers or strings or if they are composed from the same values, 
using structural equality recursively. Listing 11.9 demonstrates structural equality with 
records containing tuples and primitive values. 

Listing 11.9 Comparing records with structural equality (F# interactive) 
> type WeatherItem =  
     { Temperature : int * int;  
       Text : string } 
  let winter1 = { Temperature = -10, -2; Text = "Winter" }           #A 
  let winter2 = { Temperature = -10, -2; Text = "Winter" };;         #A 
(...) 
 
> System.Object.ReferenceEquals(winter1, winter2);;                  #1 
val it : bool = false 
 
> winter1 = winter2;;                                                #2 
val it : bool = true 
#A Create records containing the same values 
#1 Values are represented by different instances 
#2 …but are considered as equal 
First we declare an F# record type, which contains two fields. The first field type is a 

tuple of two integers, and the second is a string. We create two values of the record type 
using exactly the same value for each corresponding field. 

We can see that we genuinely have two instances - a test for reference equality (#1) 
returns false. However, if we use the standard F# operator for testing equality (#2), the 
runtime will use structural equality and it will report that the values are equal. First the two 
tuple values are compared for structural equality, and then the two strings are compared. 

As I said earlier, this technique works for records, tuples and discriminated unions. Since 
immutable F# lists are declared as discriminated unions, they receive the same treatment. In 
a moment we'll use this feature when writing a unit test expectation, but first let's look at 
one more feature of the automatically generated comparisons. We've seen how to use 
structural equality to test whether values are equal, but F# also provides structural 
comparisons for ordering: 

> let summer = { Temperature = 10, 20; Text = "Summer" };; 
(...) 
 
> summer = winter1;; 
val it : bool = false 
 
> summer > winter1;; 
val it : bool = true 

This snippet creates a new value of the record type declared in listing 11.9 and 
compares it with the value from the previous listing. The first result isn't surprising: the two 
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values are different. However the second one deserves an explanation. Why should the 
summer value be considered to be larger than the winter1 value? The reason is that the 
F# compiler also generates a default comparison for the WeatherItem type. The 
comparison uses the values of the fields in the order in which they are declared: a tuple 
value (10, 0) is larger than a tuple (9, 100), for example. This default behavior 
can be useful, particularly if you take it into consideration when you design your type, but for 
the rest of this chapter we'll be focusing on structural equality. 

WRITING TESTS FOR LISTS 
The function we're going to test is a generalized version of the one that printed names 
consisting of multiple words. The difference is that instead of printing the names, the 
function will return them as a result. In fact, the result will be a tuple of two lists: one 
containing the multi-word names, and one containing the single-word names. In functional 
terminology this operation is called partitioning and we can easily implement our function 
using the List.partition function from the standard F# library: 

> let partitionMultiWord(names:list<string>) = 
     names |> List.partition (fun name -> name.Contains(" "));; 
val partitionMultiWord : string list -> string list * string list 

The partition function takes a predicate as an argument and divides the input list 
into two lists. The first list contains elements for which the predicate returned true and the 
second contains the remaining elements. Listing 11.10 shows two unit tests for the function 
declared above. 

Listing 11.10 Unit tests for the partitioning operation (F#) 
module PartitionTests =  
   [<Fact>] 
   let partitionKeepLength() =  
      let test = ["A"; "A B"; "A B C"; "B" ] 
      let multi, single = partitionMultiWord(test) 
      Assert.True(multi.Length + single.Length = test.Length)    #1 
 
   [<Fact>] 
   let partitionNonEmpty() =  
      let test = ["Seattle"; "New York"; "Reading"] 
      let expected = ["New York"], ["Seattle"; "Reading"] 
      Assert.Equal(expected, partitionMultiWord(test))           #2 
#1 Verify length of the returned lists 
#2 Test the result using structural equality 
The listing shows two unit tests implemented as functions marked with the Fact 

attribute. The first test (#1) checks that the lengths of the two lists returned as results add 
up to the same number as the length of the original input. This is a very simple way to 
partially verify that no elements are lost by the partitioning. We're using only a single input 
(the value test) in the listing, but we could simply extend the test to use multiple input 
lists. 

The second test is more interesting, because it uses the structural equality feature we 
discussed earlier. It declares a value with the test input and a value that represents the 
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expected output of the tests. The expected value is a tuple of two lists. The first list 
contains a single element, which is the only name composed from multiple words. The 
second list contains single-word names in the same order in which they occur in the input 
list. If you run the test, the assertion (#2) succeeds, because the runtime uses structural 
equality to compare the tuples and also the lists contained in the tuple. This means that it 
compares all the individual strings in the lists. 

If we wrote similar code using for example the standard List<T> type, the test would 
fail, because the test would compare reference equality. As I mentioned earlier, using 
reference equality is important when working with mutable types, because the contained 
values can change, but immutable types like functional lists of immutable values will never 
change so we can treat them as equal. 

As we've seen, structural equality is a simple but useful feature which streamlines unit 
testing, even though it's not a fundamental aspect of functional programming. A more 
important and more inherently functional technique which aids testing is function 
composition. 

11.2.3 Testing composed functionality 
In the section about tracking dependencies in code, we used C# methods similar to the two 
F# functions from the last two examples to demonstrate how functional programming makes 
it easier to recognize what a function does and what data it accesses. This is useful when 
writing the code, but it's also extremely valuable when testing it. 

In section 11.1, we wrote an imperative method for printing names consisting of 
multiple words, but with the side-effect of removing elements from the mutable list passed 
to it as argument. This didn't cause any problems as long as we were not using the same list 
later. Any unit tests for that method which just checked the printed output would have 
succeeded. 

What made the method tricky was that if we used it in conjunction with another method 
that was also correct, we could get unexpected results. This makes it hard to test imperative 
code thoroughly. In principle we should test that every method does exactly what it is 
supposed to do, and nothing more. Unfortunately, the "and nothing more" part it is really 
hard to test, because any piece of code can access and modify any part of the shared state. 

In functional programming we- shouldn't modify any shared state, so we only need to 
verify that the function returns correct results for all the given inputs. This also means that 
when we're using two tested functions together, we only have to test that the combination 
has the appropriate effect: we don't need to verify that the functions don't tread on each 
other's data in subtle ways. Listing 11.11 shows the kind of test which looks completely 
pointless... but imagine what it might show if we were working with List<T> instead of 
immutable F# lists. 

Listing 11.11 Testing calls to two side-effect free functions (F#) 
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[<Fact>] 
let partitionThanLongest() =  
   let test = ["Seattle"; "New York"; "Grantchester"] 
   let expected = ["New York"], ["Seattle"; "Grantchester"] 
   let actualPartition = partitionMultiWord(test)              #1 
   let actualLongest = getLongest(test)                        #1 
   Assert.Equal(expected, actualPartition)                     #2 
   Assert.Equal("Grantchester", actualLongest)                 #2 
#1 Run the functions in sequence 
#2 Verify the results 
As we can see, the unit test runs the two functions in sequence (#1), but only uses the 

results in the section where we verify whether the results match our expectations (#2). This 
means that the two function calls are independent and if they don't contain any side-effects 
we can reorder the calls freely. In a functional world, this unit test isn't needed at all: we've 
already written unit tests for the individual functions and this test doesn't verify any 
additional behavior. 

However, if we'd written similar code using the mutable List<T> type, this test could 
catch the error we found in section 11.1. If the partitionMultiWord function modified 
the list referenced by the value test, removing all single-word names, the result of the 
second call wouldn't be "Grantchester" as expected by the test. This is a very important 
general observation about functional code - if we test all the primitive pieces properly and 
test the code that composes them, we don't need to test whether the primitive pieces will 
still behave correctly in the new configuration. 

 
So far we've talked about refactoring and testing functional programs. We've seen that 

first-class functions allow us to reduce code duplication and immutable data structures help 
us to understand what the code does as well as reducing the need to test how two pieces of 
code might interfere with each other. 

 
The remainder of this chapter discusses when (and if) code is executed, and how we can 

take advantage of this to make our code more efficient. First we need to get a clear idea of 
when there are opportunities available, and how F# and C# decide when to execute code. 

11.3 Evaluation order 
We've looked at how to track dependencies between functions in code that uses immutable 
data structures. Once we know what the dependencies are, we can sometimes reorder 
operations to make the program more efficient. Listing 11.11 shows a simple example of this 
kind of optimization. 

Listing 11.11 Reordering calculations in a program (C#) 
var a = Calculate1(10);         #1 
var b = TestCondition(); 
if (b == true) 
   return Calculate2(a); 
else return 0; 

var b = TestCondition(); 
if (b == true) { 
   var a = Calculate1(10);  #2 
   return Calculate2(a);  
} else return 0; 
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#1 If 'b' evaluates to true, we won't need this! 
#2 Run 'Calculate1' only if we really have to 
In the first version, we call the Calculate1 function at the beginning of the program 

(#1). However, the result of this call is used only if TestCondition returns true. In the 
second version, we moved this computation inside the if condition, so it will be calculated 
only if the result will be really needed. 

This was a very simple modification and you'd probably have written the more efficient 
version without even thinking about it. As a program grows larger, however, optimizations 
like this become more difficult to spot. Listing 11.12 shows a slightly trickier example. 

Listing 11.12 Passing a computed result to a function (C#) 
int TestAndCalculate(int arg) { 
   var b = TestCondition();            #1 
   if (b == true)  
      return Calculate2(arg);          #2 
   else return 0; 
} 
// Used later in the program 
TestAndCalculate(Calculate1(10));      #3 
#1 Evaluate test condition 
#2 The argument 'a' is needed only when 'TestCondition' returns false! 
#3 Calling 'Calculate' may be unnecessary here 
The function in this example takes a value arg as an argument–but this value may not 

be needed by the function at all. If the condition (#1) evaluates to false, then the function 
returns 0 and the value of arg is not relevant. When calling this function (#3), the function 
Calculate1 is executed even if we later find out that we don't need its result. 

In Haskell (another popular functional language) this code wouldn't call Calculate if 
it didn't need the result, because Haskell uses a different evaluation strategy. Let's take a 
quick detour by looking at a few options before we return to optimizing listing 11.12. 

11.3.1 Different evaluation strategies 
Haskell is a purely functional language. One of its interesting aspect is that it doesn't allow 
any side-effects. There are techniques for printing to a screen or working with file systems, 
but they are implemented in a way that they don't actually look like side-effects to the 
programmer. In a language like that, it possible to reorder expressions when evaluating 
them, so Haskell doesn't evaluate a function unless it really needs the result. This doesn't 
affect the program’s result because the function can't have side-effects.  

On the other hand, both C# and F# functions can have side effects. They are 
discouraged in F# and the language supports many ways to avoid them, but they can still be 
present in the program. Both languages specify the order in which the expressions will run, 
as otherwise we couldn’t tell which side-effect would occur first, making reliable 
programming impossible! 
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EAGER EVALUATION IN C# AND F# 
In almost all mainstream languages the rule that specifies evaluation order is quite simple: 
to make a function call, the program first evaluates all the arguments and then executes the 
function. Let me demonstrate this using our previous example: 

TestAndCalculate(Calculate(10)); 

In all mainstream languages, the program will execute Calculate(10) and then 
pass the result as the argument to TestAndCalculate. As we've seen in the previous 
example, this is unfortunate if the function TestAndCalculate doesn't really need the 
value of the argument. In that case we just wasted some CPU cycles for no good reason! 
This is called an eager evaluation strategy.  

The benefit of eager evaluation is that it is very easy to understand how the program 
executes. In C# and F# this is clearly very important, because we need to know the order in 
which side-effects (such as I/O and user interface manipulation) will run. On the other side, 
in Haskell this is controlled by arguments and the return values of functions, so we don't 
need to know that much about the order. 

LAZY EVALUATION STRATEGY IN HASKELL 
In a lazy evaluation strategy, arguments to a function are not evaluated when the function is 
called, but later when the value is actually needed. Let's again take a look at the previous 
example: 

TestAndCalculate(Calculate(10)); 

In this example, Haskell jumps directly into the body of TestAndCalculate. The 
name of the argument is arg, so Haskell remembers that if it needs the value of arg later, 
it should run Calculate(10) to get it. Then it continues to execute by getting the result 
of TestCondition. If this function returns true, it needs the value of arg and executes 
Calculate(10). If TestCondition returns false, the Calculate function is 
never called.  

11.3.2 Evaluation strategies side-by-side 
We can demonstrate different evaluation strategies using the computation by calculation 
technique described in chapter 2. This shows how the program runs step by step, so you can 
clearly see the difference between lazy and eager evaluation. Listing 11.13 shows evaluation 
of an expression that uses two functions: PlusTen(a) returns a + 10 and 
TimesTwo(a) returns a * 2. 

Listing 11.13 Lazy evaluation (left) and eager evaluation (right) 
[CA] Start with a nested call: 
  PlusTen(TimesTwo(4)) 
 
[CA] Start calculating PlusTen: 
  TimesTwo(4) + 10              #1 
 
[CA] Calculate TimesTwo if needed: 
  8 + 10                        #2 
 

[CA] Start with a nested call: 
  PlusTen(TimesTwo(4)) 
 
[CA] Calculate result of TimesTwo:  
  PlusTen(8)                  #3 
 
[CA] Calculate PlusTen next: 
  8 + 10                      #4 
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[CA] Calculate the result: 
  18 

[CA] Calculate the result: 
  18 

#1, #2 The lazy evaluation strategy starts by evaluating PlusTen and doesn't evaluate the argument 
first. In the next step it will need to add 10 to the argument (#1), but the argument hasn't been 
evaluated yet. Since the value of the argument really is needed to make further progress, the call to 
'TimesTwo' is executed (#2) and we get the final result. 
#3, #4 The eager evaluation strategy starts by evaluating the argument, so in the first step it 
evaluates 'TimesTwo(4)' to obtain the value 8 (#3). All arguments to the function 'PlusTen' have now 
been evaluated, so it can continue by evaluating this function (#4) and calculating the result.  

Annotations below the code with bullets on the left 

So far we have only looked at one motivation for using a lazy evaluation strategy, but it 
seems useful already. You may be wondering why I've brought it up at all if it only exists in 
Haskell; fortunately, similar effects can be achieved in F# and C# 3.0. 

11.4 Evaluating values lazily 
The evaluation order in F# is eager: expressions used as arguments to a function are 
evaluated before the function itself starts to execute. In both C# and F#, we can simulate 
lazy evaluation using function values and F# even supports lazy evaluation via a special 
keyword. But first, there is actually one exception from the eager evaluation rule. You 
definitely know about and use it frequently, but it's so common that you may not realize that 
it's actually doing something special. 

11.4.1 When are arguments evaluated lazily? 
When you write a condition that uses logical "or" (||) or logical "and" (&&) operator we 
sometimes don't need the expression on the right-hand side during the evaluation. If the 
left-hand side expression evaluates to false then the "and" operator ignores the right-
hand side all together and just returns false, because it already knows that this is the 
overall result. Similar logic holds for the "or" operator, but if the left-hand side expression 
evaluates to true. The listing 11.14 demonstrates the difference between built-in lazy 
operators and a custom method that we can write. 

Listing 11.14 Comparing built-in or operator with a custom 'Or' method (C#) 
bool Foo(int n) { 
   Console.WriteLine("Foo({0})", n);                                  #1 
   return n <= 10; 
} 
bool Or(bool first, bool second) { 
   if (first) return true;                                            #2 
   else if (second) return true; 
   else return false; 
} 
 
// If written using "||" operator and "Or" method: 
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if (Foo(5) || Foo(7))                                                 #3 
   Console.WriteLine("True");  
 
if (Or(Foo(5), Foo(7)))                                               #4 
   Console.WriteLine("True");  
#1 Prints information about the call as a side-effect 
#2 If 'a' is 'true' then the value of 'b' isn't needed! 
#3 Prints 'Foo(5)' and 'True' only 
#4 Prints 'Foo(5)', 'Foo(7)' and 'True' 
We're demonstrating the problem using a Foo method that writes to the screen (#1) so 

we can track how it's being called. First, let's take a look at the built-in "or" operator (#3). 
You can see that both expressions would evaluate to true, but if you run the code, only 
Foo(5) is printed. If we write the same thing using our Or method (#4) then both of the 
arguments are evaluated first and so the output contains both Foo(5) and Foo(7).  

The Or method is written in a way that makes it obvious that the value of second isn't 
needed if first is true (#2), because it is used only inside else branch. So, how can we 
change the code so that the expression used as an argument will not be evaluated unless the 
result is really needed? 

The first option is to use function values. Instead of having a method with a parameter 
of type bool, we'll make it take Func<bool>. When we need the value later in the code, 
we can just execute the function, which will in turn evaluate the argument. You can see how 
to write the "or" operator (now called LazyOr) using this trick in listing 11.15.  

Listing 11.15 Lazy "or" operator using functions (C#) 
bool LazyOr(Func<bool> first, Func<bool> second) {      #A 
   if (first()) return true;                            #B 
   else if (second()) return true;                      #C 
   else return false; 
} 
 
if (LazyOr(() => Foo(5), () => Foo(7)))                 #D 
    Console.WriteLine("True");  
#A Takes functions instead of values 
#B Force evaluation of the first argument 
#C Force evaluation of the second argument 
#D Prints 'Foo(5)' and 'True' only 
The arguments to the LazyOr method are now wrapped inside lambda functions. When 

the method is called, its arguments are eagerly evaluated, but the value of the argument is 
just a function. The expression inside the lambda function isn't evaluated until the function is 
called.  

Let's now take a look at the LazyOr method. Its structure stays the same, but in the 
places where we originally accessed the value of an argument, we now call the function 
provided by that argument. This will, in turn, evaluate the expression used as an argument 
and in our example call the Foo method. If the function first returns true, then the 
LazyOr method immediately returns true and the second function never gets called. This 
means that the code behaves just like the built-in logical "or" operator. 
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However, suppose we needed to access the argument value more than once. Should we 
invoke the function multiple times? That doesn't sound like a very efficient solution, so we'd 
probably want to store the result locally. In F#, this is made simpler using a feature called 
lazy values. First we'll look at some F# code and then we'll implement the same behavior in 
C#. After that, we'll look at a sample application which may give you some ideas for places 
to use this technique in your own code. 

11.4.2 Lazy values in F# 
A lazy value in F# is a way to represent delayed computation. This means a computation 
that is evaluated only when the value is actually needed. In the previous section, we 
implemented similar thing using functions in C#, but lazy values automatically calculate the 
value only once and then remember the result. 

The best way to explore this feature is to play with it inside F# interactive. You can see 
a script that demonstrates how to use it in listing 11.16. 

Listing 11.16 (F# interactive) 
> let foo(n) =                       #1 
     printfn "foo(%d)" n 
     n <= 10;; 
val foo : int -> bool 
 
> let n = lazy foo(10);;             #2 
val n : Lazy<bool>                   #2 
 
> n.Force();;  
foo(10)                              #3 
val it : bool = false                #3 
 
> n.Force();;  
val it : bool = false                #4 
#1 Equivalent of the 'Foo' method 
#2 Create delayed computation using 'lazy' keyword 
#3 'foo' gets called and the result is returned 
#4 Result is returned immediately! 
We start by writing a function (#1) similar to our C# Foo method. This lets us track 

when the computation is actually evaluated by writing to the console. The second command 
uses the F# lazy keyword (#2). If you mark an expression with lazy, the expression will 
not be evaluated immediately and will be wrapped in a lazy value. As you can see from the 
output, the foo function hasn't been yet called and the created value has type 
Lazy<bool>. This represents a lazy value that can evaluate to a Boolean value. 

On the next line, you can see that lazy values have a member called Force (#3). This 
member evaluates the delayed computation. In our case, this means calling the foo 
function. The last command shows that calling Force again (#4) doesn't re-evaluate the 
computation. If you look at the output, you can see that the foo function wasn't called.  
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Working with lazy values using the lazy keyword and the Force member isn't as 
explicit as using functions, so the following sidebar presents a slightly different look that 
should give you more insight. 

Operations for working with lazy values 

When we looked at values and types in chapter 5 and 6, we saw that the easiest way to 
understand a type is often to look at what we can do with it: which functions operate on 
it. Even though these are not available for lazy values in the core F# library, we can 
easily write them and then look at the type signature. Let's start with a function that 
creates lazy value: 

> let create f = lazy f();; 
val create : (unit -> 'a) -> Lazy<'a> 

Our create function takes a function as an argument. This is the only way to delay a 
computation without using the lazy keyword. The function used as an argument doesn't 
have any arguments and when it's called it just returns a value of a type 'a. The code 
marked using lazy contains a call to this function. However, this is executed lazily when 
the value is needed, so the f function will not be immediately called here. It will just be 
wrapped in a lazy value, which has a type Lazy<'a>. 

Now, let's take a look at the second important operation for working with lazy values: 

> let force(v:Lazy<_>) = v.Force();; 
val force : Lazy<'a> -> 'a 

This function simply invokes the Force member of the lazy value. The function 
signature shows us that it takes a lazy value and returns the actual value. Lazy values 
contain a mutable state, which is updated when the value is evaluated for the first time. 
This allows the lazy value to cache the result. 

Our motivation when we started talking about lazy values was that we couldn't write our 
own implementation of the logical "or" operator that would only evaluate the argument on 
the right-hand side if and when it needed to. Let’s try again now, armed with our new 
knowledge of lazy values. 

IMPLEMENTING OR AND LAZY OR 
Since we're implementing an operator, we're going to define it as a true operator rather than 
just as a normal function. As we've seen in chapter 6, we can introduce our own operators in 
F#, so listing 11.17 shows two different variations of the "or" operator. 

Listing 11.17 Comparing eager and lazy "or" operator (F# interactive) 
> let (||!) a b = 
    if a then true         #1 
    elif b then true 
    else false 
  ;; 

> let (||?) (a:Lazy<_>) (b:Lazy<_>) = 
    if a.Force() then true         #2 
    elif b.Force() then true 
    else false 
  ;; 
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val ( ||! ) :  
  bool -> bool -> bool 
 
> if (foo(5) ||! foo(7))   #3 
    then printfn "True";; 
foo(5) 
foo(7) 
True 

val ( ||? ) :  
  Lazy<bool> -> Lazy<bool> -> bool 
 
> if lazy foo(5) ||? lazy foo(7)   #4 
    then printfn "True";; 
foo(5) 
True 

#1, #2 Arguments of the eager version of the operator (#1) are Boolean values, so we can use them 
directly in the if-condition. The lazy version (#2) takes lazy values wrapping a computation that 
returns a Boolean value. To read the value, we use the 'Force' member. 
#3, #4 When using the eager operator (#3), we specify the arguments as normal. As the output 
shows, both of the arguments are evaluated. When using the lazy version (#4) we add additional 
'lazy' keywords to delay both arguments. The result is that only one expression is evaluated. 

Annotations below the code with bullets on the left 

In many ways this example was only a curiosity, although it shows an important fact 
about F# - it is surprisingly flexible and extensible. By combining the lazy keyword with a 
custom operator we could write a construct that can't be written in most of the common 
languages. Next we'll implement lazy values as a type we can use from C#. It's not quite as 
syntactically compact, but even in this form it can be very useful. 

11.4.3 Implementing lazy values for C# 
In section 11.4.1 we represented delayed computation in C# using functions. The 
Lazy<'a> type in F# adds the ability to cache the value when its value is calculated, and 
we can achieve the same effect in C# by wrapping the function inside a class. Listing 11.18 
shows a simple implementation of Lazy<T>. 

Listing 11.18 Class for representing lazy values (C#)  
public class Lazy<T> { 
   Func<T> func; 
   Option<T> value = Option.None<T>();                 #A 
 
   public Lazy(Func<T> func) {                         #1 
      this.func = func; 
   } 
   public T Force() {                                  #2 
      T result; 
      if (!value.MatchSome(out result)) { 
         result = func();                              #B 
         value = Option.Some(result);                  #B 
      } 
      return result; 
   } 
} 
public class Lazy {                                    #C 
    public static Lazy<T> Create<T>(Func<T> func) { 
       return new Lazy<T>(func); 
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    } 
} 
#A Cache that can contain the evaluated value 
#1 Creates lazy value from a function 
#2 Evaluate the lazy value 
#B Compute value and modify the cache 
#C Helper class that enables type inference when creating values 
The first important part of the class is a constructor (#1) that takes a function and 

wraps it. The function doesn't take any arguments, but evaluates the value when it's called, 
so we're using the Func<T> delegate. There's also a static method in a non-generic type to 
make it easier to use C#'s type inference when we create lazy values.  

The lazy value uses the functional Option<T> type from chapter 5. This is an elegant 
way to express the fact that initially we don't have the computed value, but later we do. 
Note that we're using generics, so we can't easily represent this using the null value, and 
even if we added a restriction to force T to be a reference type, we need to allow for the 
possibility that the function could return null as the computed value. 

Most of the code which uses the cached value is in the Force method. From the user's 
perspective this is the second important part of the class. First it tests whether we've already 
evaluated the function. If we have, we can just use the value we computed earlier. If not, it 
calls the function and stores the result using Option.Some.  

Let's take a look at a simple code snippet shows how we can work with this type: 
var lazy = Lazy.Create(() => Foo(10)); 
Console.WriteLine(lazy.Force());            #A 
Console.WriteLine(lazy.Force());            #B 
#A Prints "Foo(10)" and "True" 
#B Prints only "True" 
If you try this code, you should see exactly the same behavior as in the F# version. 

When creating the lazy value, we give it a function: the Foo method will not be called at this 
point. The first call to Force evaluates the function and calls Foo; any subsequent call to 
Force uses the cached value computed earlier, so the last line just prints the result. 

Lazy values are most useful when we have a set of computations that can take a long 
time and we need to calculate the value (or values) on demand. We'll conclude this chapter 
by looking at an application which uses this programming pattern. 

11.5 Caching results using lazy values 
We're going to write an application that finds all the photos in a specified folder and displays 
a list of them. When the user selects a photo, the application resizes it and shows it in a 
window. (For simplicity, we're not going to allow the user to resize the window.) When we 
draw the photo, we'll need to resize it to fit the screen and then show the resized image.  

Obviously, we don't want to resize all photos when the application starts: it could take 
an enormous amount of time for a large set of photos. On the other hand, we don't want to 
resize the photo every time we draw it because we'd have to resize the same photo again 
and again. From the description it's fairly obvious that lazy values can help us . We'll start by 
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writing the F# version of the application and then look at how we can use the same idea in 
C#. 

11.5.1 Browsing photos in F# 
The most interesting part of the application is the code that is executed when the application 
starts. It finds all the files in the specified directory and creates an array with information 
about each file. This information contains the name of the file and the lazy value that will 
evaluate to the resized preview. Listing 11.19 shows how we can create this data structure. 

Listing 11.19 Creating collection of photo information (F#) 
#light 
open System.IO 
open System.Drawing 
 
type ImageInfo = { Name : string; Preview : Lazy<Bitmap> }              #1 
 
let dir = @"C:\My Photos"                                               #A 
let files =                                                             #2 
  Directory.GetFiles(dir, "*.jpg") |> Array.map (fun file -> 
    let lazyPrev =                                                      #3 
        lazy(let bmp = Bitmap.FromFile(file) 
             let resized = new Bitmap(400, 300) 
             use gr = Graphics.FromImage(resized)                       #B 
             let dst = Rectangle(0, 0, 400, 300)                        #C 
             let src = Rectangle(0, 0, bmp.Width, bmp.Height)           #C 
             gr.InterpolationMode <- Drawing2D.InterpolationMode.High   #C 
             gr.DrawImage(bmp, dst, src, GraphicsUnit.Pixel)            #C 
             resized) 
    { Name = Path.GetFileName(file)                                     #4 
      Preview = lazyPrev })                                             #4 
#1 Stores photo name and lazily created preview 
#A Specify directory with your photos 
#2 Array of ImageInfo value for each photo 
#3 Preview has type Lazy<Bitmap> 
#B 'use' will dispose the object automatically 
#C Draw resized bitmap to the target 
#4 Return record with name and preview 
We start by declaring a record type (#1) that represents information about the photo. 

As you can see, the type of the preview is Lazy<Bitmap>, which is a delayed computation 
that will give us a Bitmap when we'll need it. Next, we create the data structure that 
contains information about photos (#2). We obtain an array of files using a normal .NET 
method call and use the Array.map function to create an ImageInfo value for every 
photo. 

Inside the lambda function, we first create the lazy value to represent the preview (#3) 
and then return a record value containing the name and the preview (#4). To draw the 
preview lazily we can simply wrap the whole code using the lazy keyword. One interesting 
property of the program is that we could delete all uses of the lazy keyword, change all 
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types from Lazy<A> to A and delete all uses of the Force member, and the code would 
still work correctly, except everything will be evaluated eagerly. 

Now that we have all the data we need about the photos, we can add a simple GUI using 
Windows Forms. In the listing 11.20, we create a couple of controls to show the data and 
code that shows the selected photo. 

Listing 11.20 Adding user interface for the photo browser (F#) 
open System 
open System.Windows.Forms 
 
let main = new Form(Text="Photos", ClientSize=Size(600,300)) 
let pict = new PictureBox(Dock=DockStyle.Fill) 
let list = new ListBox(Dock=DockStyle.Left, Width=200,  
                       DataSource=files, DisplayMember = "Name")    #1 
list.SelectedIndexChanged.Add(fun _ ->                              #A 
   let info = files.[list.SelectedIndex] 
   pict.Image <- info.Preview.Force())                              #2 
main.Controls.Add(pict) 
main.Controls.Add(list) 
 
[<STAThread>] 
do Application.Run(main)                                            #3 
#1 Configure to display 'Name' property from 'files' array 
#A Called when the selection changes 
#2 Evaluate the lazy value  
#3 Runs the application 
To show the list of photos in the ListBox control, we use data binding (#1), which is a 

feature used in many .NET controls. We simply specify that the DataSource for the control 
is our array of files. To specify what should be displayed, we set the DataMember property 
to the name of the record member that we want to display ("Name"). 

Next, we register a lambda function as a handler for the SelectedIndexChanged 
event of the ListBox. When this is triggered, we choose the selected ImageInfo value 
and use the Force member to get the resized bitmap. If this is the first time that particular 
bitmap has been shown it will be resized at that point; if we've seen it before we can 
immediately use the cached result. The listing above shows the code as a stand-alone 
application, which means that we run it using the Application.Run method (#3). In F# 
interactive, you would use main.Show to display the form instead. You can see how the 
application looks in the figure 11.2. 

Licensed to Curtis J Pitts <beop.love@gmail.com>

Download at Boykma.Com



314   

©Manning Publications Co. Please post comments or corrections to the Author Online forum: 
http://www.manning‐sandbox.com/forum.jspa?forumID=460 

 

Figure 11.2 Photos can be selected from the list on the left side. The resized version is cached 
automatically thanks to the use of lazy values. 

If you run the application using a folder containing large photos, it's obvious the 
difference made by lazy values. Selecting a "new" photo can take some time, but if you 
revisit a photo you've already seen, it will be rendered immediately. 

In the next section, we'll show how to implement the most important parts of the 
application in C# using our Lazy<T> class. One of the interesting things that we'll see is 
that you can use C# 3.0 anonymous types for representing the information about photo. 

11.5.2 Browsing photos in C# 
First we need to create the user interface in the Windows Forms designer. We'll add the 
same controls as in the previous F# version: a ListBox called list and a PictureBox 
called pict.  

The remaining source code for the application is shown in listing 11.21. The structure of 
the code is exactly the same as in the F# version. We add all the code to an event handler 
for the form's Load event. We use an anonymous type for the image information, which 
works because all our code is in a single method. 

Listing 11.21 Implementing photo browser using Lazy<T> (C#) 
private void MainForm_Load(object sender1, EventArgs e1) { 
   var dir = @"C:\My Photos";                                        #A 
 
   // Load photos into a collection of lazy values 
   var locations = Directory.GetFiles(dir, "*.jpg"); 
   var files = locations.Select(file => {                            #1 
      var resizedLazy = Lazy.Create(() => {                          #2 
         var bmp = Bitmap.FromFile(file); 
         // Omitted: drawing the bitmap                              #B 
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         return resized;  
      }); 
      return new {                                                   #3 
         Name = Path.GetFileName(file),                              #C 
         Preview = resizedLazy };                                    #C 
   }); 
   
   // Display the list of photos and register event handler 
   var filesArray = files.ToArray(); 
   list.SelectedIndexChanged += (sender2, e2) => { 
      pict.Image = filesArray[list.SelectedIndex].Preview.Force();   #D 
   }; 
   list.DataSource = filesArray;                                     #E 
   list.DisplayMember = "Name";                                      #E 
} 
#A Specify directory with your photos here! 
#1 Use 'Select' to return information for each photo 
#2 Create lazy value from lambda function 
#B Drawing code is the same as in F# 
#3 Anonymous type 
#C Return name and lazy value with the resized image 
#D Force evaluation and show the bitmap 
#E Setup the data binding 
This example uses a large number of functional ideas. The first is that we use the 

Select method to transform an array of file names into an array of anonymous types 
storing information about the photos (#1). Inside the Select method, we construct the 
lazy value (#2) from a lambda function. The drawing code is exactly the same as in the F# 
version, so I haven't repeated it in the listing. 

After creating the lazy value, we return the photo information for the specified file. We 
use an anonymous type with two properties - Name is a string and Preview is a 
Lazy<Bitmap>. 

Thanks to type inference and the var keyword, we can work with these values 
anywhere inside the MainForm_Load method. When we use the values later in the event 
handler that is triggered when selection changes, we can refer to the Preview property 
and call the Force method of our lazy value to get the bitmap. 

The use of anonymous types in this example follows the programming style where we 
start with the simplest possible solution and later turn it into a more sophisticated version if 
we need to. Writing the code with anonymous types is very simple and it works well in this 
example. If we wanted to use the data structure elsewhere in the application, we'd have to 
declare a class similar to the ImageInfo record we used in F#. However, this would only 
require minimal changes to the existing code. 

WHY NOT USE MULTIPLE THREADS? 

You may be wondering if we could improve this application using multiple threads. There 
are actually two areas where using multiple threads could help here. First of all, we could 
start the computation when user selects a file without blocking the user interface. 
Currently, the application is frozen until the image is resized. To this end, we could use 
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asynchronous programming techniques such as the F# asynchronous workflows discussed 
in chapter 13. 

Another possibility is that the application could pre-compute the resized bitmaps in the 
background. Instead of doing nothing, it could resize some images in advance so that the 
user wouldn't have to wait when clicking on the photo. In chapter 14, we'll see that this is 
quite easy - we'll look at the Future<T> type, which is like Lazy<T>, except that it 
isn't as lazy and computes the value on a background thread. 

So far, we've been using lazy values in a very straightforward way. In the next section, 
we're going to briefly introduce a slightly different use for them - implementing infinite data 
structures. However, we will not go into great detail, because F# provides a more convenient 
way of solving the same problem, which we'll talk about it in the next chapter. The following 
section will serve as an introduction to the functional way of looking at the problem. 

11.6 Introducing infinite data structures 
The title of this section may sound a little odd (or insane), so let me give a word of 
explanation. One of the data structures that we've used quite a lot is the functional list. 
However, we might also want to represent logically infinite lists, such as a list of all prime 
numbers. Of course, in reality we wouldn't use all the numbers, but we can work with a data 
structure like this without worrying about the length. If the list is infinite, we know that we'll 
be able to access as many numbers as we actually need. This is a very mathematical 
problem, so it probably won't surprise you to hear that infinite lists are very common in 
Haskell.  

Aside from mathematical challenges, the same concept can be useful in more 
mainstream programming too. When we drew a pie chart in chapter 4 we used random 
colors, but we could instead use an infinite list of colors generated in a way that makes the 
chart look clear. We'll see all these examples in the next chapter, but now we'll see how the 
idea can be represented using lazy values. 

11.6.1 Creating lazy lists 
Storing an infinite list of numbers in memory seems like a tricky problem. Obviously we can't 
store the whole data structure, so we need to store just part of it and represent the rest as a 
delayed computation. As we've seen, lazy values are a great way for representing the 
delayed computation part. 

We can represent a simple infinite list in a similar way to an ordinary list. It is a cell that 
contains a value and the rest of the list. The only difference is that the rest of the list will be 
a delayed computation that gives us another cell when we actually execute it. We can 
represent this kind of list in F# using a discriminated union, as shown in listing 11.22. 

Listing 11.22 Infinite list of integers (F#) 
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type InfiniteInts = 
   | LazyCell of int *                  #1 
                 Lazy<InfiniteInts>     #2 
#1 Value in the current cell 
#2 Next cell is a delayed computation 
This discriminated union has only a single discriminator, which means it's similar to a 

record. We could have written the code using a record instead, but discriminated unions are 
more convenient for this example. The only discriminator is called LazyCell and it stores 
the value stored in the current cell (#1) and a reference to the "tail". The tail is a lazy value, 
so it will be evaluated on demand. This way, we'll be able to evaluate the list cell by cell and 
when a cell is evaluated, the result will be cached.  

Lazy lists in F# and Haskell 

As mentioned earlier, Haskell uses lazy evaluation everywhere. This means that a 
standard list type in Haskell is automatically lazy. The tail is not evaluated until the value 
is really accessed somewhere from the code. 

In F#, lazy lists are not used very frequently. We'll see a more elegant way of writing 
infinite collections in F# and also in C# 3.0 in the next chapter. However, F# provides an 
implementation of lazy lists similar to the type we’ve implemented in this section. You can 
find it in the FSharp.PowerPack.dll library as LazyList<'a>. 

Now let’s that we’ve got our type, let’s use it to create a simple infinite list that stores 
integers 0, 1, 2, 3, … as well as how to access values from the list. 

Listing 11.23 Creating a list containing 0, 1, 2, 3, 4, … (F# interactive) 
> let rec numbers(num) =                                          #1 
     LazyCell(num,                                                #A 
              lazy numbers(num + 1));;                            #B 
val numbers : int -> InfiniteInts 
 
> numbers(0);;                                                    #2 
val nums : InfiniteInts = LazyCell(0, Lazy`1[...] { ... } ) 
 
> let next(LazyCell(hd, tl)) =                                    #3 
     tl.Force();;                                                 #C 
val next : InfiniteInts -> InfiniteInts 
 
> numbers(0) |> next |> next |> next |> next |> next;;            #D 
val nums : InfiniteInts = LazyCell(5, Lazy`1[...] { ... } ) 
#1 Create an infinite list starting from 'num' 
#A Store first value in the cell 
#B The next cell is a delayed computation 
#2 Get all numbers from zero 
#3 Returns the next cell of the list 
#C Evaluate the lazy value representing the next cell 
#D Access sixth value from the list 
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We start by writing a recursive function numbers (#1) that returns an infinite list of 
integers starting with the number given as an argument and continuing to infinity. It returns 
a cell that contains the first value and a tail. The tail is a lazy value that (when evaluated) 
recursively calls numbers to get the next cell. 

If we call the function with 0 as an argument, we'll get an infinite list starting from 0. 
The output from the F# interactive isn't particularly readable, but you can spot that the first 
value is 0 and that the tail is a value of type Lazy<InfiniteInts>. The subsequent 
command declares a function next, which gives us the next cell of the list (#3). We use 
pattern matching in the declaration to decompose the only argument. This looks a bit 
unusual, because you don't typically use discriminated unions with only a single 
discriminator, but it is the same principle as decomposing a tuple into its components. In the 
body of the function, we call the Force member, which evaluates the next cell. Finally, the 
last line uses the next function several times to read the sixth value from the list. 

Of course, there are many more things that we could do with lazy lists, but I won't go 
into them here as we'll see a more idiomatic F# technique in the next chapter. 

Writing functions for working with infinite lists 

When working with the standard list type, we can use functions like List.map and 
List.filter. We can implement the same functions for infinite lists as well, but of 
course, not all of them. For example, List.fold and List.sort need to read all 
the elements, which isn't possible for our lazy list. As an example of what is possible, 
here's an implementation of the map function: 

> let rec map f (LazyCell(hd, tl)) = 
     LazyCell(f hd, lazy map f (tl.Force()));; 

The structure is very similar to the normal map function. It applies the given function to 
the first value in the cell and then recursively processes the rest of the list. The 
processing of the tail is delayed using the lazy keyword. Other common list processing 
functions would look similar. 

In this introduction to infinite data structures we've focused more on the functional style 
without even showing a C# example. Of course it would be possible to write the same type in 
C# now that we know how to write a lazy value in C#, but in the next chapter we'll see a 
more natural way for representing infinite structures or streams of values in C#. 

11.7 Summary 
We started this chapter with a discussion about refactoring functional programs. However, as 
we thought about what refactoring really means we saw how closely functional programs are 
related to mathematics, and the important benefits of this relationship. 
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In particular, we've seen that functions give us an easy way for representing small units 
of code. We used them to avoid code duplication, because we were able to represent only 
the smallest part of the code that varies between two uses using a function. Next, we looked 
at immutability and we've seen that immutability gives us a way to see how parts of our 
program depend on each other. 

Then we focused at unit testing of functional programs using xUnit.net, which supports 
writing tests as functions in F# in a simple way. We saw how easy it was to combine unit 
testing and interactive testing using F# interactive. More importantly, I demonstrated how 
immutability makes it easier to test code, because we only need to test that a function gives 
the expected result: we don't need to worry about side-effects. 

Next we turned our attention to laziness. We started by looking at built-in logical 
operators that behave lazily and explored ways to implement the same behavior using the 
features we already knew about, before examining F#'s built-in support for laziness. 

In the last section, we briefly looked at using lazy values to create infinite data 
structures. However, this was really only a teaser for the next chapter. We'll talk about C# 
iterators and F# sequence expressions, both of which allow us to express a sequence of 
values in a much more natural way. This is just one example of a bigger idea, so we'll also 
look at how we can change or extend the meaning of code in general. 
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 12 
Sequence expressions and  

alternative computation models 

Before we can start talking about sequence expressions, we have to explain what a sequence 
is. This is another F# term that comes from mathematics, where a sequence is an ordered 
list containing a possibly infinite number of elements. Don't worry if that all sounds a bit 
abstract; you're already familiar with the type that expresses the same idea in .NET: 
IEnumerable<T>. 

The primary reason for introducing enumerators is that they give us a unified way to 
work with collections of data such as arrays, mutable .NET lists and immutable F# lists. 
However, in F# we'll be talking about sequences, because this is a more general term. A 
sequence can represent a finite number of elements coming from a collection, but it can be 
also generated dynamically. We'll see that the infinite sequences, which sound somewhat 
academic, can still be useful in real applications. 

We'll start this chapter by looking at various ways to create and process sequences. The 
traditional functional technique is to use higher order functions, but modern languages often 
provide an easier way. In C#, we can use iterators to generate a sequence and LINQ queries 
to process an existing one. The F# language unifies these two concepts into one and allows 
us to write most of the operations using sequence expressions. 

However, the syntax used for writing sequence expressions in F# isn't a single purpose 
language feature designed only for sequences. That is just one (very useful!) application of a 
more general construct called computation expressions. These can be used for writing code 
that looks like ordinary F#, but behaves differently in some way. In the case of sequence 
expressions, a sequence of results is generated instead of just one value, but we'll look at 
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various other examples. We'll see how to use computation expressions for logging, and how 
they can make option values easier to work with too.  

NON-STANDARD COMPUTATIONS IN F# 

Computation expressions can be used for customizing the meaning of the code in many 
ways, but there are some limits. In particular, the code written using computation 
expressions has to be executed as compiled .NET code and we can customize only a few 
primitives inside it. It cannot be used to manipulate with the code and execute it in a 
different environment, in the way that LINQ to SQL does for example. This is possible in 
F# as well, but we'd have to combine ideas from this chapter with a feature called F# 
quotations, which isn't discussed in this book. You'll find additional resources about 
quotations on the book's web site. 

We'll start by talking about sequences and once you'll become familiar with sequence 
expressions, we'll look at computation expressions and how they relate to LINQ queries in 
C#. Let's take our first steps with sequences. Before we can start working them, we need to 
know how to create them. 

12.1 Generating sequences 
There are several techniques to generate sequences, so let's look at some options we have. 
They all boil down to the same model: we have to implement the IEnumerator<T> 
interface, providing a Current property and a MoveNext method, which moves the 
enumerator object to the next element. This forces us to create an object with mutable 
state, which obviously goes against the functional style. Normally we can apply techniques 
that hide the mutation and give us a more declarative way of expressing the generated 
sequence's contents. 

As usual in functional programming, we can use higher order functions. The F# library 
supports quite a few of these for working with sequences, but we'll just look at one example. 
As we'll see later, both C# and F# give us an easier way to do generate sequences. In C#, 
we can use iterators and F# supports a general purpose sequence processing feature called 
sequence expressions. 

12.1.1 Using higher order functions 
The functions used to work with sequences in F# are in the Seq module and we'll examine 
one very general function called Seq.unfold. You can see it as an opposite to the 
fold_left function, which takes a collection and "folds" it into a single value. On the other 
hand, unfold takes a single value and "unfolds" it into a sequence. The following snippet 
shows how to generate a sequence containing numbers up to 10 formatted as strings:  

> let nums = Seq.unfold (fun num ->  
     if (num <= 10) then Some(num.ToString(), num + 1) else None) 0 
  ;; 
val nums : seq<string> = seq ["0"; "1"; "2"; "3"; ...] 
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The num value represents the state used during the generation of the sequence. When 
the lambda function is called for the first time, the value of num is set to the initial value of 
the second parameter (zero in our example). The lambda function returns an option type 
containing a tuple. The value None marks the end of the sequence. When we return Some, 
we give it two different values in a tuple. The first one is a value that will be returned in the 
sequence (in our case, it is the number converted to string); the second value is the new 
state to use when the lambda function is next called.  

As you can see from the output, the type of the returned value is seq<string>. This is 
an F# abbreviation for the IEnumerable<string> type. It's just a different way of writing 
the same type, in the same way that float is a C# alias for System.Single, so you can 
mix them freely. The output also shows the first few elements of the sequence, but since the 
sequence can be infinite, the F# interactive shell doesn't attempt to print all of them. 

The standard .NET library doesn't contain a similar method for C#. One of the few 
methods that generate sequences in C# is Enumerable.Range, which returns an ascending 
sequence of numbers of the specified length (second argument) from the specified starting 
number (the first argument). We could implement a function like Seq.unfold in C# as well, 
but we'll see that similar results can be easily achieved using C# iterators, which we'll look at 
next. 

12.1.2 Using iterators in C# 
When iterators were first introduced in C# 2.0, the most common use for them was to 
simplify implementing the IEnumerable<T> interface for your own collections. However, 
the programming style used in C# has been evolving, and iterators are now used together 
with other functional constructs for a wide variety of data processing operations.   

Iterators can be used for any type of sequence, and we'll look at a simple example that 
generates a sequence of factorials that are less than 1 million, formatted as strings. Listing 
12.1 shows the complete source code. 

Listing 12.1 Generating factorials using iterators (C#) 
static IEnumerable<string> Factorials() { 
   int num = 0, factorial = 1;                                    #1 
   while (factorial < 1000000) { 
      num = num + 1;                                              #2 
      factorial = factorial * num;                                #2 
      yield return String.Format("{0}! = {1}", num, factorial);   #A 
   } 
} 
#1 Local mutable state 
#A Return the next string 
#2 Modify the state of the iterator 
The C# compiler performs a rather sophisticated transformation on the iterator code to 

create a "hidden" type that implements the IEnumerable<T> interface. The interesting 
thing about the code above is how it works with the local state. First we declare two 
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variables (#1) that represent the state of the iterator. The rest of the code is a loop that is 
executed every time we want to pull another value from the iterator. The loop body updates 
the local state of the iterator (#2) and then yields the newly calculated value. 

The code is very imperative, because it heavily relies on mutation, but from the outside 
iterators look like functional data types, because the mutable state is hidden. Now let's look 
at sequence expressions, which represent a more general idea, but can be used for 
generating sequences in F#. 

12.1.3 Using F# sequence expressions 
Iterators in C# are very comfortable, because they allow you to write complicated code (a 
type that implements the IEnumerable<T>/IEnumerator<T> interfaces) in an ordinary 
C# method. The developer-written code uses standard C# features such as loops, and the 
only change is that we can use one new kind of statement to do something non-standard. 
This new statement is indicated with yield return (or yield break to terminate the 
sequence) and the non-standard behavior is to return a value as the next element of a lazily 
generated sequence. Sequence expressions in F# are similar: they use an operator which is 
equivalent to yield return, and one other additional feature.   

WRITING SEQUENCE EXPRESSIONS 
In C#, we can use iterators to implement methods that return IEnumerable<T>, 
IEnumerator<T> or their non-generic equivalents. On the other hand, F# sequence 
expressions are marked explicitly using the seq keyword, and don't have to be used as the 
body of a method or function. As the name suggests, sequence expressions are just a 
different type of expression, and we can use them anywhere in our code. Listing 12.2 shows 
how to create a simple sequence using this syntax. 

Listing 12.2 Introducing sequence expression syntax (F# interactive) 
> let nums =  
     seq { let n = 10                   #1 
           yield n + 1                  #2 
           printfn "second.."           #3 
           yield n + 2 } 
val nums : seq<int>                     #4 
#1 Expression wrapped inside 'seq'  
#2 Return element of the sequence 
#3 Side-effect inside sequence expression 
#4 Value is a sequence of numbers 
When writing sequence expressions, we enclose the whole F# expression that generates 

the sequence in a seq block (#1). The block is written using curly braces and the seq 
keyword at the beginning denotes that the compiler should interpret the body of the block as 
a sequence expression. We'll later see that there are other keywords for similar features. 
This block turns the whole expression into a sequence. You can see this by looking at the 
inferred type of the value (#4).  

Licensed to Curtis J Pitts <beop.love@gmail.com>

Download at Boykma.Com



324   

©Manning Publications Co. Please post comments or corrections to the Author Online forum: 
http://www.manning‐sandbox.com/forum.jspa?forumID=460 

The body of the sequence expression can contain statements with a special meaning. 
Similarly to C#, there is a statement for returning a single element of the sequence. In F# 
this is written using the yield keyword (#2). Of course, the body can also contain other 
standard F# constructs such as value bindings, and even calls that perform side-effects 
(#3). 

Similar to C#, the body of the sequence expression executes lazily. When we create the 
sequence value (in our previous example the value nums) the body of the sequence 
expression isn't executed. This only happens when we access elements of the sequence, and 
each time we access an element, the sequence expression code only executes as far as the 
next yield statement. In C#, the most common way to access elements in an iterator is 
using a foreach loop. In the following F# example, we'll use the List.of_seq function, 
which converts the sequence to an immutable F# list: 

> nums |> List.of_seq;; 
second.. 
val it : int list = [11; 12] 

The returned list contains both of the elements generated by the sequence. This means 
that the computation had to go through the whole expression, executing the printfn call 
on the way, which is why the output contains a line printed from the sequence expression. 
However, if we take only a single element from the sequence, the sequence expression will 
only evaluate until the first yield call, so the string will not be printed: 

> nums |> Seq.take 1 |> List.of_seq;; 
val it : int list = [11] 

We're using one of the sequence processing functions from the Seq module to take only 
a single element from the sequence. The take function returns a new sequence that takes 
the specified number of elements (one in the example) and then terminates. When we 
convert it to an F# list we get a list containing only a single element, but the printfn 
function isn't called.  

