Django Documentation
Release 1.3

Django Software Foundation

August 12, 2011

3

CONTENTS

1 Django documentation 1
1.1 Gettinghelp oL e e e e e 1
L2 FIrststeps . . . o o o v v i e e e e e e e e e 1
1.3 Themodellayer o e e e e e e e e 1
1.4 Thetemplate layer e e e e e e e 1
1.5 Theviewlayer e e e e e 2
1.6 Forms e e e e e e e 2
1.7 The development proCess vt v i i e e e e e e e e e e e e e e 2
1.8 Other batteries included L 2
1.9 The Django open-source project v v v v v v v v e e e e e e e e e e e e e e e 3
Getting started 5
2.1 Djangoataglance e e e 5
22 Quickinstall guide L e e 10
2.3 Writing your first Django app, part I oL e e 11
2.4 Writing your first Django app, part 2 L L e e e e e e e e e e e 20
2.5 Writing your first Django app, part 3 L L. L. e 31
2.6 Writing your first Django app, part4 L. L e e e 38
27 Whattoread next.« o L e e e e e e e 43
Using Django 47
3.1 Howtoinstall Django e 47
3.2 Modelsand databases e e e e 50
3.3 Handling HTTPrequests i i e e e et e e e e e 113
34 Working withforms 0. L 151
3.5 The Django template language Lo e e e e e e 180
3.6 Class-based ENEriC VIEWS v v v v it ittt e e e e e e e e e e e e 189
3.7 Migrating function-based ZENeric VIEWS v v v v i i e e e e e e e e e e e e 198
3.8 Managing files L e e e e e 200
3.9 Testing Django applications e e e 202
3.10 User authenticationin Django L 225
3.11 Django’scache framework 246
3.12 Conditional View Processing o o v i i e e e e e e e e e e e 262
3.13 Sendinge-mail L e e e e e e e 265
3.14 Internationalization and localization 273
3.5 Logging o oo e e 293
3,16 Pagination e e e e e 300
3.17 Serializing Django objects L e e e e e e e e e e e e 304
318 Django Settings v v i e 310

319 Signals e e e e e e e e e e e e e 313

3.20 Deprecated features oL e e e e e e e e e e e e e e e e e 317
“How-to” guides 325
4.1 Authenticating against Django’s user database from Apache 325
4.2 Authentication using REMOTE_USER v v v vttt it e e e e et e e e e e e e 326
43 HowtocontributetoDjango 328
4.4 Writing custom django-admin commands 0oL o 332
4.5 Writing custom model fields oL 336
4.6 Custom template tags and filters 346
477 Writing a custom Storage SYSIEIM . .« . v v v v v v v e 359
4.8 Deploying Django L e e e e e e e 361
4.9 Errorreporting viae-mail oL 374
4.10 Providing initial data formodels o o 375
4.11 Using internationalization in your OWn projects o v v v v v v vt e e 377
4.12 Running DjangoonJython L e e e e e 379
4.13 Integrating Django with alegacy database 380
4.14 Outputting CSV withDjango 381
4.15 Outputting PDFs with Django 382
4.16 Managing staticfiles e 385
Django FAQ 393
5.1 FAQ:General e e e 393
5.2 FAQ:Installation o e e e e e e e e e e e e e e 396
5.3 FAQ:Using Django o o e e e e e e e 397
54 FAQ:GettingHelp o0 e e e e e e 398
5.5 FAQ:Databasesand models 399
5.6 FAQ:Theadmin e e 401
5.7 FAQ: Contributingcode e 402
API Reference 405
6.1 Authenticationbackends 405
6.2 contribpackages e 405
6.3 Databases 619
6.4 django-admin.py and manage.py i e e e e e e e e e e e e e e e e e e e 628
6.5 Running management commands from yourcode 0oL oL 646
6.6 Django Exceptions e 647
6.7 Filehandling L e 649
6.8 Forms 653
6.9 Class-based ZENeriC VIEWS v v v v v v i e 688
6.10 Middleware e e e 705
6.11 Models e 707
6.12 Request and response ObJECLSo oo e e e e e e e e 759
6.13 TemplateResponse and SimpleTemplateResponse 768
6.14 Settings i e e e e e e e e e e e e e e 771
6.15 Signals L e e e e e e e e e 797
6.16 Templates o . e e e e e e e e e 803
6.17 Unicodedata e e e e e e e e e 845
6.18 Django Utils e e 850
6.19 Validators 856
6.20 Deprecated features L L e e e e e e e e e e e e e e 858
Meta-documentation and miscellany 875
7.1 APIstability o e e e 875

7.2 Designphilosophies e e e e e e e e e 878

7.3 Third-party distributions of Django L e e e 882

8 Glossary 883
9 Release notes 885
9.1 Finalreleases e 885
9.2 Developmentreleases e 939
10 Django internals 973
10.1 Contributingto Django L 973
10.2 How the Django documentation works L 991
10.3 Django COMMILEIS v v v v v v e e it e e e e e e e e e e e e e e e e 994
10.4 Django’s release PrOCESS . . . v v v v v v v v e 998
10.5 Django Deprecation Timeline e 1001
10.6 The Django source code repository v oottt e e e e e e e 1003
11 Indices, glossary and tables 1007
12 Deprecated/obsolete documentation 1009
12.1 Deprecated/obsolete documentationo e e e e e e e e e e e e 1009
Python Module Index 1013

CHAPTER
ONE

DJANGO DOCUMENTATION

Everything you need to know about Django (and then some).

1.1 Getting help

Having trouble? We’d like to help!
e Try the FAQ — it’s got answers to many common questions.
* Looking for specific information? Try the genindex, modindex or the detailed table of contents.
* Search for information in the archives of the django-users mailing list, or post a question.
* Ask a question in the #django IRC channel, or search the IRC logs to see if it’s been asked before.

* Report bugs with Django in our ticket tracker.

1.2 First steps

¢ From scratch: Overview | Installation

e Tutorial: Part I | Part 2| Part 3 | Part 4

1.3 The model layer

* Models: Model syntax | Field types | Meta options

* QuerySets: Executing queries | QuerySet method reference

e Model instances: Instance methods | Accessing related objects

e Advanced: Managers | Raw SQL | Transactions | Aggregation | Custom fields | Multiple databases

» Other: Supported databases | Legacy databases | Providing initial data | Optimize database access

1.4 The template layer

* For designers: Syntax overview | Built-in tags and filters

e For programmers: Template API | Custom tags and filters

http://groups.google.com/group/django-users/
http://groups.google.com/group/django-users/
http://botland.oebfare.com/logger/django/
http://code.djangoproject.com/

Django Documentation, Release 1.3

1.5 The view layer

The basics: URLconfs | View functions | Shortcuts | Decorators

* Reference: Request/response objects | TemplateResponse objects

File uploads: Overview | File objects | Storage API | Managing files | Custom storage
* Generic views: Overview | Built-in generic views

* Advanced: Generating CSV | Generating PDF

Middleware: Overview | Built-in middleware classes

1.6 Forms

The basics: Overview | Form API | Built-in fields | Built-in widgets

Advanced: Forms for models | Integrating media | Formsets | Customizing validation

Extras: Form preview | Form wizard

1.7 The development process

o Settings: Overview | Full list of settings

* Exceptions: Overview

¢ django-admin.py and manage.py: Overview | Adding custom commands
e Testing: Overview

* Deployment: Overview | Apache/mod_wsgi | Apache/mod_python | FastCGI/SCGI/AJP | Apache authentication
| Handling static files | Tracking code errors by e-mail

1.8 Other batteries included

* Admin site | Admin actions | Admin documentation generator
* Authentication

* Cache system

* Conditional content processing

* Comments | Moderation | Custom comments

* Content types

* Cross Site Request Forgery protection

* Databrowse

e E-mail (sending)

Flatpages
* GeoDjango

2 Chapter 1. Django documentation

Django Documentation, Release 1.3

Humanize
Internationalization
Jython support
“Local flavor”
Logging
Messages
Pagination
Redirects
Serialization
Sessions
Signals
Sitemaps

Sites

Static Files

Syndication feeds (RSS/Atom)

Unicode in Django
Web design helpers

Validators

Function-based generic views (Deprecated) Overview | Built-in generic views | Migration guide

The Django open-source project

Community: How to get involved | The release process | Team of committers | The Django source code reposi-

tory

Design philosophies: Overview
Documentation: About this documentation

Third-party distributions: Overview

Django over time: AP/ stability | Release notes and upgrading instructions | Deprecation Timeline

1.9. The Django open-source project

Django Documentation, Release 1.3

4 Chapter 1. Django documentation

CHAPTER
TWO

GETTING STARTED

New to Django? Or to Web development in general? Well, you came to the right place: read this material to quickly
get up and running.

2.1 Django at a glance

Because Django was developed in a fast-paced newsroom environment, it was designed to make common Web-
development tasks fast and easy. Here’s an informal overview of how to write a database-driven Web app with Django.

The goal of this document is to give you enough technical specifics to understand how Django works, but this isn’t
intended to be a tutorial or reference — but we’ve got both! When you’re ready to start a project, you can start with the
tutorial or dive right into more detailed documentation.

2.1.1 Design your model

Although you can use Django without a database, it comes with an object-relational mapper in which you describe
your database layout in Python code.

The data-model syntax offers many rich ways of representing your models — so far, it’s been solving two years’ worth of
database-schema problems. Here’s a quick example, which might be saved in the file mysite/news/models.py:

class Reporter (models.Model) :
full _name = models.CharField (max_length=70)

def _ unicode_ () :
return .full_name

class Article (models.Model) :
pub_date = models.DateTimeField()
headline = models.CharField (max_length=200)
content = models.TextField()
reporter = models.ForeignKey (Reporter)

def _ unicode_ () .
return .headline

2.1.2 Install it

Next, run the Django command-line utility to create the database tables automatically:

Django Documentation, Release 1.3

manage.py syncdb

The syncdb command looks at all your available models and creates tables in your database for whichever tables
don’t already exist.

2.1.3 Enjoy the free API

With that, you’ve got a free, and rich, Python API to access your data. The API is created on the fly, no code generation
necessary:

Import the models we created from our "news" app
>>> from news.models import Reporter, Article

No reporters are in the system yet.
>>> Reporter.objects.all()

[]

Create a new Reporter.
>>> r = Reporter (full_name=’John Smith’)

Save the object into the database. You have to call save() explicitly.
>>> r.save ()

Now it has an ID.
>>> r.id
1

Now the new reporter is in the database.
>>> Reporter.objects.all()
[<Reporter: John Smith>]

Fields are represented as attributes on the Python object.
>>> r.full_name
"John Smith’

Django provides a rich database lookup API.

>>> Reporter.objects.get (id=1)

<Reporter: John Smith>

>>> Reporter.objects.get (full_name__startswith=’John’)
<Reporter: John Smith>

>>> Reporter.objects.get (full_name__contains='mith’)
<Reporter: John Smith>

>>> Reporter.objects.get (1d=2)

Traceback (most recent call last):

DoesNotExist: Reporter matching query does not exist.

Create an article.

>>> from datetime import datetime

>>> a = Article (pub_date=datetime.now(), headline=’'Django is cool’,
.. content='Yeah.’, reporter=r)

>>> a.save ()

Now the article is in the database.
>>> Article.objects.all()
[<Article: Django is cool>]

6 Chapter 2. Getting started

Django Documentation, Release 1.3

Article objects get API access to related Reporter objects.
>>> r = a.reporter

>>> r.full_name

"John Smith’

And vice versa: Reporter objects get API access to Article objects.
>>> r.article_set.all()
[<Article: Django is cool>]

The API follows relationships as far as you need, performing efficient
JOINs for you behind the scenes.

This finds all articles by a reporter whose name starts with "John".
>>> Article.objects.filter (reporter__ full_name__ startswith="John")
[<Article: Django 1is cool>]

Change an object by altering its attributes and calling save().
>>> r.full_name = ’"Billy Goat’
>>> r.save ()

Delete an object with delete().
>>> r.delete ()

2.1.4 A dynamic admin interface: it’s not just scaffolding — it’s the whole house

Once your models are defined, Django can automatically create a professional, production ready administrative inter-
Jace —a Web site that lets authenticated users add, change and delete objects. It’s as easy as registering your model in
the admin site:

from django.db import models

class Article (models.Model) :
pub_date = models.DateTimeField()
headline = models.CharField (max_length=200)
content = models.TextField()
reporter = models.ForeignKey (Reporter)

import models
from django.contrib import admin

admin.site.register (models.Article)

The philosophy here is that your site is edited by a staff, or a client, or maybe just you — and you don’t want to have to
deal with creating backend interfaces just to manage content.

One typical workflow in creating Django apps is to create models and get the admin sites up and running as fast as
possible, so your staff (or clients) can start populating data. Then, develop the way data is presented to the public.

2.1.5 Design your URLs

A clean, elegant URL scheme is an important detail in a high-quality Web application. Django encourages beautiful
URL design and doesn’t put any cruft in URLS, like . php or . asp.

2.1. Django at a glance 7

Django Documentation, Release 1.3

To design URLSs for an app, you create a Python module called a URLconf. A table of contents for your app, it contains
a simple mapping between URL patterns and Python callback functions. URLconfs also serve to decouple URLSs from
Python code.

Here’s what a URLconf might look like for the Reporter/Article example above:

from django.conf.urls.defaults import =*

urlpatterns = patterns(’'’,
(r"~articles/ (\d{4})/$", ’'news.views.y
(r" ~articles/ (\d{4})/ (\d{2}) ", "news
(r’ ~articles/ (\d{4})/(\d{2})/(\d+)/s’",

)

The code above maps URLs, as simple regular expressions, to the location of Python callback functions (“views”).
The regular expressions use parenthesis to “capture” values from the URLs. When a user requests a page, Django runs
through each pattern, in order, and stops at the first one that matches the requested URL. (If none of them matches,
Django calls a special-case 404 view.) This is blazingly fast, because the regular expressions are compiled at load
time.

Once one of the regexes matches, Django imports and calls the given view, which is a simple Python function. Each
view gets passed a request object — which contains request metadata — and the values captured in the regex.

For example, if a user requested the URL *“/articles/2005/05/39323/°, Django would call the function
news.views.article_detail (request, ’2005’, 05’7, 739323").

2.1.6 Write your views
Each view is responsible for doing one of two things: Returning an Ht t pResponse object containing the content
for the requested page, or raising an exception such as Ht tp404. The rest is up to you.

Generally, a view retrieves data according to the parameters, loads a template and renders the template with the
retrieved data. Here’s an example view for year_archive from above:

def year_archive (request, year):
a_list = Article.objects.filter (pub_date__year=year)
return render_to_response (' news/year archive.html’, {’year’: year, 'article list’: a_list})

This example uses Django’s template system, which has several powerful features but strives to stay simple enough
for non-programmers to use.

2.1.7 Design your templates

The code above loads the news /year_archive.html template.

Django has a template search path, which allows you to minimize redundancy among templates. In your Django
settings, you specify a list of directories to check for templates. If a template doesn’t exist in the first directory, it
checks the second, and so on.

Let’s say the news/article_detail.html template was found. Here’s what that might look like:

extends "base.html"
block title Articles for year endblock

block content
<hl>Articles for year </hl>

8 Chapter 2. Getting started

Django Documentation, Release 1.3

for article in article list
<p> article.headline </p>

<p>By article.reporter.full_name </p>
<p>Published article.pub_date|date:"F 7, Y" </p>
endfor
endblock

Variables are surrounded by double-curly braces. {{ article.headline }} means “Output the value of the
article’s headline attribute.” But dots aren’t used only for attribute lookup: They also can do dictionary-key lookup,
index lookup and function calls.

Note { { article.pub_datel|date:"F j, Y" }} usesa Unix-style “pipe” (the “I” character). This is called
a template filter, and it’s a way to filter the value of a variable. In this case, the date filter formats a Python datetime
object in the given format (as found in PHP’s date function; yes, there is one good idea in PHP).

You can chain together as many filters as you’d like. You can write custom filters. You can write custom template tags,
which run custom Python code behind the scenes.

Finally, Django uses the concept of “template inheritance”: That’s what the {$ extends "base.html" %}
does. It means “First load the template called ‘base’, which has defined a bunch of blocks, and fill the blocks with
the following blocks.” In short, that lets you dramatically cut down on redundancy in templates: each template has to
define only what’s unique to that template.

Here’s what the “base.html” template might look like:

<html>
<head>

<title> block title endblock </title>
</head>
<body>

block content endblock

</body>
</html>

Simplistically, it defines the look-and-feel of the site (with the site’s logo), and provides “holes” for child templates to
fill. This makes a site redesign as easy as changing a single file — the base template.

It also lets you create multiple versions of a site, with different base templates, while reusing child templates. Django’s
creators have used this technique to create strikingly different cell-phone editions of sites — simply by creating a new
base template.

Note that you don’t have to use Django’s template system if you prefer another system. While Django’s template
system is particularly well-integrated with Django’s model layer, nothing forces you to use it. For that matter, you
don’t have to use Django’s database API, either. You can use another database abstraction layer, you can read XML
files, you can read files off disk, or anything you want. Each piece of Django — models, views, templates — is decoupled
from the next.

2.1.8 This is just the surface

This has been only a quick overview of Django’s functionality. Some more useful features:
* A caching framework that integrates with memcached or other backends.
* A syndication framework that makes creating RSS and Atom feeds as easy as writing a small Python class.
* More sexy automatically-generated admin features — this overview barely scratched the surface.

The next obvious steps are for you to download Django, read the tutorial and join the community. Thanks for your
interest!

2.1. Django at a glance 9

http://www.djangoproject.com/download/
http://www.djangoproject.com/community/

Django Documentation, Release 1.3

2.2 Quick install guide

Before you can use Django, you’ll need to get it installed. We have a complete installation guide that covers all
the possibilities; this guide will guide you to a simple, minimal installation that’ll work while you walk through the
introduction.

2.2.1 Install Python

Being a Python Web framework, Django requires Python. It works with any Python version from 2.4 to 2.7 (due to
backwards incompatibilities in Python 3.0, Django does not currently work with Python 3.0; see the Django FAQ for
more information on supported Python versions and the 3.0 transition), but we recommend installing Python 2.5 or
later. If you do so, you won’t need to set up a database just yet: Python 2.5 or later includes a lightweight database
called SQLite.

Get Python at http://www.python.org. If you’re running Linux or Mac OS X, you probably already have it installed.

Django on Jython

If you use Jython (a Python implementation for the Java platform), you’ll need to follow a few additional steps. See
Running Django on Jython for details.

You can verify that Python is installed by typing python from your shell; you should see something like:

Python 2.5.1 (r251:54863, Jan 17 2008, 19:35:17)

[GCC 4.0.1 (Apple Inc. build 5465)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>>

2.2.2 Set up a database

If you installed Python 2.5 or later, you can skip this step for now.

If not, or if you’d like to work with a “large” database engine like PostgreSQL, MySQL, or Oracle, consult the database
installation information.

2.2.3 Remove any old versions of Django

If you are upgrading your installation of Django from a previous version, you will need to uninstall the old Django
version before installing the new version.

2.2.4 Install Django

You’ve got three easy options to install Django:

¢ Install a version of Django provided by your operating system distribution. This is the quickest option for those
who have operating systems that distribute Django.

e Install an official release. This is the best approach for users who want a stable version number and aren’t
concerned about running a slightly older version of Django.

e Install the latest development version. This is best for users who want the latest-and-greatest features and aren’t
afraid of running brand-new code.

10 Chapter 2. Getting started

http://sqlite.org/
http://www.python.org
http://www.jython.org/

Django Documentation, Release 1.3

Always refer to the documentation that corresponds to the version of Django you’re using!

If you do either of the first two steps, keep an eye out for parts of the documentation marked new in development
version. That phrase flags features that are only available in development versions of Django, and they likely won’t
work with an official release.

2.2.5 Verifying
To verify that Django can be seen by Python, type python from your shell. Then at the Python prompt, try to import
Django:

>>> import django
>>> print django.get_version()
1.3

2.2.6 That’s it!

That’s it — you can now move onto the tutorial.

2.3 Writing your first Django app, part 1

Let’s learn by example.
Throughout this tutorial, we’ll walk you through the creation of a basic poll application.
It’1l consist of two parts:

* A public site that lets people view polls and vote in them.

* An admin site that lets you add, change and delete polls.

We’ll assume you have Django installed already. You can tell Django is installed by running the Python interactive
interpreter and typing import django. If that command runs successfully, with no errors, Django is installed.

Where to get help:

If you’re having trouble going through this tutorial, please post a message to django-users or drop by #django on
irc.freenode.net to chat with other Django users who might be able to help.

2.3.1 Creating a project

If this is your first time using Django, you’ll have to take care of some initial setup. Namely, you’ll need to auto-
generate some code that establishes a Django project — a collection of settings for an instance of Django, including
database configuration, Django-specific options and application-specific settings.

From the command line, cd into a directory where you’d like to store your code, then run the command
django-admin.py startproject mysite. This will create amysite directory in your current directory.

Script name may differ in distribution packages

2.3. Writing your first Django app, part 1 11

http://groups.google.com/group/django-users

Django Documentation, Release 1.3

If you installed Django using a Linux distribution’s package manager (e.g. apt-get or yum) django—admin.py
may have been renamed to d jango—admin. You may continue through this documentation by omitting . py from
each command.

Mac OS X permissions

If you’re using Mac OS X, you may see the message “permission denied” when you try to run d jango—-admin.py
startproject. This is because, on Unix-based systems like OS X, a file must be marked as “executable” before it
can be run as a program. To do this, open Terminal.app and navigate (using the cd command) to the directory where
django-admin.py is installed, then run the command chmod +x django-admin.py.

Note: You’ll need to avoid naming projects after built-in Python or Django components. In particular, this means
you should avoid using names like d jango (which will conflict with Django itself) or test (which conflicts with a
built-in Python package).

django-admin.py should be on your system path if you installed Django via python setup.py. If it’s not
on your path, you can find it in site-packages/django/bin, where ‘site-packages" is a directory
within your Python installation. Consider symlinking to django-admin.py from some place on your path, such as
/usr/local/bin.

Where should this code live?

If your background is in PHP, you’re probably used to putting code under the Web server’s document root (in a place
such as /var/www). With Django, you don’t do that. It’s not a good idea to put any of this Python code within your
Web server’s document root, because it risks the possibility that people may be able to view your code over the Web.
That’s not good for security.

Put your code in some directory outside of the document root, such as /home /mycode.

Let’s look at what startproject created:

mysite/
__init__ .py
manage.py
settings.py
urls.py

These files are:

e __init__ .py: An empty file that tells Python that this directory should be considered a Python package.
(Read more about packages in the official Python docs if you’re a Python beginner.)

* manage.py: A command-line utility that lets you interact with this Django project in various ways. You can
read all the details about manage . py in django-admin.py and manage.py.

* settings.py: Settings/configuration for this Django project. Django settings will tell you all about how
settings work.

e urls.py: The URL declarations for this Django project; a “table of contents” of your Django-powered site.
You can read more about URLs in URL dispatcher.

The development server

Let’s verify this worked. Change into the mysite directory, if you haven’t already, and run the command python
manage.py runserver. You'll see the following output on the command line:

12 Chapter 2. Getting started

http://docs.python.org/tutorial/modules.html#packages

Django Documentation, Release 1.3

Validating models...
0 errors found.

Django version 1.0, using settings ’'mysite.settings’
Development server is running at http://127.0.0.1:8000/
Quit the server with CONTROL-C.

You’ve started the Django development server, a lightweight Web server written purely in Python. We’ve included this
with Django so you can develop things rapidly, without having to deal with configuring a production server — such as
Apache — until you’re ready for production.

Now’s a good time to note: DON’T use this server in anything resembling a production environment. It’s intended
only for use while developing. (We’re in the business of making Web frameworks, not Web servers.)

Now that the server’s running, visit http://127.0.0.1:8000/ with your Web browser. You’ll see a “Welcome to Django”
page, in pleasant, light-blue pastel. It worked!

Changing the port
By default, the runserver command starts the development server on the internal IP at port 8000.

If you want to change the server’s port, pass it as a command-line argument. For instance, this command starts the
server on port 8080:

python manage.py runserver 8080

If you want to change the server’s IP, pass it along with the port. So to listen on all public IPs (useful if you want to
show off your work on other computers), use:

python manage.py runserver 0.0.0.0:8000

Full docs for the development server can be found in the runserver reference.

Database setup

Now, edit settings.py. It’s a normal Python module with module-level variables representing Django settings.
Change the following keys in the DATABASES " default’ item to match your databases connection settings.

* ENGINE - Either "django.db.backends.postgresqgl_psycopg2’,
"django.db.backends.mysgl’ or ’‘django.db.backends.sglite3’. Other backends are
also available.

e NAME — The name of your database. If you’re using SQLite, the database will be a file on your computer; in
that case, NAME should be the full absolute path, including filename, of that file. If the file doesn’t exist, it will
automatically be created when you synchronize the database for the first time (see below).

When specifying the path, always use forward slashes, even on Windows (e.g.
C:/homes/user/mysite/sqglite3.db).

¢ USER — Your database username (not used for SQLite).
e PASSWORD — Your database password (not used for SQLite).

e HOST — The host your database is on. Leave this as an empty string if your database server is on the same
physical machine (not used for SQLite).

If you're new to databases, we recommend simply using SQLite (by setting ENGINE to
"django.db.backends.sqglite3’). SQLite is included as part of Python 2.5 and later, so you won’t
need to install anything else.

2.3. Writing your first Django app, part 1 13

http://127.0.0.1:8000/

Django Documentation, Release 1.3

Note: If you’re using PostgreSQL or MySQL, make sure you’ve created a database by this point. Do that with
“CREATE DATABASE database_name;” within your database’s interactive prompt.

If you’re using SQLite, you don’t need to create anything beforehand - the database file will be created automatically
when it is needed.

While you’re editing settings.py, take note of the INSTALLED_APPS setting towards the bottom of the file.
That variable holds the names of all Django applications that are activated in this Django instance. Apps can be used
in multiple projects, and you can package and distribute them for use by others in their projects.

By default, INSTALLED_APPS contains the following apps, all of which come with Django:
* django.contrib.auth — An authentication system.
* django.contrib.contenttypes — A framework for content types.
e django.contrib.sessions — A session framework.
* django.contrib.sites — A framework for managing multiple sites with one Django installation.
* django.contrib.messages — A messaging framework.
* django.contrib.staticfiles — A framework for managing static files.
These applications are included by default as a convenience for the common case.

Each of these applications makes use of at least one database table, though, so we need to create the tables in the
database before we can use them. To do that, run the following command:

python manage.py syncdb

The syncdb command looks at the INSTALLED_APPS setting and creates any necessary database tables according
to the database settings in your settings.py file. You’ll see a message for each database table it creates, and you’ll
get a prompt asking you if you’d like to create a superuser account for the authentication system. Go ahead and do
that.

If you’re interested, run the command-line client for your database and type \dt (PostgreSQL), SHOW TABLES;
(MySQL), or . schema (SQLite) to display the tables Django created.

For the minimalists

Like we said above, the default applications are included for the common case, but not everybody needs them. If you
don’t need any or all of them, feel free to comment-out or delete the appropriate line(s) from INSTALLED_APPS
before running syncdb. The syncdb command will only create tables for apps in INSTALLED_APPS.

2.3.2 Creating models

Now that your environment — a “project” — is set up, you’re set to start doing work.

Each application you write in Django consists of a Python package, somewhere on your Python path, that follows a
certain convention. Django comes with a utility that automatically generates the basic directory structure of an app, so
you can focus on writing code rather than creating directories.

Projects vs. apps

What’s the difference between a project and an app? An app is a Web application that does something — e.g., a Weblog
system, a database of public records or a simple poll app. A project is a collection of configuration and apps for a
particular Web site. A project can contain multiple apps. An app can be in multiple projects.

14 Chapter 2. Getting started

http://docs.python.org/tutorial/modules.html#the-module-search-path

Django Documentation, Release 1.3

Your apps can live anywhere on your Python path. In this tutorial, we’ll create our poll app in the mysite directory
for simplicity.

To create your app, make sure you’re in the mysite directory and type this command:

python manage.py startapp polls

That’ll create a directory pol1s, which is laid out like this:

polls/
__init__ .py
models.py
tests.py
views.py

This directory structure will house the poll application.

The first step in writing a database Web app in Django is to define your models — essentially, your database layout,
with additional metadata.

Philosophy

A model is the single, definitive source of data about your data. It contains the essential fields and behaviors of the data
you’re storing. Django follows the DRY Principle. The goal is to define your data model in one place and automatically
derive things from it.

In our simple poll app, we’ll create two models: polls and choices. A poll has a question and a publication date. A
choice has two fields: the text of the choice and a vote tally. Each choice is associated with a poll.

These concepts are represented by simple Python classes. Edit the polls/models.py file so it looks like this:

from django.db import models

class Poll (models.Model) :
question = models.CharField (max_length=200)
pub_date = models.DateTimeField ('’ date published’)

class Choice (models.Model) :
poll = models.ForeignKey (Poll)
choice = models.CharField(max_length=200)
votes = models.IntegerField()

The code is straightforward. Each model is represented by a class that subclasses d jango.db.models.Model.
Each model has a number of class variables, each of which represents a database field in the model.

Each field is represented by an instance of a Field class — e.g., CharField for character fields and
DateTimeField for datetimes. This tells Django what type of data each field holds.

The name of each Field instance (e.g. question or pub_date) is the field’s name, in machine-friendly format.
You’ll use this value in your Python code, and your database will use it as the column name.

You can use an optional first positional argument to a Field to designate a human-readable name. That’s used in a
couple of introspective parts of Django, and it doubles as documentation. If this field isn’t provided, Django will use
the machine-readable name. In this example, we’ve only defined a human-readable name for Pol1l.pub_date. For
all other fields in this model, the field’s machine-readable name will suffice as its human-readable name.

Some Field classes have required elements. CharField, for example, requires that you give it amax_length.
That’s used not only in the database schema, but in validation, as we’ll soon see.

2.3. Writing your first Django app, part 1 15

http://docs.python.org/tutorial/modules.html#the-module-search-path

Django Documentation, Release 1.3

Finally, note a relationship is defined, using ForeignKey. That tells Django each Choice is related to a single Poll.
Django supports all the common database relationships: many-to-ones, many-to-manys and one-to-ones.

2.3.3 Activating models

That small bit of model code gives Django a lot of information. With it, Django is able to:
* Create a database schema (CREATE TABLE statements) for this app.
* Create a Python database-access API for accessing Poll and Choice objects.

But first we need to tell our project that the polls app is installed.

Philosophy

Django apps are “pluggable”: You can use an app in multiple projects, and you can distribute apps, because they don’t
have to be tied to a given Django installation.

Edit the settings.py file again, and change the INSTALLED_APPS setting to include the string ' polls’. So
it’ll look like this:

INSTALLED_APPS

(ange

Now Django knows to include the polls app. Let’s run another command:

python manage.py sgl polls

You should see something similar to the following (the CREATE TABLE SQL statements for the polls app):

BEGIN;
CREATE TABLE "polls poll" (
"id" NOT NULL PRIMARY KEY,
"question" (200) NOT NULL,
"pub_date" timestamp with time zone NOT NULL
)i
CREATE TABLE "polls choice" (
"id" NOT NULL PRIMARY KEY,
"poll_ id" NOT NULL REFERENCES "polls poll" ("id"),
"choice" (200) NOT NULL,
"votes" NOT NULL
)i
COMMIT;
Note the following:

* The exact output will vary depending on the database you are using.

» Table names are automatically generated by combining the name of the app (polls) and the lowercase name
of the model —po1l1 and choice. (You can override this behavior.)

* Primary keys (IDs) are added automatically. (You can override this, too.)

* By convention, Django appends "_id" to the foreign key field name. Yes, you can override this, as well.

16 Chapter 2. Getting started

Django Documentation, Release 1.3

* The foreign key relationship is made explicit by a REFERENCES statement.

* It’s tailored to the database you’re using, so database-specific field types such as auto_increment (MySQL),
serial (PostgreSQL), or integer primary key (SQLite) are handled for you automatically. Same goes
for quoting of field names — e.g., using double quotes or single quotes. The author of this tutorial runs Post-
greSQL, so the example output is in PostgreSQL syntax.

e The sgql command doesn’t actually run the SQL in your database - it just prints it to the screen so that you
can see what SQL Django thinks is required. If you wanted to, you could copy and paste this SQL into your
database prompt. However, as we will see shortly, Django provides an easier way of committing the SQL to the
database.

If you’re interested, also run the following commands:
* python manage.py validate — Checks for any errors in the construction of your models.

* python manage.py sglcustom polls — Outputs any custom SQOL statements (such as table modifica-
tions or constraints) that are defined for the application.

e python manage.py sglclear polls — Outputs the necessary DROP TABLE statements for this app,
according to which tables already exist in your database (if any).

* python manage.py sglindexes polls — Outputsthe CREATE INDEX statements for this app.

e python manage.py sqglall polls — A combination of all the SQL from the sgl, sglcustom, and
sqglindexes commands.

Looking at the output of those commands can help you understand what’s actually happening under the hood.

Now, run syncdb again to create those model tables in your database:

python manage.py syncdb

The syncdb command runs the sql from ‘sqlall’ on your database for all apps in INSTALLED_APPS that don’t
already exist in your database. This creates all the tables, initial data and indexes for any apps you have added to your

project since the last time you ran syncdb. syncdb can be called as often as you like, and it will only ever create the
tables that don’t exist.

Read the django-admin.py documentation for full information on what the manage . py utility can do.

2.3.4 Playing with the API

Now, let’s hop into the interactive Python shell and play around with the free API Django gives you. To invoke the
Python shell, use this command:

python manage.py shell
We’re using this instead of simply typing “python”, because manage . py sets up the project’s environment for you.
“Setting up the environment” involves two things:

* Putting polls on sys.path. For flexibility, several pieces of Django refer to projects in Python dotted-path
notation (e.g. ' polls.models’). In order for this to work, the pol1ls package has to be on sys.path.

We’ve already seen one example of this: the INSTALLED_APPS setting is a list of packages in dotted-path
notation.

 Setting the DJANGO_SETTINGS_MODULE environment variable, which gives Django the path to your
settings.py file.

Bypassing manage.py

2.3. Writing your first Django app, part 1 17

Django Documentation, Release 1.3

If you’d rather not use manage.py, no problem. Just make sure mysite and polls are at the root level on
the Python path (i.e., import mysite and import polls work) and set the DOANGO_SETTINGS_MODULE
environment variable to mysite.settings.

For more information on all of this, see the django-admin.py documentation.

Once you’re in the shell, explore the database API:

>>> from polls.models import Poll, Choice #

No polls are in the system yet.
>>> Poll.objects.all()
[]

Create a new Poll.

>>> import datetime

>>> p = Poll (question="What’s up?", pub_date=datetime.datetime.now())
Save the object into the database. You have to call save() explicitly.
>>> p.save ()

Now it has an ID. Note that this might say "1L" instead of "1", depending
on which database you’re using. That’s no biggie; it just means your

database backend prefers to return integers as Python long integer

objects.

>>> p.id

1

Access database columns via Python attributes.

>>> p.question

"What’s up?"

>>> p.pub_date

datetime.datetime (2007, 7, 15, 12, 00, 53)

Change values by changing the attributes, then calling save() .
>>> p.pub_date = datetime.datetime (2007, 4, 1, 0, 0)

>>> p.save ()

objects.all() displays all the polls in the database.
>>> Poll.objects.all()
[<Poll: Poll object>]

Wait a minute. <Poll: Poll object> is, utterly, an unhelpful representation of this object. Let’s fix that by
editing the polls model (in the polls/models.py file) and addinga __ unicode__ () method to both Pol1l and
Choice:

class Poll (models.Model) :

def @ unicode (self):
return sclf.question

class Choice (models.Model) :

def _ unicode_ (self):
return se1f.choice

It’s important to add __unicode__ () methods to your models, not only for your own sanity when dealing with the
interactive prompt, but also because objects’ representations are used throughout Django’s automatically-generated
admin.

18 Chapter 2. Getting started

Django Documentation, Release 1.3

Why _ unicode_ () andnot__str_ ()?

If you’re familiar with Python, you might be in the habit of adding _ str__ () methods to your classes, not
__unicode__ () methods. Weuse __unicode__ () here because Django models deal with Unicode by default.
All data stored in your database is converted to Unicode when it’s returned.

Django models have a default __str__ () method that calls __unicode__ () and converts the result to a UTF-8
bytestring. This means that unicode (p) will return a Unicode string, and st r (p) will return a normal string, with
characters encoded as UTF-8.

If all of this is jibberish to you, just remember to add ___unicode__ () methods to your models. With any luck,
things should Just Work for you.

Note these are normal Python methods. Let’s add a custom method, just for demonstration:

import datetime

class Poll (models.Model) :

def was_published_today ()t
return .pub_date.date () == datetime.date.today ()

Note the addition of import datetime to reference Python’s standard datet ime module.
Save these changes and start a new Python interactive shell by running python manage.py shell again:
>>> from polls.models import Poll, Choice
Make sure our _ _unicode__ () addition worked.
)

>>> Poll.objects.all(
[<Poll: What’s up?>]

Django provides a rich database lookup API that’s entirely driven by
keyword arguments.

>>> Poll.objects.filter (id=l)

[<Poll: What’s up?>]

>>> Poll.objects.filter (question__startswith=’What’)

[<Poll: What’s up?>]

Get the poll whose year is 2007.

>>> Poll.objects.get (pub_date__year=2007)

<Poll: What’s up?>

>>> Poll.objects.get (1d=2)
Traceback (most recent call last):

DoesNotExist: Poll matching query does not exist.

Lookup by a primary key is the most common case, so Django provides a
shortcut for primary-key exact lookups.

The following is identical to Poll.objects.get (id=1).

>>> Poll.objects.get (pk=1)

<Poll: What’s up?>

Make sure our custom method worked.
>>> p = Poll.objects.get (pk=1)

>>> p.was_published_today ()

False

2.3. Writing your first Django app, part 1 19

Django Documentation, Release 1.3

Give the Poll a couple of Choices. The create call constructs a new

choice object, does the INSERT statement, adds the choice to the set

of available choices and returns the new Choice object. Django creates
a set to hold the "other side" of a ForeignKey relation

(e.g. a poll’s choices) which can be accessed via the API.

>>> p = Poll.objects.get (pk=1)

Display any choices from the related object set -- none so far.
>>> p.choice_set.all()

(]

Create three choices.

>>> p.choice_set.create (choice=’'Not much’, votes=0)

<Choice: Not much>

>>> p.choice_set.create (choice=’The sky’, votes=0)

<Choice: The sky>

>>> ¢ = p.choice_set.create(choice=’"Just hacking again’, votes=0)

Choice objects have API access to their related Poll objects.
>>> c.poll
<Poll: What’s up?>

And vice versa: Poll objects get access to Choice objects.

>>> p.choice_set.all()

[<Choice: Not much>, <Choice: The sky>, <Choice: Just hacking again>]
>>> p.choice_set.count ()

)

The API automatically follows relationships as far as you need.

Use double underscores to separate relationships.

This works as many levels deep as you want; there’s no limit.

Find all Choices for any poll whose pub_date is in 2007.

>>> Choice.objects.filter (poll__pub_date__year=2007)

[<Choice: Not much>, <Choice: The sky>, <Choice: Just hacking again>]

Let’s delete one of the choices. Use delete() for that.
>>> c = p.choice_set.filter (choice__startswith=’Just hacking’)
>>> c.delete ()

For more information on model relations, see Accessing related objects. For more on how to use double underscores
to perform field lookups via the API, see Field lookups. For full details on the database API, see our Database API
reference.

When you’re comfortable with the API, read part 2 of this tutorial to get Django’s automatic admin working.

2.4 Writing your first Django app, part 2

This tutorial begins where Tutorial 1 left off. We’re continuing the Web-poll application and will focus on Django’s
automatically-generated admin site.

Philosophy

Generating admin sites for your staff or clients to add, change and delete content is tedious work that doesn’t require
much creativity. For that reason, Django entirely automates creation of admin interfaces for models.

Django was written in a newsroom environment, with a very clear separation between “content publishers” and the

20 Chapter 2. Getting started

http://docs.djangoproject.com/en/1.2/topics/db/queries/#field-lookups

Django Documentation, Release 1.3

“public” site. Site managers use the system to add news stories, events, sports scores, etc., and that content is displayed
on the public site. Django solves the problem of creating a unified interface for site administrators to edit content.

The admin isn’t necessarily intended to be used by site visitors; it’s for site managers.

2.4.1 Activate the admin site
The Django admin site is not activated by default —it’s an opt-in thing. To activate the admin site for your installation,
do these three things:

* Add "django.contrib.admin" to your INSTALLED_APPS setting.

* Run python manage.py syncdb. Since you have added a new application to INSTALLED_APPS, the
database tables need to be updated.

* Edit your mysite/urls.py file and uncomment the lines that reference the admin — there are three lines in
total to uncomment. This file is a URLconf; we’ll dig into URLconfs in the next tutorial. For now, all you need
to know is that it maps URL roots to applications. In the end, you should have a urls.py file that looks like
this:

from django.conf.urls.defaults import =*
from django.contrib import admin
admin.autodiscover ()

urlpatterns = patterns(’’,

(r’”~admin/’, include (admin.site.urls)),

)

(The bold lines are the ones that needed to be uncommented.)

2.4.2 Start the development server

Let’s start the development server and explore the admin site.
Recall from Tutorial 1 that you start the development server like so:

python manage.py runserver

Now, open a Web browser and go to “/admin/”” on your local domain — e.g., http://127.0.0.1:8000/admin/. You should
see the admin’s login screen:

2.4. Writing your first Django app, part 2 21

http://127.0.0.1:8000/admin/

Django Documentation, Release 1.3

Django administration

Username:

Password:

Log in

2.4.3 Enter the admin site

Now, try logging in. (You created a superuser account in the first part of this tutorial, remember? If you didn’t create
one or forgot the password you can create another one.) You should see the Django admin index page:

Django administration el v, ibrian, DoCumantanion [Changs passsond | Log o

Site administration

Merer] Al Ddes

Groups L . My Actions
Useis o it harsge Mo avalilable
hitey ga

You should see a few other types of editable content, including groups, users and sites. These are core features Django
ships with by default.

2.4.4 Make the poll app modifiable in the admin

But where’s our poll app? It’s not displayed on the admin index page.

Just one thing to do: We need to tell the admin that Po11 objects have an admin interface. To do this, create a file
called admin.py in your polls directory, and edit it to look like this:

from polls.models import Poll
from django.contrib import admin

admin.site.register (Poll)

You’ll need to restart the development server to see your changes. Normally, the server auto-reloads code every time
you modify a file, but the action of creating a new file doesn’t trigger the auto-reloading logic.

2.4.5 Explore the free admin functionality

Now that we’ve registered Po11, Django knows that it should be displayed on the admin index page:

22 Chapter 2. Getting started

Django Documentation, Release 1.3

Djangn administration Wl , mirian. DoCenestnion | Change padiweed | Log 0w

Site administration

R bon A rinerk

Lroups dhdd S Lhang My ACrions
Lissrs LT harz Bone available
SIET [T

Pl T

Click “Polls.” Now you’re at the “change list” page for polls. This page displays all the polls in the database and lets
you choose one to change it. There’s the “What’s up?” poll we created in the first tutorial:

Django administration Vg PPt ke, DWBC PP CR0R | TR Bl i | (Lie] el

Select poll to change | Add podl |4

Whan's up?

Lpo

Click the “What’s up?” poll to edit it:

Django administration Wths o, il i Dol wmserLanien | CRange gadiweed | L oul

Hevsse - Pl o W

Change poll &=
Crnstion: WhaT'L upT
Duate Bale 200%-04-01 Tods y
poubl bk i

Time 00000 Bl

% Dielede Save and add argther Sawe and corsnue sditing E

Things to note here:
* The form is automatically generated from the Poll model.

* The different model field types (DateTimeField, CharField) correspond to the appropriate HTML input
widget. Each type of field knows how to display itself in the Django admin.

e Each DateTimeField gets free JavaScript shortcuts. Dates get a “Today” shortcut and calendar popup, and
times get a “Now” shortcut and a convenient popup that lists commonly entered times.

The bottom part of the page gives you a couple of options:
» Save — Saves changes and returns to the change-list page for this type of object.
» Save and continue editing — Saves changes and reloads the admin page for this object.
 Save and add another — Saves changes and loads a new, blank form for this type of object.

* Delete — Displays a delete confirmation page.

2.4. Writing your first Django app, part 2 23

Django Documentation, Release 1.3

Change the “Date published” by clicking the “Today” and “Now” shortcuts. Then click “Save and continue editing.”
Then click “History” in the upper right. You’ll see a page listing all changes made to this object via the Django admin,
with the timestamp and username of the person who made the change:

Django administration Wkt e, anirian. DoCumentanisn | CRange Badawed | Log o

Change history: What's up?
[hane 1imis g A et

D 1, 4007, K18 pom, adnan Changesl dute pi bl bl

2.4.6 Customize the admin form

Take a few minutes to marvel at all the code you didn’t have to write. By registering the Poll model with
admin.site.register (Poll), Django was able to construct a default form representation. Often, you’ll want
to customize how the admin form looks and works. You’ll do this by telling Django the options you want when you
register the object.

Let’s see how this works by re-ordering the fields on the edit form. Replace the admin.site.register (Poll)
line with:

class PollAdmin (admin.ModelAdmin) :
fields = [’pub_date’, ’"question’]

admin.site.register (Poll, PollAdmin)

You'll follow this pattern — create a model admin object, then pass it as the second argument to
admin.site.register () —any time you need to change the admin options for an object.

This particular change above makes the “Publication date” come before the “Question” field:

Django administration

Home » Polls » What's up?
Change poll

Date Date: |2007-12-01 | Today | [
published:
Time: 13:12:28 | Now (1)

Question: What's up?

Delete

This isn’t impressive with only two fields, but for admin forms with dozens of fields, choosing an intuitive order is an
important usability detail.

24 Chapter 2. Getting started

Django Documentation, Release 1.3

And speaking of forms with dozens of fields, you might want to split the form up into fieldsets:

class PollAdmin (admin.ModelAdmin) :

fieldsets = [
(None, {’fields’: [’question’]}),
('Date information’, {’fields’: ['pub_date’]}),

]

admin.site.register (Poll, PollAdmin)

The first element of each tuple in fieldsets is the title of the fieldset. Here’s what our form looks like now:

Django administration Webrgemet, acbelien. Dogumentarion | Charge [asvaged [Lo ot
Haprea 1 Pl o Whar
Change poll L Histery
uestion: what's upt
Dage Danél Z0a7-12-01 Today |
publiihed:

Timsll LNLTRE | B

M Dielete Save and add anckher Sawe aned conlirae ofbling E

You can assign arbitrary HTML classes to each fieldset. Django provides a "collapse" class that displays a
particular fieldset initially collapsed. This is useful when you have a long form that contains a number of fields that
aren’t commonly used:

class PollAdmin (admin.ModelAdmin) :

fieldsets = [
(None, {"fields’: ['question’]}),
('Date information’, {’fields’: [’'pub_date’], ’'classes’: [’'collapse’]l}),

Django administration

Home » Polls » What's up?
Change poll

Question: What's up?

Date information { Show)

i Delete

2.4. Writing your first Django app, part 2 25

Django Documentation, Release 1.3

2.4.7 Adding related objects

OK, we have our Poll admin page. But a Po11 has multiple Choices, and the admin page doesn’t display choices.
Yet.

There are two ways to solve this problem. The first is to register Choice with the admin just as we did with Pol1.
That’s easy:

from polls.models import Choice
admin.site.register (Choice)

Now “Choices” is an available option in the Django admin. The “Add choice” form looks like this:

Django administration

Home » Choices

Add choice

Poll What's up7 v| @

Choice:

Votes:

In that form, the “Poll” field is a select box containing every poll in the database. Django knows that a ForeignKey
should be represented in the admin as a <select> box. In our case, only one poll exists at this point.

Also note the “Add Another” link next to “Poll.” Every object with a ForeignKey relationship to another gets this
for free. When you click “Add Another,” you’ll get a popup window with the “Add poll” form. If you add a poll in
that window and click “Save,” Django will save the poll to the database and dynamically add it as the selected choice
on the “Add choice” form you’re looking at.

But, really, this is an inefficient way of adding Choice objects to the system. It’d be better if you could add a bunch of
Choices directly when you create the Poll object. Let’s make that happen.

Remove the register () call for the Choice model. Then, edit the Pol1 registration code to read:

class ChoiceInline (admin.StackedInline) :
model = Choice
extra 3

class PollAdmin (admin.ModelAdmin) :
fieldsets = |
(None, {’fields’: [’'question’]}),

26 Chapter 2. Getting started

Django Documentation, Release 1.3

("Date information’, {’fields’: [’pub_date’], ’'classes’: [’'collapse’]l}),

]
inlines = [ChoiceInline]

admin.site.register (Poll, PollAdmin)

This tells Django: “Choice objects are edited on the Poll admin page. By default, provide enough fields for 3 choices.”

Load the “Add poll” page to see how that looks, you may need to restart your development server:

n‘_iﬂl'lgnl .[Idﬂ"l I ristration Wekome, sdrisn. Dosumeststion | Changs paanvwerd J Log ouwt

¥ & « Prlly

Add poll

i e |

fbezih

Choape

Waoley

Chadoi

Waleik

Chaosoe:

Worneas

Sawd and add dA0tET S a0 COSDAWE BIANG E

It works like this: There are three slots for related Choices — as specified by ext ra — and each time you come back
to the “Change” page for an already-created object, you get another three extra slots.

One small problem, though. It takes a lot of screen space to display all the fields for entering related Choice ob-
jects. For that reason, Django offers a tabular way of displaying inline related objects; you just need to change the
ChoiceInline declaration to read:

class ChoiceInline (admin.TabularInline):
#...

With that TabularInline (instead of StackedInline), the related objects are displayed in a more compact,
table-based format:

2.4. Writing your first Django app, part 2 27

Django Documentation, Release 1.3

Add poll

Question:

Date information { Show)

Choice Votes

2.4.8 Customize the admin change list

Now that the Poll admin page is looking good, let’s make some tweaks to the “change list” page — the one that displays
all the polls in the system.

Here’s what it looks like at this point:

Djangn administration e, v, e, D vt Caeess 3 b pons el | L] £oat

Select poll to change | Add ol |4
ol

WAL Wpr

By default, Django displays the str () of each object. But sometimes it’d be more helpful if we could display
individual fields. To do that, use the 1ist_display admin option, which is a tuple of field names to display, as
columns, on the change list page for the object:

class PollAdmin (admin.ModelAdmin) :
...
list_display = ('question’, ’'pub_date’)

Just for good measure, let’s also include the was_published_today custom method from Tutorial 1:

class PollAdmin (admin.ModelAdmin) :
...

28 Chapter 2. Getting started

Django Documentation, Release 1.3

list_display = (’question’, ’'pub_date’, ’'was_published_today’)

Now the poll change list page looks like this:

Django administration Wekroree, sbriaen, Dol wmernsmon | Chasge passsond | Log o

Select poll to change A pod |+
Cremacian Daiw puldivsed W publinked inday
Whar's up? Do 1, 3067, 113 pm True

B P

You can click on the column headers to sort by those values — except in the case of the was_published_today
header, because sorting by the output of an arbitrary method is not supported. Also note that the column header for
was_published_today is, by default, the name of the method (with underscores replaced with spaces). But you
can change that by giving that method (in models.py) a short_description attribute:

def was_published today(sclf):
return sclf.pub_date.date() == datetime.date.today ()
was_published_today.short_description = ’'Published today?’

Edit your admin.py file again and add an improvement to the Poll change list page: Filters. Add the following line to
PollAdmin:

list_filter = [’'pub_date’]

That adds a “Filter” sidebar that lets people filter the change list by the pub_date field:

nJaI'Igﬂ]dﬂﬂ FIStration Walc orme, sdrisn. Docurmemisson § Changs pasvecrd § Log owi

Select poll to change L Add pall [+
Chsestion Drate gas bl i bl Poltd | %] mipidiry?
Whai's up? Dee 1 300F 13 pm Teue By date pubdished
Ay daie
i ps

The type of filter displayed depends on the type of field you’re filtering on. Because pub_date is a DateTimeField,
Django knows to give the default filter options for DateTimeFields: “Any date,” “Today,” “Past 7 days,” “This month,”
“This year.”

This is shaping up well. Let’s add some search capability:
search_fields = [’qguestion’]
That adds a search box at the top of the change list. When somebody enters search terms, Django will search the

question field. You can use as many fields as you’d like — although because it uses a LIKE query behind the
scenes, keep it reasonable, to keep your database happy.

Finally, because Poll objects have dates, it’d be convenient to be able to drill down by date. Add this line:

date_hierarchy = ’"pub date’

2.4. Writing your first Django app, part 2 29

Django Documentation, Release 1.3

That adds hierarchical navigation, by date, to the top of the change list page. At top level, it displays all available
years. Then it drills down to months and, ultimately, days.

Now’s also a good time to note that change lists give you free pagination. The default is to display 50 items per page.
Change-list pagination, search boxes, filters, date-hierarchies and column-header-ordering all work together like you
think they should.

2.4.9 Customize the admin look and feel

Clearly, having “Django administration” at the top of each admin page is ridiculous. It’s just placeholder text.

That’s easy to change, though, using Django’s template system. The Django admin is powered by Django itself, and
its interfaces use Django’s own template system.

Open your settings file (mysite/settings.py, remember) and look at the TEMPLATE_DIRS setting.
TEMPLATE_DIRS is a tuple of filesystem directories to check when loading Django templates. It’s a search path.

By default, TEMPLATE_DIRS is empty. So, let’s add a line to it, to tell Django where our templates live:

TEMPLATE_DIRS = (

"/home/my_username/mytemplates",

)

Now copy the template admin/base_site.html from within the default Django admin tem-
plate directory in the source code of Django itself (django/contrib/admin/templates)
into an admin subdirectory of whichever directory you’re using in TEMPLATE_DIRS. For
example, if your TEMPLATE_DIRS includes "/home/my_username/mytemplates", as
above, then copy django/contrib/admin/templates/admin/base_site.html to
/home/my_username/mytemplates/admin/base_site.html. Don’t forget that admin subdirec-
tory.

Then, just edit the file and replace the generic Django text with your own site’s name as you see fit.

This template file contains lots of text like {$ block branding %} and {{ title }}. The {% and { { tags
are part of Django’s template language. When Django renders admin/base_site.html, this template language
will be evaluated to produce the final HTML page. Don’t worry if you can’t make any sense of the template right now
— we’ll delve into Django’s templating language in Tutorial 3.

Note that any of Django’s default admin templates can be overridden. To override a template, just do the same thing
you did with base_site.html — copy it from the default directory into your custom directory, and make changes.

Astute readers will ask: But if TEMPLATE_DIRS was empty by default, how was Django finding the default admin
templates? The answer is that, by default, Django automatically looks for a templates/ subdirectory within each
app package, for use as a fallback. See the template loader documentation for full information.

2.4.10 Customize the admin index page

On a similar note, you might want to customize the look and feel of the Django admin index page.

By default, it displays all the apps in INSTALLED_APPS that have been registered with the admin application, in
alphabetical order. You may want to make significant changes to the layout. After all, the index is probably the most
important page of the admin, and it should be easy to use.

The template to customize is admin/index.html. (Do the same as with admin/base_site.html in the
previous section — copy it from the default directory to your custom template directory.) Edit the file, and you’ll see it
uses a template variable called app_11ist. That variable contains every installed Django app. Instead of using that,
you can hard-code links to object-specific admin pages in whatever way you think is best. Again, don’t worry if you
can’t understand the template language — we’ll cover that in more detail in Tutorial 3.

30 Chapter 2. Getting started

Django Documentation, Release 1.3

When you’re comfortable with the admin site, read part 3 of this tutorial to start working on public poll views.

2.5 Writing your first Django app, part 3

This tutorial begins where Tutorial 2 left off. We’re continuing the Web-poll application and will focus on creating the
public interface — “views.”

2.5.1 Philosophy

A view is a “type” of Web page in your Django application that generally serves a specific function and has a specific
template. For example, in a Weblog application, you might have the following views:

* Blog homepage — displays the latest few entries.
» Entry “detail” page — permalink page for a single entry.
* Year-based archive page — displays all months with entries in the given year.
* Month-based archive page — displays all days with entries in the given month.
» Day-based archive page — displays all entries in the given day.
* Comment action — handles posting comments to a given entry.
In our poll application, we’ll have the following four views:
* Poll “index” page — displays the latest few polls.
* Poll “detail” page — displays a poll question, with no results but with a form to vote.
 Poll “results” page — displays results for a particular poll.
 Vote action — handles voting for a particular choice in a particular poll.

In Django, each view is represented by a simple Python function.

2.5.2 Design your URLs

The first step of writing views is to design your URL structure. You do this by creating a Python module, called a
URLconf. URLconfs are how Django associates a given URL with given Python code.

When a user requests a Django-powered page, the system looks at the ROOT_URLCONF setting, which contains a
string in Python dotted syntax. Django loads that module and looks for a module-level variable called urlpatterns,
which is a sequence of tuples in the following format:

(regular expression, Python callback function [, optional dictionary])
Django starts at the first regular expression and makes its way down the list, comparing the requested URL against
each regular expression until it finds one that matches.

When it finds a match, Django calls the Python callback function, with an Ht t pRequest object as the first argument,
any “captured” values from the regular expression as keyword arguments, and, optionally, arbitrary keyword arguments
from the dictionary (an optional third item in the tuple).

For more on Ht t pRequest objects, see the Request and response objects. For more details on URLconfs, see the
URL dispatcher.

