
TE
AM
FL
Y

Team-Fly®

The Tomes of Delphi™

Win32 Shell API
Windows 2000 Edition

John Ayres

Wordware Publishing, Inc.

Library of Congress Cataloging-in-Publication Data

Ayres, John.
Tomes of Delphi : Win32 Shell API—Windows 2000 edition / by John Ayres.

p. cm.
Includes index.
ISBN 1-55622-749-3 (paperback)
1. Microsoft Win32. 2. Delphi (Computer file). I. Title.

QA76.76.063 A98 2002
005.265--dc21 2002004006

CIP

© 2002, Wordware Publishing, Inc.

All Rights Reserved

2320 Los Rios Boulevard
Plano, Texas 75074

No part of this book may be reproduced in any form or by
any means without permission in writing from

Wordware Publishing, Inc.

Printed in the United States of America

ISBN 1-55622-749-3

10 9 8 7 6 5 4 3 2 1

0204

Delphi is a trademark of Borland Software Corporation in the United States and other countries. Windows is a registered
trademark of Microsoft Corporation in the United States and/or other countries. Other products mentioned are used for
identification purposes only and may be trademarks of their respective companies.

All inquiries for volume purchases of this book should be addressed to Wordware Publishing, Inc., at the

above address. Telephone inquiries may be made by calling:

(972) 423-0090

Praise for John Ayres’ Tomes of Delphi books

“The Tomes of Delphi is the definitive reference for the Win32 API expressed

in the Object Pascal language. It’s a must-have for application and component

developers looking to extend their reach beyond the capabilities of the Visual

Component Library.”

Steve Teixeira, Director Core Technology

Zone Labs, Inc. and co-author of Delphi 6 Developer’s Guide

“Delphi lets developers work ‘under the hood’ with the Win32 API. The Tomes

of Delphi 3: Win32 Core API gives every Delphi developer the knowledge to

use the Win32 API powerfully, creatively, and effectively.”

Michael Swindell, Director of Product Management

RAD Tools Group, Borland Software Corporation

“The Tomes of Delphi 3: Win32 Core API is my number one resource when

looking for information about how to use the Win32 core API in Delphi. I espe-

cially enjoy the helpfile that contains the complete text from the book and can

be accessed directly when programming.”

Bob Swart (a.k.a. “Dr. Bob”), Author, trainer, consultant

“Not only were these the first Delphi books to concentrate on API-level pro-

gramming, they set the standard for all future Delphi API books. With the

increasing importance of the shell API for Windows developers, this is the per-

fect update for this classic Delphi work.”

Alan C. Moore, Contributing Editor

Delphi Informant Magazine

Dedication

To my second daughter, Victoria Ann Ayres. The entirety of this book was written

while she and her mother were still a part of each other. As that miraculous day

approaches when I can finally meet her face to face and welcome her to our world, my

panic is slowly being replaced with incredible joy and wonder. Children are indeed a

miracle, and I am very thankful for this gift from God that we shall soon receive. The

responsibility of parenthood can be demanding at times, but it is very rewarding, and I

am doubly blessed for the opportunity to once again shape the future of one who is sure

to grow into an incredible person. Hero, mentor, role model, playmate, dance partner,

confidant, keeper of secrets, and healer of wounds — all these things and much, much

more add up to fatherhood. I hope to live up to my daughter’s expectations of a father,

and may she grow to be more than the sum of her parents.

Contents

Foreword . xvii
Acknowledgments . xix
Introduction . xxi

Chapter 1 Delphi and the Windows API . 1

Windows Data Types . 1
Handles . 4
Constants . 4
Strings . 4

Importing Windows Functions . 4
Incorrectly Imported Functions . 5

Callback Functions. 5
Function Parameters . 6
Unicode. 7
Delphi vs. the Windows API . 7

Chapter 2 Window Movement Functions 9

Z-order . 9
Special Effects . 10
Delphi vs. the Windows API . 11
Window Movement Functions . 12

AdjustWindowRect. 12

AdjustWindowRectEx . 14

BeginDeferWindowPos . 15

BringWindowToTop . 17

CascadeWindows. 18

CloseWindow. 19

DeferWindowPos. 20

EndDeferWindowPos . 23

GetWindowPlacement . 23

MoveWindow . 24

OpenIcon . 25

SetWindowPlacement . 26

SetWindowPos . 29

v

ShowOwnedPopups . 32

ShowWindow . 33

ShowWindowAsync . 35

TileWindows . 37

Chapter 3 Window Information Functions 39

Information Storage . 39
Window-specific Information . 40
Subclassing a Window . 41
Knowing It All . 42
Delphi vs. the Windows API . 48
Window Information Functions . 49

AnyPopup . 50

ChildWindowFromPoint . 51

ChildWindowFromPointEx . 52

EnableWindow . 54

EnumChildWindows . 55

EnumProps . 57

EnumPropsEx . 60

EnumThreadWindows . 63

EnumWindows . 65

FindWindow . 67

FindWindowEx. 68

FlashWindow. 69

GetActiveWindow . 70

GetClassInfo . 70

GetClassInfoEx . 72

GetClassLong . 75

GetClassName . 77

GetClientRect . 78

GetDesktopWindow . 79

GetFocus . 80

GetForegroundWindow . 80

GetNextWindow . 82

GetParent . 83

GetProp. 84

GetTopWindow . 84

GetWindow. 85

GetWindowLong . 87

GetWindowRect . 90

GetWindowText . 90

GetWindowTextLength . 92

IsChild . 92

IsIconic . 94

IsWindow . 94

vi

Contents

IsWindowEnabled . 95

IsWindowUnicode . 95

IsWindowVisible . 96

IsZoomed . 97

RemoveProp . 98

SetActiveWindow . 98

SetClassLong . 99

SetFocus. 101

SetForegroundWindow . 102

SetParent . 102

SetProp . 104

SetWindowLong . 104

SetWindowText . 106

WindowFromPoint . 107

Chapter 4 File Input/Output Functions 109

File Creation. 109
File Times . 110
Delphi vs. the Windows API . 110
File Input/Output Functions . 111

CloseHandle. 112

CompareFileTime . 113

CopyFile. 115

CreateDirectory . 117

CreateDirectoryEx . 119

CreateFile . 120

CreateFileMapping . 126

DeleteFile . 132

DosDateTimeToFileTime . 133

FileTimeToDosDateTime . 134

FileTimeToLocalFileTime . 135

FileTimeToSystemTime . 135

FindClose . 140

FindCloseChangeNotification . 140

FindFirstChangeNotification . 141

FindFirstFile . 143

FindNextChangeNotification . 147

FindNextFile . 148

FlushFileBuffers . 149

FlushViewOfFile . 149

GetCurrentDirectory . 150

GetFileAttributes . 151

GetFileInformationByHandle. 152

GetFileSize . 155

GetFileTime . 156

vii

Contents

GetFileType . 156

GetFileVersionInfo . 157

GetFileVersionInfoSize . 158

GetFullPathName. 159

GetShortPathName . 159

GetTempFileName . 160

GetTempPath . 162

LocalFileTimeToFileTime . 163

LockFile . 164

MapViewOfFile. 165

MoveFile . 166

OpenFileMapping. 167

ReadFile . 168

RemoveDirectory . 170

SearchPath . 170

SetCurrentDirectory . 171

SetEndOfFile . 172

SetFileAttributes . 173

SetFilePointer . 177

SetFileTime . 178

SystemTimeToFileTime . 179

UnlockFile . 180

UnMapViewOfFile . 181

VerQueryValue . 181

WriteFile . 188

Chapter 5 Input Functions . 191

The Keyboard . 191
The Mouse. 192
Delphi vs. the Windows API . 192
Input Functions . 192

ActivateKeyboardLayout . 194

ClipCursor . 195

DragDetect . 195

GetAsyncKeyState . 197

GetCapture . 198

GetCaretBlinkTime . 198

GetCaretPos. 199

GetClipCursor . 199

GetCursorPos . 200

GetDoubleClickTime . 200

GetInputState . 201

GetKeyboardLayout . 201

GetKeyboardLayoutList . 202

GetKeyboardLayoutName . 202

viii

Contents

GetKeyboardState. 203

GetKeyboardType. 204

GetKeyNameText . 206

GetKeyState . 208

keybd_event . 209

joyGetDevCaps . 211

joyGetNumDevs . 213

joyGetPos . 214

joyGetPosEx . 215

joyGetThreshold . 218

joyReleaseCapture . 219

joySetCapture . 220

joySetThreshold. 224

LoadKeyboardLayout . 225

MapVirtualKey . 228

MapVirtualKeyEx. 230

mouse_event . 231

OEMKeyScan . 234

ReleaseCapture . 235

SetCapture. 235

SetCaretBlinkTime . 236

SetCaretPos . 238

SetCursorPos . 238

SetDoubleClickTime . 239

SetKeyboardState . 240

SwapMouseButton . 240

UnloadKeyboardLayout . 244

VkKeyScan . 244

VkKeyScanEx. 245

Chapter 6 String and Atom Functions 249

Atom Tables . 249
String Formatting . 250
Delphi vs. the Windows API . 250
String and Atom Functions . 251

AddAtom . 252

CharLower . 253

CharLowerBuff . 255

CharNext . 256

CharPrev . 257

CharToOem . 257

CharToOemBuff . 259

CharUpper. 259

CharUpperBuff . 260

CompareString . 261

ix

Contents

DeleteAtom . 265

EnumSystemCodePages . 266

EnumSystemLocales . 268

FindAtom . 270

FormatMessage . 270

GetACP . 276

GetAtomName . 279

GetCPInfo. 280

GetCPInfoEx . 281

GetDateFormat . 282

GetOEMCP . 286

GetTimeFormat . 288

GlobalAddAtom . 291

GlobalDeleteAtom . 293

GlobalFindAtom . 293

GlobalGetAtomName . 294

InitAtomTable . 295

IsCharAlpha . 295

IsCharAlphaNumeric . 296

IsCharLower . 297

IsCharUpper . 297

lstrcat . 298

lstrcmp . 299

lstrcmpi . 301

lstrcpy . 302

lstrlen . 303

MakeIntAtom . 303

OemToChar . 305

OemToCharBuff . 305

ToAscii . 306

wvsprintf . 307

Chapter 7 Clipboard Manipulation Functions. 313

Clipboard Internals . 313
Conversion Formats . 314
Delayed Rendering . 314
Clipboard Viewers. 317
Delphi vs. the Windows API . 317
Clipboard Manipulation Functions . 317

ChangeClipboardChain . 318

CloseClipboard . 319

CountClipboardFormats . 319

EmptyClipboard . 320

EnumClipboardFormats . 320

GetClipboardData. 322

x

Contents

TE
AM
FL
Y

Team-Fly®

GetClipboardFormatName . 325

GetClipboardOwner. 325

GetClipboardViewer . 326

GetOpenClipboardWindow . 326

GetPriorityClipboardFormat . 327

IsClipboardFormatAvailable . 328

OpenClipboard . 329

RegisterClipboardFormat . 330

SetClipboardData . 330

SetClipboardViewer. 335

Chapter 8 System Information Functions 339

Accessibility Features . 339
Delphi vs. the Windows API . 341
System Information Functions . 341

ExpandEnvironmentStrings. 342

FreeEnvironmentStrings . 344

GetCommandLine. 344

GetComputerName . 345

GetDiskFreeSpaceEx . 345

GetDriveType . 347

GetEnvironmentStrings . 348

GetEnvironmentVariable . 349

GetLocaleInfo . 350

GetLocalTime . 359

GetLogicalDrives . 360

GetLogicalDriveStrings. 362

GetStartupInfo . 363

GetSystemDefaultLangID . 364

GetSystemDefaultLCID . 365

GetSystemDirectory . 366

GetSystemInfo . 367

GetSystemTime . 371

GetSystemTimeAsFileTime . 371

GetTimeZoneInformation. 372

GetUserDefaultLangID . 375

GetUserDefaultLCID . 375

GetUserName . 376

GetVersionEx . 377

GetVolumeInformation . 379

GetWindowsDirectory . 382

IsProcessorFeaturePresent . 383

SetComputerName . 385

SetEnvironmentVariable . 386

SetLocaleInfo . 388

xi

Contents

SetLocalTime . 393

SetSystemTime . 395

SetTimeZoneInformation . 396

SetVolumeLabel . 397

SystemParametersInfo . 398

VerLanguageName . 433

Chapter 9 Icon, Cursor, and Caret Functions 437

Carets . 437
Icon and Cursor Masks . 438
Icon to Bitmap Conversion . 439
Delphi vs. the Windows API . 442
Icon, Cursor, and Caret Functions . 442

CopyIcon . 443

CreateCaret . 444

CreateCursor . 446

CreateIcon . 448

CreateIconFromResource. 451

CreateIconFromResourceEx . 453

CreateIconIndirect . 455

DestroyCaret . 457

DestroyCursor . 458

DestroyIcon . 458

DrawIcon . 459

DrawIconEx . 459

ExtractAssociatedIcon . 461

ExtractIcon . 462

ExtractIconEx. 464

GetCursor . 467

GetIconInfo . 467

HideCaret . 471

LoadCursor . 471

LoadCursorFromFile . 472

LoadIcon . 474

LookupIconIdFromDirectory. 475

LookupIconIdFromDirectoryEx 475

SetCursor . 477

SetSystemCursor . 477

ShowCaret . 479

ShowCursor . 479

xii

Contents

Chapter 10 Help Functions . 481

WinHelp . 481
WinHelp Architecture . 482
Creating a WinHelp Help File . 482
Using WinHelp . 482
Advantages/Disadvantages . 484

HTMLHelp . 485
HTMLHelp Architecture . 485
Creating an HTMLHelp Help File 485
Using HTMLHelp . 486
Advantages/Disadvantages . 490

Delphi vs. the Windows API . 491
Help Functions . 491

HTMLHelp . 491
WinHelp. 509

Chapter 11 Shell File Functions . 513

File-based Applications . 513
Structured Storage. 517
Creating and Reading Structured Storage Files 517

Transacted Storage Files . 518
Delphi vs. the Windows API . 529
Shell File Functions . 529

DragAcceptFiles . 530

DragFinish . 532

DragQueryFile . 532

DragQueryPoint. 534

FindExecutable . 534

IStorage.Commit . 537

IStorage.CopyTo . 539

IStorage.CreateStorage . 540

IStorage.CreateStream . 543

IStorage.DestroyElement . 545

IStorage.EnumElements . 546

IStorage.MoveElementTo. 549

IStorage.OpenStorage. 552

IStorage.OpenStream . 554

IStorage.RenameElement . 556

IStorage.Revert . 557

IStorage.SetClass . 557

IStorage.Stat. 558

IStream.Clone . 560

IStream.CopyTo. 561

IStream.Read . 562

IStream.Seek . 563

xiii

Contents

IStream.SetSize . 564

IStream.Stat . 565

IStream.Write . 566

SHAddToRecentDocs . 567

SHFileOperation . 569

SHFreeNameMappings . 574

SHGetFileInfo . 574

StgCreateDocFile . 579

StgIsStorageFile . 582

StgOpenStorage. 583

Chapter 12 Shell Folder Functions . 587

Browsing for Folders . 587
Item Identifier Lists . 589
Delphi vs. the Windows API . 589
Shell Folder Functions . 589

SHBrowseForFolder . 590

SHEmptyRecycleBin . 595

SHGetFolderLocation . 597

SHGetFolderPath . 601

SHGetPathFromIDList . 605

SHGetSettings . 605

SHGetSpecialFolderLocation . 607

SHGetSpecialFolderPath . 611

SHQueryRecycleBin . 614

Chapter 13 Shell Extension Functions . 617

Shell Extension Basics . 617
Creating the COM Object . 618
Implementing Interface Methods . 619
Registering the Shell Extension. 619

URL Search Hook Shell Extensions . 619
Implementing URL Search Hook Shell Extensions 620
Registering URL Search Hook Shell Extensions 620

Infotip Shell Extensions. 622
Implementing Infotip Shell Extensions 622
Registering Infotip Shell Extensions 623

Copy Hook Shell Extensions . 627
Implementing Copy Hook Shell Extensions 627
Registering Copy Hook Shell Extensions 627

Shell Execute Hook Shell Extensions 630
Implementing Shell Execute Hook Shell Extensions. 631
Registering Shell Execute Hook Shell Extensions 631

Context Menu Handler Shell Extensions 634
Implementing Context Menu Handler Shell Extensions 634

xiv

Contents

Registering Context Menu Handler Shell Extensions 635
Icon Handler Shell Extensions . 639

Implementing Icon Handler Shell Extensions 640
Registering Icon Handler Shell Extensions. 640

Drag-Drop Handler Shell Extensions. 644
Implementing Drag-Drop Handler Shell Extensions 644
Registering Drag-Drop Handler Shell Extensions 645

Delphi vs. the Windows API . 651
Shell Extension Functions . 651

IContextMenu.GetCommandString. 651

IContextMenu.InvokeCommand . 652

IContextMenu.QueryContextMenu. 655

ICopyHook.CopyCallback . 656

IDropTarget.DragEnter . 658

IDropTarget.DragLeave. 660

IDropTarget.DragOver . 660

IDropTarget.Drop . 661

IExtractIcon.Extract. 663

IExtractIcon.GetIconLocation . 663

IQueryInfo.GetInfoFlags . 665

IQueryInfo.GetInfoTip . 665

IShellExecuteHook.Execute . 666

IShellExtInit.Initialize . 670

IURLSearchHook.Translate . 671

Chapter 14 Specialized Shell Functions 673

Control Panel Applications . 673
The CplApplet Function. 673
Control Panel Messages . 674
Writing Control Panel Applications 675

Application Bars . 678
Tray Icon Applications . 681

Creating a Tray Icon Application . 682
Messages. 682
Balloon Tooltips . 682

Delphi vs. the Windows API . 685
Specialized Shell Functions. 685

CplApplet . 686

IMalloc.Alloc . 689

IMalloc.DidAlloc . 691

IMalloc.Free. 691

IMalloc.GetSize . 692

IMalloc.HeapMinimize . 692

IMalloc.Realloc . 693

SHAppBarMessage . 693

xv

Contents

SHChangeNotify . 698

ShellAbout . 702

ShellExecute . 703

ShellExecuteEx . 706

Shell_NotifyIcon . 712

SHGetMalloc . 717

Appendix A Bibliography . 719

Appendix B Virtual Key Code Chart . 721

Appendix C Tertiary Raster Operation Codes 725

Appendix D ASCII Character Set . 733

Index . 737

xvi

Contents

Foreword

The Windows API is the foundation upon which most contemporary programs are

built. It is the heart and soul of database applications, multimedia applications, even

many network based applications. Every Windows application relies on the Windows

API to perform everything from the most mundane to the most esoteric task.

All of the good programmers I know have a solid foundation in the Windows API. It is

the language in which the architecture of the Windows operating system is most elo-

quently expressed, and it holds the secrets programmers need to know if they want to

develop powerful, well tuned applications.

There are at least three reasons why most serious programmers need to know the

Windows API:

1. It is occasionally possible to write strong, robust applications without having a good

understanding of the Windows API. However, there comes a time in the course of most

application development projects when you simply have to turn to the Windows API in

order to solve a particular problem. Usually this happens because a tool you are using

does not have a feature you need, or because the feature is not implemented properly.

In such cases, you have to turn to the Windows API in order to implement the feature

yourself.

2. Another reason to use the Windows API surfaces when you want to create a component

or utility that others can use. If you want to build a component, ActiveX control, or

simple utility that will perform a useful function needed by other developers or power

users, then you probably will need to turn to the Windows API. Without recourse to the

Windows API, such projects are usually not feasible.

3. The final and best reason for learning the Windows API is that it helps you see how

you should architect your application. We have many high-level tools these days that

let us build projects at a very remote, and powerful, level of abstraction. However, each

of these tools is built on top of the Windows API, and it is difficult, if not impossible,

to understand how to use them without understanding the architecture on which they

are founded. If you understand the Windows API then you know what the operating

system can do for you, and how it goes about providing that service. With this knowl-

edge under your belt, you can use high-level tools in an intelligent and thoughtful

manner.

xvii

I am particularly pleased to see the publication of Wordware’s books on the Windows

API because they are built around the world’s greatest development tool: Delphi.

Delphi gives you full access to the entire Windows API. It is a tool designed to let you

plumb the depths of the operating system, to best utilize the features that have made

Windows the preeminent operating system in the world today.

Armed with these books on the Windows API, and a copy of Delphi, you can build any

type of application you desire, and can be sure that it is being constructed in the opti-

mal possible manner. No other compiler can bring you closer to the operating system,

nor can any other compiler let you take better advantage of the operating system’s fea-

tures. These books are the Rosetta stone which forms the link between Delphi and the

Windows API. Readers will be able to use them to create the most powerful applica-

tions supported by the operating system. My hat is off to the authors for providing

these books as a service to the programming community.

Charles Calvert

former Borland Developer Relations Manager

xviii

Foreword

Acknowledgments

This project would not have been completed without the help of many generous, caring

people. In an effort to give credit to those who deserve so much more, the author would

like to thank the following people, in no particular order, for their contributions to the

book:

Jim Hill, Wes Beckwith, and all the good people down at Wordware Publishing for giv-

ing me a platform from which I can do my part to further the overall Delphi

community.

Marci Ayres, who performed a lot of code testing, grayscale image conversion, docu-

ment formatting, and other support functions, along with putting together the help file.

This book was written through her entire second pregnancy, and even through all the

discomforts that accompany carrying a child, she took over all of my domestic duties

so I could concentrate on finishing this book.

Rusty Cornett, who was responsible for introducing me to Delphi and opening up a

very rewarding career path.

The authors of the original Tomes of Delphi series, who collectively put in many hours

for those first two books.

Of course, no acknowledgment would be complete without thanking the Delphi devel-

opment staff at Borland for giving all of us such an awesome development tool.

xix

TE
AM
FL
Y

Team-Fly®

Introduction

The Windows programming environment. No other operating system in history has

caused so much controversy or confusion among the programming industry. Of course,

no other operating system in history has made so many millionaires either. Like it or

not, Windows is here to stay. It’s hard to ignore such a large user base, and there are

few job opportunities anymore that do not require the programmer to have knowledge

of the Windows environment.

In the beginning, a programmer’s only choice of tools for creating Windows applica-

tions was C/C++. The age of this language has resulted in a wealth of Windows API

documentation, filled with abstract and incomplete information, and examples that are

as esoteric and arcane as the C language itself. Then along came Delphi. A new era in

Windows programming was born, with the ability to easily create complex and

advanced Windows applications with a turnaround time unheard of previously.

Although Delphi tries its best to insulate the programmer from the underlying Windows

architecture, Delphi programmers have found that some programming obstacles simply

cannot be overcome without using low-level Windows API functions. Although there

have been a few books that touched on the subject of using Windows API functions in

Delphi, none have ever discussed the issue in depth. There are numerous magazine arti-

cles that describe very specific subsets of the API, but unless the Delphi programmer

has a background in C and the time to convert a C example into Delphi, there was sim-

ply no recourse of action. Thus, this book was born.

This book is a reference manual for using Windows 32-bit API functions in the Delphi

environment. As such, it is not a Windows or Delphi programming tutorial, nor is it a

collection of Delphi tricks that solve specific problems. To date, this book is the most

complete and accurate reference to the Windows API for the Delphi programmer. It is

not a complete reference, as the Windows API includes thousands upon thousands of

functions that would fill many volumes much larger than the one you are holding.

However, this book covers the most common and important cross section of the Win-

dows API. Additionally, almost every function in this book is available under Windows

95\98\Me and Windows NT\2000\XP (exceptions are noted).

xxi

The Chapters

� Chapter 1: Delphi and the Windows API

This chapter introduces the reader to The Tomes of Delphi: Win32 Shell API —

Windows 2000 Edition. It covers general Windows programming concerns and tech-

niques, and explains various nuances of programming with the Win32 API in the

Delphi environment.

� Chapter 2: Window Movement Functions

Controlling a window’s position can be an important part of a complex user inter-

face. This chapter covers those functions used to control a window’s position and

size. Examples include moving multiple windows simultaneously and retrieving

window positioning and size information.

� Chapter 3: Window Information Functions

The developer may need to programmatically query a window for some piece of

information. This chapter covers functions used to retrieve information on specific

windows, such as a window’s size, position, and attributes. Examples include sub-

classing a window and changing window attributes at run time.

� Chapter 4: File Input/Output Functions

Most applications need the ability to read and write information to an external stor-

age device, and this chapter covers the functions used to manipulate disk-based

files. Examples include creating files, manipulating file attributes, reading and writ-

ing to a file at the binary level, and performing a file search.

� Chapter 5: Input Functions

Without the functionality to interpret user input, most applications would be rela-

tively useless. This chapter covers functions used to receive input from the user,

such as keyboard and mouse input. Examples include receiving input from the joy-

stick, retrieving information about the keyboard, and manipulating the cursor.

� Chapter 6: String and Atom Functions

All applications need to display information to the user, which usually takes place

in the form of a string. This chapter covers string manipulation functions and func-

tions used to allocate and remove global atoms. Examples include formatting

messages, manipulating atoms and strings.

� Chapter 7: Clipboard Functions

The ability to share information between applications through copy and paste is an

expected requirement from Windows users. This chapter covers the functions used

to manipulate and view the contents of the clipboard. Examples including enumer-

ating clipboard formats, registering a new clipboard format, and viewing the

clipboard contents.

� Chapter 8: System Information Functions

It may sometimes be useful to retrieve specific information about the system or

hardware that is running an application. This chapter covers functions used to query

xxii

Introduction

the system for information. Examples include retrieving system hardware informa-

tion and environment variables, and modifying system parameters.

� Chapter 9: Icon, Cursor, and Caret Functions

Icons, carets, and cursors are also fundamental graphics objects. This chapter

describes the functions used to create and manipulate icons, cursors, and carets.

Examples include extracting icons from external files, manipulating the caret, and

creating new cursors.

� Chapter 10: Help Functions

An application without a help system is not a finished application. This chapter

covers the two API functions that interface with the help system: WinHelp and

HTMLHelp. Several examples are included for both.

� Chapter 11: Shell File Functions

The Windows environment provides many system-level functions that can be very

useful when manipulating files. This chapter covers those functions used to copy

and move files and retrieve file information. Examples include creating an appbar

application, copying and moving files, and querying file information.

� Chapter 12: Shell Folder Functions

The Windows namespace includes many special folders that have specific meaning

within the shell. This chapter examines the many functions that interact with folders

at the shell level. Examples include using the Browse for Folder dialog box and

manipulating the recycle bin.

� Chapter 13: Shell Functions

Windows functionality can be extended through the use of shell hooks and exten-

sions. This chapter discusses methods to implement many common and useful shell

extension interfaces. Examples include a dynamic icon extractor and context menu

handler.

� Chapter 14: Specialized Shell Functions

Many shell functions do not fit into a specific category. This chapter examines sev-

eral unique shell functions that could not be classified into other chapters.

Examples include a control panel applet and an appbar.

Conventions

Certain writing conventions have been used throughout this book to convey specific

meanings. All example code throughout each chapter appears in a monotype font, such

as:

function HelloThere(Info: string): Integer;
begin
ShowMessage(Info);

end;

In order to be consistent with other works on Delphi programming, the example code

uses Borland’s coding conventions, which includes using mixed case for variable

xxiii

Introduction

names and identifiers, lowercase for reserved words, and nested code indented two

spaces per level. Any constants used in the code will appear in all capitals, such as

TRUE and FALSE. Also, notice that the name of the unit that contains an individual

function is located on the same line as the function name. This unit must be included in

the Uses clause of any unit in which this function is used. However, most of the func-

tions covered in this series are located in the Windows.pas file, which is automatically

added to the Uses clause by Delphi. In addition, when the text refers to a window, as in

a visual object on the screen, the word “window” will begin with a lowercase letter.

When the text refers to Windows, as in the operating system, the word “Windows” will

be capitalized.

Function Descriptions

The Windows API function descriptions have been laid out in a format that provides an

increasing amount of detail to the reader. This should allow the reader to quickly

glance at a function description for a simple reminder of required parameters, or to read

further for a detailed explanation of the function, an example of its use, and any accept-

able constant values used in a parameter.

Each function description includes the exact syntax found in the Delphi source code, a

description of what the function does, a detailed list and description of the function’s

parameters, the value returned from the function, a list of related functions, and an

example of its use. Any defined constants used in a function parameter are found in

tables that follow the example, so that the descriptive text of the function is not broken

by a distraction, and all of the constants are available in one place for easy perusal.

Some tables may be repeated under various functions that use the same parameters.

This was done to eliminate the need to flip back and forth between several pages while

perusing the function descriptions. An asterisk (*) indicates the function is covered in

The Tomes of Delphi: Win32 Core API — Windows 2000 Edition.

Sample Programs

Although every book reaches a point where the authors are frantically hacking away at

the text trying to meet deadlines, I did not want the example code to suffer due to time

restraints. Unlike some other books, I wanted to make sure that the example code

worked in every case. Therefore, I have taken every effort to ensure that the source

code on the companion CD works as expected and that the code found in the book is

the exact code found on the CD. This should guarantee that code entered straight from

the text will work as described. However, most of the code examples rely on buttons,

edit boxes, or other components residing on the form, which may not be apparent from

the code listing. When in doubt, always look at the source code included on the CD.

Also, bear in mind that some examples may only work under certain conditions; for

example, many of the examples demonstrating graphical API calls will only work cor-

rectly under a 256-color video mode.

xxiv

Introduction

Who This Book is For

Due to the nature of reference manuals and the lack of any involved explanations into

general Windows or Delphi programming, this book is intended for use by experienced

Delphi programmers with a working knowledge of Windows programming. This is not

to say that intermediate or even beginning Delphi programmers will not benefit from

this book; in fact, there are quite a few example programs included that solve a number

of everyday programming conundrums. The heavily documented examples should pro-

vide enough explanation for even the most neophyte Delphi programmer to gain some

understanding of the API function being demonstrated. As a reference manual, the

book is not intended to be read sequentially from cover to cover. However, the chapters

have been laid out in a logical order of progression, starting with the most fundamental

Windows API functions and working towards the more specialized functions.

If you are looking for an introduction to Delphi programming, or a step-by-step Win-

dows programming tutorial, there are plenty of other fine books out there to get you

started. However, if you’ve got a nasty problem whose only hope of salvation is using

the Windows API, if you want to extend the functionality of Delphi components and

objects, or if you want a down-and-dirty, no-holds-barred collection of Delphi Win32

API programming examples, then this book is for you. You will not find a more com-

plete and accurate guide to the Win32 API for the Delphi programmer.

xxv

Introduction

Chapter 1

Delphi and the Windows APIDelphi and the Windows API

When Delphi was introduced, it brought a new era to Windows programming. Never

before was it so easy to create robust, full-featured applications for the Windows envi-

ronment with such short development times. Now in its sixth incarnation, Delphi has

been the development tool for innumerable shareware and freeware applications, inter-

nal business and proprietary system applications, several well-known commercial

applications, and even a commercial game or two. Delphi’s power and ease of use

make it a wonderful choice for a development platform that can stand up to C++ and

Visual Basic in almost every situation.

One of Delphi’s strengths is the Visual Component Library, Borland’s object model.

This object model has allowed the Delphi development team to encapsulate the vast

majority of Windows programming tedium into easy-to-use components. Earlier Win-

dows programming languages required the developer to write large amounts of code

just to squeeze a minimal amount of functionality out of Windows. The mere act of

creating a window and accepting menu selections could take pages of code to create.

Delphi’s excellent encapsulation of this dreary requirement of Windows programming

has turned what once was a chore into a fun, exciting experience.

Windows Data Types

Windows API functions use a number of data types that may be unfamiliar to the casual

Delphi programmer. These data types are all taken from the original C header files that

define the Windows API function syntax. For the most part, these new data types are

simply Pascal data types that have been renamed to make them similar to the original

data types used in legacy Windows programming languages. This was done so that

experienced Windows programmers would understand the parameter types and func-

tion return values, and the function prototypes would match the syntax shown in

existing Windows API documentation to avoid confusion. The following table outlines

the most common Windows data types and their correlating Object Pascal data type.

1

Table 1-1: Windows data types

Windows

Data Type

Object Pascal

Data Type

Description

LPSTR PAnsiChar String pointer

LPCSTR PAnsiChar String pointer

DWORD LongWord Whole numbers

BOOL LongBool Boolean values

PBOOL ^BOOL Pointer to a Boolean value

PByte ^Byte Pointer to a byte value

PINT ^Integer Pointer to an integer value

PSingle ^Single Pointer to a single (floating-point) value

PWORD ^Word Pointer to a 16-bit value

PDWORD ^DWORD Pointer to a 32-bit value

LPDWORD PDWORD Pointer to a 32-bit value

UCHAR Byte 8-bit values (can represent characters)

PUCHAR ^Byte Pointer to 8-bit values

SHORT Smallint Signed 16-bit whole numbers

UINT LongWord Unsigned 32-bit whole numbers

PUINT ^UINT Pointer to unsigned 32-bit whole numbers

ULONG Cardinal Unsigned 32-bit whole numbers

PULONG ^ULONG Pointer to unsigned 32-bit whole numbers

PLongint ^Longint Pointer to 32-bit values

PInteger ^Integer Pointer to 32-bit values

PSmallInt ^Smallint Pointer to 16-bit values

PDouble ^Double Pointer to double (floating-point) values

LCID DWORD A local identifier

LANGID Word A language identifier

THandle LongWord An object handle. Many Windows API functions
return a value of type THandle, which identifies that
object within Window’s internal object tracking
tables.

PHandle ^THandle A pointer to a handle

WPARAM Longint A 32-bit message parameter. Under earlier versions
of Windows, this was a 16-bit data type.

LPARAM Longint A 32-bit message parameter

LRESULT Longint A 32-bit function return value

HWND LongWord A handle to a window. All windowed controls, child
windows, main windows, etc., have a corresponding
window handle that identifies them within Windows’
internal tracking tables.

HHOOK LongWord A handle to an installed Windows system hook

2 � Chapter 1

Windows

Data Type

Object Pascal

Data Type

Description

ATOM Word An index into the local or global atom table for a
string

HGLOBAL THandle A handle identifying a globally allocated dynamic
memory object. Under 32-bit Windows, there is no
distinction between globally and locally allocated
memory.

HLOCAL THandle A handle identifying a locally allocated dynamic mem-
ory object. Under 32-bit Windows, there is no
distinction between globally and locally allocated
memory.

FARPROC Pointer A pointer to a procedure, usually used as a parame-
ter type in functions that require a callback function

HGDIOBJ LongWord A handle to a GDI object. Pens, device contexts,
brushes, etc., all have a handle of this type that iden-
tifies them within Window’s internal tracking tables.

HBITMAP LongWord A handle to a Windows bitmap object

HBRUSH LongWord A handle to a Windows brush object

HDC LongWord A handle to a device context

HENHMETAFILE LongWord A handle to a Windows enhanced metafile object

HFONT LongWord A handle to a Windows logical font object

HICON LongWord A handle to a Windows icon object

HMENU LongWord A handle to a Windows menu object

HMETAFILE LongWord A handle to a Windows metafile object

HINST THandle A handle to an instance object

HMODULE HINST A handle to a module

HPALETTE LongWord A handle to a Windows color palette

HPEN LongWord A handle to a Windows pen object

HRGN LongWord A handle to a Windows region object

HRSRC THandle A handle to a Windows resource object

HKL LongWord A handle to a keyboard layout

HFILE LongWord A handle to an open file

HCURSOR HICON; A handle to a Windows mouse cursor object

COLORREF DWORD; A Windows color reference value, containing values
for the red, green, and blue components of a color

Delphi and the Windows API � 3

C
h

a
p

te
r
1

Handles

An important concept in Windows programming is the concept of an object handle.

Many functions return a handle to an object that the function created or loaded from a

resource. Functions like CreateWindowEx return a window handle. Other functions,

like CreateFile, return a handle to an open file or, like HeapCreate, return a handle to a

newly allocated heap. Internally, Windows keeps track of all these handles, and the

handle serves as the link through the operating system between the object and the

application. Using these handles, an application can easily refer to any of these objects,

and the operating system instantly knows which object a piece of code wants to

manipulate.

Constants

The Windows API functions declare literally thousands upon thousands of different

constants to be used as parameter values. Constants for everything from color values to

return values have been defined in the Windows.pas, Types.pas, ActiveX.pas,

ShlObj.pas, ComObj.pas, and System.pas files. The constants that are defined for each

API function are listed with that function within the text. However, the Windows.pas

file may yield more information concerning the constants for any particular function,

and it is a good rule of thumb to check this Delphi source code file when using compli-

cated functions.

Strings

All Windows API functions that use strings require a pointer to a null-terminated string

type. Windows is written in C, which does not have the Pascal string type. Earlier ver-

sions of Delphi required the application to allocate a string buffer and convert the string

type to a PChar. However, since Delphi 3, we have a string conversion mechanism that

allows a string to be used as a PChar by simply typecasting it (i.e., PChar(MyString),

where MyString is declared as MyString: string). For the most part, this conversion

will work with almost all Windows API functions that require a string parameter.

Importing Windows Functions

The Windows API is huge. It defines functions for almost every kind of utility or com-

parison or action that a programmer could think of. Due to the sheer volume of

Windows API functions, some functions simply fell through the cracks and were not

imported by the Delphi source code. Since all Windows API functions are simply func-

tions exported from a DLL, importing a new Windows API function is a relatively

simple process, if the function parameters are known.

Importing a new Windows API function is exactly like importing any other function

from a DLL. For example, in earlier versions of Delphi, the BroadcastSystemMessage

function was not imported by the Delphi source code. (It is now imported and available

for use, but we’ll use this function as an example.) In order to import this function for

use within an application, it is simply declared as a function from within a DLL as:

4 � Chapter 1

TE
AM
FL
Y

Team-Fly®

function BroadcastSystemMessage(Flags: DWORD; Recipients: PDWORD;
uiMessage: UINT; wParam: WPARAM; lParam: LPARAM): Longint; stdcall;

implementation

function BroadcastSystemMessage; external user32 name 'BroadcastSystemMessage';

As long as the parameters required by the function and the DLL containing the function

are known, any Windows API function can be imported and used by a Delphi applica-

tion. It is important to note that the stdcall directive must be appended to the prototype

for the function, as this defines the standard mechanism by which Windows passes

parameters to a function on the stack.

�Note: Use the stdcall directive, appended to the end of the function

prototype, when importing Windows API functions.

Incorrectly Imported Functions

Some functions have been incorrectly imported by the Delphi source code. These

exceptions are noted in the individual function descriptions. For the most part, the

functions that have been imported incorrectly deal with the ability to pass NIL as a

value to a pointer parameter, usually to retrieve the required size of a buffer so the

buffer can be dynamically allocated to the exact length before calling the function to

retrieve the real data. In Delphi, some of these functions have been imported with

parameters defined as VAR or CONST. These types of parameters can accept a pointer

to a buffer but can never be set to NIL, thus limiting the use of the function within the

Delphi environment. As is the case with almost anything in Delphi, it is a simple matter

to fix. Simply reimport the function as if it did not exist, as outlined above. Functions

that have been imported incorrectly are identified in their individual function descrip-

tions throughout this book.

Callback Functions

Another very important concept in Windows programming is that of a callback func-

tion. A callback function is a function within the developer’s application that is never

called directly by any other function or procedure within that application. Instead, it is

called by the Windows operating system. This allows Windows to communicate

directly with the application, passing it various parameters as defined by the individual

callback function. Most of the enumeration functions require some form of application-

defined callback function that receives the enumerated information.

Individual callback functions have specific parameters that must be declared exactly by

the application. This is required so that Windows passes the correct information to the

application in the correct order. A good example of a function that uses a callback func-

tion is EnumWindows. The EnumWindows function parses through all top-level

windows on the screen, passing the handle of each window to an application-defined

callback function. This continues until all top-level windows have been enumerated or

Delphi and the Windows API � 5

C
h

a
p

te
r
1

the callback function returns FALSE. The callback function used by EnumWindows is

defined as:

EnumWindowsProc(

hWnd: HWND; {a handle to a top-level window}

lParam: LPARAM {the application-defined data}

): BOOL; {returns TRUE or FALSE}

A function matching this function prototype is created within the application, and a

pointer to the function is passed as one of the parameters to the EnumWindows func-

tion. The Windows operating system calls this callback function for each top-level

window, passing the window’s handle in one of the callback function’s parameters. It is

important to note that the stdcall directive must be appended to the prototype for the

callback function, as this defines the standard mechanism by which Windows passes

parameters to a function on the stack. For example, the above callback function would

be prototyped as:

EnumWindowsProc(hWnd: HWND; lParam: LPARAM); stdcall;

Without the stdcall directive, Windows will not be able to access the callback function.

This powerful software mechanism, in many cases, allows an application to retrieve

information about the system that is only stored internally by Windows and would oth-

erwise be unreachable. For a complete example of callback function usage, see the

EnumWindows function and many other functions throughout the book.

Function Parameters

The vast majority of Windows API functions simply take the static parameters handed

to them and perform some function based on the value of the parameters. However,

certain functions return values that must be stored in a buffer, and that buffer is passed

to the function in the form of a pointer. In most cases, when the function description

specifies that it returns some value in a buffer, null-terminated string buffer, or pointer

to a data structure, these buffers and data structures must be allocated by the applica-

tion before the function is called.

In many cases, a parameter may state that it can contain one or more values from some

table. These values are defined as constants, and they are combined using the Boolean

OR operator. The actual value passed to the function usually identifies a bitmask,

where the state of each bit has some significance to the function. This is why the con-

stants can be combined using Boolean operations. For example, the CreateWindowEx

function has a parameter called dwStyle which can accept a number of constants com-

bined with the Boolean OR operator. To pass more than one constant to the function,

the parameter would be set to something like “WS_CAPTION or WS_CHILD or

WS_CLIPCHILDREN.” This would create a child window that includes a caption bar

and would clip around its child windows during painting.

Conversely, when a function states that it returns one or more values that are defined as

specific constants, the return value can be combined with one of the constants using the

Boolean AND operator to determine if that constant is contained within the return

6 � Chapter 1

value. If the result of the combination equals the value of the constant, then that con-

stant is included in the return value.

Unicode

Originally, software only needed a single byte to define a character within a character

set. This allowed for up to 256 characters, which was more than plenty for the entire

alphabet, numbers, punctuation symbols, and common mathematical symbols.

However, due to the shrinking of the global community and the subsequent internation-

alization of Windows and Windows software, a new method of identifying characters

was needed. Many languages have well over 256 characters used for writing, much

more than a single byte can describe. Therefore, Unicode was invented. A Unicode

character is 16 bits long and can therefore identify 65,535 characters within a lan-

guage’s alphabet. To accommodate the new character set type, many Windows API

functions come in two flavors: ANSI and Unicode. When browsing the Windows.pas

source code, many functions are defined with an A or W appended to the end of the

function name, identifying them as an ANSI function or Wide character (Unicode)

function. The functions within this book cover only the ANSI functions. However, the

Unicode functions usually differ only in the type of string information passed to a func-

tion, and the text within this book should adequately describe the Unicode function’s

behavior.

Delphi vs. the Windows API

The Delphi development team did a world-class job of encapsulating the vast majority

of important Windows API functionality into the VCL. However, due to the vastness of

the Windows API, it would be impossible and impractical to wrap every API function

in an Object Pascal object. To achieve certain goals or solve specific problems, a devel-

oper may be forced to use lower-level Windows API functions that are simply not

encapsulated by a Delphi object. It may also be necessary to extend the functionality of

a Delphi object, and if this object encapsulates some part of the Windows API, it will

be the API that the developer will likely have to use to extend the functionality by any

great amount.

Indeed, there are literally hundreds of APIs out there that dramatically extend Win-

dows’ functionality, and due to the sheer numbers of API functions and the ever

changing, ever expanding functionality being introduced by Microsoft, it would be

nearly impossible to actively import every last function from every available API.

Therefore, it is important that the well-prepared and capable Delphi programmer is

familiar with hardcore Windows programming, as it is highly likely that you’ll be

called upon sometime in your Delphi career to make use of some Windows API func-

tionality that is not encapsulated by the VCL.

There may even be situations where it is impractical to use the Delphi components that

encapsulate Windows functionality. The VCL makes Windows programming easy, but

by its very nature, Delphi applications tend to be a minimum 350 KB in size.

Bypassing the VCL and using direct Windows API calls, on the other hand, can yield a

Delphi and the Windows API � 7

C
h

a
p

te
r
1

Delphi application as small as 10 KB. Every situation is different, and fortunately, as

Delphi programmers, we have a lot of flexibility in this area. Using direct Windows

API calls may not always be necessary, but when it is, it’s good to know that we have

that option available to us.

8 � Chapter 1

Chapter 2

Window Movement FunctionsWindow Movement Functions

The Win32 API includes a group of functions that allow a developer to programmati-

cally control the size and positioning of windows. While a window can be moved or

resized easily using its Left, Top, Width, or Height properties, these functions give the

developer extended control above and beyond what Delphi encapsulates.

Z-order

Many of the window movement functions are concerned with modifying the z-order of

a window. The z-order of a window refers to the order in which the windows overlap

each other. It is based on the z-axis, which can be thought of as an imaginary line run-

ning into the screen at a 90-degree angle. The windows are stacked according to their

position on this z-axis. Those windows that are said to be closer to the top of the

z-order overlap and appear on top of other windows, while those that are overlapped

are said to be closer to the bottom of the z-order. Figure 2-1 illustrates this concept.

Windows maintains the z-order of all windows in a single list. A window’s z-order is

determined by the order in which it appeared on the screen in relation to the other win-

dows. When a window is created, it is placed above the previously created windows in

the z-order, so the first window created is at the bottom of the z-order and the last win-

dow created is at the top. However, the window’s position in the z-order list is

dependent upon its type. All windows can be classified as follows:

9

Figure 2-1:

The window

z-order

� Topmost windows: A topmost window overlaps all other non-topmost windows.

This is true even if it is not the active or foreground window. This type of window

contains the WS_EX_TOPMOST extended style and appears in the z-order before

all non-topmost windows.

� Top-level windows: A top-level window is any normal window that is not a child

window. This type of window does not contain the WS_EX_TOPMOST extended

style, and it is always overlapped by and appears below any topmost window in the

z-order.

� Child windows: A child window contains the WS_CHILD style. Child windows

have a z-order amongst themselves within a parent window, but otherwise they

reflect the same z-order position as their parent.

When a window is activated, it is brought to the top of the z-order of all windows of

the same type, bringing any child windows with it. If a window owns any other win-

dows, those windows are positioned above the activated window in the z-order so they

are always displayed above their owners.

Special Effects

Imaginative utilization of the window movement functions can give an application that

professional touch. For example, if an application occupies a relatively small amount of

screen space but has floating toolbars or other pop-up windows that are constantly

open, a developer can use the window movement functions to cause the toolbar win-

dows to move with the main window when the user drags it to a new location. This is a

nice effect at the cost of only a few lines of code. The following example demonstrates

this technique.

■ Listing 2-1: Moving a toolbar with its owner window

unit WinMoveU;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
Unit2;

type
TForm1 = class(TForm)
procedure FormShow(Sender: TObject);

private
{ Private declarations }
{we must override the WM_MOVE message}
procedure WMMove(var Msg: TWMMove); message WM_MOVE;

public
{ Public declarations }

end;

var
Form1: TForm1;

10 � Chapter 2

implementation

{$R *.DFM}

procedure TForm1.FormShow(Sender: TObject);
begin
{show the toolbar window}
Form2.Show;

end;

{this is fired every time the main window is moved}
procedure TForm1.WMMove(var Msg: TWMMove);
begin
{if the toolbar window exists...}
if Form2<>NIL then
{...move the toolbar window alongside the main window.}
MoveWindow(Form2.Handle, Form1.Left+Form1.Width+5, Form1.Top, Form2.Width,

Form2.Height, TRUE);
end;

end.

Delphi vs. the Windows API

In most cases, the average Delphi developer may never have a need for these functions.

It is easy enough to move and resize a Delphi form by manipulating the left, right,

width, and height properties. The TForm object even provides methods that present the

same functionality as CascadeWindows, TileWindows, and other MDI child window

manipulations. However, there may be times when using the VCL is not practical or is

impossible (such as when an application is created using nothing but Windows API

function calls), in which case you have to use these functions. You may also be dealing

with windows provided by other applications or DLLs, and these functions are the only

way to move and resize a window when all you have is a window handle. Plus, several

of these functions provide extended functionality that is not available in TForm meth-

ods or other Delphi functions and procedures.

Window Movement Functions � 11

C
h

a
p

te
r
2

Figure 2-2:

The main

window and

its toolbar

Window Movement Functions

The following window movement functions are covered in this chapter.

Table 2-1: Window movement functions

Function Description

AdjustWindowRect Calculates the window size based on the desired client area size.

AdjustWindowRectEx Calculates the size of a window with an extended style based on
the desired client area size.

BeginDeferWindowPos Begins a process of moving multiple windows simultaneously.

BringWindowToTop Brings the specified window to the top of the z-order.

CascadeWindows Arranges the specified windows in a cascading format.

CloseWindow Minimizes the specified window.

DeferWindowPos Defines a new size and position for the specified window.

EndDeferWindowPos Ends the process of moving multiple windows simultaneously.

GetWindowPlacement Retrieves the show state and positioning of the specified window.

MoveWindow Moves a window.

OpenIcon Restores a window from a minimized state.

SetWindowPlacement Sets the show state and positioning of the specified window.

SetWindowPos Changes the size, position, and z-order of the specified window.

ShowOwnedPopups Toggles the visibility of all popups owned by the specified window.

ShowWindow Displays a window.

ShowWindowAsync Displays a window and immediately returns to the calling function.

TileWindows Arranges the specified windows in a tiled format.

AdjustWindowRect Windows.pas

Syntax

AdjustWindowRect(

var lpRect: TRect; {a pointer to the client rectangle structure}

dwStyle: DWORD; {window style flags}

bMenu: BOOL {menu flag}

): BOOL; {returns TRUE or FALSE}

Description

AdjustWindowRect calculates a window rectangle size based on the specified client

rectangle size in lpRect. The window rectangle will include the size of the border, cap-

tion bar, and menu bar. This rectangle can be used with the CreateWindow or

CreateWindowEx functions to create a window with the exact desired client area size.

The returned coordinates are in terms of top-left and bottom-right screen coordinates,

but the CreateWindow function needs these parameters in terms of a top and left coor-

dinate and a window width and height. Therefore, the developer must subtract the left

coordinate from the right to get the appropriate width and subtract the top coordinate

from the bottom to get the appropriate height.

12 � Chapter 2

Parameters

lpRect: The address of a TRect structure that contains the top-left and bottom-right

coordinates of the desired client area, relative to the screen. If this function succeeds,

this information will be modified to contain the top-left and bottom-right coordinates of

a window rectangle containing the specified client area, also relative to the screen.

dwStyle: A 32-bit number representing the window style used by the specified window.

bMenu: If this window has a menu, this parameter should be TRUE; otherwise it

should be FALSE.

Return Value

If this function succeeds, it returns TRUE; otherwise it returns FALSE. To get extended

error information, call the GetLastError function.

See Also

AdjustWindowRectE, CreateWindow*, CreateWindowEx*

Example

■ Listing 2-2: Creating a window with a client area 300 pixels high and 300 pixels wide

procedure TForm1.CreateParams(var Params: TCreateParams);
var

TheRect: TRect; // stores our rectangle coordinates
begin

{fill in the standard parameters}
inherited CreateParams(Params);

{our window will start at coordinates 100,100 and our client
rectangle will be 300 pixels high and 300 pixels wide}
TheRect.Left:=100;
TheRect.Top:=100;
TheRect.Right:=400;
TheRect.Bottom:=400;

{adjust our rectangular coordinates to get a window with a
300 by 300 pixel client area}
AdjustWindowRect(TheRect, Params.Style, FALSE);

{the results from AdjustWindowRect are in terms of exact coordinates,
but the CreateWindowEx function needs this in terms of a top and left
coordinate and a width and height measurement}
Params.X:=TheRect.Left;
Params.Y:=TheRect.Top;
Params.Width:=TheRect.Right-TheRect.Left; // determine window width
Params.Height:=TheRect.Bottom-TheRect.Top; // determine window height

end;

Window Movement Functions � 13

C
h

a
p

te
r
2

An asterisk (*) indicates the function is covered in The Tomes of

Delphi: Win32 Core API — Windows 2000 Edition.

AdjustWindowRectEx Windows.pas

Syntax

AdjustWindowRectEx(

var lpRect: TRect; {a pointer to the client rectangle structure}

dwStyle: DWORD; {window style flags}

bMenu: BOOL {menu flag}

dwExStyle: DWORD {extended style flags}

): BOOL; {returns TRUE or FALSE}

Description

This calculates a window rectangle size based on the specified client rectangle size in

lpRect. The window rectangle will include the size of the border, caption bar, and menu

bar. This rectangle can be used with the CreateWindow or CreateWindowEx functions

to create a window with the exact desired client area size. The returned coordinates are

in terms of top-left and bottom-right screen coordinates, but the CreateWindow func-

tion needs these parameters in terms of a top and left coordinate and a window width

and height. Therefore, the developer must subtract the left coordinate from the right to

get the appropriate width and subtract the top coordinate from the bottom to get the

appropriate height. This is functionally equivalent to AdjustWindowRect.

Parameters

lpRect: The address of a TRect structure that contains the top-left and bottom-right

coordinates of the desired client area, relative to the screen. If this function succeeds,

this information will be modified to contain the top-left and bottom-right coordinates of

a window rectangle containing the specified client area, also relative to the screen.

dwStyle: A 32-bit number representing the window style used by the specified window.

bMenu: If this window will have a menu, this parameter should be TRUE; otherwise, it

should be FALSE.

14 � Chapter 2

Figure 2-3:

The result of

the Adjust-

WindowRect

function on

the window

TE
AM
FL
Y

Team-Fly®

dwExStyle: A 32-bit number representing the extended window style used by the speci-

fied window.

Return Value

If this function succeeds, it returns TRUE; otherwise, it returns FALSE. To get

extended error information, call the GetLastError function.

See Also

AdjustWindowRect, CreateWindowEx*

Example

■ Listing 2-3: Giving an extended window style window a client area of 300 x 300 pixels

procedure TForm1.CreateParams(var Params: TCreateParams);
var

TheRect: TRect; // stores our rectangle coordinates
begin

{fill in the standard parameters}
inherited CreateParams(Params);

{our window will start at coordinates 100,100 and our client
rectangle will be 300 pixels high and 300 pixels wide}
TheRect.Left:=100;
TheRect.Top:=100;
TheRect.Right:=400;
TheRect.Bottom:=400;

{adjust our rectangular coordinates to get a window with a
300 by 300 pixel client area}
AdjustWindowRectEx(TheRect, Params.Style, FALSE, Params.ExStyle);

{the results from AdjustWindowRectEx are in terms of exact coordinates,
but the CreateWindowEx function needs this in terms of a top and left
coordinate and a width and height measurement}
Params.X:=TheRect.Left;
Params.Y:=TheRect.Top;
Params.Width:=TheRect.Right-TheRect.Left; // determine window width
Params.Height:=TheRect.Bottom-TheRect.Top; // determine window height

end;

BeginDeferWindowPos Windows.pas

Syntax

BeginDeferWindowPos(

nNumWindows: Integer {the number of windows to be moved}

): HDWP; {returns a handle to a position structure}

Description

This is the first function in a series of functions used to reposition and resize multiple

windows simultaneously with a minimum of screen refresh. It allocates memory to an

Window Movement Functions � 15

C
h

a
p

te
r
2

internal structure that tracks the target position and size for the windows to be modi-

fied. The DeferWindowPos function fills this structure with information on the new

size and position for each window. The EndDeferWindowPos then uses the information

to move and resize the windows simultaneously. The screen is not updated until the

EndDeferWindowPos function is called.

Parameters

nNumWindows: Specifies the number of windows that will have position information

stored in the multiple window position structure. The DeferWindowPos function can

increase the size of this structure if necessary, but if there is not enough memory to

increase the size, the entire sequence is failed.

Return Value

If this function succeeds, it returns a handle to the multiple window position structure;

otherwise, it returns zero.

See Also

DeferWindowPos, EndDeferWindowPos, GetWindowPlacement, MoveWindow,

SetWindowPlacement, SetWindowPos, ShowWindow, WM_MOVE, WM_SIZE,

WM_WINDOWPOSCHANGED, WM_WINDOWPOSCHANGING

Example

■ Listing 2-4: Repositioning multiple windows

procedure TForm1.FormShow(Sender: TObject);
begin

{display the other two forms}
Form2.Show;
Form3.Show;

end;

procedure TForm1.Button1Click(Sender: TObject);
var

WindowPosInfo: HDWP; // holds the internal window position structure
begin

{allocate memory for moving three windows}
WindowPosInfo:=BeginDeferWindowPos(3);

{set up the first window}
WindowPosInfo:=DeferWindowPos(WindowPosInfo, Form1.Handle, HWND_NOTOPMOST,

50,50,400,100,SWP_SHOWWINDOW);

{set up the second window}
WindowPosInfo:=DeferWindowPos(WindowPosInfo, Form2.Handle, HWND_NOTOPMOST,

50,150,400,100,SWP_SHOWWINDOW);

{set up the third window}
WindowPosInfo:=DeferWindowPos(WindowPosInfo, Form3.Handle, HWND_NOTOPMOST,

50,250,400,100,SWP_SHOWWINDOW);

{complete the sequence and reposition the windows}

16 � Chapter 2

EndDeferWindowPos(WindowPosInfo);
end;

BringWindowToTop Windows.pas

Syntax

BringWindowToTop(

hWnd: HWND {a handle to a window}

): BOOL; {returns TRUE or FALSE}

Description

This function will bring the specified window to the top of its relative z-order, bringing

it in front of other windows in the same z-order (i.e., a child window is in front of other

child windows, a top-level window is in front of other top-level windows, and a top-

most window is in front of other topmost windows). If the window is a top-level or

topmost window, it will be activated, but it will not be restored from a minimized state.

This function cannot be used to make a window a topmost window. An application

should call SetForegroundWindow to make itself the foreground application.

Parameters

hWnd: The handle of the window to bring to the top of the z-order.

Return Value

If this function succeeds, it returns TRUE; otherwise, it returns FALSE. To get

extended error information, call the GetLastError function.

See Also

EnableWindow, IsWindowVisible, SetActiveWindow, SetFocus,

SetForegroundWindow, SetWindowPos, WM_ENABLE, WM_SETFOCUS

Window Movement Functions � 17

C
h

a
p

te
r
2

Figure 2-4:

The

repositioned

windows

Example

■ Listing 2-5: Rearranging the z-order of child windows

procedure TForm1.Button1Click(Sender: TObject);
begin

{bring Panel1 to the top of the child window z-order}
BringWindowToTop(Panel1.Handle);

end;

CascadeWindows Windows.pas

Syntax

CascadeWindows(

hwndParent: HWND; {a handle to the parent window}

wHow: UINT; {control flags}

lpRect: PRect; {rectangular area to arrange windows in}

cKids: UINT; {the number of windows to arrange}

lpKids: Pointer {the address of an array of window handles}

): WORD; {returns the number of windows arranged}

Description

This function arranges the windows associated by the handles in the lpKids array, or

the child windows of the specified window, by cascading them.

Parameters

hwndParent: A handle to the parent window. If this parameter is zero, the desktop win-

dow is used as the parent window. If this is being used to cascade MDI child windows,

this parameter should be set to the ClientHandle property of the particular form.

wHow: This can be set to MDITILE_SKIPDISABLED to bypass cascading any dis-

abled child windows. If this parameter is set to zero, all child windows are cascaded.

lpRect: A pointer to a TRect structure describing a rectangular area in screen coordi-

nates in which the windows are arranged. If this parameter is NIL, the client area of the

parent window is used.

18 � Chapter 2

Figure 2-5:

The

rearranged

z-order

cKids: Specifies the number of elements in the lpKids array. If the lpKids parameter is

NIL, this parameter is ignored.

lpKids: A pointer to an array of window handles identifying the windows to be

arranged. Specifying NIL for this parameter will arrange all of the child windows of

the parent window.

Return Value

If the function succeeds, it returns the number of windows that were arranged; other-

wise, it returns zero.

See Also

BeginDeferWindowPos, DeferWindowPos, EndDeferWindowPos, MoveWindow,

SetWindowPlacement, TileWindows, WM_MDICASCADE, WM_MDITILE

Example

■ Listing 2-6: Cascading MDI child windows

procedure TForm1.Cascade1Click(Sender: TObject);
begin

{this will tile all of the MDI child windows except the one that is disabled}
CascadeWindows(Form1.ClientHandle,MDITILE_SKIPDISABLED,nil,0,nil);

end;

CloseWindow Windows.pas

Syntax

CloseWindow(

hWnd: HWND {a handle to a window}

): BOOL; {returns TRUE or FALSE}

Description

CloseWindow minimizes the specified window but does not destroy it.

Window Movement Functions � 19

C
h

a
p

te
r
2

Figure 2-6:

Cascaded MDI

child windows

Parameters

hWnd: The handle of the window to be minimized.

Return Value

If this function succeeds, it returns TRUE; otherwise, it returns FALSE. To get

extended error information, call the GetLastError function.

See Also

DestroyWindow, IsIconic, IsWindowVisible, IsZoomed, OpenIcon, ShowWindow,

WM_SIZE

Example

■ Listing 2-7: CloseWindow example using OpenIcon and IsIconic

{this continually minimizes and restores the form}
procedure TForm1.Timer1Timer(Sender: TObject);
begin
{if our form is minimized...}
if IsIconic(Form1.Handle) then

{...restore it...}
OpenIcon(Form1.Handle)

else
{...otherwise minimize it}
CloseWindow(Form1.Handle);

end;

DeferWindowPos Windows.pas

Syntax

DeferWindowPos(

hWinPosInfo: HDWP; {the handle to a position structure}

hWnd: HWND; {the handle of a window to position}

hWndInsertAfter: HWND; {the handle of the preceding window}

X: Integer; {the horizontal coordinate}

Y: Integer; {the vertical coordinate}

CX: Integer; {the width, in pixels}

CY: Integer; {the height, in pixels}

uFlags: UINT {size and position flags}

): HDWP; {returns a handle to a position structure}

Description

This function updates the specified multiple window position structure for the new size

and position of the indicated window. Use the BeginDeferWindowPos function to allo-

cate memory for this structure. The DeferWindowPos function can increase the size of

this structure if necessary, but if there is not enough memory for the increased size, the

entire sequence fails. When the EndDeferWindowPos function is called, it uses this

structure to move and resize multiple windows simultaneously. The screen is not

refreshed until after the EndDeferWindowPos function is completed.

20 � Chapter 2

Note that owned windows of a topmost window are also made topmost so that they are

displayed above their owner, but owner windows of the specified window are not

changed. Thus, a non-topmost window can own a topmost window, but a topmost win-

dow cannot own a non-topmost window. If a topmost window is repositioned to a

non-topmost window, its owned windows are also changed to non-topmost.

Parameters

hWinPosInfo: The handle to the multiple window position structure that was returned

by BeginDeferWindowPos or the last call to DeferWindowPos.

hWnd: The handle of the window to be moved or resized.

hWndInsertAfter: Identifies the window that will precede the repositioned window in

the z-order. This is either a window handle or a value from Table 2-2. This parameter is

ignored if the SWP_NOZORDER flag is set in the Flags parameter. If this parameter is

set to zero, the window will be placed at the top of the z-order. If a window’s z-order

position is placed above all other topmost windows, that window becomes a topmost

window. This has the same effect as specifying the HWND_TOPMOST flag for this

parameter.

X: The horizontal coordinate of the window’s upper-left corner. If this is a child win-

dow, the coordinates are relative to the parent window’s client area.

Y: The vertical coordinate of the window’s upper-left corner. If this is a child window,

the coordinates are relative to the parent window’s client area.

CX: The window’s new width, in pixels.

CY: The window’s new height, in pixels.

uFlags: Specifies a combination of values from Table 2-3 that will affect the size and

position of the window.

Return Value

If this function succeeds, it returns a handle to the updated multiple window position

structure. This structure could be different from the one passed to the function and

should be used in subsequent calls to DeferWindowPos and EndDeferWindowPos. Oth-

erwise, this function returns zero. If the function fails, the application should abandon

the window positioning operation and should not call EndDeferWindowPos.

See Also

BeginDeferWindowPos, EndDeferWindowPos, GetWindowPlacement, MoveWindow,

SetWindowPlacement, SetWindowPos, ShowWindow, WM_MOVE, WM_SIZE,

WM_WINDOWPOSCHANGED, WM_WINDOWPOSCHANGING

Example

Please see Listing 2-4 under BeginDeferWindowPos.

Window Movement Functions � 21

C
h

a
p

te
r
2

Table 2-2: DeferWindowPos hWndInsertAfter values

Value Description

HWND_BOTTOM Places the window at the bottom of the z-order. If this win-
dow was a topmost window, it loses its topmost status and is
placed below all other windows.

HWND_NOTOPMOST Places the window above all non-topmost windows but
behind all topmost windows. If the window is already a
non-topmost window, this flag has no effect.

HWND_TOP Places the window at the top of the z-order.

HWND_TOPMOST Places the window above all non-topmost windows. It will
retain its topmost position even when deactivated.

Table 2-3: DeferWindowPos uFlags values

Value Description

SWP_DRAWFRAME Draws the frame defined in the window’s class description
around the window.

SWP_FRAMECHANGED Causes a WM_NCCALCSIZE message to be sent to the win-
dow, even if the window size is not changing.

SWP_HIDEWINDOW Hides the window.

SWP_NOACTIVATE Does not activate the window. If this flag is not set, the win-
dow is activated and moved to the top of the topmost or
non-topmost group depending on the hWndInsertAfter
parameter.

SWP_NOCOPYBITS Discards the entire client area. If this flag is not set, the valid
area of the client area is saved and copied back into the client
area after all movement and positioning is completed.

SWP_NOMOVE Retains the current position, ignoring the X and Y
parameters.

SWP_NOOWNERZORDER Does not change the owner window’s position in the z-order.

SWP_NOREDRAW When this flag is set, no repainting occurs, and the application
must explicitly invalidate or redraw any parts of the window
that need to be redrawn, including the non-client area and
scroll bars.

SWP_NOREPOSITION The same as the SWP_NOOWNERZORDER flag.

SWP_NOSENDCHANGING The window will not receive WM_WINDOWPOS-
CHANGING messages.

SWP_NOSIZE Retains the current size, ignoring the CX and CY parameters.

SWP_NOZORDER Retains the current z-order, effectively causing the
WndInsertAfter parameter to be ignored.

SWP_SHOWWINDOW Displays the window.

22 � Chapter 2

EndDeferWindowPos Windows.pas

Syntax

EndDeferWindowPos(

hWinPosInfo: HDWP {the handle of a position structure}

): BOOL; {returns TRUE or FALSE}

Description

This is the last function called in a series of functions used to simultaneously move and

resize multiple windows with a minimum of screen refresh. The BeginDeferWindow-

Pos function is called first, which allocates memory for a multiple-window position

internal structure that tracks the new position and size of each window to be moved.

The DeferWindowPos function is then called for each window to be modified. The

EndDeferWindowPos function is called last. This function sends the

WM_WINDOWPOSCHANGING and WM_WINDOWPOSCHANGED messages to

each window and updates the screen only when all windows have been modified.

Parameters

hWinPosInfo: A handle to the multiple window position internal structure. This handle

is returned from the BeginDeferWindowPos and DeferWindowPos functions.

Return Value

If this function succeeds, it returns TRUE; otherwise, it returns FALSE. To get

extended error information, call the GetLastError function.

See Also

BeginDeferWindowPos, DeferWindowPos, GetWindowPlacement, MoveWindow,

SetWindowPlacement, SetWindowPos, ShowWindow, WM_MOVE, WM_SIZE,

WM_WINDOWPOSCHANGED, WM_WINDOWPOSCHANGING

Example

Please see Listing 2-4 under BeginDeferWindowPos.

GetWindowPlacement Windows.pas

Syntax

GetWindowPlacement(

hWnd: HWND; {a handle of a window}

WindowPlacement: PWindowPlacement {a pointer to a position data structure}

): BOOL; {returns TRUE or FALSE}

Description

This function retrieves the show state and the normal, minimized, and maximized posi-

tions of the specified window.

Parameters

hWnd: A handle to the window whose placement information is to be retrieved.

Window Movement Functions � 23

C
h

a
p

te
r
2

WindowPlacement: A pointer to a TWindowPlacement data structure that will receive

the show state and window placement information. This structure is defined as:

TWindowPlacement = packed record

Length: UINT; {the size of the structure in bytes}

Flags: UINT; {positioning flags}

ShowCmd: UINT; {show state flags}

ptMinPosition: TPoint; {minimized coordinates}

ptMaxPosition: TPoint; {maximized coordinates}

rcNormalPosition: TRect; {restored position coordinates}

end;

Before calling this function, the Length member must be set to SizeOf(TWindow-

Placement). The members of this structure are filled with the placement information

after this function is called. Please refer to the SetWindowPlacement function for a

description of this data structure.

Return Value

If this function succeeds, it returns TRUE; otherwise, it returns FALSE. To get

extended error information, call the GetLastError function.

See Also

SetWindowPlacement, SetWindowPos, ShowWindow

Example

Please see Listing 2-9 under SetWindowPlacement.

MoveWindow Windows.pas

Syntax

MoveWindow(

hWnd: HWND; {a handle to a window to be moved}

X: Integer; {the new horizontal coordinate}

Y: Integer; {the new vertical coordinate}

nWidth: Integer; {the new window width}

nHeight: Integer; {the new window height}

bRepaint: BOOL {the repaint flag}

): BOOL; {returns TRUE or FALSE}

Description

This function changes the position and dimensions of the specified window. If the spec-

ified window is a top-level window, the coordinates are relative to the screen. If the

specified window is a child window, coordinates are relative to the parent window’s

client area.

This function sends the following messages to the specified window: WM_WINDOW-

POSCHANGING, WM_WINDOWPOSCHANGED, WM_MOVE, WM_SIZE, and

WM_NCCALCSIZE.

24 � Chapter 2

TE
AM
FL
Y

Team-Fly®

Parameters

hWnd: A handle to the window to be modified.

X: The new horizontal coordinate for the upper-left corner of the window.

Y: The new vertical coordinate for the upper-left corner of the window.

nWidth: Specifies the new width of the window.

nHeight: Specifies the new height of the window.

bRepaint: Determines how this window will be repainted. If this parameter is TRUE,

the MoveWindow function calls the UpdateWindow function. This sends a

WM_PAINT message to the window, causing it to be repainted immediately after the

window is moved. If this parameter is FALSE, no repainting will occur, including the

entire non-client area and any part of the parent window uncovered by a child window.

The application must explicitly invalidate or redraw any areas that need to be updated

as a result of the MoveWindow function. A WM_PAINT message is placed in the mes-

sage queue of the specified window, but its message loop will only dispatch the

WM_PAINT message after all other messages have been dispatched.

Return Value

If this function succeeds, it returns TRUE; otherwise, it returns FALSE.

See Also

BeginDeferWindowPos, DeferWindowPos, EndDeferWindowPos,

SetWindowPlacement, SetWindowPos

Example

■ Listing 2-8: Moving a window

var
XPos: Integer = 5; // our initial horizontal position

procedure TForm1.Timer1Timer(Sender: TObject);
begin

{increment the horizontal position}
Inc(XPos);

{move the edit box to the right}
MoveWindow(Edit1.Handle, XPos, Edit1.Top, Edit1.Width, Edit1.Height, TRUE);

end;

OpenIcon Windows.pas

Syntax

OpenIcon(

hWnd: HWND {a handle to a minimized window}

): BOOL; {returns TRUE or FALSE}

Window Movement Functions � 25

C
h

a
p

te
r
2

Description

This function restores and activates the specified minimized window. A

WM_QUERYOPEN message is sent to the window when this function is called.

Parameters

hWnd: A handle to the window to be restored and activated.

Return Value

If this function succeeds, it returns TRUE; otherwise, it returns FALSE. To get

extended error information, call the GetLastError function.

See Also

CloseWindow, DestroyWindow*, IsIconic, IsWindowVisible, IsZoomed,

ShowWindow, WM_SIZE

Example

Please see Listing 2-7 under CloseWindow.

SetWindowPlacement Windows.pas

Syntax

SetWindowPlacement(

hWnd: HWND; {a handle to a window}

WindowPlacement: PWindowPlacement {a pointer to a window placement structure}

): BOOL; {returns TRUE or FALSE}

Description

This function sets the show state and the normal, minimized, and maximized coordi-

nates of the specified window.

Parameters

hWnd: A handle to the window whose placement information is to be set.

WindowPlacement: A pointer to a TWindowPlacement data structure that contains the

show state and window placement information. This structure is defined as:

TWindowPlacement = packed record

length: UINT; {the size of the structure in bytes}

flags: UINT; {positioning flags}

showCmd: UINT; {show state flags}

ptMinPosition: TPoint; {minimized coordinates}

ptMaxPosition: TPoint; {maximized coordinates}

rcNormalPosition: TRect; {restored position coordinates}

end;

length: The size of the structure, in bytes. Before calling this function, this mem-

ber must be set to SizeOf(TWindowPlacement).

26 � Chapter 2

flags: Specifies flags that control the position of a minimized window and the

method by which the window is restored. This member can be one or more of the

flags in Table 2-4.

showCmd: Specifies the current show state of the window and can be one of the

values in Table 2-5.

ptMinPosition: The coordinates of the upper-left corner of the window when it is

minimized, stored in the members of a TPoint structure.

ptMaxPosition: The coordinates of the upper-left corner of the window when it is

maximized, stored in the members of a TPoint structure.

rcNormalPosition: The coordinates of the window in a normal, restored position,

stored in the members of a TRect structure.

Return Value

If this function succeeds, it returns TRUE; otherwise, it returns FALSE. To get

extended error information, call the GetLastError function.

See Also

GetWindowPlacement, SetWindowPos, ShowWindow

Example

■ Listing 2-9: Window placement information

const
WPF_ASYNCWINDOWPLACEMENT = $0004; // This constant is not defined in Delphi

{get the window placement}
procedure TForm1.Button1Click(Sender: TObject);
var

PlacementInfo: TWindowPlacement;
begin

{we must set the length to the size of the data structure first}
PlacementInfo.Length:=SizeOf(TWindowPlacement);

{get the window placement information}
GetWindowPlacement(Form1.Handle, @PlacementInfo);

{empty the list box}
ListBox1.Items.Clear;

{display all of the information in the window placement structure}
ListBox1.Items.Add('Length: '+IntToStr(PlacementInfo.length));
ListBox1.Items.Add('Flags: '+IntToStr(PlacementInfo.Flags));
ListBox1.Items.Add('Show Command: '+IntToStr(PlacementInfo.showCmd));
ListBox1.Items.Add('Min: '+IntToStr(PlacementInfo.ptMinPosition.X)+','+

IntToStr(PlacementInfo.ptMinPosition.Y));
ListBox1.Items.Add('Max: '+IntToStr(PlacementInfo.ptMaxPosition.X)+','+

IntToStr(PlacementInfo.ptMaxPosition.Y));
ListBox1.Items.Add('Normal position: '+

IntToStr(PlacementInfo.rcNormalPosition.Left)+','+
IntToStr(PlacementInfo.rcNormalPosition.Top)+','+
IntToStr(PlacementInfo.rcNormalPosition.Right)+','+

Window Movement Functions � 27

C
h

a
p

te
r
2

IntToStr(PlacementInfo.rcNormalPosition.Bottom));
end;

{set the window placement}
procedure TForm1.Button2Click(Sender: TObject);
var

PlacementInfo: TWindowPlacement;
begin

{we must set the length to the size of the data structure first}
PlacementInfo.Length:=SizeOf(TWindowPlacement);

{fill in the rest of the window structure members}
PlacementInfo.flags:=WPF_SETMINPOSITION;
PlacementInfo.showCmd:=SW_SHOW;
PlacementInfo.ptMinPosition.X:=100;
PlacementInfo.ptMinPosition.Y:=100;
PlacementInfo.ptMaxPosition.X:=50;
PlacementInfo.ptMaxPosition.Y:=50;
PlacementInfo.rcNormalPosition.Left:=100;
PlacementInfo.rcNormalPosition.Top:=100;
PlacementInfo.rcNormalPosition.Right:=250;
PlacementInfo.rcNormalPosition.Bottom:=250;

{set the window placement information}
SetWindowPlacement(Form1.Handle, @PlacementInfo);

end;

Table 2-4: SetWindowPlacement WindowPlacement.flags values

Value Description

WPF_ASYNCWINDOWPLACEMENT Windows 2000 or later: The system posts the request to the
message queue of the thread owning the affected window and
returns immediately.

WPF_RESTORETOMAXIMIZED The window will be maximized the next time it is restored,
regardless of whether or not it was maximized before being mini-
mized. This is valid only the next time that the window is restored
and when the SW_SHOWMINIMIZED flag is set for the showCmd
member. This does not change the default restoration behavior.

WPF_SETMINPOSITION The coordinates of the minimized window may be specified. This
flag must be included if coordinates are set in the ptMinPosition
member.

28 � Chapter 2

Figure 2-7:

Getting the

window

placement

information

Table 2-5: SetWindowPlacement WindowPlacement.showCmd values

Value Description

SW_HIDE The window is hidden and another window is activated.

SW_MINIMIZE The window is minimized and the next top-level window in the system win-
dow list is activated.

SW_RESTORE The window is activated and displayed in its original size and position.

SW_SHOW The window is activated and displayed in its current size and position.

SW_SHOWDEFAULT The window is shown based on the wShowWindow member of the
TStartupInfo structure passed to the CreateProcess function by the pro-
gram that started the application. This is used to set the initial show state of
an application’s main window. This flag should be used when showing the
window for the first time if the application can be run from a shortcut. This
flag will cause the window to be shown using the Run settings under the
shortcut properties.

SW_SHOWMAXIMIZED The window is activated and displayed in a maximized state.

SW_SHOWMINIMIZED The window is activated and displayed as an icon.

SW_SHOWMINNOACTIVE The window is displayed as an icon. The active window remains active.

SW_SHOWNA The window is displayed in its current state. The active window remains
active.

SW_SHOWNOACTIVE The window is displayed in its most recent state. The active window
remains active.

SW_SHOWNORMAL This is the same as SW_RESTORE.

SetWindowPos Windows.pas

Syntax

SetWindowPos(

hWnd: HWND; {a handle to a window}

hWndInsertAfter: HWND; {a window handle or positioning flag}

X: Integer; {the horizontal position}

Y: Integer; {the vertical position}

CX: Integer; {the width of the window}

CY: Integer; {the height of the window}

uFlags: UINT {size and positioning flags}

): BOOL; {returns TRUE or FALSE}

Description

This function changes the size, position, and z-order of the specified window. The

z-order of child, pop-up, and top-level windows is determined by the order in which

these windows appeared on the screen. The topmost window is the first window in the

z-order.

Note that owned windows of a topmost window are also made topmost so that they are

displayed above their owner, but owner windows of the specified window are not

changed. Thus, a non-topmost window can own a topmost window, but a topmost

Window Movement Functions � 29

C
h

a
p

te
r
2

window cannot own a non-topmost window. If a topmost window is repositioned to a

non-topmost window, its owned windows are also changed to non-topmost.

Parameters

hWnd: The handle of the window to be moved or resized.

hWndInsertAfter: Identifies the window that will precede the repositioned window in

the z-order. This is either a window handle or a value from Table 2-6. This parameter is

ignored if the SWP_NOZORDER flag is set in the uFlags parameter. If this parameter

is set to zero, the window will be placed at the top of the z-order. If a window’s z-order

position is placed above all other topmost windows, that window becomes a topmost

window. This has the same effect as specifying the HWND_TOPMOST flag for this

parameter.

X: The horizontal coordinate of the window’s upper-left corner. If this is a child win-

dow, the coordinates are relative to the parent window’s client area.

Y: The vertical coordinate of the window’s upper-left corner. If this is a child window,

the coordinates are relative to the parent window’s client area.

CX: The window’s new width, in pixels.

CY: The window’s new height, in pixels.

uFlags: Specifies a combination of values from Table 2-7 that will affect the size and

position of the window.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call the GetLastError function.

See Also

BeginDeferWindowPos, DeferWindowPos, EndDeferWindowPos, MoveWindow,

SetActiveWindow, SetForegroundWindow, SetWindowPlacement, ShowWindow,

WM_MOVE, WM_SIZE

Example

■ Listing 2-10: Setting the window position

procedure TForm1.Button1Click(Sender: TObject);
begin

{resize the memo so that it takes up the entire client area below the button}
SetWindowPos(Memo1.Handle,0,0,Button1.Top+Button1.Height+5,Form1.ClientWidth,

Form1.ClientHeight-(Button1.Top+Button1.Height+5),
SWP_SHOWWINDOW);

end;

30 � Chapter 2

Table 2-6: SetWindowPos hWndInsertAfter values

Value Description

HWND_BOTTOM Places the window at the bottom of the z-order. If this window was a top-
most window, it loses its topmost status and is placed below all other
windows.

HWND_NOTOPMOST Places the window above all non-topmost windows but behind all top-
most windows. If the window is already a non-topmost window, this flag
has no effect.

HWND_TOP Places the window at the top of the z-order.

HWND_TOPMOST Places the window above all non-topmost windows. It will retain its top-
most position even when deactivated.

Table 2-7: SetWindowPos uFlags values

Value Description

SWP_DRAWFRAME Draws the frame defined in the window’s class description around the
window.

SWP_FRAMECHANGED Causes a WM_NCCALCSIZE message to be sent to the window, even if
the window size is not changing.

SWP_HIDEWINDOW Hides the window.

SWP_NOACTIVATE Does not activate the window. If this flag is not set, the window is acti-
vated and moved to the top of the topmost or non-topmost group,
depending on the hWndInsertAfter parameter.

SWP_NOCOPYBITS Discards the entire client area. If this flag is not set, the valid area of the
client area is saved and copied back into the client area after all movement
and positioning is completed.

SWP_NOMOVE Retains the current position, ignoring the X and Y parameters.

SWP_NOOWNERZORDER Does not change the owner window’s position in the z-order.

SWP_NOREDRAW When this flag is set, no repainting occurs, and the application must explic-
itly invalidate or redraw any parts of the window that need to be redrawn,
including the non-client area and scroll bars.

SWP_NOREPOSITION The same as the SWP_NOOWNERZORDER flag.

SWP_NOSENDCHANGING The window will not receive WM_WINDOWPOSCHANGING messages.

SWP_NOSIZE Retains the current size, ignoring the CX and CY parameters.

Window Movement Functions � 31

C
h

a
p

te
r
2

Figure 2-8:

The

repositioned

memo

Value Description

SWP_NOZORDER Retains the current z-order, effectively causing the WndInsertAfter param-
eter to be ignored.

SWP_SHOWWINDOW Displays the window.

ShowOwnedPopups Windows.pas

Syntax

ShowOwnedPopups(

hWnd: HWND; {a handle to a window}

fShow: BOOL {the window visibility flag}

): BOOL; {returns TRUE or FALSE}

Description

This function will show or hide all pop-up windows owned by the specified window.

Pop-up windows will only be shown if hidden by a previous call to ShowOwned-

Popups (a window hidden with the ShowWindow function will not be displayed when

ShowOwnedPopups is called).

Parameters

hWnd: A handle to the window owning the pop-ups to be shown.

fShow: Determines if pop-up windows are shown or hidden. A value of TRUE displays

all hidden pop-up windows owned by the specified window. A value of FALSE will

hide all visible pop-up windows.

Return Value

If this function succeeds, it returns TRUE; otherwise, it returns FALSE. To get

extended error information, call the GetLastError function.

See Also

IsWindowVisible, SetWindowPos, ShowWindow

Example

■ Listing 2-11: Toggling the show state of owned pop-up windows

This code belongs in the unit for the main form:

var
Form1: TForm1;
ShowIt: Boolean; // our toggle variable

implementation

uses Unit2;

{$R *.DFM}

procedure TForm1.Button1Click(Sender: TObject);

32 � Chapter 2

begin
{toggle our show state variable}
ShowIt:=not ShowIt;

{show or hide all pop-ups owned by the main form}
ShowOwnedPopups(Form1.Handle, ShowIt);

end;

procedure TForm1.FormShow(Sender: TObject);
begin

{show the second form when the program starts}
Form2.Show;

end;

initialization
{initialize our toggle variable}
ShowIt:=TRUE;

This code goes in the unit for Form2:

uses Unit2;

{we must override CreateParams to set this window's owner}
procedure TForm2.CreateParams(var Params: TCreateParams);
begin

{fill in the default creation parameters}
inherited CreateParams(Params);

{set this form's owner to the main form}
Params.WndParent:=Form1.Handle;

end;

ShowWindow Windows.pas

Syntax

ShowWindow(

hWnd: HWND; {a handle to a window}

nCmdShow: Integer {the show state of the window}

): BOOL; {returns TRUE or FALSE}

Description

This function sets the specified window’s display state. When displaying an applica-

tion’s main window, the developer should specify the SW_SHOWDEFAULT flag. This

will display the window as instructed by application startup information. For example,

if a Windows 95 shortcut has its properties set to run the application minimized, the

SW_SHOWDEFAULT flag will show the window minimized. Without this flag, these

shortcut properties are ignored.

Parameters

hWnd: A handle to the window to be shown.

nCmdShow: Specifies how the window will be shown and can be one of the values

from the following table.

Window Movement Functions � 33

C
h

a
p

te
r
2

Return Value

If the function succeeds and the window was previously visible, it returns TRUE. If the

function fails or the window was previously hidden, it returns FALSE.

See Also

CreateProcess*, SetWindowPlacement, SetWindowPos, ShowOwnedPopups,

ShowWindowAsync, WM_SHOWWINDOW

Example

■ Listing 2-12: Showing a window based on shortcut properties

const
{Delphi 6 does not define all available constants}
SW_FORCEMINIMIZE = 11;

procedure TForm1.FormCreate(Sender: TObject);
begin

{this example is run from a shortcut, and this line will
show the window based on the shortcut properties}
ShowWindow(Form1.Handle, SW_SHOWDEFAULT);

end;

Table 2-8: ShowWindow nCmdShow values

Value Description

SW_FORCEMINIMIZE Windows 2000/XP only: Minimizes a window even if the owning thread is
hung.

SW_HIDE The window is hidden and another window is activated.

34 � Chapter 2

Figure 2-9:

The shortcut

settings start

this

application

maximized

TE
AM
FL
Y

Team-Fly®

Value Description

SW_MINIMIZE The window is minimized and the next top-level window in the system win-
dow list is activated.

SW_RESTORE The window is activated and displayed in its original size and position.

SW_SHOW The window is activated and displayed in its current size and position.

SW_SHOWDEFAULT The window is shown based on the wShowWindow member of the
TStartupInfo structure passed to the CreateProcess function by the program
that started the application. This is used to set the initial show state of an
application’s main window. This flag should be used when showing the win-
dow for the first time if the application can be run from a shortcut. This flag
will cause the window to be shown using the Run settings under the short-
cut properties.

SW_SHOWMAXIMIZED The window is activated and displayed in a maximized state.

SW_SHOWMINIMIZED The window is activated and displayed as an icon.

SW_SHOWMINNOACTIVE The window is displayed as an icon. The active window remains active.

SW_SHOWNA The window is displayed in its current state. The active window remains
active.

SW_SHOWNOACTIVE The window is displayed in its most recent state. The active window
remains active.

SW_SHOWNORMAL This is the same as SW_RESTORE.

ShowWindowAsync Windows.pas

Syntax

ShowWindowAsync(

hWnd: HWND; {a handle to a window}

nCmdShow: Integer {the show state of the window}

): BOOL; {returns TRUE or FALSE}

Description

This function is similar to ShowWindow. Its purpose is to set the display state of a

window created by a different thread. This function posts a WM_SHOWWINDOW

message to the message queue of the specified window. This allows the calling applica-

tion to continue execution if the application associated with the specified window is

hung.

Parameters

hWnd: A handle to the window to be shown.

nCmdShow: Specifies how the window will be shown and can be one of the values

from the following table.

Return Value

If the function succeeds and the window was previously visible, it returns TRUE. If the

function fails or the window was previously hidden, it returns FALSE.

Window Movement Functions � 35

C
h

a
p

te
r
2

See Also

CreateProcess*, SetWindowPlacement, SetWindowPos, ShowOwnedPopups,

ShowWindow, WM_SHOWWINDOW

Example

■ Listing 2-13: Showing a window asynchronously

procedure TForm1.Button1Click(Sender: TObject);
var

TheWindow: HWND;
begin

{find a handle to the Windows Explorer window. Windows Explorer must be running}
TheWindow:=FindWindow('ExploreWClass',nil);

{show it}
ShowWindowAsync(TheWindow, SW_MAXIMIZE);

end;

Table 2-9: ShowWindowAsync nCmdShow values

Value Description

SW_HIDE The window is hidden and another window is activated.

SW_MINIMIZE The window is minimized, and the next top-level window in
the system window list is activated.

SW_RESTORE The window is activated and displayed in its original size and
position.

SW_SHOW The window is activated and displayed in its current size and
position.

SW_SHOWDEFAULT The window is shown based on the wShowWindow mem-
ber of the TStartupInfo structure passed to the
CreateProcess function by the program that started the
application. This is used to set the initial show state of an
application’s main window. This flag should be used when
showing the window for the first time if the application can
be run from a shortcut. This flag will cause the window to be
shown using the Run settings under the shortcut properties.

SW_SHOWMAXIMIZED The window is activated and displayed in a maximized state.

SW_SHOWMINIMIZED The window is activated and displayed as an icon.

SW_SHOWMINNOACTIVE The window is displayed as an icon. The active window
remains active.

SW_SHOWNA The window is displayed in its current state. The active win-
dow remains active.

SW_SHOWNOACTIVE The window is displayed in its most recent state. The active
window remains active.

SW_SHOWNORMAL This is the same as SW_RESTORE.

36 � Chapter 2

TileWindows Windows.pas

Syntax

TileWindows(

hwndParent: HWND; {a handle to a parent window}

wHow: UINT; {tiling flags}

lpRect: PRect; {the area to arrange the windows in}

cKids: UINT; {the number of windows to tile}

lpKids: Pointer {the address to an array of window handles}

): WORD; {returns the number of windows arranged}

Description

This function arranges the windows associated by the handles in the lpKids array, or

the child windows of the specified window, by tiling them. The windows can be tiled in

a horizontal or vertical fashion and can be restricted to a rectangular area within the

specified parent window.

Parameters

hwndParent: A handle to the parent window. If this parameter is zero, the desktop win-

dow is assumed to be the parent window.

wHow: Specifies how the windows are tiled. MDITILE_HORIZONTAL tiles windows

horizontally, and MDITILE_VERTICAL tiles windows vertically. The

MDITILE_SKIPDISABLED flag can be combined with either of the previous flags to

exclude any windows that are disabled from the tiling process.

lpRect: A pointer to a TRect structure containing the coordinates of the area in which

the windows are arranged. If this parameter is NIL, the entire client area of the parent

window is used.

cKids: Specifies the number of elements in the array pointed to by the lpKids parame-

ter. If the lpKids parameter is NIL, this parameter is ignored.

lpKids: A pointer to an array of window handles identifying the windows to be tiled. If

this parameter is NIL, all of the child windows of the specified parent window are tiled.

Return Value

If the function succeeds, it returns the number of windows tiled; otherwise, it returns

zero.

See Also

BeginDeferWindowPos, CascadeWindows, DeferWindowPos, EndDeferWindowPos,

MoveWindow, SetWindowPlacement, WM_MDICASCADE, WM_MDITILE

Window Movement Functions � 37

C
h

a
p

te
r
2

Example

■ Listing 2-14: Vertically tiling MDI child windows

procedure TForm1.TileWindows1Click(Sender: TObject);
begin

{this will tile all of the MDI child windows vertically}
TileWindows(Form1.ClientHandle,MDITILE_VERTICAL,nil,0,nil);

end;

Table 2-10: TileWindow wHow values

Value Description

MDITILE_HORIZONTAL The windows are tiled horizontally.

MDITILE_SKIPDISABLED Any disabled windows are not tiled.

MDITILE_VERTICAL The windows are tiled vertically.

38 � Chapter 2

Figure 2-10:

Tiled windows

Chapter 3

Window Information FunctionsWindow Information Functions

A window, by its very nature, has a lot of specific information associated with it.

Details such as a window’s dimensions, position, parent, or even style flags may need

to be retrieved by an application, or even modified. The class that the window itself is

based on may contain information that an application needs to retrieve on the fly. For-

tunately, the Win32 API has a collection of functions that allow the application to

retrieve, and sometimes modify, almost any detail concerning a window or its class.

Information Storage

Every window has an information storage mechanism known as a property list. This

property list is intended solely for user-required data and is not used directly by the

Windows operating system. Every window has one, including forms and any controls

descending from TWinControl. The property list is stored in a memory area associated

with each specific window that Windows manages automatically.

A property list works in a manner similar to INI files, in that a string is associated with

a specific value. The SetProp function takes a string and a 32-bit integer number. If the

string does not already exist in the property list, the specified string and data are added.

If the string does exist, then the data for that string is changed to the specified number.

The GetProp function provides the method to extract these properties, and the

RemoveProp function deletes them from the property list. An application should not

remove properties that another application assigned to the list, but it should remove its

own properties before halting execution.

Property lists give the developer a good alternative to global variables, which can

sometimes cause problems such as scoping issues or name collisions. It allows the

developer to store any amount of information for any purpose, while giving Windows

the job of managing the memory required for the storage. It is also a very flexible way

to communicate information; a calling function does not need to know the number of

properties in the list or even a specific offset, only the string associated with the desired

data. See the EnumProps function description for an example of using window property

lists.

39

Window-specific Information

In addition to the property list, each window automatically has a storage area for a sin-

gle 32-bit number. This is also intended for user-defined data requirements and is not

used by the Windows operating system. A developer could use this to store a 32-bit

pointer to a data structure, an object, etc. The 32-bit user data area is accessed through

the GetWindowLong and SetWindowLong functions. The following example demon-

strates setting and retrieving this value for Delphi components descended from

TWinControl.

■ Listing 3-1: Setting and retrieving the 32-bit user data value

{the enumeration callback function}
procedure EnumerateChildWindows(hWnd: HWND; lParam: LPARAM); stdcall;

var
Form1: TForm1;

implementation

{this is called for every existing child window on the form}
procedure EnumerateChildWindows(hWnd: HWND; lParam: LPARAM);
var
TheClassName: Array[0..255] of char;

begin
{retrieve the window text of the child window...}
GetClassName(hWnd, TheClassName, 255);

{...and display it}
Form1.ListBox1.Items.AddObject(TheClassName,TObject(hWnd));

end;

procedure TForm1.FormActivate(Sender: TObject);
begin
{display the class names of all child windows upon activation}
EnumChildWindows(Form1.Handle,@EnumerateChildWindows,0);

end;

procedure TForm1.ListBox1Click(Sender: TObject);
begin
{empty the edit box when another control is clicked on}
Edit1.Clear;

end;

{notice in these two procedures that the window handle for the control
is stored in the Objects array. since the Objects array holds pointers,
and a pointer is just a 32-bit number, we can cast the window handle
as a TObject, and cast the TObject back into a 32-bit integer (which is
what an HWND is defined as) to store window handles with their
associated window text.}

procedure TForm1.Button1Click(Sender: TObject);
begin
{retrieve the 32-bit user-defined value}

40 � Chapter 3

Edit1.Text := IntToStr(GetWindowLong(Longint(ListBox1.Items.Objects[ListBox1.
ItemIndex]), GWL_USERDATA));

end;

procedure TForm1.Button2Click(Sender: TObject);
begin
{set the 32-bit user-defined value for the selected window}
SetWindowLong(Longint(ListBox1.Items.Objects[ListBox1.ItemIndex]),

GWL_USERDATA, StrToInt(Edit1.Text));

{empty the edit box to indicate the function completed}
Edit1.Clear;

end;

Subclassing a Window

The GetWindowLong and SetWindowLong functions (and their sister functions for

classes) provide the developer with a method to change other window properties pro-

grammatically. One of the most powerful tricks a developer can perform with these

functions is to replace the window procedure for a window, creating what is known as a

subclass. All windows of a specific class share the window procedure defined for that

class when the window was registered. The window procedure for a class can be

replaced with a new window procedure by using the SetClassLong function, affecting

all windows created using that class; to replace the window procedure for one specific

window, use the SetWindowLong function. Messages for the subclassed window go to

the new window procedure first, allowing the developer to drastically change the

behavior of a window on the fly. The following example demonstrates how to use the

SetWindowLong function to replace the window procedure of the main form at run

time. The new window procedure intercepts the WM_NCHITTEST message. If the

user is trying to move the form by clicking on the caption bar and dragging, the new

window procedure replaces the result of the message with a result that indicates the

user clicked on the client area. This prevents the user from moving the window with

the mouse.

Window Information Functions � 41

C
h

a
p

te
r
3

Figure 3-1:

The 32-bit

user data

value

■ Listing 3-2: Replacing the window procedure at run time

{the prototype for the subclassed window procedure}
function SubclassedWndProc(hWnd: HWND; Msg: UINT; wParam: WPARAM;

lParam: LPARAM): LResult; stdcall;
var
Form1: TForm1;
OldWndProc: Pointer; // a pointer to the old window procedure

implementation

function SubclassedWndProc(hWnd: HWND; Msg: UINT; wParam: WPARAM;
lParam: LPARAM): LResult;

begin
{pass all messages to the previous window procedure. note that it
is very important to pass all unhandled messages back to the
original procedure, or the application and the entire system may crash.}
Result := CallWindowProc(OldWndProc, Form1.Handle, Msg, wParam, lParam);

{if the user is clicking on the caption bar, change the
result to indicate that the user clicked on the client area}
if ((Msg=WM_NCHITTEST) and (Result=HTCAPTION)) then
Result := HTCLIENT;

end;

procedure TForm1.FormCreate(Sender: TObject);
begin
{subclass the form upon creation}
OldWndProc := Pointer(SetWindowLong(Form1.Handle, GWL_WNDPROC,

longint(@SubclassedWndProc)));
end;

Knowing It All

The Win32 API includes a number of enumeration functions. These functions allow the

developer to retrieve information on every window without knowing how many win-

dows currently exist. These functions, coupled with the other window information

functions, give the application the ability to change dynamically as the system environ-

ment changes.

The ClassInfo example on the companion CD demonstrates the use of the EnumChild-

Windows and GetClassInfo functions to display run-time class information on standard

Delphi components. This example iterates through every TWinControl component on

the form to retrieve its class name. When a specific class name is selected from a list

box, its class information is displayed.

■ Listing 3-3: Displaying class information for Delphi components

{the enumeration callback function}
procedure EnumerateChildWindows(hWnd: HWND; lParam: LPARAM); stdcall;

42 � Chapter 3

var
Form1: TForm1;

implementation

{this is called once for each child window}
procedure EnumerateChildWindows(hWnd: HWND; lParam: LPARAM);
var

TheClassName: Array[0..255] of char; // holds the child window class name
begin

{retrieve the name of the child window class...}
GetClassName(hWnd, TheClassName, 255);

{...and display it}
Form1.ListBox1.Items.Add(TheClassName);

end;

procedure TForm1.FormActivate(Sender: TObject);
begin

{retrieve the class names when the form becomes active}
EnumChildWindows(Form1.Handle,@EnumerateChildWindows,0);

end;

procedure TForm1.ListBox1Click(Sender: TObject);
var

ClassInfo: TWndClass; // a class information structure
ClassName: array[0..255] of char; // holds the class name

begin
{get the class information for the selected class}
StrPCopy(ClassName,ListBox1.Items[ListBox1.ItemIndex]);
GetClassInfo(hInstance,ClassName,ClassInfo);

{display the information in the TWndClass structure
retrieved from the specified class}
ListBox2.Items.Clear;

ListBox2.Items.Add(Format('Style: %d',[ClassInfo.style]));
ListBox2.Items.Add(Format('WndProc: %d',[integer(ClassInfo.lpfnWndProc)]));
ListBox2.Items.Add(Format('ClsExtra: %d',[ClassInfo.cbClsExtra]));
ListBox2.Items.Add(Format('WndExtra: %d',[ClassInfo.cbWndExtra]));
ListBox2.Items.Add(Format('Instance: %d',[integer(ClassInfo.hInstance)]));
ListBox2.Items.Add(Format('Icon: %d',[integer(ClassInfo.hIcon)]));
ListBox2.Items.Add(Format('Cursor: %d',[integer(ClassInfo.hCursor)]));
ListBox2.Items.Add(Format('Background: %d',[integer(ClassInfo.hbrBackground)]));
if (ClassInfo.lpszMenuName<>nil) then

ListBox2.Items.Add('Menu Name: '+ClassInfo.lpszMenuName)
else

ListBox2.Items.Add('No class menu name');
if (ClassInfo.lpszClassName<>nil) then

ListBox2.Items.Add('Class Name: '+ClassInfo.lpszClassName);

end;

Window Information Functions � 43

C
h

a
p

te
r
3

These functions can be combined with other enumeration functions to provide almost

any detail about any window in the system. The following example is from the

WindowInfo application included on the companion CD. It demonstrates multiple

enumeration and window information functions. This application can be used as a

complement to the WinSight32 application that ships with Delphi to provide a com-

plete source of information for every window in the system.

■ Listing 3-4: Displaying window and class information

{prototypes for enumeration functions. these must all have the stdcall
keyword at the end.}
function EnumerateWindows(hWnd: HWND; lParam: LPARAM): BOOL; stdcall;
function EnumerateChildWindows(hWnd: HWND;lParam: LPARAM):BOOL; stdcall;
function EnumProperties(hWnd: HWND; lpszString: PChar; hData: THandle): BOOL; stdcall;

var
Form1: TForm1;

implementation

function EnumerateChildWindows(hWnd: HWND; lParam: LPARAM): BOOL;
var

WindowText: array[0..255] of char;
begin

{get the text displayed in the child window}
GetWindowText(hWnd, WindowText, 255);

{indicate if the child window does not have any text}
if (WindowText='') then WindowText:='[No Child Window Text]';

{add an item to the treeview object for a child window}
Form1.Treeview1.Items.AddChild(Form1.Treeview1.Items[lParam],IntToStr(hWnd)+

' - '+WindowText);

{continue enumeration}

44 � Chapter 3

Figure 3-2:

Delphi object

class

information

TE
AM
FL
Y

Team-Fly®

Result:=TRUE;
end;

function EnumerateWindows(hWnd: HWND; lParam: LPARAM): BOOL;
var

WindowText: array[0..255] of char;
begin

{get the text displayed in the window}
GetWindowText(hWnd, WindowText, 255);

{indicate if the window does not have any text}
if (WindowText='') then WindowText:='[No Window Text]';

{add an item to the treeview object for a top level window}
Form1.TreeView1.Items.Add(nil,IntToStr(hWnd)+' - '+WindowText);

{now, enumerate all of the child windows of this top level window}
EnumChildWindows(hWnd, @EnumerateChildWindows, Form1.TreeView1.Items.Count-1);

{continue enumeration of top level windows}
Result:=TRUE;

end;

function EnumProperties(hWnd: HWND; lpszString: PChar; hData: THandle): BOOL;
begin

{add the property and its value to the listbox}
Form1.ListBox1.Items.Add(Format('%s=%d',[lpszString,hData]));

{continue property enumeration}
Result:=TRUE;

end;

procedure TForm1.FormActivate(Sender: TObject);
begin

{clear the treeview object...}
TreeView1.Items.Clear;

{...and fill it with information about every window in the system}
EnumWindows(@EnumerateWindows,0);

end;

procedure TForm1.TreeView1Click(Sender: TObject);
var

TheWindow: HWND; // holds a window handle
ParentWindow: HWND; // holds a parent window handle
TheInstance: Longint; // holds an instance handle
TheClassName: array[0..255] of char; // holds the name of the class of a window
TheClassInfo: TWndClass; // holds information about a window class
ErrorCode: Integer; // general error code variable
BoolError: Boolean; // boolean error code variable

begin
{get the window handle of the window selected in the treeview object}
TheWindow:=HWND(StrToInt(Copy(TreeView1.Selected.Text,0,Pos

('-',TreeView1.Selected.Text)-2)));

{if this window is a child window, retrieve a handle to its parent}

Window Information Functions � 45

C
h

a
p

te
r
3

if (TreeView1.Selected.Parent<>nil) then
ParentWindow:=HWND(StrToInt(Copy(TreeView1.Selected.Parent.Text,0,

Pos('-',TreeView1.Selected.Parent.Text)-2)))
else

ParentWindow:=0;

{indicate if this window is a child window}
if IsChild(ParentWindow,TheWindow) then

Shape1.Brush.Color := clRed
else

Shape1.Brush.Color := clWhite;

{indicate if this window is minimized}
if IsIconic(TheWindow) then

Shape2.Brush.Color := clRed
else

Shape2.Brush.Color := clWhite;

{indicate if the TheWindow variable contains a valid window handle}
if IsWindow(TheWindow) then

Shape3.Brush.Color := clRed
else

Shape3.Brush.Color := clWhite;

{indicate if this window is enabled}
if IsWindowEnabled(TheWindow) then

Shape4.Brush.Color := clRed
else

Shape4.Brush.Color := clWhite;

{indicate if this window is a Unicode window}
if IsWindowUnicode(TheWindow) then

Shape5.Brush.Color := clRed
else

Shape5.Brush.Color := clWhite;

{indicate if this window is visible}
if IsWindowVisible(TheWindow) then

Shape6.Brush.Color := clRed
else

Shape6.Brush.Color := clWhite;

{indicate if this window is maximized}
if IsZoomed(TheWindow) then

Shape7.Brush.Color := clRed
else

Shape7.Brush.Color := clWhite;

{clear the property display list box...}
ListBox1.Items.Clear;

{...and display all of the property entries for the selected window}
EnumProps(TheWindow, @EnumProperties);

{clear the class information list box...}
ListBox2.Items.Clear;

46 � Chapter 3

{...and retrieve the class name of the selected window}
ErrorCode:=GetClassName(TheWindow,TheClassName,255);

{if there was an error retrieving the class name...}
if (ErrorCode=0) then
begin
{...display and error message...}
ShowMessage('GetClassName failed. No class name available.');
Exit;

end
else
{...or display the class name of the selected window}
ListBox2.Items.Add('This window is a '+string(TheClassName)+' class.');

{retrieve the instance handle associated with the selected window}
TheInstance:=GetWindowLong(TheWindow,GWL_HINSTANCE);

{if there was an error retrieving the instance handle...}
if (TheInstance=0) then
begin
{...display an error message...}
ShowMessage('GetWindowLong failed. No application instance available.');
Exit;

end
else
{...or display the instance handle}
ListBox2.Items.Add('Instance Handle: '+IntToStr(TheInstance));

{indicate if the retrieved instance handle is the same as the current instance}
if (TheInstance=hInstance) then

ListBox2.Items.Add('This window belongs to the application instance');

{retrieve the class information for the class that the selected window belongs to}
BoolError:=GetClassInfo(TheInstance,TheClassName,TheClassInfo);

{if there was an error retrieving the class info...}
if (not BoolError) then
begin

{...display an error message...}
ListBox2.Items.Add('GetClassInfo failed. No class information available.');
Exit;

end;

{...otherwise, display the information on this class}
ListBox2.Items.Add('This class is defined as -');
ListBox2.Items.Add(Format(' Style: %d',[TheClassInfo.style]));
ListBox2.Items.Add(Format(' WndProc: %d',[integer(TheClassInfo.lpfnWndProc)]));
ListBox2.Items.Add(Format(' ClsExtra: %d',[TheClassInfo.cbClsExtra]));
ListBox2.Items.Add(Format(' WndExtra: %d',[TheClassInfo.cbWndExtra]));
ListBox2.Items.Add(Format(' Instance: %d',[integer(TheClassInfo.hInstance)]));
ListBox2.Items.Add(Format(' Icon: %d',[integer(TheClassInfo.hIcon)]));
ListBox2.Items.Add(Format(' Cursor: %d',[integer(TheClassInfo.hCursor)]));
ListBox2.Items.Add(Format(' Background: %d',[integer(TheClassInfo.hbrBackground)]));
if (TheClassInfo.lpszMenuName<>nil) then
ListBox2.Items.Add(' Menu Name: '+TheClassInfo.lpszMenuName)

else

Window Information Functions � 47

C
h

a
p

te
r
3

ListBox2.Items.Add(' No class menu name');
if (TheClassInfo.lpszClassName<>nil) then
ListBox2.Items.Add(' Class Name: '+TheClassInfo.lpszClassName);

end;

Delphi vs. the Windows API

While the TForm class and other classes descended from the TWinControl class have

many properties and methods that are useful for retrieving information about the win-

dow, there is a lot of functionality that is not encapsulated. To have the flexibility and

functionality to manipulate windows in every manner available, programmers must use

the Windows API.

Of particular interest are the get/set window/class long functions, as well as those func-

tions that deal with windows properties. These groups of functions give the developer

incredible power when manipulating a window. The get and set functions allow a

developer to dynamically change window styles, which can ultimately give users more

control over customizing the appearance of the application. The window property func-

tions are also incredibly useful because they allow developers to attach an entire list of

information to a window, as opposed to using the Tag property for tracking a single

value. While several functions in this chapter are encapsulated by various methods and

properties of Delphi components, many are not, and using the Windows API gives the

developer maximum access to everything Windows has to offer when manipulating a

window.

48 � Chapter 3

Figure 3-3:

Information on

every window

in the system

Window Information Functions

The following window information functions are covered in this chapter.

Table 3-1: Window information functions

Function Description

AnyPopup Indicates if any pop-up windows exist anywhere earlier on the screen.

ChildWindowFromPoint Determines if a specific coordinate lies within any child windows.

ChildWindowFromPointEx Determines if a specific coordinate lies within any child windows. This function
can ignore invisible, disabled, or transparent child windows.

EnableWindow Toggles the enable state of a window.

EnumChildWindows Passes the handle of every child window belonging to the specified window to
an application-defined callback function.

EnumProps Passes the entries in a window property list to an application-defined callback
function.

EnumPropsEx Passes the entries in a window property list to an application-defined callback
function. A user-defined value can be passed along with the property entry.

EnumThreadWindows Passes the handle to every non-child window associated with a thread to an
application-defined callback function.

EnumWindows Passes the handle to every top-level window on the screen to an application-
defined callback function.

FindWindow Retrieves the handle to a top-level window.

FindWindowEx Retrieves the handle to a child window.

FlashWindow Toggles the caption bar color of a window.

GetActiveWindow Retrieves the handle of the currently active window.

GetClassInfo Retrieves information about the specified window’s class.

GetClassInfoEx Retrieves information about the specified window’s class. This function can
retrieve extended window styles and small cursor handles.

GetClassLong Retrieves the value of the specified window’s class.

GetClassName Retrieves the name of the specified window’s class.

GetClientRect Retrieves the rectangular coordinates of the specified window’s client area.

GetDesktopWindow Retrieves a handle to the desktop window.

GetFocus Retrieves the handle of the window with the keyboard focus.

GetForegroundWindow Retrieves the handle of the current foreground window.

GetNextWindow Retrieves the handle of the next or previous window in its relative z-order.

GetParent Retrieves the handle of the specified window’s parent window.

GetProp Retrieves a property from the specified window’s property list.

GetTopWindow Retrieves the handle of the child window at the top of its relative z-order.

GetWindow Retrieves the handle of the window with the specified relationship to the given
window.

GetWindowLong Retrieves a value of the window.

GetWindowRect Retrieves the overall rectangular coordinates of the specified window.

Window Information Functions � 49

C
h

a
p

te
r
3

Function Description

GetWindowText Retrieves the text displayed in the window.

GetWindowTextLength Retrieves the length of the text displayed in the window.

IsChild Determines if the specified window is a child window.

IsIconic Determines if the specified window is minimized.

IsWindow Determines if the specified handle is a valid window handle.

IsWindowEnabled Determines if the specified window is enabled.

IsWindowUnicode Determines if the specified window is a Unicode window.

IsWindowVisible Determines if the specified window is visible.

IsZoomed Determines if the specified window is maximized.

RemoveProp Removes a property entry from the specified window’s property list.

SetActiveWindow Activates a window.

SetClassLong Sets a value in the specified window’s class.

SetFocus Gives the specified window the keyboard input focus.

SetForegroundWindow Activates a window and puts its thread into the foreground.

SetParent Sets the parent window of the specified window.

SetProp Adds a property entry into the specified window’s property list.

SetWindowLong Sets a specified value in the window.

SetWindowText Sets the specified windows text to the given string.

WindowFromPoint Retrieves the handle of the window containing the specified coordinates.

AnyPopup Windows.pas

Syntax

AnyPopup: BOOL; {returns TRUE or FALSE}

Description

This will indicate whether an owned, visible, top-level pop-up, or overlapped window

exists anywhere on the entire screen. However, it will not detect unowned pop-up win-

dows or windows that do not have the WS_VISIBLE style specified. This is a function

used mainly in earlier Windows applications and is retained for compatibility purposes.

Return Value

If this function succeeds and a pop-up window is found, this function returns TRUE,

even if the pop-up is completely covered by other windows. If the function fails, or it

does not find a pop-up window, it returns FALSE.

See Also

EnumWindows, FindWindow, FindWindowEx, GetTopWindow, GetWindow,

ShowOwnedPopups

50 � Chapter 3

Example

■ Listing 3-5: Finding any pop-up window

procedure TForm1.Button1Click(Sender: TObject);
begin

if (AnyPopup) then
Label1.Caption:='Pop-ups found: TRUE'

else
Label1.Caption:='Pop-ups found: FALSE';

end;

ChildWindowFromPoint Windows.pas

Syntax

ChildWindowFromPoint(

hWndParent: HWND; {the handle of the parent window}

Point: TPoint {a data structure containing coordinates to check}

): HWND; {returns a handle to a child window}

Description

This function determines if the specified point, containing coordinates relative to the

parent window, falls inside the boundaries of any child window. It returns the handle to

this child window even if it is disabled or hidden.

Parameters

hWndParent: A handle to the parent window.

Point: A variable of type TPoint defining the coordinates to be checked. These coordi-

nates are relative to the parent window’s client area.

Return Value

If this function succeeds, a handle to the child window containing the point is returned.

If the point is within the boundaries of the parent window but not a child window, the

return value is the handle to the parent window. If more than one child window con-

tains the point, the return value is the first child window in the z-order. If the function

fails, or the point is outside of the parent window boundaries, the return value is zero.

See Also

ChildWindowFromPointEx, WindowFromPoint, WM_LBUTTONDOWN,

WM_MOUSEMOVE, WM_RBUTTONDOWN

Example

■ Listing 3-6: Finding a child window at a specific coordinate

The form for this example has a panel whose Align property is set to alTop. This is the

panel that the following code will find.

procedure TForm1.Button1Click(Sender: TObject);
var

Window Information Functions � 51

C
h

a
p

te
r
3

WindowText: array[0..255] of char; // holds the text of the child window
TheChildWnd: HWND; // holds the handle to the child window
ThePoint: TPoint; // our coordinate structure

begin
{we want to find the child window at coordinates 5,5 relative to the main form}
ThePoint.X:=5;
ThePoint.Y:=5;

{retrieve the child window handle at these coordinates, if any}
TheChildWnd:=ChildWindowFromPoint(Form1.Handle,ThePoint);

{if we found a child window...}
if (TheChildWnd<>0) then
begin

{...display its text...}
GetWindowText(TheChildWnd, WindowText, 255);
Button1.Caption:=WindowText;

end
else

{...or display a message}
Button1.Caption:='No Child Window Found.';

end;

ChildWindowFromPointEx Windows.pas

Syntax

ChildWindowFromPointEx(

hWnd: HWND; {the handle of the parent window}

Point: TPoint; {a data structure with coordinates to be checked}

Flags: UINT {disregard flags}

): HWND; {returns a handle to a child window}

Description

This function determines if the specified point, containing coordinates relative to the

parent window, falls inside the boundaries of any child window. Functionally equiva-

lent to ChildWindowFromPoint, this function can skip invisible, disabled, or

transparent child windows.

Parameters

hWndParent: A handle to the parent window.

Point: A variable of type TPoint defining the coordinates to be checked. These coordi-

nates are relative to the parent window’s client area.

Flags: A 32-bit number specifying which child windows to skip. This parameter can be

one or more values from the following table.

Return Value

If this function succeeds, a handle to the child window containing the point and meet-

ing the criteria in Flags is returned. If the point is within the boundaries of the parent

window but not any child window meeting the criteria in Flags, the return value is the

handle to the parent window. If more than one child window contains the point, the

52 � Chapter 3

return value is the first child window in the z-order. If the function fails, or the point is

outside of the parent window boundaries, the return value is zero.

See Also

ChildWindowFromPoint, WindowFromPoint, WM_LBUTTONDOWN,

WM_MOUSEMOVE, WM_RBUTTONDOWN

Example

■ Listing 3-7: Finding a child window at specific coordinates

The form for this example has a panel whose Align property is set to alTop. This is the

panel that the following code will find.

procedure TForm1.Button1Click(Sender: TObject);
var

WindowText: array[0..255] of char; // holds the text of the child window
TheChildWnd: HWND; // holds the handle to the child window
ThePoint: TPoint; // our coordinate structure

begin
{we want to find the child window at coordinates 5,5 relative to the main form}
ThePoint.X:=5;
ThePoint.Y:=5;

{retrieve the child window handle at these coordinates, if any}
TheChildWnd:=ChildWindowFromPointEx(Form1.Handle,ThePoint,CWP_ALL);

{if we found a child window...}
if (TheChildWnd<>0) then
begin

{...display its text...}
GetWindowText(TheChildWnd, WindowText, 255);
Button1.Caption:=WindowText;

end
else

{...or display a message}
Button1.Caption:='No Child Window Found.';

end;

Table 3-2: ChildWindowFromPointEx flags values

Value Description

CWP_ALL Do not skip any child windows.

CWP_SKIPINVISIBLE Skip invisible child windows.

CWP_SKIPDISABLED Skip disabled child windows.

CWP_SKIPTRANSPARENT Skip transparent child windows.

Window Information Functions � 53

C
h

a
p

te
r
3

EnableWindow Windows.pas

Syntax

EnableWindow(

hWnd: HWND; {a handle to a window}

bEnable: BOOL {enable/disable flag}

): BOOL; {returns TRUE or FALSE}

Description

This function enables or disables mouse and keyboard input to the specified window or

control. When disabled, a window or control will not receive any input, such as mouse

clicks or keypresses, and generally cannot be accessed by the user. If the enabled state

of a window or control is changing, the WM_ENABLE message is sent before this

function returns. If a disabled window contains child windows, all of those child win-

dows are disabled, but they are not sent the WM_ENABLE message. A disabled

window must be enabled before it can be activated.

Parameters

hWnd: A handle to the window to be enabled or disabled.

bEnable: If this parameter is TRUE, the window is enabled; if it is FALSE, the window

will be disabled.

Return Value

This function returns TRUE if the window was already disabled; otherwise, it returns

FALSE. To get extended error information, call the GetLastError function.

See Also

GetActiveWindow, GetFocus, IsWindowEnabled, SetActiveWindow, SetFocus,

WM_ENABLE

Example

■ Listing 3-8: Enabling and disabling a window

procedure TForm1.Button1Click(Sender: TObject);
begin

{if the edit box is currently enabled...}
if (IsWindowEnabled(Edit1.Handle)) then
begin

{...disable it and modify the appropriate captions...}
EnableWindow(Edit1.Handle,FALSE);
Button1.Caption:='Enable Window';
Edit1.Text:='This window is disabled';

end
else
begin

{...otherwise enable it and modify the appropriate captions}
EnableWindow(Edit1.Handle,TRUE);
Button1.Caption:='Disable Window';
Edit1.Text:='This window is enabled';

54 � Chapter 3

TE
AM
FL
Y

Team-Fly®

end;
end;

EnumChildWindows Windows.pas

Syntax

EnumChildWindows(

hWndParent: HWND; {the handle of the parent window}

lpEnumFunc: TFNWndEnumProc; {a pointer to the callback function}

lParam: LPARAM {an application-defined 32-bit value}

): BOOL; {returns TRUE or FALSE}

Description

EnumChildWindows parses through all of the child windows belonging to the parent

window, sending the handle of each child window to an application-defined callback

function. It continues until all child windows have been enumerated or the callback

function returns FALSE. If a child window has created child windows of its own, these

child windows are enumerated as well. This function will ignore child windows that

have been destroyed and those that have been created during the enumeration process.

