

Early Praise for Functional Programming Patterns

This book is an absolute gem and should be required reading for anybody looking
to transition from OO to FP. It is an extremely well-built safety rope for those
crossing the bridge between two very different worlds. Consider this mandatory
reading.

➤ Colin Yates, technical team leader at QFI Consulting, LLP

This book sticks to the meat and potatoes of what functional programming can do
for the object-oriented JVM programmer. The functional patterns are sectioned in
the back of the book separate from the functional replacements of the object-oriented
patterns, making the book handy reference material. As a Scala programmer, I even
picked up some new tricks along the read.

➤ Justin James, developer with Full Stack Apps

This book is good for those who have dabbled a bit in Clojure or Scala but are not
really comfortable with it; the ideal audience is seasoned OO programmers looking
to adopt a functional style, as it gives those programmers a guide for transitioning
away from the patterns they are comfortable with.

➤ Rod Hilton, Java developer and PhD candidate at the University of Colorado

Functional Programming Patterns
in Scala and Clojure
Write Lean Programs for the JVM

Michael Bevilacqua-Linn

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Fahmida Rashid (editor)
Potomac Indexing, LLC (indexer)
Molly McBeath (copyeditor)
David J Kelly (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)
Ellie Callahan (support)

Copyright © 2013 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-937785-47-5
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—October 2013

http://pragprog.com

Contents

Acknowledgments vii

Preface ix

1. Patterns and Functional Programming 1
1.1 What Is Functional Programming? 3
1.2 Pattern Glossary 4

2. TinyWeb: Patterns Working Together 9
Introducing TinyWeb 92.1

2.2 TinyWeb in Java 9
2.3 TinyWeb in Scala 20
2.4 TinyWeb in Clojure 28

3. Replacing Object-Oriented Patterns 39
Introduction 393.1

Pattern 1. Replacing Functional Interface 40
Pattern 2. Replacing State-Carrying Functional Interface 47
Pattern 3. Replacing Command 54
Pattern 4. Replacing Builder for Immutable Object 62
Pattern 5. Replacing Iterator 72
Pattern 6. Replacing Template Method 83
Pattern 7. Replacing Strategy 92
Pattern 8. Replacing Null Object 99
Pattern 9. Replacing Decorator 109
Pattern 10. Replacing Visitor 113
Pattern 11. Replacing Dependency Injection 128

4. Functional Patterns 137
Introduction 1374.1

Pattern 12. Tail Recursion 138
Pattern 13. Mutual Recursion 146

Pattern 14. Filter-Map-Reduce 155
Pattern 15. Chain of Operations 159
Pattern 16. Function Builder 167
Pattern 17. Memoization 182
Pattern 18. Lazy Sequence 186
Pattern 19. Focused Mutability 196
Pattern 20. Customized Control Flow 206
Pattern 21. Domain-Specific Language 218

5. The End 229

Bibliography 231

Index 233

Contents • vi

Acknowledgments
I’d like to thank my parents, without whom I would not exist.

Thanks also go to my wonderful girlfriend, who put up with many a night
and weekend listening to me mutter about code samples, inconsistent tenses,
and run-on sentences.

This book would have suffered greatly without a great group of technical
reviewers. My thanks to Rod Hilton, Michajlo “Mishu” Matijkiw, Venkat Sub-
ramaniam, Justin James, Dave Cleaver, Ted Neward, Neal Ford, Richard
Minerich, Dustin Campbell, Dave Copeland, Josh Carter, Fred Daoud, and
Chris Smith.

Finally, I’d like to thank Dave Thomas and Andy Hunt. Their book, The
Pragmatic Programmer, is one of the first books I read when I started my
career. It made a tremendous impact, and I’ve still got my original dog-eared,
fingerprint-covered, bruised and battered copy. In the Pragmatic Bookshelf,
they’ve created a publisher that’s truly dedicated to producing high-quality
technical books and supporting the authors who write them.

report erratum • discuss

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Preface
This book is about patterns and functional programming in Scala and Clojure.
It shows how to replace, or greatly simplify, many of the common patterns
we use in object-oriented programming, and it introduces some patterns
commonly used in the functional world.

Used together, these patterns let programmers solve problems faster and in
a more concise, declarative style than with object-oriented programming alone.
If you’re using Java and want to see how functional programming can help
you work more efficiently, or if you’ve started using Scala and Clojure and
can’t quite wrap your head around functional problem-solving, this is the
book for you.

Before we dig in, I’d like to start off with a story. This story is true, though
some names have been changed to protect the not-so-innocent.

A Tale of Functional Programming
by: Michael Bevilacqua-Linn, software firefighter

The site isn’t down, but an awful lot of alarms are going off. We trace the problems to changes
someone made to a third-party API we use. The changes are causing major data problems on
our side; namely, we don’t know what the changes are and we can’t find anyone who can tell
us. It also turns out the system that talks to the API uses legacy code, and the only guy who
knows how to work on it happens to be away on vacation. This a big system: 500,000-lines-of-
Java-and-OSGI big.

Support calls are flooding in, lots of them. Expensive support calls from frustrated customers.
We need to fix the problem quickly. I start up a Clojure REPL and use it to poke around the
problem API.

My boss pokes his head into my office. “How’s it going?” he asks. “Working on it,” I say. Ten
minutes later, my grandboss pokes his head into my office. “How’s it going?” he asks. “Working
on it,” I say. Another ten minutes pass by when my great-grandboss pokes his head into my
office. “How’s it going?” he asks. “Working on it,” I say. I get a half hour of silence before the CTO
pokes his head into my office. “Working on it,” I say before he opens his mouth.

An hour passes, and I figure out what’s changed. I whip up a way to keep the data clean until
the legacy developer gets back and can put together a proper fix. I hand my little program off

report erratum • discuss

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

to the operations team, which gets it up and running in a JVM, somewhere safe. The support
calls stop coming in, and everyone relaxes a bit.

A week or so later at an all-hands meeting, the great-grandboss thanks me for the Java program
I wrote that saved the day. I smile and say, “That wasn’t Java.”

The REPL, Clojure’s interactive programming environment, helped a lot in
this story. However, lots of languages that aren’t particularly functional have
similar interactive programming environments, so that’s not all there is to it.

Two of the patterns that we’ll see in this book, Pattern 21, Domain-Specific
Language, on page 218, and Pattern 15, Chain of Operations, on page 159,
contributed greatly to this story’s happy ending.

Earlier on, I had written a small instance of domain-specific language for
working with these particular APIs that helped me explore them very quickly
even though they’re very large and it was difficult to figure out where the
problem might lie. In addition, the powerful data transformation facilities that
functional programming relies on, such as the examples we’ll see in Pattern
15, Chain of Operations, on page 159, helped me quickly write code to clean
up the mess.

How This Book Is Organized

We’ll start with an introduction to patterns and how they relate to functional
programming. Then we’ll take a look at an extended example, a small web
framework called TinyWeb. We’ll first show TinyWeb written using classic
object-oriented patterns in Java. We’ll then rewrite it, piece by piece, to a
hybrid style that is object oriented and functional, using Scala. We’ll then
write in a functional style using Clojure.

The TinyWeb extended example serves a few purposes. It will let us see how
several of the patterns we cover in this book fit together in a comprehensive
manner. We also use it to introduce the basics of Scala and Clojure. Finally,
since we’ll transform TinyWeb from Java to Scala and Clojure bit by bit, it
gives us a chance to explore how to easily integrate Java code with Scala and
Clojure.

The remainder of the book is organized into two sections. The first, Chapter
3, Replacing Object-Oriented Patterns, on page 39, describes functional
replacements for object-oriented patterns. These take weighty object-oriented
patterns and replace them with concise functional solutions.

Peter Norvig, author of the classic Lisp text Paradigms of Artificial Intelligence
Programming: Case Studies in Common Lisp [Nor92], current director of
research at Google, and all-around very smart guy, pointed out in Design

Preface • x

report erratum • discuss

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Patterns in Dynamic Languages that expressive languages like Lisp could turn
classic object-oriented patterns invisible.1

Unfortunately, not many people in the mainstream software development
world seem to have read Norvig, but when we can replace a complicated pat-
tern with something simpler, it makes sense that we should. It makes our
code more concise, easier to understand, and easier to maintain.

The second section, Chapter 4, Functional Patterns, on page 137, describes
patterns that are native to the functional world. These patterns run the gamut
from tiny—patterns consisting of a line or two of code—to very large—ones
that deal with entire programs.

Sometimes these patterns have first-class language support, which means
that someone else has done the hard work of implementing them for us. Even
when they don’t, we can often use an extremely powerful pattern, Pattern 21,
Domain-Specific Language, on page 218, to add it. This means that functional
patterns are more lightweight than object-oriented patterns. You still need
to understand the pattern before you can use it, but the implementation
becomes as simple as a few lines of code.

Pattern Template

The patterns are laid out using the following format, with some exceptions.
For example, a pattern that doesn’t have any other common name would not
have the Also Known As subsection, and the Functional Replacement subsec-
tions only apply to the patterns in Chapter 3, Replacing Object-Oriented Pat-
terns, on page 39.

Intent

The Intent subsection provides a quick explanation of the intent of this pattern
and the problem it solves.

Overview

Here is where you’ll find a deeper motivation for the pattern and an explanation
of how it works.

Also Known As

This subsection lists other common names for the pattern.

1. http://norvig.com/design-patterns/

report erratum • discuss

Pattern Template • xi

http://norvig.com/design-patterns/
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Functional Replacement

Here you’ll find how to replace this pattern with functional programming
techniques—sometimes object-oriented patterns can be replaced with basic
functional language features and sometimes with simpler patterns.

Example Code

This subsection contains samples of the pattern—for object-oriented patterns,
we first show a sketch of the object-oriented solution using either class dia-
grams or a sketch of the Java code before showing how to replace them in
Clojure and Scala. Functional patterns will be shown in Clojure and Scala
only.

Discussion

This area provides a summary and discussion of interesting points about the
pattern.

For Further Reading

Look here for a list of references for further information on the pattern.

Related Patterns

This provides a list of other patterns in this book that are related to the current
one.

Why Scala and Clojure

Many of the patterns in this book can be applied using other languages with
functional features, but we will focus on Clojure and Scala for our examples.
We focus on these two languages for quite a few reasons, but first and foremost
because they’re both practical languages suitable for coding in production
environments.

Both Scala and Clojure run on a Java virtual machine (JVM), so they interop-
erate well with existing Java libraries and have no issues being dropped into
the JVM infrastructure. This makes them ideal to run alongside existing Java
codebases. Finally, while both Scala and Clojure have functional features,
they’re quite different from each other. Learning to use both of them exposes
us to a very broad range of functional programming paradigms.

Scala is a hybrid object-oriented/functional language. It’s statically typed
and combines a very sophisticated type system with local type inference,
which allows us to often omit explicit type annotations in our code.

Preface • xii

report erratum • discuss

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Clojure is a modern take on Lisp. It has Lisp’s powerful macro system and
dynamic typing, but Clojure has added some new features not seen in older
Lisps. Most important is its unique way of dealing with state change by using
reference types, a software transactional memory system, and efficient
immutable data structures.

While Clojure is not an object-oriented language, it does give us some good
features that are common in object-oriented languages, just not in the way
we may be familiar with. For instance, we can still get polymorphism through
Clojure’s multimethods and protocols, and we can get hierarchies through
Clojure’s ad hoc hierarchies.

As we introduce the patterns, we’ll explore both of these languages and their
features, so this book serves as a good introduction to both Scala and Clojure.
For further detail on either language, my favorite books are Programming
Clojure [Hal09] and The Joy of Clojure [FH11] for Clojure, and Programming
Scala: Tackle Multi-Core Complexity on the Java Virtual Machine [Sub09] and
Scala In Depth [Sue12] for Scala.

How to Read This Book

The best place to start is with Chapter 1, Patterns and Functional Programming,
on page 1, which goes over the basics of functional programming and its
relation to patterns. Next, Chapter 2, TinyWeb: Patterns Working Together,
on page 9, introduces basic concepts in Scala and Clojure and shows how
several of the patterns in this book fit together.

From there you can jump around, pattern by pattern, as needed. The patterns
covered earlier in Chapter 3, Replacing Object-Oriented Patterns, on page 39,
and Chapter 4, Functional Patterns, on page 137, tend to be more basic than
later ones, so they’re worth reading first if you have no previous functional
experience.

A quick summary of each pattern can be found in Section 1.2, Pattern Glos-
sary, on page 4, for easy browsing. Once you’re through the introduction,
you can use it to look up a pattern that solves the particular problem you
need to solve.

However, if you are completely new to functional programming, you should
start with Pattern 1, Replacing Functional Interface, on page 40, Pattern 2,
Replacing State-Carrying Functional Interface, on page 47, and Pattern 12,
Tail Recursion, on page 138.

report erratum • discuss

How to Read This Book • xiii

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Online Resources

As you work through the book, you can download all the included code files
from http://pragprog.com/titles/mbfpp/source_code. On the book’s home page at
http://pragprog.com/book/mbfpp, you can find links to the book forum and to report
errata. Also, for ebook buyers, clicking on the box above the code extracts
downloads the code for that extract for you.

Preface • xiv

report erratum • discuss

http://pragprog.com/titles/mbfpp/source_code
http://pragprog.com/book/mbfpp
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

CHAPTER 1

Patterns and Functional Programming
Patterns and functional programming go together in two ways. First, many
object-oriented design patterns are simpler to implement with functional
programming. This is true for several reasons. Functional languages give us
a concise way of passing around a bit of computation without having to create
a new class. Also, using expressions rather than statements lets us eliminate
extraneous variables, and the declarative nature of many functional solutions
lets us do in a single line of code what might take five lines in the imperative
style. Some object-oriented patterns can even be replaced with a straightfor-
ward application of functional language features.

Second, the functional world also has its own set of useful patterns. These
patterns focus on writing code that avoids mutability and favors a declarative
style, which helps us write simpler, more maintainable code. The two main
sections of this book cover these two sets of patterns.

You may be surprised to see the first set. Don’t the patterns we know and
love extend across languages? Aren’t they supposed to provide common
solutions to common problems regardless of what language you are using?
The answer to both questions is yes, so long as the language you are using
looks something like Java or its ancestor, C++.

With the emergence of more expressive language features, many of these
patterns fade away. Classic Java itself has a great example of a language
feature replacing a pattern: foreach. The introduction of foreach loops to Java 1.5
reduced the usefulness of the explicit Iterator pattern described in Design
Patterns: Elements of Reusable Object-Oriented Software [GHJV95], even though
foreach loops use it behind the scenes.

That’s not to say that foreach loops are exactly equivalent to the Iterator. A
foreach won’t replace an Iterator in all cases. The problems they do address

report erratum • discuss

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

are solved in a simpler way. Developers prefer the built-in foreach loops for the
common-sense reasons that they are less work to implement and are less
error prone.

Many functional language features and techniques have a similar effect on
coding projects. While they may not be the exact equivalent to a pattern, they
often provide developers with a built-in alternative that solves the same
problem. Similar to the foreach-Iterator example, other language features give
programmers techniques that are less work and often produce code that is
more concise and easier to understand than the original.

Adding functional features and techniques adds more tools to our program-
ming toolbox, just as Java 1.5 did with its foreach loop but on a grander scale.
These tools often complement the tools we already know and love from the
object-oriented world.

The second set of patterns we cover in this book, native functional patterns,
describes the patterns that evolved out of the functional style. These functional
patterns differ from the object-oriented patterns you may be familiar with in
a few key ways. The first, and most obvious, is that functions are the primary
unit of composition, just as objects are in the object-oriented world.

Another key difference lies in the patterns’ granularity. The patterns from
Design Patterns: Elements of Reusable Object-Oriented Software [GHJV95] (one
of the original drivers of the software patterns movement) are generally tem-
plates that define a few classes and specify how they fit together. Most of
them are medium size. They often don’t concern themselves either with very
small issues that encompass just a few lines of code or with very large issues
that encompass entire programs.

The functional patterns in this book cover a much broader range, as some of
them can be implemented in a line or two of code. Others tackle very big
problems, such as creating new, miniature programming languages.

The range is in line with the book that started the patterns movement in
general, A Pattern Language [AIS77]. This book on architectural patterns
starts off with the very big “1—Independent Regions” pattern, which outlines
why the planet should be organized into political entities of about 10,000
people, and goes all the way down to “248—Soft Tile and Brick,” which explains
how to make your own bricks.

Before we dig into the various patterns in this book, let’s spend some time
getting familiar with functional programming itself.

Chapter 1. Patterns and Functional Programming • 2

report erratum • discuss

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

1.1 What Is Functional Programming?

At its core, functional programming is about immutability and about compos-
ing functions rather than objects. Many related characteristics fall out of this
style.

Functional programs do the following:

Have first-class functions: First-class functions are functions that can be
passed around, dynamically created, stored in data structures, and
treated like any other first-class object in the language.

Favor pure functions: Pure functions are functions that have no side effects.
A side effect is an action that the function does that modifies state outside
the function.

Compose functions: Functional programming favors building programs from
the bottom up by composing functions together.

Use expressions: Functional programming favors expressions over statements.
Expressions yield values. Statements do not and exist only to control the
flow of a program.

Use Immutability: Since functional programming favors pure functions, which
can’t mutate data, it also makes heavy use of immutable data. Instead of
modifying an existing data structure, a new one is efficiently created.

Transform, rather than mutate, data: Functional programming uses functions
to transform immutable data. One data structure is put into the function,
and a new immutable data structure comes out. This is in explicit contrast
with the popular object-oriented model, which views objects as little
packets of mutable state and behavior.

A focus on immutable data leads to programs that are written in a more
declarative style, since we can’t modify a data structure piece by piece. Here’s
an iterative way to filter the odd numbers out of a list, written in Java. Notice
how it relies on mutation to add odd numbers to filteredList one at a time.

JavaExamples/src/main/java/com/mblinn/mbfpp/intro/FilterOdds.java
public List<Integer> filterOdds(List<Integer> list) {

List<Integer> filteredList = new ArrayList<Integer>();
for (Integer current : list) {

if (isOdd(current)) {
filteredList.add(current);

}
}
return filteredList;

}

report erratum • discuss

What Is Functional Programming? • 3

http://media.pragprog.com/titles/mbfpp/code/JavaExamples/src/main/java/com/mblinn/mbfpp/intro/FilterOdds.java
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

private boolean isOdd(Integer integer) {
return 0 != integer % 2;

}

And here’s a functional version, written in Clojure.

(filter odd? list-of-ints)

The functional version is obviously much shorter than the object-oriented
version. As mentioned previously, this is because functional programming is
declarative. That is, it specifies what should be done rather than how to do
it. For many problems we encounter in programming, this style lets us work
at a higher level of abstraction.

However, other problems are hard, if not impossible, to solve using strict
functional programming techniques. A compiler is a pure function. If you put
a program in, you expect to get the same machine code out every time. If you
don’t, it’s probably a compiler bug. Google’s search engine, however, is not a
pure function. If we got the same results from a Google search query every
time, we’d be stuck with a late 1990s view of the Web, which would be quite
tragic.

For this reason, functional programming languages tend to lie on a spectrum
of strictness. Some are more functionally pure than others. Of the two lan-
guages we’re using in this book, Clojure is purer on the functional spectrum;
at least, it is if we avoid its Java interoperability features.

For example, in idiomatic Clojure, we don’t mutate data as we do in Java.
Instead, we rely on an efficient set of immutable data structures, a set of ref-
erence types, and a software transactional memory system. This allows us to
get the benefits of mutability without the dangers. We’ll introduce these
techniques in Section 2.4, TinyWeb in Clojure, on page 28.

Scala has more support for mutable data, but immutable data is preferred.
For instance, Scala has both mutable and immutable versions of its collections
library, but the immutable data structures are imported and used by default.

1.2 Pattern Glossary

Here is where we introduce all of the patterns we cover in the book and give
a brief overview of each. This is a great list to skim if you already have a
specific problem you need to solve in a functional way.

Chapter 1. Patterns and Functional Programming • 4

report erratum • discuss

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Replacing Object-Oriented Patterns

This section shows how to replace common object-oriented patterns with
functional language features. This generally cuts down on the amount of code
we have to write while giving us a more concise code to maintain.

Pattern 1, Replacing Functional Interface, on page 40

Here we replace common types of functional interfaces, such as Runnable or
Comparator, with native functional features.

This section introduces two basic types of functional features. The first type,
higher-order functions, allows us to pass functions around as first-class data.
The second, anonymous functions, allows us to write quick one-off functions
without giving them a name. These features combine to let us replace most
instances of Functional Interface very concisely.

Pattern 2, Replacing State-Carrying Functional Interface, on page 47

With this pattern we replace instances of Functional Interface that need to
carry around some bit of state—we introduce another new functional feature,
closures, which lets us wrap up a function and some state to pass around.

Pattern 3, Replacing Command, on page 54

Replacing Command encapsulates an action in an object—here we’ll take a
look at how we can replace the object-oriented version using the techniques
introduced in the previous two patterns.

Pattern 4, Replacing Builder for Immutable Object, on page 62

Here we carry data using the classic Java convention, a class full of getters
and setters—this approach is intimately tied up with mutability. Here we’ll
show how to get the convenience of a Java Bean along with the benefits of
immutability.

Pattern 5, Replacing Iterator, on page 72

Replacing Iterator gives us a way to access items in a collection sequential-
ly—here we’ll see how we can solve many of the problems we’d solve with
Iterator using higher-order functions and sequence comprehensions, which
give us solutions that are more declarative.

Pattern 6, Replacing Template Method, on page 83

This pattern defines the outline of an algorithm in a superclass, leaving
subclasses to implement its details. Here we’ll see how to use higher-order
functions and function composition to replace this inheritance-based pattern.

report erratum • discuss

Pattern Glossary • 5

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Pattern 7, Replacing Strategy, on page 92

In this pattern we define a set of algorithms that all implement a common
interface. This allows a programmer to easily swap out one implementation
of an algorithm for another.

Pattern 8, Replacing Null Object, on page 99

In this pattern we discuss how to replace Null Object and talk about other
types of null handling—in Scala, we take advantage of the type system using
Option. In Clojure, we rely on nil and some language support to make it more
convenient to deal with.

Pattern 9, Replacing Decorator, on page 109

Replacing Decorator adds new behavior to an object without changing the
original class. Here we’ll see how to achieve the same effect with function
composition.

Pattern 10, Replacing Visitor, on page 113

Replacing Visitor makes it easy to add operations to a data type but difficult
to add new implementations of the type. Here we show solutions in Scala and
Clojure that make it possible to do both.

Pattern 11, Replacing Dependency Injection, on page 128

This pattern injects an object’s dependencies into it, rather than instantiating
them inline—this allows us to swap out their implementations. We’ll explore
Scala’s Cake pattern, which gives us a DI-like pattern.

Introducing Functional Patterns

Pattern 12, Tail Recursion, on page 138

Tail Recursion is functionally equivalent to iteration and provides a way to
write a recursive algorithm without requiring a stack frame for each recursive
call. While we’ll prefer more declarative solutions throughout the book,
sometimes the most straightforward way to solve a problem is more iterative.
Here we’ll show how to use Tail Recursion for those situations.

Pattern 13, Mutual Recursion, on page 146

Mutual Recursion is a pattern where recursive functions call one another. As
with Tail Recursion, we need a way to do this without consuming stack frames
for it to be practical. Here we’ll show how to use a feature called trampolining
to do just that.

Chapter 1. Patterns and Functional Programming • 6

report erratum • discuss

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Pattern 14, Filter-Map-Reduce, on page 155

Filter, map, and reduce are three of the most commonly used higher-order
functions. Used together, they’re a very powerful tool for data manipulation
and are the inspiration for the popular MapReduce data-processing paradigm.
In this pattern, we’ll see how they can be used on a smaller scale.

Pattern 15, Chain of Operations, on page 159

Functional programming eschews mutability; so instead of mutating a data
structure, we take one immutable data structure, operate on it, and produce
a new one. Chain of Operations examines the differing ways to do so in Scala
and Clojure.

Pattern 16, Function Builder, on page 167

Higher-order functions can create other functions using the Function Builder
pattern. Here we’ll show some common instances of the pattern that are built
into many functional languages, and we’ll explore a few custom ones.

Pattern 17, Memoization, on page 182

This pattern caches the results of a pure function invocation to avoid having
to do an expensive computation more than once.

Pattern 18, Lazy Sequence, on page 186

Lazy Sequence is a pattern where a sequence is realized bit by bit only as it’s
needed. This allows us to create infinitely long sequences and to easily work
with streams of data.

Pattern 19, Focused Mutability, on page 196

Focused Mutability makes a small critical section of code use mutable data
structures to optimize performance. The need for this is less common than
you might think. Clojure and Scala, backed by the JVM, provide very efficient
mechanisms for working with immutable data, so immutability is rarely the
bottleneck.

Pattern 20, Customized Control Flow, on page 206

With most languages, it’s impossible to add a new way of doing control flow
to the language without modifying the language itself. Functional languages,
however, usually provide a way to create custom control abstractions tailored
for specific uses.

report erratum • discuss

Pattern Glossary • 7

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Pattern 21, Domain-Specific Language, on page 218

The Domain-Specific Language pattern allows us to create a language that
is purpose-built for solving a specific problem. Using a well-designed imple-
mentation of domain-specific language is the ultimate solution for often-solved
problems, as it lets us program close to the problem domain. This reduces
the amount of code we have to write and the mental friction in transforming
our thoughts into code.

Chapter 1. Patterns and Functional Programming • 8

report erratum • discuss

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

CHAPTER 2

TinyWeb: Patterns Working Together
2.1 Introducing TinyWeb

We’ll start our journey with a look at an example of a program that makes
heavy use of classic object-oriented patterns, a small web framework called
TinyWeb. After introducing TinyWeb, we’ll see how to rewrite it in a hybrid
object-oriented and functional style using Scala. Finally, we’ll move on to a
more fully functional style in Clojure.

Let’s focus on a few goals for this example. The first is to see several patterns
working together in one codebase before we go into them in more detail.

The second is to introduce basic Scala and Clojure concepts for those unfa-
miliar with either, or both, of the languages. A full introduction to the lan-
guages is beyond the scope of this book, but this section gives you enough
of the basics to understand the majority of the remaining code.

Finally, we’ll work existing Java code into a Scala or Clojure codebase. We’ll
do this by taking the Java version of TinyWeb and transforming it into Scala
and Clojure piece by piece.

TinyWeb itself is a small model-view-controller (MVC) web framework. It’s far
from complete, but it should feel familiar to anyone who has worked with any
of the popular frameworks, such as Spring MVC. There’s one little twist to
TinyWeb: since this is a book on functional programming, we’re going to do
our best to work with immutable data, which can be quite challenging in
Java.

2.2 TinyWeb in Java

The Java version of TinyWeb is a basic MVC web framework written in a
classic object-oriented style. To handle requests we use a Controller implemented
using the Template method, which we cover in detail in Pattern 6, Replacing

report erratum • discuss

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Template Method, on page 83. Views are implemented using the Strategy
pattern, covered in Pattern 7, Replacing Strategy, on page 92.

Our framework is built around core pieces of data objects, HttpRequest and
HttpResponse. We want these to be immutable and easy to work with, so we are
going to build them using the Builder pattern discussed in Pattern 4,
Replacing Builder for Immutable Object, on page 62. Builder is a standard way
of getting immutable objects in Java.

Finally, we’ve got request filters that run before a request is handled and that
do some work on the request, such as modifying it. We will implement these
filters using the Filter class, a simple example of Pattern 1, Replacing Functional
Interface, on page 40. Our filters also show how to handle changing data using
immutable objects.

The whole system is summarized in the following figure.

Figure 1—A TinyWeb Overview. A graphical overview of TinyWeb

We’ll start off with a look at our core data types, HttpRequest and HttpResponse.

HttpRequest and HttpResponse

Let’s dig into the code, starting with HttpResponse. In this example we’ll only
need a body and a response code in our response, so those are the only
attributes we’ll add. The following code block shows how we can implement
the class. Here we use the fluent builder of the type made popular in the Java
classic, Effective Java [Blo08].

Chapter 2. TinyWeb: Patterns Working Together • 10

report erratum • discuss

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

JavaExamples/src/main/java/com/mblinn/oo/tinyweb/HttpResponse.java
package com.mblinn.oo.tinyweb;

public class HttpResponse {
private final String body;
private final Integer responseCode;

public String getBody() {
return body;

}

public Integer getResponseCode() {
return responseCode;

}

private HttpResponse(Builder builder) {
body = builder.body;
responseCode = builder.responseCode;

}

public static class Builder {
private String body;
private Integer responseCode;

public Builder body(String body) {
this.body = body;
return this;

}

public Builder responseCode(Integer responseCode) {
this.responseCode = responseCode;
return this;

}

public HttpResponse build() {
return new HttpResponse(this);

}

public static Builder newBuilder() {
return new Builder();

}
}

}

This approach encapsulates all mutability inside of a Builder object, which then
builds an immutable HttpResponse. While this gives us a clean way of working
with immutable data, it’s quite verbose. For example, we could create a simple
test request using this code:

report erratum • discuss

TinyWeb in Java • 11

http://media.pragprog.com/titles/mbfpp/code/JavaExamples/src/main/java/com/mblinn/oo/tinyweb/HttpResponse.java
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

HttpResponse testResponse = HttpResponse.Builder.newBuilder()
.responseCode(200)
.body("responseBody")
.build();

Without using Builder we’d need to pass all of our arguments in the construc-
tor. This is okay for our small example, but this practice grows unwieldy when
working with larger classes. Another option would be to use a Java Bean–style
class with getters and setters, but that would require mutability.

Let’s move on and take a quick look at HttpRequest. Since the class is similar
to HttpResponse (though it lets us set a request body, headers, and a path), we
won’t repeat the code in full. One feature is worth mentioning, though.

In order to support request filters that “modify” the incoming request, we
need to create a new request based off the existing one, since our request
objects aren’t mutable. We’ll use builderFrom() to do so. This method takes an
existing HttpRequest and uses it to set starting values for a new builder. The
code for builderFrom() follows:

JavaExamples/src/main/java/com/mblinn/oo/tinyweb/HttpRequest.java
public static Builder builderFrom(HttpRequest request) {

Builder builder = new Builder();
builder.path(request.getPath());
builder.body(request.getBody());

Map<String, String> headers = request.getHeaders();
for (String headerName : headers.keySet())

builder.addHeader(headerName,
headers.get(headerName));

return builder;
}

This may seem wasteful, but the JVM is a miracle of modern software engi-
neering. It’s able to garbage-collect short-lived objects very efficiently, so this
style of programming performs admirably well in most domains.

Views and Strategy

Let’s continue our tour of TinyWeb with a look at view handling. In a fully
featured framework, we’d include some ways to plug template engines into
our view, but for TinyWeb we’ll just assume we’re generating our response
bodies entirely in code using string manipulation.

First we’ll need a View interface, which has a single method, render(). render()
takes in a model in the form of a Map<String, List<String>>, which represents the

Chapter 2. TinyWeb: Patterns Working Together • 12

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/JavaExamples/src/main/java/com/mblinn/oo/tinyweb/HttpRequest.java
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Immutability: Not Just for Functional Programmers

The experienced object-oriented programmer might grumble about extra effort to get
immutable objects, especially if we’re doing it “just to be functional.” However,
immutable data doesn’t just fall out of functional programming; it’s a good practice
that can help us write cleaner code.

A large class of software bugs boil down to one section of code modifying data in
another section in an unexpected way. This type of bug becomes even more heinous
in the multicore world we all live in now. By making our data immutable, we can
avoid this class of bugs altogether.

Using immutable data is an oft-repeated bit of advice in the Java world; it’s mentioned
in Effective Java [Blo08]—Item 15: Minimize Mutability, among other places, but it is
rarely followed. This is largely due to the fact that Java wasn’t designed with
immutability in mind, so it takes a lot of programmer effort to get it.

Still, some popular, high-quality libraries, such as Joda-Time and Google’s collections
library, provide excellent support for programming with immutable data. The fact
that both of these popular libraries provide replacements for functionality available
in Java’s standard library speaks to the usefulness of immutable data.

Thankfully, both Scala and Clojure have much more first-class support for immutable
data, to the extent that it’s often harder to use mutable data than immutable.

model attributes and values. We’ll use a List<String> for our values so that a
single attribute can have multiple values. It returns a String representing the
rendered view.

The View interface is in the following code:

JavaExamples/src/main/java/com/mblinn/oo/tinyweb/View.java
package com.mblinn.oo.tinyweb;

import java.util.List;
import java.util.Map;

public interface View {
public String render(Map<String, List<String>> model);

}

Next we need two classes that are designed to work together using the Strat-
egy pattern: StrategyView and RenderingStrategy.

RenderingStrategy is responsible for doing the actual work of rendering a view
as implemented by the framework user. It’s an instance of a Strategy class from
the Strategy pattern, and its code follows:

report erratum • discuss

TinyWeb in Java • 13

http://media.pragprog.com/titles/mbfpp/code/JavaExamples/src/main/java/com/mblinn/oo/tinyweb/View.java
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

JavaExamples/src/main/java/com/mblinn/oo/tinyweb/RenderingStrategy.java
package com.mblinn.oo.tinyweb;

import java.util.List;
import java.util.Map;

public interface RenderingStrategy {

public String renderView(Map<String, List<String>> model);

}

Now let’s examine the class that delegates to RenderingStrategy, StrategyView. This
class is implemented by the framework and takes care of properly handing
exceptions thrown out of the RenderingStrategy. Its code follows:

JavaExamples/src/main/java/com/mblinn/oo/tinyweb/StrategyView.java
package com.mblinn.oo.tinyweb;

import java.util.List;
import java.util.Map;

public class StrategyView implements View {

private RenderingStrategy viewRenderer;

public StrategyView(RenderingStrategy viewRenderer) {
this.viewRenderer = viewRenderer;

}

@Override
public String render(Map<String, List<String>> model) {

try {
return viewRenderer.renderView(model);

} catch (Exception e) {
throw new RenderingException(e);

}
}

}

To implement a view, the framework user creates a new subclass of Render-
ingStrategy with the right view-rendering logic, and the framework injects it into
StrategyView.

In this simple example, StrategyView plays a minimal role. It simply swallows
exceptions and wraps them in RenderingException so that they can be handled
properly at a higher level. A more complete framework might use StrategyView
as an integration point for various rendering engines, among other things,
but we’ll keep it simple here.

Chapter 2. TinyWeb: Patterns Working Together • 14

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/JavaExamples/src/main/java/com/mblinn/oo/tinyweb/RenderingStrategy.java
http://media.pragprog.com/titles/mbfpp/code/JavaExamples/src/main/java/com/mblinn/oo/tinyweb/StrategyView.java
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Controllers and Template Method

Next up is our Controller. The Controller itself is a simple interface with a single
method, handleRequest(), which takes an HttpRequest and returns an HttpResponse.
The code for the interface follows:

JavaExamples/src/main/java/com/mblinn/oo/tinyweb/Controller.java
package com.mblinn.oo.tinyweb;

public interface Controller {
public HttpResponse handleRequest(HttpRequest httpRequest);

}

We’ll use the Template Method pattern so that users can implement their
own controllers. The central class for this implementation is TemplateController,
which has an abstract doRequest(), as shown in the following code:

JavaExamples/src/main/java/com/mblinn/oo/tinyweb/TemplateController.java
package com.mblinn.oo.tinyweb;

import java.util.List;
import java.util.Map;

public abstract class TemplateController implements Controller {
private View view;
public TemplateController(View view) {

this.view = view;
}

public HttpResponse handleRequest(HttpRequest request) {
Integer responseCode = 200;
String responseBody = "";

try {
Map<String, List<String>> model = doRequest(request);
responseBody = view.render(model);

} catch (ControllerException e) {
responseCode = e.getStatusCode();

} catch (RenderingException e) {
responseCode = 500;
responseBody = "Exception while rendering.";

} catch (Exception e) {
responseCode = 500;

}

return HttpResponse.Builder.newBuilder().body(responseBody)
.responseCode(responseCode).build();

}
protected abstract Map<String, List<String>> doRequest(HttpRequest request);

}

report erratum • discuss

TinyWeb in Java • 15

http://media.pragprog.com/titles/mbfpp/code/JavaExamples/src/main/java/com/mblinn/oo/tinyweb/Controller.java
http://media.pragprog.com/titles/mbfpp/code/JavaExamples/src/main/java/com/mblinn/oo/tinyweb/TemplateController.java
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

To implement a controller, a user of the framework extends TemplateController
and implements its doRequest() method.

Both the Template Method pattern we used for our controllers and the
Strategy pattern we used for our views support similar tasks. They let some
general code, perhaps in a library or framework, delegate out to another bit
of code intended to perform a specific task. The Template Method pattern
does it using inheritance, while the Strategy pattern does it using composition.

In the functional world, we’ll rely heavily on composition, which also happens
be good practice in the object-oriented world. However, it’ll be a composition
of functions rather than a composition of objects.

Filter and Functional Interface

Finally, let’s examine Filter. The Filter class is a Functional Interface that lets
us perform some action on HttpRequest before it’s processed. For instance, we
may want to log some information about the request or even add a header.
It has a single method, doFilter(), takes HttpRequest, and returns a filtered instance
of it.

If an individual Filter needs to do something that modifies a request, it simply
creates a new one based on the existing request and returns it. This lets us
work with an immutable HttpRequest but gives us the illusion that it can be
changed.

The code for Filter follows:

JavaExamples/src/main/java/com/mblinn/oo/tinyweb/Filter.java
package com.mblinn.oo.tinyweb;

public interface Filter {
public HttpRequest doFilter(HttpRequest request);

}

Now that we’ve seen all of the pieces of TinyWeb, let’s see how they fit
together.

Tying It All Together

To tie it all together, we’ll use the main class, TinyWeb. This class takes two
constructor arguments. The first is a Map, where the keys are Strings represent-
ing request paths and the values are Controller objects. The second argument
is a list of Filters to run on all requests before they are passed to the appropriate
controller.

Chapter 2. TinyWeb: Patterns Working Together • 16

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/JavaExamples/src/main/java/com/mblinn/oo/tinyweb/Filter.java
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

The TinyWeb class has a single public method, handleRequest(), which takes
HttpRequest. The handleRequest() method then runs the request through the filters,
looks up the appropriate controller to handle it, and returns the resulting
HttpResponse. The code is below:

JavaExamples/src/main/java/com/mblinn/oo/tinyweb/TinyWeb.java
package com.mblinn.oo.tinyweb;

import java.util.List;
import java.util.Map;

public class TinyWeb {
private Map<String, Controller> controllers;
private List<Filter> filters;

public TinyWeb(Map<String, Controller> controllers, List<Filter> filters) {
this.controllers = controllers;
this.filters = filters;

}

public HttpResponse handleRequest(HttpRequest httpRequest) {

HttpRequest currentRequest = httpRequest;
for (Filter filter : filters) {

currentRequest = filter.doFilter(currentRequest);
}

Controller controller = controllers.get(currentRequest.getPath());

if (null == controller)
return null;

return controller.handleRequest(currentRequest);
}

}

A full-featured Java web framework wouldn’t expose a class like this directly
as its framework plumbing. Instead it would use some set of configuration
files and annotations to wire things together. However, we’ll stop adding to
TinyWeb here and move on to an example that uses it.

Using TinyWeb

Let’s implement an example program that takes an HttpRequest with a comma-
separated list of names as its value and returns a body that’s full of friendly
greetings for those names. We’ll also add a filter that logs the path that was
requested.

report erratum • discuss

TinyWeb in Java • 17

http://media.pragprog.com/titles/mbfpp/code/JavaExamples/src/main/java/com/mblinn/oo/tinyweb/TinyWeb.java
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

We’ll start by looking at GreetingController. When the controller receives an
HttpRequest, it picks out the body of the request, splits it on commas, and treats
each element in the split body as a name. It then generates a random
friendly greeting for each name and puts the names into the model under the
key greetings. The code for GreetingController follows:

JavaExamples/src/main/java/com/mblinn/oo/tinyweb/example/GreetingController.java
package com.mblinn.oo.tinyweb.example;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Random;

import com.mblinn.oo.tinyweb.HttpRequest;
import com.mblinn.oo.tinyweb.TemplateController;
import com.mblinn.oo.tinyweb.View;

public class GreetingController extends TemplateController {
private Random random;
public GreetingController(View view) {

super(view);
random = new Random();

}

@Override
public Map<String, List<String>> doRequest(HttpRequest httpRequest) {

Map<String, List<String>> helloModel =
new HashMap<String, List<String>>();

helloModel.put("greetings",
generateGreetings(httpRequest.getBody()));

return helloModel;
}

private List<String> generateGreetings(String namesCommaSeperated) {
String[] names = namesCommaSeperated.split(",");
List<String> greetings = new ArrayList<String>();
for (String name : names) {

greetings.add(makeGreeting(name));
}
return greetings;

}

private String makeGreeting(String name) {
String[] greetings =

{ "Hello", "Greetings", "Salutations", "Hola" };
String greetingPrefix = greetings[random.nextInt(4)];
return String.format("%s, %s", greetingPrefix, name);

}
}

Chapter 2. TinyWeb: Patterns Working Together • 18

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/JavaExamples/src/main/java/com/mblinn/oo/tinyweb/example/GreetingController.java
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Next up, let’s take a look at GreetingRenderingStrategy. This class iterates through
the list of friendly greetings generated by the controller and places each into
an <h2> tag. Then it prepends the greetings with an <h1> containing "Friendly
Greetings:", as the following code shows:

JavaExamples/src/main/java/com/mblinn/oo/tinyweb/example/GreetingRenderingStrategy.java
package com.mblinn.oo.tinyweb.example;

import java.util.List;
import java.util.Map;

import com.mblinn.oo.tinyweb.RenderingStrategy;

public class GreetingRenderingStrategy implements RenderingStrategy {

@Override
public String renderView(Map<String, List<String>> model) {

List<String> greetings = model.get("greetings");
StringBuffer responseBody = new StringBuffer();
responseBody.append("<h1>Friendly Greetings:</h1>\n");
for (String greeting : greetings) {

responseBody.append(
String.format("<h2>%s</h2>\n", greeting));

}
return responseBody.toString();

}

}

Finally, let’s look at an example filter. The LoggingFilter class just logs out the
path of the request it’s being run on. Its code follows:

JavaExamples/src/main/java/com/mblinn/oo/tinyweb/example/LoggingFilter.java
package com.mblinn.oo.tinyweb.example;

import com.mblinn.oo.tinyweb.Filter;
import com.mblinn.oo.tinyweb.HttpRequest;

public class LoggingFilter implements Filter {

@Override
public HttpRequest doFilter(HttpRequest request) {

System.out.println("In Logging Filter - request for path: "
+ request.getPath());

return request;
}

}

report erratum • discuss

TinyWeb in Java • 19

http://media.pragprog.com/titles/mbfpp/code/JavaExamples/src/main/java/com/mblinn/oo/tinyweb/example/GreetingRenderingStrategy.java
http://media.pragprog.com/titles/mbfpp/code/JavaExamples/src/main/java/com/mblinn/oo/tinyweb/example/LoggingFilter.java
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Wiring up a simple test harness that connects everything together into a
TinyWeb, throws an HttpRequest at it, and then prints the response to the console
gets us the following output. This indicates that everything is working properly:

In Logging Filter - request for path: greeting/
responseCode: 200
responseBody:
<h1>Friendly Greetings:</h1>
<h2>Hola, Mike</h2>
<h2>Greetings, Joe</h2>
<h2>Hola, John</h2>
<h2>Salutations, Steve</h2>

Now that we’ve seen the TinyWeb framework in Java, let’s take a look at how
we’ll use some of the functional replacements for the object-oriented patterns
we’ll explore in this book. This will give us a TinyWeb that’s functionally
equivalent but written with fewer lines of code and in a more declarative,
easier-to-read style.

2.3 TinyWeb in Scala

Let’s take TinyWeb and transform it into Scala. We’ll do this a bit at a time
so we can show how our Scala code can work with the existing Java code.
The overall shape of the framework will be similar to the Java version, but
we’ll take advantage of some of Scala’s functional features to make the code
more concise.

Step One: Changing Views

We’ll start with our view code. In Java, we used the classic Strategy pattern.
In Scala, we’ll stick with the Strategy pattern, but we’ll use higher-order
functions for our strategy implementations. We’ll also see some of the benefits
of expressions over statements for control flow.

The biggest change we’ll make is to the view-rendering code. Instead of using
Functional Interface in the form of RenderingStrategy, we’ll use a higher-order
function. We go over this replacement in great detail in Pattern 1, Replacing
Functional Interface, on page 40.

Here’s our modified view code in its full functional glory:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/tinyweb/stepone/View.scala
package com.mblinn.mbfpp.oo.tinyweb.stepone
import com.mblinn.oo.tinyweb.RenderingException

trait View {
def render(model: Map[String, List[String]]): String

}

Chapter 2. TinyWeb: Patterns Working Together • 20

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/tinyweb/stepone/View.scala
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

class FunctionView(viewRenderer: (Map[String, List[String]]) => String)
extends View {

def render(model: Map[String, List[String]]) =
try

viewRenderer(model)
catch {

case e: Exception => throw new RenderingException(e)
}

}

We start off with our View trait. It defines a single method, render(), which takes
a map representing the data in our model and returns a rendered String.

trait View {
def render(model: Map[String, String]): String

}

Next up, let’s take a look at the body of FunctionView. The code below declares
a class that has a constructor with a single argument, viewRenderer, which sets
an immutable field of the same name.

class FunctionView(viewRenderer: (Map[String, String]) => String) extends View {
«classBody»

}

The viewRenderer function parameter has a rather strange-looking type annota-
tion, (Map[String, String]) => String. This is a function type. It says that viewRenderer
is a function that takes a Map[String, String] and returns a String, just like the
renderView() on our Java RenderingStrategy.

Next, let’s take a look at the render() method itself. As we can see from the code
below, it takes in a model and runs it through the viewRender() function.

def render(model: Map[String, String]) =
try

viewRenderer(model)
catch {

case e: Exception => throw new RenderingException(e)
}

Notice how there’s no return keyword anywhere in this code snippet? This
illustrates another important aspect of functional programming. In the func-
tional world, we program primarily with expressions. The value of a function
is just the value of the last expression in it.

In this example, that expression happens to be a try block. If no exception is
thrown, the try block takes on the value of its main branch; otherwise it takes
on the value of the appropriate case clause in the catch branch.

report erratum • discuss

TinyWeb in Scala • 21

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

If we wanted to supply a default value rather than wrap the exception up into
a RenderException, we can do so just by having the appropriate case branch take
on our default, as illustrated in the following code:

try
viewRenderer(model)

catch {
case e: Exception => ""

}

Now when an exception is caught, the try block takes on the value of the
empty string.

Step Two: A Controller First Cut

Now let’s take a look at transforming our controller code into Scala. In Java
we used the Controller interface and the TemplateController class. Individual con-
trollers were implemented by subclassing TemplateController.

In Scala, we rely on function composition just like we did with our views by
passing in a doRequest() function when we create a Controller:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/tinyweb/steptwo/Controller.scala
package com.mblinn.mbfpp.oo.tinyweb.steptwo

import com.mblinn.oo.tinyweb.HttpRequest
import com.mblinn.oo.tinyweb.HttpResponse
import com.mblinn.oo.tinyweb.ControllerException
import com.mblinn.oo.tinyweb.RenderingException

trait Controller {
def handleRequest(httpRequest: HttpRequest): HttpResponse

}

class FunctionController(view: View, doRequest: (HttpRequest) =>
Map[String, List[String]]) extends Controller {

def handleRequest(request: HttpRequest): HttpResponse = {
var responseCode = 200;
var responseBody = "";

try {
val model = doRequest(request)
responseBody = view.render(model)

} catch {
case e: ControllerException =>

responseCode = e.getStatusCode()
case e: RenderingException =>

responseCode = 500
responseBody = "Exception while rendering."

Chapter 2. TinyWeb: Patterns Working Together • 22

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/tinyweb/steptwo/Controller.scala
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

case e: Exception =>
responseCode = 500

}

HttpResponse.Builder.newBuilder()
.body(responseBody).responseCode(responseCode).build()

}
}

This code should look fairly similar to our view code. This is a fairly literal trans-
lation of Java into Scala, but it’s not terribly functional because we’re using the
try-catch as a statement to set the values of responseCode and responseBody.

We’re also reusing our Java HttpRequest and HttpResponse. Scala provides a more
concise way to create these data-carrying classes, called case classes.
Switching over to use the try-catch as a statement, as well as using case
classes, can help cut down on our code significantly.

We’ll make both of these changes in our next transformation.

Immutable HttpRequest and HttpResponse

Let’s start by switching over to case classes instead of using the Builder pat-
tern. It’s as simple as the code below:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/tinyweb/stepthree/HttpData.scala
package com.mblinn.mbfpp.oo.tinyweb.stepthree

case class HttpRequest(headers: Map[String, String], body: String, path: String)
case class HttpResponse(body: String, responseCode: Integer)

We can create new HttpRequest and HttpResponse objects easily, as the following
REPL output shows:

scala> val request = HttpRequest(Map("X-Test" -> "Value"), "requestBody", "/test")
request: com.mblinn.mbfpp.oo.tinyweb.stepfour.HttpRequest =

HttpRequest(Map(X-Test -> Value),requestBody,/test)

scala> val response = HttpResponse("requestBody", 200)
response: com.mblinn.mbfpp.oo.tinyweb.stepfour.HttpResponse =

HttpResponse(requestBody,200)

At first glance, this might seem similar to using a Java class with constructor
arguments, except that we don’t need to use the new keyword. However, in
Pattern 4, Replacing Builder for Immutable Object, on page 62, we dig deeper
and see how Scala’s ability to provide default arguments in a constructor,
the natural immutability of case classes, and the ability to easily create a new
instance of a case class from an existing instance lets them satisfy the intent
of the Builder pattern.

report erratum • discuss

TinyWeb in Scala • 23

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/tinyweb/stepthree/HttpData.scala
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Let’s take a look at our second change. Since a try-catch block in Scala has a
value, we can use it as an expression rather than as a statement. This might
seem a bit odd at first, but the upshot is that we can use the fact that Scala’s
try-catch is an expression to simply have the try-catch block take on the value of
the HttpResponse we’re returning. The code to do so is below:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/tinyweb/stepthree/Controller.scala
package com.mblinn.mbfpp.oo.tinyweb.stepthree
import com.mblinn.oo.tinyweb.ControllerException
import com.mblinn.oo.tinyweb.RenderingException

trait Controller {
def handleRequest(httpRequest: HttpRequest): HttpResponse

}
class FunctionController(view: View, doRequest: (HttpRequest) =>

Map[String, List[String]]) extends Controller {
def handleRequest(request: HttpRequest): HttpResponse =

try {
val model = doRequest(request)
val responseBody = view.render(model)
HttpResponse(responseBody, 200)

} catch {
case e: ControllerException =>

HttpResponse("", e.getStatusCode)
case e: RenderingException =>

HttpResponse("Exception while rendering.", 500)
case e: Exception =>

HttpResponse("", 500)
}

}

This style of programming has a couple of benefits. First, we’ve eliminated a
couple of extraneous variables, responseCode and responseBody. Second, we’ve
reduced the number of lines of code a programmer needs to scan to under-
stand which HttpRequest we’re returning from the entire method to a single line.