 
When you implement a sequence expression, you may reach a point where the body of 

the expression is too long. The natural thing to do in this case would be to split it into a 
couple of functions that generate parts of the sequence. For example, if the sequence uses 
multiple data sources, we'd like to have the code that reads the data in separate functions. 
So far, so good - but then we're left with the problem of composing the sequences returned 
from different functions. 

COMPOSING SEQUENCE EXPRESSIONS 
The yield return keyword in C# only allows us to return a single element, so if we want 
to yield an entire sequence from a method implemented using iterators in C#, we'd have to 
loop over all elements of the sequence using foreach and yield them one by one. 
Composability is a more important aspect in functional programming, so F# allows us to 
compose sequence expressions and yield the whole sequence from a sequence expression 
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using a special language construct: yield! (usually pronounced yield-bang). Listing 12.3 
demonstrates this, creating a sequence of cities in three different ways. 

Listing 12.3 Composing sequences from different sources (F# interactive) 
> let capitals = [ "Paris"; "Prague" ]                                  #1 
  let withNew(name) =                                                   #2 
     seq { yield name 
           yield "New " + name };; 
val capitals : list<string> 
val withNew : string -> seq<string> 
 
> let allCities =  
     seq { yield "Oslo"                                                 #3 
           yield! capitals                                              #4 
           yield! withNew("York") };;                                   #5 
val allCities : seq<string> 
 
> allCities |> List.of_seq;; 
val it : string list = ["Oslo"; "Paris"; "Prague"; "York"; "New York"]  #A 
#1 List of capital cities 
#2 Return a name and a name with a prefix 
#3 Return a single value 
#4 Compose with another sequence 
#5 Return all cities generated by the function 
#A All data composed together 
The listing starts by creating two different data sources. The first one is an F# list that 

contains two capital cities (#1). The type of the value is list<string>, but since F# lists 
implement the seq<'a> interface, we can use it as a sequence later in the code. The second 
data source is a function (#2) that generates a sequence containing two elements. The next 
piece of code shows how to join these two data sources into a single sequence. First, we use 
the yield statement to return a single value (#3). This shows that you can mix both ways of 
yielding elements inside a single sequence expression. Next, we use the yield! construct to 
return all the elements from the F# list. Finally, we call the function withNew (#5), which 
returns a sequence, and return all the elements from that sequence.  

Just like yield, the yield! construct also returns elements lazily. This means that 
when the code gets to the point where we call the withNew function (#5), the function gets 
called, but it only returns an object representing the sequence. If we wrote some code in the 
function before the seq block it would be executed at this point, but the body of the seq 
block wouldn't start executing. That only happens after the withNew function returns, 
because we need to generate the next element. When the execution reaches the first yield 
construct, it will return the element, stop executing and wait until the caller requests another 
element. 

We've learned almost everything about the syntax of sequence expressions, but they 
can sound quite awkward until you actually start using them. There are several patterns 
which are common when using sequence expressions - let's look at two of them. 
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12.2 Mastering sequence expressions 
So far, we've seen how to return single elements from a sequence expression and also how 
to compose sequences in F#. However, we haven't yet seen the F# version of the previous 
factorial example using mutable state. Somewhat predictably, the F# code will be quite 
different. 

12.2.1 Recursive sequence expressions 
The primary control flow structure in functional programming is recursion. We've used it in 
many examples when writing ordinary functions and it allows us to solve the same problems 
as imperative loops, but without relying on mutable state. When we wanted to write a simple 
recursive function, we used the let rec keyword, allowing the function to call itself 
recursively. 

The yield! construct for composing sequences also allows us to perform recursive calls 
inside sequence expressions, so we can use the same functional programming techniques 
when generating sequences. Listing 12.4 generates all factorials under 1 million just like the 
C# example in listing 12.1. 

Listing 12.4 Generating factorials using sequence expressions (F# interactive) 
> let rec factorialsUtil(num, factorial) =                             #1 
     seq { if (factorial < 1000000) then 
              yield String.Format("{0}! = {1}", num, factorial)        #2 
              let num = num + 1 
              yield! factorialsUtil(num, factorial * num) }            #3 
val factorialsUtil : int * int -> seq<string> 
 
> let rec factorials = factorialsUtil(0, 1)                            #4 
val factorials : seq<string> =  
   seq ["0! = 1"; "1! = 1"; "2! = 2"; "3! = 6"; "4! = 24 ...] 
#1 Recursive utility function 
#2 Return single result 
#3 Recursively generate remaining factorials 
#4 Get sequence starting from the first factorial 
The listing starts with a utility function that takes a number and its factorial as an 

argument (#1). When want to compute the sequence of factorials later in the code, we call 
this function and give it the smallest number for which a factorial is defined to start the 
sequence (#4). This is zero, because by definition the factorial of zero is one. 

The whole body of the function is a seq block, so the function returns a sequence. In 
the sequence expression we first check whether the last factorial is smaller than 1 million 
and if not, we end the sequence. The else branch of the if expression is missing, so it will 
not yield any additional numbers. If the condition is true, we first yield a single result (#2), 
which indicates the next factorial formatted as a string. Next, we increment the number and 
perform a recursive call (#3). This returns a sequence of factorials starting from the next 
number; we use yield! to compose it with the current sequence. 
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Note that converting this approach to C# is difficult, because C# doesn't have an 
equivalent of the yield! feature. We'd have to iterate over all the elements using a 
foreach loop, which would be inefficient due to a large number of nested loops. In F#, the 
yield! construct is implemented in an optimized way so it doesn't add any significant 
inefficiency. 

This example shows that we can use standard functional patterns in sequence 
expressions. We used the if construct inside the sequence expression and recursion to loop 
in a functional style. F# allows us to use mutable state (using reference cells) and imperative 
loops such as while inside sequence expressions as well, we don't need them very often. 
On the other hand, for loops are used quite frequently as we'll see when we discuss 
sequence processing later. 

List and array expressions 

So far, we've seen sequence expressions enclosed in curly braces and denoted by the 
seq keyword. This kind of expression generates a lazy sequence of type seq<'a> which 
correspond to the standard .NET IEnumerable<T> type. However, F# also provides 
support for creating immutable F# lists and .NET arrays in a simple way. Here's a snippet 
showing both collection types: 

> let cities =  
     [ yield "Cambridge" 
       yield! capitals ];; 
val cities : list<string> 
 
> List.hd(cities);; 
val it : string = "Cambridge" 

> let cities =  
     [| yield "Barcelona" 
        yield! capitals |];; 
val cities : array<string> 
 
> cities.[2];; 
val it : string = "Barcelona" 

As you can see, we can also enclose the body of the sequence expression in square 
braces just as we normally do to construct F# lists, and in square braces followed by the 
bar "|" to construct arrays. F# treats the body as an ordinary sequence expression and 
converts the result to a list or an array respectively. The example above shows that we 
can then use the resulting collection in a normal way.  

When we use array or list expressions, the whole expression is evaluated eagerly, 
because we need to populate all the elements. Any side effects (such as printing to the 
console) will be executed immediately. Although sequences may be infinite, arrays and 
lists can't: evaluation would just continue until you ran out of memory. 

Take another look at listing 12.4 where we generated factorials up to a certain limit. 
What would happen if we removed that limit (by removing the if condition)? In ordinary F# 
we'd get an infinite loop, but what happens in a sequence expression? The answer is that 
we'd create an infinite sequence, which is a valid and useful functional construct.  
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12.2.2 Using infinite sequences 
In the previous chapter, I briefly demonstrated how to implement a lazy list using lazy 
values. This data structure allowed us to create infinite data structures, such as a list of all 
integers starting from zero. This was possible because each evaluation of element was 
delayed: the element's value was only calculated when we actually accessed it, and each 
time we only forced the calculation of a single element. 

Sequences represented using seq<'a> are similar. The interface has a MoveNext 
method, which forces the next element to be evaluated. The sequence may be infinite, which 
means that the MoveNext method will be always able to calculate the next element and 
never returns false (which indicates the end of sequence). Infinite sequences may sound 
just like a curiosity, but we'll see that they can be quite useful and give us a great way to 
separate different parts of an algorithm and make the code more readable.  

In the last chapter, I briefly mentioned that when drawing charts, we could represent 
the colors used by the chart as an infinite sequence of colors. Listing 12.5 shows how we can 
implement a sequence generating random colors in both C# and F#. 

Listing 12.5 Generating infinite sequence of random colors in C# and F# 
IEnumerable<Color> ColorsRnd() { 
   Random rnd = new Random(); 
   while(true) {                #1 
      int r = rnd.Next(256),  
          g = rnd.Next(256), 
          b = rnd.Next(256); 
      yield return Color        #2 
         .FromArgb(r, g, b);    #2 
   } 
} 

let rnd = new Random() 
let rec colorsRnd = seq {       #3 
   let r, g, b =  
      rnd.Next(256),  
      rnd.Next(256),  
      rnd.Next(256)  
   yield Color.FromArgb(r,g,b)  #4 
   yield! colorsRnd }           #5 

 

#1, #5 Both implementations contain an infinite loop that generates colors. In C#, the loop is 
achieved using 'while(true)' (#1). The functional way to create infinite loops is to use recursion (#5). 
#2, #4 In the body of the infinite loop, we yield a single randomly generated color value. In F# this 
used the 'yield' construct (#4) and in C# we use 'yield return' (#2). 

Annotations below the code with cueballs on the left 

If you compile the F# version of the code, you'll get a warning on the line with the 
recursive call (#5). The warning says that the recursive reference will be checked at run-
time. We've already seen this warning in chapter 8. It notifies us that we're referencing a 
value inside its own definition. In this case, the code is correct, because the recursive call will 
be performed later, after the sequence is fully initialized. 

Listing 12.5 also uses a more compact way of enclosing F# code in a seq block (#3). 
Instead of starting on a new line and indenting the whole body, we added the seq keyword 
and the opening curly brace to the end of the line. I'll use this option in some listings in the 
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book, to make the code more compact. In practice, both of these options are valid and you 
can choose whichever you find more readable. 

Now that we have an infinite sequence of colors, let's use it. Listing 12.6 demonstrates 
how infinite sequences allow a better separation of concerns. Only the F# code is shown 
here, but the C# implementation (which is extremely similar) is available online.  

Listing 12.6 Drawing a chart using sequence of colors (F#) 
open System.Drawing 
open System.Windows.Forms 
 
let numbers = [ 490; 485; 450; 425; 365; 340; 290; 230; 130; 90; 70; ] 
let clrData = Seq.zip numbers colorsRnd                                 #1 
 
let frm = new Form(ClientSize = Size(500, 350)) 
frm.Paint.Add(fun e ->  
   e.Graphics.FillRectangle(Brushes.White, 0, 0, 500, 350) 
   clrData |> Seq.iteri(fun i (num, clr) ->                             #2 
      use br = new SolidBrush(clr) 
      e.Graphics.FillRectangle(br, 0, i * 32, num, 28) )                #A 
   ) 
frm.Show()    
#1 Combine data with colors into one sequence 
#2 Iterate over data and colors with index 
#A Calculate location of the bar using index 
In order to provide a short but complete example, we've just defined some numeric data 

by hand. We use the Seq.zip function to combine it with the randomly generated colors 
(#1). This function takes two sequences and returns a single sequence of tuples: the first 
element of each tuple is from the first sequence and the second element comes from the 
second sequence. In our case, this means that each tuple contains a number from the data 
source and a randomly generated color. The length of the returned sequence is the length of 
the shorter sequence from the two given sequences, so it will generate a random color for 
each of the numeric value and then stop. This means that we'll need only limited number of 
colors. Of course we could generate let's say 100 of colors, but what if someone gave us 101 
numbers? Infinite sequences give us an elegant way to solve the problem without worrying 
about the length. 

In the C# version, we'll need to implement an alternative to the zip function if we want 
to run the code under .NET 3.5. (There’s an implementation built into .NET 4.0.) This is an 
interesting example of sequence processing, so we'll look at the C# implementation later. 

Once we have the combined sequence, we just need to iterate over its elements and 
draw the bars. We're using Seq.iteri (#2), which calls the specified function for every 
element, passing it the index of the element in the sequence and the element itself. We 
immediately decompose the element using a tuple pattern into the numeric value (the width 
of the bar) and the generated color. 

What makes this example interesting is that we can easily use an alternative way to 
generate colors. If we implemented it naively, the color would be computed in the drawing 
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function (#2). This would make it relatively hard to change which colors are used. However, 
the solution in listing 12.6 completely separates the color generation code from the drawing 
code, so we can change the way chart is drawn just by providing a different sequence of 
colors. Listing 12.7 shows an alternative coloring scheme. 

Listing 12.7 Generating a sequence with color gradients (C# and F#) 
IEnumerable<Color> ColorsGrBl() { 
   while(true) {                #1 
      for(int g=0; g<255; g+=25) { 
         int r = g / 2, b = g / 3; 
         yield return Color. 
            FromArgb(r,g,b); 
      } 
   } 
} 

let rec colorsGrBl = seq { 
   for g in 0 .. 25 .. 255 do   #2 
      let r, b = g / 2, g / 3 
      yield Color.FromArgb(r,g,b) 
   yield! colorsGrBl }          #3 
 
let clrData =  
   Seq.zip numbers colorsGrBl 

The code in the listing again contains an infinite loop, implemented either using a while 
loop (#1) or using recursion (#3).  In the body of the loop, we generate a color gradient 
containing 10 different colors. We're using a for loop to generate the green component of 
the color and then calculating the blue and red components from that. This example also 
shows the F# syntax for generating a sequence of numbers with a specified step (#2). The 
value of g will start off as 0 and then increment by 25 for each iteration until the value is 
larger than 250. Figure 12.1 shows the end result.  

 

Figure 12.1 A chart painted using color gradient generated as a sequence of colors. 

As you can see, infinite sequences can be useful in real world programming, because 
they give us a way to easily factor out part of the code that we may want to change later. 
Infinite sequences are also curious from the theoretical point of view. In Haskell, they are 
often used to express numerical calculations. 
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Infinite lists in Haskell and sequence caching in F# 

As I mentioned in the previous chapter, Haskell uses lazy evaluation everywhere. We've 
seen that Lazy<'a> type in F# can simulate lazy evaluation for values when we need it, 
and sequences allow us to emulate some other Haskell constructs in the same way. Let's 
look at one slightly obscure example, just to get a feeling for what you can do. In Haskell, 
we can write the following code:  

let nums = 1 : [ n + 1 | n <- nums ] 

Once we translate it into F#, you'll understand what is going on. The standard functional 
lists in Haskell are lazy (because everything is) and the ":" operator corresponds to the 
F# "::" operator. The expression in square braces returns all the numbers from the list 
incremented by 1. In F#, we could write the same thing using sequence expressions: 

let rec nums =  
   seq { yield 1 
         for n in nums do yield n + 1 };; 

The code constructs a sequence that starts with 1 and then recursively takes all numbers 
from the sequence and increments them by 1. This means that the returned sequence will 
contain numbers 1, 2, 3 and so on. However, the F# version is horribly inefficient, 
because in each recursive call, it starts enumerating the sequence from the first element. 
In Haskell, the calculated values are cached, so it gives better results. Fortunately, the F# 
libraries give us an easy way to cache values too: 

let rec nums =  
   seq { yield 1 
         for n in nums do yield n + 1 } |> Seq.cache;; 

The Seq.cache function returns a sequence that caches values that have already been 
calculated, so this version of the code performs a lot more sensibly. Accessing the 1000th 
element is about 100 times faster with the caching version than with the original. 
Combining caching and sequence expressions gives us some of the same expressive 
power as the more mathematically-oriented Haskell. 

So far we've mostly examined creating sequences. Now we're going to have a look at 
some techniques for processing them. 

12.3 Processing sequences 
The basic approach for processing sequences in F# is similar to those for other collection 
types. We've seen that lists can be processed with functions like List.filter and 
List.map, and that similar functions are available for arrays in the Array module. It should 
come as no surprise that the same set of functions exists for sequences as well, in the Seq 
module. In C#, we can use LINQ methods such as Where and Select that work with any 
sequence (represented using the IEnumerable<T> type).  

However, higher order functions aren't the only option we have. When we need to 
implement some more complex lower-level behavior in C# (for example if we wanted re-
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implement LINQ methods such as Where) we can use iterators. On the other hand, for 
writing higher-level processing code, we can use the C# 3.0 query syntax. The F# language 
doesn't explicitly support any query syntax, but we'll see that sequence expressions to some 
point unify the ideas behind iterators and queries. 

12.3.1 Transforming sequences in C# 
So far, we've only used iterators to generate a sequence from a single piece of data (if any). 
However, one common use of iterators is to transform one sequence into another in some 
fashion. As a simple example, here's a method that takes a sequence of numbers and 
returns a sequence of squares: 

IEnumerable<int> Squares(IEnumerable<int> numbers) { 
   foreach(int i in numbers) 
      yield return i * i; 
} 

We'd use exactly the same approach if we wanted to implement generic Where and 
Select methods from LINQ to Objects. As a more complicated example, let's implement a 
Zip method with the same behavior as the Seq.zip function in F#. We'll give it two 
sequences and it will return a single sequence containing elements from the given sequences 
joined in tuples. This is a more interesting problem, because we cannot use foreach to 
simultaneously take elements from two source sequences. As you can see in the listing 12.8, 
the only option that we have is to use the IEnumerable<T> and IEnumerator<T> 
interfaces directly.  

Listing 12.8 Implementing the 'Zip' method (C#) 
public static IEnumerable<Tuple<T1, T2>> Zip<T1, T2> 
      (IEnumerable<T1> first, IEnumerable<T2> second) { 
   using (var firstEn = first.GetEnumerator())                          #1 
   using (var secondEn = second.GetEnumerator()) {                      #1 
      while (firstEn.MoveNext() && secondEn.MoveNext()) {               #2 
         yield return Tuple.New(firstEn.Current, secondEn.Current);     #3 
      } 
   } 
} 
#1 Get enumerators for both of the sequences 
#2 Loop until one sequence ends 
#3 Return elements from both sequences in a tuple  
If we look at the signature of the method, we can see that it takes two sequences as 

arguments. The method is generic, with each input sequence having a separate type 
parameter. We're using our C# tuple implementation from chapter 3, so the returned 
sequence contains elements of type Tuple<T1, T2>. In the implementation, we first ask 
each sequence for an enumerator we can use to traverse the elements (#1). We repeatedly 
call the MoveNext method on each enumerator to get the next element from both of the 
sequences (#2). If neither sequence has ended, we yield a tuple containing the current 
element of each enumerator (#3).  
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This example shows that sometimes processing methods need to use the 
IEnumerator<T> interface explicitly, because not everything can be implemented using the 
foreach loop. If we wanted to implement Seq.zip in F#, we'd have to use exactly the 
same technique. We could either use a while loop inside a sequence expression or a 
recursive sequence expression. However, most of the processing functions we'll need are 
already available in the .NET and F# libraries. We'll use these where we can, either explicitly 
or using C#'s query expression syntax. 

12.3.2 Filtering and projection 
The two most frequently used sequence processing operators are filtering and projection. 
We've already used both of them in chapter 6 with functional lists in F# and the generic .NET 
List<T> type in C#. The Where and Select extension methods from LINQ libraries already 
work with sequences, and in F# we can use two functions from the Seq module (namely 
Seq.map and Seq.filter) to achieve the same results. 

USING HIGHER ORDER FUNCTIONS 
Working with the Seq module in F# is exactly the same as with List, and we've already 
seen how to use LINQ extension methods in C#. However, there is one notable difference 
between working with lists and sequences: sequences are lazy. The processing code isn't 
executed until we actually take elements from the returned sequence, and even then it only 
does as much work as it needs to in order to return results as they're used. Let's 
demonstrate this using a simple code snippet: 

let nums1 =  
   nums |> Seq.filter (fun n -> n%3=0) 
        |> Seq.map (fun n -> n * n) 

var nums1 =  
   nums.Where(n => n%3 == 0) 
       .Select(n => n * n) 

When we run the code above, it will not process any elements. It just creates an object 
that represents the sequence and that can be used for accessing the elements. This also 
means that the nums value can be an infinite sequence of numbers. If we only access the 
first 10 elements from the sequence, the code will work correctly, because both filtering and 
projection process data lazily. 

Anyway, you're probably already familiar with using higher order processing functions 
after our extensive discussion in chapter 6 and many examples in various places of the book. 
In this chapter, we'll instead look at other ways to express unusual computation models.  

USING QUERIES AND SEQUENCE EXPRESSIONS 
In C# 3.0, we can write operations with data that involve projection and filtering using the 
new query expression syntax. Query expressions support many other operators, but we'll 
stick to just projection and filtering in order to demonstrate functional techniques and F# 
features.  

Although F# doesn't have specific query expression support, we can easily write queries 
which just project and filter data using sequence expressions. This is due to the way that 
sequence expressions can be used anywhere in F#, rather than just as the implementation of 
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a function returning a sequence. Listing 12.9 shows how we can implement the example 
above using a query in C# and a sequence expression in F#. 

Listing 12.9 Filtering and projecting sequences in C# and F# 
var nums1 =  
   from n in nums 
   where n%3 == 0 
   select n * n; 

let nums1 = seq {  
   for n in nums do 
      if (n%3 = 0) then 
         yield n * n } 

In C#, query expressions and iterators are quite different, but the sequence expression 
in F# shows how they're conceptually related. Each part of the query expression has an 
equivalent construct in F#, but it's always more general: the from clause is replaced by a 
simple for loop, the where clause is replaced by an if statement, and the select clause 
corresponds to the yield statement with the projection expressed as a normal calculation. 

C# query expression syntax supports several other operators that are not easily 
expressible using F# sequence expressions. This means that the C# version is more 
powerful, but the F# implementation is more uniform. 

Additional query operators in LINQ 

Query expression syntax in C# 3.0 is tailored for retrieving and formatting data from 
various data sources, so it includes operations beyond just projection and filtering. These 
operators are mostly present for this single purpose and there is no special syntax for 
them in F#. However, all these standard operators are available as regular higher order 
functions operating on sequences. For instance, take ordering data: 

var q =  
   from c in customers 
   orderby c.Name 
   select c; 

let q = 
   customers 
   |> Seq.order_by (fun c -> c.City) 

The function that we give as the first argument to the Seq.order_by operator specifies 
which property of the processed element should be used when comparing two elements. 
In the C# query syntax, this is corresponds to the expression following the orderby 
clause. The C# compiler transforms this expression into a call to OrderBy using a 
lambda function. Another operation that is available only as a higher order function in F# 
is grouping: 

var q =  
   from c in customers 
   group c by c.City; 

let q = 
   customers 
   |> Seq.group_by (fun c -> c.City) 

To group a sequence we need to specify a function that returns the key that identifies the 
group in which the element belongs. Again, C# has special syntax for this but in the F# 
snippet we're using a standard lambda function.  
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In the examples above, both versions of the code look reasonable. However, when we 
need to write F# code that mixes projection and filtering together with some operations 
that can only be written using higher order functions, the equivalent C# query expression 
can be easier to understand. 

It's interesting to look at how both C# query expressions and F# sequence expressions 
work internally. A C# query expression is translated in a well-defined way into a sequence of 
calls such as Where, Select, Join and GroupBy using lambda expressions. These are 
typically extension methods, but don't have to be–the compiler doesn't care what the query 
expression means, only that the translated code is valid. This "data source agnosticism" lies 
behind the ability to use the same syntax for both in-process queries with LINQ to Objects 
and out-of-process queries using LINQ to SQL, LINQ to Entities and similar providers. 

On the other hand, sequence expressions can be used to express more complicated and 
general-purpose constructs. For example we could duplicate the yield construct to return 
two elements for a single item from the data source. This would be easy enough to achieve 
in C# using iterators, but it would require a separate method–you couldn't express the 
transformation "inline". 

The actual implementation of sequence expressions in F# may be optimized by the 
compiler, but it could be implemented using a flattening projection, which we'll discuss in the 
next section. This is an interesting point, because F# allows us to define our own non-
standard computations, so it is useful to know how they work behind the scenes. 

12.3.3 Flattening projections 
A flattening projection allows us to generate a sequence of elements for each element from 
the source collection and then merges all the returned sequences. 

TERMINOLOGY IN LINQ AND F# 

In LINQ libraries, this operation is called SelectMany. In query expressions it's 
represented by having more than one from clause. The name reflects the fact that it is 
similar to the Select operation with the exception that we can return many elements 
for each item in the source. The F# library's equivalent function is Seq.map_concat. 
Here, the name suggests the implementation - it's like calling the Seq.map function to 
generate a sequence of sequences and then calling Seq.concat to concatenate them. 

We'll start off by discussing the F# function, because its signature is slightly simpler 
than the one available in LINQ. 

USING FLATTENING PROJECTIONS IN F# 
As usual, the first step in understanding how the function works is to look at its type 
signature. Figure 12.2 compares the signatures of Seq.map and Seq.map_concat. 
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Figure 12.2 Projection returns single element for each input element while flattening collection can return 
any collection of elements. 

Just as a reminder, the "#" symbol in the part of the type signature describing the 
projection function passed to map_concat means that the actual return type of the function 
doesn't have to be exactly the seq<'b> type. It can be any type implementing the seq<'b> 
interface. This means that we can return an F# list, an array or even our own collection type. 

Now let's look at an example. Suppose we have a list of tuples, each of which contains a 
city's name and the country it's in, and we also have a list of cities selected by a user. We 
can represent some sample data for this scenario like this: 

let cities = [ ("New York", "USA"); ("London", "UK"); 
               ("Cambridge", "UK"); ("Cambridge", "USA") ] 
let entered = [ "London"; "Cambridge" ] 

Now suppose we want to find the countries of the selected cities. We could perform a 
projection (using the Seq.map function) and find each city in the cities list to get the 
country. You can probably already see the problem with this approach: there is a city named 
"Cambridge" in both UK and USA, so we need to be able to return multiple records for a 
single city. This can be done using a flattening projection with Seq.map_concat because 
the function that we specify as an argument can return a collection of elements. Listing 
12.10 shows the code to implement this. 

Listing 12.10 Searching for country of entered cities (F# interactive) 
> entered |> Seq.map_concat (fun name -> 
     cities |> Seq.map_concat (fun (n, c) ->  
        if (n <> name) then []                                      #1 
        else [ sprintf "%s (%s)" n c ] ))                           #1 
  ;;                       
val it : seq<string> = seq [ "London (UK)"; "Cambridge (UK)";       #A 
                             "Cambridge (USA)" ]                    #A 
#1 Find all cities and format the output 
#A Both countries returned for 'Cambridge' 
The code above calls the flattening projection and gives it list of cities entered by the 

user as input. The lambda function we provide takes the name of a single city and iterates 
over the collection of all known cities to find the country or countries containing that city. 
This is implemented using a nested map_concat call. The lambda function we use in here 
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(#1) returns a list containing a single element if the name of the city matches or an empty 
list if the name is different. 

In database terminology, this operation could be explained as a join. We're joining the 
list of entered names with the list containing information about cities using the name of the 
city as the key. In the example above, we could also implement the nested call with 
Seq.filter (to find cities with the same name) and Seq.map (to format the output), but I 
intentionally used a nested map_concat, because it will help us understand how sequence 
expressions work. Listing 12.11 shows how we can use them to solve the same problem. 

Listing 12.11 Joining collections using sequence expressions (F# interactive) 
> seq { for name in entered do                                          #1 
           for (n, c) in cities do                                      #2 
              if (n = name) then                                        #3 
                 yield sprintf "%s from %s" n c };;                     #3 
val it : seq<string> = seq [ "London from UK"; "Cambridge from UK";   
                             "Cambridge from USA" ] 
#1 Return a collection for each entered city 
#2 Iterate over all known cities  
#3 Yield zero or one element for each combination 
This example is definitely easier to read and is the preferred way for working with 

sequences in F#. However, thanks to our previous discussion about the flattening projection, 
you can better understand how sequence expressions work. As you can see, we're using two 
for loops: one to iterate over the entered names (#1) and one to iterate over the list of 
known cities (#2). These two loops correspond to the two nested map_concat calls in the 
previous implementation and implement the cross join of two collections. The code that is 
nested in these two loops (#3) uses the yield statement to produce a single item if the 
names are the same or doesn't yield any items, which corresponds to the case that returned 
an empty list in the previous implementation. 

I mentioned earlier that we could use projection and filtering to implement the nested 
loop (#2), but as you can see, for loops in sequence expressions are expressive enough to 
implement the projection, filtering and joins we've seen in this section. Now, let's look at the 
same operation in C#. 

USING FLATTENING PROJECTIONS IN C# 
The LINQ operator analogous to the map_concat function is called SelectMany. There are 
differences between the two versions, because LINQ has different requirements. While F# 
sequence expressions can be expressed using just the map_concat function, LINQ queries 
use many other operators, so they need different ways for sequencing operations. 

In C#, it will be easier to see the code using query syntax first and then see how it is 
translated to the explicit syntax using extension methods. We'll use the same data as in the 
previous F# example. The list of cities with the information about country contains instances 
of a class CityInfo with two properties and the list of entered names contains just strings. 
The listing 12.12 shows a LINQ query that we can write to find countries of the entered 
cities. 
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Listing 12.12 Searching for country of entered cities using a query (C#) 
var q = 
   from e in entered                                                   #1 
   from known in cities                                                #2 
   where known.City == e                                               #3 
   select string.Format("{0} ({1})", known.City, known.Country);       #3 
#1 Iterate over the entered names 
#2 Search all known cities 
#3 Filter matching cities and format the output 
The query expresses exactly the same idea as we did in the previous implementations. 

It iterates over both of the data sources ((#1) and (#2)), which gives us a cross join of the 
two collections and then yields only records where the name entered by the user 
corresponds to the city name in the “known city” list; finally it formats the output (#3). 

In C# query expression syntax, we can also use the join clause which directly specifies 
keys from both of the data sources (in our case, this would be the value e and the 
known.City value). This is slightly different: join clauses can be more efficient, but 
multiple from clauses are more flexible. In particular, the second sequence we generate can 
depend on which item of the first sequence we’re currently looking at. 

As I said before, query expressions are translated into normal member invocations. Any 
from clause in a query expression after the first one is translated into a call to SelectMany. 
Listing 12.13 shows the translation as it is performed by the C# compiler. 

Listing 12.13 Query translated to explicit operator calls (C#) 
var q = entered 
   .SelectMany( 
      (e => cities),                                                   #1 
      (e, known) => new { e, known })                                  #2 
   .Where(tmp => tmp.known.City == tmp.e)                              #A 
   .Select(tmp => String.Format("{0} ({1})",                           #A 
      tmp.known.City, tmp.known.Country));                             #A 
#1 Foreach entered city, iterate over known cities 
#2 Create temporary value storing the results of join 
#A Filter and format the output 
Unlike in F#, where the if condition was nested inside the two for loops (flattening 

projections), the operations in C# are composed in a sequence without nesting. The 
processing starts with the SelectMany operator that implements the join; the filtering and 
projection are performed using Where and Select at the end of the sequence.  

The first lambda function (#1) specifies a collection that we generate for every single 
item from the source list. This parameter corresponds to the function provided as an 
argument to the F# map_concat function. In the query above, we just return all the known 
cities, so the operation performs only joining, without any filtering or further processing. The 
second parameter (#2) specifies how to build a result based on an element from the original 
sequence and an element from the newly-generated sequence returned by the function. In 
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our example, we just build an anonymous type that contains both items so we can use them 
in later query operators. 

In F#, all the processing is done inside the filtering projection, so we return only the 
final result. On the other hand, in C# most of the processing is done later, so we need to 
return both elements combined into one value (using an anonymous type), so that they can 
be accessed later. In general, the first from clause in the query together with the last 
select clause are translated into a call to the Select method. However, the remaining 
from clauses are compiled to flattening projections using the SelectMany method. Multiple 
flattening projections are nested in the same way as in F#.  

Understanding how exactly the translation works isn't that important, but we'll need to 
go into a bit more depth in the next section. We'll see that F# sequence expressions 
represent a more general idea that can be expressed using LINQ queries. The flattening 
projection we've just been looking at plays a key role in this. 

12.4 Introducing computation expressions (monads) 
You may well have heard of monads before. They have an unfortunate reputation for being 
brain-bustingly difficult - but don't worry, I promise I'll introduce them gently. You may be 
surprised to know we've already been using them in this chapter. In fact you've probably 
used them before even picking up this book: LINQ is based on a monad too. 

In section 6.7 we looked at the bind function for both option values and lists. The 
equivalent function for sequences is Seq.map_concat; we've just seen its importance in 
LINQ queries and F# sequence expressions. Let me just briefly remind you the type 
signatures of the three operations:  

List.bind      : ('a -> 'b list)    -> 'a list    -> 'b list 
Option.bind    : ('a -> option<'b>) -> option<'a> -> option<'b> 
Seq.map_concat : ('a -> #seq<'b>)   -> seq<'a>    -> seq<'b> 

The function provided as the argument specifies what to do with each actual value (of 
type 'a) contained in the value given as the second argument. For lists and sequences that 
means the function will be called for each element of the input sequence. For option values 
the function will be executed at most once, only when the second argument is Some value. 
You may already know that you can create your own implementation of LINQ query 
operators and use them to work with your own collection types. However, nothing limits us 
to use the query syntax only for working with collections. 

12.4.1 Customizing query expressions 
In general, we can use queries to work with any type that supports the bind operation. This 
is the standard name used in functional programming for functions with type signatures of 
the form shown above. Now let's consider what the meaning of a query applied to option 
types would be. The listing 12.14 shows two queries side by side. The first one works with 
lists and the second with option types. We're using two simple functions to provide input: the 
ReadIntList function reads a list of integers (of type List<int>) and TryReadInt 
returns an option value (of type Option<int>).  
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Listing 12.14 Using queries with lists and option values (C#) 
var list = 
   from n in ReadIntList() 
   from m in ReadIntList() 
   select n * m; 

var option =   
   from n in TryReadInt() 
   from m in TryReadInt() 
   select n * m; 

The queries are exactly the same with the exception that they work with different types 
of data, so they use different query operator implementations. Both of them read two 
different inputs and then return multiples of the entered integers. Table 12.1 gives some 
examples of inputs to show what the results would be.  

Type of values Input #1 Input #2 Output 

Lists [2; 3] [10; 100] [20; 30; 200; 300] 

Options Some(2) Some(10) Some(20) 

Options Some(3) None None 

Options None not required None 

Table 12.1 Results produced by queries working with lists and option values for different 
possible inputs 

For lists the query performs a cross join operation (you can imagine two nested for loops 
as in the F# sequence expression). It produces a single sequence consisting of a single entry 
for each combination of input values. For option values there are three possibilities. When 
the first input is a value we need to read the second one. If the second input is also a value 
then the result is again Some value containing the result of the multiplication. On the other 
hand, if the second input is None then we don't have values to multiply, so the query returns 
None. Finally, when the first input is None, then we already know the result without even 
needing the second input. The whole query is executed lazily, so we don't even have to read 
the second input: the TryReadInt function will be called only once. 

As you can see, query expressions give us a convenient way of working with option 
values. Listing 12.14 is definitely easier to write (and read) than the equivalent code we used 
in chapter 6, where we used higher order functions explicitly. We'll see how to implement all 
the necessary query operators later in the chapter, but let's first look at some similar syntax 
in F#. 

12.4.2 Customizing the F# language 
So far, we've talked about sequence expressions, which were denoted using the seq 
identifier preceding the block of code enclosed in curly braces. However, F# allows us to 
create our own identifiers that give a special meaning to a block of code. In general this 
feature is called computation expressions and sequence expressions are just a single special 
case that is implemented in the F# core. 
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We've seen that computation expressions can contain standard language constructs such 
as for loops, but also additional non-standard constructs like yield. The identifier that 
precedes the block gives the meaning to these constructs in a same sense as query 
operators (e.g. Select and Where extension methods) specify what a LINQ query does. 
This means that we can create a customized computation expression for working with option 
values. We could work with option values using the for construct, but F# gives us a nicer 
way to customize the expression. You can see these alternative approaches in listing 12.15. 
The version on the left side uses syntax similar to sequence expressions and the version on 
the right is a more natural way of writing the same thing.  

Listing 12.15 Computation expressions for working with option values (F#) 
option { 
   for n in tryReadInt() do 
      for m in tryReadInt() do 
         yield n * m  
} 

option { 
   let! n = tryReadInt() 
   let! m = tryReadInt() 
   return n * m  
} 

In the version on the left side, each for loop can be executed at most once. When the 
option value contains an actual value, it will be bound to the symbol n or m respectively and 
the body of the loop will execute. However, developers have an expectation that loops work 
with collections and not option values, so the constructs for and yield are usually only 
used with sequences. When we create a computation expression that works with other types 
of value, we'll use the syntax on the right. 

The right side uses two more non-standard primitives. The first one is let! (read let-
bang), which represents a customized value binding. In the example above, the type of 
values n and m is int. The non-standard value binding un-wraps the actual value from the 
value of type option<int>. It may fail to assign the value to the symbol when the value 
returned from TryReadInt is None. In that case the whole computation expression will 
immediately return None without executing the rest of the code. The second non-standard 
primitive in the expression is return. It specifies how to construct an option value from the 
actual value. In the example above, we give it an int value and it constructs the result, 
which has a type option<int>. 

The concepts we've just seen can be regarded as a functional design pattern. In the 
following sidebar we'll discuss the core concepts of the idea and I'll also mention how it 
relates to Haskell monads, which are the origin of F# computation expressions.  

Understanding computation expressions and monads 

Computation expressions in F# are an implementation of an idea that has been proven 
useful in Haskell, called monads. The name monad refers to a term from mathematics, 
but F# uses a different name that better reflects how the idea is used in the F# language. 

When defining a computation expression (or monad), we always work with a generic type 
such as M<'a>. This type is often called a monadic type and it specifies the meaning of 
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the computation. This type can augment the usual meaning of the code we write. For 
example the option<'a>, which we've just seen augments the code with the possibility 
to return an undefined value (None). In fact, sequences also form a monad. The type 
seq<'a> augments the code with the ability to work with multiple values. 

Each computation expression (or monad) is implemented using two functions. The first 
one is bind that allows us to create and compose computations that work with values of 
the monadic type. In listing 12.15, the bind operation was used whenever we used the 
let! primitive. The second operation is return, which is used to construct a value of the 
monadic type. In the example above, this is the F# return keyword. 

In the next section, we'll look at the simplest possible custom computation. We'll 
implement it in both C# and F# to explain what the monadic type is and how the bind and 
return operations from the previous sidebar look. 

12.5 First steps in custom computations 
The example in this section doesn't have any real-world benefit, but it demonstrates the core 
concepts. The first task in designing a non-standard computation is to think about the type 
that which represent the values produced by the computation. 

12.5.1 Declaring the computation type 
The type of the computation (the monadic type in Haskell terminology) in this example will 
be called TheValue<T> and it will simply store the value of the generic type parameter T. It 
will not augment the type with any additional functionality. This means that the computation 
will work with standard values, but we'll be able to write the code using query expressions in 
C# and computation expressions in F#.  

The listing 12.16 shows the type declaration in both C# and F#. In C#, we'll create a 
simple class and in F# we'll use a simple discriminated union with only a single case. 

Listing 12.16 Value of the computation in C# and F# 
class TheValue<T> { 
   public T Value { get; set; }  #1 
} 

type TheValue<'a> = 
   | Value of 'a       #2 

The C# type is very simple and just stores the value of type T. If we wanted to 
implement the code more properly, we'd make it immutable (so the property (#1) would be 
read only). We don't actually mutate any values after initialization, but I'm trying to keep the 
example as concise as possible so we can concentrate on the new ideas.  

The use of a discriminated union with a single case (#2) in F# is also interesting. It 
allows us to create a named type that is very easy to use. As we'll see shortly, we can access 
the value using pattern matching (using the Value discriminator). Pattern matching with 
this type can never fail because there's only a single case. This lets us use it directly inside 
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value bindings, which will prove useful when we implement the computation algorithm. First 
let's look at the kinds of computation we'll be able to write with this new type. 

12.5.2 Writing the computations 
C# query expressions and F# computation expressions allow us to use functions that behave 
in a non-standard way (by returning some monadic value) as if they returned an ordinary 
value. The computation type we're using in this section is TheValue<T>, so primitive 
functions will return values of type TheValue<T> instead of just T.   

These functions can be implemented either using another query or computation 
expression, or directly by creating the value of the computation type. Some computation 
expressions can encapsulate very complicated logic, so it may be difficult to create the value 
directly. In that case, we'd typically write a small number of primitives that return the 
computation type and use these primitives to implement everything else. However, 
constructing a value of type TheValue<T> is very easy. The following code shows how to 
implement a primitive method in C# that reads a number from the console and wraps it 
inside this computation type: 

TheValue<int> ReadInt() { 
   int num = Int32.Parse(Console.ReadLine()); 
   return new TheValue<int> { Value = num }; 
} 

The method just reads a number from the console and wraps it inside the TheValue<T> 
type. The F# version is equally simple, so we won't discuss it here. The important point is 
that these primitive functions are the only place where we need to know anything about the 
underlying structure of the type. For the rest of the computation, we'll just need to know that 
that the type supports all the primitives (most importantly bind and return) that are needed 
to write a query or computation expression. Listing 12.19 shows a snippet that reads two 
integers using the primitive above and performs a calculation with then.   

Listing 12.19 Calculating with computation values in C# and F# 
var v =  
   from n in ReadInt()          #1 
   from m in ReadInt()          #1 
   let add = n + m 
   let sub = n - m 
   select add * sub;            #3 

value {  
   let! n = readInt()          #2 
   let! m = readInt()          #2 
   let add = n + m 
   let sub = n - m 
   return add * sub }          #4 

#1, #2 In C# we're using the 'from' clause to access the actual values (#1). In F#, we can use the 
customized value binding (#2) to unwrap the value  
#3, #4 Once the calculation is done, we again wrap the actual value inside the computation type. In 
C#, we're using a 'select' clause (#3) and in F# we use the 'return' primitive (#4) 

Annotations below the code with bullets on the left side 

As you can see, the structure of the code in C# and F# is quite similar. The code doesn't 
have any real-world use, but it will help us understand how non-standard computations 
work. The only interesting thing is that it allows us to write the code in C# as a single 
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expression using the let clause, which creates a local variable. This clause behaves very 
much like the F# let binding, so the whole code is a single expression. 

In the following discussion, I'll focus more on the F# version, because it will make it 
easier to explain how things work. The query expression syntax in C# is tailored to writing 
queries, so it's harder to use for other types of non-standard computations. However, we'll 
get back to C# soon once we've implemented the F# computation expression.  

You can see that the example above is using just two primitives. The bind primitive is 
used when we call the computation primitives (#2) and the return primitive is used to wrap 
the result in the TheValue<int> type. The next question you probably have is how the F# 
compiler uses these two primitives to interpret the computation expression and how can we 
implement them. 

12.5.3 Implementing the computation operators 
The identifier value that precedes the computation expression block is actually an object that 
implements the required operations. Various operations are available: we don't have to 
support them all. The most basic operations are implemented using the Bind and Return 
members. When the F# compiler sees a computation expression such as the one in listing 
12.19, it translates it to F# code that uses these members. The F# example is translated to 
the following: 

value.Bind(ReadInt(), fun n -> 
   value.Bind(ReadInt(), fun m -> 
      let add = n + m 
      let sub = n - m 
      value.Return(n * m) )) 

Whenever we use the let! primitive in the computation, it is translated to a call to the 
Bind member. This is because the readInt function actually returns a value of type 
TheValue<int>, but when we assign it to a symbol n using the customized value binding, 
the type of the value will be int. The purpose of the Bind member is to unwrap the actual 
value from the computation type and call the function that represents the rest of the 
computation with this value as an argument. 

The fact that the rest of the computation is transformed into a function gives the 
computation a lot of flexibility. The Bind member could call the function immediately, or it 
could return a result without calling the function. For example, when we're working with 
option values and the first argument to the Bind member is the None value, we know what 
the overall result will be (None) regardless of the function. In this case, the bind operation 
cannot call the given function, because the option value doesn't carry an actual value to use 
as an argument. In other cases, the bind operation could effectively remember the function 
(by storing it as part of the result) and execute it later. We'll look at an example of this in 
the next chapter. 

The example above also shows that multiple let! constructs are translated into a 
nested calls to the Bind member. This is because the function given as the last argument to 
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this member represents everything in the rest of the computation. The example above ends 
with a call to the Return member, which is created when we use the return construct. 

Understanding the type signatures of bind and return 

The types of the two operations that we need to implement for various computation 
expressions will always have the same structure. The only thing that will vary in the 
following signature is the generic type M: 

   Bind   : M<'a> * ('a -> M<'b>) -> M<'b> 
   Return : 'a -> M<'a> 

In our previous example, the type M is of course the TheValue type. In general, the 
bind operation needs to know how to get the actual value from the computation type in 
order to call the specified function. When the computation type carries additional 
information, the bind operation also needs to combine the additional information carried 
by the first argument (of type M<'a>) with the information extracted from the result of 
the function call (of type M<'b>) and return them as part of the overall result. The return 
operation is much simpler, because it simply constructs a computation from the primitive 
value. If the computation carries some additional information, the return operation sets 
this argument to some value that represents empty information. 

The object named value in the previous example which is used when constructing the 
computation is called a builder in F#. Now that we know what members it has and what their 
type signatures are, we can start implementing them. 

IMPLEMENTING A COMPUTATION BUILDER IN F# 
Listing 12.20 shows a simple builder implementation with the two required members. We 
also need to create an instance called value to be used in the translation. 

Listing 12.20 Implementing computation builder for values (F#) 
type TheValueBuilder() =  
   member x.Bind(Value(v), f) = f(v)               #1 
   member x.Return(v) = Value(v)                   #2 
let value = new TheValueBuilder()                  #A 
#1 Invoke the rest of the computation 
#2 Wrap value inside the computation type 
#A Create instance of the builder 
The Bind member (#1) first needs to unwrap the actual value from the TheValue<'a> 

type. This is done in the parameter list of the member, using the Value discriminator of the 
discriminated union as a pattern. The actual value will be assigned to the symbol v. Once we 
have the actual value, we can invoke the rest of the computation f. The computation type 
doesn't carry any additional information, so we can return the result of this call as the result 
of the whole computation. The Return member is trivial, because it just wraps the actual 
value inside the computation type. 
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Using the value declared in this listing, we can now run the computation expression 
from listing 12.19. F# also lets us use computation expressions to implement the readInt 
function as well. We just need to wrap the result in instance of TheValue<int> type, which 
can be done using the return primitive: 

> let readInt() = value {  
     let n = Int32.Parse(Console.ReadLine()) 
     return n } 
val readInt : unit -> TheValue<int> 

This function doesn't need the bind operation, because it doesn't use any values of type 
TheValue<'a>. The whole function is enclosed in the computation expression block, which 
causes the return type of the function to be TheValue<int> instead of just int. If we 
didn't know anything about the TheValue<'a> type, the only way to use the function would 
be to call it using the let! primitive from another computation expression. This is important 
because it shows that the bind operation gives us a way to compose computation 
expressions. 

This isn't possible in C#, because the query cannot begin with a let clause (which 
corresponds to a standard F# let binding). However, even queries like the one we've seen 
earlier can be useful. Now that we've got the F# part of listing 12.19 compiling, let's 
implement the C# part. 

IMPLEMENTING QUERY OPERATORS IN C# 
We've seen how the C# queries are translated to method calls in listing 12.13 when we were 
talking about sequences and when we analyzed the SelectMany operation. I said that the 
query with a single from clause can be translated to a call to the Select method, but for 
multiple from clauses, we'll also need the SelectMany operation. When writing 
computations using queries, we use the from clause in a similar way to the F# let! 
construct to represent a non-standard value binding, so we'll use it quite often. This means 
that we'll need to implement both Select and the SelectMany. 

You already know that the SelectMany method corresponds to the bind function, but 
it's slightly more complicated because it takes an additional function that we'll need to run 
before returning the result. The Select method is simpler, but we'll talk about that after 
looking at the code. Listing 12.21 shows the implementation of both of the primitives. 

Listing 12.21 Implementing query operators (C#) 
static class TheValueExtensions { 
   public static TheValue<R> Select<S, R> 
         (this TheValue<S> source, Func<S, R> sel) { 
      return new TheValue<R> { Value = sel(source.Value) };         #1 
   } 
   public static TheValue<R> SelectMany<S, C, R> (this TheValue<S> source,  
         Func<S, TheValue<C>> sel, Func<S, C, R> selRes) { 
      var newVal = sel(source.Value);                               #2 
      var resVal = selRes(source.Value, newVal.Value);              #3 
      return new TheValue<R> { Value = resVal };                    #4 
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   } 
} 
#1 Projection for 'TheValue' type 
#2 Unwrap the value and run the function 
#3 Combine values to build the result 
#4 Wrap and return the result 
Both of the methods are implemented as extension methods. This means that C# will be 

able to find them when working with values of type TheValue<T> using the standard dot 
notation which is used during the translation from the query syntax. The Select operator 
(#1) implements projection using the given function, so it only needs to access the wrapped 
value, run the given function and then wrap the result again. 

The SelectMany operator is confusing at first, but it's useful to look at the types of the 
various parameters. They tell us what arguments we can pass to what functions. The 
implementation starts off like the F# Bind member by calling the function given by the 
second argument after unwrapping the first argument (#2). However, we also need to run 
function pass in as the final argument to combine the source value with the value returned 
by the first function call. We call the second function (#3), and wrap the result into the 
computation type (#4) and use it to return from the method. 

PRIMITIVES IN C# AND F# 

We had to implement different primitive operators for F# and C#, but they're closely 
related. In particular, if we had methods representing the bind and return operators in 
C#, we could implement both Select and SelectMany with just those operators. This 
doesn't work the other way round, because there's no way to implement the return 
operator using just the LINQ primitives. This explains why we could write readInt using 
computation expressions in F#, but we can't do the same thing in C# using a query. 

After implementing the operators above, the query expression in listing 12.19 will 
compile and run. The computation type that we created in this section is quite simple, 
because it doesn't augment the computation with any additional information. However, the 
very fact that it was so simple makes it a good template for the standard operations. We can 
implement more sophisticated monadic types by starting with this template and seeing 
where we need to change it. 

We'll put this idea into practice now by implementing similar operators for the option 
type. 

12.6 Implementing computation expressions for options 
I used option values as an example in section 12.4 when I introduced the idea of creating 
non-standard computations using LINQ queries and F# computation expressions. The code 
we wrote worked with option values as if they were standard values, with a customized value 
binding to read the actual value. Now that we've seen how computation expressions are 
translated, we know that our Bind member will receive a value and a lambda expression. 
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With our option type computation expression, we only want to execute the lambda 
expression if the value is Some(x) instead of None. In the latter case, we can return None 
immediately. 