Parameters

hWndParent: The handle of the parent window whose child windows are to be

enumerated.

lpEnumFunc: The address of the application-defined callback function.

lParam: A 32-bit application-defined value that will be passed to the callback function.

Return Value

If this function succeeds, it returns TRUE; otherwise, it returns FALSE.

Callback Syntax

EnumChildProc(

hWnd: HWND; {a handle to a child window}

lParam: LPARAM {an application-defined 32-bit value}

): BOOL; {returns TRUE or FALSE}

Window Information Functions � 55

C
h

a
p

te
r
3

Figure 3-4:

Enabled/

disabled

window states

Description

This function receives the window handle for each child window belonging to the par-

ent window specified in the call to EnumChildWindows. It may perform any desired

task.

Parameters

hWnd: The handle of a child window.

lParam: A 32-bit application-defined number. This value is intended for application-

specific use inside of the callback function, and it is the value of the lParam parameter

passed to the EnumChildWindows function.

Return Value

The callback function should return TRUE to continue enumeration; otherwise, it

should return FALSE.

See Also

EnumThreadWindows, EnumWindows, FindWindow, FindWindowEx, GetWindow,

GetParent, IsChild

Example

■ Listing 3-9: Enumerating child windows

{our callback function prototype}
function EnumerateChildWindows(hWnd:HWND; lParam:LPARAM): BOOL; stdcall;

var
Form1: TForm1;

implementation

procedure TForm1.EnumerateChildWindows1Click(Sender: TObject);
begin

{empty our list box}
ListBox1.Items.Clear;

{enumerate all child windows belonging to Form1}
EnumChildWindows(Form1.Handle,@EnumerateChildWindows,0);

end;

{these steps execute for every child window belonging to the parent}
function EnumerateChildWindows(hWnd: HWND; lParam: LPARAM): BOOL;
var

ClassName: Array[0..255] of char; // this holds the class name of our child windows
begin

{get the class name of the given child window}
GetClassName(hWnd,ClassName,255);

{display it in the list box}
Form1.ListBox1.Items.Add(ClassName);

{continue enumeration}

56 � Chapter 3

Result:=TRUE;
end;

EnumProps Windows.pas

Syntax

EnumProps(

hWnd: HWND; {a handle to a window}

lpEnumFunc: TFNPropEnumProc {the address of the enumeration callback function}

): Integer; {returns the value returned from callback function}

Description

This function passes each entry in the property list of the specified window to an

application-defined callback function. This continues until all properties have been

enumerated or the callback function returns FALSE. This function is intended to be

used to find the data associated with a window without knowing how many property

entries exist.

Parameters

hWnd: The handle of the window whose property list is to be enumerated.

lpEnumFunc: The address of the application-defined callback function that receives the

property list entries.

Return Value

This function returns the last value returned by the callback function. If the function

fails, or the callback function did not find a property for the specified window, the

value is –1. Note that the callback function returns a value of type BOOL, which the

Windows.pas file defines as a LongBool. This type exists for compatibility reasons and

holds a Longint value, where a value of 0 is assumed to mean FALSE and non-zero

values are assumed to mean TRUE.

Window Information Functions � 57

C
h

a
p

te
r
3

Figure 3-5:

Child window

class names

Callback Syntax

EnumPropProc(

hWnd: HWND; {the handle to the window with properties}

lpszPropString: PChar; {a pointer to a null-terminated string}

hData: THandle {the data component of a property list entry}

): BOOL; {returns TRUE or FALSE}

Description

This function receives property entry information for each property in the property list

of the specified window. While this function is running, it should not yield control to

any other process or attempt to add a property entry. It can call RemoveProp to remove

a property entry, but it can only remove the current entry passed to the function.

Parameters

hWnd: The handle of the window whose property list is being enumerated.

lpszPropString: A pointer to a null-terminated string. This is the string component of

the property list entry that was added by a call to the SetProp function.

hData: The 32-bit value that is the data component of the property list entry that was

added by a call to the SetProp function.

Return Value

The callback function should return TRUE to continue enumeration; otherwise, it

should return FALSE.

See Also

EnumPropsEx, GetProp, RemoveProp, SetProp

Example

■ Listing 3-10: Enumerating the property entries in a window property list

{our callback function prototype}
function EnumWinProps(hWnd: HWND; pString: PChar; Data: THandle): BOOL; stdcall;

var
Form1: TForm1;

implementation

{these steps will be executed for each property entry in the window's property list}
function EnumWinProps(hWnd: HWND; pString: PChar; Data: THandle): BOOL;
begin

{add the string and associated value to the list box}
Form1.ListBox1.Items.Add(Format('%s=%d',[pString,Data]));

{continue enumeration}
Result:=TRUE;

end;

58 � Chapter 3

procedure TForm1.Button1Click(Sender: TObject);
begin

{add a new property to the window's property list}
SetProp(Form1.Handle,PChar(Edit1.Text),StrToInt(Edit2.Text));

{clear the edit boxes}
Edit1.Text:='';
Edit2.Text:='';

{clear the list box}
Form1.ListBox1.Items.Clear;

{list all of the properties associated with the window}
EnumProps(Form1.Handle, @EnumWinProps);

end;

procedure TForm1.Button2Click(Sender: TObject);
begin

{clear the list box}
Form1.ListBox1.Items.Clear;

{list all of the properties associated with the window}
EnumProps(Form1.Handle, @EnumWinProps);

end;

procedure TForm1.Button3Click(Sender: TObject);
begin

{remove the selected property from the property list}
RemoveProp(Form1.Handle,PChar(Copy(ListBox1.Items[ListBox1.ItemIndex],

0,Pos('=',ListBox1.Items[ListBox1.ItemIndex])-1)));

{clear the list box}
Form1.ListBox1.Items.Clear;

{list all of the properties associated with the window}
EnumProps(Form1.Handle, @EnumWinProps);

end;

procedure TForm1.Button4Click(Sender: TObject);
var

Data: THandle; // this stores the property entry data
begin

{get property entry data associated with the given string}
Data:=GetProp(Form1.Handle,PChar(Edit1.Text));

{if there was a property value returned...}
if (Data<>0) then

{...display it...}
Edit2.Text:=IntToStr(Data)

else
{...otherwise display an error message}
Edit2.Text:='No property found.';

end;

Window Information Functions � 59

C
h

a
p

te
r
3

EnumPropsEx Windows.pas

Syntax

EnumPropsEx(

hWnd: HWND; {a handle to a window}

lpEnumFunc: TFNPropEnumProcEx; {the enumeration callback function address}

lParam: LPARAM {a 32-bit application-defined value}

): Integer; {returns the value returned from callback

function}

Description

This function passes each entry in the property list of the specified window to an

application-defined callback function. This continues until all properties have been

enumerated or the callback function returns FALSE. This function is intended to be

used to find the data associated with a window without knowing how many property

entries exist. This is functionally equivalent to EnumProps, except there is an extra

parameter for user-defined values that are passed to the callback function.

Parameters

hWnd: The handle of the window whose property list is to be enumerated.

lpEnumFunc: The address of the application-defined callback function that receives the

property list entries.

lParam: A 32-bit application-defined value that is passed to the callback function.

Return Value

This function returns the last value returned by the callback function. If the function

fails, or the callback function did not find a property for the specified window, the

value is –1. Note that the callback function returns a value of type BOOL, which the

Windows.pas file defines as a LongBool. This type exists for compatibility reasons and

holds a Longint value, where a value of 0 is assumed to mean FALSE and non-zero

values are assumed to mean TRUE.

60 � Chapter 3

Figure 3-6:

Window

property list

Callback Syntax

EnumPropProcEx(

hWnd: HWND; {the handle to the window with properties}

lpszPropString: PChar; {a pointer to a null-terminated string}

hData: Handle; {the data component of a property list entry}

dwData: DWORD {the application-defined data}

): BOOL; {returns TRUE or FALSE}

Description

This function receives property entry information for each property in the property list

of the specified window. While this function is running, it should not yield control to

any other process or attempt to add a property entry. It can call RemoveProp to remove

a property entry, but it can only remove the current entry passed to the function.

Parameters

hWnd: The handle of the window whose property list is being enumerated.

lpszPropString: A pointer to a null-terminated string. This is the string component of

the property list entry that was added by a call to the SetProp function.

hData: The 32-bit value that is the data component of the property list entry that was

added by a call to the SetProp function.

dwData: A 32-bit application-defined value. This value is intended for application-

specific use inside of the callback function and is the value of the lParam parameter

passed to the EnumPropsEx function.

Return Value

The callback function should return TRUE to continue enumeration; otherwise, it

should return FALSE.

See Also

EnumProps, GetProp, RemoveProp, SetProp

Example

■ Listing 3-11: Enumerating window property entries with user data

{our callback function prototype}
function EnumWinPropsEx(hWnd: HWND; pString: PChar; Data: THandle;

dwData: DWORD): BOOL; stdcall;

var
Form1: TForm1;

implementation

{these steps will be executed for each property entry in the window's property list}
function EnumWinPropsEx(hWnd: HWND; pString: PChar; Data: THandle; dwData: DWORD): BOOL;
begin

{add the string and associated value to the list box}

Window Information Functions � 61

C
h

a
p

te
r
3

Form1.ListBox1.Items.Add(Format('%s=%d, User Data: %d', [pString,Data,dwData]));

{continue enumeration}
Result:=TRUE;

end;

procedure TForm1.Button1Click(Sender: TObject);
begin

{add a new property to the window's property list}
SetProp(Form1.Handle,PChar(Edit1.Text),StrToInt(Edit2.Text));

{clear the edit boxes}
Edit1.Text:='';
Edit2.Text:='';

{clear the list box}
Form1.ListBox1.Items.Clear;

{list all of the properties associated with the window}
EnumPropsEx(Form1.Handle, @EnumWinPropsEx, 1);

end;

procedure TForm1.Button2Click(Sender: TObject);
begin

{clear the list box}
Form1.ListBox1.Items.Clear;

{list all of the properties associated with the window}
EnumPropsEx(Form1.Handle, @EnumWinPropsEx, 2);

end;

procedure TForm1.Button3Click(Sender: TObject);
begin

{remove the selected property from the property list}
RemoveProp(Form1.Handle,PChar(Copy(ListBox1.Items[ListBox1.ItemIndex],

0,Pos('=',ListBox1.Items[ListBox1.ItemIndex])-1)));

{clear the list box}
Form1.ListBox1.Items.Clear;

{list all of the properties associated with the window}
EnumPropsEx(Form1.Handle, @EnumWinPropsEx, 3);

end;

procedure TForm1.Button4Click(Sender: TObject);
var

Data: THandle; // this stores the property entry data
begin

{get property entry data associated with the given string}
Data:=GetProp(Form1.Handle,PChar(Edit1.Text));

{if there was a property value returned...}
if (Data<>0) then

{...display it...}
Edit2.Text:=IntToStr(Data)

else

62 � Chapter 3

{...otherwise display an error message}
Edit2.Text:='No property found.';

end;

EnumThreadWindows Windows.pas

Syntax

EnumThreadWindows(

dwThreadId: DWORD; {the thread identification number}

lpfn: TFNWndEnumProc; {the address of the enumeration callback function}

lParam: LPARAM {a 32-bit application-defined value}

): BOOL; {returns TRUE or FALSE}

Description

This function enumerates all of the non-child windows associated with the specified

thread. Each window handle associated with the specified thread is passed to an

application-defined callback function. This function will continue until all of the win-

dows are enumerated or the callback function returns FALSE.

Parameters

dwThreadId: The thread whose windows are to be enumerated.

lpfn: The address of the application-defined callback function.

lParam: A 32-bit application-defined value that is passed to the callback function.

Return Value

If this function succeeds, it returns TRUE; otherwise, it returns FALSE.

Callback Syntax

EnumThreadWndProc(

hWnd: HWND; {a handle to a window}

lParam: LPARAM {the application-defined data}

): BOOL; {returns TRUE or FALSE}

Description

This function receives a window handle for every window associated with the given

thread and can perform any desired task.

Parameters

hWnd: The handle of a window associated with the specified thread.

lParam: A 32-bit application-defined value. This value is intended for application-

specific use inside of the callback function and is the value of the lParam parameter of

the EnumThreadWindows function.

Return Value

The callback function should return TRUE to continue enumeration; otherwise, it

should return FALSE.

Window Information Functions � 63

C
h

a
p

te
r
3

See Also

EnumChildWindows, EnumWindows, GetCurrentThreadID*,

GetWindowThreadProcessId*

Example

■ Listing 3-12: Finding all windows belonging to a thread

{our callback function prototype}
function EnumerateThreadWindows(Wnd: HWND; Data: LPARAM): BOOL; stdcall;

var
Form1: TForm1;

implementation

procedure TForm1.Button1Click(Sender: TObject);
begin

{clear the listbox}
ListBox1.Items.Clear;

{enumerate all windows that belong to the current thread}
EnumThreadWindows(GetCurrentThreadID, @EnumerateThreadWindows, 0);

end;

{theses steps are performed for every window belonging to the current thread}
function EnumerateThreadWindows(Wnd: HWND; Data: LPARAM): BOOL;
var

WindowText: array[0..255] of char; // holds the text of the window
begin

{get the text from the window...}
GetWindowText(Wnd, WindowText, 255);

{...and display it in the listbox}
Form1.ListBox1.Items.Add(WindowText);

{continue enumeration}
Result:=TRUE;

end;

64 � Chapter 3

Figure 3-7:

Windows

belonging to

the current

thread

TE
AM
FL
Y

Team-Fly®

EnumWindows Windows.pas

Syntax

EnumWindows(

lpEnumFunc: TFNWndEnumProc; {address of enumeration callback function}

lParam: LPARAM {a 32-bit application-defined value}

): BOOL; {returns TRUE or FALSE}

Description

This function parses through all top-level windows on the screen, passing the handle of

each window to an application-defined callback function. This continues until all

top-level windows have been enumerated or the callback function returns FALSE. The

EnumWindows function does not enumerate child windows.

Parameters

lpEnumFunc: The address of the application-defined callback function.

lParam: A 32-bit application-defined value that will be passed to the callback function.

Return Value

If this function succeeds, it returns TRUE; otherwise, it returns FALSE.

Callback Syntax

EnumWindowsProc(

hWnd: HWND; {a handle to a top-level window}

lParam: LPARAM {the application-defined data}

): BOOL; {returns TRUE or FALSE}

Description

This function receives the window handle for each top-level window in the system, and

it may perform any desired task.

Parameters

hWnd: The handle of a top-level window being enumerated.

lParam: A 32-bit application-defined value. This value is intended for application-

specific use inside of the callback function and is the value of the lParam parameter

passed to the EnumWindows function.

Return Value

The callback function should return TRUE to continue enumeration; otherwise, it

should return FALSE.

See Also

EnumChildWindows, EnumThreadWindows, FindWindow, FindWindowEx,

GetTopWindow, GetWindow

Window Information Functions � 65

C
h

a
p

te
r
3

Example

■ Listing 3-13: Listing the window text for every top-level window in the system

{our callback function prototype}
function EnumerateWindows(hWnd: HWND; lParam: LPARAM): BOOL; stdcall;

var
Form1: TForm1;

implementation

procedure TForm1.Button1Click(Sender: TObject);
begin

{empty the listbox that will hold the window names}
ListBox1.Items.Clear;

{enumerate all the top-level windows in the system}
EnumWindows(@EnumerateWindows,0);

end;

{these steps execute for every top-level window in the system}
function EnumerateWindows(hWnd: HWND; lParam: LPARAM): BOOL;
var

TheText: Array[0..255] of char; // this holds the window text
begin

{if the window does not have any text...}
if (GetWindowText(hWnd, TheText, 255)=0) then

{...display the window handle and a note...}
Form1.ListBox1.Items.Add(Format('%d = {This window has no text}',[hWnd]))

else
{otherwise display the window handle and the window text}
Form1.ListBox1.Items.Add(Format('%d = %s',[hWnd,TheText]));

{continue enumeration}
Result:=TRUE;

end;

66 � Chapter 3

Figure 3-8:

All top-level

windows

FindWindow Windows.pas

Syntax

FindWindow(

lpClassName: PChar; {a pointer to a null-terminated class name string}

lpWindowName: PChar {a pointer to a null-terminated window name string}

): HWND; {returns a handle to a window}

Description

FindWindow retrieves the handle of the top-level window with the specified class name

and window name. Child windows are not searched.

Parameters

lpClassName: A pointer to a case-sensitive, null-terminated string that specifies the

class name, or an integer atom identifying the class name string. If this specifies an

atom, the atom must be created with a call to GlobalAddAtom. The atom, a 16-bit

value, must be in the low-order word of ClassName and the high-order word must be

zero.

lpWindowName: A pointer to a case-sensitive, null-terminated string that specifies the

window’s name, which is the title in the caption bar. If this parameter is NIL, all win-

dow names match.

Return Value

If this function succeeds, the return value is the handle of the window with the speci-

fied class name and window name; otherwise, it returns zero. To get extended error

information, call the GetLastError function.

See Also

EnumWindows, FindWindowEx, GetClassName, GetWindow

Example

■ Listing 3-14: Finding a window

procedure TForm1.Button1Click(Sender: TObject);
var

TheWindow: HWND; // holds the window handle found
WindowText: array[0..255] of char; // holds the window's text

begin
{find a handle to the Delphi IDE window}
TheWindow := FindWindow('TAppBuilder', nil);

{retrieve its text}
GetWindowText(TheWindow, @WindowText[0], 255);

{display the text}
Button1.Caption := WindowText;

end;

Window Information Functions � 67

C
h

a
p

te
r
3

FindWindowEx Windows.pas

Syntax

FindWindowEx(

Parent: HWND; {a handle to a parent window}

Child: HWND; {a handle to a child window}

ClassName: PChar; {a pointer to a null-terminated class name string}

WindowName: PChar {a pointer to a null-terminated window name string}

): HWND; {returns a handle to a window}

Description

This function retrieves the handle of the window with the specified class name and

window name. Unlike FindWindow, this function searches child windows, starting with

the one following the given child window.

Parameters

Parent: The handle of the parent window whose child windows are to be searched. If

this parameter is zero, the desktop window is used as the parent and the child windows

of the desktop are searched.

Child: The handle of a child window. The search will begin with the next child window

in the z-order of the specified child window. The specified child window must be a

direct child window of the window defined by the Parent parameter. If this parameter is

zero, the search will start with the first child window in the parent window. Note that if

this parameter and the Parent parameter are both zero, this function searches all

top-level windows.

ClassName: A pointer to a case-sensitive, null-terminated string that specifies the class

name or an integer atom identifying the class name string. If this specifies an atom, the

atom must be created with a call to GlobalAddAtom. The atom, a 16-bit value, must be

in the low-order word of ClassName, and the high-order word must be zero.

WindowName: A pointer to a case-sensitive, null-terminated string that specifies the

window’s name (the window text). If this parameter is NIL, all window names match.

Return Value

If this function succeeds, the return value is the handle of the window with the speci-

fied class name and window name; otherwise, it returns zero. To get extended error

information, call the GetLastError function.

See Also

EnumChildWindows, EnumWindows, FindWindow, GetClassName, GetWindow

Example

■ Listing 3-15: Using FindWindowEx to find a child window

procedure TForm1.Button1Click(Sender: TObject);
var

FoundWindow: HWND; // holds a window handle

68 � Chapter 3

WindowText: array[0..255] of char; // holds the window text
begin

{find a TEdit child window}
FoundWindow := FindWindowEx(Form1.Handle, 0, 'TEdit', nil);

{get its text...}
GetWindowText(FoundWindow, WindowText, 255);

{...and display it}
Label1.Caption:='FindWindowEx found window handle '+IntToStr(FoundWindow)+

': '+WindowText;
end;

FlashWindow Windows.pas

Syntax

FlashWindow(

hWnd: HWND; {the handle to the window to flash}

bInvert: BOOL {flash flag}

): BOOL; {returns TRUE or FALSE}

Description

This function will flash the window from an inactive to active state, or vice versa. It is

flashed only once, and the window can be opened or minimized.

Parameters

hWnd: The handle of the window to be flashed.

bInvert: A Boolean value specifying how the window is to be flashed. A value of

TRUE will cause the window to be flashed from one state to the other (i.e., inactive to

active). A value of FALSE causes the window to flash back to its original state.

Return Value

If the function succeeds and the window was active before the call to this function, the

return value is TRUE. If the function fails, or if the function succeeds and the window

was inactive before calling this function, it returns FALSE.

See Also

GetActiveWindow, GetFocus, SetActiveWindow, SetFocus

Example

■ Listing 3-16: Flashing a window

Note that this code is put into an OnTimer event of a TTimer set to fire once every

1,000 milliseconds.

procedure TForm1.Timer1Timer(Sender: TObject);
begin

{flash the main form}
FlashWindow(Form1.Handle, TRUE);

Window Information Functions � 69

C
h

a
p

te
r
3

{this is necessary under Delphi to get the icon on the taskbar to flash}
FlashWindow(Application.handle, TRUE);

end;

GetActiveWindow Windows.pas

Syntax

GetActiveWindow: HWND; {returns a handle to the active window}

Description

This function returns a handle to the active window associated with the thread that calls

the function.

Return Value

If this function succeeds, the return value is a handle to the active window associated

with the thread that called the function. If the function fails, or if the thread does not

have an active window, the return value is zero.

See Also

GetFocus, GetForegroundWindow, GetTopWindow, SetActiveWindow, SetFocus,

SetForegroundWindow

Example

■ Listing 3-17: Retrieving a handle to the currently active window

procedure TForm1.Button1Click(Sender: TObject);
var

TheWindow: HWND; // this will hold the active window handle
WindowText: array[0..255] of char; // this will hold the text of that window

begin
{get the handle to the active window associated with this thread}
TheWindow := GetActiveWindow;

{get the text of that window}
GetWindowText(TheWindow, WindowText, 255);

{display the text}
Label1.Caption := 'Active Window Text: ' + string(WindowText);

end;

GetClassInfo Windows.pas

Syntax

GetClassInfo(

hInstance: HINST; {a handle to an application instance}

lpClassName: PChar; {a pointer to a null-terminated class name string}

var lpWndClass: TWndClass {a pointer to a TWndClass structure}

): BOOL; {returns TRUE or FALSE}

70 � Chapter 3

Description

This function returns information about the given window class. This information is

returned in the members of the lpWndClass variable, a TWndClass data structure, and

is the same information passed to the RegisterClass function that created the class.

Parameters

hInstance: The instance handle of the application that created the class. To get informa-

tion about classes defined by Windows, such as buttons or list boxes, set this parameter

to zero.

lpClassName: A pointer to a null-terminated string that contains the name of the class,

either an application-defined name used in the RegisterClass function or the name of a

preregistered window class. This can also be an integer atom, created with a call to

GlobalAddAtom. The atom, a 16-bit value less than $C000, must be in the low-order

word, and the high-order word must be zero.

lpWndClass: A pointer to a TWndClass structure that will receive the information

about the specified class. The TWndClass structure is defined by Delphi as:

TWndClass = packed record

Style: UINT; {class style flags}

lpfnWndProc: TFNWndProc; {a pointer to the window procedure}

cbClsExtra: Integer; {extra class memory bytes}

cbWndExtra: Integer; {extra window memory bytes}

hInstance: HINST; {a handle to the module instance}

hIcon: HICON; {a handle to an icon}

hCursor: HCURSOR; {a handle to a cursor}

hbrBackground: HBRUSH; {a handle to the background brush}

lpszMenuName: PAnsiChar; {the menu name}

lpszClassName: PAnsiChar; {the class name}

end;

The TWndClass structure is described under the RegisterClass function in The Tomes

of Delphi: Win32 Core API — Windows 2000 Edition.

Return Value

If this function succeeds, it returns TRUE; otherwise, it returns FALSE. To get

extended error information, call the GetLastError function.

See Also

GetClassInfoEx, GetClassLong, GetClassName, RegisterClass*

Example

■ Listing 3-18: Retrieving information about the main form’s class

procedure TForm1.FormActivate(Sender: TObject);
var

ClassInfo: TWndClass; // this will hold our class information
begin

Window Information Functions � 71

C
h

a
p

te
r
3

{get the information for our main form's class}
GetClassInfo(hInstance,'TForm1',ClassInfo);

{empty the list box}
ListBox1.Items.Clear;

{display all of the information about the main form's class}
ListBox1.Items.Add(Format('Style: %d',[ClassInfo.style]));
ListBox1.Items.Add(Format('WndProc: %d',[integer(ClassInfo.lpfnWndProc)]));
ListBox1.Items.Add(Format('ClsExtra: %d',[ClassInfo.cbClsExtra]));
ListBox1.Items.Add(Format('WndExtra: %d',[ClassInfo.cbWndExtra]));
ListBox1.Items.Add(Format('Instance: %d',[integer(ClassInfo.hInstance)]));
ListBox1.Items.Add(Format('Icon: %d',[integer(ClassInfo.hIcon)]));
ListBox1.Items.Add(Format('Cursor: %d',[integer(ClassInfo.hCursor)]));
ListBox1.Items.Add(Format('Background: %d',[integer(ClassInfo.hbrBackground)]));
if (ClassInfo.lpszMenuName<>nil) then

ListBox1.Items.Add('Menu Name: '+ClassInfo.lpszMenuName)
else

ListBox1.Items.Add('No class menu name');
if (ClassInfo.lpszClassName<>nil) then

ListBox1.Items.Add('Class Name: '+ClassInfo.lpszClassName);
end;

GetClassInfoEx Windows.pas

Syntax

GetClassInfoEx(

Instance: HINST; {a handle to an application instance}

ClassName: PChar; {a pointer to a null-terminated class name string}

var WndClass: TWndClassEx {a pointer to a TWndClassEx structure}

): BOOL; {returns TRUE or FALSE}

72 � Chapter 3

Figure 3-9:

The main

form’s class

information

Description

This function returns information about the given window class. This information is

returned in the members of the WndClass variable, a TWndClassEx data structure, and

is the same information passed to the RegisterClassEx function that created the class.

This function is equivalent to GetClassInfo, except it returns a handle to the small icon

associated with the given class.

Parameters

Instance: The instance handle of the application that created the class. To get informa-

tion about classes defined by Windows, such as buttons or list boxes, set this parameter

to zero.

ClassName: A pointer to a null-terminated string that contains the name of the class,

either an application-defined name used in the RegisterClass function or the name of a

preregistered window class. This can also be an integer atom, created with a call to

GlobalAddAtom. The atom, a 16-bit value less than $C000, must be in the low-order

word and the high-order word must be zero.

WndClass: A pointer to a TWndClassEx structure that will receive the information

about the specified class. The TWndClassEx structure is defined by Delphi as:

TWndClassEx = packed record

cbSize: UINT; {the size of this structure}

Style: UINT; {class style flags}

lpfnWndProc: TFNWndProc; {a pointer to the window procedure}

cbClsExtra: Integer; {extra class memory bytes}

cbWndExtra: Integer; {extra window memory bytes}

hInstance: HINST; {a handle to the module instance}

hIcon: HICON; {a handle to an icon}

hCursor: HCURSOR; {a handle to a cursor}

hbrBackground: HBRUSH; {a handle to the background brush}

lpszMenuName: PAnsiChar; {the menu name}

lpszClassName: PAnsiChar; {the class name}

hIconSm: HICON; {a handle to a small icon}

end;

The TWndClassEx structure is described under the RegisterClassEx function in The

Tomes of Delphi: Win32 Core API — Windows 2000 Edition. Before calling the

GetClassInfoEx function, the cbSize member of this structure must be set to

SizeOf(TWndClassEx).

Return Value

If this function succeeds, it returns TRUE; otherwise, it returns FALSE. To get

extended error information, call the GetLastError function.

See Also

GetClassInfo, GetClassLong, GetClassName, RegisterClassEx*

Window Information Functions � 73

C
h

a
p

te
r
3

Example

■ Listing 3-19: Retrieving class information for all child windows

{function prototype for enumerating child windows}
function EnumerateChildWindows(hWnd:HWND; lParam:LPARAM): BOOL; stdcall;

var
Form1: TForm1;

implementation

function EnumerateChildWindows(hWnd: HWND; lParam: LPARAM): BOOL;
var

TheClassName: Array[0..255] of char;
begin

{get the class name of this child window}
GetClassName(hWnd, TheClassName, 255);

{display it in the list box}
Form1.ListBox1.Items.Add(TheClassName);

{continue enumeration}
Result:=TRUE;

end;

procedure TForm1.FormActivate(Sender: TObject);
begin

{populate the list box with the class names of all child windows}
EnumChildWindows(Form1.Handle,@EnumerateChildWindows,0);

end;

procedure TForm1.ListBox1Click(Sender: TObject);
var

ClassInfo: TWndClassEx; // this holds our class info
ClassName: array[0..255] of char; // this holds the class name

begin
{copy the class name to a PChar string that is passed to the GetClassInfoEx
function. the classname parameter must be a PChar or the memory pointed
to by ClassInfo becomes corrupted when accessing certain members of the
data structure.}
StrPCopy(ClassName,ListBox1.Items[ListBox1.ItemIndex]);

{set the size of the data structure}
ClassInfo.cbSize:=SizeOf(TWndClassEx);

{get the class information for the selected class}
GetClassInfoEx(hInstance,ClassName,ClassInfo);

{clear the list box}
ListBox2.Items.Clear;

{display the class information}
ListBox2.Items.Add(Format('Size: %d',[ClassInfo.cbSize]));
ListBox2.Items.Add(Format('Style: %d',[ClassInfo.Style]));
ListBox2.Items.Add(Format('WndProc: %d',[integer(ClassInfo.lpfnWndProc)]));

74 � Chapter 3

TE
AM
FL
Y

Team-Fly®

ListBox2.Items.Add(Format('ClsExtra: %d',[ClassInfo.cbClsExtra]));
ListBox2.Items.Add(Format('WndExtra: %d',[ClassInfo.cbWndExtra]));
ListBox2.Items.Add(Format('Instance: %d',[integer(ClassInfo.hInstance)]));
ListBox2.Items.Add(Format('Icon: %d',[integer(ClassInfo.hIcon)]));
ListBox2.Items.Add(Format('Cursor: %d',[integer(ClassInfo.hCursor)]));
ListBox2.Items.Add(Format('Background: %d',[integer(ClassInfo.hbrBackground)]));
if (ClassInfo.lpszMenuName<>nil) then

ListBox2.Items.Add('Menu Name: '+ClassInfo.lpszMenuName)
else

ListBox2.Items.Add('No class menu name');
if (ClassInfo.lpszClassName<>nil) then

ListBox2.Items.Add('Class Name: '+ClassInfo.lpszClassName);
ListBox2.Items.Add(Format('Small Icon: %d',[ClassInfo.hIconSm]));

end;

GetClassLong Windows.pas

Syntax

GetClassLong(

hWnd: HWND; {a handle to a window}

nIndex: Integer {the offset of the value to retrieve}

): DWORD; {returns a 32-bit value}

Description

This function returns the 32-bit value at the specified offset into the extra memory for

the window class that the given window belongs to. This extra memory is reserved by

specifying a value in the ClsExtra member of the TWndClass structure used when the

RegisterClass function is called. In addition, this function can return information about

the window class by using one of the values in the following table for the Index

parameter.

Parameters

hWnd: The handle to the window with the class memory to be accessed.

nIndex: Specifies the zero-based byte offset for the 32-bit value to be retrieved. This

can be a value between zero and the number of bytes of extra class memory minus four

(i.e., if 16 bytes of extra class memory are allocated, a value of 8 would index into the

third 32-bit value). In addition, one of the values in the following table can be used to

access specific information about the class.

Return Value

If this function succeeds, it returns the 32-bit value at the specified index into the class

memory area; otherwise, it returns a zero. To get extended error information, call the

GetLastError function.

See Also

GetClassInfo, GetClassInfoEx, GetClassName, RegisterClass*, RegisterClassEx*,

SetClassLong

Window Information Functions � 75

C
h

a
p

te
r
3

Example

■ Listing 3-20: Modifying class settings

This example cycles through the default cursors available through Delphi. Note that the

array elements of the Cursors property of the TScreen object are numbered backwards

for the standard cursors.

var
CursorIndex: Integer = 0; // we will start with the first screen cursor

procedure TForm1.Button1Click(Sender: TObject);
var

HandleCursor: HCURSOR; // holds the handle to a cursor
begin

{get a handle to the current cursor for this class}
HandleCursor:=GetClassLong(Form1.Handle, GCL_HCURSOR);

{display the cursor handle}
Label1.Caption:='The previous cursor handle was: '+IntToStr(HandleCursor);

{set a new cursor for this class from the list of built-in Delphi cursors}
SetClassLong(Form1.Handle, GCL_HCURSOR, Screen.Cursors[CursorIndex]);

{display what this new cursor handle is}
Label2.Caption:='The new cursor handle is: '+IntToStr(Screen.Cursors[CursorIndex]);

{go to the next cursor in the screen cursor list}
Dec(CursorIndex);

end;

Table 3-3: GetClassLong nIndex values

Values Description

GCL_CBCLSEXTRA The size of the extra memory associated with this class, in
bytes. Setting this value will not change the amount of mem-
ory already allocated.

GCL_CBWNDEXTRA The size of the extra memory associated with each window
of this class, in bytes. Setting this value will not change the
amount of memory already allocated.

GCL_HBRBACKGROUND The handle to the default background brush.

76 � Chapter 3

Figure 3-10:

A new default

cursor

Values Description

GCL_HCURSOR The handle to the window class cursor.

GCL_HICON The handle to the window class icon.

GCL_HICONSM The handle to the window class small icon.

GCL_HMODULE The handle of the module that registered the class.

GCL_MENUNAME A pointer to the menu name string.

GCL_STYLE The 32-bit style bits for this class.

GCL_WNDPROC A pointer to the window procedure for this class. If a devel-
oper replaces the window procedure using this index, it
must conform to the window procedure callback definition
as outlined in the RegisterClass function. This subclass will
affect all windows subsequently created with this class. An
application should not subclass a window created by another
process.

GCW_ATOM An atom that uniquely identifies this class. This is the same
atom returned by the RegisterClass and RegisterClassEx
functions.

GetClassName Windows.pas

Syntax

GetClassName(

hWnd: HWND; {a handle to a window}

lpClassName: PChar; {a pointer to a buffer to receive the string}

nMaxCount: Integer {the size of the buffer in characters}

): Integer; {returns the number of characters copied}

Description

This function simply copies the class name of the specified window to the buffer

pointed to by the ClassName parameter.

Parameters

hWnd: A handle to the window to get the class name from.

lpClassName: A pointer to a buffer that will receive the null-terminated class name

string.

nMaxCount: Specifies the length of the buffer pointed to by the ClassName parameter.

The class name string will be truncated if it is larger than the buffer.

Return Value

If this function succeeds, it returns the length of the class name string in bytes, exclud-

ing the null-terminating character; otherwise, it returns zero. To get extended error

information, call the GetLastError function.

See Also

GetClassInfo, GetClassInfoEx, GetClassLong, RegisterClass*, SetClassLong

Window Information Functions � 77

C
h

a
p

te
r
3

Example

This function is used in a number of examples throughout this chapter. Please see List-

ing 3-9 under EnumChildWindows and the Window Information application on the

companion CD.

GetClientRect Windows.pas

Syntax

GetClientRect(

hWnd: HWND; {a handle to a window}

var lpRect: TRect {a pointer to a rectangle data structure}

): BOOL; {returns TRUE or FALSE}

Description

This function returns the coordinates of the client area of the given window in the

TRect structure pointed to by the Rect variable.

Parameters

hWnd: The handle of the window to get the client coordinates from.

lpRect: A pointer to a TRect structure that will receive the coordinates. These coordi-

nates are in terms of the client area of the specified window. Thus, the Left and Top

members will be zero, and the Right and Bottom members will contain the width and

height of the client area.

Return Value

If this function succeeds, it returns TRUE; otherwise, it returns FALSE. To get

extended error information, call the GetLastError function.

See Also

GetWindowPlacement, GetWindowRect, SetWindowPlacement

Example

■ Listing 3-21: Displaying the client and window rectangle coordinates

procedure TForm1.FormResize(Sender: TObject);
var

WinRect, ClientRect: TRect; // these hold the appropriate rectangle coordinates
begin

{get the window rectangle coordinates}
Windows.GetWindowRect(Form1.Handle, WinRect);

{get the client rectangle coordinates}
Windows.GetClientRect(Form1.Handle, ClientRect);

{display the coordinates}
Label1.Caption:=Format('Window Rectangle - Left: %d, Top: %d, Right: %d,

Bottom: %d', [WinRect.Left, WinRect.Top,
WinRect.Right, WinRect.Bottom]);

78 � Chapter 3

Label2.Caption:=Format('Client Rectangle - Left: %d, Top: %d, Right: %d,
Bottom: %d', [ClientRect.Left, ClientRect.Top,
ClientRect.Right,ClientRect.Bottom]);

end;

GetDesktopWindow Windows.pas

Syntax

GetDesktopWindow: HWND; {returns a handle to the desktop window}

Description

This function returns a handle to the desktop window. This window encompasses the

entire screen and is the area on which all other windows and icons are painted. A devel-

oper can pass the handle returned from this function to the GetDC function to get a

device context for drawing directly on the desktop surface.

Return Value

If this function succeeds, it returns the handle to the desktop window; otherwise, it

returns zero.

See Also

EnumWindows, GetWindow

Example

■ Listing 3-22: Retrieving a handle to the desktop window

procedure TForm1.Button1Click(Sender: TObject);
var

ClassName: array[0..255] of char;
DesktopWindow: HWND;

begin
{get the desktop window handle}
DesktopWindow := GetDesktopWindow;

{get the class name of the desktop window}
GetClassName(DesktopWindow, ClassName, 255);

{display the class name on the button}
Button1.Caption := ClassName;

end;

Window Information Functions � 79

C
h

a
p

te
r
3

Figure 3-11:

Client and

window

rectangle

coordinates

GetFocus Windows.pas

Syntax

GetFocus: HWND; {returns a handle to a window}

Description

This function retrieves the handle of a window associated with the calling thread that

has the input focus.

Return Value

If this function succeeds, it returns the handle to the window associated with the calling

thread that has the input focus. If the function fails, or there is no window associated

with the calling thread that has the input focus, it returns zero. If the return value is

zero, another thread may have a window with the input focus.

See Also

GetActiveWindow, GetCapture, GetForegroundWindow, GetTopWindow,

IsWindowEnabled, SetActiveWindow, SetFocus, WM_KILLFOCUS,

WM_SETFOCUS

Example

■ Listing 3-23: Getting the window with the input focus

This code is put in the OnEnter event of multiple controls.

procedure TForm1.Button1Enter(Sender: TObject);
var

FocusWnd: HWND; // this will hold the window handle
ClassName: array[0..255] of char; // this will hold the class name

begin
{get the handle of the window that currently has input focus}
FocusWnd := GetFocus;

{get the class name of this window}
GetClassName(FocusWnd, ClassName, 255);

{display the class name of the window with input focus}
Label2.Caption := string(ClassName) + ' has input focus.'

end;

GetForegroundWindow Windows.pas

Syntax

GetForegroundWindow: HWND; {returns a handle to a window}

Description

This function returns the handle of the window with which the user is currently

working.

80 � Chapter 3

Return Value

If the function succeeds, it returns a handle to the foreground window; otherwise, it

returns zero.

See Also

GetFocus, GetTopWindow, SetForegroundWindow

Example

■ Listing 3-24: Retrieving a handle to the foreground window

The form for this project has its FormStyle property set to fsStayOnTop, so it is visible

when other applications have the focus. This code is fired from a timer set at 250

milliseconds.

procedure TForm1.Timer1Timer(Sender: TObject);
var

TheWindowText: array[0..255] of char;
TheForegroundWindow: HWND;

begin
{get a handle to the foreground window}
TheForegroundWindow := GetForegroundWindow;

{get its caption text}
GetWindowText(TheForegroundWindow, TheWindowText, 255);

{display the foreground window's caption}
Label2.Caption := 'Foreground Window Text: ' + TheWindowText;

end;

Window Information Functions � 81

C
h

a
p

te
r
3

Figure 3-12:

The

foreground

window

GetNextWindow Windows.pas

Syntax

GetNextWindow(

hWnd: HWND; {a handle to the current window}

uCmd: UINT {direction flags}

): HWND; {returns a handle to a window}

Description

This function returns the handle to the next or previous window in the relative z-order

of the specified window. The next window is below the specified window in the

z-order, and the previous window is above it. Windows maintains a separate z-order for

topmost windows, top-level windows, and child windows, and this function returns a

handle to a window relative to the specified window in the appropriate z-order list.

Parameters

hWnd: A handle to the current window.

uCmd: Specifies whether the handle to the next window or previous window, relative

to the current window, should be returned. It can be either value from the following

table.

Return Value

If this function is successful, it returns the handle to the next or previous window in the

relative z-order. If the function fails, or if there is no next or previous window relative

to the given window, it returns zero. To get extended error information, call the

GetLastError function.

See Also

BringWindowToTop, EnumWindows, FindWindow, FindWindowEx, GetTopWindow,

GetWindow

Example

■ Listing 3-25: Finding the top sibling window and its nearest neighbor in the z-order

procedure TForm1.Button1Click(Sender: TObject);
var

WindowText: array[0..255] of char;
TheWindow: HWND;
ThePreviousWindow: HWND;

begin
{get the handle to the Form1 child window at the
top of the z-order relative to its siblings}
TheWindow := GetTopWindow(Form1.Handle);

{get the text displayed on this window...}
GetWindowText(TheWindow, WindowText, 255);

{...and display it in the label}
Label2.Caption := 'Top Window: ' + WindowText;

82 � Chapter 3

{now get the window just under it in the z-order}
ThePreviousWindow := GetNextWindow(TheWindow, GW_HWNDNEXT);

{get the text displayed on this window...}
GetWindowText(ThePreviousWindow, WindowText, 255);

{...and display it in the label}
Label3.Caption := 'Next To Top: ' + WindowText;

end;

Table 3-4: GetNextWindow uCmd values

Value Description

GW_HWNDNEXT Returns a handle to the window below the specified window in
the relative z-order.

GW_HWNDPREV Returns a handle to the window above the specified window in
the relative z-order.

GetParent Windows.pas

Syntax

GetParent(

hWnd: HWND {a handle of a child window}

): HWND; {returns a handle to a parent window}

Description

This function returns a handle to the given window’s parent window, if any.

Parameters

hWnd: A handle to the window whose parent window handle is to be retrieved.

Return Value

If this function succeeds, it returns the handle to the parent window of the given win-

dow. If this function fails, or if the specified window does not have a parent window, it

returns zero. To get extended error information, call the GetLastError function.

See Also

EnumWindows, FindWindow, FindWindowEx, GetWindow, SetParent

Example

■ Listing 3-26: Finding a control’s parent window

procedure TForm1.Button1Click(Sender: TObject);
var

TheText: array[0..255] of char;
TheParent: HWND;

begin
{get the button's parent window handle}
TheParent:=GetParent(Button1.Handle);

{get the parent window's text}

Window Information Functions � 83

C
h

a
p

te
r
3

GetWindowText(TheParent, TheText, 255);

{display this text on the button}
Button1.Caption:=TheText;

end;

GetProp Windows.pas

Syntax

GetProp(

hWnd: HWND; {a handle to a window}

lpString: PChar {a pointer to a string}

): THandle; {returns a 32-bit value}

Description

This function retrieves the 32-bit value associated with the given string from the prop-

erty list of the specified window.

Parameters

hWnd: The handle of the window whose property list is to be searched.

lpString: A pointer to a null-terminated string or an atom identifying a string. If this

parameter is an atom, the atom must have been created with a call to GlobalAddAtom.

The atom, a 16-bit value, must be in the low-order word and the high-order word must

be zero.

Return Value

If this function succeeds and it contains the specified string, it returns the data value

associated with that string in the property list of the given window. If the function fails,

or the specified string is not in the property list of the window, it returns zero.

See Also

EnumProps, EnumPropsEx, RemoveProp, SetProp

Example

Please see either Listing 3-10 under EnumProps or Listing 3-11 under EnumPropsEx.

GetTopWindow Windows.pas

Syntax

GetTopWindow(

hWnd: HWND {a handle of a parent window}

): HWND; {returns a handle to a child window}

Description

This function examines the child windows of the specified parent window and returns a

handle to the child window at the top of the z-order relative to its siblings. Only the

84 � Chapter 3

TE
AM
FL
Y

Team-Fly®

siblings of child windows belonging to the parent window are searched. If the child

windows have child windows themselves, they are excluded.

Parameters

hWnd: A handle to the parent window whose child windows are to be searched. If this

value is zero, this function will return the first child window belonging to the desktop

window.

Return Value

If this function succeeds, it returns a handle to the child window at the top of the

z-order relative to its siblings. If the function fails, or the parent window has no child

windows, it returns zero. To get extended error information, call the GetLastError

function.

See Also

BringWindowToTop, EnumChildWindows, EnumWindows, GetActiveWindow,

GetForegroundWindow, GetNextWindow, GetWindow, SetActiveWindow,

SetForegroundWindow, ShowWindow

Example

Please see Listing 3-25 under GetNextWindow.

GetWindow Windows.pas

Syntax

GetWindow(

hWnd: HWND; {a handle to a window}

uCmd: UINT {relationship flags}

): HWND; {returns a handle to a window}

Description

This function returns a handle to a window that has the specified relationship to the

window in the hWnd parameter.

Parameters

hWnd: A handle to a window. The search starts from the window associated with this

window handle.

uCmd: Specifies the relationship of the returned window to the specified window and

can be one value from the following table.

Return Value

If this function is successful, it returns the handle of the related window. If the function

fails, or there is no window with the specified relationship to the given window, it

returns zero. To get extended error information, call the GetLastError function.

Window Information Functions � 85

C
h

a
p

te
r
3

See Also

GetActiveWindow, GetNextWindow, GetTopWindow, EnumWindows, FindWindow

Example

■ Listing 3-27: Getting the child window at the top of the z-order

const
GW_ENABLEDPOPUP = 6; // Delphi does not define this constant

procedure TForm1.Button1Click(Sender: TObject);
var

TheWindow: HWND; // identifies a window
TheText: array[0..255] of char; // holds the window text

begin
{get the child window at the top of the z-order on our main form}
TheWindow := GetWindow(Form1.Handle, GW_CHILD);

{get its text...}
GetWindowText(TheWindow, TheText, 255);

{...and display it}
Button1.Caption := TheText;

end;

Table 3-5: GetWindow uCmd values

Value Description

GW_CHILD Returns a handle to the child window at the top of the z-order if
the specified window has child windows; otherwise, the function
returns zero.

GW_ENABLEDPOPUP Windows 2000 and later: Returns a handle to the next enabled
pop-up window owned by the specified window (found by using
GW_HWNDNEXT). If there are no enabled pop-up windows, the
function returns the handle of the specified window.

GW_HWNDFIRST Returns a handle to the window at the top of the z-order of the
z-order group containing the specified window (i.e., if the speci-
fied window is a child window, the window at the top of the child
window z-order is returned; if the specified window is a top-level
window, the window at the top of the top-level window z-order is
returned).

GW_HWNDLAST Returns a handle to the window at the bottom of the z-order of
the z-order group containing the specified window.

GW_HWNDNEXT Returns a handle to the window below the specified window in
the relative z-order.

GW_HWNDPREV Returns a handle to the window above the specified window in the
relative z-order.

GW_OWNER Returns a handle to the specified window’s owner.

86 � Chapter 3

GetWindowLong Windows.pas

Syntax

GetWindowLong(

hWnd: HWND; {a handle to a window}

nIndex: Integer {the offset of the value to retrieve}

): Longint; {returns a 32-bit value}

Description

This function returns the 32-bit value at the specified offset into the extra window

memory for the specified window. This extra memory is reserved by specifying a value

in the WndExtra member of the TWndClass structure used when the RegisterClass

function is called. In addition, this function can return information about the window

by using one of the values in the following table for the Index parameter.

Parameters

hWnd: A handle to the window with the extra window memory to be accessed.

nIndex: Specifies the zero-based byte offset for the value to be retrieved. This can be a

value between zero and the number of bytes of extra window memory minus four (i.e.,

if 16 bytes of extra window memory are allocated, a value of 8 would index into the

third 32-bit value). In addition, one of the values in the following table can be used to

access specific information about the window.

Return Value

If this function succeeds, it returns the 32-bit value at the specified index into the win-

dow memory area; otherwise, it returns zero. To get extended error information, call

the GetLastError function.

See Also

GetClassInfo, GetClassInfoEx, GetClassName, RegisterClass*, RegisterClassEx*,

SetClassLong, SetWindowLong

Example

■ Listing 3-28: Modifying window styles at run time

procedure TForm1.CheckBox1Click(Sender: TObject);
var

WindowStyle: Longint; // holds the window style
begin

{get the current styles used by this window}
WindowStyle := GetWindowLong(Form1.Handle, GWL_STYLE);

{toggle the WS_CAPTION style}
if (CheckBox1.Checked) then

WindowStyle := WindowStyle OR WS_CAPTION
else

WindowStyle := WindowStyle AND NOT WS_CAPTION;

Window Information Functions � 87

C
h

a
p

te
r
3

{toggle the WS_BORDER style}
if (CheckBox2.Checked) then

WindowStyle := WindowStyle OR WS_BORDER
else

WindowStyle : =WindowStyle AND NOT WS_BORDER;

{toggle the WS_SYSMENU style}
if (CheckBox3.Checked) then

WindowStyle := WindowStyle OR WS_SYSMENU
else

WindowStyle : =WindowStyle AND NOT WS_SYSMENU;

{toggle the WS_MAXIMIZEBOX style}
if (CheckBox4.Checked) then

WindowStyle := WindowStyle OR WS_MAXIMIZEBOX
else

WindowStyle := WindowStyle AND NOT WS_MAXIMIZEBOX;

{toggle the WS_MINIMIZEBOX style}
if (CheckBox5.Checked) then

WindowStyle := WindowStyle OR WS_MINIMIZEBOX
else

WindowStyle := WindowStyle AND NOT WS_MINIMIZEBOX;

{make the window use the new styles}
SetWindowLong(Form1.Handle, GWL_STYLE, WindowStyle);

{this little trick forces the entire window to redraw, including non-client areas}
SetWindowPos(Handle, 0, 0, 0, 0, 0, SWP_DRAWFRAME or SWP_NOACTIVATE or

SWP_NOMOVE or SWP_NOSIZE or SWP_NOZORDER);

{display the current styles used by this window}
Label1.Caption := 'Current Style: '+IntToStr(WindowStyle);

end;

procedure TForm1.FormCreate(Sender: TObject);
var

WindowStyle: Longint; // holds the window style information
begin

{get the current styles used by this window}
WindowStyle := GetWindowLong(Form1.Handle, GWL_STYLE);

{initialize the checkboxes according to the styles that are present}
if (WindowStyle AND WS_CAPTION) > 0 then CheckBox1.Checked:=TRUE;
if (WindowStyle AND WS_BORDER) > 0 then CheckBox2.Checked:=TRUE;
if (WindowStyle AND WS_SYSMENU) > 0 then CheckBox3.Checked:=TRUE;
if (WindowStyle AND WS_MAXIMIZEBOX) > 0 then CheckBox4.Checked:=TRUE;
if (WindowStyle AND WS_MINIMIZEBOX) > 0 then CheckBox5.Checked:=TRUE;

{hook up the OnClick events for the check boxes. this step is necessary
because the OnClick event is automatically fired when the Checked
property is accessed.}
CheckBox1.OnClick := CheckBox1Click;
CheckBox2.OnClick := CheckBox1Click;
CheckBox3.OnClick := CheckBox1Click;

88 � Chapter 3

CheckBox4.OnClick := CheckBox1Click;
CheckBox5.OnClick := CheckBox1Click;

end;

Table 3-6: GetWindowLong nIndex values

Value Description

GWL_EXSTYLE The extended styles used by this window.

GWL_STYLE The styles used by this window.

GWL_WNDPROC A pointer to the window procedure for this window. If a devel-
oper replaces the window procedure using this index, it must
conform to the window procedure callback definition as outlined
in the RegisterClass function. The process of replacing a window
procedure with a new one is called subclassing. An application
should not subclass a window created by another process. A
developer must pass any unhandled messages back to the original
window procedure. This is accomplished by using the return
value from this function with the CallWindowProc function to
access the original window procedure.

GWL_HINSTANCE The handle of the application instance.

GWL_HWNDPARENT The handle to the parent window, if any.

GWL_ID The identifier of the window.

GWL_USERDATA The 32-bit user data value of this window. Every window has a
32-bit user data value that is intended for application-defined data
associated with the window.

These values are available if the Wnd parameter specifies a dialog box:

Value Description

DWL_DLGPROC A pointer to the dialog box procedure for this dialog box. If a devel-
oper replaces the dialog box procedure using this index, it must
conform to the dialog box procedure callback function as defined in
the CreateDialog function. The process of replacing a dialog box
procedure with a new one is called subclassing. An application
should not subclass a dialog box created by another process. A
developer must pass any unhandled messages back to the original

Window Information Functions � 89

C
h

a
p

te
r
3

Figure 3-13:

The window

styles

Value Description

window procedure. This is accomplished by using the return value
from this function with the CallWindowProc function to access the
dialog box procedure.

DWL_MSGRESULT The return value of a message processed in the dialog box
procedure.

DWL_USER The 32-bit extra dialog box information.

GetWindowRect Windows.pas

Syntax

GetWindowRect(

hWnd: HWND; {a handle of a window}

var lpRect: TRect {a pointer to a rectangle coordinate structure}

): BOOL; {returns TRUE or FALSE}

Description

This function stores the coordinates of the bounding rectangle for the given window in

the structure pointed at by the Rect variable. The coordinates are relative to the upper-

left corner of the screen and include the title bar, scroll bars, border, etc., of the speci-

fied window.

Parameters

hWnd: A handle to the window whose bounding rectangle is to be retrieved.

lpRect: A pointer to a TRect structure whose members contain the coordinates for the

upper-left and lower-right corners of the specified window.

Return Value

If this function succeeds, it returns TRUE; otherwise, it returns FALSE. To get

extended error information, call the GetLastError function.

See Also

GetWindowPlacement, SetWindowPlacement

Example

Please see Listing 3-21 under GetClientRect.

GetWindowText Windows.pas

Syntax

GetWindowText(

hWnd: HWND; {a handle to a window}

lpString: PChar; {a pointer to a buffer to receive the string}

nMaxCount: Integer {the maximum number of characters to copy}

): Integer; {returns the length of the copied string}

90 � Chapter 3

Description

This function copies the specified window’s title bar text into the given buffer. If the

window is a control, the text within the control is copied to the buffer. This function

sends a WM_GETTEXT message to the specified window.

Parameters

hWnd: A handle to the window containing the text to be copied to the buffer.

lpString: A pointer to the buffer that will receive the window text.

nMaxCount: Specifies the number of characters to be copied to the buffer. This number

includes the terminating null character (i.e., if 21 is specified, 20 characters will be

copied to the buffer, and the last character will be set to the null terminator). The win-

dow text is truncated if it contains more characters than what is specified in this

parameter.

Return Value

If this function succeeds, it returns the length of the copied string, in bytes, excluding

the terminating null character. If the function fails, or if there was no text in the speci-

fied window, it returns zero. To get extended error information, call the GetLastError

function.

See Also

GetWindowTextLength, SetWindowText, WM_GETTEXT

Example

■ Listing 3-29: Getting and setting the window text

procedure TForm1.Button1Click(Sender: TObject);
var

TheText: PChar; // this will hold the window text
TextLen: Integer; // the length of the window text

begin
{get the length of the window text}
TextLen := GetWindowTextLength(Form1.Handle);

{dynamically allocate space based on the window text length}
GetMem(TheText, TextLen);

{get the window text. we must add 1 to account for the terminating null character}
GetWindowText(Form1.Handle, TheText, TextLen+1);

{display this text in the edit box}
Edit1.Text := string(TheText);

{free the memory for the new string}
FreeMem(TheText);

end;

procedure TForm1.Button2Click(Sender: TObject);

Window Information Functions � 91

C
h

a
p

te
r
3

begin
{set the text of the window to the string in the edit box}
SetWindowText(Form1.Handle, PChar(Edit1.Text));

end;

GetWindowTextLength Windows.pas

Syntax

GetWindowTextLength(

hWnd: HWND {a handle to a window}

): Integer; {returns the length of the window text}

Description

This function retrieves the length of the text in the given window’s title bar, in bytes. If

the window is a control, the length of the text within the control is returned. This func-

tion sends a WM_GETTEXTLENGTH message to the given window. It is possible that

this function will return a result larger than the actual size of the text when using a mix-

ture of ANSI and Unicode functions within an application.

Parameters

hWnd: A handle to the window from which to extract the text length.

Return Value

If this function succeeds, it returns the length of the text in the given window, in bytes,

excluding the terminating null character; otherwise, it returns zero. To get extended

error information, call the GetLastError function.

See Also

GetWindowText, SetWindowText, WM_GETTEXT, WM_GETTEXTLENGTH

Example

Please see Listing 3-29 under GetWindowText.

IsChild Windows.pas

Syntax

IsChild(

hWndParent: HWND; {a handle to a parent window}

hWnd: HWND {a handle to the window to test}

): BOOL; {returns TRUE or FALSE}

92 � Chapter 3

Figure 3-14:

The window

text has

changed

Description

This function tests a window to see if it is a child window of the specified parent win-

dow. The window is considered a child window if parentage can be traced from the

window to the specified parent window.

Parameters

hWndParent: A handle to the parent window.

hWnd: A handle to the child window to be tested.

Return Value

If this function succeeds, and the window in the Wnd parameter is a child window of

the window in the WndParent parameter, it returns TRUE. If the function fails, or the

given window is not a child window of the specified parent window, it returns FALSE.

See Also

EnumChildWindows, GetParent, SetParent

Example

■ Listing 3-30: Testing child window status

procedure TForm1.Button1Click(Sender: TObject);
begin

{is this button a child of the main form?}
if (IsChild(Form1.Handle,Button1.Handle)) then

Button1.Caption := 'TRUE'
else

Button1.Caption := 'FALSE'
end;

procedure TForm1.Button2Click(Sender: TObject);
begin

{is this button a child of the main form?
(this button is in a panel, so it is the child of a child window)}
if (IsChild(Form1.Handle,Button2.Handle)) then

Button2.Caption := 'TRUE'
else

Button2.Caption := 'FALSE'
end;

procedure TForm1.Button3Click(Sender: TObject);
begin

{is this button a child of the panel? (this button is outside of the panel)}
if (IsChild(Panel1.Handle,Button3.Handle)) then

Button3.Caption := 'TRUE'
else

Button3.Caption := 'FALSE'
end;

Window Information Functions � 93

C
h

a
p

te
r
3

IsIconic Windows.pas

Syntax

IsIconic(

hWnd: HWND {a handle to a window}

): BOOL; {returns TRUE or FALSE}

Description

This function tests the specified window to see if it is minimized.

Parameters

hWnd: A handle to the window being tested.

Return Value

If this function succeeds and the specified window is minimized, it returns TRUE. If

the function fails, or the specified window is not minimized, it returns FALSE.

See Also

CloseWindow, DestroyWindow*, IsWindowVisible, IsZoomed, OpenIcon,

ShowWindow, WM_SIZE

Example

Please see Listing 2-7 under the CloseWindow function.

IsWindow Windows.pas

Syntax

IsWindow(

hWnd: HWND {a potential handle to a window}

): BOOL; {returns TRUE or FALSE}

Description

This function will test the given window handle to determine if it identifies a valid,

existing window.

Parameters

hWnd: The window handle being tested.

Return Value

If this function succeeds and the handle identifies an existing window, it returns TRUE.

If this function fails, or the given window handle does not identify an existing window,

it returns FALSE.

See Also

EnumChildWindows, EnumWindows, FindWindow, FindWindowEx, GetWindow,

IsWindowEnabled, IsWindowVisible

94 � Chapter 3

TE
AM
FL
Y

Team-Fly®

Example

■ Listing 3-31: Testing for a valid window handle

procedure TForm1.Button1Click(Sender: TObject);
begin

{see if the button has a valid window handle}
if (IsWindow(Button1.Handle)) then

Button1.Caption := 'TRUE'
else

Button1.Caption := 'FALSE';
end;

IsWindowEnabled Windows.pas

Syntax

IsWindowEnabled(

hWnd: HWND {a handle to a window to test}

): BOOL; {returns TRUE or FALSE}

Description

This function tests the specified window to see if it is enabled for mouse or keyboard

input. A child window can receive input only if it is enabled and visible.

Parameters

hWnd: A handle to the window being tested.

Return Value

If this function succeeds and the specified window is enabled, it returns TRUE. If this

function fails, or the specified window is disabled, it returns FALSE.

See Also

EnableWindow, GetActiveWindow, GetFocus, IsWindowVisible, SetActiveWindow,

SetFocus, WM_ENABLE

Example

Please see Listing 3-8 under EnableWindow.

IsWindowUnicode Windows.pas

Syntax

IsWindowUnicode(

hWnd: HWND {a handle to a window to test}

): BOOL; {returns TRUE or FALSE}

Description

This function determines if the given window is a native Unicode window.

Window Information Functions � 95

C
h

a
p

te
r
3

Parameters

hWnd: A handle to the window being tested.

Return Value

If the function succeeds and the specified window is a native Unicode window, it

returns TRUE. If the function fails, or the specified window is not a native Unicode

window, it returns FALSE.

See Also

IsWindow

Example

■ Listing 3-32: Determining if a window is a Unicode window

procedure TForm1.Button1Click(Sender: TObject);
begin

{determine if the window is a Unicode window}
if (IsWindowUnicode(Form1.Handle)) then

Button1.Caption := 'This window is a Unicode window'
else

Button1.Caption := 'This window is not a Unicode window'
end;

IsWindowVisible Windows.pas

Syntax

IsWindowVisible(

hWnd: HWND {a handle to a window to test}

): BOOL; {returns TRUE or FALSE}

Description

This function determines if the specified window has the WS_VISIBLE style flag set.

This function will return TRUE as long as the WS_VISIBLE style flag is set, even if

the window is completely obscured by other windows or is not visible because it has

been clipped by its parent window.

Parameters

hWnd: A handle to the window being tested.

Return Value

If this function succeeds and the specified window has the WS_VISIBLE style flag set,

it returns TRUE. If the function fails, or the specified window does not have the

WS_VISIBLE style set, it returns FALSE.

See Also

BringWindowToTop, CloseWindow, FindWindow, GetWindowPlacement,

SetWindowPlacement, ShowWindow

96 � Chapter 3

Example

■ Listing 3-33: Testing the visibility of a window

procedure TForm1.Button1Click(Sender: TObject);
begin

{test Edit1 for visibility}
if (IsWindowVisible(Edit1.Handle)) then

Button1.Caption := 'Edit1 is visible'
else

Button1.Caption := 'Edit1 is not visible';
end;

procedure TForm1.Button2Click(Sender: TObject);
begin

{test Edit2 for visibility}
if (IsWindowVisible(Edit2.Handle)) then

Button2.Caption := 'Edit2 is visible'
else

Button2.Caption := 'Edit2 is not visible';
end;

IsZoomed Windows.pas

Syntax

IsZoomed(

hWnd: HWND {a handle to a window to test}

): BOOL; {returns TRUE or FALSE}

Description

This function tests the specified window to see if it is maximized.

Parameters

hWnd: A handle to the window to be tested.

Return Value

If the function succeeds and the window is maximized, it returns TRUE. If the function

fails, or the window is not maximized, it returns FALSE.

See Also

GetWindowPlacement, GetWindowRect, IsIconic, ShowWindow

Example

■ Listing 3-34: Testing for a maximized state

procedure TForm1.FormResize(Sender: TObject);
begin

{indicate if the window is maximized or not}
if (IsZoomed(Form1.Handle)) then

Label1.Caption := 'This window is zoomed'
else

Window Information Functions � 97

C
h

a
p

te
r
3

Label1.Caption := 'This window is not zoomed';
end;

RemoveProp Windows.pas

Syntax

RemoveProp(

hWnd: HWND; {a handle to a window}

lpString: PChar {a pointer to a string}

): THandle; {returns a 32-bit value}

Description

This function removes the property associated with the specified string from the prop-

erty list of the specified window. Before a window is destroyed, the application must

remove all properties it has added to that window’s property list. An application can

only remove properties it has added and should never remove properties added by other

applications or by Windows.

Parameters

hWnd: A handle to a window whose property list is to be modified.

lpString: A pointer to a null-terminated string or an atom identifying a string, that iden-

tifies the property entry to remove. If this parameter is an atom, the atom must have

been created with a call to GlobalAddAtom. The atom, a 16-bit value, must be in the

low-order word, and the high-order word must be zero.

Return Value

If the function succeeds, it returns the 32-bit value associated with the specified string.

If the function fails, or the string does not exist in the property list, it returns zero.

See Also

EnumProps, EnumPropsEx, GetProp, SetProp

Example

Please see either Listing 3-10 under EnumProps or Listing 3-11 under EnumPropsEx.

SetActiveWindow Windows.pas

Syntax

SetActiveWindow(

hWnd: HWND {a handle to a window to activate}

): HWND; {returns a handle to the previously active window}

Description

This function activates the specified window, giving it input focus. The window will

only be brought to the foreground if the thread calling this function owns the specified

window. Use the SetForegroundWindow to activate a window and force its associated

thread into the foreground.

98 � Chapter 3

Parameters

hWnd: A handle to the top-level window to be activated.

Return Value

If this function succeeds, it returns a handle to the previously active window; other-

wise, it returns zero.

See Also

GetActiveWindow, SetForegroundWindow, WM_ACTIVATE

Example

■ Listing 3-35: Toggling active windows

This code is put into the OnTimer event of a timer set to fire every 1000 milliseconds.

procedure TForm1.Timer1Timer(Sender: TObject);
var

ActiveWindow: HWND; // holds the currently active form handle
begin

{get the current active form}
ActiveWindow := GetActiveWindow;

{toggle the active form}
if (ActiveWindow = Form1.Handle) then

SetActiveWindow(Form2.Handle)
else

SetActiveWindow(Form1.Handle);
end;

procedure TForm1.FormShow(Sender: TObject);
begin

{display form2}
Form2.Show;

end;

SetClassLong Windows.pas

Syntax

SetClassLong(

hWnd: HWND; {a handle to a window}

nIndex: Integer; {the index of the value to change}

dwNewLong: Longint {the new value}

): DWORD; {returns the previous value at the specified index}

Description

SetClassLong replaces the 32-bit value at the specified offset into the extra memory for

the window class associated with the given window. This extra memory is reserved by

specifying a value in the ClsExtra member of the TWndClass structure used when the

RegisterClass function is called. In addition, it can modify information about the win-

dow class by using a value from the following table for the Index parameter.

Window Information Functions � 99

C
h

a
p

te
r
3

Parameters

hWnd: The handle to the window with the class memory to be modified.

nIndex: Specifies the zero-based byte offset for the 32-bit value to be set. This can be a

value between zero and the number of bytes of extra class memory minus four (i.e., if

16 bytes of extra class memory are allocated, a value of 8 would index into the third

32-bit value). In addition, one of the values in the following table can be used to mod-

ify specific information about the class.

dwNewLong: The new 32-bit value to be used at the specified index.

Return Value

If this function succeeds, it returns the previous 32-bit value at the specified offset; oth-

erwise, it returns zero. To get extended error information, call the GetLastError

function.

See Also

GetClassInfo, GetClassInfoEx, GetClassLong, GetClassName, RegisterClass*,

RegisterClassEx*, SetWindowLong

Example

Please see Listing 3-20 under GetClassLong.

Table 3-7: SetClassLong nIndex values

Values Description

GCL_CBCLSEXTRA The size of the extra memory associated with this class, in
bytes. Setting this value will not change the amount of
memory already allocated.

GCL_CBWNDEXTRA The size of the extra memory associated with each win-
dow of this class, in bytes. Setting this value will not change
the amount of memory already allocated.

GCL_HBRBACKGROUND The handle to the default background brush.

GCL_HCURSOR The handle to the window class cursor.

GCL_HICON The handle to the window class icon.

GCL_HICONSM The handle to the window class small icon.

GCL_HMODULE The handle of the module that registered the class.

GCL_MENUNAME A pointer to the menu name string.

GCL_STYLE The 32-bit style bits for this class.

GCL_WNDPROC A pointer to the window procedure for this class. If a
developer replaces the window procedure using this index,
it must conform to the window procedure callback defini-
tion as outlined in the RegisterClass function. This subclass
will affect all windows subsequently created with this class.
An application should not subclass a window created by
another process.

100 � Chapter 3

SetFocus Windows.pas

Syntax

SetFocus(

hWnd: HWND {a handle to a window}

): HWND; {returns a handle to the previous focus window}

Description

This function gives the specified window the keyboard input focus, activating the win-

dow or the parent of the window. It sends a WM_KILLFOCUS message to the window

losing the keyboard input focus and a WM_SETFOCUS message to the window receiv-

ing the keyboard input focus. If a window is active but no window has the keyboard

input focus (the hWnd parameter was set to zero), any keys pressed will send a

WM_SYSCHAR, WM_SYSKEYDOWN, or WM_SYSKEYUP message, as appropri-

ate, to the active window’s window procedure. In the event that the VK_MENU key is

also pressed, the lParam of the messages will have bit 30 set. If the calling thread cre-

ated the window associated with the window handle in the hWnd parameter, its

keyboard focus status is set to this window.

Parameters

hWnd: A handle to the window that will receive keyboard focus. If this parameter is

zero, keyboard input is ignored (see above).

Return Value

If this function succeeds, it returns the handle of the window that previously had the

keyboard input focus. If the function fails, the hWnd parameter has a handle to an

invalid window, or there was no window that previously had keyboard focus, it returns

zero.

See Also

GetActiveWindow, GetFocus, SetActiveWindow, SetForegroundWindow,

WM_KILLFOCUS, WM_SETFOCUS, WM_SYSCHAR, WM_SYSKEYDOWN,

WM_SYSKEYUP

Example

■ Listing 3-36: Changing the keyboard input focus

Note that this code is placed in the OnTimer event of a timer set to fire every 1000

milliseconds.

procedure TForm1.Timer1Timer(Sender: TObject);
var

HasFocus: HWND; // identifies a window
begin

{determine which edit box has the keyboard focus}
HasFocus := GetFocus;

{switch focus to the other edit box}
if (HasFocus = Edit1.Handle) then

Window Information Functions � 101

C
h

a
p

te
r
3

Windows.SetFocus(Edit2.Handle)
else

Windows.SetFocus(Edit1.Handle);
end;

SetForegroundWindow Windows.pas

Syntax

SetForegroundWindow(

hWnd: HWND {a handle to a window}

): BOOL; {returns TRUE or FALSE}

Description

This function activates the specified window, brings it to the top of the window z-order,

gives it keyboard input focus, and forces the thread that created the window into the

foreground. Applications should use this function to force themselves into the

foreground.

Parameters

hWnd: A handle to the window to be activated and brought to the foreground.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call the GetLastError function.

See Also

GetForegroundWindow, SetActiveWindow, WM_ACTIVATE

Example

■ Listing 3-37: Bringing the Windows Explorer into the foreground

{note that the Windows Explorer must be running for this example to work}
procedure TForm1.Button1Click(Sender: TObject);
var

TheWindow: HWND;
begin

{find a handle to the Windows Explorer window}
TheWindow := FindWindow('ExploreWClass', nil);

{bring it into the foreground}
SetForegroundWindow(TheWindow);

end;

SetParent Windows.pas

Syntax

SetParent(

hWndChild: HWND; {a handle to a window whose parent is changing}

hWndNewParent: HWND {a handle to the new parent window}

): HWND; {returns a handle to the previous parent window}

102 � Chapter 3

Description

This function sets the parent window of the hWndChild window to the hWndNew-

Parent window. Both windows must belong to the same application. If the child

window is visible, Windows performs any necessary redrawing.

Parameters

hWndChild: A handle to a child window.

hWndNewParent: A handle to the new parent window. If this parameter is zero, the

desktop window is assumed to be the new parent window.

Return Value

If the function succeeds, it returns a handle to the previous parent window; otherwise,

it returns zero. To get extended error information, call the GetLastError function.

See Also

GetParent

Example

■ Listing 3-38: Changing a button’s parent

procedure TForm1.Button1Click(Sender: TObject);
begin

{the parent of button1 is currently the main form. this will set it to panel1, and the
button will be displayed and clipped by the panel.}
Windows.SetParent(Button2.Handle, Panel1.Handle);

end;

Window Information Functions � 103

C
h

a
p

te
r
3

Figure 3-15:

The button’s

parent has

changed

SetProp Windows.pas

Syntax

SetProp(

hWnd: HWND; {a handle to a window}

lpString: PChar; {a pointer to a string}

hData: THandle {a 32-bit value}

): BOOL; {returns TRUE or FALSE}

Description

This function will add or modify a property list entry of the specified window. If the

specified string does not exist in the property list, a new property entry is created. If the

string does exist, the data value associated with the specified string is replaced by the

new data value. Before a window is destroyed, an application must remove all property

entries it has added by using the RemoveProp function.

Parameters

hWnd: A handle to the window whose property list is to be modified.

lpString: A pointer to a null-terminated string or an atom identifying a string. This

string will be associated with the data value once it is added to the property list of the

window. If this parameter is an atom, the atom must have been created with a call to

GlobalAddAtom. The atom, a 16-bit value, must be in the low-order word, and the

high-order word must be zero.

hData: A 32-bit value that will be associated with the given string in the property list

and can be any value of use to the application.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE.

See Also

EnumProps, EnumPropsEx, GetProp, RemoveProp

Example

Please see either Listing 3-10 under EnumProps or Listing 3-11 under EnumPropsEx.

SetWindowLong Windows.pas

Syntax

SetWindowLong(

hWnd: HWND; {a handle to a window}

nIndex: Integer; {the index of the value to change}

dwNewLong: Longint {the new value}

): Longint; {returns the previous value at the specified index}

104 � Chapter 3

TE
AM
FL
Y

Team-Fly®

Description

This function replaces the 32-bit value at the specified offset into the extra memory for

the window. This extra memory is reserved by specifying a value in the cbWndExtra

member of the TWndClass structure used when the RegisterClass function is called. In

addition, this function can modify information about the window by using one of the

values in the following table for the nIndex parameter.

Parameters

hWnd: A handle to the window with the extra window memory to be modified.

nIndex: Specifies the zero-based byte offset for the value to be modified. This can be a

value between zero and the number of bytes of extra window memory minus four (i.e.,

if 16 bytes of extra window memory are allocated, a value of 8 would index into the

third 32-bit value). In addition, one of the values in the following table can be used to

modify specific information about the window.

dwNewLong: The new 32-bit value to be used at the specified index.

Return Value

If the function succeeds, it returns the previous 32-bit value at the specified index; oth-

erwise, it returns zero. To get extended error information, call the GetLastError

function.

If the function succeeds and the previous value at the specified index is zero, the return

value will be zero. However, the last error information will not be cleared, making it

difficult to determine if the function succeeded or failed. Developers should clear the

last error information by calling the SetLastError function, passing it a value of 0,

before calling the SetWindowLong function. If this is done, SetWindowLong failure

will be indicated by a return value of zero and a non-zero return value from

GetLastError.

See Also

CallWindowProc*, GetClassLong, GetWindowLong, RegisterClass*, SetClassLong,

SetParent

Example

Please see Listing 3-28 under GetWindowLong.

Table 3-8: SetWindowLong nIndex values

Value Description

GWL_EXSTYLE The extended styles used by this window.

GWL_STYLE The styles used by this window.

GWL_WNDPROC A pointer to the window procedure for this window. If a devel-
oper replaces the window procedure using this index, it must
conform to the window procedure callback definition as outlined
in the RegisterClass function. The process of replacing a window
procedure with a new one is called subclassing. An application

Window Information Functions � 105

C
h

a
p

te
r
3

Value Description

should not subclass a window created by another process. A
developer must pass any unhandled messages back to the original
window procedure. This is accomplished by using the return value
from this function with the CallWindowProc function to access
the original window procedure.

GWL_HINSTANCE The handle of the application instance.

GWL_HWNDPARENT The handle to the parent window, if any.

GWL_ID The identifier of the window.

GWL_USERDATA The 32-bit user data value of this window. Every window has a
32-bit user data value that is intended for application-defined data
associated with the window.

These values are available if the Wnd parameter specifies a dialog box:

Value Description

DWL_DLGPROC A pointer to the dialog box procedure for this dialog box. If a
developer replaces the dialog box procedure using this index, it
must conform to the dialog box procedure callback function as
defined in the CreateDialog function. The process of replacing a
dialog box procedure with a new one is called subclassing. An
application should not subclass a dialog box created by another
process. A developer must pass any unhandled messages back to
the original window procedure. This is accomplished by using the
return value from this function with the CallWindowProc function
to access the dialog box procedure.

DWL_MSGRESULT The return value of a message processed in the dialog box
procedure.

DWL_USER The 32-bit extra dialog box information.

SetWindowText Windows.pas

Syntax

SetWindowText(

hWnd: HWND; {a handle to a window}

lpString: PChar {a pointer to a string}

): BOOL; {returns TRUE or FALSE}

Description

This function changes the text in the title bar of the specified window. If the window is

a control, the text in the control is changed. This function sends a WM_SETTEXT

message to the specified window. Tab characters are not expanded and will appear as a

vertical bar.

Note that if the specified window is a list box control with the WS_CAPTION style

specified, this function sets the text for the control, not for the list box entries.

106 � Chapter 3

Parameters

hWnd: A handle to a window whose text is to be changed.

lpString: A pointer to a null-terminated string. This string will become the text in the

specified window or control.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call the GetLastError function.

See Also

GetWindowText, GetWindowTextLength, WM_SETTEXT

Example

Please see Listing 3-29 under GetWindowText.

WindowFromPoint Windows.pas

Syntax

WindowFromPoint(

Point: TPoint {coordinate information}

): HWND; {returns a handle to a window}

Description

This function returns the handle of the window containing the specified point. This

function does not work with hidden or disabled windows.

Parameters

Point: Specifies a TPoint structure containing the coordinates to check. These coordi-

nates are relative to the screen.

Return Value

If this function succeeds, it returns a handle to the window containing the specified

point. If it fails, or there is not a window containing the specified point, it returns zero.

See Also

ChildWindowFromPoint, ChildWindowFromPointEx

Example

■ Listing 3-39: Finding a window at a specific coordinate

procedure TForm1.Button1Click(Sender: TObject);
var

WindowText: array[0..255] of char; // holds the text of the window
TheWindow: HWND; // holds the window handle
ThePoint: TPoint; // holds the coordinates to check

begin
{fill in the coordinates}

Window Information Functions � 107

C
h

a
p

te
r
3

ThePoint.X := 5;
ThePoint.Y := 5;

{retrieve the window}
TheWindow := WindowFromPoint(ThePoint);

{get the window text...}
GetWindowText(TheWindow, WindowText, 255);

{...and display it}
Button1.Caption := WindowText;

end;

108 � Chapter 3

Chapter 4

File Input/Output FunctionsFile Input/Output Functions

It is rare to create an application that does not do some sort of file input and output,

whether that be document creation or just the loading and saving of configuration data.

From word processors to web browsers, almost every application deals with the file

system in some manner. Fortunately, Windows provides developers with a rich selec-

tion of API functions to manage almost any type of file input and output functionality

an application might require.

File Creation

Windows handles file creation through the CreateFile function. This function can also

open an existing file for modification or simple data retrieval. When a file is opened or

created, the system maintains a pointer into the file. This pointer changes location as

data is read out of or written into the file. An application can change this file pointer to

different locations within the file by using the SetFilePointer function. This allows an

application to randomly access information in a file if the file structure is known at run

time.

When a file is created or opened, a file handle is returned. This works similar to a win-

dow handle, as it identifies the file and allows other functions to manipulate the file.

Any process that is started by the current process inherits all open file handles, if they

were identified as inheritable. Although Windows will close any open files when the

application terminates, information could be lost if an opened file is not explicitly

closed by using the CloseHandle function.

Bear in mind that some of the file input/output functions covered in this chapter men-

tion relative and qualified paths. A qualified path consists of the root drive followed by

the directory name and each subdirectory name, including the filename (i.e., C:\Pro-

gram Files\Borland\Delphi\Bin\Delphi32.exe). A relative path uses the relative path

markers, such as “.” and “..”, to point to a directory using the current directory as the

origin (i.e., ..\..\Database Desktop\Dbd32.exe).

109

File Times

Windows records file times in the coordinated universal time format (UTC). UTC is

defined as the current date and time in Greenwich, England. Specifically, the file times

are stored as a TFileTime structure. The TFileTime structure is defined as:

TFileTime = record

dwLowDateTime: DWORD; {the low-order 32 bits of the file time}

dwHighDateTime: DWORD; {the high-order 32 bits of the file time}

end;

The TFileTime structure combines to make a 64-bit value that specifies the number of

100 nanosecond intervals that have elapsed since 12:00 A.M., January 1, 1601 (per

Coordinated Universal Time).

The file time stored by the system when the file is written to disk is based on the sys-

tem time, which is in UTC format. However, an application will usually want to

display a file time in local time format. Typically, an application converts a file time to

the user’s local time zone by calling FileTimeToLocalFileTime and passing the

returned TFileTime structure to the FileTimeToSystemTime function. This function

returns a data structure with the appropriate values for date and time in the local time

zone. This is the method by which the Explorer displays file times in the local time

zone format. There are three time values available for a file: creation time, last access

time, and last modification time.

Delphi vs. the Windows API

Fortunately, much of the functionality available through these API functions has been

wrapped within many various and sundry functions within the Sysutils unit. Doing a

search of Sysutils will reveal the use of many functions outlined in this chapter, from

opening and closing files to determining a file’s age. This makes file input and output

much more approachable by the neophyte Delphi programmer. However, as with

almost anything that is wrapped into a simpler interface, many of the more advanced

techniques or functionalities are simply not available unless the API is used directly.

For most uses, the functions in the Sysutils unit will suffice, but when more sophisti-

cated file input and output techniques are required, applications will find more

functionality available from the Windows API.

110 � Chapter 4

File Input/Output Functions

The following file input/output functions are covered in this chapter:

Table 4-1: File input/output functions

Function Description

CloseHandle Closes an open handle.

CompareFileTime Compares two TFileTime file times.

CopyFile Copies a file to a new file.

CreateDirectory Creates a new directory.

CreateDirectoryEx Creates a directory with the attributes of a specified template directory.

CreateFile Creates a new file or opens an existing one.

CreateFileMapping Creates a file mapping object.

DeleteFile Deletes a file.

DosDateTimeToFileTime Converts a DOS-based date and time value into the system file time
format.

FileTimeToDosDateTime Converts a system file time value into the DOS date and time format.

FileTimeToLocalFileTime Converts a UTC-based system file time value into a local file time value.

FileTimeToSystemTime Converts a file time value into a TSystemTime data structure format.

FindClose Closes a search handle.

FindCloseChangeNotification Discontinues monitoring of a change notification handle.

FindFirstChangeNotification Creates a change notification handle.

FindFirstFile Searches a directory for a file or directory name.

FindNextChangeNotification Restores a change notification handle for further monitoring.

FindNextFile Continues a file search from a previous call to the FindFirstFile function.

FlushFileBuffers Forces a file to be written to disk.

FlushViewOfFile Forces a memory-mapped file to be written to disk.

GetCurrentDirectory Retrieves a path for the current directory.

GetFileAttributes Retrieves attributes for the specified file.

GetFileInformationByHandle Retrieves file information from an open file handle.

GetFileSize Retrieves the specified file’s size in bytes.

GetFileTime Retrieves the specified file’s creation, last access, and last write times.

GetFileType Retrieves the specified file’s type.

GetFileVersionInfo Retrieves the specified file’s version information resource.

GetFileVersionInfoSize Retrieves the size of the specified file’s version information resource.

GetFullPathName Retrieves the full path and long filename of the specified file.

GetShortPathName Retrieves the short path (8.3 filename format) for the specified file.

GetTempFileName Creates a temporary filename.

GetTempPath Retrieves the environment-defined path for temporary file storage.

LocalFileTimeToFileTime Converts a local file time value to a system UTC-based file time.

LockFile Locks a portion of a file.

File Input/Output Functions � 111

C
h

a
p

te
r
4

Function Description

MapViewOfFile Maps the specified file into the address space of the calling process.

MoveFile Moves a file from one directory to another.

OpenFileMapping Opens an existing file mapping object.

ReadFile Reads information from a file.

RemoveDirectory Deletes the specified directory.

SearchPath Searches for a filename on the environment-defined path.

SetCurrentDirectory Changes directories to the specified directory.

SetEndOfFile Explicitly sets the end of the specified file.

SetFileAttributes Sets file attributes.

SetFilePointer Moves the file pointer within an open file.

SetFileTime Sets the creation, last access, and last write times of the specified file.

SystemTimeToFileTime Converts the system time information to the UTC-based system file time.

UnlockFile Unlocks a previously locked file.

UnmapViewOfFile Removes a mapped file from the calling process’s address space.

VerQueryValue Retrieves a value from the file’s information resource.

WriteFile Writes information to a file.

CloseHandle Windows.pas

Syntax

CloseHandle(

hObject: THandle {an object handle}

): BOOL; {returns TRUE or FALSE}

Description

The CloseHandle function closes an open device or object and should be used to close

handles for console input and output, event files, mapped files, mutexes, named pipes,

processes, semaphores, threads, files created from a call to CreateFile, and tokens

(Windows NT and later). This function invalidates the specified handle and decrements

the handle count of the object associated with the handle by one. Once the object’s han-

dle count reaches zero, the object is removed from memory. Attempting to close an

invalidated handle will raise an exception

Parameters

hObject: Specifies an open handle.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call the GetLastError function.

See Also

CreateFile, DeleteFile, FindClose, FindFirstFile

112 � Chapter 4

Example

Please see Listing 4-4 under CreateFile.

CompareFileTime Windows.pas

Syntax

CompareFileTime(

const lpFileTime1: TFileTime; {a pointer to a TFileTime record}

const lpFileTime2: TFileTime {a pointer to a TFileTime record}

): Longint; {returns a file time equality indicator}

Description

This function compares lpFileTime1 to lpFileTime2 and returns the result indicating

their difference. This function could be used with GetFileTime to determine if a file

was written to when it was last accessed.

Parameters

lpFileTime1: A pointer to a TFileTime structure containing the 64-bit time of the first

file to compare.

lpFileTime2: A pointer to a TFileTime structure containing the 64-bit time of the first

file to compare.

Return Value

If the function succeeds, it returns a –1, indicating that the first file time is older than

the second; a 0, indicating that the file times are equal; or a 1, indicating that the first

file time is newer than the second. The function does not indicate an error upon failure.

See Also

FileTimeToLocalFileTime, FileTimeToSystemTime, GetFileTime

Example

■ Listing 4-1: Comparing two file times

var
Form1: TForm1;
File1AccessTime: TFileTime; // holds the file times to be compared
File2AccessTime: TFileTime;

implementation

{converts the file time into the proper system time}
procedure TForm1.DisplayTime(TheTime: TFileTime; TheLabel: TLabel);
var
SystemTime: TSystemTime; // holds the system time information
Intermediate: TFileTime; // holds the local file time
AMPM: string; // indicates morning or evening

begin
{we must first convert the file time into the local file time, and then convert this
into the system time to get the correct modification time}

File Input/Output Functions � 113

C
h

a
p

te
r
4

FileTimeToLocalFileTime(TheTime, Intermediate);
FileTimeToSystemTime(Intermediate, SystemTime);

{indicate morning or evening, and modify the time so we are
not displaying military standard}
if SystemTime.wHour>11 then AMPM := ' PM' else AMPM := ' AM';
if SystemTime.wHour>12 then SystemTime.wHour := SystemTime.wHour-12;

{display the time}
TheLabel.Caption := IntToStr(SystemTime.wMonth) + '/' +

IntToStr(SystemTime.wDay) +
'/' + IntToStr(SystemTime.wYear) + ' ' +
IntToStr(SystemTime.wHour) + ':' +
IntToStr(SystemTime.wMinute) + ':' +
IntToStr(SystemTime.wSecond) + AMPM;

end;

procedure TForm1.FileListBox1Click(Sender: TObject);
var
Security: TSecurityAttributes; // holds file security information
hFile:THandle; // holds a handle to the file
begin

{initialize the security attributes}
Security.nLength:=SizeOf(TSecurityAttributes);
Security.bInheritHandle := FALSE;

{open the file so we can retrieve a handle to it}
hFile := CreateFile(PChar(TFileListBox(Sender).FileName), GENERIC_READ,

FILE_SHARE_READ, @Security, OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL, 0);

if hFile = INVALID_HANDLE_VALUE then
begin
ShowMessage('Error Opening File');
Exit;

end;

{retrieve the file time and display it}
if Sender = FileListBox1 then
begin
GetFileTime(hFile, nil, nil, @File1AccessTime);
DisplayTime(File1AccessTime, Label7);

end
else
begin
GetFileTime(hFile, nil, nil, @File2AccessTime);
DisplayTime(File2AccessTime, Label2);

end;
end;

procedure TForm1.Button1Click(Sender: TObject);
var

lResult: Longint; // holds the result of the time comparison
begin

{compare the file times}
lResult := CompareFileTime(File1AccessTime, File2AccessTime);

114 � Chapter 4

TE
AM
FL
Y

Team-Fly®

{display the file comparison result}
case lResult of
-1: StatusBar1.SimpleText := 'First file is older than second file';
0: StatusBar1.SimpleText := 'File times are equal';
1: StatusBar1.SimpleText := 'First file is younger than second file';

end;
end;

CopyFile Windows.pas

Syntax

CopyFile(

lpExistingFileName: PChar; {a pointer to an existing filename}

lpNewFileName: PChar; {a pointer to a new filename}

bFailIfExists: BOOL {existing file flags}

): BOOL; {returns TRUE or FALSE}

Description

This function copies an existing file to a new file. The security attributes of a file are

not copied, but the file attributes are copied (i.e., if the existing file is read only, the

new file will also be read only).

Parameters

lpExistingFileName: A null-terminated string containing the name of the file to be

copied.

lpNewFileName: A null-terminated string containing the name of the new file.

bFailIfExists: Determines how a file is copied if a file exists with the same name as

that pointed to by the lpNewFileName parameter. If this parameter is set to TRUE and

File Input/Output Functions � 115

C
h

a
p

te
r
4

Figure 4-1:

The file times

are equal

the new file already exists, the function will

fail. If this parameter is set to FALSE, the

existing file is overwritten and the function

succeeds.

Return Values

If the function succeeds, it returns TRUE; oth-

erwise, it returns FALSE. To get extended error

information, call the GetLastError function.

See Also

CreateFile, MoveFile

Figure 4-2: The file was copied

Example

■ Listing 4-2: Copying files

procedure TForm1.Button1Click(Sender: TObject);
var
ErrorMessage: Pointer; // holds a system error string
ErrorCode: DWORD; // holds a system error code

begin
{blank out the status bar}
StatusBar1.SimpleText := '';

{attempt to copy the file}
if not CopyFile(PChar(Edit1.Text+'\'+ExtractFilename(FileListBox1.FileName)),

PChar(Edit2.Text+'\'+ExtractFilename(FileListBox1.FileName)),
not CheckBox1.Checked) then

begin
{if the file was not copied, display the error message}
ErrorCode := GetLastError;
FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER or FORMAT_MESSAGE_FROM_SYSTEM,

nil, ErrorCode, 0, @ErrorMessage, 0, nil);
StatusBar1.SimpleText := 'Error Copying File: ' + PChar(ErrorMessage);
LocalFree(hlocal(ErrorMessage));

end
else
StatusBar1.SimpleText := 'The File Was Copied';

end;

116 � Chapter 4

CreateDirectory Windows.pas

Syntax

CreateDirectory(

lpPathName: PChar; {the new directory path string}

lpSecurityAttributes: PSecurityAttributes {pointer to directory security attributes}

): BOOL; {returns TRUE or FALSE}

Description

This function creates a new directory as specified by lpPathName parameter. Under

Windows NT and other file systems that support individual file and directory compres-

sion, such as NTFS, a new directory inherits the compression attributes of its parent

directory.

Parameters

lpPathName: A null-terminated string containing the name of the new directory. This

directory name must be less than MAX_PATH characters in size.

lpSecurityAttributes: A pointer to a TSecurityAttributes structure containing informa-

tion about handle inheritance and file security. This parameter can be set to NIL,

indicating that child processes cannot inherit the directory handle. The

TSecurityAttributes data structure is defined as:

TSecurityAttributes = record

nLength: DWORD; {the size of the TSecurityAttributes structure}

lpSecurityDescriptor: Pointer; {the security descriptor}

bInheritHandle: BOOL; {handle inheritance flags}

end;

The members of this data structure are described under CreateFile.

�Note: Under Windows 95/98/Me, the lpSecurityDescriptor member of this

structure is ignored.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call the GetLastError function.

See Also

CreateDirectoryEx, CreateFile, RemoveDirectory

Example

■ Listing 4-3: Creating a directory

procedure TForm1.CreateDirectory1Click(Sender: TObject);
var
ErrorMessage: Pointer; // holds a system error message
ErrorCode: DWORD; // holds a system error code

File Input/Output Functions � 117

C
h

a
p

te
r
4

begin
{determine if a directory path has been specified}
if DirName.GetTextLen = 0 then
begin
StatusBar1.SimpleText := 'Directory name not specified';
Exit;

end;

{if so, then create the new directory under the current directory}
if not CreateDirectory(PChar(DirectoryListBox1.Directory + '\' +

DirName.Text), nil) then
begin
{if there was an error creating the directory, display the error message}
ErrorCode := GetLastError;
FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER or FORMAT_MESSAGE_FROM_SYSTEM,

nil, ErrorCode, 0, @ErrorMessage, 0, nil);
StatusBar1.SimpleText := 'Error Creating Directory: ' + PChar(ErrorMessage);
LocalFree(hlocal(ErrorMessage));

end;

{update the directory listing to show the new directory}
DirectoryListBox1.Update;

end;

procedure TForm1.CreateDirectoryFromTemplate1Click(Sender: TObject);
var
ErrorMessage: Pointer; // holds a system error message
ErrorCode: DWORD; // holds a system error code

begin
{determine if a directory path has been specified}
if DirName.GetTextLen = 0 then
begin
StatusBar1.SimpleText := 'Directory name not specified';
Exit;

end;

{if so, then create the new directory under the current directory}
if not CreateDirectoryEx(PChar(Template.Text), PChar(DirectoryListBox1.

Directory + '\' + DirName.Text), nil) then
begin
{if there was an error creating the directory, display the error message}
ErrorCode := GetLastError;
FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER or FORMAT_MESSAGE_FROM_SYSTEM,

nil, ErrorCode, 0, @ErrorMessage, 0, nil);
StatusBar1.SimpleText := 'Error Creating Directory: ' + PChar(ErrorMessage);
LocalFree(hlocal(ErrorMessage));

end;

{reset UI elements}
Template.Text := '';
CreateDirectoryFromTemplate1.Enabled := FALSE;
CreateDirectory1.Enabled := TRUE;
Template1.Enabled := TRUE;
ClearTemplate1.Enabled := FALSE;

{update the directory listing to show the new directory}

118 � Chapter 4

DirectoryListBox1.Update;
end;

CreateDirectoryEx Windows.pas

Syntax

CreateDirectoryEx(

lpTemplateDirectory: PChar; {the directory template string}

lpPathName: PChar; {the new directory path string}

lpSecurityAttributes: PSecurityAttributes {pointer to directory security attributes}

): BOOL; {returns TRUE or FALSE}

Description

This function creates a new directory as specified by the lpPathName parameter that

receives the attributes of the template directory specified by the lpTemplateDirectory

parameter.

�Note: Under Windows NT/2000 and other file systems that support

individual file and directory compression, such as NTFS, a new

directory inherits the compression attributes of its parent directory.

Parameters

lpTemplateDirectory: A null-terminated string containing the name of an existing

directory whose attributes are applied to the new directory being created.

lpPathName: A null-terminated string containing the name of the new directory. This

directory name must be less than MAX_PATH characters in size.

lpSecurityAttributes: A pointer to a TSecurityAttributes structure containing informa-

tion about handle inheritance and file security. This parameter can be set to NIL,

File Input/Output Functions � 119

C
h

a
p

te
r
4

Figure 4-3:

A new

directory was

created

indicating that child processes cannot inherit the directory handle. The

TSecurityAttributes data structure is defined as:

TSecurityAttributes = record

nLength: DWORD; {the size of the TSecurityAttributes structure}

lpSecurityDescriptor: Pointer; {the security descriptor}

bInheritHandle: BOOL; {handle inheritance flags}

end;

The members of this data structure are described under CreateFile.

�Note: Under Windows 95/98/Me, the lpSecurityDescriptor member of this

structure is ignored.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call the GetLastError function.

See Also

CreateDirectory, CreateFile, RemoveDirectory

Example

Please see Listing 4-3 under CreateDirectory.

CreateFile Windows.pas

Syntax

CreateFile(

lpFileName: PChar; {contains the filename to create or open}

dwDesiredAccess: Integer; {read/write access flags}

dwShareMode: Integer; {file sharing flags}

lpSecurityAttributes: PSecurityAttributes; {pointer to a TSecurityAttributes structure}

dwCreationDisposition: DWORD; {open or creation flags}

dwFlagsAndAttributes: DWORD; {file attribute and access flags}

hTemplateFile: THandle; {a handle to a template file}

): THandle; {returns a handle to the opened file}

Description

This function opens or creates the file specified by the lpFileName parameter. Files

can be opened for reading, writing, or both, and they can be created with numerous file

attributes and access options. If a file is being created, the function adds the

FILE_ATTRIBUTE_ARCHIVE file attribute to those specified by the dwFlagsAnd-

Attributes parameter, and the file length is initialized to zero bytes. When the

application no longer needs the object, it should close the object’s handle by calling the

CloseHandle function.

120 � Chapter 4

Parameters

lpFileName: A pointer to a null-terminated string containing the name of the file to cre-

ate or open. This string must not exceed MAX_PATH characters in length.

dwDesiredAccess: Specifies the type of access desired for the file. This parameter may

contain one or more values from Table 4-2.

dwShareMode: Specifies how the file is to be shared between applications. If this

parameter is set to zero, the file cannot be shared, and any subsequent open operations

on the file will fail until the handle is closed. This parameter may contain one or more

values from Table 4-3.

lpSecurityAttributes: A pointer to a TSecurityAttributes structure containing informa-

tion about handle inheritance and file security. This parameter can be set to NIL,

indicating that child processes cannot inherit the handle. The TSecurityAttributes data

structure is defined as:

TSecurityAttributes = record

nLength: DWORD; {the size of the TSecurityAttributes structure}

lpSecurityDescriptor: Pointer; {the security descriptor}

bInheritHandle: BOOL; {handle inheritance flags}

end;

nLength: Specifies the size of the TSecurityAttributes parameter, in bytes. This

member should be set to SizeOf(TSecurityAttributes).

lpSecurityDescriptor: A pointer to a security descriptor for the object that con-

trols the sharing of the file. If this member is set to NIL, the file is assigned the

default security descriptor for the process. If CreateFile is opening a file, this

parameter is ignored.

�Note: Under Windows 95/98/Me, this member is always ignored.

bInheritHandle: Indicates if the returned handle is inherited when a new process

is created. TRUE indicates that new processes inherit the returned file handle.

dwCreationDisposition: Specifies the function’s behavior when a file does or does not

exist. This parameter may contain one or more values from Table 4-4.

dwFlagsAndAttributes: Specifies the file attributes and access flags. This parameter

may contain one or more values from Table 4-5. If CreateFile is opening a file, this

parameter is ignored.

hTemplateFile: Specifies a handle to a file previously opened with the GENERIC_

READ flag specified. The file being created gets its file attribute flags from the file

specified by this parameter. If CreateFile is opening a file, this parameter is ignored.

�Note: Under Windows 95/98/Me, this functionality is not supported and this

parameter must be set to zero.

File Input/Output Functions � 121

C
h

a
p

te
r
4

Return Value

If the function succeeds, it returns a handle to the opened or created file. If the function

fails, it returns INVALID_HANDLE_VALUE. To get extended error information, call

the GetLastError function.

See Also

CloseHandle, CreateDirectory, GetDiskFreeSpaceEx, ReadFile, SetEndOfFile,

SetFilePointer, VirtualAlloc*, WriteFile

Example

■ Listing 4-4: Creating, reading, and writing to a new file

{the data structure for our information}
Information = record
Name: array[0..255] of char;
Title: array[0..255] of char;
Age: Integer;

end;

var
Form1: TForm1;

Implementation

const
{Delphi 6 does not define all available constants}
FILE_ATTRIBUTE_NOT_CONTENT_INDEXED = $00002000;
FILE_ATTRIBUTE_ENCRYPTED = $00004000;
FILE_FLAG_OPEN_REPARSE_POINT = $00200000;
FILE_FLAG_OPEN_NO_RECALL = $00100000;

procedure TForm1.Button1Click(Sender: TObject);
var
FileHandle: THandle; // a handle to the opened file
TheInfo: Information; // holds our information
NumBytesWritten: DWORD; // variable to track bytes written
Security: TSecurityAttributes; // opened file security attributes

begin
{copy the supplied information to the data structure}
StrPCopy(TheInfo.Name, Edit1.Text);
StrPCopy(TheInfo.Title, Edit2.Text);
TheInfo.Age := StrToInt(Edit3.Text);

{create a generic, binary file}
Security.nLength := SizeOf(TSecurityAttributes);
Security.bInheritHandle := FALSE;
FileHandle := CreateFile('TempFile.nfo', GENERIC_WRITE, 0, @Security,

CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL or
FILE_FLAG_SEQUENTIAL_SCAN, 0);

{write the data in the data structure directly to the file}
WriteFile(FileHandle, TheInfo, SizeOf(Information), NumBytesWritten, nil);

122 � Chapter 4

{implicitly set the end of the file. this could be used to set
the end of the file to somewhere in the middle}
SetEndOfFile(FileHandle);

{force any cached file buffers to write the file to disk}
FlushFileBuffers(FileHandle);

{close the file}
CloseHandle(FileHandle);

end;

procedure TForm1.Button2Click(Sender: TObject);
var
FileHandle: THandle; // a handle to the opened file
TheInfo: Information; // holds our information
NumBytesRead: DWORD; // holds the number of bytes read
Security: TSecurityAttributes; // opened file security attributes
TheTitle: array[0..255] of char; // holds a title string

begin
{open the existing file for reading}
Security.nLength := SizeOf(TSecurityAttributes);
Security.bInheritHandle := FALSE;
FileHandle := CreateFile('TempFile.nfo', GENERIC_READ, 0, @Security,

OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL or
FILE_FLAG_SEQUENTIAL_SCAN, 0);

{indicate an error if the file does not exist}
if FileHandle=INVALID_HANDLE_VALUE then
begin
ShowMessage('No file exists yet. Press the ''Write to file'' button to '+

'create a file.');
Exit;

end;

{lock the entire file so no other process may use it}
LockFile(FileHandle, 0, 0, SizeOf(Information), 0);

{read in a block of information and store it in our data structure}
ReadFile(FileHandle, TheInfo, SizeOf(Information), NumBytesRead, nil);

{display the information}
Label7.Caption := TheInfo.Name;
Label8.Caption := TheInfo.Title;
Label9.Caption := IntToStr(TheInfo.Age);

{the title is located 256 bytes into the file from the beginning (this is
how long the Name string is), so reposition the file pointer for reading}
SetFilePointer(FileHandle, SizeOf(TheInfo.Name), nil, FILE_BEGIN);

{read one particular string from the file}
ReadFile(FileHandle, TheTitle, SizeOf(TheTitle), NumBytesRead, nil);

{display the string}
Label11.Caption := TheTitle;

{unlock and close the file}
UnlockFile(FileHandle, 0, 0, SizeOf(Information), 0);

File Input/Output Functions � 123

C
h

a
p

te
r
4

CloseHandle(FileHandle);
end;

Table 4-2: CreateFile dwDesiredAccess values

Value Description

0 Specifies query access to the file.

GENERIC_READ Specifies read access to the file. Data can be retrieved from the file
and the file pointer can be moved.

GENERIC_WRITE Specifies write access to the file. Data can be written to the file and
the file pointer can be moved.

Table 4-3: CreateFile dwShareMode values

Value Description

FILE_SHARE_DELETE Windows NT/2000 and later: Subsequent open operations on this
file will succeed only if they specify the FILE_SHARE_DELETE flag.

FILE_SHARE_READ Subsequent open operations on this file will succeed only if they
specify the FILE_SHARE_READ flag.

FILE_SHARE_WRITE Subsequent open operations on this file will succeed only if they
specify the FILE_SHARE_WRITE flag.

Table 4-4: CreateFile dwCreationDisposition values

Value Description

CREATE_NEW Creates a new file. The function will fail if the file already exists.

CREATE_ALWAYS Always creates a new file, overwriting the file if it already exists.

OPEN_EXISTING Opens an existing file. The function will fail if the file does not exist.

OPEN_ALWAYS Always opens the file, creating one if it does not already exist.

TRUNCATE_EXISTING Opens the specified file and truncates it to a size of zero bytes. The
function fails if the file does not exist. The dwDesiredAccess parame-
ter must contain the GENERIC_WRITE flag.

124 � Chapter 4

Figure 4-4:

The file was

created

successfully

TE
AM
FL
Y

Team-Fly®

Table 4-5: CreateFile dwFlagsAndAttributes values

Value Description

FILE_ATTRIBUTE_ARCHIVE Indicates an archive file or directory and is used by applications to
mark files and directories for removal or backup.

FILE_ATTRIBUTE_COMPRESSED Indicates that the file or directory is compressed.

FILE_ATTRIBUTE_DIRECTORY Indicates that the specified filename is a directory.

FILE_ATTRIBUTE_ENCRYPTED Windows NT/2000/XP and later: Indicates that the file or direc-
tory is encrypted. This flag cannot be used with
FILE_ATTRIBUTE_SYSTEM.

FILE_ATTRIBUTE_HIDDEN Indicates that the specified file or directory is hidden and will not
appear in normal directory listings.

FILE_ATTRIBUTE_NORMAL Indicates that the specified file or directory does not have any other
file attributes set.

FILE_ATTRIBUTE_NOT_CONTENT
_INDEXED

Windows NT/2000/XP and later: Indicates that the file or direc-
tory is not to be indexed by content indexing services.

FILE_ATTRIBUTE_OFFLINE Indicates that the specified file or directory is not immediately avail-
able, and it has been physically moved to offline storage.

FILE_ATTRIBUTE_READONLY Indicates that the specified file or directory is read only. Applications
may read from the file or directory, but they may not write to it or
delete it.

FILE_ATTRIBUTE_SYSTEM Indicates that the specified file or directory is used by the system.

FILE_ATTRIBUTE_TEMPORARY Indicates that the specified file or directory is temporary. The system
will not automatically delete temporary files during shutdown.

FILE_FLAG_WRITE_THROUGH Instructs the operating system to bypass any intermediate cache and
write directly to disk.

FILE_FLAG_OVERLAPPED Performs asynchronous reads and writes on the file. The ReadFile
and WriteFile functions may return before the read or write opera-
tion has completed. The operating system will not maintain the file
pointer when this flag is specified. Note that Windows 95 does not
support asynchronous reads or writes to a disk-based file.

FILE_FLAG_NO_BUFFERING The specified file is opened with no intermediate buffer or cache,
which may provide performance increases in some situations. How-
ever, the application must conform to specific rules when opening
files with this flag:

� File access must begin at the offsets that are a multiple of the
volume’s sector size. For example, if the sector size is 512, file
access could begin at offset 0, 512, 1024, etc.

� Bytes can be read into a buffer only in increments equal to the
volume’s sector size.

� Buffer addresses for read and write operations must reside in
memory at addresses that are a multiple of the volume’s sector
size.

File Input/Output Functions � 125

C
h

a
p

te
r
4

Value Description

FILE_FLAG_NO_BUFFERING
(cont.)

It is suggested that the developer use the VirtualAlloc function to
allocate memory for the buffers, as VirtualAlloc automatically allo-
cates memory at addresses that are a multiple of the volume’s sector
size. The application can retrieve the size of a volume’s sector by
calling the GetDiskFreeSpace function.

FILE_FLAG_RANDOM_ACCESS Indicates that the file will be accessed randomly, allowing the system
to optimize file caching for this method of access.

FILE_FLAG_SEQUENTIAL_SCAN Indicates that the file will be accessed sequentially, allowing the sys-
tem to optimize file caching for this method of access.

FILE_FLAG_DELETE_ON_CLOSE Instructs the operating system to immediately delete the file after
every open handle for the file is closed. Subsequent open requests
for this file will fail unless the FILE_SHARE_DELETE flag is specified.

FILE_FLAG_BACKUP_SEMANTICS Windows NT/2000/XP and later: Indicates that the file is being
opened or created for backup or restore purposes.

FILE_FLAG_POSIX_SEMANTICS Indicates that the file should be accessed using POSIX rules.

FILE_FLAG_OPEN_REPARSE_POINT Windows NT/2000/XP and later: Inhibits the behavior of NTFS
reparse points. Cannot be used with the CREATE_ALWAYS flag.

FILE_FLAG_OPEN_NO_RECALL Indicates that the file data should be retrieved, but the file should
continue to reside in remote storage. Used with the Hierarchical
Storage Management system.

CreateFileMapping Windows.pas

Syntax

CreateFileMapping(

hFile: THandle; {a handle to the file being mapped}

lpFileMappingAttributes:

PSecurityAttributes; {a pointer to a TSecurityAttributes structure}

flProtect: DWORD; {mapping object protection flags}

dwMaximumSizeHigh: DWORD; {high-order double word of maximum size}

dwMaximumSizeLow: DWORD; {low-order double word of maximum size}

lpName: PChar {a pointer to the mapping object name}

): THandle; {returns a handle to the file mapping object}

Description

This function creates a file mapping object based on the file identified by the hFile

parameter. This file mapping object is a direct representation of the file in memory,

and any changes to the file in memory affect the file on disk. If the specified size of the

memory-mapped file is larger than the file on disk, the disk-based file is increased to

the specified size. However, if the size of the file on disk increases beyond the maxi-

mum size of the file mapping object, the file mapping object will not contain the extra

information in the file. A memory-mapped file can be shared between processes

through the use of the OpenFileMapping function. Once a file mapping object is cre-

ated, the application can obtain access to the file’s contents by mapping a view of the

file using the MapViewOfFile function. If two processes share the same mapped file

126 � Chapter 4

object handle, they will see the same data. However, if two processes map the file indi-

vidually (both of them call the CreateFileMapping function for the same file), changes

made to the file by one process will not be seen by the other process. When the

application has finished using the mapped file object, close it by calling the

UnmapViewOfFile function for every mapped view of the file and CloseHandle for

the actual mapped file object handle.

Parameters

hFile: A handle to an open file from which the file mapping object is created. This file

must be opened in an access mode compatible with the protection flags specified by the

flProtect parameter. This parameter can be set to THandle($FFFFFFFF), which creates

a file mapping object of the specified size in the Windows swap file instead of an

actual disk-based file. In this case, the dwMaximumSizeHigh and dwMaximum-

SizeLow parameters must contain values.

lpFileMappingAttributes: A pointer to a TSecurityAttributes structure containing infor-

mation about handle inheritance and file security. This parameter can be set to NIL,

indicating that child processes cannot inherit the handle. The TSecurityAttributes data

structure is defined as:

TSecurityAttributes = record

nLength: DWORD; {the size of the TSecurityAttributes structure}

lpSecurityDescriptor: Pointer; {the security descriptor}

bInheritHandle: BOOL; {handle inheritance flags}

end;

Please see the CreateFile function for a description of this data structure.

flProtect: Specifies the access protection and attributes of the file mapping object. This

parameter may be one value from the following table of protection values (Table 4-6),

plus any combination of values from the following table of section attributes (Table

4-7).

dwMaximumSizeHigh: Specifies the high-order double word of the maximum size for

the file mapping object.

dwMaximumSizeLow: Specifies the low-order double word of the maximum size for

the file mapping object. If this parameter and the dwMaximumSizeHigh parameter are

set to zero, the file mapping object will be the same size as the file identified by the

hFile parameter.

lpName: A pointer to a null-terminated string containing the name of the file mapping

object. This string may contain any character except the backslash (\). If this parameter

contains the name of an existing file mapping object, the function requests access to the

existing object. This parameter may contain NIL to create an unnamed file mapping

object.

Return Value

If the function succeeds, it returns a handle to the file mapping object, either a new one

or an existing one if the lpName parameter points to the name of an existing file

File Input/Output Functions � 127

C
h

a
p

te
r
4

mapping object. In this case, GetLastError will return ERROR_ALREADY_EXISTS.

If the function fails, it returns zero. To get extended error information, call the

GetLastError function.

See Also

CloseHandle, FlushViewOfFile, MapViewOfFile, OpenFileMapping, ReadFile,

UnMapViewOfFile, VirtualAlloc*, WriteFile

Example

■ Listing 4-5: Creating a mapped file object

var
Form1: TForm1;
Data: Pointer; // holds a pointer to the memory mapped file
hMapping: THandle; // holds a handle to the memory mapped file object

implementation

function OpenMappedFile(FileName: string; var FileSize: DWORD): Boolean;
var
hFile: THandle; // a handle to the opened file
HighSize: DWORD; // the high-order double word of the file size

begin
{initialize the result of the function in case of errors}
Result := FALSE;

{if no filename was specified, exit}
if Length(FileName) = 0 then Exit;

{open the file for reading and writing. indicate a
sequential scan access for better optimization}
hFile := CreateFile(PChar(FileName), GENERIC_READ or GENERIC_WRITE,

FILE_SHARE_READ, nil, OPEN_EXISTING,
FILE_FLAG_SEQUENTIAL_SCAN, 0);

{if the file was not opened, exit;}
if hFile = INVALID_HANDLE_VALUE then Exit;

{retrieve the size of the file}
FileSize := GetFileSize(hFile, @HighSize);

{create a read/write mapping of the opened file}
hMapping : =CreateFileMapping(hFile, nil, PAGE_READWRITE, 0, 0,

'Delphi File Mapping Example');

{if the file mapping failed, exit}
if (hMapping = 0) then
begin
CloseHandle(hFile);
Exit;

end;

{close the file handle, as we no longer need it}
CloseHandle(hFile);

128 � Chapter 4

{map a view of the file}
Data := MapViewOfFile(hMapping, FILE_MAP_WRITE, 0, 0, 0);

{if a view of the file was not created, exit}
if (Data = nil) then Exit;

{to insure that the file's data can be displayed directly as
a string, set the very last byte in the file data to a null terminator}
PChar(Data)[FileSize] := #0;

{the file was successfully opened and mapped}
Result := TRUE;

end;

function OpenPreviousMappedFile(var FileSize: Integer): Boolean;
begin
{initialize the result of the function in case of errors}
Result := FALSE;

{open an existing file mapping}
hMapping := OpenFileMapping(FILE_MAP_WRITE, FALSE, 'Delphi File Mapping Example');

{if there was an error opening the existing file mapping, exit}
if hMapping = 0 then Exit;

{map a view of the file}
Data := MapViewOfFile(hMapping, FILE_MAP_WRITE, 0, 0, 0);

{if a view of the file was not created, exit}
if (Data = nil) then Exit;

{retrieve the length of the data (which can be represented as a null-terminated string
due to adding the null terminator to the end when the file was opened}
FileSize := StrLen(PChar(Data));

{indicate that the file was successfully opened and mapped}
Result := TRUE;

end;

procedure DisplayMappedFile(FileName: string; Size: Integer);
var
Index: Integer; // general loop counter
DataPtr: PChar; // a pointer to the mapped file data
HexString: PChar; // a pointer to a concatenated hexadecimal string

begin
{display the name of the mapped file}
Form1.StatusBar1.SimpleText := FileName;

{allocate memory for the hexadecimal representation of the file,
and initialize it to zeros}
GetMem(HexString,Size * 3);
ZeroMemory(HexString, Size * 3);

{set the pointer to the beginning of the mapped file data}
DataPtr := Data;

File Input/Output Functions � 129

C
h

a
p

te
r
4

{begin looping through the data}
Index := 0;
while (Index < Size) do
begin
{display the value of each byte in the file as a hexadecimal number}
StrCat(HexString, PChar(IntToHex(Byte(DataPtr[Index]), 2) + ' '));
Inc(Index);

end;

{display the hexadecimal representation of the data and the ASCII
representation of the data}
SetWindowText(Form1.Memo1.Handle, HexString);
SetWindowText(Form1.Memo2.Handle, PChar(Data));

{free the memory for the hexadecimal string}
FreeMem(HexString, Size * 3);

end;

procedure TForm1.Button1Click(Sender: TObject);
var
Size: DWORD; // holds the size of the memory mapped file

begin
{open an existing file...}
if OpenDialog1.Execute then
begin
{...map the file...}
OpenMappedFile(OpenDialog1.FileName, Size);

{...and display the memory mapped file}
DisplayMappedFile(OpenDialog1.FileName, Size);

end;
end;

procedure TForm1.Button3Click(Sender: TObject);
var
Size: Integer; // holds the size of the memory mapped file

begin
{open a previously mapped file...}
if OpenPreviousMappedFile(Size) then
{...and display it}
DisplayMappedFile('Existing mapped file', Size);

end;

procedure TForm1.FormClose(Sender: TObject; var Action: TCloseAction);
begin
{write any changes to the file}
FlushViewOfFile(Data, 0);

{unmap the view of the file}
if not UnMapViewOfFile(Data) then ShowMessage('Cannot unmap file');

{close the mapped file handle}
if not CloseHandle(hMapping) then ShowMessage('Cannot close file');

end;

130 � Chapter 4

Table 4-6: CreateFileMapping flProtect protection values

Value Description

PAGE_READONLY Specifies read-only access to the mapped file memory. Attempting
to write to this area will cause an access violation. The file must be
opened with the GENERIC_READ flag specified.

PAGE_READWRITE Specifies read and write access to the mapped file memory. The file
must be opened with the GENERIC_READ and GENERIC_WRITE
flags specified.

PAGE_WRITECOPY Specifies that any changes to the file will result in the memory-
mapped object containing a copy of the modified data, and the
original file will remain unchanged. The file must be opened with
the GENERIC_READ and GENERIC_WRITE flags specified.

Table 4-7: CreateFileMapping flProtect section attribute values

Value Description

SEC_COMMIT Causes the function to allocate memory for the mapped file from
physical storage or the paging file. This is the default behavior.

SEC_IMAGE Windows NT/2000/XP and later: The specified file is an execut-
able image. Mapping information and access protection are
retrieved from the file. This flag cannot be combined with any
other section attribute flags.

File Input/Output Functions � 131

C
h

a
p

te
r
4

Figure 4-5:

The mapped

file

Value Description

SEC_NOCACHE The entire memory occupied by the memory-mapped file object is
not cached, and file changes are written directly to disk. This flag
must be combined with either the SEC_COMMIT or
SEC_RESERVE flags.

SEC_RESERVE Causes the function to reserve memory for the mapped file with-
out allocating physical storage. This reserved memory area cannot
be accessed by other memory functions until it is released. The
reserved memory area can be committed using the VirtualAlloc
function. This flag is only valid when the hFile parameter is set to
THandle($FFFFFFFF), indicating a memory-mapped file residing in
the Windows swap file.

DeleteFile Windows.pas

Syntax

DeleteFile(

lpFileName: PAnsiChar {the name of the file to delete}

): BOOL; {returns TRUE or FALSE}

Description

The DeleteFile function deletes the file indicated by the lpFileName parameter. This

function will fail if an application attempts to delete a nonexistent file.

�Note: Under Windows NT/2000/XP, the function will fail if the application

attempts to delete an opened file or a file that has been memory

mapped. Under Windows 95/98/Me, these operations will succeed.

Parameters

lpFileName: A null-terminated string containing the name of the file to delete.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call the GetLastError function.

See Also

CloseHandle, CreateFile, RemoveDirectory

Example

Please see Listing 4-8 under FindFirstFile.

132 � Chapter 4

DosDateTimeToFileTime Windows.pas

Syntax

DosDateTimeToFileTime(

wFatDate: WORD; {a 16-bit DOS date}

wFatTime: WORD; {a 16-bit DOS time}

var lpFileTime: TFileTime {a pointer to a TFileTime structure}

): BOOL; {returns TRUE or FALSE}

Description

This function converts DOS 16-bit date and time values into a 64-bit TFileTime

structure.