2.5. Writing your first Django app, part 3 31

Django Documentation, Release 1.3

When you ran django-admin.py startproject mysite atthe beginning of Tutorial 1, it created a default
URLconf in mysite/urls.py. It also automatically set your ROOT_URLCONF setting (in settings.py) to
point at that file:

ROOT_URLCONF = ’'mysite.urls’

Time for an example. Editmysite/urls.py so it looks like this:

from django.conf.urls.defaults import =*

from django.contrib import admin
admin.autodiscover ()

urlpatterns = patterns(’’,
(r’" *polls/$’", ’'polls.views.index’),
(r’ (?P<poll_id>\d+)/$’, ’'pol i
(r’ (?F 0>11_id>\d+) /results/$’, ’pc ts’),
(r”" "¢ (?P<poll_id>\d+) /vote/$S’, ’'polls.view
(r”7admin/’”, include (admin.site.urls)),

)

This is worth a review. When somebody requests a page from your Web site — say, “/polls/23/”, Django will
load this Python module, because it’s pointed to by the ROOT_URLCONF setting. It finds the variable named
urlpatterns and traverses the regular expressions in order. When it finds a regular expression that matches —
r’ *polls/ (?P<poll_id>\d+) /$’ — it loads the function detail () from polls/views.py. Finally, it
calls that detail () function like so:

detail (request=<HttpRequest object>, poll_id=’'23")
The poll_id=’ 23"’ part comes from (?P<poll_id>\d+). Using parentheses around a pattern “captures” the
text matched by that pattern and sends it as an argument to the view function; the ?P<pol1_id> defines the name

that will be used to identify the matched pattern; and \d+ is a regular expression to match a sequence of digits (i.e., a
number).

Because the URL patterns are regular expressions, there really is no limit on what you can do with them. And there’s
no need to add URL cruft such as . php — unless you have a sick sense of humor, in which case you can do something
like this:

(r’ "polls/latest\.php$’, ’"polls.views.index’),

But, don’t do that. It’s silly.

Note that these regular expressions do not search GET and POST parameters, or the domain name. For example,
in a request to http://www.example.com/myapp/, the URLconf will look for myapp/. In a request to
http://www.example.com/myapp/?page=3, the URLconf will look for myapp/.

If you need help with regular expressions, see Wikipedia’s entry and the Python documentation. Also, the O’Reilly
book “Mastering Regular Expressions” by Jeffrey Friedl is fantastic.

Finally, a performance note: these regular expressions are compiled the first time the URLconf module is loaded.
They’re super fast.

2.5.3 Write your first view

Well, we haven’t created any views yet — we just have the URLconf. But let’s make sure Django is following the
URLconf properly.

Fire up the Django development Web server:

32 Chapter 2. Getting started

http://en.wikipedia.org/wiki/Regular_expression
http://docs.python.org/library/re.html

Django Documentation, Release 1.3

python manage.py runserver

Now go to “http://localhost:8000/polls/” on your domain in your Web browser. You should get a pleasantly-colored
error page with the following message:

ViewDoesNotExist at /polls/

Tried index in module polls.views. Error was: ‘module’
object has no attribute ’index’

This error happened because you haven’t written a function index () in the module polls/views.py.

Try “/polls/23/”, “/polls/23/results/” and ““/polls/23/vote/”. The error messages tell you which view Django tried (and
failed to find, because you haven’t written any views yet).

Time to write the first view. Open the file polls/views.py and put the following Python code in it:

from django.http import HttpResponse

def index (request):
return HttpResponse ("Hello, world. You’'re at the poll index.")

This is the simplest view possible. Go to “/polls/” in your browser, and you should see your text.

Now lets add a few more views. These views are slightly different, because they take an argument (which, remember,
is passed in from whatever was captured by the regular expression in the URLconf):

def detail (request, poll_id):
return HttpResponse ("You’re looking at po $s." % poll_id)

def results (request, poll_id):
return HttpResponse ("You’re looking at the results of po ss." % poll_id)

def vote (request, poll_id):
return HttpResponse ("You’re voting on po s." % poll_id)

Take a look in your browser, at “/polls/34/”. It’ll run the detail() method and display whatever ID you provide in the

URL. Try “/polls/34/results/” and ““/polls/34/vote/” too — these will display the placeholder results and voting pages.

2.5.4 Write views that actually do something

Each view is responsible for doing one of two things: Returning an Ht t pResponse object containing the content
for the requested page, or raising an exception such as Ht tp404. The rest is up to you.

Your view can read records from a database, or not. It can use a template system such as Django’s — or a third-party
Python template system — or not. It can generate a PDF file, output XML, create a ZIP file on the fly, anything you
want, using whatever Python libraries you want.

All Django wants is that Ht t pResponse. Or an exception.

Because it’s convenient, let’s use Django’s own database API, which we covered in Tutorial 1. Here’s one stab at
the index () view, which displays the latest 5 poll questions in the system, separated by commas, according to
publication date:

from polls.models import Poll
from django.http import HttpResponse

def index (request):
latest_poll_list = Poll.objects.all() .order_by (' -pub_date’) [:5]

2.5. Writing your first Django app, part 3 33

http://localhost:8000/polls/

Django Documentation, Release 1.3

output = ', ’.join([p.question for p in latest_poll_list])
return HttpResponse (output)

There’s a problem here, though: The page’s design is hard-coded in the view. If you want to change the way the page
looks, you’ll have to edit this Python code. So let’s use Django’s template system to separate the design from Python:

from django.template import Context, loader
from polls.models import Poll
from django.http import HttpResponse

def index (request):

latest_poll_list = Poll.objects.all() .order_by (' —pub_date’) [:5]
t = loader.get_template('polls/index.html”)
c = Context ({

"latest_poll_ list’: latest_poll_list,

b

return HttpResponse (t.render (c))

That code loads the template called “polls/index.html” and passes it a context. The context is a dictionary mapping
template variable names to Python objects.

Reload the page. Now you’ll see an error:

TemplateDoesNotExist at /polls/
polls/index.html

Ah. There’s no template yet. First, create a directory, somewhere on your filesystem, whose contents Django can
access. (Django runs as whatever user your server runs.) Don’t put them under your document root, though. You
probably shouldn’t make them public, just for security’s sake. Then edit TEMPLATE_DIRS in your settings.py
to tell Django where it can find templates — just as you did in the “Customize the admin look and feel” section of
Tutorial 2.

When you’ve done that, create a directory polls in your template directory. Within that, create a file called
index.html. Note that our loader.get_template ('polls/index.html’) code from above maps to
“[template_directory]/polls/index.html” on the filesystem.

Put the following code in that template:

if latest_poll_list

for poll in latest_poll_list
 poll.question </1li>
endfor

else
<p>No polls are available.</p>
endif

Load the page in your Web browser, and you should see a bulleted-list containing the “What’s up” poll from Tutorial
1. The link points to the poll’s detail page.

A shortcut: render_to_response()

It’s a very common idiom to load a template, fill a context and return an Ht t pRe sponse object with the result of the
rendered template. Django provides a shortcut. Here’s the full index () view, rewritten:

from django.shortcuts import render_to_response
from polls.models import Poll

34 Chapter 2. Getting started

Django Documentation, Release 1.3

def index (request):
latest_poll_list = Poll.objects.all() .order_by (' -pub_date’) [:5]
return render_to_response ('polls/index.html’, {’latest _poll list’: latest_poll list})

Note that once we’ve done this in all these views, we no longer need to import loader, Context and
HttpResponse.

The render_to_response () function takes a template name as its first argument and a dictionary as its optional
second argument. It returns an Ht t pResponse object of the given template rendered with the given context.

2.5.5 Raising 404

Now, let’s tackle the poll detail view — the page that displays the question for a given poll. Here’s the view:

from django.http import Http404

def detail (request, poll_id):
try:
p = Poll.objects.get (pk=poll_id)
except Poll.DoesNotExist:
raise Http404
return render_to_response('polls/detail . html’”, {'poll’: p})

The new concept here: The view raises the Ht t p4 04 exception if a poll with the requested ID doesn’t exist.

We’ll discuss what you could put in that polls/detail.html template a bit later, but if you’d like to quickly get
the above example working, just:

{{ poll }}

will get you started for now.

A shortcut: get_object_or_404()
It’s a very common idiom to use get () and raise Ht t p4 04 if the object doesn’t exist. Django provides a shortcut.
Here’s the detail () view, rewritten:

from django.shortcuts import render_to_response, get_object_or_404

def detail (request, poll_id):
p = get_object_or_404 (Poll, pk=poll_id)
return render_to_response('polls/detail . html’”, {"poll’: p})

The get_object_or_404 () function takes a Django model as its first argument and an arbitrary number of
keyword arguments, which it passes to the module’s get () function. It raises Ht t p4 04 if the object doesn’t exist.

Philosophy

Why do we use a helper function get_object_or_404 () instead of automatically catching the
ObjectDoesNotExist exceptions at a higher level, or having the model API raise Http404 instead of
ObjectDoesNotExist?

Because that would couple the model layer to the view layer. One of the foremost design goals of Django is to maintain
loose coupling.

2.5. Writing your first Django app, part 3 35

Django Documentation, Release 1.3

There’s also a get_1list_or_404 () function, which works just as get_object_or_404 () — except using
filter () instead of get (). It raises Ht tp4 04 if the list is empty.

2.5.6 Write a 404 (page not found) view

When you raise Ht t p4 04 from within a view, Django will load a special view devoted to handling 404 errors. It finds
it by looking for the variable handler404, which is a string in Python dotted syntax — the same format the normal
URLconf callbacks use. A 404 view itself has nothing special: It’s just a normal view.

You normally won’t have to bother with writing 404 views. By default, URLconfs have the following line up top:
from django.conf.urls.defaults import =*
That takes care of setting handler404 in the current module. As you

can see in django/conf/urls/defaults.py, handler404 is set to
django.views.defaults.page_not_found () by default.

Four more things to note about 404 views:

e If DEBUG is set to True (in your settings module) then your 404 view will never be used (and thus the
404 .html template will never be rendered) because the traceback will be displayed instead.

e The 404 view is also called if Django doesn’t find a match after checking every regular expression in the
URLconf.

¢ If you don’t define your own 404 view — and simply use the default, which is recommended — you still have one
obligation: To create a 404 .html template in the root of your template directory. The default 404 view will
use that template for all 404 errors.

* If DERUG is set to False (in your settings module) and if you didn’t create a 404 . html file, an Http500 is
raised instead. So remember to create a 404 . html.

2.5.7 Write a 500 (server error) view

Similarly, URLconfs may define a handler500, which points to a view to call in case of server errors. Server errors
happen when you have runtime errors in view code.

2.5.8 Use the template system

Back to the detail () view for our poll application. Given the context variable poll, here’s what the
“polls/detail.html” template might look like:

<hl> poll.question </hl>

for choice in poll.choice_set.all
 choice.choice </1li>
endfor

The template system uses dot-lookup syntax to access variable attributes. In the example of { { poll.question
} }, first Django does a dictionary lookup on the object pol1. Failing that, it tries an attribute lookup — which works,
in this case. If attribute lookup had failed, it would’ve tried a list-index lookup.

Method-calling happens in the {$ for %} loop: poll.choice_set.all is interpreted as the Python code
poll.choice_set.all (), which returns an iterable of Choice objects and is suitable for use in the {$ for %}
tag.

36 Chapter 2. Getting started

Django Documentation, Release 1.3

See the template guide for more about templates.

2.5.9 Simplifying the URLconfs

Take some time to play around with the views and template system. As you edit the URLconf, you may notice there’s
a fair bit of redundancy in it:

rrs

urlpatterns = patterns(’’,

)

Namely, polls.views is in every callback.

Because this is a common case, the URLconf framework provides a shortcut for common prefixes. You can factor out
the common prefixes and add them as the first argument to patterns (), like so:

urlpatterns = patterns('polls.views’,

This is functionally identical to the previous formatting. It’s just a bit tidier.

Since you generally don’t want the prefix for one app to be applied to every callback in your URLconf, you can
concatenate multiple patterns (). Your full mysite/urls.py might now look like this:

from django.conf.urls.defaults import =*

from django.contrib import admin
admin.autodiscover ()

urlpatterns = patterns('polls.views’,

<4

urlpatterns += patterns(’’,
“admin/’, include (admin.site.urls)),

(I’

)

2.5.10 Decoupling the URLconfs

While we’re at it, we should take the time to decouple our poll-app URLs from our Django project configuration.
Django apps are meant to be pluggable — that is, each particular app should be transferable to another Django installa-
tion with minimal fuss.

Our poll app is pretty decoupled at this point, thanks to the strict directory structure that python manage.py
startapp created, but one part of it is coupled to the Django settings: The URLconf.

We’ve been editing the URLs in mysite/urls.py, but the URL design of an app is specific to the app, not to the
Django installation — so let’s move the URLs within the app directory.

2.5. Writing your first Django app, part 3 37

Django Documentation, Release 1.3

Copy the file mysite/urls.py to polls/urls.py. Then, change mysite/urls.py to remove the poll-
specific URLs and insert an include (), leaving you with:

from django.conf.urls.defaults import =*

from django.contrib import admin
admin.autodiscover ()

urlpatterns = patterns(’
(r”"polls/’”, include('polls.urls”)),
(r”7admin/’, include (admin.site.urls)),

)

include () simply references another URLconf. Note that the regular expression doesn’t have a $ (end-of-string
match character) but has the trailing slash. Whenever Django encounters include (), it chops off whatever part of
the URL matched up to that point and sends the remaining string to the included URLconf for further processing.

Here’s what happens if a user goes to “/polls/34/” in this system:
* Django will find the match at * “polls/’

e Then, Django will strip off the matching text ("polls/") and send the remaining text — "34/" — to the
‘polls.urls’ URLconf for further processing.

Now that we’ve decoupled that, we need to decouple the polls.urls URLconf by removing the leading “polls/”
from each line, and removing the lines registering the admin site. Your polls.urls file should now look like this:

from django.conf.urls.defaults import =*

urlpatterns = patterns('polls.views’,
(r"~$’, ’"index'),
(r’ "~ (?P<poll_id>\d+)/$’, ’detail’),
(r’"~ (?P<poll_id>\d+) /results/$’, ’"results’),
(r’~ (?P<poll_id>\d+) /vote/$’, ’'vote’),

)

The idea behind include () and URLconf decoupling is to make it easy to plug-and-play URLs. Now that polls are
in their own URLconf, they can be placed under “/polls/”, or under “/fun_polls/”, or under “/content/polls/”, or any
other path root, and the app will still work.

All the poll app cares about is its relative path, not its absolute path.

When you’re comfortable with writing views, read part 4 of this tutorial to learn about simple form processing and
generic views.

2.6 Writing your first Django app, part 4

This tutorial begins where Tutorial 3 left off. We’re continuing the Web-poll application and will focus on simple form
processing and cutting down our code.

2.6.1 Write a simple form

Let’s update our poll detail template (“polls/detail.html”) from the last tutorial, so that the template contains an HTML
<form> element:

38 Chapter 2. Getting started

Django Documentation, Release 1.3

<hl> poll.question </h1l>
if error_message <p> error_message </p> endif
<form action="/polls poll.id vote/" method="post">

csrf_ token
for choice in poll.choice_set.all

<input type="radio" name="choice" id="choice .counter " value=" choice.id
<label for="chc - .counter "> choice.choice </label>

endfor
<input type="submit" value="Vote" />
</form>

A quick rundown:

* The above template displays a radio button for each poll choice. The value of each radio button is the associ-
ated poll choice’s ID. The name of each radio button is "choice". That means, when somebody selects one
of the radio buttons and submits the form, it’ll send the POST data choice=3. This is HTML Forms 101.

* We set the form’s action to /polls/{{ poll.id }}/vote/, and we set method="post". Using
method="post" (as opposed to method="get ") is very important, because the act of submitting this form
will alter data server-side. Whenever you create a form that alters data server-side, use method="post". This
tip isn’t specific to Django; it’s just good Web development practice.

* forloop.counter indicates how many times the for tag has gone through its loop

* Since we’re creating a POST form (which can have the effect of modifying data), we need to worry about Cross
Site Request Forgeries. Thankfully, you don’t have to worry too hard, because Django comes with a very easy-
to-use system for protecting against it. In short, all POST forms that are targeted at internal URLs should use
the {$ csrf_token %} template tag.

The {$ csrf_token %} tag requires information from the request object, which is not normally accessible from
within the template context. To fix this, a small adjustment needs to be made to the detail view, so that it looks like
the following:

from django.template import RequestContext

def detail (request, poll_id):
p = get_object_or_404 (Poll, pk=poll_id)
return render_to_response('polls/detail html’”, {'poll’: p},
context_instance=RequestContext (request))

The details of how this works are explained in the documentation for RequestContext.

Now, let’s create a Django view that handles the submitted data and does something with it. Remember, in Tutorial 3,
we created a URLconf for the polls application that includes this line:

(r’" "~ (?P<poll_id>\d+) /vote/$’, ’'vote’),

We also created a dummy implementation of the vote () function. Let’s create a real version. Add the following to
polls/views.py:

from django.shortcuts import get_object_or_404, render_to_response
from django.http import HttpResponseRedirect, HttpResponse

from django.core.urlresolvers import reverse

from django.template import RequestContext

from polls.models import Choice, Poll

def vote (request, poll_id):
p = get_object_or_404 (Poll, pk=poll_id)

2.6. Writing your first Django app, part 4 39

n

/>

Django Documentation, Release 1.3

try:
selected_choice = p.choice_set.get (pk=request.POST[’'choice’])
except (KeyError, Choice.DoesNotExist):

return render_to_response ('polls/detail html’”, {
"poll’: p,
"error_message’: "You didn’t select a choice.",
}, context_instance=RequestContext (request))

else:
selected_choice.votes += 1
selected_choice.save ()

’

return HttpResponseRedirect (reverse ('polls.views.results’, args=(p.id,)))

This code includes a few things we haven’t covered yet in this tutorial:

* request .POST is a dictionary-like object that lets you access submitted data by key name. In this case,
request .POST [’ choice’] returns the ID of the selected choice, as a string. request .POST values are

always strings.

Note that Django also provides request . GET for accessing GET data in the same way — but we’re explicitly

using request . POST in our code, to ensure that data is only altered via a POST call.

* request .POST [’ choice’] will raise KeyError if choice wasn’t provided in POST data. The above

code checks for KeyError and redisplays the poll form with an error message if choice isn’t given.

* After incrementing the choice count, the code returns an Ht tpResponseRedirect rather than a normal
HttpResponse. HttpResponseRedirect takes a single argument: the URL to which the user will be

redirected (see the following point for how we construct the URL in this case).

As the Python comment above points out, you should always return an HttpResponseRedirect after
successfully dealing with POST data. This tip isn’t specific to Django; it’s just good Web development practice.

* We are using the reverse () function in the Ht tpResponseRedirect constructor in this example. This
function helps avoid having to hardcode a URL in the view function. It is given the name of the view that we
want to pass control to and the variable portion of the URL pattern that points to that view. In this case, using

the URLconf we set up in Tutorial 3, this reverse () call will return a string like

’ e/t

polls/3/resul

. where the 3 is the value of p.id. This redirected URL will then call the ’ results’ view to display the

final page. Note that you need to use the full name of the view here (including the prefix).

As mentioned in Tutorial 3, request is a HttpRequest object. For more on Ht tpRequest objects, see the

request and response documentation.
After somebody votes in a poll, the vote () view redirects to the results page for the poll. Let’s write that view:

def results (request, poll_id):
p = get_object_or_404 (Poll, pk=poll_id)
return render_to_response('polls/results.html’”, {’poll’: p})

This is almost exactly the same as the detail () view from Tutorial 3. The only difference is the template name.

We'll fix this redundancy later.
Now, create a results.html template:

<hl> poll.question </hl>

40 Chapter 2. Getting started

Django Documentation, Release 1.3

for choice in poll.choice_set.all
 choice.choice —— choice.votes vote choice.votes|pluralize </1li>
endfor

Vote again?

Now, go to /polls/1/ in your browser and vote in the poll. You should see a results page that gets updated each
time you vote. If you submit the form without having chosen a choice, you should see the error message.

2.6.2 Use generic views: Less code is better
The detail () (from Tutorial 3) and results () views are stupidly simple — and, as mentioned above, redundant.
The index () view (also from Tutorial 3), which displays a list of polls, is similar.

These views represent a common case of basic Web development: getting data from the database according to a
parameter passed in the URL, loading a template and returning the rendered template. Because this is so common,
Django provides a shortcut, called the “generic views” system.

Generic views abstract common patterns to the point where you don’t even need to write Python code to write an app.

Let’s convert our poll app to use the generic views system, so we can delete a bunch of our own code. We’ll just have
to take a few steps to make the conversion. We will:

1. Convert the URLconf.
2. Delete some of the old, unneeded views.
3. Fix up URL handling for the new views.

Read on for details.

Why the code-shuffle?

Generally, when writing a Django app, you’ll evaluate whether generic views are a good fit for your problem, and
you’ll use them from the beginning, rather than refactoring your code halfway through. But this tutorial intentionally
has focused on writing the views “the hard way” until now, to focus on core concepts.

You should know basic math before you start using a calculator.

First, open the polls/urls.py URLconf. It looks like this, according to the tutorial so far:

from django.conf.urls.defaults import =*

urlpatterns = patterns('polls.views’,
(r”"$’, ’"index’),
(r’"~ (?P<poll_id>\d+)/$’, ’'detail’),
(r’ "~ (?P< 11_id>\d+) /results/$’, ’'results’),
(r’ "~ (?P<poll_id>\d+) /vote/$’, ’'vote’),

)

Change it like so:

from django.conf.urls.defaults import =*
from django.views.generic import DetailView, ListView
from polls.models import Poll

urlpatterns = patterns(’’,

2.6. Writing your first Django app, part 4 41

Django Documentation, Release 1.3

(r'"s’,

ListView.as_view (
queryset=Poll.objects.order_by ('
context_object_name=’ lates -
template_name='polls/index.html”)),

(r’ ~ (?P<pk>\d+) /s’,

DetailView.as_view (
model=Poll,
template_name='polls/detail html’”)),

url (r’ "~ (?P<pk>\d+) /results/$S’,

DetailView.as_view (
model=Poll,

template_name=’'polls/results.html’),
name=’'poll_results’),
(r” "~ (?P<poll_id>\d+) /vote/$’, ’'polls.views.vote’),

)

We’re using two generic views here: ListView and DetailView. Respectively, those two views abstract the
concepts of “display a list of objects” and “display a detail page for a particular type of object.”

» Each generic view needs to know what model it will be acting upon. This is provided using the mode 1 param-
eter.

* The DetailView generic view expects the primary key value captured from the URL to be called "pk", so
we’ve changed poll_1id to pk for the generic views.

e We’ve added a name, poll_results, to the results view so that we have a way to refer to its URL later on
(see the documentation about naming URL patterns for information). We’re also using the url () function from
django.conf.urls.defaults here. It’s a good habit to use url () when you are providing a pattern
name like this.

By default, the DetailView generic view uses a template called <app name>/<model
name>_detail.html. In our case, it’ll use the template "polls/poll_detail.html". The
template_name argument is used to tell Django to use a specific template name instead of the autogener-
ated default template name. We also specify the template_name for the results list view — this ensures that the
results view and the detail view have a different appearance when rendered, even though they’re both a Detailview
behind the scenes.

Similarly, the ListView generic view wuses a default template called <app name>/<model
name>_list.html; we use template_name to tell ListView to use our existing "polls/index.html"
template.

In previous parts of the tutorial, the templates have been provided with a context that contains the poll and
latest_poll_1list context variables. For DetailView the pol1l variable is provided automatically — since we’re
using a Django model (Pol1), Django is able to determine an appropriate name for the context variable. How-
ever, for ListView, the automatically generated context variable is poll_1list. To override this we provide the
context_object_name option, specifying that we want to use latest_poll_1list instead. As an alternative
approach, you could change your templates to match the new default context variables — but it’s a lot easier to just tell
Django to use the variable you want.

You can now delete the index (), detail () and results () views from polls/views.py. We don’t need
them anymore — they have been replaced by generic views.

The last thing to do is fix the URL handling to account for the use of generic views. In the vote view above, we used
the reverse () function to avoid hard-coding our URLs. Now that we’ve switched to a generic view, we’ll need to
change the reverse () call to point back to our new generic view. We can’t simply use the view function anymore
— generic views can be (and are) used multiple times — but we can use the name we’ve given:

42 Chapter 2. Getting started

Django Documentation, Release 1.3

return HttpResponseRedirect (reverse(’'poll results’, args=(p.id,)))

Run the server, and use your new polling app based on generic views.

For full details on generic views, see the generic views documentation.

2.6.3 Coming soon

The tutorial ends here for the time being. Future installments of the tutorial will cover:
* Advanced form processing
* Using the RSS framework
* Using the cache framework
* Using the comments framework
* Advanced admin features: Permissions
¢ Advanced admin features: Custom JavaScript

In the meantime, you might want to check out some pointers on where to go from here

2.7 What to read next

So you’ve read all the introductory material and have decided you’d like to keep using Django. We’ve only just
scratched the surface with this intro (in fact, if you’ve read every single word you’ve still read less than 10% of the
overall documentation).

So what’s next?

Well, we’ve always been big fans of learning by doing. At this point you should know enough to start a project of your
own and start fooling around. As you need to learn new tricks, come back to the documentation.

We’ve put a lot of effort into making Django’s documentation useful, easy to read and as complete as possible. The
rest of this document explains more about how the documentation works so that you can get the most out of it.

(Yes, this is documentation about documentation. Rest assured we have no plans to write a document about how to
read the document about documentation.)

2.7.1 Finding documentation

Django’s got a lot of documentation — almost 200,000 words — so finding what you need can sometimes be tricky. A
few good places to start are the search and the genindex.

Or you can just browse around!

2.7.2 How the documentation is organized

Django’s main documentation is broken up into “chunks” designed to fill different needs:

» The introductory material is designed for people new to Django — or to Web development in general. It doesn’t
cover anything in depth, but instead gives a high-level overview of how developing in Django “feels”.

2.7. What to read next 43

Django Documentation, Release 1.3

* The topic guides, on the other hand, dive deep into individual parts of Django. There are complete guides to
Django’s model system, template engine, forms framework, and much more.

This is probably where you’ll want to spend most of your time; if you work your way through these guides you
should come out knowing pretty much everything there is to know about Django.

* Web development is often broad, not deep — problems span many domains. We’ve written a set of how-fo guides
that answer common “How do I ...?” questions. Here you’ll find information about generating PDFs with
Django, writing custom template tags, and more.

Answers to really common questions can also be found in the FAQ.

* The guides and how-to’s don’t cover every single class, function, and method available in Django — that would
be overwhelming when you’re trying to learn. Instead, details about individual classes, functions, methods,
and modules are kept in the reference. This is where you’ll turn to find the details of a particular function or
whathaveyou.

* Finally, there’s some “specialized” documentation not usually relevant to most developers. This includes the
release notes, documentation of obsolete features, internals documentation for those who want to add code to
Django itself, and a few other things that simply don’t fit elsewhere.

2.7.3 How documentation is updated
Just as the Django code base is developed and improved on a daily basis, our documentation is consistently improving.
We improve documentation for several reasons:

» To make content fixes, such as grammar/typo corrections.

* To add information and/or examples to existing sections that need to be expanded.

* To document Django features that aren’t yet documented. (The list of such features is shrinking but exists
nonetheless.)

* To add documentation for new features as new features get added, or as Django APIs or behaviors change.

Django’s documentation is kept in the same source control system as its code. It lives in the django/trunk/docs directory
of our Subversion repository. Each document online is a separate text file in the repository.

2.7.4 Where to get it

You can read Django documentation in several ways. They are, in order of preference:

On the Web

The most recent version of the Django documentation lives at http://docs.djangoproject.com/en/dev/. These HTML
pages are generated automatically from the text files in source control. That means they reflect the “latest and greatest”
in Django — they include the very latest corrections and additions, and they discuss the latest Django features, which
may only be available to users of the Django development version. (See “Differences between versions” below.)

We encourage you to help improve the docs by submitting changes, corrections and suggestions in the ticket system.
The Django developers actively monitor the ticket system and use your feedback to improve the documentation for
everybody.

Note, however, that tickets should explicitly relate to the documentation, rather than asking broad tech-support ques-
tions. If you need help with your particular Django setup, try the django-users mailing list or the #django IRC channel
instead.

44 Chapter 2. Getting started

http://code.djangoproject.com/browser/django/trunk/docs
http://docs.djangoproject.com/en/dev/
http://code.djangoproject.com/simpleticket?component=Documentation
http://groups.google.com/group/django-users

Django Documentation, Release 1.3

In plain text

For offline reading, or just for convenience, you can read the Django documentation in plain text.

If you’re using an official release of Django, note that the zipped package (tarball) of the code includes a docs/
directory, which contains all the documentation for that release.

If you're using the development version of Django (aka the Subversion “trunk’), note that the docs/ directory con-
tains all of the documentation. You can svn update it, just as you svn update the Python code, in order to get
the latest changes.

You can check out the latest Django documentation from Subversion using this shell command:

S svn co http://code.djangoproject.com/svn/django/trunk/docs/ django_docs

One low-tech way of taking advantage of the text documentation is by using the Unix grep utility to search for a
phrase in all of the documentation. For example, this will show you each mention of the phrase “max_length” in any
Django document:

S grep -r max_length /path/to/django/docs/

As HTML, locally

You can get a local copy of the HTML documentation following a few easy steps:

* Django’s documentation uses a system called Sphinx to convert from plain text to HTML. You’ll need to
install Sphinx by either downloading and installing the package from the Sphinx Web site, or by Python’s
easy_install:

S easy_install Sphinx

* Then, just use the included Makefile to turn the documentation into HTML.:

$ path/to/django/docs
$ make html

You’ll need GNU Make installed for this.

e The HTML documentation will be placed in docs/_build/html.

Note: Generation of the Django documentation will work with Sphinx version 0.6 or newer, but we recommend going
straight to Sphinx 1.0.2 or newer.

2.7.5 Differences between versions

As previously mentioned, the text documentation in our Subversion repository contains the “latest and greatest”
changes and additions. These changes often include documentation of new features added in the Django develop-
ment version — the Subversion (“trunk”) version of Django. For that reason, it’s worth pointing out our policy on
keeping straight the documentation for various versions of the framework.

We follow this policy:

¢ The primary documentation on djangoproject.com is an HTML version of the latest docs in Subversion. These
docs always correspond to the latest official Django release, plus whatever features we’ve added/changed in the
framework since the latest release.

2.7. What to read next 45

http://sphinx.pocoo.org/
http://www.gnu.org/software/make/

Django Documentation, Release 1.3

* As we add features to Django’s development version, we try to update the documentation in the same Subversion
commit transaction.

* To distinguish feature changes/additions in the docs, we use the phrase: “New in version X.Y”, being X.Y the
next release version (hence, the one being developed).

* Documentation for a particular Django release is frozen once the version has been released officially. It remains
a snapshot of the docs as of the moment of the release. We will make exceptions to this rule in the case of
retroactive security updates or other such retroactive changes. Once documentation is frozen, we add a note to
the top of each frozen document that says “These docs are frozen for Django version XXX and links to the
current version of that document.

* The main documentation Web page includes links to documentation for all previous versions.
See Also:

If you’re new to Python, you might want to start by getting an idea of what the language is like. Django is 100%
Python, so if you’ve got minimal comfort with Python you’ll probably get a lot more out of Django.

If you’re new to programming entirely, you might want to start with this list of Python resources for non-programmers

If you already know a few other languages and want to get up to speed with Python quickly, we recommend Dive Into
Python (also available in a dead-tree version). If that’s not quite your style, there are quite a few other books about
Python.

46 Chapter 2. Getting started

http://docs.djangoproject.com/en/dev/
http://python.org/
http://wiki.python.org/moin/BeginnersGuide/NonProgrammers
http://diveintopython.org/
http://diveintopython.org/
http://www.amazon.com/exec/obidos/ASIN/1590593561/ref=nosim/jacobian20
http://wiki.python.org/moin/PythonBooks
http://wiki.python.org/moin/PythonBooks

CHAPTER
THREE

USING DJANGO

Introductions to all the key parts of Django you’ll need to know:

3.1 How to install Django

This document will get you up and running with Django.

3.1.1 Install Python

Being a Python Web framework, Django requires Python.

It works with any Python version from 2.4 to 2.7 (due to backwards incompatibilities in Python 3.0, Django does not
currently work with Python 3.0; see the Django FAQ for more information on supported Python versions and the 3.0
transition).

Get Python at http://www.python.org. If you’re running Linux or Mac OS X, you probably already have it installed.

Django on Jython

If you use Jython (a Python implementation for the Java platform), you’ll need to follow a few additional steps. See
Running Django on Jython for details.

3.1.2 Install Apache and mod_wsgi

If you just want to experiment with Django, skip ahead to the next section; Django includes a lightweight Web server
you can use for testing, so you won’t need to set up Apache until you’re ready to deploy Django in production.

If you want to use Django on a production site, use Apache with mod_wsgi. mod_wsgi can operate in one of two
modes: an embedded mode and a daemon mode. In embedded mode, mod_wsgi is similar to mod_perl — it embeds
Python within Apache and loads Python code into memory when the server starts. Code stays in memory throughout
the life of an Apache process, which leads to significant performance gains over other server arrangements. In daemon
mode, mod_wsgi spawns an independent daemon process that handles requests. The daemon process can run as a
different user than the Web server, possibly leading to improved security, and the daemon process can be restarted
without restarting the entire Apache Web server, possibly making refreshing your codebase more seamless. Consult
the mod_wsgi documentation to determine which mode is right for your setup. Make sure you have Apache installed,
with the mod_wsgi module activated. Django will work with any version of Apache that supports mod_wsgi.

See How to use Django with mod_wsgi for information on how to configure mod_wsgi once you have it installed.

47

http://www.python.org
http://jython.org/
http://code.google.com/p/modwsgi/

Django Documentation, Release 1.3

If you can’t use mod_wsgi for some reason, fear not: Django supports many other deployment options. Another option
is FastCGl, perfect for using Django with servers other than Apache. Additionally, Django follows the WSGI spec,
which allows it to run on a variety of server platforms. See the server-arrangements wiki page for specific installation
instructions for each platform.

3.1.3 Get your database running

If you plan to use Django’s database API functionality, you’ll need to make sure a database server is running. Django
supports many different database servers and is officially supported with PostgreSQL, MySQL, Oracle and SQLite
(although SQLite doesn’t require a separate server to be running).

In addition to the officially supported databases, there are backends provided by 3rd parties that allow you to use other
databases with Django:

* Sybase SQL Anywhere

« IBM DB2

¢ Microsoft SQL Server 2005
* Firebird

* ODBC

The Django versions and ORM features supported by these unofficial backends vary considerably. Queries regarding
the specific capabilities of these unofficial backends, along with any support queries, should be directed to the support
channels provided by each 3rd party project.

In addition to a database backend, you’ll need to make sure your Python database bindings are installed.

* If you’re using PostgreSQL, you’ll need the psycopg package. Django supports both version 1 and 2. (When you
configure Django’s database layer, specify either postgresqgl [for version 1] or postgresqgl_psycopg?2
[for version 2].) You might want to refer to our PostgreSQL notes for further technical details specific to this
database.

If you’re on Windows, check out the unofficial compiled Windows version.

* If you’re using MySQL, you’ll need MySQLdb, version 1.2.1p2 or higher. You will also want to read the
database-specific notes for the MySQL backend.

* If you're using SQLite and Python 2.4, you’ll need pysqlite. Use version 2.0.3 or higher. Python 2.5 ships with
an SQLite wrapper in the standard library, so you don’t need to install anything extra in that case. Please read
the SQLite backend notes.

« If you're using Oracle, you’ll need a copy of cx_Oracle, but please read the database-specific notes for the
Oracle backend for important information regarding supported versions of both Oracle and cx_Oracle.

* If you’re using an unofficial 3rd party backend, please consult the documentation provided for any additional
requirements.

If you plan to use Django’s manage . py syncdb command to automatically create database tables for your models,
you’ll need to ensure that Django has permission to create and alter tables in the database you’re using; if you plan
to manually create the tables, you can simply grant Django SELECT, INSERT, UPDATE and DELETE permissions.
On some databases, Django will need ALTER TABLE privileges during syncdb but won’t issue ALTER TABLE
statements on a table once syncdb has created it.

If you’re using Django’s festing framework to test database queries, Django will need permission to create a test
database.

48 Chapter 3. Using Django

http://www.python.org/dev/peps/pep-0333/
http://code.djangoproject.com/wiki/ServerArrangements
http://www.postgresql.org/
http://www.mysql.com/
http://www.oracle.com/
http://www.sqlite.org/
http://code.google.com/p/sqlany-django/
http://code.google.com/p/ibm-db/
http://code.google.com/p/django-mssql/
http://code.google.com/p/django-firebird/
http://code.google.com/p/django-pyodbc/
http://initd.org/pub/software/psycopg/
http://stickpeople.com/projects/python/win-psycopg/
http://sourceforge.net/projects/mysql-python
http://trac.edgewall.org/wiki/PySqlite
http://cx-oracle.sourceforge.net/

Django Documentation, Release 1.3

3.1.4 Remove any old versions of Django
If you are upgrading your installation of Django from a previous version, you will need to uninstall the old Django
version before installing the new version.

If you installed Django using setup.py install, uninstalling is as simple as deleting the d jango directory from
your Python site-packages.

If you installed Django from a Python egg, remove the Django . egg file, and remove the reference to the egg in the
file named easy—-install.pth. This file should also be located in your site-packages directory.

Where are my site-packages stored?

The location of the site-packages directory depends on the operating system, and the location in which Python
was installed. To find out your system’s site-packages location, execute the following:

python —-c "from distutils.sysconfig import get_python_lib; print get_python_lib ()"

(Note that this should be run from a shell prompt, not a Python interactive prompt.)

3.1.5 Install the Django code
Installation instructions are slightly different depending on whether you’re installing a distribution-specific package,
downloading the latest official release, or fetching the latest development version.

It’s easy, no matter which way you choose.

Installing a distribution-specific package

Check the distribution specific notes to see if your platform/distribution provides official Django packages/installers.
Distribution-provided packages will typically allow for automatic installation of dependencies and easy upgrade paths.

Installing an official release

1. Download the latest release from our download page.

2. Untar the downloaded file (e.g. tar xzvf Django-NNN.tar.gz, where NNN is the version number of the
latest release). If you’re using Windows, you can download the command-line tool bsdtar to do this, or you can
use a GUI-based tool such as 7-zip.

3. Change into the directory created in step 2 (e.g. cd Django-NNN).

4. If you’re using Linux, Mac OS X or some other flavor of Unix, enter the command sudo python setup.py
install atthe shell prompt. If you're using Windows, start up a command shell with administrator privileges
and run the command setup.py install.

These commands will install Django in your Python installation’s site-packages directory.

Installing the development version

Tracking Django development

If you decide to use the latest development version of Django, you’ll want to pay close attention to the development
timeline, and you’ll want to keep an eye on the list of backwards-incompatible changes. This will help you stay on top

3.1. How to install Django 49

http://www.djangoproject.com/download/
http://gnuwin32.sourceforge.net/packages/bsdtar.htm
http://www.7-zip.org/
http://code.djangoproject.com/timeline
http://code.djangoproject.com/timeline
http://code.djangoproject.com/wiki/BackwardsIncompatibleChanges

Django Documentation, Release 1.3

of any new features you might want to use, as well as any changes you’ll need to make to your code when updating
your copy of Django. (For stable releases, any necessary changes are documented in the release notes.)

If you’d like to be able to update your Django code occasionally with the latest bug fixes and improvements, follow
these instructions:

1. Make sure that you have Subversion installed, and that you can run its commands from a shell. (Enter svn
help at a shell prompt to test this.)

2. Check out Django’s main development branch (the ‘trunk’) like so:

svn co http://code.djangoproject.com/svn/django/trunk/ django-trunk

3. Next, make sure that the Python interpreter can load Django’s code. The most convenient way to do this is to
modify Python’s search path. Add a .pth file containing the full path to the django-trunk directory to
your system’s site-packages directory. For example, on a Unix-like system:

WORKING-DIR/django—-trunk > SITE-PACKAGES-DIR/django.pth

(In the above line, change SITE-PACKAGES-DIR to match the location of your system’s site—-packages
directory, as explained in the Where are my site-packages stored? section above. Change
WORKING-DIR/django—-trunk to match the full path to your new d jango—t runk directory.)

4. On Unix-like systems, create a symbolic link to the file django-trunk/django/bin/django-admin.py
in a directory on your system path, such as /usr/local/bin. For example:

In -s WORKING-DIR/django-trunk/django/bin/django-admin.py /usr/local/bin

(In the above line, change WORKING-DIR to match the full path to your new django—-trunk directory.)

This simply lets you type django—admin.py from within any directory, rather than having to qualify the
command with the full path to the file.

On Windows systems, the same result can be achieved by copying the file
django-trunk/django/bin/django—admin.py to somewhere on your system path, for exam-
ple C:\Python24\Scripts.

You don’t have to run python setup.py install, because you've already carried out the equivalent actions in
steps 3 and 4.

When you want to update your copy of the Django source code, just run the command svn update from within the
django-trunk directory. When you do this, Subversion will automatically download any changes.

3.2 Models and databases

A model is the single, definitive source of data about your data. It contains the essential fields and behaviors of the
data you’re storing. Generally, each model maps to a single database table.

3.2.1 Models

A model is the single, definitive source of data about your data. It contains the essential fields and behaviors of the
data you’re storing. Generally, each model maps to a single database table.

The basics:
» Each model is a Python class that subclasses d jango.db.models.Model.

* Each attribute of the model represents a database field.

50 Chapter 3. Using Django

http://subversion.tigris.org/
http://docs.python.org/install/index.html#modifying-python-s-search-path

Django Documentation, Release 1.3

» With all of this, Django gives you an automatically-generated database-access API; see Making queries.
See Also:

A companion to this document is the official repository of model examples. (In the Django source distribution, these
examples are in the tests/modeltests directory.)

Quick example

This example model defines a Person, whichhasa first_name and last_name:

from django.db import models

class Person (models.Model) :
first_name = models.CharField (max_length=30)
last_name = models.CharField(max_length=30)

first_name and last_name are fields of the model. Each field is specified as a class attribute, and each attribute
maps to a database column.

The above Person model would create a database table like this:

CREATE TABLE myapp_person (

"id" NOT NULL PRIMARY KEY,
"first_name" (30) NOT NULL,
"last_name" (30) NOT NULL

) ;

Some technical notes:

* The name of the table, myapp_person, is automatically derived from some model metadata but can be over-
ridden. See Table names for more details..

* An id field is added automatically, but this behavior can be overridden. See Automatic primary key fields.

e The CREATE TABLE SQL in this example is formatted using PostgreSQL syntax, but it’s worth noting Django
uses SQL tailored to the database backend specified in your settings file.

Using models

Once you have defined your models, you need to tell Django you’re going to use those models. Do this by editing
your settings file and changing the INSTALLED_APPS setting to add the name of the module that contains your
models.py.

For example, if the models for your application live in the module mysite.myapp.models (the package structure
that is created for an application by the manage .py startapp script), INSTALLED_APPS should read, in part:

INSTALLED_APPS = (

When you add new apps to INSTALLED_APPS, be sure to run manage .py syncdb.

3.2. Models and databases 51

http://code.djangoproject.com/browser/django/trunk/tests/modeltests

Django Documentation, Release 1.3

Fields

The most important part of a model — and the only required part of a model — is the list of database fields it defines.
Fields are specified by class attributes.

Example:

class Musician (models.Model) :
first_name = models.CharField (max_length=50)
last_name = models.CharField(max_length=50)
instrument = models.CharField(max_length=100)

class Album(models.Model) :
artist = models.ForeignKey (Musician)
name = models.CharField(max_length=100)
release_date = models.DateField()
num_stars = models.IntegerField()

Field types

Each field in your model should be an instance of the appropriate Field class. Django uses the field class types to
determine a few things:

* The database column type (e.g. INTEGER, VARCHAR).

e The widget to use in Django’s admin interface, if you care to use it (e.g. <input type="text">,
<select>).

* The minimal validation requirements, used in Django’s admin and in automatically-generated forms.

Django ships with dozens of built-in field types; you can find the complete list in the model field reference. You can
easily write your own fields if Django’s built-in ones don’t do the trick; see Writing custom model fields.

Field options

Each field takes a certain set of field-specific arguments (documented in the model field reference). For example,
CharField (andits subclasses) require amax_ length argument which specifies the size of the VARCHAR database
field used to store the data.

There’s also a set of common arguments available to all field types. All are optional. They’re fully explained in the
reference, but here’s a quick summary of the most often-used ones:

null If True, Django will store empty values as NULL in the database. Default is False.
blank If True, the field is allowed to be blank. Default is False.

Note that this is different than null. null is purely database-related, whereas b1ank is validation-related. If
a field has blank=True, validation on Django’s admin site will allow entry of an empty value. If a field has
blank=False, the field will be required.

choices Aniterable (e.g., a list or tuple) of 2-tuples to use as choices for this field. If this is given, Django’s admin
will use a select box instead of the standard text field and will limit choices to the choices given.

A choices list looks like this:
YEAR_IN_SCHOOL_CHOICES =
(u’FR’, u’Freshman’)

ran’ ’c
(u’” SO’ , u’S

(u’JrR’, u’Jul

52 Chapter 3. Using Django

Django Documentation, Release 1.3

The first element in each tuple is the value that will be stored in the database, the second element will be
displayed by the admin interface, or in a ModelChoiceField. Given an instance of a model object, the display
value for a choices field can be accessed using the get_F0O_display method. For example:

from django.db import models

class Person (models.Model) :
GENDER_CHOICES = (
(u’"M’, u’'Male’),
(u'"F’, u'Female’),
)
name = models.CharField(max_length=60)
gender = models.CharField(max_length=2, choices=GENDER_CHOICES)

>>> p = Person (name="Fred Flinstone", gender="M")
>>> p.save ()

>>> p.gender

u’ M’

>>> p.get_gender_display ()

u’"Male’

default The default value for the field. This can be a value or a callable object. If callable it will be called every
time a new object is created.

help_text Extra “help” text to be displayed under the field on the object’s admin form. It’s useful for documenta-
tion even if your object doesn’t have an admin form.

primary_ key If True, this field is the primary key for the model.

If you don’t specify primary_key=True for any fields in your model, Django will automatically add an
IntegerField to hold the primary key, so you don’t need to set primary_key=True on any of your
fields unless you want to override the default primary-key behavior. For more, see Automatic primary key fields.

unique If True, this field must be unique throughout the table.

Again, these are just short descriptions of the most common field options. Full details can be found in the common
model field option reference.

Automatic primary key fields

By default, Django gives each model the following field:

= models.AutoField(primary_key=)

This is an auto-incrementing primary key.

If you’d like to specify a custom primary key, just specify primary_key=True on one of your fields. If Django
sees you’ve explicitly set Field.primary_key, it won’t add the automatic id column.

Each model requires exactly one field to have primary_key=True.

3.2. Models and databases 53

Django Documentation, Release 1.3

Verbose field names

Each field type, except for ForeignKey, ManyToManyField and OneToOneField, takes an optional first
positional argument — a verbose name. If the verbose name isn’t given, Django will automatically create it using the
field’s attribute name, converting underscores to spaces.

In this example, the verbose name is "person’s first name":

first_name = models.CharField("person’s first name", max_length=30)

In this example, the verbose name is "first name":

first_name = models.CharField(max_length=30)

ForeignKey, ManyToManyField and OneToOneF ield require the first argument to be a model class, so use
the verbose_name keyword argument:

poll = models.ForeignKey (Poll, verbose_name="the related poll")
sites = models.ManyToManyField(Site, verbose_name="list of sites")
place = models.OneToOneField(Place, verbose_name="related place™)

The convention is not to capitalize the first letter of the verbose_name. Django will automatically capitalize the
first letter where it needs to.

Relationships

Clearly, the power of relational databases lies in relating tables to each other. Django offers ways to define the three
most common types of database relationships: many-to-one, many-to-many and one-to-one.

Many-to-one relationships To define a many-to-one relationship, use django.db.models.ForeignKey.
You use it just like any other Fie1d type: by including it as a class attribute of your model.

ForeignKey requires a positional argument: the class to which the model is related.

For example, if a Car model has a Manufacturer —thatis, a Manufacturer makes multiple cars but each Car
only has one Manufacturer — use the following definitions:

class Manufacturer (models.Model) :

#

class Car (models.Model) :
manufacturer = models.ForeignKey (Manufacturer)
#

You can also create recursive relationships (an object with a many-to-one relationship to itself) and relationships to
models not yet defined; see the model field reference for details.

It’s suggested, but not required, that the name of a ForeignKey field (manufacturer in the example above) be
the name of the model, lowercase. You can, of course, call the field whatever you want. For example:

class Car (models.Model) :
company_that_makes_it = models.ForeignKey (Manufacturer)

See Also:

ForeignKey fields accept a number of extra arguments which are explained in the model field reference. These
options help define how the relationship should work; all are optional.

54 Chapter 3. Using Django

Django Documentation, Release 1.3

For details on accessing backwards-related objects, see the Following relationships backward example.

For sample code, see the Many-to-one relationship model tests.

Many-to-many relationships To define a many-to-many relationship, use ManyToManyField. You use it just
like any other Fie1d type: by including it as a class attribute of your model.

ManyToManyField requires a positional argument: the class to which the model is related.

For example, if a Pizza has multiple Topping objects — that is, a Topping can be on multiple pizzas and each
P1izza has multiple toppings — here’s how you’d represent that:

class Topping(models.Model) :
#

class Pizza (models.Model) :
#
toppings = models.ManyToManyField (Topping)

As with ForeignKey, you can also create recursive relationships (an object with a many-to-many relationship to
itself) and relationships to models not yet defined; see the model field reference for details.

It’s suggested, but not required, that the name of a ManyToManyField (toppings in the example above) be a
plural describing the set of related model objects.

It doesn’t matter which model gets the ManyToManyF ield, but you only need it in one of the models — not in both.

Generally, ManyToManyField instances should go in the object that’s going to be edited in the admin interface,
if you’re using Django’s admin. In the above example, toppings is in Pizza (rather than Topping having a
pizzas ManyToManyField) because it’s more natural to think about a pizza having toppings than a topping
being on multiple pizzas. The way it’s set up above, the Pizza admin form would let users select the toppings.

See Also:
See the Many-to-many relationship model example for a full example.

ManyToManyField fields also accept a number of extra arguments which are explained in the model field reference.
These options help define how the relationship should work; all are optional.

Extra fields on many-to-many relationships When you’re only dealing with simple many-to-many relationships
such as mixing and matching pizzas and toppings, a standard ManyToManyField is all you need. However, some-
times you may need to associate data with the relationship between two models.

For example, consider the case of an application tracking the musical groups which musicians belong to. There
is a many-to-many relationship between a person and the groups of which they are a member, so you could use a
ManyToManyField to represent this relationship. However, there is a lot of detail about the membership that you
might want to collect, such as the date at which the person joined the group.

For these situations, Django allows you to specify the model that will be used to govern the many-to-many rela-
tionship. You can then put extra fields on the intermediate model. The intermediate model is associated with the
ManyToManyField using the through argument to point to the model that will act as an intermediary. For our
musician example, the code would look something like this:

class Person (models.Model) :
name = models.CharField(max_length=128)

def unicode ()z
return .name

class Group (models.Model) :

3.2. Models and databases 55

http://docs.djangoproject.com/en/dev/topics/db/queries/#backwards-related-objects
http://code.djangoproject.com/browser/django/trunk/tests/modeltests/many_to_one
http://code.djangoproject.com/browser/django/trunk/tests/modeltests/many_to_many/models.py

Django Documentation, Release 1.3

name = models.CharField(max_length=128)
members = models.ManyToManyField (Person, through=’Membership’)

def @ unicode_ ()z
return .name

class Membership (models.Model) :
person = models.ForeignKey (Person)
group = models.ForeignKey (Group)
date_joined = models.DateField()
invite_reason = models.CharField (max_length=64)

When you set up the intermediary model, you explicitly specify foreign keys to the models that are involved in the
ManyToMany relation. This explicit declaration defines how the two models are related.

There are a few restrictions on the intermediate model:

* Your intermediate model must contain one - and only one - foreign key to the target model (this would be
Person in our example). If you have more than one foreign key, a validation error will be raised.

* Your intermediate model must contain one - and only one - foreign key to the source model (this would be
Group in our example). If you have more than one foreign key, a validation error will be raised.

» The only exception to this is a model which has a many-to-many relationship to itself, through an intermediary
model. In this case, two foreign keys to the same model are permitted, but they will be treated as the two
(different) sides of the many-to-many relation.

* When defining a many-to-many relationship from a model to itself, using an intermediary model, you must use
symmetrical=False (see the model field reference).

Now that you have set up your ManyToManyField to use your intermediary model (Membership, in this case),
you’re ready to start creating some many-to-many relationships. You do this by creating instances of the intermediate
model:

>>> ringo = Person.objects.create (name="Ringo
>>> paul = Person.objects.create (name="Paul I
>>> beatles = Group.objects.create (name="The Bea

>>> ml = Membership (person=ringo, group=beatles,
date_joined=date (1962, 8, 16),
.. invite_reason= "Needed a new drummer.")
>>> ml.save ()
>>> beatles.members.all ()

[<Person: Ringo Starr>]
>>> ringo.group_set.all()
[<Group: The Beatles>]

>>> m2 = Membership.objects.create (person=paul, group=beatles,
date_joined=date (1960, 8, 1),

.. invite_reason= "Wanted to form a band."™)
>>> beatles.members.all ()
[<Person: Ringo Starr>, <Person: Paul McCartney>]

Unlike normal many-to-many fields, you can’t use add, create, or assignment (i.e., beatles.members =
[...]) to create relationships:

THIS WILL NOT WORK

>>> beatles.members.add (john)

NEITHER WILL THIS

>>> beatles.members.create (name="George Harrison")
AND NEITHER WILL THIS

>>> beatles.members = [john, paul, ringo, george]

56 Chapter 3. Using Django

Django Documentation, Release 1.3

Why? You can’t just create a relationship between a Person and a Group - you need to specify all the detail for the
relationship required by the Membership model. The simple add, create and assignment calls don’t provide a
way to specify this extra detail. As a result, they are disabled for many-to-many relationships that use an intermediate
model. The only way to create this type of relationship is to create instances of the intermediate model.

The remove () method is disabled for similar reasons. However, the clear () method can be used to remove all
many-to-many relationships for an instance:

Beatles have broken up
>>> beatles.members.clear ()

Once you have established the many-to-many relationships by creating instances of your intermediate model, you can
issue queries. Just as with normal many-to-many relationships, you can query using the attributes of the many-to-
many-related model:

Find all the groups with a member whose name starts with ’Paul’
>>> Group.objects.filter (members__name__startswith='Paul’)
[<Group: The Beatles>]

As you are using an intermediate model, you can also query on its attributes:

Find all the members of the Beatles that joined after 1 Jan 1961
>>> Person.objects.filter (
group__name=’'The Beatles’,
.. membership__date_joined__gt=date(1961,1,1))
[<Person: Ringo Starr]

One-to-one relationships To define a one-to-one relationship, use OneToOneField. You use it just like any other
Field type: by including it as a class attribute of your model.

This is most useful on the primary key of an object when that object “extends” another object in some way.
OneToOneField requires a positional argument: the class to which the model is related.

For example, if you were building a database of “places”, you would build pretty standard stuff such as address, phone
number, etc. in the database. Then, if you wanted to build a database of restaurants on top of the places, instead of
repeating yourself and replicating those fields in the Restaurant model, you could make Restaurant have a
OneToOneFieldtoPlace (because a restaurant “is a” place; in fact, to handle this you’d typically use inheritance,
which involves an implicit one-to-one relation).

As with ForeignKey, a recursive relationship can be defined and references to as-yet undefined models can be
made; see the model field reference for details.

See Also:
See the One-to-one relationship model example for a full example.
OneToOneField fields also accept one optional argument described in the model field reference.

OneToOneField classes used to automatically become the primary key on a model. This is no longer true (although
you can manually pass in the primary_key argument if you like). Thus, it’s now possible to have multiple fields of
type OneToOneField on a single model.

Models across files

It’s perfectly OK to relate a model to one from another app. To do this, import the related model at the top of the
model that holds your model. Then, just refer to the other model class wherever needed. For example:

3.2. Models and databases 57

http://code.djangoproject.com/browser/django/trunk/tests/modeltests/one_to_one/models.py

Django Documentation, Release 1.3

from geography.models import ZipCode
class Restaurant (models.Model) :

zip_code = models.ForeignKey (ZipCode)

Field name restrictions

Django places only two restrictions on model field names:
1. A field name cannot be a Python reserved word, because that would result in a Python syntax error. For example:

class Example (models.Model) :
pass = models.IntegerField() # ’'pass’ 1s a reserved word!

2. A field name cannot contain more than one underscore in a row, due to the way Django’s query lookup syntax
works. For example:
class Example (models.Model) :
foo__bar = models.IntegerField()
These limitations can be worked around, though, because your field name doesn’t necessarily have to match your

database column name. See the db_ column option.

SQL reserved words, such as join, where or select, are allowed as model field names, because Django escapes all
database table names and column names in every underlying SQL query. It uses the quoting syntax of your particular
database engine.

Custom field types

If one of the existing model fields cannot be used to fit your purposes, or if you wish to take advantage of some less
common database column types, you can create your own field class. Full coverage of creating your own fields is
provided in Writing custom model fields.

Meta options

Give your model metadata by using an inner class Meta, like so:

class Ox (models.Model) :
horn_length = models.IntegerField()

class Meta:
ordering = ["horn length"]
verbose_name_plural = "oxen'

Model metadata is “anything that’s not a field”, such as ordering options (ordering), database table name
(db_table), or human-readable singular and plural names (verbose_name and verbose_name_plural).
None are required, and adding class Meta to a model is completely optional.

A complete list of all possible Meta options can be found in the model option reference.

Model methods

Define custom methods on a model to add custom “row-level” functionality to your objects. Whereas Manager
methods are intended to do “table-wide” things, model methods should act on a particular model instance.

58 Chapter 3. Using Django

Django Documentation, Release 1.3

This is a valuable technique for keeping business logic in one place — the model.
For example, this model has a few custom methods:

from django.contrib.localflavor.us.models import USStateField

class Person (models.Model) :
first_name = models.CharField (max_length=50)
last_name = models.CharField(max_length=50)
birth_date = models.DateField()
address = models.CharField (max_length=100)
city = models.CharField (max_length=50)
state = USStateField()

def baby_ boomer_status ()t

"Returns the person’s

import datetime

papy—-poomer status

if datetime.date (1945, 8, 1) <= .birth_date <= datetime.date (1964, 12, 31):
return "Baby boomer"

if .birth_date < datetime.date (1945, 8, 1):
return "Pre-boomer"

return "Post-boomer"

def is_midwestern () :
" s True 1f this

return .state in ('

erson is from the Mic

Return

def _get_full name () s

"Returns the person’s full name."
return ’'%s %s’ % (.first_name, .last_name)
full_name = (_get_full_name)

The last method in this example is a property. Read more about properties.