In order to run the earlier examples, we'll need to implement LINQ query operators in 
C# and the option computation builder in F#. Again we'll start with the F# version. Listing 
12.22 shows an F# object type with two members. We've already implemented the 
Option.bind function in chapter 6, but we'll reimplement it here to show what a typical 
bind operation does. 

Listing 12.22 Computation builder for option type (F#) 
type OptionBuilder() =  
   member x.Bind(v, f) =  
      match v with                       #1 
      | Some(value) -> f(value)          #2 
      | _ -> None                        #3 
   member x.Return(v) = Some(v)          #A 
   
let option = new OptionBuilder() 
#1 Unwrap the option value 
#2 Run the rest of the computation 
#3 The result is undefined 
#A Wrap actual value 
The Bind member starts by extracting the actual value from the option given as the 

first argument. This is similar to the Bind we implemented earlier for the TheValue<'a> 
type. Again we're using pattern matching (#1), but in this case, the value may be undefined 
so we're using the match construct. If the value is defined, we call the specified function 
(#2). This means that we bind a value to the symbol declared using let! and run the rest of 
the computation. If the value is undefined, we return None as the result of the whole 
computation expression (#3).  

The Return member takes a value as an argument and has to return a value of the 
computation type. In our example, the type of the computation is option<'a>, so we wrap 
the actual value inside the Some discriminator. 

In order to write the corresponding code in C# using the query syntax, we'll need to 
implement Select and SelectMany methods for the Option<T> type we defined in 
chapter 5. Listing 12.23, implements two additional extension methods so that we can use 
options in query expressions. This time we'll use the extension methods we wrote in chapter 
6 to make the code simpler. 

Listing 12.23 Query operators for option type (C#) 
static class OptionExtensions { 
   public static Option<R> Select<S, R> 
         (this Option<S> source, Func<S, R> sel) { 
      return source.Map(sel);                                          #1 
   } 
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   public static Option<R> SelectMany<S, C, R>(this Option<S> source,  
         Func<S, Option<C>> sel, Func<S, C, R> selRes) { 
      return source.Bind(s =>                                          #2 
         sel(s).Map(c => selRes(s, c)));                               #3 
   } 
} 
#1 Same operation is called 'Map' 
#2 Use 'Bind', which we have already 
#3 Format the result 
The Select method should apply the given function to the value carried by the given 

option value if it contains an actual value and then again wrap the result into an option type. 
We've already implemented this functionality under a different name. In F# the function is 
called Option.map and we used an analogous name (Map) for the C# method. If we'd 
looked at LINQ first, we'd probably have called the method Select from the beginning, but 
the simplest solution is to add a new method that just calls Map (#1). 

SelectMany is more complicated. It is similar to the bind operation, but in addition it 
needs to use the extra function specified as the third argument to format the result of the 
operation. We wrote the C# version of the bind operation in chapter 6, so we can use the 
Bind extension method in the implementation (#2). To call the formatting function selRes, 
we need two arguments - the original value carried by the option and the value produced by 
the binding function (named sel). We can do this by adding a call to Map at the end of the 
processing, but we need to place this call inside the lambda function given to the Bind 
method (#3). This is because we also need to access the original value from the source. 
Inside the lambda function, the original value is in scope (variable named s), so we can use 
it together with the new value, which is assigned to the variable c. 

This implementation is a bit tricky, but it shows that many things in functional 
programming can be just composed from what we already have. If you try to implement this 
on your own, you'd see that the types are invaluable helpers here. You might start just by 
using the Bind method, but then you'd see that the types don't match. However, you'd see 
what types are incompatible and if you looked at what functions are available, you'd quickly 
discover what needs to be added in order to get the correct types. As I wanted to highlight 
several times in this book, the types in functional programming are far more important and 
tell you much more about the correctness of your program. 

Using the new extension methods, we can run the examples from section 12.3. In F#, 
we didn't provide an implementation for the yield and for primitives, so only the version 
using return and let! will work. This is intentional, because the first set of primitives is 
more suitable for computations that work with sequences of one form or another. However, 
we still need to implement the TryReadInt method (and the similar F# function). These are 
really simple, because they just need to read a line from the console, attempt to parse it and 
return Some when the string is a number or None otherwise. 

The Identity and Maybe monads 
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The two examples that we've just seen are well known in the Haskell world. The first one 
is called the identity monad, because the monadic type is the same as the actual type of 
the value, just wrapped inside a named type. The second example is called the maybe 
monad, because Maybe is the Haskell type name that corresponds to the option<'a> 
type in F#. 

The first example was mostly just a toy example to demonstrate what we need to do 
when implementing computations, but the second one can be useful when writing code 
that is composed from a number of operations, each of which can fail. When you analyze 
the two examples, you can see how important the monadic type is. Once you understand 
the type, you know what makes the computation non-standard.  

So far the examples have been somewhat abstract. Our next section is a lot more 
concrete. It allows us to add automatic logging into our code.  

12.7 Augmenting computations with logging 
Logging can be usually implemented using global mutable state. If we want to use different 
logging mechanisms in different parts of the program, it's best to avoid having global 
loggers. However, implementing that would be quite difficult, because we'd have to pass a 
state of the logger as an additional argument to every function we call. 

However, we can create a non-standard computation that enables logging and hides the 
state of the logger inside the computation type. This example relies on the fact that we can 
surround any piece of standard F# code with the computation expression block. As such, it's 
not really feasible to use C# for this example. We'll start off by designing the computation 
type (monadic type) we need to allow simple logging. 

12.7.1 Creating the logging computation 
The computation will produce a value and in addition, it will allow us to write messages to a 
local logging buffer. This means that the result of the computation will be a value and a list 
of strings for the messages. Again we'll use a discriminated union with a single discriminator 
to represent the type: 

type Logging<'a> =  
   | Log of 'a * list<string> 

This type is quite similar to the TheValue<'a> example we discussed earlier, but with 
the addition of an F# list of the messages written to the log. Now that we have the type, we 
can implement the computation builder. As usual, we'll need to implement the Bind and 
Return members. We'll also implement a new member called Zero, which allows us to write 
computations that don't return any value. We'll see how that's used later on. 

The implementation of the builder is shown in listing 12.24. The most interesting is the 
Bind member, which needs to concatenate the log messages from the original value and the 
value generated by the rest of the computation (which is the function given as an argument 
to the Bind member). 
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Listing 12.24 Computation builder that adds logging support (F#) 
type LoggingBuilder() = 
   member x.Bind(Log(v, logs1), f) =        #1 
      let (Log(nv, logs2)) = f(v)           #2 
      Log(nv, logs1 @ logs2)                #3 
   member x.Return(v) =  
      Log(v, [])                            #A 
   member x.Zero() =  
      Log((), [])                           #B 
   
let log = new LoggingBuilder() 
#1 Unwrap the value and log buffer 
#2 Run the rest of the computation 
#3 Wrap the value and merge log buffers 
#A Augment value with an empty log 
#B No value with an empty log 
As with our other examples, the most difficult part is implementing the Bind member. 

Our logging type follows all the normal steps including a third one that was missing for both 
the option and TheValue types: 

1. In the first step, we need to unwrap the value. Since we're using a single case 
discriminated union, we can use pattern matching in the argument list of the 
member (#1). 

2. The second step is to call the rest of the computation if we have a value to do that. 
In the example above, we always have the value, so we can run the given function 
(#2). However, we don't immediately return the result; instead we decompose it to 
get the new value and the log messages produced during the execution. 

3. We've collected two buffers of log messages, so in the last step we need to wrap the 
new value and augment it with the new logger state. To create that new state, we 
concatenate the original message list with the new list that was generated when we 
called the rest of the computation (#3). 

In the next chapter, we'll see a useful non-standard computation where the whole 
computation is delayed. In that case, the steps above will be a bit different, because the 
Bind member returns a result that captures the rest of the computation and can run it later, 
but in general, most of the bind operations look like the one we've just seen. 

The Return and Zero members are simple. Return just needs to wrap the actual 
value into the Logging<'a> type and the Zero represents a computation that doesn't carry 
any value (meaning that it returns a unit). In both of the cases, we're creating a new 
computation value, so the primitives return an empty logging buffer. All the log messages 
will be produced in other ways and appended in the Bind member. However, if you look at 
the code we've got so far, there is no way we could create a non-empty log! This means that 
we'll need to create one additional primitive to create a computation value containing a log 
message. We can write it as a simple function: 

> let logWrite(s) =  
     Log((), [s]) 
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val logWrite : string -> Logging<unit> 

The function creates a computation value that contains a unit as the value. More 
importantly, it also contains a message in the logging buffer, so if we combine it with 
another computation using Bind, we get a computation that writes something to the log. 
Now we can finally write some code that uses the newly created logging computation. 

12.7.2 Using the logging computation 
Listing 12.25 starts off by implementing two helper functions for reading from and writing to 
the console. Both of them will also write a message to the log, so they will be enclosed in the 
log computation block. We then use these two functions in a third function, to show how we 
can compose non-standard computations. In the previous examples, we used the let! 
primitive, but listing 12.25 introduces do! as well.  

Listing 12.25 Logging using computation expressions (F# interactive) 
> let write(s) = log {                           #1 
     do! logWrite("writing: " + s) 
     Console.Write(s) } 
val write : string -> Logging<unit> 
 
> let read() = log {  
     do! logWrite("reading") 
     return Console.ReadLine() } 
val read : unit -> Logging<string> 
     
> let testIt() = log {  
     do! logWrite("starting")         #2 
     do! write("Enter name: ")        #3 
     let! name = read()               #4 
     return "Hello " + name + "!" } 
val testIt : unit -> Logging<string> 
 
> let res = testIt();; 
Enter name: Tomas 
 
> let (Log(msg, logs)) = res;; 
val msg : string = "Hello Tomas!" 
val logs : string list = ["starting"; "writing: Enter name:"; "reading"] 
#1 Writes string to console and to the log 
#2 Call the primitive logging function 
#3 Call function written using computation expressions 
#4 Using customized value binding 
We use the new do! primitive in several places, to call functions that return 

Logging<unit>. In this case, we want to write a non-standard binding that executes the 
Bind member, because we want to concatenate logging messages. However, we can ignore 
the actual value, because it is unit. That's the exact behavior of the do! primitive. In fact, 
when we write do! f(), it is just a shorthand for writing let! _ = f(), which uses the 
customized binding and ignores the returned value. 
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When implementing the computation builder, we added a member called Zero. This is 
used behind the scenes in the example above. When we write a computation that doesn't 
return anything (#1), the F# compiler automatically uses the result of Zero as the overall 
result. If we didn't provide this member, we'd have to explicitly write return (). This 
would call the Return member with a unit value as an argument. 

If you look at the type signatures in the listing, you can see that the result type of all 
the functions is the computation type (Logging<'a>), which is same as the result type of 
the logWrite function that we implemented earlier. This demonstrates that we have two 
ways of writing functions of a non-standard computation type. We can build the computation 
type directly (as we did in the logWrite function) or use the computation expression. The 
first case is useful mostly for writing primitives and the second approach is useful for 
composing code from these primitives or other functions. 

You can see the composable nature of computation expressions by looking at the 
testIt function. It first uses the do! construct to call a primitive function implemented 
directly (#2). Writing to the screen (and to the log) is implemented using a computation 
expression, but we call it in exactly the same way (#3). Finally, we're calling a function that 
returns a value and writes to the log, so we're using the customized binding with the let! 
keyword (#4). In general, the code we wrote looks just like an ordinary F# code with a 
couple of added "!" symbols. 

Refactoring using computation expressions 

In the previous chapter, we saw various ways of refactoring functional programs. The last 
topic was laziness, which changes the way code executes without affecting the outcome 
of the program. In one sense, adding laziness can be also viewed as a refactoring 
technique. Computation expressions are similar in that they augment the code with an 
additional aspect without changing its core meaning. 

There is a close relationship between computation expressions and laziness. It's possible 
to create a computation expression that turns code into a lazily evaluated version, with a 
computation type of Lazy<'a>. You can try implementing the computation on your own: 
the only difficult part is writing the Bind member. We won't talk about this any more 
here, but you can find additional information on the book's web site. 

The interesting thing is how easy it is to turn standard F# code into code that has the 
non-standard behavior. We have to enclose the code into a computation expression block 
and then add calls to the primitives provided for the computation expression, such as the 
logWrite function we just implemented. When the code we're implementing is split 
between several functions, we have to change the calls to these functions from a usual 
call or usual value bindings into customized value bindings using either let! or do! 
primitives. When writing code that uses computation expressions in F#, the typical 
approach is to start with the standard version of the code, which is easier to write and 
test, and then refactor it into an advanced version using computation expressions. 
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Perhaps the most difficult thing about using computation expressions is to identify when 
it is beneficial to design and implement them. After summing up the examples we've just 
seen, we'll look at one very useful real-world example in the next chapter. 

12.8 Summary 
In the first part of the chapter, we talked about .NET sequences, as represented by the 
IEnumerable<T> type, also known as seq<'a> in F#. We started by looking at techniques 
for generating sequences including higher order functions, iterators and F# sequence 
expressions. We saw that sequences are lazy, which allows us to create infinite sequences. 
We looked at a real-world example using an infinite sequence of colors to separate the code 
to draw of a chart from the code that generates the colors used in the chart. 

Next we discussed how to process sequences. We wrote the same code using higher 
order functions, the corresponding LINQ extension methods, C# query expressions and F# 
sequence expressions. This helped us to understand how queries and sequence expressions 
work. One most important operation is the bind operation, which occurs in sequences as the  
map_concat function in F# and the SelectMany method in LINQ. 

However, the same conceptual operation is available for many other types, and we saw 
how to create F# computation expressions that look like sequence expressions but work with 
other types. We've looked at two practical examples, implementing computation expressions 
for working with option types and to store log messages during execution. The same idea 
can be implemented in C# to some extent, with query expressions being used in the place of 
computation expressions. However, the F# language features are more general, while C# 
query expressions are really tailored to queries. 

In the next chapter, we'll look at one of the most important uses of F# computation 
expressions. It allows us to execute I/O operations without blocking the caller thread. This is 
particularly important when performing slow I/O such as reading data from the internet. 
Later we'll see how F# allows us to interactively process and visualize data, which is 
becoming an important task in the today's increasingly-connected world. 
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13 
Asynchronous data retrieval and 

processing 

Let me start this chapter with a quote from a recent interview with Bill Gates. He talks about 
the type of programming tasks that he's interested in and describes the typical scenario 
when writing the application: 

"Grab data from the web, don't just think of it as text, bring structure into it and then […] 
try out different ways of presenting it, but very interactively. […] Write a little bit of code 
that may have your specific algorithm for processing that data." [Gates, 2008] 

This brief quote exactly describes what we're going to do in this chapter and as you'll 
see, the F# language and its interactive shell are excellent tools for solving this kind of task. 
We'll call this approach explorative programming, because the goal is to explore a massive 
amount of data and find a way to gather useful information from it. We'll spend most of the 
chapter working with F# interactive, because it gives us a great way to "write a little bit of 
code" with "our specific algorithm for processing the data" and immediately execute it to see 
the results. 

The F# language and libraries support this type of programming in many ways and we'll 
look at all the important technologies involved. To obtain the data, we can use asynchronous 
workflows based on the computation expression syntax that we introduced in the previous 
chapter. Then we'll look at "bringing a structure" to the data using F# types. We'll also use 
units of measure that allow us to specify that a certain value isn't just a floating point 
number, but that it has a unit such as square kilometers. 

Finally, we'll look at "trying out different ways of presenting the data". In particular, we'll 
see how to export the structured data to Excel using its .NET API, and programmatically 
visualize the data as a chart. 
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13.1 Asynchronous workflows 
In one sense, asynchronous workflows are just another example of F# computation 
expressions–but they are one of the most important implementations of the idea, allowing us 
to write asynchronous code in a readable and efficient way. Let's start off by looking at a 
simple but practical example. 

13.1.1 Downloading web pages asynchronously 
There are many areas where we can use asynchronous operations. When working with disk 
or connecting to the database, asynchronous workflows can give us a notable performance 
benefit. However, the best example is downloading content from the web. The network 
connection is often slow or unreliable, so if we used synchronous operations from the main 
UI thread, our application could be unresponsive for a significant period of time. 

Before we can use asynchronous workflows to fetch web content, we'll need to reference 
the FSharp.PowerPack.dll library that contains asynchronous versions of many .NET 
methods. When developing a standalone application, you would use the "Add Reference" 
command. In this chapter we're using the interactive development style, so we'll create a 
new F# Script File and use the #reference directive. You can see the content of the script 
file in the listing 13.1. 

Listing 13.1 Writing code using asynchronous workflows (F# interactive) 
> #reference "FSharp.PowerPack.dll";; 
 
> open System.IO 
  open System.Net 
  open Microsoft.FSharp.Control;;                  #A 
 
> let downloadUrl(url:string) = async {            #1 
     let req = HttpWebRequest.Create(url) 
     let! resp = req.AsyncGetResponse()            #2 
     let stream = resp.GetResponseStream() 
     use reader = new StreamReader(stream)         #3 
     return! reader.AsyncReadToEnd() }             #4 
val downloadUrl : string -> Async<string>          #5 
#A Namespace containing all the asynchronous functionality 
#1 Using the 'async' computation builder 
#2 Run operation asynchronously 
#3 Dispose 'StreamReader' when completed 
#4 Run asynchronously and then return the result 
#5 Returns a non-standard computation type 
After opening all the required namespaces, we define a function that is implemented 

using the asynchronous workflow. It uses the async value as a computation builder (#1). If 
you type "." immediately after the value in the Visual Studio, IntelliSense shows that it 
contains all the usual computation builder members such as Bind and Return, and also a 
couple of additional primitives that we'll need later. The printed type signature (#5) shows 
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that the type of the computation is Async<'a>. We're going to look at this type in more 
detail in a moment. 

The code in the listing above uses the let! construct once when executing a primitive 
asynchronous operation AsyncGetResponse (#2) provided by the F# library. The return 
type of this method is Async<WebResponse>, so the let! construct composes the two 
asynchronous operations and it binds the actual WebResponse value to the resp symbol. 
This means that we can work with the value once the asynchronous operation completes. 

Next step we get the response stream and create a StreamReader object. The use 
primitive will make sure that the object will be disposed automatically when the 
asynchronous workflow completes.  

On the last line, we're using a primitive that we haven't seen before: return! (#4). 
This allows us to run another asynchronous operation (just like the let! primitive) but 
returns the result of the operation when it completes rather than assigning it to some 
symbol. Just like the do! primitive, this is simply syntactic sugar. In particular, the 
computation builder doesn't have to implement any additional members; the compiler treats 
the code as if it were written like this: 

let! text = reader.AsyncReadToEnd()   
return text 

Now that we have the downloadUrl function that creates the asynchronous 
computation, we should also look how we can use it to actually download the content of a 
web page. As you can see in the listing 13.2, we can use functions from the Async module 
to execute the workflow. 

Listing 13.2 Executing asynchronous computations (F# interactive) 
> let downloadTask = downloadUrl("http://www.manning.com");;     #1 
val downloadTask : Async<string> 
 
> Async.Run(downloadTask);;                                      #2 
val it : string = "" 
 
> let tasks =                                                    #3 
     [ downloadUrl("http://www.tomasp.net"); 
       downloadUrl("http://www.manning.com") ] 
val tasks : list<Async<string>> 
 
> let all = Async.Parallel(tasks)                                #4 
  Async.Run(all);;                                               #A 
val all : Async<string[]> 
val it : string[] = [ ""; "" ] 
#1 Build the asynchronous workflow 
#2 Run the workflow and wait for the result 
#3 Create collection of workflows 
#4 Join all workflows into one 
#A Run the joined workflow 
Code written using asynchronous workflows is delayed, which means that when we 

execute the downloadUrl function on the first line, it doesn't actually start downloading 
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the web page yet (#1). The returned value (of type Async<string>) represents the 
computation that we want to run just like a function value represents some code that we can 
later execute. The Async module provides various ways of actually running the workflow, 
some of which are described in table 13.1. 

Primitive The type of the primitive and description 
Run Async<'a> -> 'a 

Runs the given workflow in the background. This operation blocks the caller thread 
and waits for the result of the workflow. 

Spawn Async<unit> -> unit 

Starts the given workflow in the background and returns immediately. The 
workflow executes in the parallel with the subsequent code of the caller. As 
indicated in the signature, the workflow cannot return a value. 

SpawnFuture Async<'a> -> AsyncFuture<'a> 

Starts executing the given workflow in the background and returns immediately. 
The result is an object with a property named Value that can be used at any 
later time to get the result of the computation. If the computation hasn't completed 
when the Value property is accessed, the calling thread will block. 

Parallel seq<Async<'a>> -> Async<array<'a>> 

Takes a collection of asynchronous workflows and returns a single workflow that 
executes all of the arguments in parallel. The returned workflow waits for all the 
operations to complete and then returns their results in a single array. 

Table 13.1 Selected primitives for working with asynchronous workflows that are available in 
the 'Async' module in the standard F# library. 

In listing 13.2 we initially use Async.Run (#2), which blocks the caller thread. This is 
useful for testing the workflow interactively. In the next step, we create a list of workflow 
values (#3). Again, nothing starts executing at this point. Once we have the collection, we 
can use the Async.Parallel function to build a single workflow that will execute all 
workflows in the list in parallel. This still doesn’t execute any of the original workflows. To do 
that, we need to use the Async.Run primitive, which will start the composed workflow and 
wait for its result. This waits for the results of all the workflows in the list. 

The code still waits for the overall result, but it runs very efficiently. It uses the .NET 
thread pool to balance the maximal number of running threads, so if we created hundreds of 
tasks, it wouldn't create hundreds of threads, because that would be inefficient, but instead 
use a smaller number (which may be around 20 threads). However, the number of tasks 
running in parallel can be significantly larger than 20. When the workflow reaches a primitive 
asynchronous operation called using the let! construct, it registers a callback in the system 

Licensed to Curtis J Pitts <beop.love@gmail.com>

Download at Boykma.Com



 359 

©Manning Publications Co. Please post comments or corrections to the Author Online forum: 
http://www.manning-sandbox.com/forum.jspa?forumID=460 

and releases the thread. This means that the thread can be reused for starting another 
asynchronous workflow. 

In this chapter, we need to obtain the data interactively, so we're interested in running 
workflows in parallel rather than in developing responsive GUI applications. The latter class 
of applications (also called reactive applications) is important, and chapter 16 will focus 
solely on this topic. 

Now we've seen what code using asynchronous workflows looks like, let's see how 
they're implemented. 

13.1.2 Looking under the cover 
In the previous chapter we saw that F# code written using a computation expression is 
translated into an expression that uses the primitives provided by the appropriate 
computation builder. For asynchronous workflows, this means that the let! construct is 
translated into a call to async.Bind, and return is translated into async.Return. In 
addition, asynchronous workflows are delayed. This means that the computation itself needs 
to be wrapped in an additional primitive to make sure that the whole code will be enclosed in 
a function. The function can then be executed later when we start the workflow. Listing 13.3 
shows the translated version of listing 13.2. 

Listing 13.3 Asynchronous workflow constructed explicitly (F#) 
async.Delay(fun () ->                                    #1 
   let req = HttpWebRequest.Create(url)                  #2 
   async.Bind(req.AsyncGetResponse(), fun resp ->        #3 
      let stream = resp.GetResponseStream() 
      // ...                                             #A 
   )  
) 
#1 Create delayed workflow 
#2 Standard value binding 
#3 Customized asynchronous value binding 
#A The rest of the code is omitted 
The Delay member (#1) is one of the computation builder members that we can 

provide when implementing a computation expressions. In the example above, it takes a 
function that returns the asynchronous workflow (the type is unit -> Async<'a>) and 
returns a workflow value (Async<'a>) that wraps this function. Thanks to this primitive, 
the whole computation is enclosed inside a function and it isn't executed when we create the 
Async<'a> value. This is an important difference from the examples in the previous 
chapter such as the option<'a> type. An option represents a value, so the computation 
expression runs immediately, performing the computation and returning a new option value. 
On the other hand, the Async<'a> type represents a computation that can be executed 
later, so evaluating the async block just creates a workflow without executing it. It will 
become clearer what this means when we look at the Async<'a> type in detail. 

The other primitive that occurs in the listing is the Bind member. As we learned in the 
previous chapter, this is crucial for all computation expressions. In asynchronous workflows, 
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Bind allows us to start an operation without blocking the caller thread. The following list 
summarizes the steps that happen when we execute the workflow above using a primitive 
such as Async.Run:  

 The function given as an argument to the Delay primitive (#1) starts executing. It 
synchronously creates the object that represents the HTTP request for the given 
URL (#2). 

 AsyncGetResponse is called. The result is a primitive asynchronous workflow 
that knows how to start the request and call a specified function when the operation 
completes.  

 We execute the Bind member and give it the workflow from step 2 as the first 
argument and a function that takes the HTTP response as an argument and should 
be executed when the workflow completes. This function is called a continuation, 
which is a term we've seen already in chapter 10. 

 The Bind member runs the workflow created by AsyncGetResponse, 
passing it the specified continuation. The primitive workflow then calls the 
.NET BeginGetResponse method that instructs the system to start downloading 
the response and call the given continuation when the operation completes. At this 
point, the Bind member returns and the thread that was executing the operation is 
returned to the thread pool. 

 When the response is ready, the system will call the continuation. The workflow 
gets the actual response object using the EndGetResponse .NET method and 
then executes the continuation given to the Bind member, which represents the 
rest of the computation. Note that the system again picks a thread from the tread 
pool, so the rest of the computation may be executed on a different thread each 
time we use the let! primitive. 

The key point is that when we execute an asynchronous workflow, we don't wait for the 
result. Instead, we give it a continuation as an argument; this continuation will be executed 
when the corresponding step in the workflow has completed. The great thing about 
asynchronous workflows is that we don't have to write the code using continuations 
explicitly. The compiler translates let! primitives into the calls to the Bind member, 
creating the continuation automatically. 

Investigating the asynchronous workflow type 

You can use asynchronous workflows without understanding all the details, but you may 
be interested in a little bit of information about how they're implemented. We've seen 
that asynchronous workflows are similar to functions in that they represent a computation 
that we can execute later. If you look under the covers, you can see that the type is 
actually represented as a function in the F# library. The actual type is a bit more 
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sophisticated, but the simplest asynchronous computation could be represented using the 
following: 

type Async<'a> = (('a -> unit) * (exn -> unit)) -> unit 

This is a function that takes two arguments as a tuple and returns a unit value. The two 
arguments are important, because they are continuations - functions that can be called 
when the asynchronous workflow completes. The first one is of type 'a -> unit, 
which means that it takes the result of the workflow. This continuation will be called when 
the workflow completes. It can then run another workflow or any other code. The second 
continuation takes an exn value as an argument, which is the F# abbreviation for the 
.NET Exception type. and as you can guess, it is used when the operation that the 
workflow executes fails.   

Even though the precise implementation details of asynchronous workflows aren't 
important, it's useful to be able to create your own primitive workflows - the equivalent of 
the AsyncGetReponse method used in listing 13.3. You can then use the rest of the 
building blocks to run your code asynchronously with the minimum of fuss. 

13.1.3 Creating primitive workflows 
The F# PowerPack library contains asynchronous versions for many of the important I/O 
operations, but it can't include all of them. It also provides methods for building your own 
primitive workflows. If the operation you want to run inside the workflow uses a standard 
.NET pattern and provides BeginSomeOperation and EndSomeOperation methods, 
then you can use Async.BuildPrimitive method. If you give it these two methods as 
an argument, it'll return an asynchronous workflow.  

However, there are other operations that can be executed without blocking the thread. 
For example, we may want to wait for a particular event to occur and continue executing the 
workflow when it's triggered. Listing 13.4 creates a primitive that waits for the specified 
number of milliseconds using a timer and then resumes the workflow.  

Listing 13.4 Implementing asynchronous waiting (F# interacitve) 
> module Async =  
     let Sleep(time) =                                                 #1 
        Async.Primitive(fun (cont, econt) -> 
           let tmr = new System.Timers.Timer(time, AutoReset = false)  #A 
           tmr.Elapsed.Add(fun _ -> cont())                            #2 
           tmr.Start()  
        );; 
(...) 
 
> Async.Run(async {  
     printfn "Starting..." 
     do! Async.Sleep(1000.0)                                           #3 
     printfn "Finished!" 
  });; 
Starting... 
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Finished! 
val it : unit = () 
#1 Primitive that delays the workflow 
#A Initialize timer 
#2 Run the rest of the computation 
#3 Non-blocking waiting using a timer 
This may look like a toy example, but we'll need the Sleep function later in the 

chapter. Of course, we could block the workflow using the .NET Thread.Sleep method, 
but there is an important difference. This method would block the thread, while our function 
creates a timer and returns the thread to the .NET thread pool. This means that when we use 
our primitive, the .NET runtime can execute workflows in parallel without any limitations. 

Let's now look at the implementation. The Sleep function (#1) takes the number of 
milliseconds for which we want to delay processing and uses the Async.Primitive 
function to construct the workflow. It reflects the internal structure of the workflow quite 
closely. The argument is a lambda function that will be executed when the workflow starts. 
The lambda takes a tuple of two continuations as an argument. The first function should be 
called when the operation completes successfully, and the second should be called when the 
operation throws an exception. In the body of the lambda, we create a timer and specify the 
handler for its Elapsed event. The handler simply runs the success continuation (#2). 

Having created our new primitive, the listing shows a simple snippet that uses it. 
Because it returns a unit value, we're using the do! primitive rather than let! (#3). When 
the code is executed, it constructs the timer with the handler and starts it. When the 
specified time elapses, the system takes an available thread from the thread pool and runs 
the event handler, which in turn executes the rest of the computation (in our case, printing 
to the screen). 

Asynchronous workflows in C# 

There have been various attempts to simplify asynchronous programming in C#, but 
none of the available libraries works quite as neatly as the asynchronous workflow 
syntax. The F# syntax is extremely simple from the end-user point of view (just wrap the 
code in an async block) which is quite difficult to achieve in C#. 

We've seen that LINQ queries roughly correspond to F# computation expressions, so you 
might be tempted to implement Select and SelectMany operations. In principle, it 
would be possible to write asynchronous operations using query expressions, but the 
syntax we can use inside queries is very limited. Interestingly, C# iterators can be also 
used for this purpose and you can find more information about this in my article 
Asynchronous programming in C# using iterators [Petricek, 2007]. 

A more sophisticated technique, which is also based on C# iterators is available thanks to 
the Concurrency and Coordination Runtime (CCR). This library was developed as part of 
Microsoft Robotics studio, where responsiveness and asynchronous processing is essential 
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for any application. You can find more information about this library in Jeffery Richter's 
Concurrency Affairs article [Richter, 2006]. 

That's all we need to know about asynchronous workflows for now–it's time to start 
using them for more practical purposes. In the next section, we'll look at the data services 
provided by the World Bank, and see how to obtain it with asynchronous workflows.  

13.2 Connecting to the World Bank 
It's no accident that the discussion about asynchronous workflows is located in a chapter 
about explorative programming. Many of the interesting data sources you'll work with today 
are available online in the form of a web service or other web based application. As we've 
seen, asynchronous workflows are the essential F# feature for obtaining the data. 

However, downloading the data efficiently isn't our only problem. The data sources 
usually return the data in an untyped format (such as a plain text or XML without a 
precisely-defined schema), so we first need to understand the structure. Also, remote data 
sources can be unreliable, so we have to be able to recover from failure. This means that 
even before we write the code to obtain the data, we need to explore the data source. As 
we'll see, the F# interactive tools give us a great way for doing that. 

13.2.1 Accessing the World Bank data 
The data source we'll use in this chapter is the service provided by the World Bank. The 
World Bank is an international organization that provides funding and knowledge to the 
developing countries. As part of its job, the organization need to identify what type of 
support is the most efficient, where is it needed and evaluate whether it had an impact on 
the economy, quality of life or the environment of the developing country. The World Bank 
has a data set called "World Development Indicators" with information about many countries, 
and it makes the data available online. In this chapter, we'll work with information about the 
environment and more specifically about the area covered by forests and agricultural land. 
The data provided by the World Bank is available for free, but you need to register on the 
bank's web site first. 

REGISTERING WITH THE WORLD BANK 

Registration is performed on the http://developer.worldbank.org web site. Once you fill in 
the form and get the confirmation email, you can return to the web site and obtain an API 
key, which is used when sending requests to the World Bank services. The web site also 
contains documentation and a brief tutorial about the service. You can take a look at it 
there, but I'll explain everything we use in this chapter. One interesting feature on the 
web page is Query Generator, which allows you to run and configure queries interactively 
and shows the URL that we can use to request the data programatically.  

The World Bank exposes the data using a simple HTTP based service, so we can use the 
downloadUrl function we created earlier. If you look at the documentation or experiment 
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with the Query Generator for some time, you'll quickly learn the structure of the request 
URLs. The address always refers to the same page on the server and all the additional 
properties are specified in the URL as key-value pairs. In listing 13.5, we'll start by creating a 
function that constructs the request URL from an F# list containing the key-value pairs, so 
that we can access the data more easily. 

Listing 13.5 Building the request URL (F#) 
let worldBankKey = "xxxxxxxxxx"                                   #A 
 
let worldBankUrl(props) =  
   seq { yield "http://open.worldbank.org/rest.php?per_page=100"  #1 
         yield "api_key=" + worldBankKey                          #1 
         for key, value in props do 
            yield key + "=" + value }                             #2 
   |> String.concat "&" 
#A Specify your World Bank key here 
#1 Same for all requests 
#2 Additional properties specified by the user 
The function body contains a sequence expression that generates a collection of strings. 

This collection is then concatenated using the "&" symbol as a separator. In the sequence 
expression, we first return the base part of the URL and the API key (#1), which is the part 
shared by all the requests we'll need in this chapter. We then iterate over all the key/value 
pairs specified as the props argument and return a "key=value" string (#2) that forms 
the part of the resulting URL. 

In this chapter, we're creating an F# script file rather than a traditional application, so 
the next step is to write a couple of F# interactive commands that we can execute 
immediately to see whether the function we just wrote works correctly. This "test request" is 
also useful to see the data format used by the bank, so we know what we need to do later to 
parse the data. 

The statistics provided by the World Bank are available for individual countries, but they 
can also be grouped based on region or income. These aggregated statistics make it easier 
to see overall trends. The first thing we need to do is to get the information about all the 
available groups. You can try this on the web site using the Query Generator. First select the 
"Countries" option in the "Country Calls" tab and enter your API key. To get a list of 
aggregated country groups, you can choose "Aggregates" from the "Region" list and then run 
the request. Listing 13.6 shows how to run the same request using F# interactive.  

Listing 13.6 Testing the World Bank data service (F# interactive) 
> let url = worldBankUrl ["method", "wb.countries.get";                 #1 
                          "region", "NA" ];;                            #1 
val url : string =  
   "http://open.worldbank.org/rest.php?per_page=100& 
    api_key=xxxxxxxxxx&method=wb.countries.get&region=NA" 
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> Async.Run(downloadUrl(url));;                                         #2 
val it : string = "<?xml version=\"1.0\" encoding=\"utf-8\" (...)" 
#1 Build request URL with the specified properties 
#2 Download the page as a string 
We start by creating the URL using the function we just implemented (#1). We give it 

two additional parameters. The "method" parameter specifies which of the World Bank data 
sources we want to access and the "region" parameter specifies what types of countries we 
want to list. The "NA" value specifies that we're interested in the aggregated country 
information. As we're using F# interactive, we immediately see the composed URL. It 
contains all the specified parameters, the World Bank key and also a flag specifying that we 
want to return up to 100 of records per page. We'll talk about paging of the output later 
when we need to obtain larger number of indicators. 

Once we have the URL, we can copy it into a web browser to see what data the World 
Bank returns. To download the page programmatically, we can use our downloadUrl 
function. As with any network operation, the download may fail for various reasons. This 
doesn't matter if we're running the request manually, but when we're executing a bulk 
operation to download data from various URLs in parallel, we need to write the code in a way 
it can recover from non-fatal failures.  

13.2.2 Recovering from failures 
The World Bank service only allows us to a limited number of requests each day for a single 
user key, and it also limits the frequency of requests. This means that if we a run large 
number of requests at once, some of them may return an error. The workaround is to catch 
the exception and retry the request later.  

Listing 13.7 implements a loop that executes a request repeatedly until either it 
succeeds or we've tried 20 times. The failure is reported using exceptions and we're using 
the F# try … with construct to catch the exception.  

Listing 13.7 Running the web request repeatedly (F# interactive) 
> let worldBankDownload(props) =   
     let url = worldBankUrl(props)                                     #A 
     let rec loop(n) = async {                                         #1 
        try 
           return! downloadUrl(url)                                    #2 
        with e when n < 20 ->                                          #3 
           printfn "Failed, retrying (%d): %A" n props 
           do! Async.Sleep(500.0)                                      #4 
           return! loop(n+1) }                                         #5 
   loop(1);;                                                           #B 
val worldBankDownload : seq<string * string> -> Async<string> 
         
> let props = ["method", "wb.countries.get"; "region", "NA"];;         #C 
val props : list<string * string> 
 
> Async.Run(worldBankDownload(props)) 
Failed, retrying (1): [("method", "wb.countries.get"); ("region", "NA")] 
val it : string = "<?xml version=\"1.0\" encoding=\"utf-8\" (...)" 
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#A Construct the request URL 
#1 Recursive asynchronous function 
#2 Run the actual download asynchronously 
#3 Catch exception when we want to retry 
#4 Delay the workflow without blocking 
#5 Recursively retry the request 
#B Return the recursive workflow 
#C Try the function interactively 
The normal functional way to create a loop is to write a recursive function that takes the 

iteration number as an argument and increments this number on each iteration. Listing 13.7 
this pattern with a twist. The loop function (#1) is implemented using an asynchronous 
workflow, so we're creating a recursive asynchronous workflow. The recursive call is in the 
exception handler (#4) and it uses the return! primitive to run the next iteration of the 
asynchronous loop. The body of the workflow attempts to download the page (#2), but it 
does this in a try … with block that catches possible exceptions.  

The try … with block in F# is similar to the try … catch in C#, but it has some 
additional features. It allows us to distinguish between exceptions using pattern matching in 
a similar way we can use the match construct. In the example above, we're simply catching 
all exceptions, but in addition we've added a when clause (#3). This means that the 
exception will be caught only when the number of attempts is less than 20. Finally, it is 
worth noting that we're handling exceptions inside the asynchronous workflow in the same 
way you can handle exceptions in normal F# code. This is possible thanks to an additional 
primitive that the asynchronous workflow provides under the hood which tells F# how to deal 
with exceptions that occur during asynchronous operations. 

On the last few lines of the listing, you can see how to use the function to get data from 
the World Bank. You can simulate a failure in the connection by disconnecting your computer 
from the network for a short time and you'll see that the code is able to recover from the 
failure. Now that we have a reliable function for downloading data, we can move forward and 
download all data we want to work with. 

13.3 Exploring and obtaining the data 
As we've seen in the last couple of examples, the World Bank data service returns the data 
as XML documents, so before we can write any code to process the data in a meaningful 
way, we'll need to convert it an F# type. In chapter 7, we converted between XML and our 
own custom record type, but in this case we're just going to use tuples and sequences. This 
is because the data structure will be quite simple and when we working with data 
interactively we need to modify the code quite frequently, either to tweak how we're using 
the existing values or to download different information. Tuples are more flexible for this 
task - we won't end up constantly renaming values. 

We'll use LINQ to XML again, just as we did in chapter 7, but this time, we won't use the 
whole file. Instead we'll just pick out the nodes that are relevant. First we need a few helper 
functions. 
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13.3.1 Implementing XML helper functions  
LINQ to XML is primarily designed for C# and VB, and working with it from F# can be a bit 
cumbersome. For example, F# doesn’t support implicit type conversions (because it would 
complicate type inference), so every time we specify an element name, we have to use 
XName.Get instead of simply using a string. 

However, we can easily implement a couple of F# functions to wrap the most commonly 
used parts of LINQ to XML and give us a very "F#-friendly" way to work with the data. As 
you can see in listing 13.8, most of the functions are very straightforward. The listing is 
created using F# interactive, so you can use the inferred type signatures to understand what 
a function does. One notable aspect is that each function takes the input element as its last 
argument, which means that we'll be able to compose the functions using the pipelining 
operator. 

Listing 13.8 Helper functions for reading XML (F# interactive) 
> #reference "System.Xml.dll" 
  #reference "System.Xml.Linq.dll";; 
 
> open System.Xml.Linq;; 
 
> let xattr s (el:XElement) =                                  #A 
     el.Attribute(XName.Get(s)).Value 
  let xelem s (el:XContainer) =                                #B 
     el.Element(XName.Get(s)) 
  let xvalue (el:XElement) =                                   #C 
     el.Value 
  let xelems s (el:XContainer) =                               #D 
     el.Elements(XName.Get(s));; 
val xattr : string -> XElement -> string 
val xelem : string -> XContainer -> XElement 
val xvalue : XElement -> string 
val xelems : string -> XContainer -> seq<XElement> 
 
> let xpath path (el:XContainer) =                             #1 
     let res = path |> Seq.fold (fun xn s ->  
        xn |> xelem s :> XContainer) el                        #E 
     res :?> XElement 
val xpath : seq<string> -> XContainer -> XElement 
#A Returns value of the specified attribute  
#B Returns child node with the specified name 
#C Returns the text inside the node 
#D Returns child elements with the specified name 
#1 Return child node specified by a path 
#E Move to the child element 
The listing first references the necessary assemblies for LINQ to XML and opens the 

namespace containing classes such as XElement. The first group of functions are used to 
access child nodes, attributes or the value of any given element. It is worth noting that the 
xelem function takes XContainer as an argument, which means that we can use it for 
both ordinary elements, but also with an object that represents the whole document. 
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The last function (xpath) and is slightly more sophisticated (#1). It takes a sequence 
of names as an argument and follows this path to find a deeply nested element. It is 
implemented using Seq.fold and uses the input element as the initial state. The lambda 
function is executed for each name in the path. It finds a child of the current element with 
the specified name and returns it as a new child element. We want the type of the input to 
be XContainer, so the folding operation uses this type to represent the current state. As 
a result, we need to upcast the returned element to XContainer inside the lambda 
function and downcast the final result to XElement. 

Equipped with these helper functions, we can easily extract all the information we want 
from the downloaded XML documents. If you're unsure about what any of the new functions 
do, don't worry: everything will become clearer once we start using them with real data. 

13.3.2 Extracting region codes 
The result of our download function is a string, so we need to parse this as an XML 
document. We'll need this operation frequently, so we'll write a simple wrapper function that 
downloads the data using worldBankDownload and returns the result as an 
XDocument object. The download executes asynchronously, so we'll implement the 
function using asynchronous workflows: 

let worldBankRequest(props) = async { 
   let! text = worldBankDownload(props) 
   return XDocument.Parse(text) } 

The code first invokes the asynchronous download using let! and when it completes, it 
parses the XML data and returns the XDocument object. Once we execute the download 
using Async.Run, we can query the returned XML document using the helper functions 
from the previous section. Listing 13.9 shows an example of this, downloading the 
aggregated information about countries and then accessing some values we'll need later. 

Listing 13.9 Exploring the region information (F# interactive) 
> let doc = Async.Run(worldBankRequest ["method", "wb.countries.get";  
                                        "region", "NA"] );; 
val doc : XDocument = ... 
 
> let c = doc |> xpath [ "rsp"; "countries"; "country" ];;             #1 
val c : XElement 
 
> c |> xattr "id";;                                                    #2 
val it : string = "EAP" 
 
> c |> xelem "name" |> xvalue;;                                        #3 
val it : string = "East Asia & Pacific" 
#1 Select the first country element 
#2 Read the value of the 'id' attribute 
#3 Get the value of the 'name' child element 
We start by accessing the first "country" element in the returned document. This 

element is a child element of the "countries" element, which is a child element of the root 
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element named "rsp". To walk down the XML tree, we use the xpath function (#1) and 
specify the path to the element we want to select. 

Now we can look at the content of the element to see what information we want to 
extract. We'll need the ID of the region, because this is used to identify it elsewhere. This is 
stored in the "id" attribute, so we can read it using the xattr function (#2). Finally, we'll 
also need the name of the region, so that we can display the data in a user-friendly format. 
This is the value of the "name" element (#3). 

Now that we've explored the structure and made sure we know how to access all the 
region information we need for a single region, we can loop over all the regions. Listing 
13.10 uses the same functions, but in a sequence computation. 

Listing 13.10 Creating sequence with region information (F# interactive) 
> let regions =  
     seq { let countries = doc |> xpath [ "rsp"; "countries" ] 
           for r in countries |> xelems "country" do                 #1 
              yield r |> xattr "id",                                 #2 
                    r |> xelem "name" |> xvalue }                    #2 
val regions : seq<string * string> = seq  
   [ ("EAP", "East Asia & Pacific"); ("ECA", "Europe & Central Asia"); 
     ("EMU", "European Monetary Union"); 
     ("HPC", "Heavily indebted poor countries (HIPC)"); ...] 
#1 Read all child nodes 
#2 Yield information about the region 
The only important change from the previous listing is that we're now processing all the 

"country" nodes in the data. We access these elements as a sequence using the xelems 
function (#1), and then iterate over them using a for loop. As we're using a sequence 
expression, we can generate result elements using the yield keyword. We use the code 
that we tried in the previous listing to get the ID and the user-friendly name of the country, 
and return them as a tuple containing two strings (#2). 

In this section, we've seen how to get a list of regions that we want to further study. 
The important aspect isn't the exact code we've used, but the general process. We created 
some helper functions to make data access easy, checked that we understood the document 
structure by fetching some information interactively, and then we wrapped the code inside a 
function. As a next step, we'll download the indicators that we want to show such as the area 
occupied by forests. 

13.3.3 Obtaining the indicators 
To obtain the data about countries or regions, we'll use a different method of the World Bank 
service. The method name is "wb.data.get" and you can find it in the Query Generator under 
the "Data Calls" tab. This allows us to request indicator data about a specific country for a 
given time period. Instead of downloading the data individually for each region that we're 
interested in, we'll fetch the information for all countries at once and then process them in 
memory. Even though we'll download more data in this way, we'll use a smaller number of 
requests, because we won't have to create request for every region. 
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We'll follow the same pattern as before, starting off by downloading a sample portion of 
the data and then examining it using our XML querying functions. Listing 13.11 shows how to 
download indicators specifying the proportion of a country covered by forests, as a 
percentage. The key for this indicator is "AG.LND.FRST.ZS" which is best discovered by 
simulating the query in the Query Generator. We'll download the data for 1990, requesting 
the first page of the data set. 

Listing 13.11 Obtaining area covered by forests (F# interactive) 
> let ind = "AG.LND.FRST.ZS"                                            #A 
  let date = "1990"                                                     #A 
  let page = 1                                                          #A 
  let props = 
     [ "method", "wb.data.get"; "date", date;                           #B 
       "indicator", ind; "page", string(page) ];;                       #B 
 (...) 
 
> let doc = Async.Run(worldBankRequest(props))                          #1 
  printfn "%s..." (doc.ToString().Substring(0, 285));;                  #1 
val doc : XDocument  
<data page="1" pages="3" per_page="100" total="227"> 
   <dataPoint> 
      <country id="ABW">Aruba</country> 
      <indicator id="AG.LND.FRST.ZS">Forest area (% ...</indicator> 
      <date>1990</date> 
      <value /> 
   </dataPoint> 
   <dataPoint>... 
  
> doc |> xpath [ "rsp"; "data" ] |> xattr "pages" |> int;;              #2 
val it : int = 3 
 
> doc |> xpath [ "rsp"; "data"; "dataPoint"; "country" ] |> xattr "id";;#3 
val it : string = "Aruba" 
#A First page of forest area data from 1990 
#B Build arguments for the request 
#1 Get the data and print a preview 
#2 Read the total number of pages 
#3 Read the ID of the first country 
The listing first defines a couple of properties that we need to specify in order to create 

the request and creates a list with the properties that we need for the 
worldBankRequest function.  After downloading the document, we want to explore its 
structure, so we convert it back into string and print out the first few lines (#1). The output 
shows us that the total data set has three pages. Information for each country is nested in 
"dataPoint" elements which contain the country name and ID, information about the data 
and the actual value. However, for the first country the value is missing, so we'll have to be 
careful and handle this case when parsing the data.   

Next we'll write two simple expressions that we'll need very soon. First we need to read 
the number of pages (#2) so that we can download all the data. The next expression (#3) 
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reads the ID attribute of the first country. This will be needed later, because we'll want to 
match it with the region ID that we collected in the previous section. 

Now we have a pretty good idea about the structure of the data, we can write a function 
to download everything we need. Listing 13.12 shows an asynchronous which runs in a loop 
until it gets all the pages. We're not downloading pages in parallel, because that would be 
slightly harder to write, but we're going to run the same function in parallel for different 
indicators and years, so there will be enough parallelism in the end. 

Listing 13.12 Downloading all indicator data asynchronously (F#) 
let rec getIndicatorData(date, ind, page) = async { 
   let! doc = worldBankRequest [ "method","wb.data.get"; "date",date; 
                                 "indicator", ind; "page", string(page) ] 
   let pages = doc |> xpath [ "rsp"; "data" ] |> xattr "pages" |> int   #1 
   if (pages = page) then  
      return [doc]                                                      #2 
   else  
      let! rest = getIndicatorData(date, ind, page + 1)                 #3 
      return doc::rest } 
#1 Get the number of pages  
#2 Data from the last page  
#3 Download the remaining pages 
The function takes the date, indicator and the required page number as parameters. We 

use them to build the list of arguments for the worldBankRequest function. When we 
receive the XML, we read the attribute that specifies the total number of pages of the data 
set (#1). If the page we're currently processing is the last one, we return a list containing 
only the current page (#2) as a single-element list. Otherwise, we need to download the 
remaining pages. Note that the function is declared with let rec, so we can invoke it 
recursively to get the remaining pages (#3). This is done using let! because we're inside 
an asynchronous workflow. Once we get the list of remaining pages, we just append the 
page we just downloaded and return all the pages as the result. 

Before moving on, you can verify that this function works correctly using F# interactive. 
Make a request for indicator "AG.LND.FRST.ZS", year 1990 and page number 1. When you 
run the workflow using Async.Run, you should get three pages containing data about all 
the countries and regions.  

Now let's introduce some parallelism, downloading all the indicators for all the years that 
we're interested in. We'll be using the Async.Parallel primitive, so we need to create a 
sequence of asynchronous workflows. The code in listing 13.13 does this using a simple 
sequence expression that calls the getIndicatorData function for all the combinations 
of parameters. Don't forget that just calling getIndicatorData doesn't actually perform 
the fetch - it just returns a workflow which can perform the fetch. 

Listing 13.13 Downloading multiple indicators for multiple years in parallel (F#) 
let downloadAll = seq {                                        #1 
   for ind in [ "AG.SRF.TOTL.K2"; "AG.LND.FRST.ZS" ] do 
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      for year in [ "1990"; "2000"; "2005" ] do 
         yield getIndicatorData(year, ind, 1) } 
 
let data = Async.Run(Async.Parallel(downloadAll))              #2 
#1 Return workflow for each indicator and a year 
#2 Run all workflows in parallel 
The sequence expression first iterates over two indicators (#1). The first represents the 

total surface of the country or region in square kilometers and the second is the percentage 
of forest area, as we've already seen. If you look at the data on the web site, you can see 
that the forest area indicator is only available for three different years, so the nested loop 
iterates over these. For each combination of these parameters, we create (and yield) a 
workflow that runs the download starting from the first page. 