Parameters

wFatDate: Specifies the 16-bit DOS date value. This is a packed 16-bit value whose

bits define the information as described in Table 4-8.

wFatTime: Specifies the 16-bit DOS time value. This is a packed 16-bit value whose

bits define the information as described in Table 4-9.

lpFileTime: A pointer to a 64-bit TFileTime structure that receives the Windows-

compatible date and time value based on the given DOS date and time values.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call the GetLastError function.

See Also

FileTimeToDosDateTime, FileTimeToLocalFileTime, FileTimeToSystemTime,

GetFileTime, LocalFileTimeToFileTime, SetFileTime, SystemTimeToFileTime

Example

Please see Listing 4-6 under FileTimeToSystemTime.

Table 4-8: DosDateTimeToFileTime wFatDate values

Bit Description

0-4 The day of the month (i.e., 1-31).

5-8 The month number (i.e., 1 = January).

9-15 The year offset from 1980 (add this value to 1980 to get the actual year).

Table 4-9: DosDateTimeToFileTime wFatTime values

Bit Description

0-4 The seconds, divided by two.

5-10 The minute (0-59).

11-15 The hour (0-23, military time).

File Input/Output Functions � 133

C
h

a
p

te
r
4

FileTimeToDosDateTime Windows.pas

Syntax

FileTimeToDosDateTime(

const lpFileTime: TFileTime; {a pointer to a TFileTime structure}

var lpFatDate: WORD; {a pointer to a buffer receiving the 16-bit DOS date}

var lpFatTime: WORD {a pointer to a buffer receiving the 16-bit DOS time}

): BOOL; {returns TRUE or FALSE}

Description

This function converts a 64-bit Windows date and time value into component DOS

16-bit date and time values. FileTimeToDosDateTime can only convert dates in the

range of 1/1/1980 to 12/31/2107. The function will fail if the date pointed to by the

lpFileTime parameter falls outside of this range.

Parameters

lpFileTime: A pointer to a 64-bit TFileTime structure containing the Windows file time

to convert.

lpFatDate: A variable receiving the 16-bit DOS date value. This is a packed 16-bit

value whose bits define the information as described in Table 4-10.

lpFatTime: A variable receiving the 16-bit DOS time value. This is a packed 16-bit

value whose bits define the information as described in Table 4-11.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call the GetLastError function.

See Also

DosDateTimeToFileTime, FileTimeToLocalFileTime, FileTimeToSystemTime,

GetFileTime, LocalFileTimeToFileTime, SetFileTime, SystemTimeToFileTime

Example

Please see Listing 4-6 under FileTimeToSystemTime.

Table 4-10: FileTimeToDosDateTime lpFatDate values

Bit Description

0-4 The day of the month (i.e., 1-31).

5-8 The month number (i.e., 1 = January).

9-15 The year offset from 1980 (add this value to 1980 to get the actual year).

Table 4-11: FileTimeToDosDateTime lpFatTime values

Bit Description

0-4 The seconds, divided by two.

5-10 The minute (0-59).

11-15 The hour (0-23, military time).

134 � Chapter 4

TE
AM
FL
Y

Team-Fly®

FileTimeToLocalFileTime Windows.pas

Syntax

FileTimeToLocalFileTime(

const lpFileTime: TFileTime; {a pointer to a TFileTime structure}

var lpLocalFileTime: TFileTime {a pointer to a TFileTime structure}

): BOOL; {returns TRUE or FALSE}

Description

The FileTimeToLocalFileTime function converts the specified UTC-based time pointed

to by the lpFileTime parameter to the local file time.

Parameters

lpFileTime: A pointer to a TFileTime structure holding the 64-bit UTC value to be

converted.

lpLocalFileTime: A TFileTime variable that receives the converted local file time.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, use the GetLastError function.

See Also

DosDateTimeToFileTime, FileTimeToDosDateTime, FileTimeToSystemTime,

GetFileTime, LocalFileTimeToFileTime, SetFileTime, SystemTimeToFileTime

Example

Please see Listing 4-6 under FileTimeToSystemTime.

FileTimeToSystemTime Windows.pas

Syntax

FileTimeToSystemTime(

const lpFileTime: TFileTime; {a pointer to a TFileTime structure}

var lpSystemTime: TSystemTime {a pointer to a TSystemTime structure}

): BOOL; {returns TRUE or FALSE}

Description

This function converts the 64-bit file time pointed to by the lpFileTime parameter into

a system time format, which is stored in the TSystemTime structure pointed to by the

lpSystemTime parameter.

Parameters

lpFileTime: A pointer to a TFileTime structure holding the 64-bit file time value to

convert.

lpSystemTime: A pointer to a TSystemTime structure that receives the converted file

time. The TSystemTime data structure is defined as:

File Input/Output Functions � 135

C
h

a
p

te
r
4

TSystemTime = record

wYear: Word; {the current year}

wMonth: Word; {the month number}

wDayOfWeek: Word; {the day of the week number}

wDay: Word; {the current day of the month}

wHour: Word; {the current hour}

wMinute: Word; {the current minute}

wSecond: Word; {the current second}

wMilliseconds: Word; {the current millisecond}

end;

wYear: Specifies the current calendar year.

wMonth: Specifies the month number, where 1 = January, 2 = February, etc.

wDayOfWeek: Specifies the day of the week, where 0 = Sunday, 1 = Monday,

etc.

wDay: Specifies the day of the month in the range of 1 through 31.

wHour: Specifies the current hour in the range of 0 through 23 (military time).

wMinute: Specifies the current minute in the range of 0 through 59.

wSecond: Specifies the current second in the range of 0 through 59.

wMilliseconds: Specifies the current milliseconds in the range of 0 through 999.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, use the GetLastError function.

See Also

DosDateTimeToFileTime, FileTimeToDosDateTime, FileTimeToLocalFileTime,

GetFileTime, LocalFileTimeToFileTime, SetFileTime, SystemTimeToFileTime

Example

■ Listing 4-6: Retrieving and setting the file time

{these record structures allow for easy manipulation of DOS date and time values}
TDosTime = Record
Hour : Byte;
Minutes : Byte;
seconds : Byte;

end;

TDosDate = Record
Year : Word;
Month : Byte;
Day : Byte;

end;

var
Form1: TForm1;
hFile: THandle; // a handle to the opened file

136 � Chapter 4

implementation

{this function provides a convenient way to convert a DOS time into its component parts}
function ConvertDosTimeToSystemTime(FileDosTime: WORD): TDosTime;
var
DosTime: TDosTime;

begin
DosTime.Seconds := (FileDosTime and $1F) * 2;
DosTime.Minutes := (FileDosTime and $7E0) shr 5;
DosTime.Hour := (FileDosTime and $F800) shr 11;
Result := DosTime;

end;

{this function provides a convenient way to convert a DOS date into its component parts}
function ConvertDosDateToSystemDate(FileDosDate: WORD): TDosDate;
var
DosDate: TDosDate;

begin
DosDate.Day := FileDosDate and $1F;
DosDate.Month := FileDosDate and $1E0 shr 5;
DosDate.Year := (FileDosDate and $FE00) shr 9 + 1980;
Result := DosDate;

end;

procedure TForm1.SpeedButton2Click(Sender: TObject);
var
Security: TSecurityAttributes; // attributes for the opened file
FileName: PChar; // holds the filename
WriteTime, LocalTime: TFILETIME; // holds file times
DosDate, DosTime: WORD; // holds the DOS date and time
infoDosTime: TDosTime; // holds DOS time information
infoDosDate: TDosDate; // holds DOS date information
SystemTime: TSystemTime; // holds the last modification time

begin
{set up the security attributes for the opened file}
Security.nLength := SizeOf(TSecurityAttributes);
Security.lpSecurityDescriptor := nil;
Security.bInheritHandle := FALSE;

{display the open dialog box}
if OpenDialog1.Execute then
begin
{display the selected filename...}
FileName := PChar(OpenDialog1.FileName);
StatusBar1.SimpleText := FileName;

{...and open it}
hFile := CreateFile(PChar(FileName),GENERIC_READ or GENERIC_WRITE,

FILE_SHARE_READ or FILE_SHARE_WRITE, @Security,
OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, 0);

{if there was an error, show a message}
if hFile = INVALID_HANDLE_VALUE then
begin
ShowMessage('Error Opening File');
Exit;

File Input/Output Functions � 137

C
h

a
p

te
r
4

end;
end;

{retrieve the last modification time}
GetFileTime(hFile, nil, nil, @WriteTime);

{convert the time to local file time}
FileTimeToLocalFileTime(WriteTime, LocalTime);

{finally, convert the time to the system time, so that it
will match the file time displayed in the Explorer}
FileTimeToSystemTime(LocalTime, SystemTime);

{convert the file time into DOS date and time components...}
FileTimeToDosDateTime(LocalTime, DosDate, DosTime);

{...and convert it back}
if not DosDateTimeToFileTime(DosDate, DosTime, LocalTime) then
ShowMessage ('An error occurred when converting DOS date and time back to'+

' file time.');

{break out the component parts of the DOS date and time for easy display}
infoDosTime := ConvertDosTimeToSystemTime(DosTime);
infoDosDate := ConvertDosDateToSystemDate(DosDate);

with infoDosTime do
Edit1.Text := ComboBox1.Items[infoDosDate.Month - 1] + ' ' +

IntToStr(infoDosDate.Day) + ',' +
IntToStr(infoDosDate.Year) + ' ' +
IntToStr(Hour) + ':' +
IntToStr(Minutes) + ':' +
IntToStr(Seconds);

{indicate the time of day}
case SystemTime.WHour of
12 : Label1.Caption := 'PM';
13..24 : begin

Label1.Caption := 'PM';
SystemTime.wHour := SystemTime.wHour - 12;

end;
0 : SystemTime.wHour := 12;

else
Label1.Caption := 'AM';

end;

{display the last modification time of the file}
SpinEdit1.Value := SystemTime.wYear;
SpinEdit2.Value := SystemTime.wHour;
SpinEdit3.Value := SystemTime.wMinute;
SpinEdit4.Value := SystemTime.wSecond;
ComboBox1.ItemIndex := SystemTime.wMonth - 1;
Calendar1.Month := SystemTime.wMonth;
Calendar1.Day := SystemTime.wDay;

end;

138 � Chapter 4

procedure TForm1.SpeedButton3Click(Sender: TObject);
var
FileTime, LocalFileTime: TFileTime; // holds file times
SystemTime: TSystemTime; // holds system time information

begin
{prepare the time information from the values set by the user}
SystemTime.wHour := SpinEdit2.Value;

if (Label1.Caption = 'PM') and (SystemTime.wHour < 12)then
SystemTime.wHour := SystemTime.wHour + 12;

SystemTime.wMinute := SpinEdit3.Value;
SystemTime.wSecond := SpinEdit4.Value;
SystemTime.wYear := SpinEdit1.Value;
SystemTime.wMonth := ComboBox1.ItemIndex + 1;
SystemTime.wDay := Calendar1.Day;

{convert the system time to a local file time}
SystemTimeToFileTime(SystemTime, LocalFileTime);

{convert the local file time to a file time that the file system understands}
LocalFileTimeToFileTime(LocalFileTime, FileTime);

{use this time to set the last modification time which shows up in the Explorer}
SetFileTime(hFile, nil, nil, @FileTime);

end;

File Input/Output Functions � 139

C
h

a
p

te
r
4

Figure 4-6:

The selected

file

modification

time

FindClose Windows.pas

Syntax

FindClose(

hFindFile: THandle {the search handle}

): BOOL; {returns TRUE or FALSE}

Description

This function closes a search handle as returned by the FindFirstFile and FindNextFile

functions.

Parameters

hFile: The file search handle to close.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call the GetLastError function.

See Also

FindFirstFile, FindNextFile

Example

Please see Listing 4-8 under FindFirstFile.

FindCloseChangeNotification Windows.pas

Syntax

FindCloseChangeNotification(

hChangeHandle: THandle {a handle to a change notification object}

): BOOL; {returns TRUE or FALSE}

Description

This function discontinues system monitoring of a file system change notification

handle.

Parameters

hChangeHandle: A handle to a file system change notification object as returned by the

FindFirstChangeNotification function.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call the GetLastError function.

See Also

FindFirstChangeNotification, FindNextChangeNotification

140 � Chapter 4

Example

Please see Listing 4-7 under FindFirstChangeNotification.

FindFirstChangeNotification Windows.pas

Syntax

FindFirstChangeNotification(

lpPathName: PChar; {a pointer to the name of the directory to monitor}

bWatchSubtree: BOOL; {subtree monitor flag}

dwNotifyFilter: DWORD {change condition flags}

): THandle; {returns a handle to a change notification object}

Description

This function creates a file system change notification object. It causes the system to

monitor the specified directory or subdirectories for specific changes, such as file dele-

tions or name changes. When the conditions specified by the dwNotifyFilter parameter

have occurred, the system notifies the returned change notification object. The handle

to this object is used with the WaitForSingleObject function, which causes the calling

thread to be suspended until the indicated conditions have occured. After the notifica-

tion, the system can continue monitoring the specified directory by passing the returned

handle to the FindNextChangeNotification function. When the notification object is no

longer needed, close it by calling the FindCloseChangeNotification function. Ideally,

this function would be used in a multithreaded application with threads specifically

dedicated to monitoring the change notification object.

Parameters

lpPathName: A pointer to a null-terminated string containing the name of the directory

to monitor.

bWatchSubtree: Indicates if the system monitors just the specified directory. If this

parameter is set to FALSE, only the specified directory is monitored; a value of TRUE

indicates that both the directory and all of its subdirectories are monitored.

dwNotifyFilter: A series of bit flags indicating the conditions under which a change

notification will be signaled. This parameter may contain one or more values from

Table 4-12.

Return Value

If the function succeeds, it returns a handle to a file system change notification object;

otherwise, it returns INVALID_HANDLE_VALUE. To get extended error information,

call the GetLastError function.

See Also

FindCloseChangeNotification, FindNextChangeNotification

File Input/Output Functions � 141

C
h

a
p

te
r
4

Example

■ Listing 4-7: Waiting for a filename change

var
Form1: TForm1;
NotificationHandle: THandle; // holds the handle to the notification object

implementation

procedure TForm1.Button2Click(Sender: TObject);
begin
{establish a notification for filename changes on the selected directory}
NotificationHandle := FindFirstChangeNotification(PChar(DirectoryListBox1.

Directory), FALSE,
FILE_NOTIFY_CHANGE_FILE_NAME);

{if the notification was set up correctly, modify some UI elements...}
if (NotificationHandle <> INVALID_HANDLE_VALUE) then
begin
Button1.Enabled := TRUE;
Button2.Enabled := FALSE;

end
else
begin
{...otherwise indicate that there was an error}
ShowMessage('There was an error setting the notification');
Exit;

end;
end;

procedure TForm1.Button1Click(Sender: TObject);
var
dwResult: DWORD; // holds the result of waiting on the notification
Waiting: Boolean; // loop control variable

begin
{set up the loop control for a continuous loop}
Waiting := TRUE;

{indicate that the application is waiting for the change notification to fire}
Button1.Enabled := FALSE;
StatusBar1.SimpleText := 'Now waiting for a filename change';
Application.ProcessMessages;

{enter the loop}
while Waiting do
begin
{at this point, the application is suspended until the notification
object is signaled that a filename change has occurred in the
selected directory (this includes file deletions)}
dwResult := WaitForSingleObject(NotificationHandle,INFINITE);
if (dwResult = WAIT_OBJECT_0) then
begin
{indicate that the notification object was signaled}
ShowMessage('The selected directory signaled a filename change');

142 � Chapter 4

{query the user to see if they wish to continue monitoring this directory}
if Application.MessageBox('Do you wish to continue monitoring this

directory?', 'Continue?', MB_ICONQUESTION or
MB_YESNO) = IDYES then

{if the user wishes to continue monitoring the directory, reset
the notification object and continue the loop...}
FindNextChangeNotification(NotificationHandle)

else
{...otherwise break out of the loop}
Waiting := FALSE;

end;
end;

{close the notification object}
FindCloseChangeNotification(NotificationHandle);

{reset UI elements}
Button1.Enabled := FALSE;
Button2.Enabled := TRUE;
StatusBar1.SimpleText := '';
FileListBox1.Update;

end;

Table 4-12: FindFirstChangeNotification dwNotifyFilter values

Value Description

FILE_NOTIFY_CHANGE_ATTRIBUTES The notification object is signaled when any file or directory
attributes change.

FILE_NOTIFY_CHANGE_DIR_NAME The notification object is signaled when any directory name
changes, including deleting or creating a directory.

FILE_NOTIFY_CHANGE_FILE_NAME The notification object is signaled when any filename change
occurs, including renaming, deleting, or creating a file.

FILE_NOTIFY_CHANGE_LAST_WRITE The notification object is signaled when the last write time of a
file or directory is changed. This is detected only when the file is
written to disk and may not occur until the file cache is flushed.

FILE_NOTIFY_CHANGE_SECURITY The notification object is signaled when the security descriptor
of any file or directory changes.

FILE_NOTIFY_CHANGE_SIZE The notification object is signaled when any file in the directory
changes size. This is detected only when the file is written to
disk and may not occur until the file cache is flushed.

FindFirstFile Windows.pas

Syntax

FindFirstFile(

lpFileName: PChar; {a pointer to a filename}

var lpFindFileData: TWin32FindData {a pointer to a TWin32FindData structure}

): THandle; {returns a search handle}

File Input/Output Functions � 143

C
h

a
p

te
r
4

Description

The FindFirstFile function searches the current directory for the first file that matches

the filename specified by the lpFileName parameter. This function will find both files

and subdirectories, and the filename being searched for can contain wild cards.

Parameters

lpFileName: A pointer to a null-terminated string containing the path and filename for

which to search. This filename may contain wild cards (“*” and “?”).

lpFindFileData: A pointer to a TWin32FindData data structure containing information

about the file or subdirectory that was found. The TWin32FindData data structure is

defined as:

TWin32FindData = record

dwFileAttributes: DWORD; {file attributes}

ftCreationTime: TFileTime; {file creation time}

ftLastAccessTime: TFileTime; {last file access time}

ftLastWriteTime: TFileTime; {last file modification time}

nFileSizeHigh: DWORD; {high double word of file size}

nFileSizeLow: DWORD; {low double word of file size}

dwReserved0: DWORD; {reserved for future use}

dwReserved1: DWORD; {reserved for future use}

cFileName: array[0..MAX_PATH – 1] of AnsiChar; {long filename}

cAlternateFileName: array[0..13] of AnsiChar; {short filename}

end;

dwFileAttributes: Specifies the file attribute flags for the file. See the

GetFileAttributes function for a list of possible file attribute flags.

ftCreationTime: Specifies the time that the file was created.

ftLastAccessTime: Specifies the time that the file was last accessed.

ftLastWriteTime: Specifies the time that the file was last modified.

nFileSizeHigh: Specifies the high-order double word of the file size.

nFileSizeLow: Specifies the low-order double word of the file size.

dwReserved0: This member is reserved for future use, and its value is

undetermined.

dwReserved1: This member is reserved for future use, and its value is

undetermined.

cFileName: A null-terminated string containing the long version of the filename.

cAlternateFileName: A null-terminated string containing the short (8.3) version

of the filename.

Return Value

If the function succeeds, it returns a search handle that can be used in subsequent calls

to FindNextFile. If the function fails, it returns INVALID_HANDLE_VALUE.

144 � Chapter 4

TE
AM
FL
Y

Team-Fly®

See Also

FindClose, FindNextFile, SearchPath, SetCurrentDirectory

Example

■ Listing 4-8: Finding files

var
Form1: TForm1;
ExistingFileName: PChar; // used in renaming a file

implementation

procedure TForm1.Button1Click(Sender: TObject);
var
strFileName: string; // holds the name of the file to find
FindFileData: TWin32FindData; // holds file information
SearchHandle: THandle; // holds the search handle

begin
{clear any listed files}
ListView1.Items.Clear;

{if there was no file specified, then specify all files}
if Edit2.GetTextLen = 0 then Edit2.Text := '*.*';

{construct the filename string}
strFileName := DirectoryListBox2.Directory + '\' + Edit2.Text;

{set the directory to the specified directory}
SetCurrentDirectory(PChar(DirectoryListBox2.Directory));

{begin the search}
SearchHandle := FindFirstFile(PChar(strFileName), FindFileData);

{continue searching for all matching files in the current directory}
if (SearchHandle <> INVALID_HANDLE_VALUE) then
repeat
ListView1.Items.Add.Caption := FindFileData.cFileName;

Until (FindNextFile(SearchHandle ,FindFileData) = FALSE);

{all files have been found, so close the search handle}
Windows.FindClose(SearchHandle);

end;

procedure TForm1.SpeedButton2Click(Sender: TObject);
var
lpBuffer: PChar; // receives a path and filename
lpFilePart: PChar; // points to the filename

begin
{clear the listview}
ListView1.Items.Clear;

{allocate memory to hold a filename}
GetMem(lpBuffer, MAX_PATH);

File Input/Output Functions � 145

C
h

a
p

te
r
4

{if a filename was specified, search for it}
if Edit1.GetTextLen <> 0 then
begin
if (SearchPath(nil, PChar(Edit1.Text), nil, MAX_PATH, lpBuffer,

lpFilePart) <> 0) then
{if a file was found, add it to the listview}
ListView1.Items.Add.Caption := StrPas(lpBuffer)

else
MessageBox(0, 'File was not found', 'Error ', MB_OK or MB_ICONWARNING);

end;

{free the filename buffer}
FreeMem(lpBuffer);

end;

procedure TForm1.Delete1Click(Sender: TObject);
begin
{verify file deletion}
if (MessageBox (Form1.Handle, 'Are you sure you want to proceed?',

'Delete File or Folder', MB_OKCANCEL or
MB_ICONQUESTION) = ID_OK) then

begin
{delete the file...}
if (DeleteFile(PChar(ListView1.Selected.Caption)) = FALSE) then
{...or directory}
if (RemoveDirectory(PChar(ListView1.Selected.Caption)) = FALSE) then
begin
{indicate an error}
MessageBox(Form1.Handle, 'Error Deleting File or Folder',

'Delete File or Folder ', MB_ICONERROR or MB_OK);
Exit;

end;

{delete the value from the list view}
ListView1.Items.Delete(ListView1.Items.IndexOf(ListView1.Selected));

end;
end;

procedure TForm1.ListView1Edited(Sender:TObject; Item:TListItem; var S:String);
var
OldName,NewName: PChar; // holds the old and new filenames

begin
{allocate memory for the filename strings}
GetMem(OldName, MAX_PATH);
GetMem(NewName, MAX_PATH);

{retrieve the existing filename}
ExistingFileName := PChar(ListView1.Selected.Caption);

{copy the new and old filenames, including path, to the string buffers}
StrPCopy(NewName, DirectoryListBox2.Directory + '\' + S);
StrPCopy(OldName, DirectoryListBox2.Directory + '\' + ExistingFileName);

{rename the file}
if not MoveFile(OldName, NewName) then
ShowMessage('Error Renaming file');

146 � Chapter 4

{free the string buffers}
FreeMem(OldName);
FreeMem(NewName);

end;

FindNextChangeNotification Windows.pas

Syntax

FindNextChangeNotification(

hChangeHandle: THandle {a handle to a change notification object}

): BOOL; {returns TRUE or FALSE}

Description

This function instructs the system to monitor the specified file system change notifica-

tion object for another change in its original notification conditions. Calling the

FindFirstChangeNotification function creates the notification object. After FindNext-

ChangeNotification has reset the change notification object, it can be used with the

WaitForSingleObject function to suspend the calling thread until the specified change

conditions have occurred.

Parameters

hChangeHandle: A handle to a file system change notification object as returned by a

call to the FindFirstChangeNotification function.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

information, call the GetLastError function.

File Input/Output Functions � 147

C
h

a
p

te
r
4

Figure 4-7:

Some files

were found

See Also

FindCloseChangeNotification, FindFirstChangeNotification

Example

Please see Listing 4-7 under FindFirstChangeNotification.

FindNextFile Windows.pas

Syntax

FindNextFile(

hFindFile: THandle; {a file search handle}

var lpFindFileData: TWin32FindData {a pointer to a TWin32FindData structure}

): BOOL; {returns TRUE or FALSE}

Description

The FindNextFile function continues to search for a file based on the filename speci-

fied by a previous call to the FindFirstFile function.

Parameters

hFindFile: A search handle as returned by a previous call to the FindFirstFile function.

lpFindFileData: A pointer to a TWin32FindData data structure containing information

about the file or subdirectory that was found. The TWin32FindData data structure is

defined as:

TWin32FindData = record

dwFileAttributes: DWORD; {file attributes}

ftCreationTime: TFileTime; {file creation time}

ftLastAccessTime: TFileTime; {last file access time}

ftLastWriteTime: TFileTime; {last file modification time}

nFileSizeHigh: DWORD; {high double word of file size}

nFileSizeLow: DWORD; {low double word of file size}

dwReserved0: DWORD; {reserved for future use}

dwReserved1: DWORD; {reserved for future use}

cFileName: array[0..MAX_PATH – 1] of AnsiChar; {long filename}

cAlternateFileName: array[0..13] of AnsiChar; {short filename}

end;

Please see the FindFirstFile function for a description of this data structure.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call the GetLastError function.

See Also

FindClose, FindFirstFile, SearchPath

148 � Chapter 4

Example

Please see Listing 4-8 under FindFirstFile.

FlushFileBuffers Windows.pas

Syntax

FlushFileBuffers(

hFile:THandle {a handle to an opened file}

): BOOL; {returns TRUE or FALSE}

Description

This function clears any file buffers for the file associated with the handle in the hFile

parameter, causing any buffered data to be immediately written to disk.

Parameters

hFile: A handle to an open file that is to be written to disk. This file must have been

opened with the GENERIC_WRITE flag specified.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call the GetLastError function.

See Also

CreateFile, ReadFile, WriteFile

Example

Please see Listing 4-4 under CreateFile.

FlushViewOfFile Windows.pas

Syntax

FlushViewOfFile(

const lpBaseAddress: Pointer; {base address of mapped file data}

dwNumberOfBytesToFlush: DWORD {the number of bytes to flush}

): BOOL; {returns TRUE or FALSE}

Description

This function forces the specified range of bytes within a memory-mapped file to be

immediately written to the disk-based representation of the file.

Parameters

lpBaseAddress: A pointer to the base address within the memory-mapped file object

data of the range of data to write to disk.

dwNumberOfBytesToFlush: Specifies the number of bytes to write to disk. If this

parameter is set to zero, the entire memory-mapped file object is written to disk.

File Input/Output Functions � 149

C
h

a
p

te
r
4

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call the GetLastError function.

See Also

CreateFileMapping, MapViewOfFile, OpenFileMapping, UnmapViewOfFile

Example

Please see Listing 4-5 under CreateFileMapping.

GetCurrentDirectory Windows.pas

Syntax

GetCurrentDirectory(

nBufferLength: DWORD; {the size of lpBuffer in characters}

lpBuffer: PAnsiChar {a pointer to a buffer receiving the directory name}

): DWORD; {returns the number of characters copied to the buffer}

Description

This function returns the path of the current directory for the calling process. This

directory is stored in the buffer pointed to by the lpBuffer parameter.

Parameters

nBufferLength: Specifies the size of the buffer pointed to by the lpBuffer parameter, in

bytes, and must include the null terminator.

lpBuffer: A pointer to a buffer that receives the absolute path for the current directory

of the calling process. If this parameter is set to NIL, the return value indicates the

required size of the buffer to hold the directory path, including the null terminator.

Return Value

If the function succeeds, it returns the number of characters copied to the lpBuffer

buffer, not including the null terminator. If the function fails, it returns zero. To get

extended error information, call the GetLastError function.

See Also

CreateDirectory, GetSystemDirectory, GetWindowsDirectory, RemoveDirectory,

SetCurrentDirectory

Example

Please see Listing 4-11 under SetFileAttributes.

150 � Chapter 4

GetFileAttributes Windows.pas

Syntax

GetFileAttributes(

lpFileName: PChar {the filename whose attributes are retrieved}

): DWORD; {returns file attribute flags}

Description

This function returns the file attributes for the file or directory specified by the

lpFileName parameter.

Parameters

lpFileName: A null-terminated string containing the name of the file or directory from

which to retrieve file attributes. This string must not be longer than MAX_PATH

characters.

Return Value

If the function succeeds, the return value contains one or more of the values from the

following table, indicating the current file attributes for the specified file or directory.

If the function fails, it returns $FFFFFFFF. To get extended error information, call the

GetLastError function.

See Also

FindFirstFile, FindNextFile, SetFileAttributes

Example

Please see Listing 4-11 under SetFileAttributes.

Table 4-13: GetFileAttributes return values

Value Description

FILE_ATTRIBUTE_ARCHIVE Indicates an archive file or directory and is used by applications to
mark files and directories for removal or backup.

FILE_ATTRIBUTE_COMPRESSED Indicates that the specified file or directory is compressed.

FILE_ATTRIBUTE_DIRECTORY Indicates that the specified filename is a directory.

FILE_ATTRIBUTE_ENCRYPTED Windows NT/2000/XP and later: Indicates that the file or
directory is encrypted. This flag cannot be used with
FILE_ATTRIBUTE_SYSTEM.

FILE_ATTRIBUTE_HIDDEN Indicates that the specified file or directory is hidden and will not
appear in normal directory listings.

FILE_ATTRIBUTE_NORMAL Indicates that the specified file or directory does not have any
other file attributes set.

FILE_ATTRIBUTE_NOT_CONTENT_
INDEXED

Windows NT/2000/XP and later: Indicates that the file or
directory is not to be indexed by content indexing services.

FILE_ATTRIBUTE_OFFLINE Indicates that the specified file or directory is not immediately
available and has been physically moved to offline storage.

File Input/Output Functions � 151

C
h

a
p

te
r
4

Value Description

FILE_ATTRIBUTE_READONLY Indicates that the specified file or directory is read only. Applica-
tions may read from the file or directory but may not write to it
or delete it.

FILE_ATTRIBUTE_REPARSE_POINT Windows NT/2000/XP and later: Indicates that the file has an
associated reparse point.

FILE_ATTRIBUTE_SPARSE_FILE Indicates that this is a sparse file.

FILE_ATTRIBUTE_SYSTEM Indicates that the specified file or directory is used by the system.

FILE_ATTRIBUTE_TEMPORARY Indicates that the specified file or directory is temporary. The
system will not automatically delete temporary files during
shutdown.

GetFileInformationByHandle Windows.pas

Syntax

GetFileInformationByHandle(

hFile: THandle; {a handle to a file}

var lpFileInformation: TByHandleFileInformation {a pointer to file information}

): BOOL; {returns TRUE or FALSE}

Description

This function retrieves file information for the file associated with the handle

identified by the hFile parameter. This handle cannot be the handle to a pipe. GetFile-

InformationByHandle is affected by the type of file system that the indicated file

resides on, and it may return partial information if certain information elements are not

supported by the file system.

Parameters

hFile: The handle to the file for which information is retrieved.

lpFileInformation: A pointer to a TByHandleFileInformation data structure receiving

information about the indicated file. The TByHandleFileInformation structure is

defined as:

TByHandleFileInformation = record

dwFileAttributes: DWORD; {file attribute flags}

ftCreationTime: TFileTime; {file creation time}

ftLastAccessTime: TFileTime; {last file access time}

ftLastWriteTime: TFileTime; {last file modification time}

dwVolumeSerialNumber: DWORD; {volume serial number}

nFileSizeHigh: DWORD; {high-order double word of file size}

nFileSizeLow: DWORD; {low-order double word of file size}

nNumberOfLinks: DWORD; {number of links to the file}

nFileIndexHigh: DWORD; {high-order double word of unique identifier}

nFileIndexLow: DWORD; {low-order double word of unique identifier}

end;

152 � Chapter 4

dwFileAttributes: Specifies the file attribute flags for the file. See the

GetFileAttributes function for a list of possible file attribute flags.

ftCreationTime: Specifies the time that the file was created.

ftLastAccessTime: Specifies the time that the file was last accessed.

ftLastWriteTime: Specifies the time that the file was last modified.

dwVolumeSerialNumber: Specifies the serial number of the volume that contains

the file.

nFileSizeHigh: Specifies the high-order double word of the file size.

nFileSizeLow: Specifies the low-order double word of the file size.

nNumberOfLinks: Specifies the number of links to the file. The FAT system

always sets this member to one, but other file systems, such as NTFS, can set this

member to a greater value.

nFileIndexHigh: Specifies the high-order double word of the file’s unique

identifier.

nFileIndexLow: Specifies the low-order double word of the file’s unique

identifier.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call the GetLastError function.

See Also

CreateFile, GetFileAttributes, GetFileSize, GetFileTime

Example

■ Listing 4-9: Retrieving file information from a handle

procedure TForm1.FileListBox1Change(Sender: TObject);
var
Security: TSecurityAttributes; // security attributes for the file
hFile: Integer; // holds the file handle
FileInfo: TByHandleFileInformation; // holds the file information
Intermediate: TFileTime; // holds a file time
SystemTime: TSystemTime; // holds the converted file time
FileType: DWORD; // holds the file type
AMPM: string; // morning/evening indicator

begin
{clear the status bar}
StatusBar1.SimpleText := '';

{initialize the security information}
Security.nLength := SizeOf(TSecurityAttributes);
Security.bInheritHandle := FALSE;

{open the selected file for reading}
hFile := CreateFile(PChar(FileListBox1.FileName), GENERIC_READ, 0, @Security,

OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, 0);
if (hFile <> INVALID_HANDLE_VALUE) then

File Input/Output Functions � 153

C
h

a
p

te
r
4

begin
{retrieve the file information}
GetFileInformationByHandle(hFile, FileInfo);

{display the selected file's attributes}
checkBox1.Checked := BOOLEAN(FileInfo.dwFileAttributes and FILE_ATTRIBUTE_ARCHIVE);
CheckBox2.Checked := BOOLEAN(FileInfo.dwFileAttributes and FILE_ATTRIBUTE_DIRECTORY);
CheckBox3.Checked := BOOLEAN(FileInfo.dwFileAttributes and FILE_ATTRIBUTE_HIDDEN);
CheckBox4.Checked := BOOLEAN(FileInfo.dwFileAttributes and FILE_ATTRIBUTE_OFFLINE);
CheckBox5.Checked := BOOLEAN(FileInfo.dwFileAttributes and FILE_ATTRIBUTE_READONLY);
CheckBox6.Checked := BOOLEAN(FileInfo.dwFileAttributes and FILE_ATTRIBUTE_SYSTEM);
CheckBox7.Checked := BOOLEAN(FileInfo.dwFileAttributes and FILE_ATTRIBUTE_NORMAL);
CheckBox8.Checked := BOOLEAN(FileInfo.dwFileAttributes and FILE_ATTRIBUTE_TEMPORARY);

{display the filename}
Label1.Caption := ExtractFileName(FileListBox1.FileName);

{we must first convert the file time into the local file time, and then convert this
into the system time to get the correct modification time}
FileTimeToLocalFileTime(FileInfo.ftLastWriteTime, Intermediate);
FileTimeToSystemTime(Intermediate, SystemTime);

{indicate morning or evening, and modify the time so we are
not displaying military standard}
if SystemTime.wHour > 11 then AMPM := ' PM' else AMPM := ' AM';
if SystemTime.wHour > 12 then SystemTime.wHour := SystemTime.wHour-12;

{display the time}
Label2.Caption := IntToStr(SystemTime.wMonth) + '/' +

IntToStr(SystemTime.wDay) +
'/' + IntToStr(SystemTime.wYear) + ' ' +
IntToStr(SystemTime.wHour) + ':' +
IntToStr(SystemTime.wMinute) + ':' +
IntToStr(SystemTime.wSecond) + AMPM;

{display the volume serial number}
Label8.Caption := IntToStr(FileInfo.dwVolumeSerialNumber);

{display the file size}
Label4.Caption := IntToStr(GetFileSize(hFile, nil)) + ' bytes';

{display the file type}
FileType := GetFileType(hFile);
case (FileType) of
FILE_TYPE_UNKNOWN: Label6.Caption := 'File is of unknown type';
FILE_TYPE_DISK : Label6.Caption := 'File is disk based';
FILE_TYPE_CHAR : Label6.Caption := 'File is a character file';
FILE_TYPE_PIPE : Label6.Caption := 'File is a named or anonymous pipe';

end;

{we are through examining the file, so close the handle}
CloseHandle(hFile);

end

else
{if the file could not be opened, indicate that it is in use}

154 � Chapter 4

TE
AM
FL
Y

Team-Fly®

StatusBar1.SimpleText := 'File is in use';
end;

GetFileSize Windows.pas

Syntax

GetFileSize(

hFile: THandle; {the handle of a file

lpFileSizeHigh: Pointer {a pointer to the high-order double word of the file size}

): DWORD; {returns the low-order double word of the file size}

Description

This function returns the size, in bytes, of the file associated with the handle specified

by the hFile parameter. This file handle must identify a disk-based file.

Parameters

hFile: A handle to the file from which the size is being retrieved. This file must be

opened with the GENERIC_READ and GENERIC_WRITE flags.

lpFileSizeHigh: A pointer to a variable receiving the high-order double word of the file

size, if the file is large. If the size of the file being queried will not exceed the capacity

of the double word value returned by the function, this parameter can be set to NIL.

Return Value

If the function succeeds, it returns the low-order double word of the file size, and the

high-order double word is stored in the variable pointed to by the lpFileSizeHigh

parameter. If the function fails, it returns $FFFFFFFF. To get extended error informa-

tion, call the GetLastError function.

See Also

GetFileInformationByHandle, GetFileType

File Input/Output Functions � 155

C
h

a
p

te
r
4

Figure 4-8:

The file

information

Example

Please see Listing 4-9 under GetFileInformationByHandle.

GetFileTime Windows.pas

Syntax

GetFileTime(

hFile: THandle; {a handle to an opened file}

lpCreationTime: PFileTime; {pointer to buffer receiving the file creation time}

lpLastAccessTime: PFileTime; {pointer to buffer receiving the last file access time}

lpLastWriteTime: PFileTime {pointer to buffer receiving the last file write time}

): BOOL; {returns TRUE or FALSE}

Description

This function retrieves the file creation time, last file access time, and last file write

time of the opened file associated with the handle given in the hFile parameter.

Parameters

hFile: A handle to the opened file whose file times are to be retrieved. This file must

have been opened with the GENERIC_READ access flag specified.

lpCreationTime: A pointer to a TFileTime data structure to receive the 64-bit file cre-

ation time. This parameter may be set to NIL if this time value is not required.

lpLastAccessTime: A pointer to a TFileTime data structure to receive the 64-bit last

file access time. This parameter may be set to NIL if this time value is not required.

lpLastWriteTime: A pointer to a TFileTime data structure to receive the 64-bit last file

modification time. This parameter may be set to NIL if this time value is not required.

This time value is the time value displayed in the Explorer.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call the GetLastError function.

See Also

FileTimeToLocalFileTime, FileTimeToSystemTime, SetFileTime

Example

Please see Listing 4-6 under FileTimeToSystemTime.

GetFileType Windows.pas

Syntax

GetFileType(

hFile: THandle {the handle of a file}

): DWORD; {returns a flag indicating the file type}

156 � Chapter 4

Description

This function retrieves the type of the file represented by the specified handle.

Parameters

hFile: The handle to the file whose type is being retrieved.

Return Value

If the function succeeds, it returns one value from the following table; otherwise, it

returns zero.

See Also

GetFileSize, GetFileTime

Example

Please see Listing 4-9 under GetFileInformationByHandle.

Table 4-14: GetFileType return values

Value Description

FILE_TYPE_UNKNOWN The file type is not known.

FILE_TYPE_DISK The file is a disk-based file.

FILE_TYPE_CHAR The file is a character stream, such as a console or LPT device.

FILE_TYPE_PIPE The file is a named or anonymous pipe.

GetFileVersionInfo Windows.pas

Syntax

GetFileVersionInfo(

lptstrFilename: PChar; {a pointer to a filename}

dwHandle: DWORD; {this parameter is ignored}

dwLen: DWORD; {the size of the lpData buffer}

lpData: Pointer {a pointer to a buffer receiving the version resource}

): BOOL; {returns TRUE or FALSE}

Description

This function retrieves the file version information resource from the specified file.

This function will only succeed on Win32 file images; 16-bit file images are not

supported.

Parameters

lptstrFilename: A pointer to a null-terminated string containing the path and filename

of the file for which the version information resource is retrieved.

dwHandle: This parameter is completely ignored and may contain any value.

dwLen: Specifies the size of the buffer pointed to by the lpData parameter, in bytes.

This parameter should be set to the value returned by the GetFileVersionInfoSize

function.

File Input/Output Functions � 157

C
h

a
p

te
r
4

lpData: A pointer to a buffer that receives the file version information resource from

the specified file. The pointer to this buffer is used in subsequent calls to VerQuery-

Value to retrieve individual file version information values.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call GetLastError function.

See Also

GetFileVersionInfoSize, VerQueryValue

Example

Please see Listing 4-12 under VerQueryValue.

GetFileVersionInfoSize Windows.pas

Syntax

GetFileVersionInfoSize(

lptstrFilename: PChar; {a pointer to a filename}

var lpdwHandle: DWORD {a variable that is set to zero}

): DWORD; {returns the size of the version information resource}

Description

This function retrieves the size of the specified file’s version information resource, in

bytes, which is used in a subsequent call to GetFileVersionInfo. This function will only

succeed on Win32 file images; 16-bit file images are not supported.

Parameters

lptstrFilename: A pointer to a null-terminated string containing the path and filename

of the file for which the size of the version information resource is retrieved.

lpdwHandle: A variable that the function sets to zero.

Return Value

If the function succeeds, it returns the size of the specified file’s version information

resource, in bytes; otherwise, it returns zero. To get extended error information, call

GetLastError function.

See Also

GetFileVersionInfo, VerQueryValue

Example

Please see Listing 4-12 under VerQueryValue.

158 � Chapter 4

GetFullPathName Windows.pas

Syntax

GetFullPathName(

lpFileName: PAnsiChar; {the filename}

nBufferLength: DWORD; {the size of lpBuffer, in characters}

lpBuffer: PAnsiChar; {a pointer to a buffer receiving the path}

var lpFilePart: PAnsiChar {a pointer to the filename part inside lpBuffer}

): DWORD; {returns the number of characters copied to the buffer}

Description

This function returns the full path and filename, including the drive, for the filename

identified by the lpFileName parameter. The resulting filename and path is not checked

for validity or that it points to an existing file. The returned filename will be in the long

filename format.

Parameters

lpFileName: A null-terminated string containing the filename for which to retrieve a

full path.

nBufferLength: Specifies the size of the buffer pointed to by the lpBuffer parameter, in

characters, and must include the null terminator.

lpBuffer: A pointer to a buffer that receives the full path and filename. If this parameter

is set to NIL, the return value indicates the required size of the lpBuffer to hold the full

path and filename.

lpFilePart: A pointer to a variable that receives a pointer into the lpBuffer at the begin-

ning of the filename in the full path.

Return Value

If the function succeeds, it returns the number of characters copied to the buffer

pointed to by the lpBuffer parameter, including the null terminator. If the function fails,

it returns zero. To get extended error information, call the GetLastError function.

See Also

GetShortPathName, GetTempPath, SearchPath

Example

Please see Listing 4-11 under SetFileAttributes.

GetShortPathName Windows.pas

Syntax

GetShortPathName(

lpszLongPath: PChar; {the long path name}

lpszShortPath: PChar; {a pointer to a buffer that receives the short path name}

cchBuffer: DWORD {the size of the lpszShortPath buffer, in characters}

): DWORD; {returns the number of characters copied to the buffer}

File Input/Output Functions � 159

C
h

a
p

te
r
4

Description

This function extracts the short path version of the path specified by the lpszLongPath

parameter (i.e., the resulting path is in the 8.3 filename form and contains the “~” char-

acter to display long directory names). If the volume that the specified long path name

resides on does not support the 8.3 filename format, this function will return

ERROR_INVALID_PARAMETER if the specified path is longer than 67 characters.

Parameters

lpszLongPath: A null-terminated string containing the long path from which to extract

the short path name. This does not necessarily have to be a fully qualified path.

lpszShortPath: A pointer to a buffer that receives the full path and filename. If this

parameter is set to NIL, the return value indicates the required size of lpszShortPath

buffer to hold the short path. This buffer can be the same buffer pointed to by the

lpszLongPath parameter.

cchBuffer: Specifies the size of the buffer pointed to by the lpszShortPath parameter

and must include the null terminator.

Return Value

If the function succeeds, it returns the number of characters copied to the buffer

pointed to by the lpszShortPath parameter, not including the null terminator. If the

function fails, it returns zero. To get extended error information, call the GetLastError

function.

See Also

FindFirstFile, GetFullPathName, GetTempPath, SearchPath

Example

Please see Listing 4-11 under SetFileAttributes.

GetTempFileName Windows.pas

Syntax

GetTempFileName(

lpPathName: PChar; {a pointer to a path}

lpPrefixString: PChar; {a pointer to the filename prefix string}

uUnique: UINT; {a unique number used in the filename}

lpTempFileName: PChar {a pointer to a buffer receiving the temporary filename}

): UINT; {returns the unique number used in the filename}

Description

This function creates a temporary filename based on the given path, prefix string, and

unique number. The filename created always has a .TMP extension. Temporary files

created with this function are not automatically deleted when Windows shuts down.

160 � Chapter 4

Parameters

lpPathName: A pointer to a null-terminated string containing the path where the tempo-

rary file is stored. Typically, this value is the path returned from the GetTempPath

function.

lpPrefixString: A pointer to a null-terminated string containing the prefix characters to

be used in the filename. The first three letters in the temporary filename are set to the

first three letters in the string pointed to by this parameter.

uUnique: An unsigned integer that is converted into a hexadecimal string that follows

the prefix characters in the temporary filename. If this parameter is non-zero, the hexa-

decimal string formed from this parameter is appended to the prefix string obtained

from the lpPrefixString parameter to create the temporary filename. However, the file

is not created and the function does not test the filename to see if it is unique. If this

parameter is set to zero, the function uses a hexadecimal string derived from the current

system time. The filename is assembled, and if it is unique, it is created in the target

directory. If it is not unique, the hexadecimal number is incremented by one and the

filename is tested again. This process continues until a unique filename is found.

lpTempFileName: A pointer to a null-terminated string buffer that receives the created

temporary filename string.

Return Value

If the function succeeds, it returns the unique numeric value used in the temporary file-

name; otherwise, it returns zero. To get extended error information, call the

GetLastError function.

See Also

CreateFile, GetTempPath

Example

■ Listing 4-10: Creating a unique filename

var
Form1: TForm1;
PathName: array[0..MAX_PATH] of char; // holds the temporary file path

implementation

procedure TForm1.FormCreate(Sender: TObject);
begin
{retrieve the path for temporary files}
GetTempPath(MAX_PATH, @PathName);

{change the listbox directory to this directory, and display it}
FileListBox1.Directory := string(PathName);
Label2.Caption := string(PathName);

end;

procedure TForm1.Button1Click(Sender: TObject);
var

File Input/Output Functions � 161

C
h

a
p

te
r
4

NewTempName: array[0..MAX_PATH] of char; // holds a temporary filename
begin
{create a temporary filename}
GetTempFileName(PathName, 'WOW', 0, @NewTempName);

{display the filename, and update the file listbox}
Label4.Caption := ExtractFileName(string(NewTempName));
FileListBox1.Update;

end;

GetTempPath Windows.pas

Syntax

GetTempPath(

nBufferLength: DWORD; {the size of the lpBuffer buffer}

lpBuffer: PChar {a pointer to a buffer receiving the temporary file path}

): DWORD; {returns the number of characters copied to the buffer}

Description

This function retrieves the directory designated for storing temporary files. The direc-

tory is retrieved from the TMP environment variable, the TEMP environment variable

if TMP is not defined, or the current directory if both the TMP and the TEMP environ-

ment variables are not defined.

Parameters

nBufferLength: Specifies the size of the buffer pointed to by the lpBuffer parameter. If

this parameter is set to zero, the function returns the size required to store the tempo-

rary file path.

lpBuffer: A pointer to a null-terminated string buffer that receives the temporary file

path.

162 � Chapter 4

Figure 4-9:

The temporary

filename was

created

Return Value

If this function succeeds, it returns the number of characters copied to the lpBuffer

parameter, not including the null terminator character. If the function fails, it returns

zero. To get extended error information, call the GetLastError function.

See Also

GetTempFileName

Example

Please see Listing 4-10 under GetTempFileName.

LocalFileTimeToFileTime Windows.pas

Syntax

LocalFileTimeToFileTime(

const lpLocalFileTime: TFileTime; {a pointer to a TFileTime structure}

var lpFileTime: TFileTime {a pointer to a TFileTime structure}

): BOOL; {returns TRUE or FALSE}

Description

The LocalFileTimeToFileTime function converts the specified local file time pointed to

by the lpLocalFileTime parameter to a UTC-based time value.

Parameters

lpLocalFileTime: A pointer to a TFileTime structure that contains the local file time to

be converted.

lpFileTime: A TFileTime variable that receives the converted UTC value.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, use the GetLastError function.

See Also

DosDateTimeToFileTime, FileTimeToDosDateTime, FileTimeToLocalFileTime,

FileTimeToSystemTime, GetFileTime, SetFileTime, SystemTimeToFileTime

Example

Please see Listing 4-6 under FileTimeToSystemTime.

File Input/Output Functions � 163

C
h

a
p

te
r
4

LockFile Windows.pas

Syntax

LockFile(

hFile: THandle; {a handle to an open file}

dwFileOffsetLow: DWORD; {low-order double word of lock region offset}

dwFileOffsetHigh: DWORD; {high-order double word of lock region offset}

nNumberOfBytesToLockLow: DWORD; {low-order double word of lock region

length}

nNumberOfBytesToLockHigh: DWORD {high-order double word of lock region

length}

): BOOL; {returns TRUE or FALSE}

Description

This function reserves a region of an open file for exclusive access by the calling pro-

cess. While the file is locked, no other process will have read or write access to the

locked region. Although locked regions may not overlap, it does not cause an error to

lock a region that goes beyond the end of the file. A locked region can be unlocked by

calling the UnlockFile function. All locked regions on a file should be removed before

the file is closed or the application is terminated. This function only succeeds on a

FAT-based file system if Share.exe is running.

Parameters

hFile: A handle to the open file which is to be locked. This file must have been created

with either the GENERIC_READ or GENERIC_WRITE flags specified.

dwFileOffsetLow: Specifies the low-order word of the offset from the beginning of the

file where the locked region should begin.

dwFileOffsetHigh: Specifies the high-order word of the offset from the beginning of

the file where the locked region should begin.

nNumberOfBytesToLockLow: Specifies the low-order word of the length, in bytes, of

the region to lock.

nNumberOfBytesToLockHigh: Specifies the high-order word of the length, in bytes, of

the region to lock.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call GetLastError.

See Also

CreateFile, UnlockFile

Example

Please see Listing 4-4 under CreateFile.

164 � Chapter 4

TE
AM
FL
Y

Team-Fly®

MapViewOfFile Windows.pas

Syntax

MapViewOfFile(

hFileMappingObject: THandle; {a handle to a file mapping object}

dwDesiredAccess: DWORD; {file view access flags}

dwFileOffsetHigh: DWORD; {high-order double word of file offset}

dwFileOffsetLow: DWORD; {low-order double word of file offset}

dwNumberOfBytesToMap: DWORD {the number of bytes to map}

): Pointer; {returns a pointer to the mapped data}

Description

This function makes the indicated range of bytes in the memory-mapped file specified

by the hFileMappingObject parameter visible and accessible to the application. It

returns a pointer to the beginning of the mapped memory, giving the application direct

access to the file’s data.

Parameters

hFileMappingObject: A handle to an open file mapping object as returned by the

CreateFileMapping and OpenFileMapping functions.

dwDesiredAccess: Specifies the desired access to the memory occupied by the mapped

file view. This parameter can be one value from the following table.

dwFileOffsetHigh: Specifies the high-order double word of the offset from the begin-

ning of the file from which to start the view mapping.

dwFileOffsetLow: Specifies the low-order double word of the offset from the begin-

ning of the file from which to start the view mapping. The combined 64-bit offset from

the beginning of the file must be a multiple of the system’s memory allocation granu-

larity. Call the GetSystemInfo function to retrieve memory allocation granularity.

dwNumberOfBytesToMap: Specifies the number of bytes within the file to map. If this

parameter is set to zero, the entire file is mapped into a view.

Return Value

If the function succeeds, it returns a pointer to the beginning of the mapped file’s view.

If the function fails, it returns NIL. To get extended error information, call the

GetLastError function.

See Also

CreateFileMapping, GetSystemInfo, OpenFileMapping, UnMapViewOfFile

Example

Please see Listing 4-5 under CreateFileMapping.

File Input/Output Functions � 165

C
h

a
p

te
r
4

Table 4-15: MapViewOfFile dwDesiredAccess values

Value Description

FILE_MAP_WRITE Specifies read/write access to the viewed memory range. The file
mapping object must have been created with the PAGE_READ-
WRITE flag specified.

FILE_MAP_READ Specifies read only access to the viewed memory range. The file
mapping object must have been created with the PAGE_READ-
WRITE or PAGE_READONLY flags specified.

FILE_MAP_COPY Specifies copy on write access to the viewed memory range. Under
Windows 95/98/Me, the file mapping object must have been created
with the PAGE_WRITECOPY flag specified. When the memory
range for a mapped file is modified, the modifications are not written
to the original disk file. If this memory-mapped file is shared between
processes by using the OpenFileMapping function, any changes to
the memory-mapped data will be seen by sharing processes under
Windows 95/98/Me but will not be seen by other processes under
Windows NT/2000 and later.

MoveFile Windows.pas

Syntax

MoveFile(

lpExistingFileName: PAnsiChar; {the name and path of the existing file}

lpNewFileName: PAnsiChar {the name and path of the new file}

): BOOL; {returns TRUE or FALSE}

Description

This function renames the file or directory identified by the lpExistingFileName param-

eter to the new name identified by the lpNewFileName parameter. If a directory is

moved (i.e., renamed), so are its child directories. However, this function will fail if the

application attempts to move the directory across volumes.

Parameters

lpExistingFileName: A null-terminated string containing the name and path of the file

or directory being renamed.

lpNewFileName: A null-terminated string containing the new name and path for the

file or directory. The new file or directory name must not currently exist in the

destination.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call the GetLastError function.

See Also

CopyFile

166 � Chapter 4

Example

Please see Listing 4-8 under FindFirstFile.

OpenFileMapping Windows.pas

Syntax

OpenFileMapping(

dwDesiredAccess: DWORD; {memory-mapped file access flags}

bInheritHandle: BOOL; {handle inheritance flag}

lpName: PChar {a pointer to the name of the file mapping object}

): THandle; {returns a handle to a file mapping object}

Description

This function opens a named file mapping object that currently exists. This can be a file

mapping object created by the current process or by another process.

Parameters

dwDesiredAccess: Specifies the desired access to the memory occupied by the mapped

file view. This parameter can be one value from the following table.

bInheritHandle: Indicates if the returned handle is inherited when a new process is cre-

ated. A value of TRUE indicates that new processes inherit the returned file handle.

lpName: A pointer to a null-terminated string containing the name of a file mapping

object previously created by the CreateFileMapping function, either within the current

process or another process. If a file mapping object by this name is opened and its

memory access attributes do not conflict with those specified by the dwDesiredAccess

parameter, the function succeeds.

Return Value

If the function succeeds, it returns a handle to the specified file mapping object; other-

wise, it returns zero. To get extended error information, call the GetLastError function.

See Also

CreateFileMapping, MapViewOfFile, UnMapViewOfFile

Example

Please see Listing 4-5 under CreateFileMapping.

Table 4-16: OpenFileMapping dwDesiredAccess values

Value Description

FILE_MAP_WRITE Specifies read/write access to the viewed memory range. The file
mapping object must have been created with the PAGE_READ-
WRITE flag specified.

FILE_MAP_READ Specifies read-only access to the viewed memory range. The file
mapping object must have been created with the PAGE_READ-
WRITE or PAGE_READONLY flags specified.

File Input/Output Functions � 167

C
h

a
p

te
r
4

Value Description

FILE_MAP_COPY Specifies copy on write access to the viewed memory range. Under
Windows 95/98/Me, the file mapping object must have been created
with the PAGE_WRITECOPY flag specified. When the memory
range for a mapped file is modified, the modifications are not written
to the original disk file. If this memory-mapped file is shared between
processes by using the OpenFileMapping function, any changes to
the memory-mapped data will be seen by sharing processes under
Windows 95/98/Me but will not be seen by other processes under
Windows NT/2000 and later.

ReadFile Windows.pas

Syntax

ReadFile(

hFile: THandle; {a handle to an open file}

var Buffer; {pointer to the buffer receiving the data}

nNumberOfBytesToRead: DWORD; {specifies number of bytes to read from file}

var lpNumberOfBytesRead: DWORD; {receives the number of bytes actually read}

lpOverlapped: POverLapped {a pointer to a TOverLapped structure}

): BOOL; {returns TRUE or FALSE}

Description

This function retrieves the number of bytes specified by the nNumberOfBytesToRead

parameter from the file associated with the handle specified in the hFile parameter.

These bytes are stored in the buffer pointed to by the Buffer parameter. The origin of

the read operation within the file is dependent upon how the file was opened and the

value of the lpOverlapped parameter. Typically, the lpOverlapped parameter contains

NIL, and the read operation begins at the current file pointer. After the read operation

has completed, the file pointer is incremented by the number of bytes read, unless the

file was opened with the FILE_FLAG_OVERLAPPED flag specified. In this case, the

file pointer is not incremented, and the application must move the file pointer explic-

itly. The read operation will fail if it attempts to read any part of a file that has been

locked with the LockFile function. The application must not access the buffer pointed

to by the Buffer parameter until the read operation has completed.

�Note: Windows 95/98/Me does not support asynchronous reads on

disk-based files.

Parameters

hFile: A handle to the file being read. This file must have been opened with the

GENERIC_READ flag specified.

lpBuffer: A pointer to a buffer receiving the information read from the file.

nNumberOfBytesToRead: Specifies the number of bytes to read from the file.

168 � Chapter 4

lpNumberOfBytesRead: A pointer to a double word receiving the number of bytes

actually read from the file. This variable is initialized to zero before the function starts

the read. This parameter must contain a pointer if the lpOverlapped parameter is set to

NIL.

lpOverlapped: A pointer to a TOverlapped data structure. If the file identified by the

hFile parameter was opened with the FILE_FLAG_OVERLAPPED flag specified,

this parameter must contain a pointer. If the file was opened with the

FILE_FLAG_OVERLAPPED flag specified, the read operation begins at the offset

specified within the structure, and ReadFile may return before the read operation has

completed. In this case, ReadFile will return FALSE, and GetLastError will return

ERROR_IO_PENDING. The event specified in the TOverlapped structure will be sig-

naled upon completing the read operation. If the file was not opened with the

FILE_FLAG_OVERLAPPED flag specified and this parameter is not NIL, the read

operation begins at the offset specified within the structure, and ReadFile does not

return until the read operation is completed. If the file was not opened with the

FILE_FLAG_OVERLAPPED flag specified and this parameter is NIL, the read opera-

tion begins at the current file pointer and does not return until the read operation is

complete.

�Note: Under Windows 95/98/Me, this parameter must be set to NIL.

The TOverlapped data structure is defined as:

TOverlapped = record

Internal: DWORD; {reserved for internal use}

InternalHigh: DWORD; {reserved for internal use}

Offset: DWORD; {specifies the file position from which to start}

OffsetHigh: DWORD; {the high double word of the starting offset}

hEvent: THandle; {a handle to an event object}

end;

Internal: This member is reserved for internal operating system use.

InternalHigh: This member is reserved for internal operating system use.

Offset: Specifies the low-order double word of the byte offset from the beginning

of the file from which to start the operation.

OffsetHigh: Specifies the high-order double word of the byte offset from the

beginning of the file from which to start the operation.

hEvent: A handle to an event object that is set to the signaled state when the

operation has completed.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call the GetLastError function.

See Also

CreateFile, LockFile, UnlockFile, WriteFile

File Input/Output Functions � 169

C
h

a
p

te
r
4

Example

Please see Listing 4-4 under CreateFile.

RemoveDirectory Windows.pas

Syntax

RemoveDirectory(

lpPathName: PAnsiChar {the name of the directory to delete}

): BOOL; {returns TRUE or FALSE}

Description

This function deletes the directory specified by the lpPathName parameter. This direc-

tory must not contain any files, and the calling process must have delete access to the

directory.

Parameters

lpPathName: A null-terminated string containing the path name of the directory to be

deleted.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call the GetLastError function.

See Also

CreateDirectory, CreateDirectoryEx

Example

Please see Listing 4-8 under FindFirstFile.

SearchPath Windows.pas

Syntax

SearchPath(

lpPath: PChar; {a pointer to a search path}

lpFileName: PChar; {a pointer to a filename}

lpExtension: PChar; {a pointer to a file extension}

nBufferLength: DWORD; {the size of the lpBuffer buffer}

lpBuffer: PChar; {a pointer to a buffer}

var lpFilePart: PChar {a pointer to the filename}

): DWORD; {returns the number of characters copied to the buffer}

Description

The SearchPath function searches the path pointed to by the lpPath parameter for the

filename pointed to by the lpFileName parameter.

170 � Chapter 4

Parameters

lpPath: A pointer to a null-terminated string containing the path in which to search for

the specified filename. If this parameter is set to NIL, SearchPath will search the fol-

lowing directories in order:

1. The directory containing the application.

2. The current directory.

3. The Windows system directory as returned by the GetSystemDirectory function.

4. The Windows directory as returned by the GetWindowsDirectory function.

5. The directories listed in the PATH environment variable.

lpFileName: A pointer to a null-terminated string containing the file for which to

search.

lpExtension: A pointer to a null-terminated string containing the file extension, includ-

ing the period. If the file extension is not needed, or the filename pointed to by the

lpFileName parameter contains an extension, this parameter can be set to NIL.

nBufferLength: Specifies the size of the buffer pointed to by the lpBuffer parameter, in

characters. If this parameter is set to zero, the function returns the required size of the

buffer to store the full path and filename.

lpBuffer: A pointer to a buffer which receives the path and filename of the file that was

found.

lpFilePart: Receives a pointer into the lpBuffer buffer where the filename part of the

returned path and filename begins, immediately following the final backslash of the

path.

Return Value

If the function succeeds, it returns the number of characters copied to the buffer

pointed to by the lpBuffer parameter. If the function fails, it returns zero. To get

extended error information, call the GetLastError function.

See Also

FindFirstFile, FindNextFile, GetSystemDirectory, GetWindowsDirectory,

SetCurrentDirectory.

Example

Please see Listing 4-8 under FindFirstFile.

SetCurrentDirectory Windows.pas

Syntax

SetCurrentDirectory(

lpPathName: PAnsiChar {the name of the new current directory }

): BOOL; {returns TRUE or FALSE}

File Input/Output Functions � 171

C
h

a
p

te
r
4

Description

This function changes the current directory of the calling process to the new directory

identified by the lpPathName parameter.

Parameters

lpPathName: A null-terminated string containing the path to the new directory. This

path can be either a fully qualified path or a relative path.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call the GetLastError function.

See Also

GetCurrentDirectory

Example

Please see Listing 4-11 under SetFileAttributes.

SetEndOfFile Windows.pas

Syntax

SetEndOfFile(

hFile: THandle {a handle to an open file}

): BOOL; {returns TRUE or FALSE}

Description

This function sets the end of file to the current file pointer position, either extending or

truncating the file. If the file is extended, the contents of the file between the old end of

file position and the new one are undetermined. If the CreateFileMapping function has

been used to create a file mapping object for the file associated with the handle in the

hFile parameter, the application must call UnmapViewOfFile and CloseHandle to close

the file mapping object before the SetEndOfFile function can be used.

Parameters

hFile: A handle to a file whose end of file position is to be moved. This file must have

been opened with the GENERIC_WRITE flag specified.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call the GetLastError function.

See Also

CloseHandle, CreateFile, CreateFileMapping, SetFilePointer, UnmapViewOfFile

Example

Please see Listing 4-4 under CreateFile.

172 � Chapter 4

SetFileAttributes Windows.pas

Syntax

SetFileAttributes(

lpFileName: PChar; {the filename}

dwFileAttributes: DWORD {file attribute flags}

): BOOL; {returns TRUE or FALSE}

Description

This function sets the file attributes for the file or directory specified by the

lpFileName parameter.

Parameters

lpFileName: A null-terminated string containing the name of the file or directory from

which to retrieve file attributes. This string must not be longer than MAX_PATH

characters.

dwFileAttributes: Specifies the attributes being set for the file. This parameter can con-

tain one or more values from Table 4-17.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call the GetLastError function.

See Also

GetFileAttributes

Example

■ Listing 4-11: Getting and setting file attributes

const
{Delphi 6 does not define all available attributes}
FILE_ATTRIBUTE_SPARSE_FILE = $00000200;
FILE_ATTRIBUTE_REPARSE_POINT = $00000400;
FILE_ATTRIBUTE_NOT_CONTENT_INDEXED = $00002000;
FILE_ATTRIBUTE_ENCRYPTED = $00004000;

procedure TForm1.FileListBox1Change(Sender: TObject);
var

PathBuffer: array[0..255] of char; // holds path names
FilePart: PChar; // a pointer to the filename

begin
{if the file list box has an item selected, retrieve its information}
if FileListBox1.ItemIndex > –1 then
begin
{unhook the checkbox OnClick methods, as accessing their Checked
property fires the method}
CheckBox1.OnClick := nil;
CheckBox2.OnClick := nil;
CheckBox3.OnClick := nil;
CheckBox4.OnClick := nil;

File Input/Output Functions � 173

C
h

a
p

te
r
4

CheckBox5.OnClick := nil;
CheckBox6.OnClick := nil;
CheckBox7.OnClick := nil;
CheckBox8.OnClick := nil;

{retrieve and display the various file attributes for the selected file}
CheckBox1.Checked := Boolean(GetFileAttributes(PChar(FileListBox1.FileName))

and FILE_ATTRIBUTE_ARCHIVE);
CheckBox2.Checked := Boolean(GetFileAttributes(PChar(FileListBox1.FileName))

and FILE_ATTRIBUTE_DIRECTORY);
CheckBox3.Checked := Boolean(GetFileAttributes(PChar(FileListBox1.FileName))

and FILE_ATTRIBUTE_HIDDEN);
CheckBox4.Checked := Boolean(GetFileAttributes(PChar(FileListBox1.FileName))

and FILE_ATTRIBUTE_OFFLINE);
CheckBox5.Checked := Boolean(GetFileAttributes(PChar(FileListBox1.FileName))

and FILE_ATTRIBUTE_READONLY);
CheckBox6.Checked := Boolean(GetFileAttributes(PChar(FileListBox1.FileName))

and FILE_ATTRIBUTE_SYSTEM);
CheckBox7.Checked := Boolean(GetFileAttributes(PChar(FileListBox1.FileName))

and FILE_ATTRIBUTE_NORMAL);
CheckBox8.Checked := Boolean(GetFileAttributes(PChar(FileListBox1.FileName))

and FILE_ATTRIBUTE_TEMPORARY);

{display the file's name}
Label1.Caption := ExtractFileName(FileListBox1.FileName);

{display the full, qualified path for the selected file}
GetFullPathName(PChar(Label1.Caption), 255, PathBuffer, FilePart);
Label10.Caption := string(PathBuffer);

{display the short path form of the qualified path}
GetShortPathName(PChar(DirectoryListBox1.Directory), PathBuffer, 255);
Label11.Caption := string(PathBuffer);

{display the current directory}
GetCurrentDirectory(255, PathBuffer);
Label12.Caption := string(PathBuffer);

{rehook the checkbox OnClick methods}
CheckBox1.OnClick := CheckBox1Click;
CheckBox2.OnClick := CheckBox1Click;
CheckBox3.OnClick := CheckBox1Click;
CheckBox4.OnClick := CheckBox1Click;
CheckBox5.OnClick := CheckBox1Click;
CheckBox6.OnClick := CheckBox1Click;
CheckBox7.OnClick := CheckBox1Click;
CheckBox8.OnClick := CheckBox1Click;

end;
end;

procedure TForm1.CheckBox1Click(Sender: TObject);
var
FileAttributes: DWORD; // holds collective file attributes
ErrorMessage: Pointer; // holds a system error string
ErrorCode: DWORD; // holds a system error code

begin

174 � Chapter 4

TE
AM
FL
Y

Team-Fly®

{unhook the checkbox OnClick methods, as accessing their Checked
property fires the method}
CheckBox1.OnClick := nil;
CheckBox2.OnClick := nil;
CheckBox3.OnClick := nil;
CheckBox4.OnClick := nil;
CheckBox5.OnClick := nil;
CheckBox6.OnClick := nil;
CheckBox7.OnClick := nil;
CheckBox8.OnClick := nil;

{prepare to sum file attributes}
FileAttributes := 0;

{add all of the file attributes selected}
if CheckBox1.Checked then
FileAttributes := FileAttributes or FILE_ATTRIBUTE_ARCHIVE;

if CheckBox2.Checked then
FileAttributes := FileAttributes or FILE_ATTRIBUTE_DIRECTORY;

if CheckBox3.Checked then
FileAttributes := FileAttributes or FILE_ATTRIBUTE_HIDDEN;

if CheckBox4.Checked then
FileAttributes := FileAttributes or FILE_ATTRIBUTE_OFFLINE;

if CheckBox5.Checked then
FileAttributes := FileAttributes or FILE_ATTRIBUTE_READONLY;

if CheckBox6.Checked then
FileAttributes := FileAttributes or FILE_ATTRIBUTE_SYSTEM;

if CheckBox7.Checked then
FileAttributes := FileAttributes or FILE_ATTRIBUTE_NORMAL;

if CheckBox8.Checked then
FileAttributes := FileAttributes or FILE_ATTRIBUTE_TEMPORARY;

{set the file attributes of the selected file}
if not SetFileAttributes(PChar(FileListBox1.FileName), FileAttributes) then
begin
{if there was an error, display the error message}
ErrorCode := GetLastError;
FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER or FORMAT_MESSAGE_FROM_SYSTEM,

nil, ErrorCode, 0, @ErrorMessage, 0, nil);
StatusBar1.SimpleText := 'Error Copying File: ' + PChar(ErrorMessage);
LocalFree(hlocal(ErrorMessage));

end;

{rehook the checkbox OnClick methods}
CheckBox1.OnClick := CheckBox1Click;
CheckBox2.OnClick := CheckBox1Click;
CheckBox3.OnClick := CheckBox1Click;
CheckBox4.OnClick := CheckBox1Click;
CheckBox5.OnClick := CheckBox1Click;
CheckBox6.OnClick := CheckBox1Click;
CheckBox7.OnClick := CheckBox1Click;
CheckBox8.OnClick := CheckBox1Click;

end;

procedure TForm1.ComboBox1Change(Sender: TObject);
begin

File Input/Output Functions � 175

C
h

a
p

te
r
4

{set the current directory to the selected directory}
SetCurrentDirectory(PChar(ComboBox1.Items[ComboBox1.ItemIndex]));

{update the directory list box accordingly}
DirectoryListBox1.Directory := ComboBox1.Items[ComboBox1.ItemIndex];
DirectoryListBox1.Update;

end;

Table 4-17: SetFileAttributes dwFileAttributes values

Value Description

FILE_ATTRIBUTE_ARCHIVE Indicates an archive file or directory and is used by applications to
mark files and directories for removal or backup.

FILE_ATTRIBUTE_COMPRESSED Indicates that the specified file or directory is compressed.

FILE_ATTRIBUTE_DIRECTORY Indicates that the specified filename is a directory.

FILE_ATTRIBUTE_ENCRYPTED Windows NT/2000/XP and later: Indicates that the file or
directory is encrypted. This flag cannot be used with
FILE_ATTRIBUTE_SYSTEM.

FILE_ATTRIBUTE_HIDDEN Indicates that the specified file or directory is hidden and will not
appear in normal directory listings.

FILE_ATTRIBUTE_NORMAL Indicates that the specified file or directory does not have any
other file attributes set.

FILE_ATTRIBUTE_NOT_CONTENT_
INDEXED

Windows NT/2000/XP and later: Indicates that the file or
directory is not to be indexed by content indexing services.

FILE_ATTRIBUTE_OFFLINE Indicates that the specified file or directory is not immediately
available and has been physically moved to offline storage.

FILE_ATTRIBUTE_READONLY Indicates that the specified file or directory is read only. Applica-
tions may read from the file or directory, but they may not write
to it or delete it.

FILE_ATTRIBUTE_REPARSE_POINT Windows NT/2000/XP and later: Indicates that the file has an
associated reparse point.

176 � Chapter 4

Figure 4-10:

Viewing file

attributes

Value Description

FILE_ATTRIBUTE_SPARSE_FILE Indicates that this is a sparse file.

FILE_ATTRIBUTE_SYSTEM Indicates that the specified file or directory is used by the system.

FILE_ATTRIBUTE_TEMPORARY Indicates that the specified file or directory is temporary. The
system will not automatically delete temporary files during
shutdown.

SetFilePointer Windows.pas

Syntax

SetFilePointer(

hFile: THandle; {a handle to an open file}

lDistanceToMove: Longint; {the distance to move in bytes}

lpDistanceToMoveHigh: Pointer; {points to high-order double word of distance to

move}

dwMoveMethod: DWORD {movement origin flags}

): DWORD; {returns the low-order double word of file pointer}

Description

This function repositions the current file pointer within the file identified by the hFile

parameter. The new position is based off of the origin of movement specified by the

dwMoveMethod parameter and the 64-bit offset formed by the lDistanceToMove and

lpDistanceToMoveHigh parameters.

If the file identified by the hFile parameter was opened with the FILE_FLAG_NO_

BUFFERING flag specified, the file pointer can only be moved in increments of the

volume’s sector size. Call the GetDiskFreeSpace function to retrieve a disk volume’s

sector size.

Parameters

hFile: A handle to the open file whose file pointer is to be repositioned. The file must

have been opened with either the GENERIC_READ or GENERIC_WRITE flags

specified.

lDistanceToMove: Specifies the low-order double word of the distance, in bytes, to

move the file pointer. A positive value moves the file pointer forward in the file, and a

negative value moves it backward.

lpDistanceToMoveHigh: A pointer to the high-order double word of the distance, in

bytes, to move the file pointer. This parameter can be set to NIL, in which case the file

pointer can only be moved within a range of 232–2 bytes. If this parameter is not NIL,

the file pointer can be moved within a range of 264–2 bytes, and the value pointed at by

this parameter receives the new high-order double word of the file pointer when the

function returns.

dwMoveMethod: Specifies the starting point of the file pointer for the movement. This

parameter can be one value from Table 4-18.

File Input/Output Functions � 177

C
h

a
p

te
r
4

Return Value

If the function succeeds, it returns the low-order double word of the new file pointer

position. If the function fails, it returns $FFFFFFFF. To get extended error information,

call the GetLastError function. If the lpDistanceToMoveHigh parameter is not NIL and

the function failed, GetLastError will return NO_ERROR.

See Also

CreateFile, GetDiskFreeSpace, ReadFile, SetEndOfFile, WriteFile

Example

Please see Listing 4-4 under CreateFile.

Table 4-18: SetFilePointer dwMoveMethod values

Value Description

FILE_BEGIN The starting point for the movement begins at the beginning of the file.

FILE_CURRENT The starting point for the movement begins at the current file pointer
position.

FILE_END The starting point for the movement begins at the end of the file.

SetFileTime Windows.pas

Syntax

SetFileTime(

hFile: THandle; {a handle to an opened file}

lpCreationTime: PFileTime; {a pointer to buffer containing file creation time}

lpLastAccessTime: PFileTime; {a pointer to buffer containing last file access time}

lpLastWriteTime: PFileTime {a pointer to buffer containing last file write time}

): BOOL; {returns TRUE or FALSE}

Description

This function sets the file creation time, last file access time, and last file write time of

the opened file associated with the handle given in the hFile parameter.

Parameters

hFile: A handle to the opened file whose file times are to be modified. This file must

have been opened with the GENERIC_WRITE access flag specified.

lpCreationTime: A pointer to a TFileTime data structure containing the 64-bit time

value with which to set the file’s creation time. This parameter may be set to NIL if this

time value does not need to be modified.

lpLastAccessTime: A pointer to a TFileTime data structure containing the 64-bit time

value with which to set the file’s last access time. This parameter may be set to NIL if

this time value does not need to be modified.

lpLastWriteTime: A pointer to a TFileTime data structure containing the 64-bit time

value with which to set the file’s last modification time. This parameter may be set to

178 � Chapter 4

NIL if this time value does not need to be modified. This time value is the time value

displayed in the Explorer.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call the GetLastError function.

See Also

FileTimeToLocalFileTime, FileTimeToSystemTime, GetFileTime

Example

Please see Listing 4-6 under FileTimeToSystemTime.

SystemTimeToFileTime Windows.pas

Syntax

SystemTimeToFileTime(

const lpSystemTime: TSystemTime; {a pointer to a TSystemTime structure}

var lpFileTime: TFileTime {a pointer to a TFileTime structure}

): BOOL; {returns TRUE or FALSE}

Description

This function converts the values stored in the TSystemTime structure pointed to by the

lpSystemTime parameter into a 64-bit file time.

Parameters

lpSystemTime: A pointer to a TSystemTime structure containing the system time infor-

mation to be converted. The TSystemTime data structure is defined as:

TSystemTime = record

wYear: Word; {the current year}

wMonth: Word; {the month number}

wDayOfWeek: Word; {the day of the week number}

wDay: Word; {the current day of the month}

wHour: Word; {the current hour}

wMinute: Word; {the current minute}

wSecond: Word; {the current second}

wMilliseconds: Word; {the current millisecond}

end;

Please see the FileTimeToSystemTime function for a description of this data structure.

lpFileTime: A pointer to a TFileTime structure receiving the 64-bit converted file time.

Return Values

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, use the GetLastError function.

File Input/Output Functions � 179

C
h

a
p

te
r
4

See Also

DosDateTimeToFileTime, FileTimeToDosDateTime, FileTimeToLocalFileTime,

FileTimeToSystemTime, GetFileTime, LocalFileTimeToFileTime, SetFileTime

Example

Please see Listing 4-6 under FileTimeToSystemTime.

UnlockFile Windows.pas

Syntax

UnlockFile(

hFile: THandle; {a handle to an open file}

dwFileOffsetLow: DWORD; {low-order double word of lock region offset}

dwFileOffsetHigh: DWORD; {high-order double word of lock region offset}

nNumberOfBytesToUnlockLow: DWORD; {low-order double word of lock region

length}

nNumberOfBytesToUnlockHigh: DWORD {high-order double word of lock region

length}

): BOOL; {returns TRUE or FALSE}

Description

This function unlocks a previously locked region in a file, providing access to the

region to other processes. The unlocked region must match the locked region exactly as

determined by the previous call to LockFile. All locked regions on a file should be

removed before the file is closed or the application is terminated.

Parameters

hFile: A handle to the open file which is to be unlocked. This file must have been cre-

ated with either the GENERIC_READ or GENERIC_WRITE flags specified.

dwFileOffsetLow: Specifies the low-order word of the offset from the beginning of the

file where the locked region begins.

dwFileOffsetHigh: Specifies the high-order word of the offset from the beginning of

the file where the locked region begins.

nNumberOfBytesToUnlockLow: Specifies the low-order word of the length, in bytes,

of the region to unlock.

nNumberOfBytesToUnlockHigh: Specifies the high-order word of the length, in bytes,

of the region to unlock.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call GetLastError.

See Also

CreateFile, LockFile

180 � Chapter 4

Example

Please see Listing 4-4 under CreateFile.

UnMapViewOfFile Windows.pas

Syntax

UnMapViewOfFile(

lpBaseAddress: Pointer {a pointer to the base address of the mapped view}

): BOOL; {returns TRUE or FALSE}

Description

This function removes a view of a file mapping object from the process’s address

space. A file that has been mapped to memory using the CreateFileMapping function is

not closed until all views of the file have been closed by using UnMapViewOfFile.

Parameters

lpBaseAddress: A pointer to the base address of the mapped view of the file mapping

object. This pointer must be the exact address location originally returned by the previ-

ous call to the MapViewOfFile function.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call GetLastError.

See Also

CreateFileMapping, MapViewOfFile, OpenFileMapping

Example

Please see Listing 4-5 under CreateFileMapping.

VerQueryValue Windows.pas

Syntax

VerQueryValue(

pBlock: Pointer; {a pointer to the version resource}

lpSubBlock: PChar; {a pointer to a version value string}

var lplpBuffer: Pointer; {a pointer to a buffer receiving a pointer to the value}

var puLen: UINT {a pointer to a buffer receiving the value length}

): BOOL; {returns TRUE or FALSE}

Description

This function retrieves a pointer to the file version information type specified by the

lpSubBlock parameter from the file version resource identified by the pBlock parame-

ter. The pointer to this information is stored in the buffer pointed to by the lplpBuffer

parameter. This function will only succeed on Win32 file images; 16-bit file images are

File Input/Output Functions � 181

C
h

a
p

te
r
4

not supported. Use GetFileVersionInfo to retrieve the file version resource for the

pBlock parameter.

Parameters

pBlock: A pointer to a buffer containing the file version resource as returned by

GetFileVersionInfo.

lpSubBlock: A pointer to a null-terminated string containing the type of file version

information to retrieve. This string can contain one value from Table 4-19. The file ver-

sion information retrieved can be either a data structure containing specific information

or the actual name of a version information type. In order to use names, the application

must first use the \\VarFileInfo\\Translation value to retrieve the translation code. This

translation code is used in all subsequent version name values. To use the version code

to specify a version name, the version code must be inserted in the version name as a

string of hexadecimal numbers consisting of the low word of the conversion code con-

catenated with the high word of the conversion code. See the following listing for an

example of using version name values.

lplpBuffer: A pointer to a buffer which receives a pointer to the requested file version

information. The pointer received will point to a null-terminated string.

puLen: A pointer to a buffer which receives the length of the requested file version

information in characters.

Return Value

If the function succeeds and the file version information resource contains the

requested information type, it returns TRUE. If the function fails, or there is no file

version information for the requested information type, it returns FALSE.

See Also

GetFileVersionInfo, GetFileVersionInfoSize

Example

■ Listing 4-12: Retrieving file version information

procedure TForm1.FileListBox1Click(Sender: TObject);
var
VerInfoSize: DWORD; // holds the size of the version info resource
GetInfoSizeJunk: DWORD; // a junk variable, its value is ignored
VersionInfo: Pointer; // points to the version info resource
Translation: Pointer; // holds version info translation table
InfoPointer: Pointer; // a pointer to version information
VersionInfoSize: UINT; // holds the size of version information
VersionValue: string; // holds the version info request string

begin
{retrieve the size of the version information resource, if one exists}
VerInfoSize := 0;
VerInfoSize := GetFileVersionInfoSize(PChar(FileListBox1.FileName), GetInfoSizeJunk);

{if there was a version information resource available...}
if VerInfoSize>0 then

182 � Chapter 4

begin
{hide the 'not available' indicator}
Label1.Visible := FALSE;

{retrieve enough memory to hold the version resource}
GetMem(VersionInfo, VerInfoSize);

{retrieve the version resource for the selected file}
GetFileVersionInfo(PChar(FileListBox1.FileName), 0, VerInfoSize, VersionInfo);

{retrieve a pointer to the translation table}
VerQueryValue(VersionInfo, '\\VarFileInfo\\Translation',

Translation, VersionInfoSize

{initialize the version value request string}
VersionValue :='\\StringFileInfo\\'+

IntToHex(LoWord(LongInt(Translation^)),4) +
IntToHex(HiWord(LongInt(Translation^)),4) +
'\\';

{retrieve and display the company name}
VerQueryValue(VersionInfo, PChar(VersionValue + 'CompanyName'),

InfoPointer, VersionInfoSize);
Label17.Caption := string(PChar(InfoPointer));

{retrieve and display the file description}
VerQueryValue(VersionInfo, PChar(VersionValue + 'FileDescription'),

InfoPointer, VersionInfoSize);
Label16.Caption := string(PChar(InfoPointer));

{retrieve and display the file version}
VerQueryValue(VersionInfo, PChar(VersionValue + 'FileVersion'), InfoPointer,

VersionInfoSize);
Label15.Caption := string(PChar(InfoPointer));

{retrieve and display the internal filename}
VerQueryValue(VersionInfo, PChar(VersionValue + 'InternalName'),InfoPointer,

VersionInfoSize);
Label14.Caption := string(PChar(InfoPointer));

{retrieve and display the legal copyright}
VerQueryValue(VersionInfo, PChar(VersionValue + 'LegalCopyright'),

InfoPointer, VersionInfoSize);
Label13.Caption := string(PChar(InfoPointer));

{retrieve and display the legal trademarks}
if VerQueryValue(VersionInfo, PChar(VersionValue + 'LegalTrademarks'),

InfoPointer, VersionInfoSize) then
Label19.Caption := string(PChar(InfoPointer))

else
Label19.Caption := '';

{retrieve and display the original filename}
VerQueryValue(VersionInfo, PChar(VersionValue + 'OriginalFilename'),

InfoPointer, VersionInfoSize);
Label12.Caption := string(PChar(InfoPointer));

File Input/Output Functions � 183

C
h

a
p

te
r
4

{retrieve and display the product name}
VerQueryValue(VersionInfo, PChar(VersionValue + 'ProductName'), InfoPointer,

VersionInfoSize);
Label11.Caption := string(PChar(InfoPointer));

{retrieve and display the product version}
VerQueryValue(VersionInfo, PChar(VersionValue + 'ProductVersion'),

InfoPointer, VersionInfoSize);
Label10.Caption := string(PChar(InfoPointer));

{retrieve and display the comments. some version info resources may
not have this information.}
if VerQueryValue(VersionInfo, PChar(VersionValue + 'Comments'), InfoPointer,

VersionInfoSize) then
Label21.Caption := string(PChar(InfoPointer))

else
Label21.Caption := '';

{retrieve and display file build flags}
if VerQueryValue(VersionInfo, '\', InfoPointer, VersionInfoSize) then
begin
CheckBox1.Checked := BOOL(TVSFixedFileInfo(InfoPointer^).dwFileFlags and

VS_FF_DEBUG);
CheckBox2.Checked := BOOL(TVSFixedFileInfo(InfoPointer^).dwFileFlags and

VS_FF_PRERELEASE);
CheckBox3.Checked := BOOL(TVSFixedFileInfo(InfoPointer^).dwFileFlags and

VS_FF_PATCHED);
CheckBox4.Checked := BOOL(TVSFixedFileInfo(InfoPointer^).dwFileFlags and

VS_FF_PRIVATEBUILD);
CheckBox5.Checked := BOOL(TVSFixedFileInfo(InfoPointer^).dwFileFlags and

VS_FF_INFOINFERRED);
CheckBox6.Checked := BOOL(TVSFixedFileInfo(InfoPointer^).dwFileFlags and

VS_FF_SPECIALBUILD);
end
else
begin
CheckBox1.Checked := FALSE;
CheckBox2.Checked := FALSE;
CheckBox3.Checked := FALSE;
CheckBox4.Checked := FALSE;
CheckBox5.Checked := FALSE;
CheckBox6.Checked := FALSE;

end;

{free the version resource memory}
FreeMem(VersionInfo, VerInfoSize);

end
else
begin
{otherwise, indicate that no version information is available}
Label1.Visible := TRUE;

{delete any previous version information}
Label17.Caption := '';
Label16.Caption := '';
Label15.Caption := '';

184 � Chapter 4

TE
AM
FL
Y

Team-Fly®

Label14.Caption := '';
Label13.Caption := '';
Label12.Caption := '';
Label11.Caption := '';
Label10.Caption := '';
Label19.Caption := '';
Label21.Caption := '';

CheckBox1.Checked := FALSE;
CheckBox2.Checked := FALSE;
CheckBox3.Checked := FALSE;
CheckBox4.Checked := FALSE;
CheckBox5.Checked := FALSE;
CheckBox6.Checked := FALSE;

end;
end;

Table 4-19: VerQueryValue lpSubBlock values

Value Description

\ Stores a pointer to a TVSFixedFileInfo data structure in the buffer
pointed to by the lplpBuffer parameter. The TVSFixedFileInfo
structure contains specific file version information.

\\VarFileInfo\\Translation Retrieves a pointer to a translation value. This translation value is
needed for the following values.

\\StringFileInfo\\<translation value>
\\CompanyName

Retrieves a pointer to a string containing the name of the company
that created the file.

\\StringFileInfo\\<translation value>
\\FileDescription

Retrieves a pointer to a string containing a description of the file.

\\StringFileInfo\\<translation value>
\\FileVersion

Retrieves a pointer to a string containing the file version number.

\\StringFileInfo\\<translation value>
\\InternalName

Retrieves a pointer to a string containing the internal name of the
file.

\\StringFileInfo\\<translation value>
\\LegalCopyright

Retrieves a pointer to a string containing the legal copyright of the
company that created the file, if any.

File Input/Output Functions � 185

C
h

a
p

te
r
4

Figure 4-11:

The file

version

information

Value Description

\\StringFileInfo\\<translation value>
\\LegalTrademarks

Retrieves a pointer to a string containing the legal trademarks of
the company that created the file, if any.

\\StringFileInfo\\<translation value>
\\OriginalFilename

Retrieves a pointer to a string containing the original name of the
file.

\\StringFileInfo\\<translation value>
\\ProductName

Retrieves a pointer to a string containing the name of the product
to which the file belongs.

\\StringFileInfo\\<translation value>
\\ProductVersion

Retrieves a pointer to a string containing the version of the prod-
uct to which the file belongs.

\\StringFileInfo\\<translation value>
\\Comments

Retrieves a pointer to a string containing any comments about the
file.

The TVSFixedFileInfo data structure is defined as:

TVSFixedFileInfo = packed record

dwSignature: DWORD; {the data structure signature}

dwStrucVersion: DWORD; {the data structure version}

dwFileVersionMS: DWORD; {most significant 32 bits of the file version}

dwFileVersionLS: DWORD; {least significant 32 bits of the file version}

dwProductVersionMS: DWORD; {most significant 32 bits of product version}

dwProductVersionLS: DWORD; {least significant 32 bits of product version}

dwFileFlagsMask: DWORD; {bitmask representing valid version

attributes}

dwFileFlags: DWORD; {version attribute flags}

dwFileOS: DWORD; {file operating system type}

dwFileType: DWORD; {file type flags}

dwFileSubtype: DWORD; {file subtype flags}

dwFileDateMS: DWORD; {most significant 32 bits of the file date}

dwFileDateLS: DWORD; {least significant 32 bits of the file date}

end;

dwSignature: Always contains the value $FEEF04BD.

dwStrucVersion: Specifies the version number of this structure where the high-

order word indicates the major version number and the low-order word indicates

the minor version number.

dwFileVersionMS: Specifies the most significant 32 bits of the file’s version

number. This value can be combined with the value of the dwFileVersionLS

member to obtain the full 64-bit file version number.

dwFileVersionLS: Specifies the least significant 32 bits of the file’s version num-

ber. This value can be combined with the value of the dwFileVersionMS member

to obtain the full 64-bit file version number.

dwProductVersionMS: Specifies the most significant 32 bits of the version num-

ber of the product to which this file belongs. This value can be combined with the

value of the dwProductVersionLS member to obtain the full 64-bit product ver-

sion number.

186 � Chapter 4

dwProductVersionLS: Specifies the least significant 32 bits of the version number

of the product to which this file belongs. This value can be combined with the

value of the dwProductVersionMS member to obtain the full 64-bit product ver-

sion number.

dwFileFlagsMask: A bitmask indicating which bits of the dwFileFlags member

are valid.

dwFileFlags: A series of bit flags indicating various attributes of the file. This

member can contain one or more flags from Table 4-20.

dwFileOS: Specifies the operating system for which this file was designed to

operate on. This member can be one value from Table 4-21.

dwFileType: Indicates the file type. This member can be one value from Table

4-22.

dwFileSubtype: Indicates the function of the file. This value is dependent on the

value of the dwFileType member and can be one value from Table 4-23. For any

values of dwFileType not listed in the table, dwFileSubtype will contain zero. If

the dwFileType parameter contains VFT_VXD, dwFileSubtype will contain the

virtual device identifier.

dwFileDateMS: Specifies the most significant 32 bits of the file’s date and time

stamp.

dwFileDateLS: Specifies the least significant 32 bits of the file’s date and time

stamp.

Table 4-20: VerQueryValue TVSFixedFileInfo.dwFileFlags values

Value Description

VS_FF_DEBUG The file contains debug information and was compiled with debug fea-
tures enabled.

VS_FF_PRERELEASE The file is a development version and is not meant for public distribution.

VS_FF_PATCHED The file has been modified and is not identical to the original shipping
version.

VS_FF_PRIVATEBUILD The file was not built using standard release procedures and is intended
for internal use only.

VS_FF_INFOINFERRED The file’s version information was created dynamically and some of the
information in this structure may be incomplete or incorrect.

VS_FF_SPECIALBUILD The file was built using standard release procedures, but it is a variation of
the normal shipping version of the file.

Table 4-21: VerQueryValue TVSFixedFileInfo.dwFileOS values

Value Description

VOS_UNKNOWN The file was designed for an unknown operating system.

VOS_NT The file was designed for use under Windows NT.

VOS_WINDOWS32 The file was designed for use under the Win32 API.

VOS_DOS_WINDOWS32 The file was designed for use under the Win32 API running on MS-DOS.

File Input/Output Functions � 187

C
h

a
p

te
r
4

Value Description

VOS_NT_WINDOWS32 The file was designed for use under the Win32 API running on Windows
NT.

Table 4-22: VerQueryValue TVSFixedFileInfo.dwFileType values

Value Description

VFT_UNKNOWN The file type is unknown.

VFT_APP The file is an application.

VFT_DLL The file is a dynamic link library.

VFT_DRV The file contains a device driver.

VFT_FONT The file contains a font.

VFT_VXD The file contains a virtual device driver.

VFT_STATIC_LIB The file contains a static link library.

Table 4-23: VerQueryValue TVSFixedFileInfo.dwFileSubtype values

Value of dwFileType Value Description

VFT_DRV VFT2_UNKNOWN The driver type is unknown.

VFT_DRV VFT2_DRV_PRINTER The file contains a printer driver.

VFT_DRV VFT2_DRV_KEYBOARD The file contains a keyboard driver.

VFT_DRV VFT2_DRV_LANGUAGE The file contains a language driver.

VFT_DRV VFT2_DRV_DISPLAY The file contains a display driver.

VFT_DRV VFT2_DRV_MOUSE The file contains a mouse driver.

VFT_DRV VFT2_DRV_NETWORK The file contains a network driver.

VFT_DRV VFT2_DRV_SYSTEM The file contains a system driver.

VFT_DRV VFT2_DRV_INSTALLABLE The file contains an installable driver.

VFT_DRV VFT2_DRV_SOUND The file contains a sound driver.

VFT_FONT VFT2_UNKNOWN The font type is unknown.

VFT_FONT VFT2_FONT_RASTER The file contains a raster font.

VFT_FONT VFT2_FONT_VECTOR The file contains a vector font.

VFT_FONT VFT2_FONT_TRUETYPE The file contains a TrueType font.

WriteFile Windows.pas

Syntax

WriteFile(

hFile: THandle; {a handle to an open file}

const Buffer; {the buffer containing the data to be written}

nNumberOfBytesToWrite: DWORD; {the number of bytes to write to the file}

var lpNumberOfBytesWritten: DWORD;{receives number of bytes actually written}

lpOverlapped: POverlapped {a pointer to a TOverlapped structure}

): BOOL; {returns TRUE or FALSE}

188 � Chapter 4

Description

This function writes the number of bytes specified by the nNumberOfBytesToWrite

parameter to the file associated with the handle specified in the hFile parameter. These

bytes come from the buffer pointed to by the Buffer parameter. The origin of the write

operation within the file is dependent upon how the file was opened and the value of

the lpOverlapped parameter. Typically, the lpOverlapped parameter contains NIL, and

the write operation begins at the current file pointer. After the write operation has com-

pleted, the file pointer is incremented by the number of bytes written, unless the file

was opened with the FILE_FLAG_OVERLAPPED flag specified. In this case, the file

pointer is not incremented, and the application must move the file pointer explicitly.

The write operation will fail if it attempts to write to any part of a file that has been

locked with the LockFile function. The application must not access the buffer pointed

to by the Buffer parameter until the write operation has completed.

�Note: Windows 95/98/Me does not support asynchronous writes on

disk-based files.

Parameters

hFile: A handle to the file being read. This file must have been opened with the

GENERIC_WRITE flag specified.

Buffer: A pointer to a buffer containing the information to be written to the specified

file.

nNumberOfBytesToWrite: Specifies the number of bytes to be written to the file.

lpNumberOfBytesWritten: A pointer to a double word receiving the number of bytes

actually written to the file. This variable is initialized to zero before the function starts

the write. This parameter must contain a pointer if the lpOverlapped parameter is set to

NIL.

lpOverlapped: A pointer to a TOverlapped data structure. If the file identified by the

hFile parameter was opened with the FILE_FLAG_OVERLAPPED flag specified,

this parameter must contain a pointer. If the file was opened with the

FILE_FLAG_OVERLAPPED flag specified, the write operation begins at the offset

specified within the structure, and WriteFile may return before the write operation has

completed. In this case, WriteFile will return FALSE, and GetLastError will return

ERROR_IO_PENDING. The event specified in the TOverlapped structure will be sig-

naled upon completing the read operation. If the file was not opened with the

FILE_FLAG_OVERLAPPED flag specified and this parameter is not NIL, the write

operation begins at the offset specified within the structure, and WriteFile does not

return until the write operation is completed. If the file was not opened with the

FILE_FLAG_OVERLAPPED flag specified and this parameter is NIL, the write opera-

tion begins at the current file pointer and does not return until the write operation is

complete.

File Input/Output Functions � 189

C
h

a
p

te
r
4

�Note: Under Windows 95/98/Me, this parameter must be set to NIL.

The TOverlapped data structure is defined as:

TOverlapped = record

Internal: DWORD; {reserved for internal use}

InternalHigh: DWORD; {reserved for internal use}

Offset: DWORD; {specifies the file position from which to start}

OffsetHigh: DWORD; {the high double word of the starting offset}

hEvent: THandle; {a handle to an event object}

end;

Please see the ReadFile function for a description of this data structure.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call the GetLastError function.

See Also

CreateFile, LockFile, ReadFile, SetEndOfFile, UnlockFile

Example

Please see Listing 4-4 under CreateFile.

190 � Chapter 4

Chapter 5

Input FunctionsInput Functions

Windows has the responsibility of providing input services to an application from a

variety of input devices including the keyboard, mouse, and joystick. The input

resources are shared devices. Windows performs reasonably well in directing the inputs

to the correct application in a multitasking environment. At the same time, an applica-

tion can have some control in its own management of monitoring all system inputs

from an input device, such as the mouse.

The Keyboard

Windows can provide keyboard input functionality in the context of international char-

acter sets. The keyboard state may be queried to see which key combination the user

might have pressed. The keyboard state, along with the virtual key codes, gives the

programmer capabilities to deploy an internationally ready application. The underlying

Windows operating system takes care of much of the low-level language translation

work.

This is accomplished by using what is called an input locale identifier. Formerly known

as a keyboard layout, an input locale identifier includes information about both the

input language as well as the physical layout of the keyboard. However, it has a much

broader concept than the original keyboard layout, as an input locale identifier encom-

passes alternative forms of input, such as a speech-to-text converter or an Input Method

Editor (IME). The programmer can have an application load, unload, and select an

active input locale identifier. There are API functions for getting keyboard characters

translated in the context of the active input locale identifier into virtual keys. The

active input locale identifier can be changed dynamically, so applications that make use

of such functionality should handle the WM_INPUTLANGCHANGE message to

detect this change.

The keyboard can be emulated with the keybd_event API function. This function gen-

erates the same Windows messages that the system itself would generate from actual

keypresses. Keyboard messages are normally sent to the window that has focus.

191

The Mouse

The mouse is another shared device that is monitored and managed by Windows. The

mouse activity is normally reported to the window that is directly under the mouse cur-

sor. However, an application can assign or “capture” the mouse activity and cause the

mouse messages to go to a capture window. This behavior continues until the capture is

released.

There are also API functions for restricting the motion of the mouse to a rectangular

area. The ClipCursor function provides this capability. An application that assumes

such a global control of a valuable system resource should take care that it releases the

device when appropriate.

Mouse activity can be simulated just like the keyboard can. See the program example

for the mouse_event function. The mouse motion, location, and button activity can all

be synthesized using the mouse_event function. It may be easier to control the mouse

programmatically using mouse_event rather than sending mouse messages to a target

window.

The input functions that provide input simulation described in this chapter can be used

for creating training or demo programs. By being able to simulate keystrokes and

mouse activity, an application can demonstrate to the user how an application works.

The value of seeing the mouse move on the screen under program control can have a

big impact on training effectiveness. These functions can also be used to provide hints

or other user interface services as the application needs dictate.

Delphi vs. the Windows API

Quite simply, few, if any, of the functions discussed in this chapter have any sort of

equivalent in Delphi. For applications that deal with specialized input or must deal with

input in a specialized way, these functions provide a wide assortment of necessary

functionality. Joystick input, synthesis of keyboard and mouse events, keyboard key

translation, and functions that deal with the cursor, mouse buttons, and caret are all

addressed by these Windows API functions.

Input Functions

The following input functions are covered in this chapter.

Table 5-1: Input functions

Function Description

ActivateKeyboardLayout Activates a specified keyboard layout.

ClipCursor Confines the mouse cursor to a rectangular region.

DragDetect Captures the mouse and tracks its movement.

GetAsyncKeyState Determines if a specific key is up or down.

GetCapture Retrieves the handle of the window with the mouse capture.

192 � Chapter 5

Function Description

GetCaretBlinkTime Retrieves the caret blink rate.

GetCaretPos Retrieves the caret position.

GetClipCursor Retrieves the mouse cursor confinement coordinates.

GetCursorPos Retrieves the mouse cursor position relative to the screen.

GetDoubleClickTime Retrieves the double-click interval.

GetInputState Determines if there are mouse or keyboard messages in the message queue.

GetKeyboardLayout Retrieves a keyboard layout.

GetKeyboardLayoutList Retrieves a list of keyboard layouts for the current locale.

GetKeyboardLayoutName Retrieves a keyboard layout name.

GetKeyboardState Retrieves the up or down state of all 256 virtual key codes.

GetKeyboardType Retrieves information about the keyboard.

GetKeyNameText Retrieves a string representing the name of the key.

GetKeyState Retrieves the up or down state of an individual virtual key.

keybd_event Simulates keyboard activity.

joyGetDevCaps Gets the capabilities of an installed joystick.

joyGetNumDevs Retrieves the number of joysticks installed.

joyGetPos Retrieves the position of the joystick.

joyGetPosEx Retrieves additional information concerning the joystick position.

joyGetThreshold Retrieves the joystick threshold value.

joyReleaseCapture Releases joystick message capturing.

joySetCapture Captures joystick messages.

joySetThreshold Sets the joystick threshold value.

LoadKeyboardLayout Loads a keyboard layout.

MapVirtualKey Translates a virtual key code.

MapVirtualKeyEx Translates a virtual key code according to the keyboard layout.

mouse_event Simulates mouse activity.

OemKeyScan Converts an OEM ASCII codes.

ReleaseCapture Releases mouse capture.

SetCapture Captures mouse messages.

SetCaretBlinkTime Sets the caret blink rate.

SetCaretPos Sets the caret position.

SetCursorPos Sets the mouse cursor position.

SetDoubleClickTime Sets the double-click interval.

SetKeyboardState Sets the state of all 256 virtual key codes.

SwapMouseButton Swaps the logical mouse buttons.

UnloadKeyboardLayout Unloads a loaded keyboard layout.

VkKeyScan Translates a character into a virtual key code.

VkKeyScanEx Translates a character into a virtual key code according to the keyboard layout.

Input Functions � 193

C
h

a
p

te
r
5

ActivateKeyboardLayout Windows.pas

Syntax

ActivateKeyboardLayout(

klh: HKL; {input local identifier}

Flags: UINT {activation flag}

): HKL; {returns previous handle}

Description

The ActivateKeyboardLayout function activates the keyboard layout for the specified

local identifier. In Windows 95/98, it affects the current thread. In Windows NT and

later, it affects all threads.

Parameters

klh: The input local identifier (this was formerly known as the keyboard layout handle

and defines both a local and a keyboard layout for the locale). Under Windows

95/98/Me, this handle can be obtained by calling LoadKeyboardLayout or GetKey-

boardLayoutList. Under Windows NT/2000 and later, the handle can only be obtained

by a call to LoadKeyboardLayout. This parameter can also be set to HKL_NEXT or

HKL_PREV, which refer to the next or previous entries in the keyboard layout list.

Flags: Specifies keyboard layout options and can be one value from the following

table.

Return Value

If the function succeeds, the return value is the previous input locale identifier. If the

function fails, it returns zero, indicating no matching keyboard layout was found. To

get extended error information, call the GetLastError function.

See Also

GetKeyboardLayoutList, LoadKeyboardLayout, UnloadKeyboardLayout

Example

Please see Listing 5-6 under LoadKeyboardLayout.

Table 5-2: ActivateKeyboardLayout Flags values

Value Description

0 Do not reorder.

KLF_REORDER Reorder the keyboard handle list object by placing the specified
layout at the head of the list. Without this flag, the list is rotated
without any change in the keyboard layout order.

KLF_RESET Windows 2000 and later: If this is included and KLF_SHIFT-
LOCK is not, the caps lock state is toggled by pressing the Caps
Lock key. If KLF_SHIFTLOCK is included, the caps lock state is
toggled by pressing either Shift key. This setting is persistent
and is written to the user’s profile in the registry.

194 � Chapter 5

TE
AM
FL
Y

Team-Fly®

Value Description

KLF_SETFORPROCESS Windows 2000 and later: Activates the indicated local identi-
fier (and physical keyboard layout) for the entire process. The
current thread’s active window receives a WM_INPUTLANG-
CHANGE message.

KLF_SHIFTLOCK Windows 2000 and later: Used with KLF_RESET, listed
above.

KLF_UNLOADPREVIOUS Obsolete; use UnloadKeyboardLayout instead.

ClipCursor Windows.pas

Syntax

ClipCursor(

lpRect: PRect {specifies the rectangular clipping region}

): BOOL; {returns TRUE or FALSE}

Description

The ClipCursor function limits the cursor movements to the rectangular region speci-

fied by the lpRect parameter. This affects all cursor movement in all applications until

the original rectangular coordinates are restored. To save the original coordinates, call

the GetClipCursor function. Once the cursor has been confined with ClipCursor, any

call to the SetCursorPos function will be based on the specified clipping region

coordinates.

Parameters

lpRect: Points to a TRect structure which specifies the coordinates for the clipping

region. If this parameter is zero, the cursor is free to move anywhere.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call the GetLastError function.

See Also

GetClipCursor

Example

Please see Listing 5-10 under SwapMouseButton.

DragDetect Windows.pas

Syntax

DragDetect(

p1: HWND; {handle of window receiving mouse input}

p2: TPoint {initial mouse position}

): BOOL; {returns TRUE or FALSE}

Input Functions � 195

C
h

a
p

te
r
5

Description

The DragDetect function captures mouse messages and receives the cursor coordinates

until the left mouse button is released, the Esc key is pressed, or the cursor goes outside

of the drag rectangle around the point specified by parameter p2. The specifications for

the drag rectangle may be obtained with the GetSystemMetrics API function.

Parameters

p1: Handle of the window receiving the mouse input.

p2: Position of the mouse in coordinates relative to the screen.

Return Value

If the function succeeds, and if the mouse moves inside of the drag rectangle while

holding the left mouse button down, the function returns TRUE; otherwise, it returns

FALSE.

See Also

GetSystemMetrics*

Example

■ Listing 5-1: Using DragDetect in a graphics paint application

procedure TForm1.Panel1MouseDown(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

var
XY_coordinates, UV_coordinates: TPoint; // holds coordinates

begin
{coordinates for the rectangle}
XY_coordinates.X:= Panel1.Width;
XY_coordinates.Y:= Panel1.Height;

{detect mouse drags on the panel}
while(DragDetect(Panel1.Handle,XY_coordinates)) do
begin
{retrieve the cursor position}
GetCursorPos(UV_coordinates);
Windows.ScreenToClient(Panel1.Handle, UV_coordinates);

{display the mouse coordinates}
Edit1.Text:= IntToStr(UV_coordinates.X);
Edit2.Text:= IntToStr(UV_coordinates.Y);

{draw a pixel at the mouse coordinates}
SetPixel(GetDc(Panel1.Handle), UV_coordinates.x, UV_coordinates.Y,

ColorGrid1.ForegroundColor);
end

end;

procedure TForm1.ColorGrid1Change(Sender: TObject);
begin
{erase the background}
Panel1.Color:= ColorGrid1.BackgroundColor;

196 � Chapter 5

end;

procedure TForm1.Button1Click(Sender: TObject);
begin
{redraw the panel}
Panel1.Refresh;

end;

GetAsyncKeyState Windows.pas

Syntax

GetAsyncKeyState(

vKey: Integer {a virtual key code}

): SHORT; {keypress state code}

Description

This function determines if the key indicated by the virtual key code specified in the

vKey parameter is up or down at the time of the function call. It also determines if the

key was pressed after a previous call to GetAsyncKeyState. This function will also

work with mouse buttons, but it reports the state of the physical mouse buttons regard-

less of logical mouse button mapping.

Parameters

vKey: Specifies a virtual key code.

Return Value

If the function succeeds, and the most significant bit is set in the return value, the spec-

ified key is down at the time of the function call. If the least significant bit is set, the

key was pressed after a previous call to the GetAsyncKeyState function. If the function

fails, or a window in another thread has focus, it returns zero.

See Also

GetKeyboardState, GetKeyState, GetSystemMetrics*, MapVirtualKey,

SetKeyboardState

Input Functions � 197

C
h

a
p

te
r
5

Figure 5-1:

The detected

drag

coordinates

Example

Please see Listing 5-7 under MapVirtualKey.

GetCapture Windows.pas

Syntax

GetCapture: HWND; {returns a handle to the window that has the capture}

Description

The GetCapture function determines which window has the mouse capture. Only one

window may have mouse capture assigned to it, and that window will receive the

mouse input regardless of where the mouse cursor is on the screen.

Return Value

If the function succeeds, and a window in the current thread has the mouse capture, it

returns the handle to the window with the mouse capture; otherwise, it returns zero.

See Also

ReleaseCapture, SetCapture

Example

Please see Listing 5-10 under SwapMouseButton.

GetCaretBlinkTime Windows.pas

Syntax

GetCaretBlinkTime: UINT; {returns the blink time interval in milliseconds}

Description

The GetCaretBlinkTime function returns the blink time of the caret in milliseconds.

The blink time is the time interval between the first appearance and the second appear-

ance of the caret.

Return Value

If the function succeeds, it returns the caret blink time in milliseconds; otherwise, it

returns zero. To get extended error information, call the GetLastError function.

See Also

SetCaretBlinkTime

Example

Please see Listing 5-9 under SetCaretBlinkTime.

198 � Chapter 5

GetCaretPos Windows.pas

Syntax

GetCaretPos(

var lpPoint: TPoint {points to caret coordinates}

): BOOL; {returns TRUE or FALSE}

Description

The GetCaretPos function retrieves the current position of the caret, in client

coordinates.

Parameters

lpPoint: Points to a TPoint structure that receives the coordinates of the caret. The

coordinates are always given relative to the client area.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call GetLastError function.

See Also

SetCaretPos, SetCursorPos

Example

Please see Listing 5-9 under SetCaretBlinkTime.

GetClipCursor Windows.pas

Syntax

GetClipCursor(

var lpRect: TRect {coordinates for the clipping region}

): BOOL; {returns TRUE or FALSE}

Description

The GetClipCursor function retrieves the coordinates of the current clipping region,

defined as the rectangle where the mouse cursor is confined.

Parameters

lpRect: Points to a TRect structure that receives the coordinates for the clipping region.

The TRect structure must be allocated by the caller.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call GetLastError function.

See Also

ClipCursor, GetCursorPos

Input Functions � 199

C
h

a
p

te
r
5

Example

Please see Listing 5-10 under SwapMouseButton.

GetCursorPos Windows.pas

Syntax

GetCursorPos(

var lpPoint: TPoint {receives coordinates of cursor}

): BOOL; {returns TRUE or FALSE}

Description

The GetCursorPos function retrieves the mouse cursor position relative to the screen.

Parameters

lpPoint: Points to a TPoint structure, which receives the current mouse cursor’s posi-

tion in screen coordinates. This structure must be allocated by the caller.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call the GetLastError function.

See Also

ClipCursor, SetCursorPos, SetCaretPos

Example

Please see Listing 5-10 under SwapMouseButton.

GetDoubleClickTime Windows.pas

Syntax

GetDoubleClickTime: UINT; {returns time interval elapsed

between two mouse clicks}

Description

The GetDoubleClickTime function gets the time interval in milliseconds that can

elapse between the first and second mouse clicks. If the mouse moves or the time inter-

val between clicks is greater than this time interval, the system will not treat the event

as a double mouse click. To change the double-click time, use the SetDoubleClickTime

function.

Return Value

If the function succeeds, it returns the double-click time in milliseconds. This function

does not indicate an error upon failure.

See Also

SetDoubleClickTime

200 � Chapter 5

Example

Please see Listing 5-10 under SwapMouseButton.

GetInputState Windows.pas

Syntax

GetInputState: BOOL; {returns TRUE or FALSE}

Description

GetInputState examines the message queue for mouse, button, keyboard, or timer event

messages. It returns a Boolean value reflecting the existence of these message types in

the queue.

Return Value

This function returns TRUE if there are input messages in the queue, or FALSE if not.

The function does not indicate an error upon failure.

See Also

GetQueueStatus*

Example

Please see Listing 5-2 under GetKeyboardType.

GetKeyboardLayout Windows.pas

Syntax

GetKeyboardLayout(

dwLayout: DWORD {thread being queried}

): HKL; {returns an input locale identifier}

Description

GetKeyboardLayout retrieves the active input locale identifier for the specified thread.

To get the layout for the current thread, set the dwLayout parameter to zero.

Parameters

dwLayout: Specifies the handle for the thread that is being queried. This must be a

valid handle for a thread.

Return Value

If the function succeeds, it returns the input locale identifier for the specified thread.

The low-order word is the language identifier for the thread, and the high-order word is

the device handle for the keyboard layout. If the function fails, it returns zero.

See Also

GetKeyboardLayoutList, LoadKeyboardLayout, UnloadKeyboardLayout

Input Functions � 201

C
h

a
p

te
r
5

Example

Please see Listing 5-11 under VkKeyScanEx.

GetKeyboardLayoutList Windows.pas

Syntax

GetKeyboardLayoutList(

nBuff: Integer; {number of keyboard layout handles}

var List {receives array of input locale identifiers}

): UINT; {returns the number of identifiers}

Description

The GetKeyboardLayoutList function retrieves the list input locale identifiers for the

current system locale. It can be used to retrieve the actual list or the number of entries

in the list.

Parameters

nBuff: Specifies the number of handles that the buffer can hold. If this parameter is set

to zero, the function returns the number of entries in the list.

List: Points to an array that receives the input locale identifiers. If the nBuff parameter

is zero, this parameter is ignored.

Return Value

If nBuff is not zero and the function succeeds, it returns the number of identifiers

placed in the buffer pointed to by the List parameter. If nBuff is zero, GetKeyboard-

LayoutList returns the number of input locale identifiers available. If the function fails,

it returns zero.

See Also

LoadKeyboardLayout, GetKeyboardLayout, UnloadKeyboardLayout

Example

Please see Listing 5-6 under LoadKeyboardLayout.

GetKeyboardLayoutName Windows.pas

Syntax

GetKeyboardLayoutName(

pwszKLID: PChar {output buffer for input locale name}

): BOOL; {returns TRUE or FALSE}

Description

The GetKeyboardLayoutName function retrieves the name of the active input locale

identifier in the form of a string. The buffer pointed to by the pwszKLID parameter

will receive a null-terminated string representation of a hexadecimal value composed of

a primary language identifier and a sub-language identifier. Under Windows 95/98/Me,

202 � Chapter 5

this function retrieves the active input locale identifier only for the calling thread.

Under Windows NT/2000 and later, it retrieves the input locale identifier for the

system.

Parameters

pwszKLID: A pointer to a null-terminated string which receives the name of the key-

board layout identifier.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call the GetLastError function.

See Also

GetKeyboardLayoutList, LoadKeyboardLayout, UnloadKeyboardLayout

Example

Please see Listing 5-6 under LoadKeyboardLayout.

GetKeyboardState Windows.pas

Syntax

GetKeyboardState(

var KeyState: TKeyboardState {array to receive virtual key codes}

): BOOL; {returns TRUE or FALSE}

Description

The GetKeyboardState function retrieves the status of all 256 virtual keys into an array

of 256 bytes. Use the virtual key codes as an index into this array to retrieve individual

virtual key states (i.e., KeyState[VK_SHIFT]). The values in the array change as key-

board messages are removed from the queue, not when they are posted. To get the

status of a single key, use the GetKeyState or GetAsyncKeyState functions.

Parameters

KeyState: Points to a TKeyboardState structure, which is an array of 256 bytes. This

array receives the information about key states for all 256 virtual keys. If the high-

order bit of an array value is 1, that key is pressed. If the low-order bit is 1, the key is

toggled on, such as the Caps, Shift, or Alt keys. TKeyboardState is defined as follows:

TKeyboardState = array[0..255] of Byte; {virtual key code states}

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call the GetLastError function.

See Also

GetAsyncKeyState, GetKeyNameText, MapVirtualKey, SetKeyboardState

Input Functions � 203

C
h

a
p

te
r
5

Example

Please see Listing 5-7 under MapVirtualKey.

GetKeyboardType Windows.pas

Syntax

GetKeyboardType(

nTypeFlag: Integer {type of information}

): Integer; {returns the specified information}

Description

The GetKeyboardType function retrieves information about the keyboard depending on

what type of data is requested. The type, subtype, and number of function keys may be

obtained according to the state of the nTypeFlag parameter.

Parameters

nTypeFlag: Specifies the type of information to retrieve, such as keyboard type, sub-

type, or number of function keys. This parameter can be set to one value from Table

5-3. If the keyboard subtype is requested, the return value will be OEM specific with a

meaning that is described in the subtype table (Table 5-4). If the number of function

keys is requested, the return value is not the number of function keys but a code that is

translated using the function key table (Table 5-5).

Return Value

If the function succeeds, it returns the requested information about the keyboard; other-

wise, it returns zero.

See Also

keybd_event

Example

■ Listing 5-2: Retrieving information about the keyboard

const
KBType: array[0..6] of string = ('IBM® PC/XT® () or compatible (83-key) keyboard',

'Olivetti® "ICO" (102-key) keyboard',
'IBM PC/AT® (84-key) or similar keyboard',
'IBM enhanced (101- or 102-key) keyboard',
'Nokia® 1050 and similar keyboards',
'Nokia 9140 and similar keyboards',
'Japanese keyboard');

procedure TForm1.FormActivate(Sender: TObject);
begin
{display the keyboard type}
Label3.Caption := KBType[GetKeyboardType(0) - 1];

{display the number of function keys}
Label4.Caption := IntToStr(GetKeyboardType(2));

204 � Chapter 5

TE
AM
FL
Y

Team-Fly®

end;
procedure TForm1.Timer1Timer(Sender: TObject);
begin
{check the state of the input queue}
if (GetInputState = TRUE) then
StatusBar1.SimpleText := 'Input messages in the queue'

else
StatusBar1.SimpleText := 'No input messages in the queue';

end;

Table 5-3: GetKeyboardType nTypeFlag values

Value Description

0 Requesting keyboard type.

1 Requesting keyboard subtype.

2 Requesting number of function keys.

Table 5-4: GetKeyboardType subtype return values

Value Description

1 IBM PC/XT or compatible keyboard (83 keys).

2 Olivetti “ICO” (102-key) keyboard.

3 IBM PC/AT (84-key) keyboard.

4 IBM enhanced (101- or 102-key) keyboard.

5 Nokia 1050 and similar keyboard.

6 Nokia 9140 and similar keyboard.

7 Japanese keyboard.

Table 5-5: GetKeyboardType function key count return values

Value Description

1 10 function keys.