Rather than tracing the values of responseCode and responseBody from the top of
the method through the try block and finally into the HttpResponse, we only
need to look at the appropriate piece of the try block to understand the final
value of the HttpResponse. These changes combine to give us code that’s more
readable and concise.

Tying It Together

Now let’s add in the class that ties it all together, TinyWeb. Like its Java coun-
terpart, TinyWeb is instantiated with a map of Controllers and a map of filters.
Unlike Java, we don’t define a class for filter; we simply use a list of higher-
order functions!

Chapter 2. TinyWeb: Patterns Working Together • 24

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/tinyweb/stepthree/Controller.scala
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Also like the Java version, the Scala TinyWeb has a single method, handleRequest(),
which takes in an HttpRequest. Instead of returning an HttpResponse directly, we
return an Option[HttpResponse], which gives us a clean way of handling the case
when we can’t find a controller for a particular request. The code for the Scala
TinyWeb is below:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/tinyweb/stepfour/Tinyweb.scala
package com.mblinn.mbfpp.oo.tinyweb.stepfour
class TinyWeb(controllers: Map[String, Controller],

filters: List[(HttpRequest) => HttpRequest]) {

def handleRequest(httpRequest: HttpRequest): Option[HttpResponse] = {
val composedFilter = filters.reverse.reduceLeft(

(composed, next) => composed compose next)
val filteredRequest = composedFilter(httpRequest)
val controllerOption = controllers.get(filteredRequest.path)
controllerOption map { controller => controller.handleRequest(filteredRequest) }

}
}

Let’s take a look at it in greater detail starting with the class definition.

class TinyWeb(controllers: Map[String, Controller],
filters: List[(HttpRequest) => HttpRequest]) {

«classBody»
}

Here we’re defining a class that takes two constructor arguments, a map of
controllers and a list of filters. Note the type of the filters argument,
List[(HttpRequest) => HttpRequest]. This says that filters is a list of functions from
HttpRequest to HttpRequest.

Next up, let’s look at the signature of the handleRequest() method:

def handleRequest(httpRequest: HttpRequest): Option[HttpResponse] = {
«functionBody»

}

As advertised, we’re returning an Option[HttpResponse] instead of an HttpResponse.
The Option type is a container type with two subtypes, Some and None. If we’ve
got a value to store in it, we can store it in an instance of Some; otherwise we
use None to indicate that we’ve got no real value. We’ll cover Option in greater
detail in Pattern 8, Replacing Null Object, on page 99.

Now that we’ve seen the TinyWeb framework, let’s take a look at it in action.
We’ll use the same example from the Java section, returning a list of friendly
greetings. However, since it’s Scala, we can poke at our example in the REPL
as we go. Let’s get started with our view code.

report erratum • discuss

TinyWeb in Scala • 25

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/tinyweb/stepfour/Tinyweb.scala
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Using Scala TinyWeb

Let’s take a look at using our Scala TinyWeb framework.

We’ll start by creating a FunctionView and the rendering function we’ll compose
into it. The following code creates this function, which we’ll name greetingViewRen-
derer(), and the FunctionView that goes along with it:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/tinyweb/example/Example.scala
def greetingViewRenderer(model: Map[String, List[String]]) =

"<h1>Friendly Greetings:%s".format(
model
getOrElse("greetings", List[String]())
map(renderGreeting)
mkString ", ")

private def renderGreeting(greeting: String) =
"<h2>%s</h2>".format(greeting)

def greetingView = new FunctionView(greetingViewRenderer)

We’re using a couple of new bits of Scala here. First, we introduce the map()
method, which lets us map a function over all the elements in a sequence
and returns a new sequence. Second, we’re using a bit of syntactic sugar that
Scala provides that allows us to treat any method with a single argument as
an infix operator. The object on the left side of the operator is treated as the
receiver of the method call, and the object on the right is the argument.

This bit of syntax means that we can omit the familiar dot syntax when
working in Scala. For instance, the two usages of map() below are equivalent:

scala> val greetings = List("Hi!", "Hola", "Aloha")
greetings: List[java.lang.String]

scala> greetings.map(renderGreeting)
res0: List[String] = List(<h2>Hi!</h2>, <h2>Hola</h2>, <h2>Aloha</h2>)

scala> greetings map renderGreeting
res1: List[String] = List(<h2>Hi!</h2>, <h2>Hola</h2>, <h2>Aloha</h2>)

Now let’s take a look at our controller code. Here we create the handleGreetingRe-
quest() function to pass into our Controller. As a helper, we use makeGreeting(),
which takes in a name and generates a random friendly greeting.

Inside of handleGreetingRequest() we create a list of names by splitting the request
body, which returns an array like in Java, converting that array into a Scala
list and mapping the makeGreeting() method over it. We then use that list as the
value for the "greetings" key in our model map:

Chapter 2. TinyWeb: Patterns Working Together • 26

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/tinyweb/example/Example.scala
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Scala Functions and Methods

Since Scala is a hybrid language, it’s got both functions and methods. Methods are
defined using the def keyword, as we do in the following code snippet:

scala> def addOneMethod(num: Int) = num + 1
addOneMethod: (num: Int)Int

We can create a function and name it by using Scala’s anonymous function syntax,
assigning the resulting function to a val, like we do in this code snippet:

scala> val addOneFunction = (num: Int) => num + 1
addOneFunction: Int => Int = <function1>

We can almost always use methods as higher-order functions. For instance, here we
pass both the method and the function version of addOne() into map().

scala> val someInts = List(1, 2, 3)
someInts: List[Int] = List(1, 2, 3)

scala> someInts map addOneMethod
res1: List[Int] = List(2, 3, 4)

scala> someInts map addOneFunction
res2: List[Int] = List(2, 3, 4)

Since method definitions have a cleaner syntax, we use them when we need to define
a function, rather than using the function syntax. When we need to manually convert
a method into a function, we can do so with the underscore operator, as we do in the
following REPL session:

scala> addOneMethod _
res3: Int => Int = <function1>

The need to do this is very rare, though; for the most part Scala is smart enough to
do the conversion automatically.

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/tinyweb/example/Example.scala
def handleGreetingRequest(request: HttpRequest) =

Map("greetings" -> request.body.split(",").toList.map(makeGreeting))

private def random = new Random()
private def greetings = Vector("Hello", "Greetings", "Salutations", "Hola")
private def makeGreeting(name: String) =

"%s, %s".format(greetings(random.nextInt(greetings.size)), name)

def greetingController = new FunctionController(greetingView, handleGreetingRequest)

Finally, let’s take a look at our logging filter. This function simply writes the
path that it finds in the passed-in HttpRequest to the console and then returns
the path unmodified:

report erratum • discuss

TinyWeb in Scala • 27

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/tinyweb/example/Example.scala
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/tinyweb/example/Example.scala
private def loggingFilter(request: HttpRequest) = {

println("In Logging Filter - request for path: %s".format(request.path))
request

}

To finish up the example, we need to create an instance of TinyWeb with the
controller, the view, and the filter we defined earlier, and we need to create a
test HttpResponse:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/tinyweb/example/Example.scala
def tinyweb = new TinyWeb(

Map("/greeting" -> greetingController),
List(loggingFilter))

def testHttpRequest = HttpRequest(
body="Mike,Joe,John,Steve",
path="/greeting")

We can now run the test request through TinyWeb’s handleRequest() method in
the REPL and view the corresponding HttpResponse:

scala> tinyweb.handleRequest(testHttpRequest)
In Logging Filter - request for path: /greeting
res0: Option[com.mblinn.mbfpp.oo.tinyweb.stepfour.HttpResponse] =
Some(HttpResponse(<h1>Friendly Greetings:<h2>Mike</h2>, <h2>Nam</h2>, <h2>John</h2>,
200))

That wraps up our Scala version of TinyWeb. We’ve made a few changes to
the style that we used in our Java version. First, we replaced most of our
iterative code with code that’s more declarative. Second, we’ve replaced our
bulky builders with Scala’s case classes, which give us a built-in way to
handle immutable data. Finally, we’ve replaced our use of Functional Interface
with plain old functions.

Taken together, these small changes save us quite a bit of code and give us
a solution that’s shorter and easier to read. Next up, we’ll take a look at
TinyWeb in Clojure.

2.4 TinyWeb in Clojure

Now let’s take TinyWeb and translate it into Clojure. This is going to be a
bigger leap than the translation from Java to Scala, so we’ll take it slowly.

The most obvious difference between Clojure and Java is the syntax. It’s very
different than the C-inspired syntax found in most modern programming
languages. This isn’t incidental: the syntax enables one of Clojure’s most
powerful features, macros, which we’ll cover in Pattern 21, Domain-Specific
Language, on page 218.

Chapter 2. TinyWeb: Patterns Working Together • 28

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/tinyweb/example/Example.scala
http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/tinyweb/example/Example.scala
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

A Gentle Introduction to Clojure

For now let’s just have a gentle introduction. Clojure uses prefix syntax, which
just means that the function name comes before the function arguments in
a function call. Here we call the count function to get the size of a vector, one
of Clojure’s immutable data structures:

=> (count [1 2 3 4])
4

Like Scala, Clojure has excellent interoperability with existing Java code.
Calling a method on a Java class looks almost exactly like calling a Clojure
function; you just need to prepend the method name with a period and put
it before the class instance rather than after. For instance, this is how we call
the length() method on an instance of a Java String:

=> (.length "Clojure")
7

Instead of organizing Clojure code into objects and methods in Java or into
objects, methods, and functions in Scala, Clojure code is organized into
functions and namespaces. Our Clojure version of TinyWeb is based on
models, views, controllers, and filters, just like the Java and Scala versions;
however, these components will take quite a different form.

Our views, controllers, and filter codes are simply functions, and our models
are maps. To tie everything together, we use a function named TinyWeb,
which takes in all our components and returns a function that takes in an
HTTP request, runs it through the filters, and then routes it to the proper
controller and view.

Controllers in Clojure

Let’s start our look at the Clojure code with the controllers. Below, we implement
a simple controller that takes the body of an incoming HTTP request and uses it
to set a name in a model. For this first iteration, we’ll use the same HttpRequest as
our Java code. We’ll change it to be more idiomatic Clojure later on:

ClojureExamples/src/mbfpp/oo/tinyweb/stepone.clj
(ns mbfpp.oo.tinyweb.stepone

(:import (com.mblinn.oo.tinyweb HttpRequest HttpRequest$Builder)))
(defn test-controller [http-request]

{:name (.getBody http-request)})
(def test-builder (HttpRequest$Builder/newBuilder))
(def test-http-request (.. test-builder (body "Mike") (path "/say-hello") build))
(defn test-controller-with-map [http-request]

{:name (http-request :body)})

report erratum • discuss

TinyWeb in Clojure • 29

http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/oo/tinyweb/stepone.clj
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Let’s take a look at this code piece by piece, starting with the namespace
declaration.

ClojureExamples/src/mbfpp/oo/tinyweb/stepone.clj
(ns mbfpp.oo.tinyweb.stepone

(:import (com.mblinn.oo.tinyweb HttpRequest HttpRequest$Builder)))

Here we define a namespace called mbfpp.oo.tinyweb.stepone. A namespace is
simply a collection of functions that form a library that can be imported in
full or in part by another namespace.

As part of the definition, we import a couple of Java classes, HttpRequest and
HttpRequest$Builder. The second one might look a little strange, but it’s just the
full name for the static inner Builder class we created as part of our HttpRequest.
Clojure doesn’t have any special syntax for referring to static inner classes,
so we need to use the full class name.

The keyword :import is an example of a Clojure keyword. A keyword is just an
identifier that provides very fast equality checks and is always prepended
with a colon. Here we’re using the :import keyword to indicate what classes
should be imported into the namespace we’ve just declared, but keywords
have many other uses. They’re often used as keys in a map, for instance.

Now let’s take a look at our controller, which takes an HttpRequest from the
original Java solution and produces a Clojure map as a model:

ClojureExamples/src/mbfpp/oo/tinyweb/stepone.clj
(defn test-controller [http-request]

{:name (.getBody http-request)})

Here we call the getBody() method on the HttpRequest to get the body of the
request, and we use it to create a map with a single key-value pair. The key
is the keyword :name, and the value is the String body of the HttpRequest.

Before we move on, let’s look at Clojure maps in greater detail. In Clojure, it’s
common to use maps to pass around data. The syntax for creating a map in
Clojure is to enclose key-value pairs inside curly braces. For instance, here
we’re creating a map with two key-value pairs. The first key is the keyword
:name, and the value is the String "Mike". The second is the keyword :sex, and the
value is another keyword, :male>:

=> {:name "Mike" :sex :male}
{:name "Mike" :sex :male}

Maps in Clojure are functions of their keys. This means that we can call a map
as a function, passing a key we expect to be in the map, and the map will return
the value. If the key isn’t in the map, nil is returned, as the code below shows:

Chapter 2. TinyWeb: Patterns Working Together • 30

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/oo/tinyweb/stepone.clj
http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/oo/tinyweb/stepone.clj
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

=> (def test-map {:name "Mike"})
#'mbfpp.oo.tinyweb.stepone/test-map
=> (test-map :name)
"Mike"
=> (test-map :orange)
nil

Keywords in Clojure are also functions. When they are passed a map, they
will look themselves up in it, as in the following snippet, which shows the
most common way to look up a value from a map:

=> (def test-map {:name "Mike"})
#'mbfpp.oo.tinyweb.stepone/test-map
=> (:name test-map)
"Mike"
=> (:orange test-map)
nil

Now let’s create some test data. Below, we create an HttpRequest$Builder and use
it to create a new HttpRequest:

ClojureExamples/src/mbfpp/oo/tinyweb/stepone.clj
(def test-builder (HttpRequest$Builder/newBuilder))
(def test-http-request (.. test-builder (body "Mike") (path "/say-hello") build))

This code features two more Clojure/Java interop features. First, the forward
slash lets us call a static method or reference a static variable on a class. So
the snippet (HttpRequest$Builder/newBuilder) is calling the newBuilder() method on the
HttpRequest$Builder class. As another example, we can use this syntax to parse
an integer from a String using the parseInt() method on the Integer class:

=> (Integer/parseInt "42")
42

Next up is the .. macro, a handy interop feature that makes calling a series
of methods on a Java object easy. It works by taking the first argument to ..
and threading it through calls to the rest of the arguments.

The snippet (.. test-builder (body "Mike") (path "/say-hello") build) first calls the body()
method on test-builder with the argument "Mike". Then it takes that result and
calls the path() method on it with the argument "say-hello" and finally calls build()
on that result to return an instance of HttpResult.

Here’s another example of using the .. macro to uppercase the string "mike"
and then take the first character of it:

=> (.. "mike" toUpperCase (substring 0 1))
"M"

report erratum • discuss

TinyWeb in Clojure • 31

http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/oo/tinyweb/stepone.clj
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Maps for Data

Now that we’ve seen some basic Clojure and Clojure/Java interoperability,
let’s take the next step in transforming TinyWeb into Clojure. Here we’ll change
test-controller so that the HTTP request it takes in is also a map, just like the
model it returns. We’ll also introduce a view function and a render function
that’s responsible for calling views. The code for our next iteration is below:

ClojureExamples/src/mbfpp/oo/tinyweb/steptwo.clj
(ns mbfpp.oo.tinyweb.steptwo

(:import (com.mblinn.oo.tinyweb RenderingException)))

(defn test-controller [http-request]
{:name (http-request :body)})

(defn test-view [model]
(str "<h1>Hello, " (model :name) "</h1>"))

(defn- render [view model]
(try

(view model)
(catch Exception e (throw (RenderingException. e)))))

Let’s take a closer look at the pieces, starting with our new test-controller. As
we can see in the code, we’re expecting http-request to be a map with a :body key
that represents the body of the HTTP request. We’re pulling out the value for
that key and putting it into a new map that represents our model:

ClojureExamples/src/mbfpp/oo/tinyweb/steptwo.clj
(defn test-controller [http-request]

{:name (http-request :body)})

We can explore how test-controller works very easily using the REPL. All we need
to do is define a test-http-request map and pass it into test-controller, which we do
in this REPL output:

=> (def test-http-request {:body "Mike" :path "/say-hello" :headers {}})
#'mbfpp.oo.tinyweb.steptwo/test-http-request
=> (test-controller test-http-request)
{:name "Mike"}

Views in Clojure

Now that we’ve got our controller approach buttoned up, let’s take a look at
some view code. Just like our controllers, views will be functions. They take
a map that represents the model they operate on and return a String that
represents the output of the view.

Here is some code for a simple test-view that just wraps a name in an <h1> tag:

Chapter 2. TinyWeb: Patterns Working Together • 32

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/oo/tinyweb/steptwo.clj
http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/oo/tinyweb/steptwo.clj
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

ClojureExamples/src/mbfpp/oo/tinyweb/steptwo.clj
(defn test-view [model]

(str "<h1>Hello, " (model :name) "</h1>"))

Again, we can try this out simply in the REPL by defining a test model and
passing it into the function:

=> (def test-model {:name "Mike"})
#'mbfpp.oo.tinyweb.steptwo/test-model
=> (test-view test-model)
"<h1>Hello, Mike</h1>"

We need one more piece to finish our view-handling code. In Java, we used
Pattern 7, Replacing Strategy, on page 92, to ensure that any exceptions in
view-handling code were properly wrapped up in a RenderingException. In Clojure
we’ll do something similar with higher-order functions. As the code below
shows, all we need to do is pass our view function into the render function,
which takes care of running the view and wrapping any exceptions:

ClojureExamples/src/mbfpp/oo/tinyweb/steptwo.clj
(defn- render [view model]

(try
(view model)
(catch Exception e (throw (RenderingException. e)))))

Tying It All Together

Now that we’ve got a handle on our Clojure views and controllers, let’s finish
up the example by adding in filters and the glue code that ties everything
together. We’ll do this final step in a namespace called core. This is the stan-
dard core namespace that Clojure’s build tool Leiningen creates when you
create a new project, so it’s become the de facto standard core namespace
for Clojure projects.

To do this, we’ll add an execute-request function, which is responsible for exe-
cuting an http-request. The function takes an http-request and a request handler.
The request handler is simply a map containing the controller and view that
should be used to handle the request.

We’ll also need apply-filters, which takes an http-request, applies a series of filters
to it, and returns a new http-request. Finally, we’ll need the tinyweb function.

The tinyweb function is what ties everything together. It takes in two arguments:
a map of request handlers keyed off the path each should handle and a
sequence of filters. It then returns a function that takes an http-request, applies
the sequence of filters to it, routes it to the appropriate request handler, and
returns the result.

report erratum • discuss

TinyWeb in Clojure • 33

http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/oo/tinyweb/steptwo.clj
http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/oo/tinyweb/steptwo.clj
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Here is the code for the full Clojure TinyWeb library:

ClojureExamples/src/mbfpp/oo/tinyweb/core.clj
(ns mbfpp.oo.tinyweb.core

(:require [clojure.string :as str])
(:import (com.mblinn.oo.tinyweb RenderingException ControllerException)))

(defn- render [view model]
(try

(view model)
(catch Exception e (throw (RenderingException. e)))))

(defn- execute-request [http-request handler]
(let [controller (handler :controller)

view (handler :view)]
(try
{:status-code 200
:body
(render

view
(controller http-request))}

(catch ControllerException e {:status-code (.getStatusCode e) :body ""})
(catch RenderingException e {:status-code 500

:body "Exception while rendering"})
(catch Exception e (.printStackTrace e) {:status-code 500 :body ""}))))

(defn- apply-filters [filters http-request]
(let [composed-filter (reduce comp (reverse filters))]

(composed-filter http-request)))
(defn tinyweb [request-handlers filters]

(fn [http-request]
(let [filtered-request (apply-filters filters http-request)

path (http-request :path)
handler (request-handlers path)]

(execute-request filtered-request handler))))

The render method is unchanged from the previous iteration, so let’s start by
examining the execute-request function. We have already defined the function
in the full Clojure TinyWeb library. To start picking apart the execute-request
function, let’s first define some test data in the REPL. We’ll need the test-controller
and test-view we defined in our last iteration to create a test request handler,
which we do below:

=> (defn test-controller [http-request]
{:name (http-request :body)})

(defn test-view [model]
(str "<h1>Hello, " (model :name) "</h1>"))
#'mbfpp.oo.tinyweb.core/test-controller
#'mbfpp.oo.tinyweb.core/test-view
=> (def test-request-handler {:controller test-controller

:view test-view})
#'mbfpp.oo.tinyweb.core/test-request-handler

Chapter 2. TinyWeb: Patterns Working Together • 34

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/oo/tinyweb/core.clj
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Now we just need our test-http-request, and we can verify that execute-request runs
the passed-in request-handler on the passed-in http-request, as we’d expect:

=> (def test-http-request {:body "Mike" :path "/say-hello" :headers {}})
#'mbfpp.oo.tinyweb.steptwo/test-http-request
=> (execute-request test-http-request test-request-handler)
{:status-code 200, :body "<h1>Hello, Mike</h1>"}

Let’s look at the pieces of execute-request in more detail by trying them out in
the REPL, starting with the let statement that picks the controller and view
out of request-handler, which we’ve outlined here:

(let [controller (handler :controller)
view (handler :view)]

«let-body»)
A let statement is how you assign local names in Clojure, somewhat like a
local variable in Java. However, unlike a variable, the value these names refer
to isn’t meant to be changed. In the let statement above, we’re picking the
view and controller functions out of the request-handler map and naming them
controller and view. We can then refer to them by those names inside the let
statement.

Let’s take a look at a simpler example of a let expression. Below, we use let to
bind name to the String "Mike" and to bind greeting to the String "Hello". Then, inside
the body of the let expression, we use them to create a greeting:

=> (let [name "Mike"
greeting "Hello"]

(str greeting ", " name))
"Hello, Mike"

Now that we’ve got let under our belts, let’s take a look at the try expression,
which we’ve repeated below. Much like in Scala, try is an expression with a
value. If no exception is thrown, try takes on the value of the body of the
expression itself; otherwise it takes on the value of a catch clause:

(try
{:status-code 200
:body

(render
view
(controller http-request))}

(catch ControllerException e {:status-code (.getStatusCode e) :body ""})
(catch RenderingException e {:status-code 500

:body "Exception while rendering"})
(catch Exception e (.printStackTrace e) {:status-code 500 :body ""})

report erratum • discuss

TinyWeb in Clojure • 35

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

If no exception is thrown, then the try expression takes the value of a map
with two key-value pairs, which represents our HTTP response. The first key
is the :status-code with a value of 200. The second is :body. Its value is computed
by passing the http-request into the controller and then passing that result into
the render function along with the view to be rendered.

We can see this in action using our test-view and test-controller below:

=> (render test-view (test-controller test-http-request))
"<h1>Hello, Mike</h1>"

Before we move on, let’s take a bit of a closer look at Clojure’s exception
handling using a couple of simpler examples. Below, we see an example of a
try expression where the body is just the String "hello, world", so the value of the
whole expression is "hello, world":

=> (try
"hello, world"

(catch Exception e (.message e)))
"hello, world"

Here’s a simple example of how try expressions work when things go wrong.
In the body of the try expression below, we’re throwing a RuntimeException with
the message "It's broke!". In the catch branch, we’re catching Exception and just
pulling the message out of it, which then becomes the value of the catch branch
and thus the value of the entire try expression:

=> (try
(throw (RuntimeException. "It's broke!"))

(catch Exception e (.getMessage e)))
"It's broke!"

Next up, let’s take a look at how we apply our filters. We use an apply-filters
function, which takes a sequence of filters and an HTTP request, composes
them into a single filter, and then applies it to the HTTP request. The code is
below:

(defn- apply-filters [filters http-request]
(let [composed-filter (reduce comp filters)]

(composed-filter http-request)))

We explore the comp function further as part of Pattern 16, Function Builder,
on page 167.

To finish off our Clojure TinyWeb implementation, we need a function, tinyweb,
to tie everything together. This function takes in a map of request handlers
and a sequence of filters. It returns a function that takes an HTTP request,
using apply-filters to apply all the filters to the request.

Chapter 2. TinyWeb: Patterns Working Together • 36

report erratum • discuss

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Then it picks the path out of the HTTP request, looks in the map of request
handlers to find the appropriate handler, and uses execute-request to execute
it. The following is the code for tinyweb:

(defn tinyweb [request-handlers filters]
(fn [http-request]

(let [filtered-request (apply-filters filters http-request)
path (:path http-request)
handler (request-handlers path)]

(execute-request filtered-request handler))))

Using TinyWeb

Let’s take a look at using the Clojure version of TinyWeb. First let’s define a
test HTTP request:

=> (def request {:path "/greeting" :body "Mike,Joe,John,Steve"})
#'mbfpp.oo.tinyweb.core/request

Now let’s take a look at our controller code, which is just a simple function
and works much like our Scala version:

ClojureExamples/src/mbfpp/oo/tinyweb/example.clj
(defn make-greeting [name]

(let [greetings ["Hello" "Greetings" "Salutations" "Hola"]
greeting-count (count greetings)]

(str (greetings (rand-int greeting-count)) ", " name)))

(defn handle-greeting [http-request]
{:greetings (map make-greeting (str/split (:body http-request) #","))})

Running our test request through it returns the appropriate model map, as
seen below:

=> (handle-greeting request)
{:greetings ("Greetings, Mike" "Hola, Joe" "Hola, John" "Hola, Steve")}

Next up is our view code. This code renders the model into HTML. It’s just
another function that takes in the appropriate model map and returns a
string:

ClojureExamples/src/mbfpp/oo/tinyweb/example.clj
(defn render-greeting [greeting]

(str "<h2>"greeting"</h2>"))

(defn greeting-view [model]
(let [rendered-greetings (str/join " " (map render-greeting (:greetings model)))]

(str "<h1>Friendly Greetings</h1> " rendered-greetings)))

If we run greeting-view over the output of handle-greeting, we get our rendered
HTML:

report erratum • discuss

TinyWeb in Clojure • 37

http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/oo/tinyweb/example.clj
http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/oo/tinyweb/example.clj
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

=> (greeting-view (handle-greeting request))
"<h1>Friendly Greetings</h1>
<h2>Hola, Mike</h2>
<h2>Hello, Joe</h2>
<h2>Greetings, John</h2>
<h2>Salutations, Steve</h2>"

Next let’s look at our logging-filter. This is just a simple function that logs out
the path of the request before returning it:

ClojureExamples/src/mbfpp/oo/tinyweb/example.clj
(defn logging-filter [http-request]

(println (str "In Logging Filter - request for path: " (:path http-request)))
http-request)

Finally, we’ll wire everything together into an instance of TinyWeb, as we do
in the following code:

ClojureExamples/src/mbfpp/oo/tinyweb/example.clj
(def request-handlers

{"/greeting" {:controller handle-greeting :view greeting-view}})
(def filters [logging-filter])
(def tinyweb-instance (tinyweb request-handlers filters))

If we run our test request through the instance of TinyWeb, it’s filtered and
processed as it should be:

=> (tinyweb-instance request)
In Logging Filter - request for path: /greeting
{:status-code 200,
:body "<h1>Friendly Greetings</h1>
<h2>Greetings, Mike</h2>
<h2>Greetings, Joe</h2>
<h2>Hello, John</h2>
<h2>Hola, Steve</h2>"}

That wraps up our look at TinyWeb! The code in this chapter has been kept
simple; we’ve stuck to a minimal set of language features and omitted much
error handling and many useful features. However, it does show how quite a
few of the patterns we’ll examine in this book fit together.

Throughout the remainder of the book, we’ll take a closer look at these
patterns and many others as we continue our journey through functional
programming.

Chapter 2. TinyWeb: Patterns Working Together • 38

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/oo/tinyweb/example.clj
http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/oo/tinyweb/example.clj
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

CHAPTER 3

Replacing Object-Oriented Patterns
3.1 Introduction

Object-oriented patterns are a staple of modern software engineering. In this
chapter, we’ll take a look at some of the most common ones and the problems
they solve. Then we’ll introduce more functional solutions that solve the same
sorts of problems that the object-oriented patterns solve.

For each pattern that we introduce, we’ll first look at it in Java. Then we’ll
look at a Scala approach that solves the same problems, and finally we’ll wrap
up with a look at a Clojure version that does as well.

Sometimes the Scala and Clojure replacements will be quite similar. For
instance, the Scala and Clojure solutions in both Pattern 1, Replacing Func-
tional Interface, on page 40, and Pattern 7, Replacing Strategy, on page 92,
are largely the same. Other times the solutions we explore in these two lan-
guages will be quite different but still embody the same functional concept.

The solutions we look at in Pattern 4, Replacing Builder for Immutable Object,
on page 62, for instance, are very different in Scala and Clojure. However, in
both cases they show straightforward ways of working with immutable data.

By exploring both the similarities and the differences between Scala and
Clojure, you should get a good feel for how each language approaches func-
tional programming and how it differs from the traditional imperative style
you may be used to.

Let’s get started with our first pattern, Functional Interface!

report erratum • discuss

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Pattern 1

Replacing Functional Interface

Intent

To encapsulate a bit of program logic so that it can be passed around, stored
in data structures, and generally treated like any other first-class construct

Overview

Functional Interface is a basic object-oriented design pattern. It consists of
an interface with a single method with a name like run, execute, perform,
apply, or some other generic verb. Implementations of Functional Interface
perform a single well-defined action, as any method should.

Functional Interface lets us call an object as if it were a function, which lets
us pass verbs around our program rather than nouns. This turns the tradi-
tional object-oriented view of the world on its head a bit. In the strict object-
oriented view, objects, which are nouns, are king. Verbs, or methods, are
second-class citizens, always attached to an object, doomed to a life of servi-
tude to their noun overlords.

Also Known As
Function Object
Functoid
Functor

Functional Replacement

A strict view of object orientation makes some problems clumsier to solve.
I’ve lost track of the number of times I’ve written five or six lines of boilerplate
to wrap a single line of useful code into Runnable or Callable, two of Java’s most
popular instances of Functional Interface.

To simplify things, we can replace Functional Interface with plain functions.
It might seem strange that we can replace an object with seemingly more
primitive functions, but functions in functional programming are much more
powerful than functions in C or methods in Java.

Chapter 3. Replacing Object-Oriented Patterns • 40

report erratum • discuss

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

In functional languages, functions are higher order: they can be returned from
functions and used as arguments to others. They are first-class constructs,
which means that in addition to being higher order they can also be assigned
to variables, put into data structures, and generally manipulated. They can
be unnamed, or anonymous functions, which are extremely handy for small,
one-off pieces of code. In fact, Functional Interface (as its name might suggest)
is a pattern that in the object-oriented world approximates the behavior of
the functions of the functional world.

We’ll cover a couple of different flavors of a Functional Interface replacement
in this section. The first replaces smaller instances of the pattern—say ones
that take a few lines of code—with an anonymous function. This is similar to
using an anonymous inner class to implement Functional Interface in Java
and is covered in Sample Code: Anonymous Functions, on page 41.

The second covers instances of the pattern that span more than a few lines.
In Java, we’d implement these using a named rather than an anonymous
class; in the functional world we use a named function, as we do in Sample
Code: Named Functions, on page 43.

Sample Code: Anonymous Functions

Our first example demonstrates anonymous functions and how we can use
them to replace small instances of Functional Interface. One common situation
where we’d do this is when we need to sort a collection differently than its
natural ordering, the way it’s commonly ordered.

To do so, we need to create a custom comparison so that the sorting algorithm
knows which elements come first. In classic Java, we need to create a Comparator
implemented as an anonymous class. In Scala and Clojure, we get right to
the point by using an anonymous function. We’ll take a look at a simple
example of sorting differently than the natural ordering for an object: sorting
a Person by first name rather than last.

Classic Java

In classic Java, we’ll use a Functional Interface named Comparator to help with our
sort. We’ll implement it as an anonymous function, since it’s only a tiny bit of
code, and we’ll pass it into the sorting function. The kernel of the solution is here:

JavaExamples/src/main/java/com/mblinn/mbfpp/oo/fi/PersonFirstNameSort.java
Collections.sort(people, new Comparator<Person>() {

public int compare(Person p1, Person p2) {
return p1.getFirstName().compareTo(p2.getFirstName());

}
});

report erratum • discuss

Replacing Functional Interface • 41

http://media.pragprog.com/titles/mbfpp/code/JavaExamples/src/main/java/com/mblinn/mbfpp/oo/fi/PersonFirstNameSort.java
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

This works, but most of the code is extra syntax to wrap our one line of
actual logic into an anonymous class. Let’s see how anonymous functions
can help clean this up.

In Scala

Let’s take a look at how we’d solve the problem of sorting by first rather than
last name in Scala. We’ll use a case class to represent people, and we’ll do
away with the Functional Interface Comparator. In its place, we’ll use a plain
old function.

Creating an anonymous function in Scala uses the following syntax:

(arg1: Type1, arg2: Type2) => FunctionBody

For instance, the following REPL session creates an anonymous function that
takes two integer arguments and adds them together.

scala> (int1: Int, int2: Int) => int1 + int2
res0: (Int, Int) => Int = <function2>

Now that we’ve got the basic syntax down, let’s see how to use an anonymous
function to solve our person-sorting problem. To do so we use a method in
Scala’s collections library, sortWith(). The sortWith() method takes a comparison
function and uses it to help sort a collection, much like Collections.sort() takes
a Comparator to do the same.

Let’s start with the code for our Person case class:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/fi/PersonExample.scala
case class Person(firstName: String, lastName: String)

Here’s a vector full of them to use for test data:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/fi/PersonExample.scala
val p1 = Person("Michael", "Bevilacqua")
val p2 = Person("Pedro", "Vasquez")
val p3 = Person("Robert", "Aarons")

val people = Vector(p3, p2, p1)

The sortWith() method expects its comparison function to return a Boolean
value that tells it whether the first argument is higher than the second argu-
ment. Scala’s comparison operators < and > work on strings, so we can use
them for this purpose.

The following code demonstrates this approach. We can omit the type anno-
tations for the function parameters. Scala is able to infer them from the
sortWith() method:

Chapter 3. Replacing Object-Oriented Patterns • 42

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/fi/PersonExample.scala
http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/fi/PersonExample.scala
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/fi/PersonExample.scala
people.sortWith((p1, p2) => p1.firstName < p2.firstName)

Running this in Scala’s REPL gets us the following output.

res1: scala.collection.immutable.Vector[...] =
Vector(

Person(Michael,Bevilacqua),
Person(Pedro,Vasquez),
Person(Robert,Aarons))

This is shorter and simpler than using an equivalent implementation of
Functional Interface!

In Clojure

We define an anonymous function in Clojure using the fn special form, as the
following code outline shows.

(fn [arg1 arg2] function-body)

Let’s start by creating some test people. In Clojure, we won’t define a class to
carry around data; we’ll use a humble map:

ClojureExamples/src/mbfpp/rso/person.clj
(def p1 {:first-name "Michael" :last-name "Bevilacqua"})
(def p2 {:first-name "Pedro" :last-name "Vasquez"})
(def p3 {:first-name "Robert" :last-name "Aarons"})

(def people [p3 p2 p1])

Now we create an anonymous ordering function and pass it into the sort
function along with the people we want to sort, as the following code demon-
strates:

=> (sort (fn [p1 p2] (compare (p1 :first-name) (p2 :first-name))) people)
({:last-name "Bevilacqua", :first-name "Michael"}
{:last-name "Vasquez", :first-name "Pedro"}
{:last-name "Aarons", :first-name "Robert"})

By eliminating the extra syntax we need in Java to wrap our ordering function
in a Comparator, we write code that gets right to the point.

Sample Code: Named Functions

Let’s expand our person-sorting problem a bit. We’ll add a middle name to
each person in our list and modify our unusual sorting algorithm to sort by
first name, then last name if the first names are the same, and finally middle
name if the last names are also the same.

report erratum • discuss

Replacing Functional Interface • 43

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/fi/PersonExample.scala
http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/rso/person.clj
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

This makes the comparison code long enough that we should no longer embed
it in the code that’s using it. In Java we move the code out of an anonymous
inner class and into a named class. In Clojure and Scala, we move it into a
named function.

Classic Java

Anonymous classes and functions are great when the logic they’re wrapping
is small, but when it grows larger it gets messy to embed. In classic Java, we
move to using a named class, as is sketched out below:

public class ComplicatedNameComparator implements Comparator<Person> {
public int compare(Person p1, Person p2) {

«complicatedSortLogic»
}

}

With higher-order functions, we use a named function.

In Scala

We start off by expanding our Scala case class to have a middle name and
by defining some test data:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/fi/PersonExpanded.scala
case class Person(firstName: String, middleName: String, lastName: String)
val p1 = Person("Aaron", "Jeffrey", "Smith")
val p2 = Person("Aaron", "Bailey", "Zanthar")
val p3 = Person("Brian", "Adams", "Smith")
val people = Vector(p1, p2, p3)

Now we create a named comparison function and pass it into sortWith(), as the
following code demonstrates:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/fi/PersonExpanded.scala
def complicatedSort(p1: Person, p2: Person) =

if (p1.firstName != p2.firstName)
p1.firstName < p2.firstName

else if (p1.lastName != p2.lastName)
p1.lastName < p2.lastName

else
p1.middleName < p2.middleName

And voilà! We can easily sort our people using an arbitrarily named function:

scala> people.sortWith(complicatedSort)
res0: scala.collection.immutable.Vector[...] =

Vector(
Person(Aaron,Jeffrey,Smith),
Person(Aaron,Bailey,Zanthar),
Person(Brian,Adams,Smith))

Chapter 3. Replacing Object-Oriented Patterns • 44

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/fi/PersonExpanded.scala
http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/fi/PersonExpanded.scala
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

In Clojure

The Clojure solution is quite similar to the Scala one. We’ll need a named
function that can compare people according to our more complex set of rules,
and we’ll need to add middle names to our people.

Here’s the code for our complicated sort algorithm:

ClojureExamples/src/mbfpp/rso/person_expanded.clj
(defn complicated-sort [p1 p2]

(let [first-name-compare (compare (p1 :first-name) (p2 :first-name))
middle-name-compare (compare (p1 :middle-name) (p2 :middle-name))
last-name-compare (compare (p1 :last-name) (p2 :last-name))]

(cond
(not (= 0 first-name-compare)) first-name-compare
(not (= 0 last-name-compare)) last-name-compare
:else middle-name-compare)))

Now we can call sort as before, but instead of passing in an anonymous
function, we pass the named function complicated-sort:

ClojureExamples/src/mbfpp/rso/person_expanded.clj
(def p1 {:first-name "Aaron" :middle-name "Jeffrey" :last-name "Smith"})
(def p2 {:first-name "Aaron" :middle-name "Bailey" :last-name "Zanthar"})
(def p3 {:first-name "Brian" :middle-name "Adams" :last-name "Smith"})
(def people [p1 p2 p3])

=> (sort complicated-sort people)
({:middle-name "Jeffrey", :last-name "Smith", :first-name "Aaron"}
{:middle-name "Bailey", :last-name "Zanthar", :first-name "Aaron"}
{:middle-name "Adams", :last-name "Smith", :first-name "Brian"})

That’s all there is to it.

Discussion

Functional Interface is a bit odd. It comes from Java’s current insistence on
turning everything into an object, a noun. This is like having to use a
ShoePutterOnner, a DoorOpener, and a Runner just to go for a run! Replacing
the pattern with higher-order functions helps us in several ways. The first is
that it reduces the syntactic overhead of many common tasks, cruft you have
to write in order to write the code you want to write.

For instance, the first Comparator we came across in this section required five lines
of Java code (formatted properly) to convey just one line of actual computation:

new Comparator<Person>() {
public int compare(Person left, Person right) {

return left.getFirstName().compareTo(right.getFirstName());
}

}

report erratum • discuss

Replacing Functional Interface • 45

http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/rso/person_expanded.clj
http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/rso/person_expanded.clj
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Compare that to a single line of Clojure.

(fn [left right] (compare (left :first-name) (right :first-name)))

More importantly, using higher-order functions gives us a consistent way of
passing around small bits of computation. With Functional Interface, you
need to look up the right interface for every little problem you want to solve
and figure out how to use it. We’ve seen Comparator in this chapter and men-
tioned a few other common uses of the pattern. Hundreds of others exist in
Java’s standard libraries and other popular libraries, each as unique as a
snowflake, but more annoyingly different than beautiful.

Functional Interface and its replacements in this chapter have some differences
that don’t touch on the core problem that it’s meant to solve. Since Functional
Interface is implemented with a class, it defines a type and can use common
object-oriented features such as subclassing and polymorphism. Higher-order
functions cannot. This is actually a strength of higher-order functions over
Functional Interface: you don’t need a new type for each type of Functional
Interface when just the existing function types will do.

For Further Reading
Effective Java [Blo08]—Item 21: Use Function Objects to Represent Strategies

JSR 335: Lambda Expressions for the Java Programming Language [Goe12] 1

Related Patterns
Pattern 3, Replacing Command, on page 54

Pattern 6, Replacing Template Method, on page 83

Pattern 7, Replacing Strategy, on page 92

Pattern 16, Function Builder, on page 167

1. http://cr.openjdk.java.net/~briangoetz/lambda/lambda-state-4.html

Chapter 3. Replacing Object-Oriented Patterns • 46

report erratum • discuss

http://cr.openjdk.java.net/~briangoetz/lambda/lambda-state-4.html
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Pattern 2

Replacing State-Carrying Functional Interface

Intent

To encapsulate a bit of state along with program logic so it can be passed
around, stored in data structures, and generally treated like any other first-
class construct

Overview

In Pattern 1, Replacing Functional Interface, on page 40, we saw how to replace
Functional Interface with higher-order functions, but the instances we looked
at didn’t carry around any program state. In this pattern, we’ll take a look at
how we can replace Functional Interface implementations that need state
using a powerful construct called a closure.

Also Known As
Function Object
Functoid
Functor

Functional Replacement

Functions in the functional world are part of a powerful construct called a
closure. A closure wraps up a function along with the state available to it
when it was created. This means that a function can reference any variable
that was in scope when the function was created at the time it’s called. The
programmer doesn’t have to do anything special to create a closure; the
compiler and runtime take care of it, and the closure simply captures all the
state that it needs automatically.

In classic Java, we’d carry state around by creating fields on the class and
by providing setters for them or setting them through a constructor. In the
functional world, we can take advantage of closures to handle this without
any extra machinery. Closures are a bit magical, so it’s worth examining them
in more detail before we move on.

report erratum • discuss

Replacing State-Carrying Functional Interface • 47

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

A closure is composed of a function and the state that was available to that
function when it was created. Let’s see what this might look like pictorially,
as shown in the figure.

Figure 2—Structure of a Closure. A closure is a structure that consists of a function and its
context at the time it was defined.

Here we can see that the closure has a function in it and a scope chain that
lets it look up any variables that it needs to do its job. Translated into Clojure,
it looks like this:

ClojureExamples/src/mbfpp/rso/closure_example.clj
(ns mbfpp.rso.closure-example)

; Scope 1 - Top Level
(def foo "first foo")
(def bar "first bar")
(def baz "first baz")

(defn make-printer [foo bar] ; Scope 2 - Function Arguments
(fn []

(let [foo "third foo"] ; Scope 3 - Let Statement
(println foo)
(println bar)
(println baz))))

Chapter 3. Replacing Object-Oriented Patterns • 48

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/rso/closure_example.clj
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

If we use this code to make a printer function and run it, it prints the foo, bar,
and baz from the deepest scope that they’re defined in, just as any experienced
developer would expect:

=> (def a-printer (make-printer "second foo" "second bar"))
#'closure-example/a-printer
=> (a-printer)
third foo
second bar
first baz
nil

This may not seem surprising, but what if we took a-printer and passed it
around our program, or stored it in a vector to retrieve and use later? It would
still print the same values for foo, bar, and baz, which implies that those values
stick around somewhere.

Behind the scenes, Clojure and Scala need to do an awful lot of magic to make
that work. However, actually using a closure is as simple as declaring a
function. I like to keep the previous figure in mind when working with closures
because it’s a good mental model of how they work.

Sample Code: Closure

To demonstrate closures, we’ll take one last look at comparisons, with a bit
of a twist. This time, we’ll see how to create a comparison that’s composed of
a list of other comparisons, which means that we need someplace to store
this list of comparisons.

In Java, we’ll just pass them in as arguments to a constructor in our custom
Comparator implementation, and we’ll store them in a field. In Scala and Clojure,
we can just use a closure. Let’s jump into the Java example first.

Classic Java

In Java, we create a custom implementation of Comparator called ComposedCom-
parator, with a single constructor that uses varargs to get an array of Comparators
and stores them in a field.

When the compare() method on a ComposedComparator is called, it runs through
all the comparators in its array and returns the first nonzero result. If all the
results are zero, then it returns zero. An outline of this solution looks like so:

public class ComposedComparator<T> implements Comparator<T> {
private Comparator<T>[] comparators;
public ComposedComparator(Comparator<T>... comparators) {

this.comparators = comparators;
}

report erratum • discuss

Replacing State-Carrying Functional Interface • 49

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

@Override
public int compare(T o1, T o2) {

//Iterate through comparators and call each in turn.
}

}

In the functional world, we can use closures instead of having to create new
classes. Let’s dig into how to do this in Scala.

In Scala

In Scala, we’ll take advantage of closures to avoid explicitly keeping track of
our list of comparisons in our composed comparison. Our Scala solution is
centered around a higher-order function, makeComposedComparison(), which uses
varargs to take in an array of comparison functions and returns a function
that executes them in order.

One other difference between the Java and Scala solutions is in how we return
the final result. In Java, we iterated through the list of Comparators, and as
soon as we saw a nonzero comparison, we returned it.

We use map() to run our comparisons over our input. Then we search for the
first one that’s nonzero. If we don’t find a nonzero value, all our comparisons
were the same and we return zero. Here’s the code for makeComposedComparison():

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/fi/personexpanded/ClosureExample.scala
def makeComposedComparison(comparisons: (Person, Person) => Int*) =

(p1: Person, p2: Person) =>
comparisons.map(cmp => cmp(p1, p2)).find(_ != 0).getOrElse(0)

Now we can take two comparison functions and compose them together. In
the code below, we define firstNameComparison() and lastNameComparison(), and then
we compose them together into firstAndLastNameComparison():

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/fi/personexpanded/ClosureExample.scala
def firstNameComparison(p1: Person, p2: Person) =

p1.firstName.compareTo(p2.firstName)

def lastNameComparison(p1: Person, p2: Person) =
p1.lastName.compareTo(p2.lastName)

val firstAndLastNameComparison = makeComposedComparison(
firstNameComparison, lastNameComparison

)

Let’s take a look at our composed comparison function in action by defining
a couple of people and comparing them:

Chapter 3. Replacing Object-Oriented Patterns • 50

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/fi/personexpanded/ClosureExample.scala
http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/fi/personexpanded/ClosureExample.scala
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/fi/personexpanded/ClosureExample.scala
val p1 = Person("John", "", "Adams")
val p2 = Person("John", "Quincy", "Adams")

scala> firstAndLastNameComparison(p1, p2)
res0: Int = 0

One optimization we could make is to create a short-circuiting version of the
composed comparison that stops running comparisons as soon as it comes
across the first nonzero result. To do so, we could use a recursive function
such as the ones we discuss in Pattern 12, Tail Recursion, on page 138, rather
than the for comprehension we use here.

In Clojure

We’ll wrap up the code samples for this pattern with a look at how we’d create
composed comparisons in Clojure. We’ll rely on a make-composed comparison,
but it’ll work a bit differently than the Scala version.

In Scala, we could use the find() method to find the first nonzero result; in
Clojure we can use the some function. This is very different than Scala’s Some
type!

In Clojure, the some function takes a predicate and a sequence, and it returns
the first value for which the predicate is true. Here we use Clojure’s some and
for to run all of the comparisons and select the correct final value:

ClojureExamples/src/mbfpp/rso/closure_comparison.clj
(defn make-composed-comparison [& comparisons]

(fn [p1 p2]
(let [results (for [comparison comparisons] (comparison p1 p2))

first-non-zero-result
(some (fn [result] (if (not (= 0 result)) result nil)) results)]

(if (nil? first-non-zero-result)
0
first-non-zero-result))))

Now we can create our first-name-comparison and last-name-comparison and compose
them together:

ClojureExamples/src/mbfpp/rso/closure_comparison.clj
(defn first-name-comparison [p1, p2]

(compare (:first-name p1) (:first-name p2)))

(defn last-name-comparison [p1 p2]
(compare (:last-name p1) (:last-name p2)))

(def first-and-last-name-comparison
(make-composed-comparison

first-name-comparison last-name-comparison))

report erratum • discuss

Replacing State-Carrying Functional Interface • 51

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/fi/personexpanded/ClosureExample.scala
http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/rso/closure_comparison.clj
http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/rso/closure_comparison.clj
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

And we’ll use them to compare two people:

ClojureExamples/src/mbfpp/rso/closure_comparison.clj
(def p1 {:first-name "John" :middle-name "" :last-name "Adams"})
(def p2 {:first-name "John" :middle-name "Quincy" :last-name "Adams"})

=> (first-and-last-name-comparison p1 p2)
0

That wraps up our look at using closures to replace state-carrying Functional
Interface implementations. Before we move on, let’s discuss the relationship
between closures and classes in a bit more detail.

Discussion

There’s a joke about closures and classes: classes are a poor man’s closure,
and closures are a poor man’s class. Besides demonstrating that functional
programmers probably shouldn’t go into standup comedy, this illustrates
something interesting about the relationship between classes and closures.

In some ways, closures and classes are very similar. They can both carry
around state and behavior. In others, they’re quite different. Classes have a
whole bunch of object-oriented machinery around them, they define types,
they can be part of hierarchies, and so on. Closures are much simpler—they’re
just composed of a function and the context it was created in.

Having closures makes it much simpler to solve a whole host of common
programming tasks, as we’ve seen in this section, which is why classes are
a poor man’s closure. However, classes have many programming features
that closures don’t, which is why closures are a poor man’s class. Scala solves
this problem by giving us both classes and closures, and Clojure solves it by
deconstructing the good stuff from classes, such as polymorphism and type
hierarchies, and giving it to programmers in other forms.

Having closures and higher-order functions can simplify many common pat-
terns (Command, Template Method, and Strategy to name a few) to such an
extent that they almost disappear. They’re useful enough that closures and
higher-order functions are one of the new major pieces of functionality in the
upcoming Java 8 under the guise of JSR 335.