, 'WI’, 'MI’, ’'IN’, ’'OH’, "IA’, MO

The model instance reference has a complete list of methods automatically given to each model. You can override
most of these — see overriding predefined model methods, below — but there are a couple that you’ll almost always

want to define:

__unicode__ () A Python “magic method” that returns a unicode “representation” of any object. This is what
Python and Django will use whenever a model instance needs to be coerced and displayed as a plain string.

Most notably, this happens when you display an object in an interactive console or in the admin.

You’ll always want to define this method; the default isn’t very helpful at all.

get_absolute_url () This tells Django how to calculate the URL for an object. Django uses this in its admin

interface, and any time it needs to figure out a URL for an object.

Any object that has a URL that uniquely identifies it should define this method.

Overriding predefined model methods

There’s another set of model methods that encapsulate a bunch of database behavior that you’ll want to customize. In

particular you’ll often want to change the way save () and delete () work.

You're free to override these methods (and any other model method) to alter behavior.

A classic use-case for overriding the built-in methods is if you want something to happen whenever you save an object.

For example (see save () for documentation of the parameters it accepts):

3.2. Models and databases

59

http://www.python.org/download/releases/2.2/descrintro/#property

Django Documentation, Release 1.3

class Blog(models.Model) :
name = models.CharField(max_length=100)
tagline = models.TextField()

def save (, *args, *xxkwargs):
do_something ()
(Blog,) .save (xargs, **kwargs)

do_something_else ()

You can also prevent saving:

class Blog(models.Model) :
name = models.CharField(max_length=100)
tagline = models.TextField()

def save (, *args, **kwargs):
if .name == "Yoko Ono’s blog":
return
else:
(Blog,) .save (¥args, *xkwargs)

It’s important to remember to call the superclass method — that’s that super (Blog, self).save (xargs,
x+kwargs) business — to ensure that the object still gets saved into the database. If you forget to call the super-
class method, the default behavior won’t happen and the database won’t get touched.

It’s also important that you pass through the arguments that can be passed to the model method — that’s what the
xargs, =*xkwargs bit does. Django will, from time to time, extend the capabilities of built-in model methods,
adding new arguments. If you use rargs, *xkwargs in your method definitions, you are guaranteed that your
code will automatically support those arguments when they are added.

Overriding Delete

Note that the de lete () method for an object is not necessarily called when deleting objects in bulk using a QuerySet.
To ensure customized delete logic gets executed, you can use pre_delete and/or post_delete signals.

Executing custom SQL

Another common pattern is writing custom SQL statements in model methods and module-level methods. For more
details on using raw SQL, see the documentation on using raw SQL.

Model inheritance

Model inheritance in Django works almost identically to the way normal class inheritance works in Python. The only
decision you have to make is whether you want the parent models to be models in their own right (with their own
database tables), or if the parents are just holders of common information that will only be visible through the child
models.

There are three styles of inheritance that are possible in Django.

1. Often, you will just want to use the parent class to hold information that you don’t want to have to type out for
each child model. This class isn’t going to ever be used in isolation, so Abstract base classes are what you’re
after.

2. If you’re subclassing an existing model (perhaps something from another application entirely) and want each
model to have its own database table, Multi-table inheritance is the way to go.

60 Chapter 3. Using Django

Django Documentation, Release 1.3

3. Finally, if you only want to modify the Python-level behaviour of a model, without changing the models fields
in any way, you can use Proxy models.

Abstract base classes

Abstract base classes are useful when you want to put some common information into a number of other models. You
write your base class and put abstract=True in the Meta class. This model will then not be used to create any
database table. Instead, when it is used as a base class for other models, its fields will be added to those of the child
class. It is an error to have fields in the abstract base class with the same name as those in the child (and Django will
raise an exception).

An example:

class CommonInfo (models.Model) :
name = models.CharField(max_length=100)
age = models.PositiveIntegerField()

class Meta:
abstract =

class Student (CommonInfo) :
home_group = models.CharField (max_length=5)

The Student model will have three fields: name, age and home_group. The CommonInfo model cannot be
used as a normal Django model, since it is an abstract base class. It does not generate a database table or have a
manager, and cannot be instantiated or saved directly.

For many uses, this type of model inheritance will be exactly what you want. It provides a way to factor out common
information at the Python level, whilst still only creating one database table per child model at the database level.

Meta inheritance When an abstract base class is created, Django makes any Meta inner class you declared in the
base class available as an attribute. If a child class does not declare its own Meta class, it will inherit the parent’s Meta.
If the child wants to extend the parent’s Mefta class, it can subclass it. For example:

class CommonInfo (models.Model) :

class Meta:
abstract
ordering

name’]
class Student (CommonInfo) :

class Meta (CommonInfo.Meta):
db_table = ’student_info’

Django does make one adjustment to the Meta class of an abstract base class: before installing the Meta attribute,
it sets abstract=False. This means that children of abstract base classes don’t automatically become abstract
classes themselves. Of course, you can make an abstract base class that inherits from another abstract base class. You
just need to remember to explicitly set abstract=True each time.

Some attributes won’t make sense to include in the Meta class of an abstract base class. For example, including
db_table would mean that all the child classes (the ones that don’t specify their own Meta) would use the same
database table, which is almost certainly not what you want.

Be careful with related_name If you are using the related_name attribute on a ForeignKey or
ManyToManyField, you must always specify a unique reverse name for the field. This would normally cause a

3.2. Models and databases 61

Django Documentation, Release 1.3

problem in abstract base classes, since the fields on this class are included into each of the child classes, with exactly
the same values for the attributes (including related_name) each time. Changed in version 1.2: Please, see the
release notes To work around this problem, when you are using related_name in an abstract base class (only), part
of the name should contain ’ $ (app_label)s’ and’ $ (class)s’.

* "% (class) s’ isreplaced by the lower-cased name of the child class that the field is used in.

* '3 (app_label) s’ isreplaced by the lower-cased name of the app the child class is contained within. Each
installed application name must be unique and the model class names within each app must also be unique,
therefore the resulting name will end up being different.

For example, given an app common/models.py:

class Base (models.Model) :
m2m = models.ManyToManyField (OtherModel, related_name="% (app label)s %(class)s rela

class Meta:
abstract =

class ChildA (Base) :
pass

class ChildB (Base) :
pass

Along with another app rare/models.py:

from common.models import Base

class ChildB (Base) :
pass

The reverse name of the commmon.ChildA.m2m field will be common_childa_related, whilst the reverse
name of the common .ChildB.m2m field will be common_childb_related, and finally the reverse name of the
rare.ChildB.m2m field will be rare_childb_related. Itis up to you how you use the ’ $ (class) s’ and
"% (app_label) s portion to construct your related name, but if you forget to use it, Django will raise errors when
you validate your models (or run syncdb).

If you don’t specify a related_name attribute for a field in an abstract base class, the default reverse name will be
the name of the child class followed by ’ _set’, just as it normally would be if you’d declared the field directly on
the child class. For example, in the above code, if the related_name attribute was omitted, the reverse name for
the m2m field would be childa_set in the ChildA case and childb_set for the ChildB field.

Multi-table inheritance

The second type of model inheritance supported by Django is when each model in the hierarchy is a model all by
itself. Each model corresponds to its own database table and can be queried and created individually. The inher-
itance relationship introduces links between the child model and each of its parents (via an automatically-created
OneToOneField). For example:

class Place (models.Model) :
name = models.CharField(max_length=50)
address = models.CharField (max_length=80)

class Restaurant (Place) :
serves_hot_dogs = models.BooleanField()
serves_pizza = models.BooleanField()

62 Chapter 3. Using Django

Django Documentation, Release 1.3

All of the fields of P lace will also be available in Restaurant, although the data will reside in a different database
table. So these are both possible:

>>> Place.objects.filter (name="Bob’s Cafe")
>>> Restaurant.objects.filter (name="Rob’s Cafe™)

If you have a P1lace that is also a Restaurant, you can get from the P1ace object to the Restaurant object
by using the lower-case version of the model name:

=12)

>>> p = Place.objects.get (
If p is a Restaurant object, this will give the child class:

>>> p.restaurant

<Restaurant:

However, if p in the above example was not a Restaurant (it had been created directly as a P1ace object or was
the parent of some other class), referring to p. restaurant would raise a Restaurant. DoesNotExist exception.

Meta and multi-table inheritance In the multi-table inheritance situation, it doesn’t make sense for a child class to
inherit from its parent’s Meta class. All the Meta options have already been applied to the parent class and applying
them again would normally only lead to contradictory behavior (this is in contrast with the abstract base class case,
where the base class doesn’t exist in its own right).

So a child model does not have access to its parent’s Mera class. However, there are a few limited cases where the
child inherits behavior from the parent: if the child does not specify an ordering attribute or a get_latest_by
attribute, it will inherit these from its parent.

If the parent has an ordering and you don’t want the child to have any natural ordering, you can explicitly disable it:

class ChildModel (ParentModel) :
class Meta:

ordering = []

Inheritance and reverse relations Because multi-table inheritance uses an implicit OneToOneField to link the
child and the parent, it’s possible to move from the parent down to the child, as in the above example. However, this
uses up the name that is the default related_name value for ForeignKey and ManyToManyField relations.
If you are putting those types of relations on a subclass of another model, you must specify the related_name
attribute on each such field. If you forget, Django will raise an error when you run validate or syncdb.

For example, using the above P 1ace class again, let’s create another subclass with a ManyToManyField:

class Supplier (Place):

customers = models.ManyToManyField (Restaurant, related_name=’'provider’)

Specifying the parent link field As mentioned, Django will automatically create a OneToOneF ield linking your
child class back any non-abstract parent models. If you want to control the name of the attribute linking back to the
parent, you can create your own OneToOneField and set parent_1ink=True to indicate that your field is the
link back to the parent class.

Proxy models

When using multi-table inheritance, a new database table is created for each subclass of a model. This is usually the
desired behavior, since the subclass needs a place to store any additional data fields that are not present on the base

3.2. Models and databases 63

Django Documentation, Release 1.3

class. Sometimes, however, you only want to change the Python behavior of a model — perhaps to change the default
manager, or add a new method.

This is what proxy model inheritance is for: creating a proxy for the original model. You can create, delete and update
instances of the proxy model and all the data will be saved as if you were using the original (non-proxied) model. The
difference is that you can change things like the default model ordering or the default manager in the proxy, without
having to alter the original.

Proxy models are declared like normal models. You tell Django that it’s a proxy model by setting the proxy attribute
of the Meta class to True.

For example, suppose you want to add a method to the standard Use r model that will be used in your templates. You
can do it like this:

from django.contrib.auth.models import User

class MyUser (User) :
class Meta:
proxy =

def do_something () e

The MyUser class operates on the same database table as its parent User class. In particular, any new instances of
User will also be accessible through MyUser, and vice-versa:

>>> u = User.objects.create (username=)
>>> MyUser.objects.get (username=)
<MyUser: fooba

ar>

You could also use a proxy model to define a different default ordering on a model. The standard User model has no
ordering defined on it (intentionally; sorting is expensive and we don’t want to do it all the time when we fetch users).
You might want to regularly order by the username attribute when you use the proxy. This is easy:

class OrderedUser (User) :
class Meta:
ordering = []
proxy =

Now normal User queries will be unordered and OrderedUser queries will be ordered by username.

QuerySets still return the model that was requested There is no way to have Django return, say, a MyUser
object whenever you query for User objects. A queryset for User objects will return those types of objects. The
whole point of proxy objects is that code relying on the original User will use those and your own code can use the
extensions you included (that no other code is relying on anyway). It is not a way to replace the User (or any other)
model everywhere with something of your own creation.

Base class restrictions A proxy model must inherit from exactly one non-abstract model class. You can’t inherit
from multiple non-abstract models as the proxy model doesn’t provide any connection between the rows in the different
database tables. A proxy model can inherit from any number of abstract model classes, providing they do not define
any model fields.

Proxy models inherit any Meta options that they don’t define from their non-abstract model parent (the model they
are proxying for).

64 Chapter 3. Using Django

Django Documentation, Release 1.3

Proxy model managers If you don’t specify any model managers on a proxy model, it inherits the managers from
its model parents. If you define a manager on the proxy model, it will become the default, although any managers
defined on the parent classes will still be available.

Continuing our example from above, you could change the default manager used when you query the User model
like this:

class NewManager (models.Manager) :

class MyUser (User) :
objects = NewManager ()

class Meta:
proxy =

If you wanted to add a new manager to the Proxy, without replacing the existing default, you can use the techniques
described in the custom manager documentation: create a base class containing the new managers and inherit that
after the primary base class:

class ExtraManagers (models.Model) :
secondary = NewManager ()

class Meta:
abstract =

class MyUser (User, ExtraManagers):
class Meta:
proxy =

You probably won’t need to do this very often, but, when you do, it’s possible.

Differences between proxy inheritance and unmanaged models Proxy model inheritance might look fairly similar
to creating an unmanaged model, using the managed attribute on a model’s Meta class. The two alternatives are not
quite the same and it’s worth considering which one you should use.

One difference is that you can (and, in fact, must unless you want an empty model) specify model fields on models
with Meta .managed=False. You could, with careful setting of Meta.db_table create an unmanaged model
that shadowed an existing model and add Python methods to it. However, that would be very repetitive and fragile as
you need to keep both copies synchronized if you make any changes.

The other difference that is more important for proxy models, is how model managers are handled. Proxy models are
intended to behave exactly like the model they are proxying for. So they inherit the parent model’s managers, including
the default manager. In the normal multi-table model inheritance case, children do not inherit managers from their
parents as the custom managers aren’t always appropriate when extra fields are involved. The manager documentation
has more details about this latter case.

When these two features were implemented, attempts were made to squash them into a single option. It turned out that
interactions with inheritance, in general, and managers, in particular, made the API very complicated and potentially
difficult to understand and use. It turned out that two options were needed in any case, so the current separation arose.

So, the general rules are:

1. If you are mirroring an existing model or database table and don’t want all the original database table columns,
use Meta.managed=False. That option is normally useful for modeling database views and tables not under
the control of Django.

3.2. Models and databases 65

Django Documentation, Release 1.3

2. If you are wanting to change the Python-only behavior of a model, but keep all the same fields as in the original,
use Meta.proxy=True. This sets things up so that the proxy model is an exact copy of the storage structure
of the original model when data is saved.

Multiple inheritance

Just as with Python’s subclassing, it’s possible for a Django model to inherit from multiple parent models. Keep in
mind that normal Python name resolution rules apply. The first base class that a particular name (e.g. Mera) appears
in will be the one that is used; for example, this means that if multiple parents contain a Mefa class, only the first one
is going to be used, and all others will be ignored.

Generally, you won’t need to inherit from multiple parents. The main use-case where this is useful is for “mix-in”
classes: adding a particular extra field or method to every class that inherits the mix-in. Try to keep your inheritance
hierarchies as simple and straightforward as possible so that you won’t have to struggle to work out where a particular
piece of information is coming from.

Field name “hiding” is not permitted

In normal Python class inheritance, it is permissible for a child class to override any attribute from the parent class. In
Django, this is not permitted for attributes that are Fie1d instances (at least, not at the moment). If a base class has
a field called author, you cannot create another model field called aut hor in any class that inherits from that base
class.

Overriding fields in a parent model leads to difficulties in areas such as initialising new instances (specifying which
field is being initialized in Model.__init__) and serialization. These are features which normal Python class
inheritance doesn’t have to deal with in quite the same way, so the difference between Django model inheritance and
Python class inheritance isn’t arbitrary.

This restriction only applies to attributes which are Field instances. Normal Python attributes can be overridden if
you wish. It also only applies to the name of the attribute as Python sees it: if you are manually specifying the database
column name, you can have the same column name appearing in both a child and an ancestor model for multi-table
inheritance (they are columns in two different database tables).

Django will raise a FieldError if you override any model field in any ancestor model.

3.2.2 Making queries

Once you’ve created your data models, Django automatically gives you a database-abstraction API that lets you create,
retrieve, update and delete objects. This document explains how to use this API. Refer to the data model reference for
full details of all the various model lookup options.

Throughout this guide (and in the reference), we’ll refer to the following models, which comprise a Weblog applica-
tion:

class Blog(models.Model) :
name = models.CharField(max_length=100)
tagline = models.TextField()

def _ unicode_ () .
return .name

class Author (models.Model) :
name = models.CharField(max_length=50)
email = models.EmailField()

66 Chapter 3. Using Django

Django Documentation, Release 1.3

def @ unicode_ ()z
return .name

class Entry (models.Model) :
blog = models.ForeignKey (Blog)
headline = models.CharField (max_length=255)
body_text = models.TextField()
pub_date models.DateTimeField ()
mod_date = models.DateTimeField()
authors = models.ManyToManyField (Author)
n_comments = models.IntegerField()
n_pingbacks = models.IntegerField()
rating = models.IntegerField()

def _ unicode_ () :
return .headline

Creating objects
To represent database-table data in Python objects, Django uses an intuitive system: A model class represents a
database table, and an instance of that class represents a particular record in the database table.

To create an object, instantiate it using keyword arguments to the model class, then call save () to save it to the
database.

You import the model class from wherever it lives on the Python path, as you may expect. (We point this out here
because previous Django versions required funky model importing.)

Assuming models live in a file mysite/blog/models. py, here’s an example:

>>> from blog.models import Blog
>>> b = Blog(name=’'Beatles Blog’, tagline=’All the latest Beatles news.’)
>>> b.save ()

This performs an INSERT SQL statement behind the scenes. Django doesn’t hit the database until you explicitly call
save ().

The save () method has no return value.
See Also:

save () takes a number of advanced options not described here. See the documentation for save () for complete
details.

To create an object and save it all in one step see the ‘create () * method.

Saving changes to objects

To save changes to an object that’s already in the database, use save ().

Given a Blog instance b5 that has already been saved to the database, this example changes its name and updates its
record in the database:

>> b5.name = ’'New name’
>> b5.save ()

This performs an UPDATE SQL statement behind the scenes. Django doesn’t hit the database until you explicitly call
save ().

3.2. Models and databases 67

Django Documentation, Release 1.3

Saving ForeignKey and ManyToManyField fields

Updating a ForeignKey field works exactly the same way as saving a normal field; simply assign an object of the
right type to the field in question. This example updates the b1l og attribute of an Ent ry instance entry:

>>> from blog.models import Entry

>>> entry = Entry.objects.get (pk=1)

>>> cheese_blog = Blog.objects.get (name="Cheddar Talk™)
>>> entry.blog = cheese_blog

>>> entry.save ()

Updating a ManyToManyField works a little differently; use the add () method on the field to add a record to the
relation. This example adds the Aut hor instance joe to the ent ry object:

>>> from blog.models import Author
>>> joe = Author.objects.create (name="Joe")
>>> entry.authors.add(joe)

Django will complain if you try to assign or add an object of the wrong type.

Retrieving objects

To retrieve objects from your database, you construct a QuerySet via a Manager on your model class.

A QuerySet represents a collection of objects from your database. It can have zero, one or many filters — criteria that
narrow down the collection based on given parameters. In SQL terms, a QuerySet equates to a SELECT statement,
and a filter is a limiting clause such as WHERE or LIMIT.

You get a QuerySet by using your model’s Manager. Each model has at least one Manager, and it’s called
objects by default. Access it directly via the model class, like so:

>>> Blog.objects

<django.db.models.manager.Manager object at

>>> b = Blog(name=’'Foo’, tagline=’'Bar’)

>>> b.objects

Tra C

AttributeError: "Manager isn’t accessible via Blog instances."

Note: Managers are accessible only via model classes, rather than from model instances, to enforce a separation
between “table-level” operations and “record-level” operations.

The Manager is the main source of QuerySet s for amodel. It acts as a “root” QuerySet that describes all objects
in the model’s database table. For example, Blog.objects is the initial QuerySet that contains all B1og objects
in the database.

Retrieving all objects

The simplest way to retrieve objects from a table is to get all of them. To do this, use the all () method on a
Manager:

>>> all entries = Entry.objects.all()

The all () method returns a QuerySet of all the objects in the database.

68 Chapter 3. Using Django

Django Documentation, Release 1.3

(IfEntry.objectsisaQuerySet, why can’t we justdo Entry.objects? That’s because Entry.objects,
the root QuerySet, is a special case that cannot be evaluated. The all () method returns a QuerySet that can be
evaluated.)

Retrieving specific objects with filters

The root QuerySet provided by the Manager describes all objects in the database table. Usually, though, you’ll
need to select only a subset of the complete set of objects.

To create such a subset, you refine the initial QuerySet, adding filter conditions. The two most common ways to
refine a QuerySet are:

filter (x*kwargs) Returns a new QuerySet containing objects that match the given lookup parameters.

exclude (xxkwargs) Returns a new QuerySet containing objects that do not match the given lookup parame-
ters.

The lookup parameters (xxkwargs in the above function definitions) should be in the format described in Field
lookups below.

For example, to get a QuerySet of blog entries from the year 2006, use filter () like so:

Entry.objects.filter (pub_date__ _year=2006)

We don’thavetoaddanall () —Entry.objects.all().filter (...). That would still work, but you only
need all () when you want all objects from the root QuerySet.

Chaining filters The result of refining a QuerySet is itself a QuerySet, so it’s possible to chain refinements
together. For example:

>>> Entry.objects.filter(
headline_ startswith=’What’
) .exclude (
pub_date_ _gte=datetime.now ()
) .filter(
pub_date__ _gte=datetime (2005, 1, 1)
)

This takes the initial QuerySet of all entries in the database, adds a filter, then an exclusion, then another filter. The
final result is a QuerySet containing all entries with a headline that starts with “What”, that were published between
January 1, 2005, and the current day.

Filtered QuerySets are unique Each time you refine a QuerySet, you get a brand-new QuerySet that is in no
way bound to the previous QuerySet. Each refinement creates a separate and distinct QuerySet that can be stored,
used and reused.

Example:

>> gl = Entry.objects.filter (headline__startswith="What")
>> g2 = gl.exclude (pub_date__gte=datetime.now())
>> g3 = gl.filter (pub_date__gte=datetime.now())

These three QuerySets are separate. The first is a base QuerySet containing all entries that contain a headline
starting with “What”. The second is a subset of the first, with an additional criteria that excludes records whose
pub_date is greater than now. The third is a subset of the first, with an additional criteria that selects only the
records whose pub_date is greater than now. The initial QuerySet (gl) is unaffected by the refinement process.

3.2. Models and databases 69

Django Documentation, Release 1.3

QuerySets are lazy QuerySets are lazy — the act of creating a QuerySet doesn’t involve any database activity.
You can stack filters together all day long, and Django won’t actually run the query until the QuerySet is evaluated.
Take a look at this example:

>>> g = Entry.objects.filter (headline__startswith="What")
>>> g = g.filter (pub_date__lte=datetime.now())
>>> g = g.exclude (body_text__icontains="food")

>>> print g

Though this looks like three database hits, in fact it hits the database only once, at the last line (print q). In general,
the results of a QuerySet aren’t fetched from the database until you “ask” for them. When you do, the QuerySet
is evaluated by accessing the database. For more details on exactly when evaluation takes place, see When QuerySets
are evaluated.

Retrieving a single object with get

.filter () will always give you a QuerySet, even if only a single object matches the query - in this case, it will
be a QuerySet containing a single element.

If you know there is only one object that matches your query, you can use the get () method on a Manager which
returns the object directly:

>>> one_entry = Entry.objects.get (pk=1)

You can use any query expression with get (), just like with filter () - again, see Field lookups below.

Note that there is a difference between using . get (), and using . filter () with a slice of [0]. If there are no
results that match the query, .get () will raise a DoesNotExist exception. This exception is an attribute of the
model class that the query is being performed on - so in the code above, if there is no Ent ry object with a primary
key of 1, Django will raise Entry .DoesNotExist.

Similarly, Django will complain if more than one item matches the get () query. In this case, it will raise
MultipleObjectsReturned, which again is an attribute of the model class itself.

Other QuerySet methods

Most of the time you’ll use all (), get (), filter () and exclude () when you need to look up objects from
the database. However, that’s far from all there is; see the QuerySet API Reference for a complete list of all the various
QuerySet methods.

Limiting QuerySets

Use a subset of Python’s array-slicing syntax to limit your QuerySet to a certain number of results. This is the
equivalent of SQL’s LIMIT and OFFSET clauses.
For example, this returns the first 5 objects (LIMIT 5):

>>> Entry.objects.all() [:5]

This returns the sixth through tenth objects (OFFSET 5 LIMIT 5):

>>> Entry.objects.all() [5:10]

Negative indexing (i.e. Entry.objects.all () [-1])is not supported.

70 Chapter 3. Using Django

Django Documentation, Release 1.3

Generally, slicing a QuerySet returns a new QuerySet — it doesn’t evaluate the query. An exception is if you use
the “step” parameter of Python slice syntax. For example, this would actually execute the query in order to return a
list of every second object of the first 10:

>>> Entry.objects.all()[:10:2]

To retrieve a single object rather than a list (e.g. SELECT foo FROM bar LIMIT 1), use asimple index instead
of a slice. For example, this returns the first Ent ry in the database, after ordering entries alphabetically by headline:

>>> Entry.objects.order_by (' headline’”) [0]

This is roughly equivalent to:

>>> Entry.objects.order_by ('headline’) [0:1].get ()

Note, however, that the first of these will raise IndexError while the second will raise DoesNotExist if no
objects match the given criteria. See get () for more details.

Field lookups

Field lookups are how you specify the meat of an SQL WHERE clause. They’re specified as keyword arguments to the
QuerySet methods filter (), exclude () and get ().

Basic lookups keyword arguments take the form field lookuptype=value. (That’s a double-underscore).
For example:

>>> Entry.objects.filter (pub_date__ lte="2006-01-01")

translates (roughly) into the following SQL:

SELECT % FROM blog_entry WHERE pub_date <= "2006-01-01";

How this is possible

Python has the ability to define functions that accept arbitrary name-value arguments whose names and values are
evaluated at runtime. For more information, see Keyword Arguments in the official Python tutorial.

If you pass an invalid keyword argument, a lookup function will raise TypeError.

The database API supports about two dozen lookup types; a complete reference can be found in the field lookup
reference. To give you a taste of what’s available, here’s some of the more common lookups you’ll probably use:

exact An “exact” match. For example:

>>> Entry.objects.get (headline__exact="Man bites dog")

Would generate SQL along these lines:

SELECT ... WHERE headline = 'Man bites dog’;

If you don’t provide a lookup type — that is, if your keyword argument doesn’t contain a double underscore —
the lookup type is assumed to be exact.

For example, the following two statements are equivalent:

>>> Blog.objects.get (id__exact=14)
>>> Blog.objects.get (id=14)

This is for convenience, because exact lookups are the common case.

3.2. Models and databases 71

http://docs.python.org/tutorial/controlflow.html#keyword-arguments

Django Documentation, Release 1.3

iexact A case-insensitive match. So, the query:

>>> Blog.objects.get (name__iexact="beatles blog")

Would match a Blog titled “Beatles Blog”, “beatles blog”, or even “BeAtIES blOG”.
contains Case-sensitive containment test. For example:

Entry.objects.get (headline__ contains=’Lennon’)

Roughly translates to this SQL:

SELECT ... WHERE headline LIKE ’S%Lennons’;

Note this will match the headline ’ Today Lennon honored’ butnot’today lennon honored’.
There’s also a case-insensitive version, icontains.

startswith, endswith Starts-with and ends-with search, respectively. There are also case-insensitive versions
called istartswithand iendswith.

Again, this only scratches the surface. A complete reference can be found in the field lookup reference.

Lookups that span relationships

Django offers a powerful and intuitive way to “follow” relationships in lookups, taking care of the SQL JOINs for
you automatically, behind the scenes. To span a relationship, just use the field name of related fields across models,
separated by double underscores, until you get to the field you want.

This example retrieves all Ent ry objects with a Blog whose name is ' Beatles Blog’:

>>> Entry.objects.filter (blog__name__exact='Beatles Blog’)

This spanning can be as deep as you’d like.
It works backwards, too. To refer to a “reverse” relationship, just use the lowercase name of the model.
This example retrieves all B1og objects which have at least one Ent ry whose headline contains ' Lennon’:

>>> Blog.objects.filter (entry__headline__ _contains=’lLennon’)

If you are filtering across multiple relationships and one of the intermediate models doesn’t have a value that meets
the filter condition, Django will treat it as if there is an empty (all values are NULL), but valid, object there. All this
means is that no error will be raised. For example, in this filter:

Blog.objects.filter (entry__authors__name=’Lennon’)
(if there was a related Author model), if there was no author associated with an entry, it would be treated as if

there was also no name attached, rather than raising an error because of the missing author. Usually this is exactly
what you want to have happen. The only case where it might be confusing is if you are using i snull. Thus:

Blog.objects.filter (entry__authors_ _name__isnull=)

will return B1og objects that have an empty name on the author and also those which have an empty author on
the ent ry. If you don’t want those latter objects, you could write:

Blog.objects.filter (entry__authors__isnull= ,
entry__authors__name__isnull=)

72 Chapter 3. Using Django

Django Documentation, Release 1.3

Spanning multi-valued relationships When you are filtering an object based on a ManyToManyField or a re-
verse ForeignKey, there are two different sorts of filter you may be interested in. Consider the Blog/Entry
relationship (Blog to Entry is a one-to-many relation). We might be interested in finding blogs that have an entry
which has both “Lennon” in the headline and was published in 2008. Or we might want to find blogs that have an
entry with “Lennon” in the headline as well as an entry that was published in 2008. Since there are multiple entries
associated with a single B1og, both of these queries are possible and make sense in some situations.

The same type of situation arises with aManyToManyField. For example, if an Entry hasaManyToManyField
called tags, we might want to find entries linked to tags called “music” and “bands” or we might want an entry that
contains a tag with a name of “music” and a status of “public”.

To handle both of these situations, Django has a consistent way of processing filter () and exclude () calls. Ev-
erything inside a single filter () call is applied simultaneously to filter out items matching all those requirements.
Successive filter () calls further restrict the set of objects, but for multi-valued relations, they apply to any object
linked to the primary model, not necessarily those objects that were selected by an earlier filter () call.

That may sound a bit confusing, so hopefully an example will clarify. To select all blogs that contain entries with
both “Lennon” in the headline and that were published in 2008 (the same entry satisfying both conditions), we would
write:

Blog.objects.filter (entry__headline__contains= ,
entry___pub_date__year=2008)

To select all blogs that contain an entry with “Lennon” in the headline as well as an entry that was published in 2008,
we would write:

Blog.objects.filter (entry__headline__contains=) .filter(
entry___pub_date__ _year=2008)

In this second example, the first filter restricted the queryset to all those blogs linked to that particular type of entry.
The second filter restricted the set of blogs further to those that are also linked to the second type of entry. The entries
select by the second filter may or may not be the same as the entries in the first filter. We are filtering the B1og items
with each filter statement, not the Ent ry items.

All of this behavior also applies to exclude () : all the conditions in a single exclude () statement apply to a single
instance (if those conditions are talking about the same multi-valued relation). Conditions in subsequent filter ()
or exclude () calls that refer to the same relation may end up filtering on different linked objects.

Filters can reference fields on the model

In the examples given so far, we have constructed filters that compare the value of a model field with a constant. But
what if you want to compare the value of a model field with another field on the same model?

Django provides the F () object to allow such comparisons. Instances of F () act as a reference to a model field within
a query. These references can then be used in query filters to compare the values of two different fields on the same
model instance.

For example, to find a list of all blog entries that have had more comments than pingbacks, we construct an F () object
to reference the comment count, and use that F () object in the query:

>>> from django.db.models import F
>>> Entry.objects.filter (n_comments__gt=F ())

Django supports the use of addition, subtraction, multiplication, division and modulo arithmetic with F () objects,
both with constants and with other F () objects. To find all the blog entries with more than fwice as many comments
as pingbacks, we modify the query:

3.2. Models and databases 73

Django Documentation, Release 1.3

>>> Entry.objects.filter (n_comments__ gt=F ('n_pingbacks’) * 2)

To find all the entries where the rating of the entry is less than the sum of the pingback count and comment count, we
would issue the query:

>>> Entry.objects.filter(rating__1lt=F('n_comments’) + F('n_pingbacks’))

You can also use the double underscore notation to span relationships in an F () object. An F () object with a double

underscore will introduce any joins needed to access the related object. For example, to retrieve all the entries where
the author’s name is the same as the blog name, we could issue the query:

>>> Entry.objects.filter (authors__name=F ('blog name’))

New in version Development version. For date and date/time fields, you can add or subtract a
datetime.timedelta object. The following would return all entries that were modified more than 3 days af-
ter they were published:

>>> from datetime import timedelta
>>> Entry.objects.filter (mod_date___gt=F ('pub_date’) + timedelta (days=3))

The pk lookup shortcut

For convenience, Django provides a pk lookup shortcut, which stands for “primary key”.
In the example B1og model, the primary key is the id field, so these three statements are equivalent:

>>> Blog.objects.get (id__exact=14)
>>> Blog.objects.get (id=14)
>>> Blog.objects.get (pk=14)

The use of pk isn’t limited to ___exact queries — any query term can be combined with pk to perform a query on the
primary key of a model:

Get blogs entries with id 1, 4 and 7
>>> Blog.objects.filter(pk__in=[1,4,7])

Get all blog entries with id > 14
>>> Blog.objects.filter (pk__gt=14)

pk lookups also work across joins. For example, these three statements are equivalent:

>>> Entry.objects.filter (blog__id__exact=3)
>>> Entry.objects.filter (blog__id=3)
>>> Entry.objects.filter (blog__pk=3)

Escaping percent signs and underscores in LIKE statements

The field lookups that equate to LIKE SQL statements (iexact, contains, icontains, startswith,
istartswith, endswith and iendswith) will automatically escape the two special characters used in LIKE
statements — the percent sign and the underscore. (In a LIKE statement, the percent sign signifies a multiple-character
wildcard and the underscore signifies a single-character wildcard.)

This means things should work intuitively, so the abstraction doesn’t leak. For example, to retrieve all the entries that
contain a percent sign, just use the percent sign as any other character:

74 Chapter 3. Using Django

Django Documentation, Release 1.3

>>> Entry.objects.filter (headline__contains=’%")

Django takes care of the quoting for you; the resulting SQL will look something like this:

SELECT ... WHERE headline LIKE ’3$\%%’;

Same goes for underscores. Both percentage signs and underscores are handled for you transparently.

Caching and QuerySets

Each QuerySet contains a cache, to minimize database access. It’s important to understand how it works, in order
to write the most efficient code.

In a newly created QuerySet, the cache is empty. The first time a QuerySet is evaluated — and, hence, a database
query happens — Django saves the query results in the QuerySet ‘s cache and returns the results that have been
explicitly requested (e.g., the next element, if the QuerySet is being iterated over). Subsequent evaluations of the
QuerySet reuse the cached results.

Keep this caching behavior in mind, because it may bite you if you don’t use your QuerySets correctly. For example,
the following will create two QuerySets, evaluate them, and throw them away:

>>> print [e.headline for e in Entry.objects.all()]
>>> print [e.pub_date for e in Entry.objects.all()]

That means the same database query will be executed twice, effectively doubling your database load. Also, there’s
a possibility the two lists may not include the same database records, because an Ent ry may have been added or
deleted in the split second between the two requests.

To avoid this problem, simply save the QuerySet and reuse it:

>>> queryset = Entry.objects.all()
>>> print [p.headline for p in queryset]
>>> print [p.pub_date for p in queryset]

Complex lookups with Q objects
Keyword argument queries —in filter (), etc. — are “AND”ed together. If you need to execute more complex
queries (for example, queries with OR statements), you can use Q objects.

A Q object (django.db.models.Q) is an object used to encapsulate a collection of keyword arguments. These
keyword arguments are specified as in “Field lookups™ above.

For example, this Q object encapsulates a single LIKE query:

from django.db.models import QO
Q(question__startswith='What’)

Q objects can be combined using the & and | operators. When an operator is used on two Q objects, it yields a new Q
object.

For example, this statement yields a single Q object that represents the “OR” of two "question__startswith"
queries:

Q(question__startswith="Who’) | Q(question__startswith=’What’)

This is equivalent to the following SQL WHERE clause:

3.2. Models and databases 75

Django Documentation, Release 1.3

WHERE question LIKE ’'Who%’ OR question LIKE ’'What%’

You can compose statements of arbitrary complexity by combining Q objects with the & and | operators and use
parenthetical grouping. Also, Q objects can be negated using the ~ operator, allowing for combined lookups that
combine both a normal query and a negated (NOT) query:

Q(question__startswith='"Who’) | ~Q(pub_date__year=2005)
Each lookup function that takes keyword-arguments (e.g. filter (), exclude (), get ()) can also be passed

one or more Q objects as positional (not-named) arguments. If you provide multiple Q object arguments to a lookup
function, the arguments will be “AND”ed together. For example:

Poll.objects.get (

Q(question__startswith="Who’),

Q (pub_date=date (2005, 5, 2)) | Q(pub_date=date (2005, 5, 6))
)

... roughly translates into the SQL:
SELECT x from polls WHERE question LIKE ’'Who%’
AND (pub_date = "2005-05-02" OR pub_date = "2005-05-06")

Lookup functions can mix the use of Q objects and keyword arguments. All arguments provided to a lookup function
(be they keyword arguments or Q objects) are “AND”ed together. However, if a Q object is provided, it must precede
the definition of any keyword arguments. For example:

Poll.objects.get (
Q (pub_date=date (2005, 5, 2)) | Q(pub_date=date (2005, 5, 6)),
question__startswith="Who’)

... would be a valid query, equivalent to the previous example; but:

Poll.objects.get (
question__startswith=’Who’,
Q (pub_date=date (2005, 5, 2)) | Q(pub_date=date (2005, 5, 6)))
... would not be valid.

See Also:

The OR lookups examples in the Django unit tests show some possible uses of Q.

Comparing objects

To compare two model instances, just use the standard Python comparison operator, the double equals sign: ==.
Behind the scenes, that compares the primary key values of two models.

Using the Ent ry example above, the following two statements are equivalent:

>>> some_entry == other_entry
>>> some_entry.id == other_entry.id

If a model’s primary key isn’t called id, no problem. Comparisons will always use the primary key, whatever it’s
called. For example, if a model’s primary key field is called name, these two statements are equivalent:

>>> some_obj == other_obj
>>> some_obj.name == other_obj.name

76 Chapter 3. Using Django

http://code.djangoproject.com/browser/django/trunk/tests/modeltests/or_lookups/tests.py

Django Documentation, Release 1.3

Deleting objects
The delete method, conveniently, is named delete (). This method immediately deletes the object and has no return
value. Example:

e.delete ()

You can also delete objects in bulk. Every QuerySet has a delete () method, which deletes all members of that
QuerySet.

For example, this deletes all Ent ry objects with a pub_date year of 2005:

Entry.objects.filter (pub_date__year=2005) .delete()

Keep in mind that this will, whenever possible, be executed purely in SQL, and so the delete () methods of in-
dividual object instances will not necessarily be called during the process. If you’ve provided a custom delete ()
method on a model class and want to ensure that it is called, you will need to “manually” delete instances of that model

(e.g., by iterating over a QuerySet and calling delete () on each object individually) rather than using the bulk
delete () method of a QuerySet.

When Django deletes an object, by default it emulates the behavior of the SQL constraint ON DELETE CASCADE —
in other words, any objects which had foreign keys pointing at the object to be deleted will be deleted along with it.
For example:

b = Blog.objects.get (pk=1)
b.delete()

New in version Development version: This cascade behavior is customizable via the on_delete argument to the
ForeignKey. Note that delete () is the only QuerySet method that is not exposed on a Manager itself. This
is a safety mechanism to prevent you from accidentally requesting Entry.objects.delete (), and deleting all
the entries. If you do want to delete all the objects, then you have to explicitly request a complete query set:

Entry.objects.all () .delete()

Updating multiple objects at once

Sometimes you want to set a field to a particular value for all the objects in a QuerySet. You can do this with the
update () method. For example:

Entry.objects.filter (pub_date__year=2007) .update (headline='Everything is the same’)

You can only set non-relation fields and Fore i gnKey fields using this method. To update a non-relation field, provide
the new value as a constant. To update ForeignKey fields, set the new value to be the new model instance you want
to point to. For example:

>>> b = Blog.objects.get (pk=1)

Change every Entry so that it belongs to this Blog.
>>> Entry.objects.all () .update (blog=b)

The update () method is applied instantly and returns the number of rows affected by the query. The only restriction
on the QuerySet that is updated is that it can only access one database table, the model’s main table. You can filter
based on related fields, but you can only update columns in the model’s main table. Example:

>>> b = Blog.objects.get (pk=1)

3.2. Models and databases 77

Django Documentation, Release 1.3

Update all the headlines belonging to this Blog.

>>> Entry.objects.select_related().filter (blog=b) .update (headline='Everything is the same

Be aware that the update () method is converted directly to an SQL statement. It is a bulk operation for direct
updates. It doesn’t run any save () methods on your models, or emit the pre_save or post_save signals (which
are a consequence of calling save ()). If you want to save every item in a QuerySet and make sure that the save ()
method is called on each instance, you don’t need any special function to handle that. Just loop over them and call
save ():

for item in my_queryset:
item.save ()

Calls to update can also use F() objects to update one field based on the value of another field in the model. This is
especially useful for incrementing counters based upon their current value. For example, to increment the pingback
count for every entry in the blog:

’

>>> Entry.objects.all() .update (n_pingbacks=F ('n_pingbacks’) + 1)

However, unlike F () objects in filter and exclude clauses, you can’t introduce joins when you use F () objects in an
update — you can only reference fields local to the model being updated. If you attempt to introduce a join with an
F () object,aFieldError will be raised:

THIS WILL RAISE A FieldError
>>> Entry.objects.update (headline=F ('blog__name’))

Related objects
When you define a relationship in a model (i.e., a ForeignKey, OneToOneField, or ManyToManyField),
instances of that model will have a convenient API to access the related object(s).

Using the models at the top of this page, for example, an Entry object e can get its associated B1og object by
accessing the blog attribute: e .blog.

(Behind the scenes, this functionality is implemented by Python descriptors. This shouldn’t really matter to you, but
we point it out here for the curious.)

Django also creates API accessors for the “other” side of the relationship — the link from the related model to the
model that defines the relationship. For example, a B1og object b has access to a list of all related Ent ry objects via
the entry_set attribute: b.entry_set.all ().

All examples in this section use the sample Blog, Author and Ent ry models defined at the top of this page.

One-to-many relationships

Forward If amodel has a ForeignKey, instances of that model will have access to the related (foreign) object via
a simple attribute of the model.

Example:

>>> e = Entry.objects.get (id=2)

>>> e.blog

You can get and set via a foreign-key attribute. As you may expect, changes to the foreign key aren’t saved to the
database until you call save (). Example:

>>> e = Entry.objects.get (id=2)
>>> e.blog = some_blog
>>> e.save ()

78 Chapter 3. Using Django

http://users.rcn.com/python/download/Descriptor.htm

Django Documentation, Release 1.3

If aForeignKey field has null=True set (i.e., it allows NULL values), you can assign None to it. Example:

>>> e = Entry.objects.get (1d=2)
>>> e.blog =
>>> e.save ()

Forward access to one-to-many relationships is cached the first time the related object is accessed. Subsequent accesses
to the foreign key on the same object instance are cached. Example:

>>> e = Entry.objects.get (1d=2)
>>> print e.blog
>>> print e.blog

Note that the select_related () QuerySet method recursively prepopulates the cache of all one-to-many rela-
tionships ahead of time. Example:

>>> e = Entry.objects.select_related() .get (id=2)
>>> print e.blog
>>> print e.blog

Following relationships “backward” If a model has a ForeignKey, instances of the foreign-key model will have
access to a Manager that returns all instances of the first model. By default, this Manager is named FOO_set,
where FOO is the source model name, lowercased. This Manager returns QuerySets, which can be filtered and
manipulated as described in the “Retrieving objects” section above.

Example:

>>> b = Blog.objects.get (id=1)
>>> b.entry_set.all()

b.entry_set is a Manager that returns QuerySets.
>>> b.entry_set.filter (headline__contains=’Lennon’)
>>> b.entry_set.count ()

You can override the FOO_set name by setting the related_name parameter in the ForeignKey ()
definition. For example, if the Entry model was altered to blog = ForeignKey (Blog,
related_name='entries’), the above example code would look like this:

>>> b = Blog.objects.get (id=1)

>>> b.entries.all ()

b.entries is a Manager that returns Query S .
>>> b.entries.filter (headline__ _contains=’lLennon’)
>>> b.entries.count ()

You cannot access a reverse ForeignKey Manager from the class; it must be accessed from an instance:
>>> Blog.entry_set

Traceback:

AttributeError: "Manager must be accessed via instance”.

In addition to the QuerySet methods defined in “Retrieving objects” above, the ForeignKey Manager has ad-
ditional methods used to handle the set of related objects. A synopsis of each is below, and complete details can be
found in the related objects reference.

add(objl, obj2, ...) Adds the specified model objects to the related object set.

create (xxkwargs) Creates a new object, saves it and puts it in the related object set. Returns the newly created
object.

3.2. Models and databases 79

Django Documentation, Release 1.3

remove (objl, obj2, ...) Removes the specified model objects from the related object set.
clear () Removes all objects from the related object set.

To assign the members of a related set in one fell swoop, just assign to it from any iterable object. The iterable can
contain object instances, or just a list of primary key values. For example:

b = Blog.objects.get (id=1)
b.entry_set = [el, e2]

In this example, e1 and e2 can be full Entry instances, or integer primary key values.

If the clear () method is available, any pre-existing objects will be removed from the entry_set before all
objects in the iterable (in this case, a list) are added to the set. If the clear () method is not available, all objects in
the iterable will be added without removing any existing elements.

Each “reverse” operation described in this section has an immediate effect on the database. Every addition, creation
and deletion is immediately and automatically saved to the database.

Many-to-many relationships

Both ends of a many-to-many relationship get automatic API access to the other end. The API works just as a
“backward” one-to-many relationship, above.

The only difference is in the attribute naming: The model that defines the ManyToManyField uses the attribute
name of that field itself, whereas the “reverse” model uses the lowercased model name of the original model, plus
' _set’ (just like reverse one-to-many relationships).

An example makes this easier to understand:

e = Entry.objects.get (id=3)
e.authors.all ()

e.authors.count ()
e.authors.filter (name__ _contains=’ John’)

a = Author.objects.get (1d=5)
a.entry_set.all()

Like ForeignKey, ManyToManyField can specify related_name. In the above example, if the
ManyToManyField in Entry had specified related_name=’entries’, then each Author instance would
have an entries attribute instead of entry_set.

One-to-one relationships

One-to-one relationships are very similar to many-to-one relationships. If you define a OneToOneField on your
model, instances of that model will have access to the related object via a simple attribute of the model.

For example:

class EntryDetail (models.Model) :
entry = models.OneToOneField (Entry)
details = models.TextField()

ed = EntryDetail.objects.get (1d=2)
ed.entry

The difference comes in “reverse” queries. The related model in a one-to-one relationship also has access to a
Manager object, but that Manager represents a single object, rather than a collection of objects:

80 Chapter 3. Using Django

Django Documentation, Release 1.3

e = Entry.objects.get (id=2)

e.entrydetail

If no object has been assigned to this relationship, Django will raise a DoesNotExist exception.

Instances can be assigned to the reverse relationship in the same way as you would assign the forward relationship:

e.entrydetail = ed

How are the backward relationships possible?

Other object-relational mappers require you to define relationships on both sides. The Django developers believe this
is a violation of the DRY (Don’t Repeat Yourself) principle, so Django only requires you to define the relationship on
one end.

But how is this possible, given that a model class doesn’t know which other model classes are related to it until those
other model classes are loaded?

The answer lies in the INSTALLED_APPS setting. The first time any model is loaded, Django iterates over every
model in INSTALLED_APPS and creates the backward relationships in memory as needed. Essentially, one of the
functions of INSTALLED_APPS is to tell Django the entire model domain.

Queries over related objects

Queries involving related objects follow the same rules as queries involving normal value fields. When specifying the
value for a query to match, you may use either an object instance itself, or the primary key value for the object.

For example, if you have a Blog object b with 1d=5, the following three queries would be identical:

Entry.objects.filter (blog=b)
Entry.objects.filter (blog=b.id)
Entry.objects.filter (blog=5)

Falling back to raw SQL

If you find yourself needing to write an SQL query that is too complex for Django’s database-mapper to handle, you
can fall back on writing SQL by hand. Django has a couple of options for writing raw SQL queries; see Performing
raw SQL queries.

Finally, it’s important to note that the Django database layer is merely an interface to your database. You can access
your database via other tools, programming languages or database frameworks; there’s nothing Django-specific about
your database.

3.2.3 Aggregation

The topic guide on Django’s database-abstraction API described the way that you can use Django queries that create,
retrieve, update and delete individual objects. However, sometimes you will need to retrieve values that are derived by
summarizing or aggregating a collection of objects. This topic guide describes the ways that aggregate values can be
generated and returned using Django queries.

Throughout this guide, we’ll refer to the following models. These models are used to track the inventory for a series
of online bookstores:

3.2. Models and databases 81

Django Documentation, Release 1.3

class Author (models.Model) :
name = models.CharField(max_length=100)
age = models.IntegerField()
friends = models.ManyToManyField(’self’, blank=)

class Publisher (models.Model) :
name = models.CharField (max_length=300)
num_awards = models.IntegerField()

class Book (models.Model) :
isbn = models.CharField (max_length=9)
name = models.CharField(max_length=300)
pages = models.IntegerField()
price = models.DecimalField(max_digits=10, decimal_places=2)
rating = models.FloatField()
authors = models.ManyToManyField (Author)
publisher = models.ForeignKey (Publisher)
pubdate = models.DateField()

class Store (models.Model) :
name = models.CharField (max_length=300)
books = models.ManyToManyField (Book)

Generating aggregates over a QuerySet

Django provides two ways to generate aggregates. The first way is to generate summary values over an entire
QuerySet. For example, say you wanted to calculate the average price of all books available for sale. Django’s
query syntax provides a means for describing the set of all books:

>>> Book.objects.all()

What we need is a way to calculate summary values over the objects that belong to this QuerySet. This is done by
appending an aggregate () clause onto the QuerySet:

>>> from django.db.models import Avg
>>> Book.objects.all () .aggregate (Avg (' price’))

{"price__avg’: 34.35}

The all () isredundant in this example, so this could be simplified to:

>>> Book.objects.aggregate (Avg (' price’))
{"price__avg’: 34.35}

The argument to the aggregate () clause describes the aggregate value that we want to compute - in this case, the
average of the price field on the Book model. A list of the aggregate functions that are available can be found in the
QuerySet reference.

aggregate () is a terminal clause for a QuerySet that, when invoked, returns a dictionary of name-value pairs.
The name is an identifier for the aggregate value; the value is the computed aggregate. The name is automatically
generated from the name of the field and the aggregate function. If you want to manually specify a name for the
aggregate value, you can do so by providing that name when you specify the aggregate clause:

>>> Book.objects.aggregate (average_price=Avg (' price’))

{"average_price’: 34.35}

If you want to generate more than one aggregate, you just add another argument to the aggregate () clause. So, if
we also wanted to know the maximum and minimum price of all books, we would issue the query:

82 Chapter 3. Using Django

Django Documentation, Release 1.3

>>> from django.db.models import Avg, Max, Min, Count
>>> Book.objects.aggregate (Avg (' price’), Max('price’), Min('price’))

{"price__avg’: 34.35, ’'price_ _max’: Decimal (’81.20"),

Generating aggregates for each item in a QuerySet

The second way to generate summary values is to generate an independent summary for each object in a QuerySet.
For example, if you are retrieving a list of books, you may want to know how many authors contributed to each book.
Each Book has a many-to-many relationship with the Author; we want to summarize this relationship for each book
in the QuerySet.

Per-object summaries can be generated using the annotate () clause. When an annotate () clause is specified,
each object in the QuerySet will be annotated with the specified values.

The syntax for these annotations is identical to that used for the aggregate () clause. Each argument to
annotate () describes an aggregate that is to be calculated. For example, to annotate Books with the number
of authors:

Build an annotated queryset

>>> g = Book.objects.annotate (Count ("authors’))
Interrogate the first object in the queryset
>>> g[0]

<Book: The Definitive Guide to Django>

>>> g[0] .authors__count

2

Interrogate the second object in the queryset
>>> g[l]

<Book: Practical Django Projects>

>>> g[l].authors__count

1

As with aggregate (), the name for the annotation is automatically derived from the name of the aggregate function
and the name of the field being aggregated. You can override this default name by providing an alias when you specify
the annotation:

>>> g = Book.objects.annotate (num_authors=Count (' authors’))
>>> g[0] .num_authors
5

>>> g[1l] .num_authors
1

Unlike aggregate (), annotate () is not a terminal clause. The output of the annotate () clause is
a QuerySet; this QuerySet can be modified using any other QuerySet operation, including filter (),
order_Dby, or even additional calls to annotate ().

Joins and aggregates
So far, we have dealt with aggregates over fields that belong to the model being queried. However, sometimes the
value you want to aggregate will belong to a model that is related to the model you are querying.

When specitfying the field to be aggregated in an aggregate function, Django will allow you to use the same double
underscore notation that is used when referring to related fields in filters. Django will then handle any table joins that
are required to retrieve and aggregate the related value.

For example, to find the price range of books offered in each store, you could use the annotation:

3.2. Models and databases 83

Django Documentation, Release 1.3

>>> Store.objects.annotate (min_price=Min (’'books price’), max_price=Max (’'books price’))

This tells Django to retrieve the Store model, join (through the many-to-many relationship) with the Book model, and
aggregate on the price field of the book model to produce a minimum and maximum value.

The same rules apply to the aggregate () clause. If you wanted to know the lowest and highest price of any book
that is available for sale in a store, you could use the aggregate:

>>> Store.objects.aggregate (min_price=Min (' books price’), max_price=Max (' books price’))
Join chains can be as deep as you require. For example, to extract the age of the youngest author of any book available
for sale, you could issue the query:

>>> Store.objects.aggregate (youngest_age=Min (' books_ authors age’))

Aggregations and other QuerySet clauses

filter () and exclude ()

Aggregates can also participate in filters. Any filter () (or exclude ()) applied to normal model fields will have
the effect of constraining the objects that are considered for aggregation.

When used with an annotate () clause, a filter has the effect of constraining the objects for which an annotation is
calculated. For example, you can generate an annotated list of all books that have a title starting with “Django” using
the query:

>>> Book.objects.filter (name__startswith="Django") .annotate (num_authors=Count (' authors’))
When used with an aggregate () clause, a filter has the effect of constraining the objects over which the aggregate

is calculated. For example, you can generate the average price of all books with a title that starts with “Django” using
the query:

>>> Book.objects.filter (name__startswith="Django") .aggregate (Avg (' price’))

Filtering on annotations Annotated values can also be filtered. The alias for the annotation can be used in
filter () and exclude () clauses in the same way as any other model field.

For example, to generate a list of books that have more than one author, you can issue the query:

>>> Book.objects.annotate (num_authors=Count (' authors’)).filter (num_authors__gt=1)

This query generates an annotated result set, and then generates a filter based upon that annotation.

Order of annotate() and filter () clauses When developing a complex query that involves both
annotate () and filter () clauses, particular attention should be paid to the order in which the clauses are
applied to the QuerySet.

When an annotate () clause is applied to a query, the annotation is computed over the state of the query up to the
point where the annotation is requested. The practical implication of this is that filter () and annotate () are
not commutative operations — that is, there is a difference between the query:

>>> Publisher.objects.annotate (num_books=Count (' book’)).filter (book__rating__gt=3.0)

and the query:

84 Chapter 3. Using Django

Django Documentation, Release 1.3

>>> Publisher.objects.filter (book__rating__gt=3.0) .annotate (num_books=Count ())

Both queries will return a list of Publishers that have at least one good book (i.e., a book with a rating exceeding 3.0).
However, the annotation in the first query will provide the total number of all books published by the publisher; the
second query will only include good books in the annotated count. In the first query, the annotation precedes the filter,
so the filter has no effect on the annotation. In the second query, the filter preceeds the annotation, and as a result, the
filter constrains the objects considered when calculating the annotation.

order_by ()

Annotations can be used as a basis for ordering. When you define an order_Jby () clause, the aggregates you provide
can reference any alias defined as part of an annotate () clause in the query.

For example, to order a QuerySet of books by the number of authors that have contributed to the book, you could
use the following query:

>>> Book.objects.annotate (num_authors=Count ()) .order_Dby ()

values ()

Ordinarily, annotations are generated on a per-object basis - an annotated QuerySet will return one result for each
object in the original QuerySet. However, when a values () clause is used to constrain the columns that are
returned in the result set, the method for evaluating annotations is slightly different. Instead of returning an annotated
result for each result in the original QuerySet, the original results are grouped according to the unique combinations
of the fields specified in the values () clause. An annotation is then provided for each unique group; the annotation
is computed over all members of the group.

For example, consider an author query that attempts to find out the average rating of books written by each author:

>>> Author.objects.annotate (average_rating=Avg ())

This will return one result for each author in the database, annotated with their average book rating.
However, the result will be slightly different if you use a values () clause:

>>> Author.objects.values () .annotate (average_rating=Avg ())

In this example, the authors will be grouped by name, so you will only get an annotated result for each unique author
name. This means if you have two authors with the same name, their results will be merged into a single result in the
output of the query; the average will be computed as the average over the books written by both authors.

Order of annotate () and values () clauses Aswiththe filter () clause, the order in which annotate ()
and values () clauses are applied to a query is significant. If the values () clause precedes the annotate (),
the annotation will be computed using the grouping described by the values () clause.

However, if the annotate () clause precedes the values () clause, the annotations will be generated over the
entire query set. In this case, the values () clause only constrains the fields that are generated on output.

For example, if we reverse the order of the values () and annotate () clause from our previous example:

>>> Author.objects.annotate (average_rating=Avg ()) .values (p

This will now yield one unique result for each author; however, only the author’s name and the average_rating
annotation will be returned in the output data.

3.2. Models and databases 85

Django Documentation, Release 1.3

You should also note that average_rat ing has been explicitly included in the list of values to be returned. This is
required because of the ordering of the values () and annotate () clause.

If the values () clause precedes the annotate () clause, any annotations will be automatically added to the result
set. However, if the values () clause is applied after the annotate () clause, you need to explicitly include the
aggregate column.