This means that we'll get in total 6 tasks, each of which may download multiple pages. 
We combine the tasks into a workflow that returns an array of these 6 results and run the 
combined workflow using Async.Run (#2). The download can take some time and you 
may see that some of the requests failed and were restarted as we discussed earlier. The 
type of the data value that we get as a result is array<list<XDocument>>. The array 
contains a list of pages that were returned for each of the indicator-year combination.  

Since we're writing an F# script, we don't have to worry about putting the settings such 
as years and indicators into a configuration file. We're writing the code only for a single 
purpose at the moment. Of course we can modify it later to be generally useful, but that 
would happen later in development. Now that we've retrieved the data, we need to do 
something useful with it. 

13.4 Gathering information from the data 
The amount of data that we can download from the internet is enormous, but the difficult 
part is gathering useful information from it. So far in this chapter, we have downloaded a list 
of regions and converted it into a sequence containing the name and ID of each region using 
normal F# types. Then we downloaded a bunch of XML documents that contain information 
about all regions and countries. In this section, we'll take this untyped XML data and convert 
it into a typed data structure that contains information we can easily display to the user. 

13.4.1 Reading values 
The first thing we need to do is to extract the data we're interested from the XML. We're 
going to write a function that takes a list of XDocument objects (one for each page of the 
data set) and returns a sequence where each element contains the value of the indicator, the 
ID of the region and the year in which the value was measured. 

Listing 13.14 shows this in the form of the readValues function, as well as a helper 
function to data from an XML node representing a single record. Each function has a 
parameter named format, which is a function used to parse the actual value. We'll soon 
see the reason behind this parameter. 
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Listing 13.14 Reading values from the XML data (F#) 
let readValue format node = 
   let value = node |> xelem "value" |> xvalue                     #A 
   let country = node |> xelem "country" |> xattr "id"             #A 
   let year = node |> xelem "date" |> xvalue |> int                #A 
   if (value = "") then []                                         #1 
   else [ (year, country), format(value) ]                         #1 
 
let readValues format data = seq {  
   for page in data do 
      let root = page |> xpath [ "rsp"; "data" ] 
      for node in root |> xelems "dataPoint" do                    #B 
         yield! node |> readValue format }                         #2  
#A Get the value, year and the country ID 
#1 Value missing - return an empty list 
#B Find all 'dataPoint' elements for all pages 
#2 Parse the element and yield returned tuples 
We start by writing the utility function that takes the formatting function and an XML 

node that contains a single data point. It reads values from child nodes and attributes, 
converting the year to an integer. If you look at the data we downloaded, you can see that 
the "value" element is sometimes empty. We handle this by returning an empty list if the 
value is missing and a list containing single element otherwise. Note that we could have used 
an option type instead, but a list makes the second function more elegant: we don't have to 
distinguish between the two cases; we simply return "all" the elements (either none or one) 
using the yield! primitive (#2). 

The second function takes the entire input data as a sequence of XDocument objects. 
It finds all the XML elements containing data entries, formats them and returns a sequence. 
The type of the element in the returned sequence is (int * string) * 'a. The first 
tuple contains the year and the country ID. We'll use this as a key later on when searching 
for the data, which is why we're using a nested tuple. The second element is the value 
formatted using the format function, so the type will be the same as whatever the function 
returns. 

As usual, we can try the function immediately. The key input for the function is the data 
source, which is written as the last argument so we can use the pipelining operator. The 
simplest formatter we can use (for test purposes) is one that just returns whatever string it's 
given, without really processing it at all. The following short snippet shows how to process 
the first data set, which contains the total surface area of all the countries in the year 1990. 

> data.[0] |> readValues (fun s -> s) 
val it : seq<(int * string) * string> =  
   seq [ ((1990, "ABW"), "180"); ((1990, "ADO"), "470");  
         ((1990, "AFG"), "652090"); ((1990, "AGO"), "1246700"); ...] 

You can see we're getting closer to what we need: we can now read the data directly 
from the sequence. The only remaining irritation is that the values are clearly numbers, but 
we're treating them just as strings. Fortunately this is easy to fix… 
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13.4.2 Formatting data using units of measure 
When reading the values of many of the indicators from the XML data, we could just convert 
them to float values. That would work, because both the surface area and forestation 
percentages are numbers, but it wouldn't tell us much about the data. The purpose of 
converting the data from untyped XML into a typed F# data structure is to annotate it with 
types that help us understand the meaning of the values. To make the type more specific, 
we can use units of measure, which we mentioned briefly in chapter 2. Using this feature we 
can specify that surface is measured in square kilometers and the area covered by forests in 
percentage of the total area. Let's start by looking at a couple of examples that introduce 
units of measure. 

USING UNITS OF MEASURE 
Working with units of measure in F# is very easy, which is why I've introduced them just as 
a brief digression in this chapter. We can declare a measure using the type keyword with a 
special attribute. Strictly speaking, a measure isn't a type, but we can use it as part of 
another type. Let's start by defining two simple measures to represent hours and kilometers: 

[<Measure>] type km 
[<Measure>] type h 

As you can see, we're using the Measure attribute to specify that the type is a 
measure. This is a special attribute which the F# compiler understands. Instead of defining 
units ourselves, we could also use the standard set in the FSharp.PowerPack.dll library, but 
for now we'll use our own declarations. Now that we have units km and h, we can create 
values that represent kilometers or hours. Listing 13.15 shows how to create values with 
units and how to write a function that calculates with them. 

Listing 13.15 Writing calculations using units of measure (F#) 
> let length = 9.0<km>;;                                    #1 
val length : float<km> = 9.0 
 
> length * length                                           #2 
val it : float<km^2> = 81.0 
 
> let distanceInTwoHours(speed:float<km/h>) =               #3 
     speed * 2.0<h>;; 
val distanceInTwoHours : float<km/h> -> float<km>           #4 
 
> distanceInTwoHours(30.0<km/h>);; 
val dist : float<km> = 60.0 
#1 A constant representing distance 
#2 We get an area by multiplying distances 
#3 Parameter type uses a unit 
#4 Shows the inferred unit of the return type 
F# allows us to specify units for floating point values. This is done by appending a unit in 

angle brackets to the value (#1). We started by defining a value that represents a length in 
kilometers. If we write a calculation using value with units, F# automatically infers the units 
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of the result, so we can see that multiplying two distances gives us an area in square 
kilometers (#2). When specifying units, we can use the conventional notation, so "^" 
represents a power, "/" is used for division and multiplication is written just by placing 
juxtaposing the units. 

The next example shows that we can write functions with parameters that include 
information about the units. Our sample function takes a speed and returns the distance 
traveled in two hours (#3). We want the parameter to be specified in kilometers per hour, so 
we add a type annotation that contains the unit. This is written by placing the unit in angle 
braces in a same way as when specifying type arguments of a type such as list<int>. 
The F# compiler infers the return type for us (#4) just as it does when working with ordinary 
types. As usual, this provides a useful clue to understanding what a function does when 
you're reading it. It's also a valuable quick check to avoid making simple mistakes when 
writing the function–if we were trying to calculate a distance, but ended up with a return 
type using a unit of time, we'd know something was wrong. 

 
In our World Bank data, we'll use the unit km^2 to represent the total area of a country. 

So far, so good - but the second indicator that we obtained is provided as a percentage. How 
can we specify the unit of a percentage? Even though units of measure are primarily used to 
represent physical units, we can use them to represent percentages as well: 

[<Measure>] type percent 
let coef = 33.0<percent> 

This code creates a unit for specifying that a number represents a percentage and then 
defines a constant coef which has a value 33%. Strictly speaking, the value in percents 
doesn't have a unit, because it is just a coefficient, but defining it as a unit is quite useful. To 
demonstrate this, let's try to calculate 33% of a 50 kilometer distance. Since coef 
represents a coefficient, we can simply multiply the two values: 

> 50.0<km> * coef;; 
val it : float<km percent> = 1650.0 

This is obviously wrong. We want the result to be in kilometers, but if you look at the 
actual inferred type, you can see that the result is in kilometers multiplied by our new 
percent unit. Since we're running the code interactively, we can also see that the number 
is too high, but the great thing about units of measure is that we can spot the error during 
the type-checking without actually running the program. So what went wrong? The problem 
is that a percentage value represents a coefficient multiplied by 100. To write the calculation 
correctly, we need to divide the value by 100 percents: 

> 50.0<km> * q / 100.0<percent>;; 
val it : float<km> = 16.5 

As you can see, this is much better. We divided the result by 100%, which means that 
we don't have the percent unit in the result. F# automatically simplifies the units and it 
knows that km percent/percent is the same thing as km. This example demonstrates 
a significant reason for using units of measure: just like other types, they help us to catch a 
large number of errors as early as possible.  
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UNITS OF MEASURE IN DETAIL 

There are many other interesting aspects of units of measure that we haven't covered in 
this brief introduction. For example, you can define derived units such as N (representing 
a force in newtons), which is in fact just kg m/s^2. It is also possible to use units as 
generic type parameters in functions or types. For more information about units of 
measure, consult the F# online documentation and the blog of the feature's architect, 
Andrew Kennedy (http://blogs.msdn.com/andrewkennedy). 

Let's get back to our main example and convert the data that we downloaded into a 
typed form that includes information about units. We'll use the km unit for representing the 
area and the percent unit for representing the portion of the area covered by forests. 

FORMATTING THE WORD BANK DATA 
When we declared the readValues function to read the values from XML documents, we 
included a formatting function as the final parameter. This is used to convert each data point 
into a value of the appropriate type. The array we downloaded contains three data sets of 
surface areas in square kilometers and three data sets of the forest area percentages. Listing 
13.16 shows how we can turn the raw documents into a data structure from which we can 
easily extract the important information. 

Listing 13.16 Converting raw data into a typed data structure (F#) 
let floatInv(s) =                                                     #1 
   let inv = System.Globalization.CultureInfo.InvariantCulture 
   System.Double.Parse(s, inv) 
 
let areas =  
   Seq.concat(data.[0..2])                                            #2 
      |> readValues (fun a -> floatInv(a) * 1.0<km^2>)                #3 
      |> Map.of_seq                                                   #4 
let forests =  
   Seq.concat(data.[3..5])                                            #5 
      |> readValues (fun a -> floatInv(a) * 1.0<percent>)             #5 
      |> Map.of_seq                                                   #5 
#1 Parse a float using the invariant culture 
#2 Concatenate data for the first indicator 
#3 Convert to square kilometers 
#4 Return the data as a hashtable 
#5 Create a hashtable storing the forested area in percents 
The listing starts with a simple floatInv function (#1) that converts a string to the 

F# float type. This is similar to the built-in F# float function, with the difference that 
our function uses the invariant culture. The format used by the World Bank uses dot as a 
delimiter, so the number is for example "1.0", however the float function parses the data 
using the culture of the current thread. The code is more robust when we specify the culture 
we know to be appropriate for our data. 
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The main part of the data processing is written using pipelining. It uses a new feature 
that we haven't yet introduced to get the first three elements from the data set. This is 
called slicing and the syntax data.[0..2] gives us a sequence containing the array items 
with indices 0 to 2 (#2). We concatenate the returned sequence using Seq.concat, so 
we'll get a single sequence containing data for all the years. The next step in the pipeline is 
to read the values and convert them to the appropriate type using units of measure (#3). 
This turns out to be the easiest bit - just a simple lambda expression! 

Finally, we use the Map.of_seq function to build an F# hashtable type from the data 
(#4). This function takes a sequence containing tuples and uses the first element as a key 
and the second element as the value. In the example above, the key has a type int * 
string and contains the year and the region ID. The value in the first case has a type 
float<km^2> and in the second case (#5) float<percent>. We've converted the 
data into a hashtable so that we can easily lookup the indicators for different years and 
regions. 

13.4.3 Gathering statistics about regions 
Our goal is to show how the forested area has changed in different regions since 1990. We'll 
need to iterate over all the regions that we have, test whether the data is available and find 
the value of the indicators we downloaded. This can be done quite easily using the 
hashtables we created, because they have the year and the region ID as the key. 

We have to be slightly careful because some data may be missing, so we'll filter out any 
region for which we don't have data for all the years we're interested in. Also, we want to 
display the total area of forests rather than the percentage, so we need a simple calculation 
before returning the data. Even though it may sound difficult, the code isn't very 
complicated. The listing 13.18 shows the final few commands that we need to enter to the 
F# interactive to get the data we wanted to gather. 

Listing 13.18 Calculating information about forested area (F# interactive) 
> let calculateForests(area:float<km^2>, forest:float<percent>) =       #1 
     area * forest / 100.0<percent> 
val calculateForests : float<km ^ 2> * float<percent> -> float<km ^ 2> 
 
> let years = [ 1990; 2000; 2005 ] 
  let dataAvailable(key) =                                              #2 
     years |> Seq.for_all (fun y -> 
        (Map.mem (y, key) areas) && (Map.mem (y, key) forests)) 
val years : int list 
val dataAvailable : string -> bool 
 
> let getForestData(key) =                                              #3 
     [| for y in years do 
           yield calculateForests(areas.[y, key], forests.[y, key]) |] 
val getForestData : string -> float<km ^ 2> array 
 
> let stats = seq {                                                     #4 
     for key, title in regions do 
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        if dataAvailable(key) then                                      #A 
           yield title, getForestData(key) }                            #A 
val stats : seq<string * float<km ^ 2> array> 
#1 Calculate the total forest area 
#2 Is the value available for the specified key? 
#3 Get the forested area for each monitored year 
#4 Iterate over all regions 
#A Return title and the data if available 
The listing defines a couple of helper functions that work with the data we downloaded 

and then defines a single value named stats that contains the final results. Thanks to units 
of measure, you can easily see what the first function (#1) does. It calculates the total area 
of forests in square kilometers from the total area of the region and the forested area in 
percentage. 

The second function (#2) tests whether the data we need is available for the specified 
region ID for all the three years that we're interested in. It uses a function Map.mem, which 
tests whether an F# hashtable (specified as the second argument) contains the key given as 
the first argument. The last utility function (#3) looks similar to the second one. It assumes 
that the data is available and extracts them from the hashtables using the year and the 
region ID as the key for all the monitored years. It then calculates the forest area from the 
raw data using the first function. 

Equipped with the last two functions, we can finally collect statistics for all the regions 
(#4). The returned value is a sequence of tuples containing the title of the region as the first 
element and an array as the second element. The array will always have three elements with 
the values for the three years that we're monitoring. 

Once we get the data into F# interactive we can make observations about it, but it's 
difficult to see any patterns just by printing the data in the interactive window. To get the 
most from the data we gathered, we have to visualize them in a more user friendly way, 
such as using Microsoft Excel. 

13.6 Visualizing data using Excel 
F# gives us an almost unlimited number of ways to visualize the data. We can use the 
standard .NET libraries such as Windows Forms or WPF to create the visualization ourselves, 
we can implement a sophisticated visualization using DirectX or we could use one of the 
many third-party libraries available for .NET. In this chapter, we'll use a slightly different 
approach, presenting the data using Excel. As you'll see this is relatively easy to do, because 
Excel can be accessed using a .NET API. There are also many benefits of using Excel. Some 
operations are easier to do using a graphical user interface, so once we obtain the data, we 
can do the final processing in Excel. Also, Excel is widely used across the world, which makes 
it a useful distribution format.  

The Excel API for .NET is exposed via the Primary Interop Assemblies (PIA) that are 
installed with Visual Studio 2008. They can be also obtained as a separate download, so if 
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you run into any issues with them, you can find a link on the book's web site. Let's take our 
first steps into the world of the Office API… 

13.6.1 Writing data to Excel 
The Excel interop assemblies are standard .NET assemblies that we can reference from F# 
interactive using the #reference directive. Once we do this, we can use the classes to run 
Excel as a standalone (visible or invisible) application and script it. Listing 13.19 shows how 
to start Excel, create a new workbook with a single worksheet and then write some data to 
the worksheet. 

Listing 13.19 Starting Excel and creating worksheet (F#) 
#reference "office.dll"                                              #A 
#reference "Microsoft.Office.Interop.Excel.dll"                      #A 
open System 
open Microsoft.Office.Interop.Excel 
 
let app = new ApplicationClass(Visible = true)                       #1 
let workbook = app.Workbooks.Add(XlWBATemplate.xlWBATWorksheet)      #2 
let worksheet = (workbook.Worksheets.[1] :?> _Worksheet)             #3 
 
worksheet.Range("C2").Value2 <- "1990"                               #4 
worksheet.Range("C2", "E2").Value2 <- [| "1990"; "2000"; "2005" |]   #4 
#A Reference the Excel interop assemblies 
#1 Run Excel as a visible application 
#2 Create new file using the default template 
#3 Get the first worksheet 
#4 Write values to the worksheet 
After referencing the libraries that contain the Office and Excel .NET API and opening the 

necessary namespace, we create a new instance of the ApplicationClass (#1). This 
type comes from the Excel namespace and represents the application. After you run this line, 
a new Excel window should appear. The next line (#2) creates a workbook, so after running 
it, you should see the usual Excel grid. Next we fetch an object that represents the first 
sheet from the workbook (sheets are displayed at the bottom left of the application). As you 
can see, we need to cast the object to a _Worksheet class (#3), because the Excel API is 
weakly typed in many places. Once we get the worksheet, we can start writing data to the 
grid. This can be done using the Range indexer and the Value2 property (#4). The type of 
this property is object, so we can use it in various ways. The first example writes a single 
string value to a single column and the second one fills a range (a single row containing 
three columns) with values from a .NET array. 

So far we have created headers for the table we want to display, so the next step is to 
fill in all the remaining information and the most importantly, the matrix containing the 
forested area in different years. Listing 13.20 converts the data into a two dimensional array, 
which is also a valid data source for the Value2 property. 

Listing 13.20 Exporting data to Excel worksheet (F#) 
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let names = statsArr |> Array.map fst 
let namesVert = Array2.init names.Length 1 (fun i _ -> names.[i])    #1 
 
let statsArr = stats |> Array.of_seq 
let tableArr = Array2.init statsArr.Length 3 (fun i y ->             #2 
   let _, values = statsArr.[i]                                      #A 
   values.[y] / 1000000.0 )                                          #A 
 
let slen = string(statsArr.Length + 1) 
worksheet.Range("B3", "B" + slen).Value2 <- namesVert                #3 
worksheet.Range("C3", "E" + slen).Value2 <- tableArr                 #3 
#1 Get names of regions as 2D array 
#2 Initialize 2D array with the data 
#A Read value for a year 'y' from the i-th region 
#3 Write the data to the worksheet 
When writing data to Excel worksheets, we can use a primitive value, an array or a two-

dimensional array. One dimensional arrays can be used for writing rows of data, as we saw 
in the first example, but if we want to fill a matrix or a column with data, we have to use a 
2D array. In this listing, we start by creating a 2D array that stores the names of the regions 
vertically. To do this, we create a simple array containing the names and then use the 
Array2.init function (#1) to convert it to a 2D array. The resulting array contains only a 
single column, so we can ignore the second coordinate in the initialization. 

The next step is to generate a 2D array with the data about the regions. We convert the 
input sequence into an array, so that we can index it when generating the 2D array using the 
Array2.init function (#2). In the lambda function, which is executed for every array 
cell, we first get the information about the region and then find the value for the specified 
year. Finally, we calculate the right ranges in the Excel worksheet (depending on the number 
of regions) and set the data using the same approach as in the previous example.  

After running the code, the data should appear in the opened Excel. We can work with it 
at the same time as we execute our F# script, so if you tweak the design of the table we just 
generated, you could see something similar to the screenshot displayed in figure 13.1. 
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Figure 13.1 Excel table generated by F# script showing the changes in the area covered by forests in 
various regions all over the world during the last 20 years. 

Understanding the data is much easier now that we have it in Excel. However, we can 
take one additional step and create a chart with the data. Of course, you could do this by 
hand, but generating a complete Excel file that includes a chart is quite easy in F#. 

13.6.2 Displaying data in an Excel chart 
To create a chart, we need to specify quite a lot of properties. Fortunately the Excel API 
provides the ChartWizard method to make it easier. This method takes all the important 
attributes of the chart as optional parameters, so we can specify only those we actually 
need. The F# language supports optional parameters, so the code in listing 13.21 that 
creates the chart is very straightforward. 

Listing 13.21 Generating Excel chart (F#) 
let chartobjects = (worksheet.ChartObjects() :?> ChartObjects)        #1 
let chartobject = chartobjects.Add(400.0, 20.0, 550.0, 350.0)         #1 
 
chartobject.Chart.ChartWizard                                         #2 
   (Title = "Area covered by forests", 
    Source = worksheet.Range("B2", "E" + slen), 
    Gallery = XlChartType.xl3DColumn, PlotBy = XlRowCol.xlColumns, 
    SeriesLabels = 1, CategoryLabels = 1, 
    CategoryTitle = "", ValueTitle = "Forests (mil km^2)") 
chartobject.Chart.ChartStyle <- 5                                     #3 
#1 Add new item to the charts collection 
#2 Configure the chart using the wizard 
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#3 Set graphical style of the chart 
First we need to create a new chart in the worksheet. This is done by adding a new 

element to the collection of charts. Again the weakly typed API means we have to cast it to 
the appropriate type (ChartObjects) before we can call the Add method (#1). This 
method gives us a new chart that we can configure using the ChartWizard method (#2). 
I mentioned that the method takes optional parameters, so the code uses the F# syntax to 
specify them. For each parameter that we want to set, we include the name of the parameter 
and the value. Most of the parameter names are self-explanatory, but it's worth noting that 
we specify the range including the text labels and then set SeriesLabels and 
CategoryLabels to 1, which tells Excel that the first row and column contain data labels. 

 

Figure 13.2 A chart generated from F# showing the changes in the forested area 

The last line sets a ChartStyle property to specify the graphical style of the chart. 
Note that this property is available only in Office 2007, so if you're using older version of 
Excel, you'll have to remove this line. After you run the code, you should see a chart like the 
one displayed in figure 13.2. 

The chart in Excel gives us a perfect way to understand and examine the data that we 
obtained from the World Bank. If you look at the chart carefully, you can see that the area 
covered by forests is very slightly increasing in Europe Central Asia and high income 
countries, but decreasing more significantly almost everywhere else in the world. 
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13.7 Summary 
The "big picture" of this chapter was to demonstrate a typical lifecycle of explorative 
programming in F#. However, we've also introduced a couple of F# language and library 
features that are very important in other development processes. 

We started by obtaining data from the web. To do this, we used asynchronous 
workflows, an F# computation expression implemented in the standard F# library. 
Asynchronous workflows can be used for efficiently implementing I/O and other time-
consuming operations without blocking the caller thread and wasting resources. Once we 
downloaded the data, we used the LINQ to XML library to explore its structure before parsing 
it and converting it into a typed F# representation. All of this was done in an interactive 
fashion, often alternating between writing a couple of lines of code to try something with one 
piece of data, and then writing a function to apply the same logic to all the information we'd 
downloaded. 

We used many advanced features such as sequence expressions when processing 
collections and we also used units of measure to specify the precise nature of the data. 
Finally, we looked at how to control Excel from the F# interactive shell. This shows a general 
principle that can be used when working with any Office application or with other applications 
that expose COM interfaces. 

We'll return to F# asynchronous workflows when we talk about reactive programming in 
chapter 16. The next chapter is on closely related topic, and for many people it's the most 
convincing reason for looking at functional programming. We're going to look at parallelizing 
functional programs to get the most out of multi-core processors.  
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14 
Writing parallel functional programs 

We've already seen many arguments in favor of functional programming. One reason that is 
becoming increasing important in these days is parallelism. Writing code that scales to a 
large number of cores is much easier in the functional style than using the usual imperative 
approach.  

The two concepts from the functional world that are essential for parallel computing are 
the declarative programming style and working with immutable data structures. These two 
are closely related. The code becomes more declarative when using immutable data, because 
the code is more concerned with the expected result of the computation than with the details 
of copying and changing data. However, both concepts are important in different ways when 
it comes to parallelization.  

The declarative style allows most code that works with collections to be parallelized very 
simply, because the declarative style doesn't specify how the code actually runs. This means 
that we can replace the sequential implementation by a parallel implementation with a 
minimal effort. Immutable data structures are important for more fine grained parallelism. 
We'll see that we can parallelize any code that recursively processes immutable data 
structures using task-based parallelism. Finally, both C# and F# allow you to use mutable 
state. In chapter 10, we've seen that we can hide this mutable state and make the overall 
program functional. These hidden imperative islands are also good candidates for 
parallelization, for example when processing an array. 

As you can see, there's a lot to explore. I'll start this chapter with a brief overview to 
demonstrate all of these techniques and explain when each of them is useful. After this 
introduction, we'll look at two more complex sample applications that show how parallel 
functional programming works on a larger scale. There isn't room to show all the code for 
two complete real-world examples in a single chapter, so we'll omit some of the less 
interesting details in the book. We'll focus particularly on the architectural aspects and areas 
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directly related to parallelism. You can obtain the complete source code, which fills in the 
missing pieces, from the book's web site. 

14.1 Understanding different parallelization techniques 
In this section, we're going to briefly look at three different techniques and I'll use a simple 
example to demonstrate each of them. We're going to use Parallel Extensions to .NET, which 
is a library for parallel programming. It's part of the standard .NET 4.0 framework. 

Parallel Extensions to .NET 

The library consists of two key parts that we're going to use in this chapter. The first one 
is the Task Parallel Library (TPL). It includes underlying constructs that can execute tasks 
(primitive units of work) in parallel. Another component of TPL allows creating of tasks for 
common computations such as for loop. The second key part is Parallel LINQ (PLINQ), 
which can be  used for writing data parallel code. This is code that processes a large 
amount of data using the same algorithm. 

The underlying technology used to execute tasks in parallel is implemented in fully 
managed code and uses advanced techniques originating from Microsoft Research. It uses 
dynamic work distribution, which means that tasks are divided between worker threads 
depending on the availability of the threads. Once a thread completes all its own assigned 
tasks, it can start "stealing" tasks from other threads, so the work will be evenly 
distributed between all the available processors or cores. The tasks are stored in queues 
for each worker thread, which also minimizes the needed synchronization and locking 
when working with shared memory. 

Let's start with a very specific technique I mentioned in the introduction: parallelizing 
imperative code that works with arrays. This isn't relevant for pure functional languages that 
don't allow any side effects, but as we saw in chapter 10, working with arrays in a functional 
style is a useful technique in C# and F#. 

14.1.1 Parallelizing islands of imperative code 
The most common construct in imperative programming that can easily be parallelized is the 
for loop. When the iterations of the loop are independent, we can execute them on 
separate threads. By "independent", I mean that no iteration can rely on a value computed 
by any earlier iterations. 

For example, when summing the elements in an array, we need the sum of all the 
previous elements to calculate the next one. (This can be still parallelized, but not quite so 
simply.) However, consider the function for "blurring" an array, which we implemented in 
chapter 10. This is a good candidate for parallelization: even though each iteration uses 
multiple elements from the input array, it doesn't rely on anything in the output array. 
Listing 14.1 shows a simple for loop based on the earlier example, in both C# and F#. 
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Listing 14.1 For loop for calculating blurred array (C# and F#) 
for(int i=1; i<inp.Length-1; i++){ 
    var sum = inp[i-1] +  
        inp[i] + inp[i+1]; 
    res[i] = sum / 3; 
}              

for i in 1 .. inp.Length - 2 do 
    let sum = inp.[i-1] + 
              inp.[i] + inp.[i+1] 
    res.[i] <- sum / 3              

The code is almost trivial. The only thing that I'd like to remind you of is that even 
though this is imperative code, it can still be part of a pure functional program. The inp 
array is an input that isn't modified anywhere in our code and res is the output array, which 
shouldn't be modified after it is calculated by the loop. 

To parallelize the loop, we can use Parallel.For method (where the Parallel 
class lives in the System.Threading namespace). This method takes an 
Action<int> delegate argument, which we'll supply using a lambda function. 

Let's rewrite the code from listing 14.1 using this method. When we use 
Parallel.For from F#, we have to explicitly construct a delegate with a lambda 
function, whereas in C# lambda functions are automatically converted to delegates (or 
expression trees). This would make the F# version quite ugly, so we'll define a simple pfor 
function first: 

let pfor nfrom nto f =  
    Parallel.For(nfrom, nto + 1, Action<_>(f)) 

This simply wraps the function f (which has a type int -> unit) in a delegate type 
and runs the parallel for loop. Note that we also add 1 to the upper bound. This is because in 
Parallel.For, the upper bound is not included in the iteration, whereas in an ordinary 
F# loop it is. Listing 14.2 shows the parallelized versions of the previous example. 

Listing 14.2 Parallelized for loop (C# and F#) 
Parallel.For(1,inp.Length-1,i => { 
    var sum = inp[i-1] +  
      inp[i] + inp[i+1]; 
    res[i] = sum / 3; 
});  

pfor 1 (inp.Length-2) (fun i -> 
    let sum = inp.[i-1] + 
              inp.[i] + inp.[i+1] 
    res.[i] <- sum / 3 
  )                 

As you can see, this is nearly as simple as the original sequential version. Again, this 
shows the power of functional constructs: thanks to lambda functions, the only thing you 
have to do when you want to convert a sequential for loop into a parallel one is to use the 
Parallel.For method (or pfor function in F#) instead of the built-in language 
construct. 

THE PARALLEL CLASS 

Aside from the For method, the Parallel class also contains ForEach, which can 
be used to parallelize the foreach construct in C# or the for … in … do 
construct in F#. Both of these methods have overloads available to let you customize the 
iteration. For example, there are overloads allowing you to change the step used to 
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increment the index in the For method, or stop the parallel execution (similar to break 
in a C# loop). If you ever feel you need a little more control, consult the documentation 
to see if one of these overloads can help you. 

The Parallel.For method is particularly useful when working with arrays. We'll use 
it in one of the larger sample applications later in this chapter, where we'll once again work 
with arrays in a functional way. First, let's finish our brief overview. The other two techniques 
we'll look at are purely functional. 

14.1.2 Declarative data parallelism 
The key idea behind the declarative style of programming is that the code doesn't specify 
how exactly it should be executed. Execution is provided by a minimal number of primitives 
such as select and where in LINQ or map and filter in F#, and these primitives can 
behave in a sophisticated way. 

In the first chapter, I demonstrated how you can change an ordinary LINQ query into a 
query that runs in parallel using PLINQ. I showed this using C# query expressions, but to 
understand how it actually works, it's better to examine the translated version using method 
calls and lambda functions. I'll use a trivial example here, but we'll look at something more 
complicated later. Listing 14.3 counts the number of primes between 1 and 2 million. It 
shows the C# code using method calls, and also an F# version. 

Listing 14.3 Counting the number of primes (C# and F#) 
bool IsPrime(int n) {           #1 
  int max = (int)Math.Sqrt(n); 
  for (int i = 2; i <= max; i++) 
    if (n % i == 0) return false; 
  return true; 
} 
 
// Count the primes 
var nums = Enumerable.Range 
  (1000000, 2000000); 
var primeCount =  
  nums.Where(IsPrime)           #3 
      .Count();                 #3 

let isPrime(n) =                #2 
  let ns = int(sqrt(float(n))) 
  let rec isPrimeUtil(m) = 
    (m >= ns || (n % m <> 0 &&  
      (isPrimeUtil(m+1)))) 
  isPrimeUtil(2) 
 
// Count the primes 
let nums = [1000000 .. 2000000] 
 
let primeCount = 
  nums |> List.filter isPrime   #4 
       |> List.length           #4 

#1, #2 A number is prime if it can be divided without remainder only by 1 and itself. We test 
divisibility only by numbers from 2 to square root of the given number, because this is sufficient. In 
C#, the code is implemented using an imperative for-loop. In F#, we use a recursive function; thanks 
to tail-recursion, this is an efficient implementation. 
#3, #4 To count the number of primes in the given range, we first select only numbers that are 
primes (using Where and filter respectively) and then count the returned numbers. 

Code annotations below the code with bullets on the left 
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The listing starts with typical imperative and functional solutions for testing whether a 
number is a prime. I implemented them differently in order to use the most idiomatic code 
for each language.  

The second part of the listing is more interesting. In C# (#3), we generate a range of 
integers (nums) of type IEnumerable<int>. LINQ provides us with extension methods 
Where and Count for this type, so we use these to calculate the result. In F#, we specify 
the functions explicitly. We're working with a list, so we implemented the code using 
functions from the List module. 

Now let's modify the code to run in parallel. In C# this just means adding a call to the 
AsParallel extension method. In F#, we'll use functions that wrap calls to the .NET 
PLINQ classes similarly to the pfor function from the previous section. These functions are 
available in a module called Parallel. 

Getting the Parallel module 

The Parallel module contains just a collection of very simple wrappers. A module like 
this may eventually become part of the F# library, so I'm not going to show how to 
implement it. For now, you can download functions that we'll need from the book's web 
site: www.functional-programming.net/files/parallel.fs. To reference the file from the F# 
script, you can use the #load directive and specify the path of the "fs" file. 

Listing 14.4 shows the parallelized queries in both C# and F#. The "prime testing" 
function hasn't been repeated, as it doesn't need to change.  

Listing 14.4 Counting primes in parallel (C# and F#) 
var primeCount =  
  nums.AsParallel()        #1 
      .Where(IsPrime)      #3 
      .Count();            #3 

let primeCount = 
  nums |> Parallel.of_seq          #2 
      |> Parallel.filter isPrime  #4   

       |> Parallel.length          #4 
#1, #3 In the C# version, we convert the IEnumerable<int> into a data structure that can be 
processed in parallel and then use parallel implementations of 'Where' and 'Count'. 
#2, #4 In F#, we use an 'of_seq' function to create parallel sequence and then use parallel versions of 
the processing functions from the 'Parallel' module. 

Code annotations below the code with bullets on the left 

The F# sample is consistent with everything we've seen already. Functions for parallel 
data processing follow the same pattern as functions for working with lists and arrays. This 
means that we first have to convert the data to a parallel data structure using 
Parallel.of_seq (which is just like Array.of_seq) and then we can use various 
processing functions. The parallel data structure is just another type of sequence, so if we 
needed to, we could convert it back to a functional list using the List.of_seq function. 
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The C# version requires more careful examination–ironically, because it's changed less 
than the F# version. In chapter 12 we saw how to implement custom LINQ query operators 
and PLINQ uses a similar technique. The return type of the AsParallel method is 
IParallelEnumerable<T>. When the C# compiler searches for an appropriate Where 
method to call, it finds an extension method called Where that takes 
IParallelEnumerable<T> as its first argument, and it prefers this one to the more 
general method that takes IEnumerable<T>. However, the parallel Where method 
returns IParallelEnumerable<T> again, so the whole chain uses the methods 
provided by PLINQ.  

Measuring the speedup in F# interactive 

In chapter 10 we measured performance when discussing various functions for working 
with lists. To quickly compare the parallel and sequential version of the samples above, 
we can use F# interactive and the #time directive. Once we turn timing on, we can just 
select one of the versions and run it by hitting Alt+Enter: 

> #time;; 
> (...)                                  #A 
Real: 00:00:01.606, CPU: 00:00:01.606 
val it : int = 70501 
 
> (...)                                  #B 
val it : int = 70501 
Real: 00:00:00.875, CPU: 00:00:01.700 
#A Version using 'List' module functions 
#B Version using 'Parallel' module functions 

The "Real" time is the elapsed time of the operation, and as you can see, running the 
operation in parallel gives us a speedup of about 180%-185% on a dual-core machine. 
This is impressive when you bear in mind that the maximum theoretical speedup is 
200%. The "CPU" time shows the total time spent executing the operation on all cores, 
which is why it's larger than the actual time in the second case. 

Unfortunately, measuring the performance in C# isn't as easy, because we can't use any 
interactive tools. However, we'll write some utility functions to measure performance of 
the compiled code later in this chapter.  

The last topic we'll look at in this introduction to declarative data parallelism is how to 
simplify the F# syntax. In chapter 12, we learned how to write sequence expressions to 
perform computations with numeric collections. Creating a computation expression to work 
with sequences in parallel is the natural next step. 

PARALLEL SEQUENCE EXPRESSIONS IN F# 
The nice thing about the C# version of the code was that switching between the sequential 
and parallel versions was just a matter of adding or removing the ToParallel call. In the 
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F# example, we explicitly used functions like List.xyz or Parallel.xyz, so the 
transition was less smooth.  

However, if we rewrite the code using sequence expressions, then we can turn it into a 
parallel version by touching the keyboard exactly once. You can see both of the versions in 
listing 14.5. 

Listing 14.5 Parallelizing sequence expressions (F#) 
seq {                           #1 
  for n in 1000000 .. 2000000 do 
    if (isPrime n) then  
          yield n } |> Seq.length 

pseq {                          #2 
  for n in 1000000 .. 2000000 do 
    if (isPrime n) then  
          yield n } |> 
Parallel.length 

#1 Sequence expression 
#2 Parallel sequence expression 
The parallel sequence expression is denoted by the pseq value, which is available in the 

Parallel module. It changes the meaning of the for operation inside the expression 
from a sequential version to a parallel one. The syntax is more flexible than in C#, because 
you can return multiple values using the yield and yield! keywords. On the other hand, 
the performance may be slightly lower when compared to a version that uses 
Parallel.filter and Parallel.map explicitly. Parallel sequence expressions are 
implemented using computation expressions that we discussed in chapter 12 and it is 
actually not very difficult to implement them once you can use the PLINQ library. 

Parallelism using LINQ and computation expressions 

In chapter 12 we learned how to implement our own set of LINQ operators and how to 
write computation expressions in F#. These two concepts are based on the same 
principles: we implemented a set of basic operators and the LINQ query or F# 
computation expression is then executed using these operators. 

The PLINQ library implements virtually all operators supported by the C# query syntax 
including Select, SelectMany, Where, OrderBy and many others. So, what 
members have to be implemented in the pseq expression? 

We saw most of the primitive operators in chapter 12. The expression uses yield, so 
we'll need a Yield member. It will simply return a sequence containing the single 
element that it gets as an argument. Since you can have multiple yields in the 
expression, we'll also need the Combine member, which will take two sequences and 
concatenate them into one. Finally, the Zero member (which allows us to write an if 
condition without an else branch) will return an empty sequence. 

We also need to support the for construct. To allow this, we need to implement a For 
member, which takes an input sequence as the argument and a function that returns a 
sequence of values for every element from the input sequence. This is very similar to the 

Licensed to Curtis J Pitts <beop.love@gmail.com>

Download at Boykma.Com



 391 

©Manning Publications Co. Please post comments or corrections to the Author Online forum: 
http://www.manning-sandbox.com/forum.jspa?forumID=460 

Bind member; however, the for-loop syntax is more readable than using the let! 
construct, so this can be written independently. 

If you're interested in detailed information about the F# implementation of the "pseq" 
computation expression, you can read more on the book's web site. 

Parallelizing declarative code that works with large amounts of data is perhaps the most 
appealing aspect of functional programming, because it's very easy and gives great results 
for large data sets. However, often we need to parallelize more complicated computations. In 
functional programming, these would be often written using immutable data structures and 
recursion, so we'll look at a more general technique in the next section. 

14.1.2 Task-based parallelism 
In chapter 11 we saw that you can very easily track dependencies between function calls in a 
functional program. The only thing that a function or a block of code can do is to take some 
values as arguments and produce a result. If we want to find out whether one call depends 
on some other call, we can just check whether it uses the output of the first call as part of its 
input. This is possible thanks to the use of immutable data structures. If the first call could 
modify shared state and the second call relied on this change, then we couldn't change the 
order of these calls, even though this wouldn't be obvious in the calling code. The fact that 
we can see dependencies between blocks of code is vital for task-based parallelism. We've 
seen data-based parallelism which performs the same task on different inputs in parallel; 
task-based parallelism performs different tasks concurrently. 

Listing 14.6 shows an F# script which recursively processes an immutable data 
structure. Again, we'll look at a simple example here but show a more complicated scenario 
later. The code uses the binary tree type we designed in chapter 10, and implements a 
function to count the prime numbers in the tree. 

Listing 14.6 Counting primes in a binary tree (F# interactive) 
> type IntTree =                                    #A 
      | Leaf of int                                 #B 
      | Node of IntTree * IntTree                   #B 
type IntTree = (...) 
 
> let rnd = new Random() 
  let rec tree(depth) =                             #1 
     if depth = 0 then Leaf(rnd.Next()) 
     else Node(tree(depth-1), tree(depth-1))        #C 
val rnd : Random 
val tree : int -> IntTree 
 
> let rec count(tree) =                             #2 
    match tree with 
    | Leaf(n) when isPrime(n) -> 1                  #D 
    | Leaf(_) -> 0                                  #D 
    | Node(l, r) -> count(l) + count(r)             #3 
val count : IntTree -> int 
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#A Binary tree type as in chapter 10 
#B Either a leaf with value or a node containing sub-trees 
#1 Generates random tree with the specified depth 
#C Recursively generate sub-trees 
#2 Count prime numbers in the tree 
#D Return 1 when number is prime and 0 otherwise 
#3 First process the left sub-tree, then the right one 
The listing starts by declaring a binary tree data structure that can store values of type 

int. Then we implement a function (#1) that generates a tree containing randomly 
generated numbers. The function is recursive and takes the required depth of the tree as an 
argument. When generating a node that is composed of two sub-trees it recursively 
generates sub-trees with a depth decremented by 1. 

Finally, we implement a count function (#2). It uses pattern matching to handle three 
different cases - when the tree is a leaf node with a prime value, it returns 1; when it's a leaf 
node with a non-prime value it returns 0; when it's a node with two sub-trees it recursively 
counts the primes in these sub-trees (#3). The important point to note is that the tasks of 
counting primes in the left and the right sub-tree are independent. In the next section, we'll 
see how to run these two calls in parallel. 

TASK-BASED PARALLELISM IN F# 
In the previous section, we were using the PLINQ component from the Parallel Extensions to 
.NET. To implement task-based parallelism, we'll use classes from the Task Parallel Library 
(TPL). This is a lower-level library that allows us to create tasks that will be executed in 
parallel by the .NET runtime. In this section, we'll work with a generic class Future<T>. 
Before we see how to use it, we need to extend it a little to make it easier to work with from 
F#. The class has a static member Create that takes a Func<T> argument, so we'll add a 
static member that takes an F# function, wraps it in a delegate and constructs the 
Future<T>: 

open System.Threading.Tasks  
module FutureExtensions = 
   type System.Threading.Tasks.Future with         #A 
      static member Create f =                     #A 
         Future.Create(Func<_>(f))                 #A 
#A Extend the 'Future' type with an F#-friendly 'Create' method 
The syntax we're using here is the F# way of creating extension members. I say 

"extension members" rather than "extension methods" because F# allows you to extend an 
existing type with all kinds of members and not just instance methods. The syntax is similar 
to type augmentation, which we saw in chapter 9. However, there is an important difference. 
Extension members must be declared in a separate module. Also, the use of an extension 
member is translated into a static method call, just like in C#. 

Now that we have extended the Future<T> type to make it easily useable from F#, 
we can finally parallelize our previous example. The most interesting part of listing 14.7 is 
the case when a tree is a node with two sub-trees that can be processed recursively: 
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Listing 14.7 Parallel processing of a binary tree (F#) 
let pcount(tree) = 
    let rec pcountDepth(tree, depth) =         #1 
       match tree with 
       | _ when depth >= 5 -> count(tree)      #2 
       | Leaf(n) when isPrime(n) -> 1 
       | Leaf(_) -> 0 
       | Node(l, r) -> 
          let cl = Future.Create(fun() ->      #3 
             pcountDepth(l, depth+1))          #3 
          let cr = pcountDepth(r, depth+1)     #4 
          cl.Value + cr                        #5 
   pcountDepth(tree, 0) 
#1 Implementation function that also counts the depth 
#2 Use sequential version for small sub-problems 
#3 Create 'Future' to process the left sub-tree 
#4 Process the right sub-tree 
#5 Wait for both of the results and add them 
We need to store an additional argument during the recursion, so we've create a local 

function called pcountDepth (#1). The additional argument (named depth) specifies the 
depth within the tree that we're currently processing. This allows us to use the non-parallel 
version of the function (count) after we've created a number of tasks that run in parallel. If 
we created a separate task for every tree node, then the overhead of creating new tasks 
would exceed the benefit we get from running the computations in parallel. Creating 
thousands of tasks on a dual-core machine doesn't look like a good idea. The overhead isn't 
as bad as creating an extra thread for each task, but it's still non-zero. 

The depth argument is increased in every recursive call and once it exceeds a 
threshold, we simply process the rest of the tree using the sequential algorithm. In our 
example we test this with pattern matching (#2) and the threshold is set to 5 (which means 
that we'll create roughly 31 tasks). 

When we process a non-leaf tree node, we create a value of type Future<int> and 
give it a function that processes the left sub-tree (#3). The Future type represents a 
computation that will start executing in parallel when it is created and will give us a result 
when we need it at some point in the future. It is worth noting that we don't create a future 
value for the other sub-tree (#4). If we did that, the caller thread would just have to wait to 
collect both results and wouldn't do any useful work. Instead we immediately start 
recursively processing the second sub-tree. Once we finish the recursive call, we need to 
sum the values from both sub-trees. To get the value computed by the future, we can use 
the Value property (#5). If the future hasn't completed yet, the call will block until the 
value is available. The execution pattern can be tricky to understand, but figure 14.1 shows 
it in a graphical way. 
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Figure 14.1 In the root node, we create "Future 1" to process the left sub-tree and immediately start 
processing the right sub-tree. This is repeated for both sub-trees and 2 more futures are created. 

Just like with the data parallelization example, we're interested in the performance gains 
we each from task parallelization. Again we can measure the speedup easily using #time in 
F# interactive: 

> let t = tree(15);; 
> count(t);; 
Real: 00:00:00.900, CPU: 00:00:00.889 
 
> pcount(t);; 
Real: 00:00:00.492, CPU: 00:00:00.920 

As you can see, the statistics look very good. Like our previous example, the speedup is 
between 180% and 185%. One of the reasons we get such good results is that the tree was 
balanced; it had the same depth for all leaf node. If we didn't know in advance whether or 
not that was the case, it would have been wise to generate more tasks to make sure that the 
work would be evenly distributed among processors. In our example, we'd do that by 
increasing the threshold. 

So far I've only shown code in F# for task-based parallelism, because implementing the 
binary tree is easier in F#, but of course it's feasible in C# too. Rather than showing all of 
the code here, we'll just look at the key parts of the C# version. The full code is available on 
the book's web site. 

TASK BASED PARALLELISM IN C# 
In C#, we'll first need to implement classes that represent the binary tree. I've implemented 
an IntTree class with two methods which allow us to test whether the tree is a leaf or a 
node: 

bool TryLeaf(out int value); 
bool TryNode(out IntTree left, out IntTree right); 

These methods return true if the tree is a leaf or a node respectively. In that case, the 
method also returns details about the leaf or the node using out parameters. Listing 14.8 
shows how to implement sequential and parallel versions of the tree processing code in C#. 

Listing 14.8 Sequential and parallel tree processing using futures (C#) 

Licensed to Curtis J Pitts <beop.love@gmail.com>

Download at Boykma.Com



 395 

©Manning Publications Co. Please post comments or corrections to the Author Online forum: 
http://www.manning-sandbox.com/forum.jspa?forumID=460 

 
 
static void Count(IntTree t) { 
   int v; 
   IntTree l, r; 
   if (t.TryNode(out l, out r) 
      return Count(l)+Count(r);#1 
   else if (t.TryLeaf(out v))  
      return IsPrime(v)?1:0;   #2 
   throw new Exception(); 
} 

void CountP(IntTree t, int d) {  #3 
   int v; 
   IntTree l, r; 
   if (d > 4) return Count(t);   #4 
   if (t.TryNode(out l, out r)) { 
      var cl = Future.Create     #5 
         (() => CountP(l, d+1)); #5 
      var cr = CountP(r, d+1);   #6 
      return cl.Value + cr;      #7 
   } else if (t.TryLeaf(out v)) 
      return IsPrime(val)?1:0; 
   throw new Exception(); 
} 

#1, #2 For a node, the sequential version recursively processes the left and the right sub-tree (#1). 
When processing leaf, it tests whether the number is prime and returns 1 or 0. 
#3, #4 In the parallel version, we have additional argument that represents the depth (#3). When the 
depth exceeds threshold, we calculate the result using sequential 'Count' method (#4) 
#5, #6, #7 When processing the node in parallel, we create future to process the left sub-tree (#5) and 
process the right sub-tree immediately (#6). The program waits for both operations to finish and 
adds the results (#7).  

Annotations below the code with bullets on the left 

This is almost a literal translation of the F# code. The Future<T> type from the 
System.Threading.Tasks namespace can be used from both F# and C# in a similar 
fashion. The only important thing is that the computation that is performed by the future 
shouldn't have (or rely on) any side-effects. The Future<T> type is surprisingly similar to 
the Lazy<T> type that we implemented in chapter 11. 

Future and lazy values 

When talking about lazy values, I highlighted the fact that we can use them when we 
don't need to specify when exactly should be the value executed. This is exactly the case 
for future values as well. Both of them evaluate the function exactly once. A lazy value 
evaluates the result when it is needed for the first time where a future value performs the 
computation when a worker thread becomes available. 

Another way to see the similarity between Future<T> and Lazy<T> is to look at the 
operations that we can do with them. When constructing a future or lazy value, we create 
them from a function that calculates the value. The F# type signature for this would be: 
(unit -> 'a) -> T<'a>, where T is either Lazy or Future. The second 
operation is to access the value. This simply takes a lazy or future value and gives us the 
result of the computation, so the type signature is T<'a> -> 'a. 

In this section, we looked at the last of the three techniques for parallelizing functional 
programs that we're discussing in this chapter. Task-based parallelism is particularly useful 
when we're recursively processing large immutable data structures. This kind of computation 
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is very common in functional programming, so task-based parallelism is a great addition to 
our toolset together with declarative data processing. 

Now we're going to return to the first topic in more depth, parallelizing imperative code 
that is hidden from the outside world to keep the program functional. We'll demonstrate this 
using a larger application which applies graphical filters to images. 

14.2 Running graphical effects in parallel 
To demonstrate the first technique, we'll develop an application that needs to process large 
arrays in parallel. One of the simplest examples of large arrays is image data represented as 
a 2-dimensional array of colors. We used the same example in chapter 8 when we discussed 
behavior-centric applications, but this time we'll obviously be focusing on different aspects. 

The user will be able to open an image, select one of the filters from a list and apply it to 
the image. First we'll develop a few filters, and then work out how to run a single effect on 
different parts of the image in parallel. 

14.2.1 Calculating with colors in F# 
In order to implement graphical effects such as blurring or grayscaling, we need perform 
calculations with colors. This could be done by working with the standard Color type in 
System.Drawing, but we'd have to treat the red, green and blue components separately, 
which isn't always convenient.  