This is a big change to a mature language that absolutely has to be backwards-
compatible, so it’s not an easy task. It’s not one that the stewards of Java
undertook lightly; but because higher-order functions are such a big win, it
was deemed important to include them. It’s taken years of effort to specify
and implement, but they’re finally coming!

Chapter 3. Replacing Object-Oriented Patterns • 52

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/rso/closure_comparison.clj
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

For Further Reading
Effective Java [Blo08]—Item 21: Use Function Objects to Represent Strategies

JSR 335: Lambda Expressions for the Java Programming Language [Goe12] 2

Related Patterns
Pattern 3, Replacing Command, on page 54

Pattern 6, Replacing Template Method, on page 83

Pattern 7, Replacing Strategy, on page 92

Pattern 16, Function Builder, on page 167

2. http://cr.openjdk.java.net/~briangoetz/lambda/lambda-state-4.html

report erratum • discuss

Replacing State-Carrying Functional Interface • 53

http://cr.openjdk.java.net/~briangoetz/lambda/lambda-state-4.html
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Pattern 3

Replacing Command

Intent

To turn a method invocation into an object and execute it in a central location
so that we can keep track of invocations so they can be undone, logged, and
so forth

Overview

Command encapsulates an action along with the information needed to per-
form it. Though it seems simple, the pattern has quite a few moving parts.
In addition to the Command interface and its implementations, there’s a client,
which is responsible for creating the Command; an invoker, which is responsible
for running it; and a receiver, on which the Command performs its action.

The invoker is worth talking about a little because it’s often misunderstood.
It helps to decouple the invocation of a method from the client asking for it
to be invoked and gives us a central location in which all method invocations
take place. This, combined with the fact that the invocation is represented
by an object, lets us do handy things like log the method invocation so it can
be undone or perhaps serialized to disk.

Figure 3, Command Outline, on page 55 sketches out how Command fits
together.

A simple example is a logging Command. Here, the client is any class that needs
to do logging and the receiver is a Logger instance. The invoker is the class
that the client calls instead of calling the Logger directly.

Also Known As

Action

Functional Replacement

Command has a few moving parts, as does our functional replacement. The
Command class itself is a Functional Interface that generally carries state,
so we’ll replace it with the closures we introduced in Pattern 2, Replacing
State-Carrying Functional Interface, on page 47.

Chapter 3. Replacing Object-Oriented Patterns • 54

report erratum • discuss

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Figure 3—Command Outline. The outline of the Command pattern

Next we’ll replace the invoker with a simple function responsible for executing
commands, which I’ll call the execution function. Just like the invoker, the execution
function gives us a central place to control execution of our commands, so we
can store or otherwise manipulate them as needed.

Finally, we’ll create a Function Builder that’s responsible for creating our
commands so we can create them easily and consistently.

Sample Code: Cash Register

Let’s look at how we’d implement a simple cash register with Command. Our
cash register is very basic: it only handles whole dollars, and it contains a
total amount of cash. Cash can only be added to the register.

We’ll keep a log of transactions so that we can replay them. We’ll take a look
at how we’d do this with the traditional Command pattern first before moving
on to the functional replacements in Scala and Clojure.

Classic Java

A Java implementation starts with defining a standard Command interface.
This is an example of Pattern 1, Replacing Functional Interface, on page 40.
We implement that interface with a Purchase class.

The receiver for our pattern is a CashRegister class. A Purchase will contain a
reference to the CashRegister it should be executed against. To round out the
pattern, we’ll need an invoker, PurchaseInvoker, to actually execute our purchases.

report erratum • discuss

Replacing Command • 55

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

A diagram of this implementation is below, and the full source can be found
in this book’s code samples.

Figure 4—Cash Register Command. The structure of a cash register as a Command pattern
in Java

Now that we’ve sketched out a Java implementation of the Command pattern,
let’s see how we can simplify it using functional programming.

In Scala

The cleanest replacement for Command in Scala takes advantage of Scala’s
hybrid nature. We’ll retain a CashRegister class, just as in Java; however, instead
of creating a Command interface and implementation, we’ll simply use higher-
order functions. Instead of creating a separate class to act as an invoker, we’ll
just create an execution function. Let’s take a look at the code, starting with
the CashRegister itself:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/command/register/Register.scala
class CashRegister(var total: Int) {

def addCash(toAdd: Int) {
total += toAdd

}
}

Next we’ll create the function makePurchase to create our purchase functions.
It takes amount and register as arguments to add to it, and it returns a function
that does the deed, as the following code shows:

Chapter 3. Replacing Object-Oriented Patterns • 56

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/command/register/Register.scala
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/command/register/Register.scala
def makePurchase(register: CashRegister, amount: Int) = {

() => {
println("Purchase in amount: " + amount)
register.addCash(amount)

}
}

Finally, let’s look at our execution function, executePurchase. It just adds the
purchase function it was passed to a Vector to keep track of purchases we’ve
made before executing it. Here’s the code:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/command/register/Register.scala
var purchases: Vector[() => Unit] = Vector()
def executePurchase(purchase: () => Unit) = {

purchases = purchases :+ purchase
purchase()

}

What’s That Var Doing in Here?

The code on page 57 has a mutable reference front and center.

var purchases: Vector[() => Unit] = Vector()

This might seem a bit odd in a book on functional programming. Shouldn’t everything
be immutable? It turns out that it’s difficult, though not impossible, to model every-
thing in a purely functional way. Keeping track of changing stack is especially tricky.

Never fear though; all we’re doing here is moving around a reference to a bit of
immutable data. This gives us most of the benefits of immutability. For instance, we
can safely create as many references to our original Vector without worrying about
accidentally modifying the original, as the following code shows:

scala> var v1 = Vector("foo", "bar")
v1: scala.collection.immutable.Vector[String] = Vector(foo, bar)

scala> val v1Copy = v1
v1Copy: scala.collection.immutable.Vector[String] = Vector(foo, bar)

scala> v1 = v1 :+ "baz"
v1: scala.collection.immutable.Vector[String] = Vector(foo, bar, baz)

scala> v1Copy
res0: scala.collection.immutable.Vector[String] = Vector(foo, bar)

It’s possible to program in a purely functional way using the excellent Scalaz library,a

but this book focuses on a more pragmatic form of functional programming.

a. https://code.google.com/p/scalaz/

report erratum • discuss

Replacing Command • 57

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/command/register/Register.scala
http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/command/register/Register.scala
https://code.google.com/p/scalaz/
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Here’s our solution in action:

scala> val register = new CashRegister(0)
register: CashRegister = CashRegister@53f7eb48

scala> val purchaseOne = makePurchase(register, 100)
purchaseOne: () => Unit = <function0>

scala> val purchaseTwo = makePurchase(register, 50)
purchaseTwo: () => Unit = <function0>

scala> executePurchase(purchaseOne)
Purchase in amount: 100

scala> executePurchase(purchaseTwo)
Purchase in amount: 50

As you can see, the register now has the correct total:

scala> register.total
res2: Int = 150

If we reset the register to 0, we can replay the purchases using the ones we’ve
stored in the purchases vector:

scala> register.total = 0
register.total: Int = 0

scala> for(purchase <- purchases){ purchase.apply() }
Purchase in amount: 100
Purchase in amount: 50

scala> register.total
res4: Int = 150

Compared to the Java version, the Scala version is quite a bit more straight-
forward. No need for a Command, Purchase, or separate invoker class when you’ve
got higher-order functions.

In Clojure

The overall structure of the Clojure solution is similar to the Scala one. We’ll
use higher-order functions for our commands, and we’ll use an execution
function to execute them. The biggest difference between the Scala and Clojure
solutions is the cash register itself. Since Clojure doesn’t have object-oriented
features, we can’t create a CashRegister class.

Instead, we’ll simply use a Clojure atom to keep track of the cash in the register.
To do so, we’ll create a make-cash-register function that returns a fresh atom to

Chapter 3. Replacing Object-Oriented Patterns • 58

report erratum • discuss

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

represent a new register and an add-cash function that takes a register and an
amount. We’ll also create a reset function to reset our register to zero.

Here’s the code for the Clojure cash register:

ClojureExamples/src/mbfpp/oo/command/cash_register.clj
(defn make-cash-register []

(let [register (atom 0)]
(set-validator! register (fn [new-total] (>= new-total 0)))
register))

(defn add-cash [register to-add]
(swap! register + to-add))

(defn reset [register]
(swap! register (fn [oldval] 0)))

We can create an empty register:

=> (def register (make-cash-register))
#'mblinn.oo.command.ex1.version-one/register

And we’ll add some cash:

=> (add-cash register 100)
100

Now that we’ve got our cash register, let’s take a look at how we’ll create
commands. Remember, in Java this would require us to implement a Command
interface. In Clojure we just use a function to represent purchases.

To create them, we’ll use the make-purchase function, which takes a register and
an amount and returns a function that adds amount to register. Here’s the code:

ClojureExamples/src/mbfpp/oo/command/cash_register.clj
(defn make-purchase [register amount]

(fn []
(println (str "Purchase in amount: " amount))
(add-cash register amount)))

Here we use it to create a couple of purchases:

=> (def register (make-cash-register))
#'mblinn.oo.command.ex1.version-one/register
=> @register
0
=> (def purchase-1 (make-purchase register 100))
#'mblinn.oo.command.ex1.version-one/purchase-1
=> (def purchase-2 (make-purchase register 50))
#'mblinn.oo.command.ex1.version-one/purchase-2

And here we run them:

report erratum • discuss

Replacing Command • 59

http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/oo/command/cash_register.clj
http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/oo/command/cash_register.clj
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

=> (purchase-1)
Purchase in amount: 100
100
=> (purchase-2)
Purchase in amount: 50
150

To finish off the example, we’ll need our execution function, execute-purchase,
which stores the purchase commands before executing them. We’ll use an
atom, purchases, wrapped around a vector for that purpose. Here’s the code we
need:

ClojureExamples/src/mbfpp/oo/command/cash_register.clj
(def purchases (atom []))
(defn execute-purchase [purchase]

(swap! purchases conj purchase)
(purchase))

Now we can use execute-purchase to execute the purchases we defined above so
that this time we’ll get them in our purchase history. We’ll reset register first:

=> (execute-purchase purchase-1)
Purchase in amount: 100
100
=> (execute-purchase purchase-2)
Purchase in amount: 50
150

Now if we reset the register again, we can run through our purchase history
to rerun the purchases:

=> (reset register)
0
=> (doseq [purchase @purchases] (purchase))
Purchase in amount: 100
Purchase in amount: 50
nil
=> @register
150

That’s our Clojure solution! One tidbit I find interesting about it is how we
modeled our cash register without using objects by simply representing it as
a bit of data and functions that operate on it. This is, of course, common in
the functional world and it often leads to simpler code and smaller systems.

This might seem limiting to the experienced object-oriented programmer at
first; for instance, what if you need polymorphism or hierarchies of types?
Never fear, Clojure provides the programmer with all of the good stuff from
the object-oriented world, just in a different, more decoupled form. For

Chapter 3. Replacing Object-Oriented Patterns • 60

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/oo/command/cash_register.clj
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

instance, Clojure has a way to create ad hoc hierarchies, and its multimethods
and protocols give us polymorphism. We’ll look at some of these tools in more
detail in Pattern 10, Replacing Visitor, on page 113.

Discussion

I’ve found that Command, though it’s used everywhere, is one of the most
misunderstood patterns of Design Patterns: Elements of Reusable
Object-Oriented Software [GHJV95]. People often conflate the Command interface
with the Command pattern. The Command interface is only a small part of the
overall pattern and is itself an example of Pattern 1, Replacing Functional
Interface, on page 40. This isn’t to say that the way it’s commonly used is
wrong, but it is often different than the way the Gang of Four describes it,
which can lead to some confusion when talking about the pattern.

The examples in this section implemented a replacement for the full pattern
in all its invoker/receiver/client glory, but it’s easy enough to strip out
unneeded parts. For example, if we didn’t need our command to be able to
work with multiple registers, we wouldn’t have to pass a register into
makePurchase.

For Further Reading

Design Patterns: Elements of Reusable Object-Oriented Software [GHJV95]
—Command

Related Patterns
Pattern 1, Replacing Functional Interface, on page 40

report erratum • discuss

Replacing Command • 61

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Pattern 4

Replacing Builder for Immutable Object

Intent

To create an immutable object using a friendly syntax for setting
attributes—because we can’t modify them, we also need a simple way to create
new objects based off existing ones, setting some attributes to new values as
we do so.

Overview

In this section, we’ll cover Fluent Builder, which produces immutable objects.
This is a common pattern; Java’s standard library uses it with its StringBuilder
and StringBuffer. Many other common libraries use it as well, such as Google’s
protocol buffers framework.

Using immutable objects are a good practice that’s often ignored in Java,
where the most common way of carrying data around is in a class with a
bunch of getters and setters. This forces data objects to be mutable, and
mutability is the source of many common bugs.

The easiest way to get an immutable object in Java is just to create a class
that takes in all the data it needs as constructor arguments. Unfortunately,
as item 2 of the excellent Effective Java [Blo08] points out, this leads to a
couple of problems when dealing with a large number of attributes.

The first is that a Java class with many constructor arguments is very hard
to use. A programmer has to remember which argument goes in which posi-
tion, rather than referring to it by name. The second is that there is no easy
way to create defaults for attributes, since values for all attributes need to be
passed into the constructor.

One way to get around that is to create several different constructors that
take only a subset of values and that default the ones not passed in. For large
objects this leads to the telescoping constructor problem, where a class has to
implement many different constructors and pass values from the smaller
constructors to ever larger ones.

The builder pattern we examine in this section, outlined in Effective Java
[Blo08], solves both of these problems at the cost of quite a bit of code.

Chapter 3. Replacing Object-Oriented Patterns • 62

report erratum • discuss

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Functional Replacement

The techniques used to replace these two patterns in Scala and Clojure are
quite different, but both share the very important property that they make it
extremely simple to create immutable objects. Let’s take a look at Scala first.

In Scala

We’ll cover three different techniques for creating immutable data structures
in Scala, each of which has its own strengths and weaknesses.

First we’ll cover creating a Scala class that consists entirely of immutable
values. We’ll show how to use named parameters and default values to achieve
something very much like the fluent builder for an immutable object in Java
but with a fraction of the overhead.

Next we’ll take a look at Scala’s case classes. Case classes are meant specifi-
cally for carrying data, so they come with some handy methods already
implemented, like equals() and hashCode(), and they can be used with Scala’s
pattern matching to easily pick them apart. This makes them a good default
choice for many data carrying uses.

In both instances, we’ll use Scala’s constructors to create objects. Scala’s
constructors don’t have the same shortcomings as the Java constructors we
discussed earlier, because we can name parameters and provide them with
default values. This helps us avoid both the telescoping constructor problem
and the problems involved with passing in several unnamed parameters and
trying to remember which is which.

Finally, we’ll cover Scala tuples, which are a handy way to pass around small
composite data structures without having to create a new class.

In Clojure

Clojure has support for creating new classes, but it’s intended to be used
only for interop with Java. Instead, it’s common to use plain old immutable
maps to model aggregate data.

Coming from the Java world, it might seem like this is a bad idea, but since
Clojure has excellent support for working with maps, it’s actually very conve-
nient. Using maps to model data allows us the full power of Clojure’s sequence
library in manipulating that data, which is a very powerful.

Many libraries rely on inspecting data objects to perform operations on their
data, such as XStream, which serializes data objects to XML, or Hibernate,
which can generate SQL queries using them. To do this sort of programming

report erratum • discuss

Replacing Builder for Immutable Object • 63

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

in Java, you need to use the reflection library. With Clojure, you can just use
simple map operations.

The second way to model data in Clojure is to use a record. A record exposes
a map-like interface; so you can still use the full power of Clojure’s sequence
library on it, but records have a few advantages over maps.

First, records are generally more performant. In addition, records define a
type that can participate in Clojure’s polymorphism. To use the old object-
oriented chestnut, it allows us to define a make-noise that will bark when passed
a dog and meow when passed a cat. In addition, records let us constrain the
attributes that we can put into a data structure.

Generally, a good way to work in Clojure is to start off modeling your data
using maps and then switch to records when you need the additional speed,
you need to use polymorphism, or you just want to constrain the names of
the attributes you’re handling.

Sample Code: Immutable Data

In this section we’ll take a look at how to represent data in Java using a
builder for immutable objects. Then we’ll take a look at three ways of replacing
them in Clojure: regular classes with immutable attributes, case classes, and
tuples. Finally, we’ll take a look at two ways of replacing them in Clojure:
plain old maps and records.

Classic Java

In classic Java, we can use a fluent builder to create an immutable object
using nice syntax. To solve our problem, we create an ImmutablePerson that only
has getters for its attributes. Nested inside of that class, we create a Builder
class, which lets us construct an ImmutablePerson.

When we want to create an ImmutablePerson, we don’t construct it directly; we
create a new Builder, set the attributes we want to set, and then call build() to
get an ImmutablePerson. This is outlined below:

public class ImmutablePerson {

private final String firstName;
// more attributes

public String getFirstName() {
return firstName;

}
// more getters

Chapter 3. Replacing Object-Oriented Patterns • 64

report erratum • discuss

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

private ImmutablePerson(Builder builder) {
firstName = builder.firstName;
// set more attributes

}

public static class Builder {
private String firstName;
// more attributes

public Builder firstName(String firstName) {
this.firstName = firstName;
return this;

}
// more setters
public ImmutablePerson build() {

return new ImmutablePerson(this);
}

}
public static Builder newBuilder() {

return new Builder();
}

}

The downside is that we’ve got a whole lot of code for such a basic task.
Passing around aggregate data is one of the most basic things we do as pro-
grammers, so languages should give us a better way to do it. Thankfully, both
Scala and Clojure do. Let’s take a look, starting with Scala.

In Scala

We’ll take a look at three different ways of representing immutable data in
Scala: immutable classes, case classes, and tuples. Immutable classes are
plain classes that only contain immutable attributes; case classes are a special
kind of class intended to work with Scala’s pattern matching; and tuples are
immutable data structures that let us group data together without defining
a new class.

Immutable Classes
Let’s start by looking at the Scala way to produce immutable objects. All we
need to do is define a class that defines some vals as constructor arguments,
which will cause the passed-in values to be assigned to public vals. Here’s the
code for this solution:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/javabean/Person.scala
class Person(

val firstName: String,
val middleName: String,
val lastName: String)

report erratum • discuss

Replacing Builder for Immutable Object • 65

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/javabean/Person.scala
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Now we can create a Person using the constructor parameters positionally:

scala> val p1 = new Person("John", "Quincy", "Adams")
p1: Person = Person@83d2eb1

Or we can use them as named parameters:

scala> val p2 = new Person(firstName="John", middleName="Quincy", lastName="Adams")
p2: Person = Person@33d6798

We can add a default value for parameters, which lets us omit them when
using the named parameter form. Here we’re adding a default empty middle
name:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/javabean/Person.scala
class PersonWithDefault(

val firstName: String,
val middleName: String = "",
val lastName: String)

This lets us handle people who may not have a middle name:

scala> val p3 = new PersonWithDefault(firstName="John", lastName="Adams")
p3: PersonWithDefault = PersonWithDefault@6d0984e0

This gives us a simple way of creating immutable objects in Scala, but it does
have a few shortcomings. If we want object equality, hash codes, or a nice repre-
sentation when printed, we need to implement it ourselves. Case classes give us
all this out of the box and are designed to participate in Scala’s pattern matching.
They can’t, however, be extended, so they’re not suitable for all purposes.

Case Classes
A case class is defined using case class, as shown below:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/javabean/Person.scala
case class PersonCaseClass(

firstName: String,
middleName: String = "",
lastName: String)

Now we can create a PersonCaseClass in the same ways we’d create a normal
class, except we don’t have to use the new operator. Here we create one using
named parameters and by omitting the middle name:

scala> val p = PersonCaseClass(firstName="John", lastName="Adams")
p: PersonCaseClass = PersonCaseClass(John,,Adams)

Notice how the case class prints as PersonCaseClass(John,,Adams), and we didn’t
have to implement a toString(). We also get equals() and hashCode() for free with
case classes. Here, we test-drive equality:

Chapter 3. Replacing Object-Oriented Patterns • 66

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/javabean/Person.scala
http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/javabean/Person.scala
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

scala> val p2 = PersonCaseClass(firstName="John", lastName="Adams")
p2: PersonCaseClass = PersonCaseClass(John,,Adams)

scala> p.equals(p2)
res1: Boolean = true

scala> val p3 = PersonCaseClass(
firstName="John",
middleName="Quincy",
lastName="Adams")

p3: PersonCaseClass = PersonCaseClass(John,Quincy,Adams)

scala> p2.equals(p3)
res2: Boolean = false

Case classes are immutable, so we can’t modify them, but we can get the
same effect by using the copy() method to create a new case class based on
an existing one, as we do in the following REPL session:

scala> val p2 = p.copy(middleName="Quincy")
p2: com.mblinn.mbfpp.oo.javabean.PersonCaseClass =

PersonCaseClass(John,Quincy,Adams)

Finally, case classes can be used with Scala’s pattern matching. Here we use
a pattern match to pick apart the sixth American president:

scala> p3 match {
| case PersonCaseClass(firstName, middleName, lastName) => {
| "First: %s - Middle: %s - Last: %s".format(

firstName, middleName, lastName)
| }}

res0: String = First: John - Middle: Quincy - Last: Adams

There’s one final common way to represent data in Scala: tuples. Tuples let
us represent a fixed-size record, but they don’t create a new type as classes
and case classes do. They’re handy for explorative development; you can use
them to model your data during early phases when you’re not sure what it
looks like and then switch to classes or case classes later. Let’s take a look
at how they work.

Tuples
To create a tuple, you enclose the values that it contains inside of parentheses,
like so:

scala> def p = ("John", "Adams")
p: (java.lang.String, java.lang.String)

To get values back out, reference them by position, as we do below:

report erratum • discuss

Replacing Builder for Immutable Object • 67

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

scala> p._1
res0: java.lang.String = John

scala> p._2
res1: java.lang.String = Adams

Finally, tuples can be easily used in pattern matching, just like case classes:

scala> p match {
| case (firstName, lastName) => {
| println("First name is: " + firstName)
| println("Last name is: " + lastName)
| }}

First name is: John
Last name is: Adams

That covers the three main ways of working with immutable data in Scala.

Plain old immutable classes are handy when you’ve got more attributes than
the twenty-two that a case class can handle, though this might suggest that
it’s time to refine your data model or that your data objects need to have some
methods on them.

Case classes are useful when you want their built-in equals(), hashCode(), and
toString, or when you need to work with pattern matching. Finally, tuples are
great for explorative development; you can use them to simply model your
data before switching to classes or case classes.

In Clojure

We’ll take a look at two ways to represent immutable data in Clojure. The
first is simply storing it in a map, and the second uses a record. Maps are
the humble data structure that we all know and love; records are a bit differ-
ent. They allow us to define a data type and constrain the attributes that they
contain, but they still give us a map-like interface.

Maps
Let’s start by taking a look at the simpler of the two options: using an
immutable map. All we need to do is create a map with keywords for keys
and our data as values, as we do below:

ClojureExamples/src/mbfpp/oo/javabean/person.clj
(def p

{:first-name "John"
:middle-name "Quincy"
:last-name "Adams"})

Chapter 3. Replacing Object-Oriented Patterns • 68

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/oo/javabean/person.clj
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

We can get at attributes as we would with any map:

=> (p :first-name)
"John"
=> (get p :first-name)
"John"

One benefit that may not be so obvious is that we can use the full set of
operations that maps support, including the ones that treat maps as
sequences. For instance, if we wanted to uppercase all the parts of a name,
we could do it with the following code:

=> (into {} (for [[k, v] p] [k (.toUpperCase v)]))
{:middle-name "QUINCY", :last-name "ADAMS", :first-name "JOHN"}

In order to do something similar with objects and getters, we’d need to call
all the appropriate getters. That means we’ve taken a solution to a general
problem, the problem of capitalizing all the attributes in a data structure full
of strings, and reduced its generality to only capitalize the attributes of a
particular type, which in turn means we need to reimplement that solution
for every type of object.

Using immutable maps as one of the primary ways to carry data around has
a few other advantages. Creating them uses simple syntax, so you have no
constraints on the attributes you can add to them. This makes them great
for exploratory programming.

This flexibility has some downsides. Clojure maps aren’t as efficient as simple
Java classes, and once you’ve got your data model more fleshed out, it may
help to constrain the attributes you’re dealing with.

Most importantly, however, using plain maps makes it awkward for maps to
be used with polymorphism, because using a map doesn’t define a new type.
Let’s take a look at another Clojure feature that solves these problems but
still presents a map-like interface.

Records
To demonstrate records, let’s borrow an old object-oriented example: creating
cats and dogs. To create our Cat and Dog types, we use the code below:

ClojureExamples/src/mbfpp/oo/javabean/catsanddogslivingtogether.clj
(defrecord Cat [color name])

(defrecord Dog [color name])

We can treat them as maps so that we get the full power mentioned above:

report erratum • discuss

Replacing Builder for Immutable Object • 69

http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/oo/javabean/catsanddogslivingtogether.clj
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Awkward, Not Impossible

Earlier I said it was awkward to use maps when you want type-based polymorphism.
This is true, but Clojure is flexible enough that it’s merely awkward, not impossible.
We could encode the type in the map itself and use Clojure multimethods, as the
code below shows:

ClojureExamples/src/mbfpp/oo/javabean/sidebar.clj
(def cat {:type :cat

:color "Calico"
:name "Fuzzy McBootings"})

(def dog {:type :dog
:color "Brown"
:name "Brown Dog"})

(defmulti make-noise (fn [animal] (:type animal)))
(defmethod make-noise :cat [cat] (println (str (:name cat)) "meows!"))
(defmethod make-noise :dog [dog] (println (str (:name dog)) "barks!"))

In general, if you want polymorphism on types, it’s best to just use a protocol and
save multimethods for fancier polymorphism, when you need the full power that
comes with being able to define your own dispatch function.

=> (def cat (Cat. "Calico" "Fuzzy McBootings"))
#'mbfpp.oo.javabean.catsanddogslivingtogether/cat
=> (def dog (Dog. "Brown" "Brown Dog"))
#'mbfpp.oo.javabean.catsanddogslivingtogether/dog
=> (:name cat)
"Fuzzy McBootings"
=> (:name dog)
"Brown Dog"

And they can easily participate in polymorphism using Clojure’s protocols.
Here we define a protocol that has a single function, make-noise, and we create
a NoisyCat and NoisyDog to take advantage of it:

ClojureExamples/src/mbfpp/oo/javabean/catsanddogslivingtogether.clj
(defprotocol NoiseMaker

(make-noise [this]))

(defrecord NoisyCat [color name]
NoiseMaker
(make-noise [this] (str (:name this) "meows!")))

(defrecord NoisyDog [color name]
NoiseMaker
(make-noise [this] (str (:name this) "barks!")))

=> (def noisy-cat (NoisyCat. "Calico" "Fuzzy McBootings"))
#'mbfpp.oo.javabean.catsanddogslivingtogether/noisy-cat

Chapter 3. Replacing Object-Oriented Patterns • 70

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/oo/javabean/sidebar.clj
http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/oo/javabean/catsanddogslivingtogether.clj
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

=> (def noisy-dog (NoisyDog. "Brown" "Brown Dog"))
#'mbfpp.oo.javabean.catsanddogslivingtogether/noisy-dog
=> (make-noise noisy-cat)
"Fuzzy McBootingsmeows!"
=> (make-noise noisy-dog)
"Brown Dogbarks!"

Those are the two main ways to carry data around in Clojure. The first, plain
old maps, is a good place to start. Once you’ve got your data model more
nailed down, or if you want to take advantage of Clojure’s protocol polymor-
phism, you can switch over to a record.

Discussion

There’s a basic tension between locking down your data structures and
keeping them flexible. Keeping them flexible helps during development time,
while your data model is in flux, but locking them down can help to bring
bugs to the surface earlier, which is important once your code is in production.
This is mirrored somewhat in the wider technical world with some of the
debate surrounding traditional relational databases, which impose a strict
schema, and some of the newer nonrelational ones, which have no schemas
or have more relaxed schemas, with both sides claiming their approach is
better.

In reality, both approaches are useful, depending on the situation. Clojure
and Scala give us the best of both worlds here by letting us keep our data
structures flexible in the beginning (using maps in Clojure and tuples in
Scala) and letting us lock them down as we understand our data better (using
records in Clojure and classes or case classes in Scala).

For Further Reading
Effective Java [Blo08]—Item 2: Consider a Builder When Faced with Many Construc-
tor Parameters

Effective Java [Blo08]—Item 15: Minimize Mutability

Related Patterns
Pattern 19, Focused Mutability, on page 196

report erratum • discuss

Replacing Builder for Immutable Object • 71

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Pattern 5

Replacing Iterator

Intent

To iterate through the elements of a sequence in order, without having to
index into it

Overview

An iterator is an object that allows us to iterate over all the objects in a
sequence. It does so by maintaining an internal bit of state that keeps track
of where in the sequence the iterator is currently. At its simplest, an imple-
mentation of Iterator just requires a method that returns the next item in the
sequence, with some sentinel value returned when there are no more items.

Most implementations have a separate method to check to see if the iterator
has any more items, rather than using a sentinel to check. Some implemen-
tations of Iterator allow the underlying collection to be modified by removing
the current item.

Also Known As

Cursor
Enumerator

Functional Replacement

In this section, we’ll focus on replacing an iterator with a combination of
higher-order functions and sequence comprehensions. A sequence comprehension
is a clever technique that lets us take one sequence and transform it into
another in some sophisticated ways. They’re a bit like the map function on
steroids.

Many basic uses of Iterator can be replaced by simple higher-order functions.
For instance, summing a sequence can be done in Clojure using the reduce
higher-order function.

Other, more complex uses can be handled with sequence comprehensions.
Sequence comprehensions provide a concise way to create a new sequence
from an old one, including the ability to filter out unwanted values.

Chapter 3. Replacing Object-Oriented Patterns • 72

report erratum • discuss

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

In this section we’ll stick with the uses of Iterator that can be expressed using
a Java foreach loop. Other, less common uses can be replaced by the functional
patterns Pattern 12, Tail Recursion, on page 138, and Pattern 13, Mutual
Recursion, on page 146.

Sample Code: Higher-Order Functions

Let’s start by looking at a grab bag of simple uses of Iterator that can be
replaced with higher-order functions. First we’ll look at identifying the vowels
in a string, then we’ll take a look at prepending a list of names with "Hello, ",
and finally we’ll sum up a sequence.

We’ll look at these examples first in an iterative style written in Java, and
then we’ll collapse them into a more declarative style in Scala and Clojure.

Classic Java

To identify the set of vowels in a word, we iterate through the characters and
check each character against the set of all vowels. If it’s in the set of all vowels,
we add it to vowelsInWorld and return it. The code below, which assumes an
isVowel() helper method, illustrates this solution:

JavaExamples/src/main/java/com/mblinn/oo/iterator/HigherOrderFunctions.java
public static Set<Character> vowelsInWord(String word) {

Set<Character> vowelsInWord = new HashSet<Character>();

for (Character character : word.toLowerCase().toCharArray()) {
if (isVowel(character)) {

vowelsInWord.add(character);
}

}

return vowelsInWord;
}

There’s a higher-level pattern here: we’re filtering some type of element out
of a sequence. Here it’s vowels in a string, but it could be odd numbers, people
named “Michael” or anything else. We’ll exploit this higher-order pattern in
our functional replacement, which uses the filter function.

Next up, let’s discuss prepending a list of names with the “Hello, ” string.
Here we take in a list of names, iterate through them, prepend “Hello, ” to
each name, and add it to a new list. Finally we return that list.

The code below demonstrates this approach:

report erratum • discuss

Replacing Iterator • 73

http://media.pragprog.com/titles/mbfpp/code/JavaExamples/src/main/java/com/mblinn/oo/iterator/HigherOrderFunctions.java
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

JavaExamples/src/main/java/com/mblinn/oo/iterator/HigherOrderFunctions.java
public static List<String> prependHello(List<String> names) {

List<String> prepended = new ArrayList<String>();
for (String name : names) {

prepended.add("Hello, " + name);
}
return prepended;

}

Again, there’s a higher-level pattern hiding here. We’re mapping an operation
onto each item in a sequence, here prepending a word with the “Hello, ” string.
We’ll see how we can use the higher-order map function to do so.

Let’s examine one final problem: summing up a sequence of numbers. In
classic Java, we’d compute a sum by iterating through a list and adding each
number to a sum variable, as in the code below:

JavaExamples/src/main/java/com/mblinn/oo/iterator/HigherOrderFunctions.java
public static Integer sumSequence(List<Integer> sequence) {

Integer sum = 0;
for (Integer num : sequence) {

sum += num;
}
return sum;

}

This type of iteration is an example of another pattern, performing an operation
on a sequence to reduce it to a single value. We’ll take advantage of that
pattern in our functional replacement using the reduce function and a closely
related function known as fold.

In Scala

Let’s take a look at the first of our examples, returning the set of vowels in a word.
In the functional world, this can be done in two steps: first we use filter() to filter
all the vowels out of a word, and then we take that sequence and turn it into a
set to remove any duplicates. To do our filtering, we can take advantage of the
fact that Scala sets can be called as predicate functions. If the set contains the
passed-in argument, it returns true; otherwise it returns false, as the code below
shows:

scala> val isVowel = Set('a', 'e', 'i', 'o', 'u')
isVowel: scala.collection.immutable.Set[Char] = Set(e, u, a, i, o)

scala> isVowel('a')
res0: Boolean = true

scala> isVowel('z')
res1: Boolean = false

Chapter 3. Replacing Object-Oriented Patterns • 74

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/JavaExamples/src/main/java/com/mblinn/oo/iterator/HigherOrderFunctions.java
http://media.pragprog.com/titles/mbfpp/code/JavaExamples/src/main/java/com/mblinn/oo/iterator/HigherOrderFunctions.java
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Now we can use the isVowel() from above, along with filter() and toSet(), to get a
set of vowels out of a string:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/iterator/HigherOrderFunctions.scala
val isVowel = Set('a', 'e', 'i', 'o', 'u')
def vowelsInWord(word: String) = word.filter(isVowel).toSet

Here we can see it in action, filtering vowels out of a string:

scala> vowelsInWord("onomotopeia")
res4: scala.collection.immutable.Set[Char] = Set(o, e, i, a)

scala> vowelsInWord("yak")
res5: scala.collection.immutable.Set[Char] = Set(a)

Our next example—prepending a list of names with “Hello, ”—can be written
by mapping a function that does the prepending over a sequence of strings.
Here, mapping just means that the function is applied to each element in a
sequence and that a new sequence is returned with the result. Here we map
a function that prepends the string "Hello, " to each name in a sequence:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/iterator/HigherOrderFunctions.scala
def prependHello(names : Seq[String]) =

names.map((name) => "Hello, " + name)

This does the job, as the code below shows. The Scala REPL inserts commas
between elements in a sequence, so it’s putting an additional comma between
each of our greetings.

scala> prependHello(Vector("Mike", "John", "Joe"))
res0: Seq[java.lang.String] = Vector(Hello, Mike, Hello, John, Hello, Joe)

Finally, our last example—summing a sequence. We’re using an operation,
in this case, addition, to take a sequence and reduce it to a single value. In
Scala, the simplest way to do this is to use the aptly named reduce method,
which takes a single argument, a reducing function.

Here we create a reducing function that adds its arguments together, and we
use it to sum a sequence:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/iterator/HigherOrderFunctions.scala
def sumSequence(sequence : Seq[Int]) =

if(sequence.isEmpty) 0 else sequence.reduce((acc, curr) => acc + curr)

Let’s take a look at it in action:

scala> sumSequence(Vector(1, 2, 3, 4, 5))
res0: Int = 15

That’s it—no iterating, no mutation, just a simple higher-order function!

report erratum • discuss

Replacing Iterator • 75

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/iterator/HigherOrderFunctions.scala
http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/iterator/HigherOrderFunctions.scala
http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/iterator/HigherOrderFunctions.scala
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

In Clojure

Our first example takes advantage of the same trick we used in Scala, where
a set can be used as a predicate function. If the passed-in element is in the
set, it’s returned (remember, anything but false and nil is treated as true in
Clojure); otherwise nil is returned.

Here we take advantage of that property of Clojure sets to define a vowel?
predicate, which we can then use with filter to filter the vowels out of a
sequence. We then use Clojure’s set function to construct a new set from an
existing sequence. The code below puts it all together:

ClojureExamples/src/mbfpp/oo/iterator/higher_order_functions.clj
(def vowel? #{\a \e \i \o \u})
(defn vowels-in-word [word]

(set (filter vowel? word)))

Now we can use it to filter out sets of vowels from a word:

=> (vowels-in-word "onomotopeia")
#{\a \e \i \o}
=> (vowels-in-word "yak")
#{\a}

Next up is our friendly little hello prepender, prepend-hello. Just like the Scala
example, we simply use map to map a function that prepends "Hello, " to each
name in a sequence of names. Here’s the code:

ClojureExamples/src/mbfpp/oo/iterator/higher_order_functions.clj
(defn prepend-hello [names]

(map (fn [name] (str "Hello, " name)) names))

We can use this to generate a set of greetings:

=> (prepend-hello ["Mike" "John" "Joe"])
("Hello, Mike" "Hello, John" "Hello, Joe")

Finally, let’s look at how we’d sum a sequence in Clojure. Just like Scala, we
can use the reduce function, though we don’t have to create our own function
to add integers together as we did in Scala: we can just use Clojure’s + func-
tion. Here’s the code:

ClojureExamples/src/mbfpp/oo/iterator/higher_order_functions.clj
(defn sum-sequence [s]

{:pre [(not (empty? s))]}
(reduce + s))

And here we are using it to sum a sequence:

=> (sum-sequence [1 2 3 4 5])
15

Chapter 3. Replacing Object-Oriented Patterns • 76

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/oo/iterator/higher_order_functions.clj
http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/oo/iterator/higher_order_functions.clj
http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/oo/iterator/higher_order_functions.clj
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Those unfamiliar with Clojure might find it a bit odd that the + is just
another function that we can pass into reduce, but this is one of the strengths
of Clojure and Lisps in general. Many things that would be special operators
in other languages are just functions in Clojure, which lets us use them as
arguments to higher-order functions like reduce.

One note on reduce in Clojure and Scala: While we were able to use them the
same way here, they’re actually somewhat different. Scala’s reduce() operates
over a sequence of some type, and it returns a single item of that type. For
instance, reducing a List of Int will return a single Int.

Clojure, on the other hand, allows you to return anything at all from its reduce
function, including another collection of some sort! This is more general (and
often very handy), and Scala supports this more general idea of reduction
under a different name, foldLeft().

It’s usually easier and clearer in Scala to use reduce() when you truly are
reducing a sequence of some type to a single instance of that type, and to use
foldLeft() otherwise.

Sample Code: Sequence Comprehensions

Both Scala and Clojure support a very handy feature called a sequence com-
prehension. Sequence comprehensions give us a handy syntax that lets us
do a few different things together. Much like the map function, sequence
comprehensions let us transform one sequence into another. Sequence com-
prehensions also let us include a filtering step, and they provide a handy way
to get at pieces of aggregate data, known as destructuring.

Let’s take a look at how we’d use sequence comprehensions to solve a delicious
little problem. We’ve got a list of people who asked to be notified when our
new restaurant, The Lambda Bar and Grille, opens, and we’d like to send
them an invitation to a grand-opening party.

We’ve got names and addresses, and we figure that people who live closest
to the Lambda will be more likely to come, so we’d like to send invitations to
them first. Finally, we’d like to filter out people who live so far away that we’re
entirely sure they won’t come.

We decide to solve the problem like so: we’ll put our customers into groups
based on zip codes, and we’ll send invitations to the groups of people in zip
codes closest to our restaurant first. Additionally, we’ll constrain ourselves
to a small group of close zip codes.

report erratum • discuss

Replacing Iterator • 77

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Let’s see how to solve this problem. We’ll start, as always, with the iterative
solution in Java, and then we’ll move onto functional ones using sequence
comprehensions in Scala and Clojure.

Classic Java

In Java, we create a Person and an Address in the customary JavaBean format,
and we create a method, peopleByZip(), that takes in a list of people, filters out
the ones who don’t live close enough, and returns a map keyed off zip codes
that contains lists of people in each zip code.

To do this we use a standard iterative solution with a couple of helper methods.
The first, addPerson(), adds a person to a list, creating the list if it doesn’t already
exist, so we can handle the case where we come across the first person in a
zip code.

The second, isCloseZip(), returns true if the zip is close enough to the Lambda
Bar and Grille to get an invite to the party, and false otherwise. To keep the
example small, we’ve hard-coded just a couple of zip codes in there, but since
we’ve factored that check out into its own method, it would be easy to change
it to pull from some dynamic data source of zip codes we care about.

To solve the problem, we just iterate through the list of people. For each per-
son, we check to see if he or she has a close zip code, and if yes we add them
to a map of lists of people keyed off of zip codes called closePeople. When we’re
all done with our iteration, we just return the map. This solution is outlined
below:

JavaExamples/src/main/java/com/mblinn/oo/iterator/TheLambdaBarAndGrille.java
public class TheLambdaBarAndGrille {

public Map<Integer, List<String>> peopleByZip(List<Person> people) {
Map<Integer, List<String>> closePeople =

new HashMap<Integer, List<String>>();

for (Person person : people) {
Integer zipCode = person.getAddress().getZipCode();
if (isCloseZip(zipCode)){

List<String> peopleForZip =
closePeople.get(zipCode);

closePeople.put(zipCode,
addPerson(peopleForZip, person));

}
}

return closePeople;
}

Chapter 3. Replacing Object-Oriented Patterns • 78

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/JavaExamples/src/main/java/com/mblinn/oo/iterator/TheLambdaBarAndGrille.java
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

private List<String> addPerson(List<String> people, Person person) {
if (null == people)

people = new ArrayList<String>();
people.add(person.getName());
return people;

}
private Boolean isCloseZip(Integer zipCode) {

return zipCode == 19123 || zipCode == 19103;
}

}

This is a fairly simple data transformation, but it takes quite a bit of doing
in an imperative style since we need to muck about with adding elements to
the new list, and we don’t have a first-class way of filtering elements from the
existing one. The more declarative sequence comprehensions help us bump
up the level of abstraction here. Now let’s take a look at Scala’s version.

In Scala

In Scala, we can use Scala’s syntax for sequence comprehensions, the for
comprehension, to generate our greetings in a cleaner way. We’ll use case
classes for our Person and Address, and we’ll write a for comprehension that
takes in a sequence of Person and produces a sequence of greetings.

For comprehensions are handy for this for a few reasons. The first is that we
can use Scala’s pattern-matching syntax inside of them, which gives us a
concise way to pick apart a Person into a name and an address.

Second, for comprehensions let us include a filter directly in the comprehen-
sion itself, known as a guard, so we don’t need a separate if statement to filter
out people with the wrong zip codes. Finally, for comprehensions are intended
to create new sequences, so there’s no need to have a temporary list to
accumulate new values into; we simply return the value of the comprehension.

With a for comprehension, we’ll still use a helper isCloseZip() method, but we’ll
use it as part of a guard in the for comprehension itself, and we’ll do away
with the mutable list of greetings from the Java solution entirely, since the
result we want is just the value of the for comprehension itself.

The code for the entire solution is below:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/iterator/TheLambdaBarAndGrille.scala
case class Person(name: String, address: Address)
case class Address(zip: Int)
def generateGreetings(people: Seq[Person]) =

for (Person(name, address) <- people if isCloseZip(address.zip))
yield "Hello, %s, and welcome to the Lambda Bar And Grille!".format(name)

def isCloseZip(zipCode: Int) = zipCode == 19123 || zipCode == 19103

report erratum • discuss

Replacing Iterator • 79

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/iterator/TheLambdaBarAndGrille.scala
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

One thing that may not be obvious when using for comprehensions is how
to deal with situations when we absolutely need side effects. Since we’re
programming in the functional style this should be fairly rare. As we saw
above, we don’t need a mutable list to generate our list of greetings. One
simple use of side effects that we still need in the functional world is printing
to the console.

Here we’ve rewritten the example to just print the greetings to the console,
rather than gathering them up into a sequence:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/iterator/TheLambdaBarAndGrille.scala
def printGreetings(people: Seq[Person]) =

for (Person(name, address) <- people if isCloseZip(address.zip))
println("Hello, %s, and welcome to the Lambda Bar And Grille!".format(name))

We’ve only touched on the basics of Scala’s for comprehensions here; they’re
very powerful beasts. They can be used with multiple sequences and multiple
guards at the same time, among several other features, but the ones that
we’ve covered here let us handle the most common cases where we’d use the
Iterator pattern.

In Clojure

Clojure also has built-in sequence comprehensions using the for macro. Just
as in Scala, the primary point of a Clojure sequence comprehension is to take
one sequence and transform it into another with built-in filtering. Clojure’s
sequence comprehensions also provide a handy way of pulling apart aggregate
data with destructuring.

Since Clojure and Scala’s sequence comprehensions are similar, at least for
this basic usage, the structure of the solution looks pretty much the same.
We’ve got a close-zip? function that takes advantage of Clojure’s handy set-as-
function feature, and a generate-greetings function that consists of a single for
statement.

The for statement uses close-zip? to filter out people outside of the zips we care
about, and then it generates a greeting to the people who are left. The code
is below:

ClojureExamples/src/mbfpp/oo/iterator/lambda_bar_and_grille.clj
(def close-zip? #{19123 19103})

(defn generate-greetings [people]
(for [{:keys [name address]} people :when (close-zip? (address :zip-code))]

(str "Hello, " name ", and welcome to the Lambda Bar And Grille!")))

Chapter 3. Replacing Object-Oriented Patterns • 80

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/iterator/TheLambdaBarAndGrille.scala
http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/oo/iterator/lambda_bar_and_grille.clj
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Clojure also has a way to use a sequence comprehension-like syntax for side
effects, though Clojure separates it out into a doseq macro. Here we use doseq
to print our list of greetings rather than gather them up:

ClojureExamples/src/mbfpp/oo/iterator/lambda_bar_and_grille.clj
(defn print-greetings [people]

(for [{:keys [name address]} people :when (close-zip? (address :zip-code))]
(println (str "Hello, " name ", and welcome to the Lambda Bar And Grille!"))))

Scala and Clojure’s sequence comprehensions are similar in some respects,
though not all. Scala’s for statement is generally used more pervasively, and
often in ways that seem surprising to the uninitiated. For instance, the for
statement can be used in conjunction with Scala’s option type to provide an
elegant solution to problems that would require lots of null checks in Java,
as we cover in Pattern 8, Replacing Null Object, on page 99.

Also, while Scala’s pattern matching and Clojure’s destructuring have some
similarity, both allow us to pick apart aggregate data structures; pattern
matching in Scala is less flexible than Clojure’s destructuring. Destructuring
lets us pick apart arbitrary maps and vectors, while Scala’s pattern matching
is confined to case classes and a few other constructs that are statically
defined at compile time.

Discussion

One nonobvious difference between Iterator and the solutions we covered in
this chapter is that Iterator is fundamentally imperative because it relies on
mutable state. Every iterator has a bit of state inside it that keeps track of
where the iterator is currently. This can get you in trouble if you start passing
iterators around and part of your program unexpectedly advances the iterator,
affecting another part.

In contrast, the solutions we’ve gone over in this chapter rely on transforming
one immutable sequence into another. In fact, the sequence comprehensions
we went over are both examples of a technique popularized by the highly
functional language Haskell that is known as monadic transformations, which
rely on a concept from category theory known as monads.

Explaining monads is a bit of a cottage industry among functional program-
mers and has inspired many a blog post attempting to explain monads by
analogy to, among other things, burritos, elephants, writing desks, and
Muppets. We won’t put you through another such explanation here; it’s not
necessary to understand monads to use sequence comprehensions, and nei-
ther Scala nor Clojure particularly emphasize the monadic nature of their
respective comprehensions.

report erratum • discuss

Replacing Iterator • 81

http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/oo/iterator/lambda_bar_and_grille.clj
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

At a very high level though, one of the things monads do is provide a way to
program in a very functional style by transforming immutable data in a
pipeline rather than relying on mutable state. Readers curious about monads
should check out the excellent Learn You a Haskell for Great Good! A
Beginner’s Guide [Lip11].

For Further Reading
Design Patterns: Elements of Reusable Object-Oriented Software [GHJV95]—Iterator

Java Standard Library3

Related Patterns
Pattern 12, Tail Recursion, on page 138

Pattern 13, Mutual Recursion, on page 146

Pattern 14, Filter-Map-Reduce, on page 155

3. http://docs.oracle.com/javase/7/docs/api/java/util/Iterator.html

Chapter 3. Replacing Object-Oriented Patterns • 82

report erratum • discuss

http://docs.oracle.com/javase/7/docs/api/java/util/Iterator.html
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Pattern 6

Replacing Template Method

Intent

To specify the outline of an algorithm, letting callers plug in some of the
specifics

Overview

The Template Method pattern consists of an abstract class that defines some
operation, or set of operations, in terms of abstract suboperations. Users of
Template Method implement the abstract template class to provide implemen-
tation of the substeps. A template class looks like this code snippet:

public abstract class TemplateExample{

public void anOperation(){
subOperationOne();
subOperationTwo();

}

protected abstract void subOperationOne();

protected abstract void subOperationTwo();
}

To use it, extend the TemplateExample and implement the abstract suboperations.

For instance, to use Template Method for board games, create a Game template
that defines the abstract set of steps it takes to play a board game (setUpBoard(),
makeMove(), declareWinner(), and so on). To implement any particular board game,
extend the abstract Game class and implement the substeps as appropriate
for a particular game.

Functional Replacement

Our functional replacement for Template Method will satisfy its intent, which
is to create a skeleton for some algorithm and let callers plug in the details.
Instead of using classes to implement our suboperations, we’ll use higher-
order functions; and instead of relying on subclassing, we’ll rely on function
composition. We’ll do so by passing the suboperations into a Function Builder
and having it return a new function that does the full operation.

report erratum • discuss

Replacing Template Method • 83

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

An outline of this approach in Scala looks like so:

def makeAnOperation(
subOperationOne: () => Unit,
subOperationTwo: () => Unit) =
() => {

subOperationOne()
subOperationTwo()

}

This lets us program more directly, since we no longer need to define subop-
erations and subclasses.

Sample Code: Grade Reporter

As an example, let’s take a look at a template method that prints grade reports.
It does this in two steps. The first takes a list of grades in numeric form and
translates them into letter form, and the second formats and prints the report.

Since those two steps can be done in many different ways, we’ll just specify
the skeleton required to create a grade report, translate the grades first, and
then format and print the report, and we’ll leave it up to individual implemen-
tations to specify exactly how the grades are translated and the report is
printed.