2 12 or 18 function keys.

3 10 function keys.

4 12 function keys.

5 10 function keys.

6 24 function keys.

7 Number of function keys is dependent on hardware and specified by the OEM.

Input Functions � 205

C
h

a
p

te
r
5

Figure 5-2:

The current

keyboard type

GetKeyNameText Windows.pas

Syntax

GetKeyNameText(

lParam: Longint; {lParam from the input message)

lpString: PChar; {pointer to output buffer}

nSize: Integer {maximum size of the buffer}

): Integer {returns the size of data in the buffer}

Description

The GetKeyNameText function retrieves the name of the specified key and stores it in

the buffer pointed to by the lpString parameter. The format of the key name depends on

the current input locale identifier. On some keyboards, key names are longer than one

character. The keyboard driver maintains the name list for the keys. Under Windows

95/98/Me, the key name is translated according to the currently loaded keyboard layout

for the current thread. Under Windows NT/2000 and later, the key name is translated

according to the currently loaded keyboard layout for the system.

Parameters

lParam: Specifies the lParam parameter of a keyboard message. This parameter con-

tains information on the keystroke whose key name is to be retrieved and is interpreted

as described in the following table.

lpString: Points to the output buffer that will receive the name of the key.

nSize: Specifies size of the output buffer pointed to by the lpString parameter.

Return Value

If the function succeeds, it returns the size of the string copied to the output buffer in

characters, not including the null terminator. This function does not indicate an error

upon failure.

See Also

GetKeyState

Example

■ Listing 5-3: Retrieving keystroke names

procedure TForm1.WndProc(var Msg: TMessage);
var
lpString: PChar; // holds the key name

begin
{if the message was a keystroke message...}
if Msg.Msg = WM_KEYDOWN then
begin
{retrieve the name of the key pressed}
lpString := StrAlloc(100);
GetKeyNameText(Msg.LParam, lpString, 100);
StaticText1.Caption := lpString + ' Key Was Pressed';
StrDispose(lpString);

206 � Chapter 5

{indicate if the Shift key was pressed}
if HiByte(GetKeyState(VK_SHIFT)) <> 0 then
StaticText4.Font.Color := clRed

else
StaticText4.Font.Color := clBlack;

{indicate if the Ctrl key was pressed}
if HiByte(GetKeyState(VK_CONTROL)) <> 0 then
StaticText3.Font.Color := clRed

else
StaticText3.Font.Color := clBlack;

{indicate if the Alt key was pressed}
if HiByte(GetKeyState(VK_MENU)) <> 0 then
StaticText2.Font.Color := clRed

else
StaticText2.Font.Color := clBlack;

end;

{pass all messages to the window procedure}
inherited WndProc(Msg);

end;

procedure TForm1.WMGetDlgCode(var Message: TWMGetDlgCode);
begin
inherited;

{this forces the system to send all keys to the form}
Message.Result := Message.Result or DLGC_WANTALLKEYS or DLGC_WANTARROWS
or DLGC_WANTTAB;

end;

Table 5-6: GetKeyNameText lParam values

Bits Description

16-23 Specifies the key scan code.

24 Distinguishes extended key behavior on enhanced keyboard.

25 If this bit is set, the function does not differentiate between left and right
Shift and Ctrl keys.

Input Functions � 207

C
h

a
p

te
r
5

Figure 5-3:

The keystroke

name

GetKeyState Windows.pas

Syntax

GetKeyState(

nVirtKey: Integer {virtual key code}

): SHORT; {returns the state}

Description

The GetKeyState function retrieves the status of the key specified by the nVirtKey

parameter. The key state can be up, down, or toggled (i.e., Caps, Shift, or Ctrl).

Parameters

nVirtKey: Specifies the virtual key code for which to retrieve the status. The virtual

key codes for keys from “A” to “Z” and “0” to “9” are the same as the ASCII value of

the keys. See the following table.

Return Value

If the function succeeds, it returns the state of the specified key. If the high-order bit is

set, the key is pressed. If the low-order bit is set, the key is toggled to an on state. This

function does not indicate an error upon failure.

See Also

GetAsyncKeyState, GetKeyboardState, MapVirtualKey, SetKeyboardState

Example

Please see Listing 5-3 under GetKeyNameText.

Table 5-7: GetKeyState nVirtKey values

Value Description

VK_F1–VK_F12 Function keys F1-F12

VK_NUMPAD0–VK_NUMPAD9 Numeric keypad 0-9 with NumLock on

VK_CANCEL Ctrl-Break

VK_RETURN Enter

VK_BACK Backspace

VK_TAB Tab

VK_CLEAR Numeric keypad 5 with NumLock off

VK_SHIFT Shift

VK_CONTROL Ctrl

VK_MENU Alt

VK_PAUSE Pause

VK_ESCAPE Esc

VK_SPACE Spacebar

VK_PRIOR Page Up and PgUp

VK_NEXT Page Down and PgDn

208 � Chapter 5

Value Description

VK_END End

VK_HOME Home

VK_LEFT Left arrow

VK_UP Up arrow

VK_RIGHT Right arrow

VK_DOWN Down arrow

VK_SNAPSHOT Print Screen

VK_INSERT Insert and Ins

VK_DELETE Delete and Del

VK_MULTIPLY Numeric keypad *

VK_ADD Numeric keypad +

VK_SUBTRACT Numeric keypad –

VK_DECIMAL Numeric keypad .

VK_DIVIDE Numeric keypad /

VK_CAPITAL Caps Lock

VK_NUMLOCK Num Lock

VK_SCROLL Scroll Lock

keybd_event Windows.pas

Syntax

keybd_event(

bVk: Byte; {virtual key code}

bScan: Byte; {scan code}

dwFlags: DWORD; {option flags}

dwExtraInfo: DWORD {additional information about the key}

); {this procedure does not return a value}

Description

The keybd_event function simulates a keystroke. The system generates a WM_KEYUP

or WM_KEYDOWN message as if the key were pressed on the keyboard.

Parameters

bVk: The virtual key code in the range of 1-254. See GetKeyState for virtual keycode

identifiers.

bScan: The hardware scan code for the key.

dwFlags: Flags identifying keystroke operations. This parameter can contain one or

more values from the following table.

dwExtraInfo: Specifies an additional 32-bit value associated with the keystroke.

Input Functions � 209

C
h

a
p

te
r
5

See Also

GetAsyncKeyState, GetKeyState, MapVirtualKey, SetKeyboardState

Example

■ Listing 5-4: Simulating the PRNTSCRN key using keybd_event

procedure TForm1.ButtonSnapShotClick(Sender: TObject);
var
Bitmap: TBitmap; // holds a bitmap

begin
{see which radio button is checked}
If ImageOptions.ItemIndex = 0
then keybd_event(VK_SNAPSHOT,1,0,0) {desktop window snapshot}
else keybd_event(VK_SNAPSHOT,0,0,0); {client window snapshot}

{check to see if there is a picture}
if Clipboard.HasFormat(CF_BITMAP) then
begin
{Create a bitmap to hold the contents of the clipboard}
Bitmap := TBitmap.Create;

{trap for clipboard bitmap errors}
try
{get the bitmap off the clipboard using Assign}
Bitmap.Assign(Clipboard);

{copy the bitmap to the Image}
Image1.Canvas.Draw(0, 0, Bitmap);

finally
{the bitmap is no longer needed, so free it}
Bitmap.Free;

end;
end;

end;

Table 5-8: keybd_event dwFlags values

Value Description

KEYEVENTF_EXTENDEDKEY If this flag is specified, then the scan code is prefixed
with the byte value $E0 (224).

KEYEVENTF_KEYUP If specified, the key is being released. If not, the key is
being pressed.

210 � Chapter 5

joyGetDevCaps Mmsystem.pas

Syntax

joyGetDevCaps(

uJoyID: UINT; {joystick identifier}

lpCaps: PJoyCaps; {points to TJoyCaps structure}

uSize: UINT {size of the TJoyCaps structure}

): MMRESULT; {returns an error condition}

Description

joyGetDevCaps retrieves the joystick capabilities into a TJoyCaps structure provided

by the caller.

Parameters

uJoyID: A joystick identifier which can be JOYSTICKID1 or JOYSTICKID2.

lpCaps: Points to a TJoyCaps structure which receives the capabilities of the specified

joystick. The TJoyCaps data structure is defined as:

TJoyCaps = record

wMid: Word; {manufacturer ID}

wPid: Word; {product ID}

szPname: array[0..MAXPNAMELEN-1] of AnsiChar; {product name}

wXmin: UINT; {minimum x position value}

wXmax: UINT; {maximum x position value}

wYmin: UINT; {minimum y position value}

wYmax: UINT; {maximum y position value}

wZmin: UINT; {maximum z position value}

Input Functions � 211

C
h

a
p

te
r
5

Figure 5-4:

The simulated

PRNTSCRN

results

wZmax: UINT; {maximum z position value}

wNumButtons: UINT; {number of buttons}

wPeriodMin: UINT; {minimum message period when captured}

wPeriodMax: UINT; {maximum message period when captured}

wRmin: UINT; {minimum r position value}

wRmax: UINT; {maximum r position value}

wUmin: UINT; {minimum u (fifth axis) position value}

wUmax: UINT; {maximum u (fifth axis) position value}

wVmin: UINT; {minimum v (sixth axis) position value}

wVmax: UINT; {maximum v (sixth axis) position value}

wCaps: UINT; {joystick capabilities}

wMaxAxes: UINT; {maximum number of axes supported}

wNumAxes: UINT; {number of axes in use}

wMaxButtons: UINT; {maximum number of buttons supported}

szRegKey: array[0..MAXPNAMELEN – 1] of AnsiChar; {registry key}

szOEMVxD: array[0..MAX_JOYSTICKOEMVXDNAME – 1] of AnsiChar;

{OEM VxD}

end;

wMid: Manufacturer’s identifier.

wPid: Product identifier.

szPname: Name of the joystick as a null-terminated string.

wXmin: Minimum value of the joystick’s x-coordinate.

wXmax: Maximum value of the joystick’s x-coordinate.

wYmin: Minimum value of the joystick’s y-coordinate.

wYmax: Maximum value of the joystick’s y-coordinate.

wZmin: Minimum value of the joystick’s z-coordinate.

wZmax: Maximum value of the joystick’s z-coordinate.

wNumButtons: Number of buttons on the joystick.

wPeriodMin: Smallest polling frequency supported with joySetCapture on.

wPeriodMax: Largest polling frequency supported with joySetCapture on.

wRmin: Minimum rudder value (fourth axis).

wRmax: Maximum rudder value (fourth axis).

wUmin: Minimum value of fifth axis.

wUmax: Maximum value of fifth axis.

wVmin: Minimum value of sixth axis.

wVmax: Maximum value of sixth axis.

wCaps: Joystick capabilities as shown in Table 5-9.

wMaxAxes: Maximum number of axes supported.

wNumAxes: Number of axes in current use.

wMaxButtons: Number of buttons supported.

szRegKey: Joystick registry key as a null-terminated string.

szOEMVxD: Name of the OEM driver as a null-terminated string.

uSize: Specifies the size, in bytes, of the TJoyCaps structure.

212 � Chapter 5

Return Value

The function will return a success or failure result code as shown in Table 5-10.

See Also

joyGetPos, joyGetPosEx

Example

Please see Listing 5-5 under joySetCapture.

Table 5-9: joyGetDevCaps lpCaps.wCaps values

Value Description

JOYCAPS_HASZ Joystick has z-coordinate information.

JOYCAPS_HASR Joystick has fouth axis information.

JOYCAPS_HASU Joystick has fifth axis information.

JOYCAPS_HASV Joystick has sixth axis information.

JOYCAPS_HASPOV Joystick has point-of-view information.

JOYCAPS_POV4DIR Joystick point of view supports discrete values for centered,
forward, backward, left, and right.

JOYCAPS_POVCTS Joystick point of view supports continuous degree bearings.

Table 5-10: joyGetDevCaps return values

Value Description

JOYERR_NOERROR The function succeeded.

MMSYSERR_NODRIVER Joystick driver is not present.

MMSYSERR_INVALPARAM Invalid parameter is passed.

joyGetNumDevs Mmsystem.pas

Syntax

joyGetNumDevs: UINT; {returns the number of joysticks supported by the driver}

Description

The joyGetNumDevs retrieves the number of joysticks supported by the current joy-

stick driver. Use joyGetPos to determine if a joystick is attached to the system.

Return Value

If the function succeeds, it returns the number of joysticks supported by the current

joystick driver. If the function fails, or there is no joystick driver present, it returns

zero.

See Also

joyGetDevCaps

Input Functions � 213

C
h

a
p

te
r
5

Example

Please see Listing 5-5 under joySetCapture.

joyGetPos Mmsystem.pas

Syntax

joyGetPos(

uJoyID: UINT; {joystick identifier}

lpInfo: PJoyInfo {points to TJoyInfo structure}

): MMRESULT; {returns an error condition}

Description

The joyGetPos function retrieves information about joystick position and button status

for the joystick identified by the uJoyID parameter. Position and button status are

stored in a TJoyInfo structure. This function can be used to determine if the joystick is

currently attached to the system by checking the return value.

Parameters

uJoyID: The joystick identifier of the joystick whose position is to be checked. This

parameter can be set to JOYSTICKID1 or JOYSTICKID2.

lpInfo: A pointer to a TJoyInfo structure that receives the joystick position information.

The TJoyInfo data structure is defined as:

TJoyInfo = record

wXpos: UINT; {x position}

wYpos: UINT; {y position}

wZpos: UINT; {z position}

wButtons: UINT; {button states}

end;

wXpos: The current X position of the joystick.

wYpos: The current Y position of the joystick.

wZpos: The current Z position of the joystick.

wButtons: Status of the buttons as shown in Table 5-11.

Return Value

The function will return a success or failure result code as shown in Table 5-12.

See Also

joyGetPosEx

Example

Please see Listing 5-5 under joySetCapture.

214 � Chapter 5

TE
AM
FL
Y

Team-Fly®

Table 5-11: joyGetPos lpInfo.wButtons values

Value Description

JOY_BUTTON1 First joystick button is pressed.

JOY_BUTTON2 Second joystick button is pressed.

JOY_BUTTON3 Third joystick button is pressed.

JOY_BUTTON4 Fourth joystick button is pressed.

Table 5-12: joyGetPos return values

Value Description

JOYERR_NOERROR The function succeeded.

MMSYSERR_NODRIVER Joystick driver not found.

MMSYSERR_INVALPARAM Invalid parameter.

JOYERR_UNPLUGGED Joystick is unplugged.

joyGetPosEx Mmsystem.pas

Syntax

joyGetPosEx(

uJoyID: UINT; {joystick identifier}

lpInfo: PJoyInfoEx {points to TJoyInfoEx structure}

): MMRESULT; {returns an error condition}

Description

The joyGetPosEx function retrieves information about joystick position and button sta-

tus for the joystick identified by the uJoyID parameter. Position and button status are

stored in a TJoyInfoEx structure. This function provides more information about the

joystick position than the joyGetPos function.

Parameters

uJoyID: The joystick identifier of the joystick whose position is to be checked. This

parameter can be set to JOYSTICKID1 or JOYSTICKID2.

lpInfo: A pointer to a TJoyInfoEx structure that receives the joystick position informa-

tion. The TJoyInfoEx data structure is defined as:

TJoyInfoEx = record

dwSize: DWORD; {size of structure}

dwFlags: DWORD; {flags indicating what to return}

wXpos: UINT; {x (first axis) position}

wYpos: UINT; {y (second axis) position}

wZpos: UINT; {z (third axis) position}

dwRpos: DWORD; {fourth axis position}

dwUpos: DWORD; {fifth axis position}

dwVpos: DWORD; {sixth axis position}

wButtons: UINT; {button states}

dwButtonNumber: DWORD; {current button number pressed}

Input Functions � 215

C
h

a
p

te
r
5

dwPOV: DWORD; {point-of-view state}

dwReserved1: DWORD; {reserved for system communication with

joystick driver}

dwReserved2: DWORD; {reserved for future use}

end;

dwSize: The size of this structure in bytes. This member should be set to

SizeOf(TJoyInfoEx).

dwFlags: Option specifying which data is requested as shown in Table 5-13.

wXpos: Current first axis coordinate.

wYpos: Current second axis coordinate.

wZpos: Current third axis coordinate.

dwRpos: Current fourth axis coordinate.

dwUpos: Current fifth axis coordinate.

dwVpos: Current sixth axis coordinate.

wButtons: The current state of all 32 buttons supported by the system. Each

button has an identifier (JOY_BUTTON1 through JOY_BUTTON32) that is sim-

ply an identifier for the bit positions in the 32-bit wButtons value. If the specified

bit is set, the button is pressed.

dwButtonNumber: The current button number that is pressed.

dwPOV: The current position of the point-of-view control, in hundredths of

degrees. This value can range from 0 to 35,900. When the JOY_RETURNPOV

flag is set in the dwFlags entry, the value of dwPOV will be one of the values

from the dwPOV table (Table 5-14). An application that supports only the

point-of-view values shown in the table must have the JOY_RETURNPOV flag

set. If the application can accept the variable degree information, it should set the

JOY_RETURNPOVCTS flag, which also supports the JOY_POV constants in

the dwPOV table.

dwReserved1: Reserved for future use.

dwReserved2: Reserved for future use.

Return Value

The function will return a success or failure result code as shown in Table 5-15.

See Also

joyGetDevCaps, joyGetPos

Example

Please see Listing 5-5 under joySetCapture.

216 � Chapter 5

Table 5-13: joyGetPosEx lpInfo.dwFlags values

Value Description

JOY_RETURNALL Equivalent to setting all of the JOY_RETURN bits, except for
the JOY_RETURNRAWDATA bit.

JOY_RETURNBUTTONS dwButtons contains information about each joystick button.

JOY_RETURNCENTERED Centers the joystick neutral position to the central value of
each axis.

JOY_RETURNPOV The dwPOV member contains information about the
point-of-view control, expressed in whole degrees.

JOY_RETURNPOVCTS The dwPOV member contains valid information about the
point-of-view control expressed in continuous, one-hun-
dredth degree units.

JOY_RETURNR The dwRpos member contains valid rudder pedal data for
the fourth axis.

JOY_RETURNRAWDATA Data stored in this structure contains uncalibrated joystick
readings.

JOY_RETURNU The dwUpos member contains valid data for a fifth axis.

JOY_RETURNV The dwVpos member contains valid data for a sixth axis.

JOY_RETURNX The dwXpos member contains valid data for the x-coordi-
nate (first axis) of the joystick.

JOY_RETURNY The dwYpos member contains valid data for the y-coordi-
nate (second axis) of the joystick.

JOY_RETURNZ The dwZpos member contains valid data for the z-coordi-
nate (third axis) of the joystick.

JOY_USEDEADZONE Expands the range for the neutral position of the joystick as
a dead zone. Coordinate information is the same for all posi-
tions in the dead zone.

The following flags are intended for use in applications requiring custom calibration.

JOY_CAL_READALWAYS Reads the joystick port even if the driver does not detect a
connected device.

JOY_CAL_READXYONLY Reads the X and Y raw position values, placing them in the
wXpos and wYpos members, respectively.

JOY_CAL_READ3 Reads the X, Y, and Z raw position values, placing them in
the wXpos, wYpos, and wZpos members, respectively.

JOY_CAL_READ4 Reads the X, Y, Z, and rudder raw position values, placing
them in the wXpos, wYpos, wZpos, and dwRPos members,
respectively.

JOY_CAL_READXONLY Reads the X raw position value, placing it in the wXpos
member.

JOY_CAL_READYONLY Reads the Y raw position value, placing it in the wYpos
member.

JOY_CAL_READ5 Reads the X, Y, Z, rudder, and fifth axis raw position values,
placing them in the wXpos, wYpos, wZpos, dwRPos, and
dwUpos members, respectively.

Input Functions � 217

C
h

a
p

te
r
5

Value Description

JOY_CAL_READ6 Reads the X, Y, Z, rudder, fifth, and sixth axis raw position
values, placing them in the wXpos, wYpos, wZpos, dwRPos,
dwUpos, and dwVpos members, respectively.

JOY_CAL_READZONLY Reads the Z raw position value, placing it in the wZpos
member.

JOY_CAL_READRONLY Reads the rudder raw position value, placing it in the
dwRpos member.

JOY_CAL_READUONLY Reads the fifth axis raw position value, placing it in the
dwUpos member.

JOY_CAL_READVONLY Reads the sixth raw position value, placing it in the dwVpos
member.

Table 5-14: joyGetPosEx lpInfo.dwPOV values

Value Description

JOY_POVBACKWARD Point-of-view hat is pressed backward. The value 18,000
represents 180.00 degrees (to the rear).

JOY_POVCENTERED Point-of-view hat is in the neutral position. The value –1
means there is no angle to report.

JOY_POVFORWARD Point-of-view hat is pressed forward. The value 0 repre-
sents 0.00 degrees (straight ahead).

JOY_POVLEFT Point-of-view hat is being pressed to the left. The value
27,000 represents 270.00 degrees (90.00 degrees to the
left).

JOY_POVRIGHT Point-of-view hat is pressed to the right. The value 9,000
represents 90.00 degrees (to the right).

Table 5-15: joyGetPosEx return values

Value Description

JOYERR_NOERROR The function succeeded.

MMSYSERR_NODRIVER Joystick driver is not present.

MMSYSERR_INVALPARAM Invalid parameter is passed.

MMSYSERR_BADDEVICEID Joystick identifier is invalid.

JOYERR_UNPLUGGED Joystick is unplugged.

joyGetThreshold Mmsystem.pas

Syntax

joyGetThreshold(

uJoyID: UINT; {joystick identifier}

lpuThreshold: PUINT {points to joystick threshold value}

): MMRESULT; {returns an error code}

218 � Chapter 5

Description

The joyGetThreshold function retrieves the joystick movement threshold. The thresh-

old is the distance that the joystick must be moved before the driver sends a

WM_JOYMOVE message.

Parameters

uJoyID: The joystick identifier of the joystick whose threshold is to be retrieved. This

parameter can be set to JOYSTICKID1 or JOYSTICKID2.

lpuThreshold: A pointer to an integer receiving the joystick threshold value.

Return Value

The function will return a success or failure result code as shown in the table below.

See Also

joySetThreshold

Example

Please see Listing 5-5 under joySetCapture.

Table 5-16: joyGetThreshold return values

Value Description

JOYERR_NOERROR The function succeeded.

MMSYSERR_NODRIVER Joystick driver is not present.

MMSYSERR_INVALPARAM Invalid parameter is passed.

joyReleaseCapture Mmsystem.pas

Syntax

joyReleaseCapture(

uJoyID: UINT {joystick identifier}

): MMRESULT; {returns an error code}

Description

The joyReleaseCapture function releases the captured joystick.

Parameters

uJoyID: The joystick identifier of the joystick to be released. This parameter can be set

to JOYSTICKID1 or JOYSTICKID2.

Return Value

The function will return a success or failure result code as shown in the table below.

See Also

joySetCapture

Input Functions � 219

C
h

a
p

te
r
5

Example

Please see Listing 5-5 under joySetCapture.

Table 5-17: joyReleaseCapture return values

Value Description

JOYERR_NOERROR The function succeeded.

MMSYSERR_NODRIVER The joystick driver was not found.

JOYERR_PARMS The specified joystick uJoyID is invalid.

joySetCapture Mmsystem.pas

Syntax

joySetCapture(

Handle: HWND; {identifies the window to be captured}

uJoyID: UINT; {joystick identifier}

uPeriod: UINT; {polling frequency}

bChanged: BOOL {change flag for message frequency}

): MMRESULT; {returns an error code}

Description

The joySetCapture function captures the messages generated by the joystick driver.

Joystick messages will be sent to the window specified by the Handle parameter. The

function fails if the joystick is already captured. joyReleaseCapture may be used to

release the capture before calling joySetCapture. The joystick is automatically released

if the capture window is destroyed.

Parameters

Handle: Identifies the window that receives the joystick messages.

uJoyID: The joystick identifier of the joystick to be captured. This parameter can be set

to JOYSTICKID1 or JOYSTICKID2.

uPeriod: The polling frequency in milliseconds.

bChanged: Indicates when messages are to be sent to the capture window. If this

parameter is set to TRUE, messages are to be sent to the capture window only when the

unreported motion exceeds the threshold value. If this parameter is set to FALSE, the

messages are to be sent to the capture window when the polling interval has passed.

Return Value

The function will return a success or failure result code as shown in Table 5-18.

See Also

joyReleaseCapture

220 � Chapter 5

Example

■ Listing 5-5: Joystick motion in Delphi

var
Form1: TForm1;
Threshold: Integer; // holds the joystick threshold value

implementation

procedure TForm1.WndProc(var Msg: TMessage);
var

Cpoint: TPoint; // holds the joystick position coordinates
begin
{if the joystick has moved...}
if Msg.Msg = MM_JOY1MOVE then
begin
{retrieve the coordinates relative to the panel}
Cpoint.X := Msg.LParamLo;
Cpoint.Y := Msg.LParamHI;
JoyToClient(Cpoint);

{modify the Smiley picture based on the position of the joystick}
if ((Cpoint.x >= 50) and (Cpoint.x <= 55)) and

((Cpoint.y >= 40) and (Cpoint.y <= 45)) then
Image2.Picture.Bitmap.Canvas.CopyRect(Rect(0,0,105,85),
Image4.Picture.Bitmap.Canvas, Rect(0,0,105,85))

else
Image2.Picture.Bitmap.Canvas.CopyRect(Rect(0,0,105,85),
Image3.Picture.Bitmap.Canvas, Rect(0,0,105,85));

{draw the crosshair}
Image2.Picture.Bitmap.Canvas.Pen.Color := clRed;
Image2.Picture.Bitmap.Canvas.Pen.Width := 2;
Image2.Picture.Bitmap.Canvas.MoveTo(Cpoint.X - 8 ,Cpoint.Y);
Image2.Picture.Bitmap.Canvas.LineTo(Cpoint.X + 8 ,Cpoint.Y);
Image2.Picture.Bitmap.Canvas.MoveTo(Cpoint.X ,Cpoint.Y - 8);
Image2.Picture.Bitmap.Canvas.LineTo(Cpoint.X ,Cpoint.Y + 8);
Image2.Picture.Bitmap.Canvas.Ellipse(Cpoint.X - 4 ,Cpoint.Y -4,
Cpoint.X + 4 ,Cpoint.Y +4);

end;

{if a joystick button was pressed...}
if Msg.Msg = MM_JOY1BUTTONDOWN then
begin
{color in a shape depending on which button was pressed}
if Boolean(Msg.WParam and JOY_BUTTON1) then
Shape1.Brush.Color := clRed;

if Boolean(Msg.WParam and JOY_BUTTON2) then
Shape2.Brush.Color := clRed;

end;

{if a joystick button was released...}
if Msg.Msg = MM_JOY1BUTTONUP then
begin
{refill the shape with its original color}

Input Functions � 221

C
h

a
p

te
r
5

if not Boolean(Msg.WParam and JOY_BUTTON1) then
Shape1.Brush.Color := clMaroon;

if not Boolean(Msg.WParam and JOY_BUTTON2) then
Shape2.Brush.Color := clMaroon;

end;

{send the messages on to the default message handler}
inherited WndProc(Msg);

end;

procedure TForm1.joyInit;
var
lpjoyInfoEx: TJOYINFOEX; // holds extended joystick information
lpjoyInfo: TJOYINFO; // holds joystick information
NumOfDevs: Integer; // holds the number of joystick devices
Dev1: Integer; // holds joystick position return values

begin
{get joystick threshold}
joyGetThreshold(JOYSTICKID1, @Threshold);

{get number of joystick}
NumofDevs := joyGetNumDevs;

{if there are no joystick devices present, indicate an error}
if NumOfDevs = 0 then
begin
MessageBox(Form1.Handle, 'Joystick driver not present', 'Error',

MB_OK or MB_ICONWARNING);
Exit;

end;

{determine if there is a joystick present}
Dev1 := joyGetPosEx(JOYSTICKID1, @lpjoyInfoEx);
if Dev1 = MMSYSERR_BADDEVICEID then
MessageBox(Form1.Handle,'Joystick 1 is not present', 'Error ', MB_OK);

{determine if the joystick is unplugged}
Dev1 := joyGetPos(JOYSTICKID1, @lpjoyInfo);
if Dev1 = JOYERR_UNPLUGGED then
MessageBox(Form1.Handle,'Joystick is unplugged', 'Error ', MB_OK);

{set the joystick threshold}
joySetThreshold(JOYSTICKID1, 125);

end;

procedure TForm1.FormActivate(Sender: TObject);
begin
{capture joystick messages}
if (joySetCapture(Form1.Handle, JOYSTICKID1, 0, TRUE) <> JOYERR_NOERROR) then
begin
{indicate that there was a problem capturing the joystick}
MessageBox(Form1.Handle,'Joystick is not captured', 'Error',

MB_OK or MB_ICONWARNING);
Close;

end;
end;

222 � Chapter 5

{convert joystick coordinates to client coordinates}
procedure TForm1.joyToClient(var pptJoyPos: TPoint);
var
JCaps: TJoyCaps; // holds joystick device capabilities
CRect: TRect; // holds window coordinates

begin
{get joystick capabilities}
if (joyGetDevCaps(JOYSTICKID1, @JCaps, SizeOf(TJOYCAPS))<>JOYERR_NOERROR) then
Exit;

{set the joystick position relative to the panel}
Windows.GetClientRect(Panel1.Handle, CRect);
pptJoyPos.X := TRUNC((Panel1.Width - 1) * (pptJoyPos.X - JCaps.wXmin) /
(JCaps.wXmax - JCaps.wXmin));

pptJoyPos.Y := TRUNC((Panel1.Height - 1) * (pptJoyPos.Y - JCaps.wYmin) /
(JCaps.wYmax - JCaps.wYmin));

end;

procedure TForm1.FormCreate(Sender: TObject);
begin
{initialize joystick}
Application.ProcessMessages;
JoyInit;

end;

procedure TForm1.FormDestroy(Sender: TObject);
begin
{release joystick capture}
joyReleaseCapture(JOYSTICKID1);

end;

procedure TForm1.BitBtn1Click2(Sender: TObject);
begin
Close;

end;

Input Functions � 223

C
h

a
p

te
r
4

Figure 5-5:

Smiley

experiences

Delphi’s

joystick

capabilities

Table 5-18: joySetCapture return values

Value Description

JOYERR_NOERROR The function succeeded.

JOYERR_NOCANDO The capture cannot take place because of a system conflict,
such as a timer not being available for polling.

JOYERR_UNPLUGGED Joystick is unplugged.

joySetThreshold Mmsystem.pas

Syntax

joySetThreshold(

uJoyID: UINT; {joystick identifier}

uThreshold: UINT {joystick threshold}

): MMRESULT; {returns an error code}

Description

The joySetThreshold function sets the movement threshold for the joystick. The dis-

tance the joystick axis has to move before a WM_JOYMOVE message is generated

defines the joystick threshold.

Parameters

uJoyID: The joystick identifier of the joystick whose threshold is to be set. This param-

eter can be set to JOYSTICKID1 or JOYSTICKID2.

uThreshold: Specifies the new threshold movement value.

Return Value

The function will return a success or failure result code as shown in the table below.

See Also

joySetCapture

Example

Please see Listing 5-5 under joySetCapture.

Table 5-19: joySetThreshold return values

Value Description

JOYERR_NOERROR The function succeeded.

MMSYSERR_NODRIVER Joystick driver is not present.

JOYERR_PARMS Joystick identifier (uJoyID) is invalid.

224 � Chapter 5

TE
AM
FL
Y

Team-Fly®

LoadKeyboardLayout Windows.pas

Syntax

LoadKeyboardLayout(

pwszKLID: PChar; {input locale identifier}

Flags: UINT {layout options}

): HKL; {returns a keyboard layout handle}

Description

LoadKeyboardLayout loads the specified input locale identifier (which includes a key-

board layout) into the system. Several input locale identifiers may be loaded

simultaneously, but only one will be active at a time.

Parameters

pwszKLID: A pointer to a null-terminated string containing the name of the input

locale identifier. This null-terminated string is the hexadecimal value of the layout ID.

See the example for how the primary language identifier and sublanguage identifier are

combined for the language ID.

Flags: Specifies how the keyboard layout is to be loaded. This parameter can contain

one value from Table 5-20.

Return Value

If the function succeeds, it returns the handle of the requested keyboard layout that was

loaded. If the function failed, or if no matching keyboard layout was found, it returns

zero. To get extended error information, call the GetLastError function.

See Also

ActivateKeyboardLayout, GetKeyboardLayoutName, UnloadKeyboardLayout

Example

■ Listing 5-6: Loading a keyboard layout

var
Form1: TForm1;
List : array [0..MAX_HKL] of HKL; // list of keyboard handles

const
{Delphi 6 does not define all of the available ActivateKeyboardLayout flags}
KLF_SETFORPROCESS = $00000100;
KLF_SHIFTLOCK = $00010000;
KLF_RESET = $40000000;

implementation

{$R *.DFM}

procedure TForm1.Button1Click(Sender: TObject);
var
MyLangID: WORD; // holds a language identifier

Input Functions � 225

C
h

a
p

te
r
5

begin
{load the keyboard layout specified by language IDs}
MyLangID:=MakeLangID(WORD(StrToInt(Edit1.Text)), WORD(StrToInt(Edit2.Text)));
if LoadKeyboardLayout(PChar('0000' + IntToHex(MyLangID,4)),KLF_ACTIVATE) = 0
then ShowMessage('Error loading keyboard layout');

end;

procedure TForm1.Button2Click(Sender: TObject);
begin
{activate the highlighted keyboard layout}
if (ActivateKeyboardLayout(StrToInt(ListBox1.Items[Listbox1.Itemindex]),

KLF_REORDER) = 0) then
ShowMessage('Error activating the keyboard layout');

{clear the keyboard layout list and repopulate it}
ListBox1.Clear;
FormCreate(Sender);

end;

procedure TForm1.FormCreate(Sender: TObject);
var
pwszKLID: PChar; // holds the name of a keyboard layout
MyListIndex: Integer; // specifies a list index

begin
{get the keyboard layout lists}
GetKeyboardLayoutList(MAX_HKL, List);

{allocate a buffer for the keyboard layout name string}
GetMem(pwszKLID, KL_NAMELENGTH);

{retrieve the name string for active keyboard layout}
GetKeyboardLayoutName(pwszKLID);
ShowMessage('The active keyboard layout is '+pwszKLID);
StatusBar1.SimpleText:= 'Active keyboard layout ' + pwszKLID;

{retrieve the code page identifier}
StaticText1.Caption:=IntTostr(GetACP);

{free the string memory}
FreeMem(pwszKLID);

{list all the keyboard layouts in the list box}
MyListIndex := 0;
While (List[MyListIndex] <> 0) do
begin
ListBox1.Items.Add(IntToStr(List[MyListIndex]));
Inc(MyListIndex);

end;
end;

procedure TForm1.Button3Click(Sender: TObject);
begin
{unload keyboard layout}
if not UnloadKeyboardLayout(StrToInt(ListBox1.Items[Listbox1.ItemIndex])) then
ShowMessage('Error Unloading Keyboard Layout');

end;

226 � Chapter 5

function MakeLangID(PrimLang, SubLang:WORD): WORD;
begin
{make a Language ID by combining the Primary language ID and Sub language ID}
Result := (SubLang SHL 10) + PrimLang;

end;

Table 5-20: LoadKeyboardLayout flags values

Value Description

KLF_ACTIVATE The function will load the layout if not already loaded and set it
to the currently active layout. If it is already loaded and the
KLF_REORDER flag is not specified, the function will rotate the
keyboard layout list and set the next layout as the active layout.

KLF_NOTELLSHELL Prevents a ShellProc hook from receiving an HSHELL_LAN-
GUAGE message until the entire list of layouts is loaded.

KLF_REORDER This will make the given layout the active layout by rotating the
internal layout list when more than one keyboard layout is
loaded.

KLF_REPLACELANG Loads the new layout if it is the same language as the currently
active keyboard layout. If this flag is not set and the requested
layout has the same language as the active layout, the new key-
board layout is not loaded and the function returns zero.

KLF_SUBSTITUTE_OK Specifies that the substitute layout is loaded from the system
registry under the key HKEY_CURRENT_USER\Keyboard Lay-
out\Substitutes. For example, if the key indicates the value name
“00000409” with value “00010409,” it loads the Dvorak U.S.
English layout.

KLF_SETFORPROCESS Windows 2000 and later: Activates the indicated locale identi-
fier (and physical keyboard layout) for the entire process. The
current thread’s active window receives a WM_INPUTLANG-
CHANGE message. Must be used with the KLF_ACTIVATE flag.

Input Functions � 227

C
h

a
p

te
r
5

Figure 5-6:

The keyboard

layouts

MapVirtualKey Windows.pas

Syntax

MapVirtualKey(

uCode: UINT; {key code, scan code, or virtual key}

uMapType: UINT {flags for translation mode}

): UINT; {returns translated key code}

Description

The MapVirtualKey function converts a virtual key code to a scan code or character

value, or it converts a scan code into a virtual key code. The uMapType parameter

determines which conversion is performed.

Parameters

uCode: The key code which can be a virtual key code or scan code. How this value is

interpreted depends on the translation mode flag specified in the uMapType parameter.

uMapType: Specifies a translation mode. This parameter can contain one value from

the following table.

Return Value

If the function succeeds, it returns a scan code, virtual key code, or character value,

depending on its parameters. If the function fails, or there is no translation, it returns

zero.

See Also

GetAsyncKeyState, GetKeyboardState, GetKeyState, SetKeyboardState

Example

■ Listing 5-7: Using MapVirtualKey to translate keyboard characters

var
Form1: TForm1;
Key_Value: Word; // holds a virtual key code

implementation

{$R *.DFM}

procedure TForm1.FormKeyDown(Sender: TObject; var Key: Word;Shift: TShiftState);
begin
{store the pressed virtual key value}
Key_Value := Key;

{display the OEM scan code}
Panel1.Caption:=IntToStr(OEMKeyScan(Key));

{display the virtual key code for the lowercase form of the keystroke}
Panel2.Caption:=IntToStr(MapVirtualKey(Key,2));

228 � Chapter 5

{display the scan code of the pressed key}
Panel3.Caption:=IntToStr(MapVirtualKey(VkKeyScan(Char(Key)),0));

end;

procedure TForm1.GetCapsKeyState(sender: TObject);
var
KeyState: TKeyboardState; // holds the keyboard state array
Key_State: Word; // holds the keypressed state

begin
{retrieve the current state of the keyboard}
GetKeyboardState(KeyState);

{indicate if the caps lock key is on or off}
if (KeyState[VK_CAPITAL] and $01) = $01 then
StatusBar1.SimpleText := 'CAPS LOCK / ON'

else
StatusBar1.SimpleText:= 'CAPS LOCK / OFF';

{indicate if a key is currently pressed}
Key_State := GetAsyncKeyState(vkKeyScan(CHAR(Key_Value)));
if Boolean(HiByte(Key_State)) then
StaticText2.Caption := 'Key is pressed'

else
StaticText2.Caption := 'Key is not pressed';

end;

procedure TForm1.Timer2Timer(Sender: TObject);
var
KeyState: TKeyboardState; // holds the keyboard state array

begin
{retrieve the current state of the keyboard}
GetKeyboardState(KeyState);

{toggle the CAPSLOCK key}
if (KeyState[VK_CAPITAL] and $01) = $01 then
KeyState[VK_CAPITAL] := 0

else
KeyState[VK_CAPITAL] := $81;

{set the new state of the keyboard}
SetKeyboardState(KeyState);

end;

Input Functions � 229

C
h

a
p

te
r
5

Figure 5-7:

The translated

keyboard

characters

Table 5-21: MapVirtualKey uMapType values

Value Description

0 uCode is a virtual key code to be translated to a scan code. The value returned
does not differentiate between left and right Ctrl and Shift keys; it only returns
values for the left-hand control keys.

1 uCode is a scan code to be translated to a virtual key code. The value returned
does not differentiate between left and right Ctrl and Shift keys; it only returns
values for the left-hand control keys.

2 uCode is a virtual key code to be translated to an unshifted character value.

3 Windows NT/2000 and later: uCode is a scan code to be translated to a vir-
tual key code. The value returned does differentiate between left and right Ctrl
and Shift keys.

MapVirtualKeyEx Windows.pas

Syntax

MapVirtualKeyEx(

uCode: UINT; {key code, scan code, or virtual key}

uMapType: UINT; {flags for translation mode}

dwhkl: HKL {keyboard layout handle}

): UINT; {returns a translated key code}

Description

MapVirtualKeyEx converts a virtual key code to a scan code or character value, or it

converts scan code into a virtual key code. The uMapType parameter determines which

conversion is performed.

The difference between the MapVirtualKeyEx and MapVirtualKey functions is that

MapVirtualKeyEx translates the character using the language of the physical keyboard

layout, as specified by the keyboard layout handle in the dwhkl parameter.

MapVirtualKeyEx will not translate a virtual key code to a scan code and distinguish

between left and right keys, such as VK_SHIFT, VK_CONTROL, or VK_MENU. An

application can get the proper scan code that distinguishes between left and right keys

by setting the uCode parameter to VK_LSHIFT, VK_RSHIFT, VK_LCONTROL,

VK_RCONTROL, VK_LMENU, or VK_RMENU.

Parameters

uCode: The virtual key code or a scan code to be translated. How this value is inter-

preted depends on the translation mode flag in the uMapType parameter.

uMapType: Specifies the translation mode. This parameter can contain one value from

the following table.

dwhkl: Specifies the keyboard layout handle, which is used to translate characters into

their corresponding virtual key codes. The keyboard layout handle can be obtained by

calling the GetKeyboardLayout or LoadKeyboardLayout functions.

230 � Chapter 5

Return Value

If the function succeeds, it returns a scan code, virtual key code, or character value,

depending on its parameters. If the function fails, or there is no translation, it returns

zero.

See Also

GetAsyncKeyState, GetKeyboardState, GetKeyState, MapVirtualKey,

SetKeyboardState

Example

Please see Listing 5-11 under VkKeyScanEx.

Table 5-22: MapVirtualKeyEx uMapType values

Value Description

0 uCode is a virtual key code to be translated to a scan code. The value returned
does not differentiate between left and right Ctrl and Shift keys; it only returns
values for the left-hand control keys.

1 uCode is a scan code to be translated to a virtual key code. The value returned
does not differentiate between left and right Ctrl and Shift keys; it only returns
values for the left-hand control keys.

2 uCode is a virtual key code to be translated to an unshifted character value.

3 Windows NT/2000 and later: uCode is a scan code to be translated to a vir-
tual key code. The value returned does differentiate between left and right Ctrl
and Shift keys.

mouse_event Windows.pas

Syntax

mouse_event(

dwFlags: DWORD; {mouse activity codes}

dx: DWORD; {horizontal location or change}

dy: DWORD; {vertical location or change}

dwData: DWORD; {wheel movement amount}

dwExtraInfo: DWORD {application-defined data}

); {this procedure does not return a value}

Description

The mouse_event function simulates mouse activity. The system generates mouse mes-

sages as if the mouse was actually moved or a mouse button was actually pressed.

Parameters

dwFlags: Specifies which kind of mouse activity to simulate. This parameter can con-

tain one or more values from Table 5-23.

dx: Specifies the horizontal location or change in location. If the dwFlags parameter

contains the MOUSEEVENTF_ABSOLUTE flag, this parameter specifies a location.

Input Functions � 231

C
h

a
p

te
r
5

Otherwise, this parameter specifies the amount of mickeys (a measurement of mouse

distance) to move.

dy: Specifies the vertical location or change in location. If the dwFlags parameter con-

tains the MOUSEEVENTF_ABSOLUTE flag, this parameter specifies a location.

Otherwise, this parameter specifies the amount of mickeys (a measurement of mouse

distance) to move.

dwData: Specifies the amount of wheel movement if the dwFlags parameter contains

the MOUSEEVENTF_WHEEL flag. A positive value indicates wheel movement away

from the user; a negative value indicates wheel movement toward the user. This value

is in terms of WHEEL_DELTA, approximately 120 mickeys. If dwFlags contains either

MOUSEEVENTF_XDOWN or MOUSEEVENTF_XUP, this parameter specifies

which X button was pressed or released and can contain a combination of values from

Table 5-24. If the dwFlags parameter does not contain the MOUSEEVENTF_WHEEL,

MOUSEEVENTF_XDOWN, or MOUSEEVENTF_XUP flags, dwData should be set

to zero.

dwExtraInfo: 32-bits of additional application-defined data. To retrieve this data, call

the GetMessageExtraInfo function.

See Also

GetMessageExtraInfo*, SystemParametersInfo

Example

■ Listing 5-8: Using mouse_event to control the mouse programmatically

var
Form1: TForm1;
MouseButtonIsDown: boolean; // indicates if the mouse button is down

implementation

{$R *.DFM}

procedure TForm1.Image1MouseMove(Sender: TObject; Shift: TShiftState; X, Y: Integer);
begin
{if the mouse button is down, draw a line}
if MouseButtonIsDown then
Image1.Canvas.LineTo(X,Y);

end;

procedure TForm1.Image1MouseDown(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

begin
{if the mouse button is not down, move the initial drawing position}
if not MouseButtonIsDown then
Image1.Canvas.MoveTo(X,Y);

{indicate that the mouse button is down so that drawing will occur}
MouseButtonIsDown := TRUE;

{if the right mouse button was clicked...}

232 � Chapter 5

if Button = MBRight then
begin
{...while the mouse button is held down...}
while MouseButtonIsDown = TRUE do
begin
{...simulate mouse movement by the specified amounts. the image continues to receive
regular mouse messages as if the mouse was under user control}
mouse_event(MOUSEEVENTF_MOVE,SpinEdit1.Value,SpinEdit2.Value,0,0);

{update the screen and pause for a short amount of time}
Application.ProcessMessages;
Sleep(10);

end;
end;

end;

procedure TForm1.Image1MouseUp(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

begin
{set the mouse button down variable to off}
MouseButtonIsDown := FALSE;

end;

procedure TForm1.FormCreate(Sender: TObject);
begin
{initialize the initial drawing position}
Image1.Canvas.MoveTo(10,10);

end;

procedure TForm1.FormMouseMove(Sender: TObject; Shift: TShiftState; X,
Y: Integer);

begin
{initialize the mouse button down variable}
MouseButtonIsDown := FALSE;

end;

Input Functions � 233

C
h

a
p

te
r
5

Figure 5-8:

Drawing

automatic

lines with

simulated

mouse

movement

Table 5-23: mouse_event dwFlags values

Value Description

MOUSEEVENTF_ABSOLUTE dx and dy contain normalized absolute coordinates.
Otherwise, those parameters contain the change in
position since the last reported position.

MOUSEEVENTF_MOVE Movement occurred.

MOUSEEVENTF_LEFTDOWN The left button changed to down.

MOUSEEVENTF_LEFTUP The left button changed to up.

MOUSEEVENTF_RIGHTDOWN The right button changed to down.

MOUSEEVENTF_RIGHTUP The right button changed to up.

MOUSEEVENTF_MIDDLEDOWN The middle button changed to down.

MOUSEEVENTF_MIDDLEUP The middle button changed to up.

MOUSEEVENTF_WHEEL Windows NT/2000 and later: The wheel has been
moved, if the mouse has a wheel. The amount of
movement is provided in the dwData parameter.
Cannot be used in combination with MOUSEEVENT-
F_XDOWN or MOUSEEVENTF_XUP.

MOUSEEVENTF_XDOWN Windows 2000/XP and later: An X button was
pressed. Cannot be used in combination with
MOUSEEVENTF_WHEEL.

MOUSEEVENTF_XUP Windows 2000/XP and later: An X button was
released. Cannot be used in combination with
MOUSEEVENTF_WHEEL.

MOUSEEVENTF_VIRTUALDESK Windows 2000/XP and later: Map coordinates to
entire virtual desktop.

Table 5-24: mouse_event dwData values

Value Description

XBUTTON1 Windows 2000/XP and later: Indicates the first X
button

XBUTTON2 Windows 2000/XP and later: Indicates the second X
button.

OEMKeyScan Windows.pas

Syntax

OEMKeyScan(

wOemChar: Word {ASCII value of OEM character}

): DWORD; {returns scan code data}

Description

This function retrieves the OEM scan code for the OEM ASCII character value

(between $00 and $FF) and the state of the Shift, Ctrl, and Alt keys. OEMKeyScan

works only for characters that can be produced with a single keystroke.

234 � Chapter 5

TE
AM
FL
Y

Team-Fly®

Parameters

wOemChar: Specifies the OEM ASCII character value whose OEM scan code is to be

retrieved.

Return Value

If the function succeeds, the low-order byte of the return value contains the OEM scan

code, and the high-order byte contains the status of Shift, Ctrl, and Alt keys as shown

in the following table. If the function fails, it returns $FFFFFFFF.

See Also

MapVirtualKey, VkKeyScan

Example

Please see Listing 5-7 under MapVirtualKey.

Table 5-25: OEMKeyScan return values

Value Description

1 The Shift key is pressed.

2 The Ctrl key is pressed.

4 The Alt key is pressed.

ReleaseCapture Windows.pas

Syntax

ReleaseCapture: BOOL; {returns TRUE or FALSE}

Description

The ReleaseCapture function releases mouse capture by a window. The normal flow of

mouse messages to the underlying window is restored.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE.

See Also

GetCapture

Example

Please see Listing 5-10 under SwapMouseButton.

SetCapture Windows.pas

Syntax

SetCapture(

hWnd: HWND {handle of window capturing mouse messages}

): HWND; {returns the previous capture handle}

Input Functions � 235

C
h

a
p

te
r
5

Description

The SetCapture function captures mouse input messages and sends them to the window

specified by the hWnd parameter. If the mouse has been captured, all of the mouse

input is directed to the capturing window, even when the cursor is outside the boundary

of that window. When the window no longer requires the mouse input, it should call the

ReleaseCapture function.

Parameters

hWnd: Specifies the handle of the window that is to capture the mouse input.

Return Value

If the function succeeds, it returns the handle of the window that previously had the

mouse capture. If the function fails, or no window previously had the mouse capture, it

returns zero.

See Also

ReleaseCapture

Example

Please see Listing 5-10 under SwapMouseButton.

SetCaretBlinkTime Windows.pas

Syntax

SetCaretBlinkTime(

uMSeconds: UINT {caret blink time in milliseconds }

): BOOL; {returns TRUE or FALSE}

Description

SetCaretBlinkTime changes the cursor blink rate to the time specified in the

uMSeconds parameter.

Parameters

uMSeconds: Specifies the new caret blink interval in milliseconds.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call the GetLastError function.

See Also

GetCaretBlinkTime

236 � Chapter 5

Example

■ Listing 5-9: Modifying caret position and blink time

procedure TForm1.SpinEdit1Change(Sender: TObject);
begin
{change the caret blink rate to the spinedit value.}
SetCaretBlinkTime(SpinEdit1.Value);

{set focus back to the memo to demonstrate the blink rate}
Memo1.SetFocus;

end;

procedure TForm1.SpinEdit1MouseMove(Sender: TObject;
Shift: TShiftState; X, Y: Integer);

begin
{display the caret blink time in the spinedit box}
SpinEdit1.Value := GetCaretBlinkTime;

end;

procedure TForm1.Button1Click(Sender: TObject);
var
lpPoint: TPoint; // holds the current caret position

begin
{retrieve the caret position}
GetCaretPos(lpPoint);

{display the caret position}
SpinEdit2.Value := lpPoint.X;
SpinEdit3.Value := lpPoint.Y;

{make sure the caret remains in the Memo box at the specified position}
Memo1.SetFocus;
SetCaretPos(lpPoint.X, lpPoint.Y);

end;

procedure TForm1.SpinEdit2Change(Sender: TObject);
begin
{change the caret position in the memo}
Memo1.SetFocus;
SetCaretPos(SpinEdit2.Value, SpinEdit3.Value);

end;

Input Functions � 237

C
h

a
p

te
r
5

Figure 5-9:

The caret

position and

blink time

SetCaretPos Windows.pas

Syntax

SetCaretPos(

X: Integer; {X coordinate for new caret position}

Y: Integer {Y coordinate for new caret position}

): BOOL; {returns TRUE or FALSE}

Description

The SetCaretPos function moves the caret to the coordinates specified by the X and Y

parameters.

If the window’s class style contains the CS_OWNDC style flag, the coordinates of the

caret are mapped to the window’s device context. This function will move the caret

even if the cursor is hidden.

Parameters

X: Specifies the horizontal location of the new caret position.

Y: Specifies the vertical location of the new caret position.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call the GetLastError function.

See Also

GetCaretPos

Example

Please see Listing 5-9 under SetCaretBlinkTime.

SetCursorPos Windows.pas

Syntax

SetCursorPos(

X: Integer; {X coordinate of the cursor}

Y: Integer {Y coordinate of the cursor}

): BOOL; {returns TRUE or FALSE}

Description

The SetCursorPos function relocates the mouse cursor to the location specified by the

X and Y parameters in screen coordinates. If the cursor is confined to a rectangular

region by calling the ClipCursor function, the system translates the coordinates to the

appropriate coordinates within the rectangular region.

238 � Chapter 5

Parameters

X: Specifies the new x-coordinate for the cursor.

Y: Specifies the new y-coordinate for the cursor.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call the GetLastError function.

See Also

ClipCursor, GetCursorPos, SetCaretPos

Example

Please see Listing 5-10 under SwapMouseButton.

SetDoubleClickTime Windows.pas

Syntax

SetDoubleClickTime(

Interval: UINT {interval between clicks in milliseconds}

): BOOL; {returns TRUE or FALSE}

Description

The SetDoubleClickTime function changes the time interval between the first and

second mouse click defining a double-click.

Parameters

Interval: Specifies the new time interval between clicks in milliseconds.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call the GetLastError function.

See Also

GetDoubleClickTime

Example

Please see Listing 5-10 under SwapMouseButton.

Input Functions � 239

C
h

a
p

te
r
5

SetKeyboardState Windows.pas

Syntax

SetKeyboardState(

var KeyState: TKeyboardState {array of the virtual key states}

): BOOL; {returns TRUE or FALSE}

Description

The SetKeyboardState function sets the status of all 256 virtual keys. The status of

each virtual key is stored in an array of 256 bytes, identified by the KeyState parame-

ter. Use the virtual key codes as an index into this array to specify individual virtual

key states (i.e., KeyState[VK_SHIFT]).

Parameters

KeyState: Points to a TKeyboardState structure, which is an array of 256 bytes. Each

index in the array should be set to a value indicating the state of individual virtual keys.

If the high-order bit of an array value is 1, that key is pressed. If the low-order bit is 1,

the key is toggled on, such as the Caps, Shift, or Alt keys. TKeyboardState is defined

as follows:

TKeyboardState = array[0..255] of Byte; {virtual key code states}

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call the GetLastError function.

See Also

GetAsyncKeyState, GetKeyboardState, GetKeyState, MapVirtualKey

Example

Please see Listing 5-7 under MapVirtualKey.

SwapMouseButton Windows.pas

Syntax

SwapMouseButton(

fSwap: BOOL {reverse or restore mouse buttons flag}

): BOOL; {returns TRUE or FALSE}

Description

The SwapMouseButton function exchanges or restores the mouse button messages gen-

erated by the mouse buttons. If the buttons are swapped, the left mouse button will

generate right mouse button messages (i.e., WM_RBUTTONDOWN), and the right

mouse button will generate left mouse button messages.

240 � Chapter 5

Parameters

fSwap: If this parameter is set to TRUE, the mouse buttons are interchanged left for

right. If this parameter is set to FALSE, the mouse buttons are restored to their original

configuration.

Return Value

If the function succeeds and the mouse buttons were reversed previously, it returns

TRUE. If the function fails, or the mouse buttons were not reversed previously, it

returns FALSE.

See Also

SetDoubleClickTime

Example

■ Listing 5-10: Controlling mouse activity

var
Form1: TForm1;
SwapFlag: Boolean; // tracks mouse button swapping
glpRect: TRect; // cursor coordinates

implementation

{$R *.DFM}

procedure TForm1.PanelClipRegionMouseMove(Sender: TObject; Shift: TShiftState; X,
Y: Integer);

Var
lpWRect: TRect; // holds window coordinates
lpCPoint: TPoint; // holds cursor coordinates

begin
{retrieve the panel coordinates}
GetWindowRect(PanelClipRegion.Handle, lpWRect);

{retrieve the cursor position}
GetCursorPos(lpCPoint);

{display the cursor position in terms of the panel}
Windows.ScreenToClient(PanelClipRegion.Handle,lpCPoint);
EditXPos.Text:=IntToStr(lpCPoint.x);
EditYPos.Text:=IntToStr(lpCPoint.y);

{confine the cursor within the panel}
ClipCursor(@lpWRect);

end;

procedure TForm1.ShapeMouseMouseDown(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

begin
{fill in the appropriate rectangle for the mouse button pressed}
if Button = mbLeft then
Shape2.Brush.Color := clRed

Input Functions � 241

C
h

a
p

te
r
5

else
if Button = mbRight then
Shape3.Brush.Color := clRed;

end;

procedure TForm1.ShapeMouseMouseUp(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

begin
{restore the rectangle's original color when the mouse button is released}
Shape2.Brush.Color := clWhite;
Shape3.Brush.Color := clWhite;

end;

procedure TForm1.ButtonSwapClick(Sender: TObject);
begin
{toggle the mouse button swap flag}
SwapFlag := not SwapFlag;

{swap the mouse buttons}
SwapMouseButton(SwapFlag);

end;

procedure TForm1.ButtonReleaseCursorClick(Sender: TObject);
var
lpWRect: TPoint; // holds mouse cursor coordinates

begin
{set the mouse clipping region to the original region}
ClipCursor(@glpRect);

{move the mouse to the top left corner of the form}
lpWRect.x:= Left;
lpWRect.y:= Top;
SetCursorPos(lpWRect.x,lpWRect.y);

end;

procedure TForm1.ButtonSetCursorPosClick(Sender: TObject);
begin
{place the mouse cursor at the position indicated by the edit boxes.
note that this position will be relative to the screen}
if not SetCursorPos(StrToInt(EditXPos.Text), StrToInt(EditYPos.Text)) then
ShowMessage('Error setting cursor position');

end;

procedure TForm1.FormCreate(Sender: TObject);
begin
{save the original cursor bounds}
GetClipCursor(glpRect);

{get the double click time}
SpinEditClickTime.Value := GetDoubleClickTime;

end;

procedure TForm1.FormMouseDown(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

begin
{indicate that the form received a mouse message (demonstrates mouse capture)}

242 � Chapter 5

StatusBar1.SimpleText := 'The form received a mouse message';

{bring the window to the top, if it lost focus}
BringWindowToTop(Form1.Handle);

end;

procedure TForm1.ButtonMouseCaptureClick(Sender: TObject);
begin
{make sure the mouse is not currently captured}
ReleaseCapture;

{capture the mouse and send all mouse messages to the form}
if ((GetCapture = 0) and (SetCapture(Form1.Handle) <> 0))
then ShowMessage('Error setting the mouse capture');

end;

procedure TForm1.BitBtnApplyClick(Sender: TObject);
begin
{set the double click interval}
if not SetDoubleClickTime(SpinEditClickTime.Value) then
ShowMessage('Error setting the double click time');

end;

procedure TForm1.ButtonReleaseCaptureClick(Sender: TObject);
begin
{release the mouse capture}
if not ReleaseCapture then
ShowMessage('Error releasing mouse capture');

end;

procedure TForm1.BitBtnExitClick(Sender: TObject);
begin

Close;
end;

Input Functions � 243

C
h

a
p

te
r
5

Figure 5-10:

The mouse

functions

testbed

UnloadKeyboardLayout Windows.pas

Syntax

UnloadKeyboardLayout(

hkl: HKL {input locale identifier}

): BOOL; {returns TRUE or FALSE}

Description

UnloadKeyboardLayout removes the specified input locale identifier from the list of

loaded input locale identifiers.

Parameters

hkl: Specifies the input locale identifier to unload.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call the GetLastError function.

See Also

ActivateKeyboardLayout, GetKeyboardLayoutName, LoadKeyboardLayout

Example

Please see Listing 5-6 under LoadKeyboardLayout.

VkKeyScan Windows.pas

Syntax

VkKeyScan(

ch: Char {ASCII character code}

): SHORT; {returns a translated code}

Description

The VkKeyScan function translates the specified character code to a virtual key code

and returns the status of Shift, Ctrl, and Alt keys. Numeric keypad keys are not

translated.

Parameters

ch: Specifies the character value of the key. This value is translated into a virtual key

code.

Return Value

If the function succeeds, the low-order byte of the return value contains the virtual key

code, and the high-order byte contains a code specifying the state of the Shift, Ctrl, and

Alt keys. See the table below for the high-order byte codes. If the function fails, both

the high- and low-order bytes contain –1.

244 � Chapter 5

TE
AM
FL
Y

Team-Fly®

See Also

GetAsyncKeyState, GetKeyboardState, GetKeyNameText, MapVirtualKey,

VkKeyScanEx

Example

Please see Listing 5-7 under MapVirtualKey.

Table 5-26: VkKeyScan return values

Value Description

1 The Shift key is pressed.

2 The Ctrl key is pressed.

4 The Alt key is pressed.

VkKeyScanEx Windows.pas

Syntax

VkKeyScanEx(

ch: Char; {character value to translate}

dwhkl: HKL {input locale identifier}

): SHORT; {returns a translated code}

Description

The VkKeyScanEx function translates the specified character code to a virtual key

code and returns the status of the Shift, Ctrl, and Alt keys. Numeric keypad keys are

not translated. The difference between the VkKeyScan and VkKeyScanEx functions is

that the VkKeyScanEx function takes an extra parameter that specifies the input locale

identifier. The translation will be performed in the context of that input locale identi-

fier’s keyboard layout. The input locale identifier is obtained from the

GetKeyboardLayout or LoadKeyboardLayout functions.

Parameters

ch: Specifies the character value of the key to be translated into a virtual key code.

dwhkl: Specifies the input locale identifier used to translate the character to its corre-

sponding virtual key code.

Return Value

If the function succeeds, the low-order byte of the return value contains the virtual key

code, and the high-order byte contains a code specifying the state of the Shift, Ctrl, and

Alt keys. See the following table for these high-order byte codes. If the function fails,

both the high- and low-order bytes contain –1.

See Also

GetAsyncKeyState, GetKeyboardState, GetKeyNameText, MapVirtualKey,

VkKeyScan

Input Functions � 245

C
h

a
p

te
r
5

Example

■ Listing 5-11: Translating scan codes to ASCII values

procedure TForm1.Button1Click(Sender: TObject);
var
MyKeyboardHandle: HKL; // holds a keyboard layout handle
MyChar: Char; // input character from user
Mode: Integer; // type of translation
ScanString: string; // result message

begin
{initialize the displayed message}
ScanString := 'Scan code is ';

{if the edit box has text within it, retrieve the first character}
if Boolean(Edit1.GetTextLen) then

MyChar:= Edit1.Text[1];

{if the character is an uppercase letter}
if IsCharUpper(MyChar) then
begin
{retrieve the indicated translation mode}
if RadioGroup1.ItemIndex = 0 then
Mode := 0

else
begin
Mode := 2;
ScanString := 'ASCII character value is ';

end;

{retrieve the current keyboard layout}
MyKeyboardHandle := GetKeyboardLayout(0);

{display the translated character}
StatusBar1.SimpleText := ScanString + IntToStr(MapVirtualKeyEx(

VkKeyScanEx(MyChar, MyKeyboardHandle), Mode,
MyKeyboardHandle));

end;
end;

procedure TForm1.BitBtn1Click(Sender: TObject);
begin

Close;
end;

246 � Chapter 5

Figure 5-11:

The translated

character

Table 5-27: VkKeyScanEx Return Values

Value Description

1 The Shift key is pressed.

2 The Ctrl key is pressed.

4 The Alt key is pressed.

Input Functions � 247

C
h

a
p

te
r
5

Chapter 6

String and Atom FunctionsString and Atom Functions

Although the Object Pascal run-time library provides a rich set of string manipulation

and formatting routines, Windows provides a set of equivalent functions that are useful

when dealing with internationalization. The Windows functions also give the applica-

tion access to internal string tables used in reporting error messages. In addition,

Windows provides a simple mechanism for sharing string information between

processes.

Atom Tables

Windows applications can store strings of up to 255 characters in what is called an

atom table. Each process has access to the global atom table and its own local atom

table. The global atom table has a maximum of 37 entries and is shared with other pro-

cesses. The local atom table is private to the process. The local atom table has a default

maximum size of 37 entries, but that maximum can be increased when it is created with

the InitAtomTable function. The string is added to the atom table by using either the

AddAtom or GlobalAddAtom functions and deleted from the table with the Delete-

Atom or GlobalDeleteAtom functions. When a string is added to the atom table, the

returned value is an atom number that uniquely defines that string within the appropri-

ate table.

Atom tables are normally used to store strings. However, they can also be used to store

16-bit integers. The same functions are used to store integers and strings, but the inte-

ger data for the atom table should be given as MakeIntAtom(integer value).

MakeIntAtom is a Windows macro that produces a pointer to a null-terminated string

that is compatible with the AddAtom and GlobalAddAtom functions. From there, the

data is treated as a string. The atom numbers for integer storage will be in the range 1

to 49151 ($0001 to $BFFF), while atom numbers for string storage will be in the range

49152 to 65535 ($C000 to $FFFF). The atom number 0 is used as an error flag.

The most common use of the global atom table is for sharing string data in DDE appli-

cations. Rather than passing strings of data, the calling application stores the string in

the global atom table and then passes only the 16-bit atom number. The DDE server

can then look up the string in the global atom table using the atom number. This tech-

nique could also be used to share string data between regular applications by passing

the atom number as a parameter inside a user-defined Windows message.

249

The local atom table exists for the duration of the process. When a process is termi-

nated, the atom table is destroyed. The global atom table exists as long as Windows is

running and is not reset until Windows is restarted. Atoms in the global atom table

remain there even after the process that stored it is terminated.

It is a good idea to always remove atoms from the atom tables when finished with

them. This applies to both the global and the local atom tables. Since there are limits on

the size of the global atom table, and also by default for the local atom table (37

entries), it is wise to use the space sparingly and only as long as needed. There may be

other applications with entries in the global atom table, so the limit for an application

will often be less than 37.

Every atom in both atom tables is reference counted. If the AddAtom or GlobalAdd-

Atom functions make an attempt to add a string to the atom table that is already there, a

new entry in the table is not made. The reference count for the existing entry will be

incremented and the existing string’s unique atom number is returned as the result.

When an atom is added that did not previously exist, a new entry is made and the refer-

ence count for the new atom is set to one. The DeleteAtom and GlobalDeleteAtom

functions decrement the reference count by one and test it. If it is found to be 0, then

the atom table entry is deleted. The sole exception to this rule is integer atoms. Integers

stored in atom tables do not use reference counts. The deletion functions will delete the

integer value from the atom table immediately. Unfortunately, there is no direct way to

determine the reference count of an atom. In order to insure that an atom was deleted

from the atom table, the application should continually delete the atom using either the

DeleteAtom or GlobalDeleteAtom functions until the function fails. An application

should only delete atoms that it placed into the atom tables. Never delete an atom that

was placed in the atom tables by other processes.

String Formatting

Several of the string functions involve converting characters to uppercase or lowercase.

This processing is valid for either single-byte character structures (ANSI) or two-byte

character formats (UNICODE). For Windows 95/98/Me, the case conversions and tests

are made using the default locale set in the control panel. This could have been set at

the time Windows was installed, or it can be altered later. For Windows NT/2000 and

later, the conversions and tests are made based on the language driver selected in the

control panel or at Windows setup. If no language is selected, Windows NT/2000

makes the conversion based on the default mapping of the code page for the process

locale.

Delphi vs. the Windows API

Several functions detailed in this chapter have no representation in Delphi’s VCL. The

most notable functions would be those that deal with atoms, which can be very useful

in certain instances when data needs to be shared between applications in a very effi-

cient manner. GetDateFormat, GetTimeFormat, FormatMessage, and wvsprintf are

functions that provide very powerful string formatting capabilities. They provide

250 � Chapter 6

access to system data and message resources, and give output that is interpreted within

the context of specified locales. These functions provide a rich mixture of options and

capabilities. There is a significant overlap of functionality with the formatting func-

tions in Delphi’s Object Pascal and the VCL. However, knowledge of these functions

will be useful when designing Delphi applications for international flexibility.

String and Atom Functions

The following string and atom functions are covered in this chapter.

Table 6-1: String and atom functions

Function Description

AddAtom Adds an atom to the local atom table.

CharLower Converts characters to lowercase.

CharLowerBuff Converts a range of characters to lowercase.

CharNext Increments a pointer to the next character in the string.

CharPrev Decrements a pointer to the previous character in the string.

CharToOem Converts characters to the OEM character set.

CharToOemBuff Converts a range of characters to the OEM character set.

CharUpper Converts characters to uppercase.

CharUpperBuff Converts a range of characters to uppercase.

CompareString Compares two strings.

DeleteAtom Deletes an atom from a local atom table.

EnumSystemCodePages Lists available and installed system code pages.

EnumSystemLocales Lists available system locales.

FindAtom Finds an atom in the local atom table.

FormatMessage Formats a string with arguments.

GetACP Retrieves the current ANSI code page for the system.

GetAtomName Retrieves an atom string from the local atom table.

GetCPInfo Retrieves code page information.

GetCPInfoEx Retrieves extended code page information.

GetDateFormat Retrieves the date in the specified format.

GetOEMCP Retrieves the current OEM code page identifier for the system.

GetTimeFormat Retrieves the time in the specified format.

GlobalAddAtom Adds an atom to the global atom table.

GlobalDeleteAtom Deletes an atom from the global atom table.

GlobalFindAtom Finds an atom in the global atom table.

GlobalGetAtomName Retrieves an atom string from the global atom table.

InitAtomTable Initializes the size of the local atom table.

IsCharAlpha Determines if a character is an alphabetic character.

IsCharAlphaNumeric Determines if a character is alphanumeric.

String and Atom Functions � 251

C
h

a
p

te
r
6

Function Description

IsCharLower Determines if a character is lowercase.

IsCharUpper Determines if a character is uppercase.

lstrcat Concatenates two null-terminated strings.

lstrcmp Compares two null-terminated strings, case sensitive.

lstrcmpi Compares two null-terminated strings, case insensitive.

lstrcpy Copies one null-terminated string into another.

lstrlen Retrieves the length of a null-terminated string.

MakeIntAtom Creates an integer atom.

OemToChar Converts a character from the OEM character set to ANSI.

OemToCharBuff Converts a range of characters from OEM character set to ANSI.

ToAscii Translates a virtual key code into a Windows character.

wvsprintf Formats a string with supplied arguments.

AddAtom Windows.pas

Syntax

AddAtom(

lpString: PChar {the string to add to atom table}

): ATOM; {returns the newly added atom}

Description

This function adds the specified string to the local atom table and returns the atom

number. The string can be no longer than 255 characters. If the string already exists in

the table, its reference count is incremented. This local atom table is local to the pro-

cess only and is not shared with other processes.

Local atom tables have a default size of 37 entries. This maximum size can be

increased when the local atom table is created. If the string has 255 or fewer characters

and the AddAtom function still fails, the most likely cause would be that the table is

full.

�Note: Strings are not case sensitive. If an existing string differs from the

added string only by case, it is treated as an identical string.

Parameters

lpString: A pointer to a null-terminated string to be added to the local atom table.

Return Value

If the function succeeds, it returns the atom number for the string that was added to the

local atom table. The atom value is a 16-bit number in the range 49152 to 65535

($C000 to $FFFF) for strings or in the range 1 to 49151 ($0001 to $BFFF) for integers.

If the function fails, it returns zero. To get extended error information, call the

GetLastError function.

252 � Chapter 6

See Also

DeleteAtom, FindAtom, GetAtomName, GlobalAddAtom, GlobalDeleteAtom,

GlobalFindAtom, GlobalGetAtomName, MakeIntAtom

Example

■ Listing 6-1: Adding a string to the local atom table

procedure TForm1.FormCreate(Sender: TObject);
begin
{create an atom table for 200 possible atoms}
InitAtomTable(200);

end;

procedure TForm1.Button1Click(Sender: TObject);
var
MyAtom: Atom; // the returned atom number
TextTest: PChar; // string for search result
AtomTest: Atom; // atom number from search results

begin
{store string in local atom table}
MyAtom := AddAtom(PChar(Edit1.Text));

{search the table for atom number, given the string}
AtomTest := FindAtom(PChar(Edit1.Text));
Label1.Caption := 'Search by text, atom number: ' + IntToStr(Atomtest);

{search by atom number to get the string}
TextTest := StrAlloc(256);
GetAtomName(MyAtom, TextTest, 256);
Label2.Caption := 'Search by atom number, text: ' + string(TextTest);

{always clean up entries}
DeleteAtom(MyAtom);

end;

CharLower Windows.pas

Syntax

CharLower(

lpsz: PChar {a pointer to the character or string to convert}

): PChar; {returns a pointer to the converted character or string}

String and Atom Functions � 253

C
h

a
p

te
r
6

Figure 6-1:

The atom

Description

This function converts a single character or every character in a null-terminated string

to lowercase. Under Windows NT/2000, the function uses the currently selected lan-

guage driver for the conversion; under Windows 95/98/Me, the conversion is based on

the default locale.

Parameters

lpsz: A pointer to the null-terminated string to convert. For single character conversion,

load the character into the lower word of lpsz and set the upper 16 bits to zero.

CharLower first tests the upper word of the lpsz parameter to determine whether the

parameter should be interpreted as a character or as a pointer. In Delphi, the parameter

can be typecast as an “array of char” with the single-byte character loaded into the first

array element.

Return Value

This function returns either a single character in the lower word and the upper word is

zero or a pointer to the null-terminated string containing the converted string. This

function does not indicate an error upon failure.

See Also

CharLowerBuff, CharUpper, CharUpperBuff

Example

■ Listing 6-2: Converting characters and strings to lowercase

procedure TForm1.Button1Click(Sender: TObject);
type
CharArray= array[1..4] of char;

var
MyString: PChar; // a pointer to the string
StartLoc: PChar; // the start of the string
NumChars: Integer; // the number of characters in the string
MyChar: Char; // a single character
MyCharLoc: Pointer; // a character location within the string

begin
MyString := 'This is a STRING.';
Label1.Caption := string(MyString);

StartLoc := CharNext(MyString); // do not convert first letter.
StartLoc := CharLower(StartLoc); // converts to lowercase.
Label2.Caption := string(MyString); // Displays: This is a string.

StartLoc := CharNext(StartLoc); // skip another character
NumChars := CharUpperBuff(StartLoc, 5); // puts "is is" to uppercase.
Label3.Caption := string(MyString); // Displays: ThIS IS a string.

NumChars := strlen(MyString);
NumChars := CharLowerBuff(MyString,NumChars);
Label4.Caption := string(MyString); // Displays: this is a string.

254 � Chapter 6

TE
AM
FL
Y

Team-Fly®

StartLoc := CharPrev(MyString, StartLoc); // point to prev character
StartLoc := CharPrev(MyString, StartLoc); // points to start of string
NumChars := CharUpperBuff(StartLoc, 4); // converts "this" to upper
Label5.Caption := string(MyString); // Displays: THIS is a string.

StartLoc := CharUpper(StartLoc);
Label6.Caption := string(MyString); // Displays: THIS IS A STRING.

MyChar := 'z'; // assign as lowercase
ZeroMemory(@StartLoc,4); // prepare variable with zeroes.
CharArray(StartLoc)[1] := MyChar; // load character
StartLoc := CharUpper(StartLoc); // convert character
MyChar := CharArray(StartLoc)[1]; // put it back
MoveMemory(MyString, @MyChar, 1); // put it in the string.
Label7.Caption := string(MyString); // Displays: ZHIS IS A STRING.

StartLoc := CharLower(StartLoc); // convert character
MyChar := CharArray(StartLoc)[1]; // put it back again
MoveMemory(MyString, @MyChar, 1); // put it in the string.
Label8.Caption := string(MyString); // Displays: zHIS IS A STRING.

end;

CharLowerBuff Windows.pas

Syntax

CharLowerBuff(

lpsz: PChar; {a pointer to the string to convert}

cchLength: DWORD {the number of characters to convert}

): DWORD; {returns the number of characters processed}

Description

CharLowerBuff converts a specified number of characters in the string pointed to by

the lpsz parameter to lowercase. Under Windows NT/2000, the function uses the cur-

rently selected language driver for the conversion; under Windows 95/98/Me, the

conversion is based on the default locale. With this function, it is possible to convert

only a portion of a string by pointing the lpsz parameter to the starting position to con-

vert and giving the number of characters to convert in the cchLength parameter. The

String and Atom Functions � 255

C
h

a
p

te
r
6

Figure 6-2:

The lowercase

converted

strings

lpsz parameter does not have to point to the beginning of the string, and the cchLength

parameter does not have to reflect the true length of the string.

Parameters

lpsz: A pointer to the null-terminated string that is to be converted to lowercase.

cchLength: Indicates the number of characters to convert. If the string is a Unicode

string, then this count is the number of wide (two-byte) character positions. This func-

tion will travel past a null character if the cchLength value is larger than the length of

the string.

Return Value

If this function succeeds, it returns the number of characters that were processed; other-

wise, it returns zero.

See Also

CharLower, CharUpper, CharUpperBuff

Example

Please see Listing 6-2 under CharLower.

CharNext Windows.pas

Syntax

CharNext(

lpsz: PChar {a pointer to the current character}

): PChar; {returns a pointer to the next character}

Description

This function increments the specified pointer to the next character in the string.

Parameters

lpsz: A pointer to the specified character in a null-terminated string.

Return Value

If the function succeeds, it returns a pointer to the next character in a string following

the character pointed to by the lpsz parameter. The return value will point to the null

terminator if lpsz is already at the end of the string. If the function fails, it returns the

lpsz parameter.

See Also

CharPrev

Example

Please see Listing 6-2 under CharLower.

256 � Chapter 6

CharPrev Windows.pas

Syntax

CharPrev(

lpszStart: PChar; {a pointer to the start of a string}

lpszCurrent: PChar {a pointer to the current character}

): PChar; {returns a pointer to the previous character}

Description

This function returns a pointer to the previous character in the string pointed to by the

lpszCurrent parameter.

Parameters

lpszStart: A pointer to the beginning of a string. This is provided so that CharPrev can

tell if the lpszCurrent parameter is already at the beginning of the string.

lpszCurrent: A pointer to the current character.

Return Value

If this function succeeds, it returns a pointer to the character prior to the one pointed to

by the lpszCurrent parameter. It will point to the beginning of the string if the lpszStart

parameter is equal to lpszCurrent. If the function fails, it returns the lpszCurrent

parameter.

See Also

CharNext

Example

Please see Listing 6-2 under CharLower.

CharToOem Windows.pas

Syntax

CharToOem(

lpszSrc: PChar; {a pointer to the string to translate}

lpszDst: PChar {a pointer to the translated string}

): BOOL; {always returns TRUE}

Description

CharToOem translates each character in the given string into the OEM-defined charac-

ter set.

Parameters

lpszSrc: A pointer to the source string that is to be translated to an OEM character set

string.

lpszDst: A pointer to the destination translated string. If the character set is ANSI (sin-

gle-byte characters), then the source and destination strings can be the same string. In

String and Atom Functions � 257

C
h

a
p

te
r
6

this case, the translation will be performed in place. If the character set is Unicode

(double-byte characters), there must be a separate buffer for lpszDst.

Return Value

This function always returns TRUE.

See Also

CharToOemBuff, OemToChar, OemToCharBuff

Example

■ Listing 6-3: Converting characters to the OEM character set and back

procedure TForm1.Button1Click(Sender: TObject);
var
KeyedIn: PChar; // points to input string
OEMstr: PChar; // OEM character set version
ANSIstr: PChar; // ANSI character set version
OEMbuff: array[1..100] of Char; // string space
ANSIbuff: array[1..100] of Char;

begin
{point PChars to string space}
OEMstr := @OEMbuff;
ANSIstr := @ANSIbuff;
KeyedIn := 'My String Data - ÀÊÎÕÜ';
Label1.Caption := string(KeyedIn);

{CharToOem converts string to OEM character set}
CharToOem(KeyedIn, OEMstr);
Label2.Caption := string(OEMstr);

{CharToOemBuff is the counted character version}
CharToOemBuff(KeyedIn, OEMstr, StrLen(KeyedIn));
Label3.Caption := string(OEMstr);

{convert from OEM character set to ANSI characters}
OemToChar(OemStr, ANSIstr);
Label4.Caption := string(ANSIstr);

{OemToCharBuff is the counted character version}
OemToCharBuff(OemStr, ANSIStr, StrLen(OemStr));
Label5.Caption := string(ANSIstr);

end;

258 � Chapter 6

Figure 6-3:

The converted

characters

CharToOemBuff Windows.pas

Syntax

CharToOemBuff(

lpszSrc: PChar; {a pointer to the string to translate}

lpszDst: PChar; {a pointer to the translated string}

cchDstLength: DWORD {the number of characters to translate}

): BOOL; {returns TRUE}

Description

CharToOemBuff translates the specified number of characters in the given string into

the OEM-defined character set.

Parameters

lpszSrc: A pointer to the source string that is to be translated.

lpszDst: A pointer to the destination translated string. If the character set is ANSI (sin-

gle-byte characters), then the source and destination strings can be the same string. In

this case, the translation will be performed in place. If the character set is Unicode

(double-byte characters), there must be a separate buffer for lpszDst.

cchDstLength: The number of characters to translate. If the character set Unicode (dou-

ble-byte characters), then this is the number of byte pairs (single characters) that will

be translated in the destination string.

Return Value

This function always returns TRUE.

See Also

CharToOem, OemToChar, OemToCharBuff

Example

Please see Listing 6-3 under CharToOem.

CharUpper Windows.pas

Syntax

CharUpper(

lpsz: PChar {a pointer to the character or string to convert}

): PChar; {returns a pointer to the converted character or string}

Description

This function converts a single character or every character in a null-terminated string

to uppercase. Under Windows NT/2000, the function uses the currently selected lan-

guage driver for the conversion; under Windows 95/98/Me, the conversion is based on

the default locale.

String and Atom Functions � 259

C
h

a
p

te
r
6

Parameters

lpsz: A pointer to the null-terminated string to convert. For single-character conversion,

load the character into the lower word of lpsz and set the upper 16 bits to zero.

CharUpper first tests the upper word of the lpsz parameter to determine whether the

parameter should be interpreted as a character or as a pointer. In Delphi, the parameter

can be typecast as an “array of char” with the single-byte character loaded into the first

array element.

Return Value

This function returns either a single character in the lower word and the upper word is

zero or a pointer to the null-terminated string containing the converted string. This

function does not indicate an error upon failure.

See Also

CharLower, CharLowerBuff, CharUpperBuff

Example

Please see Listing 6-2 under CharLower.

CharUpperBuff Windows.pas

Syntax

CharUpperBuff(

lpsz: PChar; {a pointer to the string to convert}

cchLength: DWORD {the number of characters to convert}

): DWORD; {returns the number of characters processed}

Description

CharUpperBuff converts a specified number of characters in the string pointed to by

the lpsz parameter to uppercase. Under Windows NT/2000, the function uses the cur-

rently selected language driver for the conversion; under Windows 95/98/Me, the

conversion is based on the default locale. With this function, it is possible to convert

only a portion of a string by pointing the lpsz variable to the starting position to convert

and giving the number of characters to convert in the cchLength parameter. The lpsz

parameter does not have to point to the beginning of the string, and the cchLength

parameter does not have to reflect the true length of the string.

Parameters

lpsz: A pointer to the null-terminated string that is to be converted to uppercase.

cchLength: Indicates the number of characters to convert. If the string is a Unicode

string, this count is the number of wide (two-byte) character positions. This function

will travel past a null character if the cchLength value is larger than the string’s length.

Return Value

If this function succeeds, it returns the number of characters that were processed; other-

wise, it returns zero.

260 � Chapter 6

See Also

CharLower, CharLowerBuff, CharUpper

Example

Please see Listing 6-2 under CharLower.

CompareString Windows.pas

Syntax

CompareString(

Locale: LCID; {the locale identifier}

dwCmpFlags: DWORD; {options for the comparison}

lpString1: PChar; {a pointer to the first string}

cchCount1: Integer; {the size in characters of the first string}

lpString2: PChar; {a pointer to the second string}

cchCount2: Integer {the size in characters of the second string}

): Integer; {returns a comparison result code}

Description

CompareString performs a comparison of two strings based on the specified locale. The

return value of 2 specifies that the two strings are equal in a lexical sense according to

the specified flags, even though it is possible for the strings to be different. If the

strings are of different length but are compared as lexically equal up to the length of the

shortest string, then the longer string will be specified as the greater in the comparison.

If the SORT_STRINGSORT flag is not specified in the dwCmpFlags parameter, the

sort will ignore the hyphen and apostrophe characters. This means that “IT’S” will be

equal to “ITS” and “DON’T” will be equal to “DONT”. Some words might be spelled

with an optional hyphen. This default behavior assures that the presence of the hyphen

or apostrophe will not affect the ordering of strings in a list. For a stricter character-

based sort, use the SORT_STRINGSORT flag. This flag treats the hyphen and apostro-

phe characters in their normal collating sequence.

In determining which sort function to use, note that CompareString has the availability

of using the SORT_STRINGSORT option, where lstrcmp and lstrcmpi will always

ignore hyphen and apostrophe characters when comparing strings.

In the Arabic character sets, CompareString will ignore the Arabic Kashidas. This is

equivalent to ignoring the hyphen and apostrophe characters if the SORT_STRING-

SORT flag is not set. However, there is no option for determining whether or not the

Arabic Kashidas will be ignored; they will always be ignored in Arabic character sets.

For fastest execution, set the cchCount1 and cchCount2 parameters to –1 and set the

dwCmpFlags parameter to either zero or NORM_IGNORECASE.

Parameters

Locale: The locale identifier that provides the basis for the comparison. In place of a

local identifier, this parameter can be one value from Table 6-2.

String and Atom Functions � 261

C
h

a
p

te
r
6

dwCmpFlags: Flags which determine how the comparison will be made. This parame-

ter can be set to zero to indicate default string comparison, or it can be set to any

combination of values from Table 6-3.

lpString1: A pointer to the first string to compare.

cchCount1: Specifies the length of the first string in characters (single bytes for ANSI,

double bytes for Unicode). If this value is –1, then CompareString will take the null

terminator as the end of the string.

lpString2: A pointer to the second string to compare.

cchCount2: Specifies the length of the second string in characters (single bytes for

ANSI, double bytes for Unicode). If this value is –1, then CompareString will take the

null terminator as the end of the string.

Return Value

If the function succeeds, the return value will be one of the three comparison return

codes in Table 6-4. If the function fails, it returns zero. To get extended error informa-

tion, call the GetLastError function.

See Also

GetSystemDefaultLCID, GetUserDefaultLCID, lstrcmp, lstrcmpi

Example

■ Listing 6-4: Using CompareString to perform a sort

procedure TForm1.Button1Click(Sender: TObject);
var
L1: array[1..5] of PChar; // data to sort
Ltemp: PChar; // temp for sort swapping
Xsort,Xloop: Integer; // loop counters for sort
CompareResult: Integer; // result of CompareString
CompareFlags: DWORD; // flags parameter
CompareLocale: LCID; // locale parameter

begin
{define some data for sorting}
L1[1] := 'abc-e';
L1[2] := 'abcde';
L1[3] := 'aBcd ';
L1[4] := 'ab cd';
L1[5] := 'a''bc ';

{display the initial strings}
for Xloop := 1 to 5 do
ListBox1.Items.Add(string(L1[Xloop]));

{pause}
Application.ProcessMessages;
Sleep(2000);

{define flags to specify collation (sort) order}
CompareFlags := NORM_IGNORECASE

262 � Chapter 6

and SORT_STRINGSORT
and NORM_IGNORENONSPACE;

CompareLocale := LOCALE_USER_DEFAULT;

{do a simplified bubblesort}
for Xloop := 1 to 4 do
for Xsort := 1 to 4 do begin
CompareResult := CompareString(CompareLocale,

CompareFlags,
L1[Xsort],
-1, // entire length of string
L1[Succ(Xsort)],
-1); // entire length of string

if CompareResult = 0 then begin // error condition
ShowMessage('CompareString error!');
exit;

end;
if CompareResult = 3 then begin // first > second
{perform a swap}
Ltemp := L1[xsort];
L1[Xsort] := l1[Succ(Xsort)];
L1[Succ(Xsort)] := Ltemp;

end;
end;

{display the results}
ListBox1.Clear;
for Xloop := 1 to 5 do
ListBox1.Items.Add(string(L1[Xloop]));

// produces a list:
// ab cd / a'bc / aBcd / abcde / abc-e
// these were interpreted with the above options as
// ab cd / abc / abcd / abcde / abce
// spaces are interpreted as spaces
// apostrophes and hyphens are deleted (ignored).

end;

String and Atom Functions � 263

C
h

a
p

te
r
6

Figure 6-4:

The sorted

strings

■ Listing 6-5: Comparing two strings for equality

procedure TForm1.Button1Click(Sender: TObject);
var
MyResult: Integer;

begin
{compare the strings}
MyResult := CompareString(LOCALE_USER_DEFAULT,

NORM_IGNORECASE,
PChar(Edit1.Text),
-1,
PChar(Edit2.Text),
-1);

if MyResult = 1 then
begin // first parameter is greater
Label1.Caption := 'SMALLER';
Label2.Caption := 'GREATER';
Label3.Caption := '<';

end;
if MyResult = 2 then
begin
Label1.Caption := ' equal ';
Label2.Caption := ' equal ';
Label3.Caption := '=';

end;
if MyResult = 3 then
begin
Label1.Caption := 'GREATER';
Label2.Caption := 'SMALLER';
Label3.Caption := '>';

end;
if MyResult = 0 then
ShowMessage('Error in CompareString');

end;

Table 6-2: CompareString Locale values

Value Description

LOCALE_SYSTEM_DEFAULT The system’s default locale.

LOCALE_USER_DEFAULT The user’s default locale.

Table 6-3: CompareString dwCmpFlags values

Value Description

NORM_IGNORECASE Ignore uppercase vs. lowercase They are treated as
equal if this flag is set.

NORM_IGNOREKANATYPE The Hiragana and the Katakana characters will be
treated as equivalent character sets.

264 � Chapter 6

Figure 6-5:

The two

strings are

equal

TE
AM
FL
Y

Team-Fly®

Value Description

NORM_IGNORENONSPACE Ignore non-spacing characters.

NORM_IGNORESYMBOLS Ignore symbols.

NORM_IGNOREWIDTH Character set width is ignored when comparing an
ANSI character string to a UNICODE character
string. The same character in the ANSI set and
UNICODE set are regarded as equal.

SORT_STRINGSORT Punctuation characters are treated as symbols.

Table 6-4: CompareString return values

Value Description

1 The first string is less in value than the second string in
lexical comparison.

2 The two strings have equal lexical values according to
the flags that are provided.

3 The first string is greater in value than the second
string in lexical comparison.

DeleteAtom Windows.pas

Syntax

DeleteAtom(

nAtom: ATOM {the atom number to delete}

): ATOM; {returns zero or the nAtom value}

Description

DeleteAtom reduces the reference count for the specified atom in the local atom table

by one. If the reference count for the specified atom is zero, the entry is deleted from

the atom table. To make a deletion from the global atom table, use GlobalDeleteAtom.

Parameters

nAtom: The atom number to delete from the local atom table.

Return Value

If this function succeeds, it returns zero; otherwise, it returns the atom number in the

nAtom parameter. To get extended error information, call the GetLastError function.

See Also

AddAtom, FindAtom, GlobalAddAtom, GlobalDeleteAtom, GlobalFindAtom

Example

Please see Listing 6-1 under AddAtom.

String and Atom Functions � 265

C
h

a
p

te
r
6

EnumSystemCodePages Windows.pas

Syntax

EnumSystemCodePages(

lpCodePageEnumProc: TFNCodepageEnumProc; {a pointer to the callback

function}

dwFlags: DWORD {code page selection options}

): BOOL; {returns TRUE or FALSE}

Description

This function enumerates code pages that are installed or supported by the system. The

callback function is called for each code page that is identified as meeting the selection

criteria. The callback function receives each code page identifier and can store it pro-

grammatically according to the need of the calling routine. The process will continue

until all code pages have been processed or the callback function returns zero.

Parameters

lpCodePageEnumProc: The address of the callback function provided by the caller of

EnumSystemCodePages. The callback function receives a code page identifier for each

installed or supported code page.

dwFlags: Determines which code pages to report to the callback function. This parame-

ter can be one value from the following table.

Return Value

If this function succeeds, it returns TRUE; otherwise, it returns FALSE. To get

extended error information, call the GetLastError function.

Callback Syntax

EnumSystemCodePagesProc(

AnotherCodePage: PChar {a pointer to a string containing a code page identifier}

): Integer; {indicates if enumeration should continue}

Description

This callback function is called once for each code page identifier installed or sup-

ported by the system and can perform any desired task.

Parameters

AnotherCodePage: A pointer to a null-terminated string containing a code page

identifier.

Return Value

To continue enumeration, the callback function should return one; otherwise, it should

return zero.

See Also

EnumSystemLocales

266 � Chapter 6

Example

■ Listing 6-6: Enumerating the system code pages

{the callback function prototype}
function EnumCodePageProc(AnotherCodePage: PChar): Integer; stdcall;

implementation

function EnumCodePageProc(AnotherCodePage: PChar):integer;
// callback function is called as many times as there are Code Pages.
// A single call to EnumSystemCodePages triggers the series of callbacks.
begin
{display the code page}
CodePages.Memo1.Lines.Add(string(AnotherCodePage));

{continue enumeration}
Result := 1;

end;

procedure TCodePages.ButtonExecuteClick(Sender: TObject);
var
MyFlags: Integer; // parameter specified by Radio Buttons in this example.

begin
{initialize for enumeration}
Memo1.Clear;
MyFlags := CP_SUPPORTED; // set flags from radio buttons
if RBinstalled.Checked then MyFlags := CP_INSTALLED;

{enumerate code pages}
if not EnumSystemCodePages(@EnumCodePageProc,MyFlags)
then ShowMessage('Error getting system code pages');

Label1.Caption := 'CodePages: '+IntToStr(Memo1.Lines.Count);
end;

String and Atom Functions � 267

C
h

a
p

te
r
6

Figure 6-6:

The system

code page list

Table 6-5: EnumSystemCodePages dwFlags values

Value Description

CP_INSTALLED Report only code pages that are currently installed.

CP_SUPPORTED Report all code pages that are supported by the system.

EnumSystemLocales Windows.pas

Syntax

EnumSystemLocales(

lpLocaleEnumProc: TFNLocaleEnumProc; {a pointer to the callback function}

dwFlags: DWORD {locale selection options}

): BOOL; {returns TRUE or FALSE}

Description

This function enumerates locales that are installed or supported by the system. The

callback function is called for each locale that is identified as meeting the selection cri-

teria. The callback function receives each locale identifier and can store it

programmatically according to the needs of the calling routine. The process will con-

tinue until all locales have been processed or the callback function returns zero.

Parameters

lpLocaleEnumProc: The address of the callback function provided by the caller of

EnumSystemLocales. The callback function receives a locale code for each installed or

supported locale.

dwFlags: Determines which locales to report to the callback function. This parameter

can be one value from the following table.

Return Value

If this function succeeds, it returns TRUE; otherwise, it returns FALSE. To get

extended error information, call the GetLastError function.

Callback Syntax

EnumSystemLocalesProc(

AnotherLocale: PChar {a pointer to a string containing a locale code}

): Integer; {indicates if enumeration should continue}

Description

This callback function is called once for each locale installed or supported by the sys-

tem and can perform any desired task.

Parameters

AnotherLocale: A pointer to a null-terminated string containing a locale code.

Return Value

To continue enumeration, the callback function should return one; otherwise, it should

return zero.

268 � Chapter 6

See Also

EnumSystemCodePages

Example

■ Listing 6-7: Enumerating system locales

{the callback function prototype}
function EnumLocalesProc(AnotherLocale: PChar): Integer; stdcall;

implementation

function EnumLocalesProc(AnotherLocale: PChar): Integer;
// callback function is called for each locale.
// A single call to EnumSystemLocales
// triggers the series of callbacks.
begin
{display the locale}
Locales.Memo1.Lines.Add(AnotherLocale);

{continue enumeration}
EnumLocalesProc := 1;

end;

procedure TLocales.ButtonExecuteClick(Sender: TObject);
var
MyFlags: Integer;

begin
{initialize for enumeration}
Memo1.Clear;
MyFlags := LCID_INSTALLED;
If RBsupported.Checked then MyFlags := LCID_SUPPORTED;

{enumerate the locales}
if not EnumSystemLocales(@EnumLocalesProc,MyFlags)
then ShowMessage('Error in getting locales.');

Label1.Caption := 'Locales: '+IntToStr(Memo1.Lines.Count);
end;

String and Atom Functions � 269

C
h

a
p

te
r
6

Figure 6-7:

The system

locales list

Table 6-6: EnumSystemLocales dwFlags values

Value Description

LCID_INSTALLED Report only locales that are currently installed.

LCID_SUPPORTED Report all locales that are supported by the system.

FindAtom Windows.pas

Syntax

FindAtom(

lpString: PChar {a pointer to the string to search for in the local atom table}

): ATOM; {returns the atom number for the string}

Description

FindAtom searches the local atom table for the string pointed to by the lpString param-

eter and returns the atom number if it is found. The string comparison is not case

sensitive. To find an atom in the global atom table, use the GlobalFindAtom function.

Parameters

lpString: A pointer to the null-terminated string to search for in the local atom table.

Return Value

If the function succeeds, it returns the atom number for the specified string; otherwise,

it returns zero. To get extended error information, call the GetLastError function.

See Also

AddAtom, DeleteAtom, GlobalAddAtom, GlobalDeleteAtom, GlobalFindAtom

Example

Please see Listing 6-1 under AddAtom.

FormatMessage Windows.pas

Syntax

FormatMessage(

dwFlags: DWORD; {formatting and option flags}

lpSource: Pointer; {a pointer to the message source}

dwMessageId: DWORD; {the message identifier}

dwLanguageId: DWORD; {the language identifier}

lpBuffer: PChar; {a pointer to a buffer for output}

nSize: DWORD; {the size of the message buffer in bytes}

Arguments: Pointer {a pointer to an array of message arguments}

): DWORD; {returns the number of bytes stored in the output buffer}

270 � Chapter 6

Description

FormatMessage prepares a message from a message identifier, a message table, a

selected language, and a variety of formatting options. It can be used for either system

or user-defined messages. FormatMessage will take the message identifier and search a

message table for a suitable message that is available in the selected language. If no

language is specified, it will search for a suitable language from a prioritized list of rea-

sonable language alternatives. On finding a message string, it will process it according

to the message arguments and copy the result to an output buffer.

If the dwFlags parameter contains the FORMAT_MESSAGE_FROM_STRING flag,

the string pointed to by lpSource may contain special codes that designate where argu-

ments are to be placed in the message and how they are to be formatted. The

FormatMessage function reads the string, reads the corresponding arguments, and

places the formatted result in the output buffer. The possible formatting instructions are

described in Table 6-9.

Parameters

dwFlags: A set of flags which determine how FormatMessage will operate and the

meaning of the lpSource parameter. This parameter can be one or more values from

Table 6-7. The low-order byte (see Table 6-8) specifies how FormatMessage outputs

line breaks and also the maximum width of an output line.

lpSource: A pointer to the source of the message. This will be either a module handle

or a pointer to a null-terminated string, depending on the flags present in the dwFlags

parameter. If neither the FORMAT_MESSAGE_FROM_HMODULE nor the

FORMAT_MESSAGE_FROM_STRING flags are specified, the value of lpSource is

ignored.

dwMessageId: The 32-bit message identifier that is used to search a message table.

This parameter is ignored if the dwFlags parameter contains the FORMAT_MES-

SAGE_FROM_STRING flag.

dwLanguageId: The 32-bit language identifier that specifies which language is used

when retrieving the message definition from a message resource table. This parameter

is ignored if the dwFlags parameter contains the FORMAT_MESSAGE_FROM_

STRING flag. If no message is found in the specified language, then the function

returns a value of ERROR_RESOURCE_LANG_NOT_FOUND. If this parameter con-

tains zero and the FORMAT_MESSAGE_FROM_STRING flag is not set in the

dwFlags parameter, then the function searches for a message definition for a language

in the following order of priority:

1. Language-neutral message definition, if present.

2. Thread LANGID. This is the language of the thread’s locale.

3. User default LANGID. This is the language of the user’s default locale.

4. System default LANGID. This is the language of the system’s default locale.

5. U.S. English.

6. Any language.

String and Atom Functions � 271

C
h

a
p

te
r
6

lpBuffer: A pointer to a buffer for the output message. The caller prepares this buffer

before FormatMessage is called unless the dwFlags parameter contains the FORMAT_

MESSAGE_ALLOCATE_BUFFER flag. If this flag is set, then FormatMessage uses

LocalAlloc to allocate the required amount of space, storing the buffer’s address in the

lpBuffer parameter. Note that the FORMAT_MESSAGE_ALLOCATE_BUFFER flag

indicates that lpBuffer is a pointer to a pointer to a buffer.

nSize: If the FORMAT_MESSAGE_ALLOCATE_BUFFER flag is present in the

dwFlags parameter, nSize specifies the minimum number of bytes to allocate for the

output buffer. This allocation is carried out by FormatMessage and deallocated by the

caller with LocalFree. If the FORMAT_MESSAGE_ALLOCATE_BUFFER flag is not

set, then nSize indicates the maximum size of the output buffer.

Arguments: A pointer to an array of 32-bit arguments that are used to fill in the inser-

tion points in the string pointed to by the lpSource parameter. The substring “%1”

within the message is the location where the first argument will be placed; “%2” is

where the second argument is placed, and so on. The output formatting of the argument

will depend on additional codes in the string associated with that argument. If there are

no additional formatting codes for an argument, the argument is treated as a PChar.

Return Value

If the function succeeds, it returns the number of bytes copied to the output buffer,

excluding the null terminator character. If the function fails, it returns zero. To get

extended error information, call the GetLastError function.

See Also

wvsprintf

Example

■ Listing 6-8: Formatting messages

{Whoops! Delphi does not automatically import this function, so
we must do it manually}
function LocalHandle(Mem: Pointer): HLOCAL; stdcall;

implementation

{link in the function}
function LocalHandle; external kernel32 name 'LocalHandle';

procedure TForm1.Button1Click(Sender: TObject);
{ Examples of how to use FormatMessage. }
{ allowed printf (c style) formatting options: }
{ x is unsigned hexadecimal format }
{ u is unsigned integer }
{ d is decimal integer }
{ c is a character }
{ lu is accepted for unsigned long integer }
{ but the l is not required. }
{ o for octal is not supported }
{ e, f, F, g, and G formats are not supported. }

272 � Chapter 6

{ Use some other technique for floating point. }
const
MyMessageSize = 200;

var
MyMessageDefinition: Pchar; // message format
OutputMessage: PChar; // holds a formatted message
MyArguments: array[1..5] of PChar; // pointers to numeric arguments
MyMessageID: Integer; // holds a message identifier
MyLanguageID: Integer; // holds a language identifier
MyMemoryHandle: HLOCAL; // a handle to a formatted message

begin
{Get space for output message}
GetMem(OutputMessage,MyMessageSize);

{format a message}
MyMessageDefinition := 'Delphi %1. I like %2.';
MyArguments[1] := 'rocks';
MyArguments[2] := 'Delphi 3';
FormatMessage(FORMAT_MESSAGE_FROM_STRING or

FORMAT_MESSAGE_ARGUMENT_ARRAY,
MyMessageDefinition,0,0,
OutputMessage,MyMessageSize,
@MyArguments);

MyArguments[1] := '';
MyArguments[2] := '';

{displays: Delphi rocks. I like Delphi 3}
Label1.Caption := string(OutputMessage);

{examples of numeric substitution. Arguments contain the data.
This uses "C" style printf formatting}
Integer(MyArguments[1]) := 54;
Integer(MyArguments[2]) := 49;
Integer(MyArguments[3]) := -100;
Integer(MyArguments[4]) := -37;
Integer(MyArguments[5]) := -37;

{format the message}
MyMessageDefinition :=

'character:%1!c! decimal:%2!d! unsigned hexadecimal:%3!x!'
+ ' unsigned int:%4!u! or:%5!lu!';

FormatMessage(FORMAT_MESSAGE_FROM_STRING or
FORMAT_MESSAGE_ARGUMENT_ARRAY,
MyMessageDefinition,0,0,
OutputMessage,MyMessageSize,
@MyArguments);

Label2.Caption := string(OutputMessage);

{format the message differently}
MyMessageDefinition :=

'unsigned hexadecimal:%3!x! character:%1!c! decimal:%2!d!'
+ ' unsigned int:%4!u! or:%5!lu!';

FormatMessage(FORMAT_MESSAGE_FROM_STRING or
FORMAT_MESSAGE_ARGUMENT_ARRAY,
MyMessageDefinition,0,0,
OutputMessage,MyMessageSize,

String and Atom Functions � 273

C
h

a
p

te
r
6

@MyArguments);
Label3.Caption := string(OutputMessage);

{free output message space}
Freemem(OutputMessage);

{retrieve the system string for an error message}
MyMessageID := ERROR_INVALID_FLAGS; // any system message ID
MyLanguageID := 0; // default language

{Use the option where FormatMessage allocates its own message buffer.}
FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM or

FORMAT_MESSAGE_ALLOCATE_BUFFER,nil,
MyMessageID,MyLanguageID,
@OutputMessage,0,nil);

Label4.Caption := string(OutputMessage);

{return message memory}
MyMemoryHandle := LocalHandle(OutputMessage);
if (LocalFree(MyMemoryHandle) 0) then
ShowMessage('Error freeing memory');

end;

Table 6-7: FormatMessage dwFlags values

Value Description

FORMAT_MESSAGE_ALLOCATE_BUFFER Indicates that the lpBuffer parameter is a pointer to a
pointer for the output buffer. The output buffer has no
memory allocation when FormatMessage is called. The
function will use LocalAlloc to allocate enough memory to
store the message. The nSize parameter specifies a mini-
mum size to allocate for the buffer. FormatMessage then
creates the buffer and places the address of the buffer at
the address pointed to by the lpBuffer parameter. The
application should declare a pointer for the output buffer
and place the address of the pointer in the lpBuffer param-
eter. After the buffer is no longer needed, the caller should
free the memory with a call to LocalFree.

FORMAT_MESSAGE_IGNORE_INSERTS Specifies that FormatMessage will ignore the Arguments
parameter and pass the insert sequences to the output
buffer without processing the values in the Arguments
array.

274 � Chapter 6

Figure 6-8:

The formatted

messages TE
AM
FL
Y

Team-Fly®

Value Description

FORMAT_MESSAGE_FROM_STRING Indicates that lpSource is a pointer to a message string
which may contain insert sequences. This flag cannot be
combined with either FORMAT_MESSAGE_FROM_
HMODULE or FORMAT_MESSAGE_FROM_SYSTEM.

FORMAT_MESSAGE_FROM_HMODULE Indicates that lpSource is a handle to a message table
resource. If this option is set and lpSource is NIL, the
resources in the current process will be searched. This flag
cannot be used in combination with FORMAT_MESSAGE_
FROM_STRING.

FORMAT_MESSAGE_FROM_SYSTEM Indicates that FormatMessage should search the system’s
message table resources for the message definition. If this
flag is specified in combination with FORMAT_MESSAGE_
FROM_HMODULE, FormatMessage will search the mes-
sage table resources in the system and then in the module
specified by lpSource. This flag cannot be used in combina-
tion with FORMAT_MESSAGE_FROM_STRING. This flag
allows the application to pass the value returned from
GetLastError to retrieve a system-defined error message
string.

FORMAT_MESSAGE_ARGUMENT_ARRAY Specifies that the Arguments parameter is a pointer to an
array of 32-bit values to be inserted into the message
string.

Table 6-8: FormatMessage dwFlags low-order byte values

Value Description

0 There are no specifications for line breaks for the output
buffer. FormatMessage will simply copy any line breaks in
the message definition to the output buffer.

any non-zero value that is not
FORMAT_MESSAGE_MAX_WIDTH_MASK

Indicates the maximum width of an output line. A line break
will be used in the output buffer to send any remaining char-
acters to the next line if it exceeds this value. Any line
breaks that occur in the message definition will be ignored.
FormatMessage will only break the line at a white space.
Hard-coded line breaks in the message definition (%n) will
be copied to the output buffer, and a new line count will
begin for the next line.

FORMAT_MESSAGE_MAX_WIDTH_MASK Regular line breaks in the message string will be ignored.
Hard-coded line breaks will be copied to the output buffer.
No other line breaks will be generated by FormatMessage
regardless of line width.

String and Atom Functions � 275

C
h

a
p

te
r
6

Table 6-9: FormatMessage arguments formatting code values

Value Description

%0 (zero) Terminates the output message without a newline character. Use this for
a prompt or any situation where the cursor should remain at the end of
the output without a carriage return/line feed being generated.

%n!C-style printf format string! An argument insert point for the nth argument. “%1” is the first argu-
ment, “%2” is the second argument, and so on, up to a possible total of
99 arguments. The formatting instructions must include the exclamation
points or it will simply be interpreted as part of the message. If no printf
formatting is specified, !s! is used as a default, meaning that the corre-
sponding argument is interpreted as a PChar variable pointing to a
null-terminated string which is inserted in the message at that point in
place of the “%n”. If the printf format code is a numeric formatting code
showing width and precision, then the “*” character can be given for
either or both numbers. If a single “*” is given, then the next (%n+1)
argument is used for the number. If two “*” characters are in the format-
ting code, then the next two arguments (%n+1 and %n+2) are used for
the width and precision of the formatted number. The C-style formatting
for floating-point numbers using the o, e, E, f, g, and G options are not
supported. However, x, d, c, u, and lu are supported. Integers in octal
format or real numbers in scientific notation should be formatted using
other functions.

%% Passes a single % symbol to the output buffer.

%n (the letter “n”) Places a hard line break in the output buffer. This is used when the mes-
sage definition is determining the line width for a multiple-line message.

%space Forces a space in the output buffer. There can be several of these in
sequence. This is useful for forcing spaces, including trailing spaces.

%. (period) Forces a period to the output buffer regardless of position in the line.
This can be used to place a period at the beginning of the line. A period
without a percent sign would indicate the end of the message.

%! Places an exclamation mark in the output buffer without being inter-
preted as a beginning or ending terminator for a formatting specification.

GetACP Windows.pas

Syntax

GetACP: UINT; {returns an ANSI code page identifier}

Description

GetACP gets the current ANSI code page identifier for the system. If a code page is not

defined, then the default code page identifier is returned.

Return Value

If the function succeeds, it returns a 32-bit ANSI code page identifier from Table 6-10;

otherwise, it returns zero.

276 � Chapter 6

See Also

GetCPInfo, GetCPInfoEx, GetOEMCP

Example

■ Listing 6-9: Retrieving the current ANSI code page

{Delphi does not define the TCPInfoEx structure}
TCPInfoEx = record
MaxCharSize: UINT; { max length (bytes) of a char }
DefaultChar: array[0..MAX_DEFAULTCHAR - 1] of Byte; { default character }
LeadByte: array[0..MAX_LEADBYTES - 1] of Byte; { lead byte ranges }
UnicodeDefaultChar: WCHAR; { default unicode char }
CodePage: UINT; { the code page }
CodePageName: array[0..MAX_PATH] of Char; { code page name }

end;

{Delphi does not import GetCPInfoEx}
function GetCPInfoEx(CodePage: UINT; dwFlags: DWORD;

var lpCPInfoEx: TCPInfoEx): BOOL; stdcall;

var
Form1: TForm1;

implementation

{$R *.DFM}

{import the function}
function GetCPInfoEx; external 'kernel32.dll' name 'GetCPInfoExA';

procedure TForm1.Button1Click(Sender: TObject);
var
SystemCodePage: Integer; // holds the system code page
SystemCPInfo: TCPInfo; // holds code page info
SystemCPInfoEx: TCPInfoEx; // holds extended code page info
Leadbytecount: Integer; // indicates lead byte count
LeadX: Integer; // loop counter

begin
{retrieve the system code page}
SystemCodePage := GetACP;
case SystemCodePage of
874: Label1.Caption := 'The system code page is Thai';
932: Label1.Caption := 'The system code page is Japan';
936: Label1.Caption := 'The system code page is Chinese (PRC, Singapore)';
949: Label1.Caption := 'The system code page is Korean';
950: Label1.Caption := 'The system code page is Chinese (Taiwan)';
1200: Label1.Caption := 'The system code page is Unicode';
1250: Label1.Caption := 'The system code page is Windows 3.1 East Europe';
1251: Label1.Caption := 'The system code page is Windows 3.1 Cyrillic';
1252: Label1.Caption := 'The system code page is Windows 3.1 Latin 1';
1253: Label1.Caption := 'The system code page is Windows 3.1 Greek';
1254: Label1.Caption := 'The system code page is Windows 3.1 Turkish';
1255: Label1.Caption := 'The system code page is Hebrew';
1256: Label1.Caption := 'The system code page is Arabic';

String and Atom Functions � 277

C
h

a
p

te
r
6

1257: Label1.Caption := 'The system code page is Baltic';
else
Label1.Caption := 'The system code page is ' +IntToStr(SystemCodePage);

end;

{the TCPinfo parameter is a VAR parameter,
just give the variable, not the address of the variable}
if not GetCPInfo(SystemCodePage, SystemCPInfo)
then Label2.Caption := 'Error in getting CP info.'
else Label2.Caption := 'The default character for translation '

+ 'to this code page is: '
+ Char(SystemCPInfo.DefaultChar[0]);

{display the character size}
Label3.Caption := 'The max character size is '

+ IntToStr(SystemCPInfo.MaxCharSize);

{determine lead byte count}
LeadByteCount := 0;
for leadX := 5 downto 0 do
if SystemCPInfo.LeadByte[2*leadx] = 0 then LeadByteCount := LeadX;

Label4.Caption := 'There are '+IntToStr(LeadByteCount)+' lead byte ranges.';

{get some extended code page information}
if not GetCPInfoEx(SystemCodePage, 0, SystemCPInfoEx)
then Label5.Caption := 'Error in getting extended CP info.'
else Label5.Caption := 'Code Page Name: ' + SystemCPInfoEx.CodePageName;

end;

Table 6-10: GetACP return values

Value Description

874 Thai

932 Japanese

936 Chinese (PRC, Singapore)

949 Korean

950 Chinese (Taiwan, Hong Kong)

1200 Unicode (BMP of ISO 10646)

1250 Windows 3.1 Eastern European

278 � Chapter 6

Figure 6-9:

The current

ANSI code

page

information

Value Description

1251 Windows 3.1 Cyrillic

1252 Windows 3.1 Latin 1 (U.S., Western Europe)

1253 Windows 3.1 Greek

1254 Windows 3.1 Turkish

1255 Hebrew

1256 Arabic

1257 Baltic

GetAtomName Windows.pas

Syntax

GetAtomName(

nAtom: ATOM; {an atom number}

lpBuffer: PChar; {a pointer to a buffer receiving the name}

nSize: Integer {the length of the lpBuffer buffer}

): UINT; {returns the number of characters copied to the buffer}

Description

This function finds the string associated with the specified atom number in the local

atom table. If an integer value was stored, the value will be returned in a string format.

For retrieving a string from an atom number from the global atom table, use the

GlobalGetAtomName function.

Parameters

nAtom: The atom number whose string is to be retrieved.

lpBuffer: A pointer to a string buffer where the function will place the results of the

search. The string buffer should be large enough to receive the string value plus the

null terminator.

nSize: Specifies the size of the buffer pointed to by the lpBuffer parameter.

Return Value

If the function succeeds, the buffer pointed to by the lpBuffer parameter will contain

the string associated with the specified atom number, and the function returns the num-

ber of characters copied to this buffer. If the function fails, it returns zero. To get

extended error information, call the GetLastError function.

See Also

AddAtom, DeleteAtom, FindAtom, GlobalAddAtom, GlobalDeleteAtom,

GlobalFindAtom, GlobalGetAtomName

Example

Please see Listing 6-1 under AddAtom.

String and Atom Functions � 279

C
h

a
p

te
r
6

GetCPInfo Windows.pas

Syntax

GetCPInfo(

CodePage: UINT; {the code page identifier}

var lpCPInfo: TCPInfo {a pointer to a TCPInfo structure}

): BOOL; {returns TRUE or FALSE}

Description

This function retrieves information about a specified code page and places the results

in a TCPInfo structure.

Parameters

CodePage: The 32-bit code page identifier for which information is requested. This

parameter can also be set to one value from the following table.

lpCPInfo: A pointer to a TCPInfo structure that receives the code page information.

The TCPInfo data structure is defined as:

TCPInfo = record

MaxCharSize: UINT; {max length of a char in bytes}

DefaultChar: array[0..MAX_DEFAULTCHAR – 1]

of Byte; {the default character}

LeadByte: array[0..MAX_LEADBYTES – 1]

of Byte; {lead byte ranges}

end;

MaxCharSize: Specifies the default length, in bytes, of a character in this code

page (1 for ANSI, 2 for UNICODE).

DefaultChar: Specifies the default character used in character translations to this

code page.

LeadByte: Specifies an array of lead byte ranges. Lead byte ranges are only used

in double-byte character set code pages.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call the GetLastError function.

See Also

GetACP, GetCPInfoEx, GetOEMCP

Example

Please see Listing 6-9 under GetACP.

280 � Chapter 6

Table 6-11: GetCPInfo CodePage values

Value Description

CP_ACP Uses the system default ANSI code page.

CP_MACCP Uses the system default Macintosh code page.

CP_OEMCP Uses the system default OEM code page.

GetCPInfoEx Windows.pas

Syntax

GetCPInfo(

CodePage: UINT; {the code page identifier}

dwFlags: DWORD; {reserved}

var lpCPInfoEx: TCPInfoEx {a pointer to a TCPInfoEx structure}

): BOOL; {returns TRUE or FALSE}

Description

This function retrieves extended information about a specified code page and places the

results in a TCPInfoEx structure.

�Note: This function is available only under Windows 2000 and later.

Parameters

CodePage: The 32-bit code page identifier for which information is requested. This

parameter can also be set to one value from the following table.

dwFlags: Reserved, must be set to zero.

lpCPInfoEx: A pointer to a TCPInfoEx structure that receives the extended code page

information. The TCPInfoEx data structure is defined as:

TCPInfoEx = record

MaxCharSize: UINT; {max length of a char in bytes}

DefaultChar: array[0..MAX_DEFAULTCHAR – 1] of Byte; {default character}

LeadByte: array[0..MAX_LEADBYTES – 1] of Byte; {lead byte ranges}

UnicodeDefaultChar: WCHAR; {default Unicode char}

CodePage: UINT; {the code page}

CodePageName: array[0..MAX_PATH] of Char; {code page name}

end;

MaxCharSize: Specifies the default length, in bytes, of a character in this code

page (1 for ANSI, 2 for UNICODE).

DefaultChar: Specifies the default character used in character translations to this

code page.

LeadByte: Specifies an array of lead byte ranges. Lead byte ranges are only used

in double-byte character set code pages.

String and Atom Functions � 281

C
h

a
p

te
r
6

UnicodeDefaultChar: Specifies the default Unicode character used in character

translations to this code page.

CodePage: Specifies the code page value.

CodePageName: Contains the localized name of the code page.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call the GetLastError function.

See Also

GetACP, GetCPInfo, GetOEMCP

Example

Please see Listing 6-9 under GetACP.

Table 6-12: GetCPInfoEx CodePage values

Value Description

CP_ACP Uses the system default ANSI code page.

CP_MACCP Uses the system default Macintosh code page.

CP_OEMCP Uses the system default OEM code page.

GetDateFormat Windows.pas

Syntax

GetDateFormat(

Locale: LCID; {the locale for specifying the date format}

dwFlags: DWORD; {formatting options}

lpDate: PSystemTime; {a pointer to the date to be formatted}

lpFormat: PChar; {a pointer to the date format string}

lpDateStr: PChar; {a pointer to a buffer for the formatted date}

cchDate: Integer {the size of the output buffer}

): Integer; {returns the number of characters copied to the buffer}

Description

This function formats a given date according to a format string and specified options. A

specific date or the system date can be used.