Interaction with default ordering or order_by () Fields that are mentioned in the order_by () part of a
queryset (or which are used in the default ordering on a model) are used when selecting the output data, even if they
are not otherwise specified in the values () call. These extra fields are used to group “like” results together and they
can make otherwise identical result rows appear to be separate. This shows up, particularly, when counting things.

By way of example, suppose you have a model like this:

class Item(models.Model) :
name = models.CharField(max_length=10)
data = models.IntegerField()

class Meta:
ordering = ["name"]

The important part here is the default ordering on the name field. If you want to count how many times each distinct
data value appears, you might try this:

Item.objects.values ("data") .annotate (Count ("id"))

...which will group the ITtem objects by their common data values and then count the number of id values in each
group. Except that it won’t quite work. The default ordering by name will also play a part in the grouping, so this
query will group by distinct (data, name) pairs, which isn’t what you want. Instead, you should construct this
queryset:

Item.objects.values ("data") .annotate (Count ("id")) .order_by ()
...clearing any ordering in the query. You could also order by, say, data without any harmful effects, since that is
already playing a role in the query.

This behavior is the same as that noted in the queryset documentation for distinct () and the general rule is the
same: normally you won’t want extra columns playing a part in the result, so clear out the ordering, or at least make
sure it’s restricted only to those fields you also select in a values () call.

Note: You might reasonably ask why Django doesn’t remove the extraneous columns for you. The main reason is
consistency with distinct () and other places: Django never removes ordering constraints that you have specified
(and we can’t change those other methods’ behavior, as that would violate our AP/ stability policy).

Aggregating annotations

You can also generate an aggregate on the result of an annotation. When you define an aggregate () clause, the
aggregates you provide can reference any alias defined as part of an annotate () clause in the query.

For example, if you wanted to calculate the average number of authors per book you first annotate the set of books
with the author count, then aggregate that author count, referencing the annotation field:

>>> Book.objects.annotate (num_authors=Count (' authors’)) .aggregate (Avg (' num_authors’))
{’num_authors__avg’: 1.66}

86 Chapter 3. Using Django

Django Documentation, Release 1.3

3.2.4 Managers

class Manager

A Manager is the interface through which database query operations are provided to Django models. At least one
Manager exists for every model in a Django application.

The way Manager classes work is documented in Making queries; this document specifically touches on model
options that customize Manager behavior.

Manager names

By default, Django adds a Manager with the name objects to every Django model class. However, if you
want to use objects as a field name, or if you want to use a name other than objects for the Manager, you
can rename it on a per-model basis. To rename the Manager for a given class, define a class attribute of type
models.Manager () on that model. For example:

from django.db import models
class Person (models.Model) :
people = models.Manager ()

Using this example model, Person.objects will generate an AttributeError exception, but
Person.people.all () will provide a list of all Person objects.

Custom Managers

You can use a custom Manager in a particular model by extending the base Manager class and instantiating your
custom Manager in your model.

There are two reasons you might want to customize a Manager: to add extra Manager methods, and/or to modify
the initial QuerySet the Manager returns.

Adding extra Manager methods

Adding extra Manager methods is the preferred way to add “table-level” functionality to your models. (For “row-
level” functionality — i.e., functions that act on a single instance of a model object — use Model methods, not custom
Manager methods.)

A custom Manager method can return anything you want. It doesn’t have to return a QuerySet.

For example, this custom Manager offers a method with_counts (), which returns a list of all OpinionPoll
objects, each with an extra num_responses attribute that is the result of an aggregate query:

class PollManager (models.Manager) :
def with counts()z
from django.db import connection
cursor = connection.cursor ()

nun

cursor.execute (

SELECT p.i
FROM polls

ORDER BY
result_list

3.2. Models and databases 87

Django Documentation, Release 1.3

for row in cursor.fetchall () :
p = .model (id=row[0], question=row[l], poll_date=row[2])
p.num_responses = row|[3]
result_list.append(p)

return result_list

class OpinionPoll (models.Model) :
question = models.CharField (max_length=200)
poll_date = models.DateField()
objects = PollManager ()

class Response (models.Model) :
poll = models.ForeignKey (Poll)
person_name = models.CharField(max_length=50)
response = models.TextField()

With this example, you’d use OpinionPoll.objects.with_counts () to return that list of OpinionPoll
objects with num_responses attributes.

Another thing to note about this example is that Manager methods can access self.model to get the model class
to which they’re attached.

Modifying initial Manager QuerySets

A Manager ‘s base QuerySet returns all objects in the system. For example, using this model:

class Book (models.Model) :
title = models.CharField (max_length=100)
author = models.CharField(max_length=50)

...the statement Book .objects.all () will return all books in the database.

You can override a Manager‘s base QuerySet by overriding the Manager.get_query_set () method.
get_query_set () should return a QuerySet with the properties you require.

For example, the following model has two Managers — one that returns all objects, and one that returns only the
books by Roald Dahl:

class DahlBookManager (models.Manager) :
def get_query_ set ()z
return (DahlBookManager,) .get_query_set () .filter (author="Roald Dahl”)

class Book (models.Model) :
title = models.CharField (max_length=100)
author = models.CharField (max_length=50)

objects = models.Manager ()
dahl_objects = DahlBookManager ()

With this sample model, Book.objects.all() will return all books in the database, but
Book.dahl_objects.all () will only return the ones written by Roald Dahl.

Of course, because get_query_set () returns a QuerySet object, you can use filter (), exclude () and
all the other QuerySet methods on it. So these statements are all legal:

88 Chapter 3. Using Django

Django Documentation, Release 1.3

Book.dahl_objects.all()
Book.dahl_objects.filter(title="Matilda’)
Book.dahl_objects.count ()

This example also pointed out another interesting technique: using multiple managers on the same model. You can
attach as many Manager () instances to a model as you’d like. This is an easy way to define common “filters” for
your models.

For example:

class MaleManager (models.Manager) :
def get_query_ set () :
return (MaleManager,) .get_query_set () .filter (sex="M")

class FemaleManager (models.Manager) :
def get_query_ set ()z
return (FemaleManager,) .get_query_set () .filter (sex="F")

class Person (models.Model) :
first_name = models.CharField(max_length=50)
last_name = models.CharField(max_length=50)

sex = models.CharField(max_length=1, choices=(('M", ’"Male’), ('F’, ’'Female’)))
people = models.Manager ()
men = MaleManager ()

women = FemaleManager ()

This example allows you to request Person.men.all(), Person.women.all(), and
Person.people.all (), yielding predictable results.

If you use custom Manager objects, take note that the first Manager Django encounters (in the order in which
they’re defined in the model) has a special status. Django interprets the first Manager defined in a class as the
“default” Manager, and several parts of Django (including dumpdata) will use that Manager exclusively for that
model. As aresult, it’s a good idea to be careful in your choice of default manager in order to avoid a situation where
overriding get_query_set () results in an inability to retrieve objects you’d like to work with.

Using managers for related object access By default, Django uses an instance of a “plain” manager class when
accessing related objects (i.e. choice.poll), not the default manager on the related object. This is because Django
needs to be able to retrieve the related object, even if it would otherwise be filtered out (and hence be inaccessible) by
the default manager.

If the normal plain manager class (d jango.db.models.Manager) is not appropriate for your circumstances, you
can force Django to use the same class as the default manager for your model by setting the use_for_related_fields
attribute on the manager class. This is documented fully below.

Custom managers and model inheritance

Class inheritance and model managers aren’t quite a perfect match for each other. Managers are often specific to the
classes they are defined on and inheriting them in subclasses isn’t necessarily a good idea. Also, because the first
manager declared is the default manager, it is important to allow that to be controlled. So here’s how Django handles
custom managers and model inheritance:

1. Managers defined on non-abstract base classes are not inherited by child classes. If you want to reuse a manager
from a non-abstract base, redeclare it explicitly on the child class. These sorts of managers are likely to be fairly
specific to the class they are defined on, so inheriting them can often lead to unexpected results (particularly as
far as the default manager goes). Therefore, they aren’t passed onto child classes.

3.2. Models and databases 89

Django Documentation, Release 1.3

2. Managers from abstract base classes are always inherited by the child class, using Python’s normal name reso-
lution order (names on the child class override all others; then come names on the first parent class, and so on).
Abstract base classes are designed to capture information and behavior that is common to their child classes.
Defining common managers is an appropriate part of this common information.

3. The default manager on a class is either the first manager declared on the class, if that exists, or the default
manager of the first abstract base class in the parent hierarchy, if that exists. If no default manager is explicitly
declared, Django’s normal default manager is used.

These rules provide the necessary flexibility if you want to install a collection of custom managers on a group of
models, via an abstract base class, but still customize the default manager. For example, suppose you have this base
class:

class AbstractBase (models.Model) :
objects = CustomManager ()

class Meta:
abstract =

If you use this directly in a subclass, objects will be the default manager if you declare no managers in the base
class:

class ChildA (AbstractBase) :

If you want to inherit from AbstractBase, but provide a different default manager, you can provide the default
manager on the child class:

class ChildB (AbstractBase) :

default_manager = OtherManager ()

Here, default_manager is the default. The objects manager is still available, since it’s inherited. It just isn’t
used as the default.

Finally for this example, suppose you want to add extra managers to the child class, but still use the default from
AbstractBase. You can’t add the new manager directly in the child class, as that would override the default and
you would have to also explicitly include all the managers from the abstract base class. The solution is to put the extra
managers in another base class and introduce it into the inheritance hierarchy after the defaults:

class ExtraManager (models.Model) :
extra_manager = OtherManager ()

class Meta:
abstract =

class ChildC (AbstractBase, ExtraManager) :

Implementation concerns

Whatever features you add to your custom Manager, it must be possible to make a shallow copy of a Manager
instance; i.e., the following code must work:

90 Chapter 3. Using Django

Django Documentation, Release 1.3

>>> import copy
>>> manager = MyManager ()
>>> my_Ccopy = CcoOpy.copy (manager)

Django makes shallow copies of manager objects during certain queries; if your Manager cannot be copied, those
queries will fail.

This won’t be an issue for most custom managers. If you are just adding simple methods to your Manager, it is
unlikely that you will inadvertently make instances of your Manager uncopyable. However, if you're overriding
__getattr__ or some other private method of your Manager object that controls object state, you should ensure
that you don’t affect the ability of your Manager to be copied.

Controlling automatic Manager types

This document has already mentioned a couple of places where Django creates a manager class for you: default
managers and the “plain” manager used to access related objects. There are other places in the implementation of
Django where temporary plain managers are needed. Those automatically created managers will normally be instances
of the django.db.models.Manager class. Throughout this section, we will use the term “automatic manager”
to mean a manager that Django creates for you — either as a default manager on a model with no managers, or to use
temporarily when accessing related objects.

Sometimes this default class won’t be the right choice. One example is in the d jango.contrib.gis application
that ships with Django itself. All gis models must use a special manager class (GeoManager) because they need a
special queryset (GeoQuerySet) to be used for interacting with the database. It turns out that models which require
a special manager like this need to use the same manager class wherever an automatic manager is created.

Django provides a way for custom manager developers to say that their manager class should be used for automatic
managers whenever it is the default manager on a model. This is done by setting the use_for_related_fields
attribute on the manager class:

class MyManager (models.Manager) :
use_for_related_fields =

If this attribute is set on the default manager for a model (only the default manager is considered in these situations),
Django will use that class whenever it needs to automatically create a manager for the class. Otherwise, it will use
django.db.models.Manager.

Historical Note

Given the purpose for which it’s used, the name of this attribute (use_for_related_fields) might seem a little
odd. Originally, the attribute only controlled the type of manager used for related field access, which is where the
name came from. As it became clear the concept was more broadly useful, the name hasn’t been changed. This is
primarily so that existing code will continue to work in future Django versions.

Writing correct Managers for use in automatic Manager instances

As already suggested by the django.contrib.gis example, above, the use_for_related_fields feature is pri-
marily for managers that need to return a custom QuerySet subclass. In providing this functionality in your manager,
there are a couple of things to remember.

3.2. Models and databases 91

Django Documentation, Release 1.3

Do not filter away any results in this type of manager subclass One reason an automatic manager is used is to
access objects that are related to from some other model. In those situations, Django has to be able to see all the
objects for the model it is fetching, so that anything which is referred to can be retrieved.

If you override the get_query_set () method and filter out any rows, Django will return incorrect results. Don’t
do that. A manager that filters results in get _query_set () is not appropriate for use as an automatic manager.

Setuse_for_related_fields when you define the class The use_for_related_fields attribute must
be set on the manager class, object not on an instance of the class. The earlier example shows the correct way to set
it, whereas the following will not work:

class MyManager (models.Manager) :

mgr = MyManager ()
mgr.use_for_related_fields =

class MyModel (models.Model) :

objects = mgr

You also shouldn’t change the attribute on the class object after it has been used in a model, since the attribute’s value
is processed when the model class is created and not subsequently reread. Set the attribute on the manager class when
it is first defined, as in the initial example of this section and everything will work smoothly.

3.2.5 Performing raw SQL queries

When the model query APIs don’t go far enough, you can fall back to writing raw SQL. Django gives you two ways
of performing raw SQL queries: you can use Manager.raw () to perform raw queries and return model instances,
or you can avoid the model layer entirely and execute custom SQL directly.

Performing raw queries

New in version 1.2: Please, see the release notes The raw () manager method can be used to perform raw SQL
queries that return model instances:

Manager . raw (raw_query, params=None, translations=None)

This method method takes a raw SQL query, executes it, and returns a RawQuerySet instance. This RawQuerySet
instance can be iterated over just like an normal QuerySet to provide object instances.

This is best illustrated with an example. Suppose you’ve got the following model:

class Person (models.Model) :
first_name = models.CharField(...)
last_name = models.CharField(...)
birth_date = models.DateField(...)

You could then execute custom SQL like so:

92 Chapter 3. Using Django

Django Documentation, Release 1.3

>>> for p in Person.objects.raw(/ SELECT * FROM myarp
print p
John Smith

p_person’):

Jane Jones

Of course, this example isn’t very exciting — it’s exactly the same as running Person.objects.all (). However,
raw () has a bunch of other options that make it very powerful.

Model table names
Where’d the name of the Person table come from in that example?

By default, Django figures out a database table name by joining the model’s “app label” — the name you used in
manage.py startapp — to the model’s class name, with an underscore between them. In the example we’ve
assumed that the Person model lives in an app named myapp, so its table would be myapp_person.

For more details check out the documentation for the db_ t ab1e option, which also lets you manually set the database
table name.

Warning: No checking is done on the SQL statement that is passed in to . raw (). Django expects that the
statement will return a set of rows from the database, but does nothing to enforce that. If the query does not return
rows, a (possibly cryptic) error will result.

Mapping query fields to model fields

raw () automatically maps fields in the query to fields on the model.
The order of fields in your query doesn’t matter. In other words, both of the following queries work identically:

>>> Person.objects.raw (/' SELECT id, first_name, last_name, birth date FROM mys:

>>> Person.objects.raw(’ SELECT last_name, birth_date, first_name, id FROM myapp_person’)

Matching is done by name. This means that you can use SQL’s AS clauses to map fields in the query to model fields.
So if you had some other table that had Person data in it, you could easily map it into Person instances:

>>> Person.objects.raw ('’’’ SELECT firs

As long as the names match, the model instances will be created correctly.

Alternatively, you can map fields in the query to model fields using the translations argument to raw (). This
is a dictionary mapping names of fields in the query to names of fields on the model. For example, the above query
could also be written:

>>> name_map = {/ first’: 'first _name’,
>>> Person.objects.raw(’/ SELECT * FROM

"last_name’, 'bd’: ’"birth_date’, ’'pk’: "id’}
wer table’, translations=name_map)

Index lookups

raw () supports indexing, so if you need only the first result you can write:

3.2. Models and databases 93

Django Documentation, Release 1.3

>>> first_person = Person.objects.raw(’ SELECT » from myapp person’) [0]
However, the indexing and slicing are not performed at the database level. If you have a big amount of Person
objects in your database, it is more efficient to limit the query at the SQL level:

>>> first_person = Person.objects.raw(’ SELECT » from myapp_ person LIMIT 17)[0]

Deferring model fields

Fields may also be left out:

>>> people = Person.objects.raw(’/ SELECT id, first name FROM myapp person’)

The Person objects returned by this query will be deferred model instances (see defer ()). This means that the
fields that are omitted from the query will be loaded on demand. For example:

>>> for p in Person.objects.raw(/ SELECT id, first _name FROM myapp_person’):
print p.first_name,
print p.last_name

John Smith

Jane Jones

From outward appearances, this looks like the query has retrieved both the first name and last name. However, this
example actually issued 3 queries. Only the first names were retrieved by the raw() query — the last names were both
retrieved on demand when they were printed.

There is only one field that you can’t leave out - the primary key field. Django uses the primary key to identify model
instances, so it must always be included in a raw query. An InvalidQuery exception will be raised if you forget to
include the primary key.

Adding annotations

You can also execute queries containing fields that aren’t defined on the model. For example, we could use Post-
greSQL’s age() function to get a list of people with their ages calculated by the database:

>>> people = Person.objects.raw (' SELECT x, age(birth date) AS age FROM myapp_person’)
>>> for p in people:
is %s." % (p.first_name, p.age)

Passing parameters into raw ()

If you need to perform parameterized queries, you can use the params argument to raw () :

>>> lname = ’'Doe’

>>> Person.objects.raw(/ SELECT » FROM myapp_person WHERE last_name = %s’, [lname])
params is a list of parameters. You’ll use $s placeholders in the query string (regardless of your database engine);
they’1l be replaced with parameters from the params list.

94 Chapter 3. Using Django

http://www.postgresql.org/docs/8.4/static/functions-datetime.html
http://www.postgresql.org/docs/8.4/static/functions-datetime.html

Django Documentation, Release 1.3

Warning: Do not use string formatting on raw queries!
It’s tempting to write the above query as:

>>> query = ’'SELECT » FROM myapp_person WHERE last_name = % lname

>>> Person.objects.raw(query)

Don’t.

Using the params list completely protects you from SQL injection attacks, a common exploit where attackers
inject arbitrary SQL into your database. If you use string interpolation, sooner or later you’ll fall victim to SQL
injection. As long as you remember to always use the params list you’ll be protected.

Executing custom SQL directly

Sometimes even Manager.raw () isn’t quite enough: you might need to perform queries that don’t map cleanly to
models, or directly execute UPDATE, INSERT, or DELETE queries.

In these cases, you can always access the database directly, routing around the model layer entirely.

The object django.db.connection represents the default database connection, and
django.db.transaction represents the default database transaction. To use the database connection,
call connection.cursor () to get a cursor object. Then, call cursor.execute (sql, [params]) to
execute the SQL and cursor.fetchone () or cursor.fetchall () to return the resulting rows. After
performing a data changing operation, you should then call transaction.commit_unless_managed() to
ensure your changes are committed to the database. If your query is purely a data retrieval operation, no commit is
required. For example:

def my custom_sql():
from django.db import connection, transaction
cursor = connection.cursor ()

cursor.execute ("UPDATE bar SET foo = 1 WHERE baz = %s", [.bazl])

transaction.commit_unless_managed ()

cursor.execute ("SELECT foo FROM bar WHERE baz $s", [.baz])
row = cursor.fetchone /()

return row

If you are using more than one database you can use django.db.connections to obtain the connection (and
cursor) for a specific database. django.db.connections is a dictionary-like object that allows you to retrieve a
specific connection using it’s alias:

from django.db import connections
cursor = connections[’'my db alias’].cursor ()

transaction.commit_unless_managed (using='my db alias’)

Transactions and raw SQL

When you make a raw SQL call, Django will automatically mark the current transaction as dirty. You must then
ensure that the transaction containing those calls is closed correctly. See the notes on the requirements of Django’s
transaction handling for more details. Changed in version Development version. Prior to Django 1.3, it was necessary
to manually mark a transaction as dirty using transaction.set_dirty () when using raw SQL calls.

3.2. Models and databases 95

http://en.wikipedia.org/wiki/SQL_injection

Django Documentation, Release 1.3

Connections and cursors

connection and cursor mostly implement the standard Python DB-API (except when it comes to fransaction
handling). If you’re not familiar with the Python DB-API, note that the SQL statement in cursor.execute () uses
placeholders, "%s", rather than adding parameters directly within the SQL. If you use this technique, the underlying
database library will automatically add quotes and escaping to your parameter(s) as necessary. (Also note that Django
expects the "%s" placeholder, not the " 2" placeholder, which is used by the SQLite Python bindings. This is for the
sake of consistency and sanity.)

3.2.6 Managing database transactions

Django gives you a few ways to control how database transactions are managed, if you’re using a database that supports
transactions.

Django’s default transaction behavior

Django’s default behavior is to run with an open transaction which it commits automatically when any built-in, data-
altering model function is called. For example, if you call model.save () ormodel.delete (), the change will
be committed immediately.

This is much like the auto-commit setting for most databases. As soon as you perform an action that needs to write
to the database, Django produces the INSERT/UPDATE/DELETE statements and then does the COMMIT. There’s no
implicit ROLLBACK.

Tying transactions to HTTP requests

The recommended way to handle transactions in Web requests is to tie them to the request and response phases via
Django’s TransactionMiddleware.

It works like this: When a request starts, Django starts a transaction. If the response is produced without problems,
Django commits any pending transactions. If the view function produces an exception, Django rolls back any pending
transactions.

To activate this feature, just add the TransactionMiddleware middleware to your MIDDLEWARE_CLASSES
setting:

MIDDLEWARE_CLASSES = (

r A
ajarl

heMiddleware’,

sionMiddleware’,

)

The order is quite important. The transaction middleware applies not only to view functions, but also for all middleware
modules that come after it. So if you use the session middleware after the transaction middleware, session creation
will be part of the transaction.

The various cache middlewares are an exception: CacheMiddleware, UpdateCacheMiddleware, and
FetchFromCacheMiddleware are never affected. Even when using database caching, Django’s cache backend
uses its own database cursor (which is mapped to its own database connection internally).

96 Chapter 3. Using Django

http://www.python.org/dev/peps/pep-0249/

Django Documentation, Release 1.3

Controlling transaction management in views

Changed in version Development version: Transaction management context managers are new in Django 1.3. For most
people, implicit request-based transactions work wonderfully. However, if you need more fine-grained control over
how transactions are managed, you can use a set of functions in d jango.db.transact ion to control transactions
on a per-function or per-code-block basis.

These functions, described in detail below, can be used in two different ways:
* As adecorator on a particular function. For example:

from django.db import transaction

@transaction.commit_on_success ()
def viewfunc (request) :
#

this code executes inside a transaction
#

This technique works with all supported version of Python (that is, with Python 2.4 and greater).
* As a context manager around a particular block of code:

from django.db import transaction

def viewfunc (request) :
#

this code executes using default transaction management
#

with transaction.commit_on_success () :
#
this code executes inside a transaction
#

The with statement is new in Python 2.5, and so this syntax can only be used with Python 2.5 and above.

For maximum compatibility, all of the examples below show transactions using the decorator syntax, but all of the
follow functions may be used as context managers, too.

Note: Although the examples below use view functions as examples, these decorators and context managers can be
used anywhere in your code that you need to deal with transactions.

autocommit ()

Use the aut ocommit decorator to switch a view function to Django’s default commit behavior, regardless of
the global transaction setting.

Example:

from django.db import transaction

@transaction.autocommit
def viewfunc (request) :

@transaction.autocommit (using="my_other database™)
def viewfunc2 (request) :

3.2. Models and databases 97

http://docs.python.org/glossary.html#term-decorator
http://docs.python.org/glossary.html#term-context-manager

Django Documentation, Release 1.3

Within viewfunc (), transactions will be committed as soon as you call model.save(),
model.delete (), or any other function that writes to the database. viewfunc?2 () will have this same
behavior, but for the "my_other_database" connection.

commit_on_success ()
Use the commit_on_success decorator to use a single transaction for all the work done in a function:

from django.db import transaction

@transaction.commit_on_success
def viewfunc (request) :

@transaction.commit_on_success (using="my other
def viewfunc2 (request) :

If the function returns successfully, then Django will commit all work done within the function at that point. If
the function raises an exception, though, Django will roll back the transaction.

commit_manually ()
Use the commit_manually decorator if you need full control over transactions. It tells Django you’ll be
managing the transaction on your own.

If your view changes data and doesn’t commit () or rollback(), Django will raise a
TransactionManagementError exception.

Manual transaction management looks like this:

from django.db import transaction

@transaction.commit_manually
def viewfunc (request) :

transaction.commit ()

try:

except:
transaction.rollback ()
else:
transaction.commit ()

@transaction.commit_manually (using="my_ other database'")
def viewfunc2 (request) :

Requirements for transaction handling

New in version Development version. Django requires that every transaction that is opened is closed before the com-
pletion of a request. If you are using autocommit () (the default commit mode) or commit_on_success (),
this will be done for you automatically. However, if you are manually managing transactions (using the
commit_manually () decorator), you must ensure that the transaction is either committed or rolled back before a
request is completed.

98 Chapter 3. Using Django

Django Documentation, Release 1.3

This applies to all database operations, not just write operations. Even if your transaction only reads from the database,
the transaction must be committed or rolled back before you complete a request.

How to globally deactivate transaction management
Control freaks can totally disable all transaction management by setting DISABLE_TRANSACTION_MANAGEMENT
to True in the Django settings file.

If you do this, Django won’t provide any automatic transaction management whatsoever. Middleware will no longer
implicitly commit transactions, and you’ll need to roll management yourself. This even requires you to commit
changes done by middleware somewhere else.

Thus, this is best used in situations where you want to run your own transaction-controlling middleware or do some-
thing really strange. In almost all situations, you’ll be better off using the default behavior, or the transaction middle-
ware, and only modify selected functions as needed.

Savepoints

A savepoint is a marker within a transaction that enables you to roll back part of a transaction, rather than the full
transaction. Savepoints are available to the PostgreSQL 8 and Oracle backends. Other backends will provide the
savepoint functions, but they are empty operations - they won’t actually do anything.

Savepoints aren’t especially useful if you are using the default autocommit behaviour of Django. However, if
you are using commit_on_success or commit_manually, each open transaction will build up a series of
database operations, awaiting a commit or rollback. If you issue a rollback, the entire transaction is rolled back.
Savepoints provide the ability to perform a fine-grained rollback, rather than the full rollback that would be performed
by transaction.rollback ().

Each of these functions takes a using argument which should be the name of a database for which the behavior
applies. If no using argument is provided then the "default" database is used.

Savepoints are controlled by three methods on the transaction object:

transaction.savepoint (using=None)
Creates a new savepoint. This marks a point in the transaction that is known to be in a “good” state.

Returns the savepoint ID (sid).

transaction.savepoint_commit (sid, using=None)
Updates the savepoint to include any operations that have been performed since the savepoint was created, or
since the last commit.

transaction.savepoint_rollback (sid, using=None)
Rolls the transaction back to the last point at which the savepoint was committed.

The following example demonstrates the use of savepoints:

from django.db import transaction

@transaction.commit_manually
def viewfunc (request):

a.save ()
sid = transaction.savepoint ()

b.save ()

3.2. Models and databases 99

Django Documentation, Release 1.3

if want_to_keep_b:
transaction.savepoint_commit (sid)

else:
transaction.savepoint_rollback (sid)

transaction.commit ()

Transactions in MySQL

If you’re using MySQL, your tables may or may not support transactions; it depends on your MySQL version and the
table types you’re using. (By “table types,” we mean something like “InnoDB” or “MyISAM”.) MySQL transaction
peculiarities are outside the scope of this article, but the MySQL site has information on MySQL transactions.

If your MySQL setup does not support transactions, then Django will function in auto-commit mode: Statements will
be executed and committed as soon as they’re called. If your MySQL setup does support transactions, Django will
handle transactions as explained in this document.

Handling exceptions within PostgreSQL transactions

When a call to a PostgreSQL cursor raises an exception (typically IntegrityError), all subsequent SQL in the
same transaction will fail with the error “current transaction is aborted, queries ignored until end of transaction block”.
Whilst simple use of save () is unlikely to raise an exception in PostgreSQL, there are more advanced usage patterns
which might, such as saving objects with unique fields, saving using the force_insert/force_update flag, or invoking
custom SQL.

There are several ways to recover from this sort of error.

Transaction rollback

The first option is to roll back the entire transaction. For example:

a.save ()
try:
b.save ()
except IntegrityError:
transaction.rollback ()
c.save ()

Calling transaction.rollback () rolls back the entire transaction. Any uncommitted database operations will
be lost. In this example, the changes made by a . save () would be lost, even though that operation raised no error
itself.

Savepoint rollback

If you are using PostgreSQL 8 or later, you can use savepoints to control the extent of a rollback. Before performing
a database operation that could fail, you can set or update the savepoint; that way, if the operation fails, you can roll
back the single offending operation, rather than the entire transaction. For example:

a.save ()
try:
sid = transaction.savepoint ()

100 Chapter 3. Using Django

http://dev.mysql.com/doc/refman/5.0/en/sql-syntax-transactions.html

Django Documentation, Release 1.3

b.save ()

transaction.savepoint_commit (sid)
except IntegrityError:

transaction.savepoint_rollback (sid)
c.save ()

In this example, a . save () will not be undone in the case where b. save () raises an exception.

Database-level autocommit

With PostgreSQL 8.2 or later, there is an advanced option to run PostgreSQL with database-level autocommit. If you
use this option, there is no constantly open transaction, so it is always possible to continue after catching an exception.
For example:

a.save ()

try:
b.save ()

except IntegrityError:
pass

c.save ()

Note: This is not the same as the autocommit decorator. When using database level autocommit there is no database
transaction at all. The autocommit decorator still uses transactions, automatically committing each transaction
when a database modifying operation occurs.

3.2.7 Multiple databases

New in version 1.2: Please, see the release notes This topic guide describes Django’s support for interacting with
multiple databases. Most of the rest of Django’s documentation assumes you are interacting with a single database. If
you want to interact with multiple databases, you’ll need to take some additional steps.

Defining your databases

The first step to using more than one database with Django is to tell Django about the database servers you’ll be
using. This is done using the DATABASES setting. This setting maps database aliases, which are a way to refer to a
specific database throughout Django, to a dictionary of settings for that specific connection. The settings in the inner
dictionaries are described fully in the DATABASES documentation.

Databases can have any alias you choose. However, the alias default has special significance. Django uses the
database with the alias of default when no other database has been selected. If you don’t have a default
database, you need to be careful to always specify the database that you want to use.

The following is an example settings.py snippet defining two databases — a default PostgreSQL database and a
MySQL database called users:

DATABASES = {
"default’: {
"NAME’ :

3.2. Models and databases 101

Django Documentation, Release 1.3

}

If you attempt to access a database that you haven’t defined in your DATABASES setting, Django will raise a
django.db.utils.ConnectionDoesNotExist exception.

Synchronizing your databases

The syncdb management command operates on one database at a time. By default, it operates on the default
database, but by providing a ——database argument, you can tell syncdb to synchronize a different database. So, to
synchronize all models onto all databases in our example, you would need to call:

$./manage.py syncdb
$./manage.py syncdb --database=users

If you don’t want every application to be synchronized onto a particular database, you can define a database router
that implements a policy constraining the availability of particular models.

Alternatively, if you want fine-grained control of synchronization, you can pipe all or part of the output of sqlall
for a particular application directly into your database prompt, like this:

$./manage.py sqglall sales | ./manage.py dbshell

Using other management commands

The other django—admin . py commands that interact with the database operate in the same way as syncdb — they
only ever operate on one database at a time, using ——database to control the database used.

Automatic database routing

The easiest way to use multiple databases is to set up a database routing scheme. The default routing scheme ensures
that objects remain ‘sticky’ to their original database (i.e., an object retrieved from the foo database will be saved on
the same database). The default routing scheme ensures that if a database isn’t specified, all queries fall back to the
default database.

You don’t have to do anything to activate the default routing scheme — it is provided ‘out of the box’ on every Django
project. However, if you want to implement more interesting database allocation behaviors, you can define and install
your own database routers.

Database routers

A database Router is a class that provides up to four methods:

db_for read (model, **hints)
Suggest the database that should be used for read operations for objects of type model.

If a database operation is able to provide any additional information that might assist in selecting a database, it
will be provided in the hint s dictionary. Details on valid hints are provided below.

Returns None if there is no suggestion.

102 Chapter 3. Using Django

Django Documentation, Release 1.3

db_for write (model, **hints)
Suggest the database that should be used for writes of objects of type Model.

If a database operation is able to provide any additional information that might assist in selecting a database, it
will be provided in the hint s dictionary. Details on valid hints are provided below.

Returns None if there is no suggestion.

allow_relation (objl, obj2, **hints)
Return True if a relation between obj1 and obj2 should be allowed, False if the relation should be prevented, or
None if the router has no opinion. This is purely a validation operation, used by foreign key and many to many
operations to determine if a relation should be allowed between two objects.

allow_syncdb (db, model)
Determine if the model should be synchronized onto the database with alias db. Return True if the model
should be synchronized, False if it should not be synchronized, or None if the router has no opinion. This
method can be used to determine the availability of a model on a given database.

A router doesn’t have to provide all these methods - it omit one or more of them. If one of the methods is omitted,
Django will skip that router when performing the relevant check.

Hints The hints received by the database router can be used to decide which database should receive a given request.

At present, the only hint that will be provided is instance, an object instance that is related to the read or write
operation that is underway. This might be the instance that is being saved, or it might be an instance that is being
added in a many-to-many relation. In some cases, no instance hint will be provided at all. The router checks for the
existence of an instance hint, and determine if that hint should be used to alter routing behavior.

Using routers

Database routers are installed using the DATABASE_ROUTERS setting. This setting defines a list of class names, each
specifying a router that should be used by the master router (django.db.router).

The master router is used by Django’s database operations to allocate database usage. Whenever a query needs to know
which database to use, it calls the master router, providing a model and a hint (if available). Django then tries each
router in turn until a database suggestion can be found. If no suggestion can be found, it tries the current _state.db
of the hint instance. If a hint instance wasn’t provided, or the instance doesn’t currently have database state, the master
router will allocate the default database.

An example

Example purposes only!

This example is intended as a demonstration of how the router infrastructure can be used to alter database usage. It
intentionally ignores some complex issues in order to demonstrate how routers are used.

This example won’t work if any of the models in myapp contain relationships to models outside of the other
database. Cross-database relationships introduce referential integrity problems that Django can’t currently handle.

The master/slave configuration described is also flawed — it doesn’t provide any solution for handling replication lag
(i.e., query inconsistencies introduced because of the time taken for a write to propagate to the slaves). It also doesn’t
consider the interaction of transactions with the database utilization strategy.

3.2. Models and databases 103

Django Documentation, Release 1.3

So - what does this mean in practice? Say you want myapp to exist on the other database, and you want all other
models in a master/slave relationship between the databases master, slavel and slave?2. To implement this, you
would need 2 routers:

class MyAppRouter ()t

wwnp

the

def

def

def

def

~ontrol all da

nun

router to

myapp application

db_for_read(, model,

"Point all operations on

if model._meta.app_label
return ’'other’

tabase

*xhint
myapp

Py my

ope rations

s) :

models to ’"other

app’ :

return

db_for_ write(, model, *xhints):

"Point all org ations on myapp m

if model._meta.app_label == "myapp’:
return ’'other’

return

allow_relation (, objl, obj2, **hints):

"Allow any relation if a model in myapp is

if objl._meta.app_label == 'myapp’

return
return

allow_syncdb (, db, model) :

"Make sure the myapp app

if db == "other’:

return model._meta.app_label == "myapp’

only appears on the

elif model._meta.app_label == "myapp’
return
return
class MasterSlaveRouter ()z
"""A router that sets up a simple master/slave
def db_for read(, model, #*xhints):

def

def

def

np

Point all read or

return random.choice ([’ sl

‘ations to

avel’,

to "other’

or obij2.

on models in

rm

n

involved"

_meta.app_label == "myapp’:

configuration"""

rslave2’1)

*xhints) :

db_for_write(, model,
"Point all write operations to

’

return 'master

allow_relation , objl,

"Allow any relation betwe

db_list = ('master’,’slavel’,’slsc

the master"

obj2, *xhints):
en two objects in the db pool"

o)

if objl._state.db in db_list and obj2._state.db in db_list:

return
return
allow_syncdb (, db, model) :
"Explicitly put (¢
return

on all

databases.

n

Then, in your settings file, add the following (substituting path.to. with the actual python path to the module
where you define the routers):

104

Chapter 3. Using Django

Django Documentation, Release 1.3

DATABASE_ROUTERS = [’'path.to.MyAppRouter’, ’'path.to.MasterSlaveRouter’]

The order in which routers are processed is significant. = Routers will be queried in the order the are
listed in the DATABASE_ROUTERS setting . In this example, the MyAppRouter is processed before the
MasterSlaveRouter, and as a result, decisions concerning the models in myapp are processed before
any other decision is made. If the DATABASE_ROUTERS setting listed the two routers in the other order,
MasterSlaveRouter.allow_syncdb () would be processed first. The catch-all nature of the MasterSlaveR-
outer implementation would mean that all models would be available on all databases.

With this setup installed, lets run some Django code:

>>>
>>> fred = User.objects.get (username=’ fred’)
>>> fred.first_name = ’'Frederick’

>>>

>>> fred.save ()

>>>
>>> dna = Person.objects.get (name=’Douglas Adams’)

>>>
>>> mh = Book (title='Mostly Harmless’)

>>>
>>>
>>> mh.author = dna

>>>
>>> mh.save ()

>>>
>>> mh = Book.objects.get (title=’'Mostly Harmless’)

Manually selecting a database

Django also provides an API that allows you to maintain complete control over database usage in your code. A
manually specified database allocation will take priority over a database allocated by a router.

Manually selecting a database for a QuerySet

You can select the database for a QuerySet at any point in the QuerySet “chain.” Just call using () on the
QuerySet to get another QuerySet that uses the specified database.

using () takes a single argument: the alias of the database on which you want to run the query. For example:

>>>
>>> Author.objects.all()

>>>

>>> Author.objects.using ('default’).all()
>>>

>>> Author.objects.using (' other’).all()

3.2. Models and databases 105

Django Documentation, Release 1.3

Selecting a database for save ()

Use the using keyword to Model . save () to specify to which database the data should be saved.
For example, to save an object to the legacy_users database, you’d use this:

>>> my_object.save (using=’ legacy users’)

If you don’t specify using, the save () method will save into the default database allocated by the routers.

Moving an object from one database to another If you’ve saved an instance to one database, it might be tempt-
ing to use save (using=...) as a way to migrate the instance to a new database. However, if you don’t take
appropriate steps, this could have some unexpected consequences.

Consider the following example:

>>> p = Person (name=’'Fred’)
>>> p.save (using='first’)
>>> p.save (using=’'second’)

In statement 1, a new Person object is saved to the £irst database. At this time, p doesn’t have a primary key, so
Django issues a SQL INSERT statement. This creates a primary key, and Django assigns that primary key to p.

When the save occurs in statement 2, p already has a primary key value, and Django will attempt to use that primary
key on the new database. If the primary key value isn’t in use in the second database, then you won’t have any
problems — the object will be copied to the new database.

However, if the primary key of p is already in use on the second database, the existing object in the second database
will be overridden when p is saved.

You can avoid this in two ways. First, you can clear the primary key of the instance. If an object has no primary key,
Django will treat it as a new object, avoiding any loss of data on the second database:

>>> p = Person (name='Fred’)
>>> p.save (using='first’)
>>> p.pk =

>>> p.save (using=’'second’)

The second option is to use the force_insert option to save () to ensure that Django does a SQL INSERT:

>>> p = Person (name='Fred’)
st’)
>>> p.save (using=’seco

>>> p.save (using=’'f1i

nd’”, force_insert=)

This will ensure that the person named Fred will have the same primary key on both databases. If that primary key is
already in use when you try to save onto the second database, an error will be raised.

Selecting a database to delete from

By default, a call to delete an existing object will be executed on the same database that was used to retrieve the object
in the first place:

>>> u = User.objects.using(’ legacy_ users’) .get (username=’ fred’)
>>> u.delete ()

To specify the database from which a model will be deleted, pass a using keyword argument to the
Model .delete () method. This argument works just like the using keyword argument to save ().

106 Chapter 3. Using Django

Django Documentation, Release 1.3

For example, if you’re migrating a user from the 1egacy_users database to the new_users database, you might
use these commands:

Using managers with multiple databases

Use the db_manager () method on managers to give managers access to a non-default database.

For example, say you have a custom manager method that touches the database -
User.objects.create_user (). Because create_user () is a manager method, not a QuerySet
method, you can’t do User.objects.using (' new_users’) .create_user (). (The create_user ()

method is only available on User.objects, the manager, not on QuerySet objects derived from the manager.)
The solution is to use db_manager (), like this:

User.objects.db_manager (' new_users’).create_user(...)

db_manager () returns a copy of the manager bound to the database you specity.

Using get_query_set () with multiple databases If you’re overriding get_query_set () on your manager,
be sure to either call the method on the parent (using super ()) or do the appropriate handling of the _db attribute
on the manager (a string containing the name of the database to use).

For example, if you want to return a custom QuerySet class from the get_query_set method, you could do this:

class MyManager (models.Manager) :
def get_query_ set ()t

gs = CustomQuerySet (.model)
if ._db is not
gs = gs.using(._db)

return gs

Exposing multiple databases in Django’s admin interface

Django’s admin doesn’t have any explicit support for multiple databases. If you want to provide an admin interface for
a model on a database other than that that specified by your router chain, you’ll need to write custom Mode 1Admin
classes that will direct the admin to use a specific database for content.

ModelAdmin objects have five methods that require customization for multiple-database support:

class MultiDBModelAdmin (admin.ModelAdmin) :

’ ’

using = ’‘other
def save_model (, request, obj, form, change):
obj.save (using= .using)
def delete_model (, request, obj):
obj.delete (using= .using)
def queryset (, request):
return (MultiDBModelAdmin,) .queryset (request) .using(.using)

3.2. Models and databases 107

Django Documentation, Release 1.3

def formfield for_foreignkey (, db_field, request= , *xkwargs) :

return (MultiDBModelAdmin,) .formfield_for_foreignkey(db_field, request=request, us:
def formfield for_manytomany (, db_field, request= , *xkwargs) :

return (MultiDBModelAdmin,) .formfield_for_manytomany (db_field, request=request, us:

The implementation provided here implements a multi-database strategy where all objects of a given type are stored
on a specific database (e.g., all User objects are in the ot her database). If your usage of multiple databases is more
complex, your Mode1Admin will need to reflect that strategy.

Inlines can be handled in a similar fashion. They require three customized methods:

class MultiDBTabularInline (admin.TabularInline) :

’

using = ’‘other’
def queryset (, request):
return (MultiDBTabularInline,) .queryset (request) .using(.using)
def formfield for_foreignkey (, db_field, request= , *xkwargs) :
return (MultiDBTabularInline,) .formfield_for_foreignkey(db_field, request=request,
def formfield for_manytomany (, db_field, request= , *%*kwargs) :
return (MultiDBTabularInline,) .formfield_for_manytomany (db_field, request=request,

Once you’ve written your model admin definitions, they can be registered with any Admin instance:

from django.contrib import admin

class BookInline (MultiDBTabularInline) :
model = Book

class PublisherAdmin (MultiDBModelAdmin) :
inlines = [BookInline]

admin.site.register (Author, MultiDBModelAdmin)
admin.site.register (Publisher, PublisherAdmin)

othersite = admin.Site (' othersite’)
othersite.register (Publisher, MultiDBModelAdmin)

This example sets up two admin sites. On the first site, the Author and Publisher objects are exposed;
Publisher objects have an tabular inline showing books published by that publisher. The second site exposes
just publishers, without the inlines.

108 Chapter 3. Using Django

Django Documentation, Release 1.3

Using raw cursors with multiple databases

If you are using more than one database you can use django.db.connections to obtain the connection (and
cursor) for a specific database. django.db.connections is a dictionary-like object that allows you to retrieve a
specific connection using its alias:

from django.db import connections
cursor = connections[’'my db alias’].cursor ()

Limitations of multiple databases

Cross-database relations

Django doesn’t currently provide any support for foreign key or many-to-many relationships spanning multiple
databases. If you have used a router to partition models to different databases, any foreign key and many-to-many
relationships defined by those models must be internal to a single database.

This is because of referential integrity. In order to maintain a relationship between two objects, Django needs to know
that the primary key of the related object is valid. If the primary key is stored on a separate database, it’s not possible
to easily evaluate the validity of a primary key.

If you’re using Postgres, Oracle, or MySQL with InnoDB, this is enforced at the database integrity level — database
level key constraints prevent the creation of relations that can’t be validated.

However, if you’re using SQLite or MySQL with MyISAM tables, there is no enforced referential integrity; as a
result, you may be able to ‘fake’ cross database foreign keys. However, this configuration is not officially supported
by Django.

3.2.8 Database access optimization

Django’s database layer provides various ways to help developers get the most out of their databases. This document
gathers together links to the relevant documentation, and adds various tips, organized under a number of headings that
outline the steps to take when attempting to optimize your database usage.

Profile first

As general programming practice, this goes without saying. Find out what queries you are doing and what they are
costing you. You may also want to use an external project like django-debug-toolbar, or a tool that monitors your
database directly.

Remember that you may be optimizing for speed or memory or both, depending on your requirements. Sometimes
optimizing for one will be detrimental to the other, but sometimes they will help each other. Also, work that is done by
the database process might not have the same cost (to you) as the same amount of work done in your Python process.
It is up to you to decide what your priorities are, where the balance must lie, and profile all of these as required since
this will depend on your application and server.

With everything that follows, remember to profile after every change to ensure that the change is a benefit, and a big
enough benefit given the decrease in readability of your code. All of the suggestions below come with the caveat that
in your circumstances the general principle might not apply, or might even be reversed.

Use standard DB optimization techniques

...including:

3.2. Models and databases 109

http://robhudson.github.com/django-debug-toolbar/

Django Documentation, Release 1.3

¢ Indexes. This is a number one priority, after you have determined from profiling what indexes should be added.
Use django.db.models.Field.db_index to add these from Django.

» Appropriate use of field types.

We will assume you have done the obvious things above. The rest of this document focuses on how to use Django
in such a way that you are not doing unnecessary work. This document also does not address other optimization
techniques that apply to all expensive operations, such as general purpose caching.

Understand QuerySets

Understanding QuerySets is vital to getting good performance with simple code. In particular:

Understand QuerySet evaluation

To avoid performance problems, it is important to understand:
e that QuerySets are lazy.
e when they are evaluated.

e how the data is held in memory.

Understand cached attributes

As well as caching of the whole QuerySet, there is caching of the result of attributes on ORM objects. In general,
attributes that are not callable will be cached. For example, assuming the example Weblog models:

>>> entry = Entry.objects.get (id=1l)
>>> entry.blog
>>> entry.blog

But in general, callable attributes cause DB lookups every time:

>>> entry = Entry.objects.get (id=1l)
>>> entry.authors.all()
>>> entry.authors.all()

Be careful when reading template code - the template system does not allow use of parentheses, but will call callables
automatically, hiding the above distinction.

Be careful with your own custom properties - it is up to you to implement caching.

Use the with template tag

To make use of the caching behaviour of QuerySet, you may need to use the with template tag.

Use iterator()

When you have a lot of objects, the caching behaviour of the QuerySet can cause a large amount of memory to be
used. In this case, iterator () may help.

110 Chapter 3. Using Django

Django Documentation, Release 1.3

Do database work in the database rather than in Python

For instance:
* At the most basic level, use filter and exclude to do filtering in the database.
» Use F() object query expressions to do filtering against other fields within the same model.
» Use annotate to do aggregation in the database.

If these aren’t enough to generate the SQL you need:

Use QuerySet .extra ()

A less portable but more powerful method is extra (), which allows some SQL to be explicitly added to the query.
If that still isn’t powerful enough:

Use raw SQL

Write your own custom SQL to retrieve data or populate models. Use django.db.connection.queries to
find out what Django is writing for you and start from there.

Retrieve everything at once if you know you will need it

Hitting the database multiple times for different parts of a single ‘set’ of data that you will need all parts of is, in
general, less efficient than retrieving it all in one query. This is particularly important if you have a query that is
executed in a loop, and could therefore end up doing many database queries, when only one was needed. So:

Use QuerySet.select_related()

Understand QuerySet.select_related() thoroughly, and use it:
e in view code,

* and in managers and default managers where appropriate. Be aware when your manager is and is not used;
sometimes this is tricky so don’t make assumptions.

Don’t retrieve things you don’t need

Use QuerySet .values () and values_1list ()

When you just want a dict or 1ist of values, and don’t need ORM model objects, make appropriate usage of
values (). These can be useful for replacing model objects in template code - as long as the dicts you supply have
the same attributes as those used in the template, you are fine.

Use QuerySet .defer () and only ()

Use defer () and only () if there are database columns you know that you won’t need (or won’t need in most
cases) to avoid loading them. Note that if you do use them, the ORM will have to go and get them in a separate query,
making this a pessimization if you use it inappropriately.

3.2. Models and databases 111

Django Documentation, Release 1.3

Also, be aware that there is some (small extra) overhead incurred inside Django when constructing a model with
deferred fields. Don’t be too aggressive in deferring fields without profiling as the database has to read most of the
non-text, non-VARCHAR data from the disk for a single row in the results, even if it ends up only using a few columns.
The defer () and only () methods are most useful when you can avoid loading a lot of text data or for fields that
might take a lot of processing to convert back to Python. As always, profile first, then optimize.

Use QuerySet.count()

...if you only want the count, rather than doing len (queryset).

Use QuerySet.exists()

...if you only want to find out if at least one result exists, rather than 1 f queryset.

But:

Don’t overuse count () and exists ()

If you are going to need other data from the QuerySet, just evaluate it.

For example, assuming an Email model that has a body attribute and a many-to-many relation to User, the following
template code is optimal:

if display_inbox
with emails=user.emails.all
if emails
<p>You have emails|length email (s)</p>
for email in emails
<p> email.body </p>
endfor
else
<p>No messages today.</p>
endif
endwith
endif

It is optimal because:
1. Since QuerySets are lazy, this does no database queries if ‘display_inbox’ is False.

2. Use of with means that we store user.emails.all in a variable for later use, allowing its cache to be
re-used.

3. The line {% if emails %} causes QuerySet.__nonzero__ () to be called, which causes the
user.emails.all () query to be run on the database, and at the least the first line to be turned into an
ORM object. If there aren’t any results, it will return False, otherwise True.

4. Theuseof {{ emails|length }} callsQuerySet.__len__ (), filling out the rest of the cache without
doing another query.

5. The for loop iterates over the already filled cache.

In total, this code does either one or zero database queries. The only deliberate optimization performed is the use of the
with tag. Using QuerySet.exists () or QuerySet.count () atany point would cause additional queries.

112 Chapter 3. Using Django

Django Documentation, Release 1.3

Use QuerySet .update () and delete ()

Rather than retrieve a load of objects, set some values, and save them individual, use a bulk SQL UPDATE statement,
via QuerySet.update(). Similarly, do bulk deletes where possible.

Note, however, that these bulk update methods cannot call the save () ordelete () methods of individual instances,
which means that any custom behaviour you have added for these methods will not be executed, including anything
driven from the normal database object signals.

Use foreign key values directly

If you only need a foreign key value, use the foreign key value that is already on the object you’ve got, rather than
getting the whole related object and taking its primary key. i.e. do:

entry.blog_id

instead of:

entry.blog.id

3.3 Handling HTTP requests

Information on handling HTTP requests in Django:

3.3.1 URL dispatcher

A clean, elegant URL scheme is an important detail in a high-quality Web application. Django lets you design URLSs
however you want, with no framework limitations.

There’s no . php or . cgi required, and certainly none of that 0, 2097, 1-1-1928, 00 nonsense.

See Cool URIs don’t change, by World Wide Web creator Tim Berners-Lee, for excellent arguments on why URLs
should be clean and usable.

Overview

To design URLs for an app, you create a Python module informally called a URLconf (URL configuration). This
module is pure Python code and is a simple mapping between URL patterns (as simple regular expressions) to Python
callback functions (your views).

This mapping can be as short or as long as needed. It can reference other mappings. And, because it’s pure Python
code, it can be constructed dynamically.

How Django processes a request

When a user requests a page from your Django-powered site, this is the algorithm the system follows to determine
which Python code to execute:

1. Django determines the root URLconf module to use. Ordinarily, this is the value of the ROOT_URLCONFEF
setting, but if the incoming Ht t pRequest object has an attribute called urlconf (set by middleware request
processing), its value will be used in place of the ROOT_URLCONF setting.

3.3. Handling HTTP requests 113

http://www.w3.org/Provider/Style/URI

Django Documentation, Release 1.3

2. Django loads that Python module and looks for the variable urlpatterns. This should be a Python list, in
the format returned by the function d jango.conf.urls.defaults.patterns ().

3. Django runs through each URL pattern, in order, and stops at the first one that matches the requested URL.

4. Once one of the regexes matches, Django imports and calls the given view, which is a simple Python function.
The view gets passed an Ht tpRequest as its first argument and any values captured in the regex as remaining
arguments.

Example

Here’s a sample URLconf:

from django.conf.urls.defaults import =*

urlpatterns = patterns(’'’,
(r’ ~articles/2003/$’, "news.vi
(r’ ~article (\d{4}) r, 7
(r’ ~article ({4}1)/ (\d{2
(r’ ~articl (\d{4})/(2
)
Notes:

e from django.conf.urls.defaults import =* makesthe patterns () function available.
* To capture a value from the URL, just put parenthesis around it.

e There’s no need to add a leading slash, because every URL has that. For example, it’s “articles, not
~/articles.

e The ' r’ in front of each regular expression string is optional but recommended. It tells Python that a string is
“raw” — that nothing in the string should be escaped. See Dive Into Python’s explanation.

Example requests:

* Arequestto /articles/2005/03/ would match the third entry in the list. Django would call the function
news.views.month_archive (request, ’2005’, "037).

* /articles/2005/3/ would not match any URL patterns, because the third entry in the list requires two
digits for the month.

e /articles/2003/ would match the first pattern in the list, not the second one, because the patterns are
tested in order, and the first one is the first test to pass. Feel free to exploit the ordering to insert special cases
like this.

e /articles/2003 would not match any of these patterns, because each pattern requires that the URL end
with a slash.

e /articles/2003/03/3/ would match the final pattern. Django would call the function
news.views.article_detail (request, ’72003’, "03’, '37").

Named groups

The above example used simple, non-named regular-expression groups (via parenthesis) to capture bits of the URL and
pass them as positional arguments to a view. In more advanced usage, it’s possible to use named regular-expression
groups to capture URL bits and pass them as keyword arguments to a view.

In Python regular expressions, the syntax for named regular-expression groups is (?P<name>pattern), where
name is the name of the group and pattern is some pattern to match.

114 Chapter 3. Using Django

http://diveintopython.org/regular_expressions/street_addresses.html#re.matching.2.3

Django Documentation, Release 1.3

Here’s the above example URLconf, rewritten to use named groups:

urlpatterns = patterns(’’,
(r” ~articles/2003/$’, 'news.views
(r” ~articles/ (?P<y r
(r’" ~articles/ (?Ps hive’),
(r’" ~articles/ (?P iews.article_det

)

This accomplishes exactly the same thing as the previous example, with one subtle difference: The captured values
are passed to view functions as keyword arguments rather than positional arguments. For example:

e Arequestto /articles/2005/03/ would call the function news . views.month_archive (request,
year='2005’, month=’03’"), instead of news.views.month_archive (request, ’'2005',
r037).

e Arequestto /articles/2003/03/3/ wouldcall the function news.views.article_detail (request,
year='2003", month="03’", day=’'3").

In practice, this means your URLconfs are slightly more explicit and less prone to argument-order bugs — and you can
reorder the arguments in your views’ function definitions. Of course, these benefits come at the cost of brevity; some
developers find the named-group syntax ugly and too verbose.

The matching/grouping algorithm

Here’s the algorithm the URLconf parser follows, with respect to named groups vs. non-named groups in a regular
expression:

If there are any named arguments, it will use those, ignoring non-named arguments. Otherwise, it will pass all non-
named arguments as positional arguments.

In both cases, it will pass any extra keyword arguments as keyword arguments. See “Passing extra options to view
functions” below.

What the URLconf searches against

The URLconf searches against the requested URL, as a normal Python string. This does not include GET or POST
parameters, or the domain name.

For example, in a request to http: //www.example.com/myapp/, the URLconf will look for myapp/.
Inarequestto http://www.example.com/myapp/?page=3, the URLconf will look for myapp/.

The URLconf doesn’t look at the request method. In other words, all request methods — POST, GET, HEAD, etc. — will
be routed to the same function for the same URL.

Syntax of the urlpatterns variable

urlpatterns should be a Python list, in the format returned by the function
django.conf.urls.defaults.patterns (). Always use patterns () to create the urlpatterns
variable.

Convention is to use from django.conf.urls.defaults import = at the top of your URLconf. This
gives your module access to these objects:

3.3. Handling HTTP requests 115

Django Documentation, Release 1.3

patterns

patterns (prefix, pattern_description, ...)

A function that takes a prefix, and an arbitrary number of URL patterns, and returns a list of URL patterns in the format
Django needs.

The first argument to patterns () is a string prefix. See The view prefix below.
The remaining arguments should be tuples in this format:

(regular expression, Python callback function [, optional dictionary [, optional name]])

...where optional dictionary and optional name are optional. (See Passing extra options to view func-
tions below.)

Note: Because patterns() is a function call, it accepts a maximum of 255 arguments (URL patterns, in this case).
This is a limit for all Python function calls. This is rarely a problem in practice, because you’ll typically structure your
URL patterns modularly by using include() sections. However, on the off-chance you do hit the 255-argument limit,
realize that patterns() returns a Python list, so you can split up the construction of the list.

urlpatterns = patterns(’’,

)

urlpatterns += patterns(’’,

)

Python lists have unlimited size, so there’s no limit to how many URL patterns you can construct. The only limit is
that you can only create 254 at a time (the 255th argument is the initial prefix argument).

url

url (regex, view, kwargs=None, name=None, prefix="")

You can use the url () function, instead of a tuple, as an argument to patterns (). This is convenient if you want
to specify a name without the optional extra arguments dictionary. For example:

urlpatterns = patterns(’’,

’ -

url (r’ "index/S$’, index_view, name="main-view'"),
)

This function takes five arguments, most of which are optional:

url (regex, view, kwargs= , hame= , prefix="")

See Naming URL patterns for why the name parameter is useful.