We’ll also go over two such implementations. The first translates to the full
letter grades A, B, C, D, and F and prints a simple histogram. The second adds
plus and minus grades to some of the letters and prints a full list of grades.

Classic Java

A sketch of using Template Method to solve this problem in classic Java uses
the following: a GradeReporterTemplate that has a single fully implemented method,
reportGrades(), and two abstract methods, numToLetter() and printGradeReport().

The numToLetter() method specifies how to convert a single numeric grade into
a letter grade, and printGradeReport() specifies how to format and print a grade
report. Both methods must be implemented by users of the template. The
class diagram provides an outline:

To get template implementations with different behaviors, the user of the
Template class creates different subclasses with different implementations
of numToLetter() and printGradeReport().

In Scala

Instead of relying on inheritance, the Scala replacement for Template Method
uses Function Builder to compose together suboperations.

Chapter 3. Replacing Object-Oriented Patterns • 84

report erratum • discuss

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Figure 5—Grade Reporter Template. Using Template Method to report grades

The core of the solution is the function makeGradeReporter(), which takes a
numToLetter() function to translate numeric grades to letter grades and a print-
GradeReport() to print the report. The makeGradeReporter() function returns a new
function that composes its input functions together.

We’ll also need a couple of different implementations of the numToLetter() and
printGradeReport() functions so we can see this solution in action.

Let’s start by looking at makeGradeReporter(). It takes numToLetter() and printGradeRe-
port() as arguments and produces a new function that takes a Seq[Double] to
represent a list of grades. It then uses map() to convert each grade to a letter
grade and passes the new list into printGradeReport(). Here’s the code:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/tm/GradeReporter.scala
def makeGradeReporter(

numToLetter: (Double) => String,
printGradeReport: (Seq[String]) => Unit) = (grades: Seq[Double]) => {

printGradeReport(grades.map(numToLetter))
}

Now let’s take a look at the functions we’ll need to convert to full letter grades
and to print a histogram. The first, fullGradeConverter(), just uses a big if-else
statement to do the grade conversion:

report erratum • discuss

Replacing Template Method • 85

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/tm/GradeReporter.scala
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/tm/GradeReporter.scala
def fullGradeConverter(grade: Double) =

if(grade <= 5.0 && grade > 4.0) "A"
else if(grade <= 4.0 && grade > 3.0) "B"
else if(grade <= 3.0 && grade > 2.0) "C"
else if(grade <= 2.0 && grade > 0.0) "D"
else if(grade == 0.0) "F"
else "N/A"

The next, printHistogram(), is a bit more involved. It uses a method named
groupBy() to group grades together into a Map, which it then turns into a list of
tuples of counts using the map() method. Finally, it uses a for comprehension
to print the histogram, as the code below shows:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/tm/GradeReporter.scala
def printHistogram(grades: Seq[String]) = {

val grouped = grades.groupBy(identity)
val counts = grouped.map((kv) => (kv._1, kv._2.size)).toSeq.sorted
for(count <- counts) {

val stars = "*" * count._2
println("%s: %s".format(count._1, stars))

}
}

Let’s take a look at this sample line by line, starting with the first line of
printHistogram()’s body:

val grouped = grades.groupBy(identity)

The groupBy() method takes in a function and uses it to group together all the
elements of a sequence for which the function returns the same value. Here
we pass in the identify function, which just returns whatever was passed in
so we can group together all grades that are the same. The REPL output below
shows us using this snippet to group together a vector of grades:

scala> val grades = Vector("A", "B", "A", "B", "B")
grades: scala.collection.immutable.Vector[java.lang.String] = Vector(A, B, A, B, B)

scala> val grouped = grades.groupBy(identity)
grouped: scala.collection.immutable.Map[...] =

Map(A -> Vector(A, A), B -> Vector(B, B, B))

Next we take the map of grouped grades and use map() and toSeq() to turn it
into a sequence of tuples, where the first element is the grade and the second
element is the grade count. Then we sort that sequence. By default, Scala
sorts sequences of tuples by their first element, so this gives us a sorted
sequence of grade counts.

val counts = grouped.map((kv) => (kv._1, kv._2.size)).toSeq.sorted

Chapter 3. Replacing Object-Oriented Patterns • 86

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/tm/GradeReporter.scala
http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/tm/GradeReporter.scala
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

The REPL output below shows us using this code snippet to get our sequence
of grade counts:

scala> val counts = grouped.map((kv) => (kv._1, kv._2.size)).toSeq.sorted
counts: Seq[(java.lang.String, Int)] = ArrayBuffer((A,2), (B,3))

Finally we use a for comprehension over the sequence of tuples to print up
a histogram of grades, as the snippet below shows:

for(count <- counts) {
val stars = "*" * count._2

println("%s: %s".format(count._1, stars))
}

This highlights an interesting use of Scala’s * operator. It can be used to repeat
a string, as the following REPL output demonstrates:

scala> "*" * 5
res0: String = *****

Now we just need to use makeGradeReporter() to compose our two functions
together to create fullGradeReporter(), as the following code does:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/tm/GradeReporter.scala
val fullGradeReporter = makeGradeReporter(fullGradeConverter, printHistogram)

Then we can define some sample data and run fullGradeReporter() to print a
histogram:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/tm/GradeReporter.scala
val sampleGrades = Vector(5.0, 4.0, 4.4, 2.2, 3.3, 3.5)

scala> fullGradeReporter(sampleGrades)
A: **
B: ***
C: *

Now if we want to change the way we do our grade conversion and report
printing, we only need to create additional conversion and reporting functions.
We can use makeGradeReporter() to compose them together.

Let’s see how to rewrite the Template Method example that converts to
plus/minus grades and prints up a full list of them. As before, we’ll need two
functions. The first is plusMinusGradeConverter(), for our grade conversions. The
second is the printAllGrades() method, which just prints a simple list of converted
grades.

Here’s the code for our plusMinusGradeConverter() function:

report erratum • discuss

Replacing Template Method • 87

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/tm/GradeReporter.scala
http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/tm/GradeReporter.scala
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/tm/GradeReporter.scala
def plusMinusGradeConverter(grade: Double) =

if(grade <= 5.0 && grade > 4.7) "A"
else if(grade <= 4.7 && grade > 4.3) "A-"

else if(grade <= 4.3 && grade > 4.0) "B+"
else if(grade <= 4.0 && grade > 3.7) "B"
else if(grade <= 3.7 && grade > 3.3) "B-"
else if(grade <= 3.3 && grade > 3.0) "C+"
else if(grade <= 3.0 && grade > 2.7) "C"
else if(grade <= 2.7 && grade > 2.3) "C-"
else if(grade <= 2.3 && grade > 0.0) "D"
else if(grade == 0.0) "F"
else "N/A"

And here’s the code for printAllGrades():

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/tm/GradeReporter.scala
def printAllGrades(grades: Seq[String]) =

for(grade <- grades) println("Grade is: " + grade)

Now we just need to compose them together using makeGradeReporter(), and we
can use it to create a full grade report, as the code below shows:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/tm/GradeReporter.scala
val plusMinusGradeReporter =

makeGradeReporter(plusMinusGradeConverter, printAllGrades)

scala> plusMinusGradeReporter(sampleGrades)
Grade is: A
Grade is: B
Grade is: A-
Grade is: D
Grade is: C+
Grade is: B-

That wraps up our replacement for Template Method in Scala. Next up, let’s
take a look at how things look in Clojure.

In Clojure

The Clojure replacement for Template Method is similar to the Scala one.
Just as in Scala, we’ll use Pattern 16, Function Builder, on page 167, named
make-grade-reporter, to compose together a function that converts numeric grades
to letter grades and a function that prints a report. The make-grade-reporter
returns a function that maps num-to-letter over a sequence of numeric grades.
Let’s take a look at the code for it first:

ClojureExamples/src/mbfpp/oo/tm/grade_reporter.clj
(defn make-grade-reporter [num-to-letter print-grade-report]

(fn [grades]
(print-grade-report (map num-to-letter grades))))

Chapter 3. Replacing Object-Oriented Patterns • 88

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/tm/GradeReporter.scala
http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/tm/GradeReporter.scala
http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/tm/GradeReporter.scala
http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/oo/tm/grade_reporter.clj
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Converting a numeric grade to a full letter grade is just a matter of a simple
cond expression, as we can see below:

ClojureExamples/src/mbfpp/oo/tm/grade_reporter.clj
(defn full-grade-converter [grade]

(cond
(and (<= grade 5.0) (> grade 4.0)) "A"
(and (<= grade 4.0) (> grade 3.0)) "B"
(and (<= grade 3.0) (> grade 2.0)) "C"
(and (<= grade 2.0) (> grade 0)) "D"
(= grade 0) "F"
:else "N/A"))

Printing a histogram can be done much the way we did it in Scala, using group-
by to group grades together, mapping a function over the grouped grades to
get counts, and then using a sequence comprehension to print the final his-
togram. Here’s the code to print a histogram:

ClojureExamples/src/mbfpp/oo/tm/grade_reporter.clj
(defn print-histogram [grades]

(let [grouped (group-by identity grades)
counts (sort (map

(fn [[grade grades]] [grade (count grades)])
grouped))]

(doseq [[grade num] counts]
(println (str grade ":" (apply str (repeat num "*")))))))

Now we can use make-grade-reporter to combine full-grade-converter and print-histogram
into a new function, full-grade-reporter. The code to do so is below:

ClojureExamples/src/mbfpp/oo/tm/grade_reporter.clj
(def full-grade-reporter (make-grade-reporter full-grade-converter print-histogram))

Here we’re running it on some sample data:

ClojureExamples/src/mbfpp/oo/tm/grade_reporter.clj
(def sample-grades [5.0 4.0 4.4 2.2 3.3 3.5])

=> (full-grade-reporter sample-grades)
A:**
B:***
C:*

To change the way we convert grades and print the report, we just create new
functions to compose with make-grade-reporter. Let’s create plus-minus-grade-converter
and print-all-grades functions and then compose them together into a plus-minus-
grade-reporter.

The plus-minus-grade-reporter function is straightforward; it’s just a simple cond
expression:

report erratum • discuss

Replacing Template Method • 89

http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/oo/tm/grade_reporter.clj
http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/oo/tm/grade_reporter.clj
http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/oo/tm/grade_reporter.clj
http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/oo/tm/grade_reporter.clj
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

ClojureExamples/src/mbfpp/oo/tm/grade_reporter.clj
(defn plus-minus-grade-converter [grade]

(cond
(and (<= grade 5.0) (> grade 4.7)) "A"
(and (<= grade 4.7) (> grade 4.3)) "A-"
(and (<= grade 4.3) (> grade 4.0)) "B+"
(and (<= grade 4.0) (> grade 3.7)) "B"
(and (<= grade 3.7) (> grade 3.3)) "B-"
(and (<= grade 3.3) (> grade 3.0)) "C+"
(and (<= grade 3.0) (> grade 2.7)) "C"
(and (<= grade 2.7) (> grade 2.3)) "C"
(and (<= grade 2.3) (> grade 0)) "D"
(= grade 0) "F"
:else "N/A"))

The print-all-grades function simply uses a sequence comprehension to print
each grade:

ClojureExamples/src/mbfpp/oo/tm/grade_reporter.clj
(defn print-all-grades [grades]

(doseq [grade grades]
(println "Grade is:" grade)))

Now we can compose them together with make-grade-reporter and run them on
our sample data to print a grade report:

ClojureExamples/src/mbfpp/oo/tm/grade_reporter.clj
(def plus-minus-grade-reporter

(make-grade-reporter plus-minus-grade-converter print-all-grades))

=> (plus-minus-grade-reporter sample-grades)
Grade is: A
Grade is: B
Grade is: A-
Grade is: D
Grade is: C+
Grade is: B-

That’s it for our Clojure version of Template Method replacement. Let’s wrap
up with some discussion on how the Template Method compares to its func-
tional replacement.

Discussion

Our functional replacement for Template Method fulfills the same intent but
operates quite differently. Instead of using subtypes to implement specific
suboperations, we use functional composition and higher-order functions.

This mirrors the old object-oriented preference of composition over inheritance.
Even in the object-oriented world, I prefer to use the pattern described in

Chapter 3. Replacing Object-Oriented Patterns • 90

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/oo/tm/grade_reporter.clj
http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/oo/tm/grade_reporter.clj
http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/oo/tm/grade_reporter.clj
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Replacing Dependency Injection to inject suboperations into a class, rather
than using Template Method and subclassing.

The biggest reason for this is that it helps to prevent code duplication. For
instance, in the example we used in this chapter, if we wanted a class that
printed a histogram of plus/minus grades, we would have to either create a
deeper inheritance hierarchy or cut and paste code from the existing imple-
mentations. In a real system, this can get fragile very quickly.

Composition also does a better job of making an API explicit. The Template
Method class may expose protected helper methods that are used by frame-
work code but shouldn’t be used by a client. The only way to indicate this is
with comments in the API documentation.

For Further Reading

Design Patterns: Elements of Reusable Object-Oriented Software [GHJV95]
–Template Method

Related Patterns
Pattern 1, Replacing Functional Interface, on page 40

Pattern 7, Replacing Strategy, on page 92

Pattern 16, Function Builder, on page 167

report erratum • discuss

Replacing Template Method • 91

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Pattern 7

Replacing Strategy

Intent

To define an algorithm in abstract terms so it can be implemented in several
different ways, and to allow it to be injected into clients so it can be used
across several different clients

Overview

Strategy has a few parts. The first is an interface that represents some algo-
rithm, such as a bit of validation logic or a sorting routine. The second is one
or more implementations of that interface; these are the strategy classes
themselves. Finally, one or more clients use the strategy objects.

For instance, we may have several different ways we want to validate a set of
data input from a form on a website, and we may want to use that validation
code in several places. We could create a Validator interface with a validate()
method to serve as our strategy object, along with several implementations
that could be injected into our code at the appropriate spots.

Also Known As

Policy

Functional Replacement

Strategy is closely related to Pattern 1, Replacing Functional Interface, on page
40, in that the strategy objects themselves are generally a simple functional
interface, but the Strategy pattern contains more moving parts than just a
Functional Interface. Still, this suggests a straightforward replacement for
Strategy in the functional world.

To replace the strategy classes, we use higher-order functions that implement
the needed algorithms. This avoids the need to create and apply interfaces
for different strategy implementations. From there, it’s straightforward to
pass our strategy functions around and use them where needed.

Chapter 3. Replacing Object-Oriented Patterns • 92

report erratum • discuss

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Sample Code: Person Validation

One common use of Strategy is to create different algorithms that can be used
to validate the same set of data. Let’s take a look at an example of using
Strategy to do just that.

We’ll implement two different validation strategies for a person that contain
a first, middle, and last name. The first strategy will consider the person valid
if he or she has a first name, the second will only consider the person valid
if all three names are set. On top of that, we’ll look at some simple client code
that collects valid people together.

In Java

In Java, we need a PersonValidator interface, which our two validation strategies,
FirstNameValidator and FullNameValidator, will implement. The validators themselves
are straightforward; they return true if they consider the person valid and
false otherwise.

The validators can then be composed in the PersonCollector class, which will
collect People objects that pass validation. The class diagram below outlines
this solution:

Figure 6—Person Validator Strategy. Using Strategy to validate a person

This works fine, but it involves spreading our logic across several classes for
no particularly good reason. Let’s see how we can simplify Strategy using
functional techniques.

In Scala

In Scala, there’s no need for the PersonValidator interface we saw in the Java
examples. Instead, we’ll just use plain old functions to do our validation. To
carry a person around, we’ll rely on a case class with attributes for each part
of a person’s name. Finally, instead of using a full-on class for the person

report erratum • discuss

Replacing Strategy • 93

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

collector, we’ll use a higher-order function that itself returns another function
that’s responsible for collecting people.

Let’s start with the Person case class. This is a pretty standard case class, but
notice how we’re using Option[String] to represent the names instead of just
String, since this case class represents a person that may have parts of the
name missing:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/strategy/PeopleExample.scala
case class Person(

firstName: Option[String],
middleName: Option[String],
lastName: Option[String])

Now let’s take a look at our first name validator, a function called isFirst-
NameValid(). As the code below shows, we use the isDefined() method on Scala’s
Option, which returns true if the Option contains Some and returns false otherwise
to see whether the person has a first name:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/strategy/PeopleExample.scala
def isFirstNameValid(person: Person) = person.firstName.isDefined

Our full name validator is a function, isFullNameValid(). Here, we use a Scala
match statement to pick apart a Person, and then we ensure that each name is
there using isDefined(). The code is below:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/strategy/PeopleExample.scala
def isFullNameValid(person: Person) = person match {

case Person(firstName, middleName, lastName) =>
firstName.isDefined && middleName.isDefined && lastName.isDefined

}

Finally, our person collector, a function aptly named personCollector(), takes in
a validation function and produces another function that’s responsible for
collecting valid people. It does so by running a passed-in person through the
validation function. It then appends it to an immutable vector and stores a
reference to the new vector in the validPeople var if it passes validation. Finally
it returns validPeople, as the code below shows:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/strategy/PeopleExample.scala
def personCollector(isValid: (Person) => Boolean) = {

var validPeople = Vector[Person]()
(person: Person) => {

if(isValid(person)) validPeople = validPeople :+ person
validPeople

}
}

Chapter 3. Replacing Object-Oriented Patterns • 94

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/strategy/PeopleExample.scala
http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/strategy/PeopleExample.scala
http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/strategy/PeopleExample.scala
http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/strategy/PeopleExample.scala
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Let’s take a look at our validators and person-collector at work, starting with
creating a person-collector that considers single names valid and one that
only considers full names valid:

scala> val singleNameValidCollector = personCollector(isFirstNameValid)
singleNameValidCollector: ...

scala> val fullNameValidCollector = personCollector(isFullNameValid)
fullNameValidCollector: ...

We can now define a few test names:

scala> val p1 = Person(Some("John"), Some("Quincy"), Some("Adams"))
p1: com.mblinn.mbfpp.oo.strategy.PeopleExample.Person = ...

scala> val p2 = Person(Some("Mike"), None, Some("Linn"))
p2: com.mblinn.mbfpp.oo.strategy.PeopleExample.Person = ...

scala> val p3 = Person(None, None, None)
p3: com.mblinn.mbfpp.oo.strategy.PeopleExample.Person = ...

Then we run through our two person-collectors, starting with singleNameValidCollector():

scala> singleNameValidCollector(p1)
res0: scala.collection.immutable.Vector[...] =

Vector(Person(Some(John),Some(Quincy),Some(Adams)))

scala> singleNameValidCollector(p2)
res1: scala.collection.immutable.Vector[...] =

Vector(
Person(Some(John),Some(Quincy),Some(Adams)),
Person(Some(Mike),None,Some(Linn)))

scala> singleNameValidCollector(p3)
res2: scala.collection.immutable.Vector[...] =

Vector(
Person(Some(John),Some(Quincy),Some(Adams)),
Person(Some(Mike),None,Some(Linn)))

And we’ll finish up with fullNameValidCollector():

scala> fullNameValidCollector(p1)
res3: scala.collection.immutable.Vector[...] =

Vector(Person(Some(John),Some(Quincy),Some(Adams)))

scala> fullNameValidCollector(p2)
res4: scala.collection.immutable.Vector[...] =

Vector(Person(Some(John),Some(Quincy),Some(Adams)))

scala> fullNameValidCollector(p3)
res5: scala.collection.immutable.Vector[...] =

Vector(Person(Some(John),Some(Quincy),Some(Adams)))

report erratum • discuss

Replacing Strategy • 95

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

As we can see, the two collectors work as they should, delegating to the vali-
dation functions that were passed in when they were created.

In Clojure

In Clojure, we’ll solve our person-collecting problem in a similar way to Scala,
using functions for the validators and a higher-order function that takes in
a validator and produces a person-collecting function. To represent the people,
we’ll use good old Clojure maps. Since Clojure is a dynamic language and
doesn’t have Scala’s Option typing, we’ll use nil to represent the lack of a
name.

Let’s start by looking at first-name-valid?. It checks to see if the :first-name of the
person is not nil and returns true if so; otherwise it returns false.

ClojureExamples/src/mbfpp/oo/strategy/people_example.clj
(defn first-name-valid? [person]

(not (nil? (:first-name person))))

The full-name-valid? function pulls out all three names and returns true only if
they’re all not nil:

ClojureExamples/src/mbfpp/oo/strategy/people_example.clj
(defn full-name-valid? [person]

(and
(not (nil? (:first-name person)))
(not (nil? (:middle-name person)))
(not (nil? (:last-name person)))))

Finally, let’s take a look at our person-collector, which takes in a validation
function and produces a collector function. This works almost exactly like
the Scala version, the main difference being that we need to use an atom to
store a reference to our immutable vector in an atom.

ClojureExamples/src/mbfpp/oo/strategy/people_example.clj
(defn person-collector [valid?]

(let [valid-people (atom [])]
(fn [person]
(if (valid? person)

(swap! valid-people conj person))
@valid-people)))

Before we wrap up, let’s see our Clojure person collection in action, starting
by defining the collector functions as we do below:

=> (def first-name-valid-collector (person-collector first-name-valid?))
#'mbfpp.oo.strategy.people-example/first-name-valid-collector
=> (def full-name-valid-collector (person-collector full-name-valid?))
#'mbfpp.oo.strategy.people-example/full-name-valid-collector

Chapter 3. Replacing Object-Oriented Patterns • 96

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/oo/strategy/people_example.clj
http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/oo/strategy/people_example.clj
http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/oo/strategy/people_example.clj
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Now we need some test data:

=> (def p1 {:first-name "john" :middle-name "quincy" :last-name "adams"})
#'mbfpp.oo.strategy.people-example/p1
=> (def p2 {:first-name "mike" :middle-name nil :last-name "adams"})
#'mbfpp.oo.strategy.people-example/p2
=> (def p3 {:first-name nil :middle-name nil :last-name nil})
#'mbfpp.oo.strategy.people-example/p3

And we can run it through our collectors, starting with the collector that only
requires a first name for the person to be valid:

=> (first-name-valid-collector p1)
[{:middle-name "quincy", :last-name "adams", :first-name "john"}]
=> (first-name-valid-collector p2)
[{:middle-name "quincy", :last-name "adams", :first-name "john"}
{:middle-name nil, :last-name "adams", :first-name "mike"}]
=> (first-name-valid-collector p3)
[{:middle-name "quincy", :last-name "adams", :first-name "john"}
{:middle-name nil, :last-name "adams", :first-name "mike"}]

Then we finish up with the collector that requires the full name for the person
to be valid:

=> (full-name-valid-collector p1)
[{:middle-name "quincy", :last-name "adams", :first-name "john"}]
=> (full-name-valid-collector p2)
[{:middle-name "quincy", :last-name "adams", :first-name "john"}]
=> (full-name-valid-collector p3)
[{:middle-name "quincy", :last-name "adams", :first-name "john"}]

Both work as expected, validating the passed-in name before storing it if valid
and then returning the full set of valid names.

Discussion

Strategy and Template Method serve similar ends. Both are ways to inject
some bit of custom code into a larger framework or algorithm. Strategy does
so using composition, and Template Method does so using inheritance. We
replaced both patterns with ones based on functional composition.

Though both Clojure and Scala have language features that allow us to build
hierarchies, we’ve replaced both Template Method and Strategy with patterns
based on functional composition. This leads to simpler solutions to common
problems, mirroring the old object-oriented preference to favor composition
over inheritance.

report erratum • discuss

Replacing Strategy • 97

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

For Further Reading

Design Patterns: Elements of Reusable Object-Oriented Software [GHJV95]
—Strategy

Related Patterns
Pattern 1, Replacing Functional Interface, on page 40

Pattern 6, Replacing Template Method, on page 83

Chapter 3. Replacing Object-Oriented Patterns • 98

report erratum • discuss

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Pattern 8

Replacing Null Object

Intent

To avoid scattering null checks throughout our code by encapsulating the
action taken for null references into a surrogate null object

Overview

A common way to represent the lack of a value in Java is to use a null refer-
ence. This leads to a lot of code that looks like so:

if(null == someObject){
// default null handling behavior

}else{
someObject.someMethod()

}

This style leads to scattering null handling logic throughout our code, often
repeating it. If we forget to check for null it may lead to a program crashing
NullPointerException, even if there is a reasonable default behavior that can handle
the lack of a value.

A common solution to this is to create a singleton null object that has the
same interface as our real objects but implements our default behavior. We
can then use this object in place of null references.

The two main benefits here are these:

1. We can avoid scattering null checks throughout our code, which keeps
our code clean and easier to read.

2. We can centralize logic that deals with handling the absence of a value.

Using Null Object has its trade-offs, however. Pervasive use of the pattern
means that your program probably won’t fail fast. You may generate a null
object due to a bug and not know until much later in the program’s execution,
which makes it much harder to track down the source of the bug.

In Java, I generally use Null Object judiciously when I know that there’s a
good reason why I may not have a value for something and use null checks
elsewhere. The difference between these two situations can be subtle.

report erratum • discuss

Replacing Null Object • 99

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

For instance, let’s imagine we’re writing part of a system that looks up a
person by a generated, unique ID. If the IDs are closely related to the system
we’re writing and we know that every lookup should succeed and return a
person, I’d stick with using null references. This way, if something goes wrong
and we don’t have a person, we fail fast and don’t pass the problem on.

However, if the IDs aren’t closely related to our program, I’d probably use
Null Object. Say, for instance, that the IDs are generated by some other system
and imported into ours via a batch process, which means that there’s some
latency between when the ID is created and when it becomes available to our
system. In this case, handling a missing ID would be part of our program’s
normal operation, and I’d use Null Object to keep the code clean and avoid
extraneous null checks.

The functional replacements we examine will explore these tradeoffs.

Functional Replacement

We’ll examine a few different approaches here. In Scala, we’ll take advantage
of static typing and Option typing to replace null object references. In Clojure,
we’ll primarily focus on Clojure’s treatment of nil, but we’ll also touch on Clo-
jure’s optional static typing system, which provides us with an Option much
like Scala’s.

In Scala

We have null references in Scala just as we do in Java; however, it’s not
common to use them. Instead we can take advantage of the type system to
replace both null references and Null Object. We’ll look at two container types,
Option and Either. The first, Option, lets us indicate that we may not have a value
in a type-safe manner. The second, Either, lets us provide a value when we’ve
got one and a default or error value when we don’t.

Let’s take a closer look at Option first. Option types are containers, much like
a Map or a Vector, except they can only hold one element at most. Option has
two important subtypes: Some, which carries a value, and the singleton object
None, which does not. In the following code, we create a Some[String] that carries
the value "foo" and a reference to None:

scala> def aSome = Some("foo")
aSome: Some[java.lang.String]

scala> def aNone = None
aNone: None.type

Chapter 3. Replacing Object-Oriented Patterns • 100

report erratum • discuss

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Now we can work with our Option instances in a variety of ways. Perhaps the
simplest is the getOrElse() method. The getOrElse() method is called with a single
argument, a default value. When called on an instance of Some, the carried
value is returned; when called on None the default value is returned. The fol-
lowing code demonstrates this:

scala> aSome.getOrElse("default value")
res0: java.lang.String = foo

scala> aNone.getOrElse("default value")
res1: java.lang.String = default value

When working with Option, it’s cleanest to treat a value as another container
type. For example, if we need to do something to a value inside an Option, we
can use our old friend map(), as in the following code:

scala> aSome.map((s) => s.toUpperCase)
res2: Option[java.lang.String] = Some(FOO)

We’ll examine some more-sophisticated ways of working with Option in the
code samples.

One final note on Option: In its simplest form, it can be used much as we’d
use a null check in Java, though there are more powerful ways to use it.
However, even in this simplest form, there’s one major difference.

Option is part of the type system, so if we use it consistently we know exactly
in which parts of our code we may have to deal with the lack of a value or a
default value. Everywhere else we can write code safe in the knowledge that
we’ll have a value.

In Clojure

In Clojure, we don’t have the Option typing that Scala’s static type system
provides us. Instead, we’ve got nil, which is equivalent to Java’s null at the
bytecode level. However, Clojure provides several convenient features that
make it much cleaner to deal with the lack of a value using nil and that give
us many of the same benefits we get with Null Object.

First up, nil is treated the same as false in Clojure. Combined with a pervasive
use of expressions, this makes it much simpler to do a nil check in Clojure
than it is to check for null in Java, as the following code demonstrates:

=> (if nil "default value" "real value")
"real value"

Second, the functions that we use to get values of our Clojure’s composite
data structures provide a way to get a default value if the element we’re trying

report erratum • discuss

Replacing Null Object • 101

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

to retrieve isn’t present. Here we use the get method to try to retrieve the value
for :foo from an empty map, and we get back our passed-in default value
instead:

=> (get {} :foo "default value")
"default value"

The lack of a value for a key is distinct from a key that has the value of nil,
as this code demonstrates:

=> (get {:foo nil} :foo "default value")
nil

Let’s dig into some code samples!

Sample Code: Default Values

We’ll start by looking at how we’d use Null Object as a default when we don’t
get back a value from a map lookup. In this example, we’ll have a map full of
people keyed off of an ID. If we don’t find a person for a given ID, we need to
return a default person with the name “John Doe.”

Classic Java

In classic Java, we’ll create a Person interface with two subclasses, RealPerson
and NullPerson. The first, RealPerson, allows us to set a first and last name, while
NullPerson has them hardcoded to "John" and "Doe".

If we get a null back when we try to get a person by ID, we return an instance
of NullPerson; otherwise we use the RealPerson we got out of the map. The following
code sketches out this approach:

JavaExamples/src/main/java/com/mblinn/oo/nullobject/PersonExample.java
public class PersonExample {

private Map<Integer, Person> people;

public PersonExample() {
people = new HashMap<Integer, Person>();

}

public Person fetchPerson(Integer id) {
Person person = people.get(id);
if (null != person)

return person;
else

return new NullPerson();
}
// Code to add/remove people

public Person buildPerson(String firstName, String lastName){

Chapter 3. Replacing Object-Oriented Patterns • 102

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/JavaExamples/src/main/java/com/mblinn/oo/nullobject/PersonExample.java
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

if(null != firstName && null != lastName)
return new RealPerson(firstName, lastName);

else
return new NullPerson();

}
}

Let’s see how we can use Scala’s Option to eliminate the explicit null check we
need to do in Java.

In Scala

In Scala, the get() on Map doesn’t return a value directly. If the key exists, the
value is returned wrapped in a Some, otherwise a None is returned.

For instance, in the following code we create a map with two integer keys, 1
and 2, and String greetings as values. When we try to fetch either of them using
get(), we get back a String wrapped in a Some. For any other key, we get back a
None.

scala> def aMap = Map(1->"Hello", 2->"Aloha")
aMap: scala.collection.immutable.Map[Int,java.lang.String]

scala> aMap.get(1)
res0: Option[java.lang.String] = Some(Hello)

scala> aMap.get(3)
res1: Option[java.lang.String] = None

We could work with the Option type directly, but Scala provides a nice short-
hand that lets us get back a default value directly from a map, getOrElse(). In
the following REPL output, we use it to attempt to fetch the value for the key
3 from the map. Since it’s not there, we get back our default value instead.

scala> aMap.getOrElse(3, "Default Greeting")
res3: java.lang.String = Default Greeting

Now let’s see how we can use this handy feature to implement our person-
fetching example. Here we’re using a trait as the base type for our people,
and we’re using case classes for the RealPerson and NullPerson. We can then use
an instance of NullPerson as the default value in our lookup. The following code
demonstrates this approach:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/nullobject/Examples.scala
case class Person(firstName: String="John", lastName: String="Doe")
val nullPerson = Person()

def fetchPerson(people: Map[Int, Person], id: Int) =
people.getOrElse(id, nullPerson)

report erratum • discuss

Replacing Null Object • 103

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/nullobject/Examples.scala
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Let’s define some test data so we can see this approach at work:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/nullobject/Examples.scala
val joe = Person("Joe", "Smith")
val jack = Person("Jack", "Brown")
val somePeople = Map(1 -> joe, 2 -> jack)

Now if we use fetchPerson() on a key that exists, it’s returned; otherwise our
default person is returned:

scala> fetchPerson(somePeople, 1)
res0: com.mblinn.mbfpp.oo.nullobject.Examples.Person = Person(Joe,Smith)

scala> fetchPerson(somePeople, 3)
res1: com.mblinn.mbfpp.oo.nullobject.Examples.Person = Person(John,Doe)

Now let’s take a look at how we can accomplish this in Clojure.

In Clojure

When we try to look up a nonexistent key from a map in Clojure, nil is returned.

=> ({} :foo)
nil

Clojure provides another way to look up keys from a map, the get function,
which lets us provide an optional default value. The following REPL snippet
shows a simple example of get in action.

=> (get :foo {} "default")
"default"

To write our person lookup example in Clojure, all we need to do is define a
default null-person. We then pass it into get as a default value when we try to
do our lookup, as the following code and REPL output demonstrates:

ClojureExamples/src/mbfpp/oo/nullobject/examples.clj
(def null-person {:first-name "John" :last-name "Doe"})
(defn fetch-person [people id]

(get id people null-person))

=> (def people {42 {:first-name "Jack" :last-name "Bauer"}})
#'mbfpp.oo.nullobject.examples/people
=> (fetch-person 42 people)
{:last-name "Bauer", :first-name "Jack"}
=> (fetch-person 4 people)
{:last-name "Doe", :first-name "John"}

The code in this example deals with a basic use of Null Object as a default
value at lookup time. Next up, let’s take a look at how we’d handle working
with Null Object and its replacements when the time comes to modify them.

Chapter 3. Replacing Object-Oriented Patterns • 104

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/nullobject/Examples.scala
http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/oo/nullobject/examples.clj
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Sample Code: Something from Nothing

Let’s take a look at our person example from a different angle. This time,
instead of looking up a person that may not exist, we want to create a person
only if we’ve got a valid first and last name. Otherwise, we want to use a
default.

Classic Java

In Java, we’ll use the same null object we saw in Classic Java, on page 102. If
we have both a first and last name available to use, we’ll use a RealPerson;
otherwise we’ll use a NullPerson.

To do this, we write a buildPerson() that takes a firstName and a lastName. If either
is null, we return a NullPerson; otherwise we return a RealPerson built with the
passed-in names. The following code outlines this solution:

JavaExamples/src/main/java/com/mblinn/oo/nullobject/PersonExample.java
public Person buildPerson(String firstName, String lastName){

if(null != firstName && null != lastName)
return new RealPerson(firstName, lastName);

else
return new NullPerson();

}

This approach allows us to minimize the surface area of our code where we
need to deal with null, which helps cut down on surprise null pointers. Now
let’s see how we can accomplish the same in Scala without needing to intro-
duce an extraneous null object.

In Scala

Our Scala approach to this problem will take advantage of Option instead of
creating a special Null Object type. The firstName and lastName we pass into
buildPerson() are Option[String]s, and we return an Option[Person].

If both firstName and lastName are Some[String], then we return a Some[Person]; oth-
erwise we return a None. The right way to do this in Scala is to treat the Options
as we would treat any other container, such as a Map or a Vector.

Earlier we saw a simple example of using the map() method on an instance of
Some. Let’s look at how we’d use Scala’s most powerful sequence manipulation
tool, the sequence comprehensions we introduced in Sample Code: Sequence
Comprehensions, on page 77, to manipulate Option types.

First, let’s get some test data into our REPL. In the following snippet, we define
a simple vector and a few option types:

report erratum • discuss

Replacing Null Object • 105

http://media.pragprog.com/titles/mbfpp/code/JavaExamples/src/main/java/com/mblinn/oo/nullobject/PersonExample.java
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/nullobject/Examples.scala
def vecFoo = Vector("foo")
def someFoo = Some("foo")
def someBar = Some("bar")
def aNone = None

As we can see in the following code, manipulating a Some looks much like
manipulating a Vector with a single value in it:

scala> for(theFoo <- vecFoo) yield theFoo
res0: scala.collection.immutable.Vector[java.lang.String] = Vector(foo)
scala> for(theFoo <- someFoo) yield theFoo
res1: Option[java.lang.String] = Some(foo)

The real power of using a for comprehension to work with Option comes in
when we’re working with multiple Options at a time. We can use multiple gen-
erators, one for each option, to get at the values in each. In the following code,
we use this technique to pull the strings out of someFoo and someBar and put
them into a tuple, which we then yield:

scala> for(theFoo <- someFoo; theBar <- someBar) yield (theFoo, theBar)
res2: Option[(java.lang.String, java.lang.String)] = Some((foo,bar))

When working with options in this fashion, if any of the generators produces
a None, then the value of the entire expression is a None. This gives us a clean
syntax for working with Some and None:

scala> for(theFoo <- someFoo; theNone <- aNone) yield (theFoo, theNone)
res3: Option[(java.lang.String, Nothing)] = None

We can now apply this to our person-building example pretty simply. We use
two generators in our for comprehensions, one for the firstName and one for
the lastName. We then yield a Person. The for comprehension wraps that up
inside of an Option, and we use getOrElse() to get at it or use a default. The fol-
lowing code demonstrates this approach:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/nullobject/Examples.scala
def buildPerson(firstNameOption: Option[String], lastNameOption: Option[String]) =

(for(
firstName <- firstNameOption;
lastName <- lastNameOption)

yield Person(firstName, lastName)).getOrElse(Person("John", "Doe"))

Here we can see it in action:

scala> buildPerson(Some("Mike"), Some("Linn"))
res4: com.mblinn.mbfpp.oo.nullobject.Examples.Person = Person(Mike,Linn)

scala> buildPerson(Some("Mike"), None)
res5: com.mblinn.mbfpp.oo.nullobject.Examples.Person = Person(John,Doe)

Chapter 3. Replacing Object-Oriented Patterns • 106

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/nullobject/Examples.scala
http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/nullobject/Examples.scala
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Let’s finish up the example by seeing how to handle person-building in Clojure.

In Clojure

In Clojure, our person-building example boils down to a simple nil check. We
pass first-name and last-name into our build-person function. If they’re both not-nil,
we use them to create a person; otherwise we create a default person.

Clojure’s treatment of nil as a “falsey” value makes this convenient to do, but
otherwise it’s very similar to our Java approach. The code follows:

ClojureExamples/src/mbfpp/oo/nullobject/examples.clj
(defn build-person [first-name last-name]

(if (and first-name last-name)
{:first-name first-name :last-name last-name}
{:first-name "John" :last-name "Doe"}))

Here it produces a real person and a default person:

=> (build-person "Mike" "Linn")
{:first-name "Mike", :last-name "Linn"}
=> (build-person "Mike" nil)
{:first-name "John", :last-name "Doe"}

Let’s take one last look at handling nothing by examining a case in which we
have many parts of our code that want to deal with the lack of a value in the
same way.

Discussion

The idiomatic approach to handling the lack of a value in Clojure versus Scala
is very different. The difference comes down to Scala’s static type system and
Clojure’s dynamic one. Scala’s static type system and type parameters make
the Option type possible.

The tradeoffs that Scala and Clojure make here mirror the general tradeoffs
between static and dynamic typing. With Scala’s approach, the compiler helps
to ensure that we’re properly handling nothing at compile time, though we
have to be careful not to let Java’s null creep into our Scala code.

With Clojure’s approach, we’ve got the possibility for null pointers just about
anywhere, just as in Java. We need to be more careful that we’re handling
them appropriately, or we risk runtime errors.

My preference is to take care of all my nothing handling at the outermost
layer of my code, whether I’m using Scala’s Option typing or the null/nil that
Java and Clojure share. For instance, if I’m querying a database for a person
who may or may not exist, I prefer to check for his/her existence only once:

report erratum • discuss

Replacing Null Object • 107

http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/oo/nullobject/examples.clj
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

when we attempt to pull it back from the database. Then I use the techniques
outlined in this pattern to create a default person if necessary. This allows
the rest of my code to avoid doing null checks or to deal with Option typing.
I’ve found that Scala’s approach to Option typing makes it much easier to write
programs in this style, because it forces us to explicitly deal with the lack of
a value whenever we might not have one and to assume that we’ll have a
value everywhere else.

For Further Reading
Pattern Languages of Program Design 3 [MRB97]—Null Object

Refactoring: Improving the Design of Existing Code [FBBO99]—Introduce Null Object

Chapter 3. Replacing Object-Oriented Patterns • 108

report erratum • discuss

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Pattern 9

Replacing Decorator

Intent

To add behavior to an individual object rather than to an entire class of
objects—this allows us to change the behavior of an existing class.

Overview

Decorator is useful when we’ve got an existing class that we need to add some
behavior to but we can’t change the existing class. We may want to introduce
a breaking change, but we can’t change every other part of the system where
the class is used. Or the class may be part of a library that we can’t, or don’t
want to, modify.

Decorator uses a combination of inheritance and composition. It starts with
an interface with at least one concrete implementation. This implementation
is the class that we can’t or don’t want to change.

We then implement the interface with an abstract decorator class, which gets
an instance of our existing, concrete class composed into it. Our abstract
decorator class can itself have several implementations, which tweak the
behavior of the existing class using composition, as shown in this figure:

Figure 7—Decorator Diagram. A class diagram for the Decorator pattern

report erratum • discuss

Replacing Decorator • 109

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

This gives us some ability to add or modify behavior on existing classes, but
we’re mostly limited to small tweaks since we rely on the base behavior of the
composed class.

Also Known As

Wrapper

Functional Replacement

The essence of Decorator is wrapping an existing class with a new one so that
the new class can tweak the behavior of the existing one. In the functional
world, one simple replacement is to create a higher-order function that takes
in the existing function and returns a new, wrapped function.

The wrapped function does its job and then delegates to the existing function.
For instance, we could create a wrapWithLogger() function that wraps up an
existing function with a bit of logging, returning a new function.

Sample Code: Logging Calculator

Let’s take a look at using Decorator with a basic four-function calculator. The
calculator has four operations, add(), subtract(), multiply(), and divide(). To demon-
strate Decorator, we’ll take a basic calculator and decorate it so that it logs
out the calculation it’s performing to the console.

Classic Java

In Java, our solution consists of an interface and two concrete classes. The
Calculator interface is implemented by both CalculatorImp and LoggingCalculator. The
LoggingCalculator class serves as our decorator and needs a CalculatorImpl composed
into it to do its job. An outline of this approach can be found in the following
image:

Chapter 3. Replacing Object-Oriented Patterns • 110

report erratum • discuss

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

The LoggingCalculator class delegates to the composed CalculatorImpl and then logs
the calculation to the console.

In Scala

In Scala, our calculator is just a collection of four functions. To keep things
simple, we’ll constrain ourselves to integer operations, since implementing
generic numeric functions in Scala is a bit involved. The code for our Scala
calculator follows:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/decorator/Examples.scala
def add(a: Int, b: Int) = a + b
def subtract(a: Int, b: Int) = a - b
def multiply(a: Int, b: Int) = a * b
def divide(a: Int, b: Int) = a / b

To wrap our calculator functions in logging code, we use makeLogger(). This is
a higher-order function that takes in a calculator function and returns a new
function that runs the original calculator function and prints the result to
the console before returning it.

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/decorator/Examples.scala
def makeLogger(calcFn: (Int, Int) => Int) =

(a: Int, b: Int) => {
val result = calcFn(a, b)
println("Result is: " + result)
result

}

To use makeLogger(), we run our original calculator functions through it and
assign the results into new vals, as the following code shows:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/decorator/Examples.scala
val loggingAdd = makeLogger(add)
val loggingSubtract = makeLogger(subtract)
val loggingMultiply = makeLogger(multiply)
val loggingDivide = makeLogger(divide)

Now we can use our printing calculator function to do some arithmetic and
print the results:

scala> loggingAdd(2, 3)
Result is: 5
res0: Int = 5

scala> loggingSubtract(2, 3)
Result is: -1
res1: Int = -1

Let’s take a look at our calculator solution in Clojure.

report erratum • discuss

Replacing Decorator • 111

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/decorator/Examples.scala
http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/decorator/Examples.scala
http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/decorator/Examples.scala
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

In Clojure

The structure of our Clojure solution is similar to the Scala one, the main differ-
ence being that our Clojure solution isn’t constrained to integers since Clojure is
dynamically typed. The following code defines our calculator functions:

ClojureExamples/src/mbfpp/oo/decorator/examples.clj
(defn add [a b] (+ a b))
(defn subtract [a b] (- a b))
(defn multiply [a b] (* a b))
(defn divide [a b] (/ a b))

Next we need a make-logger higher-order function to wrap our calculator func-
tions up with logging code:

ClojureExamples/src/mbfpp/oo/decorator/examples.clj
(defn make-logger [calc-fn]

(fn [a b]
(let [result (calc-fn a b)]
(println (str "Result is: " result))
result)))

Finally, we can create some logging calculator functions and use them to do
some logging math:

ClojureExamples/src/mbfpp/oo/decorator/examples.clj
(def logging-add (make-logger add))
(def logging-subtract (make-logger subtract))
(def logging-multiply (make-logger multiply))
(def logging-divide (make-logger divide))

=> (logging-add 2 3)
Result is: 5
5
=> (logging-subtract 2 3)
Result is: -1
-1

It’s no accident that the Scala and Clojure solutions to the calculator problem
are so similar: they both rely only on basic higher-order functions, which are
similar across both languages.

For Further Reading

Design Patterns: Elements of Reusable Object-Oriented Software [GHJV95]
—Decorator

Related Patterns
Pattern 7, Replacing Strategy, on page 92

Pattern 16, Function Builder, on page 167

Chapter 3. Replacing Object-Oriented Patterns • 112

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/oo/decorator/examples.clj
http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/oo/decorator/examples.clj
http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/oo/decorator/examples.clj
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Pattern 10

Replacing Visitor

Intent

To encapsulate an action to be performed on a data structure in a way that
allows the addition of new operations to the data structure without having
to modify it.

Overview

A common sticking point in large, long-lived programs is how to extend a data
type. We want to extend along two dimensions. First, we may want to add
new operations to existing implementations of the data type. Second, we may
want to add new implementations of the data type.

We’d like to be able to do this without recompiling the original source, indeed,
possibly without even having access to it. This is a problem that’s as old as
programming itself, and it’s now known as the expression problem.

For example, consider Java’s Collection as a sample data type. The Collection
interface defines many methods, or operations, and has many implementa-
tions. In a perfect world, we’d be able to easily add both new operations to
Collection as well as new implementations of Collection.

In object-oriented languages, however, it’s only easy to do the latter. We can
create a new implementation of Collection by implementing the interface. If we
want to add new operations to Collection that work with all the existing Collection
implementation, we’re out of luck.

In Java, we often get around this by creating a class full of static utility
methods, rather than by adding the operations directly to the data type. One
such library for Collection is the Apache foundation’s CollectionUtils.

Visitor is another partial solution to this sort of problem. It allows us to add
new operations to an existing data type and is often used with tree-structured
data. Visitor allows us to fairly easily add new operations to an existing data
type, but it makes adding new implementations of the data type difficult.

report erratum • discuss

Replacing Visitor • 113

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Visitor Pattern

The Visitor class diagram (shown in the following figure) shows the main
pieces of the Visitor pattern. Our data type here is the DataElement class, which
has two implementations. Instead of implementing operations directly on the
subclasses of DataElement, we create an accept() method that takes a Visitor and
calls visit(), passing itself in.

Figure 8—Visitor Classes. A sketch of the Visitor pattern

This inverts the normal object-oriented constraint that it’s easy to add new
implementations of a data type but difficult to add new operations. If we want
to add a new operation, we just need to create a new visitor and write code
such that it knows how to visit each existing concrete element.

However, it’s hard to add new implementations of DataElement. To do so, we’d
need to modify all of the existing visitors to know how to visit the new
DataElement implementation. If those Visitor classes are outside of our control,
it may be impossible!

Functional Replacement

The Visitor pattern makes it possible to add new operations to an object-ori-
ented data type but difficult, or impossible, to add new implementations of
the type. In the functional world, this is the norm. It’s easy to add a new
operation on some data type by writing a new function that operates on it,
but it’s difficult to add new data types to an existing operation.

In our replacements, we’ll examine a few different ways to deal with this
extensibility problem in Scala and Clojure. The solutions are quite different
in the two languages. In part, this is because Scala is statically typed while

Chapter 3. Replacing Object-Oriented Patterns • 114

report erratum • discuss

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Clojure is dynamically typed. This means that Scala has a harder problem to
solve in that it attempts to perform its extensions while preserving static type
safety.

The other difference is that Scala’s take on polymorphism is an extension of
the traditional object-oriented model, which uses a hierarchy of subclasses.
Clojure takes a novel view and provides polymorphism in a more ad hoc
manner. Since polymorphism is intimately bound up with extensibility, this
affects the overall shape of the solutions.

In Scala

Since Scala is a hybrid language, extending existing code requires us to dip
into its object-oriented features, especially its type system.

First we’ll look at a method of extending the operations in an existing library
that uses Scala’s implicit conversion system. This allows us to add new oper-
ations to existing libraries.

Second we’ll look at a solution that takes advantage of Scala’s mix-in inheri-
tance and traits, which allows us to easily add both new operations and new
implementations to a data type.

In Clojure

In Clojure we’ll take a look at the language’s unique take on polymorphism.
First we’ll look at Clojure’s datatypes and protocols. These allow us to specify
data types and the operations performed on them independently and to extend
datatypes with both new implementations and new operations while taking
advantage of the JVMs highly optimized method dispatch.

Next we’ll look at Clojure’s multimethods. These allow us to provide our own
dispatch function, which lets us dispatch a method call however we please.
They’re more flexible than protocols but slower, since they require an addi-
tional function call to the user-provided dispatch function.

The Scala and Clojure solutions we examine aren’t exactly equivalent, but
they both provide flexible ways to extend existing code.

Sample Code: Extensible Persons

In this example, we’ll look at a Person type and see how we can extend it to
have both new implementations and operations. This doesn’t replace the full
Visitor pattern, but it’s a simpler example of the sorts of problems that Visitor
touches on.

report erratum • discuss

Replacing Visitor • 115

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

In Java

The code that we’ll look at here is a basic example of extending an existing
library without wrapping the original objects. In Java, it would be easy to
create new implementations of a Person type, assuming the original libraries’
authors defined an interface for it.

More difficult would be adding new operations to Person. We can’t just create
a subinterface of Person with new methods, as that could no longer be used
in place of a plain Person. Wrapping Person in a new class is also out for the
same reason.

Java doesn’t have a good story for extending an existing type to have new
operations, so we often end up faking it by creating classes full of static utility
methods that operate on the type. Scala and Clojure give us more flexibility
to extend along both dimensions.