Parameters

Locale: The locale identifier to which the date is formatted. If the lpFormat parameter

is NIL, the date is formatted according to the default date formatting for this locale. If

the lpFormat parameter contains a formatting string, then the locale will only be used

for formatting information not specified in the lpFormat string. Alternatively, this

parameter can be set to one of the values from Table 6-13.

dwFlags: Indicates formatting options if the lpFormat parameter is set to NIL. If the

lpFormat parameter is not set to NIL, then dwFlags must be zero. If the lpFormat

282 � Chapter 6

parameter is NIL, the dwFlags parameter can be any combination of values from Table

6-14.

lpDate: A pointer to a TSystemTime structure that contains the date to format. If this

parameter is set to NIL, the current system date will be used. The TSystemTime struc-

ture is defined as:

TSystemTime = record

wYear: Word; {indicates the year}

wMonth: Word; {indicates the month}

wDayOfWeek: Word; {indicates the day of the week}

wDay: Word; {indicates the day of the month}

wHour: Word; {indicates the hour}

wMinute: Word; {indicates the minute)

wSecond: Word; {indicates the seconds}

wMilliseconds: Word; {indicates the milliseconds}

end;

Please see the FileTimeToSystemTime function for a description of this data structure.

lpFormat: A pointer to a string containing the format picture. If this parameter is NIL,

the default date format for the locale will be used. This string is a formatting picture

containing formatting codes from Table 6-15. Spaces in the format will show in the

output as they appear. Other than spaces, text or other literal characters may appear in

single quotations.

lpDateStr: A pointer to the string buffer that receives the formatted date string.

cchDate: Indicates the size of the output buffer pointed to by the lpDateStr parameter in

characters. If this parameter is zero, the function returns the number of characters that

would be required to hold the formatted output and the lpDateStr parameter is ignored.

Return Value

If the function succeeds, it returns the number of characters copied to the lpDateStr

buffer; otherwise, it returns zero. To get extended error information, call the

GetLastError function.

See Also

GetTimeFormat

Example

■ Listing 6-10: Formatting dates

const
{Delphi 6 does not define these GetDateFormat flags}
DATE_YEARMONTH = $00000008; // use year month picture
DATE_LTRREADING = $00000010; // add marks for left-to-right reading order layout
DATE_RTLREADING = $00000020; // add marks for right-to-left reading order layout
LOCALE_USE_CP_ACP = $40000000; // use the system ACP

procedure TForm1.Button1Click(Sender: TObject);

String and Atom Functions � 283

C
h

a
p

te
r
6

var
MyTime: PSystemTime; // pointer to TSystemTime structure
MySystemTime: TSystemTime; // TSystemTime structure in memory
MyDate: PChar; // pointer to output buffer
MyDateBuffer: array[1..40] of char; // output buffer
MyFormat: PChar; // format for formatting date

begin
{initialize pointers}
MyDate := @MyDateBuffer;
MyTime := @MySystemTime;

{display the system date}
GetDateFormat(

LOCALE_USER_DEFAULT, // user locale
DATE_LONGDATE, // long date format
nil, // get the system date
nil, // use local formatting
MyDate, // output buffer
40); // size of output buffer

Label1.Caption := 'The System Date is ' + MyDate;

{initialize system time structure}
FillChar(MyTime^,SizeOf(TSystemTime),0);
MyTime^.wYear := 1981; // a special date
MyTime^.wMonth := 3;
MyTime^.wDay := 6;
MyFormat := 'dddd, MMMM d, yyyy';

GetDateFormat(LOCALE_USER_DEFAULT, 0, MyTime, MyFormat, MyDate, 40);
Label2.Caption := 'I remember ' + MyDate;

end;

Table 6-13: GetDateFormat Locale values

Value Description

LOCALE_SYSTEM_DEFAULT The system’s default locale.

LOCALE_USER_DEFAULT The user’s default locale.

284 � Chapter 6

Figure 6-10:

The formatted

date output

TE
AM
FL
Y

Team-Fly®

Table 6-14: GetDateFormat dwFlags values

Value Description

LOCALE_NOUSEROVERRIDE Indicates that the default date format for the locale given in
the Locale parameter will be used. Without this flag, any
other formatting option will be used to override the locale
default date format.

LOCALE_USE_CP_ACP Uses the system ANSI code page instead of the locale code
page for format translation.

DATE_SHORTDATE Uses the short date format as defined by the regional set-
tings. This cannot be used in combination with
DATE_LONGDATE or DATE_YEARMONTH.

DATE_LONGDATE Uses the long date format as defined by the regional set-
tings. This cannot be used in combination with
DATE_SHORTDATE or DATE_YEARMONTH.

DATE_YEARMONTH Uses the year/month format as defined by the regional set-
tings. This cannot be used in combination with
DATE_LONGDATE or DATE_SHORTDATE.

DATE_USE_ALT_CALENDAR If an alternate calendar exists, use it to format the date
string. The date format for the alternate calendar will be
used instead of any other overriding specification. With this
flag set, other formatting commands will be used only if
there is no default date formatting defined for the alternate
calendar.

DATE_LTRREADING Adds marks for a left-to-right reading layout. Cannot be
used in combination with DATE_RTLREADING.

DATE_RTLREADING Adds marks for a right-to-left reading layout. Cannot be
used in combination with DATE_LTRREADING.

Table 6-15: GetDateFormat lpFormat values

Value Description

d Day of the month. Single-digit days will contain no leading
zero.

dd Day of the month. Single-digit days will contain a leading
zero.

ddd Day of the week abbreviated to three letters. The abbrevi-
ation is determined by the specified locale.

dddd Day of the week, unabbreviated. The specified locale pro-
vides the unabbreviated day name.

M Month with no leading zero for single-digit months.

MM Month with a leading zero for single-digit months.

MMM Month as a three-letter abbreviation. The abbreviation is
determined by the specified locale.

MMMM Month as its full unabbreviated name. The abbreviation is
determined by the specified locale.

String and Atom Functions � 285

C
h

a
p

te
r
6

Value Description

y Last two digits of the year, with no leading zeroes for sin-
gle-digit years.

yy Last two digits of the year, with a leading zero for
single-digit years.

yyyy Year as a full four-digit number.

gg Period/era as defined by the specified locale. This is
ignored if the specified date does not have an associated
era or period string.

GetOEMCP Windows.pas

Syntax

GetOEMCP: UINT; {returns an OEM code page identifier}

Description

GetOEMCP gets the current OEM code page identifier for the system. If a code page is

not defined, then the default code page identifier is returned.

Return Value

If the function succeeds, it returns a 32-bit OEM code page identifier from the follow-

ing table; otherwise, it returns zero.

See Also

GetACP, GetCPInfo

Example

■ Listing 6-11: Retrieving the current OEM code page

procedure TForm1.Button1Click(Sender: TObject);
var
SystemCodePage: Integer; // holds the system code page
SystemCPInfo: TCPinfo; // holds code page info
LeadByteCount: Integer; // indicates lead byte count
LeadX: Integer; // loop counter

begin
{retrieve the system code page}
SystemCodePage := GetOEMCP;
case SystemCodePage of
437: Label1.Caption := 'MS-DOS United States';
708: Label1.Caption := 'Arabic (ASMO 708)';
709: Label1.Caption := 'Arabic (ASMO 449+, BCON V4)';
710: Label1.Caption := 'Arabic (Transparent Arabic)';
720: Label1.Caption := 'Arabic (Transparent ASMO)';
737: Label1.Caption := 'Greek (formerly 437G)';
775: Label1.Caption := 'Baltic';
850: Label1.Caption := 'MS-DOS Multilingual (Latin I)';
852: Label1.Caption := 'MS-DOS Slavic (Latin II)';
855: Label1.Caption := 'IBM Cyrillic (primarily Russian)';
857: Label1.Caption := 'IBM Turkish';

286 � Chapter 6

860: Label1.Caption := 'MS-DOS Portuguese';
861: Label1.Caption := 'MS-DOS Icelandic';
862: Label1.Caption := 'Hebrew';
863: Label1.Caption := 'MS-DOS Canadian-French';
864: Label1.Caption := 'Arabic';
865: Label1.Caption := 'MS-DOS Nordic';
866: Label1.Caption := 'MS-DOS Russian (former USSR)';
869: Label1.Caption := 'IBM Modern Greek';
874: Label1.Caption := 'Thai';
932: Label1.Caption := 'Japan';
936: Label1.Caption := 'Chinese (PRC, Singapore)';
949: Label1.Caption := 'Korean';
950: Label1.Caption := 'Chinese (Taiwan, Hong Kong)';
1361: Label1.Caption := 'Korean (Johab)';

else
Label1.Caption := 'The system code page is ' +IntToStr(SystemCodePage);

end;

{the TCPinfo parameter is a VAR parameter,
just give the variable, not the address of the variable}
if not GetCPInfo(SystemCodePage,SystemCPInfo)
then Label2.Caption := 'Error in getting CP info.'
else Label2.Caption := 'The default character for translation '

+ 'to this code page is: '
+ Char(SystemCPInfo.DefaultChar[0]);

{display the character size}
Label3.Caption := 'The max character size is '

+ IntToStr(SystemCPInfo.MaxCharSize);
{determine lead byte count}
LeadByteCount := 0;
for leadX := 5 downto 0 do
if SystemCPInfo.LeadByte[2*leadx] = 0 then LeadByteCount := LeadX;

Label4.Caption := 'There are '+IntToStr(LeadByteCount)+' lead byte ranges.';
end;

Table 6-16: GetOEMCP return values

Value Description

437 MS-DOS United States

708 Arabic (ASMO 708)

709 Arabic (ASMO 449+, BCON V4)

String and Atom Functions � 287

C
h

a
p

te
r
6

Figure 6-11:

The OEM

code page

information

Value Description

710 Arabic (Transparent Arabic)

720 Arabic (Transparent ASMO)

737 Greek (formerly 437G)

775 Baltic

850 MS-DOS Multilingual (Latin I)

852 MS-DOS Slavic (Latin II)

855 IBM Cyrillic (primarily Russian)

857 IBM Turkish

860 MS-DOS Portuguese

861 MS-DOS Icelandic

862 Hebrew

863 MS-DOS Canadian-French

864 Arabic

865 MS-DOS Nordic

866 MS-DOS Russian (former USSR)

869 IBM Modern Greek

874 Thai

932 Japanese

936 Chinese (PRC, Singapore)

949 Korean

950 Chinese (Taiwan, Hong Kong)

1361 Korean (Johab)

GetTimeFormat Windows.pas

Syntax

GetTimeFormat(

Locale: LCID; {the locale identifier}

dwFlags: DWORD; {formatting options}

lpTime: PSystemTime; {a pointer to the time to be formatted}

lpFormat: PChar; {a pointer to the time format string}

lpTimeStr: PChar; {a pointer to a buffer for the formatted time}

cchTime: Integer {the size of the output buffer}

): Integer; {returns the number of characters copied to the buffer}

Description

This function formats a given time according to a format string and specified options.

A specific time or the system time can be used.

Parameters

Locale: The locale identifier to which the time is formatted. If the lpFormat parameter

is NIL, the time is formatted according to the default time formatting for this locale. If

288 � Chapter 6

the lpFormat parameter contains a formatting string, then the locale will only be used

for formatting information not specified in the lpFormat string. Alternatively, this

parameter can be set to one of the values from Table 6-17.

dwFlags: Specifies the time formatting options. This parameter can be any combination

of values from Table 6-18.

lpTime: A pointer to a TSystemTime structure that contains the time to format. If this

parameter is set to NIL, the current system time will be used. The TSystemTime struc-

ture is defined as:

TSystemTime = record

wYear: Word; {indicates the year}

wMonth: Word; {indicates the month}

wDayOfWeek: Word; {indicates the day of the week}

wDay: Word; {indicates the day of the month}

wHour: Word; {indicates the hour}

wMinute: Word; {indicates the minute)

wSecond: Word; {indicates the seconds}

wMilliseconds: Word; {indicates the milliseconds}

end;

Please see the FileTimeToSystemTime function for a description of this data structure.

lpFormat: A pointer to a string containing the format picture. If this parameter is NIL,

the default date format for the locale will be used. This string is a formatting picture

containing formatting codes from Table 6-19. The format codes are case sensitive. Any

characters in a format string that are in single quotes will appear as in the output string

without being used as a format specifier. A typical time of “12:45 AM” could be for-

matted with an lpFormat parameter of “hh‘:’mm ss tt”. If one of the time markers (“t”

or “tt”) is set and the TIME_NOTIMEMARKER flag is not set in the dwFlags parame-

ter, the time marker information will be provided based on the specified locale.

lpTimeStr: A pointer to the string buffer that receives the formatted time string.

cchTime: Indicates the size of the output buffer pointed to by the lpTimeStr parameter

in characters. If this parameter is zero, the function returns the number of characters

that would be required to hold the formatted output and the lpTimeStr parameter is

ignored.

Return Value

If the function succeeds, it returns the number of characters copied to the lpDateStr

buffer; otherwise, it returns zero. To get extended error information, call the GetLast-

Error function. No errors are returned for a bad format string. GetTimeFormat will

simply use whatever it can and produce its best output using the format provided. If

“hhh” or “ttt” are provided in the format string, the values of “hh” and “tt” will be used

instead.

See Also

GetDateFormat

String and Atom Functions � 289

C
h

a
p

te
r
6

Example

■ Listing 6-12: Retrieving a formatted time string

const
{Delphi 6 does not define these GetTimeFormat flags}
LOCALE_USE_CP_ACP = $40000000; // use the system ACP

procedure TForm1.Button1Click(Sender: TObject);
var
PMySystemTime: PSystemTime; // pointer to a TSystemTime
TMySystemTime: TSystemTime; // TSystemTime structure in memory
MyOutput: array[0..20] of Char; // output buffer
PMyOutput: PChar; // pointer to output
OutputSize: Integer; // size of output buffer
APIresult: Integer; // function result for error trapping

begin
{initialize pointers}
PMySystemTime := @TMySystemTime;
PMyOutput := @MyOutput;
OutputSize := SizeOf(MyOutput); // find size of buffer

{determine the requested time format}
FillChar(TMySystemTime,SizeOf(TMySystemTime),0);
if RadioButton1.Checked then PMySystemTime := nil;
if RadioButton2.Checked then
begin
TMySystemTime.wHour := StrToInt(Edit2.Text);
TMySystemTime.wMinute := StrToInt(Edit3.Text);
TMySystemTime.wSecond := StrToInt(Edit4.Text);

end;
{get the time for the specified format}
APIresult := GetTimeFormat(LOCALE_SYSTEM_DEFAULT,

0, PMySystemTime,
PChar(Edit1.Text),
PMyOutput, OutputSize);

If (APIresult = 0) and (GetLastError = ERROR_INVALID_PARAMETER) then
ShowMessage('Invalid Parameter');

{display the time}
Label1.Caption := PMyOutput;

end;

290 � Chapter 6

Figure 6-12:

The formatted

time output

Table 6-17: GetTimeFormat Locale values

Value Description

LOCALE_SYSTEM_DEFAULT The system’s default locale.

LOCALE_USER_DEFAULT The user’s default locale.

Table 6-18: GetTimeFormat dwFlags values

Value Description

LOCALE_NOUSEROVERRIDE When provided, this forces the function to use the sys-
tem default time format for the specified locale.
Otherwise, when not set, the function formats the
output using any overrides in the locale’s default time
format. This flag can be used only if the lpFormat
parameter is set to NIL.

LOCALE_USE_CP_ACP Uses the system ANSI code page instead of the locale
code page for format translation.

TIME_NOMINUTESORSECONDS Do not put minutes or seconds in the output.

TIME_NOSECONDS Do not put seconds in the output.

TIME_NOTIMEMARKER Do not use a time marker.

TIME_FORCE24HOURFORMAT Use a 24-hour time format regardless of any locale
settings.

Table 6-19: GetTimeFormat lpFormat values

Value Description

h Hours with no leading zero in a 12-hour format.

hh Hours with leading zeroes in a 12-hour format.

H Hours with no leading zeroes in a 24-hour format.

HH Hours with leading zeroes in a 24-hour format.

m Minutes with no leading zeroes.

mm Minutes with leading zeroes.

s Seconds with no leading zeroes.

ss Seconds with leading zeroes.

t Single character time marker, A for AM and P for PM.

tt Multicharacter time marker, AM or PM.

GlobalAddAtom Windows.pas

Syntax

GlobalAddAtom(

lpString: PChar {the string to add to the atom table}

): ATOM; {returns the newly added atom}

Description

This function adds the specified string to the global atom table and returns the atom

number. The string can be no longer than 255 characters. If the string already exists in

String and Atom Functions � 291

C
h

a
p

te
r
6

the table, its reference count is incremented. This global atom table is shared system-

wide with all other processes. Global atom tables have a set size of 37 entries. Global

atoms are not automatically deleted when the application terminates. Atoms added with

GlobalAddAtom must be removed with a matching call to GlobalDeleteAtom before

terminating the application.

Parameters

lpString: A pointer to a null-terminated string to be added to the global atom table.

Return Value

If the function succeeds, it returns the atom number for the string that was added to the

global atom table. The atom value is a 16-bit number in the range 49152 to 65535

($C000 to $FFFF) for strings or in the range 1 to 49151 ($0001 to $BFFF) for integers.

If the function fails, it returns zero. To get extended error information, call the

GetLastError function.

See Also

AddAtom, DeleteAtom, FindAtom, GetAtomName, GlobalDeleteAtom,

GlobalFindAtom, GlobalGetAtomName, MakeIntAtom

Example

■ Listing 6-13: Adding a string to the global atom table

procedure TForm1.Button1Click(Sender: TObject);
var
MyAtom: Atom; // the returned atom
AtomText: PChar; // the string we will store
TextTest: PChar; // for testing search results
AtomTest: Atom; // for testing search results

begin
{add the string to the global atom table}
AtomText := 'This is my atom';
Label1.Caption := 'The text: ' + string(AtomText);

MyAtom := GlobalAddAtom(AtomText);
Label2.Caption := 'Atom Number: ' + IntToStr(MyAtom);

{search the table for atom number, given the string}
AtomTest := GlobalFindAtom(AtomText);
Label3.Caption := 'Atom number by string: ' + IntToStr(AtomTest);

{search by atom number to get the string}
TextTest := StrAlloc(256);
GlobalGetAtomName(MyAtom, Texttest,256);
Label4.Caption := 'Text by atom number: ' + string(TextTest);

{clean up}
GlobalDeleteAtom(MyAtom);
StrDispose(TextTest);

end;

292 � Chapter 6

GlobalDeleteAtom Windows.pas

Syntax

GlobalDeleteAtom(

nAtom: ATOM {the atom number to delete}

): ATOM; {returns zero or the nAtom value}

Description

GlobalDeleteAtom reduces the reference count for the specified atom in the global

atom table by one. If the reference count for the specified atom is zero, the entry is

deleted from the atom table. To make a deletion from the local atom table, use

DeleteAtom.

Parameters

nAtom: The atom number to delete from the global atom table.

Return Value

If this function succeeds, it returns zero; otherwise, it returns the atom number in the

nAtom parameter. To get extended error information, call the GetLastError function.

See Also

AddAtom, FindAtom, DeleteAtom, GlobalAddAtom, GlobalFindAtom

Example

Please see Listing 6-13 under GlobalAddAtom.

GlobalFindAtom Windows.pas

Syntax

GlobalFindAtom(

lpString: PChar {a pointer to the string to search for in the local atom table}

): ATOM; {returns the atom number for the string}

Description

GlobalFindAtom searches the global atom table for the string pointed to by the lpString

parameter and returns the atom number if it is found. The string comparison is not case

sensitive. To find an atom in the local atom table, use the FindAtom function.

String and Atom Functions � 293

C
h

a
p

te
r
6

Figure 6-13:

The atom was

added

Parameters

lpString: A pointer to the null-terminated string to search for in the global atom table.

Return Value

If the function succeeds, it returns the atom number for the specified string; otherwise,

it returns zero. To get extended error information, call the GetLastError function.

See Also

AddAtom, FindAtom, DeleteAtom, GlobalAddAtom, GlobalDeleteAtom

Example

Please see Listing 6-13 under GlobalAddAtom.

GlobalGetAtomName Windows.pas

Syntax

GlobalGetAtomName(

nAtom: ATOM; {an atom number}

lpBuffer: PChar; {a pointer to a buffer receiving the name}

nSize: Integer {the length of the lpBuffer buffer}

): UINT; {returns the number of characters copied to the buffer}

Description

This function finds the string associated with the specified atom number in the global

atom table. If an integer value was stored, the value will be returned in a string format.

For retrieving a string from an atom number from the local atom table, use the

GetAtomName function.

Parameters

nAtom: The atom number whose string is to be retrieved.

lpBuffer: A pointer to a string buffer where the function will place the results of the

search. The string buffer should be large enough to receive the string value plus the

null terminator.

nSize: Specifies the size of the buffer pointed to by the lpBuffer parameter.

Return Value

If the function succeeds, the buffer pointed to by the lpBuffer parameter will contain

the string associated with the specified atom number, and the function returns the num-

ber of characters copied to this buffer. If the function fails, it returns zero. To get

extended error information, call the GetLastError function.

See Also

AddAtom, DeleteAtom, FindAtom, GetAtomName, GlobalAddAtom,

GlobalDeleteAtom, GlobalFindAtom

294 � Chapter 6

TE
AM
FL
Y

Team-Fly®

Example

Please see Listing 6-13 under GlobalAddAtom.

InitAtomTable Windows.pas

Syntax

InitAtomTable(

nSize: DWORD {the desired number of entries in local atom table}

): BOOL; {returns TRUE or FALSE}

Description

This function will initialize the local atom table to a specified number of entries.

InitAtomTable does not need to be called before using any other local atom function. If

InitAtomTable is not called, the local atom table defaults to a size of 37 entries. How-

ever, if the local atom table will be set to a larger size, InitAtomTable should be called

before any other local atom function.

Parameters

nSize: The requested number of table entries. For optimal performance, this value

should be a prime number.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE.

See Also

AddAtom, DeleteAtom, FindAtom, GetAtomName, GlobalAddAtom,

GlobalDeleteAtom, GlobalFindAtom, GlobalGetAtomName

Example

Please see Listing 6-1 under AddAtom.

IsCharAlpha Windows.pas

Syntax

IsCharAlpha(

ch: Char {the character to test}

): BOOL; {returns TRUE or FALSE}

Description

IsCharAlpha tests a character to see if it is an alphabetic character. The language that is

selected at setup or in the Control Panel will determine how the test is performed.

Parameters

ch: The character to be tested.

String and Atom Functions � 295

C
h

a
p

te
r
6

Return Value

If the function succeeds and the character is an alphabetic character, it returns TRUE. If

the function fails or the character is not an alphabetic character, it returns FALSE.

See Also

IsCharAlphaNumeric

Example

■ Listing 6-14: Testing character attributes

procedure TForm1.Button1Click(Sender: TObject);
var
Mychar: Char; // holds the character to test

begin
{initialize the test variable}
MyChar := 'A';
Label1.Caption := 'The character: ' + MyChar;

{retrieve character information}
if IsCharAlpha(MyChar) then Label2.Caption := 'MyChar is alpha';
if IsCharAlphaNumeric(MyChar) then Label3.Caption := 'MyChar is alphanumeric';
if IsCharLower(MyChar) then Label4.Caption := 'MyChar is lowercase';
if IsCharUpper(MyChar) then Label5.Caption := 'MyChar is uppercase';

end;

IsCharAlphaNumeric Windows.pas

Syntax

IsCharAlphaNumeric(

ch: Char {the character to test}

): BOOL; {returns TRUE or FALSE}

Description

IsCharAlphaNumeric tests a character to see if it is an alphabetic or a numeric charac-

ter. The language that is selected at setup or in the Control Panel will determine how

the test is performed.

Parameters

ch: The character to be tested.

296 � Chapter 6

Figure 6-14:

The character

attributes

Return Value

If the function succeeds and the character is an alphanumeric character, it returns

TRUE. If the function fails or the character is not alphanumeric, it returns FALSE.

See Also

IsCharAlpha

Example

Please see Listing 6-14 under IsCharAlpha.

IsCharLower Windows.pas

Syntax

IsCharLower(

ch: Char {the character to test}

): BOOL; {returns TRUE or FALSE}

Description

IsCharLower tests the specified character to determine whether or not it is lowercase.

Parameters

ch: The character to be tested.

Return Value

If the function succeeds and the character is lowercase, it returns TRUE. If the function

fails or the character is not lowercase, it returns FALSE.

See Also

IsCharUpper

Example

Please see Listing 6-14 under IsCharAlpha.

IsCharUpper Windows.pas

Syntax

IsCharUpper(

ch: Char {the character to test}

): BOOL; {returns TRUE or FALSE}

Description

IsCharUpper tests the specified character to determine whether or not it is uppercase.

Parameters

ch: The character to be tested.

String and Atom Functions � 297

C
h

a
p

te
r
6

Return Value

If the function succeeds and the character is uppercase, it returns TRUE. If the function

fails or the character is not uppercase, it returns FALSE.

See Also

IsCharLower

Example

Please see Listing 6-14 under IsCharAlpha.

lstrcat Windows.pas

Syntax

lstrcat(

lpString1: PChar; {the base string and destination address}

lpString2: PChar {the string added to the base string}

): PChar; {returns a pointer to the concatenated string}

Description

lstrcat concatenates two null-terminated strings together, saving the concatenated string

in the buffer pointed to by the lpString1 parameter. The resultant null-terminated string

consists of the string pointed to by the lpString1 parameter followed by the string

pointed to by the lpString2 parameter.

Parameters

lpString1: A pointer to a null-terminated string. This string must be large enough to

contain both strings.

lpString2: A pointer to a null-terminated string. This string is added to the end of the

string pointed to by the lpString1 parameter.

Return Value

If the function succeeds, it returns a pointer to the concatenated strings; otherwise, it

returns NIL. To get extended error information, call the GetLastError function.

See Also

lstrcmp, lstrcmpi, lstrcpy, lstrlen

Example

■ Listing 6-15: Concatenating two strings

procedure TForm1.Button1Click(Sender: TObject);
var
MyTotalString: PChar; // holds the entire string
MyStringToAppend: PChar; // holds the string to append

begin
{allocate memory for the entire string}
MyTotalString := StrAlloc(255);

298 � Chapter 6

{copy the text in edit1 to the full string}
MyTotalString := lstrcpy(MyTotalString, PChar(Edit1.Text));

{point the append string to the text in edit2}
MyStringToAppend := PChar(Edit2.Text);

{concatenate both strings}
MyTotalString := lstrcat(MyTotalString, MyStringToAppend);

{display the concatenated string}
Label1.Caption := StrPas(MyTotalString);

{dispose of allocated memory}
StrDispose(MyTotalString);

end;

lstrcmp Windows.pas

Syntax

lstrcmp(

lpString1: PChar; {a pointer to the first string to compare}

lpString2: PChar {a pointer to the second string to compare}

): Integer; {returns the comparison results}

Description

lstrcmp is a simple string compare function. CompareString should be strongly consid-

ered instead of lstrcmp due to flexibility. lstrcmp has no options and is only interpreted

in the context of the currently installed locale. If no locale was installed at setup or

selected in the Control Panel, then Windows will use a default locale. The two strings

are compared using a word sort comparison, similar to the comparison that is used by

the CompareString function without the SORT_STRINGSORT flag. If the strings are

identical up to the end of the shorter string, then the shorter string is deemed smaller in

value. This function has fewer options than CompareString, but consequently, it is a lit-

tle faster.

Parameters

lpString1: A pointer to the first null-terminated string in the comparison.

lpString2: A pointer to the second null-terminated string in the comparison.

String and Atom Functions � 299

C
h

a
p

te
r
6

Figure 6-15:

The

concatenated

strings

Return Value

The function returns a number indicating the equality of the strings. This number will

be one value from Table 6-20. This function does not indicate an error if it fails.

See Also

CompareString, lstrcat, lstrcmpi, lstrcpy, lstrlen

Example

■ Listing 6-16: Comparing two strings

procedure TForm1.Button1Click(Sender: TObject);
var
MyResult: Integer; // holds the result of the string compare

begin
MyResult := lstrcmp(PChar(Edit1.Text), PChar(Edit2.Text));
if MyResult > 0 then
begin // first parameter is greater
Label1.Caption := 'GREATER';
Label2.Caption := 'SMALLER';
Label3.Caption := '>';

end;
if MyResult < 0 then
begin
Label1.Caption := 'SMALLER';
Label2.Caption := 'GREATER';
Label3.Caption := '<';

end;
if MyResult = 0 then
begin
Label1.Caption := ' equal ';
Label2.Caption := ' equal ';
Label3.Caption := '=';

end;
end;

Table 6-20: lstrcmp return values

Value Description

negative numbers lpString1 is less than lpString2.

zero lpString1 and lpString2 are equal.

positive numbers lpString1 is greater than lpString2.

300 � Chapter 6

Figure 6-16:

The two

strings are

equal

lstrcmpi Windows.pas

Syntax

lstrcmpi(

lpString1: PChar; {a pointer to the first string to compare}

lpString2: PChar {a pointer to the second string to compare}

): Integer; {returns the comparison results}

Description

This function behaves exactly like lstrcmp, except the string comparison is done on a

case-insensitive basis.

Parameters

lpString1: A pointer to the first null-terminated string in the comparison.

lpString2: A pointer to the second null-terminated string in the comparison.

Return Value

The function returns a number indicating the equality of the strings. This number will

be one value from Table 6-21. This function does not indicate an error if it fails.

See Also

CompareString, lstrcat, lstrcmp, lstrcpy, lstrlen

Example

■ Listing 6-17: Comparing two strings

procedure TForm1.Button1Click(Sender: TObject);
var
MyResult: Integer; // holds the result of the comparison

begin
MyResult := lstrcmpi(PChar(Edit1.Text), PChar(Edit2.Text));
if MyResult > 0 then
begin // first parameter is greater
Label1.Caption := 'GREATER';
Label2.Caption := 'SMALLER';
Label3.Caption := '>';

end;
if MyResult < 0 then
begin
Label1.Caption := 'SMALLER';
Label2.Caption := 'GREATER';
Label3.Caption := '<';

end;
if MyResult = 0 then
begin
Label1.Caption := ' equal ';
Label2.Caption := ' equal ';
Label3.Caption := '=';

end;
end;

String and Atom Functions � 301

C
h

a
p

te
r
6

Table 6-21: lstrcmpi return values

Value Description

negative numbers lpString1 is less than lpString2.

zero lpString1 and lpString2 are equal.

positive numbers lpString1 is greater than lpString2.

lstrcpy Windows.pas

Syntax

lstrcpy(

lpString1: PChar; {a pointer to the destination buffer}

lpString2: PChar {a pointer to the string to copy}

): PChar; {returns a pointer to the destination buffer}

Description

lstrcpy copies the string pointed to by the lpString2 parameter to the buffer pointed to

by the lpString1 parameter. It is a general purpose string copy routine that can be used

for any null-terminated data structure regardless of length. The destination buffer must

be allocated prior to calling lstrcpy.

Parameters

lpString1: A pointer to the destination string buffer. This buffer must be large enough

to hold the entire string pointed to by the lpString2 parameter, including the null termi-

nating character.

lpString2: A pointer to the string being copied.

Return Value

If the function succeeds, it returns a pointer to the destination string buffer; otherwise,

it returns NIL. To get extended error information, call the GetLastError function.

See Also

lstrcat, lstrcmp, lstrcmpi, lstrlen

Example

Please see Listing 6-15 under lstrcat.

302 � Chapter 6

Figure 6-17:

The strings

are equal

lstrlen Windows.pas

Syntax

lstrlen(

lpString: PChar {a pointer to a string}

): Integer; {returns the number of characters in the string}

Description

lstrlen finds the length in characters of the string pointed to by the parameter. The null

terminator is not included in this count.

Parameters

lpString: A pointer to a string for which the length is returned.

Return Value

This function returns the number of characters in the string pointed to by the lpString

parameter. This function does not indicate an error upon failure.

See Also

lstrcat, lstrcmp, lstrcmpi, lstrcpy

Example

■ Listing 6-18: Finding the length of a string

procedure TForm1.Button1Click(Sender: TObject);
var
MyLength: Integer; // holds the string length

begin
MyLength := lstrlen(PChar(Edit1.Text));
Label1.Caption := 'The length of the string is ' + IntToStr(MyLength);

end;

MakeIntAtom Windows.pas

Syntax

MakeIntAtom(

wInteger: WORD {an integer value}

): PChar; {returns an integer atom}

Description

This function converts the integer identified by the wInteger value into an atom suit-

able for use with the AddAtom or GlobalAddAtom functions. DeleteAtom and

GlobalDeleteAtom will always succeed for integer atoms, which are not reference

counted like string atoms. GetAtomName and GlobalGetAtomName will return a

null-terminated string with the first character as a pound (#) character; the remaining

characters are the digits of the integer passed to MakeIntAtom.

String and Atom Functions � 303

C
h

a
p

te
r
6

Parameters

wInteger: A 16-bit value that is converted into an integer atom.

Return Value

If the function succeeds, it returns a pointer to a null-terminated string representing the

integer that is suitable for use with the AddAtom and GlobalAddAtom functions. If the

function fails, it returns NIL.

See Also

AddAtom, DeleteAtom, GlobalAddAtom, GlobalDeleteAtom

Example

■ Listing 6-19: Adding an integer atom

procedure TForm1.Button1Click(Sender: TObject);
var
My16: word; // 16-bit value to put in local atom table
MyAtom: Atom; // Atom number in local atom table
MyString : PChar; // Resulting string in atom table

begin
{make space for reading atom table}
MyString := StrAlloc(256);

{value to store in atom table}
My16 := 42;

{store the 16-bit atom}
MyAtom := AddAtom(MakeIntAtom(My16));

{display atom information}
Label1.Caption := 'My Atom is ' + IntToStr(MyAtom);
GetAtomName(MyAtom, MyString, 256);
Label2.Caption := 'Atom Text is ' + MyString;

{clean up}
DeleteAtom(MyAtom);
StrDispose(MyString);

end;

304 � Chapter 6

Figure 6-18:

The integer

atom

TE
AM
FL
Y

Team-Fly®

OemToChar Windows.pas

Syntax

OemToChar(

lpszSrc: PChar; {a pointer to the string to translate}

lpszDst: PChar {a pointer to the translated string}

): BOOL; {always returns TRUE}

Description

OemToChar translates the given string from the OEM character set to an ANSI or

wide-character (Unicode) string.

Parameters

lpszSrc: A pointer to the string containing OEM characters.

lpszDst: A pointer to the translated string. If the destination character set is an ANSI

set (single-byte characters), then the source and destination can be the same string. In

this case, the translation will be performed in place. If the destination character set is a

Unicode (double-byte) character set, there must be a separate buffer for lpszDst.

Return Value

This function always returns TRUE.

See Also

CharToOem, CharToOemBuff, OemToCharBuff

Example

Please see Listing 6-3 under CharToOem.

OemToCharBuff Windows.pas

Syntax

CharToOemBuff(

lpszSrc: PChar; {a pointer to the string to translate}

lpszDst: PChar {a pointer to the translated string}

cchDstLength: DWORD {the number of characters to translate}

): BOOL; {always returns TRUE}

Description

CharToOemBuff translates the specified number of characters from the OEM source

string to the destination string that can be an ANSI string (single-byte) or Unicode

(double-byte) character set.

Parameters

lpszSrc: A pointer to the OEM source string that is to be translated.

lpszDst: A pointer to the destination string. If the destination character set is an ANSI

set (single-byte characters), then the source and destination can be the same string. In

String and Atom Functions � 305

C
h

a
p

te
r
6

this case, the translation will be performed in place. If the destination character set is a

Unicode (double-byte) character set, there must be a separate buffer for lpszDst.

cchDstLength: Specifies the number of characters in the OEM source string to

translate.

Return Value

This function always returns TRUE.

See Also

CharToOem, CharToOemBuff, OemToChar

Example

Please see Listing 6-3 under CharToOem.

ToAscii Windows.pas

Syntax

ToAscii(

uVirtKey: UINT; {a virtual key code to be translated}

uScanCode: UINT; {the hardware keyboard scan code}

const KeyState: TKeyboardState; {the keyboard state}

lpChar: PChar; {a pointer to a buffer receiving the translated key}

uFlags: UINT; {menu active flags}

): Integer; {returns a conversion code}

Description

ToAscii translates a virtual key code and scan state into a Windows character, using the

input language and the system keyboard layout.

Parameters

uVirtKey: The virtual key code to be translated to a Windows character.

uScanCode: The hardware scan code of the key to be translated. The high-order bit is

set if the key is not pressed. The value of the uVirtKey parameter is the primary code

used for translation. uScanCode is used to distinguish between a keypress and a key

release and for translating ALT+number key combinations.

KeyState: A pointer to a 256-byte array indicating the current keyboard state. Each

byte indicates the state for a single key. The most significant bit is set if the key is

down. If the low bit is set, the CAPS LOCK key is toggled on. SCROLL LOCK and

NUM LOCK are ignored.

lpChar: A pointer to a string buffer receiving the translated Windows character.

uFlags: Specifies if a menu is active. A value of 1 indicates that a menu is active; 0

indicates no menu is active.

306 � Chapter 6

Return Value

The function returns one value from the following table. ToAscii does not indicate an

error upon failure.

See Also

OemKeyScan, VkKeyScan

Example

■ Listing 6-20: Converting a virtual key code

procedure TForm1.Button1Click(Sender: TObject);
var
WindowsChar: array[0..1] of Char; // translation will be put here
VirtualKey: Integer; // virtual key code to be translated
ScanCode: Integer; // keyboard scan code, to detect keypress
MyKeyState: TKeyboardState; // array of key states for each key
ReturnCode: Integer; // API return code

begin
VirtualKey := Ord('A'); // ascii char or a virtual key code
ScanCode := $1E; // letter a or A on keyboard hardware

{setting MyKeyState entries to $00 makes a lowercase a}
Fillchar(MyKeyState, SizeOf(MyKeyState),$00);
ReturnCode := ToAscii(VirtualKey, ScanCode, MyKeyState, @WindowsChar, 0);
Label1.Caption := 'Return Code is ' + IntToStr(ReturnCode);
Label2.Caption := 'Translated Character is ' + WindowsChar;

end;

Table 6-22: ToAscii return values

Value Description

negative number The specified key is a dead key (accent or diacritic key).

0 The specified key has no translation for the specified state of the
keyboard.

1 One Windows character was produced by the translation and copied to
the output buffer.

2 Two Windows characters were produced by the translation. This means
an accent or diacritic key was required, and no Windows character was
available for that combination.

wvsprintf Windows.pas

Syntax

wvsprintf(

Output: PChar; {a pointer to an output string buffer}

Format: PChar; {a pointer to the format string}

arglist: va_list {a pointer to a list of arguments}

): Integer; {returns the number of characters copied to the output buffer}

String and Atom Functions � 307

C
h

a
p

te
r
6

Description

This function places a string of formatted text into the buffer pointed to by the Output

parameter, according to the format string and variables given as parameters. Values are

placed into the argument list specified by the arglist parameter, which are then pro-

cessed by wvsprintf and inserted into the output according to what is specified in the

format string.

Parameters

Output: A pointer to a string buffer receiving the formatted text. The calling process

must allocate this buffer.

Format: A pointer to the format string that has the information on how the output is to

be presented. It will generally contain one or more format specifiers, each of which will

use a data element from the arglist parameter. Each format specifier will begin with a

percent sign (%) followed by additional codes from Table 6-23. The general format for

a format specifier is:

%[-][#][0][width][.precision]type

The brackets indicate optional fields. The simplest specifier would be %s, which would

take the string for the next PChar argument in the arglist parameter and put it in place

of the format specifier in the output buffer. If the % symbol is not followed by any of

the codes listed in Table 6-24, the next character is generated as output. For example,

%% would produce a single percent sign as output. Some of the specifiers are case sen-

sitive. Those that are not case sensitive will have both representations shown in Table

6-24. Table 6-23 shows the purpose of each of the fields in a format specifier that can

exist in a format string. Table 6-24 shows all the possible entries in the type field,

which is the last field in the specifier.

arglist: A pointer to the array of parameters for the format specifiers. Each format

specifier in the Format parameter that uses a variable will use a parameter in the arglist.

The size of the array will be whatever is needed to provide enough 4-byte elements to

satisfy the format specifiers. Each array element can be a PChar or an integer value up

to 4 bytes in length. See the FormatMessage function for more information and exam-

ples on using argument arrays.

Return Value

If the function succeeds, the returned value is the number of characters copied to the

output buffer, not counting the final null termination character. If the function fails, it

returns a number that is less than the size of the minimum expected output buffer. It is

not adequate to check the result against the length of the format string, because it is

possible that the final output is shorter than the format string. In the integer example (in

the Button2Click procedure in Listing 6-21), the format string contains format specifi-

cations like “%1ld,” which is four characters. The substituted value is only one

character. Therefore, the error check must compare against the length of the format

string, less six characters (two instances of three characters less). To get extended error

information, call the GetLastError function.

308 � Chapter 6

See Also

FormatMessage, GetDateFormat, GetTimeFormat

Example

■ Listing 6-21: Formatting an array of arguments

{Delphi does not link in LocalHandle, so we must do it explicitly}
function LocalHandle(Mem: Pointer): HLOCAL; stdcall;

implementation

{link in LocalHandle}
function LocalHandle; external kernel32 name 'LocalHandle';

procedure MyErrorHandler(ErrorNumber:integer);
var
ErrorMessage: PChar; // pointer to message area.
MyMemoryHandle: HLOCAL;

begin
{display the system error message if something went wrong}
FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM or

FORMAT_MESSAGE_ALLOCATE_BUFFER,
nil,
ErrorNumber, // ID of error message to fetch
0,
@ErrorMessage, // points to PChar pointer
0,
nil);

ShowMessage('wvsprintf error: ' + ErrorMessage);
MyMemoryHandle := LocalHandle(ErrorMessage);
if (LocalFree(MyMemoryHandle) 0) then
ShowMessage('Error freeing memory');

end;

procedure TForm1.Button2Click(Sender: TObject);
var
MyOutputPtr: PChar; // points to output buffer
MyOutput: array[1..100] of Char; // output buffer
APIresult: Integer; // function result
MyArguments: array[0..1] of Integer; // list of arguments
MyFormat: string; // format spec / template

begin
{initialize the format string and parameters}
MyOutputPtr := @MyOutput;
MyFormat := 'There were %1ld dogs and %1ld birds in my house.';
MyArguments[0] := 3;
MyArguments[1] := 2;

{display the formatted string}
APIresult := wvsprintf(MyOutputPtr, PChar(MyFormat), @MyArguments);
Label1.Caption := MyOutputPtr;

{if there was a problem, display the error message}
if APIresult < (length(MyFormat)-6) then

String and Atom Functions � 309

C
h

a
p

te
r
6

MyErrorHandler(GetLastError);
end;

procedure TForm1.Button1Click(Sender: TObject);
var
MyOutputPtr: PChar; // points to output buffer
MyOutput: array[1..200] of Char; // output buffer
APIresult: Integer; // result of function call
MyArguments: array[0..5] of PChar; // argument array of strings
MyStrings: array[0..5] of string; // data space for strings
MyFormatPtr: PChar; // points to format string
FormatStr: string; // format string

begin
{initialize the format string and format arguments}
MyOutputPtr := @MyOutput;
FormatStr := Edit1.Text;
MyFormatPtr := Pchar(FormatStr);
MyStrings[0] := Edit2.Text;
MyArguments[0] := (PChar(MyStrings[0]));
MyStrings[1] := Edit3.Text;
MyArguments[1] := (PChar(MyStrings[1]));
MyStrings[2] := Edit4.Text;
MyArguments[2] := (PChar(MyStrings[2]));
MyStrings[3] := Edit5.Text;
MyArguments[3] := (PChar(MyStrings[3]));
MyStrings[4] := Edit6.Text;
MyArguments[4] := (PChar(MyStrings[4]));
MyStrings[5] := Edit7.Text;
MyArguments[5] := (PChar(MyStrings[5]));

{display the formatted string}
APIresult := wvsprintf(MyOutputPtr, MyFormatPtr, @MyArguments);
Label1.Caption := MyOutputPtr;

{if there was a problem, display the error message}
if APIresult < (strlen(MyFormatPtr)) then
MyErrorHandler(GetLastError);

end;

310 � Chapter 6

Figure 6-19:

The formatted

string

Table 6-23: wvsprintf Format specifier values

Value Description

- Pad the output to the right and justify to the left. If this is omitted, pad to the
left and justify to the right.

Prefix hexadecimal output with 0x or 0X, uppercase or lowercase according
to the specification of the type parameter.

0 Any padding is to be done with zeroes. If omitted, pad with spaces.

width Total minimum width of the output. Padding will be performed according to
the previous fields, but the output will never be truncated. If omitted, all out-
put will be generated subject to the precision field.

.precision Copy the specified digits to output for numerical specifications or the number
of characters for string specifications. The value is not truncated. This serves
as a padding specification, not an absolute width specification. If this field is
omitted, or given as a 0 or as a single period, the precision is 1.

type Specification on how to perform the output for strings, characters, or num-
bers. See the following table for possible field entries.

Table 6-24: wvsprintf Format type values

Type Description

C Single character. Values of zero are ignored. Wchar for Unicode programs
and char otherwise.

C Single character. Char for Unicode programs and Wchar otherwise. Consider
using the c (lowercase) instead of C (uppercase) for general use.

d Signed decimal integer. Same as i.

hc, hC Single character. Always interpreted as a char, even in Unicode programs.

hs, hS Null-terminated string (PChar), even in Unicode programs.

i Signed decimal integer. Same as d.

lc, lC Single character. Ignores zero values. Always treated as Wchar, regardless of
whether or not the program is a Unicode program.

ld, li Long signed decimal integer.

ls, lS, s Wide null-terminated string (lpwstr), PChar to a wide string, even when not
in a Unicode program.

lu Interpreted as a long unsigned integer.

lx, lX Long unsigned hexadecimal integer, in lowercase or uppercase.

S Null-terminated string, always single-byte character width even in Unicode
programs.

u Interpreted as unsigned integer.

x, X Unsigned hexadecimal integer, lowercase or uppercase.

String and Atom Functions � 311

C
h

a
p

te
r
6

Chapter 7

Clipboard ManipulationClipboard Manipulation

Functions
Sharing information between applications allows a Windows user to be more produc-

tive. Information could be prepared in one application, such as a graphical drawing

program, and then copied and pasted into another application, such as a word proces-

sor. The ability to copy and paste information from one application to another is a

standard expectation of Windows users, and the clipboard manipulation functions pro-

vide the means to implement this functionality.

Clipboard Internals

The clipboard is little more than a system-hosted environment for data storage and

retrieval. It can be thought of as a group of storage bins, with each bin holding a handle

to information in a specific format. The clipboard supports a number of predefined for-

mats for holding information of various types, such as graphics and text, but the

application can also define its own formats. The predefined formats are listed under the

GetClipboardData and SetClipboardData functions.

To place information on the clipboard, an application must first call the OpenClipboard

function. It should then call the EmptyClipboard function, which deletes all informa-

tion on the clipboard in every format and assigns the ownership of the clipboard to the

window passed in the hWndNewOwner parameter of the OpenClipboard function.

Next, the application calls SetClipboardData, passing it a flag indicating the format

associated with the type of data and a handle to the data itself. The CloseClipboard

function completes the operation. When an application wishes to retrieve data from the

clipboard, it uses the GetClipboardData function, passing it a flag indicating the format

for the requested data. If data exists on the clipboard in this format, a handle to the data

is returned.

When an application places data on the clipboard, it should place the data in as many

formats as possible that make sense for the data. This allows a broader range of appli-

cations to retrieve and make use of the information. For example, a word processor

may place text on the clipboard in a proprietary clipboard format that it uses internally.

Placing text on the clipboard in the CF_TEXT and CF_UNICODETEXT formats in

addition to its proprietary format will allow other Windows applications, such as Note-

pad, to retrieve the information in a format that it understands. If the text was placed on

the clipboard in only the proprietary format, only the word processor would be able to

retrieve the text.

313

Conversion Formats

Windows provides data conversions from one format to another for many of the prede-

fined clipboard formats. This conversion is performed by the system on the fly and is

transparent to the application. When data is available on the clipboard in a format for

which there exists a conversion, an application can simply request the data by calling

the GetClipboardData function and passing it the desired format without any further

processing. The following table lists the format conversions available by platform.

Table 7-1: Clipboard format conversions

Clipboard Formats Conversion Format Supported Platform

CF_BITMAP CF_DIB Windows 95/98/Me, Windows NT/2000/XP

CF_DIB CD_BITMAP Windows 95/98/Me, Windows NT/2000/XP

CF_DIB CF_PALETTE Windows 95/98/Me, Windows NT/2000/XP

CF_METAFILEPICT CF_ENHMETAFILE Windows 95/98/Me, Windows NT/2000/XP

CF_ENHMETAFILE CF_METAFILEPICT Windows 95/98/Me, Windows NT/2000/XP

CF_OEMTEXT CF_UNICODETEXT Windows NT/2000/XP

CF_OEMTEXT CF_TEXT Windows 95/98/Me, Windows NT/2000/XP

CF_TEXT CF_OEMTEXT Windows 95/98/Me, Windows NT/2000/XP

CF_TEXT CF_UNICODETEXT Windows NT/2000/XP

CF_UNICODETEXT CF_OEMTEXT Windows NT/2000/XP

CF_UNICODETEXT CF_TEXT Windows NT/2000/XP

Delayed Rendering

Storing large amounts of data on the clipboard, such as multiple complex formats, GDI

objects, or graphics, can take time and will eat away at resources. Fortunately, Win-

dows allows an application to perform something called delayed rendering. To initiate

delayed rendering, an application passes a zero in the hMem parameter of the SetClip-

boardData function. The clipboard will appear to have data in the specified format, but

when an application requests this data, Windows will send the WM_RENDER-

FORMAT or WM_RENDERALLFORMATS message to the clipboard owner (the

application that commenced the delayed rendering). Inside the handlers for these mes-

sages, the application must prepare the information and then call the SetClipboardData

function, this time passing the handle to the information. This technique is useful if the

application supports many different formats of complex data, as it does not have to take

the time to render every format to the clipboard. The following example demonstrates

delayed rendering.

■ Listing 7-1: Delayed rendering of information

type
TForm1 = class(TForm)
Edit1: TEdit;
Edit2: TEdit;
Label1: TLabel;

314 � Chapter 7

TE
AM
FL
Y

Team-Fly®

Label2: TLabel;
Button1: TButton;
Button2: TButton;
procedure FormCreate(Sender: TObject);
procedure Button1Click(Sender: TObject);
procedure Button2Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }
procedure WMDestroyClipboard(var Msg: TWMDestroyClipboard);

message WM_DESTROYCLIPBOARD;
procedure WMRenderFormat(var Msg: TWMRenderFormat);

message WM_RENDERFORMAT;
end;

{our proprietary data format}
ProprietaryData = record
Number: Integer;
Text: array[0..255] of char;

end;

var
Form1: TForm1;
NewFormatID: UINT; // holds the application-defined clipboard format ID
DataHandle: THandle; // a handle to our data

implementation

{$R *.DFM}

procedure TForm1.FormCreate(Sender: TObject);
begin
{register an application-defined clipboard format}
NewFormatID := RegisterClipboardFormat('New Format Example');

end;

procedure TForm1.Button1Click(Sender: TObject);
begin
{Open the clipboard}
OpenClipboard(Form1.Handle);

{empty the clipboard contents. note that it is important to call the
OpenClipboard function passing it the form's handle, and then call
EmptyClipboard so that the form will be set as the clipboard owner.
only the clipboard owner will receive the WM_RENDERFORMAT message.}
EmptyClipboard;

{indicate that our proprietary clipboard format is available, but
set the data for delayed rendering}
SetClipboardData(NewFormatID, 0);

{close the clipboard}
CloseClipboard;

end;

Clipboard Manipulation Functions � 315

C
h

a
p

te
r
7

procedure TForm1.WMRenderFormat(var Msg: TWMRenderFormat);
var
DataPointer: ^ProprietaryData; // a pointer to our data structure

begin
if Msg.Format = NewFormatID then
begin
{allocate enough memory to hold our data structure}
DataHandle := GlobalAlloc(GMEM_DDESHARE or GMEM_MOVEABLE,

SizeOf(ProprietaryData));

{retrieve a pointer to the allocated memory}
DataPointer := GlobalLock(DataHandle);

{set the members of the structure with the supplied values}
DataPointer^.Number := StrToInt(Edit1.Text);
StrCopy(DataPointer^.Text, PChar(Edit2.Text));

{unlock the handle to the data}
GlobalUnlock(DataHandle);

{copy our proprietary data to the clipboard}
SetClipboardData(NewFormatID, DataHandle);

{indicate that the message was handled}
Msg.Result := 0;

end
else
inherited;

end;

procedure TForm1.Button2Click(Sender: TObject);
var
RetrievedData: THandle; // a handle to data
DataPointer: ^ProprietaryData; // a pointer to our data type

begin
{open the clipboard}
OpenClipboard(Form1.Handle);

{retrieve the data in our application-defined format}
RetrievedData := GetClipboardData(NewFormatID);

{get a pointer to the data}
DataPointer := GlobalLock(RetrievedData);

{display the data values}
Label1.Caption := IntToStr(DataPointer^.Number);
Label2.Caption := string(DataPointer^.Text);

{unlock the data handle}
GlobalUnlock(RetrievedData);

{close the clipboard}
CloseClipboard;

end;

316 � Chapter 7

procedure TForm1.WMDestroyClipboard(var Msg: TWMDestroyClipboard);
begin
{the clipboard is being emptied, so free our data}
GlobalFree(DataHandle);
inherited;

end;

Clipboard Viewers

A window can register itself with the system as a clipboard viewer by calling the

SetClipboardViewer function. A clipboard viewer’s function is to simply display the

contents of the clipboard; it should never modify the clipboard in any way, nor should

it leave the data it retrieves from the clipboard in a locked state. Windows maintains a

list of clipboard viewers called the clipboard viewer chain, and when a window calls

the SetClipboardViewer function, it is placed at the beginning of this clipboard viewer

list. A clipboard viewer will receive the WM_DRAWCLIPBOARD message when the

contents of the clipboard changes and the WM_CHANGECBCHAIN message when a

window has been added to or removed from the clipboard viewer chain. When the clip-

board viewer receives one of these messages, it should pass the message on to the other

clipboard viewers in the chain. See the SetClipboardViewer function for an example of

registering a clipboard viewer.

Delphi vs. the Windows API

Delphi has an incredible object available called TClipboard. It is located in the Clipbrd

unit and is accessed through the global object Clipboard. This object provides almost

all of the functionality that you would ever need for an application that makes use of

the clipboard in a standard way. However, there is much more you can do with the clip-

board than can be done through Delphi’s TClipboard object. Such functionality

includes delayed rendering or setting a clipboard viewer, and this can only be done

through the Windows API.

Clipboard Manipulation Functions

The following clipboard manipulation functions are covered in this chapter.

Table 7-2: Clipboard manipulation functions

Function Description

ChangeClipboardChain Removes a window from the clipboard viewer chain.

CloseClipboard Closes the clipboard.

CountClipboardFormats Returns the number of formats for which there is data
available on the clipboard.

EmptyClipboard Empties the clipboard and assigns clipboard ownership.

EnumClipboardFormats Returns the clipboard formats for which there is data
available on the clipboard.

GetClipboardData Retrieves clipboard data for the specified format.

Clipboard Manipulation Functions � 317

C
h

a
p

te
r
7

Function Description

GetClipboardFormatName Retrieves the name of a user-defined clipboard format.

GetClipboardOwner Retrieves a handle to the clipboard owner window.

GetClipboardViewer Retrieves a handle to the first window in the clipboard
viewer chain.

GetOpenClipboardWindow Retrieves a handle to the window that currently has the
clipboard opened.

GetPriorityClipboardFormat Returns the first clipboard format from an array of clip-
board formats for which there is data available on the
clipboard.

IsClipboardFormatAvailable Indicates if data is currently available in the specified
format.

OpenClipboard Opens the clipboard for modification.

RegisterClipboardFormat Registers a user-defined clipboard format with the system.

SetClipboardData Copies data onto the clipboard in the specified format.

SetClipboardViewer Registers a window as a clipboard viewer and places it in
the clipboard viewer chain.

ChangeClipboardChain Windows.pas

Syntax

ChangeClipboardChain(

hWndRemove: HWND; {a handle to the window to remove}

hWndNewNext:HWND {a handle to the next window}

): BOOL; {returns TRUE or FALSE}

Description

This function removes the window identified by the hWndRemove parameter from the

chain of clipboard viewer windows. The window identified by the hWndNewNext

parameter replaces the previous window’s position in the viewer chain. The hWndNew-

Next parameter should be set to the value returned by the call to SetClipboardViewer

that inserted the hWndRemove window into the chain. ChangeClipboardChain causes

the WM_CHANGECBCHAIN message to be sent to the first window in the clipboard

viewer chain.

Parameters

hWndRemove: A handle to the window being removed from the clipboard viewer

chain.

hWndNewNext: A handle to the next window in the clipboard viewer chain.

Return Value

This function returns the result of processing the WM_CHANGECBCHAIN message

by the subsequent windows in the clipboard viewer chain. Typically, these windows

return FALSE when processing this message. This function will return TRUE if there is

only one window in the clipboard viewer chain.

318 � Chapter 7

See Also

SetClipboardViewer, WM_CHANGECBCHAIN

Example

Please see Listing 7-6 under SetClipboardViewer.

CloseClipboard Windows.pas

Syntax

CloseClipboard: BOOL; {returns TRUE or FALSE}

Description

This function closes a clipboard after an application has opened it by calling the

OpenClipboard function. The clipboard must be closed before other applications can

access it.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call the GetLastError function.

See Also

GetOpenClipboardWindow, OpenClipboard

Example

Please see Listing 7-5 under SetClipboardData and Listing 7-6 under SetClipboard-

Viewer.

CountClipboardFormats Windows.pas

Syntax

CountClipboardFormats: Integer; {returns the number of formats currently on the

clipboard}

Description

This function returns the number of clipboard formats that are currently on the

clipboard.

Return Value

If the function succeeds, it returns the number of clipboard formats that are currently

on the clipboard; otherwise, it returns zero. To get extended error information, call the

GetLastError function.

See Also

EnumClipboardFormats, RegisterClipboardFormat

Clipboard Manipulation Functions � 319

C
h

a
p

te
r
7

Example

Please see Listing 7-2 under EnumClipboardFormats.

EmptyClipboard Windows.pas

Syntax

EmptyClipboard: BOOL; {returns TRUE or FALSE}

Description

This function empties the clipboard, freeing any data stored in the clipboard. The clip-

board must first be opened by calling the OpenClipboard function. Once the clipboard

is emptied, this function assigns clipboard ownership to the window passed in the

OpenClipboard function. If the application passes zero as the window handle to the

OpenClipboard function, this function will succeed, but the clipboard will not be

assigned an owner.

Return Value

If this function succeeds, it returns TRUE; otherwise, it returns FALSE. To get

extended error information, call the GetLastError function.

See Also

OpenClipboard, SetClipboardData, WM_DESTROYCLIPBOARD

Example

Please see Listing 7-5 under SetClipboardData.

EnumClipboardFormats Windows.pas

Syntax

EnumClipboardFormats(

format: UINT {an available clipboard format ID}

): UINT; {returns the next available clipboard format ID}

Description

This function returns the clipboard data formats that are currently available on the clip-

board. Clipboard formats are enumerated in the order in which they were placed on the

clipboard. To begin enumeration, set the format parameter to zero and call the function.

This will return the first available clipboard format. Then, call the EnumClipboard-

Formats function again, setting the format parameter to the value returned from the

previous call. This should continue in a loop until EnumClipboardFormats returns zero.

The clipboard must be opened with a call to the OpenClipboard function before enu-

meration can begin. For clipboard formats that have an automatic type conversion, the

clipboard format will be enumerated, followed by the clipboard formats to which it can

be converted.

320 � Chapter 7

Parameters

format: Specifies a clipboard format identifier. For a list of possible clipboard format

identifiers, see the SetClipboardData function.

Return Value

If the function succeeds, it returns the next available clipboard format identifier; other-

wise, it returns zero. To get extended error information, call the GetLastError function.

If there are no more clipboard format identifiers left to enumerate, the function will

succeed but will return zero, in which case GetLastError will return

ERROR_SUCCESS.

See Also

CountClipboardFormats, GetClipboardData, OpenClipboard, RegisterClipboardFormat,

SetClipboardData

Example

■ Listing 7-2: Enumerating available clipboard formats

procedure TForm1.Button1Click(Sender: TObject);
const
{an array defining all of the predefined clipboard format names}
PredefinedClipboardNames: array[1..17] of string = ('CF_TEXT', 'CF_BITMAP',

'CF_METAFILEPICT', 'CF_SYLK', 'CF_DIF',
'CF_TIFF', 'CF_OEMTEXT', 'CF_DIB',
'CF_PALETTE', 'CF_PENDATA', 'CF_RIFF',
'CF_WAVE', 'CF_UNICODETEXT',
'CF_ENHMETAFILE', 'CF_HDROP', 'CF_LOCALE',
'CF_MAX');

var
FormatID: UINT; // holds a clipboard format ID
FormatName: array[0..255] of char; // holds a clipboard format name
Len: Integer; // the length of a clipboard format name

begin
{clear out the list box}
ListBox1.Items.Clear;

{display the number of formats on the clipboard}
Label1.Caption := 'Total Formats Available: '+IntToStr(CountClipboardFormats);

{open the clipboard}
OpenClipboard(0);

{retrieve the first available clipboard format}
FormatID := EnumClipboardFormats(0);

{retrieve all clipboard formats}
while (FormatID 0) do
begin
{get the name of the clipboard format. note that this will only return a format name
if it is a registered format, not one of the predefined formats}
Len := GetClipboardFormatName(FormatID,FormatName,255);

Clipboard Manipulation Functions � 321

C
h

a
p

te
r
7

{if len is equal to zero then it's a predefined format}
if Len = 0 then
ListBox1.Items.Add(PredefinedClipboardNames[FormatID]+' (Predefined)'+

' [' + IntToStr(FormatID)+ ']')
else
{otherwise it contains a registered format name}
ListBox1.Items.Add(FormatName+' [' + IntToStr(FormatID)+ ']');

{retrieve the next available clipboard format}
FormatID:=EnumClipboardFormats(FormatID);

end;

{we are done with the enumeration, so close the clipboard}
CloseClipboard;

end;

GetClipboardData Windows.pas

Syntax

GetClipboardData(

uFormat: UINT {a clipboard format identifier}

): THandle; {a handle to the clipboard data}

Description

This function retrieves data from the clipboard in the format specified by the uFormat

parameter. This data is retrieved in the form of a global memory handle. This handle

belongs to the clipboard, and it should not be freed or left locked by the application.

Consequently, the application should make a copy of the data immediately upon receiv-

ing the handle. If there is data on the clipboard in a format for which the operating

system provides a data conversion, this data can be retrieved in the alternative format,

and the system converts it on the fly (i.e., CF_OEMTEXT data can be retrieved as

CF_TEXT).

322 � Chapter 7

Figure 7-1:

The clipboard

formats

available after

copying text

from Delphi’s

text editor

Parameters

uFormat: Specifies a clipboard format identifier. This can be one value from the fol-

lowing table.

Return Value

If the function succeeds, it returns a handle to the data retrieved from the clipboard in

the specified format; otherwise, it returns zero. To get extended error information, call

the GetLastError function.

Example

Please see Listing 7-5 under SetClipboardData.

Table 7-3: GetClipboardData uFormat values

Value Description

CF_BITMAP A handle to a bitmap.

CF_DIB A handle to a memory object containing a device-
independent bitmap in the form of a TBitmapInfo data
structure, followed by the bitmap image bits.

CF_DIF Data in the form of Software Art’s data interchange
format.

CF_DSPBITMAP Bitmap data in a private format unique to the application.

CF_DSPENHMETAFILE Enhanced metafile data in a private format unique to the
application.

CF_DSPMETAFILEPICT A handle to a memory object identifying a TMetafilePict
data structure that contains a metafile in a private format
unique to the application.

CF_DSPTEXT A handle to text data in a private format unique to the
application.

CF_ENHMETAFILE A handle to an enhanced metafile.

CF_GDIOBJFIRST through CF_GDIOBJLAST A handle to an application-defined GDI object. This han-
dle is not the actual handle to the GDI object but the
handle returned from GlobalAlloc used to allocate mem-
ory for the object. The data identified by these values is
not automatically freed when the clipboard is emptied;
this is the responsibility of the clipboard owner.

CF_HDROP A handle identifying files that have been dragged and
dropped from the Windows Explorer.

CF_LOCALE A handle to a locale identifier associated with the text on
the clipboard. This can be used to determine the charac-
ter set used when the text was copied to the clipboard.

Windows NT/2000 and later: Windows uses the code
page associated with the CF_LOCALE handle to convert
the text from the CF_TEXT format to the
CF_UNICODE format.

Clipboard Manipulation Functions � 323

C
h

a
p

te
r
7

Value Description

CF_METAFILEPICT A handle to a memory object identifying a TMetafilePict
data structure that contains a metafile.

CF_OEMTEXT Text containing characters from the OEM character set.
Each line ends with a carriage return and line feed, and a
null terminating character identifies the end of the data.

CF_OWNERDISPLAY Indicates that the clipboard owner must update and dis-
play the clipboard viewer window. The clipboard owner
will receive the following messages: WM_ASKCB-
FORMATNAME, WM_HSCROLLCLIPBOARD,
WM_PAINTCLIPBOARD, WM_SIZECLIPBOARD, and
WM_VSCROLLCLIPBOARD.

CF_PALETTE Data in the form of a color palette. When an application
places a bitmap on the clipboard, it should also place the
bitmap’s palette on the clipboard.

CF_PENDATA Data used for Microsoft Pen Computing extensions.

CF_PRIVATEFIRST through CF_PRIVATELAST Private clipboard format data. Windows does not free
the value associated with this type of format; the clip-
board owner must free these resources in response to
the WM_DESTROYCLIPBOARD message.

CF_RIFF Complex audio data.

CF_SYLK Data in the Microsoft Symbolic Link format.

CF_TEXT Regular ANSI text. Each line ends with a carriage return
and line feed, and a null terminating character identifies
the end of the data.

CF_WAVE Audio data in a standard Windows wave format.

CF_TIFF An image in a tagged image file format.

CF_UNICODETEXT Windows NT only: Text in Unicode format. Each line
ends with a carriage return and line feed, and a null ter-
minating character identifies the end of the data.

The TMetafilePict data structure is defined as:

TMetafilePict = packed record

mm: Longint; {the mapping mode}

xExt: Longint; {the width of the metafile}

yExt: Longint; {the height of the metafile}

hMF: HMETAFILE; {a handle to the metafile}

end;

For a description of this data structure, see the SetClipboardData function.

324 � Chapter 7

TE
AM
FL
Y

Team-Fly®

GetClipboardFormatName Windows.pas

Syntax

GetClipboardFormatName(

format: UINT; {a clipboard format identifier}

lpszFormatName: PChar; {a pointer to a buffer that receives the format name}

cchMaxCount: Integer {the size of the lpszFormatName buffer}

): Integer; {returns the number of characters copied to the buffer}

Description

This function retrieves the name of a registered clipboard format, storing it in the

buffer pointed to by the lpszFormatName parameter. This function only retrieves for-

mat names for clipboard formats registered with the RegisterClipboardFormat function

and returns a zero for any predefined clipboard formats.

Parameters

format: Specifies a user-defined clipboard format identifier returned from the

RegisterClipboardFormat function.

lpszFormatName: A pointer to a buffer receiving the name of the registered clipboard

format.

cchMaxCount: Specifies the maximum number of characters to copy to the buffer

pointed to by the lpszFormatName parameter. Any characters over this specified limit

will be truncated.

Return Value

If the function succeeds, it returns the number of characters copied to the buffer

pointed to by the lpszFormatName parameter. If the function fails, or the specified for-

mat is one of the predefined clipboard formats, it returns zero. To get extended error

information, call the GetLastError function.

See Also

EnumClipboardFormats, RegisterClipboardFormat

Example

Please see Listing 7-2 under EnumClipboardFormats.

GetClipboardOwner Windows.pas

Syntax

GetClipboardOwner: HWND; {returns the handle to a window}

Description

This function retrieves the handle to the window that owns the clipboard. The clipboard

owner is generally the window that last placed data onto the clipboard. The EmptyClip-

board function can reassign the clipboard owner to zero, indicating that the clipboard is

not currently owned. The clipboard can contain data if it does not have an owner.

Clipboard Manipulation Functions � 325

C
h

a
p

te
r
7

Return Value

If the function succeeds, it returns a handle to the window that currently owns the clip-

board. If the function fails, or the clipboard does not have an owner, the function

returns zero. To get extended error information, call the GetLastError function.

See Also

EmptyClipboard, GetClipboardViewer

Example

Please see Listing 7-6 under SetClipboardViewer.

GetClipboardViewer Windows.pas

Syntax

GetClipboardViewer: HWND; {returns a handle to a window}

Description

This function returns the handle to the first clipboard viewer window in the clipboard

viewer chain.

Return Value

If this function succeeds, it returns the handle to the first window in the clipboard

viewer chain. If the function fails, or there are no clipboard viewers, it returns zero. To

get extended error information, call the GetLastError function.

See Also

GetClipboardOwner, SetClipboardViewer

Example

Please see Listing 7-6 under SetClipboardViewer.

GetOpenClipboardWindow Windows.pas

Syntax

GetOpenClipboardWindow: HWND; {returns a handle to a window}

Description

This function returns the handle of the window that has opened the clipboard but has

not yet closed it.

Return Value

If this function succeeds, it returns the handle of the window that currently has the clip-

board opened. If the function fails, the clipboard is not currently open, or the clipboard

is open but not associated with any window, this function returns zero. To get extended

error information, call the GetLastError function.

326 � Chapter 7

Example

■ Listing 7-3: Retrieving the window opening the clipboard

procedure TForm1.Button1Click(Sender: TObject);
var
TheWindow: HWND; // holds the handle of the window
WindowText: array[0..255] of char; // holds the text of the window
begin
{open the clipboard}
OpenClipboard(Handle);

{retrieve the handle of the window which currently has the clipboard open}
TheWindow := GetOpenClipboardWindow;

{get the caption of the window}
GetWindowText(TheWindow, WindowText, 255);

{display the caption}
Button1.Caption := 'Currently, '+string(WindowText)+' has the clipboard open';

{close the clipboard}
CloseClipboard;

end;

GetPriorityClipboardFormat Windows.pas

Syntax

GetPriorityClipboardFormat(

var paFormatPriorityList; {a pointer to an array of clipboard format identifiers}

cFormats: Integer {the number of entries in the paFormatPrioityList array}

): Integer; {returns the first clipboard format containing data}

Description

This function returns the clipboard format identifier for the first format in the array

pointed to by the paFormatPriorityList parameter for which data is available on the

clipboard. The values in the paFormatPriorityList array should be arranged in the order

of importance.

Parameters

paFormatPriorityList: A pointer to an array of clipboard format identifiers. Please see

the SetClipboardData function for a list of predefined clipboard format identifiers.

cFormats: Specifies the number of entries in the array pointed to by the

paFormatPriorityList parameter.

Return Value

If the function succeeds, it returns the first clipboard format identifier in the list for

which data is available on the clipboard. If the clipboard contains data but not in any

format listed, the function returns –1. If the function fails, or the clipboard is empty, it

returns zero. To get extended error information, call the GetLastError function.

Clipboard Manipulation Functions � 327

C
h

a
p

te
r
7

See Also

CountClipboardFormats, EnumClipboardFormats, GetClipboardFormatName,

IsClipboardFormatAvailable, RegisterClipboardFormat, SetClipboardData

Example

Please see Listing 7-4 under IsClipboardFormatAvailable.

IsClipboardFormatAvailable Windows.pas

Syntax

IsClipboardFormatAvailable(

format: UINT {a clipboard format identifier}

): BOOL; {returns TRUE or FALSE}

Description

This function determines if the clipboard currently contains data in the format specified

by the format parameter. If an application has a Paste menu item, then it can use this

function to determine whether the Paste menu should be disabled if the application sup-

ports only specific clipboard formats.

Parameters

format: Specifies a clipboard format identifier. For a list of possible clipboard format

identifiers, see the SetClipboardData function.

Return Value

If the function succeeds and the clipboard contains data in the specified format, the

function returns TRUE. If the function fails, or the clipboard does not contain data in

the specified format, it returns FALSE. To get extended error information, call the

GetLastError function.

See Also

CountClipboardFormats, EnumClipboardFormats, GetPriorityClipboardFormat,

OpenClipboard, RegisterClipboardFormat, SetClipboardData

Example

■ Listing 7-4: Interrogating clipboard format availability

var
{a list of predefined clipboard formats}
ClipboardFormats: array[1..17] of integer = (CF_TEXT, CF_BITMAP,

CF_METAFILEPICT, CF_SYLK, CF_DIF, CF_TIFF,
CF_OEMTEXT, CF_DIB, CF_PALETTE, CF_PENDATA,
CF_RIFF, CF_WAVE, CF_UNICODETEXT,
CF_ENHMETAFILE, CF_HDROP, CF_LOCALE,
CF_MAX);

procedure TForm1.ListBox1Click(Sender: TObject);
begin

328 � Chapter 7

{retrieve the format ID of the first available format}
if GetPriorityClipboardFormat(ClipboardFormats, 22)>0 then
Label4.Caption := 'The first format containing data: '+ListBox1.Items[

GetPriorityClipboardFormat(ClipboardFormats, 22)-1];;

{determine if the selected clipboard format is available}
if IsClipboardFormatAvailable(ClipboardFormats[ListBox1.ItemIndex+1]) then
Label3.Caption := 'TRUE'

else
Label3.Caption := 'FALSE';

end;

OpenClipboard Windows.pas

Syntax

OpenClipboard(

hWndNewOwner: HWND {the handle of the window opening the clipboard}

): BOOL; {returns TRUE or FALSE}

Description

This function opens the clipboard, preparing it for examination or modification. The

clipboard can only be opened by one window at a time. The clipboard must be closed

by calling the CloseClipboard function before another window can have access to it.

Parameters

hWndNewOwner: A handle to the window that will be associated with the opened clip-

board. If this parameter is set to zero, the clipboard will be opened but will not be

associated with a window.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call the GetLastError function.

See Also

CloseClipboard, EmptyClipboard

Clipboard Manipulation Functions � 329

C
h

a
p

te
r
7

Figure 7-2:

This clipboard

format is

available

Example

Please see Listing 7-5 under SetClipboardData and Listing 7-6 under

SetClipboardViewer.

RegisterClipboardFormat Windows.pas

Syntax

RegisterClipboardFormat(

lpszFormat: PChar {a pointer to a null-terminated string}

): UINT; {returns the new clipboard format identifier}

Description

This function registers an application-defined clipboard format and returns a value in

the range $C000 through $FFFF. This new format identifier can be used to place

application-specific data onto the clipboard. If the registered format already exists, this

function simply returns the clipboard format identifier of the registered format, allow-

ing two applications that registered the same format to share data through the

clipboard.

Parameter:

lpszFormat: A pointer to a null-terminated case-sensitive string containing the name of

the new clipboard format.

Return Value

If the function succeeds, it returns a new clipboard format identifier; otherwise, it

returns zero. To get extended error information, call the GetLastError function.

See Also

CountClipboardFormats, EnumClipboardFormats, GetClipboardFormatName

Example

Please see Listing 7-5 under SetClipboardData.

SetClipboardData Windows.pas

Syntax

SetClipboardData(

uFormat: UINT; {a clipboard format identifier}

hMem: THandle {a handle to the data being copied to the clipboard}

): THandle; {returns the handle to the data}

Description

This function copies the data identified by the hMem parameter onto the clipboard in

the format specified by the uFormat parameter. The window copying the data must

open the clipboard using the OpenClipboard function and should empty the clipboard

with the EmptyClipboard function before the SetClipboardData function is called.

330 � Chapter 7

However, if the application is responding to a WM_RENDERFORMAT or

WM_RENDERALLFORMATS message, it must not call the OpenClipboard function

and can directly call SetClipboardData.

Parameters

uFormat: Specifies the clipboard format identifier for the format of the data being cop-

ied to the clipboard. This parameter can be either a user-defined clipboard format

identifier, as returned by the RegisterClipboardFormat function, or one of the prede-

fined clipboard formats listed in Table 7-4.

hMem: A handle to the data being copied to the clipboard. If this handle identifies a

memory object, the memory object must have been allocated by the GlobalAlloc func-

tion using the flags GMEM_MOVEABLE and GMEM_DDESHARE. If this parameter

is set to zero, the clipboard will indicate that data of the specified format exists,

although it has not been placed onto the clipboard. When an application tries to retrieve

this data from the clipboard, the application that copied the data will receive either a

WM_RENDERFORMAT or WM_RENDERALLFORMATS message. The application

must process these messages, calling SetClipboardData with a real value in the hMem

parameter.

Return Value

If the function succeeds, it returns the handle of the data being copied to the clipboard;

otherwise, it returns zero. To get extended error information, call the GetLastError

function.

See Also

CloseClipboard, EmptyClipboard, GetClipboardData, GlobalAlloc*, OpenClipboard,

RegisterClipboardFormat, WM_RENDERFORMAT, WM_RENDERALLFORMATS

Example

■ Listing 7-5: Setting and retrieving clipboard data

{our proprietary data format}
ProprietaryData = record
Number: Integer;
Text: array[0..255] of char;

end;

var
Form1: TForm1;
NewFormatID: UINT; // holds the application-defined clipboard format ID
DataHandle: THandle; // a handle to our data

implementation

procedure TForm1.FormCreate(Sender: TObject);
begin
{register an application-defined clipboard format}
NewFormatID := RegisterClipboardFormat('New Format Example');

end;

Clipboard Manipulation Functions � 331

C
h

a
p

te
r
7

procedure TForm1.Button1Click(Sender: TObject);
var
DataPointer: ^ProprietaryData; // a pointer to our data structure

begin
{allocate enough memory to hold our data structure}
DataHandle := GlobalAlloc(GMEM_DDESHARE or GMEM_MOVEABLE,

SizeOf(ProprietaryData));

{retrieve a pointer to the allocated memory}
DataPointer := GlobalLock(DataHandle);

{set the members of the structure with the supplied values}
DataPointer^.Number := StrToInt(Edit1.Text);
StrCopy(DataPointer^.Text, PChar(Edit2.Text));

{unlock the handle to the data}
GlobalUnlock(DataHandle);

{Open the clipboard}
OpenClipboard(Form1.Handle);

{empty the clipboard contents and assign Form1 as the clipboard owner}
EmptyClipboard;

{copy our proprietary data to the clipboard}
SetClipboardData(NewFormatID, DataHandle);

{close the clipboard}
CloseClipboard;

end;

procedure TForm1.WMDestroyClipboard(var Msg: TWMDestroyClipboard);
begin
{the clipboard is being emptied, so free our data}
GlobalFree(DataHandle);
inherited;

end;

procedure TForm1.Button2Click(Sender: TObject);
var
RetrievedData: THandle; // a handle to data
DataPointer: ^ProprietaryData; // a pointer to our data type

begin
{open the clipboard}
OpenClipboard(Form1.Handle);

{retrieve the data in our application-defined format}
RetrievedData := GetClipboardData(NewFormatID);

{get a pointer to the data}
DataPointer := GlobalLock(RetrievedData);

{display the data values}
Label1.Caption := IntToStr(DataPointer^.Number);
Label2.Caption := string(DataPointer^.Text);

332 � Chapter 7

{unlock the data handle}
GlobalUnlock(RetrievedData);

{close the clipboard}
CloseClipboard;

end;

Table 7-4: SetClipboardData uFormat values

Value Description

CF_BITMAP A handle to a bitmap.

CF_DIB A handle to a memory object containing a device-independent bitmap in the
form of a TBitmapInfo data structure, followed by the bitmap image bits.

CF_DIF Data in the form of Software Art’s data interchange format.

CF_DSPBITMAP Bitmap data in a private format unique to the application.

CF_DSPENHMETAFILE Enhanced metafile data in a private format unique to the application.

CF_DSPMETAFILEPICT A handle to a memory object identifying a TMetafilePict data structure that
contains a metafile in a private format unique to the application.

CF_DSPTEXT A handle to text data in a private format unique to the application.

CF_ENHMETAFILE A handle to an enhanced metafile.

CF_GDIOBJFIRST through
CF_GDIOBJLAST

A handle to an application-defined GDI object. This handle is not the actual
handle to the GDI object but the handle returned from GlobalAlloc used to
allocate memory for the object. The data identified by these values is not
automatically freed when the clipboard is emptied; this is the responsibility of
the clipboard owner.

CF_HDROP A handle identifying files that have been dragged and dropped from the Win-
dows Explorer.

Clipboard Manipulation Functions � 333

C
h

a
p

te
r
7

Figure 7-3:

Sharing

user-defined

data between

applications

through the

clipboard

Value Description

CF_LOCALE A handle to a locale identifier associated with the text on the clipboard. This
can be used to determine the character set used when the text was copied to
the clipboard.

Windows NT/2000 and later: Windows uses the code page associated with
the CF_LOCALE handle to cover the text from the CF_TEXT format to the
CF_UNICODE format.

CF_METAFILEPICT A handle to a memory object identifying a TMetafilePict data structure that
contains a metafile.

CF_OEMTEXT Text containing characters from the OEM character set. Each line ends with a
carriage return and line feed, and a null terminating character identifies the
end of the data.

CF_OWNERDISPLAY Indicates that the clipboard owner must update and display the clipboard
viewer window. The clipboard owner will receive the following messages:
WM_ASKCBFORMATNAME, WM_HSCROLLCLIPBOARD,
WM_PAINTCLIP- BOARD, WM_SIZECLIPBOARD, and WM_VSCROLL-
CLIPBOARD.

CF_PALETTE Data in the form of a color palette. When an application places a bitmap on
the clipboard, it should also place the bitmap’s palette on the clipboard.

CF_PENDATA Data used for Microsoft Pen Computing extensions.

CF_PRIVATEFIRST through
CF_PRIVATELAST

Private clipboard format data. Windows does not free the value associated
with this type of format; the clipboard owner must free these resources in
response to the WM_DESTROYCLIPBOARD message.

CF_RIFF Complex audio data.

CF_SYLK Data in the Microsoft Symbolic Link format.

CF_TEXT Regular ANSI text. Each line ends with a carriage return and line feed, and a
null terminating character identifies the end of the data.

CF_WAVE Audio data in a standard Windows wave format.

CF_TIFF An image in a tagged image file format.

CF_UNICODETEXT Windows NT only: Text in Unicode format. Each line ends with a carriage
return and line feed, and a null terminating character identifies the end of the
data.

The TMetafilePict data structure is defined as:

TMetafilePict = packed record

mm: Longint; {the mapping mode}

xExt: Longint; {the width of the metafile}

yExt: Longint; {the height of the metafile}

hMF: HMETAFILE; {a handle to the metafile}

end;

mm: Specifies the mapping mode in which the metafile was originally drawn.

xExt: Specifies the width of the rectangle within which the metafile was drawn in

units corresponding to the specified mapping mode.

334 � Chapter 7

TE
AM
FL
Y

Team-Fly®

yExt: Specifies the height of the rectangle within which the metafile was drawn

in units corresponding to the specified mapping mode.

hMF: A handle to the memory-based metafile.

SetClipboardViewer Windows.pas

Syntax

SetClipboardViewer(

hWndNewViewer: HWND {a handle to the new clipboard viewer window}

): HWND; {returns a handle to the next viewer window in the chain}

Description

This function adds the window identified by the hWndNewViewer parameter to the

chain of clipboard viewer windows. A clipboard viewer window receives the

WM_DRAWCLIPBOARD message when the clipboard contents change and the

WM_CHANGECBCHAIN message when another clipboard window is added to or

removed from the clipboard viewer chain. These messages must be sent to the next

window in the chain, identified by the value returned from the call to SetClipboard-

Viewer, after they have been processed by the current clipboard viewer. When no

longer needed, the clipboard viewer window must remove itself from the clipboard

viewer chain by calling the ChangeClipboardChain function.

Parameters

hWndNewViewer: A handle to the new clipboard viewer window being added to the

clipboard viewer chain.

Return Value

If the function succeeds, it returns the handle to the next window in the clipboard

viewer chain. If the function fails, or there are no more windows in the clipboard

viewer chain, the function returns zero. To get extended error information, call the

GetLastError function.

See Also

ChangeClipboardChain, GetClipboardViewer, WM_CHANGECBCHAIN,

WM_DRAWCLIPBOARD

Example

■ Listing 7-6: Viewing the clipboard contents

TForm1 = class(TForm)
Memo1: TMemo;
Panel1: TPanel;
Image1: TImage;
procedure FormCreate(Sender: TObject);
procedure FormDestroy(Sender: TObject);

private
{ Private declarations }
procedure DisplayClipboard(var Msg: TWMDrawClipBoard); message WM_DRAWCLIPBOARD;

Clipboard Manipulation Functions � 335

C
h

a
p

te
r
7

public
{ Public declarations }

end;

var
Form1: TForm1;
hNextClipboardViewerWindow: HWND; // holds the next window in the chain

implementation

procedure TForm1.DisplayClipboard(var Msg: TWMDrawClipBoard);
var
hClipboardData: THandle; // a handle to clipboard data
lpText: PChar; // a pointer to text
ClassName: array[0..255] of char; // holds a window class name
OwnerWindow: HWND; // a handle to the clipboard owner

begin
{this example can render data in the form of text or bitmaps. if
this format is available on the clipboard, then continue}
if IsClipboardFormatAvailable(CF_TEXT) or
IsClipboardFormatAvailable(CF_BITMAP) then
begin
{bring the window into the foreground}
SetForegroundWindow(Form1.Handle);

{retrieve the class name of the window that put the data onto the clipboard}
OwnerWindow := GetClipboardOwner;
GetClassName(OwnerWindow, ClassName, 255);

{display the window owner class name}
Form1.Caption := 'Clipboard Viewer Example - Data Pasted From A '+

string(ClassName)+' Class Window';

{open the clipboard for examination}
OpenClipboard(Form1.Handle);

{if the data placed on the clipboard was text...}
if IsClipboardFormatAvailable(CF_TEXT)then
begin
{...retrieve a global handle to the text}
hClipboardData := GetClipboardData(CF_TEXT);
if hClipboardData = 0 then
raise Exception.Create('Error getting clipboard data');

{convert the global handle into a pointer}
lpText := GlobalLock(hClipboardData);

{hide the bitmap display surface, making the memo visible}
Panel1.Visible := FALSE;

{display the copied text}
SetWindowText(Memo1.Handle, lpText);

{unlock the global handle, as we do not own it}
GlobalUnLock(hClipboardData);

end;

336 � Chapter 7

{if the data placed on the clipboard was a bitmap...}
if IsClipboardFormatAvailable(CF_BITMAP) then
begin
{...retrieve the bitmap handle}
hClipboardData:=GetClipboardData(CF_BITMAP);
if (hClipboardData = 0) then
raise Exception.Create('Error getting clipboard data');

{show the bitmap display surface, making the memo invisible}
Panel1.Visible := TRUE;

{assign the bitmap to the image}
Image1.Picture.Bitmap.Handle := hClipboardData;

{display the copied bitmap}
Image1.Repaint;

end;

{close the clipboard}
CloseClipboard;

end;

{send the message to the next clipboard viewer in the chain}
SendMessage(hNextClipboardViewerWindow, WM_DRAWCLIPBOARD, 0, 0);

end;

procedure TForm1.FormCreate(Sender: TObject);
var

PreviousViewer: HWND; // a handle to the previous viewer
WindowText: array[0..255] of char; // holds the window caption

begin
{empty the entire clipboard contents}
OpenClipboard(Form1.Handle);
EmptyClipboard;
CloseClipboard;

{retrieve the clipboard viewer window, and display its caption}
PreviousViewer := GetClipboardViewer;
if PreviousViewer>0 then
begin

GetWindowText(PreviousViewer, WindowText, 255);
ShowMessage('Previous clipboard viewer was: '+string(WindowText));

end
else

ShowMessage('No previous clipboard viewer is installed.');

{register this window as a clipboard viewer}
hNextClipboardViewerWindow := SetClipboardViewer(Form1.Handle);

end;

procedure TForm1.FormDestroy(Sender: TObject);
begin

{remove the application window from the chain of clipboard viewers}
ChangeClipboardChain(Form1.Handle, hNextClipboardViewerWindow);

end;

Clipboard Manipulation Functions � 337

C
h

a
p

te
r
7

338 � Chapter 7

Figure 7-4:

The clipboard

viewer

Chapter 8

System Information FunctionsSystem Information Functions

At some point, certain applications will need to query the system to determine various

aspects about the operating system it is running on, the machine hardware, etc. This

chapter covers a broad range of information query and modification functions, such as

retrieving the computer name, the current local time, startup information, the Windows

version, and environment variables.

Accessibility Features

Just about any system-wide parameter a user can modify through a control panel applet

is available to a Windows application. Everything from the size of a window border to

the wallpaper selected for the desktop can be queried or modified by the SystemPara-

metersInfo function. This function also makes a number of accessibility features

available to the application. These accessibility features provide alternative forms of

user interface communication to users who are physically challenged in one way or

another. For example, Windows has an accessibility feature called SoundSentry. This

feature allows the system to display a visual indicator when a sound has been gener-

ated, thus alerting a hearing-impaired user that the application has emitted audible

feedback. The following example demonstrates turning this accessibility feature on.

�Note: You must have accessibility features installed before this example

will work. If accessibility features are not installed, the call to

SystemParametersInfo with SPI_SETSOUNDSENTRY (or

SPI_GETSOUNDSENTRY) will simply fail and return FALSE.

■ Listing 8-1: Using the SoundSentry accessibility feature

procedure TForm1.Button2Click(Sender: TObject);
begin
{output a sound through the internal speaker}
MessageBeep(0);

end;

procedure TForm1.FormCreate(Sender: TObject);
var
SoundInfo: TSoundSentry; // holds the sound sentry options

begin

339

{initialize the sound sentry options to turn it on}
with SoundInfo do
begin
cbSize := SizeOf(TSoundSentry);
dwFlags := SSF_SOUNDSENTRYON;
iFSTextEffect := SSTF_DISPLAY;
iFSTextEffectMSec := 500;
iFSTextEffectColorBits := clRed;
iFSGrafEffect := SSGF_DISPLAY;
iFSGrafEffectMSec := 500;
iFSGrafEffectColor := clRed;
iWindowsEffect := SSWF_DISPLAY;
iWindowsEffectMSec := 500;
lpszWindowsEffectDLL := nil;
iWindowsEffectOrdinal := 0

end;

{turn on the sound sentry for visual indication of sounds}
if SystemParametersInfo(SPI_SETSOUNDSENTRY, SizeOf(TSoundSentry),

@SoundInfo, 0) then
Label1.Caption := 'SoundSentry turned on'

else
Label1.Caption := 'SystemParametersInfo call failed, accessibility ' +

'features not installed.'
end;

procedure TForm1.FormClose(Sender: TObject; var Action: TCloseAction);
var
SoundInfo: TSoundSentry; // holds the sound sentry options

begin
{initialize the sound sentry options to turn it off}
with SoundInfo do
begin
cbSize := SizeOf(TSoundSentry);
dwFlags := SSF_SOUNDSENTRYON;
iFSTextEffect := SSTF_NONE;
iFSTextEffectMSec := 500;
iFSTextEffectColorBits := clRed;
iFSGrafEffect := SSGF_NONE;
iFSGrafEffectMSec := 500;
iFSGrafEffectColor := clRed;
iWindowsEffect := SSWF_NONE;
iWindowsEffectMSec := 500;
lpszWindowsEffectDLL := nil;
iWindowsEffectOrdinal := 0

end;

{turn off sound sentry when the form closes}
SystemParametersInfo(SPI_SETSOUNDSENTRY, SizeOf(TSoundSentry), @SoundInfo, 0);

end;

SystemParametersInfo could be used to create some very interesting utilities outside of

the control panel. For example, the following application demonstrates how to change

the desktop wallpaper.

340 � Chapter 8

■ Listing 8-2: Changing the desktop wallpaper

procedure TForm1.FileListBox1Click(Sender: TObject);
begin
{display a preview of the selected image}
Image1.Picture.LoadFromFile(FileListBox1.FileName);

end;

procedure TForm1.Button1Click(Sender: TObject);
begin
{set the selected image as the desktop wallpaper. the user profile will
be updated with the new wallpaper setting}
if FileListBox1.ItemIndex>-1 then
SystemParametersInfo(SPI_SETDESKWALLPAPER, 0, PChar(FileListBox1.FileName),

SPIF_SENDCHANGE);
end;

Delphi vs. the Windows API

There is a plethora of information to be garnered from the system concerning all man-

ner of settings, and while Delphi provides a modicum of support for some of this

functionality, applications will need to use the Windows API to take full advantage of

what the system has to offer. While some of these functions may be somewhat com-

plex, most are relatively easy to implement, and even the complex functions are used in

a rather straightforward manner. Fortunately, Delphi applications have access to a wide

range of informational API calls, and using the functions in this chapter will allow a

developer to query or set almost any system level setting available.

System Information Functions

The following system information functions are covered in this chapter.

Table 8-1: System information functions

Function Description

ExpandEnvironmentStrings Expands an environment variable string with its defined
value.

FreeEnvironmentStrings Frees an environment block returned from
GetEnvironmentStrings.

GetCommandLine Retrieves the command line used to launch the application.

GetComputerName Retrieves the network computer name.

GetDiskFreeSpaceEx Retrieves information on disk space.

GetDriveType Retrieves a specified drive type, such as fixed or
removable.

GetEnvironmentStrings Retrieves a block of environment variable strings for the
current process.

GetEnvironmentVariable Retrieves the value of a single environment variable.

GetLocaleInfo Retrieves information on the specified locale.

System Information Functions � 341

C
h

a
p

te
r
8

Function Description

GetLocalTime Retrieves the local time.

GetLogicalDrives Retrieves the drives available to the machine.

GetLogicalDriveStrings Retrieves the names of the drives available to the machine.

GetStartupInfo Retrieves the startup information for the application’s main
window.

GetSystemDefaultLangID Retrieves the system default language identifier.

GetSystemDefaultLCID Retrieves the system default locale identifier.

GetSystemDirectory Retrieves the Windows system directory.

GetSystemInfo Retrieves system hardware information.

GetSystemTime Retrieves the current system time.

GetSystemTimeAsFileTime Retrieves the current system time in a file system time
format.

GetTimeZoneInformation Retrieves time zone information concerning standard and
daylight savings time.

GetUserDefaultLangID Retrieves the user-defined default language identifier.

GetUserDefaultLCID Retrieves the user-defined default locale identifier.

GetUserName Retrieves the logged-on network username.

GetVersionEx Retrieves the Windows version.

GetVolumeInformation Retrieves information on the specified volume.

GetWindowsDirectory Retrieves the Windows directory.

IsProcessorFeaturePresent Determines if certain processor features are available.

SetComputerName Sets the network computer name.

SetEnvironmentVariable Sets the value of a single environment variable.

SetLocaleInfo Sets the specified locale information.

SetLocalTime Sets the local time.

SetSystemTime Sets the system time.

SetTimeZoneInformation Sets time zone information concerning standard and day-
light savings time.

SetVolumeLabel Sets the specified volume’s label.

SystemParametersInfo Retrieves or modifies a number of system-wide
parameters.

VerLanguageName Retrieves the name of the specified language.

ExpandEnvironmentStrings Windows.pas

Syntax

ExpandEnvironmentStrings(

lpSrc: PChar; {a string that contains the variable to expand}

lpDst: PChar; {buffer to receive string}

nSize: DWORD {the maximum size of buffer}

): DWORD; {returns the number of bytes copied to the buffer}

342 � Chapter 8

Description

This function is used to expand an environment variable string. This function will also

return the size of the new expanded string.

Parameters

lpSrc: A pointer to a null-terminated string containing the unexpanded environment

variable. This string can contain one or more environment variable references. Each

reference in the string is expanded and the resulting string is returned. These variable

strings take the form of %variable name%, where the variable name is an environment

variable.

lpDst: A pointer to a buffer that receives the new expanded string. If this parameter is

set to NIL, the function returns the required size of the buffer to hold the expanded

environment string.

nSize: The maximum size of the buffer. If the lpDst parameter is set to NIL, set this

parameter to zero.

Return Value

If the function succeeds, it returns the number of characters copied to the buffer; other-

wise, it returns zero. To get extended error information, call the GetLastError function.

See Also

GetEnvironmentStrings, GetEnvironmentVariable

Example

■ Listing 8-3: Expanding an environment variable.

Procedure TForm1.Button1Click(Sender:Tobject);
var
ExpandedStr: array[0..255] of char; // holds the expanded environment string

begin
{expand the %TEMP% environment string}
ExpandEnvironmentStrings('Temp directory is: %TEMP%', ExpandedStr,

SizeOf(ExpandedStr));

{display the expanded string}
Label1.Caption := StrPas(ExpandedStr);

end;

System Information Functions � 343

C
h

a
p

te
r
8

Figure 8-1:

The

expanded

environment

variable

FreeEnvironmentStrings Windows.pas

Syntax

FreeEnvironmentStrings(

p1: PChar {a pointer to the environment strings block to free}

): BOOL; {returns TRUE or FALSE}

Description

This function frees a block of environment variable strings as returned by the

GetEnvironmentStrings function.

Parameters

p1: A pointer to a block of environment variable strings as returned by the

GetEnvironmentStrings function.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call the GetLastError function.

See Also

GetEnvironmentStrings

Example

Please see Listing 8-7 under GetEnvironmentStrings.

GetCommandLine Windows.pas

Syntax

GetCommandLine: PChar {returns the command line string}

Description

The GetCommandLine function is used to get the command line that was used to start

the program. This includes any command line parameters. The command line is

returned in the form of a null-terminated string.

Return Value

If the function succeeds, it returns a pointer to the null-terminated command line string;

otherwise, it returns NIL.

See Also

CreateProcess*

Example

■ Listing 8-4: Retrieving the command line

procedure TForm1.Button1Click(Sender: TObject);
begin

344 � Chapter 8

TE
AM
FL
Y

Team-Fly®

{retrieve the command line}
Label1.Caption := StrPas(GetCommandLine);

end;

GetComputerName Windows.pas

Syntax

GetComputerName(

lpBuffer: PChar; {a pointer to a buffer that receives the computer name}

var nSize: DWORD {the size of the lpBuffer buffer}

): BOOL; {returns TRUE or FALSE}

Description

This function retrieves the Windows networking computer name for the current system.

The function also can retrieve the required size of the buffer to store the computer

name. When the nSize parameter is set to zero and the lpBuffer parameter is set to NIL,

the function will return the required size of the lpBuffer in the nSize parameter.

Parameters

lpBuffer: A pointer to a null-terminated string buffer receiving the computer name.

nSize: A variable that specifies the maximum length of the buffer pointed to by the

lpBuffer parameter, in characters. This value should be at least MAX_COMPUTER-

NAME_LENGTH in size.

Return Value

If the function succeeds, it returns TRUE and the variable pointed to by the nSize

parameter receives the number of characters copied to the buffer. If the function fails, it

returns FALSE. To get extended error information, call the GetLastError function.

See Also

GetUserName, SetComputerName

Example

Please see Listing 8-22 under SetComputerName.

GetDiskFreeSpaceEx SysUtils.pas

Syntax

GetDiskFreeSpaceEx(

Directory: PChar; {a pointer to the root path string}

System Information Functions � 345

C
h

a
p

te
r
8

Figure 8-2:

The

command

line

var FreeAvailable: TLargeInteger; {returns available free bytes}

var TotalSpace: TLargeInteger; {returns total bytes}

TotalFree: PLargeInteger {returns total free bytes}

): BOOL {returns TRUE or FALSE}

Description

The GetDiskFreeSpaceEx function retrieves the total amount of space, the total amount

of free space, and the total amount of available free space to the calling thread on a

specified partition.

�Note: Under Windows 95 prior to Service Release 2, this function returns

incorrect values for volumes larger than 2 gigabytes in size.

Parameters

Directory: A null-terminated string containing the root directory of the drive to query.

If this parameter is NIL, the function returns information for the partition containing

the current directory.

FreeAvailable: A variable receiving the total amount of free space on the partition, in

bytes, that is available to the calling thread.

TotalSpace: A variable receiving the total amount of space on the partition, in bytes.

TotalFree: A variable receiving the total amount of free space on the partition, in bytes.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call the GetLastError function.

See Also

GetDriveType

Example

■ Listing 8-5: Retrieving the free disk space

procedure TForm1.Button1Click(Sender: TObject);
var
FreeBytesAvailable,
TotalBytes,
TotalFreeBytes: TLargeInteger;

begin
{retrieve the disk space information}
if GetDiskFreeSpaceEx('C:\', FreeBytesAvailable, TotalBytes,

@TotalFreeBytes) then
begin
{display the disk space information}
Panel2.Caption := IntToStr(FreeBytesAvailable);
Panel3.Caption := IntToStr(TotalBytes);
Panel4.Caption := IntToStr(TotalFreeBytes);

346 � Chapter 8

end;
end;

GetDriveType Windows.pas

Syntax

GetDriveType(

lpRootPathName: PChar {a pointer to the root path string}

): UINT; {returns a value based on the drive type}

Description

GetDriveType is used to determine the type of drive being accessed and will indicate

fixed, removable, or remote (network) drives.

Parameters

lpRootPathName: A null-terminated string containing the root directory of the drive to

be queried. If this parameter is NIL, the function uses the root of the current directory.

Return Value

If the function is successful, it returns one value from the following table; otherwise, it

returns DRIVE_UNKNOWN.

See Also

GetDiskFreeSpaceEx

Example

■ Listing 8-6: Retrieving drive types

procedure TForm1.DriveComboBox1Change(Sender: TObject);
var
DrivePath: array[0..3] of char; // holds the root directory to query

begin
{assemble the name of the root path of the drive to query}
StrPCopy(DrivePath, DriveComboBox1.Drive);
StrCat(DrivePath, ':\');

{retrieve the drive type and display it}
case GetDriveType(DrivePath) of
DRIVE_UNKNOWN: Panel1.Caption := 'No Type Information';

System Information Functions � 347

C
h

a
p

te
r
8

Figure 8-3:

Free disk

space

DRIVE_NO_ROOT_DIR: Label1.Caption := 'Root Directory does not exist';
DRIVE_REMOVABLE: Panel1.Caption := 'Removable';
DRIVE_FIXED: Panel1.Caption := 'Fixed';
DRIVE_REMOTE: Panel1.Caption := 'Remote';
DRIVE_CDROM: Panel1.Caption := 'CDROM';
DRIVE_RAMDISK: Panel1.Caption := 'RamDisk';

end;
end;

Table 8-2: GetDriveType return values

Value Description

DRIVE_UNKNOWN The drive type cannot be determined.

DRIVE_NO_ROOT_DIR The root directory does not exist.

DRIVE_REMOVABLE Indicates a removable disk drive.

DRIVE_FIXED Indicates a non-removable disk drive (hard drive).

DRIVE_REMOTE Indicates a remote (network) drive.

DRIVE_CDROM Indicates a CD-ROM drive.

DRIVE_RAMDISK Indicates a RAM disk.

GetEnvironmentStrings Windows.pas

Syntax

GetEnvironmentStrings: PChar {returns a pointer to the environment strings}

Description

The GetEnvironmentStrings function returns a pointer to the system environment vari-

able strings. This includes environment variable settings such as the PATH, PROMPT

and LASTDRIVE environment variables. The return value from this parameter can be

used to specify the environment address in a call to the CreateProcess function. When

the environment strings block is no longer needed, it should be freed by calling the

FreeEnvironmentStrings function.

Return Value

If the function succeeds, it returns a pointer to a null-terminated string buffer. This

buffer is composed of each environment variable string separated by a null terminating

character. The buffer is ended with a double null terminating character. If the function

fails, it returns NIL.

See Also

CreateProcess*, FreeEnvironmentStrings, GetEnvironmentVariable,

SetEnvironmentVariable

348 � Chapter 8

Figure 8-4:

This drive is a

CD-ROM

Example

■ Listing 8-7: Retrieving the environment strings

procedure TForm1.Button1Click(Sender: Tobject);
var
MyPointer: PChar; // holds the returned environment strings

begin
{clear the memo}
Memo1.Lines.Clear;

{retrieve the environment strings}
MyPointer := GetEnvironmentStrings;

{begin displaying environment strings}
if MyPointer <> nil then
while MyPointer <> nil do
begin
{display an environment string}
Memo1.Lines.Add(StrPas(MyPointer));

{environment strings are separated by null terminators, so if we
increment the pointer past the null terminator of the last string
displayed, it will be at the beginning of the next string}
Inc(MyPointer,StrLen(MyPointer) + 1);

{determine if we are at the end of the environment strings buffer}
if (Byte(MyPointer[0]) = 0) then MyPointer := nil;

end;

{the environment strings are no longer needed, so free them}
FreeEnvironmentStrings(MyPointer);

end;

GetEnvironmentVariable Windows.pas

Syntax

GetEnvironmentVariable(

lpName: PChar; {a pointer to the variable name string}

System Information Functions � 349

C
h

a
p

te
r
8

Figure 8-5:

The returned

environment

strings

lpBuffer: PChar; {a pointer to a string to receive the value}

nSize: DWORD {the size of the lpBuffer}

): DWORD; {returns the number of bytes written to the buffer}

Description

The GetEnvironmentVariable function retrieves a given environment variable value.

The function can also return the required size of the buffer to hold the environment

variable value.

Parameters

lpName: A null-terminated string containing the name of the environment variable to

be retrieved.

lpBuffer: A pointer to a null-terminated string buffer that receives the environment

variable’s value. If this parameter is set to NIL, the function returns the size of the

buffer required to hold the environment variable’s value.

nSize: Specifies the maximum size of the buffer in characters.

Return Value

If the function succeeds, it returns the number of characters copied to the buffer

pointed to by the lpBuffer parameter; otherwise, it returns zero.

See Also

GetEnvironmentStrings, SetEnvironmentVariable

Example

Please see Listing 8-23 under SetEnvironmentVariable.

GetLocaleInfo Windows.pas

Syntax

GetLocaleInfo(

Locale: LCID; {the locale identifier}

LCType: LCTYPE; {information type flag}

lpLCData: PChar; {a pointer to an output buffer}

cchData: Integer {the length of the output buffer}

): Integer; {returns the number of characters copied to the buffer}

Description

GetLocaleInfo retrieves specific information for a certain locale. A variety of informa-

tion is available, according to the flag specified in the LCType parameter. The function

returns the locale information in the form of a string, stored in the buffer pointed to by

the lpLCData parameter.

Parameters

Locale: The locale identifier from which information is requested. This can be a spe-

cific locale identifier or one value from Table 8-3.

350 � Chapter 8

LCType: A flag indicating the type of information requested. The constant

LOCALE_NOUSEROVERRIDE may be combined with any one of the items from

Table 8-4, which means user overrides are not considered and the system default value

for the locale is returned.

lpLCData: A pointer to a string buffer that receives the requested locale information.

cchData: Specifies the size, in bytes, of the buffer pointed to by the lpLCData parame-

ter. If this parameter is zero, the function returns the size of the requested information,

in bytes, and the lpLCData parameter is ignored.

Return Value

If the function succeeds, it returns the number of bytes copied to the lpLCData buffer,

and lpLCData will point to a string containing the requested information. If the func-

tion fails, it returns zero. To get extended error information, call the GetLastError

function.

See Also

GetSystemDefaultLCID, GetUserDefaultLCID, SetLocaleInfo

Example

■ Listing 8-8: Retrieving locale information

procedure TForm1.Button1Click(Sender: TObject);
var
OutputBuffer: PChar; // holds local info
SelectedLCID: LCID; // holds the selected LCID

begin
{allocate memory for the string}
OutputBuffer := StrAlloc(255);

{get the native language}
if RadioButton1.Checked then
SelectedLCID := GetSystemDefaultLCID

else
SelectedLCID := GetUserDefaultLCID;

GetLocaleInfo(SelectedLCID, LOCALE_SNATIVELANGNAME,
OutputBuffer, 255);

Label1.Caption :='Native language for user locale is ' + OutputBuffer;

{get the measurement system}
GetLocaleInfo(SelectedLCID, LOCALE_IMEASURE, OutputBuffer, 255);
if OutputBuffer = '0' then
Label2.Caption := 'This country uses metric measurements.';

if OutputBuffer = '1' then // pounds, ounces, quarts, miles, etc.
Label2.Caption := 'This country uses British measurements.';

{get the name of Sunday}
GetLocaleInfo(SelectedLCID, LOCALE_SDAYNAME7, OutputBuffer, 255);
Label3.Caption := 'This country calls Sunday ' + OutputBuffer;

{dispose of the string memory}

System Information Functions � 351

C
h

a
p

te
r
8

StrDispose(OutputBuffer);
end;

Table 8-3: GetLocaleInfo Locale values

Value Description

LOCALE_SYSTEM_DEFAULT The system’s default locale.

LOCALE_USER_DEFAULT The user’s default locale.

Table 8-4: GetLocaleInfo LCType values

Value Description

LOCALE_FONTSIGNATURE A bit pattern identifying the relationship between characters
needed to support the language of the locale and the contents of
fonts.

LOCALE_ICALENDARTYPE The current calendar type. Maximum output buffer size is two
characters. The calendar type values are given in Table 8-5.

LOCALE_ICENTURY Specifier for four-digit century. The maximum size of this string is
two characters. The specifier can be one of the following values:
0 = abbreviated two-digit century; 1 = four-digit century.

LOCALE_ICOUNTRY Country code, given as an IBM country code (international phone
code) with a maximum length of six characters.

LOCALE_ICURRDIGITS Number of fractional digits for local monetary displays, with the
maximum size of the returned output buffer being three
characters.

LOCALE_ICURRENCY Positive currency mode. Maximum output buffer is two charac-
ters. The mode values are given in Table 8-6.

LOCALE_IDATE Short date format. The maximum size of this string is two. The
specifier can be any value from Table 8-7.

LOCALE_IDAYLZERO Specifier for leading zeroes in day fields. The maximum size of this
string is two. The specifier can be one of the following values: 0 =
no leading zeroes for days; 1 = leading zeroes for days.

LOCALE_IDEFAULTANSICODEPAGE ANSI code page for this locale. If the locale does not have an
ANSI code page, this value is 0. This has a maximum size of six
characters.

LOCALE_IDEFAULTCODEPAGE OEM code page for this locale. This has a maximum size of six
characters.

352 � Chapter 8

Figure 8-6:

Default locale

information

Value Description

LOCALE_IDEFAULTCOUNTRY Country code of the primary country of the locale. This has a
maximum size of six characters.

LOCALE_IDEFAULTLANGUAGE Language identifier of the primary language of the locale. This has
a maximum size of five characters.

LOCALE_IDIGITS This is the number of fractional digits. The maximum number of
digits for this return value is three. That does not mean that the
maximum number of fractional digits is three; it simply means the
maximum number could possibly be 999, taking up three spaces
in the returned output buffer.

LOCALE_IDIGITSUBSTITUTION Windows 2000/XP and later: Determines the shape of digits.
This can be any value from Table 8-8.

LOCALE_IFIRSTDAYOFWEEK Specifier for the first day of the week for the locale. This has a
maximum size of two characters and can be any value from Table
8-9.

LOCALE_IFIRSTWEEKOFYEAR Specifier for the first week of the year for the locale. This has a
maximum size of two characters and can be any value from Table
8-10.

LOCALE_IINTLCURRDIGITS Number of fractional digits for international monetary displays,
maximum size being three characters.

LOCALE_ILANGUAGE Language of the locale. Maximum length is five.

LOCALE_ILDATE Long date format. The maximum size of this string is two. The
specifier can be any of the values from Table 8-7.

LOCALE_ILZERO Specifies if leading zeroes exist for decimal fields. 0 = no leading
zeroes. 1 = use leading zeroes. The maximum number of spaces
returned for this field is two.

LOCALE_IMEASURE System of measurement for the locale. 0 for metric (S.I.) and 1 for
U.S. measurements system. The maximum size for this value is
two characters.

LOCALE_IMONLZERO Specifier for leading zeroes in month fields. The maximum size of
this string is two. The specifier can be one of the following values:
0 = no leading zeroes for months; 1 = leading zeroes for months.

LOCALE_INEGCURR Negative currency mode. Maximum size for this string is three.
The mode can be any of the values in Table 8-11.

LOCALE_INEGNUMBER Negative number formatting. Maximum size for this string is two.
The mode can be any of the values in Table 8-12.

LOCALE_INEGSEPBYSPACE Separation of monetary symbol in a negative monetary value. This
value is 1 if the monetary symbol is separated by a space from the
negative amount, 0 if it is not. The maximum size of this string is
two.

LOCALE_INEGSIGNPOSN Formatting index for negative values. The maximum size of this
string is two. The index can be one of the values from Table 8-13.

LOCALE_INEGSYMPRECEDES Position of monetary symbol in a negative monetary value. This
value is 1 if the monetary symbol precedes the negative amount, 0
if it follows it. The maximum size of this string is two.

System Information Functions � 353

C
h

a
p

te
r
8

Value Description

LOCALE_IOPTIONALCALENDAR Specifies an available optional calendar. This can be one value
from Table 8-5.

LOCALE_IPAPERSIZE Windows 2000/XP and later: The default paper size used for
the locale. This can be one value from Table 8-14.

LOCALE_IPOSSEPBYSPACE Separation of monetary symbol in a positive monetary value. This
value is 1 if the monetary symbol is separated by a space from a
positive amount, 0 if it is not. The maximum size of this string is 2.

LOCALE_IPOSSIGNPOSN Formatting index for positive values. The maximum size of this
string is 2. The index can be one of the values from Table 8-13.

LOCALE_IPOSSYMPRECEDES Position of monetary symbol in a positive monetary value. This
value is 1 if the monetary symbol precedes the positive amount, 0
if it follows it. The maximum size of this string is two.

LOCALE_ITIME Time format specifier. The maximum size of this string is 2. The
specifier can be one of the following values: 0 = AM/PM 12-hour
format; 1 = 24-hour format

LOCALE_ITIMEMARKPOSN AM/PM position indicator. This can be one of the following values:
0 = used as a suffix; 1 = used as a prefix.

LOCALE_ITIMEMARKERUSE Specifies if the AM/PM marker is used with 12-hour or 24-hour
clocks. This can be one value from Table 8-15.

LOCALE_ITLZERO Specifier for leading zeroes in time fields. The maximum size of
this string is two. The specifier can be one of the following values:
0 = no leading zeroes for hours; 1 = leading zeroes for hours.

LOCALE_NOUSEROVERRIDE Used in conjunction with other values from this table, this flag
causes the function to return the system default for the indicated
LCType instead of any user-defined values.

LOCALE_RETURN_NUMBER Windows 98/Me/NT 4.0 and later: Used in conjunction with
any other LOCALE_I* flag, this flag causes the function to return
the value as a number instead of a string. The buffer pointed to by
lpLCData must be at least the size of a DWORD.

LOCALE_S1159 String for the AM designator.

LOCALE_S2359 String for the PM designator.

LOCALE_SABBREVCTRYNAME ISO 3166 abbreviated country name.

LOCALE_SABBREVDAYNAME1 Native abbreviated name for Monday.

LOCALE_SABBREVDAYNAME2 Native abbreviated name for Tuesday.

LOCALE_SABBREVDAYNAME3 Native abbreviated name for Wednesday.

LOCALE_SABBREVDAYNAME4 Native abbreviated name for Thursday.

LOCALE_SABBREVDAYNAME5 Native abbreviated name for Friday.

LOCALE_SABBREVDAYNAME6 Native abbreviated name for Saturday.

LOCALE_SABBREVDAYNAME7 Native abbreviated name for Sunday.

LOCALE_SABBREVLANGNAME Name of language, in abbreviated ISO 639 format, using the
two-character abbreviation, with a possible third character to
indicate a sublanguage.

LOCALE_SABBREVMONTHNAME1 Native abbreviated name for January.

354 � Chapter 8

TE
AM
FL
Y

Team-Fly®

Value Description

LOCALE_SABBREVMONTHNAME2 Native abbreviated name for February.

LOCALE_SABBREVMONTHNAME3 Native abbreviated name for March.

LOCALE_SABBREVMONTHNAME4 Native abbreviated name for April.

LOCALE_SABBREVMONTHNAME5 Native abbreviated name for May.

LOCALE_SABBREVMONTHNAME6 Native abbreviated name for June.

LOCALE_SABBREVMONTHNAME7 Native abbreviated name for July.

LOCALE_SABBREVMONTHNAME8 Native abbreviated name for August.

LOCALE_SABBREVMONTHNAME9 Native abbreviated name for September.

LOCALE_SABBREVMONTHNAME10 Native abbreviated name for October.

LOCALE_SABBREVMONTHNAME11 Native abbreviated name for November.

LOCALE_SABBREVMONTHNAME12 Native abbreviated name for December.

LOCALE_SABBREVMONTHNAME13 Native abbreviated name for the thirteenth month, if it exists.

LOCALE_SCOUNTRY Unabbreviated localized name of the country.

LOCALE_SCURRENCY Monetary symbol ($ for the U.S.).

LOCALE_SDATE Characters for the date separator.

LOCALE_SDAYNAME1 Native long name for Monday.

LOCALE_SDAYNAME2 Native long name for Tuesday.

LOCALE_SDAYNAME3 Native long name for Wednesday.

LOCALE_SDAYNAME4 Native long name for Thursday.

LOCALE_SDAYNAME5 Native long name for Friday.

LOCALE_SDAYNAME6 Native long name for Saturday.

LOCALE_SDAYNAME7 Native long name for Sunday.

LOCALE_SDECIMAL Character that is used as a decimal separator (such as a period for
U.S. floating-point values).

LOCALE_SENGCOUNTRY Unabbreviated English name of the country. This representation
can always be shown in a 7-bit ASCII (127-character) character
set.

LOCALE_SENGCURRNAME Windows 98/Me/2000/XP and later: The English name for the
locale currency.

LOCALE_SENGLANGUAGE Full English name of the locale in ISO standard 639 format. This
representation can always be shown in a 7-bit ASCII (127-charac-
ter) character set.

LOCALE_SGROUPING Number of decimal digits in each group to the left of the decimal
character. This is a string with values separated by semicolons.
The number in each group is given separately. If a number is com-
mon for all groups, specify the number followed by a zero group.
In the U.S., this would be given by a string value 3;0, meaning that
all the groups have three decimal digits.

LOCALE_SINTLSYMBOL ISO 4217 international monetary symbol for the locale, given as
three characters, followed by the character that separates the
string from the amount display.

System Information Functions � 355

C
h

a
p

te
r
8

Value Description

LOCALE_SISO3166CTRYNAME Windows 98/Me/NT 4.0 and later: The ISO 3166 name for the
country or region.

LOCALE_SISO639LANGNAME Windows 98/Me/NT 4.0 and later: The abbreviated ISO 639
name for the locale language.

LOCALE_SLANGUAGE Full unabbreviated localized language name for this locale.

LOCALE_SLIST The character that is used as a list separator for the locale.

LOCALE_SLONGDATE Long date formatting string for the current locale.

LOCALE_SMONDECIMALSEP Characters used as the monetary decimal separator.

LOCALE_SMONGROUPING Sizes for each group of decimal digits to the left of the decimal
point. The number in each group is given separately. If a number
is common for all groups, specify the number followed by a zero
group. In the U.S., this would be given by a string value 3;0, mean-
ing that all the groups have three decimal digits.

LOCALE_SMONTHNAME1 Native long name for January.

LOCALE_SMONTHNAME2 Native long name for February.

LOCALE_SMONTHNAME3 Native long name for March.

LOCALE_SMONTHNAME4 Native long name for April.

LOCALE_SMONTHNAME5 Native long name for May.

LOCALE_SMONTHNAME6 Native long name for June.

LOCALE_SMONTHNAME7 Native long name for July.

LOCALE_SMONTHNAME8 Native long name for August.

LOCALE_SMONTHNAME9 Native long name for September.

LOCALE_SMONTHNAME10 Native long name for October.

LOCALE_SMONTHNAME11 Native long name for November.