The prefix parameter has the same meaning as the first argument to patterns () and is only relevant when you’re
passing a string as the view parameter.

handler404

handler404

116 Chapter 3. Using Django

Django Documentation, Release 1.3

A callable, or a string representing the full Python import path to the view that should be called if none of the URL
patterns match.

By default, this is ' django.views.defaults.page_not_found’. That default value should suffice.
Changed in version 1.2: Previous versions of Django only accepted strings representing import paths.

handler500

handler500

A callable, or a string representing the full Python import path to the view that should be called in case of server errors.
Server errors happen when you have runtime errors in view code.

By default, this is “ django.views.defaults.server_error’. That default value should suffice. Changed
in version 1.2: Previous versions of Django only accepted strings representing import paths.

include

include (<module or pattern_list>)
A function that takes a full Python import path to another URLconf module that should be “included” in this place.
include () also accepts as an argument an iterable that returns URL patterns.

See Including other URLconfs below.

Notes on capturing text in URLs

Each captured argument is sent to the view as a plain Python string, regardless of what sort of match the regular
expression makes. For example, in this URLconf line:

(r’ “articles/ (?P<year>\d{4})/$’, ’'news.views.year_archive’),

..the year argument to news.views.year_archive () will be a string, not an integer, even though the \d {4}
will only match integer strings.

A convenient trick is to specify default parameters for your views’ arguments. Here’s an example URLconf and view:

URLconf
urlpatterns = patterns(’’,

(r’*blog/$’, ’'blog.views.page’),

(r’ “blog/page (?P<num>\d+) /$’, ’'blog.views.page’),
)

View (in blog/views.py)
def page(request, num="1"):
Output the appropriate page of blog entries, according to num.

In the above example, both URL patterns point to the same view —blog.views.page — but the first pattern doesn’t
capture anything from the URL. If the first pattern matches, the page () function will use its default argument for
num, "1". If the second pattern matches, page () will use whatever num value was captured by the regex.

Performance

Each regular expression in a urlpatterns is compiled the first time it’s accessed. This makes the system blazingly
fast.

3.3. Handling HTTP requests 117

Django Documentation, Release 1.3

The view prefix

You can specify a common prefix in your patterns () call, to cut down on code duplication.
Here’s the example URLconf from the Django overview:

from django.conf.urls.defaults import =*

urlpatterns = pattern

’

(r’ ~articles/ (\d{4}
(r’ ~articles/ (\d{4

(r" ~articles/ (\d{“

month_archive’),

ews.views.article_detail’),

In this example, each view has a common prefix — ' news.views’. Instead of typing that out for each entry in
urlpatterns, you can use the first argument to the patterns () function to specify a prefix to apply to each
view function.

With this in mind, the above example can be written more concisely as:

from django.conf.urls.defaults import =*

urlpatterns = patterns (' news
(r” ~articles/ (\d{4})/$", "year
(r’ ~articles/ (\d{4})/(\d{2})/$S
(r’ ~articles/ (\d{4})/ (\d{2

archive’),

Note that you don’t put a trailing dot (" . ") in the prefix. Django puts that in automatically.

Multiple view prefixes

In practice, you’ll probably end up mixing and matching views to the point where the views in your urlpatterns
won’t have a common prefix. However, you can still take advantage of the view prefix shortcut to remove duplication.
Just add multiple patterns () objects together, like this:

Old:

from django.conf.urls.defaults import =*

urlpatterns = patterns(’’,
(r"~$’, ’"django.vie
(r’" ~ (?P<year>\d{4}

(r" “tag/ (?P<tag>\w+

New:

from django.conf.urls.defaults import =*

urlpatterns = patterns(’'django.views.generic.date based’,
(r’~$’, ’"archive_index’),
(r’~ (?P<year>\d{4})/ (?P<month>[a-z]{3})/$’,’archive_month’),
)

urlpatterns += patterns (' we
(r’ “tag/ (?P<tag>\w+) /¢

118 Chapter 3. Using Django

Django Documentation, Release 1.3

Including other URLconfs

At any point, your urlpatterns can “include” other URLconf modules. This essentially “roots” a set of URLs
below other ones.

For example, here’s the URLconf for the Django Web site itself. It includes a number of other URLconfs:

from django.conf.urls.defaults import =*

urlpatterns = patterns(’’,

(r’ "weblog/’, include (' django
o tation/’”, include (’d
/[, include (' dj

(r

r A

(r

)

Note that the regular expressions in this example don’t have a $ (end-of-string match character) but do include a
trailing slash. Whenever Django encounters include (), it chops off whatever part of the URL matched up to that
point and sends the remaining string to the included URLconf for further processing.

Another possibility is to include additional URL patterns not by specifying the URLconf Python module defining them
as the include argument but by using directly the pattern list as returned by patterns instead. For example:

from django.conf.urls.defaults import =*

extra_patterns = patterns(’'’,
url (r’ reports/ (?P<id>\d+) /S’ , ' cre "y,
url (r’charge/$’, ’'credit.views.charge

urlpatterns = patterns(’’,
url (r""57, "apps.main.views.homep
(r" “help/’, include (' apps.help.urls’)),
(r”"credit/’, include (extra_patterns)),

je

)

This approach can be seen in use when you deploy an instance of the Django Admin application. The Django Admin
is deployed as instances of a AdminSite; each AdminSite instance has an attribute urls that returns the url
patterns available to that instance. It is this attribute that you include () into your projects urlpatterns when
you deploy the admin instance.

Captured parameters

An included URLconf receives any captured parameters from parent URLconfs, so the following example is valid:

urlpatterns = patterns(’’,

(r’ ~ (?P<username>\w+) /blog/’, include(’ foo.urls.blog’)),
)
urlpatterns = patterns(’ foo.views’,

(r’'~$’, ’'blog.index’),

(r’ ~arch , "blog.archive’),

)

In the above example, the captured "username™" variable is passed to the included URLconf, as expected.

3.3. Handling HTTP requests 119

http://www.djangoproject.com/

Django Documentation, Release 1.3

Defining URL namespaces

When you need to deploy multiple instances of a single application, it can be helpful to be able to differentiate
between instances. This is especially important when using named URL patterns, since multiple instances of a single
application will share named URLs. Namespaces provide a way to tell these named URLs apart.

A URL namespace comes in two parts, both of which are strings:

¢ An application namespace. This describes the name of the application that is being deployed. Every instance
of a single application will have the same application namespace. For example, Django’s admin application has
the somewhat predictable application namespace of admin.

¢ An instance namespace. This identifies a specific instance of an application. Instance namespaces should
be unique across your entire project. However, an instance namespace can be the same as the application
namespace. This is used to specify a default instance of an application. For example, the default Django Admin
instance has an instance namespace of admin.

URL Namespaces can be specified in two ways.

Firstly, you can provide the application and instance namespace as arguments to include () when you construct
your URL patterns. For example,:

(r’”"help/’”, include ('’ apps.help.urls’, namespace=’ foo’, app_name=’'bar’)),
This will include the URLs defined in apps.help.urls into the application namespace bar, with the instance
namespace foo.

Secondly, you can include an object that contains embedded namespace data. If you include () a patterns
object, that object will be added to the global namespace. However, you can also include () an object that contains
a 3-tuple containing:

(<patterns object>, <application namespace>, <instance namespace>)

This will include the nominated URL patterns into the given application and instance namespace. For example, the
urls attribute of Django’s AdminSite object returns a 3-tuple that contains all the patterns in an admin site, plus
the name of the admin instance, and the application namespace admin.

Once you have defined namespaced URLSs, you can reverse them. For details on reversing namespaced urls, see the
documentation on reversing namespaced URLSs.

Passing extra options to view functions

URLconfs have a hook that lets you pass extra arguments to your view functions, as a Python dictionary.

Any URLconf tuple can have an optional third element, which should be a dictionary of extra keyword arguments to
pass to the view function.

For example:

urlpatterns = patterns(’'blog.views’,
(r’ “blog/ (?P<year>\d{4})/$’, ’'year_archive’, {’foo’: ’"bar’}),
)

In this example, for a request to /blog/2005/, Django will call the blog.views.year_archive () view,
passing it these keyword arguments:

year='2005", foo="bar’

This technique is used in generic views and in the syndication framework to pass metadata and options to views.

120 Chapter 3. Using Django

Django Documentation, Release 1.3

Dealing with conflicts

It’s possible to have a URL pattern which captures named keyword arguments, and also passes arguments with the
same names in its dictionary of extra arguments. When this happens, the arguments in the dictionary will be used
instead of the arguments captured in the URL.

Passing extra options to include ()

Similarly, you can pass extra options to include (). When you pass extra options to include (), each line in the
included URLconf will be passed the extra options.

For example, these two URLconf sets are functionally identical:

Set one:

urlpatterns = patterns(’’,

(r’”"blog/’”, include (' inner’), {’blogid’: 3}),
)
urlpatterns = patterns(’’,
(r’" “archive/S$’ !
(r” ~about/$’, 'mysi
)
Set two:
urlpatterns = patterns(’
(r”"blog/’”, include ('’ inner’)),

)

urlpatterns = patterns(’’,
(r’ ~archive/$’, 'mysite.

(r’ “about/$’, ’'mysite.views.about’, {’blogid’: 31}),

)

Note that extra options will always be passed to every line in the included URLconf, regardless of whether the line’s
view actually accepts those options as valid. For this reason, this technique is only useful if you’re certain that every
view in the included URLconf accepts the extra options you’re passing.

Passing callable objects instead of strings

Some developers find it more natural to pass the actual Python function object rather than a string containing the path
to its module. This alternative is supported — you can pass any callable object as the view.

For example, given this URLconf in “string” notation:

’

urlpatterns = patterns(’’,
(r’
(r” ~about/$’, ’'my

(r" “contact/$’,

~“archive/$’, ’'mysi

)

You can accomplish the same thing by passing objects rather than strings. Just be sure to import the objects:

3.3. Handling HTTP requests 121

Django Documentation, Release 1.3

from mysite.views import archive, about, contact

urlpatterns = patterns(’’,
(r’"~archive/S$’, archive),
(r” ~about/$’, about),

’

(r” “contact/S$’, contact),

)

The following example is functionally identical. It’s just a bit more compact because it imports the module that
contains the views, rather than importing each view individually:

from mysite import views

urlpatterns = patterns(’’,
(r"~archive/$’, views.archive),
(r” ~about/$’, views.about),
(r’” “contact/$’, views.contact),

The style you use is up to you.

Note that if you use this technique — passing objects rather than strings — the view prefix (as explained in “The view
prefix” above) will have no effect.

Naming URL patterns

It’s fairly common to use the same view function in multiple URL patterns in your URLconf. For example, these two
URL patterns both point to the archive view:

’

urlpatterns = patterns(’’,
| (\d{4})/$", archive),

(r’ “archiv

’ ’ ’

(r’ “archive-summary/ (\d{4})/$’, archive, {’summary’: by

)

This is completely valid, but it leads to problems when you try to do reverse URL matching (through the
permalink () decorator or the url template tag). Continuing this example, if you wanted to retrieve the URL
for the archive view, Django’s reverse URL matcher would get confused, because two URLpatterns point at that
view.

To solve this problem, Django supports named URL patterns. That is, you can give a name to a URL pattern in order
to distinguish it from other patterns using the same view and parameters. Then, you can use this name in reverse URL
matching.

Here’s the above example, rewritten to use named URL patterns:

urlpatterns = patterns(’’,
url (r’ “archive/ (\d{4})/$", archive, name="full-archive"),
url (r’ "archive-summary/ (\d{4})/$’", archive, {’summary’: }, "arch-summary"),

)

With these names in place (full-archive and arch—-summary), you can target each pattern individually by
using its name:

url arch-summary 1945
url full-archive 2007

Even though both URL patterns refer to the archive view here, using the name parameter to url () allows you to
tell them apart in templates.

122 Chapter 3. Using Django

Django Documentation, Release 1.3

The string used for the URL name can contain any characters you like. You are not restricted to valid Python names.

Note: When you name your URL patterns, make sure you use names that are unlikely to clash with any other
application’s choice of names. If you call your URL pattern comment, and another application does the same thing,
there’s no guarantee which URL will be inserted into your template when you use this name.

Putting a prefix on your URL names, perhaps derived from the application name, will decrease the chances of collision.
We recommend something like myapp—comment instead of comment.

URL namespaces

Namespaced URLs are specified using the : operator. For example, the main index page of the admin application is
referenced using admin: index. This indicates a namespace of admin, and a named URL of index.

Namespaces can also be nested. The named URL foo:bar:whiz would look for a pattern named whiz in the
namespace bar that is itself defined within the top-level namespace foo.

When given a namespaced URL (e.g. myapp: index) to resolve, Django splits the fully qualified name into parts,
and then tries the following lookup:

1. First, Django looks for a matching application namespace (in this example, myapp). This will yield a list of
instances of that application.

2. If there is a current application defined, Django finds and returns the URL resolver for that instance. The current
application can be specified as an attribute on the template context - applications that expect to have multiple
deployments should set the current_app attribute on any Context or RequestContext that is used to
render a template.

The current application can also be specified manually as an argument to the reverse () function.

3. If there is no current application. Django looks for a default application instance. The default application
instance is the instance that has an instance namespace matching the application namespace (in this example, an
instance of the myapp called myapp).

4. If there is no default application instance, Django will pick the last deployed instance of the application, whatever
its instance name may be.

5. If the provided namespace doesn’t match an application namespace in step 1, Django will attempt a direct lookup
of the namespace as an instance namespace.

If there are nested namespaces, these steps are repeated for each part of the namespace until only the view name is
unresolved. The view name will then be resolved into a URL in the namespace that has been found.

To show this resolution strategy in action, consider an example of two instances of myapp: one called foo, and one
called bar. myapp has a main index page with a URL named index. Using this setup, the following lookups are
possible:

« If one of the instances is current - say, if we were rendering a utility page in the instance bar - myapp: index
will resolve to the index page of the instance bar.

« If there is no current instance - say, if we were rendering a page somewhere else on the site - myapp: index
will resolve to the last registered instance of myapp. Since there is no default instance, the last instance of
myapp that is registered will be used. This could be foo or bar, depending on the order they are introduced
into the urlpatterns of the project.

* foo:index will always resolve to the index page of the instance foo.

If there was also a default instance - i.e., an instance named myapp - the following would happen:

3.3. Handling HTTP requests 123

Django Documentation, Release 1.3

« If one of the instances is current - say, if we were rendering a utility page in the instance bar - myapp: index
will resolve to the index page of the instance bar.

« If there is no current instance - say, if we were rendering a page somewhere else on the site - myapp: index
will resolve to the index page of the default instance.

e foo:index will again resolve to the index page of the instance foo.

Utility methods

reverse()

If you need to use something similar to the ur1 template tag in your code, Django provides the following method (in
the django.core.urlresolvers module):

reverse (viewname, urlconf=None, args=None, kwargs=None, current_app=None)

viewname is either the function name (either a function reference, or the string version of the name, if you used
that form in urlpatterns) or the URL pattern name. Normally, you won’t need to worry about the urlconf
parameter and will only pass in the positional and keyword arguments to use in the URL matching. For example:

from django.core.urlresolvers import reverse

def myview (request) :
return HttpResponseRedirect (reverse (' arch-summary’, args=[1945]))

The reverse () function can reverse a large variety of regular expression patterns for URLs, but not every possible
one. The main restriction at the moment is that the pattern cannot contain alternative choices using the vertical bar
(" | ™) character. You can quite happily use such patterns for matching against incoming URLs and sending them off
to views, but you cannot reverse such patterns.

The current_app argument allows you to provide a hint to the resolver indicating the application to which the
currently executing view belongs. This current_app argument is used as a hint to resolve application namespaces
into URLs on specific application instances, according to the namespaced URL resolution strategy.

Make sure your views are all correct.

As part of working out which URL names map to which patterns, the reverse () function has to import all of your
URLconf files and examine the name of each view. This involves importing each view function. If there are any errors
whilst importing any of your view functions, it will cause reverse () to raise an error, even if that view function is
not the one you are trying to reverse.

Make sure that any views you reference in your URLconf files exist and can be imported correctly. Do not include
lines that reference views you haven’t written yet, because those views will not be importable.

resolve()

The django.core.urlresolvers.resolve () function can be used for resolving URL paths to the corre-
sponding view functions. It has the following signature:

resolve (path, urlconf=None)

path is the URL path you want to resolve. As with reverse (), you don’t need to worry about the urlconf
parameter. The function returns a ResolverMatch object that allows you to access various meta-data about the
resolved URL.

If the URL does not resolve, the function raises an Ht tp4 04 exception.

124 Chapter 3. Using Django

Django Documentation, Release 1.3

class ResolverMatch

func
The view function that would be used to serve the URL

args
The arguments that would be passed to the view function, as parsed from the URL.

kwargs
The keyword arguments that would be passed to the view function, as parsed from the URL.

url name
The name of the URL pattern that matches the URL.

app_name
The application namespace for the URL pattern that matches the URL.

namespace
The instance namespace for the URL pattern that matches the URL.

namespaces
The list of individual namespace components in the full instance namespace for the URL pattern that
matches the URL. i.e., if the namespace is foo :bar, then namespaces will be [’ foo’, ’"bar’].

A ResolverMatch object can then be interrogated to provide information about the URL pattern that matches a
URL:

match = resolve ()
print match.url_name

A ResolverMatch object can also be assigned to a triple:

func, args, kwargs = resolve()

Changed in version Development version: Triple-assignment exists for backwards-compatibility. Prior to Django 1.3,
resolve () returned a triple containing (view function, arguments, keyword arguments); the ResolverMatch
object (as well as the namespace and pattern information it provides) is not available in earlier Django releases. One
possible use of resolve () would be to testing if a view would raise a Ht t p404 error before redirecting to it:

from urlparse import urlparse
from django.core.urlresolvers import resolve
from django.http import HttpResponseRedirect, Http404

def myview (request) :
= request.META.get (,) or
response = HttpResponseRedirect ()

view, args, kwargs = resolve (urlparse ()y [2]1)
kwargs [] = request
try:

view (*args, **xkwargs)
except Http404:

return HttpResponseRedirect ()
return response

3.3. Handling HTTP requests 125

Django Documentation, Release 1.3

permalink()

The django.db.models.permalink () decorator is useful for writing short methods that return a full URL
path. For example, a model’s get_absolute_url () method. See django.db.models.permalink () for
more.

get_script_prefix()

get_script_prefix()

Normally, you should always use reverse () or permalink () to define URLs within your application. However,
if your application constructs part of the URL hierarchy itself, you may occasionally need to generate URLs. In that
case, you need to be able to find the base URL of the Django project within its Web server (normally, reverse ()
takes care of this for you). In that case, you can call get_script_prefix (), which will return the script prefix
portion of the URL for your Django project. If your Django project is at the root of its Web server, this is always " /",
but it can be changed, for instance by using django . root (see How to use Django with Apache and mod_python).

3.3.2 Writing views

A view function, or view for short, is simply a Python function that takes a Web request and returns a Web response.
This response can be the HTML contents of a Web page, or a redirect, or a 404 error, or an XML document, or an
image . . . or anything, really. The view itself contains whatever arbitrary logic is necessary to return that response.
This code can live anywhere you want, as long as it’s on your Python path. There’s no other requirement—no “magic,’
so to speak. For the sake of putting the code somewhere, let’s create a file called views . py in the mysite directory,
which you created in the previous chapter.

A simple view

Here’s a view that returns the current date and time, as an HTML document:

from django.http import HttpResponse
import datetime

def current_datetime (request) :
now = datetime.datetime.now ()
html = "<html><body>It i1s now $%s. body></html>" % now
return HttpResponse (html)

Let’s step through this code one line at a time:

* First, we import the class Ht t pResponse from the d jango . ht t p module, along with Python’s datet ime
library.

¢ Next, we define a function called current_datetime. This is the view function. Each view function takes
an Ht tpRequest object as its first parameter, which is typically named request.

Note that the name of the view function doesn’t matter; it doesn’t have to be named in a certain way in order for
Django to recognize it. We're calling it current_datetime here, because that name clearly indicates what
it does.

* The view returns an Ht tpResponse object that contains the generated response. Each view function is re-
sponsible for returning an Ht t pResponse object. (There are exceptions, but we’ll get to those later.)

Django’s Time Zone

126 Chapter 3. Using Django

Django Documentation, Release 1.3

Django includes a TIME_ZONE setting that defaults to America/Chicago. This probably isn’t where you live, so
you might want to change it in your settings file.

Mapping URLs to views

So, to recap, this view function returns an HTML page that includes the current date and time. To display this view at
a particular URL, you’ll need to create a URLconf’; see URL dispatcher for instructions.

Returning errors

Returning HTTP error codes in Django is easy. There are subclasses of Ht t pResponse for a number of common
HTTP status codes other than 200 (which means “OK”). You can find the full list of available subclasses in the re-
quest/response documentation. Just return an instance of one of those subclasses instead of a normal Ht t pResponse
in order to signify an error. For example:

def my view (request):

if foo:

return HttpResponseNotFound (' <hl>Page not found</hl>")
else:

return HttpResponse (' <hl>Page was found</hl>")

There isn’t a specialized subclass for every possible HTTP response code, since many of them aren’t going to be that
common. However, as documented in the Ht t pResponse documentation, you can also pass the HTTP status code
into the constructor for Ht t pResponse to create a return class for any status code you like. For example:

def my view (request):

return HttpResponse (status=201)

Because 404 errors are by far the most common HTTP error, there’s an easier way to handle those errors.

The Http404 exception

class django.http.Http404

When you return an error such as Ht tpResponseNotFound, you're responsible for defining the HTML of the
resulting error page:

return HttpResponseNotFound (' <hl>Page not found</hl>")
For convenience, and because it’s a good idea to have a consistent 404 error page across your site, Django provides

an Http404 exception. If you raise Http404 at any point in a view function, Django will catch it and return the
standard error page for your application, along with an HTTP error code 404.

Example usage:

from django.http import Http404

def detail (request, poll_id):
try:
p = Poll.objects.get (pk=poll_id)
except Poll.DoesNotExist:

3.3. Handling HTTP requests 127

Django Documentation, Release 1.3

raise Http404
return render_to_response('polls/detail html’, {'poll’: p})

In order to use the Ht t p4 04 exception to its fullest, you should create a template that is displayed when a 404 error
is raised. This template should be called 404 . htm1 and located in the top level of your template tree.

Customizing error views

The 404 (page not found) view

When you raise an Ht t p4 04 exception, Django loads a special view devoted to handling 404 errors. By default, it’s
the view d jango.views.defaults.page_not_found, which loads and renders the template 404 . html.

This means you need to define a 404 . html template in your root template directory. This template will be used for
all 404 errors.

This page_not_found view should suffice for 99% of Web applications, but if you want to override the 404 view,
you can specify handler404 in your URLconf, like so:

handler404 = 'mysite.views.my_ custom 404 view’

Behind the scenes, Django determines the 404 view by looking for handler404. By default, URLconfs contain the
following line:

from django.conf.urls.defaults import =*

That takes care of setting handler404 in the current module. As you
can see in django/conf/urls/defaults.py, handler404 is set to
"django.views.defaults.page_not_found’ by default.

Three things to note about 404 views:

e The 404 view is also called if Django doesn’t find a match after checking every regular expression in the
URLconf.

¢ If you don’t define your own 404 view — and simply use the default, which is recommended — you still have
one obligation: you must create a 404 . html template in the root of your template directory. The default 404
view will use that template for all 404 errors. The default 404 view will pass one variable to the template:
request_path, which is the URL that resulted in the 404.

e The 404 view is passed a RequestContext and will have access to variables supplied by your
TEMPLATE_CONTEXT_PROCESSORS setting (e.g., MEDIA_URL).

* If DEBUG is set to True (in your settings module), then your 404 view will never be used, and the traceback
will be displayed instead.

The 500 (server error) view

Similarly, Django executes special-case behavior in the case of runtime errors in view code. If a view results in an
exception, Django will, by default, call the view django.views.defaults.server_error, which loads and
renders the template 500 . html.

This means you need to define a 500 . html template in your root template directory. This template will be used for
all server errors. The default 500 view passes no variables to this template and is rendered with an empty Context
to lessen the chance of additional errors.

This server_error view should suffice for 99% of Web applications, but if you want to override the view, you can
specify handler500 in your URLconf, like so:

128 Chapter 3. Using Django

Django Documentation, Release 1.3

handler500 = "mysite.views.my_custom error_view’
Behind the scenes, Django determines the error view by looking for handler500. By default, URLconfs contain
the following line:

from django.conf.urls.defaults import =*

That takes care of setting handler500 in the current module. As you
can see in django/conf/urls/defaults.py, handler500 is set to
"django.views.defaults.server_error’ by default.

3.3.3 View decorators

Django provides several decorators that can be applied to views to support various HTTP features.

Allowed HTTP methods

The following decorators in d jango.views.decorators.http can be used to restrict access to views based on
the request method.

require_http_methods (request_method_list)

This decorator is used to ensure that a view only accepts particular request methods. Usage:

from django.views.decorators.http import require_http_methods

@require_http_methods (["GET", "POST"])
def my view (request):

pass

Note that request methods should be in uppercase.
require_GET ()

Decorator to require that a view only accept the GET method.
require_POST ()

Decorator to require that a view only accept the POST method.

Conditional view processing

The following decorators in django.views.decorators.http can be used to control caching behavior on
particular views.

condition (etag_func=None, last_modified_func=None)

etag (etag_func)

last_modified (last_modified_func)

These decorators can be used to generate ETag and Last-Modified headers; see conditional view processing.

3.3. Handling HTTP requests 129

Django Documentation, Release 1.3

GZip compression

The decorators in django.views.decorators.gzip control content compression on a per-view basis.

gzip_page ()

This decorator compresses content if the browser allows gzip compression. It sets the Vary header accordingly, so
that caches will base their storage on the Accept-Encoding header.

Vary headers

The decorators in d jango.views.decorators.vary can be used to control caching based on specific request
headers.

vary_on_cookie (func)

vary_on_headers (*headers)

The Vary header defines which request headers a cache mechanism should take into account when building its cache
key.

See using vary headers.

3.3.4 File Uploads

When Django handles a file upload, the file data ends up placed in request .FILES (for more on the request
object see the documentation for request and response objects). This document explains how files are stored on disk
and in memory, and how to customize the default behavior.

Basic file uploads

Consider a simple form containinga FileField:

from django import forms

class UploadFileForm(forms.Form) :
title = forms.CharField(max_length=50)
= forms.FileField()

A view handling this form will receive the file data in request . FILES, which is a dictionary containing a key for
each FileField (or ImageField, or other FileField subclass) in the form. So the data from the above form
would be accessible as request .FILES [’ file’].

Note that request . FILES will only contain data if the request method was POST and the <form> that posted the
request has the attribute enctype="multipart/form-data". Otherwise, request .FILES will be empty.

Most of the time, you’ll simply pass the file data from request into the form as described in Binding uploaded files
to a form. This would look something like:

from django.http import HttpResponseRedirect
from django.shortcuts import render_to_response
from somewhere import handle_uploaded_file

def upload_file(request):
if request.method == "POST’:

130 Chapter 3. Using Django

Django Documentation, Release 1.3

form = UploadFileForm(request.POST, request.FILES)
if form.is_valid():
handle_uploaded_file(request.FILES[' file’])

return HttpResponseRedirect (' /success/url/”)
else:
form = UploadFileForm()
return render_to_response ('upload.html’”, {’form’: form})

Notice that we have to pass request . FILES into the form’s constructor; this is how file data gets bound into a
form.

Handling uploaded files

class UploadedFile
The final piece of the puzzle is handling the actual file data from request . FILES. Each entry in this dictio-
nary is an UploadedFile object — a simple wrapper around an uploaded file. You’ll usually use one of these
methods to access the uploaded content:

read ()
Read the entire uploaded data from the file. Be careful with this method: if the uploaded file is huge it can

overwhelm your system if you try to read it into memory. You’ll probably want to use chunks () instead;
see below.

multiple_ chunks ()
Returns True if the uploaded file is big enough to require reading in multiple chunks. By default this will
be any file larger than 2.5 megabytes, but that’s configurable; see below.

chunks ()
A generator returning chunks of the file. f multiple_chunks () is True, you should use this method
in a loop instead of read ().

In practice, it’s often easiest simply to use chunks () all the time; see the example below.

name

The name of the uploaded file (e.g. my_file.txt).
size

The size, in bytes, of the uploaded file.

There are a few other methods and attributes available on UploadedFile objects; see UploadedFile objects for a
complete reference.

Putting it all together, here’s a common way you might handle an uploaded file:

def handle_uploaded_file(f):
destination = ("some/file/name.txt’, ’'wb+’)
for chunk in f.chunks{():
destination.write (chunk)
destination.close ()

Looping over UploadedFile.chunks () instead of using read () ensures that large files don’t overwhelm your
system’s memory.

Where uploaded data is stored

Before you save uploaded files, the data needs to be stored somewhere.

3.3. Handling HTTP requests 131

Django Documentation, Release 1.3

By default, if an uploaded file is smaller than 2.5 megabytes, Django will hold the entire contents of the upload in
memory. This means that saving the file involves only a read from memory and a write to disk and thus is very fast.

However, if an uploaded file is too large, Django will write the uploaded file to a temporary file stored in your system’s
temporary directory. On a Unix-like platform this means you can expect Django to generate a file called something
like /tmp/tmpzfp6I6.upload. If an upload is large enough, you can watch this file grow in size as Django
streams the data onto disk.

These specifics — 2.5 megabytes; /tmp; etc. — are simply “reasonable defaults”. Read on for details on how you can
customize or completely replace upload behavior.

Changing upload handler behavior

Three settings control Django’s file upload behavior:

FILE UPLOAD_MAX MEMORY SIZE The maximum size, in bytes, for files that will be uploaded into memory.
Files larger than FILE_ UPLOAD_MAX_ MEMORY_SIZE will be streamed to disk.

Defaults to 2.5 megabytes.

FILE UPLOAD TEMP DIR The directory where uploaded files larger than
FILE_UPLOAD_MAX_ MEMORY_SIZE will be stored.

Defaults to your system’s standard temporary directory (i.e. /tmp on most Unix-like systems).

FILE_UPLOAD_PERMISSIONS The numeric mode (i.e. 0644) to set newly uploaded files to. For more informa-
tion about what these modes mean, see the documentation for os.chmod

If this isn’t given or is None, you’ll get operating-system dependent behavior. On most platforms, temporary
files will have a mode of 0600, and files saved from memory will be saved using the system’s standard umask.

Warning: If you’re not familiar with file modes, please note that the leading O is very important: it indicates
an octal number, which is the way that modes must be specified. If you try to use 644, you’ll get totally
incorrect behavior.

Always prefix the mode with a 0.

FILE UPLOAD_HANDLERS The actual handlers for uploaded files. Changing this setting allows complete cus-
tomization — even replacement — of Django’s upload process. See upload handlers, below, for details.

Defaults to:

("dja ndler .MemoryFileUploa

"dja

Handler",

- . TemporaryFileUploadHandler",)

Which means “try to upload to memory first, then fall back to temporary files.”

UploadedFile objects

In addition to those inherited from File, all UploadedFile objects define the following methods/attributes:

UploadedFile.content_type
The content-type header uploaded with the file (e.g. text/plain or application/pdf). Like any data
supplied by the user, you shouldn’t trust that the uploaded file is actually this type. You’ll still need to validate
that the file contains the content that the content-type header claims — “trust but verify.”

UploadedFile.charset
For text /« content-types, the character set (i.e. ut £8) supplied by the browser. Again, “trust but verify” is
the best policy here.

132 Chapter 3. Using Django

http://docs.python.org/library/os.html#os.chmod

Django Documentation, Release 1.3

UploadedFile.temporary_ file_path
Only files uploaded onto disk will have this method; it returns the full path to the temporary uploaded file.

Note: Like regular Python files, you can read the file line-by-line simply by iterating over the uploaded file:

for line in uploadedfile:
do_something_with (line)

However, unlike standard Python files, UploadedFile only understands \n (also known as “Unix-style”) line
endings. If you know that you need to handle uploaded files with different line endings, you’ll need to do so in your
view.

Upload Handlers

When a user uploads a file, Django passes off the file data to an upload handler — a small class that handles file data as
it gets uploaded. Upload handlers are initially defined in the FILE_UPLOAD_HANDLERS setting, which defaults to:

("django.core.files.uploadhandler.MemoryFileUploadHandler",

"django.core.files.uploadhandler.TemporaryFileUploadHandler",)
Together the MemoryFileUploadHandler and TemporaryFileUploadHandler provide Django’s default
file upload behavior of reading small files into memory and large ones onto disk.

You can write custom handlers that customize how Django handles files. You could, for example, use custom handlers
to enforce user-level quotas, compress data on the fly, render progress bars, and even send data to another storage
location directly without storing it locally.

Modifying upload handlers on the fly

Sometimes particular views require different upload behavior. In these cases, you can override upload handlers on a
per-request basis by modifying request .upload_handlers. By default, this list will contain the upload handlers
given by FILE_UPLOAD_HANDLERS, but you can modify the list as you would any other list.

For instance, suppose you’ve written a ProgressBarUploadHandler that provides feedback on upload progress
to some sort of AJAX widget. You’d add this handler to your upload handlers like this:

request.upload_handlers.insert (0, ProgressBarUploadHandler ())

You’d probably want to use 1ist.insert () in this case (instead of append ()) because a progress bar handler
would need to run before any other handlers. Remember, the upload handlers are processed in order.

If you want to replace the upload handlers completely, you can just assign a new list:

request .upload_handlers = [ProgressBarUploadHandler ()]

Note: You can only modify upload handlers before accessing request .POST or request.FILES — it
doesn’t make sense to change upload handlers after upload handling has already started. If you try to modify
request .upload_handlers after reading from request .POST or request .FILES Django will throw an
error.

Thus, you should always modify uploading handlers as early in your view as possible.

Also, request .POST is accessed by CsrfViewMiddleware which is enabled by default. This means you will
probably need to use csrf_exempt () on your view to allow you to change the upload handlers. Assuming you
do need CSREF protection, you will then need to use csrf_protect () on the function that actually processes the

3.3. Handling HTTP requests 133

Django Documentation, Release 1.3

request. Note that this means that the handlers may start receiving the file upload before the CSRF checks have been
done. Example code:

from django.views.decorators.csrf import csrf_exempt, csrf_protect

@csrf_exempt

def upload file_view (request) :
request.upload_handlers.insert (0, ProgressBarUploadHandler ())
return _upload_file_view(request)

@csrf_protect
def _upload file view (request):

Writing custom upload handlers

All file upload handlers should be subclasses of d jango.core.files.uploadhandler.FileUploadHandler.
You can define upload handlers wherever you wish.

Required methods Custom file upload handlers must define the following methods:

FileUploadHandler.receive_data_chunk (self, raw_data, start) Receives a “chunk” of data
from the file upload.

raw_data is a byte string containing the uploaded data.
start is the position in the file where this raw_data chunk begins.

The data you return will get fed into the subsequent upload handlers’ receive_data_chunk methods. In
this way, one handler can be a “filter” for other handlers.

Return None from receive_data_chunk to sort-circuit remaining upload handlers from getting this
chunk.. This is useful if you’re storing the uploaded data yourself and don’t want future handlers to store a
copy of the data.

If you raise a StopUpload or a SkipFile exception, the upload will abort or the file will be completely
skipped.

FileUploadHandler.file_ complete(self, file_size) Called when a file has finished uploading.

The handler should return an UploadedFile object that will be stored in request . FILES. Handlers may
also return None to indicate that the UploadedF1ile object should come from subsequent upload handlers.

Optional methods Custom upload handlers may also define any of the following optional methods or attributes:

FileUploadHandler.chunk_size Size, in bytes, of the “chunks” Django should store into mem-
ory and feed into the handler. That 1is, this attribute controls the size of chunks fed into
FileUploadHandler.receive_data_chunk.

For maximum performance the chunk sizes should be divisible by 4 and should not exceed 2 GB (2*! bytes) in
size. When there are multiple chunk sizes provided by multiple handlers, Django will use the smallest chunk
size defined by any handler.

The default is 64%2'0 bytes, or 64 KB.

FileUploadHandler.new_ file(self, field name, file name, content_type, content_length,
Callback signaling that a new file upload is starting. This is called before any data has been fed to any upload
handlers.

134 Chapter 3. Using Django

char:

Django Documentation, Release 1.3

field_name is a string name of the file <input> field.
file_name is the unicode filename that was provided by the browser.
content_type is the MIME type provided by the browser — E.g. * image/ jpeg”’.

content_length is the length of the image given by the browser. Sometimes this won’t be provided and
will be None.

charset is the character set (i.e. ut£8) given by the browser. Like content_length, this sometimes
won’t be provided.

This method may raise a StopFutureHandlers exception to prevent future handlers from handling this file.

FileUploadHandler.upload_complete (self) Callback signaling that the entire upload (all files) has
completed.

FileUploadHandler.handle_ raw_input (self, input_data, META, content_length, boundary, encod.
Allows the handler to completely override the parsing of the raw HTTP input.

input_data is a file-like object that supports read () -ing.
META is the same object as request . META.

content_length is the length of the data in input_data. Don’t read more than content_length
bytes from input_data.

boundary is the MIME boundary for this request.
encoding is the encoding of the request.

Return None if you want upload handling to continue, or a tuple of (POST, FILES) if you want to return
the new data structures suitable for the request directly.

3.3.5 Django shortcut functions

The package django.shortcuts collects helper functions and classes that “span” multiple levels of MVC. In
other words, these functions/classes introduce controlled coupling for convenience’s sake.

render

render (request, template/[, dictionary][, context_instance][, content_type][, status][, current_app])
New in version Development version. Combines a given template with a given context dictionary and returns
an Ht t pResponse object with that rendered text.

render () is the same as a call to render_to_response () with a confext_instance argument that that
forces the use of a RequestContext.

Required arguments

request The request object used to generate this response.

template The full name of a template to use or sequence of template names.

3.3. Handling HTTP requests 135

Django Documentation, Release 1.3

Optional arguments

dictionary A dictionary of values to add to the template context. By default, this is an empty dictionary. If a
value in the dictionary is callable, the view will call it just before rendering the template.

context_instance The context instance to render the template with. By default, the template will be rendered
with a RequestContext instance (filled with values from request and dictionary).

content_type The MIME type to use for the resulting document. Defaults to the value of the
DEFAULT_CONTENT_TYPESaﬁng

status The status code for the response. Defaults to 200.

current_app A hint indicating which application contains the current view. See the namespaced URL resolution
strategy for more information.

Example

The following example renders the template myapp/index.html with the MIME type
application/xhtml+xml:

from django.shortcuts import render
def my_ view (request) :

return render (request, 'myapp
content_type="application/xhtr

This example is equivalent to:

from django.http import HttpResponse
from django.template import Context, loader

def my view (request) :

t = loader.get_template ('myapp/template.html”)

c = RequestContext (request, {’'foo "bar’})

return HttpResponse (t.render (c),
content_type="application/xhtml+xml")

render_to_response

render_to_response (template[, dictionary][, context_instance][, mimetype])
Renders a given template with a given context dictionary and returns an Ht tpResponse object with that
rendered text.

Required arguments

template The full name of a template to use or sequence of template names. If a sequence is given, the first
template that exists will be used. See the template loader documentation for more information on how templates
are found.

136 Chapter 3. Using Django

Django Documentation, Release 1.3

Optional arguments

dictionary A dictionary of values to add to the template context. By default, this is an empty dictionary. If a
value in the dictionary is callable, the view will call it just before rendering the template.

context_instance The context instance to render the template with. By default, the template will be rendered
with a Context instance (filled with values from dictionary). If you need to use context processors, render
the template with a RequestContext instance instead. Your code might look something like this:

return render_to_response ('my_ template.html’,
my_data_dictionary,
context_instance=RequestContext (request))

mimetype The MIME type to use for the resulting document. Defaults to the value of the
DEFAULT_CONTENT_TYPE setting.

Example

The following example renders the template myapp/index.html with the MIME type
application/xhtml+xml:

from django.shortcuts import render_to_response
def my view (request) :

return render_to_response ('myapp/index.html’”, {"foo": "bar"},
mimetype="application/xhtml+xml")

This example is equivalent to:

from django.http import HttpResponse
from django.template import Context, loader

def my view (request) :

t = loader.get_template ('myapp/template.html’)
c = Context ({’foo’: "bar’})
return HttpResponse (t.render (c),
mimetype="application/xhtml+xml™)
redirect

redirect (to[, permanent:False], *args, **kwargs)
Returns an Ht t pResponseRedirect to the appropriate URL for the arguments passed.

The arguments could be:
*A model: the model’s get_absolute_url() function will be called.
*A view name, possibly with arguments: urlresolvers.reverse() will be used to reverse-resolve the name.
*A URL, which will be used as-is for the redirect location.

By default issues a temporary redirect; pass permanent=True to issue a permanent redirect

3.3. Handling HTTP requests 137

Django Documentation, Release 1.3

Examples

You can use the redirect () function in a number of ways.

1. By passing some object; that object’s get _absolute_url () method will be called to figure out the redirect
URL:

def my view (request) :

= MyModel.objects.get (...)
return redirect ()

2. By passing the name of a view and optionally some positional or keyword arguments; the URL will be reverse
resolved using the reverse () method:

def my view (request) :
rééurn redirect (' some-view-name’, foo="bar’)
3. By passing a hardcoded URL to redirect to:
def my view (request):
;ééurn redirect (/' /some/url/")
This also works with full URLSs:
def my view (request) :

return redirect ('http://example.com/")

By default, redirect () returns a temporary redirect. All of the above forms accept a permanent argument; if set
to True a permanent redirect will be returned:

def my view (request) :

= MyModel.objects.get (...)
return redirect (, permanent=)

get_object_or_ 404

get_object_or_404 (klass, *args, **kwargs)
Calls get () on a given model manager, but it raises Ht t p4 04 instead of the model’s DoesNotExist ex-
ception.

Required arguments

klass A Model, Manager or QuerySet instance from which to get the object.

*xkwargs Lookup parameters, which should be in the format accepted by get () and filter ().

Example

The following example gets the object with the primary key of 1 from MyModel:

138 Chapter 3. Using Django

Django Documentation, Release 1.3

from django.shortcuts import get_object_or_404

def my view (request) :
my_object = get_object_or_404 (MyModel, pk=1l)

This example is equivalent to:

from django.http import Http404
def my view (request):
try:
my_object = MyModel.objects.get (pk=1)
except MyModel.DoesNotExist:
raise Http404

Note: As with get (),aMultipleObjectsReturned exception will be raised if more than one object is found.

get_1list_or_404
get_1list_or_404 (klass, *args, **kwargs)

Returns the result of filter () on a given model manager, raising Ht tp4 04 if the resulting list is empty.

Required arguments

klass A Model, Manager or QuerySet instance from which to get the list.

*xkwargs Lookup parameters, which should be in the format accepted by get () and filter ().

Example

The following example gets all published objects from MyModel:

from django.shortcuts import get_list_or_404

def my view (request) :
my_objects = get_list_or_404 (MyModel, published=)

This example is equivalent to:
from django.http import Http404
def my view (request) :
my_objects = (MyModel.objects.filter (published=))

if not my_objects:
raise Http404

3.3.6 Generic views

See Generic views.

3.3. Handling HTTP requests 139

Django Documentation, Release 1.3

3.3.7 Middleware

Middleware is a framework of hooks into Django’s request/response processing. It’s a light, low-level “plugin” system
for globally altering Django’s input and/or output.

Each middleware component is responsible for doing some specific function. For example, Django includes a middle-
ware component, XViewMiddleware, that adds an "X-View" HTTP header to every response to a HEAD request.

This document explains how middleware works, how you activate middleware, and how to write your own middleware.
Django ships with some built-in middleware you can use right out of the box; they’re documented in the built-in
middleware reference.

Activating middleware

To activate a middleware component, add it to the MIDDLEWARE_CLASSES list in your Django settings. In
MIDDLEWARE_CLASSES, each middleware component is represented by a string: the full Python path to the mid-
dleware’s class name. For example, here’s the default MIDDLEWARE_CLASSES created by d jango—admin.py
startproject:

MIDDLEWARE_CLASSES = (

"dJjan

During the request phases (process_request () and process_view () middleware), Django applies
middleware in the order it’s defined in MIDDLEWARE_CLASSES, top-down. During the response phases
(process_response () and process_exception () middleware), the classes are applied in reverse order,
from the bottom up. You can think of it like an onion: each middleware class is a “layer” that wraps the view:

140 Chapter 3. Using Django

Django Documentation, Release 1.3

CommonMiddleware

SessionMiddleware

View

A Django installation doesn’t require any middleware — e.g., MIDDLEWARE_CLASSES can be empty, if you’d like —
but it’s strongly suggested that you at least use CommonMiddleware.

Writing your own middleware

Writing your own middleware is easy. Each middleware component is a single Python class that defines one or more
of the following methods:

process_request

process_request (self, request)

request is an Ht t pRequest object. This method is called on each request, before Django decides which view to
execute.

process_request () should return either None or an Ht t pResponse object. If it returns None, Django will
continue processing this request, executing any other middleware and, then, the appropriate view. If it returns an
HttpResponse object, Django won’t bother calling ANY other request, view or exception middleware, or the
appropriate view; it’ll return that Ht t pResponse. Response middleware is always called on every response.

3.3. Handling HTTP requests 141

Django Documentation, Release 1.3

process_view

process_view (self, request, view_func, view_args, view_kwargs)

request is an HttpRequest object. view_func is the Python function that Django is about to use. (It’s the
actual function object, not the name of the function as a string.) view_args is a list of positional arguments that
will be passed to the view, and view_kwargs is a dictionary of keyword arguments that will be passed to the view.
Neither view_args nor view_kwargs include the first view argument (request).

process_view () is called just before Django calls the view. It should return either None or an Ht t pResponse
object. If it returns None, Django will continue processing this request, executing any other process_view ()
middleware and, then, the appropriate view. If it returns an Ht t pRe sponse object, Django won’t bother calling ANY
other request, view or exception middleware, or the appropriate view; it’ll return that Ht t pResponse. Response
middleware is always called on every response.

process_template_response

New in version Development version.
process_template_response (self, request, response)

request is an HttpRequest object. response is the SimpleTemplateResponse subclass (e.g.
TemplateResponse) object returned by a Django view.

process_template_response () must return an SimpleTemplateResponse (or its subclass) object. It
could alter the given response by changing response.template_name and response.context_data,
or it could create and return a brand-new SimpleTemplateResponse (or its subclass) instance.

process_template_response () will only be called if the response instance has a render () method, indi-
cating that itis a TemplateResponse.

You don’t need to explicitly render responses — responses will be automatically rendered once all template response
middleware has been called.

Middleware are run in reverse order during the response phase, which includes process_template_response.

process_response

process_response (self, request, response)
request is an Ht tpRequest object. response is the Ht t pResponse object returned by a Django view.

process_response () must return an Ht tpResponse object. It could alter the given response, or it could
create and return a brand-new Ht t pResponse.

Unlike the process_request () and process_view () methods, the process_response () method is
always called, even if the process_request () and process_view () methods of the same middleware
class were skipped because an earlier middleware method returned an HttpResponse (this means that your
process_response () method cannot rely on setup done in process_request (), for example). In addi-
tion, during the response phase the classes are applied in reverse order, from the bottom up. This means classes
defined at the end of MIDDLEWARE CLASSES will be run first.

process_exception

process_exception (self, request, exception)

142 Chapter 3. Using Django

Django Documentation, Release 1.3

request is an Ht tpRequest object. exception is an Exception object raised by the view function.

Django calls process_exception () when a view raises an exception. process_exception () should return
either None or an Ht t pResponse object. If it returns an Ht t pRe sponse object, the response will be returned to
the browser. Otherwise, default exception handling kicks in.

Again, middleware are run in reverse order during the response phase, which includes process_exception. If an
exception middleware returns a response, the middleware classes above that middleware will not be called at all.

__init

Most middleware classes won’t need an initializer since middleware classes are essentially placeholders for the
process_x methods. If you do need some global state you may use __init__ to set up. However, keep in
mind a couple of caveats:

* Django initializes your middleware without any arguments, so you can’t define __init___ as requiring any
arguments.

* Unlike the process_* methods which get called once per request, __init___ gets called only once, when
the Web server starts up.

Marking middleware as unused It’s sometimes useful to determine at run-time whether a piece
of middleware should be used. In these cases, your middleware’s __init__ method may raise
django.core.exceptions.MiddlewareNotUsed. Django will then remove that piece of middleware from
the middleware process.

Guidelines

» Middleware classes don’t have to subclass anything.

The middleware class can live anywhere on your Python path. All Django cares about is that the
MIDDLEWARE_CLASSES setting includes the path to it.

* Feel free to look at Django’s available middleware for examples.

* If you write a middleware component that you think would be useful to other people, contribute to the commu-
nity! Let us know, and we’ll consider adding it to Django.

3.3.8 How to use sessions

Django provides full support for anonymous sessions. The session framework lets you store and retrieve arbitrary data
on a per-site-visitor basis. It stores data on the server side and abstracts the sending and receiving of cookies. Cookies
contain a session ID — not the data itself.

Enabling sessions

Sessions are implemented via a piece of middleware.
To enable session functionality, do the following:

e Edit the MIDDLEWARE_CLASSES setting and make sure MIDDLEWARE_CLASSES contains
"django.contrib.sessions.middleware.SessionMiddleware’. The default settings.py
created by d jango-admin.py startproject has SessionMiddleware activated.

3.3. Handling HTTP requests 143

Django Documentation, Release 1.3

If you don’t want to use sessions, you might as well remove the SessionMiddleware line from
MIDDLEWARE_CLASSES and ' django.contrib.sessions’ from your INSTALLED_APPS. It’ll save you a
small bit of overhead.

Configuring the session engine

By default, Django stores sessions in your database (using the model
django.contrib.sessions.models.Session). Though this is convenient, in some setups it’s faster
to store session data elsewhere, so Django can be configured to store session data on your filesystem or in your cache.

Using database-backed sessions

If you want to use a database-backed session, you need to add ’'django.contrib.sessions’ to your
INSTALLED_APPS setting.

Once you have configured your installation, run manage . py syncdb to install the single database table that stores
session data.

Using cached sessions

For better performance, you may want to use a cache-based session backend.

To store session data using Django’s cache system, you’ll first need to make sure you’ve configured your cache; see
the cache documentation for details.

Warning: You should only use cache-based sessions if you’re using the Memcached cache backend. The local-
memory cache backend doesn’t retain data long enough to be a good choice, and it’ll be faster to use file or database
sessions directly instead of sending everything through the file or database cache backends.

Once your cache is configured, you’ve got two choices for how to store data in the cache:

* Set SESSION_ENGINE to "django.contrib.sessions.backends.cache" for a simple caching
session store. Session data will be stored directly your cache. However, session data may not be persistent:
cached data can be evicted if the cache fills up or if the cache server is restarted.

* For persistent, cached data, set SESSTION_ENGINE to "django.contrib.sessions.backends.cached_db".
This uses a write-through cache — every write to the cache will also be written to the database. Session reads
only use the database if the data is not already in the cache.

Both session stores are quite fast, but the simple cache is faster because it disregards persistence. In most cases, the
cached_db backend will be fast enough, but if you need that last bit of performance, and are willing to let session
data be expunged from time to time, the cache backend is for you.

If you use the cached_db session backend, you also need to follow the configuration instructions for the using
database-backed sessions.

Using file-based sessions

To use file-based sessions, set the SESSTION_ENGINE settingto "django.contrib.sessions.backends.file".

You might also want to set the SESSION_FILE_PATH setting (which defaults to output from
tempfile.gettempdir (), most likely /tmp) to control where Django stores session files. Be sure to
check that your Web server has permissions to read and write to this location.

144 Chapter 3. Using Django

Django Documentation, Release 1.3

Using sessions in views

When SessionMiddleware is activated, each Ht tpRequest object — the first argument to any Django view
function — will have a session attribute, which is a dictionary-like object. You can read it and write to it.

A session object has the following standard dictionary methods:

e __getitem__ (key)

Example: fav_color = request.session[’fav_color’]
¢ _setitem__ (key, value)
Example: request.session[’ fav_color’] = 'blue’

e _delitem__ (key)

Example: del request.session[’fav_color’]. This raises KeyError if the given key isn’t al-
ready in the session.

e __ contains__ (key)
Example: ' fav_color’ in request.session
* get (key, default=None)
Example: fav_color = request.session.get (' fav_color’, ’'red’)
* keys ()
* items ()
e setdefault ()
e clear ()
It also has these methods:
* flush()

Delete the current session data from the session and regenerate the session key value that is sent back to the user
in the cookie. This is used if you want to ensure that the previous session data can’t be accessed again from the
user’s browser (for example, the d jango.contrib.auth.logout () function calls it).

* set_test_cookie ()

Sets a test cookie to determine whether the user’s browser supports cookies. Due to the way cookies work, you
won’t be able to test this until the user’s next page request. See Setting test cookies below for more information.

e test_cookie_worked()

Returns either True or False, depending on whether the user’s browser accepted the test cookie. Due to
the way cookies work, you’ll have to call set_test_cookie () on a previous, separate page request. See
Setting test cookies below for more information.

e delete_test_cookie()
Deletes the test cookie. Use this to clean up after yourself.
* set_expiry(value)
Sets the expiration time for the session. You can pass a number of different values:

— If value is an integer, the session will expire after that many seconds of inactivity. For example, calling
request.session.set_expiry (300) would make the session expire in 5 minutes.

— Ifvalueisadatetime or timedelta object, the session will expire at that specific date/time.

3.3. Handling HTTP requests 145

Django Documentation, Release 1.3

— If value is 0, the user’s session cookie will expire when the user’s Web browser is closed.
— If value is None, the session reverts to using the global session expiry policy.

Reading a session is not considered activity for expiration purposes. Session expiration is computed from the
last time the session was modified.

s get_expiry_age()

Returns the number of seconds until this session expires. For sessions with no custom expiration (or those set to
expire at browser close), this will equal settings.SESSION_COOKIE_AGE.

* get_expiry_date()

Returns the date this session will expire. For sessions with no custom expiration (or those set to expire at browser
close), this will equal the date settings.SESSION_COOKIE_AGE seconds from now.

* get_expire_at_browser_close()

Returns either True or False, depending on whether the user’s session cookie will expire when the user’s
Web browser is closed.

You can edit request . session at any point in your view. You can edit it multiple times.

Session object guidelines

» Use normal Python strings as dictionary keys on request .session. This is more of a convention than a
hard-and-fast rule.

* Session dictionary keys that begin with an underscore are reserved for internal use by Django.

* Don’t override request .session with a new object, and don’t access or set its attributes. Use it like a
Python dictionary.

Examples

This simplistic view sets a has_commented variable to True after a user posts a comment. It doesn’t let a user post
a comment more than once:

def post_comment (request, new_comment) :
if request.session.get (' has_commented’,)t

return HttpResponse ("You’ve already commented.'™)
c = comments.Comment (comment=new_comment)
c.save ()
request.session[’ has commented’] =
return HttpResponse (' Thanks for your comment!’)
This simplistic view logs in a “member” of the site:
def login (request):
m = Member.objects.get (username=request.POST[username’])
if m.password == request.POST[’password’]:
request.session[’ member id’] = m.id
return HttpResponse ("You’ re logged in.™)
else:
return HttpResponse ("Your username and password didn’t match.™)

...And this one logs a member out, according to 1ogin () above:

146 Chapter 3. Using Django

Django Documentation, Release 1.3

def logout (request) :
try:
del request.session[’member id’]
except KeyError:
pass
return HttpResponse ("You're

The standard django.contrib.auth.logout () function actually does a bit more than this to prevent inadver-
tent data leakage. It calls request.session.flush (). We are using this example as a demonstration of how to
work with session objects, not as a full Logout () implementation.

Setting test cookies

As a convenience, Django provides an easy way to test whether the wuser’s browser ac-
cepts cookies. Just call request.session.set_test_cookie() in a view, and call
request.session.test_cookie_worked () in a subsequent view — not in the same view call.

This awkward split between set_test_cookie () and test_cookie_worked () is necessary due to the way
cookies work. When you set a cookie, you can’t actually tell whether a browser accepted it until the browser’s next
request.

It’s good practice to use delete_test_cookie () to clean up after yourself. Do this after you’ve verified that the
test cookie worked.

Here’s a typical usage example:

def login (request):
if request.method == "POST’:
if request.session.test_cookie_worked() :
request.session.delete_test_cookie ()
return HttpResponse ("You’ re loc d i
else:

return HttpResponse("Ple cookies and try again.")
request.session.set_test_cookie ()
return render_to_response ('’ foo/login_form.html”)

Using sessions out of views

An API is available to manipulate session data outside of a view:

>>> from django.contrib.sessions.backends.db import SessionStore
>>> import datetime

>>> s = SessionStore(session_key=’'2b1189%a188b44adl8c35ell3acbcecad’)
>>> g[’/last_login’] = datetime.datetime (2005, 8, 20, 13, 35, 10)
>>> s’ t_1 0]

datetime.datetime (2005, 8, 20, 13, 35, 0)
>>> s.save ()

If session_key isn’t provided, one will be generated automatically:

>>> from django.contrib.sessions.backends.db import SessionStore
>>> g = SessionStore()

>>> s.save ()

>>> s.session_key

"211189a188b44adl8c35ell3acbeceead’

3.3. Handling HTTP requests 147

Django Documentation, Release 1.3

If you’re using the d jango.contrib.sessions.backends.db backend, each session is just a normal Django
model. The Session model is defined in django/contrib/sessions/models.py. Because it’s a normal
model, you can access sessions using the normal Django database API:

>>> from django.contrib.sessions.models import Session

>>> 5 = Session.objects.get (pk='2b1189%al88b44adl8c3belll3acbceecad’)

>>> g.expire_date

datetime.datetime (2005, 8, 20, 13, 35, 12)

Note that you’ll need to call get _decoded () to get the session dictionary. This is necessary because the dictionary
is stored in an encoded format:

>>> s.session_data

"KGRwMQpPpTJ19hdXRoX3VzZXJfaWQOnCnAyCkkxCnMuMTExY2Z73j0DI2Yj..."
>>> s.get_decoded()
{"user_id’ : 42}

When sessions are saved

By default, Django only saves to the session database when the session has been modified — that is if any of its
dictionary values have been assigned or deleted:

request.session[’ foo’] = 'bar

del request.session[’ foo’]

]
—~
-~

request.session[’ foo’]

request.session[’ foo’] ["bar’] = "baz’
In the last case of the above example, we can tell the session object explicitly that it has been modified by setting the
modified attribute on the session object:

request.session.modified =

To change this default behavior, set the SESSION_SAVE_EVERY_REQUEST setting to True. If
SESSION_SAVE_EVERY_REQUEST is True, Django will save the session to the database on every single request.