In Scala

In Scala, our Person is defined by a trait. The trait specifies methods to get a
person’s first name, last name, house number, and street. In addition, there’s
a method to get the person’s full name, as the following code shows:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/visitor/Examples.scala
trait Person {

def fullName: String
def firstName: String
def lastName: String
def houseNum: Int
def street: String

}

Now let’s create an implementation of our Person type, SimplePerson. We’ll take
advantage of the fact that Scala will automatically create methods that expose
the attributes passed into a constructor. The only method we need to imple-
ment by hand is fullName(), as the following code snippet shows:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/visitor/Examples.scala
class SimplePerson(val firstName: String, val lastName: String,

val houseNum: Int, val street: String) extends Person {
def fullName = firstName + " " + lastName

}

Now we can create a SimplePerson and call the fullName() method:

scala> val simplePerson = new SimplePerson("Mike", "Linn", 123, "Fake. St.")
simplePerson: com.mblinn.mbfpp.oo.visitor.Examples.SimplePerson = ...
scala> simplePerson.fullName
res0: String = Mike Linn

Chapter 3. Replacing Object-Oriented Patterns • 116

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/visitor/Examples.scala
http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/visitor/Examples.scala
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

What if we want to extend the Person type to have another operation, fullAddress()?
One way to do so would be to simply create a new subtype with the new
operation, but then we couldn’t use that new type where a Person is needed.

In Scala a better way is to define an implicit conversion that converts from a
Person to a new class with the fullAddress() method. An implicit conversion
changes from one type to another depending on context.

Most languages have a certain set of explicit conversions, or casts, built in.
For instance, if you use the + operator on an int and a String in Java, the int
will be converted to a String and the two will be concatenated.

Scala lets programmers define their own implicit conversions. One way to do
so is by using an implicit class. An implicit class exposes its constructor as
a candidate for implicit conversions. The following code snippet creates an
implicit class that converts from a Person to an ExtendedPerson with a fullAddress():

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/visitor/Examples.scala
implicit class ExtendedPerson(person: Person) {

def fullAddress = person.houseNum + " " + person.street
}

Now when we try to call fullAddress() on a Person, the Scala compiler will realize
that the Person type has no such method. It will then search for an implicit
conversion from a Person to a type that does and find it in the ExtendedPerson
class.

The compiler will then construct an ExtendedPerson by passing the Person into
its primary constructor and call fullAddress() on it, as the following REPL output
demonstrates:

scala> simplePerson.fullAddress
res1: String = 123 Fake. St.

Now that we’ve seen the trick that allows us to simulate adding new methods
to an existing type, the hard part is done. Adding a new implementation of
the type is as simple as creating a new implementation of the original Person
trait.

Let’s take a look at a Person implementation called ComplexPerson that uses
separate objects for its name and its address:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/visitor/Examples.scala
class ComplexPerson(name: Name, address: Address) extends Person {

def fullName = name.firstName + " " + name.lastName

def firstName = name.firstName
def lastName = name.lastName

report erratum • discuss

Replacing Visitor • 117

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/visitor/Examples.scala
http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/visitor/Examples.scala
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

def houseNum = address.houseNum
def street = address.street

}
class Address(val houseNum: Int, val street: String)
class Name(val firstName: String, val lastName: String)

Now we create a new ComplexPerson:

scala> val name = new Name("Mike", "Linn")
name: com.mblinn.mbfpp.oo.visitor.Examples.Name = ..

scala> val address = new Address(123, "Fake St.")
address: com.mblinn.mbfpp.oo.visitor.Examples.Address = ..

scala> val complexPerson = new ComplexPerson(name, address)
complexPerson: com.mblinn.mbfpp.oo.visitor.Examples.ComplexPerson = ...

Our existing implicit conversion will still work!

scala> complexPerson.fullName
res2: String = Mike Linn

scala> complexPerson.fullAddress
res3: String = 123 Fake St.

This means we were able to extend a data type with both a new operation
and a new implementation.

In Clojure

Let’s take a look at our extensible persons example in Clojure. We’ll start by
defining a protocol with a single operation in it, extract-name. This operation is
intended to extract a full name out of a person and is defined in the following
code snippet:

ClojureExamples/src/mbfpp/oo/visitor/examples.clj
(defprotocol NameExtractor

(extract-name [this] "Extracts a name from a person."))

Now we can create a Clojure record, SimplePerson, using defrecord. This creates
a data type with several fields on it:

ClojureExamples/src/mbfpp/oo/visitor/examples.clj
(defrecord SimplePerson [first-name last-name house-num street])

We can create a new instance of a SimplePerson using the ->SimplePerson factory
function, as we do in the following snippet:

=> (def simple-person (->SimplePerson "Mike" "Linn" 123 "Fake St."))
#'mbfpp.oo.visitor.examples/simple-person

Chapter 3. Replacing Object-Oriented Patterns • 118

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/oo/visitor/examples.clj
http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/oo/visitor/examples.clj
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Once created, we can get at fields in the data type as if it were a map with
keywords for keys. In the following snippet, we get the first name out of our
simple person instance:

=> (:first-name simple-person)
"Mike"

Notice how we defined our data type and the set of operations independently?
To hook the two together, we can use extend-type to have our SimplePerson
implement the NameExtractor protocol, as we do in the following snippet:

ClojureExamples/src/mbfpp/oo/visitor/examples.clj
(extend-type SimplePerson

NameExtractor
(extract-name [this]

(str (:first-name this) " " (:last-name this))))

Now we can call extract-name on a SimplePerson and have it extract the person’s
full name:

=> (extract-name simple-person)
"Mike Linn"

Now let’s see how to create a new type, ComplexPerson, which represents its name
and address as an embedded map. We’ll use a version of defrecord that allows us
to extend the type to a protocol at the same time we create it. This is just a con-
venience; the record and protocol that we’ve created are still their own entities:

ClojureExamples/src/mbfpp/oo/visitor/examples.clj
(defrecord ComplexPerson [name address]

NameExtractor
(extract-name [this]

(str (-> this :name :first) " " (-> this :name :last))))

Now we can create a ComplexPerson and extract its full name:

=> (def complex-person (->ComplexPerson {:first "Mike" :last "Linn"}
{:house-num 123 :street "Fake St."}))

#'mbfpp.oo.visitor.examples/complex-person
=> (extract-name complex-person)
"Mike Linn"

To add a new operation or set of operations to our existing types, we only
need to create a new protocol and extend the types. In the following snippet,
we create a protocol that allows us to extract an address from a person:

ClojureExamples/src/mbfpp/oo/visitor/examples.clj
(defprotocol

AddressExtractor
(extract-address [this] "Extracts and address from a person."))

report erratum • discuss

Replacing Visitor • 119

http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/oo/visitor/examples.clj
http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/oo/visitor/examples.clj
http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/oo/visitor/examples.clj
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Now we can extend our existing types to conform to the new protocol, as we
do in the following code:

ClojureExamples/src/mbfpp/oo/visitor/examples.clj
(extend-type SimplePerson

AddressExtractor
(extract-address [this]

(str (:house-num this) " " (:street this))))

(extend-type ComplexPerson
AddressExtractor
(extract-address [this]

(str (-> this :address :house-num)
" "
(-> this :address :street))))

As we can see from the following REPL output, both of our datatypes now
conform to the new protocol:

=> (extract-address complex-person)
"123 Fake St."
=> (extract-address simple-person)
"123 Fake St."

While we’ve used Scala’s implicit conversions and Clojure protocols to achieve
a similar end here, they’re not the same. In Scala, the operations we saw were
methods defined on classes, which are part of a type. Scala’s implicit conver-
sion technique allows us to implicitly convert from one type to another, which
makes it look as if we can add operations to an existing type.

Clojure’s protocols, on the other hand, define sets of operations and types
completely independently via protocols and records. We can then extend any
record with any number of protocols, which allows us to easily extend an
existing solution both with new operations and new types.

Sample Code: Extensible Geometry

Let’s take a look at a more involved example. We’ll start off by defining two
shapes, a circle and a rectangle, and an operation that calculates their
perimeters.

Then we’ll show how we can independently add new shapes that work with
the existing perimeter operation and new operations that work with our
existing shapes. Finally, we’ll show how to combine both types of extensions.

Chapter 3. Replacing Object-Oriented Patterns • 120

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/oo/visitor/examples.clj
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

In Java

In Java, this is a problem that’s impossible to solve well. Extending the shape
type to have additional implementations is easy. We create a Shape interface
with multiple implementations.

If we want to extend Shape so that it has new implementations, it’s a bit more
difficult, but we can use Visitor as demonstrated in the Visitor Classes
diagram.

Figure 9—Shape Visitor. The Visitor pattern implemented

However, if we go this route, it’s now difficult to have new implementations
because we’d have to modify all of the existing Visitors. If the Visitors are imple-
mented by third-party code, it can be impossible to extend in this dimension
without introducing backwards-incompatible changes.

In Java, we need to decide at the outset whether we want to add new opera-
tions over our Shape or whether we want new implementations of it.

In Scala

In Scala, we use a simplified version of a technique introduced in a paper
written by Scala’s designer, Martin Odersky.

We’ll create a trait, Shape, to serve as the base for all of our shapes. We’ll start
off with a single method, perimeter(), and two implementations, Circle and Rectan-
gle.

To perform our extension magic, we’ll use some advanced features of Scala’s
type system. First, we’ll take advantage of the fact that we can use Scala’s
traits as modules. At each step, we’ll package our code in a top-level trait
separate from the one we’re using to represent Shape.

report erratum • discuss

Replacing Visitor • 121

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

This allows us to bundle sets of data types and operations together and to
extend those bundles later on using Scala’s mix-in inheritance. Then we can
have a new type extend many different traits, an ability we take advantage of
to combine independent extensions.

Let’s dig into the code, starting with our initial Shape trait and the first two
implementations:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/visitor/Shapes.scala
trait PerimeterShapes {

trait Shape {
def perimeter: Double

}

class Circle(radius: Double) extends Shape {
def perimeter = 2 * Math.PI * radius

}

class Rectangle(width: Double, height: Double) extends Shape {
def perimeter = 2 * width + 2 * height

}
}

Outside of the top-level PerimeterShapes trait, this is a pretty straightforward
declaration of a Shape trait and a couple of implementations. To use our shape
code we can extend an object with the top-level trait.

This adds our Shape trait and its implementations to the object. We can now
use them directly or easily import them into the REPL, as we do in the follow-
ing code:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/visitor/Shapes.scala
object FirstShapeExample extends PerimeterShapes {

val aCircle = new Circle(4);
val aRectangle = new Rectangle(2, 2);

}

Now we can import our shapes into the REPL and try them out, like in the
following snippet:

import com.mblinn.mbfpp.oo.visitor.FirstShapeExample._

scala> aCircle.perimeter
res1: Double = 25.132741228718345

scala> aRectangle.perimeter
res2: Double = 8.0

Extending our Shape with new operations is what’s difficult in most purely
object-oriented languages, so let’s tackle that first. To extend our initial set

Chapter 3. Replacing Object-Oriented Patterns • 122

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/visitor/Shapes.scala
http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/visitor/Shapes.scala
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

of shapes, we create a new top-level trait called AreaShapes, which extends
PerimeterShapes.

Inside of AreaShapes we extend our initial Shape class to have an area() method,
and we create a new Circle and a new Rectangle, which implement area(). The
code for our extensions follows:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/visitor/Shapes.scala
trait AreaShapes extends PerimeterShapes {

trait Shape extends super.Shape {
def area: Double

}

class Circle(radius: Double) extends super.Circle(radius) with Shape {
def area = Math.PI * radius * radius

}

class Rectangle(width: Double, height: Double)
extends super.Rectangle(width, height) with Shape {

def area = width * height
}

}

Let’s take a look at this in greater detail. First we create our top-level trait
AreaShapes, which extends PerimeterShapes. This lets us easily refer to and extend
the classes and trait inside of AreaShapes:

trait AreaShapes extends PerimeterShapes {
«area-shapes»

}

Next we create a new Shape trait inside of AreaShapes and have it extend the old
one inside of PerimeterShapes:

trait Shape extends super.Shape {
def area: Double

}

We need to refer to the Shape class in PerimeterShapes as super.Shape to differentiate
it from the one we just created in AreaShapes.

Now we’re ready to implement our area(). To so we first extend our old Circle and
Rectangle classes, and then we mix in our new Shape trait, which has area() on it.

Finally, we implement the area() on our new Circle and Rectangle, as shown in
the following snippet:

class Circle(radius: Double) extends super.Circle(radius) with Shape {
def area = Math.PI * radius * radius

}

report erratum • discuss

Replacing Visitor • 123

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/visitor/Shapes.scala
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

class Rectangle(width: Double, height: Double)
extends super.Rectangle(width, height) with Shape {

def area = width * height
}

Now we can create some sample shapes and see both perimeter() and area() in
action:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/visitor/Shapes.scala
object SecondShapeExample extends AreaShapes {

val someShapes = Vector(new Circle(4), new Rectangle(2, 2));
}

scala> for(shape <- someShapes) yield shape.perimeter
res0: scala.collection.immutable.Vector[Double] = Vector(25.132741228718345, 8.0)

scala> for(shape <- someShapes) yield shape.area
res1: scala.collection.immutable.Vector[Double] = Vector(50.26548245743669, 4.0)

That covers the hard part, extending Shape with a new operation. Now let’s
take a look at the easier part. We’ll extend Shape to have a new implementation
by creating a Square class.

In the first piece of our extension we create the MorePerimeterShapes top-level
trait, which extends the original PerimeterShapes. Inside, we create a new Square
implementation of our original trait class. The first piece of our extension is
in the following code:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/visitor/Shapes.scala
trait MorePerimeterShapes extends PerimeterShapes {

class Square(side: Double) extends Shape {
def perimeter = 4 * side;

}
}

Now we can create another new top-level trait, MoreAreaShapes, that extends
our original AreaShapes and mixes in the MorePerimeterShapes trait we just created.
Inside this trait, we extend the Square we just created to also have an area()
method:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/visitor/Shapes.scala
trait MoreAreaShapes extends AreaShapes with MorePerimeterShapes {

class Square(side: Double) extends super.Square(side) with Shape {
def area = side * side

}
}

Now we can add a Square to our test shapes and see the full set of shapes and
operations in action, as we do in the following code:

Chapter 3. Replacing Object-Oriented Patterns • 124

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/visitor/Shapes.scala
http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/visitor/Shapes.scala
http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/visitor/Shapes.scala
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/visitor/Shapes.scala
object ThirdShapeExample extends MoreAreaShapes {

val someMoreShapes = Vector(new Circle(4), new Rectangle(2, 2), new Square(4));
}

scala> for(shape <- someMoreShapes) yield shape.perimeter
res2: scala.collection.immutable.Vector[Double] =

Vector(25.132741228718345, 8.0, 16.0)

scala> for(shape <- someMoreShapes) yield shape.area
res3: scala.collection.immutable.Vector[Double] =

Vector(50.26548245743669, 4.0, 16.0)

Now we’ve successfully added both new implementations of Shape and new
operations over it, and we’ve done so in a typesafe manner!

In Clojure

Our Clojure solution relies on multimethods, which let us specify an arbitrary
dispatch function. Let’s take a look at a simple example.

First, we create the multimethod using defmulti. This doesn’t specify any
implementations of the method; rather, it contains a dispatch function. In
the following snippet we create a multimethod named test-multimethod. The
dispatch function is a function of one argument, and it returns that argument
untouched. However, it can be an arbitrary piece of code:

ClojureExamples/src/mbfpp/oo/visitor/examples.clj
(defmulti test-multimethod (fn [keyword] keyword))

The multimethod is implemented using defmethod. Method definitions look
much like function definitions, except that they also contain a dispatching
value, which corresponds to the values returned from the dispatch function.

In the following snippet, we define two implementations of test-multimethod. The
first expects a dispatch value of :foo, and the second, :bar.

ClojureExamples/src/mbfpp/oo/visitor/examples.clj
(defmethod test-multimethod :foo [a-map]

"foo-method was called")

(defmethod test-multimethod :bar [a-map]
"bar-method was called")

When the multimethod is called, the dispatch function is first called, and
then Clojure dispatches the call to the method with the matching dispatch
value. Since our dispatch function returns its input, we call it with the desired
dispatch values. The following REPL output demonstrates this:

report erratum • discuss

Replacing Visitor • 125

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/visitor/Shapes.scala
http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/oo/visitor/examples.clj
http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/oo/visitor/examples.clj
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

=> (test-multimethod :foo)
"foo-method was called"
=> (test-multimethod :bar)
"bar-method was called"

Now that we’ve seen a basic example of multimethods in action, let’s dig a bit
deeper in. We’ll define our perimeter operation as a multimethod. The dispatch
function expects a map that represents our shape. One of the keys in the
map is :shape-name, which the dispatch function extracts as our dispatch value.

Our perimeter multimethod is defined below, along with implementations for
the circle and the rectangle:

ClojureExamples/src/mbfpp/oo/visitor/examples.clj
(defmulti perimeter (fn [shape] (:shape-name shape)))
(defmethod perimeter :circle [circle]

(* 2 Math/PI (:radius circle)))
(defmethod perimeter :rectangle [rectangle]

(+ (* 2 (:width rectangle)) (* 2 (:height rectangle))))

Now we can define a few test shapes:

ClojureExamples/src/mbfpp/oo/visitor/examples.clj
(def some-shapes [{:shape-name :circle :radius 4}

{:shape-name :rectangle :width 2 :height 2}])

Then we can run our perimeter method over them:

=> (for [shape some-shapes] (perimeter shape))
(25.132741228718345 8)

To add new operations, we create a new multimethod that handles the existing
dispatch values. In the following snippet, we add support for an area operation:

ClojureExamples/src/mbfpp/oo/visitor/examples.clj
(defmulti area (fn [shape] (:shape-name shape)))
(defmethod area :circle [circle]

(* Math/PI (:radius circle) (:radius circle)))
(defmethod area :rectangle [rectangle]

(* (:width rectangle) (:height rectangle)))

Now we can calculate an area for our shapes as well:

=> (for [shape some-shapes] (area shape))
(50.26548245743669 4)

To add a new shape into the set of shapes we can handle across both the
perimeter and area operations, we add new implementations of our multimeth-
ods that handle the appropriate dispatch values. In the following code, we
add support for squares:

Chapter 3. Replacing Object-Oriented Patterns • 126

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/oo/visitor/examples.clj
http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/oo/visitor/examples.clj
http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/oo/visitor/examples.clj
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

ClojureExamples/src/mbfpp/oo/visitor/examples.clj
(defmethod perimeter :square [square]

(* 4 (:side square)))
(defmethod area :square [square]

(* (:side square) (:side square)))

Let’s add a square to our vector of test shapes:

ClojureExamples/src/mbfpp/oo/visitor/examples.clj
(def more-shapes (conj some-shapes

{:shape-name :square :side 4}))

And we can verify that our operations work on squares as well:

=> (for [shape more-shapes] (perimeter shape))
(25.132741228718345 8 16)
=> (for [shape more-shapes] (area shape))
(50.26548245743669 4 16)

We’ve only scratched the surface of what multimethods can do. Since we can
specify an arbitrary dispatch function, we can dispatch on just about anything.
Clojure also provides a way to make multimethods work with user-defined
hierarchies, much like class hierarchies in object-oriented languages. However,
even the simple usage of multimethods we just saw is enough to replace the
interesting aspects of the Visitor pattern.

Discussion

Scala has a much harder problem to solve here, since it maintains static type
safety while allowing for extensions both to implementations of a data type
and the operations performed on it. Since Clojure is dynamically typed, it has
no such requirement.

Our Visitor replacements are a great example of the tradeoffs between an
expressive statically typed language like Scala and a dynamically typed lan-
guage like Clojure. We had to expend more effort in Scala, and our solutions
aren’t quite as straightforward as the Clojure solutions. However, if we try to
perform some operation on a type that can’t handle it in Clojure, it’s a runtime
rather than a compile-time problem.

For Further Reading
Design Patterns: Elements of Reusable Object-Oriented Software [GHJV95]—Visitor

Related Patterns
Pattern 9, Replacing Decorator, on page 109

report erratum • discuss

Replacing Visitor • 127

http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/oo/visitor/examples.clj
http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/oo/visitor/examples.clj
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Pattern 11

Replacing Dependency Injection

Intent

To compose objects together using an external configuration or code, rather
than having an object instantiate its own dependencies—this allows us to
easily inject different dependency implementations into an object and provides
a centralized place to understand what dependencies a given object has.

Overview

Objects are the primary unit of composition in the object-oriented world.
Dependency Injection is about composing graphs of objects together. In its
simplest form, all that’s involved in Dependency Injection is to inject an
object’s dependencies through a constructor or setter.

For instance, the following class outlines a movie service that’s capable of
returning a user’s favorite movies. It depends on a favorites service to pull
back a list of favorite movies and a movie DAO to fetch details about individ-
ual movies:

JavaExamples/src/main/java/com/mblinn/mbfpp/oo/di/MovieService.java
package com.mblinn.mbfpp.oo.di;
public class MovieService {

private MovieDao movieDao;
private FavoritesService favoritesService;
public MovieService(MovieDao movieDao, FavoritesService favoritesService){

this.movieDao = movieDao;
this.favoritesService = favoritesService;

}
}

Here we’re using classic, constructor-based Dependency Injection. When it’s
constructed, the MovieService class needs to have its dependencies passed in.
This can be done manually, but it’s generally done using a dependency-
injection framework.

Dependency Injection has several benefits. It makes it easy to change the
implementation for a given dependency, which is especially handy for swapping
out a real dependency with a stub in a unit test.

Chapter 3. Replacing Object-Oriented Patterns • 128

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/JavaExamples/src/main/java/com/mblinn/mbfpp/oo/di/MovieService.java
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

With appropriate container support, dependency injection can also make it
easier to declaratively specify the overall shape of a system, as each component
has its dependencies injected into it in a configuration file or in a bit of con-
figuration code.

Functional Replacement

There’s less of a need for a Dependency Injection–like pattern when program-
ming in a more functional style. Functional programming naturally involves
composing functions, as we’ve seen in patterns like Pattern 16, Function
Builder, on page 167. Since this involves composing functions much as
Dependency Injection composes classes, we get some of the benefits for free
just from functional composition.

However, simple functional composition doesn’t solve all of the problems
Dependency Injection does. This is especially true in Scala because it’s a
hybrid language, and larger bodies of code are generally organized into objects.

In Scala

Classic Dependency Injection can be used in Scala. We can even use familiar
Java frameworks like Spring or Guice. However, we can achieve many of the
same goals without the need for any framework.

We’ll take a look at a Scala pattern called the Cake pattern. This pattern uses
Scala traits and self-type annotations to accomplish the same sort of compo-
sition and structure that we get with Dependency Injection without the need
for a container.

In Clojure

The unit of injection in Clojure is the function, since Clojure is not object
oriented. For the most part, this means that the problems we solve with
Dependency Injection in an object-oriented language don’t exist in Clojure,
as we can naturally compose functions together.

However, one use for Dependency Injection does need a bit of special treatment
in Clojure. To stub out functions for testing purposes, we can use a macro
named with-redfs, which allows us to temporarily replace a function with a stub.

Sample Code: Favorite Videos

Let’s take a closer look at the sketch of a problem we saw in the Overview,
on page 128. There we created a movie service that allows us to do several
movie-related actions. Each video is associated with a movie and needs to be
decorated with details related to that movie, such as the movie’s title.

report erratum • discuss

Replacing Dependency Injection • 129

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

To accomplish this, we’ve got a top-level movie service that depends on a
movie DAO to get movie details and on a favorites service to fetch favorites
for a given user.

Classic Java

In Java, our top-level MovieService is sketched out in the following class. We
use Dependency Injection to inject a FavoritesService and a MovieDao via a
constructor:

JavaExamples/src/main/java/com/mblinn/mbfpp/oo/di/MovieService.java
package com.mblinn.mbfpp.oo.di;
public class MovieService {

private MovieDao movieDao;
private FavoritesService favoritesService;
public MovieService(MovieDao movieDao, FavoritesService favoritesService){

this.movieDao = movieDao;
this.favoritesService = favoritesService;

}
}

In a full program, we’d then use a framework to wire up MovieService’s depen-
dencies. We have quite a few ways to do this, ranging from XML configuration
files to Java configuration classes to annotations that automatically wire
dependencies in.

All of these share one common trait: they need an external framework to be
effective. Here we’ll examine Scala and Clojure options that have no such
limitation.

In Scala

Now we’ll take a look at an example of Scala’s Cake pattern. The rough idea
is that we’ll encapsulate the dependencies we want to inject inside of top-
level traits, which represent our injectable components. Instead of instantiating
dependencies directly inside of the trait, we create abstract vals that will hold
references to them when we wire everything up.

We’ll then use Scala’s self-type annotation and mixin inheritance to specify
wiring in a typesafe manner. Finally, we use a simple Scala object as a com-
ponent registry. We mix all of our dependencies into the container object and
instantiate them, holding references to them in the abstract vals mentioned
previously.

Chapter 3. Replacing Object-Oriented Patterns • 130

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/JavaExamples/src/main/java/com/mblinn/mbfpp/oo/di/MovieService.java
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

This approach has a few nice properties. As we mentioned before, it doesn’t
require an outside container to use. In addition, wiring things up maintains
static type safety.

Let’s start off with a look at the data we’ll be operating over. We’ve got three
case classes, a Movie, a Video, and a DecoratedMovie, which represents a movie
decorated with a video about it.

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/di/ex1/Services.scala
case class Movie(movieId: String, title: String)
case class Video(movieId: String)
case class DecoratedMovie(movie: Movie, video: Video)

Now let’s define some traits as interfaces for our dependencies, FavoritesService
and MovieDao. We’ll nest these traits inside of another set of traits that represent
the injectable components. We’ll see why this is necessary later in the example.

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/di/ex1/Services.scala
trait MovieDaoComponent {

trait MovieDao {
def getMovie(id: String): Movie

}
}

trait FavoritesServiceComponent {
trait FavoritesService {

def getFavoriteVideos(id: String): Vector[Video]
}

}

Next up, we’ve got our implementations of the components introduced previ-
ously. Here we’ll stub out the MovieDao and FavoritesService to return static
responses by implementing the interfaces. Note that we need to extend the
component traits we’ve wrapped them in as well.

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/di/ex1/Services.scala
trait MovieDaoComponentImpl extends MovieDaoComponent {

class MovieDaoImpl extends MovieDao {
def getMovie(id: String): Movie = new Movie("42", "A Movie")

}
}

trait FavoritesServiceComponentImpl extends FavoritesServiceComponent {
class FavoritesServiceImpl extends FavoritesService {

def getFavoriteVideos(id: String): Vector[Video] = Vector(new Video("1"))
}

}

report erratum • discuss

Replacing Dependency Injection • 131

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/di/ex1/Services.scala
http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/di/ex1/Services.scala
http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/di/ex1/Services.scala
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Now let’s take a look at MovieServiceImpl, which depends on the FavoritesService
and MovieDao defined previously. This class implements a single method,
getFavoriteDecoratedMovies(), which takes a user ID and returns that user’s favorite
movies decorated by a video of that movie.

The full code for MovieServiceImpl, wrapped up in a top-level MovieServiceCompo-
nentImpl trait, follows:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/di/ex1/Services.scala
trait MovieServiceComponentImpl {

this: MovieDaoComponent with FavoritesServiceComponent =>

val favoritesService: FavoritesService
val movieDao: MovieDao

class MovieServiceImpl {
def getFavoriteDecoratedMovies(userId: String): Vector[DecoratedMovie] =
for (

favoriteVideo <- favoritesService.getFavoriteVideos(userId);
val movie = movieDao.getMovie(favoriteVideo.movieId)

) yield DecoratedMovie(movie, favoriteVideo)
}

}

Let’s take a closer look at this bit by bit. First we’ve got the self-type annotation
on the top-level MovieServiceComponentImpl trait. This is part of the Scala magic
that makes the Cake pattern typesafe.

this: MovieDaoComponent with FavoritesServiceComponent =>

The self-type annotation ensures that whenever MovieServiceComponentImpl is
mixed into an object or a class, this reference of that object has the type
MovieDaoComponent with FavoritesServiceComponent. Put another way, it ensures that
when the MovieServiceComponentImpl is mixed into something, MovieDaoComponent
and FavoritesServiceComponent or one of their subtypes are as well.

Next up are the explicit vals that we’ll store references to our dependencies in:

val favoritesService: FavoritesService
val movieDao: MovieDao

These ensure that when we mix MovieServiceComponentImpl into our container
object, we’ll need to assign to the abstract vals.

Finally, we’ve got the object that serves as our component registry, Componen-
tRegistry. The registry extends implementations of all of our dependencies and
instantiates them, storing references to them in the abstract vals we previously
defined:

Chapter 3. Replacing Object-Oriented Patterns • 132

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/di/ex1/Services.scala
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/di/ex1/Services.scala
object ComponentRegistry extends MovieServiceComponentImpl

with FavoritesServiceComponentImpl with MovieDaoComponentImpl {
val favoritesService = new FavoritesServiceImpl
val movieDao = new MovieDaoImpl

val movieService = new MovieServiceImpl
}

Now we can pull a full wired-up MovieService out of the registry when needed:

scala> val movieService = ComponentRegistry.movieService
movieService: ...

Earlier I claimed that this wiring preserves static type safety. Let’s explore
what this means in greater detail. First, let’s take a look at what happens if
we only extend MovieServiceComponentImpl itself in our object registry, as in the
following code outline:

object BrokenComponentRegistry extends MovieServiceComponentImpl {

}

This causes a compiler error, something like the following:

illegal inheritance; self-type com.mblinn.mbfpp.oo.di.ex1.Example.
BrokenComponentRegistry.type does not conform to com.mblinn.mbf-
pp.oo.di.ex1.Example.MovieServiceComponentImpl’s selftype...

Here, the compiler is telling us that BrokenComponentRegistry doesn’t conform to
the self-type we declared for MovieServiceComponentImpl, as we’re not also mixing
in MovieDaoComponent and FavoritesServiceComponent.

We can fix that error by extending FavoritesServiceComponentImpl and MovieDaoCom-
ponentImpl, as we do in the following code:

object BrokenComponentRegistry extends MovieServiceComponentImpl
with FavoritesServiceComponentImpl with MovieDaoComponentImpl {

}

However, this will get us another compiler error, which starts as follows:

object creation impossible, since: it has 2 unimplemented members...

This error is saying we haven’t implemented the favoritesService and movieDao
members that MovieServiceComponentImpl requires us to.

report erratum • discuss

Replacing Dependency Injection • 133

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/di/ex1/Services.scala
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

In Clojure

Clojure doesn’t have a direct analog to Dependency Injection. Instead, we
pass functions directly into other functions as needed. For instance, here we
declare our get-movie and get-favorite-videos functions:

ClojureExamples/src/mbfpp/functional/di/examples.clj
(defn get-movie [movie-id]

{:id "42" :title "A Movie"})

(defn get-favorite-videos [user-id]
[{:id "1"}])

Here we pass them into get-favorite-decorated-videos where they’re used:

ClojureExamples/src/mbfpp/functional/di/examples.clj
(defn get-favorite-decorated-videos [user-id get-movie get-favorite-videos]

(for [video (get-favorite-videos user-id)]
{:movie (get-movie (:id video))
:video video}))

Another possibility is to use Pattern 16, Function Builder, on page 167, to
package up the dependent functions in a closure.

However, in Clojure, we generally only do this sort of direct injection when
we want the user of the function to have control over the passed-in dependen-
cies. We tend not to need it to define the overall shape of our programs.

Instead, programs in Clojure and other Lisps are generally organized as a
series of layered, domain-specific languages. We’ll see an example of such in
Pattern 21, Domain-Specific Language, on page 218.

Sample Code: Test Stubs

While Dependency Injection is largely concerned with the organization of
programs as a whole, one specific area in which it’s especially helpful is
injecting stubbed-out dependencies into tests.

Classic Java

In Java, we can just take our MovieService and manually inject stubs or mocks
into it using constructor injection. Another option is to use the dependency
injection container to instantiate a set of test dependencies.

The best approach depends on what sort of tests we’re currently writing. For
unit tests, it’s generally simpler to just manually inject individual mocks. For
larger integration-style tests, I prefer to go with the full-container approach.

Chapter 3. Replacing Object-Oriented Patterns • 134

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/functional/di/examples.clj
http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/functional/di/examples.clj
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

In Scala

With Scala’s Cake pattern, we can easily created mocked out versions of our
dependencies. We do so in the following code snippet:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/di/ex1/Services.scala
trait MovieDaoComponentTestImpl extends MovieDaoComponent {

class MovieDaoTestImpl extends MovieDao {
def getMovie(id: String): Movie = new Movie("43", "A Test Movie")

}
}

trait FavoritesServiceComponentTestImpl extends FavoritesServiceComponent {
class FavoritesServiceTestImpl extends FavoritesService {

def getFavoriteVideos(id: String): Vector[Video] = Vector(new Video("2"))
}

}

Now we only need to mix in and instantiate the stubbed components rather
than the real ones, and then our test movie service is ready to use:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/di/ex1/Services.scala
object TestComponentRegistery extends MovieServiceComponentImpl

with FavoritesServiceComponentTestImpl with MovieDaoComponentTestImpl {
val favoritesService = new FavoritesServiceTestImpl
val movieDao = new MovieDaoTestImpl

val movieService = new MovieServiceImpl
}

In Clojure

With our example Clojure code written as it is in the previous example, we
only need to create test versions of our dependent functions and pass them
into get-favorite-decorated-videos. We demonstrate this in the following code snippet:

ClojureExamples/src/mbfpp/functional/di/examples.clj
(defn get-test-movie [movie-id]

{:id "43" :title "A Test Movie"})

(defn get-test-favorite-videos [user-id]
[{:id "2"}])

=> (get-favorite-decorated-videos "2" get-test-movie get-test-favorite-videos)
({:movie {:title "A Test Movie", :id "43"}, :video {:id "2"}})

However, since we don’t always structure whole Clojure programs by passing
in every dependency as a higher-order function, we often need an alternative
method for stubbing out test dependencies. Let’s take a look at another version
of get-favorite-decorated-videos that relies on its dependencies directly, rather than
on having them passed in:

report erratum • discuss

Replacing Dependency Injection • 135

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/di/ex1/Services.scala
http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/oo/di/ex1/Services.scala
http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/functional/di/examples.clj
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

ClojureExamples/src/mbfpp/functional/di/examples.clj
(defn get-favorite-decorated-videos-2 [user-id]

(for [video (get-favorite-videos user-id)]
{:movie (get-movie (:id video))
:video video}))

If we call get-favorite-decorated-videos-2, it’ll use its hard-coded dependencies:

=> (get-favorite-decorated-videos-2 "1")
({:movie {:title "A Movie", :id "42"}, :video {:id "1"}})

We can use with-redefs to temporarily redefine those dependencies, as we
demonstrate below:

=> (with-redefs
[get-favorite-videos get-test-favorite-videos
get-movie get-test-movie]

(doall (get-favorite-decorated-videos-2 "2")))
({:movie {:title "A Test Movie", :id "43"}, :video {:id "2"}})

Note that we wrapped our call to get-favorite-decorated-videos-2 in a call to doall.
The doall form forces the lazy sequence produced by get-favorite-decorated-videos-2
to be realized.

We need to use it here because laziness and with-redefs have a subtle interaction
that can be confusing. Without forcing the sequence to be realized, it won’t
be fully realized until the REPL attempts to print it. By that time, the rebound
function bindings will have reverted to their original bindings.

Clojure’s with-redefs is a blunt instrument. As you might guess, replacing
function definitions on the fly can be quite dangerous, so this is best saved
only for test code.

Related Patterns
Pattern 16, Function Builder, on page 167

Pattern 21, Domain-Specific Language, on page 218

Chapter 3. Replacing Object-Oriented Patterns • 136

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/functional/di/examples.clj
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

CHAPTER 4

Functional Patterns
4.1 Introduction

Functional programming has its own set of patterns that have evolved out of
the functional style.

These patterns rely heavily on immutability. For instance, Pattern 12, Tail
Recursion, on page 138, shows a general purpose replacement for iteration
that doesn’t rely on a mutable counter, while Pattern 15, Chain of Operations,
on page 159, shows how to work with immutable data by chaining transforma-
tions on an immutable data structure.

Another theme in these patterns is the use of higher-order functions as a
primary unit of composition. This dovetails nicely with the first theme,
immutability and transformation of immutable data. By using higher-order
functions we can easily do these transformations, as we demonstrate in Pattern
14, Filter-Map-Reduce, on page 155.

One final theme we’ll explore is the ability of functional languages to be
adapted to create little languages that solve particular problems. This type
of programming has spread well outside the functional style, but it started
with the Lisp tradition that Clojure carries on. We’ll see it in Pattern 12, Tail
Recursion, on page 138, and Pattern 21, Domain-Specific Language, on page
218.

Let’s take a look at our first pattern, Tail Recursion.

report erratum • discuss

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Pattern 12

Tail Recursion

Intent

To repeat a computation without using mutable state and without overflowing
the stack

Overview

Iteration is an imperative technique that requires mutable state. For example,
let’s examine a trivial problem, writing a function that will calculate the sum
from one up to an arbitrary number, inclusive. The code below does just that,
but it requires both i and sum to be mutable:

JavaExamples/src/main/java/com/mblinn/functional/tailrecursion/Sum.java
public static int sum(int upTo) {

int sum = 0;
for (int i = 0; i <= upTo; i++)

sum += i;
return sum;

}

Since the functional world emphasizes immutability, iteration is out. In its
place, we can use recursion, which does not require immutability. Recursion
has its own problems, though; in particular, each recursive call will lead to
another frame on the program’s call stack.

To get around that, we can use a particular form of recursion called tail
recursion, which can be optimized to use a single frame on the stack, a process
known as tail call optimization or TCO.

Let’s think about how we’d write the sum() as a recursive function, sumRecursive().
First, we need to decide when our recursion should stop and start. Since
we’re summing together all numbers stopping at some arbitrary number, it
makes sense to work down from that number and stop at zero. This stopping
point is known as our base case.

Next we need to figure out what to do to perform the actual computation. In
this case, we take the number we’re currently working on and add it to the
results of calling tailRecursive() with that number minus one. Eventually, we get
down to our base case of zero, at which point the stack unwinds, returning

Chapter 4. Functional Patterns • 138

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/JavaExamples/src/main/java/com/mblinn/functional/tailrecursion/Sum.java
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

partial sums as it goes, until it reaches the top and returns the final sum.
The code below demonstrates this solution:

JavaExamples/src/main/java/com/mblinn/functional/tailrecursion/Sum.java
public static int sumRecursive(int upTo) {

if (upTo == 0)
return 0;

else
return upTo + sumRecursive(upTo - 1);

}

There’s a problem with this, though. Each recursive call adds a frame to the
stack, which means this solution takes memory proportional to the size of
the sequence we’re summing, as shown in the following figure.

Figure 10—Simple Stack. An illustration of the stack during normal recursive calls—each
recursive call adds a call to the stack; these frames represent memory that cannot be

reclaimed until after the recursion is done.

Clearly this isn’t practical, but we can do better. The ultimate cause for
exploding stack use is that each time we make a recursive call, we need the
result of that call to finish the computation we’re doing in the current call.
This means that the runtime has no choice but to store the intermediate
results on the stack.

If we were to make sure that the recursive call was the last thing that happens
in each branch of the function, known as the tail position, this would no longer
be the case. Doing so requires us to take the intermediate values that were
formerly stored on the stack and pass them through the call chain. The code
below illustrates this:

report erratum • discuss

Tail Recursion • 139

http://media.pragprog.com/titles/mbfpp/code/JavaExamples/src/main/java/com/mblinn/functional/tailrecursion/Sum.java
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

JavaExamples/src/main/java/com/mblinn/functional/tailrecursion/Sum.java
public static int sumTailRecursive(int upTo, int currentSum) {

if (upTo == 0)
return currentSum;

else
return sumTailRecursive(upTo - 1, currentSum + upTo);

}

Once we rewrite the function to be tail recursive, it’s possible to use TCO to
run it in only a single stack frame, as shown in this figure.

Figure 11—Stack with TCO. With TCO, recursive calls in the tail position don’t generate a
new stack frame. Instead, each call uses the existing stack frame, removing whatever data

was there from the previous call.

Unfortunately, the JVM doesn’t support TCO directly, so Scala and Clojure
need to use some tricks to compile their tail recursive calls down to the same
bytecode used for iteration. In Clojure’s case, this is done by providing two
special forms, loop and recur, instead of using general purpose function calls.

In Scala’s case, the Scala compiler will attempt to translate tail recursive calls
into iteration behind the scenes, and Scala provides an annotation, @tailrec,
that can be placed on functions that are meant to be used in a tail recursive
manner. If the function is called recursively without being in the tail position,
the compiler will generate an error.

Code Sample: Recursive People

Let’s take a look at a recursive solution to a simple problem. We’ve got a
sequence of first names and a sequence of last names, and we want to put
them together to make people. To solve this, we need to go through both
sequences in lock step. We’ll assume that some other part of the program
has verified that the two sequences are of the same size.

At each step in the recursion, we’ll take the first element in both sequences
and put them together to form a full name. We’ll then pass the rest of each
sequence onto the next recursive call along with a sequence of the people
we’ve formed so far. Let’s see how it looks in Scala.

Chapter 4. Functional Patterns • 140

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/JavaExamples/src/main/java/com/mblinn/functional/tailrecursion/Sum.java
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

In Scala

The first thing we’ll need is a Scala case class to represent our people. Here
we’ve got one with a first and a last name:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/tr/Names.scala
case class Person(firstNames: String, lastNames: String)

Next up is our recursive function itself. This is actually split into two functions.
The first is a function named makePeople, which takes in two sequences, firstNames
and lastNames. The second is a helper function nested inside of makePeople, which
adds an additional argument used to pass the list of people through recursive
calls. Let’s take a look at the whole function before we break it down into
smaller parts:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/tr/Names.scala
def makePeople(firstNames: Seq[String], lastNames: Seq[String]) = {

@tailrec
def helper(firstNames: Seq[String], lastNames: Seq[String],

people: Vector[Person]): Seq[Person] =
if (firstNames.isEmpty)
people

else {
val newPerson = Person(firstNames.head, lastNames.head)
helper(firstNames.tail, lastNames.tail, people :+ newPerson)

}
helper(firstNames, lastNames, Vector[Person]())

}

First, let’s examine the function signature of makePeople:

def makePeople(firstNames: Seq[String], lastNames: Seq[String]) = {
«function-body»

}

This just says that makePeople takes two Seqs of String. Since we don’t specify a
return type, the compiler will infer it from the function body.

Next up, let’s look at the signature of the helper function. This function is
responsible for the actual tail recursive calls. The helper function is annotated
with a @tailrec annotation, which makes the compiler generate an error if it’s
called recursively but not tail recursively. The function signature simply adds
an additional argument, the people vector, which will accumulate results
through recursive calls.

Notice that we specified a return type here, though we generally omit it in our
Scala examples. This is because the compiler can’t infer types for recursively
called functions.

report erratum • discuss

Tail Recursion • 141

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/tr/Names.scala
http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/tr/Names.scala
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

def helper(firstNames: Seq[String], lastNames: Seq[String],
people: Vector[Person]): Seq[Person] =
«function-body»

Now the body for helper. If the firstNames sequence is empty, we return the list
of people we’ve built up. Otherwise, we pick the first first name and the first
last name off of their respective sequences, create a Person out of them, and
call the helper function again with the tail of the two sequences and the new
person appended to the list of people:

if (firstNames.isEmpty)
people

else {
val newPerson = Person(firstNames.head, lastNames.head)
helper(firstNames.tail, lastNames.tail, people :+ newPerson)

}

Finally, we simply call helper with the sequences of names and an empty Vector
to hold our people:

helper(firstNames, lastNames, Vector[Person]())

One closing note on the syntax: using some of Scala’s object-oriented features,
namely methods, would let us cut out some of the verbosity that comes along
with a recursive function definition. The method signatures would look like
this:

def makePeopleMethod(firstNames: Seq[String], lastNames: Seq[String]) = {
@tailrec
def helper(firstNames: Seq[String], lastNames: Seq[String],

people: Vector[Person]): Seq[Person] =
«method-body»

}
}

Since we’re sticking mainly to the functional bits of Scala in this book, we’re
using functions for most of the examples rather than methods. Methods can
often be used as higher-order functions in Scala, but it can sometimes be
awkward to do so.

In Clojure

In Clojure, tail recursive calls are never optimized, so even a tail recursive
call will end up consuming a stack frame. Instead of providing TCO, Clojure
gives us two forms, loop and recur. The loop form defines a recursion point, and
the keyword recur jumps back to it, passing it new values.

In practice, this looks almost exactly like defining a private helper function
does, so the form of our solution is very similar to the Scala solution, though

Chapter 4. Functional Patterns • 142

report erratum • discuss

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

we’ll use a simple map to store our people, as is standard in Clojure. Let’s
take a look at the code:

ClojureExamples/src/mbfpp/functional/tr/names.clj
(defn make-people [first-names last-names]

(loop [first-names first-names last-names last-names people []]
(if (seq first-names)
(recur

(rest first-names)
(rest last-names)
(conj

people
{:first (first first-names) :last (first last-names)}))

people)))

The first interesting bit of code here is the loop declaration. Here, we define
our recursion point and the values we’ll start our recursion at: the passed-in
sequences of first and last names and an empty vector we’ll use to accumulate
people as we recur.

(loop [first-names first-names last-names last-names people []]
«loop-body»

)

The code snippet first-names first-names last-names last-names people [] might look a
little funny, but all it’s doing is initializing the first-names and last-names that
we’re defining in the loop to be the values that were passed into the function
and the people to an empty vector.

The bulk of the example is in the if expression. If the sequence of first names
still has items in it, then we take the first item from each sequence, create a
map to represent the person, and conj it onto our people accumulator.

Once we’ve conjed the new person onto the people vector, we use recur to jump
back to the recursion point we defined with loop. This is analogous to the
recursive call that we made in the Scala example.

If we don’t jump back, we know that we’ve gone through the sequences of
names, and we return the people we’ve constructed.

(if (seq first-names)
(recur

(rest first-names)
(rest last-names)
(conj

people
{:first (first first-names) :last (first last-names)}))

people)

report erratum • discuss

Tail Recursion • 143

http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/functional/tr/names.clj
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

It may not be immediately apparent why the test in the if expression above
works. It’s because the seq of an empty collection is nil, which evaluates to
false, while the seq of any other collection yields a nonempty sequence. The
snippet below demonstrates this:

=> (seq [])
nil
=> (seq [:hi])
(:hi)

Using nil as the base case for a recursion when you’re dealing with sequences
is common in Clojure.

Discussion

Tail recursion is equivalent to iteration. In fact, the Scala and Clojure compilers
will compile their respective ways of handling tail recursion down to the same
sort of bytecode that iteration in Java would. The main advantage of tail
recursion over iteration is simply that it eliminates a source of mutability in
the language, which is why it’s so popular in the functional world.

I personally prefer tail recursion over iteration for a couple of other minor
reasons. The first is that it eliminates an extra index variable. The second is
that it makes it explicit exactly what data structures are being operated on
and what data structures are being generated, because they’re both passed
as arguments through the call chain.

In an iterative solution, if we were trying to operate on two sequences in lock
step and generate another data structure, they would all just be mixed in
with the body of a function that may be doing other things. I’ve found that
using tail recursion over iteration acts as a nice forcing factor to structure
our functions well, since all of the data we’re operating on must be passed
through the call chain, and it’s hard to do that if you’ve got more than a few
pieces of data.

Since tail recursion is equivalent to iteration, it’s really a fairly low-level
operation. There’s generally some higher-level, more-declarative way to solve
a problem than using tail recursion. For instance, here’s a shorter version of
the solution to our person-making example that takes advantage of some
higher-order functions in Clojure:

ClojureExamples/src/mbfpp/functional/tr/names.clj
(defn shorter-make-people [first-names last-names]

(for [[first last] (partition 2 (interleave first-names last-names))]
{:first first :last last}))

Chapter 4. Functional Patterns • 144

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/functional/tr/names.clj
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Which solution to use is a matter of preference, but experienced functional
programmers tend to prefer the shorter, more-declarative solutions. They’re
easier for the experienced functional programmer to read at a glance. The
downside to these solutions is that they’re harder for the novice to grok, since
they may require knowledge of many higher-order library functions.

Whenever I’m about to write a solution that requires tail recursion, I like to
comb the API docs for higher-order functions, or a combination of higher-
order functions, that do what I want. If I can’t find a higher-order function
that works, or if the solution I come up with involves many higher-order
functions combined in Byzantine ways, then I fall back to tail recursion.

Related Patterns
Pattern 5, Replacing Iterator, on page 72

Pattern 13, Mutual Recursion, on page 146

Pattern 14, Filter-Map-Reduce, on page 155

report erratum • discuss

Tail Recursion • 145

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Pattern 13

Mutual Recursion

Intent

To use mutually recursive functions to express certain algorithms, such as
walking tree-like data structures, recursive descent parsing, and state machine
manipulations

Overview

In Pattern 12, Tail Recursion, on page 138, we looked at using tail recursion
to walk over sequences of data and the tricks that Clojure and Scala use to
avoid consuming stack frames while doing so, since the JVM doesn’t directly
support tail recursion.

For the majority of cases, the simple tail recursion we looked at in Pattern
12, Tail Recursion, on page 138, where the only recursive calls are self-recursive,
is all we need. However, some of the more complex problems require solutions
where functions can call each other recursively.

For instance, finite state machines are a great way of modeling many classes
of problems, and mutual recursion is a great way to program them. Network
protocols, many physical systems like vending machines and elevators, and
parsing semistructured text can all be done with state machines.

In this pattern, we’ll look at some problems that can be solved cleanly using
mutual recursion. Since the JVM doesn’t support tail recursive optimization,
Scala and Clojure have to use a neat trick to support practical mutual
recursion, just as they did with normal tail recursion, to avoid running out
of stack space.

For mutual recursion, this trick is called a trampoline. Instead of making
mutually recursive calls directly, we return a function that would make the
desired call, and we let the compiler or runtime take care of the rest.

Scala’s support for trampolining hides a lot of the details of this and provides
us with both a tailcall() method to make mutually recursive calls and a done()
method to call when we’re done with the recursion.

Chapter 4. Functional Patterns • 146

report erratum • discuss

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

That might sound bizarre, but it’s deceptively simple. To prove it, let’s take a
quick look at the “Hello, World” for mutual recursion, a mathematically
pretty but horribly inefficient way of telling if a number is even or odd, before
we get into more real-world examples.

Here’s how it works: we need two functions, isEven() and isOdd(). Each function
takes a single Long n. The isEven() function checks to see if n is zero and, if so,
it returns true. Otherwise it decrements n and calls isOdd. The isOdd() method
checks to see if n is zero and if so returns false. Otherwise it decrements n
and calls isEven.

This is clearest in code, so here it is:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/mr/EvenOdd.scala
def isOdd(n: Long): Boolean = if (n == 0) false else isEven(n - 1)

def isEven(n: Long): Boolean = if (n == 0) true else isOdd(n - 1)

scala> isEven(0)
res0: Boolean = true

scala> isOdd(1)
res1: Boolean = true

scala> isEven(1000)
res2: Boolean = true

scala> isOdd(1001)
res3: Boolean = true

That works fine for small numbers, but what if we try it with a larger one?

scala> isOdd(100001)
java.lang.StackOverflowError
...