There's a more natural way to perform these calculations in both F# and C#. We can 
use operator overloading and implement our own color type. When we blur the image later, 
we'll be able to simply add colors together and divide the resulting color by the number of 
pixels. You probably already know how to do this in C#, but you can find an implementation 
in the downloadable source code. Listing 14.9 shows the F# version. 

Listing 14.9 Implementing color type with operators (F#) 
[<Struct>]                                                  #1 
type SimpleColor(r, g, b) =  
   member x.R = r 
   member x.G = g 
   member x.B = b 
   member x.Validate() =                                    #A 
      let check c = min 255 (max 0 c) 
      SimpleColor(check r, check g, check b) 
   static member (+) (c1:SimpleColor, c2:SimpleColor) =     #B 
      SimpleColor(c1.R + c2.R, c1.G + c2.G, c1.B + c2.B) 
   static member (*) (c1:SimpleColor, n) =                  #C 
      SimpleColor(c1.R * n, c1.G * n, c1.B * n) 
   static member DivideByInt (c1:SimpleColor, n) =          #D 
      SimpleColor(c1.R / n, c1.G / n, c1.B / n) 
   static member Zero = SimpleColor(0, 0, 0)                #E 
#1 Compile the type as value type 
#A Create color with components in range 0-255 
#B Component-wise addition of two colors 
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#C Multiply color components by an integer 
#D Divide color components by an integer 
#E Color initialized with zeros 
The type is annotated using a .NET attribute named Struct (#1). This is a special 

attribute that instructs the F# compiler to compile the type as a value type; it corresponds to 
the C# struct keyword. In this example, it is very important to use value type, because 
we'll create an array of these values and allocating a new object on the heap for every pixel 
would be extremely inefficient. 

Just like in C#, overloaded operators are implemented as static members of the type. 
We've already seen another way to implement operators in F# in chapter 6, where we 
declared them like functions using let bindings. Overloaded operators are more suitable if the 
operator is an intrinsic part of the type. For example the pipelining operator (|>) doesn't 
logically belong to any type, whereas our operators really are specific to SimpleColor. 
Also, some F# library functions can work with any types that provide some basic operators 
and members. That's also the reason why we called member that performs division by an 
integer DivideByInt and why we added member Zero that returns a black color. When 
a type has the plus operator and Zero member, it should be true that clr = clr + 
T.Zero for any clr. We can see that this is true for our type. 

Another important aspect of the type is that it's immutable. None of the operations 
modify the existing value; instead they return a new color (even the instance member 
Validate). Even if you're not programming in a functional style, this is good practice when 
you write your own value types. Mutable value types can cause headaches in all kinds of 
subtle ways. 

Now that we have a type to represent colors, let's look how to represent graphical filters 
and how to run them. We won't parallelize the operation yet - it's generally worth writing 
code which works correctly when run sequentially before trying to parallelize it, while bearing 
parallelization in mind, of course. 

14.2.2 Implementing and running color filters 
First we'll look at one special type of effect: color filters. Later, we'll extend the application to 
work with any effect, implementing blurring as an example. A color filter just changes the 
coloration of the image, so it's simpler. The filter simply calculates a new color for each pixel 
without accessing other parts of the image. As we saw in chapter 8, this is a behavior which 
is naturally represented as a function. 

Filters for adjusting colors can be represented as a function that takes the original color 
and returns a new color. The F# type signature would be SimpleColor -> 
SimpleColor. In C# we can represent the same thing using Func delegate. The code 
that runs the filter will simply apply this function to every pixel of the image. When we 
process the bitmap we'll represent it as a two-dimensional array. 

CONVERTING BITMAPS TO ARRAYS 
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The .NET representation for images is the Bitmap class from the System.Drawing 
namespace. This class allows us to access pixels using GetPixel and SetPixel, but 
these methods are very inefficient when you need to access lots of pixels–they're the 
graphical equivalent of reopening a file each time you want to read a byte of data. That's 
why we're going to represent the bitmap as a two-dimensional array instead. 

However, we still need to convert the bitmap to an array and back. This can be done 
efficiently using LockBits method. This gives us a location in unmanaged memory 
that we can address directly. Writing and reading to the memory can then be done using 
the .NET Marshal class. In our application, we need two functions to do the 
conversion. These functions are implemented in the BitmapUtils module and are 
called ToArray2D and ToBitmap. While they're of some interest in themselves, 
they're not directly relevant to the topic of parallelization. You can find the full 
implementation in the online source code at www.functional-programming.net. 

The implementation of the filters themselves will be similar in C# and F#, but the code 
to execute the filter sequentially will be different. The F# library has built-in support for 
using higher order functions with two-dimensional arrays, but .NET doesn't. Let's start off by 
implementing a couple of filters in C# though. 

CREATING AND APPLYING COLOR FILTERS IN C# 
Even though we're going to represent color filters using the Func delegate, however we'll 
implement them as ordinary methods that we can convert to delegates when we need to, 
such as to store them in a collection of filters. Listing 14.10 shows two simple color filters. 
The first converts the color to grayscale and the second lightens the image. 

Listing 14.10 Grayscale and lighten filters (C#) 
class Filters { 
   public static SimpleColor Grayscale(SimpleColor clr) { 
      var c = (clr.R*11 + clr.G*59 + clr.B*30) / 100;         #1 
      return new SimpleColor(c, c, c);                        #1 
   } 
   public static SimpleColor Lighten(SimpleColor clr) { 
      return (clr * 2).Validate();                            #2 
   } 
} 
#1 Calculates weighted average from the color components 
#2 Lighten the color an make sure it is valid 
To calculate the grayscale color, we use a weighted average (#1) because the human 

eye is more sensitive to green light than to red or blue.  The implementation of the second 
filter is even simpler, but this time it uses the overloaded operators of the SimpleColor 
type. It uses component-wise multiplication to multiply the color by two. This may create 
colors with components outside the normal range of 0-255, so we use the Validate 
method (#2) to limit each component appropriately. 
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Now that we've got our filter methods, let's apply them to the two-dimensional array 
representation of an image. Listing 14.11 does this by implementing an extension method on 
the array type itself. At the moment we're still performing all the computation in a single 
thread. 

Listing 14.11 Sequential method for applying filters (C#) 
public static SimpleColor[,] RunFilter 
      (this SimpleColor[,] arr, Func<SimpleColor, SimpleColor> f) { 
   int wid = arr.GetLength(0), hgt = arr.GetLength(1); 
   var res = new SimpleColor[wid, hgt];                             #A 
   for(int x = 0; x < wid; x++)                                     #B 
      for(int y = 0; y < hgt; y++)                                  #B 
         res[x, y] = f(arr[x, y]);                                  #B 
   return res; 
} 
#A Create a new array as the result 
#B Calculate new color for every pixel 
The RunFilter method first creates a new array that will be returned as a result. 

We're writing the application in a functional way, so the method will not modify the array 
given as the input. In the body of the method, we imperatively iterate over all the pixels in 
the array and apply the color filter function to every pixel. 

Given our earlier experience with Parallel.For you can probably already see how to 
parallelize this code. Before we get onto that though, we'll just finish up the single-threaded 
version by looking at the F# code. 

CREATING AND APPLYING COLOR FILTERS IN F# 
In chapter 10, when we wanted to apply a function to all elements of an array and collect the 
results in a new array, we used the Array.map function. This is exactly what our method 
RunFilter from the previous listing did, with the exception that it worked on two-
dimensional arrays. It may not surprise you that F# library contains a module Array2 for 
working with 2D arrays, which is very similar to the one-dimensional Array module. This 
module also contains a map function, which makes the F# implementation of runFilter 
trivial. You can see it together with the two color filters in listing 14.12. 

Listing 14.11 Applying filters and two simple filters (F#) 
let runFilter f arr = Array2.map f arr                 #1 
 
module ColorFilters =                                  #2 
   let Grayscale(clr:SimpleColor) = 
      let c = (clr.R*11 + clr.G*59 + clr.B*30) / 100   #A 
      SimpleColor(c, c, c) 
   let Lighten(clr:SimpleColor) = 
      (clr * 2).Validate()                             #B 
#1 Apply 'f' to all elements of the 2D array 
#2 Filters are encapsulated in a module 
#A Grayscale using weighted average 
#B Calculate lighter color 
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The runFilter function simply calls Array2.map to do the work (#1) and in fact 
we could just use Array2.map in our later code. However, wrapping it into another 
function makes the code more readable and self-explanatory. Also, if we eventually decided 
to change the representation of the image, we could just update the runFilter function 
without touching the code that uses it. 

We also use F# modules to organize the code in a more structured fashion. All the 
graphical filters are encapsulated in a module called ColorFilters. The implementation 
of our two sample filters is almost the same as in C#, but we'll see later that F# allows us to 
do a little more with custom types that provide standard overloaded operators. 

Before we look at how to parallelize the application, we need to wrap all the code we've 
written so far into an application that we can actually run. This will allow us to test our filters 
and also measure the performance. We'll do this in the next section. I'll only show you the 
C# version, and not in very much detail, but the full source code is available online. We'll 
focus on the interesting bits. 

14.2.3 Designing the main application 
So far, we've only created color filters, but we want our final application to cater for more 
general graphical effects. A color filter such as grayscaling or lightening applies a function to 
each pixel based only on that pixel's value. Other effects may be much more general - they 
could do anything with the image, such as geometrical transformations or blurring. We'll use 
blurring as an example later on, just to show that it's possible. We will take this goal into 
account as we build the application. 

The application allows you to open an image file, select an effect from a list, and apply it 
to the image. You have the option to apply the filter in a sequential or parallel fashion, and it 
automatically displays how long the filter took to apply. You can see a screenshot of the 
finished application in figure 14.2. 
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Figure 14.2 C# version of the image processing application after first running the grayscale and then the 
lighten filter on a sample image. 

In C#, we can create the user interface for the application using the Windows Forms 
designer. The application uses the ToolStrip control to create the toolbar with the 
necessary commands, and a ToolStripComboBox control for the list of available effects. 
A PictureBox control wrapped in a TabControl shows the image, so we can easily 
switch between the original image and the processed version. 

Creating windows applications in F# 

Unfortunately the F# support in Visual Studio doesn't include a Windows Forms designer. 
We've seen how it's easy to create simple GUIs by hand in F#, but for this kind of 
application a designer would be useful. Fortunately F# can easily reference C# libraries 
and vice versa, so there are several options available to us. 

If you only need to create forms, you can create a C# class library project that contains 
the graphical elements such as forms and user controls, then reference the library from 
your F# application and use the GUI components from F#. This is the approach I used to 
create the F# version of this application, so you can see exactly how it works if you 
download the source code. 

An alternative approach is to implement the user interaction in C# and reference an F# 
library that contains all the data processing code. If we wanted to use this approach, we'd 
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wrap the graphical effects in an F# object type (as discussed in chapter 9) and compile 
the F# code as a library. The C# application would then use the types in the library to run 
the graphical effects.  

Once we've create the GUI in the designer, we can use the filtered we've already 
implemented. As I said earlier, the application will be flexible enough to work with general 
effects beyond just filters, so let's look at how we want to represent these effects in code. 

REPRESENTING EFFECTS 
A color filter is a function that took a color and returned the new color. Effects can be 
represented as functions too, but as they can do anything with the image the functions need 
to take an image as input and return the new image. We'll provide an argument to say 
whether or not the effect should run in parallel, so that we can measure the performance. 
Different effects may be parallelized in different ways. In the C# GUI application, we also 
need to store the name of the effect. Listing 14.12 shows all of this information wrapped up 
into an EffectInfo type. 

Listing 14.12 Representation of graphical effect (C#) 
class EffectInfo { 
   public Func<SimpleColor[,], bool, SimpleColor[,]>     #1 
      Effect { get; set; }                               #1 
   public string Name { get; set; }                      #A 
} 
#1 Function representing the effect 
#A Name of the effect 
The class is very simple, with just two properties. We've created it in the most 

straightforward way possible, with mutable properties. We're only going to use this type 
within the GUI itself, so while that may leave us feeling a little uncomfortable, we won't 
worry about it too much. The first property of the class is a function that runs the effect (#1) 
and the second is a name. This is very similar to an F# record containing a function and a 
string; that's the design we'll use in the F# version of the application. Next we'll look at how 
we can create EffectInfo instances to represent the color filters we implemented earlier.  

14.2.4 Creating and running effects 
In the earlier section, we implemented a couple of graphical filters, but our application 
contains a list of more general graphical effects. It appears that we still have a lot of work to 
do, but actually, we already have everything we need to create graphical effect from a 
simple color filter. Everything should start making sense in the next section where we'll look 
how to create an effect from a color filter.  

CREATING EFFECTS FROM COLOR FILTERS IN C# 
To create a general effect based on a color filter, we can simply apply the filter to all the 
pixels in the image. We've already implemented the sequential form of this as the 
RunFilter method. For the moment, we'll also assume that we've already implemented 
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the parallel version in a method called RunFilterParallel. We'll look at the 
implementation of that in a minute. 

Listing 14.13 shows how to create an effect from a graphical filter. Since an effect is 
represented as a function, we use a lambda function to return a delegate from the method.  

Listing 14.13 Creating graphical effect from a color filter (C#) 
Func<SimpleColor[,], bool, SimpleColor[,]> MakeEffect 
      (Func<SimpleColor, SimpleColor> clrFunc) {                    #1 
   return (arr, parallel) => {                                      #2 
      if (!parallel) return Filters.RunFilter(arr, clrFunc);        #3 
      else return Filters.RunFilterParallel(arr, clrFunc);          #3 
   }; 
} 
#1 Takes color filter as an argument 
#2 Return lambda function 
#3 Apply color filter to each pixel 
The method has only a single argument which is the color filter that we want to convert 

into an effect (#1). The effect should apply this filter to each pixel of an image, how can we 
do this when we don't have the image yet? The answer is that we'll get the image later as an 
argument for the function that represents the effect, so the body of the method just returns 
the effect via a lambda function (#2). 

The lambda function takes two arguments - the image to process and a flag specifying 
whether the code should run in parallel. Once we have this information, we can call 
RunFilter or RunFilterParallel depending on the Boolean argument. If you 
remember our discussion about closures in chapter 8, you can see that the clrFunc 
argument to the method will be captured by a closure that is associated with the returned 
function. 

It's important to note that that the return type is exactly the same as the type of the 
function stored in EffectInfo, so we can use it immediately when we're building our 
drop-down list of effects for the toolbar. Here's an example of how to create effects from our 
two existing color filters and then add them to the listFilter control:  

var effects = 
   new List<EffectInfo> { 
      new EffectInfo { Name = "Grayscale",  
                       Effect = MakeEffect(Filters.Grayscale) }, #A 
      new EffectInfo { Name = "Lighten",  
                       Effect = MakeEffect(Filters.Lighten) }    #B 
   }; 
listFilters.ComboBox.DataSource = effects;                       #C 
listFilters.ComboBox.DisplayMember = "Name";                     #C 
#A Convert grayscale to effect 
#B Create effect from lighten filter 
#C Show the list in a drop-down list 
We're using a C# 3.0 collection initializer to create a List<EffectInfo> containing 

information about the two color filters that we created so far. When we call MakeEffect, 
we give it a method group from the Filters class as an argument. The method group is 
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automatically converted into a Func delegate by the C# compiler. The last two lines set the 
list as the data source for the drop-down control and use the DisplayMember property to 
specify that the text in the drop-down should be the name of the effect. 

The corresponding code in the F# version of the application is quite interesting, so even 
though we won't look at the full source code, we'll discuss this part. 

USING PARTIAL FUNCTION APPLICATION IN F# 
In F#, we don't have to write this conversion as a method (or a function) that explicitly 
returns another function, because we can use partial function application. The first function 
in listing 14.14 takes all the arguments it needs to actually apply the color filter, so it doesn't 
make sense to call it MakeEffect. However, if we specify only the first argument it will 
return a function that represents the effect.  

Listing 14.14 Creating effects using partial function application 
> let runColorFilter clrFunc (arr, isParallel) =                   #1 
     if (not isParallel) then arr |> runFilter clrFunc             #A 
     else arr |> runFilterParallel clrFunc                         #A 
val runColorFilter : (simpleColor -> SimpleColor) -> 
                  (SimpleColor[,] * bool) -> SimpleColor[,]        #2 
 
> let effect = runColorFilter ColorFilters.Grayscale               #3 
val effect : (SimpleColor[,] * bool) -> SimpleColor[,] 
#1 All arguments needed for applying the filter 
#A Apply the filter 
#2 Representation of graphical effect 
#3 Create effect using partial application 
It's not obvious at first, but this really is the same function as the MakeEffect 

method, but with the goal of making it useable with partial function application. To achieve 
this, we specify all the arguments in the function declaration (#1). The second parameter 
specifies arguments that will be specified later when we're asked to run the actual effect; as 
the two pieces of information will be always provided together, we've used a tuple. The body 
of the function is easier to write than it is in C#, because we don't have to explicitly create 
and return a function.  

If we take a look at the type signature, we can see that the first argument (on the first 
line) is the color filter and when we look at the second line (#2) we can see the 
representation used for graphical effects. This means that we can create effect just by 
specifying the first argument, which is exactly what we at the end of the listing (#3). 

Now let's get back to the user interface, and look at what the event handlers for the 
"Parallel" and "Sequential" buttons have to do. 

EXECUTING GRAPHICAL EFFECTS 
When we apply the effect, we need to measure the time it takes. We could remember the 
time before running the effect, then run the effect and finally subtract the original time from 
the current time. However, this mixes the calling aspect with the timing aspect. If we wanted 
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to measure the time in various different places, we'd have to copy and paste the code, which 
isn't a good practice. Functional programming gives us a better way to approach the 
problem. 

We can implement time measurement as a higher order function, taking another 
function as an argument and measuring the time taken to run it. The return value is a tuple 
containing the result of the function and the elapsed time in milliseconds. Listing 14.15 
shows this implemented in both F# and C#. 

Listing 14.15 Measuring the time in F# and C# 
open System.Diagnostics; 
  
let measureTime(f) =  
   let st = new Stopwatch() 
   st.Start() 
   let res = f() 
   let t = st.ElapsedMilliseconds 
   (res, t) 

using System.Diagnostics; 
 
Tuple<T, long> MeasureTime<T> 
      (Func<T> f) { 
   var st = new.Stopwatch(); 
   st.Start(); 
   var res = f(); 
   var t = st.ElapsedMilliseconds; 
   return Tuple.New(res, t); 
} 

The function first initializes Stopwatch class to measure the time and then runs the 
specified function. We don't want to throw away the result, so we store it locally and then 
count the elapsed time. Since we need to return multiple values from the function, we use a 
tuple value. The first element of the tuple is the result of the function we passed in, which 
can be any type depending on the function. The second element will contain the time taken 
in milliseconds. 

Listing 14.16 uses this new method in the event handler for the Click event of the 
"Parallel" and "Sequential" buttons. 

Listing 14.16 Applying the selected effect to a bitmap (C#) 
var filter = ((EffectInfo)listFilters.SelectedItem).Filter;         #A 
var arr = loadedBitmap.ToArray2D(); 
var res = MeasureTime(() =>  
   filter(arr, sender == btnParallel));                             #B 
 
pictProcessed.Image = res.First.ToBitmap();                         #C 
lblTime.Text = string.Format("Time: {0} ms", res.Second);           #C 
#A Get the selected filter 
#B Run filter and measure performance 
#C Display result and time taken 
The available effects are in the drop-down list, stored as EffectInfo instances, so we 

start by accessing the selected item from the list. Once we have the effect, we can perform 
the bitmap processing. We first convert the bitmap to a 2D array and then apply the filter. 
The first argument to the filter is the array and the second one is a Boolean specifying 
whether or not the effect should run in parallel, based on which button was clicked. The 
operation is wrapped in a call to the MeasureTime method, so the type of res is 
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Tuple<SimpleColor[,], long>. We first convert the returned array into a bitmap, 
display it, and then show the time taken to apply the effect. 

We're currently concerned only with the performance of the effect itself, but it would be 
possible to parallelize the conversion between a bitmap and an array as well. I'll leave that 
as an exercise if you're interested, but for the moment let's get on with parallelizing the 
effect. 

14.2.5 Parallelizing the application 
As this chapter is really about parallelization, this is the most interesting part of the 
application. We're going to discuss the code in both languages, starting off by implementing 
the C# version in the simplest way possible. 

RUNNING FILTERS IN PARALLEL IN C# 
To implement the C# version, we'll simply take the RunFilter method from listing 14.11 
and replace for loop with a call to the Parallel.For method. You can see the modified 
version in listing 14.17. Thanks to lambda functions in C# 3.0, this is just a syntactic 
transformation. 

Listing 14.17 Applying color filter in parallel (C#) 
public static SimpleColor[,] RunFilterParallel 
      (this SimpleColor[,] arr, Func<SimpleColor, SimpleColor> f) { 
   int wid = arr.GetLength(0), hgt = arr.GetLength(1); 
   var res = new SimpleColor[wid, hgt];  
   Parallel.For(0, wid, x => {                                       #1 
      for(int y = 0; y < hgt; y++)                                   #2 
         res[x, y] = f(arr[x, y]); 
   });                                                               #A 
   return res; 
} 
#1 Parallelize the outer loop 
#2 Leave inner loop sequential 
#A End of lambda function and method call 
The original code contained two nested for loops, but we're only parallelizing the outer 

loop. For most images this will give the underlying library enough flexibility to parallelize the 
code efficiently, without creating an unnecessarily large number of tasks. Making the filter 
run in parallel only involved changing two lines of code. However, changing for-loops to 
Parallel.For method calls isn't always as simple as it looks. You always have to look 
carefully at the code and consider whether parallelization could introduce any problems.  

For instance, we have to be careful if the loop modifies any mutable state, or when state 
is shared by several iterations of the for loop executing in parallel. In the previous example, 
we avoided this problem by using only local mutable state. The res array cannot be 
accessed from outside of this function, which makes the overall method functional. Also, 
each iteration only uses a separate part of the array (a single vertical line). 
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Additionally, many .NET types aren't thread-safe, which means that when you start 
accessing a single instance from several threads, their behavior may be undefined. In section 
14.3, we'll see that this is a problem even for simple types such as Random and we'll also 
see how to solve this problem by using locks. First, let's look at the F# version of the 
previous code.  

PARALLEL ARRAY PROCESSING IN F# 
The source code for the F# version will be almost a direct translation of what we've seen in 
the previous C# listing–but at the same time, it'll be a much more general function. If you 
reimplemented the previous C# listing in F#, one of the changes you'd probably make would 
be to delete all the unnecessary type annotations. After doing that, you'd see that the code 
doesn't explicitly mention the SimpleColor type anywhere and it doesn't really need to 
know that it is working with colors. If you hover over the function translated from C# in 
Visual Studio, you'd see the following inferred type: 

(('a -> 'b) -> 'a [,] -> 'b [,]) 

Just by deleting type annotations, we've made the function more generic. The type of 
the function is actually the same as the type of Array2.map, which we used earlier in this 
chapter. The change in type signature also suggests that the name should be generalized too 
- after all, we're really performing a mapping operation, just in parallel. The result of these 
changes is shown in listing 14.18. 

Listing 14.18 Parallel 'map' function for 2D array (F#) 
module Array2 = 
   module Parallel =                                               #1 
      let map f (arr:_ [,]) =                                      #A 
         let wid, hgt = arr.GetLength(0), arr.GetLength(1) 
         let res = Array2.create wid hgt SimpleColor.Zero          #B 
         pfor 0 (wid-1) (fun x ->                                  #2 
            for y = 0 to hgt - 1 do 
               res.[x, y] <- f(arr.[x, y])) 
         res 
     
let runFilterParallel f arr  = Array2.Parallel.map f arr           #3 
#1 Declare function in a module 
#A Apply 'f' to all elements in parallel 
#B Create new array as a result 
#2 Parallelized outer loop 
#3 Expose function with a domain-specific alias 
The fact that the simple act of translation has revealed a deeper aspect of our original 

code is quite a strange phenomenon. The new function does exactly the same thing as 
Array2.map, but executed in parallel, so we've named it function map and placed it inside 
a module Array2.Parallel (#1) to make it more reusable. To implement the 
parallelization, we're using our utility function pfor from earlier section. 

After we've noticed this generalization in F#, we could change the C# version to match 
it, changing the method declaration to something like this: 

public static TResult[,] RunFilterParallel<TSource, TResult> 
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      (this TSource[,] arr, Func<TSource, TResult> f) { 

We'd then have to propagate the type parameters appropriately through the code, 
substituting SimpleColor for either TSource or TResult depending on the context. 
Type inference would then take care of providing the type arguments where we call the 
method. 

The final line of listing 14.18 creates alias for the parallel map function (#3). Our 
original goal was to write a function to run a graphical filter in parallel, and this alias makes 
the code more readable, because the name provides a better clue as to how the function can 
be used.  

Now that we've parallelized simple color filters, we're just going to implement a single 
more general effect: blurring the image. This will wrap up our coverage of the application, 
although of course you may want to experiment with some more effects yourself. 

14.2.6 Implementing a blur effect 
Our final effect won't be just a color filter. The process of blurring an image relies on 
computing a new pixel value based on multiple original pixels. We can still perform a pixel-
by-pixel transformation, but we'll have to pass the transformation the whole image, as well 
as the coordinates of the pixel we want to transform.  

I've left the implementation of RunEffect and RunEffectParallel as an 
exercise for you, but it's fairly straightforward; really it's just a matter of changing the 
details of the loop, and giving the transformation function more information. Converting the 
sequential form into a parallel form is exactly the same for this effect as for color filter 
effects. If you get stuck, you can always look at the full source code from the web site. 

The blurring transformation itself is quite interesting though, as shown in listing 14.19. 
It's not particularly difficult, but it does provide a nice demonstration of declarative 
programming. 

Listing 14.19 Implementing 'Blur' effect (F#) 
let Blur(arr:SimpleColor[,], x, y) =                                    #1 
   let wid, hgt = arr.GetLength(0)-1, arr.GetLength(1)-1 
   let checkW x = max 0 (min wid x)                                     #A 
   let checkH y = max 0 (min hgt y)                                     #A 
   [ for dx in -2 .. 2 do                                               #B 
        for dy in -2 .. 2 do                                            #B 
           yield arr.[checkW(x + dx), checkH(y + dy)] ]                 #B 
   |> List.average                                                      #2 
#1 Gets the image and required X, Y coordinates 
#A Check that index is in range 
#B Collect all close pixel colors 
#2 Calculate average color 
If you were implementing blur in an imperative style, you'd create a mutable variable, 

initialize it to zero and then add the colors of all the nearby pixels. Finally, you'd divide the 
result by the number of pixels to get the average color. In F#, we can use a more declarative 
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approach and we can just write that we want to calculate the average color (#2). We first 
use a sequence expression to create a list containing colors of all the nearby pixels and then 
calculate the average value from this list. 

EXPLORING LIST.AVERAGE 

To calculate the average value, the List.average function needs to know how to do 
three things. It needs to know what a "zero" value is for the particular type, and how to 
add values together. This is enough to sum the list. Then it needs to divide the result by 
the number of elements in the list. In our effect, we're working with values of the 
SimpleColor type and this type implements overloaded plus operator. We also added 
a special members Zero and DivideByInt. The average function uses exactly 
these members. It's a generic function, but it requires the type to implement the 
appropriate members. You can find more information about implementing functions like 
this online on the book website. 

In this example, we've looked at key parts of a larger application. You can get the 
complete source code from the book's web site and see how the parts we implemented in 
this chapter are connected together. Even though the most important parts of the application 
use mutable arrays, we've designed the whole application in a functional way, including 
using the arrays in the functional style as shown in chapter 11. This approach allowed us to 
parallelize the core algorithms easily and safely. 

This has been an example of a behavior-centric application. Our main concern was how 
to parallelize individual behaviors. Another way to parallelize a behavior-centric application is 
to run different behaviors in parallel. For example, we might want to process a series of 
images in a batch, applying multiple effects to each image. In the next section, we're going 
to turn our attention to data-centric applications. 

14.3 Creating a parallel simulation 
Our next sample application is going to be a simulation of a world containing animals and 
their predators. The goal of predators is to move close to animals to hunt them and the aim 
of animals is to run away within the area of the world. Just like our image processing 
example, we'll only show the most interesting aspects here, but the full source code is 
available online. 

This is a data-centric application, so the first task is to identify the primary data 
structure involved. In this case, it's the representation of the "current" state of the world. 
The world effectively has a single operation: make time "tick", moving all the animals and 
predators. When we parallelize a data-centric application, our aim is to parallelize the 
operations that can be performed with the data structure, so we're going to perform a single 
step of the world in parallel. To do this, we'll use the normal techniques involved in data-
centric functional programs, with a combination of declarative and task-based parallelism. 

Licensed to Curtis J Pitts <beop.love@gmail.com>

Download at Boykma.Com



410   

©Manning Publications Co. Please post comments or corrections to the Author Online forum: 
http://www.manning‐sandbox.com/forum.jspa?forumID=460 

Before we look at the world representation, we'll digress slightly and discuss ways of 
accessing objects that are not thread safe. This can be problem when we're dealing with 
objects with mutable state, which is often the case with .NET types. 

14.3.1 Accessing shared objects safely 
The Random class is a commonly used .NET class which is not thread-safe. In our 
application, we're going to need to generate random locations to choose where the animal or 
predator should move to, this can be called from several threads simultaneously. However, 
Random needs to be initialized once and then used again and again. (If you create a new 
Random instance for each call, you'll often get repeated numbers as the initial "seed" for the 
random number generator is taken from the system time.) If you call the Next method on 
the same instance from multiple threads, it will eventually start returning zero, because 
we're responsible for making sure that only a single thread will access the object at a time. 

To avoid this problem we can use locking, which blocks other threads from executing 
code guarded by the same lock until the operation completes. However, this makes the code 
less efficient. Listing 14.20 provides a solution which is safe but allows us to be efficient as 
well. 

Listing 14.20 Safe way for generating random numbers (F# and C#) 
module SafeRandom =  
   let private rnd =           #1 
      new Random() 
 
   let New() =                 #2 
      lock rnd (fun () ->      #3 
         new Random(rnd.Next())#3 
      )                        #3 

static class SafeRandom { 
   static Random rnd =          #1 
      new Random(); 
   public static Random New() { #2 
      lock (rnd)                #3 
         return new             #3 
            Random(rnd.Next()); #3 
   }   
} 

#1, #3 Local random number generator (#1) is accessed safely from multiple threads using locks (#3) 
#2 A method or function returns a new random number generator initialized with a random seed that 
should be accessed only from a single thread  

Annotations below the code with cueballs on the left 

We created a module in F# and a static class in C#, both of which serve the same 
purpose: they can be used for generating random number generators. These generators are 
created using a random seed that is obtained from a single global random number generator 
(#1) that is safely accessed within a lock (#3). Thanks to this approach, we don't have to 
use lock every time we'll need to create a random number. We only need to create a new 
generator every time we execute an operation that can be executed in parallel with other 
tasks. Within a single thread, we can reuse the same instance safely, knowing that no other 
thread will have access to it. 
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The F# equivalent of C#'s lock keyword F# is the lock function that takes a simple 
function as its argument. It acquires the lock using the Monitor class, runs the specified 
function and then releases the lock. 

We'll make good use of SafeRandom when we determine the locations of animals and 
predators, but first let's look at the representation of the world. 

14.3.2 Representing the simulated world 
Our simulated world is quite simple. It only contains animals and predators, so we can 
represent it using two lists. In principle, we should also include the width and height of the 
world area, but we'll used a fixed size to make things simpler. You can get a better picture 
about the world we're trying to represent by looking at figure 14.3, which shows a 
screenshot of the running simulation. 

 

Figure 14.3. Running simulation with 10 predators (larger circles) hunting 100 animals (small circles) 

We'll look at the interesting elements of the simulation in both languages, just like we 
did for the image application. We'll start with the F# version to show a typical functional 
approach.  

REPRESENTING THE SIMULATION STATE IN F# 
As I've already mentioned, the state of the simulation will be just two lists with the locations 
of animals and predators. To make it easier to work with locations, we'll also implement our 
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own Location type that has a couple of overloaded operators for adding and subtracting 
locations as well as for multiplying both X and Y coordinates by a floating point number. 

We'll implement location as a simple immutable value type and the state of the 
simulation will be an F# record type with two fields. You can see the data structure 
declaration in the listing 14.21. 

Listing 14.21 Representing the state of the world (F#) 
[<Struct>]                                                           #1 
type Location(x:float, y:float) = 
   member t.X = x 
   member t.Y = y 
   static member (+) (l1:Location, l2:Location) = 
      Location(l1.X + l2.X, l1.Y + l2.Y)                             #A 
   static member (*) (l:Location, f) =  
      Location(l.X * f, l.Y * f)                                     #B 
   static member (-) (l1:Location, l2:Location) =  
      l1 + (l2 * -1.0)                                               #C 
     
type Simulation =                                                    #2 
 { Animals : list<Location> 
   Predators : list<Location> } 
#1 Value type representing location 
#A Add X and Y coordinates 
#B Multiply by coefficient of type float 
#C Implemented using + and * 
#2 Represents the simulation state 
The location is a simple object marked using the Struct attribute (#1). It only 

contains the X and Y coordinates as immutable properties, set in the constructor. All the 
operators return new values, as you'd expect. 

The type that represents the simulation is also straightforward (#2). This type is 
immutable too, so in order to work with it, we'll need to construct a new Simulation 
value for each step of the simulation. 

Now let's look at our C# representation. We're mostly going to use standard .NET types, 
but we'll work with them in a functional way. 

REPRESENTING SIMULATION STATE IN C# 
In C#, the simplest approach is to represent some of the state using mutable types, because 
that's what the C# language and the standard .NET libraries provide the most support for. In 
particular, .NET doesn't provide a functional list type. We could have used our 
FuncList<T> type from earlier chapters, which would have made the two representations 
very similar. However, functional programming is a style and not a technology, so we can 
write functional code even with the classes that we already have; we'll just have to be more 
careful to do it correctly. 
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Listing 14.22 shows the class we're going to use to represent the simulation in C#. I've 
omitted the implementation of the Location type because it's just a simple immutable 
struct with overloaded operators, exactly the same as the F# version.  

Listing 14.22 Representing the state of the world (C#) 
public class Simulation { 
   public Simulation(List<Location> animals, List<Location> predators) {#1 
      Animals = animals; 
      Predators = predators; 
   } 
   private readonly IEnumerable<Location> animals; 
   private readonly IEnumerable<Location> predators; 
 
   public IEnumerable<Location> Animals { get { return animals; } }     #2 
   public IEnumerable<Location> Predators { get { return predators; } } #2 
} 
#1 Create a new simulation state 
#2 Expose properties as an immutable sequence 
We use two different collection types here; one for the constructor arguments (#1) 

when we're creating the simulation state and a different one for the properties (#2). In the 
constructor, we use List<T>, to make sure that we get a fully-evaluated collection that 
contains all the locations. Since IEnumerable<T> is a lazy sequence, we wouldn't know if 
the locations were evaluated already or whether they'll be evaluated later when we'll actually 
need them somewhere later in the code. 

On the other hand, we don't want to expose the state as List<T>, because that's a 
mutable type and someone could modify it. Instead, we use IEnumerable<T> so client 
code can iterate over the animals and predators, but can't modify the existing state. As you 
can see, we use properties with private setter (#2). This is not exactly what we mean - the 
field where the value is stored should be marked as readonly, which means that it can 
only be set in the constructor. However, we used private setter for simplicity and we'll just 
remember for now that the field shouldn't be set anywhere else in the class. 

Now that we have the data structures to represent the state, we should also look at 
what we can do with it. In a typical functional design, that's always the next thing to do. 

14.3.3 Designing simulation operations 
In this section we'll think about the operations that we need to implement for the simulation. 
We won't implement all the difficult operations now, because we just want to design the 
structure of the application. Our first goal is to get the application running with minimal 
effort and then we can get back to the interesting parts, such as the algorithms describing 
the movements of animals and predators. 

In a typical functional fashion, we'll start with some initial state and in each step we'll 
create a new state based on the previous one. This means that we'll need an operation to 
create an initial state, and another to run a single step of the simulation. Both of these are 
logically related to the simulation state, so in C# we'll add them to the Simulation class. 
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In F#, we'll add them to the Simulation type using type augmentations, which we 
discussed in chapter 9. The following snippet shows the types of these operations using C# 
syntax:  

class Simulation { 
   public static Simulation InitialState { get; }   #A 
   public Simulation Step();                        #B 
} 
#A Generates the initial state 
#B Performs simulation step and returns a new state  
If you're writing the sample code as you read the book, you can implement these on 

your own in some very simple way. For now, the Step method can just return the original 
state or it can move all the animals by one pixel in some direction, just so that we can tell 
that the simulation is actually running. The InitialState property should generate a 
couple of randomly located animals and predators. We'll get back to these methods after we 
finish implementing the machinery that runs the simulation. 

Next we need the ability to draw the simulation state. In C#, we'll make this part of the 
MainForm class. In F#, the form is a global value, so we can implement the drawing code 
as a simple function. The operation will simply iterate over all the animals and predators in 
the current simulation state and draw them on the form using System.Drawing classes. 
The C# method has this signature: 

void DrawState(Simulation state) 

I won't present the full code here, but now you'll recognize it when we call it. 
At this point, we have everything we need to run the simulation, even though we 

haven't yet implemented any interesting algorithms for animal and predator movement. Let's 
put everything we've got together, so we can test it before we start making the animals 
behave more intelligently. 

RUNNING THE SIMULATION 
We'll run the simulation as fast as the computer is able to, so we'll implement it as a loop 
that runs the Step method, redraws the form and then starts again until the form is closed. 
We don't want to block the main application thread, because that would make the application 
unresponsive, so we'll run the simulation as a background process. The F# and C# versions 
are implemented in rather different ways, so we'll look at both of them. Listing 14.23 shows 
the C# code, which explicitly creates a thread.  

Listing 14.23 Running simulation on a thread (C#) 
private void MainForm_Load(object sender, EventArgs e) { 
   Thread th = new Thread(() => { 
      Simulation state = Simulation.InitialState;                 #1 
      while(this.Visible) { 
         this.Invoke(new Action(() => DrawState(state)));         #2 
         state = state.Step();                                    #A 
      } 
   }); 
   th.Start();                                                    #B 
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} 
#1 Mutable variable that holds the current state 
#2 Redraw the form 
#A Calculate the new state 
#B Start the simulation loop thread 
This method is the only part of the C# version of the simulation where we need to use 

mutable state. In particular, we create a variable that holds the current state of the 
simulation (#1). We run the simulation on a thread in a while loop and we redraw the 
form, calculate the new state and store this state in the same local variable for each 
iteration. In C#, we can't write the code without mutation, but we won't need this in F#. 

Another notable point is the way we update the form (#2). In Windows Forms, it is only 
allowed to access controls from the main GUI thread. We use the Invoke method that 
takes a delegate and runs in on the GUI thread. 

We don't use threads explicitly in the F# version, because we can start the simulation 
using asynchronous workflows. Also, we can replace the mutable variable and imperative 
while loop using recursion. You can see the source code in listing 14.24. 

Listing 14.24 Running simulation using recursion and 'async' (F#) 
let rec runSimulation(state:Simulation) = 
   form.Invoke(new Action(fun () -> drawState(state))) |> ignore     #A 
   if (form.Visible) then  
      runSimulation(state.Step())                                    #1 
 
Async.Spawn(async { runSimulation(Simulation.InitialState) })        #2 
#A Redraw the form 
#1 Tail-recursive call with a new state 
#2 Start the computation asynchronously 
The loop that runs the simulation is implemented as a recursive function. We don't need 

to worry about running out of stack space, because the recursive call is tail-recursive (#1). 
The lack of tail recursion in C# is the only thing that prevents us from using the same 
technique there. 

The function is an ordinary function that loops in a blocking way while the form is visible, 
but we can still use asynchronous workflows to launch it in the background. This isn't really 
related to the typical asynchronous programming as we discussed it in the previous chapter–
Async.Spawn is just a simple way to start executing the function on a separate thread. 
The workflow just calls the recursive function that blocks the thread and runs the simulation 
loop. 

If you've implemented the Step method and added the code to draw the simulation, 
you should have a working application by now. Now that we've got the skeleton in place, we 
can work on making the animals and predators behave intelligently, and parallelizing the 
Step function. 
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14.3.4 Implementing smart animals and predators 
Before we can start implementing the algorithm for animals and predators, we'll need a 
couple of helper functions. We'll look at their type signatures, which should give you enough 
information to understand how they work and also to implement them on your own if you 
want to. The following snippet shows their commented F# type signatures: 

/// Returns the distance between two specified locations 
val distance : Location -> Location -> float 
 
/// Returns 10 check-points on the path between the specified locations 
val getPathPoints : Location * Location -> seq<Location> 
 
/// Returns the specified number of randomly generated locations 
val randomLocations : int -> seq<Location> 

The first function can be implemented using Math.Pow and Math.Sqrt. Note that 
we've given the function several parameters, which allows us to use partial application. This 
is convenient in F# when we want to calculate the distance of a collection of locations from 
one specific point. The second and third functions can be implemented using sequence 
expressions in F# and iterators in C#. 

We'll need to call the randomLocations function from multiple threads running in 
parallel, so we need to use the SafeRandom module we created earlier. Each call to 
randomLocations first creates a new random number generator using 
SafeRandom.New() and then uses this generator repeatedly to build the result. The 
result is a lazy sequence, so it will be actually generated on demand. As it happens, we'll 
need all the items in the sequence to calculate the location of animal, so this doesn't make a 
big difference. 

The algorithms that compute the new locations of animals and predators look quite 
similar in C# and F#, because we can implement them using the same collection processing 
functions. In F# and other standard functional languages, these are the part of standard 
libraries and in C# 3.0 they are available using LINQ. We'll look at these algorithms in the 
next two sections, showing each in a single language. 

MOVING ANIMALS IN F# 
Let's start with a function that takes the location of a single animal and the current state as 
arguments and returns the animal's new location. We'll have around 100 of animals in the 
simulation and we'll need to calculate the new location for all of them. This means it's 
probably not worth making the function run its logic in parallel within a single call. Instead, 
we'll just parallelize the many calls to the function later. Working out exactly where to split 
the computation is an important part of parallelizing an application. 

Listing 14.25 implements an animal's behavior by generating 10 random locations in the 
world and working out which is the safest. It does this by looking at the direct path to the 
location and calculating how close the nearest predator is. 

Listing 14.25 Implementing the animal behavior (F#) 
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let moveAnimal (state:Simulation) (animPos:Location) = 
   let nearestPredatorFrom(pos) =                                       #1 
      state.Predators |> Seq.map (distance pos) |> Seq.min        
 
   let nearestPredatorOnPath(target) =                                  #2 
      getPathPoints(animPos, target) 
      |> Seq.map nearestPredatorFrom |> Seq.min 
     
   let target =  
      randomLocations(10)                                               #3 
      |> Seq.max_by nearestPredatorOnPath                               #3 
   animPos + (target - animPos) * (20.0 / (distance target animPos))    #4 
#1 Get the distance between 'pos' and the nearest predator 
#2 Check safety of the path to the 'target' 
#3 Choose the best of the generated locations 
#4 Move the animal by 20 points in that direction 
The code starts off by implementing two local utility functions. The first one (#1) uses 

Seq.map to calculate the distance between each predator and the specified location and 
then uses Seq.min to find get the shortest of those distances. The second one (#2) looks 
for the nearest predator on the path between the animal's current location and a specified 
destination by checking several points on the path between them.  

Next we choose a target location for the animal. We generate 10 random locations and 
choose the one the animal can reach while staying as far away from predators as possible 
(#3). We do this with Seq.max_by, which returns the element for which the given function 
returns the largest value. In our case, the function returns the shortest distance between the 
predators and the path from the animal's current location to the randomly generated target. 
Finally, we use the overloaded operators of the Location type to calculate and return a 
new location of the animal. Each time the function is called, the animal moves 20 points in 
the best generated direction.  

We'll use a similar algorithm to move the predators - but obviously with a different aim. 
The predator will also generate some random locations and then move in the best possible 
direction. The following section shows the C# version of the code. 

MOVING PREDATORS IN C# 
The algorithm for determining the best target for a predator is a bit more difficult. We're 
going to make the predator follow a path towards the largest number of animals and the 
smallest number of other predators. The C# method that implements the algorithm is shown 
in listing 14.26. It is a part of the Simulation class, which lets us access other predators 
and animals easily. (This is why we don't need to take the current state as a parameter like 
we did in the F# animal behavior function; the current state is available as this.) 

Listing 14.26 Implementing the predator behavior (C#) 
int LocationsClose(IEnumerable<Location> an, Location pos) {            #1 
   return an.Where(a => Distance(a, pos) < 50).Count(); 
} 
int LocationsOnPath(IEnumerable<Location> an,  
      Location pfrom, Location ptarget) {                               #2 
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   return GetPathPoints(pfrom, ptarget) 
      .Sum(pos => LocationsClose(an, pos)); 
} 
Location MovePredator(Location predPos) { 
   var target = RandomLocations(20).MaxBy(pos =>                        #3 
      LocationsOnPath(Animals, predPos, pos) -                          #3 
      LocationsOnPath(Predators, predPos, pos) * 3);                    #3 
 
   return predPos + (target - predPos) *                                #A 
      (10.0 / Distance(target, predPos));                               #A 
} 
#1 Count locations close to the given point 
#2 Count locations close to the specified path 
#3 Select path with many animals and a few predators 
#A Move predator by 10 points 
In the F# code for animal movement, we started by implementing two local helper 

functions. In C#, we implement similar helpers as ordinary methods. In principle, we could 
also use local lambda functions, but I decided to use a more typical C# approach to make 
the code simpler.  

The first helper method (#1) takes a collection of locations (which can be our collection 
of animals or predators) and counts how many are close to the specified point. The second 
helper (#2) counts locations that are close to a whole path. This is done by generating a 
collection of points on that path, calling the first method on each of these points and 
summing the results. 

To implement the predator behavior, we generate 20 random locations and choose the 
one with the largest number of animals and smallest number of predators (#3) close to the 
path between the predator's current location and the target. For each random location, we 
compute this "score" with two calls to LocationsOnPath. We multiply the count of 
nearby predators by a constant to make it more significant, because the number of predators 
in the whole simulation is smaller. The MaxBy extension method returns the location with 
the largest score. This method isn't a standard LINQ operator, but you can find its 
implementation in the complete simulation source code. 

Now that we have functions for calculating new locations for both animals and predators, 
we can finally implement the larger step function of the simulation. It will need to calculate 
new locations of all the animals and predators, so this will be the best place to introduce 
parallelism into the simulation. 

14.3.5 Running the simulation in parallel 
To run the simulation in parallel, we'll use a combination of task-based parallelism using 
Future and declarative parallelism using PLINQ (and the Parallel module in F#). To 
calculate the new state of the simulation, we need to perform two basic tasks - move all the 
animals and predators. With the algorithms above, these two tasks take roughly the same 
time, so this would be enough on a dual core machine. 
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However, splitting the work into just two tasks isn't the best option if we have a machine 
with more than two processors, or if one of the tasks takes longer than the other. At this 
point, we can use declarative data parallelism, because we can calculate the new location of 
each animal and predator independently: we can view it as a list processing operation. 
Listing 14.27 uses both of these techniques to implement an F# function that runs the 
simulation. 

Listing 14.27 Generating random state and running a simulation step (F#) 
let simulationStep(state) =  
   let futureAnimals = Future.Create(fun () ->                     #1 
      state.Animals  
         |> Parallel.of_seq 
         |> Parallel.map (moveAnimal state) 
         |> List.of_seq) 
   let predators =                                                 #2 
      state.Predators  
         |> Parallel.of_seq                                        #3 
         |> Parallel.map (movePredator state)                      #3 
         |> List.of_seq                                            #3 
   { Animals = futureAnimals.Value; Predators = predators } 
 
type Simulation with                                               #4 
   member x.Step() = simulationStep x                              #A 
   static member InitialState = 
      { Animals = randomLocations(150) |> List.of_seq              #B 
        Predators = randomLocations(15) |> List.of_seq }           #B 
#1 Process animals as a task 
#2 Process predators immediately 
#3 Get new predator locations using PLINQ 
#4 Add members to the 'Simulation' type 
#A Runs a single simulation step 
#B Generates random initial state 
The listing implements the simulation step as an F# function and then makes this 

function part of the Simulation type using type augmentation (#4). It also adds the 
InitialState property that simply generates 100 random locations for animals and 10 
randomly located predators. 

In the simulation step, we use Future to process the animals as a task on a different 
thread (#1). The second task which processes predators is executed on the primary thread 
(#2), so we only need a single Future value. This is similar to the tree processing code we 
discussed earlier. Each task creates a new list with locations for the next simulation step 
(#3). The list processing is further parallelized using the Parallel module. 

Tweaking the performance 

Tweaking the code to get the maximal performance is always difficult and it requires a lot 
of experimentation. If you run the simulation with any of the two parallelization 
techniques, you should get a reasonable speedup. On my dual core machine it is about 
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155% times the speed of a sequential implementation when we just use Future, and 
175% when using both PLINQ and Future. You can try various configurations to find 
the best performance on your system. 

The C# implementation of the Step method is very similar to the F# version, as you 
can see from listing 14.28. 

Listing 14.28 Running the simulation step in parallel (C#)   
public Simulation Step() { 
   var futureAnimals = Future.Create(() =>                          #1 
      Animals.AsParallel() 
         .Select(a => MoveAnimal(a)) 
         .ToList();                                                 #2 
   var predators = 
      Predators.AsParallel()                                        #3 
         .Select(p => MovePredator(p)) 
         .ToList(); 
   return new Simulation(futureAnimals.Value, predators.Value);     #4 
} 

Just like in the F# version, we create a single Future value to process animals (#1) 
and run the code that processes predators on the primary thread (#2). Each list processing 
task uses the AsParallel method so the query operators are executed in parallel. We 
only need the Select operator to get a new location for every animal or predator, so we 
use the extension method directly rather than writing a query expression. Finally we create a 
new Simulation object (#4) that holds the new state. 

As you can see, running the simulation in parallel wasn't difficult. Again, this was 
because we used functional techniques in our application design. The data structure 
representing the state is immutable, and in every step of the simulation we create a new 
state. This means that we can't run into race conditions while updating the state from 
multiple threads running concurrently. 

14.4 Summary 
In this chapter, we reviewed three different approaches for writing parallel applications in a 
functional style. Two of these techniques are based on essential aspects of functional 
programming. 

Declarative programming lends itself to data parallelization, and PLINQ makes this 
particularly easy. We can use this from both C# and F#, and a wrapper module makes the 
F# code more idiomatic than working with PLINQ directly. Both C# and F# use higher order 
functions to represent the work to be done, either directly or through C# query expressions. 