Note that the session cookie is only sent when a session has been created or modified. If
SESSION_SAVE_EVERY_REQUEST is True, the session cookie will be sent on every request.

Similarly, the expires part of a session cookie is updated each time the session cookie is sent.

Browser-length sessions vs. persistent sessions

You can control whether the session framework uses browser-length sessions vs. persistent sessions with the
SESSION_EXPIRE_AT_BROWSER_CLOSESmﬁng

By default, SESSION_EXPIRE_AT_BROWSER_CLOSE is setto False, which means session cookies will be stored
in users’ browsers for as long as SESSION_COOKIE_AGE. Use this if you don’t want people to have to log in every
time they open a browser.

148 Chapter 3. Using Django

Django Documentation, Release 1.3

If SESSION_EXPIRE_AT_BROWSER_CLOSE is set to True, Django will use browser-length cookies — cookies
that expire as soon as the user closes his or her browser. Use this if you want people to have to log in every time they
open a browser.

This setting is a global default and can be overwritten at a per-session level by explicitly calling
request.session.set_expiry () as described above in using sessions in views.

Clearing the session table
If you’re using the database backend, note that session data can accumulate in the d jango_session database table
and Django does not provide automatic purging. Therefore, it’s your job to purge expired sessions on a regular basis.

To understand this problem, consider what happens when a user uses a session. When a user logs in, Django adds a
row to the django_session database table. Django updates this row each time the session data changes. If the
user logs out manually, Django deletes the row. But if the user does not log out, the row never gets deleted.

Django provides a sample clean-up script: django-admin.py cleanup. That script deletes any session in the
session table whose expire_date is in the past — but your application may have different requirements.

Settings

A few Django settings give you control over session behavior:

SESSION_ENGINE

Default: django.contrib.sessions.backends.db
Controls where Django stores session data. Valid values are:
* "django.contrib.sessions.backends.db’
* "django.contrib.sessions.backends.file’
* "django.contrib.sessions.backends.cache’
* "django.contrib.sessions.backends.cached_db’

See configuring the session engine for more details.

SESSION_FILE_PATH

Default: /tmp/

If you’re using file-based session storage, this sets the directory in which Django will store session data.

SESSION_COOKIE_AGE

Default: 1209600 (2 weeks, in seconds)

The age of session cookies, in seconds.

3.3. Handling HTTP requests 149

Django Documentation, Release 1.3

SESSION_COOKIE_DOMAIN

Default: None

The domain to use for session cookies. Set this to a string such as " . lawrence.com" (note the leading dot!) for
cross-domain cookies, or use None for a standard domain cookie.

SESSION_COOKIE_HTTPONLY

Default: False

Whether to use HTTPOnly flag on the session cookie. If this is set to True, client-side JavaScript will not to be able
to access the session cookie.

HTTPOnly is a flag included in a Set-Cookie HTTP response header. It is not part of the RFC2109 standard for
cookies, and it isn’t honored consistently by all browsers. However, when it is honored, it can be a useful way to
mitigate the risk of client side script accessing the protected cookie data.

SESSION_COOKIE_NAME

Default: * sessionid’

The name of the cookie to use for sessions. This can be whatever you want.

SESSION_COOKIE_PATH

Default: * /7

The path set on the session cookie. This should either match the URL path of your Django installation or be parent of
that path.

This is useful if you have multiple Django instances running under the same hostname. They can use different cookie
paths, and each instance will only see its own session cookie.

SESSION_COOKIE_SECURE

Default: False

Whether to use a secure cookie for the session cookie. If this is set to True, the cookie will be marked as “secure,”
which means browsers may ensure that the cookie is only sent under an HTTPS connection.

SESSION_EXPIRE_AT_BROWSER_CLOSE

Default: False

Whether to expire the session when the user closes his or her browser. See “Browser-length sessions vs. persistent
sessions” above.

150 Chapter 3. Using Django

http://www.owasp.org/index.php/HTTPOnly

Django Documentation, Release 1.3

SESSION_SAVE_EVERY_REQUEST

Default: False

Whether to save the session data on every request. If this is False (default), then the session data will only be saved
if it has been modified — that is, if any of its dictionary values have been assigned or deleted.

Technical details

* The session dictionary should accept any pickleable Python object. See the pickle module for more information.
» Session data is stored in a database table named d jango_session.

* Django only sends a cookie if it needs to. If you don’t set any session data, it won’t send a session cookie.

Session IDs in URLs
The Django sessions framework is entirely, and solely, cookie-based. It does not fall back to putting session IDs in

URLs as a last resort, as PHP does. This is an intentional design decision. Not only does that behavior make URLSs
ugly, it makes your site vulnerable to session-ID theft via the “Referer” header.

3.4 Working with forms

About this document

This document provides an introduction to Django’s form handling features. For a more detailed look at specific areas
of the forms API, see The Forms API, Form fields, and Form and field validation.

django. forms is Django’s form-handling library.

While it is possible to process form submissions just using Django’s Ht t pRequest class, using the form library
takes care of a number of common form-related tasks. Using it, you can:

1. Display an HTML form with automatically generated form widgets.
2. Check submitted data against a set of validation rules.
3. Redisplay a form in the case of validation errors.

4. Convert submitted form data to the relevant Python data types.

3.4.1 Overview

The library deals with these concepts:

Widget A class that corresponds to an HTML form widget, e.g. <input type="text"> or <textarea>. This
handles rendering of the widget as HTML.

Field A class that is responsible for doing validation, e.g. an EmailField that makes sure its data is a valid e-mail
address.

Form A collection of fields that knows how to validate itself and display itself as HTML.

Form Media The CSS and JavaScript resources that are required to render a form.

3.4. Working with forms 151

http://docs.python.org/library/pickle.html

Django Documentation, Release 1.3

The library is decoupled from the other Django components, such as the database layer, views and templates. It relies
only on Django settings, a couple of django.utils helper functions and Django’s internationalization hooks (but
you’re not required to be using internationalization features to use this library).

3.4.2 Form objects

A Form object encapsulates a sequence of form fields and a collection of validation rules that must be fulfilled in order
for the form to be accepted. Form classes are created as subclasses of django. forms.Form and make use of a
declarative style that you’ll be familiar with if you’ve used Django’s database models.

For example, consider a form used to implement “contact me” functionality on a personal Web site:

from django import forms

class ContactForm (forms.Form) :
subject = forms.CharField(max_length=100)

message = forms.CharField()
sender = forms.EmailField()
cc_myself = forms.BooleanField(required=)

A form is composed of Field objects. In this case, our form has four fields: subject, message, sender and
cc_myself. CharField, EmailFieldand BooleanField are just three of the available field types; a full list
can be found in Form fields.

If your form is going to be used to directly add or edit a Django model, you can use a ModelForm to avoid duplicating
your model description.

Using a form in a view

The standard pattern for processing a form in a view looks like this:

def contact (request) :
if request.method == "POST’:
form = ContactForm(request.POST)
if form.is_valid():

return HttpResponseRedirect (' /thanks/”")
else:
form = ContactForm{()

return render_to_response (' contact.html’”, {
"form’”: form,

b
There are three code paths here:

1. If the form has not been submitted, an unbound instance of ContactForm is created and passed to the template.

2. If the form has been submitted, a bound instance of the form is created using request . POST. If the submitted
data is valid, it is processed and the user is re-directed to a “thanks” page.

3. If the form has been submitted but is invalid, the bound form instance is passed on to the template.

The distinction between bound and unbound forms is important. An unbound form does not have any data associated
with it; when rendered to the user, it will be empty or will contain default values. A bound form does have submitted
data, and hence can be used to tell if that data is valid. If an invalid bound form is rendered it can include inline error
messages telling the user where they went wrong.

152 Chapter 3. Using Django

Django Documentation, Release 1.3

See Bound and unbound forms for further information on the differences between bound and unbound forms.

Handling file uploads with a form

To see how to handle file uploads with your form see Binding uploaded files to a form for more information.

Processing the data from a form

Once is_valid () returns True, you can process the form submission safe in the knowledge that it conforms
to the validation rules defined by your form. While you could access request .POST directly at this point, it is
better to access form.cleaned_data. This data has not only been validated but will also be converted in to the
relevant Python types for you. In the above example, cc_myself will be a boolean value. Likewise, fields such
as IntegerField and FloatField convert values to a Python int and float respectively. Note that read-only
fields are not available in form.cleaned_data (and setting a value in a custom clean () method won’t have
any effect) because these fields are displayed as text rather than as input elements, and thus are not posted back to the
server.

Extending the above example, here’s how the form data could be processed:

if form.is_valid{():
subject = form.cleaned_datal[’subje
message = form.cleaned_datal[’r

sender = form.cleaned_datal’ se)
cc_myself = form.cleaned_datal[’ cc myself’]
recipients = [’'infolexample.com’]

if cc_myself:
recipients.append (sender)

from django.core.mail import send_mail
send_mail (subject, message, sender, recipients)

return HttpResponseRedirect (/' /thanks/’)

For more on sending e-mail from Django, see Sending e-mail.

Displaying a form using a template

Forms are designed to work with the Django template language. In the above example, we passed our ContactForm
instance to the template using the context variable form. Here’s a simple example template:

<form action="/contact/" method="post"> csrf_token
form.as_p

<input type="submit" value="Submit" />

</form>

The form only outputs its own fields; it is up to you to provide the surrounding <form> tags and the submit button.

Forms and Cross Site Request Forgery protection

Django ships with an easy-to-use protection against Cross Site Request Forgeries. When submitting a form via POST
with CSRF protection enabled you must use the csrf_token template tag as in the preceding example. However,
since CSRF protection is not directly tied to forms in templates, this tag is omitted from the following examples in this
document.

3.4. Working with forms 153

Django Documentation, Release 1.3

form.as_p will output the form with each form field and accompanying label wrapped in a paragraph. Here’s the
output for our example template:

<form action="/contact/" method="post">
<p><label for="id_ ct">Subject:</label>
<input id="id_subject" type="text" name="subject" maxlength="100" /></p>

<p><label for="id message">Message:</label>

<input type="text" name="message" id="id_message" /></p>
<p><label for="id_ sender">Sender:</label>

<input type="text" name="sender" id="id_sender" /></p>
<p><label for="id cc_myself">Cc myself:</label>

<input type="checkbox" name="cc_myself" id="id_cc_myself" /></p>
<input type="submit" value="Submit" />

</form>

Note that each form field has an ID attribute set to 1d_<field-name>, which is referenced by the accompanying
label tag. This is important for ensuring forms are accessible to assistive technology such as screen reader software.
You can also customize the way in which labels and ids are generated.

You can also use form.as_table to output table rows (you’ll need to provide your own <table> tags) and
form.as_ul to output list items.

Customizing the form template

If the default generated HTML is not to your taste, you can completely customize the way a form is presented using
the Django template language. Extending the above example:

<form action="/contact/" method="post">
{{ form.non_field_errors }}
<div class="fieldl >

{{ form.subject.errors }}
<label for="id _subject">E-mail subject:</label>
{{ form.subject }}

</div>

<div class="fieldWrapper">
{{ form.message.errors }}
<label for="id message">Your message:</label>
{{ form.message }}

</div>

<div class="fieldWrapper">

{{ form.sender.errors }}
<label for="id sender">Your email address:</label>
{{ form.sender }}

</div>

<div class="fieldWrappe
{{ form.cc_myself.errors }}
<label for="id cc_myself">CC yourself?</label>
{{ form.cc_myself }}

</div>

<p><input type="submit" value="Send message" /></p>

</form>

Each named form-field can be output to the template using { { form.name_of_field }}, which will produce
the HTML needed to display the form widget. Using { { form.name_of_field.errors }} displays a list of
form errors, rendered as an unordered list. This might look like:

<ul class="errorlist">
Sender is required.</1i>

154 Chapter 3. Using Django

Django Documentation, Release 1.3

The list has a CSS class of errorlist to allow you to style its appearance. If you wish to further customize the
display of errors you can do so by looping over them:

if form.subject.errors

for error in form.subject.errors
 error |escape </1i>
endfor

endif

Looping over the form’s fields

If you’re using the same HTML for each of your form fields, you can reduce duplicate code by looping through each
field in turn using a {$ for %} loop:

<form action="/contact/" method="post">
for field in form
<div class="fieldWrapper">
field.errors

field.label_tag : field
</div>
endfor
<p><input type="submit" value="Send message" /></p>

</form>

Within this loop, { { field }} is an instance of BoundField. BoundField also has the following attributes,
which can be useful in your templates:

{{ field.label }} The label of the field, e.g. E-mail address.

{{ field.label_tag }} The field’s label wrapped in the appropriate HTML <label> tag, e.g. <label
for="id_email">E-mail address</label>

{{ field.html_name }} The name of the field that will be used in the input element’s name field. This takes
the form prefix into account, if it has been set.

{{ field.help_text }} Any help text that has been associated with the field.

{{ field.errors }} Outputs a <ul class="errorlist"> containing any validation errors corre-
sponding to this field. You can customize the presentation of the errors with a {$ for error in
field.errors %} loop. In this case, each object in the loop is a simple string containing the error message.

field.is_hidden This attribute is True if the form field is a hidden field and False otherwise. It’s not partic-
ularly useful as a template variable, but could be useful in conditional tests such as:

if field.is_hidden

endif

Looping over hidden and visible fields

If you’re manually laying out a form in a template, as opposed to relying on Django’s default form layout, you might
want to treat <input type="hidden"> fields differently than non-hidden fields. For example, because hidden
fields don’t display anything, putting error messages “next to” the field could cause confusion for your users — so errors
for those fields should be handled differently.

3.4. Working with forms 155

Django Documentation, Release 1.3

Django provides two methods on a form that allow you to loop over the hidden and visible fields independently:
hidden_fields () and visible_fields (). Here’s a modification of an earlier example that uses these two
methods:

<form action="/contact/" method="post
for field in form.visible_ fields

<div class="fieldWrapper">

if .first
for hidden in form.hidden_fields
hidden
endfor

endif

field.errors

field.label_tag : field
</div>
endfor
<p><input type="submit" value="Send message" /></p>

</form>

This example does not handle any errors in the hidden fields. Usually, an error in a hidden field is a sign of form
tampering, since normal form interaction won’t alter them. However, you could easily insert some error displays for
those form errors, as well.

Reusable form templates

If your site uses the same rendering logic for forms in multiple places, you can reduce duplication by saving the form’s
loop in a standalone template and using the include tag to reuse it in other templates:

/" method="
ippet.html"
mit" value="Send message" /></p>

<form action="/contac

include "form

<p><input type="su
</form>

In form_snippet.html:

for field in form
<div class="fieldWrapper">
field.errors
field.label_tag : field
</div>
endfor

If the form object passed to a template has a different name within the context, you can alias it using the with
argument of the include tag:

<form action="/comments/ 1/" method="post">
include "fo S . html" with form=comment_form
<p><input type="submit" value="Submit comment" /></p>
</form>

If you find yourself doing this often, you might consider creating a custom inclusion tag.

156 Chapter 3. Using Django

Django Documentation, Release 1.3

3.4.3 Further topics

This covers the basics, but forms can do a whole lot more:

Formsets

A formset is a layer of abstraction to working with multiple forms on the same page. It can be best compared to a data
grid. Let’s say you have the following form:

>>> from django import forms

>>> class ArticleForm(forms.Form) :
title = forms.CharField()
pub_date = forms.DateField()

You might want to allow the user to create several articles at once. To create a formset out of an ArticleForm you
would do:

>>> from django.forms.formsets import formset_factory
>>> ArticleFormSet = formset_factory (ArticleForm)

You now have created a formset named ArticleFormSet. The formset gives you the ability to iterate over the
forms in the formset and display them as you would with a regular form:

>>> formset = ArticleFormSet ()
>>> for form in formset:

print form.as_table()
<tr><th><label for="id_form-0-title">Title:
<tr><th><label for="id_f

</label></th><

orm-0-pub_date">Pub date:</label></th><td><input type="text" name="form-0-pul

><input type="text" name="form-0-title" i

As you can see it only displayed one empty form. The number of empty forms that is displayed is controlled by the
extra parameter. By default, formset_factory defines one extra form; the following example will display two
blank forms:

>>> ArticleFormSet = formset_factory (ArticleForm, extra=2)

Changed in version Development version. Prior to Django 1.3, formset instances were not iterable. To render the
formset you iterated over the forms attribute:

>>> formset = ArticleFormSet ()
>>> for form in formset.forms:
print form.as_table ()

Iterating over formset . forms will render the forms in the order they were created. The default formset iterator
also renders the forms in this order, but you can change this order by providing an alternate implementation for the
__iter__ () method.

Using initial data with a formset

Initial data is what drives the main usability of a formset. As shown above you can define the number of extra forms.
What this means is that you are telling the formset how many additional forms to show in addition to the number of
forms it generates from the initial data. Lets take a look at an example:

>>> ArticleFormSet = formset_factory (ArticleForm, extra=2)
>>> formset = ArticleFormSet (initial=]
{’title’: u’Django is now open source’,
"pub_date’: datetime.date.today() },

1)

3.4. Working with forms 157

Django Documentation, Release 1.3

>>> for form in formset:
print form.as_table()

<tr><th><label for="id_form-0-title">Title:</label></th><td><input type="text" name="form-0-title" wv:
<tr><th><label for="id_form-0-pub_date">Pub date:</label></th><td><input type="text" name="form-0-pul
<tr><th><label for="id_form-1-title">Title:</label></th><td><input type="text" name="form-1l-title" i
<tr><th><label for="id_form-l-pub_date">Pub date:</label></th><td><input type="text" name="form-1-pul
<tr><th><label for="id_form-2-title">Title:</label></th><td><input type="text" name="form-2-title" i
<tr><th><label for="id_form-2-pub_date">Pub date:</label></th><td><input type="text" name="form-2-pul

There are now a total of three forms showing above. One for the initial data that was passed in and two extra forms.
Also note that we are passing in a list of dictionaries as the initial data.

See Also:

Creating formsets from models with model formsets.

Limiting the maximum number of forms

The max_num parameter to formset_factory gives you the ability to limit the maximum number of empty forms
the formset will display:

>>> ArticleFormSet = formset_factory (ArticleForm, extra=2, max_num=1)
>>> formset = ArticleFormset ()
>>> for form in formset:
print form.as_table()
<tr><th><label for="id_form-0-title">Title:</label></th><td><input type="text" name="form-0-title" i«
<tr><th><label for="id_form-0-pub_date">Pub date:</label></th><td><input type="text" name="form-0-pul

Changed in version 1.2: Please, see the release notes If the value of max_num is greater than the number of existing
objects, up to ext ra additional blank forms will be added to the formset, so long as the total number of forms does
not exceed max_ num.

A max_num value of None (the default) puts no limit on the number of forms displayed. Please note that the default
value of max_num was changed from 0 to None in version 1.2 to allow 0 as a valid value.

Formset validation

Validation with a formset is almost identical to a regular Form. There is an is_valid method on the formset to
provide a convenient way to validate all forms in the formset:

>>> ArticleFormSet = formset_factory (ArticleForm)
>>> data
! —TOTAL_FORMS’: u’l’,
'm—-INITIAL_ _FORMS’: u’0’,
"form-MAX_NUM_FORMS’: u’’,

’

}
>>> formset = ArticleFormSet (data)
>>> formset.is_valid()
True

We passed in no data to the formset which is resulting in a valid form. The formset is smart enough to ignore extra
forms that were not changed. If we provide an invalid article:

>>> data = {
'm—-TOTAL_FORMS’ : u’2’,
form-INITIAL_FORMS’: u’0’,

158 Chapter 3. Using Django

Django Documentation, Release 1.3

" form-MAX_NUM_FORMS’: u’’,

’ .

r £

form-0-title

’

"form-1-title u’ Test’

orm—0-pub

14

form-1-pub_date’: u’’,

}
>>> formset = ArticleFormSet (data)
>>> formset.is_valid()
False
>>> formset.errors
[{}, {’'pub_date’: [u’This field is required.’]}]

As we can see, formset .errors is a list whose entries correspond to the forms in the formset. Validation was
performed for each of the two forms, and the expected error message appears for the second item.

Understanding the ManagementForm You may have noticed the additional data (form—-TOTAL_FORMS,
form-INITIAL_FORMS and form-MAX_NUM_FORMS) that was required in the formset’s data above. This data is
required for the ManagementForm. This form is used by the formset to manage the collection of forms contained
in the formset. If you don’t provide this management data, an exception will be raised:

>>> data = {

yrm—0-title’: u’ Test’

’

form-0-pub_date’: u’’,

>>> formset = ArticleFormSet (data)
Traceback (most recent call last):

django.forms.util.ValidationError: [u’ManagementForm data is missing or has been tampered with’]

It is used to keep track of how many form instances are being displayed. If you are adding new forms via JavaScript,
you should increment the count fields in this form as well.

The management form is available as an attribute of the formset itself. When rendering a formset in a template, you
can include all the management data by rendering { { my_formset .management_form }} (substituting the
name of your formset as appropriate).

total_form_count and initial_form count BaseFormSet has a couple of methods that are closely
related to the ManagementForm, total_ form_count and initial_form_count.

total_form_ count returns the total number of forms in this formset. initial_ form_count returns the
number of forms in the formset that were pre-filled, and is also used to determine how many forms are required. You
will probably never need to override either of these methods, so please be sure you understand what they do before
doing so. New in version 1.2: Please, see the release notes

empty_form BaseFormSet provides an additional attribute empty_ form which returns a form instance with
aprefix of __prefix__ for easier use in dynamic forms with JavaScript.

Custom formset validation A formset has a c1ean method similar to the one on a Form class. This is where you
define your own validation that works at the formset level:

>>> from django.forms.formsets import BaseFormSet

>>> class BaseArticleFormSet (BaseFormSet) :
def clean() s

"""Checks that no two articles have the same title."""

3.4. Working with forms 159

Django Documentation, Release 1.3

if any(self.errors)
Don’t DI on its own
return

titles = []

for i in range (0, self.total_form_count()):
form = self.forms[1i]

title = form.cleaned_datal[’'title’]
if title in titles:

raise forms.ValidationError ("Articles in a set must have distinct titles.™)
titles.append(title)

>>> ArticleFormSet = formset_factory(ArticleForm, formset=BaseArticleFormSet)
>>> data = {
"form-TOTAL_FORMS’: u’2’,

"form—-INITIAL_FORMS’: u’0’,
" form-MAX_NUM_FORMS’: u’’,
"form-0-title’: u’Test’,
"form-0-pub_date’: u’1904-06-16",
"form-1-title’: u’Test’,
"form-1l-pub_date’: u’1912-06-23',
}

>>> formset = ArticleFormSet (data)

>>> formset.is_valid()

False

>>> formset.errors

({}, {11

>>> formset.non_form _errors ()

[u’Articles in a set must have distinct titles.’]

The formset c1lean method is called after all the Form. clean methods have been called. The errors will be found
using the non_form_errors () method on the formset.

Dealing with ordering and deletion of forms

Common use cases with a formset is dealing with ordering and deletion of the form instances. This has been dealt
with for you. The formset_factory provides two optional parameters can_order and can_delete that will
do the extra work of adding the extra fields and providing simpler ways of getting to that data.

can_order Default: False
Lets create a formset with the ability to order:

>>> ArticleFormSet = formset_factory (ArticleForm, can_order=True)
>>> formset = ArticleFormSet (initial=]
{’title’: u'Article #1’, ’'pub_date’: datetime.date (2008, 5, 10)},
{rtitle’: uw' Article #2’, ’"pub_date’: datetime.date (2008, 5, 11)},
1)
>>> for form in formset:
print form.as_table()
<tr><th><label for="id_form-0-title">Title:</label></th><td><input type="text" name="form-0-title" wv:
<tr><th><label for="id_form-0-pub_date">Pub date:</label></th><td><input type="text" name="form-0-pul
<tr><th><label for="id_form-0-ORDER">Order:</label></th><td><input type="text" name="form-0-ORDER" wv:
<tr><th><label for="id_form-1-title">Title:</label></th><td><input type="text" name="form-1l-title" wv:
<tr><th><label for="id_form-1l-pub_date">Pub date:</label></th><td><input type="text" name="form-1l-pul
<tr><th><label for="id_form-1-ORDER">Order:</label></th><td><input type="text" name="form-1-ORDER" wv:
<tr><th><label for="id_form-2-title">Title:</label></th><td><input type="text" name="form-2-title" i«

160 Chapter 3. Using Django

Django Documentation, Release 1.3

<tr><th><label for="id_form-2-pub_date">Pub date:</label></th><td><input type="text" name="form-2-pul
<tr><th><label for="id_form-2-ORDER">Order:</label></th><td><input type="text" name="form-2-ORDER" i¢

This adds an additional field to each form. This new field is named ORDER and is an forms.IntegerField. For
the forms that came from the initial data it automatically assigned them a numeric value. Lets look at what will happen
when the user changes these values:

>>> data = {
"form-TOTAL_FORMS’: u’3’,
"form-INITIAL_FORMS’: u’'2’,
’ form-MAX_NUM_FORMS’: u’’,
"form-0-title’: u’Article #1’,
"form-0-pub_date’: u’2008-05-10",
"form-0-ORDER’ : u’2’,
"form-l-title’: u’Article #27,
"form-1-pub_date’: u’2008-05-11",
"form-1-ORDER’: u’l’,
"form-2-title’: u’Article #37,
"form-2-pub_date’: u’2008-05-01",
"form-2-ORDER’ : u’0’,

>>> formset = ArticleFormSet (data, initial=[
{7title’: uw' Article #17, ’"pub_date’: datetime.date (2008, 5, 10)},
{rtitle’: uw' Article #27, ’pub_date’: datetime.date (2008, 5, 11)},
1)
>>> formset.is_valid()
True
>>> for form in formset.ordered_ forms:
print form.cleaned_data
{’pub_date’: datetime.date (2008, 5, 1), 'ORDER’: 0, ’"title’: u’Article #3'}
{"pub_date’: datetime.date (2008, 5, 11), "ORDER’: 1, ’'title’: u’Article #2'}
{’"pub_date’: datetime.date (2008, 5, 10), ’'ORDER’: 2, ’'title’: u’Article #1'’}

can_delete Default: False
Lets create a formset with the ability to delete:

>>> ArticleFormSet = formset_factory (ArticleForm, can_delete=True)
>>> formset = ArticleFormSet (initial=][

{’"title’: u’Article #1’, ’'pub_date’: datetime.date (2008, 5, 10)},

{’title’: uw’ Article #2’, ’'pub_date’: datetime.date (2008, 5, 11)},

1)

>>> for form in formset:
L. print form.as_table ()
<input type="hidden" name="form-TOTAL_FORMS" value="3" id="id_form-TOTAL_FORMS" /><input type="hidde!
<tr><th><label for="id_form-0-title">Title:</label></th><td><input type="text" name="form-0-title" wv:
<tr><th><label for="id_form-0-pub_date">Pub date:</label></th><td><input type="text" name="form-0-pul
<tr><th><label for="id_form-0-DELETE">Delete:</label></th><td><input type="checkbox" name="form-0-DE!
<tr><th><label for="id_form-1-title">Title:</label></th><td><input type="text" name="form-1l-title" wv:
<tr><th><label for="id_form-1l-pub_date">Pub date:</label></th><td><input type="text" name="form-1l-pul
<tr><th><label for="id_form-1-DELETE">Delete:</label></th><td><input type="checkbox" name="form-1-DE!
<tr><th><label for="id_form-2-title">Title:</label></th><td><input type="text" name="form-2-title" i
<tr><th><label for="id_form-2-pub_date">Pub date:</label></th><td><input type="text" name="form-2-pul
<tr><th><label for="id_form-2-DELETE">Delete:</label></th><td><input type="checkbox" name="form-2-DE!

Similar to can_order this adds a new field to each form named DELETE and isa forms .BooleanField. When
data comes through marking any of the delete fields you can access them with deleted_forms:

3.4. Working with forms 161

Django Documentation, Release 1.3

>>> data

"form-0-pub_date’: u’2008-05-10",
"form-0-DELETE’ : u’on’,

f —-1-title’: u’kR cl
"form-1-pub_date’ :
rm-1-DELETE’ : u’’,
rm-2-title’: u’’,

form-2-pub_date’ : u

>>> formset = ArticleFormSet (
{"title’: u’Article #
E: 4

{"title’: u’Article

data, initial=[
17, ’'pub_date’: datetime.date (2008, 5, 10)},
27, "pub_date’: datetime.date (2008, 5, 11)},
1)
>>> [form.cleaned_data for form in formset.deleted_forms]
[{DELETE’ : True, ’'pub_date’: datetime.date (2008, 5, 10), ’'title’: u’Article #1’}]

Adding additional fields to a formset

If you need to add additional fields to the formset this can be easily accomplished. The formset base class provides
an add_fields method. You can simply override this method to add your own fields or even redefine the default
fields/attributes of the order and deletion fields:

>>> class BaseArticleFormSet (BaseFormSet) :
def add fields(self, form, index):

super (BaseArticleFormSet, self).add_fields(form, index)
form.fields["my_ field"] = forms.CharField()
>>> ArticleFormSet = formset_factory (ArticleForm, formset=BaseArticleFormSet)

>>> formset = ArticleFormSet ()
>>> for form in formset:

print form.as_table()
<tr><th><label for="id_form-0-title">Title:</label></th><td><input type="text" name="form-0-title" i«
<tr><th><label for="id_form-0-pub_date">Pub date:</label></th><td><input type="text" name="form-0-pul
<tr><th><label for="id_form-0-my_field">My field:</label></th><td><input type="text" name="form-0-my_

Using a formset in views and templates

Using a formset inside a view is as easy as using a regular Form class. The only thing you will want to be aware of is
making sure to use the management form inside the template. Let’s look at a sample view:

def manage_articles (request):
ArticleFormSet = formset_factory (ArticleForm)
if request.method == "POST’:
formset = ArticleFormSet (request.POST, request.FILES)
if formset.is_valid():

else:

162 Chapter 3. Using Django

Django Documentation, Release 1.3

formset = ArticleFormSet ()
return render_to_response (' manage_articles.html’, {’formset’: formset})

The manage_articles.html template might look like this:

<form method="post" action="">
formset.management_form
<table>
for form in formset
form
endfor
</table>
</form>

However the above can be slightly shortcutted and let the formset itself deal with the management form:

<form method="post" action="">
<table>
formset
</table>
</form>

The above ends up calling the as_table method on the formset class.

Using more than one formset in a view You are able to use more than one formset in a view if you like. Formsets
borrow much of its behavior from forms. With that said you are able to use prefix to prefix formset form field
names with a given value to allow more than one formset to be sent to a view without name clashing. Lets take a look
at how this might be accomplished:

def manage_articles (request):
ArticleFormSet = formset_factory (ArticleForm)
BookFormSet = formset_factory (BookForm)
if request.method == "POST’:
article_formset = ArticleFormSet (request.POST, request.FILES, prefix='articles’)
book_formset = BookFormSet (request.POST, request.FILES, prefix=’'books’)
if article_formset.is_valid() and book_formset.is_valid() :

pass
else:
article_formset = ArticleFormSet (prefix='articles’)
book_formset = BookFormSet (prefix=’books’)
return render_to_response ('manage_articles.ht
"article formset’: article_formset,
"book_ formset’: book_formset,

b

You would then render the formsets as normal. It is important to point out that you need to pass prefix on both the
POST and non-POST cases so that it is rendered and processed correctly.

Creating forms from models

ModelForm

class ModelForm

If you’re building a database-driven app, chances are you’ll have forms that map closely to Django models. For
instance, you might have a BlogComment model, and you want to create a form that lets people submit comments.

3.4. Working with forms 163

Django Documentation, Release 1.3

In this case, it would be redundant to define the field types in your form, because you’ve already defined the fields in

your model.

For this reason, Django provides a helper class that let you create a Form class from a Django model.

For example:

>>> from django.forms import ModelForm

Create the form class

>>> class ArticleForm (ModelForm) :

class Meta:
model

Art

Creating a form to

>>> form

ad

ArticleForm(

Creating a form to ch

>>> article
>>> form

ArticleForm(

Field types The generated F

icle

arti

d

)

an

cle.

ange an existing article.

Article.objects.get (pk=1)

instance=article)

orm class will have a form field for every model field. Each model field has a corre-

sponding default form field. For example, a CharField on a model is represented as a CharField on a form. A

model ManyToManyFieldi

s represented as aMultipleChoiceField. Here is the full list of conversions:

Model field Form field

AutoField Not represented in the form

BigIntegerField IntegerField withmin_value set to -9223372036854775808 and
max_value set to 9223372036854775807.

BooleanField BooleanField

CharField CharField withmax_length set to the model field’s max_length

CommaSeparatedIntegerhadklield

DateField DateField

DateTimeField DateTimeField

DecimalField DecimalField

EmailField EmailField

FileField FileField

FilePathField CharField

FloatField FloatField

ForeignKey ModelChoiceField (see below)

ImageField ImageField

IntegerField IntegerField

IPAddressField IPAddressField

ManyToManyField ModelMultipleChoiceField (see below)

NullBooleanField CharField

PhoneNumberField USPhoneNumberField (from django.contrib.localflavor.us)

PositiveIntegerField IntegerField

PositiveSmallIntegerthrlegerField

SlugField SlugField

SmallIntegerField IntegerField

TextField CharField withwidget=forms.Textarea

TimeField TimeField

URLField URLField with verify_exists setto the model field’s verify_exists

New in version 1.2: The BigIntegerField is new in Django 1.2. As you might expect, the ForeignKey and
ManyToManyField model field types are special cases:

164

Chapter 3. Using Django

Django Documentation, Release 1.3

* ForeignKey isrepresented by django. forms.ModelChoiceField, whichisaChoiceField whose
choices are a model QuerySet.

* ManyToManyField is represented by django.forms.ModelMultipleChoiceField, which is a
MultipleChoiceField whose choices are a model QuerySet.

In addition, each generated form field has attributes set as follows:

e If the model field has blank=True, then required is set to False on the form field. Otherwise,
required=True.

e The form field’s 1abel is set to the verbose_name of the model field, with the first character capitalized.
¢ The form field’s help_text is set to the help_text of the model field.

* If the model field has choices set, then the form field’s widget will be set to Select, with choices coming
from the model field’s choices. The choices will normally include the blank choice which is selected by
default. If the field is required, this forces the user to make a selection. The blank choice will not be included
if the model field has blank=False and an explicit default value (the default value will be initially
selected instead).

Finally, note that you can override the form field used for a given model field. See Overriding the default field types
or widgets below.

A full example Consider this set of models:

from django.db import models
from django.forms import ModelForm

TITLE_CHOICES = (
("MR’, 'Mr.’),
('"MRS’, 'Mrs.’),
(’;lf" , 'Ms .’) ,

class Author (models.Model) :
name = models.CharField(max_length=100)
title = models.CharField(max_length=3, choices=TITLE_CHOICES)
birth_date = models.DateField(blank= , null=)

def = unicode_ () e
return .name

class Book (models.Model) :
name = models.CharField(max_length=100)
authors = models.ManyToManyField (Author)

class AuthorForm (ModelForm) :
class Meta:
model = Author

class BookForm (ModelForm) :
class Meta:
model = Book

With these models, the Mode 1Form subclasses above would be roughly equivalent to this (the only difference being
the save () method, which we’ll discuss in a moment.):

class AuthorForm (forms.Form) :
name = forms.CharField(max_length=100)

3.4. Working with forms 165

Django Documentation, Release 1.3

title = forms.CharField (max_length=3,
widget=forms.Select (choices=TITLE_CHOICES))
birth_date = forms.DateField(required=)

class BookForm (forms.Form) :
name = forms.CharField(max_length=100)
authors = forms.ModelMultipleChoiceField(queryset=Author.objects.all())

The is_valid () method and errors Changed in version 1.2: Please, see the release notes The first time you
call is_valid() or access the errors attribute of a ModelForm has always triggered form validation, but as
of Django 1.2, it will also trigger model validation. This has the side-effect of cleaning the model you pass to the
ModelForm constructor. For instance, calling is_valid () on your form will convert any date fields on your
model to actual date objects.

The save () method Every form produced by ModelForm also has a save () method. This method creates
and saves a database object from the data bound to the form. A subclass of ModelForm can accept an existing
model instance as the keyword argument instance; if this is supplied, save () will update that instance. If it’s not
supplied, save () will create a new instance of the specified model:

Create a form instance from POST data.
>>> f = ArticleForm(request.POST)

Save a new Article object from the form’s data.
>>> new_article = f.save ()

Create a form to edit an existing Article.
>>> a = Article.objects.get (pk=1)

>>> f = ArticleForm(instance=a)

>>> f.save ()

Create a form to edit an existing Article, but use
POST data to populate the form.

>>> a = Article.objects.get (pk=1)

>>> f = ArticleForm(request.POST, instance=a)

>>> f.save ()

Note that save () will raise a ValueError if the data in the form doesn’t validate — i.e., if form.errors evaluates to
True.

This save () method accepts an optional commit keyword argument, which accepts either True or False. If you
call save () with commit=False, then it will return an object that hasn’t yet been saved to the database. In this
case, it’s up to you to call save () on the resulting model instance. This is useful if you want to do custom processing
on the object before saving it, or if you want to use one of the specialized model saving options. commit is True by
default.

Another side effect of using commit=False is seen when your model has a many-to-many relation with another
model. If your model has a many-to-many relation and you specify commit=False when you save a form, Django
cannot immediately save the form data for the many-to-many relation. This is because it isn’t possible to save many-
to-many data for an instance until the instance exists in the database.

To work around this problem, every time you save a form using commit=False, Django adds a save_m2m ()
method to your ModelForm subclass. After you've manually saved the instance produced by the form, you can
invoke save_m2m () to save the many-to-many form data. For example:

Create a form instance with POST data.
>>> f = AuthorForm(request.POST)

166 Chapter 3. Using Django

Django Documentation, Release 1.3

Create, but don’t save the new author instance.
>>> new_author = f.save (commit=False)

Modify the author in some way.
>>> new_author.some_field = ’some_value’

Save the new instance.
>>> new_author.save ()

Now, save the many-to-many data for the form.
>>> f.save_m2m/()

Calling save_m2m () is only required if you use save (commit=False). When you use a simple save () on a
form, all data — including many-to-many data — is saved without the need for any additional method calls. For example:

Create a form instance with POST data.
>>> a = Author ()
>>> f = AuthorForm(request.POST, instance=a)

Create and save the new author instance. There’s no need to do anything else.
>>> new_author = f.save()

Other than the save () and save_m2m () methods, a Mode 1Form works exactly the same way as any other forms
form. For example, the is_valid () method is used to check for validity, the is_multipart () method is used
to determine whether a form requires multipart file upload (and hence whether request . FILES must be passed to
the form), etc. See Binding uploaded files to a form for more information.

Using a subset of fields on the form In some cases, you may not want all the model fields to appear on the generated
form. There are three ways of telling Mode 1Form to use only a subset of the model fields:

1. Seteditable=False on the model field. As aresult, any form created from the model via Mode 1Form will
not include that field.

2. Use the fields attribute of the ModelForm's inner Meta class. This attribute, if given, should be a list of
field names to include in the form. The order in which the fields names are specified in that list is respected
when the form renders them.

3. Use the exclude attribute of the Mode1Form's inner Meta class. This attribute, if given, should be a list of
field names to exclude from the form.

For example, if you want a form for the Author model (defined above) that includes only the name and title
fields, you would specify fields or exclude like this:

class PartialAuthorForm (ModelForm) :
class Meta:
model = Author
fields = ('name’, ’"title’)

class PartialAuthorForm (ModelForm) :
class Meta:
model = Author
exclude = ('birth _date’,)

Since the Author model has only 3 fields, ‘name’, ‘title’, and ‘birth_date’, the forms above will contain exactly the
same fields.

Note: If you specify fields or exclude when creating a form with Mode 1Form, then the fields that are not in the
resulting form will not be set by the form’s save () method. Django will prevent any attempt to save an incomplete

3.4. Working with forms 167

Django Documentation, Release 1.3

model, so if the model does not allow the missing fields to be empty, and does not provide a default value for the
missing fields, any attempt to save () a ModelForm with missing fields will fail. To avoid this failure, you must
instantiate your model with initial values for the missing, but required fields:

author = Author (title="Mr")
form = PartialAuthorForm(request.POST, instance=author)
form.save ()

Alternatively, you can use save (commit=False) and manually set any extra required fields:

form = PartialAuthorForm(request.POST)
author = form.save (commit=)
author.title = "Mr’

author.save ()

See the section on saving forms for more details on using save (commit=False).

Overriding the default field types or widgets New in version 1.2: The widgets attribute is new in Django 1.2.
The default field types, as described in the Field types table above, are sensible defaults. If you have a DateField
in your model, chances are you’d want that to be represented as a DateField in your form. But ModelForm gives
you the flexibility of changing the form field type and widget for a given model field.

To specify a custom widget for a field, use the widget s attribute of the inner Met a class. This should be a dictionary
mapping field names to widget classes or instances.

For example, if you want the a CharField for the name attribute of Author to be represented by a <textarea>
instead of its default <input type="text">, you can override the field’s widget:

from django.forms import ModelForm, Textarea

class AuthorForm (ModelForm) :
class Meta:
model = Author
fields = ('name’, ’'title’, ’'birth_date’)
widgets = {
"name’ : Textarea(attrs={’'cols’: 80, "rows’: 20}),

}

The widgets dictionary accepts either widget instances (e.g., Textarea (.. .)) or classes (e.g., Textarea).

If you want to further customize a field — including its type, label, etc. — you can do this by declaratively specifying
fields like you would in a regular Form. Declared fields will override the default ones generated by using the model
attribute.

For example, if you wanted to use MyDateFormField for the pub_date field, you could do the following:

class ArticleForm (ModelForm) :
pub_date = MyDateFormField()

class Meta:
model = Article

If you want to override a field’s default label, then specify the 1abel parameter when declaring the form field:

>>> class ArticleForm (ModelForm) :
pub_date = DateField(label='Publication date’)

class Meta:
model = Article

168 Chapter 3. Using Django

Django Documentation, Release 1.3

Note: If you explicitly instantiate a form field like this, Django assumes that you want to completely define its
behavior; therefore, default attributes (such as max_length or required) are not drawn from the corresponding
model. If you want to maintain the behavior specified in the model, you must set the relevant arguments explicitly
when declaring the form field.

For example, if the Art icle model looks like this:

class Article (models.Model) :
headline = models.CharField (max_length=200, null= , blank= ,
help_text="Use puns iberally")
content = models.TextField()

and you want to do some custom validation for headline, while keeping the blank and help_text values as
specified, you might define ArticleForm like this:

class ArticleForm (ModelForm) :
headline = MyFormField(max_length=200, required= ,
help_text="Use puns liberally")

class Meta:
model = Article

See the form field documentation for more information on fields and their arguments.

Changing the order of fields By default, a Mode1Form will render fields in the same order that they are defined
on the model, with ManyToManyField instances appearing last. If you want to change the order in which fields are
rendered, you can use the fields attribute on the Met a class.

The fields attribute defines the subset of model fields that will be rendered, and the order in which they will be
rendered. For example given this model:

class Book (models.Model) :
author = models.ForeignKey (Author)
title = models.CharField (max_length=100)

the author field would be rendered first. If we wanted the title field to be rendered first, we could specify the
following Mode1Form:

>>> class BookForm (ModelForm) :
class Meta:
model = Book
fields = ('title’, 7author’)

Overriding the clean() method You can override the clean () method on a model form to provide additional
validation in the same way you can on a normal form.

In this regard, model forms have two specific characteristics when compared to forms:

By default the c1ean () method validates the uniqueness of fields that are marked as unique, unique_together
orunique_for_date|month|year onthe model. Therefore, if you would like to override the c1ean () method
and maintain the default validation, you must call the parent class’s clean () method.

Also, a model form instance bound to a model object will contain a self . instance attribute that gives model form
methods access to that specific model instance.

3.4. Working with forms 169

Django Documentation, Release 1.3

Form inheritance As with basic forms, you can extend and reuse Mode 1Forms by inheriting them. This is useful
if you need to declare extra fields or extra methods on a parent class for use in a number of forms derived from models.
For example, using the previous ArticleForm class:

>>> class EnhancedArticleForm(ArticleForm) :
def clean pub_date()t

This creates a form that behaves identically to Art icleForm, except there’s some extra validation and cleaning for
the pub_date field.

You can also subclass the parent’s Met a inner class if you want to change the Meta.fields or Meta.excludes
lists:

>>> class RestrictedArticleForm (EnhancedArticleForm) :
class Meta (ArticleForm.Meta) :
exclude = (’'body’,)

This adds the extra method from the EnhancedArticleForm and modifies the original ArticleForm.Meta to
remove one field.

There are a couple of things to note, however.

* Normal Python name resolution rules apply. If you have multiple base classes that declare a Met a inner class,
only the first one will be used. This means the child’s Met a, if it exists, otherwise the Met a of the first parent,
etc.

¢ For technical reasons, a subclass cannot inherit from both a Mode1Form and a Form simultaneously.

Chances are these notes won’t affect you unless you’re trying to do something tricky with subclassing.

Interaction with model validation As part of its validation process, Mode 1Form will call the clean () method
of each field on your model that has a corresponding field on your form. If you have excluded any model fields,
validation will not be run on those fields. See the form validation documentation for more on how field cleaning and
validation work. Also, your model’s clean () method will be called before any uniqueness checks are made. See
Validating objects for more information on the model’s clean () hook.

Model formsets

Like regular formsets, Django provides a couple of enhanced formset classes that make it easy to work with Django
models. Let’s reuse the Aut hor model from above:

>>> from django.forms.models import modelformset_factory
>>> AuthorFormSet = modelformset_factory (Author)

This will create a formset that is capable of working with the data associated with the Author model. It works just
like a regular formset:

>>> formset = AuthorFormSet ()
>>> print formset

<input type="hidden" name="form-TOTAL_FORMS" value="1" id="id_form-TOTAL_FORMS" /><input type="hidde:
<tr><th><label for="id_form-0-name">Name:</label></th><td><input id="id_form-0-name" type="text" name
0-title">Title:</label></th><t

<option value="" selected="se

—_n:

<tr><th><label for="id d><select name="form-0-title" id="id_form

cted">————————- </option>
<option value="MR">Mr.</option>
<option value="MRS">Mrs.</option>

<option value="MS">Ms.</option>

170 Chapter 3. Using Django

Django Documentation, Release 1.3

</select></td></tr>

<tr><th><label for="id_form-0-birth_date">Birth date:</label></th><td><input type="text" name="fc

rorm

Note: modelformset_factory uses formset_factory to generate formsets. This means that a model
formset is just an extension of a basic formset that knows how to interact with a particular model.

Changing the queryset By default, when you create a formset from a model, the formset will use a queryset that
includes all objects in the model (e.g., Author.objects.all ()). You can override this behavior by using the
queryset argument:

>>> formset = AuthorFormSet (queryset=Author.objects.filter (name__startswith="0"))

Alternatively, you can create a subclass that sets self.querysetin__init_ :

from django.forms.models import BaseModelFormSet

class BaseAuthorFormSet (BaseModelFormSet) :

def _ init_ (, *args, *xkwargs):
(BaseAuthorFormSet,) .__init__ (*args, **kwargs)
.queryset = Author.objects.filter (name__startswith="0")

Then, pass your BaseAuthorFormSet class to the factory function:

>>> AuthorFormSet = modelformset_factory (Author, formset=BaseAuthorFormSet)

If you want to return a formset that doesn’t include any pre-existing instances of the model, you can specify an empty
QuerySet:

>>> AuthorFormSet (queryset=Author.objects.none())

Controlling which fields are used with fields and exclude By default, a model formset uses all fields in the
model that are not marked with editable=False. However, this can be overridden at the formset level:

>>> AuthorFormSet = modelformset_factory (Author, fields=('name’, "'title’))
Using fields restricts the formset to use only the given fields. Alternatively, you can take an “opt-out” approach,
specifying which fields to exclude:

>>> AuthorFormSet = modelformset_factory (Author, exclude=('birth _date’,))

Saving objects in the formset As with a ModelForm, you can save the data as a model object. This is done with
the formset’s save () method:

Create a formset instance with POST data.
>>> formset = AuthorFormSet (request.POST)

Assuming all is valid, save the data.
>>> instances = formset.save ()

The save () method returns the instances that have been saved to the database. If a given instance’s data didn’t change
in the bound data, the instance won’t be saved to the database and won’t be included in the return value (instances,
in the above example).

Pass commit=False to return the unsaved model instances:

3.4. Working with forms 171

Django Documentation, Release 1.3

don’t save to the database
>>> instances = formset.save (commit=False)
>>> for instance in instances:
do something with instance
instance.save ()

This gives you the ability to attach data to the instances before saving them to the database. If your formset contains
aManyToManyField, you’ll also need to call formset .save_m2m () to ensure the many-to-many relationships

are saved properly.

Limiting the number of editable objects Changed in version 1.2: Please, see the release notes As with regular
formsets, you can use the max_num and extra parameters to modelformset_factory to limit the number of

extra forms displayed.
max_num does not prevent existing objects from being displayed:

>>> Author.objects.order_by (' name’)

[<Author: Charles Baudelaire>, <Author: Paul Verlaine>, <Author: Walt Whitman>]

>>> AuthorFormSet = modelformset_factory (Author, max_num=1)

>>> formset = AuthorFormSet (queryset=Author.objects.order_by (' name’))
>>> [x.name for x in formset.get_queryset ()]

[u’Charles Baudelaire’, u’Paul Verlaine’, u’Walt Whitman’]

If the value of max_num is greater than the number of existing related objects, up to ext ra additional blank forms

will be added to the formset, so long as the total number of forms does not exceed max_num:

>>> AuthorFormSet = modelformset_factory (Author, max_num=4, extra=2)
>>> formset = AuthorFormSet (queryset=Author.objects.order_by (' name’))
>>> for form in formset:

print form.as_table()

<tr><th><label for="id_form-0-name">Name:</label></th><td><input id="id_form-0-name"
<tr><th><label for="id_form-l-name">Name:</label></th><td><input id="id_form-l-name"
<tr><th><label for="id_form-2-name">Name:</label></th><td><input i1d="id_form-2-name"

<tr><th><label for="id_form-3-name">Name:</label></th><td><input id="id_form-3-name"

type="text"

type

| s

text"

type="text"

type

Changed in version 1.2: Please, see the release notes A max_num value of None (the default) puts no limit on the

number of forms displayed.

Using a model formset in a view Model formsets are very similar to formsets. Let’s say we want to present a

formset to edit Aut hor model instances:

def manage_authors (request) :
AuthorFormSet = modelformset_factory (Author)
if request.method == "POST’:
formset = AuthorFormSet (request.POST, request.FILES)
if formset.is_valid():
formset.save ()

else:
formset = AuthorFormSet ()

return render_to_response ("manage_authors.html™, {
"formset": formset,

})

As you can see, the view logic of a model formset isn’t drastically different than that of a “normal” formset. The only
difference is that we call formset . save () to save the data into the database. (This was described above, in Saving

172 Chapter 3. Using Django

—ny

ext"

nams
name
namse

namse

Django Documentation, Release 1.3

objects in the formset.)

Overiding clean () on a model_formset Just like with ModelForms, by default the clean () method
of a model_formset will validate that none of the items in the formset violate the unique constraints on your
model (either unique, unique_together or unique_for_date|month|year). If you want to overide the
clean () method on a model_formset and maintain this validation, you must call the parent class’s clean
method:

class MyModelFormSet (BaseModelFormSet) :
def clean(self):
super (MyModelFormSet, self).clean()
example custom validation across forms in the formset:
for form in self.forms:
your custom formset validation

Using a custom queryset As stated earlier, you can override the default queryset used by the model formset:

def manage_authors (request) :
AuthorFormSet = modelformset_factory (Author)
if request.method == "POST":
formset = AuthorFormSet (request.POST, request.FILES,

queryset=Author.objects.filter (name__startswith="0"))
if formset.is_valid():
formset.save ()
else:
formset = AuthorFormSet (queryset=Author.objects.filter (name__startswith="0"))
return render_to_response ("manage_authors.html™, {

"formset": formset,

})

Note that we pass the queryset argument in both the POST and GET cases in this example.

Using the formset in the template There are three ways to render a formset in a Django template.
First, you can let the formset do most of the work:

<form method="post" action="">
formset
</form>

Second, you can manually render the formset, but let the form deal with itself:

<form method="post" action="">
formset .management__form
for form in formset
form
endfor
</form>

When you manually render the forms yourself, be sure to render the management form as shown above. See the
management form documentation.

Third, you can manually render each field:

<form method="post" action="">
formset .management__form

3.4. Working with forms 173

Django Documentation, Release 1.3

for form in formset
for field in form
field.label_tag : field
endfor
endfor
</form>

If you opt to use this third method and you don’t iterate over the fields witha {$ for %} loop, you’ll need to render
the primary key field. For example, if you were rendering the name and age fields of a model:

<form method="post" action="">
formset .management_form
for form in formset

form.id

 form.name </1li>
 form.age </1li>

endfor

</form>

Notice how we need to explicitly render { { form.id }}. This ensures that the model formset, in the POST case,
will work correctly. (This example assumes a primary key named id. If you’ve explicitly defined your own primary
key that isn’t called id, make sure it gets rendered.)

Inline formsets

Inline formsets is a small abstraction layer on top of model formsets. These simplify the case of working with related
objects via a foreign key. Suppose you have these two models:

class Author (models.Model) :
name = models.CharField(max_length=100)

class Book (models.Model) :
author = models.ForeignKey (Author)
title = models.CharField(max_length=100)

If you want to create a formset that allows you to edit books belonging to a particular author, you could do this:

>>> from django.forms.models import inlineformset_factory
>>> BookFormSet = inlineformset_factory (Author, Book)

>>> aguthor = Author.objects.get (name=u’Mike Royko’)

>>> formset = BookFormSet (instance=author)

Note: inlineformset_factoryusesmodelformset_factory and marks can_delete=True.

More than one foreign key to the same model If your model contains more than one foreign key to the same
model, you’ll need to resolve the ambiguity manually using fk_name. For example, consider the following model:

class Friendship (models.Model) :
from_friend = models.ForeignKey (Friend)
to_friend = models.ForeignKey (Friend)
length_in_months = models.IntegerField()

To resolve this, you can use fk_name to inlineformset_factory:

174 Chapter 3. Using Django

Django Documentation, Release 1.3

>>> FriendshipFormSet = inlineformset_factory (Friend, Friendship, fk_name="from friend")

Using an inline formset in a view You may want to provide a view that allows a user to edit the related objects of a
model. Here’s how you can do that:

def manage_books (request, author_id):
author = Author.objects.get (pk=author_id)

BookInlineFormSet = inlineformset_factory (Author, Book)
if request.method == "POST":
formset = BookInlineFormSet (request.POST, request.FILES, instance=author)

if formset.is_valid():
formset.save ()

else:
formset = BookInlineFormSet (instance=author)
return render_to_response ("manage books.html", {

ormset": formset,

})

Notice how we pass instance in both the POST and GET cases.

Form Media

Rendering an attractive and easy-to-use Web form requires more than just HTML - it also requires CSS stylesheets,
and if you want to use fancy “Web2.0” widgets, you may also need to include some JavaScript on each page. The
exact combination of CSS and JavaScript that is required for any given page will depend upon the widgets that are in
use on that page.

This is where Django media definitions come in. Django allows you to associate different media files with the forms
and widgets that require that media. For example, if you want to use a calendar to render DateFields, you can define
a custom Calendar widget. This widget can then be associated with the CSS and JavaScript that is required to render
the calendar. When the Calendar widget is used on a form, Django is able to identify the CSS and JavaScript files that
are required, and provide the list of file names in a form suitable for easy inclusion on your Web page.

Media and Django Admin

The Django Admin application defines a number of customized widgets for calendars, filtered selections, and so on.
These widgets define media requirements, and the Django Admin uses the custom widgets in place of the Django
defaults. The Admin templates will only include those media files that are required to render the widgets on any given
page.

If you like the widgets that the Django Admin application uses, feel free to use them in your own application! They’re
all stored in django.contrib.admin.widgets.

Which JavaScript toolkit?

Many JavaScript toolkits exist, and many of them include widgets (such as calendar widgets) that can be used to
enhance your application. Django has deliberately avoided blessing any one JavaScript toolkit. Each toolkit has its
own relative strengths and weaknesses - use whichever toolkit suits your requirements. Django is able to integrate
with any JavaScript toolkit.

3.4. Working with forms 175

Django Documentation, Release 1.3

Media as a static definition

The easiest way to define media is as a static definition. Using this method, the media declaration is an inner class.
The properties of the inner class define the media requirements.

Here’s a simple example:

class CalendarWidget (forms.TextInput) :
class Media:
css = |

js = (’animations.js’, actions.js’)

This code defines a CalendarWidget, which will be based on TextInput. Every time the CalendarWid-
get is used on a form, that form will be directed to include the CSS file pretty.css, and the JavaScript files
animations. jsand actions. js.

This static media definition is converted at runtime into a widget property named media. The media for a Calendar-
Widget instance can be retrieved through this property:

>>> w = CalendarWidget ()
>>> print w.media

<link href="http://media.example.com/pretty.css" type="text/css" media="all" rel="stylesheet" />
~ript type="text/javascript" src="http://media.example.com/animations. js S C
script type="text/javascript" src="http://media.example.com/actions.js"></script>

Here’s a list of all possible Media options. There are no required options.

css A dictionary describing the CSS files required for various forms of output media.

The values in the dictionary should be a tuple/list of file names. See the section on media paths for details of how to
specify paths to media files. The keys in the dictionary are the output media types. These are the same types accepted
by CSS files in media declarations: ‘all’, ‘aural’, ‘braille’, ‘embossed’, ‘handheld’, ‘print’, ‘projection’, ‘screen’, ‘tty’
and ‘tv’. If you need to have different stylesheets for different media types, provide a list of CSS files for each output
medium. The following example would provide two CSS options — one for the screen, and one for print:

class Media:
css = |

I o~y /.
SC

"print’ :

}

If a group of CSS files are appropriate for multiple output media types, the dictionary key can be a comma separated
list of output media types. In the following example, TV’s and projectors will have the same media requirements:

class Media:
css

If this last CSS definition were to be rendered, it would become the following HTML.:

<link href="http://media.example.com/pretty.css" type="text/css" media="screen" rel="stylesheet" />
<link href="http://media.example.com/lo_res.css" type="text/css" media="tv,projector" rel="stylesheet
<link href="http://media.example.com/newspaper.css" type="text/css" media="print" rel="stylesheet" /:

176 Chapter 3. Using Django

Django Documentation, Release 1.3

js A tuple describing the required JavaScript files. See the section on media paths for details of how to specify
paths to media files.

extend A boolean defining inheritance behavior for media declarations.