As we can see, each mutually recursive call consumes a stack frame, so this
causes our stack to overflow! Let’s see how to fix that using Scala’s trampoline.

Support for trampolining in Scala lives in scala.util.control.TailCalls, and it comes
in two parts. The first is a done() function, which is used to return the final
result from the recursive calls. The second is a tailcall() function, which is used
to make the recursive calls.

In addition, the results returned by the tail recursive functions are wrapped
in a TailRec type rather than being returned directly. To get them out at the
end, we can call result() on the final TailRec instance.

Here’s our even/odd code, rewritten to take advantage of Scala’s trampolining:

report erratum • discuss

Mutual Recursion • 147

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/mr/EvenOdd.scala
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/mr/EvenOdd.scala
def isOddTrampoline(n: Long): TailRec[Boolean] =

if (n == 0) done(false) else tailcall(isEvenTrampoline(n - 1))

def isEvenTrampoline(n: Long): TailRec[Boolean] =
if (n == 0) done(true) else tailcall(isOddTrampoline(n - 1))

scala> isEvenTrampoline(0).result
res0: Boolean = true

scala> isEvenTrampoline(1).result
res1: Boolean = false

scala> isEvenTrampoline(1000).result
res2: Boolean = true

scala> isEvenTrampoline(1001).result
res3: Boolean = false

Let’s try running it:

scala> isOddTrampoline(100001).result
res4: Boolean = true

This time, there’s no stack overflow with big numbers, though if you try with
a big enough number, you should expect to wait a very long time, since this
algorithm’s runtime is linearly proportional to the size of the number!

Also Known As

Indirect Recursion

Example Code: Phases of Matter

In this example, we’ll use Mutual Recursion to build a simple state machine
that takes a sequence of transitions between the different phases of mat-
ter—liquid, solid, vapor, and plasma—and verifies that the sequence is valid. For
instance, it’s possible to go from solid to liquid, but not from solid to plasma.

Each state in the machine is represented by a function, and the transitions
are represented by a sequence of transition names, like condensation and vapor-
ization. A state function picks the first transition off of the sequence and, if it’s
valid, calls the function that gets it to where it should transition, passing it
the remainder of the transitions. If the transition isn’t valid, we stop and
return false.

For example, if we’re in the solid state and the transition we see is melting, then
we call the liquid function. If it’s condensation, which isn’t a valid transition out
of the solid state, then we immediately return false.

Chapter 4. Functional Patterns • 148

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/mr/EvenOdd.scala
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Before we jump into the code, let’s take a look at a picture of the phases-of-
matter state machine.

Figure 12—The Phases of Matter. The phases of matter and the transitions between them

The nodes in this graph represent the functions we’ll need to model this state
machine using Mutual Recursion, and the edges represent the transitions
that those functions will operate on. Let’s take a look at the code, starting
with Scala.

In Scala

Our Scala solution relies on four functions, one for each phase of matter:
plasma(), vapor(), liquid(), and solid(). In addition, we’ll need a set of case objects
to represent the transitions: Ionization, Deinonizaton, Vaporization, and so forth.

Each of the four functions takes a single argument and a List of transitions,
and each uses Scala’s pattern matching to destructure it. If the list is Nil, then
we know we’ve reached the end successfully and we call done(), passing in true.

report erratum • discuss

Mutual Recursion • 149

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Otherwise, we check the first transition in the list to see if it’s valid. If so, we
transition to the state it indicates and pass the remainder of the transitions.
If the first transition isn’t valid, we call done, passing in false.

Let’s look at the code, starting with the case objects to represent our transi-
tions. They’re pretty straightforward; each transition is its own object, and
they all inherit from a Transition class.

ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/mr/Phases.scala
class Transition
case object Ionization extends Transition
case object Deionization extends Transition
case object Vaporization extends Transition
case object Condensation extends Transition
case object Freezing extends Transition
case object Melting extends Transition
case object Sublimation extends Transition
case object Deposition extends Transition

Now let’s take a look at the meat of the example, the functions that represent
our phases of matter. As promised, there are four: plasma(), vapor(), liquid(), and
solid(). Here’s the full set of functions we’ll need:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/mr/Phases.scala
def plasma(transitions: List[Transition]): TailRec[Boolean] = transitions match {

case Nil => done(true)
case Deionization :: restTransitions => tailcall(vapor(restTransitions))
case _ => done(false)

}
def vapor(transitions: List[Transition]): TailRec[Boolean] = transitions match {

case Nil => done(true)
case Condensation :: restTransitions => tailcall(liquid(restTransitions))
case Deposition :: restTransitions => tailcall(solid(restTransitions))
case Ionization :: restTransitions => tailcall(plasma(restTransitions))
case _ => done(false)

}

def liquid(transitions: List[Transition]): TailRec[Boolean] = transitions match {
case Nil => done(true)
case Vaporization :: restTransitions => tailcall(vapor(restTransitions))
case Freezing :: restTransitions => tailcall(solid(restTransitions))
case _ => done(false)

}

def solid(transitions: List[Transition]): TailRec[Boolean] = transitions match {
case Nil => done(true)
case Melting :: restTransitions => tailcall(liquid(restTransitions))
case Sublimation :: restTransitions => tailcall(vapor(restTransitions))
case _ => done(false)

}

Chapter 4. Functional Patterns • 150

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/mr/Phases.scala
http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/mr/Phases.scala
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

We’ve already described how they work at a high level, so let’s pick apart one
of them, vapor(), in detail, starting with its signature:

def vapor(transitions: List[Transition]): TailRec[Boolean] = transitions match {
«function-body»

}

As we can see, it just takes in a List of Transitions named transitions and takes
pattern matches on it. Instead of returning a Boolean directly, it returns a TailRec
of Boolean, so we can take advantage of Scala’s support for trampolining.

Moving on to the first case clause in the match expression, we see that it calls
done to return true if the list is empty, or Nil. This is the base case of the
recursion; if we get here it means we’ve successfully processed all the transi-
tions originally in the sequence.

case Nil => done(true)

Next up are the three middle clauses. These use pattern matching to pick off
the head of the sequence if it’s a valid transition and call the function to
transition to the appropriate state, passing the rest of the transitions:

case Condensation :: restTransitions => tailcall(liquid(restTransitions))
case Deposition :: restTransitions => tailcall(solid(restTransitions))
case Ionization :: restTransitions => tailcall(plasma(restTransitions))

Finally, the last clause, which is a catchall. If we fall through to here, we know
we haven’t processed all the transitions and the transition we saw wasn’t
valid, so we call done() and pass in false.

case _ => done(false)

Let’s take a look at it in action, first with a valid list starting from the solid
state:

scala> val validSequence = List(Melting, Vaporization, Ionization, Deionization)
validSequence: List[com.mblinn.mbfpp.functional.mr.Phases.Transition] =

List(Melting, Vaporization, Ionization, Deionization)

scala> solid(validSequence).result
res0: Boolean = true

Next we have an invalid list starting from the liquid state:

scala> val invalidSequence = List(Vaporization, Freezing)
invalidSequence: List[com.mblinn.mbfpp.functional.mr.Phases.Transition] =

List(Vaporization, Freezing)

scala> liquid(invalidSequence).result
res1: Boolean = false

report erratum • discuss

Mutual Recursion • 151

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

This wraps up our first look at Mutual Recursion in Scala. Let’s see how it
looks in Clojure.

In Clojure

The Clojure code is similar to the Scala code, at least at a high level. We’ve
got plasma, vapor, liquid, and solid functions, each of which takes a sequence of
transitions.

We use Clojure’s destructuring to pick apart the sequence into the current
transition, which we bind to transition and to the rest of the transitions in rest-
transitions.

If transition is nil, we know we’ve reached the end successfully and we return
true. Otherwise we check to see if it’s a valid transition, and, if so, we transi-
tion to the appropriate phase. If not, we return false. Here’s the full code:

ClojureExamples/src/mbfpp/functional/mr/phases.clj
(declare plasma vapor liquid solid)

(defn plasma [[transition & rest-transitions]]
#(case transition

nil true
:deionization (vapor rest-transitions)
:false))

(defn vapor [[transition & rest-transitions]]
#(case transition

nil true
:condensation (liquid rest-transitions)
:deposition (solid rest-transitions)
:ionization (plasma rest-transitions)
false))

(defn liquid [[transition & rest-transitions]]
#(case transition

nil true
:vaporization (vapor rest-transitions)
:freezing (solid rest-transitions)
false))

(defn solid [[transition & rest-transitions]]
#(case transition

nil true
:melting (liquid rest-transitions)
:sublimation (vapor rest-transitions)
false))

Chapter 4. Functional Patterns • 152

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/functional/mr/phases.clj
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Notice how there are no calls to done or tailcall like there are in the Scala version?
Instead of using tailcall, we just return a function that will make the call we
want to make. In this case, we’re using Clojure’s shorthand for anonymous
functions to do so.

When we actually want to start the chain of mutually recursive calls, we pass
the function we want to call into trampoline, along with its arguments:

=> (def valid-sequence [:melting :vaporization :ionization :deionization])
#'mbfpp.functional.mr.phases/valid-sequence
=> (trampoline solid valid-sequence)
true
=> (def invalid-sequence [:vaporization :freezing])
#'mbfpp.functional.mr.phases/invalid-sequence
=> (trampoline liquid invalid-sequence)
false

This returns true for the valid sequence and false for the invalid one, just as
we’d expect.

Before we leave this example, I’d like to talk a little bit about Nil in Scala and
nil in Clojure. The code we wrote looked fairly similar, but there’s a subtle
difference between the two nils that’s worth mentioning.

In Scala, Nil is just a synonym for the empty list, as we can see if we enter it
into the Scala REPL:

scala> Nil
res0: scala.collection.immutable.Nil.type = List()

In Clojure, nil just means “nothing”: it means that we don’t have a value, and
it’s distinct from the empty list. Various functional languages have treated nil
differently over the years, so whenever you come across a new one it’s always
worth taking a minute to understand just what the language means by nil.

Discussion

Mutual Recursion can be pretty handy, but usually only in specific circum-
stances. State machines are one of these circumstances; they’re actually very
useful little beasts. Unfortunately, most developers just remember them from
their undergraduate computer science years, where they had to prove the
equivalence between finite state machines and regular expressions, which is
interesting but of no use to most developers.

State machines have been a bit more popular in recent years, though. They’re a
big part of the actor model, a model for concurrent and distributed programming,
that’s used by Scala’s Akka library and by Erlang, another functional language.
Ruby has a clever gem for creating them, aptly named state_machine.

report erratum • discuss

Mutual Recursion • 153

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Another thing that’s worth noting is that the trampoline we saw here, in both
Scala and Clojure, is just one way of doing Mutual Recursion. It’s only neces-
sary because the JVM doesn’t implement tail call optimization directly.

Related Patterns
Pattern 5, Replacing Iterator, on page 72

Pattern 14, Filter-Map-Reduce, on page 155

Chapter 4. Functional Patterns • 154

report erratum • discuss

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Pattern 14

Filter-Map-Reduce

Intent

To manipulate a sequence (list, vector, and so on) declaratively using filter,
map, and reduce to produce a new one—this is a powerful, high-level way of
doing many sequence manipulations that would otherwise be verbose.

Overview

The way we manipulate sequences in a procedural language is more closely
related to the way a computer works than to the way humans think. Iteration
is a step above the dreaded goto statement, and it’s intended to be easily
translated into machine code more than it’s intended to be easy to use.

Filter-Map-Reduce gives us a more declarative way to do many sequence
manipulations. Instead of writing code that reorders or alters the elements
in a sequence by working its way iteratively through them, element by element,
we can work at a higher level by using a filter function to select the elements
we care about: map to transform each element and reduce, sometimes known
as fold, to combine the results.

Filter-Map-Reduce replaces many, though not all, iterative algorithms used
by object-oriented programmers with declarative code.

The main advantage to Filter-Map-Reduce over iteration is code clarity. A
well-written Filter-Map-Reduce takes a fraction of the code that the iterative
equivalent takes. It can often be read at a glance, like prose, by an experienced
practitioner, while the iterative solution requires parsing at least one loop
and a conditional.

One downside is that not all iteration can be replaced with Filter-Map-Reduce.
Another is that it may sometimes be difficult or unclear how to create a
sequence that lends itself to Filter-Map-Reduce. In these cases, one of the
patterns in the list of Related Patterns, on page 158, may be a better fit.

Code Sample: Calculate Discount

The implementation of Filter-Map-Reduce combines filter, map, and reduce,
though not always in that order. Let’s look at an example of calculating a

report erratum • discuss

Filter-Map-Reduce • 155

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

total discount on a sequence of prices, where any price twenty dollars or over
is discounted at ten percent, and any under twenty is full price.

In Scala

Filter-Map-Reduce in Scala is very similar to the Clojure implementation. We
start with a filter function to select prices greater than twenty dollars:

scala> Vector(20.0, 4.5, 50.0, 15.75, 30.0, 3.5) filter (price => price >= 20)
res0: scala.collection.immutable.Vector[Double] = Vector(20.0, 50.0, 30.0)

We use map to get ten percent of them:

scala> Vector(20.0, 50.0, 30.0) map (price => price * 0.10)
res1: scala.collection.immutable.Vector[Double] = Vector(2.0, 5.0, 3.0)

And we sum them together using reduce:

scala> Vector(2.0, 5.0, 3.0) reduce ((total, price) => total + price)
res2: Double = 10.0

Putting it together gives us calculateDiscount:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/mfr/Discount.scala
def calculateDiscount(prices : Seq[Double]) : Double = {

prices filter(price => price >= 20.0) map
(price => price * 0.10) reduce

((total, price) => total + price)
}

scala> calculateDiscount(Vector(20.0, 4.5, 50.0, 15.75, 30.0, 3.5))
res1: Double = 10.0

You can also use named functions if that’s more your style, though I prefer
the anonymous function version here:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/mfr/Discount.scala
def calculateDiscountNamedFn(prices : Seq[Double]) : Double = {

def isGreaterThan20(price : Double) = price >= 20.0
def tenPercent(price : Double) = price * 0.10
def sumPrices(total: Double, price : Double) = total + price

prices filter isGreaterThan20 map tenPercent reduce sumPrices
}

In Clojure

Let’s create a function calculate-discount that uses Filter-Map-Reduce to calculate
a total discount. For the sake of example, we’ll use a vector of doubles to
represent our prices. We need to filter first so that only prices greater than
twenty dollars remain, like this:

Chapter 4. Functional Patterns • 156

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/mfr/Discount.scala
http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/mfr/Discount.scala
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

=> (filter (fn [price] (>= price 20)) [20.0 4.5 50.0 15.75 30.0 3.50])
(20.0 50.0 30.0)

Then we need to take the filtered prices and multiply them by 0.10 to get ten
percent of each, using map:

=> (map (fn [price] (* price 0.10)) [20.0 50.0 30.0])
(2.0 5.0 3.0)

Finally, we need to combine those results using reduce and addition:

=> (reduce + [2.0 5.0 3.0])
10.0

Putting this together, we get calculate-discount:

ClojureExamples/src/mbfpp/functional/mfr/discount.clj
(defn calculate-discount [prices]

(reduce +
(map (fn [price] (* price 0.10))

(filter (fn [price] (>= price 20.0)) prices))))

There’s a trick to reading Lisp code that lets experienced Lispers read this at
a glance but which frustrates the uninitiated. To read this easily, you need
to work from the inside out. Start with the filter function, move on to map, and
finally to reduce.

In prose, this would be, “Filter the prices so that only those greater than
twenty remain, multiply the remaining prices by a tenth, and add them
together.” With a little practice, reading this sort of code is not only natural,
but since it’s at a much higher level and closer to natural language, it’s much
quicker than the equivalent iterative solution.

We can make a slight modification to the pattern by naming the map and filter
functions, as shown in the code below:

ClojureExamples/src/mbfpp/functional/mfr/discount.clj
(defn calculate-discount-namedfn [prices]

(letfn [(twenty-or-greater? [price] (>= price 20.0))
(ten-percent [price] (* price 0.10))]

(reduce + 0.0 (map ten-percent (filter twenty-or-greater? prices)))))

This makes the pattern read more like prose at the expense of some extra
code. When the map and filter functions are one-offs, as they are here, I prefer
the original version with anonymous functions, but both styles are common.
Which one to use is a matter of taste.

report erratum • discuss

Filter-Map-Reduce • 157

http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/functional/mfr/discount.clj
http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/functional/mfr/discount.clj
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Discussion

The Filter-Map-Reduce pattern relies on declarative data manipulation, which
is higher level than iterative solutions and often higher level than explicitly
recursive ones. It’s much like the difference between using SQL to generate
a report from data in a relational database versus iterating over the lines in
a flat file with the same data. A well-written SQL version will generally be
shorter and clearer, since it’s using a language created specifically for
manipulating data. Using Map-Reduce-Filter gives us much of that declarative
power.

One other thing to note is how we built our solutions from the bottom up,
starting by creating our map, reduce, and filter functions in the REPL and then
combining them. This bottom-up workflow is extremely common in functional
programming. The ability to experiment in the REPL and build up programs
through exploration is extremely powerful, and we’ll see many more examples
of it in functional patterns.

Related Patterns
Pattern 5, Replacing Iterator, on page 72

Pattern 12, Tail Recursion, on page 138

Pattern 13, Mutual Recursion, on page 146

Chapter 4. Functional Patterns • 158

report erratum • discuss

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Pattern 15

Chain of Operations

Intent

To chain a sequence of computations together—this allows us to work
cleanly with immutable data without storing lots of temporary results.

Overview

Sending some bit of data through a set of operations is a useful technique.
This is especially true when working with immutable data. Since we can’t
mutate a data structure, we need to send an immutable one through a series
of transformations if we want to make more than a single change.

Another reason we chain operations is because it leads to succinct code. For
instance, the builder we saw in Pattern 4, Replacing Builder for Immutable
Object, on page 62, chains setting operations to keep our code lean, as the
following snippet shows:

JavaExamples/src/main/java/com/mblinn/oo/javabean/PersonHarness.java
ImmutablePerson.Builder b = ImmutablePerson.newBuilder();
ImmutablePerson p = b.firstName("Peter").lastName("Jones").build();

Other times we chain method invocations to avoid creating noisy temporary
values. In the code below we get a String value out of a List and uppercase it in
one shot:

JavaExamples/src/main/java/com/mblinn/mbfpp/functional/coo/Examples.java
List<String> names = new ArrayList<String>();
names.add("Michael Bevilacqua Linn");
names.get(0).toUpperCase();

This style of programming is even more powerful in the functional world,
where we have higher-order functions. For example, here we’ve got a snippet
of Scala code that creates initials from a name:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/coo/Examples.scala
val name = "michael bevilacqua linn"
val initials = name.split(" ") map (_.toUpperCase) map (_.charAt(0)) mkString

report erratum • discuss

Chain of Operations • 159

http://media.pragprog.com/titles/mbfpp/code/JavaExamples/src/main/java/com/mblinn/oo/javabean/PersonHarness.java
http://media.pragprog.com/titles/mbfpp/code/JavaExamples/src/main/java/com/mblinn/mbfpp/functional/coo/Examples.java
http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/coo/Examples.scala
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

It does so by calling split() on the name, turning it into an array, then mapping
functions over it that uppercase the strings and pick out the first character
in each. Finally, we turn the array back into a string.

This is concise and declarative, so it reads nicely.

Sample Code: Function Call Chaining

Let’s take a look at a sample that involves several chained function calls. The
objective is to write the code such that when we read it we can easily trace
the flow of data from one step to the next.

We’ll take a vector of videos that represent a person’s video-viewing history,
and we’ll calculate the total time spent watching cat videos. To do so, we’ll
need to pick only the cat videos out of the vector, get their length, and finally
add them together.

In Scala

For our Scala solution, we’ll represent videos as a case class with a title, video
type, and length. The code to define this class and populate some test data
follows:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/coo/Examples.scala
case class Video(title: String, video_type: String, length: Int)

val v1 = Video("Pianocat Plays Carnegie Hall", "cat", 300)
val v2 = Video("Paint Drying", "home-improvement", 600)
val v3 = Video("Fuzzy McMittens Live At The Apollo", "cat", 200)

val videos = Vector(v1, v2, v3)

To calculate the total time spent watching cat videos, we filter out videos
where the video_type is equal to "cat", extract the length field from the remaining
videos, and then sum those lengths. The code to do so follows:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/coo/Examples.scala
def catTime(videos: Vector[Video]) =

videos.
filter((video) => video.video_type == "cat").
map((video) => video.length).
sum

Now we can apply catTime() to our test data to get the total amount of time
spent on cat videos:

scala> catTime(videos)
res0: Int = 500

Chapter 4. Functional Patterns • 160

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/coo/Examples.scala
http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/coo/Examples.scala
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

This solution reads nicely from top to bottom, almost like prose. It does so
without needing extra variables or any mutation, so it’s ideal in the functional
world.

In Clojure

Let’s take a look at our cat-viewing problem in Clojure. Here, we’ll use maps
for our videos. The following code snippet creates some test data:

ClojureExamples/src/mbfpp/functional/coo/examples.clj
(def v1

{:title "Pianocat Plays Carnegie Hall"
:type :cat
:length 300})

(def v2
{:title "Paint Drying"
:type :home-improvement
:length 600})

(def v3
{:title "Fuzzy McMittens Live At The Apollo"
:type :cat
:length 200})

(def videos [v1 v2 v3])

Let’s take a shot at writing cat-time in Clojure. As before, we’ll filter the vector
of videos and extract their lengths. To sum up the sequence of lengths, we’ll
use apply and the + function. The code for this solution follows:

ClojureExamples/src/mbfpp/functional/coo/examples.clj
(defn cat-time [videos]

(apply +
(map :length

(filter (fn [video] (= :cat (:type video))) videos))))

To understand this code, start with the filter function, move onto map, and
then up to apply. For long sequences this can get tricky. One option would
be to name the intermediate results using let to make things easier to under-
stand.

Another option in this situation is to use Clojure’s -> and ->> macros. These
macros can be used to thread a piece of data through a series of function
calls.

The -> macro threads an expression through a series of forms, inserting it as
the second item in each form. For instance, in the following snippet we use
-> to thread an integer through two subtractions:

report erratum • discuss

Chain of Operations • 161

http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/functional/coo/examples.clj
http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/functional/coo/examples.clj
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

=> (-> 4 (- 2) (- 2))
0

The -> macro first threads 4 into the second position in (- 2), which subtracts
2 from 4 to get 2. Then, that result is threaded into the second slot in the
later (- 2) to get a final result of 0.

If we use ->> we get a different result, as the following code snippet shows:

=> (->> 4 (- 2) (- 2))
4

Here, the ->> threads 4 into the last slot in the first (- 2), so 4 is subtracted
from 2 to get a result of -2. That -2 is then threaded into the last slot of the
second (-2), which subtracts a -2 from 2 to get a final result of 4.

Now that we’ve seen the threading operators, we can use ->> to make our
original catTime read from top to bottom. We do so in the following snippet:

ClojureExamples/src/mbfpp/functional/coo/examples.clj
(defn more-cat-time [videos]

(->> videos
(filter (fn [video] (= :cat (:type video))))
(map :length)
(apply +)))

This works the same as our original:

=> (more-cat-time videos)
500

One limitation of the threading macros is that if we want to use them to chain
function calls, the piece of data we’re passing through the chain of function
calls must be consistently in the first or last position.

Sample Code: Chaining Using Sequence Comprehensions

A common use for Chain of Operations is that we need to perform multiple
operations on values inside of some container type. This is especially common
in statically typed languages like Scala.

For instance, we may have a series of Option values that we want to combine
into a single value, returning None if any of them are None. There are several
ways to do so, but the most concise relies on using a for comprehension to
pick out the values and yield a result.

In Scala

We came across sequence comprehensions in Sample Code: Sequence Com-
prehensions, on page 77, as a replacement for Iterator. Here we’ll take

Chapter 4. Functional Patterns • 162

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/functional/coo/examples.clj
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

advantage of the fact that they can operate over more than one sequence at
a time, which makes them useful for Chain of Operations.

Let’s take a look at a sequence comprehension that operates over two vectors,
each with a single integer. We’ll use it to add the values in the vectors
together. Our test vectors are defined in the following code:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/coo/Examples.scala
val vec1 = Vector(42)
val vec2 = Vector(8)

Here’s the for comprehension we use them with. We pick i1 out of the first
vector and i2 out of the second, and we use yield to add them together:

scala> for { i1 <- vec1; i2 <- vec2 } yield(i1 + i2)
res0: scala.collection.immutable.Vector[Int] = Vector(50)

From there, it’s only a short hop to using for with Option. In the following code
we define a couple of optional values:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/coo/Examples.scala
val o1 = Some(42)
val o2 = Some(8)

Now we can add them together as we did with the values out of our vectors.

scala> for { v1 <- o1; v2 <- o2 } yield(v1 + v2)
res1: Option[Int] = Some(50)

One advantage is that we don’t have to call get() or pattern match to pull values
out of Option. The power of this approach becomes more apparent when we
add a None into the mix:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/coo/Examples.scala
val o3: Option[Int] = None

scala> for { v1 <- o1; v3 <- o3 } yield(v1 + v3)
res2: Option[Int] = None

Now our for comprehension yields a None.

A Chain of Operations, each of which might yield a None, is common in Scala.
Let’s take a look at an example that goes through a series of operations to
retrieve a user’s list of favorite videos on a movie website.

To get the list of videos, we first need to look up a user by ID, then we need
to look up the list of favorite videos by user. Finally, we need to look up the
list of videos associated with that movie, such as cast interviews, trailers, and
perhaps a full-length video of the movie itself.

We’ll start out by creating a couple of classes to represent a User and a Movie:

report erratum • discuss

Chain of Operations • 163

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/coo/Examples.scala
http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/coo/Examples.scala
http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/coo/Examples.scala
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/coo/Examples.scala
case class User(name: String, id: String)
case class Movie(name: String, id: String)

Now we’ll define a set of methods to fetch a user, a favorite movie, and the
list of videos for that movie. Each function returns None if it can’t find a
response for its input. For this simple example we’ll do so using hardcoded
values, but in real life this would likely involve a lookup from a database or
service:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/coo/Examples.scala
def getUserById(id: String) = id match {

case "1" => Some(User("Mike", "1"))
case _ => None

}

def getFavoriteMovieForUser(user: User) = user match {
case User(_, "1") => Some(Movie("Gigli", "101"))
case _ => None

}

def getVideosForMovie(movie: Movie) = movie match {
case Movie(_, "101") =>

Some(Vector(
Video("Interview With Cast", "interview", 480),
Video("Gigli", "feature", 7260)))

case _ => None
}

Now we can write a function to get a user’s favorite videos by chaining
together calls to the functions we previously defined inside of a for statement:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/coo/Examples.scala
def getFavoriteVideos(userId: String) =

for {
user <- getUserById(userId)
favoriteMovie <- getFavoriteMovieForUser(user)
favoriteVideos <- getVideosForMovie(favoriteMovie)

} yield favoriteVideos

If we call getFavoriteVideos() with a valid user ID, it’ll return the list of favorite
videos.

scala> getFavoriteVideos("1")
res3: Option[scala.collection.immutable.Vector[...] =

Some(Vector(Video(Interview With Cast,interview,480),
Video(Gigli,feature,7260)))

If we call it with a user who doesn’t exist, the whole chain will return None
instead:

Chapter 4. Functional Patterns • 164

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/coo/Examples.scala
http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/coo/Examples.scala
http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/coo/Examples.scala
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

scala> getFavoriteVideos("42")
res4: Option[scala.collection.immutable.Vector[...]] = None

In Clojure

Since Clojure isn’t statically typed, it doesn’t have anything like Scala’s Option
as a core part of the language.

However, Clojure’s sequence comprehensions do work much like Scala’s for
other container types. For instance, we can use for to pick out their contents
and add them together, as we did in our Scala example. In the following code
snippet, we do just that:

ClojureExamples/src/mbfpp/functional/coo/examples.clj
(def v1 [42])
(def v2 [8])

=> (for [i1 v1 i2 v2] (+ i1 i2))
(50)

If one of our vectors is the empty vector, then for will result in an empty
sequence. The following code demonstrates:

ClojureExamples/src/mbfpp/functional/coo/examples.clj
(def v3 [])

=> (for [i1 v1 i3 v3] (+ i1 i3))
()

Even though Clojure’s sequence comprehension works much the same as
Scala’s, the lack of static typing and the Option type means that the sort of
chaining we saw in Scala isn’t idiomatic. Instead we generally rely on chaining
together functions with explicit null checks.

The flexibility of Lisp makes it possible to add on even something as funda-
mental as a static type checker into the language as a library. Just such a
library is currently under development in the core.typed library,1 which pro-
vides optional static typing.

As this library gains maturity, the type of chaining we saw in the Scala
examples may become more and more common.

Discussion

The examples we saw in Sample Code: Chaining Using Sequence Comprehen-
sions, on page 162, are examples of the sequence or list monad. While we didn’t
define exactly what a monad is, we did show a basic example of the sort of

1. https://github.com/clojure/core.typed

report erratum • discuss

Chain of Operations • 165

http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/functional/coo/examples.clj
http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/functional/coo/examples.clj
https://github.com/clojure/core.typed
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

problems that they can solve. They make it natural to chain together opera-
tions on a container type while operating on the data inside of the container.

In the programming world, monads are most commonly known as a way to
get IO and other nonpure features into a purely functional language. From
the examples we saw above, it may not be immediately apparent what monads
have to do with IO in a purely functional language.

Since neither Scala nor Clojure make use of monads in this way, we won’t go
into it in detail here. The general reason, however, is that the monadic con-
tainer type can carry along some extra information through the call chain.
For instance, a monad to do IO would gather up all of the IO done through
the Chain of Operations and then hand it off to a runtime when done. The
runtime would then be responsible for performing the IO.

This style of programming was pioneered by Haskell. The curious reader can
find an excellent introduction to it in Learn You a Haskell for Great Good!: A
Beginner’s Guide [Lip11].

For Further Reading
Learn You a Haskell for Great Good!: A Beginner’s Guide [Lip11]

Related Patterns
Pattern 4, Replacing Builder for Immutable Object, on page 62

Pattern 5, Replacing Iterator, on page 72

Pattern 14, Filter-Map-Reduce, on page 155

Pattern 16, Function Builder, on page 167

Chapter 4. Functional Patterns • 166

report erratum • discuss

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Pattern 16

Function Builder

Intent

To create a function that itself creates functions, allowing us to synthesize
behaviors on the fly

Overview

Sometimes we’ve got a function that performs a useful action, and we need
a function that performs some other, related action. We might have a vowel?
predicate that returns true when a vowel is passed in and need a consonant?
that does the same for consonants.

Other times, we’ve got some data that we need to turn into an action. We
might have a discount percentage and need a function that can apply that
discount to a set of items.

With Function Builder, we write a function that takes our data or function
(though, as we’ve seen, the distinction between functions and data is blurry)
and uses it to create a new function.

To use Function Builder, we write a higher-order function that returns a
function. The Function Builder implementation encodes some pattern we’ve
discovered.

For example, to create a consonant? predicate from a vowel? predicate, we create
a new function that calls vowel? and negates the result. To create odd? from
even?, we create a function that calls even? and negates the result. To create
dead? from alive?, we create a function that calls dead? and negates the result.

There’s an obvious pattern here. We can encode it with a Function Builder
implementation named negate. The negate function takes in a function and
returns a new one that calls the passed-in function and negates the result.

Another common use for Function Builder is when we’ve got a piece of static
data we need to use as the basis for some action. For instance, we could
convert a static percentage to a function that calculates percentages by writing
a function that takes in the percentage and returns a function of one

report erratum • discuss

Function Builder • 167

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

argument. This function takes in a number to calculate a percentage of and
uses the percentage stored in its closure to do so.

We’ll see several examples of both flavors of Function Builder a bit later on.

Code Sample: Functions from Static Data

One way to use Function Builder is to create functions out of static data. This
lets us take a bit of data—a noun—and turn it into an action—a verb. Let’s
look at a couple of examples, starting with a function that takes a percentage
and creates a function that calculates discounted prices based on those
percentages.

Discount Calculator Builder

The Function Builder discount() takes in a percentage between 0 and 100 and
returns a function that computes a discounted price based on that percentage.
Passing 50 into discount() returns a function that calculates a 50 percent dis-
count, 25 gets us a 25 percent discount, and so on. Let’s take a look at the
Scala version.

In Scala
Our Scala code defines discount(), which takes a Double, named percent, and
checks to ensure that it’s between 0 and 100. It then creates a function that
uses discountPercentage to calculate a discount. Here’s the code:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/fb/DiscountBuilder.scala
def discount(percent: Double) = {

if(percent < 0.0 || percent > 100.0)
throw new IllegalArgumentException("Discounts must be between 0.0 and 100.0.")

(originalPrice: Double) =>
originalPrice - (originalPrice * percent * 0.01)

}

Let’s take a look at how it works. The simplest way to use discountedPrice() is to
have it create an anonymous function, which we call directly. Here we use it
to calculate a 50 percent discount on a price of 200:

scala> discount(50)(200)
res0: Double = 100.0

And here we use it to calculate a 0 percent discount (full price) and a 100
percent discount (free!), respectively:

scala> discount(0)(200)
res1: Double = 200.0

scala> discount(100)(200)

Chapter 4. Functional Patterns • 168

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/fb/DiscountBuilder.scala
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

res2: Double = 0.0

If we need to use the discount function more than once, we can name it. Here
we do so and use it to calculate discounted totals on a couple of vectors of
items:

scala> val twentyFivePercentOff = discountedPrice(25)
twentyFivePercentOff: Double => Double = <function1>

scala> Vector(100.0, 25.0, 50.0, 25.0) map twentyFivePercentOff sum
res3: Double = 150.0

scala> Vector(75.0, 25.0) map twentyFivePercentOff sum
res4: Double = 75.0

In Clojure
This example works much the same in Clojure. The only interesting difference
is that we can use Clojure’s preconditions to ensure that the discount is in
the valid range. Let’s take a look at the code:

ClojureExamples/src/mbfpp/functional/fb/discount_builder.clj
(defn discount [percentage]

{:pre [(and (>= percentage 0) (<= percentage 100))]}
(fn [price] (- price (* price percentage 0.01))))

We can create a discounted price and call it as an anonymous function:

=> ((discount 50) 200)
100.0

As advertised, trying to create a discount outside the acceptable range throws
an exception:

=> (discount 101)
AssertionError Assert failed: ...

And if we want to name our discount function to use it multiple times, we
can do so:

=> (def twenty-five-percent-off (discount 25))
=> (apply + (map twenty-five-percent-off [100.0 25.0 50.0 25.0]))
150.0
=> (apply + (map twenty-five-percent-off [75.0, 25.0]))
75.0

The discount calculator is a fairly simple example; we’ll take a look at one
that’s a bit more involved in the next section.

report erratum • discuss

Function Builder • 169

http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/functional/fb/discount_builder.clj
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Map Key Selector

Let’s take a look at a more involved implementation of Function Builder. The
problem we’re trying to solve is this: we’ve got a data structure consisting of
maps nested inside each other, and we want to create functions that help us
pick out values, possibly from deeply nested parts.

In a way, this is writing a very simple declarative language to pick values out
of deeply nested maps. This is a lot like how XPath lets us select an arbitrary
element from a deeply nested XML structure, or how a CSS selector lets us
do the same with HTML.

Our solution starts with creating a function, selector, which takes a path to
the data we’re looking for. For instance, if we’ve got a map that represents a
person, which contains a name key whose value is another map, which contains
a first key whose value is the first name, we want to be able to create a selector
for the first name like this: selector('name, 'first). We can see this in the code
below:

scala> val person = Map('name -> Map('first -> "Rob"))
person: ...

scala> val firstName = selector('name, 'first)
firstName: scala.collection.immutable.Map[Symbol,Any] => Option[Any] = <function1>

scala> firstName(person)
res0: Option[Any] = Some(Rob)

This sort of structure is extremely handy when working with structured data
like XML or JSON. The data can be parsed into a nested structure, and this
type of Function Builder can help pick it apart.

In Scala
The Scala version of selector creates functions that can pick values out of deeply
nested maps, as described previously. The selectors that it creates will return
Some(Any) if it can find the nested value; otherwise it returns None.

To create a selector, we need to pass in several Symbols corresponding to the
keys in the path we want to select. Since this is all we need to pass into
selector, we can use Scala’s support for varargs instead of passing in an
explicit list; this means that creating a selector to pick a street name from a
person’s address looks like this:

scala> selector('address, 'street, 'name)
res0: scala.collection.immutable.Map[Symbol,Any] => Option[Any] = <function1>

Chapter 4. Functional Patterns • 170

report erratum • discuss

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Once created, a map is passed into the selector, and it attempts to select a
value based on the path it was given when it was created by recursively
walking through the map. This is a slightly tricky bit of code, so let’s look at
the whole thing and then break it down into smaller parts:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/fb/Selector.scala
def selector(path: Symbol*): (Map[Symbol, Any] => Option[Any]) = {

if(path.size <= 0) throw new IllegalArgumentException("path must not be empty")

@tailrec
def selectorHelper(path: Seq[Symbol], ds: Map[Symbol, Any]): Option[Any] =

if(path.size == 1) {
ds.get(path(0))

}else{
val currentPiece = ds.get(path.head)
currentPiece match {

case Some(currentMap: Map[Symbol, Any]) =>
selectorHelper(path.tail, currentMap)

case None => None
case _ => None

}
}

(ds: Map[Symbol, Any]) => selectorHelper(path.toSeq, ds)
}

Let’s start by examining the signature of selector:

def selector(path: Symbol*): (Map[Symbol, Any] => Option[Any]) = {
«selector-body»

}

This says that selector takes a variable number of Symbol arguments and returns
a function. The function it returns itself takes a map from Symbol to Any and
returns an Option[Any].

The first line simply checks to make sure that the path has at least one ele-
ment and throws an exception if it doesn’t:

if(path.size <= 0) throw new IllegalArgumentException("path must not be empty")

The meat of the function is a nested, recursive helper function. Let’s take a
look at its type signature:

@tailrec
def selectorHelper(path: Seq[Symbol], ds: Map[Symbol, Any]): Option[Any] =

«selector-helper-body»
}

report erratum • discuss

Function Builder • 171

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/fb/Selector.scala
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

This says that selectorHelper takes a sequence of Symbols as a path and a data
structure that consists of a map from Symbol to Any. It returns an Option[Any],
which represents the final value we’re trying to find with the selector. In the
above example, this would be the name of a person’s street.

Next, we get the base case for our recursion. This happens when we reach
the end of the path. We find the value we’re looking for and return it. The get()
method returns None if the value doesn’t exist:

if(path.size == 1) {
ds.get(path(0))

}

The largest piece of code contains the tail recursive call. Here, we get the
current piece of the data structure. If it exists, then we call the helper function
recursively with the remainder of the path and the data structure we just
picked out. If it doesn’t exist, or if it doesn’t have the proper type, we return
None:

else{
val currentPiece = ds.get(path.first)
currentPiece match {

case Some(currentMap: Map[Symbol, Any]) =>
selectorHelper(path.tail, currentMap)

case None => None
case _ => None
}

}

Finally, here is the last line, which just returns a function that calls selec-
torHelper with the appropriate arguments:

(ds: Map[Symbol, Any]) => selectorHelper(path.toSeq, ds)

Let’s take a closer look at how we can use selector, starting with a very simple
example, a map that has a single key-value pair:

scala> val simplePerson = Map('name -> "Michael Bevilacqua-Linn")
simplePerson: scala.collection.immutable.Map[Symbol,java.lang.String] =

Map('name -> Michael Bevilacqua-Linn)

scala> val name = selector('name)
name: scala.collection.immutable.Map[Symbol,Any] => Option[Any] = <function1>

scala> name(simplePerson)
res0: Option[Any] = Some(Michael Bevilacqua-Linn)

Of course the real power is only apparent when we start working with nested
data structures, like so:

Chapter 4. Functional Patterns • 172

report erratum • discuss

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

scala> val moreComplexPerson =
Map('name -> Map('first -> "Michael", 'last -> "Bevilacqua-Linn"))

moreComplexPerson: scala.collection.immutable.Map[...] =
Map('name -> Map('first -> Michael, 'last -> Bevilacqua-Linn))

scala> val firstName = selector('name, 'first)
firstName: scala.collection.immutable.Map[Symbol,Any] => Option[Any] = <function1>

scala> firstName(moreComplexPerson)
res1: Option[Any] = Some(Michael)

If the selector doesn’t match anything, a None is returned:

scala> val middleName = selector('name, 'middle)
middleName: scala.collection.immutable.Map[Symbol,Any] => Option[Any] = <function1>

scala> middleName(moreComplexPerson)
res2: Option[Any] = None

In Clojure
The Clojure version of selector is much simpler than the Scala one. In part,
this is because Clojure is dynamically typed, so we don’t have to worry about
the type system as we did in Scala. In addition, Clojure has a handy function
called get-in, which is tailor-made to pick values out of deeply nested maps.

Let’s take a quick look at get-in before we dig into the code. The get-in function
takes a nested map as its first argument and a sequence that represents the
path to the value you’re looking for. Here’s an example of using it to pick a
street name from a nested map:

=> (def person {:address {:street {:name "Fake St."}}})
#'mbfpp.functional.fb.selector/person
=> (get-in person [:address :street :name])
"Fake St."

Building selector on top of get-in is extremely straightforward. We’ve just got to
add a validator to ensure that the path isn’t empty and use varargs for the
path. Here’s the code:

ClojureExamples/src/mbfpp/functional/fb/selector.clj
(defn selector [& path]

{:pre [(not (empty? path))]}
(fn [ds] (get-in ds path)))

Using it is just as easy as the Scala version. Here we pick out a person name
from a flat map:

=> (def person {:name "Michael Bevilacqua-Linn"})
#'mbfpp.functional.fb.selector/person
=> (def personName (selector :name))

report erratum • discuss

Function Builder • 173

http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/functional/fb/selector.clj
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

#'mbfpp.functional.fb.selector/personName
=> (personName person)
"Michael Bevilacqua-Linn"

And here we pick out a street name from a more deeply nested one:

=> (def person {:address {:street {:name "Fake St."}}})
#'mbfpp.functional.fb.selector/person
=> (def streetName (selector :address :street :name))
#'mbfpp.functional.fb.selector/streetName
=> (streetName person)
"Fake St."

Before we move on, here’s a quick note on the relative complexity of the Scala
and Clojure versions of this example. The fact that Clojure has get-in, which
does almost exactly what we want to do, helps make the Clojure version much
more concise. The other factor is that Clojure is a dynamically typed language.
Since the nested maps can hold values of any type, this takes some type
system gymnastics to handle in Scala, which is statically typed.

In Clojure, using maps to hold data like this is very idiomatic. In Scala, it’s
more common to use classes or case classes. However, for this sort of very
dynamic problem, I much prefer just keeping things in a map. Using a map
means we can manipulate the data structure with all the built-in tools for
manipulation maps and collections.

Functions from Other Functions

Since functions in the functional world are themselves pieces of data that
can be manipulated, it’s common to use Function Builder to transform one
function into another. This can be done very simply by just creating a new
function that manipulates the return value of another function. For instance,
if we have a function isVowel and we want a function isNotVowel, we can simply
have it delegate to isVowel and negate the result. This creates a complementary
function, as the Scala code shows:

scala> def isNotVowel(c: Char) = !isVowel(c)
isNotVowel: (c: Char)Boolean

scala> isNotVowel('b')
res0: Boolean = true

In this example, we’ll take a closer look at two other ways to create functions
from existing functions: function composition and partial function application.
Function composition lets us take multiple functions and chain them
together. Partial function application lets us take one function and some of

Chapter 4. Functional Patterns • 174

report erratum • discuss

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

its arguments and create a new function of fewer arguments. These are two
of the most generally useful ways of creating functions from functions.

Function Composition

Function composition is a way to chain function invocations together. Com-
posing a list of functions together gives us a new function that invokes the
first function, passes its output to the next, which passes it to the next, and
so on until a result is returned.

In many ways, function composition is similar to the way that Pattern 9,
Replacing Decorator, on page 109, is used. With the Decorator pattern, multiple
decorators, each of which does one part of some task, are chained together.
Here multiple functions are chained together.

It’s possible to use function composition by simply chaining together functions
by hand, but since this is such a common task, functional languages provide
first class support for it. Clojure and Scala are no exception here, so let’s take
a look at it.

In Scala
In Scala, we can compose functions together with the compose operator. As a
simple example, let’s define three functions, appendA, appendB, and appendC,
which append the strings "a", "b", and "c", respectively, as the code shows:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/fb/CompositionExamples.scala
val appendA = (s: String) => s + "a"
val appendB = (s: String) => s + "b"
val appendC = (s: String) => s + "c"

Now if we want a function that appends all three letters, we can define it like
so using function composition:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/fb/CompositionExamples.scala
val appendCBA = appendA compose appendB compose appendC

As the name suggests, this appends the letters c, b, and a, in that order. It’s
equivalent to writing a function that takes an argument, passes it into appendC(),
takes the returned value and passes it into appendB(), and finally passes that
returned value into appendA():

scala> appendCBA("z")
res0: java.lang.String = zcba

This is a trivial example, but it illustrates an important thing about function
composition, which is the order in which the composed functions are called.

report erratum • discuss

Function Builder • 175

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/fb/CompositionExamples.scala
http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/fb/CompositionExamples.scala
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

The last function in the composition chain is called first, and the first function
is called last, which is why c is the first letter appended to our string.

Let’s take a look at a more involved example. One common situation that
comes up in web application frameworks is the need to pass an HTTP request
through a series of user-defined chunks of code. J2EE’s servlet filters,2 which
pass a request through a chain of filters before it is handled, are a common
example of such a filter chain.

Filter chains allow application code to do anything that needs to be done before
request handling, like decrypting and decompressing the request, checking
authentication credentials, logging to a request log, and so forth. Let’s sketch out
how we’d do this using function composition. First, we’ll need a way to represent
HTTP requests. For the purpose of this example, we’ll keep it simple and stick to
a map of request headers and a string request body:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/fb/CompositionExamples.scala
case class HttpRequest(

headers: Map[String, String],
payload: String,
principal: Option[String] = None)

Next, let’s define some filters. Each filter is a function that takes in an HttpRequest,
does something, and returns an HttpRequest. For this simple example, we’re
returning the same HttpRequest; but if the filter needed to modify or add something
to the request, it could do so by creating a new HttpRequest with its modifications.

Here are a couple of example filters—the first mimics checking an Authorization
header and adding a user principal to the request if it’s valid, and the second
mimics logging out a request fingerprint for troubleshooting:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/fb/CompositionExamples.scala
def checkAuthorization(request: HttpRequest) = {

val authHeader = request.headers.get("Authorization")
val mockPrincipal = authHeader match {

case Some(headerValue) => Some("AUser")
case _ => None

}
request.copy(principal = mockPrincipal)

}

def logFingerprint(request: HttpRequest) = {
val fingerprint = request.headers.getOrElse("X-RequestFingerprint", "")
println("FINGERPRINT=" + fingerprint)
request

}

2. http://www.oracle.com/technetwork/java/filters-137243.html

Chapter 4. Functional Patterns • 176

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/fb/CompositionExamples.scala
http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/fb/CompositionExamples.scala
http://www.oracle.com/technetwork/java/filters-137243.html
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Finally, we need a function that takes a sequence of filters and composes
them together. We can do this by simply reducing the composition function
over the sequence:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/fb/CompositionExamples.scala
def composeFilters(filters: Seq[Function1[HttpRequest, HttpRequest]]) =

filters.reduce {
(allFilters, currentFilter) => allFilters compose currentFilter

}

Let’s watch it work by composing the sample filters into a single filter chain
and running a test HttpRequest through it:

scala> val filters = Vector(checkAuthorization, logFingerprint)
filters: ...

scala> val filterChain = composeFilters(filters)
filterChain: ...

scala> val requestHeaders =
Map("Authorization" -> "Auth", "X-RequestFingerprint" -> "fingerprint")

requestHeaders: ...

scala> val request = HttpRequest(requestHeaders, "body")
request: ...

scala> filterChain(request)
FINGERPRINT=fingerprint
res0: com.mblinn.mbfpp.functional.fb.ScalaExamples.HttpRequest =

HttpRequest(
Map(Authorization -> Auth, X-RequestFingerprint -> fingerprint),
body,
Some(AUser))

As we can see, the filter chain properly runs the HttpRequest through each filter
in the chain, which adds a user principal to the request and logs our finger-
print to the console.

In Clojure
The easiest way to do function composition in Clojure is to use comp. Here we
are using it to compose together the string appenders:

ClojureExamples/src/mbfpp/functional/fb/composition_examples.clj
(defn append-a [s] (str s "a"))
(defn append-b [s] (str s "b"))
(defn append-c [s] (str s "c"))

(def append-cba (comp append-a append-b append-c))

This works much like the Scala version:

report erratum • discuss

Function Builder • 177

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/fb/CompositionExamples.scala
http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/functional/fb/composition_examples.clj
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

=> (append-cba "z")
"zcba"

In Clojure we’ll model the HTTP request itself, as well as the headers, as a
map. A sample request looks like so:

ClojureExamples/src/mbfpp/functional/fb/composition_examples.clj
(def request

{:headers
{"Authorization" "auth"
"X-RequestFingerprint" "fingerprint"}

:body "body"})

Our sample filter functions pick keys out of a map and use nil instead of None
to represent missing values. Here they are, along with the function builder,
compose-filters, to compose them into a filter chain:

ClojureExamples/src/mbfpp/functional/fb/composition_examples.clj
(defn check-authorization [request]

(let [auth-header (get-in request [:headers "Authorization"])]
(assoc
request
:principal
(if-not (nil? auth-header)

"AUser"))))

(defn log-fingerprint [request]
(let [fingerprint (get-in request [:headers "X-RequestFingerprint"])]

(println (str "FINGERPRINT=" fingerprint))
request))

(defn compose-filters [filters]
(reduce

(fn [all-filters, current-filter] (comp all-filters current-filter))
filters))

And here’s that filter chain in action, running through the filters, performing
them, and finally returning the HTTP request:

=> (def filter-chain (compose-filters [check-authorization log-fingerprint]))
#'mbfpp.functional.fb.composition-examples/filter-chain
=> (filter-chain request)
FINGERPRINT=fingerprint
{:principal "AUser",
:headers {"X-RequestFingerprint" "fingerprint", "Authorization" "auth"},
:body "body"}

Function composition is a very general operation, and we’ve only touched on
a few uses of it here. Any time you find yourself calling the same set of func-
tions in the same order multiple times, or you have a dynamically generated

Chapter 4. Functional Patterns • 178

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/functional/fb/composition_examples.clj
http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/functional/fb/composition_examples.clj
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

list of functions that need to be chained together, function composition is a
good place to turn to.