The second technique is task-based parallelism. This is made simpler by using the 
immutable data structures we're used to in functional programming. We can spawn multiple 
tasks to calculate different parts of the result and then just assemble these sub-results; 
immutability guarantees that tasks can work independently and will not corrupt each other. 
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We've also seen how to parallelize applications that use mutable state, but keep the 
mutation local. This is a valid and useful approach which allows us to use arrays in a 
functional way. When we create a new array the result of an operation, we can initialize the 
array in parallel. We saw how helper functions can make this even simpler, and we 
implemented a parallel version of array mapping in the Array2.Parallel module. 

Code is only really useful when it's part of an application, so we looked at two complete 
applications in this chapter. When an application is designed in a functional manner from the 
start, the changes needed to introduce parallelism are relatively straightforward. In fact, we 
could use the techniques from this chapter to parallelize all the applications we created when 
talking about functional architecture in chapters 7 and 8. 

 
In the next chapter, we're going to leave the realm of asynchronous and parallel 

computing and look at how we can express logic and behavior as clearly as possible. Some of 
the aspects of F# which make it so expressive can also be applied in C# 3.0 thanks to 
features such as lambda functions and extension methods. We're going to look at a famous 
functional approach for creating animations as our main example, but the same ideas can 
also be used in other domains. 
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15 
Creating domain specific  
language for animations 

In this chapter we're going to talk about language oriented programming. I briefly mentioned 
this approach in the first two chapters of the book. Its goal is to develop libraries that allow 
us to write code using as natural syntax as possible. Language oriented programming is in 
some sense a third paradigm that can be used in F# together with functional and object-
oriented style, however its less formally defined and relies very much on an intuitive sense. 
This style is applicable to C# too, so we'll mix F# and C# examples again in this chapter. 
We'll use this approach to create a library for creating declarative animations. Note that 
we've already seen a brief example of this library in chapter 1, because it is a great example 
of writing readable and declarative functional code. 

Just like any programming paradigm, the language oriented style gives us mainly a new 
point of view and it doesn't precisely specify a technology that we have to use. For that 
reason, we'll start this chapter by briefly talking about this programming style and about 
techniques that we can use in both C# and F# when using this style. After the brief 
introduction to the language oriented programming, we'll use language oriented techniques 
to create the animation library. 

15.1 What is language oriented programming? 
The language oriented programming is useful when we have a family of similar problems that 
we need to solve. Animations are a great example of this problem, because you may want to 
create hundreds of different animations. In the language oriented style, we start by creating 
a "language" for solving problems from this family and then use the language we created for 
solving all the particular problems. Implementing the language is a difficult problem, but 
solving problems using the language is a relatively easy task, supporting division of work in 
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larger teams. I originally put the term language in double quotes, because it can mean a 
different thing depending on the particular technique we're using.  

The key aspect of the language that we create is that it is tailored for the particular 
problem and it is as easy to use as possible. These kinds of languages are called domain 
specific languages, because they are used only for solving problems from one domain. This is 
what makes the style effective. When the language is limited to some domain, it can be 
easier to use than a general purpose language (which is on the other hand a language that 
allows us to solve any programming problem like for example C#). In the next section, we'll 
quickly talk about different types of domain specific languages. 

15.1.1 Types of domain specific languages 
Domain specific languages can be divided into external and internal. The difference between 
these two types is whether the domain specific language (DSL) exists as a language alone or 
whether it is embedded in some other, host, language. In this chapter, we'll focus only on 
internal DSLs, so I'll first briefly introduce external DSLs and then we'll turn our attention to 
the kind that we're interested in. 

The term external means that the language is a completely separate language that has 
its own syntax. A good example is the SQL language, which has syntax and a specification. It 
can be used only for solving limited types of problems (data querying) and it cannot be used 
for solving any problem in general. However, it is a really good in doing the job that it was 
designed for. Implementing and designing external DSLs is quite difficult, because we have 
to create our own parser to read the source code and interpreter (or even a compiler) for the 
language. Also, designing a language from scratch requires a lot of experience.  

Another example of an external DSL, which is easier to create, is an XML file with a well 
defined schema. In that case, our language specifies only the schema - the names of the 
elements that we expect and what are valid values. Working with code written in this 
language is easier, because we can use existing libraries for XML processing. For example, 
you can think of an XML configuration file as a language that describes the configuration. 

On the other hand, internal DSLs are languages that are embedded inside general 
purpose languages such as C# or F# and use the syntax of that language. You can think for 
example of LINQ queries in C# 3.0. The syntax is part of the C# language, but it really looks 
like a separate language embedded in C#. However, LINQ isn't the best example, because it 
is baked in the language and you can't implement similar extension yourself. The point of 
internal DSLs is that you can create your own thanks to the flexibility of the hosting 
language. In the next three sections, I'll briefly show possible ways for creating an 
embedded language inside F# and C#. 

15.1.2 Using abstract value representations in F# 
In this section we'll look at the simplest way for embedding a language in F#. This only 
works for very simple languages. The language shouldn't contain any complicated program 
code specifying a behavior and most of the problems should be described just by combining 
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primitive objects or collections of them and specifying their properties. In the second 
chapter, I mentioned that language oriented style is used very frequently in LISP. The 
following sidebar shows a brief motivating example using that language. 

Embedded languages in LISP 

As I already mentioned, the LISP family of languages is very suitable for creating domain 
specific languages. Thanks to its simplistic syntax, it is possible to encode almost any 
problem in a language that is consistent with the LISP programming style. Moreover, LISP 
allows us to treat the code as a data or as a program code, whichever is more suitable at 
the moment. This means that you can largely customize the language. Rather than 
running the code, we can read it as data and run it in any way we want. 

The following brief example shows how we could describe a simple animation using the 
LISP syntax. The code describes two moving circles. The green one is rotating around the 
point (0, 0) in the 100 pixel distance in speed 2 and the second one is moving between 
the two specified points: 

(compose 
   (circle(green (rotating 0 0 100 2))) 
   (circle(red (linear -100 0 100 0)))   
) 

We created our own primitives for describing the animation such as compose, circle 
or rotating and used these to specify how the animation looks. Once we have the 
description, we could write a LISP program that reads the embedded animation code and 
runs it using graphical user interface. 

The code we've seen in the sidebar doesn't look like a program code that would run. It 
looks more like a code that constructs some value with a tree like structure. The value is just 
a data without any executable code. It describes the animation and we have to implement a 
function that takes the value and gives it some interpretation, most likely by showing it as a 
running animation.  

When the code in the language looks like a value, we can implement it in F# by creating 
types that allow us to create values specifying all the properties we want. The most common 
F# type for this kind of problems is discriminated union, but you can also use lists (to 
represent collections of things) or records for primitives with large number of properties. The 
listing 15.1 shows a simple type declaration that defines the types for describing animations 
just like the one in the previous sidebar.  

Listing 15.1 Specifying animations using discriminated unions (F#) 
type AnimatedLocation =                          #A 
   | Static of PointF  
   | Rotating of PointF * float32 * float32 
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   | Linear of PointF * PointF 
    
type Animation =                                 #B 
   | Circle of AnimatedLocation 
   | Compose of Animation * Animation  
#A Specifies movement of an object 
#B Type of values that represent animations 
Using this type, we can now create values that describe very simple animations. In some 

sense, the type above specifies the syntax we can use when using the embedded language 
for creating animations, because it specifies what a valid animation value is***. The following 
example shows a simple animation doing the same thing as the one in the sidebar above: 

let animation = 
   Compose( 
      Circle(Brushes.Green, Rotating(PointF(0.f, 0.f), 100.f, 2.f)),  
      Circle(Brushes.Red, Linear(PointF(-100.f, 0.f), PointF(100.f, 0.f))) 
   ) 

This example creates a value with a tree like structure specifying that we want to create 
an animation composed from two circles. The animation is created by specifying how the 
location of object changes and the language above allows us to create objects that are static, 
rotating or moving along some line.  

In C#, we could get similar results using carefully designed classes and the new C# 3.0 
features such as object initializers and collection initializers. However, the principle would be 
the same. The embedded language is used to create values that describe the problem. The 
use of discriminated unions or collections and objects is only influenced by what is the 
easiest way to create these kinds of values in the host language†††. In the next section, we’ll 
look at another technique that we can use to create domain specific languages in C#. 

15.1.3 Using fluent interface in C# 
Fluent interface is probably the most widely known way for creating embedded languages in 
object oriented languages such as Java or C#. Unlike simple discriminated unions or classes 
created using the object initializer syntax, fluent interface allows us to hide the internal 
representation of the values that the language constructs.  

The key idea behind fluent interface is that we create some object and then use a chain 
of method to specify properties and also behavior of that object. The listing 15.2 shows how 
we could use this style to describe the animation we’ve been using as an example in the 
previous section. 

                                                            

 

*** Expert F# [Syme et.al, 2007] calls this type of languages abstract syntax representations 

††† Fowler calls similar types of DSLs literal collection expressions [Fowler, 2008] 
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Listing 15.2 Creating animations using fluent interface (C#) 
var animation = new Circle()                                #1 
   .WithColor(Brushes.Green) 
   .RotateAround(0, 0).RotateDistance(100).RotateSpeed(2)   #2 
   .ComposeWith(new Circle()                                #3 
      .WithColor(Brushes.Red) 
      .LinearFrom(-100, 0).LinearTo(100, 0)                 #B 
    ); 
#1 Create first circle 
#2 Specify its behavior 
#3 Compose with second circle 
#B Specify the movement 
The listing starts by constructing a circle (#1) and then setting its properties in a 

method chain. As a part of this method chain, we also specify the behavior (how the circle is 
animating) using three method calls (#2). In this part of the method call chain we specify 
individual properties of the rotation. After configuring the circle, we use ComposeWith 
method to compose the first circle with a second circle (#3). The second circle is provided as 
an argument and we use similar method chain to configure its properties. 

In imperative programming languages, implementing fluent interfaces require creating a 
wrapper type that configures the created underlying mutable object‡‡‡. However, in 
functional programming this style looks very natural. In fact, it is quite similar to what we've 
seen already when talking about LINQ, where we also use method chains to specify the 
query. Let me demonstrate this using the following query:  

var q = data.Where(c => c.Country == "London") 
            .OrderBy(c => c.Name) 
            .Select(c => c.Name); 

Functional paradigm largely supports this style of programming. When using immutable 
data structures, every operation returns a new value instead of altering an existing one. This 
means that it has to returns some object as a result and this supports chaining of method 
calls just like in LINQ or the example above. This also makes the program more declarative, 
because the code in the embedded language is just a single expression that describes what 
we want to achieve. In fact, when writing functional code in C#, it often uses the fluent 
interface style to some extent. The C# version of the library for creating animations that 
we'll create later in this chapter will be no difference. In the next section, we'll look at a 
typical way for creating internal DSLs in functional programming languages. 

                                                            

 

‡‡‡ Fowler describes how to do this [Fowler, 2008] and calls the construct Expression Builder 
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15.1.4 Using combinator libraries in F# 
We've already seen a simple way to create embedded languages in F# using discriminated 
unions. Using this technique, we could easily specify the syntax of the embedded language, 
but the language wasn’t very extensible, because the type fully specifies what we can do 
using it. Also, we couldn’t use sophisticated internal representation, because the embedded 
programs created just simple values with a tree structure. 

When using combinator libraries, the library gives us a couple of primitive values (such 
as primitive animating objects) and functions or operators to compose them, which are 
usually called combinators. This approach is very extensible, because we can create our own 
more sophisticated primitives (just by composing provided primitives) and also create our 
functions for composing objects in sophisticated ways (again, just by using various primitive 
combinators together). 

We’ll use this programming style when creating the F# version of the animation library, 
so let me demonstrate the idea using an example that we’ll be able to write at the end of the 
chapter. The following snippet shows an animation with a sun and two rotating planets: 

let planets =  
   sun -- (rotate 150.0f 1.0f earth) 
       -- (rotate 200.0f 0.7f mars) 

The animation is composed from three primitives using a primitive combinator "--". 
We’re using three different solar objects, which are primitives that we defined for a more 
specific type of animations (animations showing solar system). It also uses a rotate 
primitive, which gives us a way to specify how an object rotates. This looks like a basic 
primitive, but as we’ll see it is derived from the only elementary primitive for specifying 
movement of an object. The figure 15.1 shows what we'll get when we run the animation 
above. 

 

Figure 15.1 Running planet simulation with mars and the earth rotating around the sun. 
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Combinator libraries are quite popular in the functional programming community and 
have been used for a wide range of libraries. Perhaps the best known example is the Parsec 
library for creating parsers [Leijen, Meijer, 2001]. In this chapter, we'll see that they can be 
elegantly used for describing animations and we'll also see that using this style in F# is 
closely related to using the fluent interface style in the C# language. 

15.2 Introducing functional animations 
The idea of expressing animations in a functional language as a domain specific language (or 
a combinator library) comes from a Haskell project called Fran, which was created by Conal 
Elliott and Paul Hudak in 1997 [Elliot, Hudak, 1997]. Fran stands for functional reactive 
animations and the library allows you create animations and also specify how the animation 
reacts to events such as mouse clicks. 

The library that we'll implement in this chapter is largely motivated by Fran. However, 
we'll focus on the animations alone and we won't talk in detail about reacting to events. 
However, we'll briefly look how the library could be extended to support reacting to events in 
the next chapter, where we'll talk about reactive GUI programming. Animations can be 
elegantly modeled using time-varying values. In Fran, these values are called behaviors and 
we'll follow this naming. The following note explains what a behavior is. 

WHAT IS A BEHAVIOR? 

Behavior is a time-varying value. It can be represented as a composite value, whose 
actual value may be different depending on the time. We talked about composite values 
earlier in the book, so for example Option<int> is a composite value that can have 
actual value of type integer or a special value None. Similarly, we'll have a type 
Behavior<int>, whose actual integer value can be different depending on the time. 

Behaviors are an essential part of our animation framework, because we can use them 
for specifying locations of objects. When the location changes depending on the time, it 
means that the whole object will be moving. We'll start this chapter by talking about 
behaviors and we'll get to animations relatively late. However, when we'll start talking about 
animations, you'll see that we're already done, because we'll already have everything we'll 
need. 

15.3 Working with behaviors 
As I already mentioned, behaviors are largely independent from the animation library. They 
just represent a value, which is varying in the time but doesn't necessary have to be related 
to any graphical drawing. Using behaviors, we can for example create a time-varying integer, 
which changes with the time. We'll see that we can for example view the value of this integer 
at the specified time. 
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This means that we can start by implementing behaviors independently from the rest of 
the animation library. In this section, we'll look how behaviors can be represented and how 
we can create basic behaviors. However, animated integer is far less interesting than a 
running animation, so once we'll implement basic behaviors, we'll look how to use them to 
create animations. At the end of the chapter, we'll get back to behaviors and we'll implement 
various useful operators for creating and working with them. 

15.3.1 Representing time-varying values 
I we've seen in section 15.3, we can represent behaviors or time-varying values using some 
composite type, so the type of behaviors will be Behavior<'a>. It is important to realize 
that from the user perspective, it is not interesting what the internal representation is. Our 
library will provide basic functions for creating behaviors, so the user will build behaviors 
only using these functions. Let's now look what would be a good representation of behaviors.  

REPRESENTING BEHAVIORS IN F# 
One possible representation is to store the initial value and some difference that specifies 
how the value changes over time. For example, if we had initial value 10 and 1 as the 
difference per second, then the value after 15 seconds would be 25. However, this isn't very 
flexible and we could represent only very limited kinds of animated values. A better 
representation for our purpose will be a function that returns the actual value if we give it 
the time as an argument. This allows us to represent animated value of any kind. You can 
see the F# type declarations in listing 15.3. 

Listing 15.3 Representing behaviors using functions (F#) 
type BehaviorContext =                           #1 
   { Time : float32 } 
type Behavior<'a> =                              #2 
   | BH of (BehaviorContext -> 'a)               #A 
#1 Arguments for evaluating time-varying values 
#2 Single case discriminated union 
#A Function evaluates the actual value 
The simplest possible representation of the behavior would be just a function of type 

float32 -> 'a, which would return the value when we give it the current time. In the 
listing above, we already did the next step of the iterative development process and we're 
using a bit more complicated version, which will make behaviors easier to use and also 
extend in the future. First of all, we're using a simple record type (#1) to wrap the current 
time. This allows us to add new information that can be used by the behavior other than just 
the time.  

We're also using a single-case discriminated union to wrap the function (#2). This is 
quite useful because it gives the name to the type and allows us to hide the internal 
representation of the type. We'll see how exactly this can be done in chapter 18. The point is 
that the user of our library will just see Behavior<int> without knowing that it is 
internally a function. Also, using single-case discriminated union is syntactically quite 
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convenient, because we can use pattern matching to access the function value. We'll see this 
shortly, but let's first look at the equivalent declaration in C#. 

REPRESENTING BEHAVIORS IN C# 
When thinking about the representation in C#, we have a fewer options to choose from. 
Somewhat surprisingly, we still have other options than using a class. We could represent 
the behavior directly using a delegate such as Func<float, T>. However, similarly to 
F#, it is better to hide the internal representation and give the type a name. You can see the 
C# representation of behaviors in listing 15.4. 

Listing 15.4 Representing behaviors (C#) 
internal class BehaviorContext {                                        #1  
   public BehaviorContext(float time) { 
      this.time = time; 
   } 
   private readonly float time; 
   public float Time { get { return time; } }                           #2 
} 
public class Behavior<T> { 
   internal Func<BehaviorContext, T> BehaviorFunc { get; set; }         #3 
} 
#1 Immutable animation state 
#2 Gets current time of the animation 
#3 Function that calculates the value 
The representation in C# is essentially the same as in F#. We're using a simple 

immutable class to store the current time (#1). We'll pass instances of this class as an 
argument to various functions, so we want to make sure that it cannot be modified. For this 
reason we implement the Time property (#2) using read-only field. The representation of 
behavior is a generic class with a single property of type Func<DrawingContext, T> 
(#3), which corresponds to the function value wrapped inside an F# discriminated union. 

I mentioned that we want to hide the representation of the Behavior type from the 
user, so we marked the property as internal. Similarly, the BehaviorContext type is 
also internal. Instead of constructing the behaviors directly, the user will create behavior 
using one of primitive functions that we provide. In the next section, we're going to look at 
these primitives. We'll start by looking at the C# version of these functions and then we'll 
implement the same primitives in F#. After that we'll spend some time using the F# 
interactive to explore how behaviors work. 

15.3.2 Creating behaviors in C# 
As I mentioned earlier we'll start with only a few basic functions for creating behaviors. After 
we'll have a nicer way for visualizing behaviors (by animating graphical objects), we'll get 
back to this topic and add more interesting constructs. Clearly, the simplest method that 
creates a behavior will just take the same function as the function used by our underlying 
representation. 
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However, this will be just an internal method that will make it easier for us to write 
other primitives. Since we'll wrap the creation of the object in a method, we'll be able to use 
the type inference of method type arguments in C#. This is similar to helper methods that 
we implemented earlier, such as Option.Some. You can see the code for this helper 
method in listing 15.5. 

Listing 15.5 Creating behavior from a function (C#) 
public class Behavior { 
   internal static Behavior<T> Create<T>(Func<BehaviorContext, T> f) { 
      return new Behavior<T> { BehaviorFunc = f }; 
   } 
} 

This source code uses C# 3.0 object initializer syntax to specify the value of the 
BehaviorFunc property when creating the object. We'll see later that we can create all 
kinds of behaviors without using this method, so we can mark it as internal. This means that 
the internal representation of behaviors can stay fully hidden. 

As a next step, we can use the Behavior.Create method to create a couple of 
primitive constructs that we'll make available to the user. In C#, we'll expose them as static 
methods and properties in a static class. You can see this utility class in the listing 15.6. 

Listing 15.6 Primitive behaviors (C#) 
static class Time { 
   public static Behavior<float> Current {                         #1 
      get { return Behavior.Create(ctx => ctx.Time); } 
   } 
   public static Behavior<float> Wiggle {                          #2 
      get { return Behavior.Create(ctx => 
               (float)Math.Sin(ctx.Time * Math.PI)); } 
   } 
   public static Behavior<T> Always<T>(T v) {                      #3 
      return Behavior.Create(ctx => v); 
   } 
   public static Behavior<float> Anim(this float v) {              #4 
      return Behavior.Create(ctx => v); 
   } 
} 
#1 Behavior that represents the current time 
#2 A value oscillating between 1 and -1 
#3 Create constant behavior from a value 
#4 Extension method for floats only 
The first three constructs are quite straightforward. The Current property returns a 

behavior that represents the current time (#1). The property named Wiggle calculates sine 
function of the time (#2). This will be quite useful in the animation, because sine can be 
used for creating circular movements, so we'll use it later to create rotating drawings. 
Finally, the Always method creates a behavior that has always the same value, which is 
specified as an argument (#3). This method is generic, so we can use it to create constant 
behaviors of any type.  
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We'll use behaviors for creating animations, but there is another way to visualize them. 
We can draw a graph of the value depending on the time. The figure 15.2 shows the three 
primitive behaviors that we just implemented. The function that draws the screenshot is 
available as part of the online source code, so you can use it when experimenting with 
behaviors. 

 

Figure 15.2 Primitive behaviors during the first two seconds. The value of 'current' ranges from 0 to 2 and 
'wiggle' oscillates between +1 and -1.  

The last construct in the previous listing is an extension method for the C# float type 
(#4). The C# syntax allows us to call methods directly on numeric literals, so we can use 
this method to write for example 0.5f.Always(). This is syntactically very simple, which 
is one of the goals of domain specific languages. In the examples we'll see later, this 
construct will be quite frequent and you'll see that using the Time.Always method would 
definitely complicate these samples. 

You may be wondering why we didn't create just a single generic method that would be 
also an extension method. That would of course work, but we'd add Always method to all 
types that we'll work with. This looks like overkill, because we won't need to create behaviors 
from most of the types. On the other hand, for floats, this extension method makes a good 
sense, because we'll need to create constant behaviors from floating point numbers relatively 
often. 

In the next section, we'll briefly look at the implementation of the same primitives in F#. 
We already know how they work, so this will be quite easy. As a next step, we'll experiment 
with them in the F# interactive to learn how we can use them later in the chapter.   
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15.3.3 Creating simple behaviors in F# 
Let's start by duplicating the functionality, which we just implemented in C#. The listing 15.7 
shows how to implement two behavior values (called wiggle and time) and a function for 
creating constant behaviors (called always). 

Listing 15.7 Primitive behavior functions and values (F#) 
> open System;; 
> let sample(a) = BH(a);;                                           #1 
val sample : (BehaviorContext -> 'a) -> Behavior<'a> 
 
> let always(n) = sample(fun _ -> n)                                #A 
  let time      = sample(fun t -> t.Time)                           #B 
  let wiggle    = sample(fun t -> sin(t.Time * float32 Math.PI))    #C 
  ;; 
val always : 'a -> Behavior<'a>                                     #2 
val time : Behavior<float32>                                        #2 
val wiggle : Behavior<float32>                                      #2 
#1 Creates behavior from a function 
#A Returns always the same value 
#B Return the current time 
#C Sine of the current time 
#2 Function 'always' and behavior values 'time' and 'wiggle'  
The listing starts by creating a utility function called sample (#1), which is similar to 

the previous Behavior.Create method. We could of course use the discriminated union 
constructor BH directly, but we want to make sure that the internal representation isn't 
unnecessarily exposed, so we'll create behavior values using this function. The name 
sample, reflects the fact that the function can be used to get the individual observation at 
selected times, which is called sampling in statistics. 

Once we have the utility function, we create three primitives just as we did in the 
previous C# listing. You can also see the type signatures inferred by F# interactive (#2). The 
always is a generic function and the two other values are simply numeric behaviors. A one 
thing that we haven't implemented yet is a syntactically friendlier way to construct constant 
numeric behaviors. Using the function above, we could write (always 0.5f), which isn't 
as elegant as it could be. We can use the same approach as in C# and define an extension 
member for the type float32: 

type System.Single with  
   member x.always = always(x) 

When implementing extension members we have to use the full .NET name of float32 
which is System.Single. Extension members in F# aren't limited to methods, so we 
could implement the extension above as a property. The following example shows how to use 
it: 

> let v = 123.0f.always 
val v : Behavior<System.Single> 

As you can see, this is syntactically very convenient and it will make the code of our 
animations quite elegant. Now that we know how to create primitive behaviors, we'll take a 
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look how we can manipulate with them. The best way for doing explorative style of 
programming like this is to use the F# interactive tool. 

15.3.4 Calculating with behaviors in F# 
In this section, we'll write a few utility functions for working with behaviors. Even though 
we'll just experiment with them, we'll find later that most of the code we write in this section 
is extremely useful for implementing our animation sample. We'll first implement all of the 
functions in F# and test them in F# interactive and we'll see how to reimplement the most 
important functions in C# in a later section.  

The first thing that we'll need to implement in order to test any code that uses behaviors 
is to write a function that reads the value of a behavior at the specified time. We'll 
implement such function in the next section. 

READING VALUES 
Calculating a value of the behavior at the given time is very easy. Because the internal 
representation is a function that gives us the value when it gets the time as an argument, we 
just need to execute this function. The listing 15.8 shows a function readValue, which 
takes a behavior and a time and returns the value. Once we have this function, we use it to 
read values of the primitive behaviors we created above. 

Listing 15.8 Reading values of behaviors at the specified time (F# interactive) 
> let readValue(BH(animFunc), time) =                       #1 
     animFunc { Time = time };;                             #2  
val readValue : Behavior<'a> * float32 -> 'a 

 
> readValue(42.0f.always, 1.5f);;                           #A 
val it : System.Single = 42.0f 
 
> readValue(time, 1.5f);;                                   #B 
val it : float32 = 1.5f 
 
> readValue(wiggle, 1.5f);;                                 #C 
val it : float32 = -1.0f 
#1 Extract function value using pattern matching 
#2 Run the function 
#A Get value of a constant behavior 
#B Time gives 1.5f after 1.5 seconds 
#C Value of wiggle in the lowest peak 
In F#, we can use pattern matching anywhere where we can bind a value. This includes 

the declaration of function arguments. In the listing above, we used a pattern in the function 
declaration to extract the function carried by behavior (#1). The discriminated union 
representing the behavior contains only a single case, so this pattern cannot fail and so it is 
perfectly fine to use it this way. As a next step, we construct a BehaviorContext value 
and pass it as an argument to the function (#2), which calculates the value of the behavior 
at the specified time. 
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The next couple of lines show how we can get values of the primitive behaviors that we 
implemented earlier. As you can see, all of them yield the expected results, so the 
interactive development style once again helped us to make sure that we're writing correct 
code. Reading values of primitive behaviors is a good start. The next question is, how can we 
create some more sophisticated behavior? Let's say that we for example wanted to create 
behavior that represents the square of the current time. We could write this using sample, 
but that's quite complicated. Ideally, we just want to apply the square function to a 
behavior! In the next section, we'll see how to do that. 

APPLYING FUNCTION TO A BEHAVIOR 
When explaining what a behavior is earlier, I said that behavior is a composite value and I 
draw the similarity between Behavior<int> and Option<int>. Both of these types 
are composite values that contain some value, but in some unusual way. The option type is 
unusual, because it may be empty and behavior is unusual, because the value depends on 
the time. 

This analogy will be surprisingly helpful. If you remember chapter 6, where we talked 
about higher order functions for working with option values, you may also remember that we 
used a function Option.map, which applied a specified function to the value carried by the 
option. It turns out that we can implement exactly same map function for behaviors as well. 
Let's look at the listing 15.9, which shows how to do that and we'll talk about the details 
after that. 

Listing 15.9 Implementing 'map' for behaviors (F# interactive) 
> module Behavior =                                             #A 
     let map f (BH(fvalue)) =  
        sample(fun t -> f(fvalue(t)));;                         #1 
module Behavior =  
   val map : ('a -> 'b) -> Behavior<'a> -> Behavior<'b>   
 
> let squared = time |> Behavior.map (fun n -> n * n);;         #2 
val squared : Behavior<float32> 
 
> readValue(squared, 9.0f);;                                    #3 
val it : float32 = 81.0f 
#A Declare the function in a module 
#1 Create behavior that applies 'f' to all values 
#2 Behavior representing a square of the current time 
#3 Get the value after 9 seconds 
The first argument of Behavior.map is a function (f) that we want to apply to values 

of the behavior. The second argument is the behavior itself and we immediately extract the 
underlying function that represents it (fvalue). To build the result, we need to create a 
new behavior, so we construct its underlying representation, which is again a function. To 
construct it, we use a lambda function that takes the time as the argument. It first runs 
fvalue to get the value of the original behavior at the specified time. Once it has the 
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value, it runs the f function to get the final result. In fact, the body is just composing the 
functions, so we could also write sample(fvalue >> f) as the implementation. 

As you can see, we can now use Behavior.map to perform any calculation with the 
values carried by the behavior. The second command (#2) shows that we can calculate 
square of other primitive behaviors. The behavior that we get as a result doesn't execute the 
square function that we provided until we ask it for an actual value at the specified time. 
When we do this (#3), it executes the function that we returned as a result from map. This 
function then gets the current time (by evaluating value of the time primitive) and then 
runs the square function that we provided.  

This may look a bit tricky, so a good way to understand what is going on is to add 
printfn construct to the function that calculates the square. This will clarify when is the 
function executed and with what arguments. You can also take a look at the figure 15.3 a 
couple of pages later, which shows the graph of the squared behavior together with a 
behavior that we'll create in the next section. 

In this section, we did an amazing progress. We can now take a primitive behavior and 
construct a derived behavior using almost any calculation. In fact, we could now implement 
the wiggle primitive just by applying sine function to the time primitive using map. 
However, there are still things that we cannot do. For example, what if we wanted to add 
two behaviors? Is there a more elegant way to do this than using the sample primitive? 

TURNING FUNCTIONS INTO "BEHAVIOR FUNCTIONS" 
The Behavior.map function takes two arguments. In the example above, we specified 
both of them. However, partial function application allows us to call the function only with a 
single argument. Using the function in this way will give us an interesting insight. In the 
following example, we specify only the first argument (a function) and we'll use simple 
function abs, which returns absolute value of an integer: 

> abs;; 
val it : (int -> int)                              #A 
 
> let absB = Behavior.map abs;; 
val absB : (Behavior<int> -> Behavior<int>)        #B 
#A Works with integers 
#B Works with behaviors of integer 
On the first line, you can see the type of the abs function. The second line shows what 

happens if we call Behavior.map with abs as the first and only argument. The type of 
the result is a function that takes Behavior<int> and returns Behavior<int>. This 
means that we used Behavior.map to create a function that calculates an absolute value 
of a behavior! We could use this trick to turn any function that takes a single parameter into 
a function that does the same thing for behaviors. Before we'll continue, let me briefly 
discuss this type of functions in general. 

Lifting of functions and operators 
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The construct that we've just seen is a well known concept in functional programming and 
it is usually called lifting. In some sense, we could even call it a functional design pattern. 
Lifting allows us to transform a function that works with values into a function that does 
the same thing in a different setting [HaskellWiki]. Interestingly, lifting is hidden in one 
C# 2.0 language feature, so we can demonstrate it using familiar language. If we want to 
create a primitive value such as int, which can have a null value, we can use C# 2.0 
nullable types: 

int? num1 = 14; 
int? num2 = null; 

So far nothing we haven't seen anything interesting. We declared two nullable int values. 
One of them contains a real integer value and the other doesn't have a value. However, 
did you know that you can write following: 

int? sum1 = num1 + num2; 
int? sum2 = num1 + num1; 

The result of the first calculation will be null, because at least one of the arguments is 
null. The result of the second expression will be 28, because both arguments of the "+" 
operator have a value. In this example, the C# compiler takes the ordinary "+" operator, 
which works with integers and creates a lifted "+" operator that works with nullable 
types. This operation is very similar to what we want to do with behaviors.  

In the sidebar, we've seen a lifting of operators that take two arguments. The 
Behavior.map implements lifting for functions of single argument, so the remaining thing 
is to implement lifting for functions of multiple arguments. The listing 15.10 shows the 
remaining lifting functions. 

Listing 15.10 Lifting functions of multiple arguments (F#) 
module Behavior =                                                       #A  
   (...)                                                                #B 
 
   let lift1 f v =                                                      #1 
      map f v 
   let lift2 f (BH(fv1)) (BH(fv2)) =                                    #2 
      sample(fun t -> f (fv1(t)) (fv2(t))) 
   let lift3 f (BH(fv1)) (BH(fv2)) (BH(fv3)) =  
      sample(fun t -> f (fv1(t)) (fv2(t)) (fv3(t))) 
 
val lift1 : ('a -> 'b)             -> B<'a> -> B<'b>                    #3 
val lift2 : ('a -> 'b -> 'c)       -> B<'a> -> B<'b> -> B<'c>           #3 
val lift3 : ('a -> 'b -> 'c -> 'd) -> B<'a> -> B<'b> -> B<'c> -> B<'d>  #3 
#A Place functions to the Behavior module 
#B 'Behavior.map' omitted in this listing 
#1 Does the same thing as 'map' 
#2 Lifting for functions of two-arguments 
#3 'B' is an abbreviation of 'Behavior' 
The listing above first shows how to implement the lifting functions and then separately 

shows their signatures. The implementation of lift1 function is trivial, because it does the 
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same thing as Behavior.map (#1). However, this is largely thanks to the partial function 
application, so when we'll implement the same functionality in C#, these functions will be 
different. The implementation of lift2 and lift3 (#2) is similar to the map function 
which we've seen earlier and I'm sure you'd be now able to implement lifting for functions of 
more than three arguments as well.  

At this point, we'll able to implement any computations that work with behavior without 
using the low-level sample primitive. Any computation that you can think of can be 
implemented just using the time primitive and one of the lifting functions. The following 
snippet answers the question that motivated this section - how can we add two behaviors? 

> let added = lift2 (+) wiggle time;; 
val added : Behavior<float32> 

The example uses lift2 function with (+) operator as the first argument and two 
primitive behaviors as next arguments. If we read the value of the returned behavior, it will 
get values of the two behaviors used as arguments and add them together. We can visualize 
this behavior just as we did earlier for three primitive behaviors. The figure 15.3 shows the 
behavior above and a slightly modified behavior calculating square of the time (I modified 
the computation, so that the graph better fits in the screenshot).  

 

Figure 15.3 Graph showing values of two complex behaviors during the first 10 seconds. 

The example above could be written even more elegantly. We'll see later that we can 
implement standard F# operators for behaviors, so we'll be eventually able to write just 
wiggle + time, but we'll do that later. In this section, we implemented 
Behavior.map and a family for lifting functions for behaviors in F#. The next section 
shows how to do the same thing in C#.  

15.3.5 Implementing lifting and map in C# 
Lifting functions and map are essential for constructing behaviors, so we'll need them in the 
C# version of the project as well. After the previous discussion about the F# version, you 
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already have some idea what should these functions do, so we won't discuss everything in 
detail. However, the C# version will have some interesting aspects as well. 

Whenever we had a map function in F#, we used the name Select in C#. This is the 
standard terminology used in LINQ, so we'll stay consistent and we'll implement the 
analogous C# construct as a Select extension method for behaviors. I earlier mentioned 
that in C#, there is a difference between the Select method and methods that implement 
the lifting. The best way to understand the difference is to look at the function signatures: 

// Apply the function 'f' to values of the behavior 'behavior' 
Behavior<R> Selelct<T, R>(Behavior<T> behavior, Func<T, R> f); 
 
// Returns a function that applies 'f' to the given behavior 
Func<Behavior<T>, Behavior<R>> Lift1<T, R>(Func<T, R> f); 

The method Lift1 takes just a single argument (a function) and returns a lifted 
function. The Select method takes the function to apply and also the behavior, so it can 
immediately construct a new behavior using this function. The implementation of these 
functions will be similar, so we can still see that they are related, but we cannot easily 
implement them using exactly the same code. The listing 15.11 shows the implementation of 
Select and Lift1. It also adds a method for lifting of functions with two arguments.  

Listing 15.11 Lifting methods and 'Select' (C#) 
public static class Behavior { 
   // (...)                                                             #A 
 
   public static Behavior<R> Selelct<T, R> 
         (this Behavior<T> behavior, Func<T, R> f) { 
      return Create(ctx => f(behavior.BehaviorFunc(ctx)));              #1 
   } 
 
   public static Func<Behavior<T>, Behavior<R>>  
         Lift1<T, R> (Func<T, R> f) { 
      return behavior => Create(ctx => f(behavior.BehaviorFunc(ctx)));  #2 
   } 
 
   public static Func<Behavior<T1>, Behavior<T2>, Behavior<R>> 
         Lift2<T1, T2, R>(Func<T1, T2, R> f) { 
      return (b1, b2) => Create(ctx =>                                  #3 
         f(b1.BehaviorFunc(ctx), b2.BehaviorFunc(ctx)));                #3 
   } 
} 
#A Earlier 'Create' method omitted 
#1 Return a behavior that applies the function 
#2 Returns function returning the behavior 
#3 …similarly for two arguments 
We'll add all the methods to the static class Behavior, which already contains the 

internal Create method. The implementation of Select (#1) is a literal translation of the F# 
version. It constructs a behavior and gives it a function that calculates the value at the 
specified time using the original behavior (behavior) and the provided function. The 
second method (#2) is more interesting, because it returns a function. This means that we'll 
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return a lambda function that takes the behavior as an argument and then does the same 
thing as the previous method. Finally, we also implement Lift2, which is very similar, but 
works with functions of two arguments. The listing doesn't show implementation of Lift3, 
but you could implement it yourself using the similar pattern. 

Using the methods above, we can construct the same behaviors as in the previous F# 
example. The best way to create behavior representing the squared time is to use the 
Select extension method. To add two primitive behaviors, we'll create a lifted addition and 
then use it: 

var squared = time.Select(t => t * t);                        #A 
 
var plusB = Behavior.Lift2((float a, float b) => a + b);      #B 
var added = plusB(Time.Current, Time.Wiggle);                 #C 
#A Square of the time 
#B Lifted addition 
#C Adding two behaviors 
The first example should be fairly straightforward. It uses the Select method to 

specify a function that will be used for calculating values of the squared behavior. The 
second example first declares a value plusB, which is a function that can add two behaviors 
of type float. The overall type of this function is quite long: 

Func<Behavior<float>, Behavior<float>, Behavior<float>> 

Luckily, we can use the C# type inference in this case and we don't have to write this 
type explicitly. Once we have this lifted plus operator, we can use it to add two behaviors. 
We add together behaviors that represent the current time and the wiggle primitive and the 
result will be again a behavior (more specifically Behavior<float>). When we called one 
of the processing functions Select, you may have been wondering whether there is any 
relation between behaviors and LINQ, which also uses method called Select. The following 
sidebar answers this question. 

Behaviors and LINQ 

The signature of the Select method in the listing 15.11 has the same structure as the 
signature of the Select method that you can use in LINQ when writing queries. This 
isn't accidental and the fact is that you can use the C# 3.0 query syntax for creating 
behaviors. You can for example write the following perfectly valid code: 

var squared = from t in Time.Wiggle select t * t; 

This means exactly the same thing as the squared behavior, which we declared in the 
sample above, because this is the translation that LINQ uses. This type of query is quite 
interesting, because the source of the values (Time.Wiggle) contains potentially 
infinite number of values. However, the query is evaluated only when we need a value of 
the behavior squared at some specified time. We won't discuss LINQ queries for 
behaviors in larger detail in this chapter however we could implement the SelectMany 
query operator, which would allow us to write for example the following:  
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var added = from a in Time.Current 
            from b in Time.Wiggle 
            select a + b; 

This is definitely an interesting alternative to using lifting explicitly. We could also 
implement an F# computation expression builder for creating behaviors. You can find 
implementations of these interesting extensions on the book web site www.functional-
programming.net.  

Behaviors are essential and the most difficult part of our animation framework. At this 
point we already implemented enough of what we'll need to create all the animations later in 
the chapter, so it is the time to look at the second component that we'll use for creating 
animations - the code that represents and works with graphical drawings. 

15.4 Working with drawings 
Similarly as when designing behaviors, we have to start by answering the question: "What is 
a graphical drawing?" Technically speaking, what is the right way for representing graphics in 
our animations? We'll take a look at this problem in the first section. However, we already 
know what we will need to do with drawings. First of all, we need to be able to compose 
them. The animation will be described in terms of drawings that are moving and are 
composed to form a single drawing. In the future, we could also support other geometrical 
transformations such as scaling and skewing. 

15.4.1 Representing drawings 
In the second chapter, we used graphical drawings as a sample problem that could be 
implemented using discriminated unions. This would be a good choice for diagramming 
application, where the application needs to understand the structure of shapes. However, in 
this chapter we'll use a more extensible representation. In C#, drawing will be simply an 
interface with a method that knows how to draw it. This could be represented more simply as 
a function, but as with behaviors, we want to hide the internal representation.  

The F# version will follow the C# style and it will use interfaces as well. The reason for 
this is that the code will be using more .NET functionality, so it will be more consistent. Since 
the representations are quite similar this time, we can discuss both them side-by-side in the 
listing 15.12. 

Listing 15.12 Representing drawings in C# and F# 
using System.Drawing; 
 
interface IDrawing {                #1 
   void Draw(Graphics gr); 
} 
 
class Drawing : IDrawing {          #3 
   public Action<Graphics>  
      DrawFunc { get; set; } 
   public void Draw(Graphics gr) { 

open System.Drawing 
 
type Drawing =              #2 
   abstract Draw : 
      Graphics -> unit 
 
let drawing(f) =            #4 
  { new Drawing with  
       member x.Draw(gr) =  
          f(gr) } 
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      DrawFunc(g); 
   } 
} 

Even though the architectural idea is the same in both languages, the implementation 
uses different techniques. In both C# and F#, we first define an interface (#1) (#2). As I 
mentioned earlier, we can omit the starting "I" from the F# interface name as long as it is 
used only from F#, because F# unifies all type declarations.  

Later in the code, we'll need an easy way for creating drawings. The drawing is specified 
just by the drawing function, so we want to be able to create it just by specifying the 
drawing code using lambda function syntax. In C#, we create a simple class (#3) that 
implements the interface and has a property of type Action<Graphics>. The property 
represents the function that is called when the drawing should draw itself. In F#, we could 
use object expressions every time we'll need to create Drawing value later in the code, but 
we implement a utility function to simplify this task. The function drawing (#4) takes a 
function that does the drawing as an argument and returns a Drawing value that will use 
this function. This allows us to use lambda function, which is syntactically simpler than object 
expression. 

The declaration above shows that object oriented and functional concepts can be used 
efficiently together. The interface declaration uses classical object oriented idea, because the 
sample we're discussing in this chapter is already a more evolved application. However, for 
the implementation, we can still use the simplicity of functional style. We'll see this simplicity 
in the next section where we'll implement a first concrete drawing. 

15.4.2 Creating and composing drawings 
In this section, we'll implement our first primitive drawing, which will be an circle. We could 
similarly implement many other types of drawings, but we'll look only at one example and 
you can add additional drawings yourself. Instead, we'll discuss other ways to create 
drawings, which will be later important for our animation code. In particular we'll see that we 
can create a composed drawing from two or more other drawings. However, let's start by 
implementing the circle. 

CREATING AND MOVING CIRCLES 
The function that implements the drawing gets the Graphics object as an argument. The 
object has FillCircle method, so the implementation will be really simple. Perhaps a 
more interesting aspect is that the listing contains a very low amount of additional noise and 
adding another drawing would take only about 3 lines of code. The listing 15.13 shows both 
C# and F# version. 

Listing 15.13 Creating circle in F# and C# 
// C# version  
public static class Drawings {                                         #A 
   public static IDrawing Circle(Brush brush, float size) { 
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      return new Drawing { DrawFunc = gr =>                            #1 
         gr.FillEllipse(brush, -size/2.0f, -size/2.0f, size, size) 
      }; 
   }  
} 
 
// F# version 
module Drawings =                                                      #B 
   let circle brush size = 
      drawing(fun g ->                                                 #2 
         g.FillEllipse(brush, -size/2.0f, -size/2.0f, size, size)) 
#A Static class for creating drawings 
#1 Specify the drawing function using lambda 
#B In F# we use module with functions 
#2 Create drawing using higher order function 
To make the code more organized, we placed all functions and methods for creating 

drawings in an organization unit named Drawings. In C# we'll use static class with 
drawings implemented as static methods and in F# we'll use a module containing functions. 
The C# code that implements the Circle method creates a new Drawing object (#1) 
and specifies its DrawFunc property using object initializer syntax. The lambda function is 
rather simple and just calls the FillEllipse method with the given brush and the 
specified size. 

In F#, we implement circle as a simple function that takes the brush and the size as two 
arguments. The function doesn't take parameters as a tuple, which is usually the preferred 
way when creating functional libraries using the language oriented approach. The function 
uses the higher order function drawing that we implemented above and gives it a lambda 
function that does the draws the circle (#2). We'll use circle as the only primitive drawing for 
now and we'll now look what could be done just using one primitive. 

If we created two circles using the function above, the center of both of them would be 
the point (0,0). This means that if we composed two circles, we wouldn't get very 
interesting results. The code above allows us to specify their size, but it appears we forgot 
that we'll also need to specify location! Good news is that we haven't forgotten about that, 
because we'll use a different approach for specifying the location. We'll create an circle with 
the center in the point (0,0) and then move it to any point we'll need. 

We'll implement moving of a drawing as a function (or method) that takes a drawing and 
X and Y coordinates as arguments. It then returns a result that draws the specified drawing 
translated by the given offset. How can we implement this functionality? We could draw the 
original drawing to a bitmap and then draw the bitmap to the specified coordinates, but there 
is even a simpler solution, because the Graphics object that we're using to do the drawing 
supports translation transformation directly. The listing 15.14 shows how we can use it. This 
time, we'll look only at the function (or a method) and we'll start with the F# version. 

Listing 15.14 Translating drawings in F# and C# 
// F# version 
let moveXY x y (img:Drawing) = 
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   drawing(fun g ->                                                     #1 
      g.TranslateTransform(x, y)                                        #A 
      img.Draw(g)                                                       #B 
      g.TranslateTransform(-x, -y) )                                    #C 
 
// C# version 
public static IDrawing MoveXY(this IDrawing img, float x, float y) {    #2 
   return new Drawing { DrawFunc = g => {                               #3 
      g.TranslateTransform(x, y); 
      img.Draw(g); 
      g.TranslateTransform(-x, -y); }  
   }; 
} 
#1 Return a new translated drawing  
#A All drawing will be translated 
#B Run the original drawing 
#C Reset the transform 
#2 Extension method 
#3 Return translated 'Drawing' object 
The C# version implements MoveXY as an extension method, which means that we'll 

be able to call it using the dot-notation. Since we want to make it available for any object 
that implements the IDrawing interface, using extension methods is the only option. The 
implementation code uses exactly the same pattern as we've seen when implementing the 
circle. The F# function uses the drawing primitive to specify how to draw the translated 
image (#1). In C# we return a Drawing object and specify the drawing function (#3).  

The implementation is slightly more interesting this time. It changes the origin of the 
coordinate system used when drawing on the graphics using the TranslateTransform 
method. This means that if we run the original drawing (for example circle), it will still draw 
on the point (0,0), but the point will actually be somewhere else on the graphics. Once we 
can move drawings around, we can finally create something else than just circles with the 
same center. However, we don't want to work with collection of drawings, so the next 
question is how could we create a single drawing from two other drawings? 

COMPOSING DRAWINGS 
If we composed drawings by storing all the drawings in a collection, we'd have to duplicate 
many functions. For example, we might want to move all drawings in a collection, but we 
couldn't simply use moveXY, because it works only with single drawing. Instead, we want to 
create a single drawing value that will draw all the composed drawings. In this section we'll 
create a function that allows us to compose drawings. To understand how exactly the 
function works, we can look at its type signature: 

val compose : Drawing -> Drawing -> Drawing 

The function takes two drawing values as arguments and returns a single drawing. Note 
that we don't need to specify any offsets to define the positions of drawings, because we can 
just move the arguments before calling compose using the moveXY function from the 
previous section. Implementation of this function is actually quite simple and you can see it 
the listing 15.15. 
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Listing 15.15 Creating composed drawing in F# and C# 
let compose (img1:Drawing) (img2:Drawing) =  
   drawing(fun g ->                                                #1 
      img1.Draw(g)                                                 #2 
      img2.Draw(g) )                                               #2 
 
public static IDrawing Compose(this IDrawing img1, IDrawing img2) { 
   return new Drawing { DrawFunc = g => {                          #3 
      img1.Draw(g); 
      img2.Draw(g); } 
   }; 
} 
#1 Return a new drawing 
#2 Draw both of the drawings 
#3 Create composed drawing 
The source code once again repeats the pattern that we've been using to create 

drawings. Just like in previous cases, we write a function (or a method) that contains a 
lambda function that does the drawing. In F#, the lambda function is wrapped inside a 
drawing using the drawing primitive (#1) and in C#, we're explicitly creating Drawing 
object (#3). When the returned composed image is drawn, the lambda function gets called 
and it simply invokes the Draw method of both of the drawings that we're composing 
together (#2).  

Using the three functions we've just implemented, we can create any drawings that 
contain colorful circles at different locations. Implementing other primitive drawings should 
be easy task, so we'll focus on a more interesting thing now. Before moving to animations, 
let's briefly look how the code to create a simple drawing would look. I haven't yet 
mentioned how we can show a drawing in a form, because it'll be much easier to 
demonstrate after we start talking about animations, so for now, we'll just look at the code. 
The figure 15.4 shows a very simple drawing that we want to create. 

 

Figure 15.4 Two green circles moved using 'moveXY' and composed using 'compose'  

Let's look only at the F# version of the code. We'll see more interesting C# samples 
once we turn everything into animations and with no doubt, you could write the C# version 
of the following code yourself: 

open Drawings                                        #A 
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let greenCircle = circle Brushes.OliveDrab 100.0f    #B 
let drawing =  
   compose (moveXY -35.0f 35.0f greenCircle)         #C 
           (moveXY 35.0f -35.0f greenCircle)         #C 
#A Open module with drawing functions 
#B Create a green circle 
#C Compose two translated circles 
The code starts by opening the Drawings module, which contains all the functions for 

working with drawings. Next, we create a single green circle of size 100 pixels. We duplicate 
the circle by moving it twice in different directions by 50 pixels and then compose the two 
moved drawings to get a single drawing value called drawing. 

TRY IT YOURSELF 

In this section, we implemented only a couple of basic drawing features, but there are 
many other things that you may want to try. First of all, we created only a single 
primitive drawing (a circle), so you may want to extend the code to work also for example 
with images. Also, we implemented only a single transformation in moveXY. The 
Graphics object supports other transformation such as RotateTransform or 
ScaleTransform, which could be used to create some very interesting effects. 
However, you may first want to read the last section of the chapter, so you can see how 
everything runs as an animation. 

In this section we were talking about drawings and we've seen how to create them and 
compose them in interesting ways. In the previous section, we were talking about time-
varying values. It seems that these two concepts are in principle all we need to create 
animations, so the only remaining thing is to show how we can use them together.  