By default, any object using a static media definition will inherit all the media associated with the parent widget.
This occurs regardless of how the parent defines its media requirements. For example, if we were to extend our basic
Calendar widget from the example above:

>>> class FancyCalendarWidget (CalendarWidget) :
class Media:
css = {
"all’: (' fancy.css’,)
}

js = ('whizbang.js’,)

>>> w = FancyCalendarWidget ()
>>> print w.media

<link href="http://media.example.com/pretty.css" type="text/css" media="all" rel="stylesheet" />
<link href="http://media.example.com/fancy.css" type="text/css" media="all" rel="stylesheet" />
<script type="text/javascript" src="http://media.example.com/animations.js"></script>
<script type="text/javascript" src="http://media.example.com/actions.js"></script>

/

<script type="text/Jjavascript" src="http://media.example.com/whizbang. js"></script>

The FancyCalendar widget inherits all the media from it’s parent widget. If you don’t want media to be inherited in
this way, add an extend=False declaration to the media declaration:

>>> class FancyCalendarWidget (CalendarWidget) :
class Media:

extend =
css = |
"all’: (’fancy.css’,)
}
js = ('whizbang.js’,)

>>> w = FancyCalendarWidget ()

>>> print w.media

<link href="http://media.example.com/fancy.css" type="text/css" media="all" rel="stylesheet" />
<script type="text/Jjavascript" src="http://media.example.com/whizbang.js"></script>

If you require even more control over media inheritance, define your media using a dynamic property. Dynamic
properties give you complete control over which media files are inherited, and which are not.

Media as a dynamic property

If you need to perform some more sophisticated manipulation of media requirements, you can define the media prop-
erty directly. This is done by defining a widget property that returns an instance of forms .Media. The constructor
for forms.Media accepts css and js keyword arguments in the same format as that used in a static media defini-
tion.

For example, the static media definition for our Calendar Widget could also be defined in a dynamic fashion:

class CalendarWidget (forms.TextInput) :

def _media () :
return forms.Media(css={"all’: ('pretty.css’,)},
js=(’animations.js’, ’‘actions.js’))
media = (_media)

3.4. Working with forms 177

Django Documentation, Release 1.3

See the section on Media objects for more details on how to construct return values for dynamic media properties.

Paths in media definitions

Changed in version Development version. Paths used to specify media can be either relative or absolute. If a path
starts with */°, ‘http://* or ‘https://*, it will be interpreted as an absolute path, and left as-is. All other paths will be
prepended with the value of the appropriate prefix.

As part of the introduction of the staticfiles app two new settings were added to refer to “static files” (images, CSS,
Javascript, etc.) that are needed to render a complete web page: STATIC_URL and STATIC_ROOT.

To find the appropriate prefix to use, Django will check if the STATIC_URL setting is not None
and automatically fall back to using MEDIA_ URL. For example, if the MEDIA_ URL for your site was
"http://uploads.example.com/’ and STATIC_URL was None:

>>> class CalendarWidget (forms.TextInput) :
class Media:

css = {
"all’: (’'/css/pretty.css’,),
js = ('animations.js’, ’'http://othersite.com/actions.js’)

>>> w = CalendarWidget ()

>>> print w.media

<link href="/css/pretty.css" type="text/css" media="all" rel="stylesheet" />

<script type="text/javascript" src="http://uploads.example.com/animations.js"></script>
<script type="text/Jjavascript" src="http://othersite.com/actions.js"></script>

Butif STATIC_URLis "http://static.example.com/"’:

>>> w = CalendarWidget ()
>>> print w.media

<link href="/css/pretty.css" type="text/css" media="all" rel="stylesheet" />
<script type="text/Jjavascript" src="http://static.example.com/animations.js"></script>
<script type="text/javascript" src="http://othersite.com/actions.js"></script>

Media objects

When you interrogate the media attribute of a widget or form, the value that is returned is a forms .Media object.
As we have already seen, the string representation of a Media object is the HTML required to include media in the
<head> block of your HTML page.

However, Media objects have some other interesting properties.

Media subsets If you only want media of a particular type, you can use the subscript operator to filter out a medium
of interest. For example:

>>> w = CalendarWidget ()
>>> print w.media

<link href="http://media.example.com/pretty.css" type="text/css" media="all" rel="stylesheet"
<script type="text/javascript" src="http://media.example.com/animations.js"></script>
<script type="text/javascript" src="http://media.example.com/actions.js"></script>

>>> print w.media[’css’]
<link href="http://media.example.com/pretty.css" type="text/css" media="all" rel="stylesheet"

178 Chapter 3. Using Django

/>

/>

http://
https://

Django Documentation, Release 1.3

When you use the subscript operator, the value that is returned is a new Media object — but one that only contains the
media of interest.

Combining media objects Media objects can also be added together. When two media objects are added, the
resulting Media object contains the union of the media from both files:

>>> class CalendarWidget (forms.TextInput) :
class Media:

css = {
"all’: ('pretty.css’,)
}
js = ('animations.js’, "actions.js’)

>>> class OtherWidget (forms.TextInput) :
class Media:

js = ('whizbang.js’,)
>>> wl = CalendarWidget ()
>>> w2 = OtherWidget ()

>>> print wl.media + w2.media

<link href="http://media.example.com/pretty.css" type="text/css" media="all" rel="stylesheet"
<script type="text/Jjavascript" src="http://media.example.com/animations.js"></script>

<script type="text/Jjavascript" src="http://media.example.com/actions.js"></script>

<script type="text/javascript" src="http://media.example.com/whizbang.js"></script>

Media on Forms

Widgets aren’t the only objects that can have media definitions — forms can also define media. The rules for media
definitions on forms are the same as the rules for widgets: declarations can be static or dynamic; path and inheritance
rules for those declarations are exactly the same.

Regardless of whether you define a media declaration, all Form objects have a media property. The default value for
this property is the result of adding the media definitions for all widgets that are part of the form:

>>> class ContactForm(forms.Form) :
date = DateField(widget=CalendarWidget)
name = CharField (max_length=40, widget=OtherWidget)

>>> f = ContactForm()

>>> f.media

<link href="http://media.example.com/pretty.css" type="text/css" media="all" rel="stylesheet"
<script type="text/Jjavascript" src="http://media.example.com/animations.js"></script>

<script type="text/Jjavascript" src="http://media.example.com/actions.js"></script>

<script type="text/javascript" src="http://media.example.com/whizbang.js"></script>

If you want to associate additional media with a form — for example, CSS for form layout — simply add a media
declaration to the form:

>>> class ContactForm(forms.Form) :
date = DateField(widget=CalendarWidget)
name = CharField(max_length=40, widget=OtherWidget)

class Media:
css = {
"all’”: (’layout.css’,)

3.4. Working with forms 179

/>

Django Documentation, Release 1.3

>>> f = ContactForm()
>>> f.media

<link href="http://media.example.com/pretty.css" type="text/css" media="all" rel="stylesheet
<link href="http://media.example.com/layout.css" type="text/ 5" media="all" rel="stylesheet
<script type="text/javascript" src="http://media.example.com/animations.js"></script>
<script type="text/javas pt" src="http://media.example.com/actions.js"></script>

|

<script type="text/Jjavascript" src="http://media.example.com/whizbang. js"></script>

See Also:

The Forms Reference Covers the full API reference, including form fields, form widgets, and form and field valida-
tion.

3.5 The Django template language

About this document

This document explains the language syntax of the Django template system. If you’re looking for a more technical
perspective on how it works and how to extend it, see The Django template language: For Python programmers.

Django’s template language is designed to strike a balance between power and ease. It’s designed to feel comfortable
to those used to working with HTML. If you have any exposure to other text-based template languages, such as Smarty
or CheetahTemplate, you should feel right at home with Django’s templates.

Philosophy

If you have a background in programming, or if you’re used to languages like PHP which mix programming code
directly into HTML, you’ll want to bear in mind that the Django template system is not simply Python embedded into
HTML. This is by design: the template system is meant to express presentation, not program logic.

The Django template system provides tags which function similarly to some programming constructs — an if tag for
boolean tests, a for tag for looping, etc. — but these are not simply executed as the corresponding Python code, and
the template system will not execute arbitrary Python expressions. Only the tags, filters and syntax listed below are
supported by default (although you can add your own extensions to the template language as needed).

3.5.1 Templates

A template is simply a text file. It can generate any text-based format (HTML, XML, CSV, etc.).

A template contains variables, which get replaced with values when the template is evaluated, and tags, which control
the logic of the template.

Below is a minimal template that illustrates a few basics. Each element will be explained later in this document.:
extends "base generic.html"
block title section.title endblock

block content
<hl> section.title </hl>

for story in story_list
<h2>

180 Chapter 3. Using Django

http://smarty.php.net/
http://www.cheetahtemplate.org/

Django Documentation, Release 1.3

story.headline|upper

</h2>
<p> story.tease|truncatewords:"100" </p>
endfor
endblock

Philosophy

Why use a text-based template instead of an XML-based one (like Zope’s TAL)? We wanted Django’s template lan-
guage to be usable for more than just XML/HTML templates. At World Online, we use it for e-mails, JavaScript and
CSV. You can use the template language for any text-based format.

Oh, and one more thing: Making humans edit XML is sadistic!

3.5.2 Variables

Variables look like this: {{ variable }}. When the template engine encounters a variable, it evaluates that
variable and replaces it with the result. Variable names consist of any combination of alphanumeric characters and the
underscore ("_"). The dot (" . ") also appears in variable sections, although that has a special meaning, as indicated
below. Importantly, you cannot have spaces or punctuation characters in variable names.

Use a dot (.) to access attributes of a variable.

Behind the scenes

Technically, when the template system encounters a dot, it tries the following lookups, in this order:
* Dictionary lookup
* Attribute lookup
* Method call

e List-index lookup

In the above example, { { section.title }} will bereplaced with the t it le attribute of the section object.

If you wuse a variable that doesn’t exist, the template system will insert the value of the
TEMPLATE_STRING_IF_INVALID setting, which is set to ” (the empty string) by default.

3.5.3 Filters

You can modify variables for display by using filters.

Filters look like this: {{ name|lower }}. This displays the value of the { { name }} variable after being
filtered through the 1 ower filter, which converts text to lowercase. Use a pipe (|) to apply a filter.

Filters can be “chained.” The output of one filter is applied to the next. { { text|escape|linebreaks }}isa
common idiom for escaping text contents, then converting line breaks to <p> tags.

Some filters take arguments. A filter argument looks like this: {{ bio|truncatewords:30 }}. This will
display the first 30 words of the bio variable.

Filter arguments that contain spaces must be quoted; for example, to join a list with commas and spaced you’d use { {
list|join:", " }}.

3.5. The Django template language 181

Django Documentation, Release 1.3

Django provides about thirty built-in template filters. You can read all about them in the built-in filter reference. To
give you a taste of what’s available, here are some of the more commonly used template filters:

default If a variable is false or empty, use given default. Otherwise, use the value of the variable
For example:

value|default: "nothing"

If value isn’t provided or is empty, the above will display “nothing”.
length Returns the length of the value. This works for both strings and lists; for example:

value|length

Ifvalueis ["a’, 'b’, ’'c’, "d’],the output will be 4.
striptags Strips all [X]HTML tags. For example:
value|striptags
If value is "Joel <button>is</button> a slug", the output will be
"Joel is a slug".
Again, these are just a few examples; see the built-in filter reference for the complete list.
You can also create your own custom template filters; see Custom template tags and filters.
See Also:

Django’s admin interface can include a complete reference of all template tags and filters available for a given site.
See The Django admin documentation generator.

3.5.4 Tags

Tags look like this: {$ tag %}. Tags are more complex than variables: Some create text in the output, some control
flow by performing loops or logic, and some load external information into the template to be used by later variables.

Some tags require beginning and ending tags (i.e. {$ tag %} ... tag contents ... {% endtag
$1).

Django ships with about two dozen built-in template tags. You can read all about them in the built-in tag reference.
To give you a taste of what’s available, here are some of the more commonly used tags:

for Loop over each item in an array. For example, to display a list of athletes provided in athlete_list:

for athlete in athlete_list
 athlete.name
endfor

if and else Evaluates a variable, and if that variable is “true” the contents of the block are displayed:

if athlete_1list

Number of athletes: athlete_list|length
else

No athletes.

endif

182 Chapter 3. Using Django

Django Documentation, Release 1.3

In the above, if athlete_list is not empty, the number of athletes will be displayed by the {{
athlete_list|length }} variable.

You can also use filters and various operators in the if tag:

if athlete_list|length > 1

Team: for athlete in athlete list .. endfor
else

Athlete: athlete_list.0.name

endif

block and extends Set up template inheritance (see below), a powerful way of cutting down on “boilerplate” in
templates.

Again, the above is only a selection of the whole list; see the built-in tag reference for the complete list.
You can also create your own custom template tags; see Custom template tags and filters.
See Also:

Django’s admin interface can include a complete reference of all template tags and filters available for a given site.
See The Django admin documentation generator.

3.5.5 Comments

To comment-out part of a line in a template, use the comment syntax: {# #}.
For example, this template would render as * hello’:

hello

A comment can contain any template code, invalid or not. For example:

This syntax can only be used for single-line comments (no newlines are permitted between the { # and #} delimiters).
If you need to comment out a multiline portion of the template, see the comment tag.

3.5.6 Template inheritance

The most powerful — and thus the most complex — part of Django’s template engine is template inheritance. Template
inheritance allows you to build a base “skeleton” template that contains all the common elements of your site and
defines blocks that child templates can override.

It’s easiest to understand template inheritance by starting with an example:

<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>

<link rel="stylesheet" href="style.css" />

<title> block title My amazing site endblock </title>
</head>
<body>

<div id="sidebar">

block sidebar

Home</1li>

3.5. The Django template language 183

Django Documentation, Release 1.3

Blog</1li>

endblock
</div>
<div id="content">
block content endblock
</div>
</body>
</html>

This template, which we’ll call base.html, defines a simple HTML skeleton document that you might use for a
simple two-column page. It’s the job of “child” templates to fill the empty blocks with content.

In this example, the {$ block %} tag defines three blocks that child templates can fill in. All the block tag does
is to tell the template engine that a child template may override those portions of the template.

A child template might look like this:

extends "base.html"
block title My amazing blog endblock

block content

for entry in blog _entries
<h2> entry.title </h2>
<p> entry.body </p>

endfor

endblock

The {$ extends %} tagis the key here. It tells the template engine that this template “extends” another template.
When the template system evaluates this template, first it locates the parent — in this case, “base.html”.

At that point, the template engine will notice the three {$ block %} tagsinbase.html and replace those blocks
with the contents of the child template. Depending on the value of blog_entries, the output might look like:

<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en"
<head>

<link rel="stylesheet" href="style.css" />

<title>My amazing blog</title>
</head>

lang="en">

<body>
<div id="sidebar">

Home</1li>
Blog</1li>

</div>

<div id="content'">
<h2>Entry one</h2>
<p>This is my first entry.</p>

<h2>Entry two</h2>
<p>This is my second entry.</p>
</div>

184 Chapter 3. Using Django

Django Documentation, Release 1.3

</body>
</html>

Note that since the child template didn’t define the s idebar block, the value from the parent template is used instead.
Content withina {$ block %} tagin a parent template is always used as a fallback.

You can use as many levels of inheritance as needed. One common way of using inheritance is the following three-level
approach:

* Create abase.html template that holds the main look-and-feel of your site.

e Create a base_ SECTIONNAME.html template for each “section” of your site. For example,
base_news.html, base_sports.html. These templates all extend base.html and include section-
specific styles/design.

* Create individual templates for each type of page, such as a news article or blog entry. These templates extend
the appropriate section template.

This approach maximizes code reuse and makes it easy to add items to shared content areas, such as section-wide
navigation.

Here are some tips for working with inheritance:

e If youuse {$ extends %} in atemplate, it must be the first template tag in that template. Template inheri-
tance won’t work, otherwise.

e More {$ block %} tags in your base templates are better. Remember, child templates don’t have to define
all parent blocks, so you can fill in reasonable defaults in a number of blocks, then only define the ones you need
later. It’s better to have more hooks than fewer hooks.

* If you find yourself duplicating content in a number of templates, it probably means you should move that
contenttoa {$ block %} in a parent template.

* If you need to get the content of the block from the parent template, the { { block.super }} variable will
do the trick. This is useful if you want to add to the contents of a parent block instead of completely overriding
it. Data inserted using { { block.super }} will not be automatically escaped (see the next section), since
it was already escaped, if necessary, in the parent template.

* For extra readability, you can optionally give a name to your {$ endblock %} tag. For example:

block content
endblock content

In larger templates, this technique helps you see which {$ block %} tags are being closed.

Finally, note that you can’t define multiple {$ block %} tags with the same name in the same template. This
limitation exists because a block tag works in “both” directions. That is, a block tag doesn’t just provide a hole to fill
— it also defines the content that fills the hole in the parent. If there were two similarly-named {$ block $} tagsin
a template, that template’s parent wouldn’t know which one of the blocks’ content to use.

3.5.7 Automatic HTML escaping

When generating HTML from templates, there’s always a risk that a variable will include characters that affect the
resulting HTML. For example, consider this template fragment:

Hello, name

At first, this seems like a harmless way to display a user’s name, but consider what would happen if the user entered
his name as this:

3.5. The Django template language 185

Django Documentation, Release 1.3

<script>alert ()</script>

With this name value, the template would be rendered as:

Hello, <script>alert ()</script>

...which means the browser would pop-up a JavaScript alert box!

Similarly, what if the name contained a * <’ symbol, like this?
username

That would result in a rendered template like this:

Hello, username

...which, in turn, would result in the remainder of the Web page being bolded!

Clearly, user-submitted data shouldn’t be trusted blindly and inserted directly into your Web pages, because a malicious
user could use this kind of hole to do potentially bad things. This type of security exploit is called a Cross Site Scripting
(XSS) attack.

To avoid this problem, you have two options:

* One, you can make sure to run each untrusted variable through the escape filter (documented below), which
converts potentially harmful HTML characters to unharmful ones. This was the default solution in Django for
its first few years, but the problem is that it puts the onus on you, the developer / template author, to ensure
you’re escaping everything. It’s easy to forget to escape data.

* Two, you can take advantage of Django’s automatic HTML escaping. The remainder of this section describes
how auto-escaping works.

By default in Django, every template automatically escapes the output of every variable tag. Specifically, these five
characters are escaped:

e <isconvertedto &1t;

e > is converted to > ;

» ’ (single quote) is converted to '

e " (double quote) is converted to " ;
e & is converted to &

Again, we stress that this behavior is on by default. If you’re using Django’s template system, you’re protected.

How to turn it off
If you don’t want data to be auto-escaped, on a per-site, per-template level or per-variable level, you can turn it off in
several ways.

Why would you want to turn it off? Because sometimes, template variables contain data that you intend to be rendered
as raw HTML, in which case you don’t want their contents to be escaped. For example, you might store a blob of
HTML in your database and want to embed that directly into your template. Or, you might be using Django’s template
system to produce text that is not HTML — like an e-mail message, for instance.

For individual variables

To disable auto-escaping for an individual variable, use the safe filter:

186 Chapter 3. Using Django

http://en.wikipedia.org/wiki/Cross-site_scripting

Django Documentation, Release 1.3

This will be escaped: data
This will not be escaped: data|safe

Think of safe as shorthand for safe from further escaping or can be safely interpreted as HTML. In this example, if
data contains ’ ’, the output will be:

This will be escaped:
This will not be escaped:

For template blocks

To control auto-escaping for a template, wrap the template (or just a particular section of the template) in the
autoescape tag, like so:

autoescape off
Hello name
endautoescape

The autoescape tag takes either on or of f as its argument. At times, you might want to force auto-escaping when
it would otherwise be disabled. Here is an example template:

Auto-escaping is on by default. Hello name

autoescape off

This will not be auto-escaped: data
Nor this: other_data
autoescape on
Auto-escaping applies again: name
endautoescape
endautoescape

The auto-escaping tag passes its effect onto templates that extend the current one as well as templates included via the
include tag, just like all block tags. For example:

base.html

{% autoescape off %}

<hl>{% block title %}{% endblock %}</hl>
{% block content %}

{% endblock %}

{% endautoescape %}

child.html

{% extends "base.html" %}
{% block title %}This & that{% endblock %}
{% block content %}{{ greeting }}{% endblock %}

Because auto-escaping is turned off in the base template, it will also be turned off in the child template, resulting in
the following rendered HTML when the greet ing variable contains the string Hello!:

<h1>This & that</hl>
Hello!

3.5. The Django template language 187

Django Documentation, Release 1.3

Notes

Generally, template authors don’t need to worry about auto-escaping very much. Developers on the Python side
(people writing views and custom filters) need to think about the cases in which data shouldn’t be escaped, and mark
data appropriately, so things Just Work in the template.

If you’re creating a template that might be used in situations where you’re not sure whether auto-escaping is enabled,
then add an escape filter to any variable that needs escaping. When auto-escaping is on, there’s no danger of the
escape filter double-escaping data — the escape filter does not affect auto-escaped variables.

String literals and automatic escaping

As we mentioned earlier, filter arguments can be strings:
data|default:"This is a string literal."
All string literals are inserted without any automatic escaping into the template — they act as if they were all passed

through the safe filter. The reasoning behind this is that the template author is in control of what goes into the string
literal, so they can make sure the text is correctly escaped when the template is written.

This means you would write

data|default:"3 < 2"

...rather than

{{ data|default:"3 < 2" }} <—— Bad! Don’t do this.

This doesn’t affect what happens to data coming from the variable itself. The variable’s contents are still automatically
escaped, if necessary, because they’re beyond the control of the template author.

3.5.8 Accessing method calls

Most method calls attached to objects are also available from within templates. This means that templates have access
to much more than just class attributes (like field names) and variables passed in from views. For example, the Django
ORM provides the “entry_set” syntax for finding a collection of objects related on a foreign key. Therefore, given a
model called “comment” with a foreign key relationship to a model called “task” you can loop through all comments
attached to a given task like this:

for comment in task.comment_set.all
comment
endfor

Similarly, QuerySets provide a count () method to count the number of objects they contain. Therefore, you can
obtain a count of all comments related to the current task with:

task.comment_set.all.count

And of course you can easily access methods you’ve explicitly defined on your own models:

In model
class Task (models.Model) :
def foo(self):
return "bar"

In template
task.foo

188 Chapter 3. Using Django

Django Documentation, Release 1.3

Because Django intentionally limits the amount of logic processing available in the template language, it is not possible
to pass arguments to method calls accessed from within templates. Data should be calculated in views, then passed to
templates for display.

3.5.9 Custom tag and filter libraries

Certain applications provide custom tag and filter libraries. To access them in a template, use the {$ load %} tag:

load comments
comment_form for blogs.entries entry.id with is_public yes

In the above, the 1oad tag loads the comment s tag library, which then makes the comment_ form tag available for
use. Consult the documentation area in your admin to find the list of custom libraries in your installation.

The {$ load %} tag can take multiple library names, separated by spaces. Example:

load comments 1i18n

See Custom template tags and filters for information on writing your own custom template libraries.

Custom libraries and template inheritance
When you load a custom tag or filter library, the tags/filters are only made available to the current template — not any
parent or child templates along the template-inheritance path.

For example, if a template foo.html has {$ load comments %}, a child template (e.g., one that has {%
extends "foo.html" %}) will not have access to the comments template tags and filters. The child template is
responsible for its own {$ load comments %}.

This is a feature for the sake of maintainability and sanity.

3.6 Class-based generic views

New in version Development version.

Note: Prior to Django 1.3, generic views were implemented as functions. The function-based implementation has
been deprecated in favor of the class-based approach described here.

For details on the previous generic views implementation, see the topic guide and detailed reference.

Writing Web applications can be monotonous, because we repeat certain patterns again and again. Django tries to take
away some of that monotony at the model and template layers, but Web developers also experience this boredom at
the view level.

Django’s generic views were developed to ease that pain. They take certain common idioms and patterns found in
view development and abstract them so that you can quickly write common views of data without having to write too
much code.

We can recognize certain common tasks, like displaying a list of objects, and write code that displays a list of any
object. Then the model in question can be passed as an extra argument to the URLconf.

Django ships with generic views to do the following:

* Perform common “simple” tasks: redirect to a different page and render a given template.

3.6. Class-based generic views 189

Django Documentation, Release 1.3

* Display list and detail pages for a single object. If we were creating an application to manage conferences then
aTalkListViewand aRegisteredUserListView would be examples of list views. A single talk page
is an example of what we call a “detail” view.

* Present date-based objects in year/month/day archive pages, associated detail, and “latest” pages. The Django
Weblog ‘s year, month, and day archives are built with these, as would be a typical newspaper’s archives.

» Allow users to create, update, and delete objects — with or without authorization.

Taken together, these views provide easy interfaces to perform the most common tasks developers encounter.

3.6.1 Simple usage

Class-based generic views (and any class-based views that inherit from the base classes Django provides) can be
configured in two ways: subclassing, or passing in arguments directly in the URLconf.

When you subclass a class-based view, you can override attributes (such as the template_name) or methods (such
as get_context_data) in your subclass to provide new values or methods. Consider, for example, a view that
just displays one template, about . html. Django has a generic view to do this - TemplateView - so we can just
subclass it, and override the template name:

from django.views.generic import TemplateView

class AboutView (TemplateView) :
template_name = "about.html"

Then, we just need to add this new view into our URLconf. As the class-based views themselves are classes, we point
the URL to the as_view class method instead, which is the entrypoint for class-based views:

from django.conf.urls.defaults import =*
from some_app.views import AboutView

urlpatterns = patterns(’’,
(r” ~about/’”, AboutView.as_view()),

)

Alternatively, if you’re only changing a few simple attributes on a class-based view, you can simply pass the new
attributes into the as_view method call itself:

from django.conf.urls.defaults import =*
from django.views.generic import TemplateView

urlpatterns = patterns(’'’,
(r” ~about/’”, TemplateView.as_view (template_name="about . html")),

)

A similar overriding pattern can be used for the url attribute on RedirectView, another simple generic view.

3.6.2 Generic views of objects

TemplateView certainly is useful, but Django’s generic views really shine when it comes to presenting views of
your database content. Because it’s such a common task, Django comes with a handful of built-in generic views that
make generating list and detail views of objects incredibly easy.

Let’s take a look at one of these generic views: the “object list” view. We’ll be using these models:

190 Chapter 3. Using Django

http://www.djangoproject.com/weblog/
http://www.djangoproject.com/weblog/

Django Documentation, Release 1.3

from django.db import models

class Publisher (models.Model) :
name = models.CharField(max_length=30)
address = models.CharField (max_length=50)
city = models.CharField (max_length=60)
state_province = models.CharField (max_length=30)
country = models.CharField(max_length=50)
website = models.URLField()

def _ unicode_ () :
return .name

class Meta:
ordering = ["-name"]

class Book (models.Model) :
title = models.CharField(max_length=100)
authors = models.ManyToManyField ('’ Author’)
publisher = models.ForeignKey (Publisher)
publication_date = models.DateField()

To build a list page of all publishers, we’d use a URLconf along these lines:

from django.conf.urls.defaults import =*
from django.views.generic import ListView
from books.models import Publisher

urlpatterns = patterns(’’,
(r""publishers/S$’, ListView.as_view (
model=Publisher,

)) .
)

That’s all the Python code we need to write. We still need to write a template, however. We could explicitly tell the
view which template to use by including a template_name key in the arguments to as_view, but in the absence
of an explicit template Django will infer one from the object’s name. In this case, the inferred template will be
"books/publisher_list.html" — the “books” part comes from the name of the app that defines the model,
while the “publisher” bit is just the lowercased version of the model’s name.

Note: Thus, when (for example) the django.template.loaders.app_directories.Loader template
loader is enabled in TEMPLATE_LOADERS, the template location would be:

/path/to/project/books/templates/books/publisher_list.html

This template will be rendered against a context containing a variable called object_1ist that contains all the
publisher objects. A very simple template might look like the following:

extends "base.html"”

block content

<h2>Publishers</h2>

for publisher in object_list
 publisher.name </1li>
endfor

3.6. Class-based generic views 191

Django Documentation, Release 1.3

endblock

That’s really all there is to it. All the cool features of generic views come from changing the “info” dictionary passed
to the generic view. The generic views reference documents all the generic views and their options in detail; the rest
of this document will consider some of the common ways you might customize and extend generic views.

3.6.3 Extending generic views

There’s no question that using generic views can speed up development substantially. In most projects, however, there
comes a moment when the generic views no longer suffice. Indeed, the most common question asked by new Django
developers is how to make generic views handle a wider array of situations.

This is one of the reasons generic views were redesigned for the 1.3 release - previously, they were just view functions
with a bewildering array of options; now, rather than passing in a large amount of configuration in the URLconf, the
recommended way to extend generic views is to subclass them, and override their attributes or methods.

Making “friendly” template contexts

You might have noticed that our sample publisher list template stores all the publishers in a variable named
object_list. While this works just fine, it isn’t all that “friendly” to template authors: they have to “just know”
that they’re dealing with publishers here.

Well, if you’re dealing with a Django object, this is already done for you. When you are dealing with an object or
queryset, Django is able to populate the context using the verbose name (or the plural verbose name, in the case of
a list of objects) of the object being displayed. This is provided in addition to the default object_1list entry, but
contains exactly the same data.

If the verbose name (or plural verbose name) still isn’t a good match, you can manually set the name of the context
variable. The context_obJject_name attribute on a generic view specifies the context variable to use. In this
example, we’ll override it in the URLconf, since it’s a simple change:

urlpatterns = patterns(’’,

(r” "publishers/S$’, ListView.as_view (
model=Publisher,
context_object_name="publisher list",

)) s

)

Providing a useful context_object_name is always a good idea. Your coworkers who design templates will
thank you.

Adding extra context

Often you simply need to present some extra information beyond that provided by the generic view. For example,
think of showing a list of all the books on each publisher detail page. The DetailView generic view provides the
publisher to the context, but it seems there’s no way to get additional information in that template.

However, there is; you can subclass DetailView and provide your own implementation of the
get_context_data method. The default implementation of this that comes with DetailView simply adds
in the object being displayed to the template, but you can override it to show more:

from django.views.generic import DetailView
from books.models import Publisher, Book

192 Chapter 3. Using Django

Django Documentation, Release 1.3

class PublisherDetailView (DetailView) :

context_object_name = "publisher"
model = Publisher

def get_context_data(, **kwargs) :
context = (PublisherDetailView,) .get_context_data (xxkwargs)
context ["book list’] = Book.objects.all()

return context

Viewing subsets of objects

Now let’s take a closer look at the mode 1 argument we’ve been using all along. The mode1 argument, which specifies
the database model that the view will operate upon, is available on all the generic views that operate on a single object
or a collection of objects. However, the model argument is not the only way to specify the objects that the view will
operate upon — you can also specify the list of objects using the queryset argument:

from django.views.generic import DetailView
from books.models import Publisher, Book

class PublisherDetailView (DetailView) :

context_object_name = "publisher"
queryset = Publisher.objects.all()

Specifying model = Publisher is really just shorthand for saying queryset =
Publisher.objects.all (). However, by using queryset to define a filtered list of objects you can
be more specific about the objects that will be visible in the view (see Making queries for more information about
QuerySet objects, and see the class-based views reference for the complete details).

To pick a simple example, we might want to order a list of books by publication date, with the most recent first:

urlpatterns = patterns(’’,

(r’ "publishers/S$’, ListView.as_view (
queryset=Publisher.objects.all(),
context_object_name="publisher list",

))I

(r’" "books/$’, ListView.as_view (
queryset=Book.objects.order_by ("-publication_date"),
context_object_name="book list",

))y

)

That’s a pretty simple example, but it illustrates the idea nicely. Of course, you’ll usually want to do more than just
reorder objects. If you want to present a list of books by a particular publisher, you can use the same technique (here,
illustrated using subclassing rather than by passing arguments in the URLconf):

from django.views.generic import ListView
from books.models import Book

class AcmeBookListView (ListView) :
context_object_name = "boc

queryset = Book.objects.filter (publisher__name="Acme Publishing")
template_name = "books/acme list.html"

3.6. Class-based generic views 193

Django Documentation, Release 1.3

Notice that along with a filtered queryset, we’re also using a custom template name. If we didn’t, the generic view
would use the same template as the “vanilla” object list, which might not be what we want.

Also notice that this isn’t a very elegant way of doing publisher-specific books. If we want to add another publisher
page, we’d need another handful of lines in the URLconf, and more than a few publishers would get unreasonable.
We’ll deal with this problem in the next section.

Note: If you get a 404 when requesting /books/acme/, check to ensure you actually have a Publisher with the
name ‘ACME Publishing’. Generic views have an al low_empty parameter for this case. See the class-based-views
reference for more details.

Dynamic filtering

Another common need is to filter down the objects given in a list page by some key in the URL. Earlier we hard-coded
the publisher’s name in the URLconf, but what if we wanted to write a view that displayed all the books by some
arbitrary publisher?

Handily, the ListView has a get_queryset () method we can override. Previously, it has just been returning the
value of the queryset attribute, but now we can add more logic.

The key part to making this work is that when class-based views are called, various useful things are stored on se1f; as
well as the request (self.request) this includes the positional (self.args) and name-based (self.kwargs)
arguments captured according to the URLconf.

Here, we have a URLconf with a single captured group:

from books.views import PublisherBookListView

urlpatterns = patterns(’’,
(r’" "books/ (\wt+)/$", PublisherBookListView.as_view()),

)

Next, we’ll write the PublisherBookListView view itself:

from django.shortcuts import get_object_or_404
from django.views.generic import ListView
from books.models import Book, Publisher

class PublisherBookListView (ListView) :

pook_list"

s_by_publisher.html",

context_object_name =
template_name = "books/

def get_queryset ()t
publisher = get_object_or_404 (Publisher, name__iexact= .args[0])
return Book.objects.filter (publisher=publisher)

As you can see, it’s quite easy to add more logic to the queryset selection; if we wanted, we could use
self.request.user to filter using the current user, or other more complex logic.

We can also add the publisher into the context at the same time, so we can use it in the template:

class PublisherBookListView (ListView) :

context_object_name = "book list"
template_name = "books/boo

def get_queryset ()z

194 Chapter 3. Using Django

Django Documentation, Release 1.3

.publisher = get_object_or_404 (Publisher, name__iexact= .args[0])
return Book.objects.filter (publisher= .publisher)
def get_context_data(, **xkwargs) :
context = (PublisherBookListView,) .get_context_data (xxkwargs)
context ['publisher’] = .publisher

return context

Performing extra work

The last common pattern we’ll look at involves doing some extra work before or after calling the generic view.

Imagine we had a 1last_accessed field on our Author object that we were using to keep track of the last time
anybody looked at that author:

class Author (models.Model) :
salutation = models.CharField(max_length=10)
first_name = models.CharField(max_length=30)
last_name = models.CharField(max_length=40)
email = models.EmailField()
headshot = models.ImageField (upload_to=’/tmp’)
last_accessed = models.DateTimeField()

The generic DetailView class, of course, wouldn’t know anything about this field, but once again we could easily
write a custom view to keep that field updated.

First, we’d need to add an author detail bit in the URLconf to point to a custom view:

from books.views import AuthorDetailView
urlpatterns = patterns(’’,
(r"~authors/ (?P<pk>\d+) /5", AuthorDetailView.as_view()),

Then we’d write our new view - get_object is the method that retrieves the object, so we simply override it and
wrap the call:

import datetime
from books.models import Author
from django.views.generic import DetailView
from django.shortcuts import get_object_or_404
class AuthorDetailView (DetailView) :

queryset = Author.objects.all()

def get_object ()t

= (AuthorDetailView,) .get_object ()

.last_accessed = datetime.datetime.now ()
.save ()

3.6. Class-based generic views 195

Django Documentation, Release 1.3

return

Note: This code won’t actually work unless you create a books/author_detail.html template.

Note: The URLconf here uses the named group pk - this name is the default name that Detail View uses to find the
value of the primary key used to filter the queryset.

If you want to change it, you’ll need to do your own get () callon self.queryset using the new named parameter
from self.kwargs.

More than just HTML
So far, we’ve been focusing on rendering templates to generate responses. However, that’s not all generic views can
do.

Each generic view is composed out of a series of mixins, and each mixin contributes a little piece of the entire view.
Some of these mixins — such as TemplateResponseMixin — are specifically designed for rendering content to an
HTML response using a template. However, you can write your own mixins that perform different rendering behavior.

For example, a simple JSON mixin might look something like this:

from django import http
from django.utils import simplejson as Jjson

class JSONResponseMixin ()z

def render_ to_response (, context):
"Returns a JSON re onse containing ’context’ payload"
return .get_json_response (.convert_context_to_json(context))
def get_json_response (, content, *xhttpresponse_kwargs) :
"Construct an ‘HttpResponse‘ object."
return http.HttpResponse (content,
content_type="application/Jjson’,

*xhttpresponse_kwargs)

def convert_context_to_json(, context) :
"Convert the context dictionary into a JSON object

return json.dumps (context)
Then, you could build a JSON-returning DetailView by mixing your JSONResponseMixin with the
BaseDetailView — (the DetailView before template rendering behavior has been mixed in):

class JSONDetailView (JSONResponseMixin, BaseDetailView) :
pass

This view can then be deployed in the same way as any other Det ailView, with exactly the same behavior — except
for the format of the response.

If you want to be really adventurous, you could even mix a DetailView subclass that is able to return both HTML
and JSON content, depending on some property of the HTTP request, such as a query argument or a HTTP header.

196 Chapter 3. Using Django

Django Documentation, Release 1.3

Just mix in both the JSONResponseMixin and a SingleObjectTemplateResponseMixin, and override
the implementation of render_to_response () to defer to the appropriate subclass depending on the type of
response that the user requested:

class HybridDetailView (JSONResponseMixin, SingleObjectTemplateResponseMixin, BaseDetailView) :

def render_ to_response (, context):
if .request.GET.get (' format’,’ html’) == '’ json’
return JSONResponseMixin.render_to_response (, context)
else:
return SingleObjectTemplateResponseMixin.render_to_response (, context)

Because of the way that Python resolves method overloading, the local render_to_response ()
implementation will override the versions provided by JSONResponseMixin and
SingleObjectTemplateResponseMixin.

3.6.4 Decorating class-based views

The extension of class-based views isn’t limited to using mixins. You can use also use decorators.

Decorating in URLconf

The simplest way of decorating class-based views is to decorate the result of the as_view () method. The easiest
place to do this is in the URLconf where you deploy your view:

from django.contrib.auth.decorators import login_required
from django.views.generic import TemplateView

urlpatterns = patterns(’’,

(r”7about/’,login_required(TemplateView.as_view (template_name="secret.html"))),

)

This approach applies the decorator on a per-instance basis. If you want every instance of a view to be decorated, you
need to take a different approach.

Decorating the class

To decorate every instance of a class-based view, you need to decorate the class definition itself. To do this you
apply the decorator to one of the view-like methods on the class; that is, dispatch (), or one of the HTTP methods
(get (), post () etc).

A method on a class isn’t quite the same as a standalone function, so you can’t just apply a function decorator to the
method — you need to transform it into a method decorator first. The method_decorator decorator transforms a
function decorator into a method decorator so that it can be used on an instance method. For example:

from django.contrib.auth.decorators import login_required
from django.utils.decorators import method_decorator
from django.views.generic import TemplateView

class ProtectedView (TemplateView) :
template_name = ’sec

’

ret . htm

@method_decorator (login_required)
def dispatch(, *args, **xkwargs) :
return (ProtectedView,) .dispatch(*args, *xkwargs)

3.6. Class-based generic views 197

Django Documentation, Release 1.3

In this example, every instance of ProtectedvView will have login protection.

Note: method_decorator passes xargs and «+kwargs as parameters to the decorated method on the class. If
your method does not accept a compatible set of parameters it will raise a TypeError exception.

3.7 Migrating function-based generic views

All the function-based generic views that existed in Django 1.2 have analogs as class-based generic views in Django
1.3. The feature set exposed in those function-based views can be replicated in a class-based way.

3.7.1 How to migrate
Replace generic views with generic classes

Existing usage of function-based generic views should be replaced with their class-based analogs:

Old function-based generic view New class-based generic view
django.views.generic.simple.direct_to_templabgo.views.generic.base.TemplateView
django.views.generic.simple.redirect_to | django.views.generic.base.RedirectView
django.views.generic.list_detail.object_[lidgbngo.views.generic.list.ListView
django.views.generic.list_detail.object_dejahfio.views.generic.detail.DetailView
django.views.generic.create_update.createddhpegcot views.generic.edit.CreateViey
django.views.generic.create_update.updateddhngot views.generic.edit.UpdateView
django.views.generic.create_update.deletpdgbhigot views.generic.edit.DeleteViey
django.views.generic.date_based.archive_findexgo.views.generic.dates.ArchivelndexView
django.views.generic.date_based.archive_yedrngo.views.generic.dates.YearArchijveView
django.views.generic.date_based.archive_mornghgo.views.generic.dates.MonthArchliveView
django.views.generic.date_based.archive_pwegkngo.views.generic.dates.WeekArchiveView
django.views.generic.date_based.archive_dayango.views.generic.dates.DayArchiveView

django.views.generic.date_based.archive_ftddayngo.views.generic.dates.TodayArchliveView
django.views.generic.date_based.object_detldshgo.views.generic.dates.DateDetaijlView

To do this, replace the reference to the generic view function with a as_view () instantiation of the class-based view.
For example, the old-style direct_to_template pattern:

(" ~about/S$’, direct_to_template, {’'template’: "about.html’})

can be replaced with an instance of TemplateView:

(" "about /5", TemplateView.as_view (template_name=’about.html’))

template argument to direct_to_template views

The template argument to the direct_to_template view has been renamed template_name. This has
been done to maintain consistency with other views.

object_id argument to detail views

The object_id argument to the object_detail view has been renamed pk on the DetailView.

198 Chapter 3. Using Django

Django Documentation, Release 1.3

template_object_name

template_object_name has been renamed context_object_name, reflecting the fact that the context data
can be used for purposes other than template rendering (e.g., to populate JSON output).

The _1ist suffix on list views

In a function-based ListView, the template_object_name was appended with the suffix /' _1ist’ to yield
the final context variable name. In a class-based ListView, the context_object_name is used verbatim. The
' _list’ suffix is only applied when generating a default context object name.

The context data for object_1list views
The context provided by MultipleObjectMixin is quite different from that provided by object_1list, with
most pagination related variables replaced by a single page_obj object. The following are no longer provided:
e first_on_page
* has_next
* has_previous
* hits
e last_on_page
* next
* page_range
* page
* pages
* previous

* results_per_page

extra_context
Function-based generic views provided an extra_context argument as way to insert extra items into the context
at time of rendering.

Class-based views don’t provide an extra_context argument. Instead, you subclass the view, overriding
get_context_data (). For example:

class MyListView (ListView) :

def get_context_data(, **kwargs) :
context = (MyListView,) .get_context_data (¥*xkwargs)
context.update ({
"foo’: 42,
"bar’: 37

1)
return context

3.7. Migrating function-based generic views 199

Django Documentation, Release 1.3

post_save_redirect argument to create and update views

The post_save_redirect argument to the create and update views has been renamed success_url on the
ModelFormMixin.

mimetype

Some function-based generic views provided a mimet ype argument as way to control the mimetype of the response.

Class-based views don’t provide a mimetype argument. Instead, you subclass the view, overriding
TemplateResponseMixin.render_to_response () and pass in arguments for the TemplateResponse con-
structor. For example:

class MyListView (ListView) :

def render_ to_response (, context, *xxkwargs):
return (MyListView,) .render_to_response (context,
content_type='application/Jjson’, *%*kwargs)

context_processors
Some function-based generic views provided a context_processors argument that could be used to force the
use of specialized context processors when rendering template content.

Class-based views don’t provide a context_processors argument. Instead, you subclass the view, overriding
TemplateResponseMixin.render_to_response (), and passing in a context instance that has been instan-
tiated with the processors you want to use. For example:

class MyListView (ListView) :

def render_ to_response (, context, *xxkwargs):
return (MyListView,) .render_to_response (
RequestContext (.request,
context,

processors=[custom_processor]),
**kwargs)

3.8 Managing files

This document describes Django’s file access APIs.

By default, Django stores files locally, using the MEDIA_ ROOT and MEDIA_URL settings. The examples below
assume that you’re using these defaults.

However, Django provides ways to write custom file storage systems that allow you to completely customize where
and how Django stores files. The second half of this document describes how these storage systems work.

3.8.1 Using files in models

When youuse aFileField or ImageField, Django provides a set of APIs you can use to deal with that file.

Consider the following model, using an TmageField to store a photo:

200 Chapter 3. Using Django

Django Documentation, Release 1.3

class Car (models.Model) :
name = models.CharField(max_length=255)
price = models.DecimalField (max_digits=5, decimal_places=2)
photo = models.ImageField(upload_to=’'cars’)

Any Car instance will have a photo attribute that you can use to get at the details of the attached photo:

>>> car = Car.objects.get (name="57 Chevy")
>>> car.photo

<ImageFieldFile: chevy. jpg>

>>> car.photo.name

u’ cars/chevy. jpg’

>>> car.photo.path

u’ /media/cars/chevy. jpg’

>>> car.photo.url
u’http://media.example.com/cars/chevy. jpg’

This object — car.photo in the example — is a File object, which means it has all the methods and attributes
described below.

3.8.2 The File object

Internally, Django uses a d jango.core.files.File instance any time it needs to represent a file. This object is
a thin wrapper around Python’s built-in file object with some Django-specific additions.

Most of the time you’ll simply use a Fi1e that Django’s given you (i.e. a file attached to a model as above, or perhaps
an uploaded file).

If you need to construct a F'ile yourself, the easiest way is to create one using a Python built-in £i1e object:

>>> from django.core.files import File

Create a Python fi
>>> £ = (" /tmp/hel
>>> myfile = File(f)

using open ()

> object

vorld’, '"w’)

Now you can use any of the documented attributes and methods of the Fi 1e class.

3.8.3 File storage
Behind the scenes, Django delegates decisions about how and where to store files to a file storage system. This is the
object that actually understands things like file systems, opening and reading files, etc.

Django’s default file storage is given by the DEFAULT_FILE_STORAGE setting; if you don’t explicitly provide a
storage system, this is the one that will be used.

See below for details of the built-in default file storage system, and see Writing a custom storage system for information
on writing your own file storage system.

Storage objects

Though most of the time you’ll want to use a File object (which delegates to the proper storage for that file), you can
use file storage systems directly. You can create an instance of some custom file storage class, or — often more useful
— you can use the global default storage system:

3.8. Managing files 201

http://docs.python.org/library/stdtypes.html#bltin-file-objects

Django Documentation, Release 1.3

>>> from django.core.files.storage import default_storage
>>> from django.core.files.base import ContentFile

>>> path = default_storage.save(’ /path/to/file’, ContentFile(’new content’))
>>> path

u’ /path/to/file’

>>> default_storage.size (path)
11
>>> default_storage.open (path) .read()

"new content’

>>> default_storage.delete (path)
>>> default_storage.exists (path)

False

See File storage API for the file storage AP

The built-in filesystem storage class

Django ships with a built-in FileSystemStorage class (defined in django.core.files.storage) which
implements basic local filesystem file storage. Its initializer takes two arguments:

Argu- Description
ment
location Optional. Absolute path to the directory that will hold the files. If omitted, it will be set to the value
of your MEDIA_ROOT setting.

base_url Optional. URL that serves the files stored at this location. If omitted, it will default to the value of
your MEDIA_URL setting.

For example, the following code will store uploaded files under /media/photos regardless of what your
MEDIA_ROOT setting is:

from django.db import models
from django.core.files.storage import FileSystemStorage

fs = FileSystemStorage (location=’ /media/photos’)
class Car (models.Model) :
photo = models.ImageField(storage=fs)

Custom storage systems work the same way: you can pass them in as the storage argumenttoaFileField.

3.9 Testing Django applications

Automated testing is an extremely useful bug-killing tool for the modern Web developer. You can use a collection of
tests — a test suite — to solve, or avoid, a number of problems:

* When you’re writing new code, you can use tests to validate your code works as expected.

* When you’re refactoring or modifying old code, you can use tests to ensure your changes haven’t affected your
application’s behavior unexpectedly.

Testing a Web application is a complex task, because a Web application is made of several layers of logic — from
HTTP-level request handling, to form validation and processing, to template rendering. With Django’s test-execution

202 Chapter 3. Using Django

Django Documentation, Release 1.3

framework and assorted utilities, you can simulate requests, insert test data, inspect your application’s output and
generally verify your code is doing what it should be doing.

The best part is, it’s really easy.

This document is split into two primary sections. First, we explain how to write tests with Django. Then, we explain
how to run them.

3.9.1 Writing tests

There are two primary ways to write tests with Django, corresponding to the two test frameworks that ship in the
Python standard library. The two frameworks are:

* Unit tests — tests that are expressed as methods on a Python class that subclasses unittest .TestCase. For
example:

import unittest

class MyFuncTestCase (unittest.TestCase) :
def testBasic() :

’ ’ 14

a = ['larry’, ’curly’, 'moe’]
.assertEqual (my_func(a, 0), larry’)

.assertEqual (my_func(a, 1), ’‘curly’)

* Doctests — tests that are embedded in your functions’ docstrings and are written in a way that emulates a session
of the Python interactive interpreter. For example:

def my_ func(a_list, idx):

nwn

"curly’

return a_list[idx]
We’ll discuss choosing the appropriate test framework later, however, most experienced developers prefer unit tests.
You can also use any other Python test framework, as we’ll explain in a bit.

Writing unit tests

Django’s unit tests use a Python standard library module: unittest. This module defines tests in class-based approach.

unittest2 Changed in version Development version. Python 2.7 introduced some major changes to the unittest library,
adding some extremely useful features. To ensure that every Django project can benefit from these new features,
Django ships with a copy of unittest2, a copy of the Python 2.7 unittest library, backported for Python 2.4 compatibility.

To access this library, Django provides the django.utils.unittest module alias. If you are using Python
2.7, or you have installed unittest2 locally, Django will map the alias to the installed version of the unittest library.
Otherwise, Django will use it’s own bundled version of unittest2.

To use this alias, simply use:

from django.utils import unittest

wherever you would have historically used:

3.9. Testing Django applications 203

http://docs.python.org/library/unittest.html
http://pypi.python.org/pypi/unittest2

Django Documentation, Release 1.3

import unittest

If you want to continue to use the base unittest libary, you can — you just won’t get any of the nice new unittest2
features.

For a given Django application, the test runner looks for unit tests in two places:
* The models.py file. The test runner looks for any subclass of unittest.TestCase in this module.

* A file called tests.py in the application directory — i.e., the directory that holds models.py. Again, the
test runner looks for any subclass of unittest.TestCase in this module.

Here is an example unittest.TestCase subclass:

from django.utils import unittest
from myapp.models import Animal

class AnimalTestCase (unittest.TestCase) :
def setUp()z
.lion = Animal.objects.create(name="1lion", sound="roar")
.cat = Animal.objects.create (name="cat", sound="meow

def testSpeaking()t
.assertEqual (.lion.speak (), ’'The
.assertEqual (.cat.speak (), 'The cat

When you run your tests, the default behavior of the test utility is to find all the test cases (that is, subclasses of
unittest.TestCase) in models.py and tests.py, automatically build a test suite out of those test cases,
and run that suite.

There is a second way to define the test suite for a module: if you define a function called suite () in either
models.py or tests.py, the Django test runner will use that function to construct the test suite for that module.
This follows the suggested organization for unit tests. See the Python documentation for more details on how to
construct a complex test suite.

For more details about unittest, see the standard library unittest documentation.
Writing doctests
Doctests use Python’s standard doctest module, which searches your docstrings for statements that resemble a session

of the Python interactive interpreter. A full explanation of how doctest works is out of the scope of this document;
read Python’s official documentation for the details.

What’s a docstring?
A good explanation of docstrings (and some guidelines for using them effectively) can be found in PEP 257:

A docstring is a string literal that occurs as the first statement in a module, function, class, or method
definition. Such a docstring becomes the ___doc___ special attribute of that object.

For example, this function has a docstring that describes what it does:

def add_two (num) :
"Return the result of adding two to the provided number.
return num + 2

Because tests often make great documentation, putting tests directly in your docstrings is an effective way to document
and test your code.

204 Chapter 3. Using Django

http://docs.python.org/library/unittest.html#organizing-tests
http://docs.python.org/library/unittest.html
http://docs.python.org/library/doctest.html
http://www.python.org/dev/peps/pep-0257

Django Documentation, Release 1.3

As with unit tests, for a given Django application, the test runner looks for doctests in two places:

e The models.py file. You can define module-level doctests and/or a doctest for individual models. It’s com-
mon practice to put application-level doctests in the module docstring and model-level doctests in the model
docstrings.

* A file called tests.py in the application directory — i.e., the directory that holds models.py. This file is a
hook for any and all doctests you want to write that aren’t necessarily related to models.

This example doctest is equivalent to the example given in the unittest section above:

from django.db import models

class Animal (models.Model) :

nwn

"The cat
name = models.CharField(max_length=20)
sound = models.CharField (max_length=20)

def speak ()z
return 'The %s says "%s"" % (.name, .sound)

When you run your tests, the test runner will find this docstring, notice that portions of it look like an interactive
Python session, and execute those lines while checking that the results match.

In the case of model tests, note that the test runner takes care of creating its own test database. That is, any test that
accesses a database — by creating and saving model instances, for example — will not affect your production database.
However, the database is not refreshed between doctests, so if your doctest requires a certain state you should consider
flushing the database or loading a fixture. (See the section on fixtures, below, for more on this.) Note that to use this
feature, the database user Django is connecting as must have CREATE DATABASE rights.

For more details about how doctest works, see the standard library documentation for doctest.

Which should | use?

Because Django supports both of the standard Python test frameworks, it’s up to you and your tastes to decide which
one to use. You can even decide to use both.

For developers new to testing, however, this choice can seem confusing. Here, then, are a few key differences to help
you decide which approach is right for you:

* If you’ve been using Python for a while, doctest will probably feel more “pythonic”. It’s designed to make
writing tests as easy as possible, so it requires no overhead of writing classes or methods. You simply put tests
in docstrings. This has the added advantage of serving as documentation (and correct documentation, at that!).
However, while doctests are good for some simple example code, they are not very good if you want to produce
either high quality, comprehensive tests or high quality documentation. Test failures are often difficult to debug

3.9. Testing Django applications 205

http://docs.python.org/library/doctest.html

Django Documentation, Release 1.3

as it can be unclear exactly why the test failed. Thus, doctests should generally be avoided and used primarily
for documentation examples only.

* The unittest framework will probably feel very familiar to developers coming from Java. unittest is
inspired by Java’s JUnit, so you’ll feel at home with this method if you’ve used JUnit or any test framework
inspired by JUnit.

* If you need to write a bunch of tests that share similar code, then you’ll appreciate the unittest framework’s
organization around classes and methods. This makes it easy to abstract common tasks into common methods.
The framework also supports explicit setup and/or cleanup routines, which give you a high level of control over
the environment in which your test cases are run.

* If you’re writing tests for Django itself, you should use unittest.

3.9.2 Running tests

Once you’ve written tests, run them using the test command of your project’s manage . py utility:

$./manage.py test

By default, this will run every test in every application in INSTALLED_APPS. If you only want to run tests for
a particular application, add the application name to the command line. For example, if your INSTALLED_APPS
contains ' myproject.polls’ and 'myproject.animals’, you can run the myproject.animals unit
tests alone with this command:

$./manage.py test animals

Note that we used animals, not myproject.animals.

You can be even more specific by naming an individual test case. To run a single test case in an application (for
example, the AnimalTestCase described in the “Writing unit tests” section), add the name of the test case to the
label on the command line:

$./manage.py test animals.AnimalTestCase

And it gets even more granular than that! To run a single test method inside a test case, add the name of the test method
to the label:

$./manage.py test animals.AnimalTestCase.testFluffyAnimals

New in version 1.2: The ability to select individual doctests was added. You can use the same rules if you’re using
doctests. Django will use the test label as a path to the test method or class that you want to run. If your models.py
or tests.py has a function with a doctest, or class with a class-level doctest, you can invoke that test by appending
the name of the test method or class to the label:

$./manage.py test animals.classify

If you want to run the doctest for a specific method in a class, add the name of the method to the label:

$./manage.py test animals.Classifier.run

If you're using a __test___ dictionary to specify doctests for a module, Django will use the label as a key in the
__test__ dictionary for defined in models.py and tests.py. New in version 1.2: You can now trigger a
graceful exit from a test run by pressing Ctr1-C. If you press Ct r1-C while the tests are running, the test runner
will wait for the currently running test to complete and then exit gracefully. During a graceful exit the test runner
will output details of any test failures, report on how many tests were run and how many errors and failures were
encountered, and destroy any test databases as usual. Thus pressing Ctr1—-C can be very useful if you forget to
pass the ——failfast option, notice that some tests are unexpectedly failing, and want to get details on the failures
without waiting for the full test run to complete.

206 Chapter 3. Using Django

Django Documentation, Release 1.3

If you do not want to wait for the currently running test to finish, you can press Ct r1-C a second time and the test
run will halt immediately, but not gracefully. No details of the tests run before the interruption will be reported, and
any test databases created by the run will not be destroyed.

Test with warnings enabled

It’s a good idea to run your tests with Python warnings enabled: python -Wall manage.py test.The -Wall
flag tells Python to display deprecation warnings. Django, like many other Python libraries, uses these warnings to
flag when features are going away. It also might flag areas in your code that aren’t strictly wrong but could benefit
from a better implementation.

Running tests outside the test runner

If you want to run tests outside of . /manage.py test — for example, from a shell prompt — you will need to set
up the test environment first. Django provides a convenience method to do this:

>>> from django.test.utils import setup_test_environment
>>> setup_test_environment ()

This convenience method sets up the test database, and puts other Django features into modes that allow for repeatable
testing.