LOCALE_SMONTHNAME12 Native long name for December.

LOCALE_SMONTHNAME13 Native long name for the thirteenth month, if it exists.

LOCALE_SMONTHOUSANDSEP Characters used as monetary separators for groups of digits to
the left of the decimal point.

LOCALE_SNATIVECTRYNAME Native name of the country or region.

LOCALE_SNATIVECURRNAME Windows 98/Me/2000/XP and later: The native name of the
locale currency.

LOCALE_SNATIVE DIGITS The native digits for 0 through 9. This allows any characters in the
locale character set to be used to represent numerical output
regardless of their ASCII value mappings.

LOCALE_SNATIVELANGNAME Name of the language in the native language.

LOCALE_SNEGATIVESIGN String value for the negative sign.

LOCALE_SPOSITIVESIGN String value for the positive sign.

LOCALE_SSHORTDATE Short date formatting string for the current locale.

LOCALE_SSORTNAME Windows 98/Me/2000/XP and later: Full native name of the
sort for the specified locale.

356 � Chapter 8

Value Description

LOCALE_STHOUSAND Character or characters used to separate digit groups on the left
side of the decimal character (decimal point). This would be the
comma for U.S. locales.

LOCALE_STIME Characters for the time separator.

LOCALE_STIMEFORMAT Time formatting strings for the current locale.

LOCALE_SYEARMONTH Windows 98/Me/2000/XP and later: Specifies the format string
for dates containing only the year and month.

LOCALE_USE_CP_ACP Uses the system ANSI code page for any string translation. This
flag can be combined with any other flag in this table.

Table 8-5: GetLocaleInfo LCType LOCALE_ICALENDARTYPE and LOCALE_IOPTIONALCALENDAR type values

Value Description

0 No calendar

1 Localized Gregorian

2 English string Gregorian

3 Japanese (Year of the Emperor)

4 Taiwan

5 Korean (Tangun Era)

6 Hijri (Arabic lunar)

7 Thai

8 Hebrew (lunar)

9 Middle East French Gregorian

10 Arabic Gregorian

11 Gregorian Transliterated English

12 Gregorian Transliterated French

Table 8-6: GetLocaleInfo LCType LOCALE_ICURRENCY mode values

Value Description

0 Prefix with no separation

1 Suffix with no separation

2 Prefix with one character separation

3 Suffix with one character separation

Table 8-7: GetLocaleInfo LCType LOCALE_IDATE and LOCALE_ILDATE values

Value Description

0 Month-Day-Year

1 Day-Month-Year

2 Year-Month-Day

System Information Functions � 357

C
h

a
p

te
r
8

Table 8-8: GetLocaleInfo LCType LOCALE_IDIGITSUBSTITUTION values

Value Description

0 The shape depends on the previous text in the same output.

1 None, full Unicode compatibility.

2 Native shapes, as determined by LOCALE_SNATIVEDIGITS.

Table 8-9: GetLocaleInfo LCType LOCALE_IFIRSTDAYOFWEEK values

Value Description

0 LOCALE_SDAYNAME1

1 LOCALE_SDAYNAME2

2 LOCALE_SDAYNAME3

3 LOCALE_SDAYNAME4

4 LOCALE_SDAYNAME5

5 LOCALE_SDAYNAME6

6 LOCALE_SDAYNAME7

Table 8-10: GetLocaleInfo LCType LOCALE_IFIRSTWEEKOFYEAR values

Value Description

0 The week containing January 1 is the first week.

1 The first full week containing January 1 is the first week.

2 The first week containing at least four days is the first week.

Table 8-11: GetLocaleInfo LCType LOCALE_INEGCURR mode values

Value Description

0 ($1.1)

1 –$1.1

2 $–1.1

3 $1.1–

4 (1.1$)

5 –1.1$

6 1.1–$

7 1.1$–

8 –1.1 $ (space before $)

9 –$ 1.1 (space after $)

10 1.1 $– (space before $)

11 $ 1.1– (space after $)

12 $ –1.1 (space after $)

13 1.1– $ (space before $)

14 ($ 1.1) (space after $)

15 (1.1 $) (space before $)

358 � Chapter 8

Table 8-12: GetLocaleInfo LCType LOCALE_INEGNUMBER mode values

Value Description

0 (12345)

1 –12345

2 – 12345

3 12345–

4 12345–

Table 8-13: GetLocaleInfo LCType LOCALE_INEGSIGNPOSN and LOCALE_IPOSSIGNPOSN

values

Value Description

0 Parentheses surround the amount and the monetary symbol.

1 The sign string precedes the amount and the monetary symbol.

2 The sign string succeeds the amount and the monetary symbol.

3 The sign string immediately precedes the monetary symbol.

4 The sign string immediately succeeds the monetary symbol.

Table 8-14: GetLocaleInfo LCType LOCALE_IPAPERSIZE values

Value Description

1 Letter size

5 Legal size

8 A3

9 A4

Table 8-15: GetLocaleInfo LCType LOCALE_ITIMEMARKERUSE values

Value Description

0 Use with 12-hour clock

1 Use with 24-hour clock

2 Use with both

3 Never used

GetLocalTime Windows.pas

Syntax

GetLocalTime(

var lpSystemTime: TSystemTime {a pointer to a TSystemTime structure}

); {this procedure does not return a value}

Description

The GetLocalTime function retrieves the current local date and time.

System Information Functions � 359

C
h

a
p

te
r
8

Parameters

lpSystemTime: A pointer to a TSystemTime structure that receives the current local

date and time. The TSystemTime data structure is defined as:

TSystemTime = record

wYear: Word; {the current year}

wMonth: Word; {the month number}

wDayOfWeek: Word; {the day of the week number}

wDay: Word; {the current day of the month}

wHour: Word; {the current hour}

wMinute: Word; {the current minute}

wSecond: Word; {the current second}

wMilliseconds: Word; {the current millisecond}

end;

Please see the FileTimeToSystemTime function for a description of this data structure.

See Also

GetSystemTime, SetLocalTime

Example

Please see Listing 8-25 under SetLocalTime.

GetLogicalDrives Windows.pas

Syntax

GetLogicalDrives: DWORD {returns a bitmask representing available drives}

Description

The GetLogicalDrives function retrieves a bitmask value, where each bit represents an

available drive (bit 0 = drive A, bit 1 = drive B, etc.).

Return Value

If the function succeeds, it returns a bitmask value representing available drives; other-

wise, it returns zero.

See Also

GetLogicalDriveStrings

Example

■ Listing 8-9: Retrieving a list of available drives

procedure TForm1.Button1Click(Sender: TObject);
var
AvailableDrives: DWord; // holds the bitmask of available drives
Counter: Integer; // general loop counter
DrivePath: array[0..3] of Char; // holds the drive name

begin

360 � Chapter 8

{display column headings}
StringGrid1.Cells[0, 0] := 'Drive Letter';
StringGrid1.Cells[1, 0] := 'Status';
StringGrid1.Cells[2, 0] := 'Drive Type';

{retrieve the available disk drives}
AvailableDrives := GetLogicalDrives;

{loop through all 26 possible drive letters}
for Counter := 0 to 25 do
begin
{display the drive letter}
StringGrid1.Cells[0, Counter + 1] := Char(Ord('A') + Counter);

{if this drive is available...}
if LongBool(AvailableDrives and ($0001 shl Counter)) = True then
begin
{indicate that the drive is available}
StringGrid1.Cells[1, Counter + 1] := 'Available';

{prepare drive path for GetDriveType function}
StrpCopy(DrivePath,Char(Ord('A') + Counter));
StrCat(DrivePath, ':\');

{retrieve and display the drive type}
case GetDriveType(DrivePath) of
DRIVE_UNKNOWN: StringGrid1.Cells[2, Counter + 1] := 'No Type Information';
DRIVE_NO_ROOT_DIR: StringGrid1.Cells[2, Counter + 1] := 'Root does not exist';
DRIVE_REMOVABLE: StringGrid1.Cells[2, Counter + 1] := 'Removable';
DRIVE_FIXED: StringGrid1.Cells[2, Counter + 1] := 'Fixed';
DRIVE_REMOTE: StringGrid1.Cells[2, Counter + 1] := 'Remote';
DRIVE_CDROM: StringGrid1.Cells[2, Counter + 1] := 'CDROM';
DRIVE_RAMDISK: StringGrid1.Cells[2, Counter + 1] := 'RamDisk';

end;
end
else
{indicate that this drive is not available}
StringGrid1.Cells[1, Counter + 1] := 'Not Available';

end;
end;

System Information Functions � 361

C
h

a
p

te
r
8

Figure 8-7:

Available

drives

GetLogicalDriveStrings Windows.pas

Syntax

GetLogicalDriveStrings(

nBufferLength: DWORD; {the size of the buffer}

lpBuffer: PAnsiChar {a pointer to a buffer receiving drive name strings}

): DWORD; {returns the number of characters copied to the buffer}

Description

This function retrieves the names of all logically defined drives, including mapped net-

work drives, and stores them in the buffer pointed to by the lpBuffer parameter.

Parameters

nBufferLength: Specifies the size of the buffer pointed to by the lpBuffer parameter,

excluding the null terminator.

lpBuffer: A pointer to a buffer that receives the names of the logical drives. Logical

drive names are in the form of driveletter:\ (i.e., C:\). Each drive name in the string is

separated by a null terminating character, and the string is ended with two null termi-

nating characters. If this parameter is set to NIL, the function returns the size of the

buffer required to hold the drive names.

Return Value

If the function succeeds, it returns the number of characters copied to the buffer, not

counting the null terminator at the end. If the function fails, it returns zero. To get

extended error information, call the GetLastError function.

See Also

GetDiskFreeSpaceEx, GetDriveType, GetLogicalDrives

Example

■ Listing 8-10: Retrieving the names of the logical drives

procedure TForm1.Button1Click(Sender: TObject);
var
TheDriveStrings: array[0..4*26+2] of Char; // holds the drive strings
StringPtr: PChar; // a pointer to the drive strings

begin
{retrieve the logical drive strings}
GetLogicalDriveStrings(SizeOf(TheDriveStrings), TheDriveStrings);

{initialize the pointer to the beginning of the drive strings buffer}
StringPtr := TheDriveStrings;

{begin looping through the drive strings}
while StringPtr <> nil do
begin
{add this string to the list box}
ListBox1.Items.Add(StringPtr);

362 � Chapter 8

{logical drive strings are separated by null terminators, so if we
increment the pointer past the null terminator of the last string
displayed, it will be at the beginning of the next string}
Inc(StringPtr, StrLen(StringPtr) + 1);

{determine if we are at the end of the logical drive strings buffer}
if (Byte(StringPtr[0]) = 0) then
StringPtr := nil;

end;
end;

GetStartupInfo Windows.pas

Syntax

GetStartupInfo(

var lpStartupInfo: TStartupInfo {record to receive startup info}

); {this procedure does not return a value}

Description

The GetStartUpInfo function retrieves information about the main window of the call-

ing process when the process was created.

Parameters

lpStartupInfo: A pointer to a TStartupInfo structure that receives information about the

main window of the calling process. The TStartupInfo structure is defined as:

TStartupInfo = record

cb: DWORD; {the size of the TStartupInfo record}

lpReserved: Pointer; {reserved}

lpDesktop: Pointer; {a pointer to the desktop}

lpTitle: Pointer; {the title for console applications}

dwX: DWORD; {the default column (left) position}

dwY: DWORD; {the default row (top) position}

dwXSize: DWORD; {the default width}

dwYSize: DWORD; {the default height}

System Information Functions � 363

C
h

a
p

te
r
8

Figure 8-8:

The drive

names

dwXCountChars: DWORD; {the screen width for a console app}

dwYCountChars: DWORD; {the screen height for a console app}

dwFillAttribute: DWORD; {color settings for a console app}

dwFlags: DWORD; {flags to determine significant fields}

wShowWindow: Word; {the default show window setting}

cbReserved2: Word; {reserved}

lpReserved2: PByte; {reserved}

hStdInput: THandle; {the standard handle for input}

hStdOutput: THandle; {the standard handle for output}

hStdError: THandle; {the standard handle for error output}

end;

The TStartupInfo structure is described under the CreateProcess function in The Tomes

of Delphi: Win32 Core API — Windows 2000 Edition.

See Also

CreateProcess*

Example

■ Listing 8-11: Retrieving the startup information

const
{define the names of the ShowWindow constants}
ShowConst: array[0..10] of string = ('SW_HIDE','SW_SHOWNORMAL',

'SW_SHOWMINIMIZED', 'SW_SHOWMAXIMIZED',
'SW_SHOWNOACTIVATE','SW_SHOW',
'SW_MINIMIZE', 'SW_SHOWMINNOACTIVE',
'SW_SHOWNA','SW_RESTORE',
'SW_SHOWDEFAULT');

procedure TForm1.Button1Click(Sender: TObject);
var
MyStartupInfo: TStartupInfo; // holds window startup properties

begin
{retrieve the startup properties}
GetStartupinfo(MyStartupInfo);

{display the startup properties}
Panel_State.Caption := ShowConst[MyStartupInfo.wShowWindow];
Panel_Left.Caption := IntToStr(MyStartupInfo.dwX);
Panel_Top.Caption := IntToStr(MyStartupInfo.dwY);
Panel_Width.Caption := IntToStr(MyStartupInfo.dwXSize);
Panel_Height.Caption := IntToStr(MyStartupInfo.dwYSize);

end;

GetSystemDefaultLangID Windows.pas

Syntax

GetSystemDefaultLangID: LANGID {returns the default system language identifier}

364 � Chapter 8

TE
AM
FL
Y

Team-Fly®

Description

This function returns the default language identifier for the system. Use the

VerLanguageName function to get the name from the identifier.

Return Value

If the function succeeds, it returns the default numeric language identifier for the sys-

tem; otherwise, it returns zero.

See Also

GetLocaleInfo, GetSystemDefaultLCID, GetUserDefaultLangID, VerLanguageName

Example

■ Listing 8-12: Retrieving the system default language identifier

procedure TForm1.Button1Click(Sender: TObject);
var
SDLName:array[0..255] of char; // holds the name of the system language
UDLName:array[0..255] of char; // holds the name of the user language

begin
{retrieve the names of the system and user default languages}
VerLanguageName(GetSystemDefaultLangID, SDLName, 255);
VerLanguageName(GetUserDefaultLangID, UDLName, 255);

{display the names of the languages}
Label_SD.caption := SDLName;
Label_Ud.caption := UDLName;

end;

GetSystemDefaultLCID Windows.pas

Syntax

GetSystemDefaultLCID: LCID {returns the system default locale identifier}

Description

This function is used to retrieve the default locale identifier for the system.

Return Value

If the function succeeds, it returns the system default locale identifier. If the function

fails, it returns zero.

System Information Functions � 365

C
h

a
p

te
r
8

Figure 8-9:

Language

names for the

system and

user default

languages

See Also

GetLocaleInfo, GetUserDefaultLCID

Example

Please see Listing 8-8 under GetLocaleInfo.

GetSystemDirectory Windows.pas

Syntax

GetSystemDirectory(

lpBuffer: PChar; {a pointer to a buffer receiving the directory string}

uSize: UINT {the maximum size of the lpBuffer buffer}

): UINT; {returns the number of bytes written to the buffer}

Description

This function retrieves a string containing the path of the Windows system directory.

Applications should not create files in this directory.

Parameters

lpBuffer: A pointer to a null-terminated string buffer receiving the Windows system

directory path. If this parameter is set to NIL, the function returns the required size of

the buffer to hold the Windows system directory path string.

uSize: Specifies the maximum size of the buffer pointed to by the lpBuffer parameter,

in characters.

Return Value

If the function is successful, it returns the number of bytes written to the buffer pointed

to by the lpBuffer parameter; otherwise, it returns zero. To get extended error informa-

tion, call the GetLastError function.

See Also

GetCurrentDirectory, GetWindowsDirectory, SetCurrentDirectory

Example

■ Listing 8-13: Retrieving the Windows system directory

procedure TForm1.Button1Click(Sender: TObject);
var
SysDir: array[0..MAX_PATH] of Char; // holds the system directory

begin

{retrieve the system directory and display it}
GetSystemDirectory(SysDir, MAX_PATH);
Label1.Caption := StrPas(SysDir)

end;

366 � Chapter 8

GetSystemInfo Windows.pas

Syntax

GetSystemInfo(

var lpSystemInfo: TSystemInfo {a pointer to a system information record}

); {this procedure does not return a value}

Description

This function retrieves information about the type of system hardware in use.

Parameters

lpSystemInfo: A pointer to a TSystemInfo structure that receives information about the

system and hardware upon which the process is running. The TSystemInfo data struc-

ture is defined as:

TSystemInfo = record

case Integer of

0: (

dwOemId: DWORD) {obsolete}

1:(

wProcessorArchitecture: Word {the type of systemprocessor}

wReserved: Word {reserved}

dwPageSize: DWORD {page size for virtual memory}

lpMinimumApplicationAddress: Pointer {lowest memory access address}

lpMaximumApplicationAddress: Pointer{highest memory access address}

dwActiveProcessorMask: DWORD {a bit array of active processors}

dwNumberOfProcessors: DWORD {the number of processors}

dwProcessorType: DWORD {the type of processor present}

dwAllocationGranularity: DWORD {granularity of virtual memory}

wProcessorLevel: Word {system required processor level}

wProcessorRevision: Word) {system required processor revision}

end;

dwOemId: This member is obsolete and is not used.

�Note: Under Windows 95/98/Me, this member will always be set to

PROCESSOR_ARCHITECTURE_INTEL.

wProcessorArchitecture: Indicates the type of system-specific processor architec-

ture in the system and can be one value from Table 8-16.

wReserved: This member is reserved for future use and is currently ignored.

dwPageSize: Indicates the page size of virtual memory. This value is used by the

LocalAlloc function to allocate additional blocks of memory.

lpMinimumApplicationAddress: A pointer to the lowest memory address that is

accessible by applications and DLLs.

System Information Functions � 367

C
h

a
p

te
r
8

lpMaximumApplicationAddress: A pointer to the highest memory address that is

accessible by applications and DLLs.

dwActiveProcessorMask: An array of bits indicating which processors are pres-

ent and active. Bit 0 indicates processor 0, bit 1 indicates processor 1, etc.

dwNumberOfProcessors: Indicates the total number of processors in the system.

dwProcessorType: Under Windows 95 and Windows NT prior to version 4, this

member indicates the type of processor in the system and can be one value from

Table 8-17. However, on later versions of Windows, this member is obsolete and

is ignored.

dwAllocationGranularity: Specifies the minimum amount of memory allocated

each time virtual memory is used. In the past, this has been hard-coded to 64K,

but it can vary for different processor architectures.

wProcessorLevel: Windows NT/2000/XP and later: This member indicates the

level of the processor present and can be one value from Table 8-18.

wProcessorRevision: Windows NT/2000/XP and later: This member indicates

the revision of the processor present and can be one value from Table 8-19.

See Also

GetVersionEx

Example

■ Listing 8-14: Retrieving the system information

const
{Whoops! These constants are used by the GetSystemInfo function,
but they are not defined in the Delphi source code}
PROCESSOR_INTEL_386 = 386;
PROCESSOR_INTEL_486 = 486;
PROCESSOR_INTEL_PENTIUM = 586;
PROCESSOR_MIPS_R4000 = 4000;
PROCESSOR_ALPHA_21064 = 21064;

PROCESSOR_ARCHITECTURE_INTEL = 0;
PROCESSOR_ARCHITECTURE_MIPS = 1;
PROCESSOR_ARCHITECTURE_ALPHA = 2;
PROCESSOR_ARCHITECTURE_PPC = 3;
PROCESSOR_ARCHITECTURE_UNKNOWN = $FFFF;
PROCESSOR_ARCHITECTURE_IA64 = 6;

implementation

{$R *.DFM}

procedure TForm1.Button1Click(Sender: TObject);
var
MySysInfo: TSystemInfo; // holds the system information

begin
{retrieve information about the system}
GetSystemInfo(MySysInfo);

368 � Chapter 8

{display the system's processor architecture}
case MySysInfo.wProcessorArchitecture of
PROCESSOR_ARCHITECTURE_INTEL: begin
{display the processor architecture}
Label4.Caption := 'Intel Processor Architecture';

{display the processor type}
case MySysInfo.dwProcessorType of
PROCESSOR_INTEL_386: Label5.Caption := '80386';
PROCESSOR_INTEL_486: Label5.Caption := '80486';
PROCESSOR_INTEL_PENTIUM: Label5.Caption := 'Pentium';

end;
end;
PROCESSOR_ARCHITECTURE_MIPS:
Label4.Caption := 'MIPS Processor Architecture';

PROCESSOR_ARCHITECTURE_ALPHA:
Label4.Caption := 'DEC ALPHA Processor Architecture';

PROCESSOR_ARCHITECTURE_PPC:
Label4.Caption := 'PPC Processor Architecture';

PROCESSOR_ARCHITECTURE_UNKNOWN:
Label4.Caption := 'Unknown Processor Architecture';

end;
end;

Table 8-16: GetSystemInfo lpSystemInfo.wProcessorArchitecture values

Name Description

PROCESSOR_ARCHITECTURE_INTEL Intel X86 processor architecture.

PROCESSOR_ARCHITECTURE_MIPS Indicates Windows NT 3.51.

PROCESSOR_ARCHITECTURE_ALPHA Indicates Windows NT 4.0 or earlier.

PROCESSOR_ARCHITECTURE_PPC Indicates Windows NT 4.0 or earlier.

PROCESSOR_ARCHITECTURE_IA64 Indicates 64-bit Windows.

PROCESSOR_ARCHITECTURE_UNKNOWN Unknown processor architecture

Table 8-17: GetSystemInfo lpSystemInfo.dwProcessorType values

Name Description

PROCESSOR_INTEL_386 Intel 386 processor.

PROCESSOR_INTEL_486 Intel 486 processor.

PROCESSOR_INTEL_PENTIUM Intel Pentium processor.

System Information Functions � 369

C
h

a
p

te
r
8

Figure 8-10:

The processor

architecture

Table 8-18: GetSystemInfo lpSystemInfo.wProcessorLevel values

wProcessorArchitecture Value Value Description

PROCESSOR_ARCHITECTURE_INTEL 3 Intel 80386

4 Intel 80486

5 Pentium

6 Pentium Pro

PROCESSOR_ARCHITECTURE_MIPS 4 MIPS R4000

PROCESSOR_ARCHITECTURE_ALPHA 21064 Alpha 21064

21066 Alpha 21066

21164 Alpha 21164

PROCESSOR_ARCHITECTURE_PPC 1 PPC 601

3 PPC 603

4 PPC 604

6 PPC 603+

9 PPC 604+

20 PPC 620

PROCESSOR_ARCHITECTURE_IA64 1 64-bit Windows

Table 8-19: GetSystemInfo lpSystemInfo.wProcessorRevision values

Processor Type Revision Breakdown

Intel 80386 or 80486 A value of the form xxyz.If xx = $FF, then y - $A is
the model number and z is the stepping identifier.
For example, an Intel 80486-D0 will return a value
of $FFD0.

If xx < $FF, then xx +‘A’ is the stepping letter and
yz is the minor stepping.

Intel Pentium, Cyrix, or NextGen 586 A value of the form xxyy.

xx = model number

yy = stepping

For example, a value of $0201 indicates Model 2,
Stepping 1.

MIPS A value of the form 00xx.

xx = eight-bit revision number of the processor
(the low-order eight bits of the PRId register).

ALPHA A value of the form xxyy.

xx = model number

yy = pass number

For example, a value of $0201 indicates Model A02,
Pass 01.

370 � Chapter 8

Processor Type Revision Breakdown

PPC A value of the form xxyy.

xx.yy = processor version register

For example, a value of $0201 indicates Version
2.01.

GetSystemTime Windows.pas

Syntax

GetSystemTime(

var SystemTime: TSystemTime {a pointer to a system time structure}

) {this procedure does not return a value}

Description

This function retrieves the current system date and time in coordinated universal time

format (UTC).

Parameters

SystemTime: A pointer to a TSystemTime structure that receives the current system

date and time. The TSystemTime data structure is defined as:

TSystemTime = record

wYear: Word; {the current year}

wMonth: Word; {the month number}

wDayOfWeek: Word; {the day of the week number}

wDay: Word; {the current day of the month}

wHour: Word; {the current hour}

wMinute: Word; {the current minute}

wSecond: Word; {the current second}

wMilliseconds: Word; {the current millisecond}

end;

Please see the FileTimeToSystemTime function for a description of this data structure.

See Also

GetLocalTime, SetSystemTime

Example

Please see Listing 8-26 under SetSystemTime.

GetSystemTimeAsFileTime Windows.pas

Syntax

GetSystemTimeAsFileTime(

var lpSystemTimeAsFileTime: TFileTime {a pointer to a TFileTime structure}

); {this procedure does not return a value}

System Information Functions � 371

C
h

a
p

te
r
8

Description

This procedure is used to retrieve the current system date and time in the form of a file

time variable. This value is expressed in coordinated universal time format (UTC).

Parameters

lpSystemTimeAsFileTime: A pointer to a TFileTime data structure that receives the

current system time in coordinated universal time format (UTC). Please see Chapter 4

for more information about coordinated universal time format (UTC) and the

TFileTime data structure.

See Also

GetSystemTime, SystemTimeToFileTime

Example

■ Listing 8-15 Retrieving the system time in 100-nanosecond intervals

procedure TForm1.Button1Click(Sender: TObject);
var
MyFileTime: TFileTime; // holds the system file time as a file time value

begin
{retrieve the system time as a file time}
GetSystemTimeAsFileTime(MyFileTime);

{display the system time as a file time value}
Panel1.Caption := IntToHex(MyFileTime.dwHighDateTime ,8)+

IntToHex(MyFileTime.dwLowDateTime , 8) +
' 100 Nanosecond intervals from January 1, 1601' ;

end;

GetTimeZoneInformation Windows.pas

Syntax

GetTimeZoneInformation(

var lpTimeZoneInformation: TTimeZoneInformation {a pointer to

TTimeZoneInformation}

): DWORD; {returns a time zone code}

Description

This function is used to retrieve the time zone information for the local system. The

time zone information controls the translation between coordinated universal time for-

mat (UTC) and local time.

372 � Chapter 8

Figure 8-11:

The current

system time

Parameters

lpTimeZoneInformation: A pointer to a TTimeZoneInformation data structure that

receives the time zone information for the system. The TTimeZoneInformation data

structure is defined as:

TTimeZoneInformation = record

Bias: Longint {Difference between times}

StandardName: array[0..31] of WCHAR {Name of Time Zone in Standard}

StandardDate: TSystemTime {Date of change to Standard time}

StandardBias: Longint {Standard time added to Bias}

DaylightName: array[0..31] of WCHAR {Name of Time Zone in Daylight}

DaylightDate: TSystemTime {Date of change to Daylight time}

DaylightBias: Longint {Daylight time added to Bias}

end

Bias: Specifies the difference in local time and coordinated universal time format

(UTC), in minutes. To find the translation between a UTC time format and local

time, use the following formula:

Coordinated Universal Time = Local Time + Bias.

StandardName: Contains a null-terminated string describing the name of the time

zone during the Standard Daylight time state.

StandardDate: A TSystemTime structure that specifies the date that the system

will change from Daylight Time to Standard Time.

StandardBias: Additional difference in UTC and local time during Standard

Time. This value is added to the Bias member when determining the difference in

time during the Standard Time state, but in most time zones this value is set to

zero.

DaylightName: Contains a null-terminated string describing the name of the time

zone during the Daylight Time state.

DaylightDate: A TSystemTime structure that specifies the date that the system

will change from Standard Time to Daylight Time.

DaylightBias: Additional difference in UTC and local time during Daylight Time.

This value is added to the Bias member when determining the difference in time

during the Daylight Time state; in most time zones set this value to –60.

Return Value

If the function succeeds, it returns one time zone code from the following table; other-

wise, it returns $FFFFFFFF. To get extended error information, call the GetLastError

function.

See Also

GetLocalTime, GetSystemTime, SetTimeZoneInformation

System Information Functions � 373

C
h

a
p

te
r
8

Example

■ Listing 8-16: Retrieving time zone information

procedure TForm1.Button1Click(Sender: TObject);
var
MyTimeZoneInformation: TTimeZoneInformation; // holds time zone information

begin
{retrieve the time zone information}
GetTimeZoneInformation(MyTimeZoneInformation);

{display the time zone information}
Panel1.Caption := MyTimeZoneInformation.StandardName;
Panel2.Caption := MyTimeZoneInformation.DaylightName;

{display standard time starting day}
spnStandard.Value := MyTimeZoneInformation.StandardDate.wDay;
if MyTimeZoneInformation.StandardDate.wDay = 5 then
Label_Startstandard.Caption := 'Last Sunday in ' +
LongMonthNames[MyTimeZoneInformation.StandardDate.wMonth]

else
Label_Startstandard.Caption :=
IntToStr(MyTimeZoneInformation.StandardDate.wDay) +
' Sunday in ' + LongMonthNames[MyTimeZoneInformation.StandardDate.wMonth];

{display daylight savings time starting day}
spnDaylight.Value := MyTimeZoneInformation.DaylightDate.wDay;
if MyTimeZoneInformation.DaylightDate.wDay = 5 then
Label_Daylight.Caption := 'Last Sunday in ' +
LongMonthNames[MyTimeZoneInformation.DaylightDate.wMonth]

else
Label_Daylight.Caption := IntToStr(MyTimeZoneInformation.DaylightDate.wDay)+
' Sunday in ' + LongMonthNames[MyTimeZoneInformation.DaylightDate.wMonth];

end;

procedure TForm1.Button2Click(Sender: TObject);
var
MyTimeZoneInformation: TTimeZoneInformation; // holds time zone information

begin
{retrieve the time zone information}
GetTimeZoneInformation(MyTimeZoneInformation);

{specify our changes}
MyTimeZoneInformation.StandardDate.wDay := spnStandard.Value;
MyTimeZoneInformation.DaylightDate.wDay := spnDaylight.Value;

{set the new time zone information}
SetTimeZoneInformation(MyTimeZoneInformation);

end;

374 � Chapter 8

TE
AM
FL
Y

Team-Fly®

Table 8-20: GetTimeZoneInformation return values

Value Description

TIME_ZONE_ID_UNKNOWN The system is in an unknown time zone.

Windows NT/2000/XP: If daylight-saving time is not
used in the current time zone, this value is returned.

TIME_ZONE_ID_STANDARD The system is in Standard time state.

Windows 95/98/Me: If daylight-saving time is not used
in the current time zone, this value is returned.

TIME_ZONE_ID_DAYLIGHT The system is in daylight-saving time state.

GetUserDefaultLangID Windows.pas

Syntax

GetUserDefaultLangID: LANGID {returns the default user language identifier}

Description

This function returns the default user identifier for the system. Use the VerLanguage-

Name function to get the name from the identifier.

Return Value

If the function succeeds, it returns the default user numeric language identifier for the

system; otherwise, it returns zero.

See Also

GetLocaleInfo, GetSystemDefaultLangID, GetUserDefaultLCID, VerLanguageName

Example

Please see Listing 8-12 under GetSystemDefaultLangID.

GetUserDefaultLCID Windows.pas

Syntax

GetUserDefaultLCID: LCID {returns the user default locale identifier}

System Information Functions � 375

C
h

a
p

te
r
8

Figure 8-12:

The time zone

information

Description

This function is used to retrieve the default user locale identifier for the system.

Return Value

If the function succeeds, it returns the default user locale identifier. If the function fails,

it returns zero.

See Also

GetLocaleInfo, GetSystemDefaultLCID

Example

Please see Listing 8-8 under GetLocaleInfo.

GetUserName Windows.pas

Syntax

GetUserName(

lpBuffer: PChar; {a pointer to a buffer to receive the username}

var nSize: DWORD {the size of the buffer}

): BOOL; {returns TRUE or FALSE}

Description

This function is used to get the Windows networking username for the current user

logged onto the system.

Parameters

lpBuffer: A pointer to a null-terminated string receiving the username. If this parameter

is set to NIL, the variable identified by the nSize parameter will be set to the size of the

buffer required to hold the username string.

nSize: A variable containing the size of the buffer pointed to by the lpBuffer parameter,

in characters. When the function returns, this variable will contain the number of char-

acters copied to the lpBuffer buffer.

Return Value

If the function succeeds, it returns TRUE and the variable identified by the nSize

parameter will contain the number of characters copied to the lpBuffer buffer. If the

function fails, it returns FALSE. To get extended error information, call the

GetLastError function.

See Also

GetComputerName

376 � Chapter 8

Example

■ Listing 8-17: Retrieving the username

procedure TForm1.Button1Click(Sender: Tobject);
var
UserName: PChar; // holds the user name
Count: DWORD; // holds the size of the user name

begin
{retrieve the required size of the user name buffer}
Count := 0;
GetUserName(nil,Count);

{allocate memory for the user name}
Username := StrAlloc(Count);

{retrieve the user name}
if GetUserName(UserName,count) then
Label1.Caption := StrPas(UserName)

else ShowMessage('username Not Found');

{dispose of allocated memory}
StrDispose(UserName)

end;

GetVersionEx Windows.pas

Syntax

GetVersionEx(

var lpVersionInformation: TOSVersionInfo {a pointer to a TOSVersionInfo structure}

): BOOL; {returns TRUE or FALSE}

Description

This function retrieves information about the Windows version currently running on

the system.

Parameters

lpVersionInformation: A pointer to a TOSVersionInfo data structure that receives infor-

mation about the current version of Windows. The TOSVersionInfo data structure is

defined as:

TOSVersionInfo = record

dwOSVersionInfoSize: DWORD {the size of TOSVersionInfo}

dwMajorVersion: DWORD {the major version number}

dwMinorVersion: DWORD {the minor version number}

dwBuildNumber: DWORD {the build number}

dwPlatformId: DWORD {operating system platform flags}

szCSDVersion:array[0..127]of AnsiChar {additional O/S information}

end;

dwOSVersionInfoSize: Specifies the size of the TOSVersionInfo structure, in

bytes. This member must be set to SizeOf(TOSVersionInfo).

System Information Functions � 377

C
h

a
p

te
r
8

dwMajorVersion: Specifies the major version number of the operating system and

can contain one value from Table 8-21.

dwMinorVersion: Specifies the minor version number of the operating system

and can contain one value from Table 8-22.

dwBuildNumber: Specifies the build number of the operating system.

�Note: Under Windows 95/98/Me, the high-order word of this value contains

the major and minor version numbers.

dwPlatformId: A flag specifying the operating system platform. This member

may contain one value from Table 8-23.

szCSDVersion: Contains a null-terminated string with additional information on

the operating system. Under Windows 95/98/Me, this could contain one value

from Table 8-24 (this table is not all inclusive).

�Note: Under Windows NT/2000/XP and later, this string indicates the latest

service pack installed.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call the GetLastError function.

See Also

GetSystemInfo

Example

■ Listing 8-18: Retrieving information about the Windows version

procedure TForm1.Button1Click(Sender: TObject);
var
MyVerInfo: TOSVersionInfo; // holds version information

begin
{set the size member of the TOSVersionInfo structure}
MyVerInfo.dwOSVersionInfoSize := SizeOf(TOSVersionInfo);

{retrieve the operating system version information}
GetVersionEx(MyVerInfo);

{display the operating system version information}
Panel2.Caption := IntToStr(MyVerInfo.dwMajorVersion);
Panel3.Caption := IntToStr(MyVerInfo.dwMinorVersion);
Panel4.Caption := IntToStr(MyVerInfo.dwBuildNumber);
case MyVerInfo.dwPlatformId of
VER_PLATFORM_WIN32s: Panel5.Caption := 'Win 32s under Windows 3.1';
VER_PLATFORM_WIN32_WINDOWS: Panel5.Caption := 'Windows 95/98/Me';
VER_PLATFORM_WIN32_NT: Panel5.Caption := 'Windows NT/2000/XP/.NET server';

end;
end;

378 � Chapter 8

Table 8-21: GetVersionEx lpVersionInformation.dwMajorVersion values

Value Description

3 Windows NT 3.51

4 Windows 95/98/Me/NT 4.0

5 Windows 2000/XP/.NET server

Table 8-22: GetVersionEx lpVersionInformation.dwMinorVersion values

Value Description

0 Windows 95/NT 4.0/2000

1 Windows XP/.NET server

10 Windows 98

51 Windows NT 3.51

90 Windows Me

Table 8-23: GetVersionEx lpVersionInformation.dwPlatformId values

Value Description

VER_PLATFORM_WIN32s Win32 on the 16-bit version of Windows

VER_PLATFORM_WIN32_WINDOWS Windows 95/98/Me

VER_PLATFORM_WIN32_NT Windows NT/2000/XP/.NET server

Table 8-24: GetVersionEx lpVersionInformation.szCSDVersion values

Value Description

‘C’ Windows 95 OSR 2

‘A’ Windows 98 Second Edition

GetVolumeInformation Windows.pas

Syntax

GetVolumeInformation(

lpRootPathName: PChar; {the path to the root directory}

lpVolumeNameBuffer: PChar; {the buffer receiving the volume name}

nVolumeNameSize: DWORD; {the maximum size of the buffer}

lpVolumeSerialNumber: PDWORD; {a pointer to the volume serial number}

var lpMaximumComponentLength: DWORD; {maximum file component name}

var lpFileSystemFlags: DWORD; {file system flags}

lpFileSystemNameBuffer: PChar; {the buffer receiving the file system name}

nFileSystemNameSize: DWORD {the maximum size of the file system name}

): BOOL; {returns TRUE or FALSE}

Description

This function returns information about the file system and volume specified by the

root directory path in the lpRootPathName parameter.

System Information Functions � 379

C
h

a
p

te
r
8

Parameters

lpRootPathName: A pointer to a null-terminated string containing the path of the root

directory for the drive to query. If this parameter is set to NIL, the root directory of the

current directory is used. For a UNC root directory path, add an additional backslash to

the end (i.e., \\ServerName\ShareName\).

lpVolumeNameBuffer: A pointer to a null-terminated string buffer receiving the name

of the volume.

nVolumeNameSize: Specifies the maximum size of the lpVolumeNameBuffer buffer.

lpVolumeSerialNumber: A variable that receives the serial number of the volume.

�Note: Under Windows 95/98/Me, if the indicated drive is a network drive,

the serial number is not returned.

lpMaximumComponentLength: A variable that receives the maximum size for file-

names and directory names, in characters. Systems that support long file names, such

as the FAT system, will return a value of 255.

lpFileSystemFlags: A variable that receives a value indicating the type of file system in

use. This variable can be set to any combination of values from Table 8-25.

lpFileSystemNameBuffer: A pointer to a null-terminated string buffer receiving the

name of the file system, such as FAT or NTFS.

nFileSystemNameSize: Specifies the maximum size of the lpFileSystemNameBuffer

buffer.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call the GetLastError function.

See Also

GetFileAttributes, SetVolumeLabel

Example

■ Listing 8-19: Retrieving volume information

const
{these GetVolumeInformation constants are not defined in Delphi 6}
FILE_SUPPORTS_OBJECT_IDS = $00010000;
FILE_SUPPORTS_ENCRYPTION = $00020000;
FILE_NAMED_STREAMS = $00040000;
FILE_READ_ONLY_VOLUME = $00080000;
FILE_VOLUME_QUOTAS = $00000020;
FILE_SUPPORTS_SPARSE_FILES = $00000040;
FILE_SUPPORTS_REPARSE_POINTS = $00000080;

380 � Chapter 8

procedure TForm1.Button1Click(Sender: TObject);
var
RootPath: array[0..20] of Char; // holds the root directory name
VolName: array[0..255] of Char; // holds the volume name
SerialNumber: DWORD; // holds the serial number
MaxCLength: DWORD; // holds the maximum file component length
FileSysFlag: DWORD; // holds file system flags
FileSysName: array[0..255] of Char; // holds the name of the file system

begin
{indicate information is to be retrieved from the C drive}
RootPath := 'C:\';

{retrieve the volume information}
GetVolumeInformation(RootPath, VolName, 255, @SerialNumber, MaxCLength,

FileSysFlag, FileSysName, 255);

{display the information}
Label4.Caption := VolName;
Label5.Caption := IntToHex(SerialNumber, 8);
Label6.Caption := FileSysName;

{determine the file system flags}
if (FileSysFlag and FS_CASE_IS_PRESERVED) = FS_CASE_IS_PRESERVED then
ListBox1.Items.Add('FS_CASE_IS_PRESERVED');

if (FileSysFlag and FS_CASE_SENSITIVE) = FS_CASE_SENSITIVE then
ListBox1.Items.Add('FS_CASE_SENSITIVE');

if (FileSysFlag and FS_UNICODE_STORED_ON_DISK) = FS_UNICODE_STORED_ON_DISK then
ListBox1.Items.Add('FS_UNICODE_STORED_ON_DISK');

if (FileSysFlag and FS_PERSISTENT_ACLS) = FS_PERSISTENT_ACLS then
ListBox1.Items.Add('FS_PERSISTENT_ACLS');

if (FileSysFlag and FS_VOL_IS_COMPRESSED) = FS_VOL_IS_COMPRESSED then
ListBox1.Items.Add('FS_VOL_IS_COMPRESSED');

if (FileSysFlag and FS_FILE_COMPRESSION) = FS_FILE_COMPRESSION then
ListBox1.Items.Add('FS_FILE_COMPRESSION');

if (FileSysFlag and FILE_SUPPORTS_OBJECT_IDS) = FILE_SUPPORTS_OBJECT_IDS then
ListBox1.Items.Add('FILE_SUPPORTS_OBJECT_IDS');

if (FileSysFlag and FILE_SUPPORTS_ENCRYPTION) = FILE_SUPPORTS_ENCRYPTION then
ListBox1.Items.Add('FILE_SUPPORTS_ENCRYPTION');

if (FileSysFlag and FILE_NAMED_STREAMS) = FILE_NAMED_STREAMS then
ListBox1.Items.Add('FILE_NAMED_STREAMS');

if (FileSysFlag and FILE_READ_ONLY_VOLUME) = FILE_READ_ONLY_VOLUME then
ListBox1.Items.Add('FILE_READ_ONLY_VOLUME');

if (FileSysFlag and FILE_VOLUME_QUOTAS) = FILE_VOLUME_QUOTAS then
ListBox1.Items.Add('FILE_VOLUME_QUOTAS');

if (FileSysFlag and FILE_SUPPORTS_SPARSE_FILES) = FILE_SUPPORTS_SPARSE_FILES then
ListBox1.Items.Add('FILE_SUPPORTS_SPARSE_FILES');

if (FileSysFlag and FILE_SUPPORTS_REPARSE_POINTS) = FILE_SUPPORTS_REPARSE_POINTS then
ListBox1.Items.Add('FILE_SUPPORTS_REPARSE_POINTS');

end;

System Information Functions � 381

C
h

a
p

te
r
8

Table 8-25: GetVolumeInformation lpFileSystemFlags values

Value Description

FS_CASE_IS_PRESERVED Indicates that the case of the file or directory
name is retained when it is stored to disk.

FS_CASE_SENSITIVE Indicates that the file system supports case-sensi-
tive filenames.

FS_UNICODE_STORED_ON_DISK Indicates that the file system supports Unicode
characters in filenames as they appear on disk.

FS_PERSISTENT_ACLS Indicates that the file system preserves and
enforces ACLs.

FS_FILE_COMPRESSION Indicates that the file system supports file-based
compression. This flag cannot be used with
FS_VOL_IS_COMPRESSED.

FS_VOL_IS_COMPRESSED Indicates that the specified volume is com-
pressed. This flag cannot be used with
FS_FILE_COMPRESSION.

FILE_NAMED_STREAMS Indicates that the file system supports named
streams.

FILE_READ_ONLY_VOLUME Windows XP only: The indicated volume is read
only.

FILE_SUPPORTS_ENCRYPTION Indicates that the file system supports the
Encrypted File System (EFS).

FILE_SUPPORTS_OBJECT_IDS Indicates that the file system supports object
identifiers.

FILE_SUPPORTS_REPARSE_POINTS Indicates that the file system supports reparse
points.

FILE_SUPPORTS_SPARSE_FILES Indicates that the file system supports sparse files.

FILE_VOLUME_QUOTAS Indicates that the file system supports disk
quotas.

GetWindowsDirectory Windows.pas

Syntax

GetWindowsDirectory(

lpBuffer: PChar; {the buffer receiving Windows directory}

382 � Chapter 8

Figure 8-13:

The current

volume

information

uSize: UINT {the maximum size of the buffer}

): UINT; {returns the number of bytes written to the buffer}

Description

This function retrieves the path for the Windows directory. Typically, this is the direc-

tory where applications should store initialization files and help files.

Parameters

lpBuffer: A pointer to a null-terminated string buffer receiving the Windows directory

path. If this parameter is set to NIL, the function returns the required size of the buffer

to hold the Windows directory path.

uSize: Specifies the maximum size of the buffer pointed to by the lpBuffer parameter

and should indicate a minimum size of MAX_PATH characters.

Return Value

If the function succeeds, it returns the number of characters copied to the buffer

pointed to by the lpBuffer parameter, not including the null terminator. If the function

fails, it returns zero. To get extended error information, call the GetLastError function.

See Also

GetCurrentDirectory, GetSystemDirectory

Example

■ Listing 8-20: Retrieving the Windows directory

procedure TForm1.Button1Click(Sender: TObject);
var
WinDir: array[0..MAX_PATH] of char; // holds the Windows directory

begin
{retrieve the Windows directory...}
GetWindowsDirectory(WinDir, MAX_PATH);

{...and display it}
Label1.Caption := StrPas(WinDir)

end;

IsProcessorFeaturePresent Windows.pas

Syntax

IsProcessorFeaturePresent(

ProcessorFeature: DWORD {processor feature flag}

): BOOL; {returns TRUE or FALSE}

Description

This function determines if the processor feature indicated by the ProcessorFeature

value is present on the system.

System Information Functions � 383

C
h

a
p

te
r
8

�Note: This function is not supported under Windows 95/98/Me.

Parameters

ProcessorFeature: A flag indicating the feature to test. This parameter may be one

value from the following table.

Return Value

If the feature is present, the function returns TRUE; otherwise, it returns FALSE

See Also

GetSystemMetrics*, SystemParametersInfo

Example

■ Listing 8-21: Checking for processor features

{**
Note: The IsProcessorFeaturePresent function is not supported under Windows
95/98/Me. This example should be run under Windows NT or later.
**}
const
{these constants are not defined in Delphi 6}
PF_FLOATING_POINT_PRECISION_ERRATA = 0;
PF_FLOATING_POINT_EMULATED = 1;
PF_COMPARE_EXCHANGE_DOUBLE = 2;
PF_MMX_INSTRUCTIONS_AVAILABLE = 3;
PF_XMMI_INSTRUCTIONS_AVAILABLE = 6;
PF_3DNOW_INSTRUCTIONS_AVAILABLE = 7;
PF_RDTSC_INSTRUCTION_AVAILABLE = 8;
PF_PAE_ENABLED = 9;

procedure TForm1.Button1Click(Sender: TObject);
begin
{check for floating point precision error (early pentiums)}
if IsProcessorFeaturePresent(PF_FLOATING_POINT_PRECISION_ERRATA) then
Label5.Caption := 'TRUE';

{check for software emulated floating point operations}
if IsProcessorFeaturePresent(PF_FLOATING_POINT_EMULATED) then
Label5.Caption := 'TRUE';

{check for MMX instruction availability}
if IsProcessorFeaturePresent(PF_MMX_INSTRUCTIONS_AVAILABLE) then
Label5.Caption := 'TRUE';

{check for 3D-Now instruction availability}
if IsProcessorFeaturePresent(PF_3DNOW_INSTRUCTIONS_AVAILABLE) then
Label5.Caption := 'TRUE';

end;

384 � Chapter 8

TE
AM
FL
Y

Team-Fly®

Table 8-26: IsProcessorFeaturePresent ProcessorFeature values

Value Description

PF_FLOATING_POINT_PRECISION_ERRATA Indicates the existence of the floating-point
precision error.

PF_FLOATING_POINT_EMULATED Indicates that floating-point operations are
emulated in software.

PF_COMPARE_EXCHANGE_DOUBLE Indicates that the compare and exchange
double operation is available.

PF_MMX_INSTRUCTIONS_AVAILABLE Indicates that MMX instructions are
available.

PF_XMMI_INSTRUCTIONS_AVAILABLE Indicates that XMMI instructions are
available.

PF_3DNOW_INSTRUCTIONS_AVAILABLE Indicates that 3D-Now instructions are
available.

PF_RDTSC_INSTRUCTION_AVAILABLE Indicates that the RDTSC instruction is
available.

PF_PAE_ENABLED Indicates that the processor is PAE enabled.

SetComputerName Windows.pas

Syntax

SetComputerName(

lpComputerName: PChar {a pointer to the new computer name}

): BOOL; {returns TRUE or FALSE

Description

This function sets the computer name to the name specified by the lpComputerName

parameter when the machine is rebooted.

Parameters

lpComputerName: A pointer to a null-terminated string containing the new name of the

computer. This string cannot be longer than MAX_COMPUTERNAME_LENGTH

characters.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call the GetLastError function.

See Also

GetComputerName

System Information Functions � 385

C
h

a
p

te
r
8

Example

■ Listing 8-22: Setting and retrieving the computer name

procedure TForm1.Button1Click(Sender: TObject);
var
ComputerName: array[0..MAX_COMPUTERNAME_LENGTH + 1] of char; // holds the name
Size: DWORD; // holds the size

begin
{initialize the computer name size variable}
Size := MAX_COMPUTERNAME_LENGTH + 1;

{retrieve the computer name}
if GetComputerName(ComputerName, Size) then
Edit1.Text := StrPas(Computername)

else
Showmessage('Computer Name Not Found');

end;

procedure TForm1.Button2Click(Sender: TObject);
var
ComputerName: array[0..MAX_COMPUTERNAME_LENGTH + 1] of char; // holds the name

begin
{copy the specified name to the ComputerName buffer}
StrPCopy(ComputerName, Edit1.Text);

{set the computer name}
if SetComputerName(ComputerName) then
ShowMessage('Computer name reset, setting will be used at next startup')

else
ShowMessage('Computer name not reset');

end;

SetEnvironmentVariable Windows.pas

Syntax

SetEnvironmentVariable(

lpName: PChar; {the name of the environment variable to change}

lpValue: PChar {the new environment variable value}

): BOOL; {returns TRUE or FALSE}

Description

This function sets an environment variable for the current process. This function can

also add or delete the environment variable for the current process.

Parameters

lpName: A pointer to a null-terminated string containing the name of the environment

variable to change. If the environment variable does not exist, the system will create it

if the lpValue parameter does not contain NIL. If the environment variable exists and

the lpValue parameter contains NIL, the system deletes the specified environment

variable.

386 � Chapter 8

lpValue: A pointer to a null-terminated string containing the new value for the environ-

ment variable.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call the GetLastError function.

See Also

GetEnvironmentVariable

Example

■ Listing 8-23: Setting and retrieving environment variables

procedure TForm1.Button1Click(Sender: Tobject);
var
ThePath: PChar; // holds the Path environment variable
Return: Integer; // holds the function return value

begin
{retrieve the size of the Path environment variable}
Return := GetEnvironmentVariable('Path', nil, 0);

{allocate a buffer}
GetMem(ThePath, Return);

{get the actual Path environment variable}
Return := GetEnvironmentVariable('Path', ThePath, Return);

{indicate any errors retrieving the path variable}
if Return = 0 then
ShowMessage('Path variable not found')

{otherwise, display the path environment variable}
else
Edit1.Text := ThePath;

{free the buffer}
FreeMem(ThePath);

end;

procedure TForm1.Button2Click(Sender: TObject);
var
ThePath: array[0..MAX_PATH] of char; // holds the Path environment variable

begin
{copy the specified path setting to the buffer}
StrPCopy(ThePath, Edit1.Text);

{set the Path environment variable}
if SetEnvironmentVariable('Path', ThePath) then
ShowMessage('Variable has been reset')

else
ShowMessage('Variable has not been set')

end;

System Information Functions � 387

C
h

a
p

te
r
8

SetLocaleInfo Windows.pas

Syntax

SetLocaleInfo(

Locale: LCID; {the locale identifier}

LCType: LCTYPE; {locale data flag}

lpLCData: PChar {a pointer to the new data}

): BOOL; {returns TRUE or FALSE}

Description

This function sets specific information for the locale identified by the Locale parame-

ter. However, only certain locale information can be modified with this function.

Parameters

Locale: The locale identifier for which the information will be set.

LCType: A flag indicating the type of locale information to change. This parameter can

be set to one value from Table 8-27. Note that this table of values is a subset of the

locale information flags available under the GetLocaleInfo function.

lpLCData: A null-terminated string containing the new locale information. The

LCType flag determines the size and format of this information.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call the GetLastError function.

See Also

GetLocaleInfo

Example

■ Listing 8-24: Setting locale information

var
Form1: TForm1;
OriginalUnits: PChar; // holds original locale measurements
OriginalUnitsBuff: array[0..1] of Char;

388 � Chapter 8

Figure 8-14:

The path

environment

variable

implementation

procedure TForm1.FormCreate(Sender: TObject);
begin
{retrieve the original locale measurement units}
OriginalUnits := @OriginalUnitsBuff;
GetLocaleInfo(LOCALE_SYSTEM_DEFAULT, LOCALE_IMEASURE, OriginalUnits, 2);

end;

procedure TForm1.ButtonSetRadioClick(Sender: TObject);
var
ChangeUnits: PChar;
ChangeUnitsBuff: array[0..1] of Char;

begin
{change the measurement units}
ChangeUnits := @ChangeUnitsBuff;
if RadioButtonBritish.Checked then
ChangeUnits := '1'

else
ChangeUnits := '0';

SetLocaleInfo(LOCALE_SYSTEM_DEFAULT, LOCALE_IMEASURE, ChangeUnits);

{retrieve the set measurement units}
GetLocaleInfo(LOCALE_SYSTEM_DEFAULT, LOCALE_IMEASURE, ChangeUnits, 2);
if ChangeUnits = '0' then
LabelMeasure.Caption := 'This country uses Metric measurements.';

if ChangeUnits = '1' then // pounds, ounces, quarts, miles, etc.
LabelMeasure.Caption := 'This country uses British measurements.';

end;

procedure TForm1.FormDestroy(Sender: TObject);
begin
{restore original measurement units}
SetLocaleInfo(LOCALE_SYSTEM_DEFAULT, LOCALE_IMEASURE, OriginalUnits);

end;

Table 8-27: SetLocaleInfo LCType values

Value Description

LOCALE_ICALENDARTYPE The current calendar type. Maximum input buffer size
is two characters. The calendar type values are given in
Table 8-28.

LOCALE_ICURRDIGITS Number of fractional digits for local monetary displays,
with the maximum size of the input buffer being three
characters.

LOCALE_ICURRENCY Positive currency mode. Maximum input buffer size is
two characters. The mode values are given in Table
8-29.

LOCALE_IDIGITS Indicates the number of fractional digits.

LOCALE_IFIRSTDAYOFWEEK Specifier for the first day of the week for the locale. This
has a maximum size of two characters and can be any
value from Table 8-30.

System Information Functions � 389

C
h

a
p

te
r
8

Value Description

LOCALE_IFIRSTWEEKOFYEAR Specifier for the first week of the year for the locale.
This has a maximum size of two characters, and can be
any value from Table 8-31.

LOCALE_ILZERO Specifies if leading zeroes exist for decimal fields. 0 =
no leading zeroes; 1 = use leading zeroes.

LOCALE_IMEASURE System of measurement for the locale. 0 for metric (S.I.)
and 1 for U.S. measurements system.

LOCALE_INEGCURR Negative currency mode. Maximum size for this string is
three. The mode can be any of the values in Table 8-32.

LOCALE_INEGNUMBER Negative number formatting. Maximum size for this
string is two. The mode can be any of the values in
Table 8-33.

LOCALE_IPAPERSIZE Windows 2000/XP and later: The default paper size
used for the locale. This can be one value from Table
8-34.

LOCALE_ITIME Time format specifier. The maximum size of this string is
two. The specifier can be one of the following values:
0 = AM/PM 12-hour format; 1 = 24-hour format.

LOCALE_S1159 String for the AM designator.

LOCALE_S2359 String for the PM designator.

LOCALE_SCURRENCY Monetary symbol ($ for the U.S.).

LOCALE_SDATE Characters for the date separator.

LOCALE_SDECIMAL Character that is used as a decimal separator (such as a
period for U.S. floating-point values).

LOCALE_SGROUPING Number of decimal digits in each group to the left of the
decimal character. This is a string with values separated
by semicolons. The number in each group is given sepa-
rately. If a number is common for all groups, specify the
number followed by a zero group. In the U.S., this
would be given by a string value 3;0, meaning that all the
groups have three decimal digits.

LOCALE_SLIST The character that is used as a list separator for the
locale.

LOCALE_SLONGDATE Long date formatting string for the current locale.

LOCALE_SMONDECIMALSEP Characters used as the monetary decimal separator.

LOCALE_SMONGROUPING Sizes for each group of decimal digits to the left of the
decimal point. The number in each group is given sepa-
rately. If a number is common for all groups, specify the
number followed by a zero group. In the U.S., this
would be given by a string value 3;0, meaning that all
the groups have three decimal digits.

LOCALE_SMONTHOUSANDSEP Characters used as monetary separators for groups of
digits to the left of the decimal point.

LOCALE_SNEGATIVESIGN String value for the negative sign.

390 � Chapter 8

Value Description

LOCALE_SPOSITIVESIGN String value for the positive sign.

LOCALE_SSHORTDATE Short date formatting string for the current locale.

LOCALE_STHOUSAND Character or characters used to separate digit groups
on the left side of the decimal character (decimal point).
This would be the comma for U.S. locales.

LOCALE_STIME Characters for the time separator.

LOCALE_STIMEFORMAT Time formatting strings for the current locale.

LOCALE_SYEARMONTH Windows 98/Me/2000/XP and later: Specifies the
format string for dates containing only the year and
month.

Table 8-28: SetLocaleInfo LCType LOCALE_ICALENDARTYPE type values

Value Description

0 No calendar

1 Localized Gregorian

2 English string Gregorian

3 Japanese (Year of the Emperor)

4 Taiwan

5 Korean (Tangun Era)

6 Hijri (Arabic lunar)

7 Thai

8 Hebrew (lunar)

9 Middle East French Gregorian

10 Arabic Gregorian

11 Gregorian Transliterated English

12 Gregorian Transliterated French

Table 8-29: SetLocaleInfo LCType LOCALE_ICURRENCY mode values

Value Description

0 Prefix with no separation

1 Suffix with no separation

2 Prefix with one character separation

3 Suffix with one character separation

Table 8-30: SetLocaleInfo LCType LOCALE_IFIRSTDAYOFWEEK values

Value Description

0 LOCALE_SDAYNAME1

1 LOCALE_SDAYNAME2

2 LOCALE_SDAYNAME3

3 LOCALE_SDAYNAME4

System Information Functions � 391

C
h

a
p

te
r
8

Value Description

4 LOCALE_SDAYNAME5

5 LOCALE_SDAYNAME6

6 LOCALE_SDAYNAME7

Table 8-31: SetLocaleInfo LCType LOCALE_IFIRSTWEEKOFYEAR values

Value Description

0 The week containing January 1 is the first week.

1 The first full week containing January 1 is the first week.

2 The first week containing at least four days is the first
week.

Table 8-32: SetLocaleInfo LCType LOCALE_INEGCURR mode values

Value Description

0 ($1.1)

1 –$1.1

2 $–1.1

3 $1.1–

4 (1.1$)

5 –1.1$

6 1.1–$

7 1.1$–

8 –1.1 $ (space before $)

9 –$ 1.1 (space after $)

10 1.1 $– (space before $)

11 $ 1.1– (space after $)

12 $–1.1 (space after $)

13 1.1– $ (space before $)

14 ($ 1.1) (space after $)

15 (1.1 $) (space before $)

Table 8-33: SetLocaleInfo LCType LOCALE_INEGNUMBER mode values

Value Description

0 (12345)

1 –12345

2 – 12345

3 12345–

4 12345 –

392 � Chapter 8

Table 8-34: SetLocaleInfo LCType LOCALE_IPAPERSIZE values

Value Description

1 Letter size

5 Legal size

8 A3

9 A4

SetLocalTime Windows.pas

Syntax

SetLocalTime(

const lpSystemTime: TSystemTime {a pointer to a TSystemTime structure}

): BOOL; {returns TRUE or FALSE}

Description

This function sets the current local date and time.

�Note: Under Windows NT/2000/XP, the system uses the current time zone

information to perform any daylight-saving time conversion, if

necessary. This conversion is based on the current time, not the new

time being set. Also, calling this function enables the SE_SYSTEM-

TIME_NAME security privilege, which is disabled by default.

Parameters

lpSystemTime: A pointer to a TSystemTime structure that contains the new current

local date and time. The TSystemTime data structure is defined as:

TSystemTime = record

wYear: Word; {the current year}

wMonth: Word; {the month number}

wDayOfWeek: Word; {the day of the week number}

wDay: Word; {the current day of the month}

wHour: Word; {the current hour}

wMinute: Word; {the current minute}

wSecond: Word; {the current second}

wMilliseconds: Word; {the current millisecond}

end;

Please see the FileTimeToSystemTime function for a description of this data structure.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call the GetLastError function.

See Also

GetLocalTime, GetSystemTime, SetSystemTime

System Information Functions � 393

C
h

a
p

te
r
8

Example

■ Listing 8-25: Setting and retrieving the current local time

procedure TForm1.Button1Click(Sender: Tobject);
var
CurrentTime : TSystemTime; // holds time information

begin
{retrieve the local time}
GetLocalTime(CurrentTime);

{display the local time elements}
Edit1.Text := IntToStr(CurrentTime.wMonth) + '/' +

IntToStr(CurrentTime.wDay) + '/' +
IntToStr(CurrentTime.wYear);

Edit2.Text := IntToStr(CurrentTime.wDayOfWeek) + ' Day of week';
Edit3.Text := IntToStr(CurrentTime.whour) + ':' +

IntToStr(CurrentTime.wMinute) + ':' +
IntToStr(CurrentTime.wSecond);

end;

procedure TForm1.Button2Click(Sender: TObject);
var
CurrentTime : TSystemTime; // holds time information

begin
{retrieve the current time to initialize members of the CurrentTime
structure that are not initialized from UI elements}
GetLocalTime(CurrentTime);
try
{set the date from the user supplied date}
Decodedate(StrToDateTime(Edit1.Text), CurrentTime.wYear, CurrentTime.wMonth,
CurrentTime.wDay);

{set the time from the user supplied time}
DecodeTime(StrToTime(Edit3.text), CurrentTime.wHour, CurrentTime.wMinute,
CurrentTime.wSecond, CurrentTime.wMilliseconds);

{set the local time}
SetLocalTime(CurrentTime)

except
{display a message if an error occurred}
on E:Exception do ShowMessage('Error setting local time');

end;
end;

394 � Chapter 8

Figure 8-15:

The current

local time

TE
AM
FL
Y

Team-Fly®

SetSystemTime Windows.pas

Syntax

SetSystemTime(

const lpSystemTime: TSystemTime {a pointer to a TSystemTime structure}

): BOOL; {returns TRUE or FALSE}

Description

This function sets the current system date and time. The system time is in coordinated

universal time format (UTC).

�Note: Under Windows NT/2000/XP, calling this function enables the

SE_SYSTEMTIME_NAME security privilege, which is disabled

by default.

Parameters

lpSystemTime: A pointer to a TSystemTime structure that contains the new current sys-

tem date and time. The TSystemTime data structure is defined as:

TSystemTime = record

wYear: Word; {the current year}

wMonth: Word; {the month number}

wDayOfWeek: Word; {the day of the week number}

wDay: Word; {the current day of the month}

wHour: Word; {the current hour}

wMinute: Word; {the current minute}

wSecond: Word; {the current second}

wMilliseconds: Word; {the current millisecond}

end;

Note that the value of the wDayOfWeek member is ignored. Please see the FileTimeTo-

SystemTime function for a description of this data structure.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call the GetLastError function.

See Also

GetLocalTime, GetSystemTime, SetLocalTime

Example

■ Listing 8-26: Setting and retrieving the system time

procedure TForm1.Button1Click(Sender: Tobject);
var
CurrentTime: TSystemTime; // holds the system time

begin

System Information Functions � 395

C
h

a
p

te
r
8

{retrieve the system time}
GetSystemTime(CurrentTime);

{display the system time}
Edit1.Text := IntToStr(CurrentTime.wmonth) + '/' +

IntToStr(CurrentTime.wDay) + '/' +
IntToStr(CurrentTime.wYear);

Edit2.Text := IntToStr(CurrentTime.wDayOfWeek) + ' Day of week';
Edit3.Text := IntToStr(CurrentTime.whour) + ':' +

IntToStr(CurrentTime.wMinute)+':'+IntToStr(CurrentTime.wSecond);
end;

procedure TForm1.Button2Click(Sender: TObject);
var
CurrentTime : TSystemTime; // holds the system time

begin
{retrieve the system time to initialize members of CurrentTime
that are not supplied by the user}
GetSystemTime(CurrentTime);
try
{set the date from the supplied date}
DecodeDate(StrToDateTime(Edit1.Text), CurrentTime.wYear, CurrentTime.wMonth,
CurrentTime.wDay);

{set the time from the supplied time}
DecodeTime(StrToTime(Edit3.Text), CurrentTime.wHour, CurrentTime.wMinute,
CurrentTime.wSecond, CurrentTime.wMilliseconds);

{set the system time}
SetSystemTime(CurrentTime)

except
{indicate if there was an error}
on E:Exception do ShowMessage('Error setting system time');

end;
end;

SetTimeZoneInformation Windows.pas

Syntax

SetTimeZoneInformation(

const lpTimeZoneInformation:

TTimeZoneInformation {a pointer to TTimeZoneInformation}

): BOOL; {returns TRUE or FALSE}

396 � Chapter 8

Figure 8-16:

The current

system time

Description

This function is used to set the time zone information for the local system. The time

zone information controls the translation between coordinated universal time format

(UTC) and local time.

Parameters

lpTimeZoneInformation: A pointer to a TTimeZoneInformation data structure that con-

tains the new time zone information for the system. The TTimeZoneInformation data

structure is defined as:

TTimeZoneInformation = record

Bias: Longint {Difference between times}

StandardName: array[0..31] of WCHAR {Name of Time Zone in Standard}

StandardDate: TSystemTime {Date of change to Standard time}

StandardBias: Longint {Standard time added to Bias}

DaylightName: array[0..31] of WCHAR {Name of Time Zone in Daylight}

DaylightDate: TSystemTime {Date of change to Daylight time}

DaylightBias: Longint {Daylight time added to Bias}

end;

Please see GetTimeZoneInformation for more details.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call the GetLastError function.

See Also

GetTimeZoneInformation, SetLocalTime, SetSystemTime

Example

Please see Listing 8-16 under GetTimeZoneInformation.

SetVolumeLabel Windows.pas

Syntax

SetVolumeLabel(

lpRootPathName: PChar; {the root directory name of the volume to change}

lpVolumeName: PAnsiChar {the new volume name}

): BOOL; {returns TRUE or FALSE}

Description

This function changes the volume name on the drive identified by the root path name

contained in the lpRootPathName parameter.

System Information Functions � 397

C
h

a
p

te
r
8

Parameters

lpRootPathName: A pointer to a null-terminated string containing the path of the root

directory on the drive whose volume name is to be changed. If this parameter is set to

NIL, the volume containing the current directory is used.

lpVolumeName: A pointer to a null-terminated string containing the new name for the

volume. If this parameter is set to NIL, the volume name is deleted.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call the GetLastError function.

See Also

GetVolumeInformation

Example

■ Listing 8-27: Setting the volume name

procedure TForm1.Button2Click(Sender: TObject);
begin
{set the volume label for drive C}
SetVolumeLabel('C:\', PChar(Edit1.Text));

end;

SystemParametersInfo Windows.pas

Syntax

SystemParametersInfo(

uiAction: UINT; {the system-wide parameter to set or query}

uiParam: UINT; {an integer dependent on uiAction}

pvParam: Pointer; {a pointer to a structure dependent on uiAction}

fWinIni: UINT {notification and save options}

): BOOL; {returns TRUE or FALSE}

Description

This function can query or set a system-wide parameter, such as mouse trails or desk-

top wallpaper. Most of these parameters are available from various applets under the

Control Panel.

Parameters

uiAction: Specifies which system-wide parameter to set or query and can be one value

from Table 8-36.

uiParam: An integer whose value is dependent on the value of the uiAction parameter.

See Table 8-36 for a description of uiParam parameter values. Unless otherwise speci-

fied, this parameter should be set to zero.

pvParam: A pointer to a data structure. The type of data structure and its values are

dependent on the value of the uiAction parameter. See Table 8-36 for a description of

398 � Chapter 8

pvParam parameter structures. Unless otherwise specified, this parameter should be set

to NIL.

fWinIni: Determines how the changes to the system-wide parameters are handled and

can be one value from Table 8-35.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call the GetLastError function.

See Also

GetSystemMetrics*

Example

■ Listing 8-28: Changing the size of non-client buttons

const
{these constants are not defined in Delphi 6}
SPI_GETDESKWALLPAPER = $0073;
SPI_GETDROPSHADOW = $1024;
SPI_SETDROPSHADOW = $1025;
SPI_GETFLATMENU = $1022;
SPI_SETFLATMENU = $1023;
SPI_GETFOCUSBORDERWIDTH = $200E;
SPI_SETFOCUSBORDERWIDTH = $200F;
SPI_GETFOCUSBORDERHEIGHT = $2010;
SPI_SETFOCUSBORDERHEIGHT = $2011;
SPI_GETFONTSMOOTHINGCONTRAST = $200C;
SPI_SETFONTSMOOTHINGCONTRAST = $200D;
SPI_GETFONTSMOOTHINGTYPE = $200A;
SPI_SETFONTSMOOTHINGTYPE = $200B;
SPI_GETMOUSECLICKLOCKTIME = $2008;
SPI_SETMOUSECLICKLOCKTIME = $2009;
SPI_GETMOUSECLICKLOCK = $101E;
SPI_SETMOUSECLICKLOCK = $101F;
SPI_GETMOUSESONAR = $101C;
SPI_SETMOUSESONAR = $101D;
SPI_GETMOUSEVANISH = $1020;
SPI_SETMOUSEVANISH = $1021;

FE_FONTSMOOTHINGSTANDARD = $0001;
FE_FONTSMOOTHINGCLEARTYPE = $0002;

var
MyNCM: TNonClientMetrics; // holds non client metric info
OriginalWidth, OriginalHeight: Integer; // holds original button sizes

procedure TForm1.Button1Click(Sender: TObject);
begin
{initialize the size of the data structure}
MyNCM.cbSize := SizeOf(TNonClientMetrics);

{retrieve the settings for the non client button sizes}
SystemParametersInfo(SPI_GetNonClientMetrics, SizeOf(TNonClientMetrics),

System Information Functions � 399

C
h

a
p

te
r
8

@MyNCM, 0);

{double the size of non client buttons}
MyNCM.iCaptionWidth := MyNCM.iCaptionWidth * 2;
MyNCM.iCaptionHeight := MyNCM.iCaptionHeight * 2;

{set the size of non client buttons to the new size}
SystemParametersInfo(SPI_SetNonClientMetrics, SizeOf(TNonClientMetrics),

@MyNCM, SPIF_SENDWININICHANGE);
end;

procedure TForm1.Button2Click(Sender: TObject);
begin
{initialize the size of the data structure}
MyNCM.cbSize := SizeOf(TNonClientMetrics);

{retrieve the settings for the non client button sizes}
SystemParametersInfo(SPI_GetNonClientMetrics, SizeOf(TNonClientMetrics),

@MyNCM, 0);

{decrease the size of non client buttons}
MyNCM.iCaptionWidth := MyNCM.iCaptionWidth div 2;
MyNCM.iCaptionHeight := MyNCM.iCaptionHeight div 2;

{set the size of non client buttons to the new size}
SystemParametersInfo(SPI_SetNonClientMetrics, SizeOf(TNonClientMetrics),

@MyNCM, SPIF_SENDWININICHANGE);
end;

procedure TForm1.FormCreate(Sender: TObject);
begin
{initialize the size of the data structure}
MyNCM.cbSize := SizeOf(TNonClientMetrics);

{retrieve the settings for the non client button sizes}
SystemParametersInfo(SPI_GetNonClientMetrics, SizeOf(TNonClientMetrics),

@MyNCM, 0);

{store the original settings for restoration when the application ends}
OriginalWidth := MyNCM.iCaptionWidth;
OriginalHeight := MyNCM.iCaptionHeight;

end;

procedure TForm1.FormDestroy(Sender: TObject);
begin
{initialize the size of the data structure}
MyNCM.cbSize := SizeOf(TNonClientMetrics);

{set the size of the buttons to the original size}
MyNCM.iCaptionWidth := OriginalWidth;
MyNCM.iCaptionHeight := OriginalHeight;

{change the size of the non client buttons}
SystemParametersInfo(SPI_SetNonClientMetrics, SizeOf(TNonClientMetrics),

@MyNCM, SPIF_SENDWININICHANGE);
end;

400 � Chapter 8

Table 8-35: SystemParametersInfo fWinIni values

Value Description

SPIF_UPDATEINIFILE Save the new settings to the user profile.

SPIF_SENDCHANGE Update and broadcast the WM_SETTINGCHANGE message.

Table 8-36: SystemParametersInfo uiAction values

Value Description

SPI_GETACCESSTIMEOUT Retrieves information about the time-out period for accessibility
features.

uiParam: Specifies the size of the TAccessTimeout structure.

pvParam: Points to a TAccessTimeout structure that receives
the timeout information.

Note: If accessibility features are not installed, this flag causes
the function to fail.

SPI_GETACTIVEWINDOWTRACKING Windows 98/Me/2000/XP and later: Indicates if active win-
dow tracking is enabled or disabled (active window tracking
activates any window over which the mouse hovers).

uiParam: Not used.

pvParam: Points to a Boolean value that receives TRUE if
enabled, FALSE if disabled.

SPI_GETACTIVEWNDTRKZORDER Windows 98/Me/2000/XP and later: Indicates if windows
activated via active window tracking are brought to the top.

uiParam: Not used.

pvParam: Points to a Boolean value that receives TRUE if
enabled, FALSE if disabled.

SPI_GETACTIVEWNDTRKTIMEOUT Windows 98/Me/2000/XP and later: Indicates active window
tracking window activation delay in milliseconds.

uiParam: Not used.

pvParam: Points to a DWORD value that receives the delay.

SPI_GETANIMATION Retrieves information about animation effects, such as animated
window minimizing/restoring.

uiParam: Specifies the size of the TAnimationInfo structure.

pvParam: Points to a TAnimationInfo structure that receives the
animation effects information.

SPI_GETBEEP Indicates whether the warning beeper is on or off.

uiParam: Not used.

pvParam: Points to a Boolean value that receives TRUE if the
beeper is on or FALSE if it is off.

System Information Functions � 401

C
h

a
p

te
r
8

Figure 8-17:

The modified

non-client

buttons

Value Description

SPI_GETBORDER Retrieves the border multiplier that is used when determining
the width of a window’s sizing border.

uiParam: Not used.

pvParam: Points to an integer value that receives the border
multiplier factor.

SPI_GETCARETWIDTH Windows 2000/XP and later: Retrieves the width of the edit
control caret, in pixels.

uiParam: Not used.

pvParam: Points to a DWORD value that receives the caret
width.

SPI_GETCOMBOBOXANIMATION Windows 98/Me/2000/XP and later: Indicates if the opening
animation effect for combo boxes is enabled or disabled.

uiParam: Not used.

pvParam: Points to a Boolean value that receives TRUE if
enabled, FALSE if disabled.

SPI_GETCURSORSHADOW Windows 2000/XP and later: Indicates if the cursor is dis-
played with a shadow.

uiParam: Not used.

pvParam: Points to a Boolean value that receives TRUE if
enabled, FALSE if disabled.

Note: The video driver must be set to a color depth greater
than 8-bit before this effect is displayed.

SPI_GETDESKWALLPAPER Windows 2000/XP and later: Retrieves the path and filename
of the desktop wallpaper bitmap.

uiParam: Indicates the size of the buffer pointed to by the
pvParam parameter, in characters.

pvParam: Points to a null-terminated string buffer that receives
the path and filename. The returned string will never be longer
than MAX_PATH characters.

SPI_GETDEFAULTINPUTLANG Retrieves the keyboard layout handle for the system default
input language.

uiParam: Not used.

pvParam: Points to an integer value that receives the keyboard
layout handle.

SPI_GETDRAGFULLWINDOWS Indicates if full window dragging is enabled.

uiParam: Not used.

pvParam: Points to a Boolean value that receives TRUE if full
window dragging is enabled or FALSE if it is not.

Note: This flag is supported under Windows 95 only if Win-
dows Plus! is installed.

402 � Chapter 8

Value Description

SPI_GETDROPSHADOW Windows XP only: Indicates if the drop shadow effect is
enabled or disabled.

uiParam: Not used.

pvParam: Points to a Boolean value that receives TRUE if
enabled, FALSE if disabled.

SPI_GETFILTERKEYS Retrieves information about the FilterKeys accessibility feature.

uiParam: Specifies the size of the TFilterKeys structure.

pvParam: Points to a TFilterKeys structure that receives infor-
mation about the FilterKeys feature.

Note: If accessibility features are not installed, this flag causes
the function to fail.

SPI_GETFLATMENU Windows XP only: Indicates if native user menus have the flat
menu appearance.

uiParam: Not used.

pvParam: Points to a Boolean value that receives TRUE if the
menus are flat, FALSE otherwise.

SPI_GETFOCUSBORDERHEIGHT Windows XP only: Retrieves the height, in pixels, of the top or
bottom edges of a focus rectangle drawn with the DrawFocus-
Rect function.

uiParam: Not used.

pvParam: Points to a UINT value that receives the height of the
focus rectangle edges.

SPI_GETFOCUSBORDERWIDTH Windows XP only: Retrieves the width, in pixels, of the left or
right edges of a focus rectangle drawn with the DrawFocusRect
function.

uiParam: Not used.

pvParam: Points to a UINT value that receives the width of the
focus rectangle edges.

SPI_GETFONTSMOOTHING Indicates whether anti-aliasing is used to make font curves
appear smoother (known as font smoothing).

uiParam: Not used.

pvParam: Points to a Boolean value that receives TRUE if font
anti-aliasing is used or FALSE if it is not.

Note: This flag is supported under Windows 95 only if the Win-
dows Plus! Package is installed.

SPI_GETFONTSMOOTHINGCONTRAST Windows XP only: Retrieves the contrast value used in
ClearType font smoothing.

uiParam: Not used.

pvParam: Points to a UINT value that receives the contrast
value. This value is in the range 1000-2200, with the default set
at 1400.

System Information Functions � 403

C
h

a
p

te
r
8

Value Description

SPI_GETFONTSMOOTHINGTYPE Windows XP only: Retrieves the font smoothing type.

uiParam: Not used.

pvParam: Points to a UINT value that receives the font smooth-
ing type information, either FE_FONTSMOOTHING-
STANDARD for standard anti-aliasing or FE_FONT-
SMOOTHINGCLEARTYPE for ClearType font smoothing.

SPI_GETFOREGROUNDFLASHCOUNT Windows 98/Me/2000/XP and later: Retrieves the number
of times an application’s taskbar button flashes when rejecting a
foreground switch request.

uiParam: Not used.

pvParam: Points to a DWORD value that receives the flash
count.

SPI_GETFOREGROUNDLOCKTIMEOUT Windows 98/Me/2000/XP and later: Retrieves the number
of milliseconds following user input during which no applications
are allowed to force themselves into the foreground.

uiParam: Not used.

pvParam: Points to a DWORD value that receives the lockout
time.

SPI_GETGRADIENTCAPTIONS Windows 98/Me/2000/XP and later: Indicates if the gradient
effect in application title bars is enabled or disabled.

uiParam: Not used.

pvParam: Points to a Boolean value that receives TRUE if
enabled, FALSE if disabled.

SPI_GETGRIDGRANULARITY Retrieves the granularity of the desktop sizing grid.

uiParam: Not used.

pvParam: Points to an integer value that receives the granularity
value.

SPI_GETHIGHCONTRAST Windows 95/98/Me/2000/XP and later: Retrieves informa-
tion about the HighContrast accessibility feature, which sets the
color scheme and appearance of the user interface to provide
for maximum visibility for visually impaired users.

uiParam: Specifies the size of the THighContrast structure.

pvParam: Points to a THighContrast structure that receives
information about the HighContrast feature.

Note: If accessibility features are not installed, this flag causes
the function to fail.

SPI_GETHOTTRACKING Windows 98/Me/2000/XP and later: Indicates if hot tracking
of user interface elements is enabled or disabled (i.e., flat but-
tons that display a border when the mouse enters, etc.).

uiParam: Not used.

pvParam: Points to a Boolean value that receives TRUE if
enabled, FALSE if disabled.

404 � Chapter 8

TE
AM
FL
Y

Team-Fly®

Value Description

SPI_GETICONMETRICS Retrieves icon metric values, such as spacing and title wrap.

uiParam: Specifies the size of the TIconMetrics structure.

pvParam: Points to a TIconMetrics structure that receives infor-
mation about icon metrics.

SPI_GETICONTITLELOGFONT Retrieves the logical font for the current icon title font.

uiParam: Specifies the size of the TLogFont structure.

pvParam: Points to a TLogFont structure that receives the icon
title logical font.

SPI_GETICONTITLEWRAP Determines whether icon title wrapping is enabled.

uiParam: Not used.

pvParam: Points to a Boolean value that receives TRUE if icon
title wrapping is enabled or FALSE if it is not.

SPI_GETKEYBOARDCUES Windows 98/Me/2000/XP and later: Indicates if menu access
characters are always underlined.

uiParam: Not used.

pvParam: Points to a Boolean value that receives TRUE if they
are always underlined, FALSE otherwise.

SPI_GETKEYBOARDDELAY Retrieves the keyboard repeat delay setting.

uiParam: Not used.

pvParam: Points to an integer value receiving the repeat delay
setting.

SPI_GETKEYBOARDPREF Windows 95/98/Me/2000/XP and later: Retrieves user key-
board preference, indicating whether the user prefers the
keyboard over the mouse and wants applications to display key-
board interfaces that would otherwise be hidden.

uiParam: Not used.

pvParam: Points to a Boolean value that receives TRUE if the
user prefers the keyboard or FALSE if the user prefers the
mouse.

SPI_GETKEYBOARDSPEED Retrieves the keyboard repeat speed setting.

uiParam: Not used.

pvParam: Points to an integer value to receive the repeat speed
setting.

SPI_GETLISTBOXSMOOTHSCROLLING Windows 98/Me/2000/XP and later: Indicates if the smooth
scrolling effect for list boxes is enabled or disabled.

uiParam: Not used.

pvParam: Points to a Boolean value that receives TRUE if
enabled, FALSE if disabled.

System Information Functions � 405

C
h

a
p

te
r
8

Value Description

SPI_GETLOWPOWERACTIVE Indicates if the screen saver low-power phase is enabled or
disabled.

uiParam: Not used.

pvParam: Points to a Boolean value that receives TRUE if
enabled, FALSE if disabled.

Note: Under Windows 95, this flag is supported for 16-bit
applications only. Under Windows 98/Me, this is supported for
16- and 32-bit applications. Under Windows 2000/XP, only
32-bit applications are supported.

SPI_GETLOWPOWERTIMEOUT Retrieves the time-out value, in seconds, for the screen save
low-power phase.

uiParam: Not used.

pvParam: Points to an integer value that receives time-out
value.

Note: Under Windows 95, this flag is supported for 16-bit
applications only. Under Windows 98/Me, this is supported for
16- and 32-bit applications. Under Windows 2000/XP, only
32-bit applications are supported.

SPI_GETMENUANIMATION Windows 98/Me/2000/XP and later: Indicates if menu ani-
mation effects are enabled or disabled.

uiParam: Not used.

pvParam: Points to a Boolean value that receives TRUE if
enabled, FALSE if disabled.

SPI_GETMENUDROPALIGNMENT Retrieves pop-up menu alignment, indicating whether pop-up
menus are left or right aligned relative to the corresponding
menu bar item.

uiParam: Not used.

pvParam: Points to a Boolean value that receives TRUE if
pop-up menus are left aligned or FALSE if they are right aligned.

SPI_GETMENUFADE Windows 2000/XP and later: Indicates which menu anima-
tion effect is used, fading or sliding. If the return value is TRUE,
the fade animation is used; otherwise, the slide animation is
used. The SPI_GETMENUANIMATION flag determines if menu
animation is enabled.

uiParam: Not used.

pvParam: Points to a Boolean value that receives TRUE for a
fading effect, FALSE for a sliding effect.

SPI_GETMENUSHOWDELAY Windows 98/Me/NT/2000/XP and later: Retrieves the
amount of time, in milliseconds, before displaying a shortcut
menu when the mouse is over a submenu item.

uiParam: Not used.

pvParam: Points to a DWORD value that receives the delay
amount.

SPI_GETMENUUNDERLINES See SPI_GETKEYBOARDCUES.

406 � Chapter 8

Value Description

SPI_GETMINIMIZEDMETRICS Retrieves the minimized window metrics, such as arrangement
and width.

uiParam: Specifies the size of the TMinimizedMetrics structure.

pvParam: Pointer to a TMinimizedMetrics structure that
receives the minimized window metric information.

SPI_GETMOUSE Retrieves the two mouse speed threshold values and the mouse
speed.

uiParam: Not used.

pvParam: Points to an array of the integer values to receive the
mouse threshold values.

SPI_GETMOUSECLICKLOCK Windows Me/XP only: Indicates if the mouse ClickLock fea-
ture is enabled or disabled.

uiParam: Not used.

pvParam: Points to a Boolean value that receives TRUE if
enabled, FALSE if disabled.

SPI_GETMOUSECLICKLOCKTIME Windows Me/XP only: Retrieves the delay, in milliseconds,
between the time the mouse button is pressed and the mouse
ClickLock feature activates. The SPI_GETMOUSECLICKLOCK
flag indicates if the ClickLock feature is enabled.

uiParam: Not used.

pvParam: Points to a DWORD value that receives the time
delay.

SPI_GETMOUSEHOVERHEIGHT Windows 98/Me/NT/2000/XP and later: Retrieves the
height, in pixels, of the rectangle within which the mouse
pointer has to stay for a WM_MOUSEHOVER message to be
generated by the TrackMouseEvent function.

uiParam: Not used.

pvParam: Points to an integer value that receives the height.

SPI_GETMOUSEHOVERTIME Windows 98/Me/NT/2000/XP and later: Retrieves the time,
in milliseconds, that the mouse pointer has to stay in the hover
rectangle for a WM_MOUSEHOVER message to be generated
by the TrackMouseEvent function.

uiParam: Not used.

pvParam: Points to an integer value that receives the time.

SPI_GETMOUSEHOVERWIDTH Windows 98/Me/NT/2000/XP and later: Retrieves the
width, in pixels, of the rectangle within which the mouse
pointer has to stay for a WM_MOUSEHOVER message to be
generated by the TrackMouseEvent function.

uiParam: Not used.

pvParam: Points to an integer value that receives the width.

System Information Functions � 407

C
h

a
p

te
r
8

Value Description

SPI_GETMOUSEKEYS Retrieves information about the MouseKeys accessibility fea-
ture. MouseKeys allow the mouse cursor to be controlled by
the numeric keypad. The Num Lock key toggles between
mouse control and normal operation.

uiParam: Specifies the size of the TMouseKeys structure.

pvParam: Points to a TMouseKeys structure that receives infor-
mation about the MouseKeys feature.

Note: If accessibility features are not installed, this flag causes
the function to fail.

SPI_GETMOUSESONAR Windows Me/XP only: Indicates if the mouse Sonar feature is
enabled or disabled.

uiParam: Not used.

pvParam: Points to a Boolean value that receives TRUE if
enabled, FALSE if disabled.

SPI_GETMOUSESPEED Windows 98/Me/2000/XP and later: Retrieves the mouse
speed, on a scale of 1-20 (20 being the fastest, 10 is the default).

uiParam: Not used.

pvParam: Points to an integer value that receives the mouse
speed value.

SPI_GETMOUSETRAILS Windows 95/98/Me/XP only: Indicates mouse trails are
enabled.

uiParam: Not used.

pvParam: Pointer to an integer value. A value of 1 or 0 indicates
mouse trails are disabled. A value greater than 1 indicates the
number of mouse trails drawn to the screen.

SPI_GETMOUSEVANISH Windows Me/XP only: Indicates if the mouse Vanish feature is
enabled or disabled.

uiParam: Not used.

pvParam: Points to a Boolean value that receives TRUE if
enabled, FALSE if disabled.

SPI_GETNONCLIENTMETRICS Retrieves metric values associated with the non-client area of a
window.

uiParam: Specifies the size of the TNonClientMetrics structure.

pvParam: Points to a TNonClientMetrics structure that receives
the non-client area metric values.

SPI_GETPOWEROFFACTIVE Indicates if the screen saver power-off phase is enabled or
disabled.

uiParam: Not used.

pvParam: Points to a Boolean value that receives TRUE if
enabled, FALSE if disabled.

Note: Under Windows 95, this flag is supported for 16-bit
applications only. Under Windows 98/Me, this is supported for
16- and 32-bit applications. Under Windows 2000/XP, only
32-bit applications are supported.

408 � Chapter 8

Value Description

SPI_GETPOWEROFFTIMEOUT Retrieves the time-out value, in seconds, of the screen saver
power-off phase.

uiParam: Not used.

pvParam: Points to an integer value that receives the time-out
value.

Note: Under Windows 95, this flag is supported for 16-bit
applications only. Under Windows 98/Me, this is supported for
16- and 32-bit applications. Under Windows 2000/XP, only
32-bit applications are supported.

SPI_GETSCREENREADER Windows 95/98/Me/2000/XP and later: Indicates if a screen
reviewer utility that directs textual information to an output
device, such as a speech synthesizer or Braille display, is run-
ning. When this flag is set, an application should provide
information in a textual format in situations where it would oth-
erwise represent the information graphically.

uiParam: Not used.

pvParam: Points to a Boolean value that receives TRUE if a
screen reviewer utility is running or FALSE if not.

SPI_GETSCREENSAVEACTIVE Indicates if screen savers can activate.

uiParam: Not used.

pvParam: Points to a Boolean value that receives TRUE if screen
savers can activate, FALSE if not.

SPI_GETSCREENSAVERRUNNING Windows 98/Me/2000/XP and later: Indicates if a screen is
currently running.

uiParam: Not used.

pvParam: Points to a Boolean value that receives TRUE if a
screen saver is running or FALSE if not.

SPI_GETSCREENSAVETIMEOUT Retrieves the screen saver time-out value in seconds.

uiParam: Not used.

pvParam: Points to an integer value to receive the time-out
value.

SPI_GETSELECTIONFADE Windows 2000/XP only: Indicates if the selection fade effect is
enabled or disabled.

uiParam: Not used.

pvParam: Points to a Boolean value that receives TRUE if
enabled, FALSE if disabled.

System Information Functions � 409

C
h

a
p

te
r
8

Value Description

SPI_GETSERIALKEYS Windows 95/98/Me only: Retrieves information about the
SerialKeys accessibility feature, which interprets data from a
communication device attached to a serial port as keyboard and
mouse input.

uiParam: Specifies the size of the TSerialKeys structure.

pvParam: Points to a TSerialKeys structure that receives infor-
mation about the SerialKeys feature.

Note: If accessibility features are not installed, this flag causes
the function to fail.

SPI_GETSHOWIMEUI Windows 98/Me/2000/XP and later: Indicates if the IME sta-
tus window is visible.

uiParam: Not used.

pvParam: Points to a Boolean value that receives TRUE if the
status window is visible, FALSE if it is not.

SPI_GETSHOWSOUNDS Indicates if the ShowSounds accessibility feature is enabled.
When this feature is enabled, applications should represent
information visually when it would otherwise present it in an
audible form.

uiParam: Not used.

pvParam: Points to a Boolean value that receives TRUE if the
feature is enabled, FALSE if it is not.

Note: If accessibility features are not installed, this flag causes
the function to fail.

SPI_GETSNAPTODEFBUTTON Windows 98/Me/NT/2000/XP and later: Indicates if the
snap-to-default-button feature is enabled. If enabled, the mouse
cursor automatically moves to the default button of a dialog
box, such as “OK” or “Apply.”

uiParam: Not used.

pvParam: Points to a Boolean value that receives TRUE if the
feature is enabled, FALSE if it is not.

SPI_GETSOUNDSENTRY Retrieves information about the SoundSentry accessibility fea-
ture. When the SoundSentry feature is on, the system displays a
visual indicator when a sound is generated. Under Windows
95/98/Me, the visual indicator is displayed only when a sound is
generated through the internal PC speaker. Windows
NT/2000/XP will display the visual indicator when a sound is
generated through either the internal speaker or a multimedia
sound card.

uiParam: Specifies the size of the TSoundSentry structure.

pvParam: Points to a TSoundSentry structure that receives
information about the SoundSentry feature.

Note: If accessibility features are not installed, this flag causes
the function to fail.

410 � Chapter 8

Value Description

SPI_GETSTICKYKEYS Retrieves information about the StickyKeys accessibility feature.
The StickyKeys feature allows a user to press a modifier key,
such as Shift, Ctrl, or Alt, and then a second key one at a time
instead of simultaneously to produce uppercase letters or other
key combinations.

uiParam: Specifies the size of the TStickyKeys structure.

pvParam: Points to a TStickyKeys structure that receives infor-
mation about the StickyKeys feature.

Note: If accessibility features are not installed, this flag causes
the function to fail.

SPI_GETTOGGLEKEYS Retrieves information about the ToggleKeys accessibility feature.
When the ToggleKeys feature is enabled, Windows outputs a
high-pitched tone when the user turns on the Caps Lock, Num
Lock, or Scroll Lock keys and a low-pitched tone when the user
turns them off.

uiParam: Specifies the size of the TToggleKeys structure.

pvParam: Points to a TToggleKeys structure that receives infor-
mation about the ToggleKeys feature.

Note: If accessibility features are not installed, this flag causes
the function to fail.

SPI_GETTOOLTIPANIMATION Windows 2000/XP and later: Indicates if tooltip animation is
enabled or disabled.

uiParam: Not used.

pvParam: Points to a Boolean value that receives TRUE if the
feature is enabled, FALSE if it is not.

SPI_GETTOOLTIPFADE Windows 2000/XP and later: Indicates which menu tooltip
animation effect is used, fading or sliding. If the return value is
TRUE, the fade animation is used; otherwise, the slide anima-
tion is used. The SPI_GETTOOLTIPANIMATION flag
determines if tooltip animation is enabled.

uiParam: Not used.

pvParam: Points to a Boolean value that receives TRUE for a
fading effect, FALSE for a sliding effect.

SPI_GETUIEFFECTS Windows 2000/XP and later: Indicates if all user interface
animation effects are enabled or disabled.

uiParam: Not used.

pvParam: Points to a Boolean value that receives TRUE if
enabled, FALSE if disabled.

SPI_GETWHEELSCROLLLINES Windows 98/Me/NT/2000/XP and later: Retrieves the num-
ber of lines scrolled when the mouse wheel is rotated for mice
that come equipped with the mouse wheel.

uiParam: Not used.

pvParam: Points to an integer value that receives the number of
lines scrolled.

System Information Functions � 411

C
h

a
p

te
r
8

Value Description

SPI_GETWINDOWSEXTENSION Windows 95 only: Indicates if Windows Plus! is installed. The
function returns TRUE if Windows Plus! is installed, FALSE
otherwise.

uiParam: This parameter is always set to 1.

pvParam: Not used.

SPI_GETWORKAREA Retrieves the size of the desktop area not obscured by the
taskbar.

uiParam: Not used.

pvParam: Points to a TRect that receives the dimensions of the
work area.

SPI_ICONHORIZONTALSPACING Sets the width of an icon cell for desktop spacing.

uiParam: Specifies the width of the cell in pixels.

pvParam: Not used.

SPI_ICONVERTICALSPACING Sets the height of an icon cell for desktop spacing.

uiParam: Specifies the height of the cell in pixels.

pvParam: Not used.

SPI_SETACCESSTIMEOUT Sets the time-out period associated with the accessibility
features.

uiParam: Specifies the size of the TAccessTimeout structure.

pvParam: Points to a TAccessTimeout structure that contains
the new time-out values.

Note: If accessibility features are not installed, this flag causes
the function to fail.

SPI_SETACTIVEWINDOWTRACKING Windows 98/Me/2000/XP and later: Enables or disables
active window tracking, which activates any window over which
the mouse hovers.

uiParam: Specifies zero to turn the option off or non-zero to
turn it on.

pvParam: Not used.

SPI_SETACTIVEWNDTRKZORDER Windows 98/Me/2000/XP and later: Determines if windows
activated via active window tracking are brought to the top.

uiParam: Specifies non-zero to bring windows to the top or
zero to turn this option off.

pvParam: Not used.

SPI_SETACTIVEWNDTRKTIMEOUT Windows 98/Me/2000/XP and later: Indicates active window
tracking window activation delay in milliseconds.

uiParam: Indicates the time delay in milliseconds.

pvParam: Not used.

412 � Chapter 8

Value Description

SPI_SETANIMATION Sets the animation effect values, such as window minimiz-
ing/restoring animation.

uiParam: Specifies the size of a TAnimationInfo structure.

pvParam: Points to a TAnimationInfo structure that contains the
new animation effect values.

SPI_SETBEEP Turns the warning beeper on or off.

uiParam: Specifies zero to turn the option off or non-zero to
turn it on.

pvParam: Not used.

SPI_SETBORDER Sets the border multiplier that is used in determining the width
of a window’s sizing border.

uiParam: Specifies the new border width multiplier.

pvParam: Not used.

SPI_SETCARETWIDTH Windows 2000/XP and later: Sets the width, in pixels, of the
caret in edit controls. The minimum size is one pixel.

uiParam: Specifies the caret width.

pvParam: Not used.

SPI_SETCOMBOBOXANIMATION Windows 98/Me/2000/XP and later: Enables or disables the
opening animation effect for combo boxes.

uiParam: Specifies zero to turn the option off or non-zero to
turn it on.

pvParam: Not used.

SPI_SETCURSORS Instructs the system to reload all system cursors.

uiParam: Must be set to zero.

pvParam: Not used.

SPI_SETCURSORSHADOW Windows 2000/XP and later: Enables or disables the shadow
displayed with the cursor.

uiParam: Specifies zero to turn the option off or non-zero to
turn it on.

pvParam: Not used.

Note: The video driver must be set to a color depth greater
than 8-bit before this effect is displayed.

SPI_SETDEFAULTINPUTLANG Sets the default input language for the system. The specified lan-
guage must be displayable using the current character set.

uiParam: Not used.

pvParam: Points to a keyboard layout handle for the new default
language.

SPI_SETDESKPATTERN Sets the current desktop pattern. Windows retrieves this pat-
tern from the pattern setting in the WIN.INI file.

uiParam: Not used.

pvParam: Not used.

System Information Functions � 413

C
h

a
p

te
r
8

Value Description

SPI_SETDESKWALLPAPER Sets the desktop wallpaper.

uiParam: Not used.

pvParam: Points to a string that contains the name of the bitmap
file to use for the wallpaper.

SPI_SETDOUBLECLICKTIME Sets the maximum number of milliseconds that can occur
between the first and second clicks of a double-click.

uiParam: Specifies the new time in milliseconds.

pvParam: Not used.

SPI_SETDOUBLECLKHEIGHT Sets the height of the rectangle within which the mouse cursor
must be located and the second click of a double-click must fall
for it to be registered as a double-click.

uiParam: Specifies the new height in pixels.

pvParam: Not used.

SPI_SETDOUBLECLKWIDTH Sets the width of the rectangle within which the mouse cursor
must be located and the second click of a double-click must fall
for it to be registered as a double-click.

uiParam: Specifies new width in pixels.

pvParam: Not used.

SPI_SETDRAGFULLWINDOWS Sets full window dragging to on or off.

uiParam: Specifies zero to disable full window dragging or
non-zero to enable it.

pvParam: Not used.

Note: This flag is supported under Windows 95 only if Win-
dows Plus! is installed.

SPI_SETDRAGHEIGHT Sets the height, in pixels, of the rectangle used to detect the
start of a mouse drag operation.

uiParam: Specifies the new rectangle height value.

pvParam: Not used.

SPI_SETDRAGWIDTH Sets the width, in pixels, of the rectangle used to detect the
start of a mouse drag operation.

uiParam: Specifies the new rectangle width value.

pvParam: Not used.

SPI_SETDROPSHADOW Windows XP only: Enables or disables the drop shadow
effect.

uiParam: Specifies zero to turn the option off or non-zero to
turn it on.

pvParam: Not used.

414 � Chapter 8

TE
AM
FL
Y

Team-Fly®

Value Description

SPI_SETFILTERKEYS Sets the FilterKeys accessibility feature parameters.

uiParam: Specifies the size of the TFilterKeys structure.

pvParam: Points to a TFilterKeys structure that contains the
new settings.

Note: If accessibility features are not installed, this flag causes
the function to fail.

SPI_SETFLATMENU Windows XP only: Enables or disables flat appearance for
native user menus.

uiParam: Specifies zero to turn the option off or non-zero to
turn it on.

pvParam: Not used.

SPI_SETFOCUSBORDERHEIGHT Windows XP only: Sets the height, in pixels, of the top or bot-
tom edges of a focus rectangle drawn with the DrawFocusRect
function.

uiParam: Indicates the focus border height.

pvParam: Not used.

SPI_SETFOCUSBORDERWIDTH Windows XP only: Sets the width, in pixels, of the left or right
edges of a focus rectangle drawn with the DrawFocusRect
function.

uiParam: Indicates the focus border width.

pvParam: Not used.

SPI_SETFONTSMOOTHING Enables or disables anti-aliased font drawing, making font curves
appear smoother.

uiParam: Specifies a value of zero to disable anti-aliased font
curve drawing or a non-zero value to enable it.

pvParam: Not used.

Note: This flag is supported under Windows 95 only if Win-
dows Plus! is installed.

SPI_SETFONTSMOOTHINGCONTRAST Windows XP only: Sets the contrast value used in ClearType
font smoothing.

uiParam: Indicates the contrast value and must be in the range
1000-2200 (the default value is 1400).

pvParam: Not used.

Note: This flag is only valid when SPI_SETFONT-
SMOOTHINGTYPE is set to FE_FONTSMOOTHING-
CLEARTYPE.

SPI_SETFONTSMOOTHINGTYPE Windows XP only: Sets the font smoothing type.

uiParam: Must be set to either FE_FONTSMOOTHING-
STANDARD, for standard anti-aliasing, or FE_FONT-
SMOOTHINGCLEARTYPE to use ClearType font smoothing.

pvParam: Not used.

System Information Functions � 415

C
h

a
p

te
r
8

Value Description

SPI_SETFOREGROUNDFLASHCOUNT Windows 98/Me/2000/XP and later: Sets the number of
times an application’s taskbar button flashes when rejecting a
foreground switch request.

uiParam: Indicates the flash count.

pvParam: Not used.

SPI_SETFOREGROUNDLOCKTIMEOUT Windows 98/Me/2000/XP and later: Sets the number of mil-
liseconds following user input during which no applications are
allowed to force themselves into the foreground.

uiParam: Indicates the time-out value in milliseconds.

pvParam: Not used.

SPI_SETGRADIENTCAPTIONS Windows 98/Me/2000/XP and later: Indicates if the gradient
effect in application title bars is enabled or disabled.

uiParam: Not used.

pvParam: Points to a Boolean value that receives TRUE if
enabled, FALSE if disabled.

SPI_SETGRIDGRANULARITY Sets the granularity of the desktop sizing grid.

uiParam: Specifies the new granularity value.

pvParam: Not used.

SPI_SETHIGHCONTRAST Windows 95/98/Me/2000/XP and later: Sets the
HighContrast accessibility feature parameters.

uiParam: Specifies the size of the THighContrast structure.

pvParam: Points to the THighContrast structure that contains
the new values.

Note: If accessibility features are not installed, this flag causes
the function to fail.

SPI_SETHOTTRACKING Windows 98/Me/2000/XP and later: Enables or disables hot
tracking of user interface elements (i.e., flat buttons that display
a border when the mouse enters, etc.).

uiParam: Specifies zero to turn the option off or non-zero to
turn it on.

pvParam: Not used.

SPI_SETICONMETRICS Sets icon metrics, such as spacing and title wrap.

uiParam: Specifies the size of the TIconMetrics structure.

pvParam: Points to a TIconMetrics structure that contains the
new values.

SPI_SETICONS Instructs the system to reload all system icons.

uiParam: Must be set to zero.

pvParam: Not used.

SPI_SETICONTITLELOGFONT Sets the logical font used for icon titles.

uiParam: Specifies the size of the TLogFont structure.

pvParam: Points to a TLogFont structure that contains the new
values.

416 � Chapter 8

Value Description

SPI_SETICONTITLEWRAP Turns icon title wrapping on or off.

uiParam: Specifies zero to disable icon title wrapping or
non-zero to enable.

pvParam: Not used.

SPI_SETKEYBOARDCUES Windows 98/Me/2000/XP and later: Enables or disables the
option to always underline menu access characters.

uiParam: Specifies zero to disable the option or non-zero to
enable.

pvParam: Not used.

SPI_SETKEYBOARDDELAY Sets the keyboard repeat delay setting.

uiParam: Specifies the new repeat delay value in milliseconds.

pvParam: Not used.

SPI_SETKEYBOARDPREF Windows 95/98/Me/2000/XP and later: Sets user keyboard
preference, indicating whether the user prefers the keyboard
over the mouse and wants applications to display keyboard
interfaces that would otherwise be hidden.

uiParam: Specifies zero to indicate a keyboard preference or
non-zero to indicate a mouse preference.

pvParam: Not used.

SPI_SETKEYBOARDSPEED Sets the keyboard repeat speed setting.

uiParam: Specifies the new repeat speed value in milliseconds.

pvParam: Not used.

SPI_SETLANGTOGGLE Forces the system to read the hot key set from the registry for
switching between input languages.

uiParam: Not used.

pvParam: Not used.

SPI_SETLISTBOXSMOOTHSCROLLING Windows 98/Me/2000/XP and later: Enables or disables the
smooth scrolling effect for list boxes.

uiParam: Specifies 0 for disabled or non-zero for enabled.

pvParam: Not used.

SPI_SETLOWPOWERACTIVE Activates or deactivates the screen saver low-power phase.

uiParam: Specifies zero to deactivate the low-power phase or 1
to activate it.

pvParam: Not used.

Note: Under Windows 95, this flag is supported for 16-bit
applications only. Under Windows 98/Me, this is supported for
16- and 32-bit applications. Under Windows 2000/XP, only
32-bit applications are supported.

SPI_SETLOWPOWERTIMEOUT Sets the time-out value, in seconds, for the screen saver
low-power phase.

uiParam: Specifies the new value in seconds.

pvParam: Not used.

System Information Functions � 417

C
h

a
p

te
r
8

Value Description

SPI_SETLOWPOWERTIMEOUT
(cont.)

Note: Under Windows 95, this flag is supported for 16-bit
applications only. Under Windows 98/Me, this is supported for
16- and 32-bit applications. Under Windows 2000/XP, only
32-bit applications are supported.

SPI_SETMENUANIMATION Windows 98/Me/2000/XP and later: Enables or disables
menu animation effects.

uiParam: Specifies zero for disabled or non-zero for enabled.

pvParam: Not used.

SPI_SETMENUDROPALIGNMENT Sets the alignment value of drop-down menus.

uiParam: Specifies zero for left alignment or non-zero for right
alignment.

pvParam: Not used.

SPI_SETMENUFADE Windows 2000/XP and later: Indicates which menu anima-
tion effect is used, fading or sliding. A value of TRUE indicates
the fade animation is used; otherwise, the slide animation is
used. The SPI_SETMENUANIMATION flag determines if menu
animation is enabled.

uiParam: Specifies non-zero for a fading effect or zero for a slid-
ing effect.

pvParam: Not used.

SPI_SETMENUSHOWDELAY Windows 98/Me/NT/2000/XP and later: Sets the amount of
time, in milliseconds, before displaying a shortcut menu when
the mouse is over a submenu item.

uiParam: Indicates the delay amount in milliseconds.

pvParam: Not used.

SPI_SETMENUUNDERLINES See SPI_SETKEYBOARDCUES.

SPI_SETMINIMIZEDMETRICS Sets minimized windows metrics.

uiParam: Specifies the size of the TMinimizedMetrics structure.

pvParam: Points to a TMinimizedMetrics structure that contains
the new values.

SPI_SETMOUSE Sets the two mouse speed threshold values and the mouse
speed.

uiParam: Not used.

pvParam: Points to an array of three integers that contain the
new values.

SPI_SETMOUSEBUTTONSWAP Swaps or restores the left and right mouse buttons.

uiParam: Specifies zero for standard mouse functionality or
non-zero to swap the mouse buttons.

pvParam: Not used.

SPI_SETMOUSECLICKLOCK Windows Me/XP only: Enables or disables the mouse
ClickLock feature.

uiParam: Specifies zero to disable or non-zero to enable.

pvParam: Not used.

418 � Chapter 8

Value Description

SPI_SETMOUSECLICKLOCKTIME Windows Me/XP only: Sets the delay, in milliseconds,
between the time the mouse button is pressed and the mouse
ClickLock feature activates. The SPI_SETMOUSECLICKLOCK
flag indicates if the ClickLock feature is enabled.

uiParam: Indicates the delay, in milliseconds.

pvParam: Not used.

SPI_SETMOUSEHOVERHEIGHT Windows 98/Me/NT/2000/XP and later: Sets the height, in
pixels, of the rectangle within which the mouse pointer has to
stay for a WM_MOUSEHOVER message to be generated by the
TrackMouseEvent function.

uiParam: Specifies the new height in pixels.

pvParam: Not used.

SPI_SETMOUSEHOVERTIME Windows 98/Me/NT/2000/XP and later: Sets the time, in
milliseconds, that the mouse pointer has to stay in the hover
rectangle for a WM_MOUSEHOVER message to be generated
by the TrackMouseEvent function.

uiParam: Specifies the new time interval in milliseconds.

pvParam: Not used.

SPI_SETMOUSEHOVERWIDTH Windows 98/Me/NT/2000/XP and later: Sets the width, in
pixels, of the rectangle within which the mouse pointer has to
stay for TrackMouseEvent to generate a WM_MOUSEHOVER
message.

uiParam: Specifies new width.

pvParam: Not used.

SPI_SETMOUSEKEYS Sets the MouseKeys accessibility feature parameters.

uiParam: Specifies the size of a TMouseKeys structure.

pvParam: Points to a TMouseKeys structure that contains the
new values.

Note: If accessibility features are not installed, this flag causes
the function to fail.

SPI_SETMOUSESONAR Windows Me/XP only: Enables or disables the mouse Sonar
feature.

uiParam: Specifies zero to disable or non-zero to enable.

pvParam: Not used.

SPI_SETMOUSESPEED Windows 98/Me/2000/XP and later: Sets the mouse speed
on a scale of 1-20 (20 being the fastest, 10 is the default).

uiParam: Specifies the mouse speed.

pvParam: Not used.

SPI_SETMOUSETRAILS Windows 95/98/Me/XP only: Enables or disables mouse trails.

uiParam: Specifies 0 or 1 to disable mouse trails; a value greater
than one indicates the number of mouse trails to draw.

pvParam: Not used.n

System Information Functions � 419

C
h

a
p

te
r
8

Value Description

SPI_SETMOUSEVANISH Windows Me/XP only: Enables or disables the mouse Vanish
feature.

uiParam: Specifies zero to disable or non-zero to enable.

pvParam: Not used.

SPI_SETNONCLIENTMETRICS Sets the metrics values associated with the non-client area of a
window.

uiParam: Specifies the size of the TNonClientMetrics structure.

pvParam: Points to a TNonClientMetrics structure that contains
the new values.

SPI_SETPENWINDOWS Windows 95/98/Me only: Specifies that Window’s pen exten-
sions are being loaded or unloaded.

uiParam: Specifies zero to unload the pen extensions or
non-zero to load pen extensions.

pvParam: Not used.

SPI_SETPOWEROFFACTIVE Activates or deactivates the screen saver power-off phase.

uiParam: Specifies zero to deactivate or non-zero to activate.

pvParam: Not used.

Note: Under Windows 95, this flag is supported for 16-bit
applications only. Under Windows 98/Me, this is supported for
16- and 32-bit applications. Under Windows 2000/XP, only
32-bit applications are supported.

SPI_SETPOWEROFFTIMEOUT Retrieves the time-out value, in seconds, for the screen saver
power-off phase.

uiParam: Specifies the new value in seconds.

pvParam: Not used.

Note: Under Windows 95, this flag is supported for 16-bit
applications only. Under Windows 98/Me, this is supported for
16- and 32-bit applications. Under Windows 2000/XP, only
32-bit applications are supported.

SPI_SETSCREENREADER Windows 95/98/Mw/2000/XP and later: Indicates if a screen
reviewer utility is running.

uiParam: Specifies zero to indicate a screen reader is not pres-
ent or non-zero to indicate a screen reader is present.

pvParam: Not used.

SPI_SETSCREENSAVEACTIVE Enables or disables the screen saver.

uiParam: Specifies zero to disable the screen saver or non-zero
to enable it. When enabling the screen saver, the last screen
saver selected will be used.

pvParam: Not used.

SPI_SETSCREENSAVETIMEOUT Sets the amount of time, in seconds, that the system must be
idle before the screen saver activates.

420 � Chapter 8

Value Description

SPI_SETSCREENSAVETIMEOUT
(cont.)

uiParam: Specifies the number of seconds to wait for the screen
saver to activate.

pvParam: Not used.

SPI_SETSELECTIONFADE Windows 2000/XP only: Enables or disables the selection fade
effect.

uiParam: Specifies zero to disable or non-zero to enable.

pvParam: Not used.

SPI_SETSERIALKEYS Windows 95/98/Me only: Sets the SerialKeys accessibility fea-
ture parameters.

uiParam: Specifies the size of the TSerialKeys structure.

pvParam: Points to a TSerialKeys structure that contains the
new values.

Note: If accessibility features are not installed, this flag causes
the function to fail.

SPI_SETSHOWIMEUI Windows 98/Me/2000/XP and later: Enables or disables the
IME status window.

uiParam: Specifies zero to disable or non-zero to enable.

pvParam: Not used.

SPI_SETSHOWSOUNDS Enables or disables the ShowSounds accessibility feature.

uiParam: Specifies 0 to disable the ShowSounds feature or 1 to
enable it.

pvParam: Not Used.

Note: If accessibility features are not installed, this flag causes
the function to fail.

SPI_SETSNAPTODEFBUTTON Windows 98/Me/NT/2000/XP and later: Enables or disables
the snap-to-default-button feature.

uiParam: Specifies zero to disable the snap-to-default-button
feature or non-zero to enable.

pvParam: Not used.

SPI_SETSOUNDSENTRY Sets the SoundSentry accessibility feature parameters.

uiParam: Specifies the size of the TSoundSentry structure.

pvParam: Points to a TSoundSentry structure that contains the
new values.

Note: If accessibility features are not installed, this flag causes
the function to fail.

SPI_SETSTICKYKEYS Sets the StickyKeys accessibility feature parameters.

uiParam: Specifies the size of the TStickyKeys structure.

pvParam: Points to a TStickyKeys structure that contains the
new values.

Note: If accessibility features are not installed, this flag causes
the function to fail.

System Information Functions � 421

C
h

a
p

te
r
8

Value Description

SPI_SETTOGGLEKEYS Sets the ToggleKeys accessibility feature parameters.

uiParam: Specifies the size of the TToggleKeys structure.

pvParam: Points to a TToggleKeys structure that contains the
new values.

Note: If accessibility features are not installed, this flag causes
the function to fail.

SPI_SETTOOLTIPANIMATION Windows 2000/XP and later: Enables or disables tooltip
animation.

uiParam: Specifies zero if disabled or non-zero if enabled.

pvParam: Not used.

SPI_SETTOOLTIPFADE Windows 2000/XP and later: Sets which menu tooltip anima-
tion effect is used, fading or sliding. Use a non-zero value for
the fade animation; otherwise, the slide animation is used. The
SPI_GETTOOLTIPANIMATION flag determines if tooltip ani-
mation is enabled.

uiParam: Specifies zero for a slide animation or non-zero for a
fade animation.

pvParam: Not used.

SPI_SETUIEFFECTS Windows 2000/XP and later: Enables or disables all user
interface animation effects.

uiParam: Specifies zero for disabled or non-zero for enabled.

pvParam: Not used.

SPI_SETWHEELSCROLLLINES Windows 98/Me/NT/2000/XP and later: Sets the number of
lines scrolled when the mouse wheel is rotated.

uiParam: Specifies the number of lines to scroll.

pvParam: Not used.

SPI_SETWORKAREA Sets the size of the desktop area not obscured by the taskbar.

uiParam: Not used.

pvParam: Points to a TRect structure that contains the new
work area size.

TAccessTimeout = packed record

cbSize: UINT; {the size of the TAccessTimeout structure}

dwFlags: DWORD; {time-out behavior properties}

iTimeOutMSec: DWORD {the time-out value in milliseconds}

end;

cbSize: Indicates the size of the TAccessTimeout record. Set this member to

SizeOf(TAccessTimeout).

dwFlags: Flags indicating the behavior of the time-out options. This member can

contain one or more values from the following table.

422 � Chapter 8

iTimeOutMSec: Indicates the length in milliseconds that must elapse without a

keyboard or mouse action before the system will turn off the accessibility

features.

Table 8-37: TAccessTimeout dwFlags values

Value Description

ATF_ONOFFFEEDBACK The system will play a sound before the accessibility features
are turned off.

ATF_TIMEOUTON The time-out interval has been set and the system will time out
at that interval. If this flag is not set, the system will not time out
no matter what time interval is set.

TAnimationInfo = packed record

cbSize: UINT; {the size of the TAnimationInfo structure}

iMinAnimate: Integer; {enables or disables animation}

end;

cbSize: Specifies the size of the TAnimationInfo structure. This member should

be set to SizeOf(TAnimationInfo).

iMinAnimate: Specifies if animation is enabled or disabled. A value of zero indi-

cates that the animation is disabled; a non-zero value indicates that animation is

enabled.

TFilterKeys = packed record

cbSize: UINT; {the size of the TFilterkeys structure}

dwFlags: DWORD; {sets behavior of filter keys}

iWaitMSec: DWORD; {acceptance delay}

iDelayMSec: DWORD; {repeat delay}

iRepeatMSec: DWORD; {repeat rate}

iBounceMSec: DWORD; {bounce time}

end;

cbSize: Specifies the size of the TFilterKeys record. This member should be set

to SizeOf(TFilterKeys).

dwFlags: Indicates the behavior state of the filter keys options. This member can

contain one or more values from the following table.

iWaitMSec: Specifies the time in milliseconds that the user must hold down a key

before the system will accept it. This is also referred to as slow keys.

iDelayMSec: Specifies the delay interval for the repeat rate. This is the amount of

time in milliseconds the user must hold down a key before the system will start to

repeat that key.

iRepeatMSec: Specifies the repeat rate. This is the amount of time in millisec-

onds the system will wait before it repeats the keystroke again.

iBounceMSec: Specifies the bounce time for keystrokes. This is the amount of

time that must pass before the system will accept another input from that key.

System Information Functions � 423

C
h

a
p

te
r
8

Table 8-38: TFilterKeys dwFlags values

Value Description

FKF_AVAILABLE The FilterKeys feature is available.

FKF_CLICKON The system will click when keys are pressed. When slow keys
are used, another click will sound when the key is accepted.

FKF_CONFIRMHOTKEY Windows 95/98/2000 only: A dialog box will appear when
enabling or disabling the FilterKeys options.

FKF_FILTERKEYSON The FilterKeys feature is turned on.

FKF_HOTKEYACTIVE The hot key is enabled for turning filter keys on or off. The hot
key is the Shift key held down for eight seconds.

FKF_HOTKEYSOUND The system will play a sound when the FilterKeys option is
enabled or disabled.

FKF_INDICATOR Windows 95/98/2000 only: Windows will display an indicator
when the hot keys option is turned on.