15.5 Creating animations 
In the title of this chapter I promised that we'll implement a functional library for creating 
animations, but you already read about 20 pages of the chapter and you haven't seen a 
single animation. But let me tell you good news. If we use the two components that we just 
created in the right way, we're already finished with implementing animations.  

Let's briefly recap what we've done so far. We created a type Behavior<'a>, that 
represents a value that changes over time and we also wrote functions such as 
Behavior.lift2 that allow us to use standard functions for working with behavior 
values. Later, we discussed drawings and we created the type Drawing (in C# 
IDrawing) and a couple of functions for creating and working with drawings. How can we 
use these two components to create an animation? 

WHAT IS AN ANIMATION? 
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If you think of an animation, then you can very easily describe it as a drawing that is 
changing in time. We've seen that we can represent a value changing in time as a 
behavior, so animation is in fact just a behavior of a drawing. This means that we can 
represent animations using the Behavior<Drawing> type. 

As you can see, we just implemented a library for creating animations! Let's have a look 
how we can create an animation using the functionality we implemented earlier. We ended 
the last section by creating a simple drawing in F# (a value called drawing). We can 
simply turn it into an animation by using a function that creates a constant behavior: 

> let animDrawing = always drawing;; 
val animDrawing : Behavior<Drawing> 

The type of the result is Behavior<Drawing>, and as we've just seen, this is a type 
that we'll use for representing animations. However, this isn't really an animation, because 
the drawing is always the same. We'll shortly see that we can use lifting functions and 
functions for working with drawings to create far more interesting animations, but let's first 
see how we could display the animation in a form. 

15.5.1 Implementing animation form in F# 
In this section, we'll implement a form for displaying animations. This is particularly 
interesting in F#, because we'll use it from the F# interactive to create and experiment with 
animations. At this point, the typical style of development in F# is very different from C#. In 
C#, we'll implement the form, create the animation, compile our application and run it. On 
the other hand, in F#, we'll implement the form, load it into F# interactive and then we'll try 
to write some animations and use the loaded form to display then and see how they work. As 
I mentioned repeatedly in the book, this style of interactive development is essential for F# 
and it helps us to make sure that our code works correctly as early as possible, because we 
can immediately try it. 

The listing 15.16 shows the F# implementation of the form. The C# version is 
essentially the same and you can find it in the source code, which is available online. We 
won't discuss the C# code needed to display the animation, because we'd have to compile 
the whole application, but I'll continue to show all interesting pieces of code (such as 
creating some nice animations) side-by-side in both C# and F#. 

Listing 15.16 Implementing form for showing animations (F#) 
open System.Windows.Forms 
 
type AnimationForm() as this = 
   inherit Form()                                                       #1 
   let emptyAnim = always(drawing(fun _ -> ())) 
   let mutable startTime = DateTime.Now                                 #A 
   let mutable anim = emptyAnim                                         #A 
 
   let setAnimation(newAnim) =                                          #2 
      anim <- newAnim 
      startTime <- DateTime.Now 
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   do this.SetStyle(ControlStyles.AllPaintingInWmPaint ||| 
                    ControlStyles.OptimizedDoubleBuffer, true) 
      let tmr = new Timers.Timer(Interval = 25.0)                       #B 
      tmr.Elapsed.Add(fun _ -> this.Invalidate() )                      #B 
      tmr.Start()                                                       #B 
   
   member x.Animation                                                   #3 
      with get() = anim  
      and set(newAnim) = setAnimation(newAnim) 
 
   override x.OnPaint(e) =                                              #4 
      let wid, hgt = x.ClientSize.Width, x.ClientSize.Height 
      e.Graphics.FillRectangle(Brushes.White, 0, 0, wid, hgt))          #D 
      e.Graphics.TranslateTransform(float32 wid/2.0f, float32 hgt/2.0f) #D 
 
      let elapsed = (DateTime.Now - startTime).TotalSeconds 
      let drawing = readValue(anim, float32 elapsed)                    #5 
      drawing.Draw(e.Graphics)                                          #5 
#1 Inherit from the .NET 'Form' class 
#A Mutable state of the object 
#2 Setup a new animation 
#B Redraw animation every 25ms 
#3 Get or set the current animation  
#4 Override method that does the drawing 
#D Prepare for the drawing 
#5 Get the current drawing and run it 
The class declaration contains a few advanced aspects of object oriented programming 

in F# that we'll need to explain. The form inherits from the .NET class Form. This is written 
using the inherit Form() construct (#1) directly following the type declaration. The 
body of the class starts with a few ordinary let bindings. The first one declares an empty 
animation. This is a constant behavior containing a drawing (created using the drawing 
primitive) that doesn't draw anything. We use it later as an initial animation displayed on the 
form. When using the form, we'll create it in the F# interactive only once and we'll use 
mutation to imperatively set the currently displayed animation. This is a very common and 
perfectly valid use of mutable state when using interactive development in F#.  

The mutation is done using a property named Animation (#3). When creating 
read/write property, we use the with keyword and specify getter and setter as two blocks 
of code using a syntax similar to the usual function declaration. In the setter, we invoke a 
utility function setAnimation (#2) which updates the state of the form. 

The declaration of the form also contains the as this construct directly following the 
implicit constructor. This allows us to use the reference to the form in the constructor code. 
It is needed in the initialization when we call SetStyle method to avoid flickering (the 
||| operator is a binary or operator, which can also be used for working with 
enumerations). The this reference is also used when creating the timer that forces 
redrawing of the form. 
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The most interesting part of the form is in the OnPaint member (#4). It overrides the 
default OnPaint method of a .NET form and draws the animation. It is called repeatedly, 
because we created a timer that invalidates the form using Invalidate method. Drawing 
of the animation in the end is quite easy (#5). We use the helper function readValue, 
which we declared earlier when experimenting with behaviors. The function gives us drawing 
for the current time in the animation. Once we have the drawing, we just invoke its Draw 
method, which paints it on the graphics object provided by the system. 

Creating the form was the only difficult thing that we had to write in order to start 
creating animations. Now, we can instantiate the form in F# interactive and set its property 
Animation to the simple drawing we created earlier (a value called animDrawing) and 
you should see a basic (not yet animated) drawing. To show a real animation, we'll need to 
use more interesting behaviors. We'll see how this can be done in the next section. 

15.5.2 Creating animations using behaviors 
Now that we have all the underlying machinery to create animations and a form to display 
them, we can start creating various animations. In this section, we'll use the drawing we 
already created in F# (two green circles) and we'll create an animation that moves it. In this 
section we'll just continue our exploration using the interactive tools that F# gives us, so 
we'll implement the sample only in F#. It will show us that we can use primitives that we 
already have to create animations and we'll see what kind of operations we need to do with 
animated graphics. After that we'll again implement everything in both F# and C#. 

In the listing 15.17, we first create a version of the moveXY primitive that works with 
animations using lifting. The function originally worked with drawings and numbers, but to 
create an animation, we want to use it with behaviors. Using this function, we can then 
create an animation that moves the drawing depending on the time. 

Listing 15.17 Creating simple animation (F# interactive) 
> let af = new AnimationForm(ClientSize = Size(750, 750), Visible=true) #1 
val af : AnimationForm 
 
> let moveXY x y img = Behavior.lift3 Drawings.moveXY x y img;;         #2 
val moveXY : Behavior<float32> -> Behavior<float32> ->                  #A 
             Behavior<#Drawing> -> Behavior<Drawing>                    #A 
 
> let wiggle100 = Behavior.lift2 (*) wiggle 100.0f.always;;             #3 
val wiggle100 : Behavior<float32> 
 
> af.Animation <- moveXY wiggle100 wiggle100 animDrawing                #4 
#1 Create the animation form 
#2 Lift the 'moveXY' function to work with behaviors 
#A All arguments are behaviors now 
#3 Multiply 'wiggle' to get a value in range -100 .. 100 
#4 Create and display the animation 
We start by creating moveXY function that allows us to specify behaviors as offsets 

when moving the drawing (#1). This is done simply by using Behavior.lift3 primitive, 
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which turns a function with three arguments into a function that works with behaviors. As 
you can see from the inferred type signature, the function now takes two behaviors 
specifying offset and an animation (the use of #<type> isn't important here, so we can 
read it just as a type Behavior<Drawing>) and returns a new animation. On the next 
two lines, we use this primitive to create an animation, which you can see in figure 15.5. 

 

Figure 15.5 Two green circles moving from the upper left corner to the bottom right corner (shadows are 
added, so you can see how objects move) 

To define the animation, we first need to create a behavior that will give us some 
reasonably large X and Y offsets. We do this by multiplying the wiggle primitive by a 
constant behavior returning always 100. This means that the value of wiggle100 (#2) will 
oscillate between -100 and +100. Once we have this value, we use the new moveXY 
function that takes behaviors as its arguments. We give it two behaviors and the result is an 
animation that sets the coordinates of the drawing to values ranging between (-100,-
100) and (100,100). 

ANIMATIONS IN A BOOK 

When writing this chapter, I realized that presenting animations in a book will be quite 
difficult, because you won't really see any animation. To give you a better idea how the 
animation looks, I added shadows that show earlier locations of the objects. 
Implementing this attractive effect was rather easy. The only thing we need to do is to 
draw the animation multiple times using an earlier time when reading the drawing from a 
behavior and then use .NET drawing capabilities to display older animations as 
transparent. We won't look at the implementation in the book, but you can find it in the 
online source code (as an additional type of form that presents the animation). 
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The listing we've just seen shows that we'll need to use two kinds of operations quite 
often when creating animations. First of all, we need lifted versions of primitive functions 
such as moveXY or compose and secondly, we often need to calculate with behaviors and 
we had to do this by explicitly lifting "*" operator which isn't very elegant. In the next 
section we'll see how this could be improved. 

15.5.3 Adding animation primitives 
Our goal is to make the code that constructs animations as declarative and as simple as 
possible. For this reason, we want to use primitives that are directly designed for creating 
animations. We've seen that we already can do anything we need just using functions for 
working with behaviors and drawings, but the code would look more elegant if we created 
primitives for creating animations rather used lifting explicitly. Let's start by looking at 
functions for working with drawings. 

CREATING DRAWING PRIMITIVES FOR ANIMATIONS 
In the last listing, we created moveXY primitive that works with animations by lifting the 
Drawings.moveXY function, which works with drawings. Now we need to do the same 
thing for other drawings primitives - namely circle and compose. The listing 15.18 
shows F# declarations for composition operator and primitive for creating animated circle. It 
also shows the C# version of composition (this time as an extension method) to demonstrate 
how to use lifting in C#. The C# implementation of other lifted operations is essentially the 
same, so it isn't included in the listing, but you can find it in the online source code. 

Listing 15.18 Creating animation primitives using lifting in F# and C# 
// F# version 
let circle brush size =                                                 #A 
   Behavior.lift2 Drawings.circle brush size 
let ( -- ) anim1 anim2 =                                                #1 
   Behavior.lift2 Drawings.compose anim1 anim2 
 
// C# version 
public static class Anims { 
   public static Behavior<IDrawing> Compose 
         (this Behavior<IDrawing> anim1, Behavior<IDrawing> anim2) {    #2 
      return Behavior.Lift2<IDrawing, IDrawing, IDrawing>               #B 
         (Drawings.Compose)(anim1, anim2);                              #3 
   } 
   // (...)                                                             #C 
} 
#A All arguments are behaviors 
#1 Custom operator for composing animations 
#2 Extension method for animations 
#B Type arguments are required 
#C 'MoveXY' and 'Circle' are similar 
Using lifting in F# is quite easy thanks to the type inference. We created the moveXY 

primitive in the previous section, so in this listing we just add the circle function and a 
custom operator "--" (#1) for composing animations. Both of them have two arguments, so 
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we can use the Behavior.lift2 function to create a variant of the function that works with 
behaviors. The resulting function (or an operator) takes two behaviors as arguments and 
returns a behavior (more specifically, the type Behavior<Drawing>, which represents 
an animation). This means that the circle function now takes both brush and the size as a 
behavior and we can create circles with changing size and color. 

In the C# version, we place all operations inside a static Anims class. If you remember 
chapter 6, I mentioned an analogy between custom operators in F# and extension methods 
in C#, so this suggests us to implement Compose as an extension method (#2). In the 
body of the method, we use lifting, to get a lifted version of the Drawings.Compose 
method. The Lift2 method returns a function that we can call, so we immediately give it 
two animations as arguments and return the result, which is the composed animation. Before 
we look how to use the functionality we just implemented, let's do two more improvements 
that will allow us to do interesting things with behaviors. 

CALCULATING WITH BEHAVIORS 
Another operation that we'll need quite frequently is to multiply or add numeric behaviors. In 
the sample animation, we wanted to multiply the wiggle value by constant behavior 
100.0f.always. Instead of using lifting explicitly, it is more convenient to provide 
overloaded operators for working with numeric behaviors. The listing 15.19 shows how to 
implement two operators for addition and multiplication in F#. 

Listing 15.19 Extension operators for calculating with behaviors (F#) 
type Behavior<'a> with                                            #1 
   static member (+) (a:Behavior<float32>, b) =  
      Behavior.lift2 (+) a b 
   static member (*) (a:Behavior<float32>, b) =                   #2   
      Behavior.lift2 (*) a b                                      #A 
#1 Type augmentation adding operators 
#2 Multiplication for behaviors of 32bit floats 
#A Lift the standard operator 
In F#, we can add operators to a type using type augmentations (#1) that we've seen in 

chapter 9. The augmentation simply adds two static members to the type that take 
arguments of type Behavior<float32> (#2). Adding generic operators that work with 
any numeric type would be more difficult, so we create operators only for the numeric type 
we're using in this chapter. The implementation of the operator is easy, because we can 
again express it just using appropriate lifting function. The C# implementation is almost the 
same, so we won't talk about it, however you can find it in the online source code. 

The second addition is more interesting. When running an animation (represented as a 
behavior) we'll sometimes want to run it faster or start it after some time. For example, if we 
had two rotating circles, we may want to rotate one of them two times faster. This could be 
done by creating a new primitive behavior, but there is a more elegant way. We can simply 
create a function that takes a behavior as an argument and returns a new behavior that runs 
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faster or is delayed by specified number of seconds. You can see the F# version of the 
source code in listing 15.20. 

Listing 15.20 Speeding up and delaying behaviors (F#) 
let wait shift (BH(bfunc)) =  
   sample(fun t -> bfunc { t with Time = t.Time + shift })              #1 
let faster q (BH(bfunc)) =  
   sample(fun t -> bfunc { t with Time = t.Time * q })                  #2 
#1 Shift the original time 
#2 Scale the original time 
The listing again shows only the F# version of the code, because I only wanted to 

demonstrate the idea. Implementing the C# version should be easy, because it uses the 
same pattern we've seen repeatedly earlier in section 15.3.5 and as always, the full source 
code is available on the book web site. 

Functions in the listing work with any behaviors in general. Both of them take floating 
point number as the first argument and an original behavior as the second one. To create a 
new behavior, we have to use the low level sample primitive. We create a new behavior 
that calls the function extracted from the original behavior and gives it a different time as an 
argument. In the first case, the time is shifted by the specified number of seconds (#1) and 
in the second case it is multiplied by the provided coefficient (#2). To explain what this 
means, let's look at the second function and let's say we're running a behavior 2 times 
faster. When the actual time is 2 seconds, the returned behavior will invoke the original one 
with time set to 4 seconds, which means that the animation will do the movements it would 
usually perform in 4 seconds just in 2 seconds.  

As a last thing in this chapter, we'll create a core part of a solar system simulation. It 
will use everything we implemented so far to create a more complicated and interesting 
animation and I'll use it to demonstrate how composable and reusable our solution is.  

15.5.4 Creating solar system animation 
The key part of the solar system animation will be a rotation of objects around each other. 
The library we just created allows us to compose primitives it provides into higher level 
primitives for our particular problem, so we can encapsulate rotation inside a reusable 
function (or C# method) that we'll later use to describe the simulation. This is an important 
property of a well designed functional library and for example, functions for working with 
sequences are composable exactly in the same way.  

Our new primitive will rotate a provided animation around the point (0,0) in a 
specified distance and using a specified speed. You can see both F# and C# version of the 
primitive in the listing 15.21. 

Listing 15.21 Implementing rotation in F# and C# 
// F# function 
let rotate (dist:float32) speed img =  
   let pos = wiggle * dist.always                                    #A 

Licensed to Curtis J Pitts <beop.love@gmail.com>

Download at Boykma.Com



454   

©Manning Publications Co. Please post comments or corrections to the Author Online forum: 
http://www.manning‐sandbox.com/forum.jspa?forumID=460 

   img |> moveXY pos (wait 0.5f pos)                                 #1 
       |> faster speed                                               #2 
 
// C# extension method 
public static Behavior<IDrawing> Rotate 
      (this Behavior<IDrawing> img, float dist, float speed) { 
   var pos = Time.Wiggle * dist.Always(); 
   return img.MoveXY(pos, pos.Wait(0.5f))                            #3 
             .Faster(speed);                                         #3 
} 
#A Oscillate between -dist and +dist 
#1 Delay the Y-coordinate animation by one half 
#2 Use the provided speed 
#3 Chaining extension methods 
Interestingly, we can implement the rotation just using moveXY function. The 

movement created using the wiggle primitive is a sinusoid, which means that it gives us 
values for one coordinate of the rotating object. To get the second coordinate, we need to 
delay the phase by one half of a second. This gives us the same value we'd get if we created 
a primitive using cosine function. To delay the behavior, we can simply use the wait 
function that we just implemented (#1).  

Note that we can use pipelining to specify sequence of operations that should be done 
with an animation. After specifying the rotation, we also apply the faster function (#2) to 
specify the required speed of the rotation. In C#, we can use the same programming style 
thanks to the use of extension methods (#3) that take the animation as a first argument and 
return a new one as the result.  

Using the primitive to describe rotation, we can now create our solar system animation 
rather easily. We'll start by creating three circles that represent solar objects (we'll have only 
sun, the earth and month) and then describe how they rotate around each other. The figure 
15.6 shows the running animation, so you can see what we're creating. 

 
 

Figure 15.6 Running solar system simulation; Moon is 
rotating around the earth and both of them are rotating 
around sun.  

Let's now look at the source code. The listing 
15.22 shows both of the versions side by side, so 
that we can see how some constructs in F# and 
C# correspond to each other. 

Listing 15.22 Creating solar system animation 
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in F# and C# 
// F# version 
let sun   = circle (always Brushes.Goldenrod) 100.0f.always             #A 
let earth = circle (always Brushes.SteelBlue) 50.0f.always              #A 
let moon  = circle (always Brushes.DimGray)   20.0f.always              #A 
 
let planets = 
   sun -- rotate 150.0f 1.0f                                            #1 
      (earth -- rotate 50.0f 12.0f moon)                                #2 
 
// C# version 
var sun   = Anims.Cirle(Time.Always(Brushes.Goldenrod), 100.0f.Always()); 
var earth = Anims.Cirle(Time.Always(Brushes.SteelBlue), 50.0f.Always()); 
var moon  = Anims.Cirle(Time.Always(Brushes.DimGray),   20.0f.Always()); 
 
var planets = sun.Compose( 
   earth.Compose(moon.Rotate(50.0f, 12.0f))                             #2 
        .Rotate(150.0f, 1.0f));                                         #1 
#A Create planets with constant size and color 
#1 Rotate the earth with moon around the sun 
#2 Rotate moon around the earth 

Is there a way for using (#2) two times in the listing above? 

 
The code that constructs planets is quite simple. The only notable thing is that we're 

using a circle primitive for creating animations, so we have to provide both brush and the 
size as a behavior. This is quite interesting, because we could for example create a shining 
sun that is growing bigger and whose color changes. 

Composing the animation from rotating objects is far more interesting. I'll start 
explaining it from the middle. We use the rotate function to create a moon that rotates 
around the center in the distance 50 pixels. We compose this animation with the earth, 
which isn't rotating (#2), so the result is a moon rotating around the earth. The type of this 
result is just an animation, so we can again start rotating it in the distance 150 pixels (#3). 
If we compose the resulting animation with a sun (that isn't moving), we'll get the animation 
where the earth is rotating around the sun. This way of composing rotations shows that the 
framework is quite composable. Before we conclude this chapter, let me mention a few more 
extensions that we could make to the animation library. 

Taking the animation library further 

There are many interesting additions that we could make to the library. I already 
mentioned that we could add more primitive drawings and transformations. We should of 
course add lifted versions of those, so they can be easily used when creating animations. 
However, there are other even more interesting options.  
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We could add an additional primitive just like wiggle that would give us a location of 
the mouse cursor. We could implement this for example by adding the mouse location to 
the BehaviorContext type. This is quite interesting because it would allow us to 
create animations that depend on the mouse location. A more sophisticated extension 
could allow us to create non-linear dynamic systems. We could add a primitive that tells 
us how quickly is a certain behavior value changing and we could then use it to create 
system that depends on how quickly its state is changing.  

The animation library we created is indeed far from being a robust physical simulation, 
but it shows an interesting direction. Some of the ideas that I outlined in this sidebar will 
be available on the book web site after the book is published. 

The animation library implemented as a domain specific language is an interesting 
example of a very useful functional programming style. This style can be of course used for 
developing a wide variety of applications, so in the next section we'll briefly sketch a domain 
specific language for a completely different area.  

15.6 Developing financial modeling language 
So far in this chapter, we've seen most of the ideas that you need to know if you plan to 
design your own domain specific language. To give you some idea how this could be done for 
a more business oriented problem, we'll briefly sketch a language that can be used for 
modeling financial contracts. This example is motivated by an article by Simon Peyton Jones 
et al. Composing contracts: an adventure in financial engineering [Jones, Eber, Seward, 
2000]. In this section, we'll implement only the most basic parts of the language, so you can 
look at the article for more information. 

15.6.1 Defining the primitives 
Similarly as when creating the animation language, we'll need to start by defining the type of 
the values we're working with and by implementing a couple of primitives that can be later 
composed. Our primitive data type will be called Contract and it will represent trades that 
can occur at some particular date and time. 

DECLARING THE CONTRACT TYPE 
As you can see in listing 15.23, we're using similar technique as when declaring behaviors 
and we're creating a discriminated union with a single discriminator that contains a function 
that calculates the list of possible trades. 

Listing 15.23 Type representing financial contracts (F# interactive) 
> type Contract = 
     | CF of (DateTime -> seq<int * string>);;                       #1 
(...) 
> let eval (CF f) dt = f(dt) |> List.of_seq;;                        #2 
val eval : Contract -> DateTime -> (int * string) list 
#1 Contract can calculate it's trades 
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#2 Gets a list of trades at particular date 
The function that represents the actual contract takes a single argument and returns a 

sequence of tuples (#1). When we call it with a particular date as an argument, it will 
generate all trades that can occur at the given date. The trade is represented simply as a 
tuple containing a number of stocks that we want to buy or sell and the name of the stock. 
We'll use positive numbers to represent buying and negative values to represent selling of 
stocks. 

The second part of the listings implements an eval function (#2) that evaluates the 
contract at some time and returns the list of trades. We're using a sequence to represent the 
trades in the contract, because that makes the code more general and we could in principle 
also represent infinite number of possible operations. However, the eval function returns a 
list, because we expect that the overall result will be finite.  

IMPLEMENTING COMBINATORS 
Once we have the data type representing values of our language, we need to implement a 
couple of primitive functions for creating and composing these values. In case of behaviors, 
we created primitive values such as wiggle and we declared lifted operators for composing 
them. In case of contracts, we'll start with a function trade that creates a contract 
representing a single purchase that can occur at any time. To compose contracts, we'll 
provide a function combine, which unions trades of the two provided contracts. 

The listing 15.24 shows the implementation of these two functions as well as functions 
for restricting the dates when the contracts can occur and a function for creating trades 
where we're selling some stocks. 

Listing 15.24 Combinators for creating and composing contracts (F# interactive) 
> let trade amount what = CF(fun _ ->                        #1 
     seq { yield amount, what }) 
  let combine (CF a) (CF b) = CF(fun now ->                  #2 
     Seq.concat [ a(now); b(now) ]) 
  ;; 
val trade : int -> string -> Contract 
val combine : Contract -> Contract -> Contract 
 
> let after dt (CF f) = CF(fun now ->                        #3 
     seq { if now >= dt then yield! f(now) }) 
  let until dt (CF f) = CF(fun now ->                        #3 
     seq { if now <= dt then yield! f(now) }) 
  let give (CF f) = CF(fun now ->                            #4 
     seq { for am, itm in f(now) -> -am, itm }) 
  ;; 
val after : DateTime -> Contract -> Contract 
val until : DateTime -> Contract -> Contract 
val give : Contract -> Contract 
#1 Single trade of specified number of stocks 
#2 Concatenate trades of two contracts 
#3 Limit the date when contract is active 
#4 Change sale to purchase and conversely 
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A single trade that can occur at any time is represented as a function that ignores its 
parameter (a date when we're evaluating the contract) and returns a sequence with a single 
element (#1). Composition is also easy (#2), because we simply concatenate all trades of 
the two underlying contracts that can occur at the given date. 

The next two primitives let us limit the date when a contract is active (#3). We 
implemented them by creating a function that tests whether the date when we're evaluating 
the contract matches the condition of the primitive. When the test succeeds, it returns all 
underlying trades using the yield! primitive, otherwise it returns an empty sequence. 
Finally, the last primitive can be used to change whether a contract is sale or a purchase of 
the specified stocks. We implement it by iterating over all the underlying trades of a contract 
and changing positive amounts to negative and vice versa. 

As I wrote earlier, the goal of this section is only to sketch how a language for describing 
financial contracts might look like. However, even with the very limited example that we've 
just implemented, we can describe many interesting things. 

15.6.2 Using the modeling language 
Perhaps the most valuable thing about domains specific languages is that we can use the 
basic primitives provided by the library designer to create more complicated functions for 
composing contracts. This makes the library quite flexible, because the users of the library 
(in our case financial experts) can create the primitives that they need. As the designers of 
the core library, we only need to provide primitives that are rich enough to allow that. 

In the listing 15.25, we'll briefly look at two such functions that are defined in terms of 
the primitives we've seen in the previous section. It defines function for specifying time 
interval within which a trade can occur and a function that creates a trade valid at one 
specific date. 

Listing 15.25 Implementing derived financial contract functions (F# interactive) 
> let between dateFrom dateTo contract =  
     after dateFrom (until dateTo contract);; 
val between : DateTime -> DateTime -> Contract -> Contract 
 
> let tradeAt date ammount what =  
     between date date (trade ammount what);; 
val tradeAt : DateTime -> int -> string -> Contract 

The first function is composed from the two primitives that we defined for restricting the 
date of the contract. It takes the starting date and the ending date and a contract and 
returns a contract that can happen at any time within the specified interval. The second 
function creates a primitive trade that can occur only at the precisely specified date. It uses 
trade function to construct elementary trade and then limits it validity using the between 
function. Note that after and until function use operators that allow equality (>= and 
<=), so the use of between is reasonable. 
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Equipped with these functions for creating and composing contracts, let's now try to 
write some contract and evaluate what trades can occur as part of the contract at two 
distinct dates. The listing 15.26 shows a contract where we're willing to sell 500 stocks of 
Google at one particular date and to buy 1000 stocks of Microsoft at any time within the 
specified 10 days. 

Listing 15.26 Creating and evaluating sample contract (F# interactive) 
> let dfrom, dto = DateTime(2009, 4, 10), DateTime(2009, 4, 20)  
  let itstocks =    
     combine (give (tradeAt (DateTime(2009, 4, 15)) 500 "GOOG"))     #1 
             (between dfrom dto (trade 1000 "MSFT"));;               #1 
val itstocks : Contract = CF <fun:trade@6> 
 
> eval itstocks (DateTime(2009, 4, 14));;                            #2 
val it : (int * string) list = [(1000, "MSFT")] 
 
> eval itstocks (DateTime(2009, 4, 15));;                            #2 
val it : (int * string) list = [(1000, "MSFT"); (-500, "GOOG")] 
#1 Describe contract using the DSL 
#2 Get actual trades at two distinct dates 
The listing starts by creating values that represent two dates between which we're 

willing to purchase Microsoft stocks. Then we define a value itstocks that represents our 
contract. We're using the combine primitive to merge two possible trades (#1). The first 
one is selling of the Google stocks. One way to construct sale is to create a contract that 
represents a purchase of the stocks (we construct that using the tradeAt function that we 
implemented in the previous listing) and then use the give primitive to change purchase 
into a sale. This way we can create reusable trades and then use them when writing both 
sales and purchases. 

Once we've defined the contract, we can evaluate it. The contract in our language 
represents a specification of trades that can occur at some specified dates, so we can 
evaluate it to get the possible trades at some time. As you can see in the listing, for the first 
date, the result is only a purchase of Microsoft stocks, but for the second date, we'll get both 
of the trades.  

Representing contracts as abstract values 

In this example, we represented contracts in a way that is quite similar to how we earlier 
represented behaviors. We've essentially used a function that calculates the trades and 
then wrote combinators that compose these functions. This is one of the two basic 
techniques that I mentioned in the beginning of the chapter. 

When working with contracts, we could use the second technique as well and we could 
design a discriminated union abstractly representing the contract. It would have options 
that roughly correspond to the basic primitives of the domain specific language: 

type Contract =  
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   | Exchange of int * string 
   | After of DateTime * Contract 
   | Until of DateTime * Contract 
   | Combine of Contract * Contract 

As you can see the type is recursive, so we can compose the elementary value 
Exchange that represents a single trade with other trades using Combine, limit their 
validity using After and Until and so on. 

The difference between these two techniques is that when using abstract value 
representations, we can write all sorts of processing functions for the language. We could 
for example easily add a function that takes Contract value and evaluates its overall 
risk and so on. On the other hand, when we use a function type under the hood, we 
cannot observe many properties of the value once it is created and we can only execute 
it. In reality, it would be probably better to represent contracts using abstract values, but 
I wanted to demonstrate how you can use the same technique we've seen earlier in the 
chapter for creating a language for two different domains.  

Clearly, the domain specific language that we've sketched in this section was very 
limited and simplistic, but it demonstrated that the approach is very powerful and that it can 
be used for a wide variety of problem domains. It definitely isn't limited to describing 
animations and financial contracts and I'm sure you already have some ideas how you could 
use it for solving the problems that you're concerned with. 

15.7 Summary 
We started the chapter by talking about the language oriented programming style and in 
particular about various techniques for creating internal domain specific languages. I briefly 
mentioned techniques like literal expressions that can be used in both F# and C#, fluent 
interfaces that are particularly useful in C# and combinator libraries which are used in 
functional programming languages.  

Later, we created a language for describing animations. We divided that into two 
unrelated concepts - behaviors and drawings. We provided a few primitives such as 
wiggle, time and circle and operations for composing them such as overloaded 
operators for behaviors or moveXY function for drawings. Using these primitives we could 
compose anything we wanted, so we don't need to know anything about the underlying 
representation and the user of our library can just think about problems using those simple 
primitives. Next, we've seen that well designed libraries can be nicely composed, because we 
could create an animation library just by composing two unrelated concepts - behaviors and 
drawings. Finally, we also briefly sketched a domain specific library for a completely different 
problem, which is modeling of financial contracts. 

In the next chapter, we'll turn our attention back to asynchronous workflows that we've 
seen in chapter 13, but we're going to use them differently. We'll look at developing 
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applications that react to external events including events from the user interface. In 
general, we'll talk about writing reactive applications and the F# techniques that we can use. 
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16 
Developing reactive 
functional programs 

In this chapter, we're look at a few techniques for creating user interfaces and dealing with 
the input from the user or other external events. We'll also discuss one interesting 
mechanism available in F# that can be used for creating concurrent programs. This sounds 
like somewhat unrelated topics, but we'll see many similarities. All of the libraries and 
examples we'll see in this chapter share a similar architecture, so let's first briefly look at the 
reactive architecture in general. 

When implementing imperative or functional application with the usual architecture, the 
code we write drives the execution of the application and controls what happens in the next 
step. However, for some problems such as GUI applications, this architecture doesn't work 
very well. For example a windows application needs to handle a large number of various user 
interface events; it may need to respond to a completion of asynchronous web service 
requests or for example to a stat update from some background computation. The execution 
of this type of applications is controlled by the events and the application is concerned with 
reacting to them. For this reason, this principle is sometimes called inversion of control and 
is sometimes anecdotally referred to as The Hollywood Principle§§§. 

The standard .NET way for writing this kind of applications is to use event handlers. 
However, when using event handlers, we always need some local mutable state, which 

                                                            

 

§§§ “Don’t call us, we will call you”. 

Licensed to Curtis J Pitts <beop.love@gmail.com>

Download at Boykma.Com



 463 

©Manning Publications Co. Please post comments or corrections to the Author Online forum: 
http://www.manning-sandbox.com/forum.jspa?forumID=460 

means that it is in some way against the functional principles. On the other hand, this is the 
most straightforward way. We’ve already seen how to use it in chapters showing some 
graphical user interface, so we won’t spend a long time discussing this programming style. 
Instead, we’ll focus at some of the appealing alternatives that F# gives us. 

We will start by looking at the declarative way to handle events, which is somewhat 
similar to the elegant declarative list processing that we’ve seen in some of the early 
chapters. Then we’ll look at using asynchronous workflows for event handling, which gives us 
a way to revert back the inversion of control and again write the code in a way where we 
control (or at least appear to control) what the application is doing. Finally, we’ll look at 
working with state in an application like that and we’ll also briefly look at message passing 
concurrency, which is a powerful technique for writing multi-threaded applications. 

16.1 Reactive programming using events 
With no doubt, you already know how to write application that reacts to events in C# and 
we've seen that the same technique can be used in F# as well. The usual way is register a 
callback function (or a method) with the event. When the event occurs, the callback function 
is called and it can react to the event, for example by updating the state of the application or 
by doing changes in its user interface. 

We'll shortly see that there are other ways for handling events, but let's first review the 
usual style using one example. The code in listing 16.1 monitors changes in the file system 
using the FileSystemWatcher class. Once initialized, the watcher triggers an event 
every time some file is created, renamed or deleted. 

Listing 16.1 Monitoring file system events (F#) 
open System.IO 
let w = new FileSystemWatcher("C:\\Temp", EnableRaisingEvents = true) #A 
 
let isNotHidden(fse:RenamedEventArgs) =                               #1 
   let hidden = FileAttributes.Hidden                                 #1 
   (File.GetAttributes(fse.FullPath) &&& hidden) <> hidden            #1 
     
w.Renamed.Add(fun fse ->                                              #2 
   if isNotHidden(fse) then                                           #B 
      printfn "%s renamed to %s" fse.OldFullPath fse.FullPath)        #B 
#A Initialize the watcher 
#1 Test attributes of the file 
#2 Register the event handler 
#B Report only visible files 
The listing starts by initializing the FileSystemWathcher object and we also set the 

EnableRaisingEvents property during the construction, to activate the monitoring. 
The next few lines (#1) show a simple function that checks whether a file is not marked as 
hidden. The argument to this function is a class derived from EventArgs that carries 
information about the event triggered by the watcher. 
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The last part of the code (#2) registers an event handler that will be called when a file is 
renamed. In F#, events are represented in a different way than in other .NET languages. In 
C#, event is a special member of the class and you can work with it only by using one of the 
operators for adding (+=) or removing (-=) event handlers. On the other hand, in F# events 
appear as standard members of type IEvent<'T> where the T parameter specifies the 
value carried by the event (derived from EventArgs). This type has an Add method that 
we can use for registering a callback function. The type representing events also has 
AddHandler and RemoveHandler methods, so you can still use delegates if you want 
to be able to remove the registered callback later. 

The example above uses the Add method and gives it a lambda function as an 
argument (#2). The function reacts by printing information about the renamed file, but we 
don't want to react to every event. Instead we want to display the message only when the 
affected file is not marked as hidden. To do this, we simply write an if condition inside the 
callback function.  

This of course works fine, but as we'll see in the next section, F# allows us to write the 
filtering of events in a more declarative way, which makes the program easier to read and 
also gives us better ways for factoring our code. Later we'll see that the same principles can 
be also to some extent applied in C#. 

16.1.1 Introducing event functions 
Working with events by directly providing callback function isn't very declarative. We're 
imperatively adding the event handler and the whole behavior is wrapped inside the callback 
function, so let's now think how we could write the same thing in a more declarative style. 
We've seen that one way for making code declarative is to use higher order functions. The 
best examples are functions for working with lists such as List.filter. If we had a list 
of events from the file system watcher (called fswList), we could factor the code into two 
parts. The first one would filter the events to select only those that we're interested in and 
the second part would print the information. The first part might look something like this: 

let renamedVisible =  
   fswList |> List.filter isNotHidden 

The snippet uses the isNotHidden function as an argument to the function that 
filters the list. The second part could use the List.iter function to perform printing of 
every item in the list. 

As we'll see in the listing 16.2, we can use exactly the same pattern when working with 
events. We can think of events in a similar way as we think of lists. Events also carry a 
sequence of values, with the difference that the values are not available immediately. A new 
value appears every time the event is triggered. This sequence of event arguments can be 
filtered in a similar way as collections. We can use Event.filter function to create an 
event that is triggered when the source event produces a value that matches provided 
predicate (a function returning bool). 
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Listing 16.2 Filtering events using Event.filter function (F# interactive) 
> let renamedVisible =                                               #1 
     w.Renamed |> Event.filter isNotHidden                           #1 
val renamedVisible : IEvent<RenamedEventArgs>                        #2 
 
> renamedVisible |> Event.listen (fun fse ->                         #3 
     printfn "%s renamed to %s" fse.OldFullPath fse.FullPath) 
val it : unit 
#1 Filter renames of hidden files 
#2 Result is a filtered event 
#3 Print file name when event occurs 
The first command (#1) filters the event in a similar way in which we filtered a list of 

values. As you can see by looking at the type of the result (#2), the function creates a new 
event object. The returned event listens to the event of the file system watcher and when a 
file is renamed, it uses the provided filtering function to test whether the value carried by the 
event should be ignored or not. If the filtering function returns false, the resulting event is 
triggered, otherwise the current occurrence of the event is ignored.  

The next line registers a function that prints information about the renamed file with the 
filtered event. We're using another function for working with events called Event.listen. 
This function does the same thing as the Add method that we were using earlier, but it 
allows us to write the whole event processing code in a more uniform way just using higher 
order functions. 

Before we discuss benefits of this programming style, let's look at the table 16.1, which 
shows several of the most important functions for working with events, including those that 
we've used in the previous listing. As you can see, many of them very closely correspond to 
a function for working with sequences. 

Event function Type of the function and description 

Event.filter ('T -> bool) -> IEvent<'TDel,'T> -> IEvent<'T> 

Returns event that is triggered only when the source event occurs and when the value 
carried by the event matches the predicate specified as the first argument. This 
function corresponds to List.filter for lists. 

Event.map ('T -> 'R) -> IEvent<'TDel,'T> -> IEvent<'R> 

Returns an event that is triggered every time the source event is triggered. The value 
carried by the returned event is calculated from the source value using the function 
given as the first argument. This corresponds to the List.map function. 

Event.listen ('T -> unit) -> IEvent<'TDel,'T> -> unit 

Registers a callback function for the specified event. The function provided as the first 
argument is called whenever the event given as the second argument occurs. This 
function is similar to List.iter function for lists. 

Event.scan ('S -> 'T -> 'S) -> 'S -> IEvent<'TDel,'T> -> 
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IEvent<'S> 

This function creates event with internal state. The initial state is given as the second 
argument and it is updated every time the source event occurs using the function given 
as the first argument. The returned event reports the accumulated state every time the 
source event is triggered and state is recomputed. 

Event.merge IEvent<'TDel1,'T> -> IEvent<'TDel2,'T> -> 
IEvent<'T> 

Creates an event that is triggered when either of the events passed as arguments 
occurs. Note that the type of the values carried by the events (T) has to be same for 
both of the events given as arguments. 

Table 16.1 Overview of some interesting higher order functions for working with events 

The table shows a couple of things that are worth explaining. First of all, the type 
representing the event used as an input for all the functions is different than the result. The 
input type has two type parameters. The second one is the value carried by the event and 
the first one (named 'TDel) is a .NET delegate used when registering handlers for the 
event. The result type is a special type of events that is used in F# and uses a generic 
delegate named Handler<'T> that is available in the F# library. This means that the 
IEvent<'T> type is actually just a shortcut for a type IEvent<Handler<'T>, 'T>. 
In F#, we'll use the simplest type most of the time and the version with two type parameters 
is used only when accessing delegates declared in an existing .NET type. 

The Event.scan function also deserves an explanation, because it looks a bit more 
complicated than the others. The signature looks a bit similar to the List.fold_left 
function. Both of the functions take an initial state and a function that knows how to 
calculate a new state from the original state and an element from the list or value carried by 
the event. The difference is that the fold_left function returns the result of accumulating 
all the elements of the list. This is of course impossible for events, because we don't know 
when the event will happen for the last time. So, instead of waiting for the last element, the 
Event.scan function returns an event that is triggered every time the internal state is 
recalculated. We'll see an example showing how useful the function is in the next section, but 
let me first return to our previous example for a second. 

Probably the larger benefit of using higher order functions for working with events is 
that we can write the handling in a more declarative way. In the previous listing, we replaced 
an imperative if in the body of the event handler with a declarative filtering, but we can 
take the example even further. If we create a function that formats the information carried 
by the RenamedEventArgs (called for example formatFileEvent) then we can write 
the whole event handling as a single very succinct expression. 

Listing 16.3 Declarative event handling (F#) 
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w.Renamed  
   |> Event.filter isNotHidden              #1 
   |> Event.map formatFileEvent             #2 
   |> Event.listen (printfn "%s")           #3 
#1 Filter renames of hidden files 
#2 Create event carrying formatted strings 
#3 Output the carried message 
The listing 16.3 implements the same functionality as our first listing, using two helper 

functions and the functions from the Event module. Once we know we can think of event as 
series of values, the code should be easy to read. Instead of imperatively specifying "what to 
do" when event occurs, we declaratively specify aspects of the required result. The first line 
specifies what kind of events we are interested in (#1), the second one specifies what 
information is important for us (#2) and the last line gives a way for displaying the 
formatted information (#3). 

The declarative style is one of the benefits, but this way of working with events gives us 
a richer way to factor the code. For example, we could omit the last line to create an event 
that can be used in several other places of the application. Then we could for example use 
Event.listen with MessageBox.Show as an argument to display the notifications in a 
graphical form. To become more familiar with this concept, we'll look at another slightly 
more complicated example in the next section. 

16.1.2 Creating simple reactive application 
Let's now look how we can use the processing function when writing a simple Windows 
Forms application. The main form of the application is displayed in the figure 16.1 and you 
can probably already guess what it is supposed to do.  

 

Figure 16.1 The number displayed in label is changed by clicking on the buttons. 

If we implemented this application in the usual way, we'd create a mutable field (or 
mutable ref cell in F#). Then we'd write an event handler that would be called when either of 
the buttons is clicked. The event handler would test which of the buttons was clicked and it 
would increment or decrement the mutable state and display it on the label. 

Now, how can we implement the same thing using the functions for working with events 
that we introduced in the previous section? One of the nice things of many declarative 
libraries is that the code written using them can be very nicely visualized. This is true for 
events as well, so you can see a diagram demonstrating our solution in figure 16.2. 
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Figure 16.2 Event processing pipeline used in the sample application; boxes on the left represent source 
events and light boxes represent events created using processing functions. 

The idea is that we'll take the click events and turn them into an event that carries an 
integer value. We'll do this using a helper function named always. It returns a function that 
ignores its argument and always returns the same value. We'll use it to create events that 
will carry either +1 or -1 depending on which of the buttons was clicked. Then we can merge 
these two events and use the Event.scan function to sum the values carried by the 
events.  

The code needed to build the user interface isn't very interesting, so we'll look only at 
the part needed to setup the event processing. You can see the code that encodes the 
pipeline from the previous figure in the listing 16.4.  

Listing 16.4 Pipeline for handling events (F#)  
let always x = (fun _ -> x)                                 #A 
let incEvt = (btnUp.Click |> Event.map (always 1))          #1 
let decEvt = (btnDown.Click |> Event.map (always -1))       #1 
 
Event.merge incEvt decEvt                                   #2 
   |> Event.scan (+) 0                                      #3 
   |> Event.listen (fun sum -> 
      lbl.Text <- sprintf "Count: %d" sum)                  #B 
#A Create function that always returns 'x' 
#1 Create events that carry +1 or -1 values 
#2 Merge the events 
#3 Calculate summary of carried values 
#B Display the result 
To make the code more readable, we don't encode the whole pipeline as a single 

expression (even though it would be possible). Instead, we first declare two helper values 
that represent events (#1). The type of both incEvt and decEvt values is 
IEvent<int>, which means that they represent events. The value carried by the event 
raised by the "Increment" button is always +1 and the value of the other event is always -1. 
To generate the value, we're using a function always from the previous chapter that 
returns a function ignoring the argument and returning always the same value. The value 
that is ignored in the example above is EventArgs argument of the Click event.  

As a next step, we merge these events together to create an event that will be triggered 
every time either of the buttons is clicked. The event carries integer values, so we can use 
Event.scan to sum the values starting with 0 as an initial value. We're using the plus 
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operator for aggregation, so in every click, the aggregation will add +1 or -1. Finally, we use 
the Event.listen function to specify a handler that displays the current sum of clicks. 

The ability to work with events as if they were values of type IEvent is a special 
feature of the F# language, because F# automatically wraps .NET events into this type. 
Using the same principle in C# is a bit difficult, but it is possible and it nicely demonstrates 
the power of declarative programming style and LINQ, so we'll look at it at least briefly. 

16.1.3 Declarative event processing in C# 3.0 
To use events as first-class values in C#, we first need to create our own implementation of 
the IEvent<T> type for C#. This will be an interface containing two methods for doing the 
usual operations with events - one for attaching and one for removing an event handler. We 
will not discuss the full implementation in the book and we'll instead use existing project 
called Reactive LINQ. You can find more information about it in the series of articles starting 
with article Introducing Reactive LINQ [Petricek, 2008]. All source code needed to run the 
examples from this section is of course available on the book web site. 

Let's now look how we could implement the demo with FileSystemWatcher in C#. 
The Reactive LINQ library gives us an IEvent<T> type and a couple of extension methods 
for doing the same things as Event.filter, Event.map and others. The library follows 
the standard C# naming, so the corresponding extension methods for working with event 
values are called Where and Select.  

However, the problem that we have to workaround in C# is that events (such as 
watcher.Renamed) are not first-class values and so they cannot be passed as an 
argument to a method. This means that we have to first convert them into the IEvent<T> 
representation. The Reactive LINQ library provides a method Reactive.Attach that 
takes the name of the event as a string and creates an event value of type IEvent.  

I mentioned that the methods for working with events are called Where and Select. 
This is very important, because it also means that we can use the syntactic sugar available in 
C# and use the LINQ query syntax to write the event processing code instead of calling 
these methods explicitly. The listing 16.5 uses Reactive LINQ to display notification when a 
visible file gets renamed. 

Listing 16.5 Working with events using LINQ (C#) 
var watcher = new FileSystemWatcher("C:\\Temp") {                      #A 
   EnableRaisingEvents = true }; 
var watcherEvt = Reactive.Attach<RenamedEventArgs>                     #1 
   (watcher, "Renamed"); 
 
var renamedEvt =  
   from fse in watcherEvt                                              #2 
   where IsNotHidden(fse)                                              #2 
   select String.Format("{0} renamed to {1}",                          #2 
      fse.OldFullPath, fse.FullPath);                                  #2 
 
renamedEvt.Listen(Console.WriteLine);                                  #3 
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#A Initialize the file system watcher 
#1 Convert event to a value 
#2 Filter events and yield string with file names 
#3 Print the information when event occurs 
After initializing the FileSystemWatcher object, we use the Attach method to 

turn the watcher.Renamed event into a first-class value (#1) represented using the 
IEvent<RenamedEventArgs> interface. The Attach method takes a single type 
argument that specifies the type of values carried by the event and a single argument which 
is the name of the event. It uses reflection under the hood, so we have to be careful to 
specify the name correctly. 

Most of the processing code is implemented as a single LINQ query (#2) that uses a 
single helper method IsNotHidden to filter renames of hidden files. The C# compiler 
translates the query to ordinary calls to Where and Select extension methods, so there is 
nothing magical going on. Most of the code directly corresponds to what we've just seen in 
F#. Finally, the last line uses an extension method Listen to register a handler for the 
filtered event. We're using simply the Console.WriteLine method, so the string carried 
by the event will be printed to the screen. 

In the last few sections, we've seen how to create events that are constructed from 
other events using higher order functions or using LINQ queries. However, we still haven't 
seen how to declare a new event. In C# this is done using the well known event keyword, 
but the technique used in F# differs, so we'll discuss it in the next section.  

16.1.4 Declaring events in F# 
When declaring a new event, we need two things. First of all, we need to create 
IEvent<'T> value that we could publish and that others could use for listening to our 
newly created event. As a second thing, we also need a way to trigger the event. In C#, the 
event can be triggered using the method invocation syntax, but only from the class where it 
was declared. When we create a new event in F#, we'll get a function value for triggering it.  

Let's look at an example showing how this looks in practice. Probably the most common 
scenario for working with events is when we need to expose event as a member of some 
object in a similar way as for example Windows Forms controls. The listing 16.6 shows a 
simple concrete object type (a class) that exposes one event and one method that 
sometimes triggers it. 

Listing 16.6. Declaring event as a class member (F# interactive) 
> type Counter() =  
     let mutable num = 0 
     let ev = new Event<_>()                                         #1 
 
     member x.SignChanged = ev.Publish                               #2 
     member x.Add(n) = 
        num <- num + n 
        if (sign(num - n) <> sign(num)) then  
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           ev.Trigger(num);;                                         #3 
 
> let c = Counter() 
  c.SignChanged |> Event.listen (printfn "Number: %d");; 
 
> c.Add(10);; 
Number: 10                                                           #A 
> c.Add(10);; 
> c.Add(-30);;  
Number: -10                                                          #B 
#1 Create a new event 
#2 Publish the 'IEvent' value 
#3 Trigger the event using provided member 
#A Sign changed from 0 to 1 
#B Sign changed to -1 
The Counter class contains a single mutable field that stores the current number. The 

Add method can be used for changing the state of the object and we want to trigger the 
event SignChanged when the sign of the stored number changes. When declaring a new 
event, we use the Event class from the F# library. This object contains a Publish 
member that returns the corresponding IEvent<'T> value that can be listened to and a 
Trigger member for running the event.  

The previous listing shows the typical way of working with events in a type declaration. 
We store the instance of the Event class as a local value (#1) and we expose the event 
value returned by the Publish member as a public member of the class, so that the users 
can listen to the event, but cannot trigger it. Finally, when the conditions of the event arise, 
we run it using the Trigger member (#3). 

DECLARING C# COMPATIBLE EVENTS 

The technique we've used in this section creates events that can be naturally used from 
F# however they won't appear as standard C# events. First of all, F# uses its own 
delegate type (Handler<T>). If you want to use some other delegate, you can create 
the event using a class Event<'TDel, 'T>, which allows you to specify the type of 
the delegate as the first argument. (…) 

In the last few sections, we learned many things about events and we've seen some of 
the benefits of using events as first-class values. Most notably, the fact that we can use 
higher order functions for working with events. In the next section, we'll extend our example 
from the previous chapter with a useful function that will take event value as an argument, 
to demonstrate how a function like that could be designed and implemented.  