Partially Applied Functions

While function composition takes multiple functions and chains them
together, partially applying a function takes one function and a subset of the
arguments that that function takes and returns a new function. The new
function has fewer arguments than the original and keeps track of the subset
that was passed in when the partially applied function was created so it can
use them later when it gets the rest of the arguments.

Let’s see how it works in Scala.

In Scala
Partial function application is another functional feature that’s important
enough to warrant first-class support in Scala. The way it works is that you
call a function and replace the arguments you don’t currently have values
for with underscores. For example, if we’ve got a function that adds two
integers together and we want a function that adds 42 to a single integer, we
could create it like this:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/fb/PartialExamples.scala
def addTwoInts(intOne: Int, intTwo: Int) = intOne + intTwo

val addFortyTwo = addTwoInts(42, _: Int)

As the code below shows, addFortyTwo is a function of one argument, to which
it adds 42.

scala> addFortyTwo(100)
res0: Int = 142

Creating partially applied functions is simple, but spotting when to use them
can be a bit tough. Here’s one example where they come in handy. Say we’ve
got a function that calculates income tax by state, and we want to create
functions that let us calculate the income tax for a particular state. We can
use a partially applied function to do it, like so:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/fb/PartialExamples.scala
def taxForState(amount: Double, state: Symbol) = state match {

// Simple tax logic, for example only!
case ('NY) => amount * 0.0645
case ('PA) => amount * 0.045
// Rest of states...

}
val nyTax = taxForState(_: Double, 'NY)
val paTax = taxForState(_: Double, 'PA)

report erratum • discuss

Function Builder • 179

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/fb/PartialExamples.scala
http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/fb/PartialExamples.scala
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

This correctly calculates taxes for the different states:

scala> nyTax(100)
res0: Double = 6.45

scala> paTax(100)
res1: Double = 4.5

In Clojure
Partially applying functions in Clojure is similar to how it’s done in Scala,
but there is one twist. To keep its syntax simple, Clojure only allows for the
arguments that the function is being partially applied to, to come at the start
of the argument list. For example, we could still write add-forty-two, much as
we did in Scala, as this code shows:

ClojureExamples/src/mbfpp/functional/fb/partial_examples.clj
(defn add-two-ints [int-one int-two] (+ int-one int-two))

(def add-fourty-two (partial add-two-ints 42))

=> (add-forty-two 100)
142

But to write ny-tax and pa-tax, we’d have to swap the arguments to tax-for-state
around, like this:

ClojureExamples/src/mbfpp/functional/fb/partial_examples.clj
(defn tax-for-state [state amount]

(cond
(= :ny state) (* amount 0.0645)
(= :pa state) (* amount 0.045)))

(def ny-tax (partial tax-for-state :ny))
(def pa-tax (partial tax-for-state :pa))

=> (ny-tax 100)
6.45
=> (pa-tax 100)
4.5

Partially applied functions are very simple to use, but I often find it a bit tricky
to know when to use them. I usually catch myself calling the same function
over and over again, with a subset of the arguments remaining the same.
Then a light bulb goes off and I realize I can clean that up a bit by using a
partially applied function.

Chapter 4. Functional Patterns • 180

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/functional/fb/partial_examples.clj
http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/functional/fb/partial_examples.clj
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Discussion

In this section, we’ve covered some of the more general ways to use Function
Builder, but these are by no means the only ways. The Clojure and Scala
libraries contain many other examples, since this is an extremely common
pattern in the functional world.

While most of the Clojure and Scala examples were very similar, the examples
in Map Key Selector, on page 170, differed drastically. In particular, the Scala
version was much more verbose. In part, this is because Clojure has an
extremely handy get-in function that does almost exactly what we need; how-
ever, a large part of the difference was caused by Scala’s type system.

Since Scala is statically typed, we had to specify types for the contents of the
maps that we dealt with. Internal nodes were themselves Maps, while leaf
nodes could be anything at all. This led to the slight bit of type system gym-
nastics we had to do in the Scala version.

This is a general trade-off between dynamic and static typing. Even with a
powerful type system like Scala’s, there’s still a cost to static typing in terms
of the complexity it can add and in just understanding how the type system
works. The trade-off is that we can catch many errors at compile time that
would otherwise become runtime errors with a dynamic type system.

Related Patterns
Pattern 1, Replacing Functional Interface, on page 40

Pattern 9, Replacing Decorator, on page 109

report erratum • discuss

Function Builder • 181

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Pattern 17

Memoization

Intent

To cache the results of a pure function call to avoid performing the same
computation more than once

Overview

Since pure functions always return the same value for given arguments, it’s
possible to replace a pure function call with cached results.

We can do this manually by writing a function that keeps track of its previous
arguments. When it’s called, it first checks its cache to see if it has already
been called with the passed-in arguments. If it has, it returns the cached
value. Otherwise, it performs the computation.

Some languages provide first-class support for Memoization using higher-order
functions. Clojure, for instance, has a function called memoize that takes a function
and returns a new one that will cache results. Scala doesn’t have a built-in
memoization function, so we’ll use a simple manual implementation.

Sample Code: Simple Caching

One use for Memoization is as a simple cache for expensive or time-consuming
functions, especially when the function is called multiple times with the same
argument. In this example, we’ll simulate the time-consuming operation by having
it sleep the thread.

In Scala

Let’s get started with a look at our simulated expensive function call. As an
example, we’re using a lookup by ID from some (presumably slow) datastore. To
fake it out here, we sleep the thread for a second before returning a value from
a static map. We also print the ID we’re looking up to the console to demonstrate
when the function is being executed:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/memoization/Examples.scala
def expensiveLookup(id: Int) = {

Thread.sleep(1000)
println(s"Doing expensive lookup for $id")
Map(42 -> "foo", 12 -> "bar", 1 -> "baz").get(id)

}

Chapter 4. Functional Patterns • 182

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/memoization/Examples.scala
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Just as we’d expect, the lengthy function is executed each time we call it, as we
can see from the console output:

scala> expensiveLookup(42)
Doing expensive lookup for 42
res0: Option[String] = Some(foo)

scala> expensiveLookup(42)
Doing expensive lookup for 42
res1: Option[String] = Some(foo)

Now let’s take a look at a simple memoized version of expensiveLookup(). To create
it we’ll use memoizeExpensiveLookup(), which initializes a cache and returns a new
function that wraps calls to memoizeExpensiveFunction().

The new function first checks its cache to see if it has results from a previous
function call. If it does, it returns the cached results. Otherwise it calls the
expensive lookup and caches the results before returning them.

Finally, we call memoizeExpensiveFunction() and store a reference to the function
it returns into a new var. The full solution is in the following code:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/memoization/Examples.scala
def memoizeExpensiveLookup() = {

var cache = Map[Int, Option[String]]()
(id: Int) =>

cache.get(id) match {
case Some(result: Option[String]) => result
case None => {

val result = expensiveLookup(id)
cache += id -> result
result

}
}

}
val memoizedExpensiveLookup = memoizeExpensiveLookup

As we can see from the following REPL output, the expensive function is only
called the first time for a given argument. After that, it returns the cached
copy:

scala> memoizedExpensiveLookup(42)
Doing expensive lookup for 42
res2: Option[String] = Some(foo)

scala> memoizedExpensiveLookup(42)
res3: Option[String] = Some(foo)

One quirk with this example is in the last line:

val memoizedExpensiveLookup = memoizeExpensiveLookup

report erratum • discuss

Memoization • 183

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/memoization/Examples.scala
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Here, we’re having memoizeExpensiveLookup() return a new function, and we’re
storing a reference to it. This allows us to wrap the cache up in a closure so
that only the function has a reference to it. If we needed another cache, we
could create it like so:

scala> val memoizedExpensiveLookup2 = memoizeExpensiveLookup
memoizedExpensiveLookup2: Int => Option[String] = <function1>

scala> memoizedExpensiveLookup2(42)
Doing expensive lookup for 42
res4: Option[String] = Some(foo)

Our Scala solution is a bit clumsy since we’ve done it manually for a single,
specific case, but it serves as a good model for how memoization works behind
the scenes. Let’s take a look at how we can use Clojure’s memoize function to
solve the same problem.

In Clojure

In Clojure, we’ll start with a similar simulated expensive function. However,
we won’t manually memoize it. Instead, we’ll use Clojure’s memoize function
to automatically return a memoized version of the function, as this code
shows:

ClojureExamples/src/mbfpp/functional/memoization/examples.clj
(defn expensive-lookup [id]

(Thread/sleep 1000)
(println (str "Lookup for " id))
({42 "foo" 12 "bar" 1 "baz"} id))

(def memoized-expensive-lookup
(memoize expensive-lookup))

As we can see from the following REPL output, it behaves similarly to the
Scala version and only performs the expensive operation once:

=> (memoized-expensive-lookup 42)
Lookup for 42
"foo"
=> (memoized-expensive-lookup 42)
"foo"

Behind the scenes, the memoize function creates a new function that’s much
like the manual example we saw in Scala that uses a map as a cache.

Discussion

One use of Memoization we didn’t cover here is in solving dynamic program-
ming problems, which is one of its original uses. Dynamic programming

Chapter 4. Functional Patterns • 184

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/functional/memoization/examples.clj
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

problems are problems that can be broken down into simpler subproblems
recursively. A classic, easy-to-understand example is computing a Fibonacci
number.

The formula for calculating the nth Fibonacci number adds together the pre-
vious two numbers in the sequence. A simple Clojure function to calculate a
Fibonacci number using this definition follows:

ClojureExamples/src/mbfpp/functional/memoization/examples.clj
(def slow-fib

(fn [n]
(cond
(<= n 0) 0
(< n 2) 1
:else (+ (slow-fib (- n 1)) (slow-fib (- n 2))))))

The nice thing about this function is that it mirrors the mathematical defini-
tion. However, it needs to recursively compute its subparts repeatedly, so its
performance is terrible for even moderately large numbers. If we memoize the
function, as we do in the following code, then the subparts are cached and
the function can perform reasonably well:

ClojureExamples/src/mbfpp/functional/memoization/examples.clj
(def mem-fib

(memoize
(fn [n]
(cond

(<= n 0) 0
(< n 2) 1
:else (+ (mem-fib (- n 1)) (mem-fib (- n 2)))))))

Running the two functions shows the drastic difference in performance:

=> (time (slow-fib 40))
"Elapsed time: 6689.204 msecs"
102334155
=> (time (mem-fib 40))
"Elapsed time: 0.402 msecs"
102334155

Dynamic programming problems are rich and fascinating; however, they only
pop up in a limited number of domains. I’ve generally seen memoization used
as a simple, convenient cache for expensive or long-lived operations rather
than as a dynamic programming tool.

report erratum • discuss

Memoization • 185

http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/functional/memoization/examples.clj
http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/functional/memoization/examples.clj
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Pattern 18

Lazy Sequence

Intent

To create a sequence whose members are computed only when needed—this
allows us to easily stream results from a computation and to work with
infinitely long sequences

Overview

We often deal with elements of a sequence one at a time. Since this is so, we
generally don’t need to have the entire sequence realized before we start pro-
cessing it. For instance, we may wish to stream lines of a file off of disk and
process them without ever holding the entire file in memory. We could use
Pattern 12, Tail Recursion, on page 138, to seek through the file, but Lazy
Sequence provides a much cleaner abstraction for this sort of streaming
computation.

Lazy Sequence does so by only creating an element in a sequence when it’s
asked for. In the file-reading example, the lines are only read off of disk when
asked for, and they can be garbage-collected when we’re done processing
them, though we need to take a bit of care to ensure that they are.

When we create an element, we call that realizing the element. Once realized,
elements are put into a cache using Pattern 17, Memoization, on page 182,
which means we only need to realize each element in the sequence once. This
is demonstrated in Figure 13, Lazy Sequence, on page 187.

Lazy Sequence also lets us create an extremely useful abstraction: an
infinitely long sequence. This may not seem useful at first blush, but since
the entire sequence isn’t realized at once, we can work with the beginning of
the sequence and defer creation of the rest. This allows us to create, say, an
infinitely long string of pseudorandom numbers of which we realize only a
portion.

Sample Code: Built-In Lazy Sequences

Let’s start with a couple of simple examples from the built-in library. In the
first example, we’ll show how to work with an infinitely long list of integers.

Chapter 4. Functional Patterns • 186

report erratum • discuss

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Figure 13—Lazy Sequence. An instance of Lazy Sequence before and after the third element
has been realized.

In the second, we’ll show how to use Lazy Sequence to generate a series of
random test data.

Let’s get started with a dive into the Scala code.

In Scala

Scala’s has built-in support for Lazy Sequence in its Stream library. Perhaps
the simplest thing we can do with a lazy sequence is to create an infinite
sequence of all integers. Scala’s Stream library has a method that does just
that, called from(). According to the ScalaDoc, it will “create an infinite stream
starting at start and incrementing by step.”

Here, we use from() to create a sequence of all integers, starting at 0:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/ls/LazySequence.scala
val integers = Stream.from(0)

This may seem a strange thing to do, but we can use another method, take(),
to work with the first few numbers in the sequence. Here we’re using it to
take the first five integers from our infinitely long list and then print them:

scala> val someints = integers take 5
someints: scala.collection.immutable.Stream[Int] = Stream(0, ?)

scala> someints foreach println
0
1
2
3
4

report erratum • discuss

Lazy Sequence • 187

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/ls/LazySequence.scala
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Let’s take a look at a slightly fancier instance of Lazy Sequence that uses
another method in Scala’s Sequence library. The continually() method creates
an infinitely long sequence by repeatedly evaluating the expression passed
into here.

Let’s use this to create an infinitely long sequence of pseudorandom numbers.
To do so, we create a new random number generator in the val generate, and
then we pass generate.nextInt in the continually() method, as illustrated in the fol-
lowing code:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/ls/LazySequence.scala
val generate = new Random()
val randoms = Stream.continually(generate.nextInt)

We can now take a few random numbers from our infinite list:

scala> val aFewRandoms = randoms take 5
aFewRandoms: scala.collection.immutable.Stream[Int] = Stream(326862669, ?)

scala> aFewRandoms foreach println
326862669
-473217479
-1619928859
785666088
1642217833

If we want a few more random numbers, we can use take() again with a larger
number:

scala> val aFewMoreRandoms = randoms take 6
aFewMoreRandoms: scala.collection.immutable.Stream[Int] = Stream(326862669, ?)

scala> aFewMoreRandoms foreach println
326862669
-473217479
-1619928859
785666088
1642217833
1819425161

Notice how the first five numbers here are repeated. This is because the
Stream library relies on Pattern 17, Memoization, on page 182, to cache copies
it’s already seen. The first five values were realized when we originally printed
aFewRandoms, the sixth only once we printed aFewMoreRandoms.

In Clojure

Lazy Sequence is built into Clojure as well, but it’s not focused in a single
library. Rather, most of Clojure’s core sequence manipulation functions work

Chapter 4. Functional Patterns • 188

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/ls/LazySequence.scala
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

in a lazy manner. Clojure’s normal range function, for instance, works with
Lazy Sequence. The following code generates a list of all the positive integers
that fit into an Integer:

ClojureExamples/src/mbfpp/functional/ls/examples.clj
(def integers (range Integer/MAX_VALUE))

We can then use the take function to take a few integers from the start of our
long list:

=> (take 5 integers)
(0 1 2 3 4)

To generate our list of random integers, we can use Clojure’s repeatedly function.
This takes a function of one argument and repeats it an infinite number of
times, as the following code shows:

ClojureExamples/src/mbfpp/functional/ls/examples.clj
(def randoms (repeatedly (fn [] (rand-int Integer/MAX_VALUE))))

To take a few, we can use take again:

=> (take 5 randoms)
(2147483647 2147483647 2147483647 2147483647 2147483647)

If we want some more, we use take with a bigger argument. Again, the first
five random integers won’t be recomputed, they’ll be pulled from a memoized
cache:

=> (take 6 randoms)
(2147483647 2147483647 2147483647 2147483647 2147483647 2147483647)

Scala and Clojure’s treatments of Lazy Sequence have a few key differences.
Most of Clojure’s sequence-handling functions are lazy, but they recognize
the sequence in chunks of thirty-two. If we take a single number from a lazy
sequence of integers, Clojure will recognize the first thirty-two integers even
though we only asked for one.

We can see this if we add a side effect into the lazy sequence generation. Here,
we can see that take recognizes thirty-two integers, even though it only returns
the first one:

=> (defn print-num [num] (print (str num " ")))
#'mbfpp.functional.ls.examples/print-num
=> (take 1 (map print-num (range 100)))
(0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
19 20 21 22 23 24 25 26 27 28 29 30 31 nil)

report erratum • discuss

Lazy Sequence • 189

http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/functional/ls/examples.clj
http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/functional/ls/examples.clj
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Another, more subtle difference comes into play when using Lazy Sequence
in the REPL. When the Scala REPL comes across an instance of Lazy Sequence
in the form of a Stream, it does not attempt to realize the whole thing.

This is easiest to see when we’ve got an obvious side effect. In the following
Scala code, we use continually() to print "hello" to the console and store a reference
to the produced Stream in printHellos. As we can see, the first "hello" is printed
when we call continually, which indicates that the method realizes the first
element in the stream:

scala> val printHellos = Stream.continually(println("hello"))
hello
printHellos: scala.collection.immutable.Stream[Unit] = Stream((), ?)

If we now call take() on printHellos, we don’t get any further "hello"s printed to the
console, which means the REPL isn’t trying to realize the returned Stream.

scala> printHellos take 5
res0: scala.collection.immutable.Stream[Unit] = Stream((), ?)

If we want to force the remainder of our "hello"s to be realized, we can use any
method that iterates over Stream, or we can just use the force():

scala> printHellos take 5 force
hello
hello
hello
hello
res1: scala.collection.immutable.Stream[Unit] = Stream((), (), (), (), ())

This isn’t something you generally need to do, but it’s important to understand
when the elements of Lazy Sequence are realized.

In contrast, Clojure’s REPL will attempt to realize an instance of Lazy
Sequence; however, defining an instance of Lazy Sequence may not realize
the first element! Here we define a print-hellos much like the Scala version.
Notice how "hello" isn’t printed to the console.

(def print-hellos (repeatedly (fn [] (println "hello"))))

However, if we take five elements, the REPL evaluating the resulting instance
of Lazy Sequence will force it to print to the console.

=> (take 5 print-hellos)
(hello
hello
nil hello
nil hello
nil hello
nil nil)

Chapter 4. Functional Patterns • 190

report erratum • discuss

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

This reflects the difference in how Scala and Clojure’s REPL evaluate Lazy
Sequence. It also highlights something to watch out for when using Lazy
Sequence. Since you can create infinite sequences, we need to ensure that
we don’t attempt to realize an entire infinite sequence at once. For instance,
if we had forgotten to use take in the Clojure example and had just evaluated
(repeatedly (fn [] (println "hello"), we would have attempted to realize an infinitely
long sequence of printing "hello"!

Sample Code: Paged Response

In our first example, we looked at a couple of higher-order functions that let
us create an instance of Lazy Sequence. Now let’s take a look at how we’d
make one from scratch.

The example we’ll use here is a lazy sequence that lets us go through a set
of paged data. In our simple example, we’ll simulate the paged data with a
local function call, though in a real program this would probably come from
an external source such as a web service. Let’s get started with a look at the
Scala code.

In Scala

Our Scala solution has two parts: the sequence itself, pagedSequence, and a
method to generate some sample paged data, getPage().

We need to define the solution to our problem recursively, much as we would
in Pattern 12, Tail Recursion, on page 138. However, instead of passing our
sequence through the call stack, we add to it in each recursive call using the
#:: operator.

The following code is the full solution to our paged data problem:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/ls/LazySequence.scala
def pagedSequence(pageNum: Int): Stream[String] =

getPage(pageNum) match {
case Some(page: String) => page #:: pagedSequence(pageNum + 1)
case None => Stream.Empty

}

def getPage(page: Int) =
page match {

case 1 => Some("Page1")
case 2 => Some("Page2")
case 3 => Some("Page3")
case _ => None

}

report erratum • discuss

Lazy Sequence • 191

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/ls/LazySequence.scala
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Let’s dig into pagedSequence a bit more, starting with the #:: operator, which
allows us to prepend a value to a Stream. Here we use it to append the strings
"foo" and "bar" to a new Stream:

scala> val aStream = "foo" #:: "bar" #:: Stream[String]()
aStream: scala.collection.immutable.Stream[String] = Stream(foo, ?)

We can get at the head and tail of our Stream, just as we could with other
sequences:

scala> aStream.head
res0: String = foo

scala> aStream.tail
res1: scala.collection.immutable.Stream[String] = Stream(bar, ?)

Let’s take a closer look at the heart of our solution in the following code
snippet:

getPage(pageNum) match {
case Some(page: String) => page #:: pagedSequence(pageNum + 1)
case None => Stream.Empty

}

We call getPage() and match on the result. If we match a Some, then we know
that we got back a valid page. We prepend it to our sequence and then
recursively call the method generating the sequence, passing in the next page
we’re trying to fetch.

If we get a None, we know we’ve gone through all our pages, and we append
the empty stream, Stream.Empty, to our lazy sequence. This signals the end of
the sequence.

Now we can work with pagedSequence just like we worked with some of the
sequences we saw in the previous example. Here we take two pages from the
sequence, starting at the first element:

scala> pagedSequence(1) take 2 force
res2: scala.collection.immutable.Stream[String] = Stream(Page1, Page2)

Here we force the whole thing to be realized, which is safe since this sequence,
while lazy, isn’t infinite:

scala> pagedSequence(1) force
res3: scala.collection.immutable.Stream[String] = Stream(Page1, Page2, Page3)

That wraps up our Scala paged sequence example. Now let’s take a look at
how to do it in Clojure.

Chapter 4. Functional Patterns • 192

report erratum • discuss

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

In Clojure

In Clojure, we can construct an instance of Lazy Sequence from scratch using
lazy-sequence and add to it with cons, as shown in the following snippet:

=> (cons 1 (lazy-seq [2]))
(1 2)

We can then use recursive function calls to build up useful sequences. To
write our paged sequence example in Clojure, we first define a get-page function
to mock up our paged data. The core of our solution is in the paged-sequence
function.

The paged-sequence function is called with the start page, and it recursively
builds up a lazy sequence by fetching that page, appending it to the sequence,
and then calling itself with the number of the next page. The entire solution
follows:

ClojureExamples/src/mbfpp/functional/ls/examples.clj
(defn get-page [page-num]

(cond
(= page-num 1) "Page1"
(= page-num 2) "Page2"
(= page-num 3) "Page3"
:default nil))

(defn paged-sequence [page-num]
(let [page (get-page page-num)]

(when page
(cons page (lazy-seq (paged-sequence (inc page-num)))))))

Now we can work with our lazy sequence like any other. If we call paged-sequence
in the REPL, we get the entire sequence:

=> (paged-sequence 1)
("Page1" "Page2" "Page3")

If we use take, we can get a portion of it:

=> (take 2 (paged-sequence 1))
("Page1" "Page2")

This can give us a very clean way of working with streaming data.

Discussion

One thing to watch out for when using lazy sequences is accidentally holding
on to the head of the sequence when you don’t mean to, as Figure 14, Holding
on to the Head, on page 194 demonstrates.

report erratum • discuss

Lazy Sequence • 193

http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/functional/ls/examples.clj
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Figure 14—Holding on to the Head. Holding on to the head of a lazy sequence will keep
the entire sequence in memory.

In Scala, it’s easy to accidentally do this simply by assigning our lazy sequence
into a val, as we do in the following code:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/ls/LazySequence.scala
val holdsHead = {

def pagedSequence(pageNum: Int): Stream[String] =
getPage(pageNum) match {
case Some(page: String) => {

println("Realizing " + page)
page #:: pagedSequence(pageNum + 1)

}
case None => Stream.Empty

}
pagedSequence(1)

}

If we try to force the sequence more than once, we can see that the second
time uses the cached copy, as the following REPL output demonstrates:

scala> holdsHead force
Realizing Page1
hello
Realizing Page2
Realizing Page3
res0: scala.collection.immutable.Stream[String] = Stream(Page1, Page2, Page3)
scala> holdsHead force
res1: scala.collection.immutable.Stream[String] = Stream(Page1, Page2, Page3)

If we don’t want to hold on to the head of the sequence, we can use def instead
of val, as we do in the following code:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/ls/LazySequence.scala
def doesntHoldHead = {

def pagedSequence(pageNum: Int): Stream[String] =
getPage(pageNum) match {

Chapter 4. Functional Patterns • 194

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/ls/LazySequence.scala
http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/ls/LazySequence.scala
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

case Some(page: String) => {
println("Realizing " + page)
page #:: pagedSequence(pageNum + 1)

}
case None => Stream.Empty

}
pagedSequence(1)

}

This forces the sequence to be realized fresh each time it’s forced and does
not hold onto the head:

scala> doesntHoldHead force
Realizing Page1
Realizing Page2
Realizing Page3
res2: scala.collection.immutable.Stream[String] = Stream(Page1, Page2, Page3)

scala> doesntHoldHead force
Realizing Page1
Realizing Page2
Realizing Page3
res3: scala.collection.immutable.Stream[String] = Stream(Page1, Page2, Page3)

Holding on to the head of a sequence by accident is really no more mysterious
than holding on to a reference to any object when you don’t mean to, but it
can be surprising if you’re not watching out for it.

report erratum • discuss

Lazy Sequence • 195

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Pattern 19

Focused Mutability

Intent

To use mutable data structures in small, performance-sensitive parts of a
program hidden inside of a function while still using immutable data
throughout the majority

Overview

Programming with performant, immutable data on machines that are built
out of fundamentally mutable components, like main memory and disk, is
almost magical. A whole host of technology has contributed to making it
possible, especially on the JVM. Growing processor power and memory sizes
make it increasingly unnecessary to squeeze every last drop of performance
out of a machine.

Small, transient objects are cheap to create and to destroy, thanks to the
JVM’s excellent generational garbage collector. Both Scala and Clojure use
extremely clever data structures that allow immutable collections to share
state. This obviates the need to copy the entire collection when one piece of
it is changed, which means collections have a reasonable memory footprint
and can be modified fairly quickly.

Still, using immutable data has some performance costs. Even the clever data
structures Clojure and Scala use may take up more memory than their
mutable counterparts, and they perform somewhat worse. The benefits of
immutable data, which greatly ease not only concurrent programming but
also ease programming large systems in general, often outweigh the costs.
However, sometimes you really do need that extra performance, usually in a
tight loop in a part of the program that is frequently called.

Focused Mutability shows how to use mutable data in these situations by
creating functions that take in some immutable data structures, operate on
mutable data inside of the function, and then return another immutable data
structure. This lets us get more performance without letting mutability muck
up our programs, since we’re confining it inside a function, where nothing
else can see it.

Chapter 4. Functional Patterns • 196

report erratum • discuss

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

One consideration we need to make when using Focused Mutability is what
the cost of translating a mutable data structure into an immutable one is.
Clojure provides first-class support here with a feature called transients.
Transients let us take an immutable data structure, convert it into a mutable
one in constant time, and then convert it back into an immutable one when
we’re done with it, also in constant time.

In Scala, it’s a bit trickier, since there’s no first-class support for something
like Clojure’s transients. We have to use the mutable versions of Scala’s data
structures and then convert them into immutable ones using conversion
methods on the collections library. Thankfully, Scala can do this conversion
quite efficiently.

Code Sample: Adding to Indexed Sequence

Let’s start off with a look at a very simple sample, adding a range of numbers
to an indexed sequence. This isn’t a particularly useful thing to do in practice,
but it’s a very simple example, which makes it easy to do some basic perfor-
mance analysis.

For this example, we’ll compare the time it takes to add a million elements
to a mutable indexed sequence and then translate it into an immutable one
with the amount of time it takes to build up the immutable sequence directly.
This involves some microbenchmarking, so we’ll do several trial runs of each
test to try to spot outliers caused by garbage collection, caching issues, and
so on.

This certainly isn’t a perfect way to perform a microbenchmark, but it’s good
enough so that we can get a feel for which solutions are faster and by how
much.

In Scala

In Scala, we’ll compare the results of adding elements to an immutable Vector
directly to the results of adding them to a mutable ArrayBuffer and then convert-
ing it into an immutable Vector. In addition to our test functions, which add
elements to a Vector and an ArrayBuffer, we’ll need a bit of infrastructure code
to help out with timing and test runs.

Let’s take a look at the immutable piece first. The following code defines a
function, testImmutable(), which appends count elements to an immutable Vector
and updates a reference to point at the new vector each time a new element
is appended:

report erratum • discuss

Focused Mutability • 197

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/fm/FocusedMutation.scala
def testImmutable(count: Int): IndexedSeq[Int] = {

var v = Vector[Int]()
for (c <- Range(0, count))

v = v :+ c
v

}

Now let’s take a look at testMutable(), which is similar except that it appends
elements to a mutable ArrayBuffer, which is a bit like a Java ArrayList. The code
is here:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/fm/FocusedMutation.scala
def testMutable(count: Int): IndexedSeq[Int] = {

val s = ArrayBuffer[Int](count)
for (c <- Range(0, count))

s.append(c)
s.toIndexedSeq

}

Now we just need a way of getting timing information from runs of our test
functions. We’ll time runs by recording system time before the test run and
after. Instead of embedding this in the test functions themselves, we’ll create
a higher-order function that can do the timing, time(), and another one,
timeRuns(), that will run multiple tests at a time. Here is the code for both:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/fm/FocusedMutation.scala
def time[R](block: => R): R = {

val start = System.nanoTime
val result = block
val end = System.nanoTime
val elapsedTimeMs = (end - start) * 0.000001
println("Elapsed time: %.3f msecs".format(elapsedTimeMs))
result

}

def timeRuns[R](block: => R, count: Int) =
for (_ <- Range(0, count)) time { block }

With the pieces in place, we can run some tests. Let’s try five test runs with
a count of one million against our immutable version:

scala> val oneMillion = 1000000
scala> timeRuns(testImmutable(oneMillion), 5)
Elapsed time: 127.499 msecs
Elapsed time: 127.479 msecs
Elapsed time: 130.501 msecs
Elapsed time: 142.875 msecs
Elapsed time: 123.623 msecs

Chapter 4. Functional Patterns • 198

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/fm/FocusedMutation.scala
http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/fm/FocusedMutation.scala
http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/fm/FocusedMutation.scala
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

As we can see, the times range from around 123 milliseconds to about 142
milliseconds. Now let’s give it a shot with our mutable version, which only
converts to an immutable data structure when modifications are done:

scala> timeRuns(testMutable(oneMillion), 5)
Elapsed time: 98.339 msecs
Elapsed time: 105.240 msecs
Elapsed time: 88.800 msecs
Elapsed time: 65.997 msecs
Elapsed time: 54.918 msecs

Here, the times range from around 54 milliseconds to around 105 milliseconds.
Comparing the shortest run from our immutable version, 123 milliseconds,
with the shortest run from our mutable version, 54 milliseconds, yields about
a 230 percent improvement. Comparing the longest runs, 142 milliseconds
with 105 milliseconds, yields an improvement of about 140 percent.

While your mileage may vary somewhat depending on your machine, on your
JVM version, on your garbage collection tuning, and so forth, this basic
microbenchmark suggests that the mutable version is generally faster than
the immutable one, as we’d expect.

In Clojure

Clojure has built-in support for Focused Mutability through a feature named
transients. Transients allow us to magically transform an immutable data
structure into a mutable one. To use it, the immutable data structure is
passed into the transient! form. For example, this would get us a transient,
mutable vector, (def t (transient [])).

As the name suggests, transients are supposed to be, well, transient, but in
a very different way than the transient keyword in Java means. Transients
in Clojure are transient in the sense that you use them briefly inside a function
and then transform them back into an immutable data structure before
passing them around.

Transients can be appended to with a special version of conj called conj!. Using
an exclamation point for operations on mutable data is an old Lisp convention
meant to convey that you’re about to do something exciting and dangerous!

Let’s take a look at our basic Focused Mutability example, which has been
rewritten to use Clojure’s transients. First off, we need our mutable function.
In Clojure, we’ll build up our sequence of numbers with a recursive function
that passes a vector through the call chain and conjes a single number to the
vector in each call. The code is here:

report erratum • discuss

Focused Mutability • 199

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

ClojureExamples/src/mbfpp/functional/fm/examples.clj
(defn test-immutable [count]

(loop [i 0 s []]
(if (< i count)
(recur (inc i) (conj s i))
s)))

Our mutable version looks almost identical; the only difference is that we
create a transient vector using transient to be modified internal to the function.
Then we convert it back to an immutable data structure with persistent! when
done, as the code shows:

ClojureExamples/src/mbfpp/functional/fm/examples.clj
(defn test-mutable [count]

(loop [i 0 s (transient [])]
(if (< i count)
(recur (inc i) (conj! s i))
(persistent! s))))

Finally, we need a way to time our examples. Clojure has a built-in time
function that’s much like the one we wrote for Scala, but we still need a way
of running multiple trials in one shot. The somewhat cryptic-looking macro
here fits the bill. If Lisp macros aren’t in in your bag of tricks yet, we discuss
them in Pattern 21, Domain-Specific Language, on page 218.

ClojureExamples/src/mbfpp/functional/fm/examples.clj
(defmacro time-runs [fn count]

`(dotimes [_# ~count]
(time ~fn)))

Now we can put our Clojure solution through its paces. First, here’s the
immutable version:

=> (time-runs (test-immutable one-million) 5)
"Elapsed time: 112.03 msecs"
"Elapsed time: 114.174 msecs"
"Elapsed time: 117.223 msecs"
"Elapsed time: 114.976 msecs"
"Elapsed time: 300.29 msecs"

Next, the mutable one:

=> (time-runs (test-mutable one-million) 5)
"Elapsed time: 84.752 msecs"
"Elapsed time: 73.398 msecs"
"Elapsed time: 196.601 msecs"
"Elapsed time: 70.859 msecs"
"Elapsed time: 70.402 msecs"

Chapter 4. Functional Patterns • 200

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/functional/fm/examples.clj
http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/functional/fm/examples.clj
http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/functional/fm/examples.clj
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

These times are fairly similar to the Scala times, which isn’t surprising since
Scala’s immutable data structures and Clojure’s immutable data structures
are based on the same set of techniques. Comparing the shortest and longest
runs of both versions gives us a speedup of about 1.5 times for the mutable
version, which isn’t too shabby.

One other interesting thing to note about this example is that the two outliers,
300.29 ms for the immutable run and 196.601 ms for the mutable one, are
both twice as slow as the fastest run for their respective solutions.

A bit of digging into these examples with a profiling tool reveals that the culprit
here is indeed a major garbage collection that ran during those samples and
not the others. The effects of garbage collection on this example might be
reduced with tuning, but that, alas, would be a book in itself!

Code Sample: Event Stream Manipulation

Let’s take a look at an example with a bit more weight. Here, we’ll process a
stream of events that represent purchases. Each event contains a store
number, a customer number, and an item number. Our processing will be
straightforward; we’ll organize the stream of events into a map keyed off of
the store number so that we can sort purchases by store.

In addition to the processing code itself, we’ll need a simple way of generating
test data. For that, we’ll use Pattern 18, Lazy Sequence, on page 186, to generate
an infinitely long sequence of test purchases, from which we’ll take as many
as we need. Let’s take a look!

In Scala

Our Scala solution starts with a Purchase case class to hold on to our purchases.
We’ll also need a sequence of test purchases, as well as the immutable and
mutable versions of our test functions. In both cases, we’ll go through our
test purchases in a for comprehension, pull out the store number from the
purchase, and add it to a list of other purchases from that store, which we’ll
then put into a map keyed off of by store number.

For timing, we’ll reuse the same code from the above example. Let’s start with
the Purchase class, a straightforward case class:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/fm/FocusedMutation.scala
case class Purchase(storeNumber: Int, customerNumber: Int, itemNumber: Int)

Generating our test data can be done with an infinitely long lazy sequence,
from which we’ll take as many samples as we need. It’s okay if you don’t
understand the details here; they can be found in Pattern 18, Lazy Sequence,

report erratum • discuss

Focused Mutability • 201

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/fm/FocusedMutation.scala
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

on page 186. The upshot for our current example is that we can easily generate
test data with infiniteTestPurchases(), from which we can use take(). Here’s the
code:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/fm/FocusedMutation.scala
val r = new Random
def makeTestPurchase = Purchase(r.nextInt(100), r.nextInt(1000), r.nextInt(500))
def infiniteTestPurchases: Stream[Purchase] =

makeTestPurchase #:: infiniteTestPurchases

If we wanted to take, say, five items from our infinite sequence, we do so with
take(), like this:

scala> val fiveTestPurchases = infiniteTestPurchases.take(5)
fiveTestPurchases: ...

scala> for(purchase <- fiveTestPurchases) println(purchase)
Purchase(71,704,442)
Purchase(23,718,87)
Purchase(39,736,3)
Purchase(33,3,233)
Purchase(86,985,152)

Now that we’ve got a way of generating test data, let’s put it to good use in
our immutable solution, immutableSequenceEventProcessing(). This function takes
the number of test purchases, obtains the test purchases from our infinite
sequence of test data, and adds them to a map indexed by store, as described
earlier.

To add a new purchase to the map, we pull the store number out of the pur-
chase and attempt to get any existing purchases for that store from the map.
If they exist, we add the new purchase to the existing list and create a new
map with the updated key. The code to do so is here:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/fm/FocusedMutation.scala
def immutableSequenceEventProcessing(count: Int) = {

val testPurchases = infiniteTestPurchases.take(count)
var mapOfPurchases = immutable.Map[Int, List[Purchase]]()

for (purchase <- testPurchases)
mapOfPurchases.get(purchase.storeNumber) match {
case None => mapOfPurchases =

mapOfPurchases + (purchase.storeNumber -> List(purchase))
case Some(existing: List[Purchase]) => mapOfPurchases =

mapOfPurchases + (purchase.storeNumber -> (purchase :: existing))
}

}

Chapter 4. Functional Patterns • 202

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/fm/FocusedMutation.scala
http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/fm/FocusedMutation.scala
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Our mutable version is quite similar to the immutable version, except that
we modify a mutable map and then turn it into an immutable one when done,
as this code shows:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/fm/FocusedMutation.scala
def mutableSequenceEventProcessing(count: Int) = {

val testPurchases = infiniteTestPurchases.take(count)
val mapOfPurchases = mutable.Map[Int, List[Purchase]]()

for (purchase <- testPurchases)
mapOfPurchases.get(purchase.storeNumber) match {
case None => mapOfPurchases.put(purchase.storeNumber, List(purchase))
case Some(existing: List[Purchase]) =>

mapOfPurchases.put(purchase.storeNumber, (purchase :: existing))
}

mapOfPurchases.toMap
}

So how do these two solutions perform? Let’s take a look by running it over
500,000 samples, starting with the immutable version first:

scala> timeRuns(immutableSequenceEventProcessing(fiveHundredThousand), 5)
Elapsed time: 647.948 msecs
Elapsed time: 523.477 msecs
Elapsed time: 551.897 msecs
Elapsed time: 505.083 msecs
Elapsed time: 538.568 msecs

And now here’s the mutable one:

scala> timeRuns(mutableSequenceEventProcessing(fiveHundredThousand), 5)
Elapsed time: 584.002 msecs
Elapsed time: 283.623 msecs
Elapsed time: 546.839 msecs
Elapsed time: 286.259 msecs
Elapsed time: 568.298 msecs

As we can see, the mutable version is only a tiny bit faster. A bit of profiling
reveals that this is largely because much of the time in the example was spent
generating test data, and not manipulating the map.

If we were reading the events off the filesystem or over the network, this
overhead would be even greater, and the difference between the two solutions
even smaller! On the other hand, even a tiny amount of time shaved off of
each event processing may end up mattering if the data set is big enough.

report erratum • discuss

Focused Mutability • 203

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/fm/FocusedMutation.scala
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

In Clojure

Our Clojure solution is fairly similar to the Scala one. Just as in Scala, we’ll
use Pattern 18, Lazy Sequence, on page 186, to generate an infinite sequence
of test purchases from which we’ll take a finite number. We’ll examine two
implementations of our test functions. The first uses a normal, immutable
map, and the second a mutable, transient one.

Let’s get started with a look at the code that lets us generate test data. We
can use a function named repeatedly, which, as the name suggests, calls the
function multiple times and uses the results to create a lazy sequence. Outside
of that, we just need a function to create the test purchases themselves. Here’s
the code for both:

ClojureExamples/src/mbfpp/functional/fm/examples.clj
(defn make-test-purchase []

{:store-number (rand-int 100)
:customer-number (rand-int 100)
:item-number (rand-int 500)})

(defn infinite-test-purchases []
(repeatedly make-test-purchase))

Now we need our test functions. We’ll use reduce to turn a sequence of pur-
chases into a map indexed by store number. Just as in the Scala example,
we’ll use take to take a finite number of test purchases from our infinite
sequence of them. Then we’ll reduce over that sequence, building up our map
of purchases indexed by store number.

As before, we need to handle the case when we first see the store number,
which we can do by passing in a default empty list to get. The code is here:

ClojureExamples/src/mbfpp/functional/fm/examples.clj
(defn immutable-sequence-event-processing [count]

(let [test-purchases (take count (infinite-test-purchases))]
(reduce
(fn [map-of-purchases {:keys [store-number] :as current-purchase}]

(let [purchases-for-store (get map-of-purchases store-number '())]
(assoc map-of-purchases store-number

(conj purchases-for-store current-purchase))))
{}
test-purchases)))

Since Clojure has handy-dandy transients, the mutable solution looks very
similar, save that we need to transform our map to and from a transient and
that we need to use assoc! to add to it, as the code shows:

ClojureExamples/src/mbfpp/functional/fm/examples.clj
(defn mutable-sequence-event-processing [count]

(let [test-purchases (take count (infinite-test-purchases))]

Chapter 4. Functional Patterns • 204

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/functional/fm/examples.clj
http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/functional/fm/examples.clj
http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/functional/fm/examples.clj
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

(persistent! (reduce
(fn [map-of-purchases {:keys [store-number] :as current-purchase}]

(let [purchases-for-store (get map-of-purchases store-number '())]
(assoc! map-of-purchases store-number

(conj purchases-for-store current-purchase))))
(transient {})
test-purchases))))

Now let’s give it a whirl, starting with the mutable version:

=> (time-runs (mutable-sequence-event-processing five-hundred-thousand) 5)
"Elapsed time: 445.841 msecs"
"Elapsed time: 457.66 msecs"
"Elapsed time: 452.743 msecs"
"Elapsed time: 374.041 msecs"
"Elapsed time: 403.498 msecs"
nil

Now on to the immutable one:

=> (time-runs (immutable-sequence-event-processing five-hundred-thousand) 5)
"Elapsed time: 481.547 msecs"
"Elapsed time: 413.121 msecs"
"Elapsed time: 460.379 msecs"
"Elapsed time: 441.686 msecs"
"Elapsed time: 445.772 msecs"
nil

As we can see, the differences are fairly minimal, but the mutable version is
a bit faster.

Discussion

Focused Mutability is an optimization pattern. It’s the sort of thing that the
old advice to avoid premature optimization is all about. As we’ve seen from
this chapter, Scala and Clojure’s immutable data structures perform very
well—not much worse than their mutable counterparts! If you’re modifying
several immutable data structures in one go and if you’re doing it for large
amounts of data, you’re likely to see a significant improvement. However,
immutable data structures should be the default—they’re usually plenty fast.

Before using Focused Mutability or any small-scale performance optimization,
it’s a good idea to profile your application and make sure you’re optimizing
in the right place; otherwise, you might find that you’re spending time opti-
mizing a section of code that is rarely called, which will have little effect on
the overall performance of the program.

report erratum • discuss

Focused Mutability • 205

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Pattern 20

Customized Control Flow

Intent

To create focused, custom-control flow abstractions

Overview

Using the right control flow abstraction for the job can help us write clearer
code. For instance, Ruby includes an unless operator, which can be used to
do something unless a conditional is true. Good Ruby code uses this operator
over if and the not operator, since it’s clearer to read.

No language has every useful control flow abstraction built in, though.
Functional programming languages give us a way to create our own using
higher-order functions. For instance, to create a control flow structure that
executes a piece of code n times and prints out the average time for the runs,
we can write a function that takes another function and invokes it n times.

However, just using higher-order functions leaves us with a verbose syntax
for our custom control flow. We can do better. In Clojure we can use the macro
system, and in Scala we’ve got a bag of tricks that include blocks and by name
parameters.

Sample Code: Choose One of Three

Let’s start off with a look at a basic custom control structure, choose, which
chooses between three different options. We’ll explore two different implemen-
tations: the first will use higher-order functions and the second will explore
how we can improve on our first solution by providing some syntactic sugar.

In Scala

Our choose() function takes an integer between 1 and 3 and three functions.
It then executes the corresponding function, as the following code shows:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/ccf/Choose.scala
def choose[E](num: Int, first: () => E, second: () => E, third: () => E) =

if (num == 1) first()
else if (num == 2) second()
else if (num == 3) third()

Chapter 4. Functional Patterns • 206

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/ccf/Choose.scala
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

This is a straightforward use of higher-order functions. Let’s take a look at
how we’d use it:

scala> simplerChoose(2,
| () => println("hello, world"),
| () => println("goodbye, cruel world"),
| () => println("meh, indifferent world"))

goodbye, cruel world

It works as we’d expect; however, the need to wrap our actions up in functions
is cumbersome. A better syntax would be if we could just pass naked
expressions into the choose(), as we do in the following imaginary REPL session:

scala> simplerChoose(2,
| println("hello, world"),
| println("goodbye, cruel world"),
| println("meh, indifferent world"))

goodbye, cruel world

Let’s see how to make this syntax real, starting with a very simple case. In
the following REPL output, we define a test() function with a single argument,
expression. The body of the function just attempts to execute the expression.
We then call test() with the single argument println("hello, world").

scala> def test[E](expression: E) = expression
test: (expression: Unit)Unit

scala> test(println("hello, world"))
hello, world

It appears that this works and our expression is evaluated, since "hello, world"
is printed to the console. But what happens if we try to execute our expression
twice? Let’s find out in the following REPL snippet:

scala> def testTwice[E](expression: E) = {
| expression
| expression
| }

testTwice: (expression: Unit)Unit

scala> testTwice(println("hello, world"))
hello, world

The string "hello, world" is only printed to the console once! This is because
Scala will, by default, evaluate an expression at the time it’s passed into a
function and then pass in the value of the evaluated expression. This is known
as pass by value, and it’s usually what we want and expect. For instance, in
the following example, it prevents the expression from being evaluated twice:

report erratum • discuss

Customized Control Flow • 207

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

scala> def printTwice[E](expression: E) = {
| println(expression)
| println(expression)
| }

printTwice: [E](expression: E)Unit

scala> printTwice(5 * 5)
25
25

However, this is the opposite of what we need when writing custom control
structures. Scala gives us an alternative calling semantic called pass by name.
Using pass by name means that we pass a name for the expression into the
function rather than the evaluated value of the expression. We can then refer
to that name inside the function body to have it be evaluated on demand.

To make a function argument pass by name rather than by value, we can
use => after the parameter name and before the type annotation. The following
REPL snippet rewrites our test function to use pass-by-name calling:

scala> def testByName[E](expression: => E) {
| expression
| expression
| }

testByName: [E](expression: => E)Unit

scala> testByName(println("hello, world"))
hello, world
hello, world

Now that we understand the difference between pass by value and pass by
name, we can write a simplerChoose() function that takes naked expressions.
The following code snippet does so:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/ccf/Choose.scala
def simplerChoose[E](num: Int, first: => E, second: => E, third: => E) =

if (num == 1) first
else if (num == 2) second
else if (num == 3) third

Now we can use our naked expression syntax, as in the following REPL output:

scala> simplerChoose(2,
| println("hello, world"),
| println("goodbye, cruel world"),
| println("meh, indifferent world"))

goodbye, cruel world

Chapter 4. Functional Patterns • 208

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/ccf/Choose.scala
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Clojure’s approach to custom control flow is quite different and involves its
powerful macro system. Let’s take a look!

In Clojure

Let’s start off our Clojure sample with a look at a simple version of choose that
relies on higher-order functions. We take three functions and an integer
indicating which one to run, as the following code shows:

ClojureExamples/src/mbfpp/functional/ccf/ccf_examples.clj
(defn choose [num first second third]

(cond
(= 1 num) (first)
(= 2 num) (second)
(= 3 num) (third)))

To use it, we pass in our integer and function arguments:

=> (choose 2
(fn [] (println "hello, world"))
(fn [] (println "goodbye, cruel world"))
(fn [] (println "meh, indifferent world")))

goodbye, cruel world
nil

However, we’d like to avoid the need to wrap our actions up into functions
and instead write code that looks like the following REPL session:

=> (choose 2
(println "hello, world")
(println "goodbye, cruel world")
(println "meh, indifferent world"))

goodbye, cruel world
nil

To see how we can get there, we’ll need to take a short detour into one of
Clojure’s most powerful features, its macro system. Along the way, we’ll answer
the age-old question of why Lisp has such a different syntax.

Clojure Macros
Macros are a form of metaprogramming: they are pieces of code that transform
other pieces of code. This concept has surprising depth in Clojure and other
Lisps.

To see why, let’s do a thought experiment. The builder we introduced in Pattern
4, Replacing Builder for Immutable Object, on page 62, is verbose to write. One
way to cut down on verbosity is to create a skeletal Java class with nothing
but attributes in it, and then write code to generate the builder based on
those attributes.

report erratum • discuss

Customized Control Flow • 209

http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/functional/ccf/ccf_examples.clj
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

A block diagram of this approach is described in the following figure:

Figure 15—Metaprogramming in Java. Code generating a Builder class

Here, the builder creator is a piece of code that’s responsible for taking in a
skeletal Java class with nothing but attributes and producing a builder based
on it. This is much like the support that IDEs have to generate getters and
setters.

To do so, the builder creator needs some understanding of the input Java
code. For such a simple task, the builder creator can just treat the file as text
and read the input file line by line, figuring out which lines correspond to
variable declarations as it goes.

However, what if we needed to manipulate our input Java code in a more
complex way? Say we wanted to modify certain methods to log out the time
they were invoked. This would be difficult to do: how do we know when a
method starts and ends if we’re just going through the file line by line?

The difficulty is that our simple code generator is treating the Java file as
plain text. Complicated language applications like compilers will go through
a series of passes to generate an abstract syntax tree or AST. The following
diagram is a simplified representation of this process.

Figure 16—Simplified Compiler. Stages in a simplified compiler

The AST represents code at a more abstract level in terms of things like
methods and classes, rather than as simple text data. For instance, a Java
compiler written in Java might have Method and VariableDefinition classes as parts
of its AST, among other things.