The call to setup_test_environment () is made automatically as part of the setup of ./manage.py test. You
only need to manually invoke this method if you’re not using running your tests via Django’s test runner.

The test database

Tests that require a database (namely, model tests) will not use your “real” (production) database. Separate, blank
databases are created for the tests.

Regardless of whether the tests pass or fail, the test databases are destroyed when all the tests have been executed.

By default the test databases get their names by prepending test__ to the value of the NAME settings for the databases
defined in DATABASES. When using the SQLite database engine the tests will by default use an in-memory database
(i.e., the database will be created in memory, bypassing the filesystem entirely!). If you want to use a different database
name, specify TEST_NAME in the dictionary for any given database in DATABASES.

Aside from using a separate database, the test runner will otherwise use all of the same database settings you have in
your settings file: ENGINE, USER, HOST, etc. The test database is created by the user specified by USER, so you’ll
need to make sure that the given user account has sufficient privileges to create a new database on the system.

For fine-grained control over the character encoding of your test database, use the TEST_CHARSET option. If you're
using MySQL, you can also use the TEST_COLLATION option to control the particular collation used by the test
database. See the settings documentation for details of these advanced settings.

Testing master/slave configurations

New in version 1.2: Please, see the release notes If you’re testing a multiple database configuration with master/slave
replication, this strategy of creating test databases poses a problem. When the test databases are created, there won’t
be any replication, and as a result, data created on the master won’t be seen on the slave.

To compensate for this, Django allows you to define that a database is a test mirror. Consider the following (simplified)
example database configuration:

3.9. Testing Django applications 207

Django Documentation, Release 1.3

DATABASES = {
"default’: {
"ENGINE’ :
"NAME’ : "myp

}

In this setup, we have two database servers: dbmaster, described by the database alias default, and dbslave
described by the alias slave. As you might expect, dbslave has been configured by the database administrator as
a read slave of dbmaster, so in normal activity, any write to default will appear on slave.

If Django created two independent test databases, this would break any tests that expected replication to occur. How-
ever, the slave database has been configured as a test mirror (using the TEST_MIRROR setting), indicating that
under testing, slave should be treated as a mirror of default.

When the test environment is configured, a test version of s1ave will not be created. Instead the connection to slave
will be redirected to point at default. As aresult, writes to default will appear on slave — but because they are
actually the same database, not because there is data replication between the two databases.

Controlling creation order for test databases

New in version Development version. By default, Django will always create the default database first. However,
no guarantees are made on the creation order of any other databases in your test setup.

If your database configuration requires a specific creation order, you can specify the dependencies that exist using the
TEST_DEPENDENCIES setting. Consider the following (simplified) example database configuration:

DATABASES = {
"default’: {

"TEST_DEPENDENCIES’ : [’diamonds’]
b
"diamonds’ : {
b
"clubs’: {
"TEST_DEPENDENCIES’ : [’diamonds’]
}l
"spades’ : {
"TEST_DEPENDENCIES’ : [’diamonds’,’hearts’]
b
"hearts’ : {
"TEST_DEPENDENCIES’ : [’diamonds’,’clubs’]
}

208 Chapter 3. Using Django

Django Documentation, Release 1.3

Under this configuration, the diamonds database will be created first, as it is the only database alias without de-
pendencies. The default and clubs alias will be created next (although the order of creation of this pair is not
guaranteed); then hearts; and finally spades.

If there are any circular dependencies in the TEST_DEPENDENCIES definition, an ImproperlyConfigured
exception will be raised.

Other test conditions

Regardless of the value of the DERUG setting in your configuration file, all Django tests run with DEBUG=False. This
is to ensure that the observed output of your code matches what will be seen in a production setting.

Understanding the test output

When you run your tests, you’ll see a number of messages as the test runner prepares itself. You can control the level
of detail of these messages with the verbosity option on the command line:

Creating test database...

Creating table myapp_animal
Creating table myapp_mineral
Loading ’'initial_data’ fixtures...
No fixtures found.

This tells you that the test runner is creating a test database, as described in the previous section.

Once the test database has been created, Django will run your tests. If everything goes well, you’ll see something like
this:

Ran 22 tests in 0.221s
OK

If there are test failures, however, you’ll see full details about which tests failed:

FAIL: Doctest: ellington.core.throttle.models
Traceback (most recent call last):
File "/dev/django/test/doctest.py", line 2153, in runTest
raise self.failureException(self.format_failure (new.getvalue()))
AssertionError: Failed doctest test for myapp.models
File "/dev/myapp/models.py", line 0, in models

File "/dev/myapp/models.py", line 14, in myapp.models
Failed example:
throttle.check ("actor A", "action one", limit=2, hours=1l)
Expected:
True
Got:
False

Ran 2 tests in 0.048s

FAILED (failures=1)

3.9. Testing Django applications 209

Django Documentation, Release 1.3

A full explanation of this error output is beyond the scope of this document, but it’s pretty intuitive. You can consult
the documentation of Python’s unittest library for details.

Note that the return code for the test-runner script is the total number of failed and erroneous tests. If all the tests pass,
the return code is 0. This feature is useful if you’re using the test-runner script in a shell script and need to test for
success or failure at that level.

3.9.3 Testing tools

Django provides a small set of tools that come in handy when writing tests.

The test client

The test client is a Python class that acts as a dummy Web browser, allowing you to test your views and interact with
your Django-powered application programmatically.

Some of the things you can do with the test client are:

¢ Simulate GET and POST requests on a URL and observe the response — everything from low-level HTTP (result
headers and status codes) to page content.

* Test that the correct view is executed for a given URL.

 Test that a given request is rendered by a given Django template, with a template context that contains certain
values.

Note that the test client is not intended to be a replacement for Twill, Selenium, or other “in-browser” frameworks.
Django’s test client has a different focus. In short:

» Use Django’s test client to establish that the correct view is being called and that the view is collecting the
correct context data.

 Use in-browser frameworks such as Twill and Selenium to test rendered HTML and the behavior of Web pages,
namely JavaScript functionality.

A comprehensive test suite should use a combination of both test types.

Overview and a quick example

To use the test client, instantiate django.test.client.Client and retrieve Web pages:

>>> from django.test.client import Client

>>> ¢ = Client ()

>>> response = c.post (’ ogin/’, {’username’: ’john’, ’"password’: ’smith’})
>>> response.status_code

200

>>> response = c.get ('’ /customer/details/")
>>> response.content
"<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 ...’

As this example suggests, you can instantiate C1ient from within a session of the Python interactive interpreter.
Note a few important things about how the test client works:

» The test client does not require the Web server to be running. In fact, it will run just fine with no Web server
running at all! That’s because it avoids the overhead of HTTP and deals directly with the Django framework.
This helps make the unit tests run quickly.

210 Chapter 3. Using Django

http://twill.idyll.org/
http://seleniumhq.org/

Django Documentation, Release 1.3

e When retrieving pages, remember to specify the path of the URL, not the whole domain. For example, this is
correct:

>>> c.get (’ ogin/’)

This is incorrect:
>>> c.get ('http://www.example.com/login/")
The test client is not capable of retrieving Web pages that are not powered by your Django project. If you need
to retrieve other Web pages, use a Python standard library module such as urllib or urllib2.
* To resolve URLs, the test client uses whatever URLconf is pointed-to by your ROOT_URLCONTF setting.

* Although the above example would work in the Python interactive interpreter, some of the test client’s function-
ality, notably the template-related functionality, is only available while tests are running.

The reason for this is that Django’s test runner performs a bit of black magic in order to determine which
template was loaded by a given view. This black magic (essentially a patching of Django’s template system in
memory) only happens during test running.

* By default, the test client will disable any CSRF checks performed by your site. New in version 1.2.2: Please,
see the release notes If, for some reason, you want the test client to perform CSRF checks, you can create
an instance of the test client that enforces CSRF checks. To do this, pass in the enforce_csrf_checks
argument when you construct your client:

>>> from django.test import Client
>>> csrf_client = Client (enforce_csrf_checks=)

Making requests

Usethe django.test.client.Client class to make requests. It requires no arguments at time of construction:

class Client
Once you have a C1lient instance, you can call any of the following methods:

get (path, data={}, follow=False, **extra)
Makes a GET request on the provided path and returns a Re sponse object, which is documented below.

The key-value pairs in the data dictionary are used to create a GET data payload. For example:
>>> ¢ = Client ()

>>> c.get ('’ /customers/details/’, {’'name’: ’"fred’, 'age’: 7})

...will result in the evaluation of a GET request equivalent to:

/customers/details/?name=freds&age=7

The extra keyword arguments parameter can be used to specify headers to be sent in the request. For
example:

>>> ¢ = Client ()
>>> c.get ('’ /customers/details/’, {’name’: 'fred’, ’'age’: 7},
HTTP_X_REQUESTED_WITH=' XMLHttpReguest

...will send the HTTP header HTTP_X_REQUESTED_WITH to the details view, which is a good way to
test code paths that use the d jango . http.HttpRequest.is_ajax () method.

If you already have the GET arguments in URL-encoded form, you can use that encoding instead of using
the data argument. For example, the previous GET request could also be posed as:

3.9. Testing Django applications 211

http://docs.python.org/library/urllib.html
http://docs.python.org/library/urllib2.html

Django Documentation, Release 1.3

>>> ¢ = Client ()
>>> c.get ()

If you provide a URL with both an encoded GET data and a data argument, the data argument will take
precedence.

If you set follow to True the client will follow any redirects and a redirect_chain attribute will
be set in the response object containing tuples of the intermediate urls and status codes.

If you had an url /redirect_me/ that redirected to /next /, that redirected to /£inal/, this is what
you’d see:

>>> response = c.get(, follow=)
>>> response.redirect_chain
[(u"http://testserver/next/’, 02), (u’http://testserver/final/’, 302)]

post (path, data={}, content_type=MULTIPART_CONTENT, follow=False, **extra)

Makes a POST request on the provided path and returns a Response object, which is documented
below.

The key-value pairs in the data dictionary are used to submit POST data. For example:

>>> ¢ = Client ()
>>> c.post (, q : , : })

...will result in the evaluation of a POST request to this URL:

/login/

...with this POST data:

name=fred&passwd=secret

If you provide content_type (e.g., text/xml for an XML payload), the contents of data will be
sent as-is in the POST request, using content_type in the HTTP Content-Type header.

If you don’t provide a value for content_type, the values in data will be transmitted with a con-
tent type of multipart/form-data. In this case, the key-value pairs in data will be encoded as a
multipart message and used to create the POST data payload.

To submit multiple values for a given key — for example, to specify the selections for a <select
multiple> — provide the values as a list or tuple for the required key. For example, this value of data
would submit three selected values for the field named choices:

{ N ' ')}

Submitting files is a special case. To POST a file, you need only provide the file field name as a key, and a
file handle to the file you wish to upload as a value. For example:

>>> ¢ = Client ()

>>> f = ()

>>> c.post (, 1 : , : £})
>>> f.close()

(The name attachment here is not relevant; use whatever name your file-processing code expects.)

Note that if you wish to use the same file handle for multiple post () calls then you will need to manually
reset the file pointer between posts. The easiest way to do this is to manually close the file after it has been
provided to post (), as demonstrated above.

You should also ensure that the file is opened in a way that allows the data to be read. If your file contains
binary data such as an image, this means you will need to open the file in rb (read binary) mode.

212

Chapter 3. Using Django

Django Documentation, Release 1.3

The ext ra argument acts the same as for Client .get ().

If the URL you request with a POST contains encoded parameters, these parameters will be made available
in the request.GET data. For example, if you were to make the request:

>>> c.post (' /login/?visitor=true’, {’name’: ’'fred’, ’'passwd’: ’'secret’})

... the view handling this request could interrogate request.POST to retrieve the username and password,
and could interrogate request. GET to determine if the user was a visitor.

If you set follow to True the client will follow any redirects and a redirect_chain attribute will
be set in the response object containing tuples of the intermediate urls and status codes.

head (path, data={}, follow=False, **extra)
Makes a HEAD request on the provided path and returns a Response object. Useful for testing REST-
ful interfaces. Acts justlike Client .get () except it does not return a message body.

If you set follow to True the client will follow any redirects and a redirect_chain attribute will
be set in the response object containing tuples of the intermediate urls and status codes.

options (path, data={}, follow=False, **extra)
Makes an OPTIONS request on the provided path and returns a Response object. Useful for testing
RESTful interfaces.

If you set follow to True the client will follow any redirects and a redirect_chain attribute will
be set in the response object containing tuples of the intermediate urls and status codes.

The ext ra argument acts the same as for Client .get ().

put (path, data={}, content_type=MULTIPART_CONTENT, follow=False, **extra)
Makes a PUT request on the provided path and returns a Response object. Useful for testing RESTful
interfaces. Acts just like Client .post () except with the PUT request method.

If you set follow to True the client will follow any redirects and a redirect_chain attribute will
be set in the response object containing tuples of the intermediate urls and status codes.

delete (path, follow=False, **extra)
Makes an DELETE request on the provided path and returns a Response object. Useful for testing
RESTful interfaces.

If you set follow to True the client will follow any redirects and a redirect_chain attribute will
be set in the response object containing tuples of the intermediate urls and status codes.

The ext ra argument acts the same as for Client.get ().

login (**credentials)
If your site uses Django’s authentication system and you deal with logging in users, you can use the test
client’s 1ogin () method to simulate the effect of a user logging into the site.

After you call this method, the test client will have all the cookies and session data required to pass any
login-based tests that may form part of a view.

The format of the credentials argument depends on which authentication backend you’re using
(which is configured by your AUTHENTICATION_BACKENDS setting). If you’re using the standard
authentication backend provided by Django (ModelBackend), credentials should be the user’s
username and password, provided as keyword arguments:

>>> ¢ = Client ()
>>> c.login (username=’'fred’, password=’'secret’)

=

Now you can access a view that’s only available to logged—-in users.

3.9. Testing Django applications 213

Django Documentation, Release 1.3

If you’re using a different authentication backend, this method may require different credentials. It requires
whichever credentials are required by your backend’s authenticate () method.

login () returns True if it the credentials were accepted and login was successful.

Finally, you’ll need to remember to create user accounts before you can use this method. As we explained
above, the test runner is executed using a test database, which contains no users by default. As a result,
user accounts that are valid on your production site will not work under test conditions. You’ll need to
create users as part of the test suite — either manually (using the Django model API) or with a test fixture.
Remember that if you want your test user to have a password, you can’t set the user’s password by setting
the password attribute directly — you must use the set_password () function to store a correctly hashed
password. Alternatively, you can use the create_user () helper method to create a new user with a
correctly hashed password.

logout ()
If your site uses Django’s authentication system, the Logout () method can be used to simulate the effect
of a user logging out of your site.

After you call this method, the test client will have all the cookies and session data cleared to defaults.
Subsequent requests will appear to come from an AnonymousUser.

Testing responses

The get () and post () methods both return a Response object. This Response object is not the same as the
HttpResponse object returned Django views; the test response object has some additional data useful for test code
to verify.

Specifically, a Response object has the following attributes:

class Response

client
The test client that was used to make the request that resulted in the response.

content
The body of the response, as a string. This is the final page content as rendered by the view, or any error
message.

context
The template Context instance that was used to render the template that produced the response content.

If the rendered page used multiple templates, then context will be a list of Context objects, in the
order in which they were rendered.

Regardless of the number of templates used during rendering, you can retrieve context values using the []
operator. For example, the context variable name could be retrieved using:

>>> response = client.get ()
>>> response.context []
"Arthur’

request

The request data that stimulated the response.

status_code
The HTTP status of the response, as an integer. See RFC2616 for a full list of HTTP status codes.

New in version Development version.

214

Chapter 3. Using Django

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Django Documentation, Release 1.3

templates
A list of Template instances used to render the final content, in the order they were rendered. For each
template in the list, use template.name to get the template’s file name, if the template was loaded from
a file. (The name is a string such as ' admin/index.html’.)

You can also use dictionary syntax on the response object to query the value of any settings in the HTTP headers. For
example, you could determine the content type of a response using response [’ Content—-Type’].

Exceptions

If you point the test client at a view that raises an exception, that exception will be visible in the test case. You can
then use a standard try. . .except block or unittest.TestCase.assertRaises () to test for exceptions.

The only exceptions that are not visible to the test client are Ht tp404, PermissionDenied and SystemExit.
Django catches these exceptions internally and converts them into the appropriate HTTP response codes. In these
cases, you can check response. status_code in your test.

Persistent state

The test client is stateful. If a response returns a cookie, then that cookie will be stored in the test client and sent with
all subsequent get () and post () requests.

Expiration policies for these cookies are not followed. If you want a cookie to expire, either delete it manually or
create anew Client instance (which will effectively delete all cookies).

A test client has two attributes that store persistent state information. You can access these properties as part of a test
condition.

Client.cookies
A Python SimpleCookie object, containing the current values of all the client cookies. See the Cookie
module documentation for more.

Client.session
A dictionary-like object containing session information. See the session documentation for full details.

To modify the session and then save it, it must be stored in a variable first (because a new SessionStore is
created every time this property is accessed):

def test_something ()t
session = .client.session
session[’/ somekey’] = "test’
session.save ()

Example

The following is a simple unit test using the test client:

from django.utils import unittest
from django.test.client import Client

class SimpleTest (unittest.TestCase):
def setUp ()t

.client = Client ()

def test _details()t

3.9. Testing Django applications 215

http://docs.python.org/library/cookie.html
http://docs.python.org/library/cookie.html

Django Documentation, Release 1.3

response = .client.get (/' /customer/details/")

.assertEqual (response.status_code, 200)

.assertEqual ((response.context [’ customers’]), 5)

The request factory

class RequestFactory

New in version Development version. The RequestFactory shares the same API as the test client. However,
instead of behaving like a browser, the RequestFactory provides a way to generate a request instance that can be used
as the first argument to any view. This means you can test a view function the same way as you would test any other
function — as a black box, with exactly known inputs, testing for specific outputs.

The API for the RequestFactory is a slightly restricted subset of the test client API:
¢ It only has access to the HTTP methods get (), post (), put (),delete (), head () and options ().

* These methods accept all the same arguments except for follows. Since this is just a factory for producing
requests, it’s up to you to handle the response.

Example

The following is a simple unit test using the request factory:

from django.utils import unittest
from django.test.client import RequestFactory

class SimpleTest (unittest.TestCase):
def setUp()t

.factory = RequestFactory ()
def test _details()z

request = .factory.get (’ /customer/details’)

response = my_view (request)
.assertEqual (response.status_code, 200)

TestCase

Normal Python unit test classes extend a base class of unittest.TestCase. Django provides an extension of this
base class:

class TestCase

This class provides some additional capabilities that can be useful for testing Web sites.

Converting a normal unittest.TestCase to a Django TestCase is easy: just change the base class of your
test fromunittest.TestCasetodjango.test.TestCase. All of the standard Python unit test functionality
will continue to be available, but it will be augmented with some useful additions.

216 Chapter 3. Using Django

Django Documentation, Release 1.3

class TransactionTestCase

Django TestCase classes make use of database transaction facilities, if available, to speed up the process of resetting
the database to a known state at the beginning of each test. A consequence of this, however, is that the effects of
transaction commit and rollback cannot be tested by a Django TestCase class. If your test requires testing of such
transactional behavior, you should use a Django TransactionTestCase.

TransactionTestCase and TestCase are identical except for the manner in which the database is reset to
a known state and the ability for test code to test the effects of commit and rollback. A TransactionTestCase
resets the database before the test runs by truncating all tables and reloading initial data. A TransactionTestCase
may call commit and rollback and observe the effects of these calls on the database.

A TestCase, on the other hand, does not truncate tables and reload initial data at the beginning of a test. Instead, it
encloses the test code in a database transaction that is rolled back at the end of the test. It also prevents the code under
test from issuing any commit or rollback operations on the database, to ensure that the rollback at the end of the test
restores the database to its initial state. In order to guarantee that all TestCase code starts with a clean database,
the Django test runner runs all TestCase tests first, before any other tests (e.g. doctests) that may alter the database
without restoring it to its original state.

When running on a database that does not support rollback (e.g. MySQL with the MyISAM storage engine),
TestCase falls back to initializing the database by truncating tables and reloading initial data.

Note: The TestCase use of rollback to un-do the effects of the test code may reveal previously-undetected errors
in test code. For example, test code that assumes primary keys values will be assigned starting at one may find
that assumption no longer holds true when rollbacks instead of table truncation are being used to reset the database.
Similarly, the reordering of tests so that all TestCase classes run first may reveal unexpected dependencies on test
case ordering. In such cases a quick fix is to switch the TestCase to a TransactionTestCase. A better
long-term fix, that allows the test to take advantage of the speed benefit of TestCase, is to fix the underlying test
problem.

Default test client

TestCase.client

Every test case in a d jango . test . TestCase instance has access to an instance of a Django test client. This client
can be accessed as self.client. This client is recreated for each test, so you don’t have to worry about state (such
as cookies) carrying over from one test to another.

This means, instead of instantiating a Client in each test:

from django.utils import unittest
from django.test.client import Client

class SimpleTest (unittest.TestCase):
def test_details()z
client = Client ()
response = client.get (' /customer/details/")
.assertEqual (response.status_code, 200)

def test_index()t
client = Client ()
response = client.get ('’ /customer/index/")
.assertEqual (response.status_code, 200)

...you can just refer to self.client, like so:

3.9. Testing Django applications 217

Django Documentation, Release 1.3

from django.test import TestCase

class SimpleTest (TestCase):
def test_details()z
response = .client.get ('’ /customer/details/")
.assertEqual (response.status_code, 200)

def test_index()t
response = .client.get (' /customer/index/")
.assertEqual (response.status_code, 200)

Customizing the test client

New in version Development version.
TestCase.client_class

If you want to use a different Client class (for example, a subclass with customized behavior), use the
client_class class attribute:

from django.test import TestCase
from django.test.client import Client

class MyTestClient (Client) :
Specialized methods for your environment...

class MyTest (TestCase) :
client_class = MyTestClient

def test_my_stuff (self):
Here self.client is an instance of MyTestClient...

Fixture loading

TestCase.fixtures

A test case for a database-backed Web site isn’t much use if there isn’t any data in the database. To make it easy to put
test data into the database, Django’s custom TestCase class provides a way of loading fixtures.

A fixture is a collection of data that Django knows how to import into a database. For example, if your site has user
accounts, you might set up a fixture of fake user accounts in order to populate your database during tests.

The most straightforward way of creating a fixture is to use the manage .py dumpdata command. This assumes
you already have some data in your database. See the dumpdata documentation for more details.

Note: If you’ve ever run manage.py syncdb, you've already used a fixture without even knowing it! When you
call syncdb in the database for the first time, Django installs a fixture called initial_data. This gives you a way
of populating a new database with any initial data, such as a default set of categories.

Fixtures with other names can always be installed manually using the manage .py loaddata command.

Initial SQL data and testing

218 Chapter 3. Using Django

Django Documentation, Release 1.3

Django provides a second way to insert initial data into models — the custom SQL hook. However, this technique
cannot be used to provide initial data for testing purposes. Django’s test framework flushes the contents of the test
database after each test; as a result, any data added using the custom SQL hook will be lost.

Once you’ve created a fixture and placed it in a fixtures directory in one of your INSTALLED_APPS, you can
use it in your unit tests by specifying a fixtures class attribute on your d jango.test . TestCase subclass:

from django.test import TestCase
from myapp.models import Animal

class AnimalTestCase (TestCase) :
fixtures = ['mammals.json’, ’'birds’]

def setUp() :
call_setup_methods ()

def testFluffyAnimals ()t
call_some_test_code ()

Here’s specifically what will happen:

At the start of each test case, before setUp () is run, Django will flush the database, returning the database to
the state it was in directly after syncdb was called.

e Then, all the named fixtures are installed. In this example, Django will install any JSON fixture named
mammals, followed by any fixture named birds. See the loaddata documentation for more details on
defining and installing fixtures.

This flush/load procedure is repeated for each test in the test case, so you can be certain that the outcome of a test will
not be affected by another test, or by the order of test execution.

URLconf configuration

TestCase.urls

If your application provides views, you may want to include tests that use the test client to exercise those views.
However, an end user is free to deploy the views in your application at any URL of their choosing. This means that
your tests can’t rely upon the fact that your views will be available at a particular URL.

In order to provide a reliable URL space for your test, d jango . test . TestCase provides the ability to customize
the URLconf configuration for the duration of the execution of a test suite. If your TestCase instance defines an
urls attribute, the TestCase will use the value of that attribute as the ROOT_URLCONEF for the duration of that
test.

For example:

from django.test import TestCase

class TestMyViews (TestCase) :
urls = 'myapp.test_urls’

def testIndexPageView ()t
call_some_test_code ()

This test case will use the contents of myapp.test_urls as the URLconf for the duration of the test case.

3.9. Testing Django applications 219

Django Documentation, Release 1.3

Multi-database support

TestCase.multi_db

New in version 1.2: Please, see the release notes Django sets up a test database corresponding to every database that
is defined in the DATABASES definition in your settings file. However, a big part of the time taken to run a Django
TestCase is consumed by the call to £1ush that ensures that you have a clean database at the start of each test run.
If you have multiple databases, multiple flushes are required (one for each database), which can be a time consuming
activity — especially if your tests don’t need to test multi-database activity.

As an optimization, Django only flushes the default database at the start of each test run. If your setup contains
multiple databases, and you have a test that requires every database to be clean, you can use the multi_db attribute
on the test suite to request a full flush.

For example:

class TestMyViews (TestCase) :
multi_db =

def testIndexPageView ()t
call_some_test_code ()

This test case will flush all the test databases before running test IndexPageView.

Emptying the test outbox

If you use Django’s custom TestCase class, the test runner will clear the contents of the test e-mail outbox at the
start of each test case.

For more detail on e-mail services during tests, see E-mail services.

Assertions

Changed in version 1.2: Addded msg_prefix argument. As Python’s normal unittest.TestCase class im-
plements assertion methods such as assertTrue and assertEqual, Django’s custom TestCase class provides
a number of custom assertion methods that are useful for testing Web applications:

The failure messages given by the assertion methods can be customized with the msg_prefix argument. This string
will be prefixed to any failure message generated by the assertion. This allows you to provide additional details that
may help you to identify the location and cause of an failure in your test suite.

TestCase.assertContains (response, text, count=None, status_code=200, msg_prefix="")
Asserts that a Response instance produced the given status_code and that text appears in the content
of the response. If count is provided, text must occur exactly count times in the response.

TestCase.assertNotContains (response, text, status_code=200, msg_prefix="")
Asserts that a Response instance produced the given status_code and that text does not appears in the
content of the response.

TestCase.assertFormError (response, form, field, errors, msg_prefix="")
Asserts that a field on a form raises the provided list of errors when rendered on the form.

formis the name the Form instance was given in the template context.

field is the name of the field on the form to check. If field has a value of None, non-field errors (errors
you can access via form.non_field_errors ()) will be checked.

errors is an error string, or a list of error strings, that are expected as a result of form validation.

220 Chapter 3. Using Django

Django Documentation, Release 1.3

TestCase.assertTemplateUsed (response, template_name, msg_prefix="")
Asserts that the template with the given name was used in rendering the response.

The name is a string such as " admin/index.html’.

TestCase.assertTemplateNotUsed (response, template_name, msg_prefix="")
Asserts that the template with the given name was not used in rendering the response.

TestCase.assertRedirects (response, expected_url, status_code=302, target_status_code=200,

msg_prefix="")
Asserts that the response return a status_code redirect status, it redirected to expected_url (including

any GET data), and the final page was received with target_status_code.

If your request used the follow argument, the expected_url and target_status_code will be the
url and status code for the final point of the redirect chain.

TestCase.assertQuerysetEqual (gs, values, transform=repr)
New in version Development version. Asserts that a queryset gs returns a particular list of values values.

The comparison of the contents of gs and values is performed using the function t ransform; by default,
this means that the repr () of each value is compared. Any other callable can be used if repr () doesn’t
provide a unique or helpful comparison.

The comparison is also ordering dependent. If gs doesn’t provide an implicit ordering, you will need to apply
aorder_by () clause to your queryset to ensure that the test will pass reliably.

TestCase.assertNumQueries (num, func, *args, **kwargs)
New in version Development version. Asserts that when func is called with rargs and **kwargs that num
database queries are executed.

Ifa "using™" key is present in kwargs it is used as the database alias for which to check the number of queries.
If you wish to call a function with a us ing parameter you can do it by wrapping the call with a 1ambda to add
an extra parameter:

.assertNumQueries (7, lambda: my_function (using=7))

If you’re using Python 2.5 or greater you can also use this as a context manager:

from _ future__ import with_statement

with .assertNumQueries (2) :
Person.objects.create (name=)
Person.objects.create (name=)

E-mail services

If any of your Django views send e-mail using Django’s e-mail functionality, you probably don’t want to send e-mail
each time you run a test using that view. For this reason, Django’s test runner automatically redirects all Django-sent
e-mail to a dummy outbox. This lets you test every aspect of sending e-mail — from the number of messages sent to
the contents of each message — without actually sending the messages.

The test runner accomplishes this by transparently replacing the normal email backend with a testing backend. (Don’t
worry — this has no effect on any other e-mail senders outside of Django, such as your machine’s mail server, if you’re
running one.)

django.core.mail.outbox

During test running, each outgoing e-mail is saved in django.core.mail.outbox. This is a simple list of all
EmailMessage instances that have been sent. The outbox attribute is a special attribute that is created only when

3.9. Testing Django applications 221

Django Documentation, Release 1.3

the 1ocmem e-mail backend is used. It doesn’t normally exist as part of the d jango.core.mail module and you
can’t import it directly. The code below shows how to access this attribute correctly.

Here’s an example test that examines django.core.mail.outbox for length and contents:

from django.core import mail
from django.test import TestCase

class EmailTest (TestCase) :
def test_send_email () :

mail.send_mail (' Subject here’, ’'Here is the message.’,
"from@example.com’, [’tolexample.com’],
fail silently=)
.assertEqual ((mail.outbox), 1)

.assertEqual (mail.outbox[0].subject, ’Subject here’)
As noted previously, the test outbox is emptied at the start of every test in a Django TestCase. To empty the outbox

manually, assign the empty list tomail.outbox:

from django.core import mail

mail.outbox = []

Skipping tests

New in version Development version. The unittest library provides the @skipIf and @skipUnless decorators to
allow you to skip tests if you know ahead of time that those tests are going to fail under certain conditions.

For example, if your test requires a particular optional library in order to succeed, you could decorate the test case
with @skipIf. Then, the test runner will report that the test wasn’t executed and why, instead of failing the test or
omitting the test altogether.

To supplement these test skipping behaviors, Django provides two additional skip decorators. Instead of testing a
generic boolean, these decorators check the capabilities of the database, and skip the test if the database doesn’t
support a specific named feature.

The decorators use a string identifier to describe database features. This string corresponds to attributes of the database
connection features class. See BaseDatabaseFeatures class for a full list of database features that can be used
as a basis for skipping tests.

skiplfDBFeature

Skip the decorated test if the named database feature is supported.

For example, the following test will not be executed if the database supports transactions (e.g., it would not run under
PostgreSQL, but it would under MySQL with MyISAM tables):

class MyTests (TestCase) :
@skipIfDBFeature (' supports_transactions’)
def test_transaction_behavior(self):
... conditional test code

222 Chapter 3. Using Django

Django Documentation, Release 1.3

skipUnlessDBFeature

Skip the decorated test if the named database feature is not supported.

For example, the following test will not be executed if the database supports transactions (e.g., it would run under
PostgreSQL, but not under MySQL with MyISAM tables):

class MyTests (TestCase) :
@skipUnlessDBFeature (’ supports_transactions’)
def test_transaction_behavior(self):
... conditional test code

3.9.4 Using different testing frameworks

Clearly, doctest and unittest are not the only Python testing frameworks. While Django doesn’t provide explicit
support for alternative frameworks, it does provide a way to invoke tests constructed for an alternative framework as
if they were normal Django tests.

When you run . /manage.py test, Django looks at the TEST_RUNNER setting to determine what to do. By
default, TEST_RUNNER points to ' django.test.simple.DjangoTestSuiteRunner’. This class defines
the default Django testing behavior. This behavior involves:

1. Performing global pre-test setup.

Looking for unit tests and doctests in the models.py and tests.py files in each installed application.
Creating the test databases.

Running syncdb to install models and initial data into the test databases.

Running the unit tests and doctests that are found.

AR

Destroying the test databases.
7. Performing global post-test teardown.

If you define your own test runner class and point TEST_RUNNER at that class, Django will execute your test runner
whenever you run . /manage.py test. In this way, it is possible to use any test framework that can be executed
from Python code, or to modify the Django test execution process to satisfy whatever testing requirements you may
have.

Defining a test runner

Changed in version 1.2: Prior to 1.2, test runners were a single function, not a class. A test runner is a class defining
a run_tests () method. Django ships with a DjangoTestSuiteRunner class that defines the default Django
testing behavior. This class defines the run_tests () entry point, plus a selection of other methods that are used to
by run_tests () to set up, execute and tear down the test suite.

class DjangoTestSuiteRunner (verbosity=1, interactive=True, failfast=True, **kwargs)
verbosity determines the amount of notification and debug information that will be printed to the console;
0 is no output, 1 is normal output, and 2 is verbose output.

If interactive is True, the test suite has permission to ask the user for instructions when the test suite is
executed. An example of this behavior would be asking for permission to delete an existing test database. If
interactive is False, the test suite must be able to run without any manual intervention.

If failfast is True, the test suite will stop running after the first test failure is detected.

3.9. Testing Django applications 223

Django Documentation, Release 1.3

Django will, from time to time, extend the capabilities of the test runner by adding new arguments. The
x*kwargs declaration allows for this expansion. If you subclass DjangoTestSuiteRunner or write your
own test runner, ensure accept and handle the » xkwargs parameter.

DjangoTestSuiteRunner.run_tests (test_labels, extra_tests=None, **kwargs)
Run the test suite.

test_labels is a list of strings describing the tests to be run. A test label can take one of three forms:
*app.TestCase.test_method — Run a single test method in a test case.
*app.TestCase — Run all the test methods in a test case.
eapp — Search for and run all tests in the named application.

If test_labels has a value of None, the test runner should run search for tests in all the applications in
INSTALLED_APPS.

extra_tests is a list of extra TestCase instances to add to the suite that is executed by the test runner.
These extra tests are run in addition to those discovered in the modules listed in test_labels.

This method should return the number of tests that failed.

DjangoTestSuiteRunner.setup_test_environment (**kwargs)
Sets up the test environment ready for testing.

DjangoTestSuiteRunner.build_suite (fest_labels, extra_tests=None, **kwargs)
Constructs a test suite that matches the test labels provided.

test_labels is alist of strings describing the tests to be run. A test label can take one of three forms:
*app.TestCase.test_method — Run a single test method in a test case.
eapp.TestCase — Run all the test methods in a test case.
*app — Search for and run all tests in the named application.

If test_labels has a value of None, the test runner should run search for tests in all the applications in
INSTALLED_APPS.

extra_tests is a list of extra TestCase instances to add to the suite that is executed by the test runner.
These extra tests are run in addition to those discovered in the modules listed in test_labels.

Returns a Test Suite instance ready to be run.

DjangoTestSuiteRunner.setup_databases (**kwargs)
Creates the test databases.

Returns a data structure that provides enough detail to undo the changes that have been made. This data will be
provided to the teardown_databases () function at the conclusion of testing.

DjangoTestSuiteRunner.run_suite (suite, **kwargs)
Runs the test suite.

Returns the result produced by the running the test suite.

DjangoTestSuiteRunner.teardown_databases (old_config, **kwargs)
Destroys the test databases, restoring pre-test conditions.

old_config is adata structure defining the changes in the database configuration that need to be reversed. It
is the return value of the setup_databases () method.

DjangoTestSuiteRunner.teardown_test_environment (**kwargs)
Restores the pre-test environment.

224 Chapter 3. Using Django

Django Documentation, Release 1.3

DjangoTestSuiteRunner.suite_result (suite, result, **kwargs)
Computes and returns a return code based on a test suite, and the result from that test suite.

Testing utilities
To assist in the creation of your own test runner, Django provides a number of utility methods in the
django.test.utils module.

setup_test_environment ()
Performs any global pre-test setup, such as the installing the instrumentation of the template rendering system
and setting up the dummy SMTPConnection.

teardown_test_environment ()
Performs any global post-test teardown, such as removing the black magic hooks into the template system and
restoring normal e-mail services.

The creation module of the database backend (connection.creation) also provides some utilities that can be
useful during testing.

create_test_db (verbosity=1, autoclobber=False)
Creates a new test database and runs syncdb against it.

verbosity has the same behavior as in run_tests ().

autoclobber describes the behavior that will occur if a database with the same name as the test database is
discovered:

°If autoclobber is False, the user will be asked to approve destroying the existing database.
sys.exit is called if the user does not approve.

oIf autoclobber is True, the database will be destroyed without consulting the user.
Returns the name of the test database that it created.

create_test_db () has the side effect of modifying the value of NAME in DATABASES to match the name
of the test database.

destroy_test_db (old_database_name, verbosity=1)
Destroys the database whose name is in stored in NAME in the DATABASES, and sets NAME to use the provided
name.

verbosity has the same behavior as in run_tests ().

3.10 User authentication in Django

Django comes with a user authentication system. It handles user accounts, groups, permissions and cookie-based user
sessions. This document explains how things work.

3.10.1 Overview

The auth system consists of:
* Users
* Permissions: Binary (yes/no) flags designating whether a user may perform a certain task.
* Groups: A generic way of applying labels and permissions to more than one user.

* Messages: A simple way to queue messages for given users.

3.10. User authentication in Django 225

Django Documentation, Release 1.3

Deprecated since version 1.2: The Messages component of the auth system will be removed in Django 1.4.

3.10.2 Installation

Authentication support is bundled as a Django application in d jango.contrib.auth. To install it, do the follow-
ing:

1. Put "django.contrib.auth’ and "django.contrib.contenttypes’ in your
INSTALLED_APPS setting. (The Permission model in django.contrib.auth depends on
django.contrib.contenttypes.)

2. Run the command manage.py syncdb.

Note that the default settings.py file created by django-admin.py startproject includes
"django.contrib.auth’ and ’'django.contrib.contenttypes’ in INSTALLED_APPS for conve-
nience. If your INSTALLED_APPS already contains these apps, feel free to run manage .py syncdb again; you
can run that command as many times as you’d like, and each time it’1l only install what’s needed.

The syncdb command creates the necessary database tables, creates permission objects for all installed apps that
need ‘em, and prompts you to create a superuser account the first time you run it.

Once you’ve taken those steps, that’s it.

3.10.3 Users

class models.User

API reference

Fields

class models.User
User objects have the following fields:

username
Required. 30 characters or fewer. Alphanumeric characters only (letters, digits and underscores). Changed
in version 1.2: Usernames may now contain @, +, . and — characters.

first name
Optional. 30 characters or fewer.

last_name
Optional. 30 characters or fewer.

email
Optional. E-mail address.

password
Required. A hash of, and metadata about, the password. (Django doesn’t store the raw password.) Raw
passwords can be arbitrarily long and can contain any character. See the “Passwords” section below.

is_staff
Boolean. Designates whether this user can access the admin site.

is_active
Boolean. Designates whether this user account should be considered active. We recommend that you set

226 Chapter 3. Using Django

Django Documentation, Release 1.3

this flag to False instead of deleting accounts; that way, if your applications have any foreign keys to
users, the foreign keys won’t break.

This doesn’t necessarily control whether or not the user can log in. Authentication backends aren’t required
to check for the is_active flag, so if you want to reject a login based on is_active being False,
it’s up to you to check that in your own login view. However, the AuthenticationForm used by the
login () view does perform this check, as do the permission-checking methods such as has_perm ()
and the authentication in the Django admin. All of those functions/methods will return Fa 1 se for inactive
users.

is_superuser
Boolean. Designates that this user has all permissions without explicitly assigning them.

last_login
A datetime of the user’s last login. Is set to the current date/time by default.

date_joined
A datetime designating when the account was created. Is set to the current date/time by default when the
account is created.

Methods

class models.User
User objects have two many-to-many fields: models.User. groups and user_permissions. User ob-
jects can access their related objects in the same way as any other Django model:

myuser.groups = [group_list]

myuser.groups.add(group, group, ...)
myuser.groups.remove (group, group, ...)
myuser.groups.clear ()

myuser.user_permissions = [permission_list]
myuser.user_permissions.add(permission, permission, ...)
myuser.user_permissions.remove (permission, permission, ...)
myuser.user_permissions.clear ()

In addition to those automatic API methods, User objects have the following custom methods:

is_anonymous ()
Always returns False. This is a way of differentiating User and AnonymousUser objects. Generally,
you should prefer using i s_authenticated () to this method.

is_authenticated()
Always returns True. This is a way to tell if the user has been authenticated. This does not imply any
permissions, and doesn’t check if the user is active - it only indicates that the user has provided a valid
username and password.

get_full name ()
Returns the first_name plus the 1ast_name, with a space in between.

set_password (raw_password)
Sets the user’s password to the given raw string, taking care of the password hashing. Doesn’t save the
User object.

check_password (raw_password)
Returns True if the given raw string is the correct password for the user. (This takes care of the password
hashing in making the comparison.)

3.10. User authentication in Django 227

Django Documentation, Release 1.3

set_unusable_password ()
Marks the user as having no password set. This isn’t the same as having a blank string for a password.
check_password () for this user will never return True. Doesn’t save the User object.

You may need this if authentication for your application takes place against an existing external source
such as an LDAP directory.

has_usable_password()
Returns False if set_unusable_password () has been called for this user.

get_group_permissions (obj=None)
Returns a set of permission strings that the user has, through his/her groups. New in version 1.2: Please,
see the release notes If ob7j is passed in, only returns the group permissions for this specific object.

get_all_permissions (obj=None)
Returns a set of permission strings that the user has, both through group and user permissions. New in
version 1.2: Please, see the release notes If ob7j is passed in, only returns the permissions for this specific
object.

has_perm (perm, obj=None)
Returns True if the user has the specified permission, where perm is in the format "<app
label>.<permission codename>". (see permissions section below). If the user is inactive, this
method will always return False. New in version 1.2: Please, see the release notes If ob j is passed in,
this method won’t check for a permission for the model, but for this specific object.

has_perms (perm_list, obj=None)
Returns True if the user has each of the specified permissions, where each perm is in the format " <app
label>.<permission codename>". If the user is inactive, this method will always return False.
New in version 1.2: Please, see the release notes If ob7j is passed in, this method won’t check for permis-
sions for the model, but for the specific object.

has_module_perms (package_name)
Returns True if the user has any permissions in the given package (the Django app label). If the user is
inactive, this method will always return False.

get_and delete_messages ()
Returns a list of Message objects in the user’s queue and deletes the messages from the queue.

email_user (subject, message, from_email=None)
Sends an e-mail to the user. If from_email is None, Django uses the DEFAULT_FROM_EMATL.

get_profile()
Returns a site-specific profile for this user. Raises django.contrib.auth.models.SiteProfileNotAvailable
if the current site doesn’t allow profiles. For information on how to define a site-specific user profile, see
the section on storing additional user information below.

Manager functions

class models.UserManager
The User model has a custom manager that has the following helper functions:

create_user (username, email, password=None)
Creates, saves and returns a User.

The username and password are set as given. The domain portion of emai 1 is automatically convered
to lowercase, and the returned User object will have is_active setto True.

If no password is provided, set _unusable_password () will be called.

See Creating users for example usage.

228 Chapter 3. Using Django

Django Documentation, Release 1.3

make_random_password (length=10, allowed_chars="abcdefghjkmnpqrstuvwxyzZABCDEFGHJKLMNPQRSTUVWXYZ234

Returns a random password with the given length and given string of allowed characters. (Note that the
default value of allowed_chars doesn’t contain letters that can cause user confusion, including:

*i, 1, I, and 1 (lowercase letter i, lowercase letter L, uppercase letter i, and the number one)

*0, O, and O (uppercase letter o, lowercase letter o, and zero)

Basic usage

Creating users

The most basic way to create users is to use the create_user () helper function that comes with Django:

>>> from django.contrib.auth.models import User
>>> user = User.objects.create_user(’ john’, ’lennonl@thebeatles.com’, ’johnpassword’)

At this int, is a User ob savec
to the database. can contint
if you want to change other fiel

>>> user.ls_staff =
>>> user.save ()

You can also create users using the Django admin site. Assuming you’ve enabled the admin site and hooked it to the
URL /admin/, the “Add user” page is at /admin/auth/user/add/. You should also see a link to “Users” in
the “Auth” section of the main admin index page. The “Add user” admin page is different than standard admin pages
in that it requires you to choose a username and password before allowing you to edit the rest of the user’s fields.

Also note: if you want your own user account to be able to create users using the Django admin site, you’ll need to
give yourself permission to add users and change users (i.e., the “Add user” and “Change user” permissions). If your
account has permission to add users but not to change them, you won’t be able to add users. Why? Because if you
have permission to add users, you have the power to create superusers, which can then, in turn, change other users. So
Django requires add and change permissions as a slight security measure.

Changing passwords

New in version 1.2: The manage.py changepassword command was added. manage.py
changepassword xusernamex* offers a method of changing a User’s password from the command line.
It prompts you to change the password of a given user which you must enter twice. If they both match, the new
password will be changed immediately. If you do not supply a user, the command will attempt to change the password
whose username matches the current user.

You can also change a password programmatically, using set_password () :

>>> from django.contrib.auth.models import User
>>> u = User.objects.get (username__exact=’ john’)
>>> u.set_password (' new password’)

>>> u.save ()

Don’t set the password attribute directly unless you know what you’re doing. This is explained in the next section.

Passwords

The password attribute of a User object is a string in this format:

3.10. User authentication in Django 229

y

Django Documentation, Release 1.3

hashtype$salt$hash

That’s hashtype, salt and hash, separated by the dollar-sign character.

Hashtype is either shal (default), md5 or crypt — the algorithm used to perform a one-way hash of the password.
Salt is a random string used to salt the raw password to create the hash. Note that the crypt method is only supported
on platforms that have the standard Python crypt module available.

For example:

shal$al976%a36cc8cbf81742a8fb52e22laacab48ed7f58ab4

The set_password () and check_password () functions handle the setting and checking of these values behind
the scenes.

Previous Django versions, such as 0.90, used simple MDS5 hashes without password salts. For backwards compatibility,
those are still supported; they’ll be converted automatically to the new style the first time check_password ()
works correctly for a given user.

Anonymous users

class models.AnonymousUser
django.contrib.auth.models.AnonymousUser is a class that implements the
django.contrib.auth.models.User interface, with these differences:

*idis always None.

eis_staffand is_superuser are always False.
*is_activeisalways False.

egroups and user_permissions are always empty.
eis_anonymous () returns True instead of False.
*is_authenticated () returns False instead of True.

eset_password (), check_password(), save(), delete(), set_groups() and
set_permissions () raise NotImplementedError.

In practice, you probably won’t need to use AnonymousUser objects on your own, but they’re used by Web requests,
as explained in the next section.

Creating superusers

manage.py syncdb prompts you to create a superuser the first time you run it after adding
"django.contrib.auth’ to your INSTALLED_APPS. If you need to create a superuser at a later date,
you can use a command line utility:

manage.py createsuperuser —-username=joe —--email=joel@example.com

You will be prompted for a password. After you enter one, the user will be created immediately. If you leave off the
——username or the ——email options, it will prompt you for those values.

If you’re using an older release of Django, the old way of creating a superuser on the command line still works:

python /path/to/django/contrib/auth/create_superuser.py

...where /path/to is the path to the Django codebase on your filesystem. The manage . py command is preferred
because it figures out the correct path and environment for you.

230 Chapter 3. Using Django

Django Documentation, Release 1.3

Storing additional information about users

If you’d like to store additional information related to your users, Django provides a method to specify a site-specific
related model — termed a “user profile” — for this purpose.

To make use of this feature, define a model with fields for the additional information you’d like to store, or additional
methods you’d like to have available, and also add a OneToOneField from your model to the User model. This
will ensure only one instance of your model can be created for each User.

To indicate that this model is the user profile model for a given site, fill in the setting AUTH_PROFILE_MODULE with
a string consisting of the following items, separated by a dot:

1. The name of the application (case sensitive) in which the user profile model is defined (in other words, the name
which was passed to manage . py startapp to create the application).

2. The name of the model (not case sensitive) class.

For example, if the profile model was a class named UserProfile and was defined inside an application named
accounts, the appropriate setting would be:

AUTH_PROFILE_MODULE = ’accounts.UserProfile’

When a user profile model has been defined and specified in this manner, each User object will have a method —
get_profile () —which returns the instance of the user profile model associated with that User.

The method get_profile () does not create the profile, if it does not exist. You need to register a handler for
the signal django.db.models.signals.post_save on the User model, and, in the handler, if created=True,
create the associated user profile.

For more information, see Chapter 12 of the Django book.

3.10.4 Authentication in Web requests

Until now, this document has dealt with the low-level APIs for manipulating authentication-related objects. On a
higher level, Django can hook this authentication framework into its system of request objects.

First, install the SessionMiddleware and AuthenticationMiddleware middlewares by adding them to
your MIDDLEWARE_CLASSES setting. See the session documentation for more information.

Once you have those middlewares installed, you’ll be able to access request .user in views. request.user
will give you a User object representing the currently logged-in user. If a user isn’t currently logged in,
request .user will be set to an instance of AnonymousUser (see the previous section). You can tell them
apart with is_authenticated (), like so:

if request.user.is_authenticated() :

Do something for authenticated users.
else:

Do something for anonymous users.

How to log a user in

Django provides two functions in d jango.contrib.auth: authenticate () and login ().

authenticate ()
To authenticate a given username and password, use authenticate (). It takes two keyword arguments,
username and password, and it returns a User object if the password is valid for the given username. If
the password is invalid, authenticate () returns None. Example:

3.10. User authentication in Django 231

http://www.djangobook.com/en/1.0/chapter12/#cn222

Django Documentation, Release 1.3

from django.contrib.auth import authenticate
user = authenticate (username=’ john’, password=’secret’)

if user is not
if user.is_active:

print "You provided a correct username

else:
print "Your ac

else:
print "Your username and password

login ()

ount has been di

and

password

To log a user in, in a view, use Login (). It takes an Ht tpRequest object and a User object. login ()
saves the user’s ID in the session, using Django’s session framework, so, as mentioned above, you’ll need to

make sure to have the session middleware installed.

This example shows how you might use both authenticate () and login ():

from django.contrib.auth import authenticate, login

def my_view(request) :

username = request.POST[’username’]
password = request.POST[’password’]
user = authenticate (username=username, password=password)

if user is not None:
if user.is_active:
login (request, user)
Redirect to a success page.
else:
Return a ’'disabled account’ error message

else:

Return an ’invalid login’ error message.

Calling authenticate () first

When you’re manually logging a user in, you must call authenticate ()

before you call login ().

authenticate () sets an attribute on the User noting which authentication backend successfully authenticated
that user (see the backends documentation for details), and this information is needed later during the login process.

Manually checking a user’s password

check_password ()

If you’d like to manually authenticate a user by comparing a plain-text password to the hashed password in
the database, use the convenience function d jango.contrib.auth.models.check_password (). It
takes two arguments: the plain-text password to check, and the full value of a user’s password field in the

database to check against, and returns True if they match, False otherwise.

How to log a user out

logout ()

To log out a user who has been logged
django.contrib.auth.logout () within your view.

no return value. Example:

in via django.contrib.auth.login(), use

It takes an HttpRequest object and has

232

Chapter 3. Using Django

Django Documentation, Release 1.3

from django.contrib.auth import logout

def logout_view(request):
logout (request)

Note that 1ogout () doesn’t throw any errors if the user wasn’t logged in.

When you call 1ogout (), the session data for the current request is completely cleaned out. All existing data
is removed. This is to prevent another person from using the same Web browser to log in and have access to
the previous user’s session data. If you want to put anything into the session that will be available to the user
immediately after logging out, do that after calling d jango.contrib.auth. logout ().

Login and logout signals

New in version Development version. The auth framework uses two signals that can be used for notification when a
user logs in or out.

django.contrib.auth.signals.user_logged_in

Sent when a user logs in successfully.

Arguments sent with this signal:

sender As above: the class of the user that just logged in.

request The current Ht tpRequest instance.

user The user instance that just logged in.
django.contrib.auth.signals.user_logged_out

Sent when the logout method is called.

sender As above: the class of the user that just logged out or None if the user was not authenticated.
request The current Ht tpRequest instance.

user The user instance that just logged out or None if the user was not authenticated.

Limiting access to logged-in users

The raw way

The simple, raw way to limit access to pages is to check request.user.is_authenticated () and either
redirect to a login page:

from django.http import HttpResponseRedirect

def my view (request) :
if not request.user.is_authenticated():
return HttpResponseRedirect (' /login/?next=%s’ % request.path)

...or display an error message:

def my view (request) :
if not request.user.is_authenticated() :
return render_to_response ('myapp/login error.html’)

3.10. User authentication in Django 233

Django Documentation, Release 1.3

The login_required decorator

decorators.login_required ([redirect _field_name=REDIRECT_FIELD_NAME, login_url:None])
As a shortcut, you can use the convenient 1ogin_required () decorator:

from django.contrib.auth.decorators import login_required

@login_required
def my view (request) :

login_required () does the following:

oIf the user isn’t logged in, redirect to settings.LOGIN_URL, passing the current absolute path in the
query string. Example: /accounts/login/?next=/polls/3/.

oIf the user is logged in, execute the view normally. The view code is free to assume the user is logged in.

By default, the path that the user should be redirected to upon successful authentication is stored in a
query string parameter called "next". If you would prefer to use a different name for this parameter,
login_required () takes an optional redirect_field_name parameter:

from django.contrib.auth.decorators import login_required

@login_required(redirect_field_name='my_ redirect field’)
def my view (request):

Note that if you provide a value to redirect_field_name, you will most likely need to customize your
login template as well, since the template context variable which stores the redirect path will use the value of
redirect_field_name asit’s key rather than "next " (the default). New in version Development version.
login_required () also takes an optional 1ogin_url parameter. Example:

from django.contrib.auth.decorators import login_required

@login_required(login_url=’/accounts/login/’)
def my view (request):

Note that if you don’t specify the Login_url parameter, you'll need to map the appropriate Django view to
settings.LOGIN_URL. For example, using the defaults, add the following line to your URLconf:

(r’ “accounts/login/$’, ’django.contrib.auth.views.login’),
views.login (request[, template_name, redirect_field_name, authentication _form])
Here’s what django.contrib.auth.views.login does:
oIf called via GET, it displays a login form that POSTs to the same URL. More on this in a bit.

oIf called via POST, it tries to log the user in. If login is successful, the view redirects to the URL specified
in next. If next isn’t provided, it redirects to settings.LOGIN_REDIRECT_URL (which defaults
to /accounts/profile/). If login isn’t successful, it redisplays the login form.

It’s your responsibility to provide the login form in a template called registration/login.html by
default. This template gets passed four template context variables:

eform: A Form object representing the login form. See the forms documentation for more on Form
objects.

enext: The URL to redirect to after successful login. This may contain a query string, too.

234 Chapter 3. Using Django

Django Documentation, Release 1.3

esite: The current Site, according to the SITE_ID setting. If you don’t have the site framework
installed, this will be set to an instance of Request Site, which derives the site name and domain from
the current Ht t pRequest.

esite_name: An alias for site.name. If you don’t have the site framework installed, this will be set to
the value of request .META [/ SERVER_NAME']. For more on sites, see The “sites” framework.

If you’d prefer not to call the template registration/login.html, you can pass the template_name
parameter via the extra arguments to the view in your URLconf. For example, this URLconf line would use
myapp/login.html instead:

(r’" “accounts/login/$’, ’django.contrib.auth.views.login’, {’template_name’: ’'myapp

You can also specify the name of the GET field which contains the URL to redirect to after login by passing
redirect_field_name to the view. By default, the field is called next.

Here’s a sample registration/login.html template you can use as a starting point. It assumes you
have a base.html template that defines a content block:

extends "base.html"
load url from future

block content

if form.errors
<p>Your username and password didn’t match. Please try again.</p>

endif
<form method="pc " action=" url ’'django.contri ’s.login’ ">
csrf token
<table>
<tr>
<td> form.username.label_tag </td>
<td> form.username </td>
</tr>
<tr>
<td> form.password. label_tag </td>
<td> form.password </td>
</tr>
</table>
<input type="submit" wvalue="login" />
<input type="hidden" name="next" value=" next />
</form>
endblock

New in version 1.2: Please, see the release notes If you are using alternate authentication (see Other authentica-
tion sources) you can pass a custom authentication form to the login view via the authentication_form
parameter. This form must accept a request keyword argument in its __init___ method, and provide a
get_user method which returns the authenticated user object (this method is only ever called after successful
form validation).

Other built-in views

In addition to the login () view, the authentication system includes a few other useful built-in views located in
django.contrib.auth.views:

3.10. User authentication in Django 235

b/ login.html’ })

Django Documentation, Release 1.3

logout (request[, next_page, template_name, redirect_field_name])
Logs a user out.

Optional arguments:
enext_page: The URL to redirect to after logout.

*template_name: The full name of a template to display after logging the user out. This will default to
registration/logged_out.html if no argument is supplied.

eredirect_field_name: The name of a GET field containing the URL to redirect to after log out.
Overrides next_page if the given GET parameter is passed.

Template context:
etitle: The string “Logged out”, localized.

logout_then_login (request[, login_url])
Logs a user out, then redirects to the login page.

Optional arguments:

*login_url: The URL of the login page to redirect to. This will default to settings.LOGIN_URL if
not supplied.

password_change (request|, template_name, post_change_redirect, password_change_form |)
Allows a user to change their password.

Optional arguments:

*template_name: The full name of a template to use for displaying the password change form. This
will default to registration/password_change_form.html if not supplied.

*post_change_redirect: The URL to redirect to after a successful password change.

*New in version 1.2: Please, see the release notes password_change_form: A custom “change pass-
word” form which must accept a user keyword argument. The form is responsible for actually changing
the user’s password.

Template context:
eform: The password change form.

password_change_done (request[, template_name])
The page shown after a user has changed their password.

Optional arguments:

etemplate_name: The full name of a template to use. This will default to
registration/password_change_done.html if not supplied.

password_reset (request[, is_admin_site, template_name, email_template_name, password_reset_form,

token_generator, post_reset_redi