THighContrast = packed record

cbSize: UINT; {the size of the THighContrast structure}

dwFlags: DWORD; {sets the behavior of high contrast options}

lpszDefaultScheme: PAnsiChar; {the name of the standard scheme}

end;

cbSize: Specifies the size of the THighContrast structure. Set this member to

SizeOf(THighContrast).

dwFlags: Indicates the behavior state of the high contrast options. This member

can contain one or more values from the following table.

lpszDefaultScheme: A pointer to a null-terminated string that contains the name

of the standard color scheme for the system.

Table 8-39: THighContrast dwFlags values

Value Description

HCF_AVAILABLE The high contrast option is available.

HCF_CONFIRMHOTKEY A dialog box will appear when enabling or disabling the high
contrast options.

HCF_HIGHCONTRASTON The high contrast mode is currently on.

HCF_HOTKEYACTIVE The hot key for the high contrast mode is enabled. The hot
key for turning the high contrast mode on and off is simulta-
neously pressing the left Alt, left Shift, and Print Screen keys.

HCF_HOTKEYAVAILABLE Indicates if the hot key option is available on the system.

HCF_HOTKEYSOUND The system will play a sound when the hot key is pressed to
indicate that the high contrast option is enabled or disabled.

HCF_INDICATOR Windows will display an indicator that the high contrast
option is available.

424 � Chapter 8

TE
AM
FL
Y

Team-Fly®

TIconMetrics = packed record

cbSize: UINT; {the size of the TIconMetrics structure}

iHorzSpacing: Integer; {horizontal spacing for icons}

iVertSpacing: Integer; {vertical spacing for icons}

iTitleWrap: Integer; {word wrap titles}

lfFont: TLogFont; {the font for desktop icons}

end;

cbSize: Specifies the size of the TIconMetrics structure. This member should be

set to SizeOf(TIconMetrics).

iHorzSpacing: Specifies the horizontal spacing for icons on the desktop.

iVertSpacing: Specifies the vertical spacing for icons on the desktop.

iTitleWrap: Indicates if icon titles are word wrapped. A zero value indicates that

icon titles will not be word wrapped; a non-zero value indicates that they will be

wrapped.

lfFont: Indicates the font to be used when displaying the icon title.

TMinimizedMetrics = packed record

cbSize: UINT; {the size of the TMinimizedMetrics structure}

iWidth: Integer; {the width of minimized windows}

iHorzGap: Integer; {the horizontal gap between minimized windows}

iVertGap: Integer; {the vertical gap between minimized windows}

iArrange: Integer; {minimized window arrangement}

end;

cbSize: Specifies the size of the TMinimizedMetrics structure. This member

should be set to SizeOf(TMinimizedMetrics).

iWidth: Specifies the width of the minimized window.

iHorzGap: Specifies the horizontal space between each minimized window.

iVertGap: Specifies the vertical space between each minimized window.

iArrange: Specifies how the minimized windows are to be arranged. This member

contains one value from the following table of starting positions and one value

from the following table of directions.

Table 8-40: TMinimizedMetrics iArrange starting position values

Value Description

ARW_BOTTOMLEFT Start at the bottom-left corner of the work area.

ARW_BOTTOMRIGHT Start at the bottom-right corner of the work area.

ARW_TOPLEFT Start at the top-left corner of the work area.

ARW_TOPRIGHT Start at the top-right corner of the work area.

System Information Functions � 425

C
h

a
p

te
r
8

Table 8-41: TMinimizedMetrics iArrange direction values

Value Description

ARW_LEFT Fill going to the left. Only valid with ARW_BOTTOMRIGHT and
ARW_TOPRIGHT.

ARW_RIGHT Fill going to the right. Only valid with ARW_BOTTOMLEFT and
ARW_TOPLEFT.

ARW_UP Fill going to the top. Only valid with ARW_BOTTOMRIGHT and
ARW_BOTTOMLEFT.

ARW_DOWN Fill going to the bottom. Only valid with ARW_TOPRIGHT and
ARW_TOPLEFT.

ARW_HIDE Tells the system to hide minimized windows. This is the default
action for Windows 95.

TMouseKeys = packed record

cbSize: UINT; {the size of the TMouseKeys structure}

dwFlags: DWORD; {sets behavior of mouse key options}

iMaxSpeed: DWORD; {maximum mouse speed}

iTimeToMaxSpeed: DWORD; {time delay to maximum speed}

iCtrlSpeed: DWORD; {control key multiplier}

dwReserved1: DWORD; {reserved for future use}

dwReserved2: DWORD; {reserved for future use}

end;

cbSize: Specifies the size of the TMouseKeys structure. This member should be

set to SizeOf(TMouseKeys).

dwFlags: Indicates the behavior of the mouse keys options. This member can

contain one or more values from the following table.

iMaxSpeed: Specifies the maximum speed in pixels for the mouse. The value of

this member may be in the range of 10 to 360.

iTimeToMaxSpeed: Specifies the time delay in milliseconds before the maximum

speed is achieved. The value of this member may be in the range of 1000 and

5000.

iCtrlSpeed: Indicates the multiplier to add to the speed if the Ctrl key is held

down. This is only available if the dwFlags member contains the

MKF_MODIFIERS flag.

dwReserved1: Reserved for future use.

dwReserved2: Reserved for future use.

Table 8-42: TMouseKeys dwFlags values

Value Description

MKF_AVAILABLE The mouse key option is available.

MKF_CONFIRMHOTKEY Windows 95/98/2000 only: A dialog box will appear
when enabling or disabling the mouse keys options.

426 � Chapter 8

Value Description

MKF_HOTKEYACTIVE The hot key for the mouse keys mode is enabled. The hot
key for turning mouse keys on and off is Left Alt+Left
Shift+Num Lock.

MKF_HOTKEYSOUND The system will play a sound when the mouse keys are
enabled or disabled by using the hot keys.

MKF_INDICATOR Windows 95/98/2000 only: Windows will display an indi-
cator when mouse keys are turned on.

MKF_MOUSEKEYSON The mouse keys are currently on.

MKF_MODIFIERS Windows 95/98/2000 only: Indicates if the Ctrl and Alt
keys will effect the mouse movement.

MKF_MOUSEMODE Windows 98/2000 only: Numeric keypad input is pro-
cessed as mouse movement.

MKF_REPLACENUMBERS Windows 95/98/2000 only: Indicates if the mouse will be
moved if the Num Lock key is on or off. If this flag is not
specified, the numeric keypad will move the mouse cursor
when the Num Lock key is off.

MKF_LEFTBUTTONSEL Windows 98/2000 only: The left mouse button is used for
mouse button actions.

MKF_RIGHTBUTTONSEL Windows 98/2000 only: The right mouse button is used
for mouse button actions.

MKF_LEFTBUTTONDOWN Windows 98/2000 only: Indicates that the left button is
down.

MKF_RIGHTBUTTONDOWN Windows 98/2000 only: Indicates that the right button is
down.

TNonClientMetrics = packed record

cbSize: UINT; {the size of TNonClientMetrics structure}

iBorderWidth: Integer; {sizing border width}

iScrollWidth: Integer; {standard scroll bar width}

iScrollHeight: Integer; {standard scroll bar height}

iCaptionWidth: Integer; {width of caption buttons}

iCaptionHeight: Integer; {height of caption buttons}

lfCaptionFont: TLogFont; {font to use in the caption bar}

iSmCaptionWidth: Integer; {width for toolbar buttons}

iSmCaptionHeight: Integer; {height for toolbar buttons}

lfSmCaptionFont: TLogFont; {font to use in the toolbar}

iMenuWidth: Integer; {menu bar button width}

iMenuHeight: Integer; {menu bar button height}

lfMenuFont: TLogFont; {font to use in menu bar}

lfStatusFont: TLogFont; {status bar font}

lfMessageFont: TLogFont; {message box font}

end;

cbSize: Specifies the size of the TNonClientMetrics structure. This member

should be set to SizeOf(TNonClientMetrics).

System Information Functions � 427

C
h

a
p

te
r
8

iBorderWidth: Width of the window border for a sizable window.

iScrollWidth: Width of a standard vertical scroll bar.

iScrollHeight: Height of a standard horizontal scroll bar.

iCaptionWidth: Width of the caption bar buttons.

iCaptionHeight: Height of the caption bar buttons.

lfCaptionFont: Font to use in the caption bar.

iSmCaptionWidth: Width of the buttons in a toolbar windows caption.

iSmCaptionHeight: Height of the buttons in a toolbar windows caption.

lfSmCaptionFont: Font to use in a toolbar caption.

iMenuWidth: Width of the buttons that appear in a menu bar.

iMenuHeight: Height of the buttons that appear in a menu bar.

lfMenuFont: Font to use in a menu bar.

lfStatusFont: Font to use in a status bar.

lfMessageFont: Font to use in a message dialog box.

TSoundSentry = packed record

cbSize: UINT; {the size of the TSoundSentry structure}

dwFlags: DWORD; {sets behavior of sound sentry option}

iFSTextEffect: DWORD; {text app sound effect}

iFSTextEffectMSec: DWORD; {length of text app sound effect}

iFSTextEffectColorBits: DWORD; {color of text app sound effect}

iFSGrafEffect: DWORD; {graphic app sound effect}

iFSGrafEffectMSec: DWORD; {length of graphic app sound effect}

iFSGrafEffectColor: DWORD; {color of graphic app sound effect}

iWindowsEffect: DWORD; {Windows app sound effect}

iWindowsEffectMSec: DWORD; {length of Windows app sound effect}

lpszWindowsEffectDLL: PAnsiChar; {DLL that contains special sound

effect}

iWindowsEffectOrdinal: DWORD; {reserved for future use}

end;

cbSize: Specifies the size of the TSoundSentry structure. Set this member to

SizeOf(TSoundSentry).

dwFlags: Indicates the behavior of the sound sentry options. This member can

contain one value from Table 8-43.

iFSTextEffect: Indicates the behavior of the sound sentry options when a text-

based application is running in a full screen window. This member may contain

one value from Table 8-44. This member is not available under Windows

NT/2000 and must be set to zero.

iFSTextEffectMSec: Specifies how long the text effect change will last in milli-

seconds. This member is not available under Windows NT/2000 and must be set

to zero.

428 � Chapter 8

iFSTextEffectColorBits: Specifies the color that will be used for the text change

effect. This member is not available under Windows NT/2000 and must be set to

zero.

iFSGrafEffect: Indicates the behavior of the sound sentry options when a graphic-

based application is running in a full screen window. This member can contain

one value from Table 8-45. This member is not available under Windows

NT/2000 and must be set to zero.

iFSGrafEffectMSec: Specifies how long the graphic effect change will last in

milliseconds. This member is not available under Windows NT/2000 and must be

set to zero.

iFSGrafEffectColor: Specifies the color that will be used for the graphic change

effect. This member is not available under Windows NT/2000 and must be set to

zero.

iWindowsEffect: Indicates the behavior of the sound sentry options when a Win-

dows-based application is running. This member can contain one value from

Table 8-46.

iWindowsEffectMSec: Specifies how long the Windows effect change will last in

milliseconds.

lpszWindowsEffectDLL: Specifies the name of the DLL that contains an

exported SoundSentryProc callback function. This function will be called when a

sound is generated. This member can be set to NIL if a DLL is not used.

iWindowsEffectOrdinal: Reserved for future use. This member must be set to

zero.

Table 8-43: TSoundSentry dwFlags values

Value Description

SSF_AVAILABLE Indicates that the SoundSentry feature is available.

SSF_SOUNDSENTRYON Indicates that the SoundSentry feature is currently on.

Table 8-44: TSoundSentry iFSTextEffect values

Value Description

SSTF_BORDER Flashes the screen border. This option is not available on all
displays.

SSTF_CHARS Flashes a character in the upper corner of the screen.

SSTF_DISPLAY Flashes the entire display.

SSTF_NONE No visual sound indicator.

Table 8-45: TSoundSentry iFSGrafEffect values

Value Description

SSGF_DISPLAY Flashes the entire display.

SSGF_NONE No visual sound signal.

System Information Functions � 429

C
h

a
p

te
r
8

Table 8-46: TSoundSentry iWindowsEffect values

Value Description

SSWF_CUSTOM Call the SoundSentryProc function exported by the DLL speci-
fied by the lpszWindowsEffectDLL member.

SSWF_DISPLAY Flashes the entire display.

SSWF_NONE No visual sound signal.

SSWF_TITLE Flashes the title bar of the active window.

SSWF_WINDOW Flashes the active window.

TStickyKeys = packed record

cbSize: UINT; {the size of the TStickyKeys structure}

dwFlags: DWORD; {sets the behavior of sticky keys options}

end;

cbSize: Specifies the size of the TStickyKeys structure. Set this member to

SizeOf(TStickyKeys).

dwFlags: Indicates the behavior of the sticky keys options. This member can con-

tain one or more values from the following table.

Table 8-47: TStickyKeys dwFLags values

Value Description

SKF_AUDIBLEFEEDBACK The system will play a sound any time the Ctrl, Alt, or Shift key
is turned on.

SKF_AVAILABLE Indicates that the StickyKeys feature is available.

SKF_CONFIRMHOTKEY Windows 95/98/2000 only: A dialog box will appear when
enabling or disabling the sticky keys options.

SKF_HOTKEYACTIVE Enables or disables the StickyKeys feature hot key. The hot key
is pressing the Shift key five times.

SKF_HOTKEYSOUND The system will play a sound when the hot key is used to
enable or disable sticky keys.

SKF_INDICATOR Windows 95/98/2000 only: Windows will display an indicator
if sticky keys are on.

SKF_STICKYKEYSON The StickyKeys feature is turned on.

SKF_TRISTATE Pressing a modifier key twice in a row locks that key until it is
pressed a third time.

SKF_TWOKEYSOFF Turns sticky keys off when releasing a modifier key that has
been pressed in combination with any other key.

SKF_LALTLATCHED Windows 98/2000 only: Indicates the left ALT key is latched.

SKF_LCTLLATCHED Windows 98/2000 only: Indicates the left CTRL key is
latched.

SKF_LSHIFTLATCHED Windows 98/2000 only: Indicates the left Shift key is latched.

SKF_RALTLATCHED Windows 98/2000 only: Indicates the right ALT key is
latched.

430 � Chapter 8

Value Description

SKF_RCTLLATCHED Windows 98/2000 only: Indicates the right CTRL key is
latched.

SKF_RSHIFTLATCHED Windows 98/2000 only: Indicates the right Shift key is
latched.

SKF_LALTLOCKED Windows 98/2000 only: Indicates the left ALT key is locked.

SKF_LCTLLOCKED Windows 98/2000 only: Indicates the left CTRL key is locked.

SKF_LSHIFTLOCKED Windows 98/2000 only: Indicates the left Shift key is locked.

SKF_RALTLOCKED Windows 98/2000 only: Indicates the right ALT key is locked.

SKF_RCTLLOCKED Windows 98/2000 only: Indicates the right CTRL key is
locked.

SKF_RSHIFTLOCKED Windows 98/2000 only: Indicates the right Shift key is locked.

SKF_LWINLATCHED Windows 98/2000 only: Indicates the left Windows key is
latched.

SKF_RWINLATCHED Windows 98/2000 only: Indicates the right Windows key is
latched.

SKF_LWINLOCKED Windows 98/2000 only: Indicates the left Windows key is
locked.

SKF_RWINLOCKED Windows 98/2000 only: Indicates the right Windows key is
locked.

TToggleKeys = packed record

cbSize: UINT; {the size of the TToggleKeys structure}

dwFlags: DWORD; {sets the behavior of toggle keys options}

end;

cbSize: Specifies the size of the TToggleKeys structure. Set this member to

SizeOf(TToggleKeys).

dwFlags: Indicates the behavior of the toggle keys options. This member can con-

tain one or more values from the following table.

Table 8-48: TToggleKeys dwFlags values

Value Description

TKF_AVAILABLE Indicates that the ToggleKeys feature is available.

TKF_CONFIRMHOTKEY Windows 95/98/2000 only: A dialog box will appear when
enabling or disabling the toggle keys options.

TKF_HOTKEYACTIVE Enables or disables the ToggleKeys option hot key. The hot
key is pressing the Num Lock key for eight seconds.

TKF_HOTKEYSOUND The system will play a sound when the hot key is used to
enable or disable the ToggleKeys option.

TKF_TOGGLEKEYSON Indicates that the ToggleKeys feature is on.

TSerialKeys = packed record

cbSize: UINT; {the size of the TSerialKeys structure}

dwFlags: DWORD; {sets behavior of serial keys option}

System Information Functions � 431

C
h

a
p

te
r
8

lpszActivePort: PAnsiChar; {name of active port}

lpszPort: PAnsiChar; {reserved}

iBaudRate: UINT; {port baud rate}

iPortState: UINT; {reaction state of port}

iActive: UINT; {reserved}

end;

cbSize: Specifies the size of the TSerialKeys structure. This member should be

set to SizeOf(TSerialKeys).

dwFlags: Indicates the behavior of the serial keys options. This member can con-

tain one or more values from Table 8-49.

lpszActivePort: Indicates the name of the serial port to receive user input. This

member can be set to Auto to instruct the system to monitor all unused serial

ports.

lpszPort: This member is reserved and must be set to NIL.

iBaudRate: Specifies the current baud rate of the serial port identified by the

lpszActivePort parameter. This member can contain one value from Table 8-50.

iPortState: Specifies the state of the serial port identified by the lpszActivePort

parameter. This member can contain one value from Table 8-51.

iActive: Reserved for future use.

Table 8-49: TSerialKeys dwFlags values

Value Description

SERKF_ACTIVE The SerialKeys option is currently receiving input on the serial
port specified by lpszActivePort.

SERKF_AVAILABLE Indicates that the SerialKeys feature is available.

SERKF_SERIALKEYSON Indicates that the SerialKeys feature is on.

Table 8-50: TSerialKeys iBaudRate values

Value Description

CBR_110 110 baud

CBR_300 300 baud

CBR_600 600 baud

CBR_1200 1200 baud

CBR_2400 2400 baud

CBR_4800 4800 baud

CBR_9600 9600 baud

CBR_14400 14,400 baud

CBR_19200 19,200 baud

CBR_38400 38,400 baud

CBR_56000 56,000 baud

CBR_57600 57,600 baud

CBR_115200 115,200 baud

432 � Chapter 8

Value Description

CBR_128000 128,000 baud

CBR_256000 256,000 baud

Table 8-51: TSerialKeys iPortState values

Value Description

0 This port is ignored.

1 This port is watched for SerialKeys activation sequences when
no other application has the port open.

2 All input on this port is treated as SerialKeys commands.

VerLanguageName Windows.pas

Syntax

VerLanguageName(

wLang: DWORD; {the language identifier}

szLang: PChar; {the buffer receiving the language name}

nSize: DWORD {the maximum size of the buffer}

): DWORD; {returns the number of bytes written to the buffer}

Description

This function retrieves a string describing the name of the language identified by the

wLang parameter.

Parameters

wLang: Specifies the language identifier from which to retrieve the language name.

This parameter can be set to the return value of GetSystemDefaultLangID, GetUser-

DefaultLangID, or one value from the following table.

szLang: A pointer to a null-terminated string buffer receiving the name of the language.

If this parameter is set to NIL, the function returns the required size of the buffer to

hold the name of the language.

nSize: Specifies the maximum size of the szLang buffer.

Return Value

If the function succeeds, it returns the number of characters copied to the szLang

buffer, not including the null terminator; otherwise, the function returns zero.

See Also

GetSystemDefaultLangID, GetUserDefaultLangID, VerQueryValue

Example

Please see Listing 8-12 under GetSystemDefaultLangID.

System Information Functions � 433

C
h

a
p

te
r
8

Table 8-52: VerLanguageName wLang values

Value Description

$0000 Language neutral

$0400 The default process language

$0401 Arabic (Saudi Arabia)

$0801 Arabic (Iraq)

$0C01 Arabic (Egypt)

$1001 Arabic (Libya)

$1401 Arabic (Algeria)

$1801 Arabic (Morocco)

$1C01 Arabic (Tunisia)

$2001 Arabic (Oman)

$2401 Arabic (Yemen)

$2801 Arabic (Syria)

$2C01 Arabic (Jordan)

$3001 Arabic (Lebanon)

$3401 Arabic (Kuwait)

$3801 Arabic (U.A.E.)

$3C01 Arabic (Bahrain)

$4001 Arabic (Qatar)

$0402 Bulgarian

$0403 Catalan

$0404 Chinese (Taiwan)

$0804 Chinese (PRC)

$0C04 Chinese (Hong Kong)

$1004 Chinese (Singapore)

$0405 Czech

$0406 Danish

$0407 German (Standard)

$0807 German (Swiss)

$0C07 German (Austrian)

$1007 German (Luxembourg)

$1407 German (Liechtenstein)

$0408 Greek

$0409 English (United States)

$0809 English (United Kingdom)

$0C09 English (Australian)

$1009 English (Canadian)

$1409 English (New Zealand)

$1809 English (Ireland)

434 � Chapter 8

TE
AM
FL
Y

Team-Fly®

Value Description

$1C09 English (South Africa)

$2009 English (Jamaica)

$2409 English (Caribbean)

$2809 English (Belize)

$2C09 English (Trinidad)

$040A Spanish (Traditional sort)

$080A Spanish (Mexican)

$0C0A Spanish (Modern sort)

$100A Spanish (Guatemala)

$140A Spanish (Costa Rica)

$180A Spanish (Panama)

$1C0A Spanish (Dominican Republic)

$200A Spanish (Venezuela)

$240A Spanish (Colombia)

$280A Spanish (Peru)

$2C0A Spanish (Argentina)

$300A Spanish (Ecuador)

$340A Spanish (Chile)

$380A Spanish (Uruguay)

$3C0A Spanish (Paraguay)

$400A Spanish (Bolivia)

$440A Spanish (El Salvador)

$480A Spanish (Honduras)

$4C0A Spanish (Nicaragua)

$500A Spanish (Puerto Rico)

$040B Finnish

$040C French (Standard)

$080C French (Belgian)

$0C0C French (Canadian)

$100C French (Swiss)

$140C French (Luxembourg)

$040D Hebrew

$040E Hungarian

$040F Icelandic

$0410 Italian (Standard)

$0810 Italian (Swiss)

$0411 Japanese

$0412 Korean

$0812 Korean (Johab)

System Information Functions � 435

C
h

a
p

te
r
8

Value Description

$0413 Dutch (Standard)

$0813 Dutch (Belgian)

$0414 Norwegian (Bokmal)

$0814 Norwegian (Nynorsk)

$0415 Polish

$0416 Portuguese (Brazilian)

$0816 Portuguese (Standard)

$0418 Romanian

$0419 Russian

$041A Croatian

$0C1A Serbian

$041B Slovak

$041C Albanian

$041D Swedish

$081D Swedish (Finland)

$041E Thai

$041F Turkish

$0421 Indonesian

$0422 Ukrainian

$0423 Belorussian

$0424 Slovenian

$0425 Estonian

$0426 Latvian

$0427 Lithuanian

$081A Serbian

$0429 Farsi

$042D Basque

$0436 Afrikaans

$0438 Faeroese

436 � Chapter 8

Chapter 9

Icon, Cursor, and CaretIcon, Cursor, and Caret

Functions
Windows, being the graphical environment that it is, displays information in a variety

of ways, most obviously by means of simple graphics. Various images are used to por-

tray the type of file being viewed in the Explorer or what type of action is available to

the user, depending on the current position of the mouse cursor. The Windows func-

tions concerned with the creation and manipulation of icon, cursor, and caret images

give the developer a variety of means by which to communicate specific information or

available actions.

Carets

The caret is a small, flashing image used to indicate which window currently has the

keyboard focus and can accept text input. Since only one window at a time can have

the keyboard focus, there is only one caret in the system. In Delphi, the default caret

used by components that accept text is a thin, vertical line, and Delphi encapsulates the

caret functions so completely that the developer will likely never have to be concerned

with them. However, if a new caret shape is desired, the Windows caret functions allow

the developer to specify a caret shape in terms of a desired width and height or based

on a bitmap. See the CreateCaret function for an example of creating a new caret shape

based on a bitmap. The following example demonstrates how to create a solid black

box caret.

■ Listing 9-1: Creating a solid black box caret

procedure TForm1.Button1Click(Sender: TObject);
begin

{we must set focus to the window we want to type in. when
this window receives focus manually (i.e., by using the TAB
key), Delphi automatically reassigns the appropriate caret}
Memo1.SetFocus;

{hide the current caret}
HideCaret(0);

{destroy the current caret}
DestroyCaret;

437

{create the new caret shape (a solid black box)}
CreateCaret(Memo1.Handle, 0, 10, 12);

{display the new caret image}
ShowCaret(0);

end;

Icon and Cursor Masks

Windows does not have a native API function that copies a bitmap to a destination

while interpreting some of the pixels as “transparent.” However, icons and cursors have

irregular shapes that, when drawn to the screen, allow the background to show through.

This is accomplished by means of Boolean raster operations and masks.

Each icon and cursor is composed of two bitmap images known as masks: an AND

mask and an OR mask. These images are combined using Boolean raster operations

with the background image of the destination in two steps to create a final image exhib-

iting “transparent” pixels.

First, the AND mask is combined with the background image on the destination device

context using the Boolean AND operator. The white pixels of the AND mask will pre-

serve those pixels in the destination, while the black pixels of the AND mask will

change the pixels in the destination to black, thereby carving out a space for the final

image:

438 � Chapter 9

Figure 9-1:

The black box

caret shape

Figure 9-2:

The icon and

cursor image

is a composite

of an AND

mask and an

OR mask

Once the AND mask is combined with the destination, the OR mask is combined with

the background image on the destination device context using the Boolean OR opera-

tor. The black pixels of the OR mask will preserve those pixels in the destination, while

the colored pixels, which should fall within the black pixels created by the first step,

should show up as they appear in the OR mask, thereby creating the final image with

the illusion of transparent pixels:

It is this method of bitmap merging that allows icons and cursors to have irregular

shapes with the background showing through the “transparent” areas. The same tech-

nique can be used to display bitmaps transparently by using a combination of masks

with the BitBlt function and the SRCAND and SRCPAINT raster operation codes. The

GetIconInfo function can be used to retrieve the AND and OR masks for both icons

and cursors.

Icon to Bitmap Conversion

The complementary nature of the Windows bitmap, cursor, and icon functions provides

the developer a means by which a bitmap can be converted into an icon or cursor, or

vice versa. With a few simple API calls, combined with Delphi’s power and ease of

use, the developer can create applications that could potentially use bitmaps, cursors,

and icons interchangeably. The following example demonstrates a method by which

any bitmap can be converted into an icon or any icon converted into a bitmap.

■ Listing 9-2: Converting icons to bitmaps and back

var
Form1: TForm1;
CurIcon: TIcon; // holds an icon
CurBitmap: TBitmap; // holds a bitmap

implementation

{$R *.DFM}

Icon, Cursor, and Caret Functions � 439

C
h

a
p

te
r
9

Figure 9-4:

Last step —

combine the

OR mask with

the

destination

Figure 9-3:

First step —

combine the

AND mask

with the

destination

procedure TForm1.FileListBox1DblClick(Sender: TObject);
begin
{open the selected file as an icon (automatically converts bitmaps to icons}
CurIcon.Handle := ExtractIcon(hInstance, PChar(FileListBox1.FileName), 0);

{enable the save image button}
Button1.Enabled := TRUE;

{erase the paintbox}
PaintBox1.Canvas.Brush.Color := clBtnFace;
PaintBox1.Canvas.FillRect(PaintBox1.ClientRect);

{if the user wants to convert icons to bitmaps...}
if RadioButton1.Checked then
begin
{erase the current bitmap image}
CurBitmap.Canvas.Brush.Color := clBtnFace;
CurBitmap.Canvas.FillRect(PaintBox1.ClientRect);

{draw the icon onto the bitmap}
DrawIcon(CurBitmap.Canvas.Handle, 0, 0, CurIcon.Handle);

{display the bitmap image}
PaintBox1.Canvas.Draw((PaintBox1.Width div 2)-16,

(PaintBox1.Height div 2)-16, CurBitmap);
end
else
{display the icon}
DrawIcon(PaintBox1.Canvas.Handle, (PaintBox1.Width div 2)-16,

(PaintBox1.Height div 2)-16, CurIcon.Handle);
end;

procedure TForm1.RadioButton1Click(Sender: TObject);
begin
{if the user wants to convert icons to bitmaps...}
if Sender=RadioButton1 then
begin
{filter files by icons only}
FileListBox1.Mask := '*.ico';

{initialize the save picture dialog accordingly}
SavePictureDialog1.Filter := 'Bitmaps (*.bmp)|*.bmp';
SavePictureDialog1.DefaultExt := '*.bmp';

end
else
begin
{otherwise, filter files by bitmaps only}
FileListBox1.Mask := '*.bmp';

{initialize the save picture dialog accordingly}
SavePictureDialog1.Filter := 'Icons (*.ico)|*.ico';
SavePictureDialog1.DefaultExt := '*.ico';

end;

{erase the current paintbox image}
PaintBox1.Canvas.Brush.Color := clBtnFace;

440 � Chapter 9

PaintBox1.Canvas.FillRect(PaintBox1.ClientRect);

{disable the save image button until the user selects a file to convert}
Button1.Enabled := FALSE;

end;

procedure TForm1.FormCreate(Sender: TObject);
begin
{create the icon to hold converted bitmaps}
CurIcon := TIcon.Create;

{create and initialize the bitmap to hold converted icons}
CurBitmap := TBitmap.Create;
CurBitmap.Width := GetSystemMetrics(SM_CXICON);
CurBitmap.Height := GetSystemMetrics(SM_CYICON);

{initialize the save picture dialog for saving bitmaps}
SavePictureDialog1.Filter := 'Bitmaps (*.bmp)|*.bmp';
SavePictureDialog1.DefaultExt := '*.bmp';

end;

procedure TForm1.Button1Click(Sender: TObject);
begin
{delete the last specified filename}
SavePictureDialog1.FileName := '';

{show the dialog box}
if SavePictureDialog1.Execute then
if RadioButton1.Checked then
{as indicated, save the file as a bitmap...}
CurBitmap.SaveToFile(SavePictureDialog1.FileName)

else
{...or icon}
CurIcon.SaveToFile(SavePictureDialog1.FileName);

end;

procedure TForm1.FormDestroy(Sender: TObject);
begin
{free the resources}
CurIcon.Free;
CurBitmap.Free;

end;

Icon, Cursor, and Caret Functions � 441

C
h

a
p

te
r
9

Figure 9-5:

Converting an

icon

Delphi vs. the Windows API

While Delphi does supply a TIcon object, there is very little support for cursors and

almost no support for carets. The TIcon object will be the most useful for standard

functions, such as loading and displaying an icon. However, the TIcon object doesn’t

have support for loading from a resource, and there is a lot more functionality provided

by the Windows API than what has been encapsulated by this object. Cursors are simi-

larly easy to use in Delphi thanks to the Cursor property. However, as with icons, the

developer has a wider range of manipulation by using the Windows API. If you want a

custom caret, the Windows API provides the only functionality for this type of feature.

Icon, Cursor, and Caret Functions

The following icon, cursor, and caret functions are covered in this chapter.

Table 9-1: Icon, cursor, and caret functions

Function Description

CopyIcon Creates a copy of an existing icon.

CreateCaret Creates a new caret.

CreateCursor Creates a new cursor.

CreateIcon Creates a new icon.

CreateIconFromResource Creates a new icon or cursor from resource information.

CreateIconFromResourceEx Creates a new icon or cursor from resource information
with a specified width and height.

CreateIconIndirect Creates an icon or cursor from a data structure.

DestroyCaret Destroys a caret.

DestroyCursor Destroys a cursor.

DestroyIcon Destroys an icon.

DrawIcon Draws an icon at a specified location.

DrawIconEx Draws an icon or cursor at a specified location.

ExtractAssociatedIcon Retrieves a handle to an icon for the executable file asso-
ciated with a specified file.

ExtractIcon Retrieves a handle to an icon from a specified file.

ExtractIconEx Retrieves a handle to the large and small icons from a
specified file.

GetCursor Retrieves a handle to the current cursor.

GetIconInfo Retrieves information about an icon or cursor.

HideCaret Hides the caret.

LoadCursor Loads a cursor from the executable’s resources.

LoadCursorFromFile Loads a cursor from a file.

LoadIcon Loads an icon from the executable’s resources.

LookupIconIdFromDirectory Searches through resource data for a compatible icon or
cursor.

442 � Chapter 9

Function Description

LookupIconIdFromDirectoryEx Searches through resource data for a compatible icon or
cursor with the specified width and height.

SetCursor Sets the cursor to the specified cursor.

SetSystemCursor Sets a system cursor to the specified cursor.

ShowCaret Displays the caret if it was hidden.

ShowCursor Displays or hides the cursor.

CopyIcon Windows.pas

Syntax

CopyIcon(

hIcon: HICON {a handle to the icon to copy}

): HICON; {returns a handle to an icon}

Description

This function makes an exact duplicate of the specified icon, returning its handle. This

can be used to copy icons belonging to other modules.

Parameters

hIcon: A handle to the icon being copied.

Return Value

If the function succeeds, it returns a handle to an exact copy of the specified icon; oth-

erwise, it returns zero. To get extended error information, call the GetLastError

function.

See Also

DrawIcon, DrawIconEx

Example

■ Listing 9-3: Copying the application icon

procedure TForm1.Button1Click(Sender: TObject);
var
IconCopy: HICON; // holds a handle to the duplicated icon

begin
{make a copy of the application icon...}
IconCopy := CopyIcon(Application.Icon.Handle);

{...and display it}
DrawIcon(PaintBox1.Canvas.Handle, (PaintBox1.Width div 2)-16,

(PaintBox1.Height div 2)-16, IconCopy);
end;

Icon, Cursor, and Caret Functions � 443

C
h

a
p

te
r
9

CreateCaret Windows.ps

Syntax

CreateCaret(

hWnd: HWND; {a handle to the owner windows}

hBitmap: HBITMAP; {a handle to a bitmap}

nWidth: Integer; {the width of the caret}

nHeight: Integer {the height of the caret}

): BOOL; {returns TRUE or FALSE}

Description

This function creates a new shape for the caret. The caret is assigned to a window and

can be either a line, a block, or a bitmap. If a bitmap is specified, the bitmap determines

the width and height of the caret shape. Otherwise, the width and height are in terms of

logical units, and the exact dimensions are dependent upon the current mapping mode.

The developer can retrieve the default width and height values used for a caret by call-

ing the GetSystemMetrics function using the SM_CXBORDER and SM_CYBORDER

flags. The CreateCaret function automatically destroys the previous caret shape, and

the caret will not be visible until the ShowCaret function is called.

Parameters

hWnd: A handle to the window that will own the caret.

hBitmap: A handle to the bitmap used as the caret shape. If this parameter is zero, the

caret will be a solid rectangle. If this parameter is set to (hBitmap) 1, the caret will be

gray.

nWidth: The width of the caret in logical units. If this parameter is set to zero, the

system-defined window border width is used as the default width of the cursor. If the

hBitmap parameter is set to the handle of a bitmap, the bitmap determines the width,

and this parameter is ignored.

nHeight: The height of the caret in logical units. If this parameter is set to zero, the

system-defined window border height is used as the default height of the cursor. If the

hBitmap parameter is set to the handle of a bitmap, the bitmap determines the height,

and this parameter is ignored.

444 � Chapter 9

Figure 9-6:

The

duplicated

application

icon

TE
AM
FL
Y

Team-Fly®

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call the GetLastError function.

See Also

CreateBitmap*, CreateDIBitmap*, DestroyCaret, GetSystemMetrics*, HideCaret,

LoadBitmap*, LoadImage*, ShowCaret

Example

■ Listing 9-4: Creating a new caret shape

procedure TForm1.Button1Click(Sender: TObject);
var

TheCaretBitmap: HBitmap; // a handle to the new caret bitmap
begin

{load the caret bitmap from an external file}
TheCaretBitmap := LoadImage(0,'NewCaret.bmp',IMAGE_BITMAP,0,0,

LR_DEFAULTSIZE OR LR_LOADFROMFILE);

{we must set focus to the window we want to type in. when
this window receives focus manually (i.e., by using the TAB
key), Delphi automatically reassigns the appropriate caret}
Memo1.SetFocus;

{hide the current caret}
HideCaret(0);

{destroy the current caret}
DestroyCaret;

{create the new caret shape from the loaded bitmap}
CreateCaret(Memo1.Handle,TheCaretBitmap,0,0);

{display the new caret image}
ShowCaret(0);

end;

Icon, Cursor, and Caret Functions � 445

C
h

a
p

te
r
9

Figure 9-7:

The new caret

CreateCursor Windows.pas

Syntax

CreateCursor(

hInst: HINST; {a handle to the current application instance}

xHotSpot: Integer; {the horizontal position of the cursor hot spot}

yHotSpot: Integer; {the vertical position of the cursor hot spot}

nWidth: Integer; {the width of the cursor in pixels}

nHeight: Integer; {the height of the cursor in pixels}

pvANDPlaneter: Pointer; {a pointer to the AND image data}

pvXORPlane: Pointer {a pointer to the XOR image data}

): HCURSOR; {returns a handle to the cursor}

Description

This function creates a new cursor with the specified dimensions, image, and hot spot.

This cursor can be added to Delphi’s screen cursors array to make it persistent.

Parameters

hInst: A handle to the current application instance.

xHotSpot: The horizontal coordinate of the cursor’s hot spot.

yHotSpot: The vertical coordinate of the cursor’s hot spot.

nWidth: The width of the cursor in pixels. Use GetSystemMetrics(SM_CXCURSOR)

to determine the display driver-supported cursor width.

nHeight: The height of the cursor in pixels. Use GetSystemMetrics(SM_CYCURSOR)

to determine the display driver-supported cursor height.

pvANDPlaneter: A pointer to an array of bytes containing the bit values for the AND

mask of the cursor. This array contains information in the format of a device-dependent

monochrome bitmap.

pvXORPlane: A pointer to an array of bytes containing the bit values for the XOR

mask of the cursor. This array contains information in the format of a device-dependent

monochrome bitmap.

Return Value

If the function succeeds, it returns a handle to the new cursor; otherwise, it returns

zero. To get extended error information, call the GetLastError function.

See Also

CreateIcon, DestroyCursor, GetCursor, GetSystemMetrics*, SetCursor

Example

■ Listing 9-5: Creating a new cursor

var
Form1: TForm1;

446 � Chapter 9

OldCursor: HCURSOR; // preserves the old cursor
NewCursor: HCURSOR; // a handle to the new cursor

implementation

procedure TForm1.Button1Click(Sender: TObject);
var
MaskSize: Integer; // holds the computed size of the cursor
AndMask, // cursor bit arrays
XorMask: ^Byte;
AndImage, // intermediate bitmaps used to define the cursor shape
XorImage: TBitmap;

begin
{compute the size of the cursor bit arrays}
MaskSize := (GetSystemMetrics(SM_CXICON) div 8)*GetSystemMetrics(SM_CYICON);

{create the bitmap used to define the AND mask shape}
AndImage := TBitmap.Create;
with AndImage do
begin
{we are creating a black and white cursor}
Monochrome := TRUE;

{set the dimensions to those reported by the system}
Width := GetSystemMetrics(SM_CXICON);
Height := GetSystemMetrics(SM_CYICON);

{create the shape of an X}
Canvas.Brush.Color := clWhite;
Canvas.Pen.Color := clBlack;
Canvas.FillRect(Canvas.ClipRect);
Canvas.MoveTo(0,0);
Canvas.LineTo(Width,Height);
Canvas.MoveTo(Width,0);
Canvas.LineTo(0,Height);

end;

{create the bitmap used to define the XOR mask shape}
XorImage := TBitmap.Create;
with XorImage do
begin
{we are creating a black and white cursor}
Monochrome := TRUE;

{set the dimensions to those reported by the system}
Width := GetSystemMetrics(SM_CXICON);
Height := GetSystemMetrics(SM_CYICON);

{fill the bitmap with black}
Canvas.Brush.Color := clBlack;
Canvas.Pen.Color := clBlack;
Canvas.FillRect(Canvas.ClipRect);

end;

{allocate the memory for the bit arrays}
GetMem(AndMask,MaskSize);

Icon, Cursor, and Caret Functions � 447

C
h

a
p

te
r
9

GetMem(XorMask,MaskSize);

{transfer the images in the bitmaps to the bit arrays}
GetBitmapBits(AndImage.Handle, MaskSize, AndMask);
GetBitmapBits(XorImage.Handle, MaskSize, XorMask);

{create a new cursor based on the images transferred into
the bit arrays}
NewCursor := CreateCursor(hInstance, 0, 0, GetSystemMetrics(SM_CXICON),

GetSystemMetrics(SM_CYICON), AndMask, XorMask);

{if the cursor for the window class is not set to zero, SetCursor will succeed but the
cursor will be reset to the class cursor as soon as the mouse is moved. therefore, we
must set the class cursor for the button and the form to zero}
SetClassLong(Form1.Handle, GCL_HCURSOR, 0);
SetClassLong(Button1.Handle, GCL_HCURSOR, 0);

{now that the class cursor has been deleted, set the new cursor shape}
SetCursor(NewCursor);

{the temporary bitmaps are no longer needed, so dispose of them}
AndImage.Free;
XorImage.Free;

end;

procedure TForm1.FormCreate(Sender: TObject);
begin
{retrieve and save a handle to the original cursor}
OldCursor := GetCursor;

end;

procedure TForm1.FormDestroy(Sender: TObject);
begin
{set the cursor back to the original cursor shape}
SetCursor(OldCursor);

{delete the new cursor}
DestroyCursor(NewCursor);

end;

CreateIcon Windows.pas

Syntax

CreateIcon(

hInstance: HINST; {a handle to the application instance}

448 � Chapter 9

Figure 9-8:

The new

cursor

nWidth: Integer; {the width of the icon}

nHeight: Integer; {the height of the icon}

cPlanes: Byte; {the number of color planes}

cBitsPixel: Byte; {the number of bits describing an XOR mask pixel}

lpbANDbits: Pointer; {a pointer to the AND mask data}

lpbXORbits: Pointer {a pointer to the XOR mask data}

): HICON; {returns a handle to an icon}

Description

This function dynamically creates a new icon with the specified dimensions and image.

Parameters

hInstance: A handle to the instance of the application creating the icon.

nWidth: The width of the icon in pixels. This parameter must be set to the value

returned by GetSystemMetrics(SM_CXICON).

nHeight: The height of the icon in pixels. This parameter must be set to the value

returned by GetSystemMetrics(SM_CYICON).

cPlanes: The number of color planes used in the XOR icon mask.

cBitsPixel: The number of bits required to describe the color of one pixel (i.e., 8 bits

for 256 color images, 24 bits for 16.7 million color images, etc.).

lpbANDbits: A pointer to an array of bytes containing the image for the AND mask of

the icon. The image information contained in this array must describe a monochrome

bitmap.

lpbXORbits: A pointer to an array of bytes containing the image for the XOR mask of

the icon. This image information can describe either a monochrome bitmap or a device

dependent color bitmap.

Return Value

If the function succeeds, it returns the handle to a new icon; otherwise, it returns zero.

To get extended error information, call the GetLastError function.

See Also

CreateIconFromResource, CreateIconFromResourceEx, CreateIconIndirect, DrawIcon,

DrawIconEx, GetSystemMetrics*, LoadIcon

Example

■ Listing 9-6: Creating an icon at run time

procedure TForm1.Button1Click(Sender: TObject);
var
AndMaskSize, // holds the computed size of the Icon
XorMaskSize: Integer;

AndMask, // Icon bit arrays
XorMask: ^Byte;

Icon, Cursor, and Caret Functions � 449

C
h

a
p

te
r
9

AndImage, // intermediate bitmaps used to define the Icon shape
XorImage: TBitmap;

begin
{compute the size of the Icon bit arrays}
XorMaskSize := GetSystemMetrics(SM_CXICON)*GetSystemMetrics(SM_CYICON);
{the AND mask is a monochrome bitmap. thus, each bit represents a
pixel, so divide the width by 8 to get the correct number of bytes}
AndMaskSize :=(GetSystemMetrics(SM_CXICON) div 8)*GetSystemMetrics(SM_CYICON);

{create the bitmap used to define the XOR mask shape}
XorImage := TBitmap.Create;
XorImage.PixelFormat := pf8bit;
with XorImage do
begin
{set the dimensions to those reported by the system}
Width := GetSystemMetrics(SM_CXICON);
Height := GetSystemMetrics(SM_CYICON);

{fill the background with black}
Canvas.Brush.Color := clBlack;
Canvas.FillRect(Canvas.ClipRect);

{draw a red box}
Canvas.Brush.Color := clRed;
Canvas.Pen.Color := clBlack;
Canvas.FillRect(Rect(5,5,GetSystemMetrics(SM_CXICON)-5,

GetSystemMetrics(SM_CYICON)-5));
end;

{create the bitmap used to define the AND mask shape}
AndImage := TBitmap.Create;
with AndImage do
begin
{the AND mask is always black and white}
Monochrome := TRUE;

{set the dimensions to those reported by the system}
Width := GetSystemMetrics(SM_CXICON);
Height := GetSystemMetrics(SM_CYICON);

{fill the background with white}
Canvas.Brush.Color := clWhite;
Canvas.FillRect(Canvas.ClipRect);

{draw a black box the same size as the red box in the XOR bitmask}
Canvas.Brush.Color := clBlack;
Canvas.Pen.Color := clBlack;
Canvas.FillRect(Rect(5,5,GetSystemMetrics(SM_CXICON)-5,

GetSystemMetrics(SM_CYICON)-5));
end;

{allocate the memory for the bit arrays}
GetMem(AndMask,AndMaskSize);
GetMem(XorMask,XorMaskSize);

450 � Chapter 9

{transfer the images in the bitmaps to the bit arrays}
GetBitmapBits(AndImage.Handle, AndMaskSize, AndMask);
GetBitmapBits(XorImage.Handle, XorMaskSize, XorMask);

{create a new Icon based on the images transferred into the bit arrays}
NewIcon := CreateIcon(hInstance, GetSystemMetrics(SM_CXICON),

GetSystemMetrics(SM_CYICON), 1, 8, AndMask, XorMask);

{point the application's icon to this new icon}
Application.Icon.Handle := NewIcon;

{display the icon on the form}
DrawIcon(PaintBox1.Canvas.Handle,

PaintBox1.Width div 2-(GetSystemMetrics(SM_CXICON) div 2),
PaintBox1.Height div 2-(GetSystemMetrics(SM_CYICON) div 2), NewIcon);

{the temporary bitmaps are no longer needed, so dispose of them}
AndImage.Free;
XorImage.Free;

end;

CreateIconFromResource Windows.pas

Syntax

CreateIconFromResource(

presbits: PByte; {a pointer to icon or cursor bits}

dwResSize: DWORD; {the number of bytes pointed to by presbits}

fIcon: BOOL; {indicates an icon or cursor}

dwVer: DWORD {the format version number}

): HICON; {returns a handle to an icon or cursor}

Description

This function creates a new icon or cursor from the specified resource bits defining the

icon or cursor image.

Parameters

presbits: A pointer to a buffer containing the icon or cursor resource bits. The return

value from the LoadResource or LookupIconIdFromDirectory functions can be used as

the input for this parameter.

Icon, Cursor, and Caret Functions � 451

C
h

a
p

te
r
9

Figure 9-9:

The new icon

dwResSize: The size of the buffer pointed to by the presbits parameter, in bytes.

fIcon: A flag indicating whether an icon or cursor is created. A value of TRUE causes

the function to create an icon, and FALSE creates a cursor.

dwVer: Specifies the icon and cursor format version number. Win32 applications

should set this value to $30000.

Return Value

If the function succeeds, it returns a handle to an icon or cursor; otherwise, it returns

zero. To get extended error information, call the GetLastError function.

See Also

CreateIcon, CreateIconFromResourceEx, CreateIconIndirect, LookupIconId-

FromDirectory, LookupIconIdFromDirectoryEx

Example

■ Listing 9-7: Creating an icon from resource information

procedure TForm1.Button1Click(Sender: TObject);
var
IconBits: HGLOBAL; // a handle to the icon image
IconBitsPtr: Pointer; // a pointer to the icon image
ResHandle: HRSRC; // a handle to the icon resource information
ResId: Integer; // holds the resource id for the icon
TheIcon: HICON; // a handle to the created icon

begin
{retrieve a handle to the icon resource}
ResHandle := FindResource(0, 'TARGET', RT_GROUP_ICON);

{retrieve a handle to the icon resource image}
IconBits := LoadResource(0, ResHandle);

{retrieve a pointer to the icon image}
IconBitsPtr := LockResource(IconBits);

{find the icon that fits the current display device}
ResId := LookupIconIDFromDirectory(IconBitsPtr, TRUE);

{retrieve a handle to this icon}
ResHandle := FindResource(0, MakeIntResource(ResId), RT_ICON);

{load the icon resource image}
IconBits := LoadResource(0, ResHandle);

{retrieve a pointer to the icon image}
IconBitsPtr := LockResource(IconBits);

{create a new icon from the correct icon resource information}
TheIcon := CreateIconFromResource(IconBitsPtr, SizeOfResource(0, ResHandle),

TRUE, $30000);

{display the icon}
DrawIcon(PaintBox1.Canvas.Handle,

452 � Chapter 9

PaintBox1.Width div 2-(GetSystemMetrics(SM_CXICON) div 2),
PaintBox1.Height div 2-(GetSystemMetrics(SM_CYICON) div 2), TheIcon);

end;

CreateIconFromResourceEx Windows.pas

Syntax

CreateIconFromResourceEx(

presbits: PByte; {a pointer to icon or cursor bits}

dwResSize: DWORD; {the number of bytes pointed to by presbits}

fIcon: BOOL; {indicates an icon or cursor}

dwVer: DWORD; {the format version number}

cxDesired: Integer; {the preferred width of the icon or cursor}

cyDesired: Integer; {the preferred height of the icon or cursor}

Flags: UINT {color flags}

): HICON; {returns a handle to an icon or cursor}

Description

This function creates a new icon or cursor from the specified resource bits defining the

icon or cursor image. Unlike the CreateIconFromResource function, this function

allows the developer to determine the dimensions and color format of the icon or

cursor.

Parameters

presbits: A pointer to a buffer containing the icon or cursor resource bits. The return

value from the LoadResource or LookupIconIdFromDirectory functions can be used as

the input for this parameter.

dwResSize: The size of the buffer pointed to by the presbits parameter, in bytes.

fIcon: A flag indicating whether an icon or cursor is created. A value of TRUE causes

the function to create an icon, and FALSE creates a cursor.

dwVer: Specifies the icon and cursor format version number. Win32 applications

should set this value to $30000.

cxDesired: Specifies the preferred width of the icon or cursor in pixels. If this parame-

ter is zero, the function uses the value returned from GetSystemMetrics(SM_CX-

ICON).

Icon, Cursor, and Caret Functions � 453

C
h

a
p

te
r
9

Figure 9-10:

The new icon

cyDesired: Specifies the preferred height of the icon or cursor in pixels. If this parame-

ter is zero, the function uses the value returned from GetSystemMetrics(SM_CYI-

CON).

Flags: A value indicating the color format for the icon or cursor. This parameter can be

one value from the following table.

Return Value

If the function succeeds, it returns a handle to an icon or cursor; otherwise, it returns

zero. To get extended error information, call the GetLastError function.

See Also

CreateIcon, CreateIconFromResource, CreateIconIndirect, LookupIconId-

FromDirectory, LookupIconIdFromDirectoryEx

Example

■ Listing 9-8: More options for creating an icon from resource information

procedure TForm1.Button1Click(Sender: TObject);
var
IconBits: HGLOBAL; // a handle to the icon image
IconBitsPtr: Pointer; // a pointer to the icon image
ResHandle: HRSRC; // a handle to the icon resource information
ResId: Integer; // holds the resource id for the icon
TheIcon: HICON; // a handle to the created icon

begin
{retrieve a handle to the icon resource}
ResHandle := FindResource(0, 'TARGET', RT_GROUP_ICON);

{retrieve a handle to the icon resource image}
IconBits := LoadResource(0, ResHandle);

{retrieve a pointer to the icon image}
IconBitsPtr := LockResource(IconBits);

{find the icon that fits the current display device}
ResId := LookupIconIDFromDirectoryEx(IconBitsPtr, TRUE,

0, 0, LR_DEFAULTCOLOR);

{retrieve a handle to this icon}
ResHandle := FindResource(0, MakeIntResource(ResId), RT_ICON);

{load the icon resource image}
IconBits := LoadResource(0, ResHandle);

{retrieve a pointer to the icon image}
IconBitsPtr := LockResource(IconBits);

{create a new icon from the correct icon resource information}
TheIcon := CreateIconFromResourceEx(IconBitsPtr, SizeOfResource(0, ResHandle),

TRUE, $30000, 0, 0, LR_DEFAULTCOLOR);

454 � Chapter 9

TE
AM
FL
Y

Team-Fly®

{display the icon}
DrawIcon(PaintBox1.Canvas.Handle,

PaintBox1.Width div 2-(GetSystemMetrics(SM_CXICON) div 2),
PaintBox1.Height div 2-(GetSystemMetrics(SM_CYICON) div 2), TheIcon);

end;

Table 9-2: CreateIconFromResourceEx Flags values

Value Description

LR_DEFAULTCOLOR Create a color cursor or icon using the default system colors.

LR_MONOCHROME Create a monochrome cursor or icon.

CreateIconIndirect Windows.pas

Syntax

CreateIconIndirect(

var piconinfo: TIconInfo {a pointer to an icon information data structure}

): HICON; {returns a handle to an icon}

Description

This function dynamically creates a new icon from the dimensions and images defined

in the piconinfo variable. After the icon is created, the application must manage the

bitmaps used in the icon definition and delete them when they are no longer used. Icons

created with this function must be destroyed by using the DestroyIcon function.

Parameters

piconinfo: A pointer to a TIconInfo data structure that describes the icon image. The

TIconInfo structure is defined as:

TIconInfo = packed record

fIcon: BOOL; {indicates icon or cursor information}

xHotspot: DWORD; {the hot spot horizontal coordinate}

yHotspot: DWORD; {the hot spot vertical coordinate}

hbmMask: HBITMAP; {a bitmap handle}

hbmColor: HBITMAP; {a bitmap handle}

end;

See GetIconInfo for a description of the data structure members.

Return Value

If the function succeeds, it returns a handle to the new icon; otherwise, it returns zero.

To get extended error information, call the GetLastError function.

See Also

CreateIcon, CreateIconFromResource, CreateIconFromResourceEx, DestroyIcon,

DrawIcon, DrawIconEx, LoadIcon

Icon, Cursor, and Caret Functions � 455

C
h

a
p

te
r
9

Example

■ Listing 9-9: Creating an icon indirectly

var
Form1: TForm1;
NewIcon: HICON; // holds the new icon

implementation

procedure TForm1.Button1Click(Sender: TObject);
var
AndImage, // bitmaps used to define the Icon shape
XorImage: TBitmap;
IconInfo: TIconInfo; // the icon information data structure

begin
{create the bitmap used to define the XOR mask shape}
XorImage := TBitmap.Create;
with XorImage do
begin
{set the dimensions to those reported by the system}
Width := GetSystemMetrics(SM_CXICON);
Height := GetSystemMetrics(SM_CYICON);

{fill the background with black}
Canvas.Brush.Color := clBlack;
Canvas.FillRect(Canvas.ClipRect);

{draw a red box}
Canvas.Brush.Color := clRed;
Canvas.Pen.Color := clBlack;
Canvas.FillRect(Rect(5,5,GetSystemMetrics(SM_CXICON)-5,

GetSystemMetrics(SM_CYICON)-5));
end;

{create the bitmap used to define the AND mask shape}
AndImage := TBitmap.Create;
with AndImage do
begin
{the AND mask is always black and white}
Monochrome := TRUE;

{set the dimensions to those reported by the system}
Width := GetSystemMetrics(SM_CXICON);
Height := GetSystemMetrics(SM_CYICON);

{fill the background with white}
Canvas.Brush.Color := clWhite;
Canvas.FillRect(Canvas.ClipRect);

{draw a black box the same size as the red box in the XOR bitmask}
Canvas.Brush.Color := clBlack;
Canvas.Pen.Color := clBlack;
Canvas.FillRect(Rect(5,5,GetSystemMetrics(SM_CXICON)-5,

GetSystemMetrics(SM_CYICON)-5));
end;

456 � Chapter 9

{initialize the icon information structure to define the new icon}
IconInfo.fIcon := TRUE;
IconInfo.xHotspot := 0;
IconInfo.yHotspot := 0;
IconInfo.hbmMask:=AndImage.Handle;
IconInfo.hbmColor:=XorImage.Handle;

{create a new Icon based on the icon information data structure}
NewIcon := CreateIconIndirect(IconInfo);

{point the application's icon to this new icon}
Application.Icon.Handle := NewIcon;

{display the icon on the form}
DrawIcon(PaintBox1.Canvas.Handle,

PaintBox1.Width div 2-(GetSystemMetrics(SM_CXICON) div 2),
PaintBox1.Height div 2-(GetSystemMetrics(SM_CYICON) div 2), NewIcon);

{the temporary bitmaps are no longer needed, so dispose of them}
AndImage.Free;
XorImage.Free;

end;

procedure TForm1.FormDestroy(Sender: TObject);
begin
{delete the new Icon}
DestroyIcon(NewIcon);

end;

DestroyCaret Windows.pas

Syntax

DestroyCaret: BOOL; {returns a TRUE or FALSE}

Description

This function deletes the caret’s current shape, frees it from the window, and removes it

from the screen. If a bitmap was used to define the caret’s shape, the bitmap is not

freed. DestroyCaret fails if the window that owns the caret is not in the current task.

Return Value

If the function succeeds, it returns TRUE; otherwise it returns FALSE. To get extended

error information, call the GetLastError function.

See Also

CreateCaret, HideCaret, ShowCaret

Example

Please see Listing 9-4 under CreateCaret.

Icon, Cursor, and Caret Functions � 457

C
h

a
p

te
r
9

DestroyCursor Windows.pas

Syntax

DestroyCursor(

hCursor: HICON {a handle to the cursor being destroyed}

): BOOL; {returns TRUE or FALSE}

Description

This function destroys the cursor identified by the given cursor handle and frees its

memory. This function should only be used to destroy cursors created with the

CreateCursor function.

Parameters

hCursor: A handle to the cursor to be destroyed. This cursor handle must not be in use

at the time this function is called.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call the GetLastError function.

See Also

CreateCursor

Example

Please see Listing 9-5 under CreateCursor.

DestroyIcon Windows.pas

Syntax

DestroyIcon(

hIcon: HICON {a handle to the icon being destroyed}

): BOOL; {returns TRUE or FALSE}

Description

This function destroys the icon identified by the given icon handle and frees its mem-

ory. This function should only be used to destroy icons created with the CreateIcon-

Indirect function.

Parameters

hIcon: A handle to the icon to be destroyed. This icon handle must not be in use at the

time this function is called.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call the GetLastError function.

458 � Chapter 9

See Also

CreateIconIndirect

Example

Please see Listing 9-9 under CreateIconIndirect.

DrawIcon Windows.pas

Syntax

DrawIcon(

hDC: HDC; {a handle to a device context}

X: Integer; {the horizontal coordinate of the icon or cursor}

Y: Integer; {the vertical coordinate of the icon or cursor}

hIcon: HICON {a handle to the icon or cursor to draw}

): BOOL; {returns TRUE or FALSE}

Description

This function draws an icon or cursor, including animated cursors, onto the specified

device context.

Parameters

hDC: A handle to the device context upon which the icon or cursor will be drawn.

X: Indicates the horizontal position of the upper-left corner of the icon or cursor within

the specified device context, subject to the current mapping mode.

Y: Indicates the vertical position of the upper-left corner of the icon or cursor within

the specified device context, subject to the current mapping mode.

hIcon: A handle to the icon or cursor to be drawn.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call the GetLastError function.

See Also

DrawIconEx, LoadCursor, LoadIcon, LoadImage*

Example

Please see Listing 9-6 under CreateIcon.

DrawIconEx Windows.pas

Syntax

DrawIconEx(

hdc: HDC; {a handle to a device context}

xLeft: Integer; {the horizontal coordinate for displaying the icon}

yTop: Integer; {the vertical coordinate for displaying the icon}

Icon, Cursor, and Caret Functions � 459

C
h

a
p

te
r
9

hIcon: HICON; {a handle to the icon to display}

cxWidth: Integer; {the width of the icon}

cyHeight: Integer; {the height of the icon}

istepIfAniCur: UINT; {the frame index of an animated cursor}

hbrFlickerFreeDraw: HBRUSH; {a handle to a brush}

diFlags: UINT {icon display flags}

): BOOL; {returns TRUE or FALSE}

Description

This function draws an icon or cursor, including animated cursors, onto the specified

device context. The icon or cursor can be stretched or compressed as desired.

Parameters

hdc: A handle to the device context upon which the icon or cursor will be drawn.

xLeft: Indicates the horizontal position of the upper left corner of the icon or cursor

within the specified device context, subject to the current mapping mode.

yTop: Indicates the vertical position of the upper left corner of the icon or cursor within

the specified device context, subject to the current mapping mode.

hIcon: A handle to the icon or cursor to be drawn.

cxWidth: Specifies how wide to draw the icon or cursor, in logical units. If this parame-

ter is zero and the diFlags parameter is set to DI_DEFAULTSIZE, the function uses the

SM_CXICON or SM_CXCURSOR system metric values for the width. If this parame-

ter is zero and the diFlags parameter is not set to DI_DEFAULTSIZE, the function uses

the actual width of the icon or cursor resource.

cyHeight: Specifies how tall to draw the icon or cursor, in logical units. If this parame-

ter is zero and the diFlags parameter is set to DI_DEFAULTSIZE, the function uses the

SM_CYICON or SM_CYCURSOR system metric values for the height. If this parame-

ter is zero and the diFlags parameter is not set to DI_DEFAULTSIZE, the function uses

the actual height of the icon or cursor resource.

istepIfAniCur: Specifies which frame of an animated cursor to draw. If the hIcon

parameter does not specify a handle to an animated icon, this parameter is ignored.

hbrFlickerFreeDraw: A handle to a brush. If the brush handle is valid, the function cre-

ates an offscreen bitmap using the brush for the background color, draws the icon or

cursor into this offscreen bitmap, and then copies it onto the device context specified

by the hdc parameter. This eliminates any flicker when displaying the icon or cursor. If

this parameter is zero, the icon or cursor is drawn directly into the specified device

context.

diFlags: A flag controlling drawing behavior. This parameter can be one or more values

from the following table.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call the GetLastError function.

460 � Chapter 9

See Also

DrawIcon, LoadCursor, LoadIcon, LoadImage*

Example

Please see Listing 9-14 under LoadCursorFromFile.

Table 9-3: DrawIconEx diFlags values

Value Description

DI_COMPAT Draws the default cursor image for the specified standard cursor, even if
the cursor has been replaced by a call to the SetSystemCursor function.

Note: This flag is ignored under Windows NT 4.0 and later.

DI_DEFAULTSIZE Draws the icon or cursor with the system metric-defined width and
height for icons and cursors.

DI_IMAGE Draws only the OR mask of the icon or cursor.

DI_MASK Draws only the AND mask of the icon or cursor.

DI_NOMIRROR Windows XP and later: Draws the icon as an unmirrored icon.

DI_NORMAL Combines the DI_IMAGE and DI_MASK values to draw the cursor or
icon as it is normally displayed.

ExtractAssociatedIcon ShellAPI.pas

Syntax

ExtractAssociatedIcon(

hInst: HINST; {a handle to the application instance}

lpIconPath: PChar; {a pointer to a filename string}

var lpiIcon: Word {the icon index}

): HICON; {returns a handle to an icon}

Description

This function returns the handle to an icon extracted from the file referenced by the

lpIconPath parameter. If this parameter does not point to an executable file, the icon is

extracted from the executable file associated with the specified file. If this file does not

have an associated executable file, this function returns the handle to a default icon

assigned by Windows. In addition, if the filename specifies a bitmap or cursor file, this

function will create an icon from the image and return its handle.

Parameters

hInst: A handle to the application instance.

lpIconPath: A pointer to a null-terminated string containing the filename from which to

extract the icon.

lpiIcon: A pointer to a variable containing the index of the icon to extract. The index is

zero-based, so a value of 0 will retrieve the first icon in the file.

Icon, Cursor, and Caret Functions � 461

C
h

a
p

te
r
9

Return Value

If the function succeeds, it returns the handle to an icon; otherwise, it returns zero.

See Also

DrawIcon, DrawIconEx, ExtractIcon, LoadIcon

Example

■ Listing 9-10: Extracting icons associated with a file

procedure TForm1.FileListBox1Click(Sender: TObject);
var

IconIndex: Word;
TheIcon: TIcon;

begin
{extract the first icon found}
IconIndex:=0;

{create the temporary icon object}
TheIcon:=TIcon.Create;

{extract a handle to the icon of the executable
associated with the selected file}
TheIcon.Handle:=ExtractAssociatedIcon(hInstance,PChar(FileListBox1.FileName),

IconIndex);

{copy the icon into the image object}
Image1.Picture.Assign(TheIcon);

{free the temporary icon object}
TheIcon.Free;

end;

ExtractIcon ShellAPI.pas

Syntax

ExtractIcon(

hInst: HINST; {a handle to the application instance}

lpszExeFileName: PChar; {a pointer to a filename string}

nIconIndex: UINT {the icon index}

): HICON; {returns a handle to an icon}

462 � Chapter 9

Figure 9-11:

An icon

associated

with a file

Description

This function returns a handle to an icon extracted from an executable file, DLL, or

icon file. In addition, if the filename specifies a bitmap or cursor file, this function will

create an icon from the image and return its handle. This function can be used to con-

vert bitmaps or cursors into icons.

Parameters

hInst: A handle to the application instance.

lpszExeFileName: A pointer to a null-terminated string containing the filename from

which to extract the icon.

nIconIndex: The index of the icon to retrieve. The index is zero-based, so a value of 0

will retrieve the first icon in the file, if any exist. If this value is –1, the return value

will be the total number of icons stored in the specified file.

Return Value

If the function succeeds, it returns a handle to an icon. If the function fails, or there are

no icons stored in the specified file, it returns zero.

See Also

DrawIcon, DrawIconEx, ExtractAssociatedIcon, LoadIcon

Example

■ Listing 9-11: Extracting the icon from a file

{the ExtractIcon function is imported incorrectly in Delphi 6}
function ExtractIcon(hInst: HINST; lpszExeFileName: PChar;

nIconIndex: Integer): HICON; stdcall;
var
Form1: TForm1;

implementation

{$R *.DFM}

{import the function}
function ExtractIcon; external 'shell32.dll' name 'ExtractIconA';

procedure TForm1.FileListBox1DblClick(Sender: TObject);
var

TheIcon: TIcon; // this will hold the returned icon
NumIcons: Integer; // holds the icon count

begin
{determine the number of icons stored in this file}
NumIcons:=ExtractIcon(hInstance,PChar(FileListBox1.FileName), -1);

{display this number}
Label2.Caption:=IntToStr(NumIcons)+' icon(s) in this file';

{create an icon object}
TheIcon:=TIcon.Create;

Icon, Cursor, and Caret Functions � 463

C
h

a
p

te
r
9

{find the icon in the selected application, if one exists}
TheIcon.Handle:=ExtractIcon(hInstance, PChar(FileListBox1.FileName), 0);

{display the icon. if no icon exists, the currently
displayed icon will be cleared}
Image1.Picture.Assign(TheIcon);

{free our icon object}
TheIcon.Free;

end;

ExtractIconEx ShellAPI.pas

Syntax

ExtractIconEx(

lpszFile: PChar; {a pointer to a filename string}

nIconIndex: Integer; {the icon index}

var phiconLarge: HICON; {a pointer to a large icon handle}

var phiconSmall: HICON; {a pointer to a small icon handle}

nIcons: UINT {the number of icons to retrieve}

): UINT; {returns the number of icons stored in the file}

Description

This function returns the handle to both a large and small icon stored in an executable

file, DLL, or icon file.

Parameters

lpszFile: A pointer to a null-terminated string containing the filename of an executable

file, DLL, or icon file from which to extract the icons.

nIconIndex: The index of the icon to retrieve. The index is zero-based, so a value of 0

will retrieve the first large and small icon in the file, if any exist. If this value is –1, the

return value will be the total number of icons stored in the specified file.

phiconLarge: A pointer to an icon handle. If the function succeeds, this value will point

to the handle of a large icon extracted from the given file.

phiconSmall: A pointer to an icon handle. If the function succeeds, this value will point

to the handle of a small icon extracted from the given file.

464 � Chapter 9

Figure 9-12:

The extracted

icon

TE
AM
FL
Y

Team-Fly®

nIcons: A value indicating the number of icons to extract.

Return Value

If the function succeeds and the value of nIconIndex is –1, it returns the total number

of icons stored in the file. This function counts a large icon and its associated small

icon as one icon (i.e., if there are three large icons and three small icons in a file, this

function would return a 3). If the function extracts icons, it returns the total number of

large and small icons extracted (i.e., if it extracted one small and one large icon, it

returns 2). If the function fails, or there are no icons stored in the indicated file, it

returns 0..

See Also

DrawIcon, DrawIconEx, ExtractIcon, LoadIcon

Example

■ Listing 9-12: Extracting large and small icons

var
Form1: TForm1;
LargeIconsBitmap: TBitmap; // this holds the icon images
SmallIconsBitmap: TBitmap;

implementation

{$R *.DFM}

procedure TForm1.FileListBox1DblClick(Sender: TObject);
var

NumIcons: Integer; // holds the icon count
LIcon: HICON; // holds the handles to extracted icons
SIcon: HICON;
LoopCount: Integer; // a general loop counter

begin
{determine the number of icons stored in this file}
NumIcons:=ExtractIconEx(PChar(FileListBox1.FileName), -1, LIcon, SIcon, 0);

{display this number}
Label4.Caption:='Total Number of Icons: '+IntToStr(NumIcons);

{resize the images and clear the canvases of the offscreen bitmaps.
we add a 1 to the width in case there are no icons. this prevents
the Height of these objects from being reset to 1.}
Image1.Width:=NumIcons*40+1;
Image2.Width:=NumIcons*40+1;
LargeIconsBitmap.Width:=NumIcons*40+1;
LargeIconsBitmap.Canvas.FillRect(LargeIconsBitmap.Canvas.ClipRect);
SmallIconsBitmap.Width:=NumIcons*40+1;
SmallIconsBitmap.Canvas.FillRect(SmallIconsBitmap.Canvas.ClipRect);

{extract each large and small icon from the file}
for LoopCount:=0 to NumIcons-1 do
begin

{find the icon in the selected application, if one exists}

Icon, Cursor, and Caret Functions � 465

C
h

a
p

te
r
9

ExtractIconEx(PChar(FileListBox1.FileName), LoopCount, LIcon, SIcon, 1);

{display the large icon}
DrawIcon(LargeIconsBitmap.Canvas.Handle, (LoopCount*40)+4, 2, LIcon);

{draw the small icon to the correct dimensions}
DrawIconEx(SmallIconsBitmap.Canvas.Handle, (LoopCount*40)+4, 2, SIcon,

GetSystemMetrics(SM_CXSMICON), GetSystemMetrics(SM_CYSMICON),
0, 0, DI_NORMAL);

end;

{assign the offscreen bitmaps to the images for display}
Image1.Picture.Bitmap.Assign(LargeIconsBitmap);
Image2.Picture.Bitmap.Assign(SmallIconsBitmap);

end;

procedure TForm1.FormCreate(Sender: TObject);
begin

{create the offscreen bitmaps to hold the images of the icons.}
LargeIconsBitmap:=TBitmap.Create;
LargeIconsBitmap.Height:=53;
LargeIconsBitmap.Width:=40;

SmallIconsBitmap:=TBitmap.Create;
SmallIconsBitmap.Height:=53;
SmallIconsBitmap.Width:=40;

end;

procedure TForm1.FormDestroy(Sender: TObject);
begin

{free the offscreen bitmaps}
LargeIconsBitmap.Free;
SmallIconsBitmap.Free;

end;

466 � Chapter 9

Figure 9-13:

The large and

small icons

extracted

from a file

GetCursor Windows.pas

Syntax

GetCursor: HCURSOR; {returns a handle to a cursor}

Description

This function retrieves a handle to the current cursor.

Return Value

If the function succeeds, it returns a handle to the current cursor; otherwise, it returns

zero.

See Also

CreateCursor, SetCursor

Example

Please see Listing 9-5 under CreateCursor.

GetIconInfo Windows.pas

Syntax

GetIconInfo(

hIcon: HICON; {a handle to an icon or cursor}

var piconinfo: TIconInfo {a pointer to an icon information structure}

): BOOL; {returns TRUE or FALSE}

Description

This function retrieves information about an icon or cursor, including hot spots and

mask images.

Parameters

hIcon: A handle to an icon or cursor whose information is to be retrieved. To retrieve

information about a standard icon or cursor, this parameter may be set to one value

from Table 9-4.

piconinfo: A pointer to a TIconInfo structure. This structure is filled with the requested

information on the specified icon or cursor when the function returns. The TIconInfo

structure is defined as:

TIconInfo = packed record

fIcon: BOOL; {indicates icon or cursor information}

xHotspot: DWORD; {the hot spot horizontal coordinate}

yHotspot: DWORD; {the hot spot vertical coordinate}

hbmMask: HBITMAP; {a bitmap handle}

hbmColor: HBITMAP; {a bitmap handle}

end;

Icon, Cursor, and Caret Functions � 467

C
h

a
p

te
r
9

fIcon: A flag indicating if the structure contains information on an icon or a cur-

sor. If this member contains TRUE, the structure contains information on an icon;

otherwise, it contains information on a cursor.

xHotspot: Specifies the horizontal coordinate of the cursor’s hot spot. If the struc-

ture contains information on an icon, the hot spot is always in the center of the

icon and this member is ignored.

yHotspot: Specifies the vertical coordinate of the cursor’s hot spot. If the struc-

ture contains information on an icon, the hot spot is always in the center of the

icon and this member is ignored.

hbmMask: A handle to the AND mask bitmap of the icon or cursor. If the struc-

ture contains information on a black and white icon or cursor, the AND mask is

formatted so that the upper half contains the AND mask and the lower half con-

tains the OR mask. In this case, the hbmColor member may contain a zero. The

application must delete this bitmap when it is no longer needed.

hbmColor: A handle to the OR mask bitmap of the icon or cursor. For animated

cursors, this will be the first frame of the cursor’s color images. The application

must delete this bitmap when it is no longer needed.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call the GetLastError function.

See Also

CreateIcon, CreateIconFromResource, CreateIconIndirect, DestroyIcon, DrawIcon,

DrawIconEx, LoadIcon

Example

■ Listing 9-13: Retrieving information on system cursors and icons

procedure TForm1.ComboBox1Change(Sender: TObject);
var

TheIcon: HICON; // holds an icon
TheCursor: HCURSOR; // holds a cursor

TheIconInfo: TIconInfo; // holds the cursor or icon information

{this specifies the system icons and cursors}
type

TIconTypes = array[0..8] of PAnsiChar;
TCursorTypes = array[0..12] of PAnsiChar;

const
IconTypes: TIconTypes = (IDI_APPLICATION,IDI_ASTERISK,IDI_ERROR,

IDI_EXCLAMATION,IDI_HAND,IDI_INFORMATION,
IDI_QUESTION,IDI_WARNING,IDI_WINLOGO);

CursorTypes: TCursorTypes = (IDC_ARROW,IDC_IBEAM,IDC_WAIT,IDC_CROSS,
IDC_UPARROW,IDC_SIZENWSE,IDC_SIZENESW,
IDC_SIZEWE,IDC_SIZENS,IDC_SIZEALL,
IDC_NO,IDC_APPSTARTING,IDC_HELP);

begin

468 � Chapter 9

{erase the last image}
Image1.Canvas.Brush.Color:=clBtnFace;
Image1.Canvas.Fillrect(Image1.Canvas.Cliprect);
if TheIconInfo.hbmMask<>0 then DeleteObject(TheIconInfo.hbmMask);
if TheIconInfo.hbmColor<>0 then DeleteObject(TheIconInfo.hbmColor);

{if we have selected icons, get an icon...}
if RadioButton1.Checked then
begin

{load the selected system icon}
TheIcon:=LoadIcon(0, IconTypes[ComboBox1.ItemIndex]);

{fill the information structure for this icon}
GetIconInfo(TheIcon, TheIconInfo);

{now draw the icon on the TImage canvas}
DrawIconEx(Image1.Canvas.Handle,25,25,TheIcon,0,0,0,

Image1.Canvas.Brush.Handle,DI_DEFAULTSIZE OR DI_NORMAL);
end
else
{...otherwise, get a cursor}
begin

{load the selected system cursor}
TheCursor:=LoadCursor(0, CursorTypes[ComboBox2.ItemIndex]);

{fill the information structure for this cursor}
GetIconInfo(TheCursor, TheIconInfo);

{now draw the cursor on the TImage canvas}
DrawIconEx(Image1.Canvas.Handle,25,25,TheCursor,0,0,0,

Image1.Canvas.Brush.Handle,DI_DEFAULTSIZE OR DI_NORMAL);
end;

{clear the listbox}
ListBox1.Items.Clear;

{fill the listbox with the icon or cursor information}
if TheIconInfo.fIcon then

ListBox1.Items.Add('This is an icon')
else

ListBox1.Items.Add('This is a cursor');

{specify hotspots}
ListBox1.Items.Add('X Hotspot: '+IntToStr(TheIconInfo.xHotspot));
ListBox1.Items.Add('Y Hotspot: '+IntToStr(TheIconInfo.yHotspot));

{display the AND and OR masks for this cursor or icon}
Image2.Picture.Bitmap.Handle:=TheIconInfo.hbmMask;
Image3.Picture.Bitmap.Handle:=TheIconInfo.hbmColor;

end;

Icon, Cursor, and Caret Functions � 469

C
h

a
p

te
r
9

Table 9-4: GetIconInfo hIcon values

Value Description

IDI_APPLICATION The default application icon.

IDI_ASTERISK The information system icon.

IDI_ERROR The stop system icon.

IDI_EXCLAMATION The exclamation point system icon.

IDI_HAND Same as the IDI_ERROR value.

IDI_INFORMATION Same as the IDI_ASTERISK value.

IDI_QUESTION The question mark system icon.

IDI_WARNING Same as the IDI_EXCLAMATION value.

IDI_WINLOGO The Windows logo icon.

IDC_ARROW The standard arrow cursor.

IDC_IBEAM The I beam cursor.

IDC_WAIT The hourglass cursor.

IDC_CROSS The crosshair cursor.

IDC_UPARROW The vertical arrow cursor.

IDC_SIZENWSE A diagonal arrow cursor pointing northwest and southeast.

IDC_SIZENESW A diagonal arrow cursor pointing northeast and southwest.

IDC_SIZEWE An arrow cursor pointing east and west.

IDC_SIZENS An arrow cursor pointing north and south.

IDC_SIZEALL A four-pointed arrow cursor pointing north, south, east, and
west.

IDC_NO The slashed circle cursor.

IDC_APPSTARTING The standard arrow cursor with a small hourglass.

IDC_HELP The standard arrow cursor with a question mark.

IDC_HAND The hand cursor.

470 � Chapter 9

Figure 9-14:

The icon and

cursor

information

HideCaret Windows.pas

Syntax

HideCaret(

hWnd: HWND {a handle to the window that owns the caret}

): BOOL; {returns TRUE or FALSE}

Description

This function hides the caret from the screen, but it does not destroy it or lose the inser-

tion point. Hiding is cumulative. Each time the HideCaret function is called, a

subsequent ShowCaret function must be called to display the caret.

Parameters

hWnd: A handle to the window that owns the caret. If this parameter is set to FALSE,

the function searches all windows in the current task. If no window in the current task

owns the caret, the HideCaret function fails.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call the GetLastError function.

See Also

CreateCaret, DestroyCaret, ShowCaret

Example

Please see Listing 9-4 under CreateCaret.

LoadCursor Windows.pas

Syntax

LoadCursor(

hInstance: HINST; {an instance handle}

lpCursorName: PAnsiChar {the cursor resource name or identifier}

): HCURSOR; {returns a handle to a cursor}

Description

This function retrieves a handle to a cursor from cursor resources stored in the execut-

able file associated with the given instance handle. If the cursor is not currently loaded,

it will load the specified cursor resource and return its handle; otherwise, it returns a

handle to the existing cursor.

Parameters

hInstance: A handle to the module instance whose executable file contains the cursor

resource to be loaded.

lpCursorName: A pointer to a null-terminated string containing the name of the cursor

resource to load. The MakeIntResource function can be used with a resource identifier

Icon, Cursor, and Caret Functions � 471

C
h

a
p

te
r
9

to provide a value for this parameter. To load one of the user-defined cursors, set the

hInstance parameter to zero and set this parameter to one of the values from the follow-

ing table. The user-defined cursors are set from the Mouse applet under the Control

Panel and are stored in the registry under the key HKEY_CURRENT_USER\Control

Panel\Cursors.

Return Value

If the function succeeds, it returns a handle to a cursor loaded from the executable file

resources; otherwise, it returns zero. To get extended error information, call the

GetLastError function.

See Also

GetCursor, GetIconInfo, LoadImage*, SetCursor, ShowCursor

Example

Please see Listing 9-13 under GetIconInfo.

Table 9-5: LoadCursor lpCursorName values

Value Description

IDC_ARROW The standard arrow cursor.

IDC_IBEAM The I beam cursor.

IDC_WAIT The hourglass cursor.

IDC_CROSS The crosshair cursor.

IDC_UPARROW The vertical arrow cursor.

IDC_SIZENWSE A diagonal arrow cursor pointing northwest and southeast.

IDC_SIZENESW A diagonal arrow cursor pointing northeast and southwest.

IDC_SIZEWE An arrow cursor pointing east and west.

IDC_SIZENS An arrow cursor pointing north and south.

IDC_SIZEALL A four-pointed arrow cursor pointing north, south, east, and
west.

IDC_NO The slashed circle cursor.

IDC_APPSTARTING The standard arrow cursor with a small hourglass.

IDC_HELP The standard arrow cursor with a question mark.

IDC_HAND The hand cursor.

LoadCursorFromFile Windows.pas

Syntax

LoadCursorFromFile(

lpFileName: PAnsiChar {a cursor filename}

): HCURSOR; {returns a handle to a cursor}

472 � Chapter 9

Description

This function creates a cursor based on the cursor data stored in the specified file,

returning a handle to the new cursor. The cursor file can be a normal cursor file (*.cur),

or it can contain animated cursor data (*.ani).

Parameters

lpFileName: A null-terminated string identifying the cursor file used to create the

cursor.

Return Value

If the function succeeds, it returns a handle to the new cursor; otherwise, it returns

zero. To get extended error information, call the GetLastError function.

See Also

LoadCursor, SetCursor, SetSystemCursor

Example

■ Listing 9-14: Loading a cursor from a file

const
DI_NOMIRROR = $0010; // this constant is not defined by Delphi

procedure TForm1.FileListBox1Click(Sender: TObject);
var

TheCursor: HCURSOR; // a handle to a cursor loaded from a file
begin

{erase the last image}
Image1.Canvas.Brush.Color:=clBtnFace;
Image1.Canvas.Fillrect(Image1.Canvas.Cliprect);

{load the cursor from the selected file}
TheCursor:=LoadCursorFromFile(PChar(FileListBox1.FileName));

{now draw the cursor on the TImage canvas}
DrawIconEx(Image1.Canvas.Handle,35,35,TheCursor,0,0,0,0,DI_DEFAULTSIZE OR

DI_NORMAL);

{we no longer need the cursor, so delete it}
DeleteObject(TheCursor);

end;

Icon, Cursor, and Caret Functions � 473

C
h

a
p

te
r
9

Figure 9-15:

The loaded

cursor

LoadIcon Windows.pas

Syntax

LoadIcon(

hInstance: HINST; {an instance handle}

lpIconName: PChar {an icon resource name}

): HICON; {returns a handle to an icon}

Description

This function retrieves a handle to an icon from icon resources stored in the executable

file associated with the given instance handle. If the icon is not currently loaded, it will

load the specified icon resource and return its handle; otherwise, it returns a handle to

the existing icon. The icon must have the same dimensions as those reported by the

SM_CXICON and SM_CYICON system metric values. Use the LoadImage function to

load icons of other sizes.

Parameters

hInstance: A handle to the module instance whose executable file contains the icon

resource to be loaded.

lpIconName: A pointer to a null-terminated string containing the name of the icon

resource to load. The MakeIntResource function can be used with a resource identifier

to provide a value for this parameter. To load one of the predefined icons used by the

Win32 API, set the hInstance parameter to zero and set this parameter to one of the val-

ues from the following table.

Return Value

If the function succeeds, it returns a handle to an icon loaded from the executable file

resources; otherwise, it returns zero. To get extended error information, call the

GetLastError function.

See Also

CreateIcon, LoadImage*

Example

Please see Listing 9-13 under GetIconInfo.

Table 9-6: LoadIcon lpIconName values

Value Description

IDI_APPLICATION The default application icon.

IDI_ASTERISK The information system icon.

IDI_ERROR The stop system icon.

IDI_EXCLAMATION The exclamation point system icon.

IDI_HAND Same as the IDI_ERROR value.

IDI_INFORMATION Same as the IDI_ASTERISK value.

IDI_QUESTION The question mark system icon.

474 � Chapter 9

TE
AM
FL
Y

Team-Fly®

Value Description

IDI_WARNING Same as the IDI_EXCLAMATION value.

IDI_WINLOGO The Windows logo icon.

LookupIconIdFromDirectory Windows.pas

Syntax

LookupIconIdFromDirectory(

presbits: PByte; {a pointer to icon or cursor resource bits}

fIcon: BOOL {indicates an icon or cursor}

): Integer; {returns an integer resource identifier}

Description

This function searches through icon or cursor resource information to find the icon or

cursor that is the most appropriate for the current display device. It is intended for use

with resource files containing icon and cursor images in several device-dependent and

device-independent formats. The return value from this function can be used with the

MakeIntResource and FindResource functions to locate the cursor or icon in the mod-

ule’s resources.

Parameters

presbits: A pointer to icon or cursor resource bits. Use the return value from the

LockResource function for this parameter.

fIcon: A flag indicating whether an icon or cursor is desired. A value of TRUE indi-

cates an icon should be found, and FALSE indicates a cursor.

Return Value

If the function succeeds, it returns an integer resource identifier for the most appropri-

ate icon or cursor for the current display device; otherwise, it returns zero.

See Also

CreateIconFromResource, LoadCursor, LookupIconIdFromDirectoryEx

Example

Please see Listing 9-7 under CreateIconFromResource.

LookupIconIdFromDirectoryEx Windows.pas

Syntax

LookupIconIdFromDirectoryEx(

presbits: PByte; {a pointer to icon or cursor resource bits}

fIcon: BOOL {indicates an icon or cursor}

cxDesired: Integer; {the preferred width of the icon or cursor}

cyDesired: Integer; {the preferred height of the icon or cursor}

Flags: UINT {color flags}

): Integer; {returns an integer resource identifier}

Icon, Cursor, and Caret Functions � 475

C
h

a
p

te
r
9

Description

This function searches through icon or cursor resource information to find the icon or

cursor that is the most appropriate for the current display device. It is intended for use

with resource files containing icon and cursor images in several device-dependent and

device-independent formats. The return value from this function can be used with the

MakeIntResource and FindResource functions to locate the cursor or icon in the mod-

ule’s resources. Unlike the LookupIconIdFromDirectory function, this function allows

the developer to specify the dimensions and color format of the icon or cursor.

Parameters

presbits: A pointer to icon or cursor resource bits. Use the return value from the

LockResource function for this parameter.

fIcon: A flag indicating whether an icon or cursor is desired. A value of TRUE indi-

cates an icon should be found, and FALSE indicates a cursor.

cxDesired: Specifies the preferred width of the icon or cursor in pixels. If this parame-

ter is zero, the function uses the value returned from GetSystemMetrics(SM_CXI-

CON).

cyDesired: Specifies the preferred height of the icon or cursor in pixels. If this parame-

ter is zero, the function uses the value returned from GetSystemMetrics(SM_CYI-

CON).

Flags: A value indicating the color format for the icon or cursor. This parameter can be

one value from the following table.

Return Value

If the function succeeds, it returns an integer resource identifier for the most appropri-

ate icon or cursor for the current display device; otherwise, it returns zero.

See Also

CreateIconFromResourceEx, LoadCursor, LookupIconIdFromDirectory

Example

Please see Listing 9-8 under CreateIconFromResourceEx.

Table 9-7: LookupIdFromDirectoryEx Flags values

Value Description

LR_DEFAULTCOLOR Create a color cursor or icon using the default system colors.

LR_MONOCHROME Create a monochrome cursor or icon.

476 � Chapter 9

SetCursor Windows.pas

Syntax

SetCursor(

hCursor: HICON {a handle to a cursor}

): HCURSOR; {returns a handle to the previous cursor}

Description

This function sets the shape of the mouse cursor to the cursor associated with the speci-

fied cursor handle. A new cursor is set only if the new cursor is different from the

current cursor. When using the SetCursor function to change the cursor, the class cursor

for the application’s window (and child windows) must be set to zero. If the class cur-

sor of a window is not set to zero, Windows restores the class cursor shape every time

the mouse is moved over that particular window. Use the ShowCursor function to

increase the internal display count to display the new cursor.

Parameters

hCursor: A handle to the cursor replacing the current mouse cursor shape. This cursor

handle must be retrieved from the CreateCursor, LoadCursor, or LoadImage functions.

In addition, the width and height of the cursor must match those returned by the

GetSystemMetrics function, and the color depth must be equal or less than the color

depth of the current display.

Return Value

If the function succeeds, it returns a handle to the previous cursor, if one existed; other-

wise, it returns zero.

See Also

CreateCursor, GetCursor, ShowCursor

Example

Please see Listing 9-5 under CreateCursor.

SetSystemCursor Windows.pas

Syntax

SetSystemCursor(

hcur: HICON; {a handle to the new cursor}

id: DWORD {a system cursor identifier}

): BOOL; {returns TRUE or FALSE}

Description

This function replaces the image of the specified system cursor with the image of the

cursor identified by the hcur parameter. The Windows registry is not updated with this

new cursor selection, and the original system cursor is reset when Windows is

rebooted.

Icon, Cursor, and Caret Functions � 477

C
h

a
p

te
r
9

Parameters

hcur: A handle to the cursor replacing the specified system cursor.

id: A system cursor identifier. This system cursor image is replaced by the cursor indi-

cated by the hcur parameter. This parameter can be one value from the following table.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call the GetLastError function.

See Also

CreateCursor, GetCursor, LoadCursor, LoadCursorFromFile, SetCursor

Example

■ Listing 9-15: Setting a new system cursor

var
Form1: TForm1;
CurSysCursor: HCURSOR; // holds the current system cursor

procedure TForm1.Button1Click(Sender: TObject);
begin
{save a handle to the current system cursor}
CurSysCursor := GetCursor;

{set a new system cursor}
SetSystemCursor(Screen.Cursors[crHandPoint],OCR_NORMAL);

end;

procedure TForm1.FormDestroy(Sender: TObject);
begin
{restore the previous system cursor}
SetSystemCursor(CurSysCursor, OCR_NORMAL);

end;

Table 9-8: SetSystemCursor id values

Value Description

OCR_APPSTARTING The small hourglass with arrow cursor.

OCR_CROSS The crosshair cursor.

OCR_IBEAM The text insert cursor.

OCR_NO The international no symbol cursor.

OCR_NORMAL The normal arrow cursor.

OCR_SIZEALL The all directions sizing arrow cursor.

478 � Chapter 9

Figure 9-16:

The new

system cursor

Value Description

OCR_SIZENESW The northeast to southwest sizing arrow cursor.

OCR_SIZENS The vertical sizing arrow cursor.

OCR_SIZENWSE The northwest to southeast sizing arrow cursor.

OCR_SIZEWE The horizontal sizing arrow cursor.

OCR_UP The up arrow cursor.

OCR_WAIT The hourglass cursor.

OCR_HAND The hand cursor.

ShowCaret Windows.pas

Syntax

ShowCaret(

hWnd: HWND {a handle to a window}

): BOOL; {returns TRUE or FALSE}

Description

This function displays the caret on the screen at the current insertion point. The caret

appears only if the specified window owns it, it has a shape, and HideCaret has not

been called two or more times sequentially. Hiding is cumulative. For each time the

HideCaret function is called, a subsequent ShowCaret function must be called to dis-

play the caret.

Parameters

hWnd: A handle to the window that owns the caret. If this parameter is set to FALSE,

the function searches all windows in the current task. If no window in the current task

owns the caret, the ShowCaret function fails.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE. To get extended

error information, call the GetLastError function.

See Also

CreateCaret, DestroyCaret, HideCaret

Example

Please see Listing 9-4 under CreateCaret.

ShowCursor Windows.pas

Syntax

ShowCursor(

bShow: BOOL {the cursor visibility flag}

): Integer; {returns the cursor display counter}

Icon, Cursor, and Caret Functions � 479

C
h

a
p

te
r
9

Description

This function displays or hides the cursor by incrementing or decrementing an internal

display counter. When the internal display counter goes below 0, the mouse cursor is

hidden. If a mouse is installed, the initial display counter is set to 0; otherwise, it is set

to –1.

Parameters

bShow: A Boolean value indicating whether the internal cursor display counter should

be incremented or decremented. A value of TRUE increments the display counter, and

FALSE decrements it.

Return Value

If the function succeeds, it returns the new internal display counter. If the function

fails, it returns zero. A return value of zero does not necessarily mean the function

failed; a comparison with previous return values should be made to determine failure in

this case.

See Also

GetCursor, GetCursorPos, SetCursor, SetCursorPos

Example

■ Listing 9-16: Hiding and displaying the cursor

var
RefCount: Integer = 0; // holds the count of successive show/hides

procedure TForm1.Button1Click(Sender: TObject);
begin
{if the Show button was pressed...}
if TButton(Sender).Caption='Show' then
begin
{...show the cursor and increase the reference count}
ShowCursor(TRUE);
Inc(RefCount);

end
else
{if the Hide button was pressed...}
begin
{...hide the cursor and decrease the reference count}
ShowCursor(FALSE);
Inc(RefCount,-1);

end;

{display the current reference count}
Edit1.Text := IntToStr(RefCount);

end;

480 � Chapter 9

Chapter 10

Help FunctionsHelp Functions

All applications, from the simplest utility to the most massively complex suite of inter-

connected products, should offer online help to users. This online help typically takes

the form of a dialog box that displays various tables of contents, search tools, and top-

ics containing all manner of information about the associated application that a user

would need to know. No matter how intuitive or simple an application may be, there

will always be some user somewhere who will need clarification on various functions

or concepts, and an online help system is the best way to get the user the information

needed.

Help information can be presented in any number of ways. Some systems provide help

via the Internet, opening a web browser to display pages from a specific web site.

Other systems use animated “helpers” that provide an interactive feel. However, the

two most commonly used systems for providing help rely on displaying information

from a help file that ships with the application. These two systems, WinHelp and

HTMLHelp, work very similarly. While they both present informational topics to the

user in a dialog box, the capabilities of each system are somewhat different, and the

format of the help files themselves are vastly dissimilar. In this chapter, we’ll examine

both WinHelp and HTMLHelp and compare their similarities and differences.

WinHelp

WinHelp was the standard for quite some time. It has been in use since Windows 3.0,

and many applications still use this format today (Delphi 6, for example). WinHelp

provides many useful features, such as a table of contents, index, and keyword search,

all of which make it easy for users to find the information they seek. The WinHelp help

file format provides graphics support and rich text formatting, allowing help file

authors the ability to make visually pleasing and engaging topics. These features and

more are the reason why the WinHelp format was the standard for so long, and why it

sees continued use today.

481

WinHelp Architecture

When an application calls the WinHelp API function, Windows runs the WinHelp.exe

executable, which is responsible for opening the WinHelp help file and displaying the

specified topic. The WinHelp.exe executable is a standard part of the Windows operat-

ing system, so users will not need to download anything extra to display WinHelp help

files, nor will it be necessary for applications to install any extra redistributable files.

However, all WinHelp API function calls run through this one process. The result is

that WinHelp displays dialog boxes only from the last calling application; it is not pos-

sible for two or more applications to have multiple help windows open at the same

time.

Creating a WinHelp Help File

WinHelp help files are authored in rich text format. Therefore, just about any editor

capable of saving a document in RTF format can be used to create a help file. The RTF

format allows authors to use various styles of text formatting, such as bolding, italics,

different font sizes, and various font colors, as well as embed graphics with text. How-

ever, WinHelp requires the use of different types of footnotes, paragraph styles, and

underlining to achieve various effects within the help file, such as hypertext links, key-

word searches, etc. All of these requirements are somewhat esoteric and can make the

editing and creation of help files a somewhat daunting task.

�Note: Covering the actual authoring of help files is beyond the scope of this

book.

Once the help file is created in RTF format, it must be compiled into the proprietary

format that is used by the WinHelp executable. Microsoft Help Workshop version 4.03

is the official compiler and is compatible with RTF files created with Word 97. This

compiler is available as a free download from http://www.microsoft.com/down-

loads/release.asp?ReleaseID=23216&area=search&ordinal=1. Note that while this

URL was current at the time of publicaiton, Microsoft routinely changes their web site

and this URL may change all too rapidly. In case this URL has become out of date, it

may be possible to find the Microsoft Help Workshop (hcwsetup.exe) by going to the

Microsoft download center (http://www.microsoft.com/downloads/search.asp) and per-

forming a keyword search on “help workshop” for the Windows 95 operating system.

Fortunately, there are several commercial help file compilers still available, such as

RoboHelp, that are both much more functional and provide many more features than

the free help file compiler available from Microsoft.

Using WinHelp

Calling WinHelp to display a topic is relatively straightforward and can be accom-

plished in only one line of code. The following example demonstrates how simple it is

to display a topic in a WinHelp help file.

482 � Chapter 10

■ Listing 10-1: Displaying a WinHelp topic

procedure TForm1.Button1Click(Sender: TObject);
begin
{display a topic}
WinHelp(Handle, PChar(ExtractFilePath(Application.ExeName) +

'\Winhelpxample.hlp'), HELP_CONTEXT, 1);
end;

The WinHelp API function takes only four parameters: a handle to the window calling

the function, the path and filename of the help file, a help command, and a value that is

dependent on the help command. The HELP_CONTEXT command used in this exam-

ple tells WinHelp to simply display the topic with, in this case, the identifier of 1.

Sometimes, it is helpful to display a primary topic window with a secondary topic win-

dow to the side, perhaps one that contains links to related data. This is accomplished in

the same manner as above, except that we must provide a name for the secondary win-

dow after the help file with the two separated by the > symbol, as the following

example demonstrates.

■ Listing 10-2: Displaying a WinHelp topic and a secondary window

procedure TForm1.Button2Click(Sender: TObject);
begin
{display a topic}
WinHelp(Handle, PChar(ExtractFilePath(Application.ExeName) +

'\Winhelpxample.hlp'), HELP_CONTEXT, 1);

{display another topic in a secondary window}
WinHelp(Handle, PChar(ExtractFilePath(Application.ExeName) +

'\Winhelpxample.hlp>second'), HELP_CONTEXT, 3);
end;

When displaying context-sensitive help topics, instead of displaying such topics in a

normal help window as the above examples demonstrate, it is more elegant to display

the topic in a floating pop-up window. WinHelp pop-up windows can contain both text

and graphics and can provide for very effective and visually pleasing context-sensitive

help. The following example demonstrates this technique.

■ Listing 10-3: Displaying a pop-up topic

procedure TForm1.Button3Click(Sender: TObject);
begin
{display a topic as a popup}
WinHelp(Handle, PChar(ExtractFilePath(Application.ExeName) +

'\Winhelpxample.hlp'), HELP_CONTEXTPOPUP, 4);
end;

It is also relatively easy to programmatically provide access to the WinHelp table of

contents and search tabs through the Topics dialog box. The following example demon-

strates this technique.

Help Functions � 483

C
h

a
p

te
r
1
0

■ Listing 10-4: Displaying the Topics dialog box

procedure TForm1.Button4Click(Sender: TObject);
begin
{display the Topics dialog box}
WinHelp(Handle, PChar(ExtractFilePath(Application.ExeName) +

'\Winhelpxample.hlp'), HELP_FINDER, 0);
end;

When an application is closing, it should inform WinHelp that it is no longer needed by

using the HELP_QUIT help command. If no other application is using WinHelp, this

causes Windows to shut down the WinHelp executable and free it from memory.

Typically, this should occur in the main form’s OnClose event, as in the following

example.

■ Listing 10-5: Informing WinHelp it is no longer needed

procedure TForm1.FormClose(Sender: TObject; var Action: TCloseAction);
begin
{inform WinHelp that we're quitting. if no other application has
WinHelp open, this causes WinHelp to close}
WinHelp(Handle, PChar(ExtractFilePath(Application.ExeName) +

'\Winhelpxample.hlp'), HELP_QUIT, 3);
end;

Advantages/Disadvantages

When making the choice between help systems, the developer should keep in mind the

following advantages and disadvantages of using the WinHelp help system:

� The WinHelp system has been established for many years. It is flexible, stable, and

very familiar to users. Depending on your targeted user base, your users may be

more comfortable using WinHelp than the newer HTMLHelp system.

484 � Chapter 10

Figure 10-1:

The Popup

topic

TE
AM
FL
Y

Team-Fly®

� WinHelp can display pop-ups that contain both text and graphics. HTMLHelp does

not offer this ability. If you need to render pop-up help with graphical images, only

WinHelp is capable of this at the time of publication.

� Since WinHelp is older technology, it is no longer supported by Microsoft and is no

longer in development. It is very possible that WinHelp support could be dropped

altogether in future versions of Windows.

� WinHelp help files are much harder to develop than HTMLHelp files due to their

reliance on strange rich text formatting tricks. While Microsoft does provide a free

help file compiler, the learning curve is very high using these freely available tools,

meaning that you can expect a longer development time for help files if the devel-

oper is inexperienced.

HTMLHelp

In February 1996, Microsoft unveiled the next generation in help systems. This system

features WinHelp’s strong points, such as rich text layout and multimedia support, but

is based off of the HTML rendering engine utilized by Internet Explorer. Known as

HTMLHelp, the system offers all the WinHelp advantages, but because it is based off

of HTML, it is much more powerful and flexible. HTMLHelp topics can use ActiveX

objects and JavaScript to provide unparalleled flexibility, functionality, and

extensibility.

HTMLHelp Architecture

HTMLHelp relies on several COM objects provided by Internet Explorer. HTMLHelp

uses these objects as in-process COM servers, and the calling process owns the help

viewer window created by a call to HTMLHelp. The result is that multiple applications

can have multiple HTMLHelp windows open concurrently, something that cannot be

done with WinHelp. Additionally, the help window can be embedded in the calling

window itself as is demonstrated in Listing 10-9. Users must have Internet Explorer

installed before HTMLHelp is available to an application, and some advanced function-

ality used by the HTMLHelp file itself (such as DHTML) may also be dependent on

the version of IE on the local system.

Creating an HTMLHelp Help File

HTMLHelp files are, as the name implies, authored in HTML format. Therefore,

almost any plain text editor (such as Notepad) can be used to create HTMLHelp topics.

All the power of HTML can be utilized, including ActiveX components, style sheets,

Java, and DHTML. This makes creating HTMLHelp topics very easy, as there is an

abundance of information on HTML editing as well as many commercially available

applications for designing and creating HTML pages.

�Note: Covering the actual authoring of help files is beyond the scope of this

book.

Help Functions � 485

C
h

a
p

te
r
1
0

There’s a little more to creating an HTMLHelp file than putting together the topic

pages. HTMLHelp provides the user with a table of contents, a keyword search, and

other such tools that allow users to find the information they seek. These are also con-

structed from HTML files. Microsoft provides a free editor, the HTMLHelp Workshop

version 1.31, that includes all of the functionality needed to put together topic files, the

table of contents, keyword searching, and anything else the HTMLHelp file needs. At

the time of publication, the HTML Help Workshop can be downloaded from

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/htmlhelp/html/

hwMicrosoftHTMLHelpDownloads.asp. This editor even has the ability to convert old

WinHelp projects into the new HTMLHelp format, which helps ease the migration to

the new system.

Once the help file is created, it must be compiled into the compressed format that is

used by the HTMLHelp API function. As one would expect, the HTML Help Work-

shop also provides such functionality. The resulting compiled HTML help file contains

all of the HTML, graphics, and other files referenced in the help file project. This file is

in a structured storage file format, examined in Chapter 11. In addition to HTMLHelp

Workshop, there are many other commercially available packages that ease the creation

and compiling of HTMLHelp files, such as RoboHelp.

Using HTMLHelp

Before the HTMLHelp API function can be used in an application, the developer needs

to acquire the appropriate files that contain the translation of this function, as it is not

available as part of the run-time library code that ships with Delphi. At the time of

publication, the HTMLHelp file translation unit is available on the Delphi 6 Compan-

ion Tools CD or at the following URLs:

http://codecentral.borland.com/codecentral/ccweb.exe/listing?id=15981

http://www.delphi-jedi.org/Jedi:APILIBRARY:44934

The HTMLHelp API function is very similar to the WinHelp API function, containing

the same number of parameters that perform pretty much the same function. Calling

HTMLHelp to display a topic is relatively straightforward and can be accomplished in

only one line of code. The following example demonstrates how simple it is to display

a topic in an HTMLHelp help file.

■ Listing 10-6: Displaying an HTMLHelp topic

procedure TForm1.Button1Click(Sender: TObject);
begin
{display a help topic}
HTMLHelp(0, PChar(ExtractFilePath(Application.ExeName) +

'\HtmlHelpXmple.chm::/Entry3.htm'), HH_DISPLAY_TOPIC, 0);
end;

The HTMLHelp API function takes only four parameters: a handle to the window call-

ing the function, the path and filename of the help file, a help command, and a value

that is dependent on the help command. The HH_DISPLAY_TOPIC command is very

486 � Chapter 10

similar to WinHelp’s HELP_CONTEXT, which in this example tells HTMLHelp to

simply display the topic.

Like WinHelp, HTMLHelp can also display topics in a pop-up window. HTMLHelp

provides a little more control over the appearance of the pop-up window, however, such

as the font used and the foreground and background colors. The following example

demonstrates displaying a pop-up.

■ Listing 10-7: Displaying an HTMLHelp pop-up

procedure TForm1.Button3Click(Sender: TObject);
var
Popup: THHPopup; // the popup structure
Pt: TPoint; // holds some coordinates

begin
{initialize the popup information structure}
Popup.cbStruct := SizeOf(Popup);
Popup.hinst := 0;
Popup.idString := 0;
Popup.pszText := nil;

{get the mouse cursor position}
GetCursorPos(Pt);
Popup.pt := Pt;

{specify colors}
Popup.clrForeGround := TColorRef(-1);
Popup.clrBackground := clLime;

{specify margins and font}
Popup.rcMargins := Rect(-1, -1, -1, -1);
Popup.pszFont := 'Arial, 9';

{indicate the popup text to display}
Popup.idString := 2;

{show the popup}
HTMLHelp(0, PChar(ExtractFilePath(Application.ExeName) +

'\HtmlHelpXmple.chm::\cshelp.txt'), HH_DISPLAY_TEXT_POPUP,
DWORD(@Popup));

end;

Using HTMLHelp to implement context-sensitive help requires a little more work. The

most common method for implementing context-sensitive HTML help is to provide a

handler for the application’s OnHelp event and call HTMLHelp from there. Normally,

Help Functions � 487

C
h

a
p

te
r
1
0

Figure 10-2:

The

HTMLHelp

popup

when the user presses F1, the application’s OnHelp event fires, which is sent the help

command and any data necessary for the command, and a variable Boolean parameter

controls whether or not Delphi ultimately sends the call to WinHelp. However, under

Delphi 6, this event is broken. It still functions somewhat if biHelp is included in the

BorderIcons property of the form. Fortunately, you can go to http://www.helpware.net/

downloads/index.htm to download a unit that fixes this problem.

Assuming that you are using the unit that fixes this problem, or that you’ve included

biHelp in the BorderIcons property (as is done in the following example), it is easy to

call HTMLHelp to display context-sensitive topics. Simply provide a handler for the

application’s OnHelp event and call HTMLHelp, passing it the value from the Data

parameter, which will be the value of the HelpContext property of the focused object at

the time F1 is pressed. The context ID has been placed in the object’s HelpContext

property, and the following example demonstrates this technique.

�Note: The application’s HelpFile property must not contain a value. If the

HelpFile property is set, WinHelp is called automatically.

■ Listing 10-8: Using HTMLHelp for context-sensitive help

procedure TForm1.FormCreate(Sender: TObject);
begin
{set the application's OnHelp event handler}
Application.OnHelp := AppHelp;

end;

function TForm1.AppHelp(Command: Word; Data: Integer;
var CallHelp: Boolean): Boolean;

begin
{indicate that we do not want the application to call WinHelp}
CallHelp := FALSE;

{display the appropriate help topic}
if Command in [HELP_CONTEXT, HELP_CONTEXTPOPUP] then
HTMLHelp(0, PChar(ExtractFilePath(Application.ExeName) +

'\HtmlHelpXmple.chm'), HH_HELP_CONTEXT, Data);

{indicate that we have handled the message}
Result := TRUE;

end;

HTMLHelp gives the developer a great deal of control over how the help window is

displayed. A useful technique for displaying help is to embed the help window into the

application itself. For example, such a technique might be employed when providing a

walkthrough tutorial, wizard, or other training aid. Embedding the HTMLHelp window

into an application takes a little bit of work, but it is a straightforward implementation,

as the following example demonstrates.

488 � Chapter 10

■ Listing 10-9: Embedding the HTMLHelp window into an application

const
{the name of our embedded window}
WINNAME = 'EmbeddedWinXample';

procedure TForm1.FormCreate(Sender: TObject);
var
WinDef: THHWinType;

begin
{begin defining the window}
FillChar(WinDef, SizeOf(WinDef), 0);
WinDef.cbStruct := SizeOf(WinDef);

{indicate which members of this structure are valid}
WinDef.fsValidMembers := HHWIN_PARAM_PROPERTIES or HHWIN_PARAM_STYLES or

HHWIN_PARAM_EXSTYLES or HHWIN_PARAM_RECT or
HHWIN_PARAM_SHOWSTATE or HHWIN_PARAM_TB_FLAGS;

{define the appropriate properties for the window}
WinDef.fsWinProperties := HHWIN_PROP_NOTITLEBAR or HHWIN_PROP_NODEF_STYLES or

HHWIN_PROP_NODEF_EXSTYLES or HHWIN_PROP_TRI_PANE;

{define the appropriate styles for the window. it is the WS_CHILDWINDOW
style that causes the window to appear embedded}
WinDef.dwStyles := WS_VISIBLE or WS_CHILDWINDOW;
WinDef.dwExStyles := 0;

{define the buttons to be shown}
WinDef.fsToolBarFlags := HHWIN_BUTTON_BACK or HHWIN_BUTTON_FORWARD or

HHWIN_BUTTON_HOME or HHWIN_BUTTON_PRINT;

WinDef.fUniCodeStrings := False; // use ASCII strings
WinDef.pszType := PChar(WINNAME); // define the window name
WinDef.pszCaption := nil; // no caption (no caption bar)
WinDef.nShowState := SW_SHOW; // initially visible
WinDef.fNotExpanded := True; // not expanded

{make the window size the same as the panel that will hold it}
WinDef.rcWindowPos := Rect(0, 0, pnlHTMLHelpHome.ClientWidth,

pnlHTMLHelpHome.ClientHeight);

{finally, create the window. note that this simply creates a window
definition, it does not display the window}
HTMLHelp(0, nil, HH_SET_WIN_TYPE, DWORD(@WinDef));

end;

procedure TForm1.FormClose(Sender: TObject; var Action: TCloseAction);
begin
{make sure we close the HTMLHelp window before the application exits}
HTMLHelp(0, nil, HH_CLOSE_ALL, 0);

end;

procedure TForm1.ListBox1DblClick(Sender: TObject);
begin

Help Functions � 489

C
h

a
p

te
r
1
0

{when an item in the list box is double-clicked, display the topic. the window handle
provided in the first parameter becomes the parent window of the help viewer window
(which is displayed the first time this function is called) because of the WS_CHILD-
WINDOW style defined in the window definition. note that we must save the handle of the
created help viewer window so we can resize it when the parent window is resized.}
HTMLWinHandle := HTMLHelp(pnlHTMLHelpHome.Handle,

PChar(ExtractFilePath(Application.ExeName) +
'HtmlHelpXmple.chm::/' +
ListBox1.Items[ListBox1.ItemIndex] + '>' +
WINNAME), HH_DISPLAY_TOPIC, 0);

end;

procedure TForm1.pnlHTMLHelpHomeResize(Sender: TObject);
begin
{when the panel is resized, we must also resize the embedded window}
if IsWindow(HTMLWinHandle) then
SetWindowPos(HTMLWinHandle, 0, 0, 0, pnlHTMLHelpHome.ClientWidth,

pnlHTMLHelpHome.ClientHeight,
SWP_NOMOVE or SWP_NOACTIVATE or SWP_SHOWWINDOW);

end;

procedure TForm1.FormShow(Sender: TObject);
begin
{display the first topic when the form is shown}
ListBox1.ItemIndex := 0;
ListBox1DblClick(nil);

end;

Advantages/Disadvantages

When making the choice between help systems, the developer should keep in mind the

following advantages and disadvantages of using the HTMLHelp help system:

� WinHelp can display pop-ups that contain both text and graphics. HTMLHelp does

not offer this ability. If you need to render pop-up help with graphical images, only

WinHelp is capable of this ability at the time of publication.

� Context-sensitive help using HTMLHelp requires a little more work. The applica-

tion’s OnHelp event must be handled, which makes the call to HTMLHelp. None of

this is necessary when using WinHelp, as Delphi calls WinHelp by default.

490 � Chapter 10

Figure 10-3:

The

embedded

help window

� Since HTMLHelp is the latest help file technology, it is currently supported and in

development. The files necessary for using HTMLHelp are now part of the Win-

dows operating system, and this system should be around for many years to come.

� HTMLHelp files, being based on HTML, are very easy to create. There is an abun-

dance of technical information about HTML editing, as well as many talented indi-

viduals who make their living editing HTML files. HTMLHelp files have much

more power than the old WinHelp format and are easier to expand with additional

functionality.

Delphi vs. the Windows API

Delphi provides a fairly automated method for displaying context-sensitive help topics.

By selecting Project | Options, supplying the location of the application’s help file, and

setting the HelpContext property of controls on the form to the appropriate topic IDs,

Delphi will automatically call WinHelp and display the appropriate topic when a user

presses F1 on a focused control. This all happens behind the scenes with no extra cod-

ing required by the developer. This is an extremely useful feature and should be

exploited at every opportunity. The Application object also provides a few methods that

encapsulate the most common uses of the WinHelp API function. However, the

HTMLHelp API function must be called directly to use any of the HTMLHelp func-

tionality. It is also necessary to call the WinHelp API function directly in order to use

any of the more advanced functionality offered by WinHelp.

Help Functions

The following help functions are covered in this chapter.

Table 10-1: Help functions

Function Description

HTMLHelp Displays help topics from a compiled HTML help file.

WinHelp Displays help topics from a Windows help file.

HTMLHelp

Syntax

HTMLHelp(

hwndCaller: HWND; {handle of the calling window}

pszFile: PChar; {help file or topic}

uCommand: UINT; {a command flag}

dwData: DWORD {command-specific data}

): HWND; {returns a window handle}

Help Functions � 491

C
h

a
p

te
r
1
0

Description

This function starts the Microsoft HTML help system and displays help topics from

compiled HTML help files. Many different commands are available to affect the

appearance and behavior of the HTML help system.

The HTML help system can send messages back to the calling window for certain

events. These notification messages are sent through the standard Windows

WM_NOTIFY message. The idFrom member of the NMHdr structure pointed to by the

lParam member of the WM_NOTIFY message will contain a unique identifier (as

defined by the application) that indicates the WM_NOTIFY message was sent from the

HTML help viewer window. The Code member of the NMHdr structure may contain

one value from Table 10-2. Depending on this code, the lParam member may be type-

cast into one of the following two data structures, which carry further information

about the notification:

For the HHN_NAVCOMPLETE and HHN_WINDOW_CREATE notification

messages:

THHNNotify = packed record

hdr: NMHDR; {standard WM_NOTIFY NMHdr structure}

pszUrl: PCSTR; {topic or help window name}

end;

hdr: Points to the WM_NOTIFY NMHdr structure (not covered in this text).

pszUrl: A Unicode string containing either the topic to which the user navigated

or the name of the help window being created, depending on the notification mes-

sage code.

For the HHN_TRACK message:

THHNTrack = packed record

hdr: NMHDR; {standard WM_NOTIFY NMHdr structure}

pszCurUrl: PCSTR; {current topic}

idAction: Integer; {action flag}

phhWinType: PHHWinType; {pointer to a THHWinType structure}

end;

hdr: Points to the WM_NOTIFY NMHdr structure (not covered in this text).

pszCurUrl: A Unicode string containing the current topic.

idAction: A flag indicating the type of action. This can be one value from Table

10-3.

phhWinType: A pointer to the current THHWinType structure (detailed below).

Parameters

hwndCaller: Specifies the handle of a window from the calling application. The speci-

fied window will own any HTML help window created by this function. This window

also receives any notification messages sent from the HTML help system.

pszFile: A null-terminated string whose value is dependent on the value of uCommand.

For some uCommand values, this parameter specifies the path to a compiled HTML

492 � Chapter 10

help file or a topic file within a specified help file. A window type name can also be

specified. This parameter is formatted in the following manner:

Helpfile.chm[::/Topic.htm[>Window Name]]

�Note: Square brackets ([]) indicate optional elements. You must use “::/” to

separate the help file name from the topic and “>” to separate the

window name from the other elements.

uCommand: A flag indicating a function to perform. This parameter may be set to one

value from Table 10-4.

dwData: Specifies command-specific data. This value is dependent on the value in the

uCommand parameter. See Table 10-4 for more details. For various commands, this

parameter will contain a pointer to different data structures. These data structures are

defined as:

THHAKLink = packed record

cbStruct: Integer; {size of the structure, in bytes}

fReserved: BOOL; {reserved}

pszKeywords: LPCTSTR; {list of keywords}

pszUrl: LPCTSTR; {lookup failure topic file}

pszMsgText: LPCTSTR; {lookup failure text}

pszMsgTitle: LPCTSTR; {lookup failure message box title}

pszWindow: LPCTSTR; {window type name}

fIndexOnFail: BOOL; {display index flag}

end;

cbStruct: Indicates the size of the structure, in bytes. This value must be set to

SizeOf(THHAKLink).

fReserved: Reserved, but must be set to FALSE.

pszKeywords: A string containing the ALink names or KLink keywords to

search. Separate entries by semicolons. ALink names and KLink keywords are

case sensitive.

pszUrl: This member indicates the topic file to open and display in case the

lookup fails. This member must contain the name of a valid topic; Internet URLs

are not supported.

pszMsgText: Indicates text to display in a message box if the lookup fails. A mes-

sage box is displayed when the lookup fails only when fIndexOnFail is FALSE

and pszURL is NIL.

pszMsgTitle: Indicates the caption of the message box that displays the

pszMsgText text.

pszWindow: Specifies the name of the window type in which to display the

selected topic if the lookup succeeds, the topic specified by pszUrl if the lookup

fails, or the index tab if the lookup fails and fIndexOnFail is set to TRUE.

fIndexOnFail: Indicates if the specified keywords should be displayed in the

index tab of the help file viewer if the lookup fails.

Help Functions � 493

C
h

a
p

te
r
1
0

THHFtsQuery = packed record

cbStruct: Integer; {size of the structure, in bytes}

fUniCodeStrings: BOOL; {Unicode string indicator}

pszSearchQuery: LPCTSTR; {search query string}

iProximity: LongInt; {word proximity}

fStemmedSearch: BOOL; {stemmed search indicator}

fTitleOnly: BOOL; {title only search indicator}

fExecute: BOOL; {initiate search flag}

pszWindow: LPCTSTR; {window type name}

end;

cbStruct: Indicates the size of the structure, in bytes. This value must be set to

SizeOf(THHFtsQuery).

fUniCodeStrings: Set to TRUE if all strings are Unicode.

pszSearchQuery: A null-terminated string indicating the search query.

iProximity: A value indicating the word proximity. This can be set to

HH_FTS_DEFAULT_PROXIMITY.

fStemmedSearch: Set to TRUE to indicate a stemmed search.

fTitleOnly: Set to TRUE to perform a title search.

fExecute: Set to TRUE to immediately initiate the search.

pszWindow: Specifies the window type name.