This makes the AST representation of code the most convenient representation
to manipulate programmatically. However, in most programming languages,

Chapter 4. Functional Patterns • 210

report erratum • discuss

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

the AST is hidden away inside the compiler and requires intimate knowledge
of the compiler to manipulate.

Lisps, including Clojure, are different. The syntax of Clojure is defined in
terms of core Clojure data structures, like lists and vectors. For instance,
let’s take a close look at a humble function definition:

(defn say-hello [name] (println (str "Hello, " name)))

This is just a list with four elements in it. The first is the symbol defn, the
second is the symbol say-hello, the third is a vector, and the fourth is another
list. When Clojure evaluates a list, it assumes that the first element is some-
thing that can be called, like a function, a macro, or a compiler built-in, and
it assumes that the rest of the list is made of arguments.

Other than that, it’s just a list like any other! We can see this by using a
single quote, which turns off evaluation on the form it’s applied to. In the
following snippet we take the first element from two lists—the first list is a
list of four integers, the second is the function definition we just introduced:

=> (first '(1 2 3 4))
1
=> (first '(defn say-hello [name] (println (str "Hello, " name))))
defn

Since Clojure code is just Clojure data, it’s very easy to write code to manip-
ulate it. Clojure’s macro system provides a convenient hook to do this
manipulation at compile time, as the figure shows.

Figure 17—Read, Evaluate, Compile. Going from Clojure text to bytecode

Let’s dig into this process in a bit more depth. In Clojure, the process of going
from a sequence of characters to data structures is called reading, as described
in the first box in the diagram. Instead of being some magic hidden away
inside of the compiler, it’s a facility that’s available to the programmer.

report erratum • discuss

Customized Control Flow • 211

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Some forms are available that will read from various sources, such as files
or strings. Here, we use the string version of read to read a vector from a string
and take its first element:

=> (first (read-string "[1 2 3]"))
1

The read form has a partner, eval, as shown in the second step of the diagram.
This takes a data structure and evaluates it according to a simple set of
evaluation rules we discuss in Section 2.4, TinyWeb in Clojure, on page 28.
In the following snippet, we use eval to evaluate a def after we’ve read it in from
a string:

=> (eval (read-string "(def foo 1)"))
#'user/foo
=> foo
1

You may have seen eval in languages like Ruby or Javascript; however, there’s
a crucial difference between that eval and the one Clojure has. In Clojure and
other Lisps, eval operates on data structures that have been read in, rather
than on strings.

This means it’s possible to do much more sophisticated manipulations, since
we don’t have to build up our code using raw string manipulation. The
macroexpansion step as described in the diagram provides a convenient hook
for us to do exactly this.

A macro is just a function with a few key differences. The arguments to a
macro are not evaluated, just like the call-by-name arguments we used in
Scala in In Scala, on page 206. A macro is run before compile time, and it
returns the code to be compiled. This gives us a formal, built-in way of doing
the sort of manipulations we introduced in our Java builder-generator thought
experiment.

We define a macro with the defmacro built in. In addition, a few other Clojure
features help us build macros by controlling evaluation. These are the back-
tick, `, also known as the syntax quote, and the tilde, ~, also known as
unquote.

Together, these features let us build up code templates for use in macros.
Syntax quote turns evaluation off inside the form it’s applied to, and it expands
any symbol name out to be fully qualified by its namespace. Unquote, as the
name suggests, lets us turn evaluation back on inside a syntax quote.

Chapter 4. Functional Patterns • 212

report erratum • discuss

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

In the following snippet, we use syntax quote and unquote together. The
symbol foo and form (+ 1 1) don’t get evaluated, but since we apply unquote
to number-one, it does.

=> (def number-one 1)
#'mbfpp.functional.ccf.ccf-examples/number-one
=> `(foo (+ 1 1) ~number-one)
(mbfpp.functional.ccf.cff-examples/foo (clojure.core/+ 1 1) 1)

The output looks a bit noisy because syntax quote has namespace-qualified
foo and +.

Now that we’ve introduced macros, let’s see how we can use them to simplify
choose. We do so by writing a macro, simplerChoose. The simplerChoose macro takes
in a number and three forms, and it returns a cond expression that evaluates
the appropriate form. The code for simplerChoose is in the following snippet:

ClojureExamples/src/mbfpp/functional/ccf/ccf_examples.clj
(defmacro simpler-choose [num first second third]

`(cond
(= 1 ~num) ~first
(= 2 ~num) ~second
(= 3 ~num) ~third))

Before running it, we can use macroexpand-1 to see what code the macro gener-
ates, as we do in the following REPL session:

=> (macroexpand-1
'(simpler-choose 1 (println "foo") (println "bar") (println "baz")))

(clojure.core/cond
(clojure.core/= 1 1) (println "foo")
(clojure.core/= 2 1) (println "bar")
(clojure.core/= 3 1) (println "baz"))

As we can see, the macro expands out to a cond statement, as we’d expect.
Now if we run it, it works as we’d expect, without the need to wrap our actions
up in functions!

=> (simpler-choose 2
(println "hello, world")
(println "goodbye, cruel world")
(println "meh, indifferent world"))

goodbye, cruel world
nil

Clojure’s macro system is one of its most powerful features, and it explains
why Clojure has the syntax it does. In order for the magic to work, Clojure
code has to be written in terms of simple Clojure data structures, a property
known as homoiconicity.

report erratum • discuss

Customized Control Flow • 213

http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/functional/ccf/ccf_examples.clj
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Sample Code: Average Timing

Let’s take a look at a more involved instance of Customized Control Flow.
Here we’ll create a custom control abstraction that executes an expression a
given number of times and returns the average time of the executions. This
is handy for quick and dirty performance testing.

In Scala

In Scala, our solution is two functions. The first, timeRun(), takes an expression,
runs it, and returns the time it took. The second, avgTime(), takes an expression
and a number of times to evaluate it and then returns the average time it
took. It uses timeRun() as a helper function.

The code for our Scala solution follows:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/ccf/Choose.scala
def timeRun[E](toTime: => E) = {

val start = System.currentTimeMillis
toTime
System.currentTimeMillis - start

}
def avgTime[E](times: Int, toTime: => E) = {

val allTimes = for (_ <- Range(0, times)) yield timeRun(toTime)
allTimes.sum / times

}

As advertised, this gives us a way to get the average runtime for a statement:

scala> avgTime(5, Thread.sleep(1000))
res0: Long = 1001

Let’s break this down a bit more using the REPL. The meat of avgTime() is the
following expression:

val allTimes = for (_ <- Range(0, times)) yield timeRun(toTime)

If we substitute some expressions in by hand, we can see this generates a
sequence of run times. The underscore in the for binding indicates that we
don’t actually care about what the values of the Range expression are bound
to, since we’re just using it to run our statement a set number of times:

scala> val allTimes = for (_ <- Range(0, 5)) yield timeRun(Thread.sleep(1000))
allTimes: scala.collection.immutable.IndexedSeq[Long] =

Vector(1000, 1001, 1000, 1001, 1001)

From there, we use sum() to calculate the sum off all runtimes, and we divide
by the number of runs to get the average:

scala> allTimes.sum / 5
res2: Long = 1000

Chapter 4. Functional Patterns • 214

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/ccf/Choose.scala
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

One other interesting element of this solution is how we pass a by-name
parameter through two different functions. The toTime parameter is passed
into avgTime(), and from there into timeRun(). It’s not evaluated until it’s used
in timeRun().

The ability to chain together calls using by-name parameters is important
because it lets us break up the code for more complicated instances of Cus-
tomized Control Flow.

In Clojure

In Clojure, our solution consists of a macro, avg-time, and a function, time-run.
The avg-time macro generates code that uses time-run to time runs of the passed-
in statement and then calculate its average.

The code for our Clojure solution follows:

ClojureExamples/src/mbfpp/functional/ccf/ccf_examples.clj
(defn time-run [to-time]

(let [start (System/currentTimeMillis)]
(to-time)
(- (System/currentTimeMillis) start)))

(defmacro avg-time [times to-time]
`(let [total-time#

(apply + (for [_# (range ~times)] (time-run (fn [] ~to-time))))]
(float (/ total-time# ~times))))

Here, we use it to calculate the average time for a test statement:

=> (avg-time 5 (Thread/sleep 1000))
1000.8

Let’s dig into how time-run works in a bit more detail, starting with a Clojure
feature we introduce in this sample: automatic generated symbols, or gensyms.
To avoid accidental variable capture in macros, whenever we need a symbol
in our generated code, we need to generate a unique symbol.

The way we do this in Clojure is to append a symbol name with a hash sign
when we use one inside of a syntax quote. As the snippet below shows, Clojure
will expand the gensym out to a fairly unique symbol:

=> `(foo# foo#)
(foo__2230__auto__ foo__2230__auto__)

We use gensyms for total-time and _. The second one might seem a little strange,
since we’re just using underscore to indicate that we don’t care about the
values in range, just as we did in Scala.

report erratum • discuss

Customized Control Flow • 215

http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/functional/ccf/ccf_examples.clj
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

If we don’t make it a generated symbol, Clojure will qualify the symbol in the
current namespace, but making it a gensym causes Clojure to generate a
unique symbol for it. We demonstrate this below:

=> `(_)
(mbfpp.functional.ccf.ccf-examples/_)
=> `(-#)
(-__1308__auto__)

Now let’s examine the heart of avg-time. The following syntax-quoted let state-
ment serves as a template for the code that the macro will generate. As we
can see, the meat of the solution is a for statement that wraps the expression
in to-time in a function and runs it through time-run the requested number of
times:

`(let [total-time#
(apply + (for [_# (range ~times)]

(time-run (fn [] ~to-time))))] (float (/ total-time# ~times))))

To test this out, we can use macroexpand-1 to look at the code it generates, as
we do in the following REPL session:

=> (macroexpand-1 '(avg-time 5 (Thread/sleep 100)))
(clojure.core/let
[total-time__1489__auto__
(clojure.core/apply
clojure.core/+
(clojure.core/for
[___1490__auto__ (clojure.core/range 5)]
(mbfpp.functional.ccf.cff-examples/time-run
(clojure.core/fn [] (Thread/sleep 1000)))))]

(clojure.core/float (clojure.core// total-time__1489__auto__ 5)))
nil

Since all the symbols are either gensyms or are fully qualified by their
namespace, this can be a bit hard to read! If I’m having trouble understanding
how a macro works, I like to manually convert the output from macroexpand-1
into the code that I’d write by hand. To do this, you generally just need to
remove the namespaces from fully qualified symbols and the generated part
of gensyms. I’ve done so in the following code:

(let
[total-time
(apply + (for [n (range 5)] (time-run (fn [] (Thread/sleep 100)))))]

(float (/ total-time 5)))

As you can see, this cleaned-up output is much simpler to understand. I’ve
also found that the process of going through the generated code by hand will
help any bugs in the macro to surface.

Chapter 4. Functional Patterns • 216

report erratum • discuss

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Discussion

Both Scala and Clojure let us create customized control flow abstractions,
but the way they go about doing so is very different. In Scala, they’re runtime
abstractions. We’re just writing functions and passing statements into them.
The trick is that we can control when those statements are evaluated using
by-name parameters.

In Clojure we use the macro system, which takes advantage of Clojure’s
homoiconic nature. Macros are a compile-time concern rather than a runtime
one. As we saw, they allow us to fairly easily write code that writes code by
using syntax quote as a template for the code we want to produce.

Clojure’s approach is more general, but that’s only possible because of
Clojure’s homoiconicity. In order to approximate Clojure-style macros in a
nonhomoiconic language like Scala, the language would have to provide hooks
into the compiler that let a programmer manipulate ASTs and other compiler
artifacts.

This is a difficult task, but Scala does have experimental support for this sort
of compile time macro in Scala 1.10. Using this style of macro is more difficult
than using a Clojure-style macro, since it requires some knowledge of compiler
internals.

Since Scala macros are experimental, and since Scala provides other ways
to implement Customized Control Flow, we won’t cover them here.

report erratum • discuss

Customized Control Flow • 217

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Pattern 21

Domain-Specific Language

Intent

To create a miniature programming language tailored to solve a specific
problem

Overview

Domain-Specific Language is a very common pattern that has two broad
classes: external DSL and internal DSL.

An external DSL is a full-blown programming language with its own syntax
and compiler. It’s not intended for general use; rather, it solves some targeted
problems. For instance, SQL is an instance of Domain-Specific Language
targeted at data manipulation. ANTLR is another, targeted at creating parsers.

On the other hand, we’ve got internal DSLs, also known as embedded lan-
guages. These instances of the pattern piggyback on some general-purpose
language and live within the constraints of the host language’s syntax.

In both cases, the intent is the same. We’re trying to create a language that
lets us express solutions to problems in a way that is closer to the domain
at hand. This results in less code and clearer solutions than those created in
a general-purpose language. It also often allows people who aren’t software
developers to solve some domain problems.

In this section, we’ll look at building internal DSLs in Scala and Clojure. The
techniques we’ll use to build a DSL are very different in these two languages,
but the intent remains the same.

In Scala

The current crop of Scala DSLs rely on Scala’s flexible syntax and several
other Scala tricks. The Scala DSL we examine here will take advantage of
several of Scala’s advanced abilities.

First off, we’ll see Scala’s ability to use methods in the postfix and infix posi-
tions. This lets us define methods that act as operators.

Chapter 4. Functional Patterns • 218

report erratum • discuss

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Second, we’ll use Scala’s implicit conversions, introduced in Pattern 10,
Replacing Visitor, on page 113. These appear to let us add new behavior to
existing types.

Finally, we’ll use a Scala companion object as a factory for the class it’s paired
up with.

In Clojure

Internal DSLs are an old Lisp technique that Clojure carries on. In Clojure
and other Lisps, the line between Domain-Specific Language and frameworks
or APIs is very blurry.

Good Clojure code is often structured as layers of DSLs, one on top of the
other, each of which is good at solving a problem on a particular layer of the
system.

For example, one possible layered system for building web applications in
Clojure starts with a library called Ring. This provides an abstraction over
HTTP, turning HTTP requests into Clojure maps. On top of that, we can use
a DSL named Compojure to route HTTP requests to handler functions.
Finally, we can use a DSL named Enlive to create templates for our pages.

Clojure’s DSLs are generally built around a core set of higher-order functions,
with macros providing syntactic sugar on top. This is the approach we’ll use
for the Clojure DSL we examine here.

Code Sample: DSL for a Shell

I sometimes find myself cutting and pasting from a shell into a REPL when
programming in Scala and Clojure. Let’s take a look at a simple DSL to make
this more natural by letting us run shell commands directly in a REPL.

In addition to running commands, we’ll want to capture their exit status,
standard output, and standard error. Finally, we’ll want to pipe commands
together, just as we can in a normal shell.

In Scala

The end goal of this example is to be able to run shell commands in a natural
way inside of a Scala REPL. For individual commands, we’d like to be able to
run them like this:

scala> "ls" run

And we’d like to run pipes of commands like so:

scala> "ls" pipe "grep some-file" run

report erratum • discuss

Domain-Specific Language • 219

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Let’s take our first step on our shell DSL journey by examining what we want
a command to return. We need to be able to inspect a shell command’s status
code and both its standard output and error streams. In the following code,
we packaged those pieces of information together into a case class named
CommandResult:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/dsl/Example.scala
case class CommandResult(status: Int, output: String, error: String)

Now let’s see how to actually run a command. We can dip into Java’s Process-
Builder class for this.

The ProcessBuilder class constructor takes a variable number of string arguments,
representing the command to run and its arguments. In the following REPL
snippet, we create a ProcessBuilder that will allow us to run ls -la :

scala> val lsProcessBuilder = new ProcessBuilder("ls", "-la")
lsProcessBuilder: ProcessBuilder = java.lang.ProcessBuilder@5674c175

To run the process, we call start() on the ProcessBuilder we just created. This
returns a Process object that gives us a handle on the running process:

scala> val lsProcess = lsProcessBuilder.start
lsProcess: Process = java.lang.UNIXProcess@61a7c7e7

The Process object gives us access to all the information we need, but output
from standard out and standard error are inside of InputStream objects rather
than inside strings. We can use the fromInputStream() on Scala’s Source object to
pick them out, as we demonstrate in the following code:

scala> Source.fromInputStream(lsProcess.getInputStream()).mkString("")
res0: String =
"total 96
drwxr-xr-x 12 mblinn staff 408 Mar 17 10:23 .
drwxr-xr-x 8 mblinn staff 272 Apr 6 15:12 ..
-rw-r--r-- 1 mblinn staff 35583 Jun 9 16:35 .cache
-rw-r--r-- 1 mblinn staff 1200 Mar 17 10:10 .classpath
-rw-r--r-- 1 mblinn staff 328 Mar 17 10:08 .project
drwxr-xr-x 3 mblinn staff 102 Mar 16 13:29 .settings
drwxr-xr-x 9 mblinn staff 306 Jun 9 15:58 .svn
drwxr-xr-x 2 mblinn staff 68 Mar 13 20:34 bin
-rw-r--r-- 1 mblinn staff 262 Jun 9 13:12 build.sbt
drwxr-xr-x 6 mblinn staff 204 Mar 13 20:33 project
drwxr-xr-x 5 mblinn staff 170 Mar 13 19:52 src
drwxr-xr-x 6 mblinn staff 204 Mar 16 13:33 target
"

Notice how the method that gets us the output from standard out is somewhat
confusingly called getInputStream()()? That’s not a typo; the method name seems

Chapter 4. Functional Patterns • 220

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/dsl/Example.scala
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

to refer to the fact that standard out is being written into a Java InputStream
that the calling code can consume.

Now we can put our Command class together. The Command takes a list of strings
representing the command and its arguments and uses it to construct a
ProcessBuilder. It then runs the process, waits for it to complete, and picks out
the completed process’s output streams and status code. The following code
implements Command:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/dsl/Example.scala
class Command(commandParts: List[String]) {

def run() = {
val processBuilder = new ProcessBuilder(commandParts)
val process = processBuilder.start()
val status = process.waitFor()
val outputAsString =
Source.fromInputStream(process.getInputStream()).mkString("")

val errorAsString =
Source.fromInputStream(process.getErrorStream()).mkString("")

CommandResult(status, outputAsString, errorAsString)
}

}

To make Command classes a bit easier to construct, we add a factory method
that takes a string and splits it into Command’s companion object:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/dsl/Example.scala
object Command {

def apply(commandString: String) = new Command(commandString.split("\\s").toList)
}

As the following REPL session demonstrates, this gets us a bit closer to our
desired syntax for running a single command:

scala> Command("ls -la").run
res1: com.mblinn.mbfpp.functional.dsl.ExtendedExample.CommandResult =
CommandResult(0,total 96
drwxr-xr-x 12 mblinn staff 408 Mar 17 10:23 .
drwxr-xr-x 8 mblinn staff 272 Apr 6 15:12 ..
-rw-r--r-- 1 mblinn staff 35592 Jun 9 16:57 .cache
-rw-r--r-- 1 mblinn staff 1200 Mar 17 10:10 .classpath
-rw-r--r-- 1 mblinn staff 328 Mar 17 10:08 .project
drwxr-xr-x 3 mblinn staff 102 Mar 16 13:29 .settings
drwxr-xr-x 9 mblinn staff 306 Jun 9 15:58 .svn
drwxr-xr-x 2 mblinn staff 68 Mar 13 20:34 bin
-rw-r--r-- 1 mblinn staff 262 Jun 9 13:12 build.sbt
drwxr-xr-x 6 mblinn staff 204 Mar 13 20:33 project
drwxr-xr-x 5 mblinn staff 170 Mar 13 19:52 src
drwxr-xr-x 6 mblinn staff 204 Mar 16 13:33 target
,)

report erratum • discuss

Domain-Specific Language • 221

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/dsl/Example.scala
http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/dsl/Example.scala
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

To get the rest of the way there, we’ll use the implicit conversions we intro-
duced in Pattern 10, Replacing Visitor, on page 113. We’ll create a conversion
that turns a String into a CommandString with a run() method. A CommandString turns
the String it’s converting into a Command that its run() method calls. It’s imple-
mented in the following code:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/dsl/Example.scala
implicit class CommandString(commandString: String) {

def run() = Command(commandString).run
}

Now we’ve got our desired syntax for running single commands, as we
demonstrate with the following REPL output:

scala> "ls -la" run
res2: com.mblinn.mbfpp.functional.dsl.ExtendedExample.CommandResult =
CommandResult(0,total 96
drwxr-xr-x 12 mblinn staff 408 Mar 17 10:23 .
drwxr-xr-x 8 mblinn staff 272 Apr 6 15:12 ..
-rw-r--r-- 1 mblinn staff 35592 Jun 9 16:57 .cache
-rw-r--r-- 1 mblinn staff 1200 Mar 17 10:10 .classpath
-rw-r--r-- 1 mblinn staff 328 Mar 17 10:08 .project
drwxr-xr-x 3 mblinn staff 102 Mar 16 13:29 .settings
drwxr-xr-x 9 mblinn staff 306 Jun 9 15:58 .svn
drwxr-xr-x 2 mblinn staff 68 Mar 13 20:34 bin
-rw-r--r-- 1 mblinn staff 262 Jun 9 13:12 build.sbt
drwxr-xr-x 6 mblinn staff 204 Mar 13 20:33 project
drwxr-xr-x 5 mblinn staff 170 Mar 13 19:52 src
drwxr-xr-x 6 mblinn staff 204 Mar 16 13:33 target
,)

Let’s extend our DSL to include pipes. The approach we’ll take is to collect
our piped command strings into a vector and run them once we’ve constructed
the full chain of pipes.

Let’s start off by examining the extensions we need to make to CommandString.
Remember, we’d like to be able to run a pipe of commands like so: "ls -la" pipe
"grep build" run. This means we need to add a pipe() method, which takes a single
string argument, to our CommandString implicit conversion. When it’s called,
it’ll take the string it’s converted to a CommandString and the argument it was
passed, and it’ll stuff them both into a Vector. The code for our expanded
CommandString follows:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/dsl/Example.scala
implicit class CommandString(firstCommandString: String) {

def run = Command(firstCommandString).run
def pipe(secondCommandString: String) =

Vector(firstCommandString, secondCommandString)
}

Chapter 4. Functional Patterns • 222

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/dsl/Example.scala
http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/dsl/Example.scala
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Now our conversion will convert "ls -la" pipe "grep build" into a vector with both
shell commands in it.

scala> "ls -la" pipe "grep build"
res2: scala.collection.immutable.Vector[String] = Vector(ls -la, grep build)

The next step is to add another implicit conversion that converts a Vector[String]
into a CommandVector, much as we’ve already done for individual strings. The
CommandVector class had a run() and a pipe() method.

The pipe() method adds a new command to the Vector of commands and returns
it, and the run() method knows how to go through the commands and run
them, piping the output from one to the next. The code for CommandVector and
a new factory method on the Command companion object used by CommandVector
follows:

ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/dsl/Example.scala
implicit class CommandVector(existingCommands: Vector[String]) {

def run = {
val pipedCommands = existingCommands.mkString(" | ")
Command("/bin/sh", "-c", pipedCommands).run

}
def pipe(nextCommand: String): Vector[String] = {

existingCommands :+ nextCommand
}

}
object Command {

def apply(commandString: String) = new Command(commandString.split("\\s").toList)
def apply(commandParts: String*) = new Command(commandParts.toList)

}

Now we’ve got our full DSL, pipes and all! In the following REPL session, we
use it to run some piped commands:

scala> "ls -la" pipe "grep build" run
res3: com.mblinn.mbfpp.functional.dsl.ExtendedExample.CommandResult =
CommandResult(0,-rw-r--r-- 1 mblinn staff 262 Jun 9 13:12 build.sbt
,)

scala> "ls -la" pipe "grep build" pipe "wc" run
res4: com.mblinn.mbfpp.functional.dsl.ExtendedExample.CommandResult =
CommandResult(0, 1 9 59
,)

A couple of notes on this DSL. First, it takes advantage of Scala’s ability to
use methods as postfix operators. This is easy to misuse, so Scala 2.10 gen-
erates a warning when you do so, and it will be disabled by default in a future
version of Scala. To use postfix operators without the warning, you can import
scala.language.postfixOps into the file that needs them.

report erratum • discuss

Domain-Specific Language • 223

http://media.pragprog.com/titles/mbfpp/code/ScalaExamples/src/main/scala/com/mblinn/mbfpp/functional/dsl/Example.scala
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Second is a simple DSL, suitable for basic use at a Scala REPL. Scala has a
much more complete version of a similar DSL already built into the
scala.sys.process package.

In Clojure

In Clojure, our DSL will consist of a command function that creates a function
that executes a shell command. Then we’ll create a pipe function that allows
us to pipe several commands together using function composition. Finally,
we’ll create two macros, def-command and def-pipe, to make it easy to name pipes
and commands.

Before we jump into the main DSL code, let’s take a look at how we’ll interact
with the shell. We’ll use a library built into Clojure in the clojure.java.shell
namespace, which provides a thin wrapper around Java’s Runtime.exec().

In the following REPL session, we use the sh function in clojure.java.shell to exe-
cute the ls command. As we can see, the output of the function is a map
consisting of the status code for the process and whatever the process wrote
to its standard out and standard error streams as a string:

=> (shell/sh "ls")
{:exit 0, :out "README.md\nclasses\nproject.clj\nsrc\ntarget\ntest\n", :err ""}

This isn’t very easy to read, so let’s create a function that’ll print it in a way
that’s easier to read before returning the output map. The code to do so
follows:

ClojureExamples/src/mbfpp/functional/dsl/examples.clj
(defn- print-output [output]

(println (str "Exit Code: " (:exit output)))
(if-not (str/blank? (:out output)) (println (:out output)))
(if-not (str/blank? (:err output)) (println (:err output)))
output)

We can now use sh to run ls -a and get readable output:

=> (print-output (shell/sh "ls" "-a"))
Exit Code: 0
.
..
.classpath
.project
.settings
.svn
README.md
classes
project.clj
src

Chapter 4. Functional Patterns • 224

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/functional/dsl/examples.clj
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

target
test

{:exit 0,
:out ".\n..\n.classpath\n.project\n.settings\n.svn\n

README.md\nclasses\nproject.clj\nsrc\ntarget\ntest\n",
:err ""}

Let’s move on to the first piece of our DSL, command function. This function
takes the command we want to execute as a string, splits it on whitespace to
get a sequence of command parts, and then uses apply to apply the sh function
to the sequence.

Finally, it runs the returned output through our print-output function, wraps
everything up in a higher-order function, and returns it. The code for command
follows:

ClojureExamples/src/mbfpp/functional/dsl/examples.clj
(defn command [command-str]

(let [command-parts (str/split command-str #"\s+")]
(fn []
(print-output (apply shell/sh command-parts)))))

Now if we run a function returned by command, it’ll run the shell command it
encapsulates:

=> ((command "pwd"))
Exit Code: 0
/Users/mblinn/Documents/mbfpp/Book/code/ClojureExamples

If we want to name the command, we can do so using def:

=> (def pwd (command "pwd"))
#'mbfpp.functional.dsl.examples/pwd
=> (pwd)
Exit Code: 0
/Users/mblinn/Documents/mbfpp/Book/code/ClojureExamples

Now that we can run an individual command, let’s take a look at what it’ll
take to pipe them together. A pipe in a Unix shell pipes the output from one
command to the input of another. Since the output of a command here is
captured in a string, all we need is a way to use that string as input to
another command.

The sh function allows us to do so with the :in option:

=> (shell/sh "wc" :in "foo bar baz")
{:exit 0, :out " 0 3 11\n", :err ""}

report erratum • discuss

Domain-Specific Language • 225

http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/functional/dsl/examples.clj
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Let’s modify our command function to take the output map from another com-
mand and use its standard output string as input. To do so, we’ll add a second
arity to command that expects to be passed an output map.

The command function destructures the map to pluck out its output and
passes it into sh as input. The code for our new command follows:

ClojureExamples/src/mbfpp/functional/dsl/examples.clj
(defn command [command-str]

(let [command-parts (str/split command-str #"\s+")]
(fn
([] (print-output (apply shell/sh command-parts)))
([{old-out :out}]

(print-output (apply shell/sh (concat command-parts [:in old-out])))))))

Now we can define another command, like the following one that greps for
the word README:

=> (def grep-readme (command "grep README"))
#'mbfpp.functional.dsl.examples/grep-readme

Then we can pass the output of our ls command into it, and the ls output will
be piped into grep. Each command will print its output to standard out, as
the following REPL session shows:

=> (grep-readme (ls))
Exit Code: 0
README.md
classes
project.clj
src
target
test

Exit Code: 0
README.md

{:exit 0, :out "README.md\n", :err ""}

With our modified command function, we can create a pipe of commands by
composing together several commands with comp. If we want to write the
commands in the same order as we would in a shell, we just need to reverse
the sequence of commands before we compose them, as we do in the following
pipe implementation:

ClojureExamples/src/mbfpp/functional/dsl/examples.clj
(defn pipe [commands]

(apply comp (reverse commands)))

Now we can create a pipe of commands, as we do in the following REPL session:

Chapter 4. Functional Patterns • 226

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/functional/dsl/examples.clj
http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/functional/dsl/examples.clj
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

=> (def grep-readme-from-ls
(pipe

[(command "ls")
(command "grep README")]))

#'mbfpp.functional.dsl.examples/grep-readme-from-ls

This has the same effect as running the ls command and passing its output
into grep-readme:

=> (grep-readme-from-ls)
Exit Code: 0
README.md
classes
project.clj
src
target
test

Exit Code: 0
README.md

{:exit 0, :out "README.md\n", :err ""}

Now that we can define commands and pipes, let’s use macros to add some
syntactic sugar to make things easier. For an introduction to Clojure’s macros,
see Clojure Macros, on page 209. First we’ll create a def-command macro. This
macro takes a name and a command string and defines a function that exe-
cutes the command string. The code for def-command follows:

ClojureExamples/src/mbfpp/functional/dsl/examples.clj
(defmacro def-command [name command-str]

`(def ~name ~(command command-str)))

Now we can define a command and name it with a single macro invocation,
as we do in the following REPL output:

=> (def-command pwd "pwd")
#'mbfpp.functional.dsl.examples/pwd

=> (pwd)
Exit Code: 0
/Users/mblinn/Documents/mbfpp/Book/code/ClojureExamples

{:exit 0, :out "/Users/mblinn/Documents/mbfpp/Book/code/ClojureExamples\n", :err ""}

Now let’s do the same for our piped commands as we did for single commands
with the def-pipe macro. This macro takes a command name and a variable
number of command strings, turns each command string into a command,
and finally creates a pipe with the given name. Here’s the code for def-pipe:

report erratum • discuss

Domain-Specific Language • 227

http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/functional/dsl/examples.clj
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

ClojureExamples/src/mbfpp/functional/dsl/examples.clj
(defmacro def-pipe [name & command-strs]

(let [commands (map command command-strs)
pipe (pipe commands)]

`(def ~name ~pipe)))

Now we can create a pipe in one shot, as we do below:

=> (def-pipe grep-readme-from-ls "ls" "grep README")
#'mbfpp.functional.dsl.examples/grep-readme-from-ls
=> (grep-readme-from-ls)
Exit Code: 0
README.md
classes
project.clj
src
target
test

Exit Code: 0
README.md

{:exit 0, :out "README.md\n", :err ""}

That wraps up our look at Clojure’s DSLs!

Discussion

Currently, Scala and Clojure take a very different approach to Domain-Spe-
cific Language. Scala uses a flexible syntax and a variety of tricks. Clojure
uses higher-order functions and macros.

Clojure’s approach is more general. In fact, most of the Clojure language itself
is written as a set of Clojure functions and macros! Advanced Scala DSL
writers may bang up against the limitations of Scala’s current approach.

For this reason, macros are being added to Scala. However, as noted in the
Discussion, on page 217, they’re much harder to implement and use without
the simple syntax and homoiconicity available in Clojure and other languages
in the Lisp family.

Related Patterns
Pattern 20, Customized Control Flow, on page 206

For Further Reading

DSLs in Action [Gho10]

Chapter 4. Functional Patterns • 228

report erratum • discuss

http://media.pragprog.com/titles/mbfpp/code/ClojureExamples/src/mbfpp/functional/dsl/examples.clj
http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

CHAPTER 5

The End
That wraps up our look at patterns in functional programming. Hopefully
now you see how functional programming tools can help you write shorter
and clearer code and how immutable data can remove large sources of error
from your programs.

I hope you’ve also gotten a taste for both Scala and Clojure. Even though they
both include functional features, they’re quite different from each other. By
seeing examples written in both Scala and Clojure, you’ve been exposed to a
wide range of functional techniques.

Most of all, I hope you can apply what you’ve learned in this book to make
your day-to-day programming experience better.

Thanks for reading!

report erratum • discuss

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Bibliography
[AIS77] Christopher Alexander, Sara Ishikawa, and Murray Silverstein. A Pattern

Language: Towns, Buildings, Construction. Oxford University Press, New
York, NY, 1977.

[Blo08] Joshua Bloch. Effective Java. Addison-Wesley, Reading, MA, 2008.

[FBBO99] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts.
Refactoring: Improving the Design of Existing Code. Addison-Wesley, Reading,
MA, 1999.

[FH11] Michael Fogus and Chris Houser. The Joy of Clojure. Manning Publications
Co., Greenwich, CT, 2011.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley,
Reading, MA, 1995.

[Gho10] Debasish Ghosh. DSLs in Action. Manning Publications Co., Greenwich,
CT, 2010.

[Goe12] Brian Goetz. JSR 335: Lambda Expressions for the Java Programming
Language. Java Community Process, http://jcp.org, 2012.

[Hal09] Stuart Halloway. Programming Clojure. The Pragmatic Bookshelf, Raleigh,
NC and Dallas, TX, 2009.

[Lip11] Miran Lipovaca. Learn You a Haskell for Great Good!: A Beginner’s Guide.
No Starch Press, San Francisco, CA, 2011.

[MRB97] Robert C. Martin, Dirk Riehle, and Frank Buschmann. Pattern Languages
of Program Design 3. Addison-Wesley, Reading, MA, 1997.

[Nor92] Peter Norvig. Paradigms of Artificial Intelligence Programming: Case Studies
in Common Lisp. Morgan Kaufmann Publishers, San Francisco, CA, 1992.

report erratum • discuss

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

[Sub09] Venkat Subramaniam. Programming Scala: Tackle Multi-Core Complexity
on the Java Virtual Machine. The Pragmatic Bookshelf, Raleigh, NC and
Dallas, TX, 2009.

[Sue12] Joshua Suereth. Scala In Depth. Manning Publications Co., Greenwich,
CT, 2012.

Bibliography • 232

report erratum • discuss

http://pragprog.com/titles/mbfpp/errata/add
http://forums.pragprog.com/forums/mbfpp

Index
SYMBOLS
(Clojure), 215

#:: operator (Scala), 191

(...) (Scala), 67

* operator (Scala), 87

-> macro (Clojure), 161

->> macro (Clojure), 162

. (Clojure), 29

.. macro (Clojure), 31

/ (Clojure), 31

=> (Scala), 208

_ operator (Scala), 27

` (syntax quote), 212–213

{...} (Clojure), 30

~ (unquote), 212–213

A
abstract classes, 83, 109

abstract syntax trees, 210–
211

Action pattern, see Command
pattern

Akka library, 153

anonymous functions
in Clojure, 43, 153
in Java, 41–42
in Scala, 27, 42–43

B
Builder pattern, 10–12, 62–71

C
Chain of Operations pattern

chaining function calls,
160–162

defined, 159–160
using sequence compre-

hensions, 162–165

Clojure
-> macro, 161
->> macro, 162
.. macro, 31
anonymous functions,

43, 153
apply function, 161
atoms, 58, 96
calling Java methods,

29, 31
closures, 48–49, 51–52
comp function, 177–179
cond expression, 89
conj! function, 200
cons function, 193
core.typed library, 165
destructuring, 81
doall form, 136
doseq macro, 81
eval, 212
exception handling, 33,

35–36
filter function, 76, 156
fn, 43
functional purity of, 4
gensyms, 215–216
get function, 102, 104
get-in function, 173–174
importing Java classes,

30
keywords, 30–31
lazy sequences, 136,

193, 204
lazy-seq macro, 193
let form, 35
loop form, 142
macro system, 209–213,

216

maps, 30–32, 68–69, 96
multimethods, 70, 115,

125–127
namespace declarations,

30
nil, 101–102, 107, 153
polymorphism, 64, 69–

70, 115
preconditions, 169
prefix syntax, 29
protocols, 118–120
range function, 188
records, 64, 69–71, 118–

120
recur form, 142
reduce function, 76, 157,

204
repeatedly function, 189,

204
REPL, and lazy se-

quences, 190–191
set function, 76
sets, as predicate func-

tions, 76
sh function, 224–225
some function, 51
stubbing test dependen-

cies, 135
syntax quote, 212–213
take function, 189, 204
threading macros, 161–

162
timing tests, 200
trampoline function, 153
transients, 197, 199, 204
unquote, 212–213
with-redefs, 136

closures
vs. classes, 52
in Clojure, 48–49, 51–52
defined, 47–48

in Java 8, 52
in Scala, 50–51
structure diagram, 48

Command pattern, 54–61
class diagram, 55

Cursor pattern, see Iterator
pattern

Customized Control Flow
pattern

in Clojure, 209, 215–216
defined, 206
in Scala, 206–209, 214–

215

D
Decorator pattern, 109–112

class diagram, 109

Dependency Injection pattern,
128–136

applicability to functional
style, 129

design patterns
pattern glossary, 4–8
replacing by language

features, 1–2

destructuring
in Clojure, 81
defined, 77

Domain-Specific Language
pattern

in Clojure, 224–228
defined, 218
in Scala, 219–224

dynamic programming prob-
lems, 184

E
embedded languages,

see Domain-Specific Lan-
guage pattern

Enumerator pattern, see Iter-
ator pattern

Erlang, 153

expression problem, 113

F
Fibonacci numbers, 185

Filter-Map-Reduce pattern
in Clojure, 156–157
defined, 155
in Scala, 156

finite state machines, 146,
148, 153

Fluent Builder pattern, 62,
64–65

Focused Mutability pattern
in Clojure, 199–201, 204–

205
defined, 196–197
in Scala, 197–199, 201–

203
timing tests, 198, 200,

203, 205

Function Builder pattern
defined, 167–168
function composition,

175–179
functions from static da-

ta, 168–169
map key selector, 170–

174
partially applied func-

tions, 179–180

function composition, 3, 83,
90–91, 97, 175–179

Function Object pattern,
see Functional Interface
pattern

function values, 21

Functional Interface pattern,
16, 40–52

functional programming
declarative style, 1, 3–4
expressions vs. state-

ments, 3
first-class functions, 3
immutable data, 3–4
implementing classic

patterns, 1–2
pure functions, 3

Functor pattern, see Function-
al Interface pattern

G
Guice framework, 129

H
Haskell, 81, 166

Hibernate, 63

higher-order functions
advantages of, 46, 111–

112
defined, 41
in Java 8, 52

homoiconicity, 213, 217

I
immutable data

advantages, 13
in Clojure, 68–71
in functional program-

ming, 3–4

in Java, with Builder, 10–
12

performance tradeoffs,
196–205

in Scala, 65–68

immutable objects
in Java, 10, 62, 64–65
in Scala, 65–66
using Builder pattern,

62–65

Indirect Recursion pattern,
see Mutual Recursion pat-
tern

iteration
vs. Filter-Map-Reduce,

155
vs. recursion, 138, 144–

145

Iterator pattern, 72–81

J
Java

anonymous functions,
41–42

extending data types in,
113–114, 116, 121

immutable objects in,
10, 62, 64–65

metaprogramming in,
210–211

null references in, 99,
105

Java 8
closures in, 52
higher-order functions in,

52

JVM (Java Virtual Machine),
xii, 12, 140, 196

L
Lazy Sequence pattern

with built-in Scala func-
tions, 187–188

in Clojure, 193
with core Clojure func-

tions, 188–189
defined, 186
from scratch, in Scala,

191–192

Lisp, vs. Clojure, xiii, 157,
199, 211, 219

list monads, 165

M
Memoization pattern

in Clojure, 184
defined, 182

Index • 234

for dynamic program-
ming, 184

in Scala, 182–184

metaprogramming, 209–213

monads, 81, 166

Mutual Recursion pattern
in Clojure, 152–153
defined, 146–154
in Scala, 149–152

MVC (model-view-controller)
frameworks

TinyWeb (Clojure), 29–37
TinyWeb (Java), 9–17
TinyWeb (Scala), 20–28

N
Nil vs. nil, 153

Null Object pattern, 99–108

P
partial function application

in Clojure, 180
in Scala, 179–180

pass by name, 207–209, 215

pattern glossary, 4–8

patterns
functional vs. object-ori-

ented, x, 2
pattern glossary, 4–8
replacement by language

features, 1–2

pipes, in REPL, 222–223,
225–227

Policy pattern, see Strategy
pattern

polymorphism
and Clojure maps, 69–70
in Clojure, 115
with Clojure multimeth-

ods, 125–127
with Clojure protocols,

70, 118–120
with Clojure records, 64,

118–120
in Scala, 115

R
recursion vs. iteration, 138

REPL (read-eval-print loop)
and bottom-up workflow,

158
Clojure, and lazy se-

quences, 190–191
defining test data in, 34–

35

running shell commands
in, 219–228

Scala, and lazy se-
quences, 190

Ring library, 219

S
Scala

#:: operator, 191
* operator, 87
_ operator, 27
anonymous functions,

27, 42–43
Cake pattern, 130, 135
case classes, 23–24, 66–

67, 94, 160
closures, 50–51
compose operator, 175
for comprehensions, 79–

81, 87, 105, 163
continually method, 188
done function, 147–148,

151
Either type, 100
exception handling, 22,

24
filter function, 74–75, 156
foldLeft function, 77
function mapping, 75
function types, 21
function values, 21
functional purity of, 4, 57
get method, 103
getOrElse function, 103
groupBy method, 86
immutable classes, 65–66
implicit classes, 117
implicit conversions,

115, 117, 222
isDefined method, 94
lazy sequences, 187–

188, 191–192, 194–
195, 201

map function, 85–86, 156
match statement, 94
from method, 187
methods and functions,

27, 142
methods as infix opera-

tors, 26
methods as postfix opera-

tors, 223
mix-in inheritance, 123
Nil, 153
Option types, 25, 94, 100–

101, 105, 163
pass by name, 208, 215
pattern matching, 67–68
polymorphism, 115

reduce function, 75, 77,
156

REPL, and commas, 75
REPL, and lazy se-

quences, 190
self-type annotations,

132
sets, as predicate func-

tions, 74
Some type, 100, 103, 106
sortWith function, 42
Stream type, 192
stubbing test dependen-

cies, 135
tailcall function, 147–148,

151
@tailrec annotation, 140–

141
take method, 187
timing tests, 198–199
toSeq function, 86
toSet function, 75
traits, 21, 116, 121–125,

131–132
trampoline support, 147–

148
tuples, 67–68

sequence comprehensions
in Clojure, 80–81, 89,

165
defined, 72–73
with guards, 79
in Scala, 79–80, 86, 162–

165

sequence monads, 165

shell commands in REPL,
219–228

Spring framework, 129

stack overflow
and mutual recursion,

146–147
and tail recursion, 138–

140

state machines, 146, 148,
153

static vs. dynamic typing,
107, 127, 165, 181

Strategy pattern, 13–14, 92–
97

class diagram, 93

T
tail call optimization, 138,

140

Tail Recursion pattern
in Clojure, 142–144

Index • 235

defined, 138–140
in Scala, 141–142

telescoping constructor prob-
lem, 62

Template Method pattern, 15–
16, 83–91

TinyWeb framework
Clojure implementation,

29–37
controllers (Clojure), 29–

32
controllers (Java), 15–16
controllers (Scala), 22–23
core data types (Java),

10–12
core data types (Scala),

23–24

core namespace (Clojure),
33–37

example program (Clo-
jure), 37–38

example program (Java),
17–20

example program (Scala),
26–28

filters, 16
filters (Clojure), 36–37
Java implementation, 9–

17
main class (Java), 16–17
main class (Scala), 24–25
maps for data, 32
Scala implementation,

20–28
views (Clojure), 32–33

views (Java), 12–14
views (Scala), 20–22

trampoline, 146–148

V
Visitor pattern, 113–127

extended class diagram,
121

Visitor pattern implementa-
tion, class diagram, 114

W
Wrapper pattern, see Decora-

tor pattern

X
XStream, 63

Index • 236

Put the "Fun" in Functional
Elixir puts the "fun" back into functional programming, on top of the robust, battle-tested,
industrial-strength environment of Erlang.

You want to explore functional programming, but are
put off by the academic feel (tell me about monads just
one more time). You know you need concurrent appli-
cations, but also know these are almost impossible to
get right. Meet Elixir, a functional, concurrent language
built on the rock-solid Erlang VM. Elixir’s pragmatic
syntax and built-in support for metaprogramming will
make you productive and keep you interested for the
long haul. This book is the introduction to Elixir for
experienced programmers.

Dave Thomas
(240 pages) ISBN: 9781937785581. $36
http://pragprog.com/book/elixir

A multi-user game, web site, cloud application, or
networked database can have thousands of users all
interacting at the same time. You need a powerful, in-
dustrial-strength tool to handle the really hard prob-
lems inherent in parallel, concurrent environments.
You need Erlang. In this second edition of the best-
selling Programming Erlang, you’ll learn how to write
parallel programs that scale effortlessly on multicore
systems.

Joe Armstrong
(510 pages) ISBN: 9781937785536. $42
http://pragprog.com/book/jaerlang2

http://pragprog.com/book/elixir
http://pragprog.com/book/jaerlang2

The Joy of Math and Healthy Programming
Rediscover the joy and fascinating weirdness of pure mathematics, and learn how to take
a healthier approach to programming.

Mathematics is beautiful—and it can be fun and excit-
ing as well as practical. Good Math is your guide to
some of the most intriguing topics from two thousand
years of mathematics: from Egyptian fractions to Tur-
ing machines; from the real meaning of numbers to
proof trees, group symmetry, and mechanical compu-
tation. If you’ve ever wondered what lay beyond the
proofs you struggled to complete in high school geom-
etry, or what limits the capabilities of the computer on
your desk, this is the book for you.

Mark C. Chu-Carroll
(282 pages) ISBN: 9781937785338. $34
http://pragprog.com/book/mcmath

To keep doing what you love, you need to maintain
your own systems, not just the ones you write code
for. Regular exercise and proper nutrition help you
learn, remember, concentrate, and be creative—skills
critical to doing your job well. Learn how to change
your work habits, master exercises that make working
at a computer more comfortable, and develop a plan
to keep fit, healthy, and sharp for years to come.

This book is intended only as an informative guide for
those wishing to know more about health issues. In no
way is this book intended to replace, countermand, or
conflict with the advice given to you by your own
healthcare provider including Physician, Nurse Practi-
tioner, Physician Assistant, Registered Dietician, and
other licensed professionals.

Joe Kutner
(254 pages) ISBN: 9781937785314. $36
http://pragprog.com/book/jkthp

http://pragprog.com/book/mcmath
http://pragprog.com/book/jkthp

Seven Databases, Seven Languages
There’s so much new to learn with the latest crop of NoSQL databases. And instead of
learning a language a year, how about seven?

Data is getting bigger and more complex by the day,
and so are your choices in handling it. From traditional
RDBMS to newer NoSQL approaches, Seven Databases
in Seven Weeks takes you on a tour of some of the
hottest open source databases today. In the tradition
of Bruce A. Tate’s Seven Languages in Seven Weeks,
this book goes beyond your basic tutorial to explore
the essential concepts at the core of each technology.

Eric Redmond and Jim R. Wilson
(354 pages) ISBN: 9781934356920. $35
http://pragprog.com/book/rwdata

You should learn a programming language every year,
as recommended by The Pragmatic Programmer. But
if one per year is good, how about Seven Languages in
Seven Weeks? In this book you’ll get a hands-on tour
of Clojure, Haskell, Io, Prolog, Scala, Erlang, and Ruby.
Whether or not your favorite language is on that list,
you’ll broaden your perspective of programming by
examining these languages side-by-side. You’ll learn
something new from each, and best of all, you’ll learn
how to learn a language quickly.

Bruce A. Tate
(330 pages) ISBN: 9781934356593. $34.95
http://pragprog.com/book/btlang

http://pragprog.com/book/rwdata
http://pragprog.com/book/btlang

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards and
rave reviews. As development gets more and more difficult, the Pragmatic Programmers will
be there with more titles and products to help you stay on top of your game.

Visit Us Online
This Book’s Home Page
http://pragprog.com/book/mbfpp
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
http://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community
http://pragprog.com/community
Read our weblogs, join our online discussions, participate in our mailing list, interact with
our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
http://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you'd like to have a paper copy of the book. It's available
for purchase at our store: http://pragprog.com/book/mbfpp

Contact Us
http://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://pragprog.com/write-for-usWrite for Us:

+1 800-699-7764Or Call:

http://pragprog.com/book/mbfpp
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
http://pragprog.com/book/mbfpp
http://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://pragprog.com/write-for-us

	Cover
	Table of Contents
	Acknowledgments
	Preface
	How This Book Is Organized
	Pattern Template
	Why Scala and Clojure
	How to Read This Book
	Online Resources

	1. Patterns and Functional Programming
	What Is Functional Programming?
	Pattern Glossary

	2. TinyWeb: Patterns Working Together
	Introducing TinyWeb
	TinyWeb in Java
	TinyWeb in Scala
	TinyWeb in Clojure

	3. Replacing Object-Oriented Patterns
	Introduction
	Pattern 1. Replacing Functional Interface
	Pattern 2. Replacing State-Carrying Functional Interface
	Pattern 3. Replacing Command
	Pattern 4. Replacing Builder for Immutable Object
	Pattern 5. Replacing Iterator
	Pattern 6. Replacing Template Method
	Pattern 7. Replacing Strategy
	Pattern 8. Replacing Null Object
	Pattern 9. Replacing Decorator
	Pattern 10. Replacing Visitor
	Pattern 11. Replacing Dependency Injection

	4. Functional Patterns
	Introduction
	Pattern 12. Tail Recursion
	Pattern 13. Mutual Recursion
	Pattern 14. Filter-Map-Reduce
	Pattern 15. Chain of Operations
	Pattern 16. Function Builder
	Pattern 17. Memoization
	Pattern 18. Lazy Sequence
	Pattern 19. Focused Mutability
	Pattern 20. Customized Control Flow
	Pattern 21. Domain-Specific Language

	5. The End
	Bibliography
	Index
	– SYMBOLS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– L –
	– M –
	– N –
	– P –
	– R –
	– S –
	– T –
	– V –
	– W –
	– X –