16.2 Creating reactive animations 
When implementing the library for creating animations in the previous chapter, I wrote that 
the library is largely influenced by functional reactive programming. However, we focused 
only on the part that implements animations, so the examples from the previous chapter 
couldn't react to events such as mouse clicks. Implementing a complete library for functional 
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reactive programming is outside of the scope of this book, but we can look at least at one 
example that shows the relation between behaviors (from the previous chapter) and events 
that we discussed in the previous sections. This will also show some of the possibilities that 
F# gives us by treating events as first-class values. 

As you may remember from the previous chapter, behavior is a value that can vary in 
time. For example an ellipse whose location is changing depending on the time. In this 
section, we'll create a function named switch, which allows us to create behaviors that 
change when some external event occurs. We'll use it to create an animation that starts as a 
static image and becomes animating faster every time you click on the form.  

16.2.1 Using the switch function 
We'll start by looking at the example first and describe the implementation of the switch 
function later. As we've seen repeatedly in the previous chapters, a good way to understand 
what a function does is to look at its type, so let's examine the type first: 

val switch : Behavior<'T> -> IEvent<'Del, Behavior<'T>> -> Behavior<'T> 

The result of the function is a behavior that represents a value of 'T varying in time. 
This means that the function somehow constructs a behavior using the first two arguments. 
The first argument represents an initial behavior. Before the event occurs, the returned 
behavior will be the same as the one provided as the first argument.  

The most interesting thing is the second argument. It is an event that carries values of 
type Behavior<'T>. This means that every time the event is triggered, it will give us a 
new behavior that we can use instead of the initial behavior (or instead of the previous 
behavior). Every time the event occurs, the switch function will under the hood replace 
the returned behavior with the one obtained from the event. You may be thinking that event 
containing a behavior as a value looks a bit complicated. That's probably true, but we'll see 
shortly that events like this can be constructed quite easily. 

If you look at the type of the switch function in Visual Studio or F# interactive, it will 
also print a when clause that specifies restriction for the 'Del type. In particular, it 
specifies that the delegate type should take the value carried by the event 
(Behavior<'T>) as an argument, so that it's compatible with the event. However, this is 
just a technical detail that we don't have to worry about, because we'll use only created 
declared in F#. 

Now that we know enough about the switch function, let's look how we can use it. The 
listing 16.7 first creates a simple rotating circle similar to those from the previous chapter. 
Then it constructs an event that is triggered when the user clicks on the form and carries a 
new behavior - the same animation running a bit faster. Finally, it uses the switch function 
to construct a behavior that's changing with every click. 

Listing 16.7 Animation with changing speed (F#) 
let af = new AnimationForm(ClientSize = Size(400, 400), Visible=true) 
let greenCircle = circle (cns Brushes.OliveDrab) 100.0f.anim          #A 
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let rotatingCircle = rotate 100.0f 1.0f greenCircle                   #A 
 
let circleEvt =                                                       #1 
  af.Click  
  |> Event.map (always 0.1f)                                          #2 
  |> Event.scan (+) 0.0f                                              #2 
  |> Event.map (fun x -> faster x rotatingCircle)                     #3 
 
let init = faster 0.0f rotatingCircle                                 #B 
af.Animation <- switch init circleEvt                                 #4 
#A Create rotating circle with a constant size 
#1 Event carrying behaviors as a value 
#2 Adds 0.1 to the initial speed 0.0  
#3 Create a new faster animation 
#B Initial animation is suspended 
#4 Animation that speeds-up with clicks 
The listing first creates a standard behavior rotatingCircle that represents an 

animated circle that's rotating using a constant speed. As a next step, it constructs the event 
that yields new behaviors (#1). We're using the same trick that we used when counting the 
number of clicks on a button to create an event that will yield a number specifying the 
speed, which increments with every click. The last call to Event.map in the pipeline (#3) 
turns the event carrying the speed into an event that carries a behavior. It changes the 
speed of the original rotating circle every time by calling the faster function with the new 
speed as an argument. 

Once we have the event, we can finally use the switch function. First we create an 
initial behavior, which is the circle with the rotation speed set to zero. Then we use this 
behavior and the event declared earlier to create the final animation (#4). You can see how 
the final animation looks in the figure 16.3. The figure shows the animation after about 3 and 
13 clicks. 

 

Figure 16.3 Two forms showing the animation running using different speeds after several mouse clicks 

Licensed to Curtis J Pitts <beop.love@gmail.com>

Download at Boykma.Com



474   

©Manning Publications Co. Please post comments or corrections to the Author Online forum: 
http://www.manning‐sandbox.com/forum.jspa?forumID=460 

Thanks to the combination of first-class events and behaviors, we can write quite 
interesting animations in a fully declarative way. In the next section, we'll look under the 
hood and we'll discuss the implementation of the switch function. 

16.2.2 Implementing switch function 
I already sketched how the switch function might work in the previous section, so let's 
now look at the full source in listing 16.8. The key idea is that the function will return a 
behavior that uses an actual behavior stored in a mutable variable. Every time the event 
occurs, we'll update the mutable variable, so the returned behavior will start behaving 
differently. Note that this use of mutable state is completely hidden from the user, so the 
code that we wrote as an end-user was declarative and free of any visible side-effects.  

Listing 16.8 Implementing the switch function (F#) 
let switch init evt =  
   let current = ref init                                       #1 
   evt |> Event.listen (fun arg -> current := arg)              #2 
   sample(fun ctx ->  
      let (BH(f)) = !current                                    #3 
      f(ctx))                                                   #3 
#1 Store the actual behavior in a ref cell 
#2 Update the behavior 
#3 Get the current behavior and run it 
The function first declares a mutable variable (using the F# ref cells that we discussed in 

chapter 8). The initial value of the ref cell is set to the initial behavior (#1). Next, we setup a 
handler for the event that can yield a new behavior (#2). When the event occurs, we set the 
value of the ref cell to the new behavior that we obtained from the event. We don't worry 
about the thread safety in this example, because when we use the switch function only with 
Windows Forms events, the state will be always accessed only from the (single) GUI thread. 
Finally, the behavior that's returned from the function is constructed using the sample 
primitive from the previous chapter. When the lambda function gets called to get the value of 
the behavior at the specified time, we simply dereference the current behavior and use it to 
process the request. 

The functions from Event module are useful if the logic of the event handling isn't very 
complicated. If the reaction to an event is always the same and if you need to filter the event 
or combine it with other events, then the declarative style is very useful. However, 
describing more complex logic declaratively using events may not be easily possible. In the 
next section we'll look at another technique that uses asynchronous workflows from chapter 
13 for handling of GUI events. 

16.2 Programming user interface using workflows 
When designing applications that don't react to external events, we have rich ways for 
describing the control flow of the application, such as if-then-else expressions, for 
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loops and while loops in imperative languages or recursion and higher order functions in 
functional languages. Constructs like this make it very easy to describe what the application 
does. The control flow is clearly visible in the source code, so drawing a flowchart that 
describes it is a straightforward task. 

Unfortunately, understanding reactive applications is much more difficult. A usual C# 
application or GUI control that needs to react to multiple events has some mutable state and 
when an event occurs, it updates the state and perhaps runs some action in response to the 
event, depending on the current state. In this encoding, it is quite difficult to understand 
what the states of the application and transitions between them are. Using asynchronous 
workflows, we can write the code in a way that makes the control flow of the application 
visible even for reactive applications. 

16.2.1 Waiting for events asynchronously 
The reason why we cannot use standard control flow constructs to drive reactive applications 
is that we don't have any way for waiting for an event to occur. Writing a function that runs 
in a loop and checks whether an event has occurred is difficult to implement, but more 
importantly, it is also a bad practice, because it would block the executing thread. As we've 
seen in chapter 13, asynchronous workflows allow us to write code that looks like sequential, 
can contain waiting for external events (such as completion of an asynchronous I/O 
operation), but is executed asynchronously without blocking the thread. 

So far, we've seen only asynchronous methods that perform I/O operations, but there is 
also a primitive that stops the asynchronous workflow and resumes it when the specified 
event (of type IEvent<'Del, 'T>) occurs. The primitive is called AwaitEvent and is 
available as a member of the Async type. Currently, the primitive isn't a part of the F# 
libraries, so you can find it the full source code on the book web site. Let's start by looking at 
the type signature of the primitive:  

val AwaitEvent : IEvent<'Del, 'T> -> Async<'T> 

The type shows us that the function is quite simple. It takes event as an argument and 
returns a value that we can use inside an asynchronous workflow using the let! keyword. 
One important difference between events and Async<'T> values is that asynchronous 
workflow can be executed at most once, while events can be triggered multiple times. This 
means that the AwaitEvent function waits for the first occurrence of the event and then 
resumes the asynchronous workflow. Let's now look how to use this function in practice. 

COUNTING MOUSE CLICKS 
We'll start by looking at simple example that's similar to what we've seen in the beginning of 
the chapter and we'll implement a demo that counts the number of clicks and displays it on a 
label. This could be implemented using Event.scan and the source code would be shorter, 
but as we'll see later AwaitEvent is a far more powerful construct. You can see the source 
code in the listing 16.9.  

 Listing 16.9 Counting clicks using asynchronous workflows (F#) 
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let frm, lbl = new Form(...), new Label(...)        #A 
 
let rec loop(count) = async {                       #1 
  let! args = Async.AwaitEvent(lbl.MouseDown)       #2 
  lbl.Text <- sprintf "Clicks: %d" count 
  return! loop(count + 1) }                         #3 
 
do  
   Async.Spawn(loop(1))                             #4 
   Application.Run(frm) 
#A Create the user interface (omitted) 
#1 'Infinite' asynchronous loop 
#2 Wait for the next click 
#3 Loop with incremented count 
#4 Start the loop without blocking 
The essential part of the application that implements the counting is a single recursive 

function that's implemented as an asynchronous workflow (#1). The function appears to 
create an infinite loop, which may look suspicious for the first time. However, the construct is 
completely valid, because it starts by waiting for a MouseDown event (#2). This is done 
asynchronously, which means that the workflow will just install the event handler and the 
rest of it will be executed when you click on the label.  

In the introduction, I wrote that the AwaitEvent primitive waits only for the first 
event, because asynchronous workflows can yield only a single value. As you can see in this 
example, if we want to handle every occurrence of the event, we can simply use recursive 
loop to setup the waiting again for the next occurrence. In addition, the loop function 
allows us to store the current state as parameters of the function. In fact, this way of 
expressing computations is very similar to primitive recursive functions that we've seen in 
the first sections of the book. 

As I wrote earlier, the example we've just seen could be easily implemented using the 
Event.scan function, so let's look at a slightly more complicated problem now.  

LIMITING THE SPEED OF CLICKS 
Let's say that we'd like to limit the rate of clicks. For example, we want the count to stay the 
same at least for one second after it gets incremented by clicking on the label. One way for 
implementing this is to add another parameter to the loop function of type DateTime that 
will store the last time of a successful click. When the event occurs inside the loop, we could 
then check the difference from the current time and the last time and increase the count only 
when the difference is larger than the limit. 

However, there is a much simpler way. In chapter 13 we implemented a primitive 
Async.Sleep that allows us to stop the workflow for a specified time. If we use it 
somewhere in the loop function, it will sleep for one second before reacting to the next 
event, which is exactly what we wanted. The method for sleeping the workflow for is also 
available in the F# library as an extension method for the Thread class (located in the 
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System.Threading namespace), so everything we have to do is to add the following line 
before the line that last line that runs the recursion: 

do! Thread.AsyncSleep(1000) 

This is already something that would be quite difficult to do using the functions from the 
Event module. Just for curiosity, you can find the solution using Event functions in the 
online source code and it's about 8 lines long and a bit tricky to understand. However, the 
control flow of this example was still pretty simple. In the next section, we'll look at a more 
sophisticated example that better demonstrates the capabilities of using asynchronous 
workflows for GUI programming. 

16.2.2 Drawing rectangles 
A problem that's surprisingly difficult to solve in a functional way in F# is drawing of 
graphical objects on a Windows Forms form. When drawing a rectangle, the user starts by 
pressing the mouse button in one of the corners, then moves the cursor to the opposite 
corner and then releases the button. While moving the cursor with the button pressed, the 
application should draw the current shape of the rectangle and when the button is released it 
should be finally applied to a bitmap or stored in the list of vector shapes. 

The usual implementation would use a mutable flag specifying whether we're currently 
drawing and a mutable variable for storing the last location specifying where the user 
pressed the mouse button. Then we'd handle MouseDown, MouseUp and MouseMove 
events and appropriately modify the state when one of them fires. However, if we think of 
the control flow of the application, we can see that it's actually quite simple. You can see a 
flowchart that shows it in the figure 16.4.   

 

Figure 16.4 When the application is 'Waiting' we can press button to start 'Drawing'. In this state, we can 
either continue 'Drawing' by moving the mouse or complete the task and change the state of the 
application back to 'Waiting' by releasing the button. 
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Before we'll look at encoding of the state machine from the figure above into actual F# 
program using asynchronous workflows, we'll need to write a single utility function to make 
the application complete. 

IMPLEMENTING PROGRAM FUNDAMENTALS 
We'll improve the application a little bit later, but let's start with just an empty form on which 
we can draw rectangles. The code in listing 16.10 shows the code necessary to create the 
form and a function drawRectangle that draws a rectangle on the form using the 
specified color and two of any corner points of the rectangle. 

Listing 16.10 Creating user interface and drawing utility (F#) 
open System 
open System.Drawing 
open System.Windows.Forms 
 
let form = new Form(ClientSize=Size(800, 600)) 
 
let drawRectangle(clr, (x1, y1), (x2, y2)) =                       #1 
   use gr = form.CreateGraphics() 
   use br = new SolidBrush(clr) 
   let left, top = min x1 x2, min y1 y2                            #A 
   let width, height = abs(x1 - x2), abs(y1 - y2)                  #A 
   gr.FillRectangle(Brushes.White, form.ClientRectangle)           #B 
   gr.FillRectangle(br, Rectangle(left, top, width, height)) 
#1 Points are represented as tuples 
#A Calculate upper left and lower right point 
#B Clear the window using white color 
The code in the listing is very straightforward. It is worth commenting that the function 

drawRectangle takes all the parameters as a tuple, so it can be used in a way that's 
consistent with calling .NET methods. In addition, its second and third parameters are nested 
tuples that represent X and Y coordinates of the point. As we'll see shortly, this makes the 
rest of the code a bit easier.   

IMPLEMENTING THE DRAWING STATE MACHINE 
Now that we have all the basics of the application, we can implement the drawing of 
rectangles. As we've seen in figure 16.4, the process can be represented as a state machine 
with two states ('Waiting' and 'Drawing') that have various transitions between them. When 
programming using asynchronous workflows, we can use a direct translation and create a 
single function for each of the states. The transitions between them can be encoded as 
function calls or as returning of a value from a function. 

For our example this means that we'll have two functions called drawingLoop and 
waitingLoop. The first of them also needs to remember some state, which is done by 
passing parameters to the function. You can see the full source code that implements the 
drawing in listing 16.11. 

Listing 16.11 Workflow for drawing rectangles (F#) 
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let rec drawingLoop(clr, from) = async { 
   let! move = Async.AwaitEvent(form.MouseMove)                         #1 
   if (move.Button &&& MouseButtons.Left) = MouseButtons.Left then 
      drawRectangle(clr, from, (move.X, move.Y))                        #2 
      return! drawingLoop(clr, from)                                    #2 
   else 
      return (move.X, move.Y) }                                         #3 
 
let waitingLoop() = async { 
   while true do                                                        #4 
      let! down = Async.AwaitEvent(form.MouseDown) 
      let downPos = (down.X, down.Y) 
      if (down.Button &&& MouseButtons.Left) = MouseButtons.Left then 
         let! upPos = drawingLoop(Color.IndianRed, downPos)             #5 
         do printfn "Drawn rectanlge (%A, %A)" downPos upPos } 
#A Wait for the next mouse action 
#2 Refresh rectangle and continue in the 'Drawing' state 
#3 Return end location to the 'Waiting' state 
#4 Repeat after drawing finishes 
#5 Transition to the 'Drawing' state 
The most direct way to encode the state machine would be to use only recursive calls 

between the two functions using the return! keyword. In the listing above, we did a minor 
change to this encoding, which makes the code a bit more readable. The waitingLoop 
function contains an infinite while loop (#4) that waits until the user pushes the left button 
and then transfers the control to the drawingLoop function. When it completes, it returns 
the end position of the rectangle (#3) and transfers the control back (#5). We can then print 
the information about the drawn rectangle and wait for another mouse-down event. 

On the other hand, the function that's running while the user is drawing a rectangle is 
looping using recursive calls. It starts by waiting for the MouseMove event, which is also 
called when the button is released (#1). Then it tests whether the button is currently 
pressed and when that's the case, it refreshes the view of the form (#2). This transition is 
represented as the arc looping in the 'Drawing' state. When the button is released, it returns 
the last location as a result (#2), which is the transition back to the 'Waiting' state. 

That's almost everything we need to run the application. The only remaining thing is to 
start the asynchronous workflow that handles drawing of rectangles and run the application:  

[<STAThread>] 
do Async.Spawn(waitingLoop()) 
   Application.Run(form) 

In this simple application, we have only a single asynchronous workflow that handles all 
the interaction with the application. If we for example wanted to allow drawing of polygons 
by using the right mouse button, we could implement this without doing any changes to the 
code we wrote now. We would simply create another workflow for drawing of polygons and 
start it independently using Async.Spawn. This way of writing the user interface code 
gives us a very modular way for factoring the complex interactions into separate processes.  

Waiting for events and the GUI thread 
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The application we just implemented consists of a single running process, but it is 
important to realize that a process in the sense we're using doesn't correspond to a 
thread. In fact, even if we had multiple processes waiting for GUI events, the application 
would still be single threaded.  

We already discussed how asynchronous workflows work in chapter 13, but let's just 
briefly repeat the important point. When the workflow is waiting for an asynchronous 
operation it doesn't occupy any thread. Instead, it just registers a callback that will 
resume the workflow once the asynchronous operation completes. This means that the 
workflow will be executed on the thread which is used by the asynchronous operation to 
report that it completed. For I/O events this is a thread from the thread pool, however for 
GUI events, this is the GUI thread.  

In .NET applications (and in any Windows GUI applications in general), there is a single 
GUI thread that is used for processing all the incoming user interface events. For .NET 
this means that all the GUI events are triggered on this single thread. What does this 
mean for the example we just implemented? Because the only asynchronous operation 
we're using, the workflow will always run on the single GUI thread. This means that the 
technique we're using doesn't introduce any parallelism. It just gives us an easier way to 
write our single threaded GUI processing.  

We'll shortly see a technique that allows us to integrate this form of GUI processing with 
other processes that can possibly run in parallel however the usual code for user interface 
interaction like the one we've just seen should be simple and shouldn't perform any 
complicated computations, so there is no need for parallelism.  

The code we wrote so far isn't really a drawing application, because it doesn't store the 
rectangles we draw in any way. Once the drawing is finished, it just prints some information 
to the console and forgets the rectangle. We could store a list of rectangles as a parameter 
of the waitingLoop function (if we changed it into a recursive function), but that wouldn't 
work very well, because the list would be private to the drawing loop and it couldn't be 
accessed from other parts of the application. To store the state that's global for the whole 
application, we need something better. 

16.3 Storing state in reactive applications 
The code we wrote in the previous section to handle drawing of rectangles can be viewed as 
a lightweight process that runs inside the application to handle certain task. In this chapter, 
the task was a GUI interaction, but it could as well perform asynchronous I/O operations as 
we've seen in chapter 13, such as download content of a web site. As I wrote earlier, there 
can be multiple processes like this running in parallel. Keep in mind that a process doesn't 
correspond to a thread, but some of the processes might be running in parallel. 

Structuring the code as processes allows us to nicely factor the code, but we haven't 
discussed one essential aspect yet, which is how these processes can communicate. We 
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could of course use some global mutable variables, but that requires careful use of locking 
and it's generally discouraged in the functional programming. The technique we can use 
instead is called message passing. When writing application using message passing, the 
processes can send messages to each other and exchange all the needed state just by 
sending or replying to messages. 

16.3.1 Creating mailbox processor 
Let's now look what this means in practice. We'll extend the application from the previous 
section and we'll add a process that will store the current state of the application, which is 
the currently selected color (we'll add an option to change the color) and a list of all the 
created rectangles. It will handle messages that will be sent from the process for drawing 
rectangles or from other event handlers that we'll add to the application. In F#, the 
processes that can receive messages are also called mailbox processors. However, before we 
can start implementing the mailbox processor, we'll need to know what a message is. 

IMPLEMENTING THE MESSAGE TYPE 
Each process can handle messages of a single known type, so we'll start by declaring the 
type that represents message. As you can see in listing 16.12, discriminated union is the 
right F# type for this purpose. 

Listing 16.12 The type representing messages (F#) 
type RectData = Color * (int * int) * (int * int)                   #1 
 
type DrawingMessage =  
   | AddRectangle of RectData                                       #2 
   | SetColor of Color                                              #2 
   | GetRectangles of AsyncReplyChannel<list<RectData>>             #3 
   | GetColor of AsyncReplyChannel<Color>                           #3 
#1 Type alias for rectangle 
#2 Messages for updating the state 
#3 Messages for reading the state 
The listing starts by declaring a type alias called RectData (#1) which is a tuple 

containing all information that we want to store about rectangles. The discriminated union 
itself then contains two types of messages. The first two messages (#2) are used for setting 
the current state and they carry the arguments for this operation. In case of 
AddRectangle, the processor will add the information about the newly created rectangle 
to an internal list and in case of SetColor, it will change the current color.  

The next two messages (#3) look a bit trickier, because the value they carry has a type 
AsyncReplyChannel<'T>. This type allows us to create messages that send a reply 
back to the caller. In our case, it means that when the process receives one of these 
messages, it will send a reply back containing either a list of all rectangles in case of 
GetRectangles or the currently selected color in case of GetColor. We'll look at 
sending messages and waiting for the reply shortly, but let's start by implementing the 
mailbox processor.   
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IMPLEMENTING THE PROCESSOR 
In general, mailbox processors can be quite complicated. They can perform various 
calculations in reaction to the messages they receive; they can send messages to other 
processors and collect the replies, or they can even start new processors. However, the 
mailbox processor in our example is very simple and only stores the current state of the 
application and handles the messages to read or update the state. 

The code, which you can see in listing 16.13, follows the same pattern as the code we 
wrote earlier. It is implemented as a recursive function written using asynchronous 
workflows that maintains the current state using function parameters. 

Listing 16.13 Creating the mailbox processor (F#) 
let state = MailboxProcessor.Start(fun mbox ->                 #1 
   let rec loop(clr, rects) = async { 
      let! msg = mbox.Receive()                                #2 
      match msg with 
      | SetColor(newClr) ->  
         return! loop(newClr, rects)                           #3 
      | AddRectangle(newRc) -> 
         form.Invalidate() 
         return! loop(clr, rects@[newRc])                      #3 
      | GetColor(chnl) ->  
         chnl.Reply(clr)                                       #4 
         return! loop(clr, rects) 
      | GetRectangles(chnl) ->  
         chnl.Reply(rects)                                     #4 
         return! loop(clr, rects) } 
   loop(Color.IndianRed, []) )                                 #5 

#3 and #5 appear intentionally two times; is it possible to do this? 

#1 Starts by running the given function 
#2 Asynchronously wait for the next message 
#3 Update the state during recursive call 
#4 Return the current state 
#5 Start with initial color and an empty list 
To create a mailbox processor, we use the Start member of the 

MailboxProcessor type. It initializes the mailbox for the messages and then runs the 
provided function (#1) to start the processing. The function returns an asynchronous 
workflow that can wait for messages using the Receive method (#2) of the mailbox that 
we get as an argument during the initialization. 

We implemented the workflow using a recursive function called loop that takes two 
parameters. The parameter clr is the currently selected color and rects is a list of 
rectangles. When returning the workflow from the lambda function, we call the loop 
function with a red color and an empty list as the initial state (#5). 
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Now, let's have a look at the body of the loop function. It starts by receiving the next 
message from the mailbox (#2). The mailbox internally stores a queue with messages, so if 
a message is already in the queue, the message will be returned immediately. On the other 
hand, if the queue is empty, the Receive method will block the workflow (without blocking 
the actual thread) and resume it once a message is sent to the processor. Once we receive a 
message, we use pattern matching to decide how to handle it. The first two messages just 
modify the state of the processor, so we recursively call the loop function using the 
return! keyword (#3) with the updated state. Note that when we get a new rectangle, we 
want to add it to the end of the list to make sure that it will be displayed on the top, so we 
use the @ operator for concatenating lists.  

The last two messages (#4) are used for reading the state of the processor and they 
carry a reply channel as an argument. When the processor receives the message, it uses the 
Reply method of the channel to send the list of rectangles or the current color back as a 
result to the caller and then loops without altering the state.  

MAILBOX PROCESSORS AND CONCURRENCY 

When writing mailbox processors, it is important to understand how they're executed with 
respect to threads. The thread that's executing the body can change when the workflow 
waits for some asynchronous operation, but the body will never run on multiple threads 
concurrently. When a message is received during processing of the previous message, it 
is queued for later processing. The code we just wrote doesn't perform any complicated 
computations, so it will almost always process the message immediately. Thanks to this 
design decision we don't have to concern about any possible race conditions.  

Now that we have the mailbox processor ready, we can look how to modify the rest of 
the application, to use and update the state stored in the processor by sending messages. 

16.3.2 Communicating using messages 
In the last listing of the previous section we created a mailbox processor called state which 
has a type MailboxProcessor<DrawingMessage>. Note that the Start method 
that we used to create it was a member of a non-generic class MailboxProcessor, 
which has a same name, but is overloaded by the number of type parameters. Before we 
start looking at more code, let's quickly look at the table 16.2, which shows some of the 
important instance methods that we can invoke on the of the mailbox processor. 

Event function Type of the function and description 

Post Sends a message to the mailbox processor without waiting until for any reply. If 
the mailbox processor is busy, the message is stored in the queue. 

PostAndReply Sends a message that expects AsyncReplyChannel<'T> as an 
argument to the mailbox processor and blocks the calling thread until the mailbox 
processor invokes the Reply method of the channel. Then it returns the value 
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sent to the channel. 

AsyncPostAndReply Similar to the PostAndReply with the exception that it runs asynchronously. 
When we invoke it from an asynchronous workflow using let!, it doesn't block 
the calling thread and the result is returned asynchronously. 

Receive We used this method when creating the mailbox processor to asynchronously 
receive the next message from the queue, so that we can process it inside 
workflow. This method shouldn't be used outside of the mailbox processor. 

Scan Similarly to Receive, this method shouldn't be used outside of the mailbox 
processor. It can be used when the processor is in a state when it cannot 
process all types of messages, because it allows us to return None for 
messages that cannot be processed. The unprocessed messages remain in the 
queue for later processing. 

Table 16.2 The most important methods provided by the MailboxProcessor<'Msg> type. 

Note that the Scan and Receive methods should be used only from the code running 
inside mailbox processor. We've seen how to use Receive in the previous section and we'll 
talk about the Scan method briefly later in this chapter. The remaining 3 methods can be 
used from any thread. Sometimes you may want to write a processor that sends a message 
to itself, but a more typical scenario, which we'll see shortly, is when we're sending 
messages to the processor from outside. 

IMPROVING THE DRAWING PROCESS 
Let's now look at the changes that we need to do to the drawing process if we want to allow 
the user to change the color of rectangles before drawing and if we want to keep all the 
drawn rectangles on the screen. The first thing we have change a bit is the code for drawing. 
The drawRectangle function originally erased the screen, which isn't desirable if we want to 
draw multiple rectangles. After changing this behavior, we can implement a function in listing 
16.14 that draws all rectangles in the given list. 

Listing 16.14 Utility function for drawing rectanlges (F#) 
let redrawWindow(rectangles) = 
   use gr = form.CreateGraphics() 
   gr.FillRectangle(Brushes.White, form.ClientRectangle) 
   for r in rectangles do 
      drawRectangle(r) 

The function clears the content of the form and then iterates over all the elements of the 
given list and draws the individual rectangles using the drawRectangle function. Note 
that the list stores rectangles as tuple with three elements (color and two opposite corners), 
which is compatible with the tuple expected by the drawRectangle function. 
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Now we're finally ready to modify the process that handles drawing of rectangles. As the 
whole code is implemented as an asynchronous workflow, we can use the asynchronous 
method AsyncPostAndReply when we need to get some information from the mailbox 
processor that stores the state. This is of course the preferred option when possible, because 
it doesn't block the calling thread. Most of the code in listing 16.15 stays the same, so I 
highlighted the lines that have changed. 

Listing 16.15 Changes in the drawing process (F#) 
let rec drawingLoop(clr, from) = async { 
   let! move = Async.AwaitEvent(form.MouseMove) 
   if (move.Button &&& MouseButtons.Left) = MouseButtons.Left then 
      let! rects = state.AsyncPostAndReply(GetRectangles)               #1 
      redrawWindow(rects)                                               #2 
      drawRectangle(clr, from, (move.X, move.Y))                        #2 
      return! drawingLoop(clr, from) 
   else   
      return (move.X, move.Y) } 

 
let waitingLoop() = async { 
   while true do 
      let! down = Async.AwaitEvent(form.MouseDown) 
      let downPos = (down.X, down.Y) 
      if (down.Button &&& MouseButtons.Left) = MouseButtons.Left then         
         let! clr = state.AsyncPostAndReply(GetColor)                   #3 
         let! upPos = drawingLoop(clr, downPos) 
         state.Post(AddRectangle(clr, downPos, upPos)) }                #4 
#1 Get the list with existing rectangles 
#2 Draw all rectangles including the new one 
#3 Get the selected color 
#4 Add the newly created rectangle 
The first change that we have to do is in the drawingLoop function when updating 

the window to show the rectangle that the user is currently drawing. Originally, we only 
needed to erase the window and draw the new rectangle, but now we also need to draw all 
the rectangles that exist already. To do this, we obtain the list of rectangles from the mailbox 
processor by sending it the GetRectangles message (#1). The message takes an 
argument of type AsyncReplyChannel<'T> that will be used by the mailbox processor 
to reply to the caller, but we don't specify the channel explicitly in the code. This is possible, 
because the F# compiler treats the discriminated union constructor (GetRectangles) as 
a function that takes a single argument. We could write the same thing like this: 

let! rects = state.AsyncPostAndReply(fun chnl -> GetRectangles(chnl)) 

If we write the code in this way, it is easier to see what is going on. The 
AsyncPostAndReply method creates a channel for the reply and uses the provided 
lambda function to create the message that carries the channel. The message is then sent to 
the mailbox processor and the workflow is suspended until a reply is sent to the channel. 
Once we receive the reply with a list of rectangles, we can draw them including the one 
that's being drawn right now (#2). Note that the reply can be sent on a background thread. 
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This isn't a problem, because we're drawing using the CreateGraphics method, which 
doesn't have to be called from the GUI thread. 

The second change we did is in the waitingLoop function. Once the user starts 
drawing the rectangle, we first read the currently selected color (#3). The color can be 
changed from the application user interface (we'll shortly see how), so it is important to get 
the color after the call to AwaitEvent completes. If we placed it before AwaitEvent, 
the user could change the color, but we wouldn't know that because the AwaitEvent 
primitive can block for a very long time. Once we get the color, we can call the 
drawingLoop function to handle the input of a rectangle and finally, we use the Post 
method to send all the information about the newly created rectangle to the mailbox 
processor (#4). 

ADDING THE USER INTERFACE 
The user interface of the application will be quite simple, but we'll need to call the mailbox 
processor from various places to work with the current application state. First of all, we'll add 
a handler for the Paint event, so the application redraws the rectangles when some part of 
the window is erased by Windows. Secondly, we'll add a toolbar with a single button that 
allows you to change the current color, so in the end you should be able to create drawings 
like the one in listing 16.5, which shows the running application. 

 

Figure 16.5 Running application with a drawing consisting only of rectangles. 

You can find the code that creates the user interface in listing 16.16. The details of the 
code that creates the toolbar using ToolStrip and ToolStripButton controls are 
omitted, but you can find them in the source code available on the book web site. 

Listing 16.16 Implementing the user interface (F#) 
let tools, btnColor = new ToolStrip(...), new ToolStripButton(...)    #A 
 
btnColor.Click.Add(fun _ -> 
   use dlg = new ColorDialog() 
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   if (dlg.ShowDialog() = DialogResult.OK) then                       #B 
      state.Post(SetColor(dlg.Color)) )                               #1 
 
form.Paint.Add(fun e -> 
   let rects = state.PostAndReply(GetRectangles)                      #2 
   redrawWindow(rects) )     
 
[<STAThread>] 
do Async.Spawn(waitingLoop())                                         #C 
   Application.Run(form) 
#A Create the GUI controls 
#B Show dialog for color selection 
#1 Send the selected color to mailbox processor 
#2 Get a list with current rectangles 
#C Start the process for drawing rectangles 
Most of the code should be fairly straightforward. It creates the user interface and then 

registers a handler for two events. We don't need to do any filtering or other processing of 
the events, so we're using directly the Add method instead of using functions from the 
Event module. The first handler displays the ColorDialog, so the user can select a new 
color and if a color is selected, it posts a message with the new color to the mailbox 
processor (#1). We don't need to wait for any reply to this message, so the operation is 
done without blocking the thread. 

The second event handler is for the Paint event and it needs to obtain the list with 
currently displayed rectangles first. To do this, we can use the PostAndReply method 
(#2), which constructs the message with a reply channel and then waits until the mailbox 
sends a reply. This method blocks the thread, so it should be used only rarely, in cases 
where we cannot complete the operation asynchronously. Updating the window of the 
application is definitely one of these situations, so this use is correct. 

So far, we've been using the mailbox processor object directly. This is all right in the 
earlier phase of the development, but once the application becomes larger or if we want to 
turn a part of the application into a separate library, it is better to encapsulate the mailbox 
processor in an object. In the next section, we'll look how to do this. 

16.3.3 Encapsulating mailbox processors 
When encapsulating the mailbox processor, we'll change the global value representing the 
processor into a local field of an object and we'll add methods that send the messages to the 
private mailbox. This also has the benefit that we don't have to expose all of the messages if 
some of them are intended only for an internal use.  

When doing a change like this, we don't need to modify the message processing code in 
any way. You can see the declaration of the concrete object type in the listing 16.17. 
Because the processing code stays the same, most of it is omitted in the listing. 

Listing 16.17 Encapsulating mailbox processor into a type (F#) 
type DrawingState() =  
   let mbox = MailboxProcessor.Start(fun mbox ->                     #1 
      let rec loop(clr, rects) = async {  
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         let! msg = mbox.Receive() 
         // Message processing code 
      } 
      loop(Color.Black, []) ) 
   
   member x.Setcolor(clr) =  
      mbox.Post(SetColor(clr))                                       #2 
   member x.AddRectangle(rc) = 
      mbox.Post(AddRectangle(rc))                                    #2 
   member x.AsyncGetRectangles() =  
      mbox.AsyncPostAndReply(GetRectangles)                          #3 
   member x.AsyncGetColor() =  
      mbox.AsyncPostAndReply(GetColor)                               #3 
   member x.GetRectangles() =  
      mbox.PostAndReply(GetRectangles)                               #4 
 
let state = new DrawingState()     
#1 Private mailbox processor value 
#2 Non-blocking operations without return value 
#3 Asynchronous operations for reading the state 
#4 Blocking call for obtaining rectangle list 
To create a local mailbox processor inside the class declaration, we use a local let 

binding (#1). This becomes a part of the constructor of the class, which means that the 
mailbox will be started when the instance is created. Values declared using local let 
bindings are turned into local fields, so they are accessible from anywhere inside the class. 

The members of the type are mostly boilerplate code. Members that update the state of 
the mailbox processor and don't wait for any return value (#2) send the message using the 
Post method. The second group of members (#3) that read the state is implemented using 
the AsyncPostAndReply method. Note that we're using the Async prefix in the name 
of these members. This is a standard notation used across the entire F# library to denote 
members that can be accessed only form asynchronous workflows. Finally, the last method 
(#4) is the single blocking member of the class. 

Once we encapsulate the mailbox processor inside a class, we of course have to modify 
the rest of the code where it is accessed. Instead of sending a message explicitly, we can 
simply call one of the methods. The following snippet shows two sample calls from inside of 
an asynchronous workflow: 

let! clr = state.AsyncGetColor() 
state.Setcolor(clr) 

We'll look at one more improvement shortly, so you'll see a few examples from the 
actual application in a second. Once we encapsulate the mailbox processor in a class, it can 
be compiled into an F# library and distributed as a reusable component. Using methods that 
return asynchronous workflow (the type Async<'T>) from C# is unfortunately difficult so if 
you want to create a component usable from C#, it is better to also provide methods that 
take a delegate as an argument and run it when the asynchronous operation completes. 

In the next section we'll add one more feature to our application to show another aspect 
of event handling using AwaitEvent primitive inside asynchronous workflows.  
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16.3.4 Waiting for multiple events 
In all the examples of using AwaitEvent so far, we've been waiting only for a single 
event. The rectangle drawing application first waits for the MouseDown event and then 
repeatedly waits for MouseMove. However, what if we wanted to wait either for 
MouseMove event or for some other event that could be used to cancel the drawing?  

In this section, we'll look at an example showing how to wait for multiple events. We'll 
keep the existing code and add the ability to cancel the drawing process. When the user hits 
the Esc key, we'll stop the drawingLoop returning None as the result. To do this, we 
need to wait for the MouseMove or the KeyDown event and handle the one that occurs 
first. You can find the modified code for the drawingLoop function in the listing 16.18. 

Listing 16.18 Drawing rectangle with cancelation using 'Esc' key (F#) 
let rec drawingLoop(clr, from) = async { 
   let! args = Async.AwaitEvent(form.MouseMove, form.KeyDown)           #1 
   match args with 
   | Choice1Of2(move) when                                              #2 
         (move.Button &&& MouseButtons.Left) = MouseButtons.Left ->     #2 
      let! rects = state.AsyncGetRectangles()                           #A 
      redrawWindow(rects) 
      drawRectangle(clr, from, (move.X, move.Y)) 
      return! drawingLoop(clr, from) 
   | Choice1Of2(move) ->                                                #3 
      return Some(move.X, move.Y) 
   | Choice2Of2(key) when key.KeyCode = Keys.Escape ->                  #4 
      form.Invalidate();  
      return None 
   | _ -> return! drawingLoop(clr, from) }                              #5 
#1 Wait for any of the specified events 
#2 Continue drawing 
#A Obtain list of rectangles using method 
#3 Button released, return the rectangle 
#4 Esc key pressed, return 'None' 
#5 Otherwise wait for another event 
In all the previous examples, we used the AwaitEvent method only with a single 

event as an argument. However, the method is overloaded and allows us to specify multiple 
events. In that case, the method will wait until the first of the provided events occur and it 
will ignore any other occurrences. In our case, this means that the call (#1) will block until 
either a mouse is moved or a key is pressed and then it will run the processing code. If the 
processing ends with a recursive call, then the AwaitEvent will be called again to wait for 
the next event, but in other case, the next occurrences will be ignored. 

When the AwaitEvent returns, we want to know which of the events occurred first 
and what argument it carried. Also, the values carried by the events can be different for all 
the provided events. In this situation, the method cannot simply return the carried 
argument, so let's look what is the type of the returned value. The F# library contains a 
generic discriminated union type Choice, which can represent one of several choices. The 
type is overloaded by the number of type parameters. In the example above, we have two 
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different choices, so the type of the args value is Choice<MouseEventArgs, 
KeyEventArgs>. 

When the MouseMove event occurs first, the returned value will use the discriminated 
union constructor Choice1Of2 carrying information about the mouse event, otherwise the 
constructor Choice2Of2 will be used with a value of type KeyEventArgs. When waiting 
for multiple events, the names of the cases would be Choice1Of3 and so on. 

The code that chooses how to react to the event when waiting for multiple events can be 
nicely written using pattern matching. The first branch (#2) is called when mouse moves 
while still holding the button pressed. In that case we update the window and continue 
drawing. If the mouse moves and the button is no longer pressed, the next case (#3) will be 
called. This means that the user finished drawing, so we can return the end location of the 
rectangle.  

Finally, the last two cases specify reaction to the KeyDown event. We're again using the 
when clause to determine whether the pressed key is the Esc key. If that's the case, we 
cancel the drawing process and return None as the result, otherwise we ignore the keyboard 
event and continue waiting for another event. Note that we changed the return type of the 
function. Previously it was Async<int * int>, which is an asynchronous workflow 
returning a location, but now that we return either Some or None, the return type is 
Async<option<int * int>>. This means that we'll also have to do a minor 
adjustment to the waitingLoop function, so that it sends the AddRectangle message 
only when a rectangle is actually drawn. This is quite a simple change, so you can find it in 
the full source code on the book web site.  

We started this section by discussing how to use mailbox processor to store the state of 
the application in a scenario where we need to handle various events. In all the examples, 
we limited ourselves only to events coming from the user interface. However, an important 
feature of mailbox processors is that they can be also used in scenarios involving 
concurrency. We'll briefly take a look at this topic in the next section. 

16.4 Message passing concurrency 
When talking about the development of concurrent programs in chapter 14, we focused 
mostly on techniques where we avoid using mutable state. Without mutable state, we can 
then run several parts of a computation in parallel, because they cannot interfere with each 
other. This works very well for many data processing problems that can be implemented in 
functional way, but there are also problems where the processes need to exchange 
information more frequently. 

The most widely known solution is using the shared memory and protecting the access 
to the shared state using locks. The problem with this technique is that using locks correctly 
is quite difficult. You have to make sure that all the shared memory is properly locked (to 
avoid race conditions when multiple threads write to the same location). Another difficulty is 
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that when acquiring locks not carefully we can cause a deadlock, which means that two 
threads become blocked, waiting for the other to complete, and can never resume.  

The MailboxProcessor<'Msg> type in F# can be used for implementing 
concurrent programs using so called message passing concurrency. This approach isn't as 
widely known, but has been successfully used in a functional language called Erlang 
[Armstrong, 1996]. We've seen this approach already when storing the state of our rectangle 
drawing application, but we haven't in detail discussed how the technique can be used in a 
truly concurrent scenario.  

In this section, we'll look at using mailbox processor from multiple threads to 
demonstrate this approach. We'll use an example with a single mailbox processor and 
multiple asynchronous workflows (running on multiple threads) that access it. More 
sophisticated programs that use message passing concurrency often use multiple mailbox 
processors that communicate with each other. 

16.4.1 Creating state machine processor 
The mailbox processor we created earlier for storing the state of the rectangle drawing 
application was quite simple. It was able to process 4 different messages and it maintained 
some local state, but regardless of the state, it was always able to process any message that 
it received immediately. However, this may not always be the case. For example, if a single 
mailbox processor sends a message to two other processors, it may need to collect the 
replies from these processors before reacting to any other message.  

As we'll see, we can write mailbox processors that represent a state machine in a very 
similar way to what we used when implementing the state machine for handling events when 
drawing rectangles using asynchronous workflows. Let's first look at the messages that the 
processor will handle and then we'll talk about its possible states: 

 type Message =  
   | ModifyState of int 
   | Block 
   | Resume 

The mailbox processor will store an integer value and the ModifyState message can 
be used for updating it. For simplicity, we don't have any message for reading it and the 
processor will just print the number to the console every time it is updated. The two other 
messages are quite interesting. If the process is in the initial state and it receives Block, it 
stops processing all the ModifyState messages and it waits for Resume. As we'll see 
shortly, messages that are sent to the processor when it is in the blocked state aren't lost. 
The processor internally has a queue where the messages are stored, so once we resume it 
again, it will process all the messages it received while it was blocked. 

Let's now look at the listing 16.19, which shows the implementation of the mailbox 
processor. Similarly to the earlier example, we're encoding the state machine using two 
recursive functions (using asynchronous workflows) that call each other. 

Listing 16.19 Mailbox processor using state machine (F#) 
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let mbox = MailboxProcessor.Start(fun mbox -> 
   let rec processing(n) = async {                          #1 
      printfn "Processing: %d" n 
      let! msg = mbox.Receive()                             #2 
      match msg with 
      | ModifyState(by) -> return! processing(n + by) 
      | Resume -> return! processing(n) 
      | Block -> return! blocked(n) } 
   and blocked(n) =                                         #3 
      printfn "Blocking" 
      mbox.Scan(fun msg ->                                  #4 
        match msg with 
        | Resume -> Some(async {                            #5 
            printfn "Resuming" 
            return! processing(n) }) 
        | _ -> None)                                        #6 
   processing(0) ) 
#1 Represents the active state 
#2 Process any message 
#3 Represents the blocked state 
#4 Only process the 'Resume' message 
#5 Return workflow to continue with 
#6 Other messages cannot be processed now 
The implementation of the mailbox processor consists of two functions and both of them 

return an asynchronous workflow. The processor is started by calling the processing 
function (#1) with zero as the initial state. In this state, we can handle all the messages, so 
we can simply use the Receive primitive (#2) that asynchronously returns the next 
message. If the message is ModifyState, then we update the number and continue in 
the processing state. The Resume message doesn't make much sense in this state 
(because we haven't received the Block message yet), so we can ignore it. Finally, when 
we receive the Block message, we need to do something to stop processing all messages 
other than Resume, so we call the blocked function (#3) that represents the second 
state. 

When the processing is blocked, we have to use the Scan primitive (#4), because it 
allows us to specify what messages we can handle and what messages should remain in the 
queue for later processing. The Scan member takes a function as an argument and the 
function specifies what to do when a message is received. In our example, when the 
message is Resume, we return an asynchronous workflow (#5) that the Scan member will 
run. The workflow prints a message to the console and then continues by executing the 
processing function and switching back to the active state. When the processor receives 
any other message in the blocked state, the Scan primitive will run the provided lambda 
function and will get None as the result. This means that it cannot process the message, so 
it adds the message to the queue and waits for another one. 

Note that the mailbox processor as we implemented it doesn't work well in the case 
when we have multiple threads sending the Block and Resume messages, because if it 
receives a Block message when it's already blocked, it doesn't handle it and instead 
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continues processing once it receives the first Resume message. To solve this more 
properly, we'd have to handle Block messages in the blocked state and increment some 
number representing the count of Block messages. The Resume message would 
decrement it and we'd resume the processing only after the number reached zero again. 
However, this won't be a problem in the example we'll look at now, because we'll create only 
a single thread that will repeatedly block and resume the processor. 

16.4.2 Accessing mailbox concurrently 
The mailbox processor handles only a single message at time, but it can be safely accessed 
from multiple threads. All the methods for posting message to the processor (such as Post 
and PostAndReply) are thread-safe. Let's now look at an example showing how we can 
use the mailbox processor we just implemented from three different threads. 

In the listing 16.20 we create two threads that repeatedly perform some computation 
and once they finish computing, they send a state update to the mailbox processor (in our 
simplified example the threads will just sleep for some time and then generate a random 
number). Next, we create a single thread that repeatedly sends the Block and Resume 
messages to the processor. 

Listing 16.20 Sending messages from multiple threads (F#) 
let modifyThread() =                                             #A 
   let rnd = new Random()   
   while true do 
      Thread.Sleep(500) 
      mbox.Post(ModifyState(rnd.Next(11) - 5))                   #1 
 
let blockThread() =  
   while true do 
      Thread.Sleep(2000) 
      mbox.Post(Block)                                           #2 
      Thread.Sleep(1000)                                         #2 
      mbox.Post(Resume)                                          #2 
 
for proc in [ blockThread; modifyThread; modifyThread ] do 
   Async.Spawn(async { proc() }) 
#A Thread performing calculations 
#1 Send an update to the mailbox 
#2 Block the processing for one second 
The code for the threads is quite simple. Both of them contain an infinite loop that would 

perform some computation in a real application and both of them occasionally send 
messages to the mailbox to synchronize. The first function uses only the ModifyState 
message and the second one first sends the message to block the thread, then waits for 
some time and then unblocks it (#2). Finally, we're using the Async.Spawn method to 
start executing the functions in a thread pool threads. We create a list of function values 
representing the processes to run and then start each of them in a for loop. Note that the 
list contains two times the modifyThread function, so we'll have two threads sending 
updates to the state. 
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Let's now briefly analyze the behavior of the application when we execute it (either as a 
standalone application or in F# interactive). It will start by processing the incoming 
ModifyState messages for about 2 seconds. Then the blocking thread sends the Block 
message, so nothing will happen for the next 1 second. After that, the mailbox processor will 
be resumed and it'll process all the queued ModifyState messages, so it'll almost 
immediately update the state several times. Then it'll continue running, processing messages 
as they arrive for the next 2 seconds until the next Block message is received.  

Even though this example doesn't implement any particularly useful behavior, it should 
give you a pretty good idea how to use mailbox processors in a real-world application that 
needs to synchronize the state using message passing concurrency. 

16.5 Summary 
In this chapter, we covered various aspects of development of reactive applications in the 
functional style. We started by talking about first-class events in F#, which is the ability to 
use event as a standard value that can be passed as an argument or returned from a 
function. This allows us to use higher order functions (such as Event.filter or 
Event.map) when writing code that processes events, which in turn makes the code more 
declarative in a same way as processing of lists using higher order functions or LINQ queries. 
The relation with LINQ is quite interesting and we briefly mentioned that in principle, we 
could use LINQ queries in C# for event processing as well.  

However, for more dynamic types of behavior, the declarative programming using higher 
order functions doesn't work that well, so we looked at another technique. We've seen that 
we can use workflows introduced chapter 13 for asynchronously waiting until an event 
occurs, which allows us to write complex event handling without the inversion of control, 
which means that the control flow is managed by our application. This also makes it much 
easier to encode control structures where the process can transition between several states, 
because the code directly corresponds to a state machine diagram that you may draw. 

Finally, we faced the problem how to store state in an application that is encoded 
asynchronous workflows that handle GUI events. We've seen that this can be done by using 
message passing techniques and we introduced the MailboxProcessor<'T> type that 
implements this programming model in F#. This type can be also used in concurrent 
scenarios, so we wrapped up with an example showing how to use it from multi-threaded 
application. 

Unfortunately, most of the examples we've seen in this chapter rely on asynchronous 
workflows, so they can't be directly implemented in C#. In the chapter 13 I mentioned 
various projects that attempt to bring similar concepts to C# such as the Concurrency and 
Coordination Runtime [Richter, 2006], but none of them provides the same clarity as F#. 
The message passing concurrency techniques from the later of the chapter exist in many 
different forms. The implementation that's available in F# is very close to the Erlang style 
message passing (see for example Concurrent Programming in Erlang [Armstrong, 1996]), 
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but there are other alternatives. One of them is also available as a library for C# 2.0, so you 
can also take a look at the Joins Concurrency Library [Russo, 2007]. 
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