THHPopup = packed record

cbStruct: Integer; {size of the structure, in bytes}

hinst: HINST; {instance handle}

idString: UINT; {resource id or topic number}

pszText: LPCTSTR; {display text}

pt: TPoint; {pop-up window origins}

clrForeGround: TColorRef; {pop-up window foreground color}

clrBackground: TColorRef; {pop-up window background color}

rcMargins: TRect; {pop-up window margins}

pszFont: LPCTSTR; {font attributes}

end;

cbStruct: Indicates the size of the structure, in bytes. This value must be set to

SizeOf(THHPopup).

hinst: Specifies the instance handle of the executable or DLL from which to

retrieve a string resource. This member is ignored if idString is set to zero.

idString: Indicates a resource string identifier or a topic number within a text file.

pszText: Indicates the text to display if idString is set to zero.

pt: Indicates the display coordinates of the top-left corner of the pop-up window,

in pixels.

clrForeGround: Indicates the foreground color of the pop-up window. This mem-

ber can be set to –1 to indicate the system color.

494 � Chapter 10

TE
AM
FL
Y

Team-Fly®

clrBackground: Indicates the background color of the pop-up window. This mem-

ber can be set to –1 to indicate the system color.

rcMargins: Indicates the size of the margins on the top, left, bottom, and right of

the pop-up window, in pixels. This member can be set to –1 to use a default mar-

gin width.

pszFont: A string indicating the font attributes for the pop-up window text. This

string must be in the format:

facename[, point size[, charset[BOLD ITALIC UNDERLINE]]]

�Note: The square brackets ([]) indicate optional values. To skip a value,

simply put in a comma, but leave the value blank.

THHLastError = packed record

cbStruct: Integer; {size of the structure, in bytes}

hr: HRESULT; {last error code}

description: PWideChar; {error description string}

end;

cbStruct: Indicates the size of the structure, in bytes. This value must be set to

SizeOf(THHLastError).

hr: The last error code value.

description: A Unicode string containing the description of the last error.

THHWinType = packed record

cbStruct: Integer; {size of the structure, in bytes}

fUniCodeStrings: BOOL; {Unicode string indicator}

pszType: LPCTSTR; {window type name}

fsValidMembers: DWORD; {valid members flags}

fsWinProperties: DWORD; {window properties flags}

pszCaption: LPCTSTR; {title bar caption}

dwStyles: DWORD; {window style flags}

dwExStyles: DWORD; {extended window style flags}

rcWindowPos: TRect; {window position coordinates}

nShowState: Integer; {window display state}

hwndHelp: HWND; {a window handle}

hwndCaller: HWND; {a window handle}

paInfoTypes: PHHInfoType; {array of information types}

{ The following members are only valid if HHWIN_PROP_TRI_PANE is set }

hwndToolBar: HWND; {toolbar window handle}

hwndNavigation: HWND; {navigation pane window handle}

hwndHTML: HWND; {topic pane window handle}

iNavWidth: Integer; {navigation pane width}

rcHTML: TRect; {coordinates of topic pane}

pszToc: LPCTSTR; {contents file}

pszIndex: LPCTSTR; {index file}

Help Functions � 495

C
h

a
p

te
r
1
0

pszFile: LPCTSTR; {default HTML file}

pszHome: LPCTSTR; {home file}

fsToolBarFlags: DWORD; {toolbar appearance flags}

fNotExpanded: BOOL; {navigation pane status}

curNavType: Integer; {default navigation pane tab}

tabpos: Integer; {navigation bar position flags}

idNotify: Integer; {notification message identifier}

tabOrder: array[0..HH_MAX_TABS] of Byte; {navigation pane tab order}

cHistory: Integer; {number of history items}

pszJump1: LPCTSTR; {jump1 button text}

pszJump2: LPCTSTR; {jump2 button text}

pszUrlJump1: LPCTSTR; {jump1 button URL}

pszUrlJump2: LPCTSTR; {jump2 button URL}

rcMinSize: TRect; {minimum window size}

cbInfoTypes: Integer; {size of paInfoTypes array}

pszCustomTabs: LPCTSTR; {custom tab titles}

end;

cbStruct: Indicates the size of the structure, in bytes. This member must be set to

SizeOf(THHWinType).

fUniCodeStrings: Indicates if the strings specified in this structure are Unicode.

pszType: A null-terminated string containing the name of the window type.

fsValidMembers: A series of flags indicating which members of this structure

contain information and should be used. This member can contain one or more

values from Table 10-5.

fsWinProperties: A series of flags that specify the properties of the window. This

member can contain one or more values from Table 10-6.

pszCaption: A null-terminated string indicating the caption to be displayed in the

window title bar.

dwStyles: Indicates the window styles for the new window. This member can

contain one or more values from Table 10-7.

dwExStyles: Indicates the extended window styles for the new window. This

member can contain one or more values from Table 10-8.

rcWindowPos: A TRect structure indicating the coordinates and dimensions of

the window, in pixels. Any negative value will not affect the window coordinate

or position (i.e., setting the Right and Bottom members to –1 would allow a call-

ing application to move the window without affecting its current width and

height).

nShowState: Indicates how the window is initially displayed. This member can

contain one value from Table 10-9.

hwndHelp: A handle to the help viewer window, if the window has been created.

hwndCaller: A handle to the window that receives WM_NOTIFY messages sent

from the HTMLHelp viewer window.

496 � Chapter 10

paInfoTypes: A pointer to an array of information types (the PHHInfoType type

is defined as a pointer to a DWORD). Each information type is a bit flag. When

bit zero is not set, all HTMLHelp commands that use information types will use

this information to determine what navigational interface should be displayed and

where hyperlinks should jump.

hwndToolBar: Specifies the handle of the toolbar (available only when the fsWin-

Properties member contains HHWIN_PROP_TRI_PANE).

hwndNavigation: Specifies the handle of the navigation pane (available only

when the fsWinProperties member contains HHWIN_PROP_TRI_PANE).

hwndHTML: Specifies the handle of the topic pane (available only when the

fsWinProperties member contains HHWIN_PROP_TRI_PANE).

iNavWidth: Specifies the width of the navigation pane (available only when the

fsWinProperties member contains HHWIN_PROP_TRI_PANE).

rcHTML: Specifies the rectangular coordinates of the topic pane (available only

when the fsWinProperties member contains HHWIN_PROP_TRI_PANE).

pszToc: A null-terminated string indicating the contents file to display in the nav-

igation pane (available only when the fsWinProperties member contains

HHWIN_PROP_TRI_PANE).

pszIndex: A null-terminated string indicating the index file to display in the navi-

gation pane (available only when the fsWinProperties member contains

HHWIN_PROP_TRI_PANE).

pszFile: A null-terminated string indicating the default HTML file to display in

the topic pane (available only when the fsWinProperties member contains

HHWIN_PROP_TRI_PANE).

pszHome: A null-terminated string indicating the HTML file to display in the

topic pane when the Home button is clicked (available only when the

fsWinProperties member contains HHWIN_PROP_TRI_PANE).

fsToolBarFlags: A series of flags indicating which buttons appear on the toolbar.

This may be a combination of values from Table 10-10 (available only when the

fsWinProperties member contains HHWIN_PROP_TRI_PANE).

fNotExpanded: A value of TRUE indicates that the HTMLHelp viewer should

open with the navigation pane closed (available only when the fsWinProperties

member contains HHWIN_PROP_TRI_PANE).

curNavType: A flag indicating which tab in the navigation pane receives focus by

default (available only when the fsWinProperties member contains HHWIN_

PROP_TRI_PANE). This member may be set to one value from Table 10-11.

tabpos: A flag indicating the position of the tabs in the navigation pane (available

only when the fsWinProperties member contains HHWIN_PROP_TRI_PANE).

This member may be set to one value from Table 10-12.

idNotify: A unique value that is used to identify the HTMLHelp viewer window.

This value is sent in the idFrom member of the NMHdr structure pointed to by

the lParam member of the WM_NOTIFY message sent to the owning window

when notification is enabled.

Help Functions � 497

C
h

a
p

te
r
1
0

tabOrder: An array of bytes indicating the order in which the tabs should appear

on the navigation pane. Each element of the array indicates one of the tabs (avail-

able only when the fsWinProperties member contains HHWIN_PROP_TRI_

PANE). See Table 10-13 for a list of defined tabs. The value assigned to an ele-

ment in the array indicates the zero-based order in which that tab appears on the

navigation pane (i.e., tabOrder[HH_TAB_SEARCH] := 0 and tabOrder[HH_

TAB_CONTENTS] := 1 would put the Search tab first, followed by the Contents

tab).

cHistory: Indicates the number of items to keep in history. The default value of

this member is 30.

pszJump1: A null-terminated string indicating the text to display under the Jump1

button.

pszJump2: A null-terminated string indicating the text to display under the Jump2

button.

pszUrlJump1: A null-terminated string indicating the URL to display when the

Jump1 button is clicked.

pszUrlJump2: A null-terminated string indicating the URL to display when the

Jump2 button is clicked.

rcMinSize: Indicates the minimum size of the HTMLHelp viewer window.

cbInfoTypes: Indicates the number of items pointed to by the paInfoTypes

member.

pszCustomTabs: A series of strings indicating the titles for custom tabs in the

navigation pane. Each string is separated by a null terminator, and the entire

string is terminated by a double null.

Return Value

The return value is dependent on some commands. However, this function typically

returns the handle to the HTMLHelp window when successful or a zero when the func-

tion failed.

See Also

WinHelp

Example

Please see Listing 10-6 and other examples in the introduction.

Table 10-2: HTML help notification message code values (WM_NOTIFY NMHdr.Code values)

Value Description

HHN_NAVCOMPLETE Sent when navigation to a new topic has completed. The
lParam member of the WM_NOTIFY message can be type-
cast to a THHNNotify structure to retrieve additional
information.

498 � Chapter 10

Value Description

HHN_TRACK Sent when the user clicks on a button on the HTMLHelp
viewer window or when a new tab is selected in the naviga-
tion pane. This message is sent before the event is
completed. The lParam member of the WM_NOTIFY mes-
sage can be typecast to a THHNTrack structure to retrieve
additional information.

HHN_WINDOW_CREATE Sent just before the HTMLHelp viewer window is created.
The lParam member of the WM_NOTIFY message can be
typecast to a THHNNotify structure to retrieve additional
information.

Table 10-3: HTMLHelp THHNTrack.idAction values

Value Description

HHACT_BACK The user clicked the Back button.

HHACT_CONTRACT The user clicked the Hide button.

HHACT_CUSTOMIZE The user clicked the Customize button.

HHACT_EXPAND The user clicked the Show button.

HHACT_FORWARD The user clicked the Forward button.

HHACT_HIGHLIGHT The user clicked the Highlight button.

HHACT_HOME The user clicked the Home button.

HHACT_JUMP1 The user clicked the Jump1 button.

HHACT_JUMP2 The user clicked the Jump2 button.

HHACT_NOTES The user clicked the Notes button.

HHACT_OPTIONS The user clicked the Options button.

HHACT_PRINT The user clicked the Print button.

HHACT_REFRESH The user clicked the Refresh button.

HHACT_STOP The user clicked the Stop button.

HHACT_SYNC The user clicked the Locate button.

HHACT_TAB_CONTENTS The user clicked the Contents tab.

HHACT_TAB_FAVORITES The user clicked the Favorites tab.

HHACT_TAB_HISTORY The user clicked the History tab.

HHACT_TAB_INDEX The user clicked the Index tab.

HHACT_TAB_SEARCH The user clicked the Search tab.

HHACT_TOC_NEXT The user clicked the Next button.

HHACT_TOC_PREV The user clicked the Previous button.

HHACT_ZOOM The user clicked the Zoom button.

Help Functions � 499

C
h

a
p

te
r
1
0

Table 10-4: HTMLHelp uCommand values

Value Description

HH_ALINK_LOOKUP Looks up one or more associative link (or Alink) names in
the compiled help file.

pszFile: Contains the path and file name of the compiled
help file.

dwData: Contains a pointer to a THHAKLink structure
which defines the ALink names to search for, as well as
what action to perform if none of the ALink names are
found. See the dwData parameter for more details.

HH_CLOSE_ALL Closes all open HTML help file windows opened by the
calling application.

hwndCaller: Set to zero.

pszFile: Set to NIL.

dwData: Set to zero.

HH_DISPLAY_INDEX Selects the Index tab in the HTML help file viewer window
and searches for a specified keyword.

pszFile: Specifies the path and file name of the compiled
help file or a topic within the compiled help file.

dwData: Contains a pointer to the search keyword.

HH_DISPLAY_SEARCH Selects the Search tab in the HTML help file viewer
window.

pszFile: Specifies the path and file name of the compiled
help file or a topic within the compiled help file.

dwData: Contains a pointer to a THHFtsQuery structure
containing the search parameters. See the dwData parame-
ter for more details.

HH_DISPLAY_TEXT_POPUP Opens a pop-up window displaying an explicit text string, a
resource string, or the contents of a text file compiled into
the HTML help file.

dwData: Contains a pointer to a THHPopup structure con-
taining the attributes of the pop-up window. See the
dwData parameter for more details.

HH_DISPLAY_TOC Selects the Contents tab in the HTML help file viewer
window.

pszFile: Specifies the path and file name of the compiled
help file or a topic within the compiled help file.

dwData: Contains zero or a pointer to a string specifying a
topic within the compiled help file.

HH_DISPLAY_TOPIC Opens a compiled help file and displays the specified topic
within the file.

pszFile: Specifies the path and file name of the compiled
help file or a topic within the compiled help file

dwData: Contains zero or a pointer to a string specifying a
topic within the compiled help file.

500 � Chapter 10

Value Description

HH_GET_LAST_ERROR Retrieves information about the last error that occurred in
the HTML help system.

pszFile: Contains NIL.

dwData: Contains a pointer to a THHLastError structure
containing information about the last error that occurred in
the HTML help system. See the dwData parameter for
more details.

HH_GET_WIN_HANDLE Retrieves the handle of the specified window type.

pszFile: Specifies the path and file name of the compiled
help file containing the desired window type.

dwData: A pointer to a string containing the name of the
window type whose handle is to be retrieved. HTMLHelp
will return zero if this help window has not yet been
created.

HH_GET_WIN_TYPE Retrieves a pointer to a THHWinType data structure con-
taining the attributes for the specified window type.

pszFile: Specifies the path and file name of the compiled
help file and the name of the window type whose informa-
tion is to be retrieved.

dwData: Contains a pointer to a THHWinType structure.
This structure is filled out and returned by the function. See
the dwData parameter for more details.

If successful, the function returns the handle of the help
window or zero if the help window has not yet been cre-
ated. It returns –1 on failure.

HH_HELP_CONTEXT Opens a compiled help file and displays the topic associated
with the specified topic identifier. This is most commonly
used for displaying context-sensitive topics.

pszFile: Specifies the path and file name of the compiled
help file.

dwData: Contains the numeric identifier of the topic to
display.

HH_KEYWORD_LOOKUP Looks up one or more keywords in the compiled help file.

pszFile: Contains the path and file name of the compiled
help file.

dwData: Contains a pointer to a THHAKLink structure
which defines the keywords to search for, as well as what
action to perform if none of the keywords are found. See
the dwData parameter for more details.

Help Functions � 501

C
h

a
p

te
r
1
0

Value Description

HH_SET_WIN_TYPE Creates a new HTMLHelp viewer window or modifies an
existing window.

pszFile: Specifies the path and file name of the compiled
help file and the name of the window type to create or
whose information is to be modified.

dwData: Contains a pointer to a THHWinType structure
which defines the new window attributes. See the dwData
parameter for more details.

If successful, the function returns the handle of the help
window or 0 if the help window has not yet been created.
It returns –1 on failure.

HH_SYNC Selects the entry in the Contents tab for the topic currently
displayed in the topic pane.

pszFile: Specifies the path and file name of the compiled
help file and the name of the window type that is displayed.

dwData: Contains a pointer to a null-terminated string con-
taining the topic within the help file to which the contents
tab is to be synchronized.

Table 10-5: HTMLHelp THHWinType.fsValidMembers values

Value Description

HHWIN_PARAM_PROPERTIES Valid fsWinProperties member

HHWIN_PARAM_STYLES Valid dwStyles member

HHWIN_PARAM_EXSTYLES Valid dwExStyles member

HHWIN_PARAM_RECT Valid rcWindowPos member

HHWIN_PARAM_NAV_WIDTH Valid iNavWidth member

HHWIN_PARAM_SHOWSTATE Valid nShowState member

HHWIN_PARAM_INFOTYPES Valid paInfoTypes member

HHWIN_PARAM_TB_FLAGS Valid fsToolBarFlags member

HHWIN_PARAM_EXPANSION Valid fNotExpanded member

HHWIN_PARAM_TABPOS Valid tabpos member

HHWIN_PARAM_TABORDER Valid tabOrder member

HHWIN_PARAM_HISTORY_COUNT Valid cHistory member

HHWIN_PARAM_CUR_TAB Valid curNavType member

Table 10-6: HTMLHelp THHWinType.fsWinProperties values

Value Description

HHWIN_PROP_TAB_AUTOHIDESHOW Automatically hides or shows the tri-pane
window.

HHWIN_PROP_ONTOP Causes the window to stay on top of all windows
on the desktop.

502 � Chapter 10

Value Description

HHWIN_PROP_ONTOP
(cont.)

Note: This flag is ignored if the HHWIN_PROP_
NODEF_ EXSTYLES flag is included.

HHWIN_PROP_NOTITLEBAR The window has no title bar.

HHWIN_PROP_NODEF_STYLES Indicates that the window should not use default
window styles when created. When this flag is not
specified, the window is created with the
WS_THICKFRAME, WS_OVERLAPPED, and
WS_VISIBLE styles by default.

HHWIN_PROP_NODEF_EXSTYLES Indicates that the window should not use default
extended window styles when created.

HHWIN_PROP_TRI_PANE Creates the standard HTML help viewer tri-pane
window.

HHWIN_PROP_NOTB_TEXT Suppresses display of text below the icon on but-
tons on the toolbar.

HHWIN_PROP_POST_QUIT Sends a WM_QUIT message to the window speci-
fied by the hwndCaller parameter when the
HTML help viewer closes.

HHWIN_PROP_AUTO_SYNC Locates and selects the table of contents or index
entry (depending on which tab is selected) for the
displayed help topic.

HHWIN_PROP_TRACKING Indicates that notification messages should be sent
to the window specified by the hwndCaller
parameter.

HHWIN_PROP_TAB_SEARCH Creates a window with a Search tab in the naviga-
tion pane.

HHWIN_PROP_TAB_HISTORY Creates a window with a History tab in the navi-
gation pane.

HHWIN_PROP_TAB_FAVORITES Creates a window with a Favorites tab in the navi-
gation pane.

HHWIN_PROP_CHANGE_TITLE Changes the title bar of the window to the title of
the current displayed topic.

HHWIN_PROP_NAV_ONLY_WIN Causes the window to contain only a navigation
pane and toolbar.

HHWIN_PROP_NO_TOOLBAR Creates a window with no toolbar.

HHWIN_PROP_MENU Creates a window with a menu.

HHWIN_PROP_TAB_ADVSEARCH Creates a window with a full-text Search tab in
the navigation pane.

Note: HHWIN_PROP_TAB_SEARCH must also
be specified when this flag is used.

HHWIN_PROP_USER_POS When reopened, this flag causes the window to
reposition itself to its last known size and position.

HHWIN_PROP_TAB_CUSTOM1 Creates a window with a custom tab in the naviga-
tion pane. 1 through 9 can be specified to create
up to nine new custom tabs.

Help Functions � 503

C
h

a
p

te
r
1
0

Table 10-7: HTMLHelp THHWinType.dwStyles values

Value Description

WS_BORDER Gives the window a thin line border.

WS_CAPTION Gives the window a title bar and includes the
WS_BORDER style.

WS_CHILD Creates a child window. The WS_POPUP style cannot be
used if this style is specified.

WS_CHILDWINDOW The same as the WS_CHILD style.

WS_CLIPCHILDREN Clips around child windows during painting and is used
when creating parent windows.

WS_CLIPSIBLINGS Clips windows relative to each other during painting.
Without this style, the entire area of the window will be
included in the update region even if overlapped by a sib-
ling window, making it possible to draw in the client area
of the overlapping child window. When this style is used,
the siblings’ overlapping area is left out of the update
region.

WS_DISABLED The window is initially disabled and cannot receive user
input.

WS_DLGFRAME Creates a window with the dialog box border style and
cannot have a title bar.

WS_GROUP Marks the beginning of a group of controls. The next con-
trols created will belong to this group, and when the
WS_GROUP style is used again, it will end the grouping
and create a new group. The user can change the focus
from one control to the next in a group by using the cur-
sor keys. This is commonly used when creating radio
buttons.

WS_HSCROLL Gives the window a horizontal scroll bar.

WS_ICONIC This is the same as WS_MINIMIZE.

WS_MAXIMIZE The window starts out maximized.

WS_MAXIMIZEBOX Includes the maximize button in the title bar.

WS_MINIMIZE The window starts out minimized.

WS_MINIMIZEBOX Includes the minimize button in the title bar.

WS_OVERLAPPED Gives the window both a title bar and a border. This is the
same as the WS_TILED style.

WS_OVERLAPPEDWINDOW Combines the WS_OVERLAPPED, WS_CAPTION,
WS_SYSMENU, WS_THICKFRAME, WS_MINIMIZE-
BOX, and WS_MAXIMIZEBOX styles. This is a standard
window and is the same as the WS_TILEDWINDOW
style.

WS_POPUP Creates a pop-up window. The WS_CHILD style cannot
be used with this style.

504 � Chapter 10

TE
AM
FL
Y

Team-Fly®

Value Description

WS_POPUPWINDOW Combines the WS_BORDER, WS_POPUP, and WS_SYS-
MENU styles. The WS_CAPTION style must be specified
before the system menu becomes visible.

WS_SIZEBOX The window has a sizing border. This is the same as the
WS_THICKFRAME style.

WS_SYSMENU The system menu box is present in the title bar. The
WS_CAPTION style must also be specified.

WS_TABSTOP Indicates that the control can receive the keyboard focus
when the user presses the Tab key. Pressing the Tab key
again will change the focus to the next control with this
style.

WS_THICKFRAME Gives the window a sizing border.

WS_TILED This is the same as the WS_OVERLAPPED style.

WS_TILEDWINDOW This is the same as the WS_OVERLAPPEDWINDOW
style.

WS_VISIBLE The window is initially visible.

WS_VSCROLL Gives the window a vertical scroll bar.

Table 10-8: HTMLHelp THHWinType.dwExStyles values

Value Description

WS_EX_ACCEPTFILES Accepts files dragged and dropped from other applica-
tions, such as Windows Explorer.

WS_EX_APPWINDOW Forces a top-level window onto the taskbar when the
window is minimized.

WS_EX_CLIENTEDGE The window border has a sunken edge.

WS_EX_CONTEXTHELP Causes the context-sensitive help button (a small button
with a question mark) to appear in the title bar. When
pressed, the mouse cursor changes to a pointer and a
question mark. If the user clicks on a child window or
control, it receives a WM_HELP message. The child
should pass the message to the parent’s window proce-
dure, which should then call the WinHelp function using
the HELP_WM_HELP command. The help application
displays a pop-up window that usually contains help
information for the child window. The WS_MAXIMIZE-
BOX and WS_MINIMIZEBOX styles must not be
included or the context help button will be obscured by
the minimize and maximize buttons.

WS_EX_CONTROLPARENT Allows users to press the Tab key to move from child
window to child window.

WS_EX_DLGMODALFRAME This window has a double border. The WS_CAPTION
style must be used to add a title to this style of window.

Help Functions � 505

C
h

a
p

te
r
1
0

Value Description

WS_EX_LAYERED Windows 2000 or later: Creates a layered window
(not covered in this text). This flag cannot be used for
child windows nor can it be used in conjunction with the
CS_OWNDC or CS_CLASSDC styles.

WS_EX_LAYOUTRTL Windows 2000 or later, Arabic and Hebrew ver-

sions of Windows 98 and Me: Creates a window with
a horizontal origin on its right edge.

WS_EX_LEFT Creates a window with left-aligned properties. This is
the default style.

WS_EX_LEFTSCROLLBAR If the shell’s language is Hebrew, Arabic, or any other
language that supports reading order alignment, the ver-
tical scroll bar, if any, will be placed to the left of the
client area. For other languages, this style is simply
ignored.

WS_EX_LTRREADING Text displayed in this window is in a left-to-right reading
order. This is the default style.

WS_EX_MDICHILD Creates an MDI child window.

WS_EX_NOACTIVATE Windows 2000 or later: Any top-level window cre-
ated with this style will not become the foreground
window when it is clicked nor will the window be
brought to the foreground when the user minimizes or
closes the foreground window. Windows with this style
will also not appear on the taskbar by default.

WS_EX_NOINHERITLAYOUT Windows 2000 or later: This style prevents the win-
dow from passing its window layout to its child
windows.

WS_EX_NOPARENTNOTIFY A window with this style does not send WM_PARENT-
NOTIFY messages to its parent when it is created or
destroyed.

WS_EX_OVERLAPPEDWINDOW Combines the WS_EX_CLIENTEDGE and WS_EX_
WINDOWEDGE styles.

WS_EX_PALETTEWINDOW Combines the WS_EX_WINDOWEDGE, WS_EX_
TOOLWINDOW, and WS_EX_TOPMOST styles.

WS_EX_RIGHT If the shell’s language is Hebrew, Arabic, or any other
language that supports reading order alignment, this
window has generic right-aligned properties. For other
languages, this style is simply ignored.

WS_EX_RIGHTSCROLLBAR Places the vertical scroll bar, if present, on the right side
of the client area. This is the default style.

WS_EX_RTLREADING If the shell’s language is Hebrew, Arabic, or any other
language that supports reading order alignment, the win-
dow is displayed using right-to-left reading order
properties. For other languages, this style is simply
ignored.

506 � Chapter 10

Value Description

WS_EX_STATICEDGE Creates a window with a three-dimensional border
style.

WS_EX_TOOLWINDOW Creates a floating toolbar style window. The title bar is
shorter than a normal title bar, and the window caption
is drawn in a smaller font. This style of window will not
show up on the task bar or when the user presses
Alt+Tab.

WS_EX_TOPMOST This window stays above all other windows, even when
deactivated. This style can be set using the
SetWindowPos function.

WS_EX_TRANSPARENT Any sibling windows that are beneath this window are
not obscured by it and will receive the WM_PAINT
message first.

WS_EX_WINDOWEDGE This window has a border with a raised edge.

Table 10-9: HTMLHelp THHWinType.nShowState values

Value Description

SW_HIDE The window is hidden and another window is activated.

SW_MINIMIZE The window is minimized and the next top-level window
in the system window list is activated.

SW_RESTORE The window is activated and displayed in its original size
and position.

SW_SHOW The window is activated and displayed in its current size
and position.

SW_SHOWMAXIMIZED The window is activated and displayed in a maximized
state.

SW_SHOWMINIMIZED The window is activated and displayed as an icon.

SW_SHOWMINNOACTIVE The window is displayed as an icon. The active window
remains active.

SW_SHOWNA The window is displayed in its current state. The active
window remains active.

SW_SHOWNOACTIVE The window is displayed in its most recent state. The
active window remains active.

SW_SHOWNORMAL This is the same as SW_RESTORE.

Table 10-10: HTMLHelp THHWinType.fsToolBarFlags values

Value Description

HHWIN_BUTTON_EXPAND Expand button

HHWIN_BUTTON_BACK Back button

HHWIN_BUTTON_FORWARD Forward button

HHWIN_BUTTON_STOP Stop button

HHWIN_BUTTON_REFRESH Refresh button

HHWIN_BUTTON_HISTORY History button

Help Functions � 507

C
h

a
p

te
r
1
0

Value Description

HHWIN_BUTTON_FAVORITES Favorites button

HHWIN_BUTTON_SYNC Synchronize button

HHWIN_BUTTON_CONTENTS Table of Contents button

HHWIN_BUTTON_INDEX Index button

HHWIN_BUTTON_SEARCH Search button

HHWIN_BUTTON_OPTIONS Options button

HHWIN_BUTTON_PRINT Print button

HHWIN_BUTTON_JUMP1 Jump button (custom-defined)

HHWIN_BUTTON_JUMP2 Jump button (custom-defined)

HHWIN_BUTTON_ZOOM Zoom button

HHWIN_BUTTON_TOC_NEXT Table of Contents Next button

HHWIN_BUTTON_TOC_PREV Table of Contents Previous button

HHWIN_DEF_BUTTONS Default buttons (Expand, Back, Options, and Print)

Table 10-11: HTMLHelp THHWinType.curNavType values

Value Description

HHWIN_NAVTYPE_TOC Displays the Contents tab.

HHWIN_NAVTYPE_INDEX Displays the Index tab.

HHWIN_NAVTYPE_SEARCH Displays the Search tab.

HHWIN_NAVTYPE_FAVORITES Displays the Favorites tab.

HHWIN_NAVTYPE_AUTHOR Displays the Author tab.

Table 10-12: HTMLHelp THHWinType.tabpos values

Value Description

HHWIN_NAVTAB_TOP Tabs are at the top.

HHWIN_NAVTAB_LEFT Tabs are to the left.

HHWIN_NAVTAB_BOTTOM Tabs are on the bottom.

Table 10-13: HTMLHelp THHWinType.tabOrder array index values

Value Description

HH_TAB_CONTENTS Contents tab

HH_TAB_INDEX Index tab

HH_TAB_SEARCH Search tab

HH_TAB_FAVORITES Favorites tab

HH_TAB_HISTORY History tab

HH_TAB_AUTHOR Author tab

508 � Chapter 10

WinHelp Windows.pas

Syntax

WinHelp(

hWndMain: HWND; {handle of calling window}

lpszHelp: PChar; {help file path}

uCommand: UINT; {a command flag}

dwData: DWORD {command-specific data}

): BOOL; {returns TRUE or FALSE}

Description

This function starts the Microsoft help system and displays help topics from a help file.

Many different commands are available to affect the appearance and behavior of the

Microsoft help system.

Parameters

hWndMain: Specifies the handle of a window from the calling application. This win-

dow also receives the notification messages sent from the help system when using

training cards.

lpszHelp: A null-terminated string containing the path and name of the help file. A sec-

ondary window name can also be specified (in which case the topic is displayed in the

secondary window). This parameter is formatted in the following manner:

Helpfile.hlp[>Secondary Window Name]

�Note: Square brackets ([]) indicate optional elements. You must use “>” to

separate the window name from the other elements.

uCommand: A flag indicating a function to perform. This parameter may be set to one

value from Table 10-14.

dwData: Specifies command-specific data. This value is dependent on the value in the

uCommand parameter. See Table 10-14 for more details. For various commands, this

parameter will contain a pointer to different data structures. These data structures are

defined as:

TMultiKeyHelp = record

mkSize: DWORD; {structure size, in bytes}

mkKeylist: AnsiChar; {keyword table}

szKeyphrase: array[0..0] of AnsiChar; {keyword}

end;

mkSize: Specifies the size of the structure, in bytes. This member must be set to

SizeOf(TMultiKeyHelp).

mkKeylist: A character identifying the keyword table to search. Keyword tables

are defined in the help file.

szKeyphrase: A null-terminated string containing the keyword to find.

Help Functions � 509

C
h

a
p

te
r
1
0

THelpWinInfo = record

wStructSize: Integer; {size of structure, in bytes}

x: Integer; {horizontal coordinate}

y: Integer; {vertical coordinate}

dx: Integer; {width}

dy: Integer; {height}

wMax: Integer; {show flag}

rgchMember: array[0..1] of AnsiChar; {window name}

end;

wStructSize: Specifies the size of the structure, in bytes. This member must be

set to SizeOf(THelpWinInfo).

x: The horizontal coordinate of the upper-left corner of the help window, in

pixels.

y: The vertical coordinate of the upper-left corner of the help window, in pixels.

dx: The width of the window, in pixels.

dy: The height of the window, in pixels.

wMax: A flag indicating how the window should be shown. This can be one

value from Table 10-15.

rgchMember: The name of the window to which these position and size values

should be applied.

Return Value

If the function was successful, it returns TRUE; otherwise, it returns FALSE. To

retrieve extended error information, use the GetLastError function.

See Also

HTMLHelp

Example

Please see Listing 10-1 and other examples from the introduction.

Table 10-14: WinHelp uCommand values

Value Description

HELP_COMMAND Executes a help macro or macro string.

dwData: A pointer to a null-terminated string containing the
name of the help macro to run or the macro string to run.
Multiple help macro names can be specified by separating
them with a semicolon.

HELP_CONTENTS Displays the topic identified as the Contents topic of the
help file.

dwData: Unused, set to zero.

Note: This command is for backward compatibility only.
Modern applications should include a Contents file with the
help file and use the HELP_FINDER command.

510 � Chapter 10

Value Description

HELP_CONTEXT Displays the topic associated with the specific topic
identifier.

dwData: Contains the topic identifier.

HELP_CONTEXTPOPUP Displays the topic associated with the specified topic identi-
fier in a pop-up window.

dwData: Contains the topic identifier.

HELP_FINDER Displays the Topics dialog box.

dwData: Unused, set to zero.

HELP_FORCEFILE Forces the correct help file to be displayed. If a help file is
displayed other than the one specified, the specified help
file is opened and displayed.

dwData: Unused, set to zero.

HELP_HELPONHELP Displays help topics on how to use the help system.

dwData: Unused, set to zero.

Note: The winhlp32.hlp file must be available before this
command can function.

HELP_INDEX Same as HELP_CONTENTS.

HELP_KEY Displays the topic associated with the specified keyword in
the help file’s keyword table. This must be an exact match.
In the event that multiple topics are found, the Index tab is
displayed and all matching topics are listed.

dwData: Specifies the address of a null-terminated string
containing the keyword. Multiple keywords can be specified
by separating them with a semicolon.

HELP_MULTIKEY Displays the topic associated with the specified keyword in
the help file’s alternative keyword table. This must be an
exact match. In the event that multiple topics are found, the
Index tab is displayed and all matching topics are listed.

dwData: Specifies a pointer to a TMultiKeyHelp structure
containing the keyword to find and the keyword table to
search.

HELP_PARTIALKEY Displays the topic associated with the specified keyword in
the help file’s keyword table. This does not have to be an
exact match. In the event that multiple topics are found, the
Index tab is displayed and all matching topics are listed.

dwData: Specifies the address of a null-terminated string
containing the keyword. Multiple keywords can be specified
by separating them with a semicolon.

HELP_QUIT Informs the system that the application no longer needs the
help system. If no other application is using the help system,
the help system is shut down and removed from memory.

dwData: Unused, set to zero.

Help Functions � 511

C
h

a
p

te
r
1
0

Value Description

HELP_SETCONTENTS Identifies a topic to be used as the Contents topic. This
topic is displayed when the user clicks the Contents button,
if no contents file is available.

dwData: Specifies the context identifier for the topic.

HELP_SETPOPUP_POS Sets the position of pop-up windows.

dwData: Specifies the horizontal and vertical position of the
upper-left corner of the pop-up window. Use MakeLong to
package the two values into one number.

HELP_SETWINPOS Sets the size and position of the help window.

dwData: Specifies a pointer to a THelpWinInfo structure
containing the size and position information.

HELP_TCARD Indicates that the command is for a training card session.
This command must be combined with other commands
from this table and cannot be used alone.

Table 10-15: WinHelp THelpWinInfo.wMax values

Value Description

SW_HIDE The window is hidden and another window is activated.

SW_MINIMIZE The window is minimized and the next top-level window in
the system window list is activated.

SW_RESTORE The window is activated and displayed in its original size and
position.

SW_SHOW The window is activated and displayed in its current size
and position.

SW_SHOWMAXIMIZED The window is activated and displayed in a maximized state.

SW_SHOWMINIMIZED The window is activated and displayed as an icon.

SW_SHOWMINNOACTIVE The window is displayed as an icon. The active window
remains active.

SW_SHOWNA The window is displayed in its current state. The active win-
dow remains active.n

SW_SHOWNOACTIVE The window is displayed in its most recent state. The active
window remains active.

SW_SHOWNORMAL This is the same as SW_RESTORE.

512 � Chapter 10

Chapter 11

Shell File FunctionsShell File Functions

The file system is an integral part of any operating system. As such, the presentation of

the file system is an important duty of an operating system’s shell, resulting in many

shell-based functions that affect or manipulate the file system. This chapter examines

some of the available Windows shell functions that manipulate files or provide addi-

tional functionality to an application that uses files.

File-based Applications

The drag-and-drop functions and file manipulation functions can greatly enhance the

functionality of file-based applications. The ability to drag a file onto an application to

open it is essential for a well-behaved, robust file-based application. The DragAccept-

Files, DragQueryFile, and DragFinish functions are all a developer needs to implement

a very user-friendly and intuitive method for users to open files.

The following launch bar example demonstrates the use of a variety of the shell file

functions. When files are dragged from the Explorer and dropped on the launch bar

window, the application looks at each file dropped and creates a speed button for each

executable file. An icon is extracted from the executable file and used as the glyph on

the speed button. Then, the ShellExecute function is used in the OnClick event of the

button to launch the executable file.

■ Listing 11-1: An application launch bar with file drag-and-drop functionality

unit LaunchU;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics,
Controls, Forms, Dialogs, Buttons, ShellAPI, ExtCtrls;

type
TForm1 = class(TForm)
procedure FormCreate(Sender: TObject);
procedure SpeedButtonClick(Sender: TObject);

private
{ Private declarations }
{the message handler required to process dropped files}

513

procedure WMDropFiles(var Msg: TWMDropFiles); message WM_DROPFILES;
public
{ Public declarations }

end;

var
Form1: TForm1;

implementation

{$R *.DFM}

procedure TForm1.FormCreate(Sender: TObject);
begin
{register the form as a file drop target}
DragAcceptFiles(Form1.Handle, TRUE);

end;

procedure TForm1.WMDropFiles(var Msg: TWMDropFiles);
var
NumDroppedFiles: UINT; // holds the number of files dropped
TextBuffer: PChar; // holds the filename
BufferSize: UINT; // the buffer size required to hold the filename
Count: Integer; // a general loop control variable
LargeIcon, SmallIcon: HICON; // holds handles to the icons for the file

begin
{retrieve the number of files dropped on the form}
NumDroppedFiles := DragQueryFile(Msg.Drop, $FFFFFFFF, nil, 0);

{for every file dropped on the form...}
for Count := 0 to NumDroppedFiles – 1 do
begin
{get the size of the filename and allocate a string large enough to hold it (add one
to the text buffer size for the null terminator)}
BufferSize := DragQueryFile(Msg.Drop,Count,nil,0);
TextBuffer := StrAlloc(BufferSize + 1);

{the filename}
DragQueryFile(Msg.Drop, Count, TextBuffer, BufferSize + 1);

{if the file is an executable...}
if (ExtractFileExt(UpperCase(string(TextBuffer))) = '.EXE')

then
{...create a speed button for it and initialize properties}
with TSpeedButton.Create(Form1) do
begin
Parent := Form1;

{the hint is used to store the path and filename of the executable dropped on the
form. the shorthint part holds only the filename (this is what is displayed when
the mouse cursor is moved over the button), and the longhint part holds the full
path and filename. this part is used to launch the executable.}

Hint := ExtractFileName(string(TextBuffer)) + '|' +
TextBuffer;

ShowHint := TRUE;

514 � Chapter 11

TE
AM
FL
Y

Team-Fly®

{set the left side of the button. if it is the first one
on the form, its left side is set to 4.}
if Form1.ComponentCount=1 then
Left := 4
else
Left := TSpeedButton(Form1.Components[Form1.Component–Count–2]).Left +

TSpeedButton(Form1.Components[Form1.ComponentCount–2]).Width+4;

Top := 4;

{set the OnClick method so the button does something}
OnClick := SpeedButtonClick;

{this extracts the small icon from the executable
and displays it in the glyph for the speedbutton}
with Glyph do
begin
ExtractIconEx(TextBuffer, 0, LargeIcon, SmallIcon, 1);

{we must set the width and height of the glyph
so it is large enough to display the small icon}
Width := GetSystemMetrics(SM_CXSMICON);
Height := GetSystemMetrics(SM_CYSMICON);
DrawIconEx(Glyph.Canvas.Handle, 0, 0, SmallIcon,

GetSystemMetrics(SM_CXSMICON),
GetSystemMetrics(SM_CYSMICON), 0, 0,
DI_NORMAL);

DeleteObject(SmallIcon);
end;

end;

{delete our filename text buffer}
StrDispose(TextBuffer);

end;

{dispose of the memory allocated for the dropfile structure}
DragFinish(Msg.Drop);

end;

procedure TForm1.SpeedButtonClick(Sender: TObject);
begin
{when the button is pressed, the longhint portion of the hint
contains the full path and filename of the executable. extract
this path and filename and launch the file.}
ShellExecute(Form1.Handle, 'open', PChar(GetLongHint(TControl

(Sender).Hint)),
nil,nil,SW_SHOWNORMAL);

end;

end.

Shell File Functions � 515

C
h

a
p

te
r
1
1

A file-based application may want to give the user the ability to go directly to a Win-

dows Explorer window centered on the application’s directory. With one line of code,

the developer can do just this using the ShellExecute command. When ShellExecute

“explores” a folder, it opens a new Windows Explorer window with the specified direc-

tory selected. The following example demonstrates this technique.

■ Listing 11-2: Exploring a folder

procedure TForm1.Button1Click(Sender: TObject);
begin
{open a new explorer window with the Common Files folder selected}
ShellExecute(Form1.Handle, 'explore', 'C:\Program Files\Common Files',

nil, nil, SW_SHOWNORMAL);
end;

Applications that produce temporary files should provide the functionality to delete

these files without user intervention. A file-based application may also need to provide

a mechanism allowing the user to copy, move, rename, or delete files within a con-

trolled environment. The SHFileOperation function provides the ability to accomplish

any file manipulation requirements. The following example demonstrates deleting a file

to the recycle bin.

■ Listing 11-3: Deleting a file to the recycle bin

procedure TForm1.FileListBox1DblClick(Sender: TObject);
var
FileOperation: TSHFileOpStruct; // holds information on the file to delete

begin
{initialize the TSHFileOpStruct with the necessary information. the FOF_ALLOWUNDO flag
indicates the deleted file will go to the recycle bin}
FileOperation.fFlags := FOF_ALLOWUNDO or FOF_SIMPLEPROGRESS;
FileOperation.Wnd := Form1.Handle;
FileOperation.wFunc := FO_DELETE;
FileOperation.pFrom := PChar(FileListBox1.FileName);

516 � Chapter 11

Figure 11-1:

Files dropped

on the launch

bar

FileOperation.lpszProgressTitle := 'Deleting Files';

{delete the specified file}
SHFileOperation(FileOperation);

{update the file list box information}
FileListBox1.Update;

end;

Structured Storage

A structured storage file is a new, powerful technique for storing persistent application

data. This method allows an application to easily store data in multiple different for-

mats, while providing a non-linear method for accessing this information. For example,

take an application that must store information in several different record structures. A

typical approach would involve writing each record structure out to a stream, perhaps

with some additional information about the size of each record structure. Reading this

information back in would be a complicated matter, involving reading structure sizes

and performing seeks to get to the desired information. Structured storage files solve

this problem and have many other powerful benefits.

A structured storage file (sometimes known as a compound structured storage file) is a

disk file that is managed via specific COM interfaces. Structured storage files consist

of two types of objects: storages and streams. A storage object is a container object and

can contain other storages or streams. A stream object contains actual data and may not

contain other objects. The relationship between storages and streams is directly analo-

gous to the relationship between directories and files; indeed, a structured storage file

is simply a file system encapsulated into a single file. The storages and streams them-

selves are referred to by application-defined names, making the manipulation of

structured storage file contents very easy compared to the complex seeking methods

required of regular, linear files.

This structure has many benefits for an application. Because substorages and streams

are segregated, it is very easy to find and manipulate the exact data an application

needs without having to linearly read the entire file. Additionally, using structured stor-

age files makes it much easier for future versions of the application to update their

structure. It is also much easier to store a variety of data types within a structured stor-

age file without the need to include additional information to identify the data within

the file.

Creating and Reading Structured Storage Files

The StgCreateDocFile API function is used to create structured storage files. This cre-

ates an actual file and returns a pointer to an IStorage interface that represents the root

storage (which can be thought of as a directory) of this file. Use the StgOpenStorage

API function to open an existing storage file, which also returns an IStorage interface.

The IStorage interface provides several methods for manipulating the structured stor-

age file, including the creation of substorages and streams. When a stream is opened or

Shell File Functions � 517

C
h

a
p

te
r
1
1

created, the application receives an IStream interface, which includes additional meth-

ods for manipulating stream data. These methods are very similar to methods available

to the TStream object (such as Read, Write, and Seek), making conversion to structured

storage files easy if TStream objects are originally used in an application that creates

files.

�Note: While the interfaces for manipulating structured storage files are

defined in the ActiveX.pas unit, the error messages returned by these

methods are defined in the Windows.pas unit.

Transacted Storage Files

A structured storage file supports two modes of operation: direct and transacted. In the

direct mode, any changes to substorages or streams are immediately written to disk. In

transacted mode, these changes are tracked but are not written to disk unless explicitly

instructed to by a call to the Commit method. Calling the Revert method discards all

changes made to the structured storage file since the last call to the Commit method.

�Note: The structured storage file implementation of streams (i.e., IStream)

does not support opening streams in transacted mode. Therefore, the

IStream.Commit and IStream.Revert methods are not discussed in

this text. Additionally, range locking is not supported by this

implementation, so the IStream.LockRegion and IStream.Unlock-

Region methods are also not discussed in this text.

The following complex example provides a demonstration of what structured storage

files can offer an application. Many of the IStorage and IStream methods are used,

showcasing how these two interfaces interact with one another. The example is a struc-

tured storage file editor, allowing the user to both create new and manipulate existing

structured storage files, including creating substorages and editing stream contents.

■ Listing 11-4: A structured storage file editor

implementation

uses
PropsU, StreamEditU;

{***
Note: This is not a polished application. This application is meant as a showcase for
several of the IStorage and IStream methods, and as such, it is written to demonstrate
their methods and how these methods work together, but it is not meant to be a
production application. Writing larger examples in this manner results in additional
code that is extraneous to the actual methods being demonstrated, resulting in an
example that is often more complex than it should be to demonstrate the methods or
functions involved.
Additionally, there is very little error checking and exception handling, as
such code would further complicate the example and distract from the methods
in discussion. Therefore, while this application demonstrates a real-world

518 � Chapter 11

example of how to use the IStorage and IStream methods, it is not complete,
and would need to be fleshed out in order to make a more viable product.
**}

{-----------------------}
{ >>> W A R N I N G <<< }
{-----------------------}
{Several professional applications use structured storage files for saving
document data, including Microsoft Office products. YOU CAN SERIOUSLY
DAMAGE OR CORRUPT Microsoft Office documents or any other type of file that
uses structured storage by using this application. We highly recommend that
you use this application only to create and test structured storage files or
to edit structured storage files created with this application. Please do
not use this application to view or modify any files that were not created
with this application.}

const
{these constants are not defined in Delphi 6}
STG_S_MULTIPLEOPENS = $00030204;
STG_S_CONSOLIDATIONFAILED = $00030205;
STG_S_CANNOTCONSOLIDATE = $00030206;
STG_S_CONVERTED = $00030200;
STG_E_NOTSIMPLEFORMAT = $80030112;

{ -- General Functions --}

{returns a date and time string based on an element date and time}
function GetElementDate(ElmTime: TFileTime): string;
var
FileDateTime: Integer;
LocalFileTime: TFileTime;

begin
{convert the file time to a datetime value (uses a trick
found in SysUtils.pas)}
FileDateTime := 0;
FileTimeToLocalFileTime(ElmTime, LocalFileTime);
FileTimeToDosDateTime(LocalFileTime, LongRec(FileDateTime).Hi,

LongRec(FileDateTime).Lo);

{convert the date and time into a string and return}
if FileDateTime <> 0 then
Result := DateToStr(FileDateToDateTime(FileDateTime))

else
Result := '<no time reported>';

end;

{clears the treeview}
procedure TfrmMain.Clear;
var
iCount: Integer;

begin
{free all objects}
for iCount := 0 to treStorageTree.Items.Count - 1 do
IUnknown(treStorageTree.Items[iCount].Data)._Release;

Shell File Functions � 519

C
h

a
p

te
r
1
1

{turn off the change event}
treStorageTree.OnChange := nil;

{clear the treeview}
treStorageTree.Items.Clear;

{turn changing back on}
treStorageTree.OnChange := treStorageTreeChange;

end;

{commits or reverts changes to the structured storage file}
procedure TfrmMain.SaveFile;
var
RootStore: IStorage;

begin
{if the tree has items, then something has been opened}
if treStorageTree.Items.Count > 0 then
begin
{retrieve a storage interface for the root storage}
IUnknown(treStorageTree.Items[0].Data).QueryInterface(IStorage,

RootStore);

{commit or revert changes as selected by the user}
if MessageBox(Handle, 'Do you wish to commit changes to the structured

storage file?', 'Commit Changes', MB_ICONWARNING or
MB_YESNO) = IDYES then

RootStore.Commit(STGC_DEFAULT)
else
RootStore.Revert;

end;
end;

{ -- Form Event Handlers -- }

{called when the form is closed}
procedure TfrmMain.FormClose(Sender: TObject; var Action: TCloseAction);
begin
{save the file and clean up}
SaveFile;
Clear;

end;

{called when the user selects a tree item}
procedure TfrmMain.treStorageTreeChange(Sender: TObject; Node: TTreeNode);
var
StorageElement: IUnknown;
Unused: IStorage;

begin
{get the stored interface}
StorageElement := IUnknown(treStorageTree.Selected.Data);

{enable view contents only if this is a stream}
mnuViewContents.Enabled := StorageElement.QueryInterface(IStorage, Unused) <> S_OK;

end;

520 � Chapter 11

{called when the user renames a tree item}
procedure TfrmMain.treStorageTreeEdited(Sender: TObject; Node: TTreeNode;
var S: String);

var
StorageElement: IUnknown; // holds a generic interface
elmStore, SubStore: IStorage; // holds IStorage interface
elmStream, SubStream: IStream; // holds IStream interface
StatInfo: TStatStg; // statistic information record

begin
{get the stored interface}
StorageElement := IUnknown(Node.Data);

{if this is a storage or stream element...}
if StorageElement.QueryInterface(IStorage, elmStore) = S_OK then
begin
{get the statistics and release the object}
elmStore.Stat(StatInfo, STATFLAG_DEFAULT);
elmStore._Release;
elmStore._Release;

end
else
begin
{get the statistics and release the object}
StorageElement.QueryInterface(IStream, elmStream);
elmStream.Stat(StatInfo, STATFLAG_DEFAULT);
elmStream._Release;
elmStream._Release;

end;

{the elements were released because the elements to be renamed must not
be opened}

{retrieve a pointer to the parent node}
StorageElement := IUnknown(Node.Parent.Data);
StorageElement.QueryInterface(IStorage, elmStore);

{rename the element}
elmStore.RenameElement(PWideChar(WideString(Node.Text)),

PWideChar(WideString(S)));

{now that the element has been renamed, reopen the element and set up
its treenode, so that other functions in this application will work}
case StatInfo.dwType of
STGTY_STORAGE : begin

elmStore.OpenStorage(PWideChar(WideString(S)), nil,
STGM_READWRITE or STGM_SHARE_EXCLUSIVE,
nil, 0, SubStore);

Node.Data := Pointer(SubStore);
SubStore._AddRef;

end;
STGTY_STREAM : begin

elmStore.OpenStream(PWideChar(WideString(S)), nil,
STGM_READWRITE or STGM_SHARE_EXCLUSIVE,
0, SubStream);

SubStream._AddRef;
SubStream._AddRef;

Shell File Functions � 521

C
h

a
p

te
r
1
1

Node.Data := Pointer(SubStream);
end;

end;
end;

{called when a tree item is being edited}
procedure TfrmMain.treStorageTreeEditing(Sender: TObject; Node: TTreeNode;
var AllowEdit: Boolean);

begin
{do not allow renaming of the parent node}
AllowEdit := Node.Parent <> nil;

end;

{a recursive function called to enumerate a storage and populate the tree view}
procedure TfrmMain.EnumerateStorage(ParentNode: TTreeNode; Store: IStorage);
var
SubStore: IStorage; // an IStorage interface
Stream: IStream; // an IStream interface
Enumerator: IEnumStatStg; // the enumerator interface
StatInfo: TStatStg; // statistical information record
SubNode: TTreeNode; // tree node

begin
{get the enumerator}
Store.EnumElements(0, nil, 0, Enumerator);

{begin enumerating the subelements in this storage}
while Enumerator.Next(1, StatInfo, nil) = S_OK do
begin
{if this is a storage element...}
if StatInfo.dwType = STGTY_STORAGE then
begin
{open the storage}
Store.OpenStorage(StatInfo.pwcsName, nil, STGM_READWRITE or

STGM_SHARE_EXCLUSIVE, nil, 0, SubStore);

{add one to the reference count, so it is not deleted when
this function goes out of scope}
SubStore._AddRef;

{add a node to the treeview. it points to the storage object}
SubNode := treStorageTree.Items.AddChildObject(ParentNode,

StatInfo.pwcsName,
Pointer(SubStore));

{set appropriate image indexes}
SubNode.ImageIndex := 0;
SubNode.SelectedIndex := 0;

{recursively enumerate this storage}
EnumerateStorage(SubNode, SubStore);

end
else
begin
{open the stream object}
Store.OpenStream(StatInfo.pwcsName, nil, STGM_READWRITE or

STGM_SHARE_EXCLUSIVE, 0, Stream);

522 � Chapter 11

{add one to the reference count, so it is not deleted when
this function goes out of scope}
Stream._AddRef;

{add a node to the treeview. it points to the storage object}
SubNode := treStorageTree.Items.AddChildObject(ParentNode,

StatInfo.pwcsName,
Pointer(Stream));

{set appropriate image indexes}
SubNode.ImageIndex := 1;
SubNode.SelectedIndex := 1;

end;
end;

end;

{ -- Menu Handlers -- }

procedure TfrmMain.mnuOpenClick(Sender: TObject);
var
RootStore: IStorage;
TopNode: TTreeNode;

begin
{if the user selects a file...}
if dlgOpen.Execute then
{...and it is a storage file...}
if StgIsStorageFile(PWideChar(WideString(dlgOpen.FileName))) = S_OK then
begin
{save the file and clean up}
SaveFile;
Clear;

{open this structured storage file in a transacted mode}
StgOpenStorage(PWideChar(WideString(dlgOpen.FileName)), nil,

STGM_READWRITE or STGM_SHARE_EXCLUSIVE or STGM_TRANSACTED,
nil, 0, RootStore);

{add one to the reference count, so it is not deleted when
this function goes out of scope}
RootStore._AddRef;

{add a node to the treeview, pointing at the storage object}
TopNode := treStorageTree.Items.AddObject(nil,

ExtractFileName(dlgOpen.FileName),
Pointer(RootStore));

{set the image index}
TopNode.ImageIndex := 0;
TopNode.SelectedIndex := 0;

{enumerate this root storage object}
EnumerateStorage(TopNode, RootStore);

{expand the treeview}
TopNode.Expand(TRUE);

Shell File Functions � 523

C
h

a
p

te
r
1
1

{enable the properties menu}
mnuProperties.Enabled := TRUE;

end
else
MessageBox(Handle, 'The selected file is not a structured storage file',

'Not a Structured Storage File', MB_ICONWARNING or MB_OK);
end;

procedure TfrmMain.mnuPropertiesClick(Sender: TObject);
var
StatInfo: TStatStg; // statistical information record
StorageElement: IUnknown; // general interface pointer
elmStore: IStorage; // an IStorage interface
elmStream: IStream; // an IStream interface

begin
{retrieve the stored interface}
StorageElement := IUnknown(treStorageTree.Selected.Data);

{if this is a storage element...}
if StorageElement.QueryInterface(IStorage, elmStore) = S_OK then
begin
{retrieve the statistical information}
elmStore.Stat(StatInfo, STATFLAG_DEFAULT);

{set form element properties appropriately}
frmProps.lblType.Caption := 'Storage';
frmProps.Image1.Visible := TRUE;
frmProps.Image2.Visible := FALSE;
frmProps.edtClassID.Enabled := TRUE;

end
else
begin
{the stream interface and retrieve statistical information}
StorageElement.QueryInterface(IStream, elmStream);
elmStream.Stat(StatInfo, STATFLAG_DEFAULT);

{set form element properties appropriately}
frmProps.lblType.Caption := 'Stream';
frmProps.Image1.Visible := FALSE;
frmProps.Image2.Visible := TRUE;
frmProps.edtClassID.Enabled := FALSE;

end;

{set form properties appropriately}
frmProps.lblName.Caption := StatInfo.pwcsName;
frmProps.lblSize.Caption := IntToStr(StatInfo.cbSize) + ' bytes';
frmProps.lblModTime.Caption := GetElementDate(StatInfo.mtime);
frmProps.lblAccessTime.Caption := GetElementDate(StatInfo.atime);
frmProps.lblCreateTime.Caption := GetElementDate(StatInfo.ctime);
frmProps.edtClassID.Text := GUIDToString(StatInfo.clsid);

{if the OK button is clicked...}
if frmProps.ShowModal = mrOK then
{set the class id, if it's a storage object}
if frmProps.edtClassID.Enabled then

524 � Chapter 11

TE
AM
FL
Y

Team-Fly®

elmStore.SetClass(StringToGUID(frmProps.edtClassID.Text));
end;

procedure TfrmMain.mnuDeleteElementClick(Sender: TObject);
var
StorageElement: IUnknown;
elmStore: IStorage;

begin
{do not allow delete of the root element}
if treStorageTree.Selected = treStorageTree.Items[0] then
raise Exception.Create('Cannot delete the root.');

{if the user really wants to delete this element...}
if MessageBox(Handle, 'Are you sure you want to delete this element?',

'Confirm Delete', MB_ICONWARNING or MB_YESNO) = IDYES then
begin
{get a pointer to the root storage element}
StorageElement := IUnknown(treStorageTree.Selected.Parent.Data);
StorageElement.QueryInterface(IStorage, elmStore);

{release the element pointed to by the selected tree item}
IUnknown(treStorageTree.Selected.Data)._Release;

{destroy the selected element (must be done from its parent storage)}
elmStore.DestroyElement(PWideChar(WideString(

treStorageTree.Selected.Text)));

{delete the tree item}
treStorageTree.Items.Delete(treStorageTree.Selected);

end;
end;

procedure TfrmMain.mnuStreamContentsClick(Sender: TObject);
var
StorageElement: IUnknown; // generic interface pointer
elmStream: IStream; // an IStream interface
StatInfo: TStatStg; // statistical information record
StreamBuffer: Pointer; // buffer used to hold stream contents
OutputString: string; // string used to set buffer contents
SeekPos: Largeint; // seek position variable
BytesReadWritten: Longint; // bytes written variable

begin
{determine if the selected element is a stream element}
StorageElement := IUnknown(treStorageTree.Selected.Data);
if StorageElement.QueryInterface(IStream, elmStream) <> S_OK then
raise Exception.Create('Selected element is not a stream element.');

{retrieve statistical information}
elmStream.Stat(StatInfo, STATFLAG_NONAME);

{allocate a buffer large enough to hold the entire stream contents}
GetMem(StreamBuffer, StatInfo.cbSize);

{retrieve the entire stream contents}
elmStream.Seek(0, STREAM_SEEK_SET, SeekPos);
elmStream.Read(StreamBuffer, StatInfo.cbSize, @BytesReadWritten);

Shell File Functions � 525

C
h

a
p

te
r
1
1

{display the stream contents}
frmStreamEdit.memStream.Text := PChar(StreamBuffer);

{free our memory buffer}
FreeMem(StreamBuffer);

{if the user clicks OK...}
if frmStreamEdit.ShowModal = mrOK then
begin
{get the text to put into the stream}
OutputString := frmStreamEdit.memStream.Text;

{set the stream size because the text length could be smaller than original
stream size}
elmStream.SetSize(Length(frmStreamEdit.memStream.Text));

{write the information starting at the front of the stream}
elmStream.Seek(0, STREAM_SEEK_SET, SeekPos);
elmStream.Write(PChar(OutputString), Length(frmStreamEdit.memStream.Text),

@BytesReadWritten);
end;

end;

procedure TfrmMain.mnuStorageClick(Sender: TObject);
var
StorageElement: IUnknown; // general interface pointer
elmStore, NewStore: IStorage; // IStorage interfaces
ParentNode, NewNode: TTreeNode; // tree node pointers
NewStoreName: string; // string to hold new storage name

begin
{retrieve the name for the new storage. Note: this should be a unique string}
if not InputQuery('New Storage', 'Please specify a name for the new storage',

NewStoreName) then
Exit;

{get the appropriate parent node}
if treStorageTree.Selected = treStorageTree.Items[0] then
ParentNode := treStorageTree.Selected

else
ParentNode := treStorageTree.Selected.Parent;

{retrieve a pointer to the storage element}
StorageElement := IUnknown(ParentNode.Data);
StorageElement.QueryInterface(IStorage, elmStore);

{create a substorage element}
elmStore.CreateStorage(PWideChar(WideString(NewStoreName)), STGM_READWRITE or

STGM_SHARE_EXCLUSIVE, 0, 0, NewStore);

{add one to the reference count, so it is not deleted when
this function goes out of scope}
NewStore._AddRef;

{add the tree node}
NewNode := treStorageTree.Items.AddChildObjectFirst(ParentNode,

ExtractFileName(NewStoreName),

526 � Chapter 11

Pointer(NewStore));

{set appropriate image indexes}
NewNode.ImageIndex := 0;
NewNode.SelectedIndex := 0;

end;

procedure TfrmMain.mnuStreamClick(Sender: TObject);
var
StorageElement: IUnknown; // general interface pointer
elmStore: IStorage; // an IStorage interface
NewStream: IStream; // an IStream interface
ParentNode, NewNode: TTreeNode; // tree node pointers
NewStreamName: string; // holds the new stream name

begin
{retrieve the name of the new stream. note: this should be a unique name}
if not InputQuery('New Stream', 'Please specify a name for the new stream',

NewStreamName) then
Exit;

{retrieve the parent node}
ParentNode := treStorageTree.Selected;

{retrieve the storage element in which this stream will reside}
StorageElement := IUnknown(ParentNode.Data);
StorageElement.QueryInterface(IStorage, elmStore);

{retrieve the parent storage, if the selected node points to a
stream element}
if elmStore = nil then
begin
ParentNode := treStorageTree.Selected.Parent;
StorageElement := IUnknown(ParentNode.Data);
StorageElement.QueryInterface(IStorage, elmStore);

end;

{create the stream within this storage element}
elmStore.CreateStream(PWideChar(WideString(NewStreamName)), STGM_READWRITE or

STGM_SHARE_EXCLUSIVE, 0, 0, NewStream);

{add one to the reference count, so it is not deleted when
this function goes out of scope}
NewStream._AddRef;

{add the tree node}
NewNode := treStorageTree.Items.AddChildObjectFirst(ParentNode,

ExtractFileName(NewStreamName),
Pointer(NewStream));

{set appropriate image indexes}
NewNode.ImageIndex := 1;
NewNode.SelectedIndex := 1;

end;

procedure TfrmMain.mnuStorageFileClick(Sender: TObject);
var

Shell File Functions � 527

C
h

a
p

te
r
1
1

RootStore: IStorage;
TopNode: TTreeNode;

begin
{if the user specifies a new file name...}
if dlgSave.Execute then
begin
{clean up}
Clear;

{create a new structured storage file in transacted mode}
StgCreateDocFile(PWideChar(WideString(dlgSave.FileName)), STGM_READWRITE or

STGM_SHARE_EXCLUSIVE or STGM_TRANSACTED, 0, RootStore);

{add one to the reference count, so it is not deleted when
this function goes out of scope}
RootStore._AddRef;

{add the tree node}
TopNode := treStorageTree.Items.AddObject(nil,

ExtractFileName(dlgSave.FileName),
Pointer(RootStore));

{set appropriate image indexes}
TopNode.ImageIndex := 0;
TopNode.SelectedIndex := 0;

{enable the properties menu}
mnuProperties.Enabled := TRUE;

end;
end;

procedure TfrmMain.mnuCopyStreamClick(Sender: TObject);
var
StorageElement: IUnknown; // general interface pointer
elmStore: IStorage; // an IStorage interface
elmStream, NewStream: IStream; // IStream interfaces
ParentNode, NewNode: TTreeNode; // tree node pointers
NewSeekPos, cbRead, cbWritten: Largeint; // variables to hold various values

begin
{retrieve a pointer to the stream element interface}
StorageElement := IUnknown(treStorageTree.Selected.Data);
StorageElement.QueryInterface(IStream, elmStream);

{if this is a storage element, exit}
if elmStream = nil then
Exit;

{retrieve a pointer to the selected storage element}
ParentNode := treStorageTree.Selected;
StorageElement := IUnknown(ParentNode.Data);
StorageElement.QueryInterface(IStorage, elmStore);

if elmStore = nil then
begin
ParentNode := treStorageTree.Selected.Parent;
StorageElement := IUnknown(ParentNode.Data);

528 � Chapter 11

StorageElement.QueryInterface(IStorage, elmStore);
end;

{create a sibling stream in the same storage as the stream to copy}
elmStore.CreateStream(PWideChar(WideString('CopyOf' +

treStorageTree.Selected.Text)), STGM_READWRITE or
STGM_SHARE_EXCLUSIVE, 0, 0, NewStream);

{add one to the reference count, so it is not deleted when
this function goes out of scope}
NewStream._AddRef;

{add a new tree node}
NewNode := treStorageTree.Items.AddChildObjectFirst(ParentNode,

ExtractFileName('CopyOf'+
treStorageTree.Selected.Text),
Pointer(NewStream));

{set appropriate image indexes}
NewNode.ImageIndex := 1;
NewNode.SelectedIndex := 1;

{copy the entire stream}
elmStream.Seek(0, STREAM_SEEK_SET, NewSeekPos);
elmStream.CopyTo(NewStream, MAXINT, cbRead, cbWritten);

end;

Delphi vs. the Windows API

The functions discussed in this chapter provide functionality to the Delphi programmer

that is simply not available when using the VCL alone. Very little, if any, of these API

functions are encapsulated in a library function or VCL object. Unfortunately, some of

these API functions are somewhat complex, such as the structured storage interfaces

and methods, but they provide powerful abilities to applications that exploit their

functionality.

Shell File Functions

The following shell file functions are covered in this chapter.

Table 11-1: Shell file functions

Function Description

DragAcceptFiles Registers a window as a drop target for dragged files.

DragFinish Completes the file drag-and-drop process.

DragQueryFile Retrieves information about a dropped file.

DragQueryPoint Retrieves the mouse coordinates at the time of a file drop.

FindExecutable Retrieves the name of the executable file associated with a
specified file.

IStorage.Commit Commits changes to a transacted storage object.

Shell File Functions � 529

C
h

a
p

te
r
1
1

Function Description

IStorage.CopyTo Copies one storage object into another.

IStorage.CreateStorage Creates a substorage element.

IStorage.CreateStream Creates a stream element.

IStorage.DestroyElement Destroys a substorage or stream element.

IStorage.EnumElements Enumerates all elements in a storage.

IStorage.MoveElementTo Moves an element from one storage object into another.

IStorage.OpenStorage Opens a substorage element.

IStorage.OpenStream Opens a stream element.

IStorage.RenameElement Renames a substorage or stream element.

IStorage.Revert Reverts a transacted storage object.

IStorage.SetClass Sets the class identifier of a storage object.

IStorage.Stat Retrieves statistical information on the storage object.

IStream.Clone Creates a copy of the stream with its own seek position.

IStream.CopyTo Copies the stream into another stream.

IStream.Read Reads bytes from the stream into a buffer.

IStream.Seek Moves the seek position within a stream.

IStream.SetSize Sets the size of the stream.

IStream.Stat Retrieves statistical information on the stream object.

IStream.Write Writes bytes from a buffer into the stream.

SHAddToRecentDocs Adds or clears a registered document type to the Documents
menu item under the Start button.

SHFileOperation Copies, moves, renames, or deletes a file.

SHFreeNameMappings Frees a name mapping object.

SHGetFileInfo Retrieves information about the specified file.

StgCreateDocFile Creates a compound structured storage file.

StgIsStorageFile Indicates if the specified file is a compound structured storage
file.

StgOpenStorage Opens a compound structured storage file.

DragAcceptFiles ShellAPI.pas

Syntax

DragAcceptFiles(

Wnd: HWND; {a handle to a window}

Accept: BOOL {the acceptance flag}

); {this procedure does not return a value}

Description

This procedure registers a window to accept or decline dropped files. If an application

registers a window to accept dropped files, it receives a WM_DROPFILES message

when files are dragged and dropped onto the window.

530 � Chapter 11

Parameters

Wnd: A handle to the window that will accept or decline dropped files.

Accept: A Boolean value that determines if the window will accept or decline dropped

files. A value of TRUE registers the window as accepting dropped files; a value of

FALSE will decline dropped files.

See Also

DragFinish, DragQueryFile, DragQueryPoint, WM_DROPFILES

Example

■ Listing 11-5: Retrieving information on dropped files

Note that this example requires this line to be added to the public section of the form’s

class definition:

procedure WMDropFiles(var DropFileMsg: TWMDropFiles); message WM_DROPFILES;

When a file is dropped onto the form, Windows sends the form a WM_DROPFILES

message. This line declares a procedure that will handle this message.

procedure TForm1.FormCreate(Sender: TObject);
begin

{this registers the window to accept files}
DragAcceptFiles(Handle,TRUE);

end;

procedure TForm1.WMDropFiles(var DropFileMsg: TWMDropFiles);
var

FileCount: Integer; // holds the number of files dropped
TheFileName: array[0..500] of char; // holds a filename
DropPoint: TPoint; // holds drop point coordinates
LoopCount: Integer; // a general loop count variable

begin
{clear our list box that displays file information}
ListBox1.Items.Clear;

{get the number of files that were dropped and display it}
FileCount:=DragQueryFile(DropFileMsg.Drop,$FFFFFFFF,nil,0);
ListBox1.Items.Add('Number of files dropped: '+IntToStr(FileCount));
ListBox1.Items.Add('');

{get the coordinates relative to the window where the files were dropped}
DragQueryPoint(DropFileMsg.Drop, DropPoint);
ListBox1.Items.Add('Mouse Drop Point: '+IntToStr(DropPoint.X)+', '+

IntToStr(DropPoint.Y));
ListBox1.Items.Add('');
ListBox1.Items.Add('--------------------------------------');
ListBox1.Items.Add('');

{retrieve the full path and filename of each file that was dropped}
for LoopCount:=0 to FileCount-1 do
begin

DragQueryFile(DropFileMsg.Drop, LoopCount, TheFileName, 500);

Shell File Functions � 531

C
h

a
p

te
r
1
1

ListBox1.Items.Add('File '+IntToStr(LoopCount)+': '+string(TheFileName));
end;

{release the memory that was allocated
for the file drop information structure}
DragFinish(DropFileMsg.Drop);

end;

DragFinish ShellAPI.pas

Syntax

DragFinish(

Drop: HDROP {a handle to a file drop information structure}

); {this procedure does not return a value}

Description

This procedure frees memory that Windows allocated for the data structure holding

dropped file information.

Parameters

Drop: A handle to the dropped file information data structure. This handle is passed in

the wParam member of the WM_DROPFILES message. This is also accessible from

Delphi as the Drop member of the TWMDropFiles message structure passed to the

WM_DROPFILES message handling routine.

See Also

DragAcceptFiles, WM_DROPFILES

Example

Please see Listing 11-5 under DragAcceptFiles.

DragQueryFile ShellAPI.pas

Syntax

DragQueryFile(

Drop: HDROP; {a handle to a file drop information structure}

FileIndex: UINT; {the index to a filename}

532 � Chapter 11

Figure 11-2:

Dropped file

information

FileName: PChar; {a pointer to a buffer to hold a filename}

cb: UINT {the size of the filename buffer}

): UINT; {returns an unsigned integer based on the parameters}

Description

This function retrieves the filename of a dropped file. The FileIndex parameter indi-

cates the position of the dropped file in the list of dropped files identified by the Drop

parameter for which to retrieve the filename. The full path and filename of the dropped

file is stored in the buffer pointed to by the FileName parameter.

Parameters

Drop: A handle to the dropped file information data structure. This handle is passed in

the wParam member of the WM_DROPFILES message. This is also accessible from

Delphi as the Drop member of the TWMDropFiles message structure passed to the

WM_DROPFILES message handling routine.

FileIndex: This identifies the index of the dropped file. If this parameter is

$FFFFFFFF, this function returns the total number of files dropped. The array of files

is zero-based, and a value between zero and the total number of files dropped will

cause the full path and filename of the corresponding file to be copied into the buffer

pointed to by the FileName parameter.

FileName: This points to a buffer that receives the filename of a dropped file. If this

parameter is NIL, this function returns the required size of the buffer, in characters.

cb: Specifies the size of the buffer pointed to by the FileName parameter, in characters.

Return Value

If this function succeeds, the return value is dependent on the values passed in the

parameters. If the value of the FileIndex parameter is $FFFFFFFF, this function returns

the total number of files dropped. If the FileIndex parameter is between zero and the

total number of files dropped, and the value of the FileName parameter is NIL, this

function returns the size of the buffer required to hold the full path and filename of the

corresponding file, in characters. This does not include the null terminating character.

If this function copies a filename to the buffer pointed to by the FileName parameter, it

returns the total number of characters copied, excluding the null terminating character.

If the function fails, it returns zero.

See Also

DragAcceptFiles, DragQueryPoint, WM_DROPFILES

Example

Please see Listing 11-5 under DragAcceptFiles.

Shell File Functions � 533

C
h

a
p

te
r
1
1

DragQueryPoint ShellAPI.pas

Syntax

DragQueryPoint(

Drop: HDROP; {a handle to a file drop information structure}

var Point: TPoint {a pointer to a structure for coordinate information}

): BOOL; {returns TRUE or FALSE}

Description

This function fills a TPoint structure with the coordinates of the mouse cursor at the

time that files were dropped onto the window.

Parameters

Drop: A handle to the dropped file information data structure. This handle is passed in

the wParam member of the WM_DROPFILES message. This is also accessible from

Delphi as the Drop member of the TWMDropFiles message structure passed to the

WM_DROPFILES message handling routine.

Point: A pointer to a TPoint structure that will be filled with the X and Y coordinates of

the mouse cursor at the time the files were dropped. These coordinates are relative to

the window in which the drop occurred.

Return Value

If this function succeeds and the drop point was within the client area of the window, it

returns TRUE. If the function fails, or if the drop point was not within the client area, it

returns FALSE.

See Also

DragAcceptFiles, DragQueryFile, WM_DROPFILES

Example

Please see Listing 11-5 under DragAcceptFiles.

FindExecutable ShellAPI.pas

Syntax

FindExecutable(

FileName: PChar; {a pointer to a filename string}

Directory: PChar; {a pointer to a default directory string}

Result: PChar {a pointer to a buffer that receives a filename}

): HINST; {returns an integer value}

Description

This function retrieves the name and path of the executable file associated with the file-

name passed in the FileName parameter.

534 � Chapter 11

TE
AM
FL
Y

Team-Fly®

Parameters

FileName: A pointer to a null-terminated string that contains a filename. This parame-

ter can specify either a document or an executable file. If this parameter contains the

name of an executable file, the Result parameter will contain an exact copy of this

parameter when the function returns.

Directory: A pointer to a null-terminated string specifying a path to use as the default

directory.

Result: A pointer to a buffer that receives a null-terminated string identifying the exe-

cutable file associated with the file or document indicated by the FileName parameter.

This executable file is launched when an “open” action is performed on the file speci-

fied by the FileName parameter, either by right-clicking on the file and selecting Open

in the Windows Explorer or using the ShellExecute function. The registry records

which executable file is associated with specific file types. When the FindExecutable

function is called, it first looks in the registry under the key HKEY_LOCAL_

MACHINE\SOFTWARE\Classes\<file type>. The value at this location is the name

of another key. FindExecutable then takes this value and looks under the key

HKEY_LOCAL_MACHINE\SOFTWARE\Classes\<key name>\Shell\Open\Com-

mand. The value at this location contains the full path and filename of the associated

executable. For example, if the FileName parameter specified a file with the extension

.pas, FindExecutable would first look under HKEY_LOCAL_MACHINE\ SOFT-

WARE\Classes\.pas. The value at this location is “DelphiUnit.” FindExecutable takes

this value and looks under the key HKEY_LOCAL_MACHINE\SOFTWARE\

Classes\DelphiUnit\Shell\Open\Command. If Delphi has been installed into the default

location, the value found at this location will be “C:\Program Files\Borland\Delphi\

Bin\Delphi32.EXE” “%1”.

�Note: If the path and filename of the executable file stored in this registry

key contains spaces, as in the following example, and it is not

surrounded by double quotes, the FindExecutable function replaces

any spaces in the value with a null character.

Return Value

If the function succeeds, it returns a value greater than 32. If the function fails, it

returns a value from Table 11-2.

See Also

ShellExecute, ShellExecuteEx

Example

■ Listing 11-6: Finding an executable file and opening documents

procedure TForm1.Edit1KeyPress(Sender: TObject; var Key: Char);
begin

{set a new edit mask based on the contents of Edit1}
if ((Key = Chr(13)) AND (Edit1.Text <> '')) then

Shell File Functions � 535

C
h

a
p

te
r
1
1

begin
FileListBox1.Mask := '*.'+Edit1.Text;
{this prevents the speaker from beeping}
Key := #0;

end;
end;

procedure TForm1.Button1Click(Sender: TObject);
begin

{launch the executable file found by FindExecutable}
if Label1.Caption <> '' then

ShellExecute(Form1.Handle, 'open', PChar(Label1.Caption),
nil, nil, SW_SHOWNORMAL);

end;

procedure TForm1.Button2Click(Sender: TObject);
begin

{open the selected file by starting its associated application}
ShellExecute(Form1.Handle, 'open', PChar(FileListBox1.Filename),

nil, nil, SW_SHOWNORMAL);
end;

procedure TForm1.FileListBox1Click(Sender: TObject);
var

Buffer: array[0..500] of char; // a buffer for a path and filename
begin

{find the executable associated with the selected file}
FindExecutable(PChar(FileListBox1.FileName),nil,@Buffer);

{if an executable was not found...}
if StrLen(Buffer)<1 then
begin

{...display a message and disable the launch buttons...}
Label1.Caption:='No Associated executable';
Button1.Enabled:=FALSE;
Button2.Enabled:=FALSE;

end
else
begin

{...otherwise display the executable path and filename}
Label1.Caption:=string(Buffer);
Button1.Enabled:=TRUE;
Button2.Enabled:=TRUE;

end;
end;

536 � Chapter 11

Table 11-2: FindExecutable return value error codes

Value Description

0 Not enough memory or resources.

ERROR_GEN_FAILURE The specified file does not have an associated execut-
able file.

ERROR_FILE_NOT_FOUND The file specified by the FileName parameter could not
be found.

ERROR_PATH_NOT_FOUND The default directory path specified by the Directory
parameter could not be found.

ERROR_BAD_FORMAT The associated executable file is invalid or corrupt.

IStorage.Commit ActiveX.pas

Syntax

Commit(

grfCommitFlags: Longint {commit flag}

): HResult; {returns an OLE result}

Description

This function processes any changes that have been made to a storage object opened in

transact mode, ensuring that they are written to disk. This method has no effect if

called on a substorage opened in direct mode.

Parameters

grfCommitFlags: A flag that controls how changes are committed. This can be one

value from Table 11-3.

Return Value

If the function succeeds, it returns S_OK; otherwise, it returns an OLE failure result

code from Table 11-4.

See Also

IStorage.Revert, StgCreateDocFile, StgOpenStorage

Shell File Functions � 537

C
h

a
p

te
r
1
1

Figure 11-3:

Found an

executable file

Example

Please see Listing 11-4 in the introduction.

Table 11-3: IStorage.Commit grfCommitFlags values

Value Description

STGC_DEFAULT Indicates changes should be written in the default manner.

STGC_OVERWRITE Indicates that the commit operation can overwrite existing data to
reduce overall space requirements. However, this is not a safe flag to
use in most instances, as it is possible for the commit operation to fail
before all changes are made, resulting in a corrupted file. This value
does cause the system to check for adequate space before writing.

STGC_ONLYIFCURRENT Commits changes to the object only if there have been no changes to
it since the calling process opened it. If another process has opened
the storage object and committed changes, this flag causes the func-
tion to fail.

STGC_DANGEROUSLYCOMMIT-
MERELYTODISKCACHE

Commits changes to a write-behind disk cache but does not write
the cache to disk. The cache is typically written to disk some time
after the commit operation returns.

STGC_CONSOLIDATE Windows 2000 and later: Consolidates and defragments a storage
file after changes are committed. This flag is valid only for root
storages open in transact mode and has no effect on substorages.
This flag can be combined with any other flag in this table.

Table 11-4: IStorage.Commit return value failure codes

Value Description

STG_S_MULTIPLEOPENS Changes were committed, but the storage file could not be consoli-
dated because it was opened multiple times with the STGM_NO-
SNAPSHOT flag specified.

STG_S_CANNOTCONSOLIDATE Changes were committed, but the storage file could not be consoli-
dated because the storage was opened in an incorrect mode.

STG_S_CONSOLIDATIONFAILED Changes were committed, but the storage file could not be consoli-
dated because of an internal error.

E_PENDING There is a pending commitment of data, some or all of which may
not be available. This is used for asynchronous storages only.

STG_E_INVALIDFLAG or
STG_E_INVALIDPARAMETER

The value for the grfCommitFlags parameter is not valid.

STG_E_NOTCURRENT Indicates that another instance of the storage object is open, and the
other instance has committed changes. Committing changes from the
current instance will overwrite any previous changes.

STG_E_MEDIUMFULL There is not enough space left on the storage device to write
changes.

STG_E_TOOMANYOPENFILES Indicates that there are too many open files.

STG_E_REVERTED Indicates that the storage object has been reverted.

538 � Chapter 11

IStorage.CopyTo ActiveX.pas

Syntax

CopyTo(

ciidExclude: Longint; {number of exclude elements}

rgiidExclude: PIID; {array of interface identifiers}

snbExclude: TSNB; {string name block}

const stgDest: IStorage {destination storage interface}

): HResult; {returns on OLE result}

Description

This method copies the contents of one storage into another. The copy process is recur-

sive, and will copy all substorages and streams unless otherwise excluded. The

information from the source storage is merged with that of the destination storage. Any

streams in the destination storage that have the same name as streams in the source

storage will be copied over. However, substorages with the same name will not be

replaced in this manner; any information in the substorage of the source is copied into

the storage of the same name in the destination.

Parameters

ciidExclude: Indicates the number of elements in the array pointed to by the

rgiidExclude parameter. If rgiidExclude is set to NIL, this parameter is ignored.

rgiidExclude: An array of interface identifiers that indicate which interfaces should be

excluded from the copy operation. For example, including IID_IStorage in this array

will cause the operation to copy everything but IStorage objects.

snbExclude: A null-terminated string that specifies a block of storage or stream objects

to be excluded from the copy operation. If IID_IStorage is included in the array pointed

to by the rgiidExclude parameter, this parameter is ignored.

stgDest: A pointer to the IStorage interface of the destination storage object to which

information is copied.

Return Value

If the function succeeds, it returns S_OK; otherwise, it returns an OLE failure result

code from the following table.

See Also

IStorage.MoveElementTo, IStorage.Revert, IStream.CopyTo, StgCreateDocFile,

StgOpenStorage

Example

■ Listing 11-7: Copying a structured storage file

procedure TfrmMain.Button1Click(Sender: TObject);
var
OrgStore, DestStore: IStorage;

begin

Shell File Functions � 539

C
h

a
p

te
r
1
1

{if the user selects a file...}
if dlgOpen.Execute then
{...and it is a storage file...}
if StgIsStorageFile(PWideChar(WideString(dlgOpen.FileName))) = S_OK then
begin
{open this structured storage file}
StgOpenStorage(PWideChar(WideString(dlgOpen.FileName)), nil,

STGM_READWRITE or STGM_SHARE_EXCLUSIVE,
nil, 0, OrgStore);

{create a new structured storage file}
StgCreateDocFile(PWideChar(WideString(ExtractFilePath(dlgOpen.FileName) +

'CopyOf' + ExtractFileName(dlgOpen.FileName))),
STGM_READWRITE or STGM_SHARE_EXCLUSIVE,
0, DestStore);

{copy the file to the destination}
OrgStore.CopyTo(0, nil, nil, DestStore);

{the new file may be smaller than the original due to consolidation}
ShowMessage('Copy completed, open and view the copied file in the structured storage

file editor');
end
else
MessageBox(Handle, 'The selected file is not a structured storage file',

'Not a Structured Storage File', MB_ICONWARNING or MB_OK);
end;

Table 11-5: IStorage.CopyTo return values

Value Description

E_PENDING There is a pending commitment of data, some or all
of which may not be available. This is used for asyn-
chronous storages only.

STG_E_ACCESSDENIED Indicates that the destination storage object is a child
of the source storage object or the application does
not have permission to access the destination file.

STG_E_INSUFFICIENTMEMORY Operation failed due to insufficient available memory.

STG_E_INVALIDPOINTER The destination storage object pointer is invalid.

STG_E_INVALIDPARAMETER The value of one of the parameters is invalid.

STG_E_MEDIUMFULL There is not enough space left on the storage device
to write changes.

STG_E_TOOMANYOPENFILES Indicates that there are too many open files.

STG_E_REVERTED Indicates that the storage object has been reverted.

IStorage.CreateStorage ActiveX.pas

Syntax

CreateStorage(

pwcsName: POleStr; {the storage name}

grfMode: Longint; {access mode flags}

540 � Chapter 11

dwStgFmt: Longint; {reserved, set to zero}

reserved2: Longint; {reserved, set to zero}

out stg: IStorage {pointer to an IStorage interface}

): HResult; {returns an OLE result}

Description

This method creates and opens a new substorage within the source storage object.

Parameters

pwcsName: A null-terminated string indicating the name of the newly created storage

object. If a storage with this name already exists and the STGM_CREATE flag is speci-

fied in grfMode, the existing storage is deleted and a new one created in its place. If the

STGM_CONVERT flag is specified in grfMode, the existing storage is converted into

a stream named “CONTENTS” and placed into the new storage.

grfMode: Flags indicating the access mode for the new storage. This parameter can be

one or more values from Table 11-6.

dwStgFmt: Reserved; must be set to zero.

reserved2: Reserved; must be set to zero.

stg: When the function returns, this parameter will point to a valid IStorage interface

for the newly created storage object.

Return Value

If the function succeeds, it returns S_OK; otherwise, it returns an OLE failure result

code from Table 11-7 and the stg parameter returns NIL.

See Also

IStorage.CopyTo, StgCreateDocFile

Example

Please see Listing 11-4 under StgCreateDocFile.

Table 11-6: IStorage.CreateStorage grfMode values

Value Description

STGM_READ Indicates that the object’s data can be accessed but not
modified. Cannot be combined with STGM_WRITE or
STGM_READWRITE.

STGM_WRITE Indicates that the object’s data can be modified but not
accessed. Cannot be combined with STGM_READ or
STGM_READWRITE.

STGM_READWRITE Indicates that the object’s data can be both accessed and
modified. Cannot be combined with STGM_READ or
STGM_WRITE.

Shell File Functions � 541

C
h

a
p

te
r
1
1

Value Description

STGM_SHARE_DENY_NONE Indicates that other processes are not denied read or
write access to the object when opened. This is the
default behavior. Cannot be combined with other
STGM_SHAREXXX flags.

STGM_SHARE_DENY_READ Indicates that other processes cannot open the object
with read access. Cannot be combined with other
STGM_SHAREXXX flags.

STGM_SHARE_DENY_WRITE Indicates that other processes cannot open the object
with write access. Cannot be combined with other
STGM_SHAREXXX flags.

STGM_SHARE_EXCLUSIVE Indicates that other processes cannot open the object in
any mode. Cannot be combined with other
STGM_SHAREXXX flags.

STGM_PRIORITY Provides exclusive access to the most recently commit-
ted version of the object and prevents other processes
from committing changes to the object while it is
opened in priority mode. The STGM_DIRECT and
STGM_READ flags must be used with this flag.

STGM_CREATE Indicates that the specified object should be created.
Cannot be used with STGM_CONVERT.

STGM_CONVERT Creates the specified object and copies any existing data
into a stream named CONTENTS. Cannot be used
with STGM_CREATE.

STGM_FAILIFTHERE Causes the function to fail if the specified object already
exists. This is the default behavior.

STGM_DIRECT Causes any changes to be written as they occur. Cannot
be combined with STGM_TRANSACTED.

STGM_TRANSACTED Any changes to the object are buffered and are only
written when the Commit method is called. Call the
Revert method to discard any changes since the last call
to Commit. Cannot be combined with STGM_DIRECT.

STGM_NOSCRATCH Must be used with STGM_TRANSACTED. This causes
the system to use any unused areas of the original file as
a “scratch” storage space for uncommitted changes.
Without this flag, a temporary file is created to store
uncommitted changes.

STGM_NOSNAPSHOT Any changes to the file are written to the end of the file,
instead of making a temporary copy of the file. When
the file is opened using this flag, no other process can
open the file without also using this flag. This flag can
only be used in combination with STGM_TRANS-
ACTED, and only if the STGM_SHARE_EXCLUSIVE and
STGM_SHARE_DENY_WRITE flags are not specified.
This can lead to very large files.

542 � Chapter 11

Value Description

STGM_SIMPLE Creates a simple compound structured storage file. It
offers efficient performance but does not support
substorages, and all streams are a minimum of 4Kb in
size.

STGM_DIRECT_SWMR Provides direct mode for single-writer, multi-reader
operations.

Table 11-7: IStorage.CreateStorage return values

Value Description

E_PENDING There is a pending commitment of data, some or all of
which may not be available. This is used for asynchron-
ous storages only.

STG_E_ACCESSDENIED Indicates the application does not have permission to
access the destination file.

STG_E_FILEALREADYEXISTS Indicates that a storage of the specified name already
exists. This is returned as a result of using the
STGM_FAILIFTHERE flag.

STG_E_INSUFFICIENTMEMORY Operation failed due to insufficient available memory.

STG_E_INVALIDFLAG The value of the grfMode parameter is not valid.

STG_E_INVALIDFUNCTION The combination of values specified in grfMode is
invalid.

STG_E_INVALIDNAME The value specified in the pwcsName parameter is
invalid.

STG_E_INVALIDPOINTER The destination storage object pointer is invalid.

STG_E_INVALIDPARAMETER The value of one of the parameters is invalid.

STG_E_MEDIUMFULL There is not enough space left on the storage device to
write changes.

STG_E_TOOMANYOPENFILES Indicates that there are too many open files.

STG_S_CONVERTED Indicates that an existing storage with the same name
has been converted into a stream called CONTENTS.

IStorage.CreateStream ActiveX.pas

Syntax

CreateStream(

pwcsName: POleStr; {the stream name}

grfMode: Longint; {access mode flags}

reserved1: Longint; {reserved, set to zero}

reserved2: Longint; {reserved, set to zero}

out stm: IStream {pointer to an IStream interface}

): HResult; {returns an OLE result}

Description

This method creates and opens a new stream within the source storage object.

Shell File Functions � 543

C
h

a
p

te
r
1
1

Parameters

pwcsName: A null-terminated string indicating the name of the newly created stream.

grfMode: Flags indicating the access mode for the new stream. This parameter can be

one or more values from Table 11-8.

reserved1: Reserved; must be set to zero.

reserved2: Reserved; must be set to zero.

stm: When the function returns, this parameter will point to a valid IStream interface

for the newly created stream object.

Return Value

If the function succeeds, it returns S_OK; otherwise, it returns an OLE failure result

code from Table 11-9 and the stm parameter returns NIL.

See Also

IStorage.OpenStream, IStream.Clone, IStream.CopyTo

Example

Please see Listing 11-13 under StgCreateDocFile.

Table 11-8: IStorage.CreateStream grfMode values

Value Description

STGM_READ Indicates that the object’s data can be accessed but not
modified. Cannot be combined with STGM_WRITE or
STGM_READWRITE.

STGM_WRITE Indicates that the object’s data can be modified but not
accessed. Cannot be combined with STGM_READ or
STGM_READWRITE.

STGM_READWRITE Indicates that the object’s data can be both accessed and
modified. Cannot be combined with STGM_READ or
STGM_WRITE.

STGM_SHARE_DENY_NONE Indicates that other processes are not denied read or
write access to the object when opened. This is the
default behavior. Cannot be combined with other
STGM_SHAREXXX flags.

STGM_SHARE_DENY_READ Indicates that other processes cannot open the object
with read access. Cannot be combined with other
STGM_SHAREXXX flags.

STGM_SHARE_DENY_WRITE Indicates that other processes cannot open the object
with write access. Cannot be combined with other
STGM_SHAREXXX flags.

STGM_SHARE_EXCLUSIVE Indicates that other processes cannot open the object in
any mode. Cannot be combined with other
STGM_SHAREXXX flags.

544 � Chapter 11

TE
AM
FL
Y

Team-Fly®

Value Description

STGM_PRIORITY Provides exclusive access to the most recently commit-
ted version of the object, and prevents other processes
from committing changes to the object while it is opened
in priority mode. The STGM_DIRECT and STGM_READ
flags must be used with this flag.

STGM_CREATE Indicates that the specified object should be created.

STGM_FAILIFTHERE Causes the function to fail if the specified object already
exists. This is the default behavior.

Table 11-9: IStorage.CreateStream return values

Value Description

E_PENDING There is a pending commitment of data, some or all of
which may not be available. This is used for asynchron-
ous storages only.

STG_E_ACCESSDENIED Indicates the application does not have permission to
access the destination file.

STG_E_FILEALREADYEXISTS Indicates that a stream of the specified name already
exists. This is returned as a result of using the
STGM_FAILIFTHERE flag.

STG_E_INSUFFICIENTMEMORY Operation failed due to insufficient available memory.

STG_E_INVALIDFLAG The value of the grfMode parameter is not valid.

STG_E_INVALIDFUNCTION The combination of values specified in grfMode is invalid.

STG_E_INVALIDNAME The value specified in the pwcsName parameter is
invalid.

STG_E_INVALIDPOINTER The destination stream object pointer is invalid.

STG_E_INVALIDPARAMETER The value of one of the parameters is invalid.

STG_E_REVERTED Indicates that the storage object has been reverted.

STG_E_TOOMANYOPENFILES Indicates that there are too many open files.

IStorage.DestroyElement ActiveX.pas

Syntax

DestroyElement(

pwcsName: POleStr {storage or stream name}

): HResult; {returns an OLE result}

Description

This function removes the indicated storage or stream object from the source storage

object. If this method is called on a storage object opened in transacted mode, the stor-

age object’s Commit method must be called for the change to take place. After a call to

DestroyElement, any interfaces referencing the destroyed element are no longer valid.

Shell File Functions � 545

C
h

a
p

te
r
1
1

Parameters

pwcsName: A null-terminated string indicating the name of the storage or stream

object to delete.

Return Value

If the function succeeds, it returns S_OK; otherwise, it returns an OLE failure result

code from the following table.

See Also

IStorage.CreateStorage, IStorage.CreateStream

Example

Please see Listing 11-4 in the introduction.

Table 11-10: IStorage.DestroyElement return values

Value Description

E_PENDING There is a pending commitment of data, some or all
of which may not be available. This is used for asyn-
chronous storages only.

STG_E_ACCESSDENIED Indicates the application does not have permission to
access the destination file.

STG_E_FILENOTFOUND Indicates the named element does not exist.

STG_E_INSUFFICIENTMEMORY Operation failed due to insufficient available memory.

STG_E_INVALIDNAME The value specified in the pwcsName parameter is
invalid.

STG_E_INVALIDPOINTER The destination stream object pointer is invalid.

STG_E_INVALIDPARAMETER The value of one of the parameters is invalid.

STG_E_REVERTED Indicates that the storage object has been reverted.

STG_E_TOOMANYOPENFILES Indicates that there are too many open files.

IStorage.EnumElements ActiveX.pas

Syntax

EnumElements(

reserved1: Longint; {reserved, set to zero}

reserved2: Pointer; {reserved, set to NIL}

reserved3: Longint; {reserved, set to zero}

out enm: IEnumStatStg {pointer to an IEnumStatStg interface}

): HResult; {returns an OLE result}

Description

This method retrieves an interface to an enumeration object, allowing the application to

enumerate the storages and streams within the object. The storage object must be

opened using a read mode before its elements can be enumerated.

546 � Chapter 11

�Note: The IEnumStatStg interface is not detailed in this book, but an

example of its use is given below.

Parameters

reserved1: Reserved; must be set to zero.

reserved2: Reserved; must be set to NIL.

reserved3: Reserved; must be set to zero.

enm: When the function returns, this parameter will point to a valid IEnumStatStg

interface. This interface provides methods for enumerating the streams and storages

within the storage object. This enumeration returns data about the storage or stream in

a TStatStg record. This record is defined as:

TStatStg = record

pwcsName: POleStr; {the object name}

dwType: Longint; {the object type}

cbSize: Largeint; {the stream size}

mtime: TFileTime; {last modification time}

ctime: TFileTime; {the creation time}

atime: TFileTime; {last access time}

grfMode: Longint; {access mode flags}

grfLocksSupported: Longint; {region locking types supported}

clsid: TCLSID; {storage object class identifier}

grfStateBits: Longint; {current state bits}

reserved: Longint; {reserved, not used}

end;

pwcsName: A null-terminated string indicating the name of the storage or stream

object.

dwType: Indicates the type of object being enumerated. This can be one value

from Table 11-11.

cbSize: Indicates the size of a stream object, in bytes.

mtime: Indicates the last modification time of the stream or storage object.

ctime: Indicates the creation time of the stream or storage object.

atime: Indicates the last access time of the stream or storage object.

grfMode: Indicates the access mode flags used when the storage or stream was

created or opened. See IStorage.CreateStorage or IStorage.CreateStream for more

information.

grfLocksSupported: Indicates the supported region locking types for a stream

object. This can be one value from Table 11-12.

Shell File Functions � 547

C
h

a
p

te
r
1
1

�Note: The compound structured storage file implementation of the IStream

interface does not support range locking, so this member should

always contain zero (unless range locking is implemented in a future

version of the structured storage file objects).

clsid: Indicates the class identifier for storage objects. This member is set to

CLSID_NULL for newly created storages.

grfStateBits: Indicates the value set by the most recent call to

IStorage.SetStateBits for storage objects.

reserved: This member is not used.

Return Value

If the function succeeds, it returns S_OK; otherwise, it returns an OLE failure result

code from Table 11-13.

See Also

IStorage.CreateStorage, IStorage.CreateStream, IStorage.Stat

Example

Please see Listing 11-4 in the introduction and other examples in this chapter.

Table 11-11: IStorage.EnumElements TStatStg.dwType values

Value Description

STGTY_STORAGE Indicates a storage object.

STGTY_STREAM Indicates a stream object.

STGTY_LOCKBYTES Indicates a byte-array object.

STGTY_PROPERTY Indicates a property storage object.

Table 11-12: IStorage.EnumElements TStatStg.grfLocksSupported values

Value Description

LOCK_WRITE Write access to a range of bytes.

LOCK_EXCLUSIVE Read and write access to a range of bytes.

Table 11-13: IStorage.EnumElements return values

Value Description

E_PENDING There is a pending commitment of data, some or all of
which may not be available. This is used for asynchron-
ous storages only.

STG_E_INSUFFICIENTMEMORY Operation failed due to insufficient available memory.

STG_E_INVALIDPARAMETER The value of one of the parameters is invalid.

STG_E_REVERTED Indicates that the storage object has been reverted.

548 � Chapter 11

IStorage.MoveElementTo ActiveX.pas

Syntax

MoveElementTo(

pwcsName: POleStr; {name of element to move}

const stgDest: IStorage; {pointer to destination IStorage interface}

pwcsNewName: POleStr; {new name of element}

grfFlags: Longint {move operation flags}

): HResult; {returns an OLE result}

Description

This method moves a substorage or stream object from one storage object to another.

Parameters

pwcsName: A null-terminated string containing the name of the substorage or stream to

move.

stgDest: A pointer to the destination storage object.

pwcsNewName: A null-terminated string indicating the name given to the substorage

or stream in the new storage object.

grfFlags: A flag indicating the type of move operation performed. This may be one

value from Table 11-14.

Return Value

If the function succeeds, it returns S_OK; otherwise, it returns an OLE failure result

code from Table 11-15.

See Also

IStorage.CopyTo

Example

■ Listing 11-8: Moving substreams into the root storage

{a recursive function called to enumerate a storage and populate the tree view}
procedure TfrmMain.EnumerateStorage(Tree: TTreeView; ParentNode: TTreeNode;

Store: IStorage);
var
SubStore: IStorage; // an IStorage interface
Enumerator: IEnumStatStg; // the enumerator interface
StatInfo: TStatStg; // statistical information record
SubNode: TTreeNode; // tree node

begin
{get the enumerator}
Store.EnumElements(0, nil, 0, Enumerator);

{begin enumerating the subelements in this storage}
while Enumerator.Next(1, StatInfo, nil) = S_OK do
begin
{if this is a storage element...}

Shell File Functions � 549

C
h

a
p

te
r
1
1

if StatInfo.dwType = STGTY_STORAGE then
begin
{open the storage}
Store.OpenStorage(StatInfo.pwcsName, nil, STGM_READWRITE or

STGM_SHARE_EXCLUSIVE, nil, 0, SubStore);

{add a node to the treeview}
SubNode := Tree.Items.AddChild(ParentNode, StatInfo.pwcsName);

{set appropriate image indexes}
SubNode.ImageIndex := 0;
SubNode.SelectedIndex := 0;

{recursively enumerate this storage}
EnumerateStorage(Tree, SubNode, SubStore);

end
else
begin
{add a node to the treeview}
SubNode := Tree.Items.AddChild(ParentNode, StatInfo.pwcsName);

{set appropriate image indexes}
SubNode.ImageIndex := 1;
SubNode.SelectedIndex := 1;

end;
end;

end;

procedure TfrmMain.FormCreate(Sender: TObject);
var
TopNode: TTreeNode;
SubStore: IStorage;

begin
{open this structured storage file}
StgOpenStorage('TestStrucFile.tmp', nil,

STGM_READWRITE or STGM_SHARE_EXCLUSIVE,
nil, 0, RootStore);

{add a node to the treeview}
TopNode := treBefore.Items.Add(nil, 'TestStrucFile.tmp');

{set the image index}
TopNode.ImageIndex := 0;
TopNode.SelectedIndex := 0;

{enumerate this root storage object}
EnumerateStorage(treBefore, TopNode, RootStore);

{expand the treeview}
TopNode.Expand(TRUE);

{open the substorage}
RootStore.OpenStorage('Substorage1', nil, STGM_READWRITE or

STGM_SHARE_EXCLUSIVE, nil, 0, SubStore);

550 � Chapter 11

{move the two streams in this substorage into the root storage}
SubStore.MoveElementTo('Substream1', RootStore, 'CopyOfSubStream1',

STGMOVE_MOVE);
SubStore.MoveElementTo('Substream2', RootStore, 'CopyOfSubStream2',

STGMOVE_MOVE);

{close the substorage}
SubStore := nil;

{add a node to the treeview}
TopNode := treAfter.Items.Add(nil, 'TestStrucFile.tmp');

{set the image index}
TopNode.ImageIndex := 0;
TopNode.SelectedIndex := 0;

{enumerate this root storage object}
EnumerateStorage(treAfter, TopNode, RootStore);

{expand the treeview}
TopNode.Expand(TRUE);

end;

Table 11-14: IStorage.MoveElementTo grfFlags values

Value Description

STGMOVE_MOVE Copies the information from the source to the desti-
nation and then removes it from the source.

STGMOVE_COPY Copies the information from the source to the
destination.

Table 11-15: IStorage.MoveElementTo return values

Value Description

E_PENDING There is a pending commitment of data, some or all of
which may not be available. This is used for asynchron-
ous storages only.

STG_E_ACCESSDENIED Indicates the application does not have permission to
access the destination file.

STG_E_FILENOTFOUND Indicates the named element does not exist.

Shell File Functions � 551

C
h

a
p

te
r
1
1

Figure 11-4:

The modified

structured

storage file

Value Description

STG_E_FILEALREADYEXISTS Indicates that a stream or storage of the specified
name already exists in the destination storage.

STG_E_INSUFFICIENTMEMORY Operation failed due to insufficient available memory.

STG_E_INVALIDFLAG The value of the grfFlags parameter is not valid.

STG_E_INVALIDNAME The value specified in the pwcsName parameter is
invalid.

STG_E_INVALIDPOINTER The destination storage object pointer is invalid.

STG_E_INVALIDPARAMETER The value of one of the parameters is invalid.

STG_E_REVERTED Indicates that the storage object has been reverted.

STG_E_TOOMANYOPENFILES Indicates that there are too many open files.

IStorage.OpenStorage ActiveX.pas

Syntax

OpenStorage(

pwcsName: POleStr; {the name of the substorage object}

const stgPriority: IStorage; {IStorage interface opened in priority mode}

grfMode: Longint; {access mode flags}

snbExclude: TSNB; {unused, set to NIL}

reserved: Longint; {unused, set to zero}

out stg: IStorage {returns a pointer to an IStorage interface}

): HResult; {returns an OLE result}

Description

This method opens the specified substorage within the source storage object.

Parameters

pwcsName: A null-terminated string indicating the name of the substorage object to

open.

stgPriority: A pointer to an IStorage interface for a substorage element of the storage

object that has been opened in priority mode. When this function returns, the interface

supplied to this parameter is no longer valid, and the application should subsequently

use the interface returned in the stg parameter. This parameter can be set to NIL.

grfMode: Flags indicating the access mode for the storage. This parameter can be one

or more values from Table 11-16.

�Note: The STGM_SHARE_EXCLUSIVE flag must be used in combination

with any other specified flag.

snbExclude: Unused; set to NIL.

reserved: Reserved; must be set to zero.

552 � Chapter 11

stg: When the function returns, this parameter will point to a valid IStorage interface

for the opened substorage object.

Return Value

If the function succeeds, it returns S_OK; otherwise, it returns an OLE failure result

code from Table 11-17, and the stg parameter returns NIL.

See Also

IStorage.OpenStream, StgCreateDocFile, StgOpenStorage

Example

Please see Listing 11-4 in the introduction.

Table 11-16: IStorage.OpenStorage grfMode values

Value Description

STGM_READ Indicates that the object’s data can be accessed but not
modified. Cannot be combined with STGM_WRITE or
STGM_READWRITE.

STGM_WRITE Indicates that the object’s data can be modified but not
accessed. Cannot be combined with STGM_READ or
STGM_READWRITE.

STGM_READWRITE Indicates that the object’s data can be both accessed and
modified. Cannot be combined with STGM_READ or
STGM_WRITE.

STGM_SHARE_EXCLUSIVE Indicates that other processes cannot open the object in any
mode. This flag must be used.

STGM_PRIORITY Provides exclusive access to the most recently committed
version of the object. The STGM_DIRECT and
STGM_READ flags must be used with this flag.

STGM_DIRECT Causes any changes to be written as they occur. Cannot be
combined with STGM_TRANSACTED.

STGM_TRANSACTED Any changes to the object are buffered and are only written
when the Commit method is called. Call the Revert method
to discard any changes since the last call to Commit. Cannot
be combined with STGM_DIRECT.

STGM_NOSCRATCH Must be used with STGM_TRANSACTED. This causes the
system to use any unused areas of the original file as a
“scratch” storage space for uncommitted changes. Without
this flag, a temporary file is created to store uncommitted
changes.

STGM_SIMPLE Opens the compound structured storage file in simple mode.
It offers efficient performance but does not support
substorages, and all streams are a minimum of 4Kb in size.

STGM_DIRECT_SWMR Provides direct mode for single-writer, multi-reader
operations.

Shell File Functions � 553

C
h

a
p

te
r
1
1

Table 11-17: IStorage.OpenStorage return values

Value Description

E_PENDING There is a pending commitment of data, some or all of
which may not be available. This is used for asynchron-
ous storages only.

STG_E_ACCESSDENIED Indicates the application does not have permission to
access the destination file.

STG_E_FILENOTFOUND Indicates the named element does not exist.

STG_E_INSUFFICIENTMEMORY Operation failed due to insufficient available memory.

STG_E_INVALIDFLAG The value of the grfMode parameter is not valid.

STG_E_INVALIDFUNCTION The combination of values specified in grfMode is
invalid.

STG_E_INVALIDNAME The value specified in the pwcsName parameter is
invalid.

STG_E_INVALIDPOINTER The destination storage object pointer is invalid.

STG_E_INVALIDPARAMETER The value of one of the parameters is invalid.

STG_E_REVERTED Indicates that the storage object has been reverted.

STG_E_TOOMANYOPENFILES Indicates that there are too many open files.

STG_S_CONVERTED Indicates that an existing storage with the same name
has been converted into a stream called CONTENTS.

IStorage.OpenStream ActiveX.pas

Syntax

OpenStream(

pwcsName: POleStr; {the name of the stream}

reserved1: Pointer; {reserved, set to NIL}

grfMode: Longint; {access mode flags}

reserved2: Longint; {reserved, set to zero}

out stm: IStream {returns a pointer to an IStream interface}

): HResult; {returns an OLE result}

Description

This method opens a stream within the storage object.

Parameters

pwcsName: A null-terminated string indicating the name of the stream to open.

reserved1: Reserved; must be set to NIL.

grfMode: Flags indicating the access mode for the stream. This parameter can be one or

more values from Table 11-18.

�Note: The STGM_SHARE_EXCLUSIVE flag must be used in combination

with any other specified flag.

554 � Chapter 11

TE
AM
FL
Y

Team-Fly®

reserved2: Reserved; must be set to zero.

stm: When the function returns, this parameter will point to a valid IStream interface

for the opened stream object.

Return Value

If the function succeeds, it returns S_OK; otherwise, it returns an OLE failure result

code from Table 11-19, and the stm parameter returns NIL.

See Also

IStorage.CreateStream

Example

Please see Listing 11-4 in the introduction.

Table 11-18: IStorage.OpenStream grfMode values

Value Description

STGM_READ Indicates that the object’s data can be accessed but not
modified. Cannot be combined with STGM_WRITE or
STGM_READWRITE.

STGM_WRITE Indicates that the object’s data can be modified but not
accessed. Cannot be combined with STGM_READ or
STGM_READWRITE.

STGM_READWRITE Indicates that the object’s data can be both accessed
and modified. Cannot be combined with STGM_READ
or STGM_WRITE.

STGM_SHARE_EXCLUSIVE Indicates that other processes cannot open the object
in any mode. This flag must be used.

Table 11-19: IStorage.OpenStream return values

Value Description

E_PENDING There is a pending commitment of data, some or all of
which may not be available. This is used for asynchron-
ous storages only.

STG_E_ACCESSDENIED Indicates the application does not have permission to
access the destination file.

STG_E_FILENOTFOUND Indicates the named element does not exist.

STG_E_INSUFFICIENTMEMORY Operation failed due to insufficient available memory.

STG_E_INVALIDFLAG The value of the grfMode parameter is not valid.

STG_E_INVALIDFUNCTION The combination of values specified in grfMode is
invalid.

STG_E_INVALIDNAME The value specified in the pwcsName parameter is
invalid.

STG_E_INVALIDPOINTER The destination stream object pointer is invalid.

STG_E_INVALIDPARAMETER The value of one of the parameters is invalid.

Shell File Functions � 555

C
h

a
p

te
r
1
1

Value Description

STG_E_REVERTED Indicates that the storage object has been reverted.

STG_E_TOOMANYOPENFILES Indicates that there are too many open files.

IStorage.RenameElement ActiveX.pas

Syntax

RenameElement(

pwcsOldName: POleStr; {old element name}

pwcsNewName: POleStr {new element name}

): HResult; {returns an OLE result}

Description

This method renames a substorage or stream object within the storage. This method can

only rename substorage or stream objects that are not currently open.

Parameters

pwcsOldName: A null-terminated string indicating the name of the substorage or

stream to rename.

pwcsNewName: A null-terminated string indicating the new name of the substorage or

stream.

Return Value

If the function succeeds, it returns S_OK; otherwise, it returns an OLE failure result

code from the following table.

See Also

IStorage.CreateStorage, IStorage.CreateStream, IStorage.OpenStorage,

IStorage.OpenStream

Example

Please see Listing 11-4 in the introduction.

Table 11-20: IStorage.RenameElement return values

Value Description

E_PENDING There is a pending commitment of data, some or all
of which may not be available. This is used for asyn-
chronous storages only.

STG_E_ACCESSDENIED Indicates the application does not have permission to
access the destination file, or the renamed element is
open.

STG_E_FILENOTFOUND Indicates the named element does not exist.

STG_E_INSUFFICIENTMEMORY Operation failed due to insufficient available memory.

STG_E_INVALIDNAME The value specified in the pwcsOldName or
pwcsNewName parameter is invalid.

556 � Chapter 11

Value Description

STG_E_REVERTED Indicates that the storage object has been reverted.

STG_E_TOOMANYOPENFILES Indicates that there are too many open files.

IStorage.Revert ActiveX.pas

Syntax

Revert: HResult; {returns an OLE result}

Description

This method causes storage objects opened in transacted mode to discard all changes

made since the last call to IStorage.Commit. Any pointers to open substorages or

stream objects within the reverted storage object are invalidated and should be

released.

�Note: This method has no effect if the storage object is opened in direct

mode.

Return Value

If the function succeeds, it returns S_OK; otherwise, it returns an OLE failure result

code from the following table.

See Also

IStorage.CreateStorage, StgCreateDocFile

Example

Please see Listing 11-4 in the introduction.

Table 11-21: IStorage.Revert return values

Value Description

E_PENDING There is a pending commitment of data, some or all
of which may not be available. This is used for asyn-
chronous storages only.

STG_E_INSUFFICIENTMEMORY Operation failed due to insufficient available memory.

STG_E_REVERTED Indicates that the storage object has been reverted.

STG_E_TOOMANYOPENFILES Indicates that there are too many open files.

IStorage.SetClass ActiveX.pas

Syntax

SetClass(

const clsid: TCLSID {a class identifier}

): HResult; {returns an OLE result}

Shell File Functions � 557

C
h

a
p

te
r
1
1

Description

This method assigns the specified class identifier to the storage object.

Parameters

clsid: The class identifier to associate with the storage object.

Return Value

If the function succeeds, it returns S_OK; otherwise, it returns an OLE failure result

code from the following table.

See Also

IStorage.EnumElements, IStorage.Stat

Example

Please see Listing 11-4 in the introduction.

Table 11-22: IStorage.SetClass return values

Value Description

E_PENDING There is a pending commitment of data, some or all of which
may not be available. This is used for asynchronous storages
only.

STG_E_ACCESSDENIED Indicates the application does not have permission to access
the destination file.

STG_E_REVERTED Indicates that the storage object has been reverted.

IStorage.Stat ActiveX.pas

Syntax

Stat(

out statstg: TStatStg; {TStatStg statistical information structure}

grfStatFlag: Longint {statistic exclusion flags}

): HResult; {returns an OLE result}

Description

This method returns a structure initialized with statistical information regarding the

storage object.

Parameters

statstg: A pointer to a TStatStg structure that is initialized with storage information.

TStatStg is defined as:

TStatStg = record

pwcsName: POleStr; {the object name}

dwType: Longint; {the object type}

cbSize: Largeint; {the stream size}

mtime: TFileTime; {last modification time}

558 � Chapter 11

ctime: TFileTime; {the creation time}

atime: TFileTime; {last access time}

grfMode: Longint; {access mode flags}

grfLocksSupported: Longint; {region locking types supported}

clsid: TCLSID; {storage object class identifier}

grfStateBits: Longint; {current state bits}

reserved: Longint; {reserved, not used}

end;

See IStorage.EnumElements for more details.

grfStatFlag: Flags indicating whether or not the pwcsName member of the TStatStg

structure should be returned. This can be one value from Table 11-23.

Return Value

If the function succeeds, it returns S_OK; otherwise, it returns an OLE failure result

code from Table 11-24.

See Also

IStorage.EnumElements, IStream.Stat

Example

Please see Listing 11-4 in the introduction.

Table 11-23: IStorage.Stat grfStatFlag values

Value Description

STATFLAG_DEFAULT Returns the element name in the pwcsName member.

STATFLAG_NONAME Does not return the element name in the pwcsName
member. This saves on resources and reduces the time
required to retrieve the information.

Table 11-24: IStorage.Stat return values

Value Description

E_PENDING There is a pending commitment of data, some or all of
which may not be available. This is used for asynchron-
ous storages only.

STG_E_ACCESSDENIED Indicates the application does not have permission to
access the file.

STG_E_INSUFFICIENTMEMORY Operation failed due to insufficient available memory.

STG_E_INVALIDFLAG The value of the grfStatFlag parameter is not valid.

STG_E_INVALIDPARAMETER The value of one of the parameters is invalid.

Shell File Functions � 559

C
h

a
p

te
r
1
1

IStream.Clone ActiveX.pas

Syntax

Clone(

out stm: IStream {returns an IStream interface}

): HResult; {returns an OLE result}

Description

This method returns an IStream interface with its own seek position that references the

same bytes as the original stream. Any changes made to one stream are reflected in the

other, and range locking is shared between the objects. When the new stream is

returned, its seek position is at the same point in the stream as that of the original.

Parameters

stm: When the function returns, this parameter will point to a valid IStream interface

for the cloned stream object.

Return Value

If the function succeeds, it returns S_OK; otherwise, it returns an OLE failure result

code from the following table.

See Also

IStorage.CreateStream, IStorage.OpenStream

Example

■ Listing 11-9: Reading data from a cloned stream

procedure TForm1.FormCreate(Sender: TObject);
var
RootStore: IStorage;
OrgStream, CloneStream: IStream;
StreamBuffer: PChar;
SeekPos: Largeint; // seek position variable
BytesReadWritten: Longint; // bytes written variable

begin
{open this structured storage file }
StgOpenStorage('StreamCloneTest.tmp', nil, STGM_READWRITE or

STGM_SHARE_EXCLUSIVE, nil, 0, RootStore);

{open the stream object}
RootStore.OpenStream('Stream1', nil, STGM_READWRITE or STGM_SHARE_EXCLUSIVE,

0, OrgStream);

{clone the stream}
OrgStream.Clone(CloneStream);

{allocate a buffer large enough to hold the entire stream contents}
GetMem(StreamBuffer, 11);
FillMemory(StreamBuffer, 11, 0);

560 � Chapter 11

{retrieve the entire stream contents}
OrgStream.Seek(0, STREAM_SEEK_SET, SeekPos);
OrgStream.Read(StreamBuffer, 10, @BytesReadWritten);

{display the stream contents}
memBefore.Text := StreamBuffer;

{now, define some new data}
StreamBuffer := '9876543210'#0;

{write the information starting at the front of the stream}
OrgStream.Seek(0, STREAM_SEEK_SET, SeekPos);
OrgStream.Write(StreamBuffer, 10, @BytesReadWritten);

{empty the buffer}
FillMemory(StreamBuffer, 11, 0);

{now, retrieve the entire stream contents of the cloned stream}
CloneStream.Seek(0, STREAM_SEEK_SET, SeekPos);
CloneStream.Read(StreamBuffer, 10, @BytesReadWritten);

{display the stream contents. this should match what we just wrote,
even though that data was written to the original stream}
memAfter.Text := StreamBuffer;

end;

Table 11-25: IStream.Clone return values

Value Description

STG_E_INSUFFICIENTMEMORY Operation failed due to insufficient available memory.

STG_E_INVALIDPOINTER The destination stream object pointer is invalid.

STG_E_REVERTED Indicates that the storage object has been reverted.

IStream.CopyTo ActiveX.pas

Syntax

CopyTo(

stm: IStream; {destination stream interface}

cb: Largeint; {number of bytes to copy}

out cbRead: Largeint; {number of bytes read from source}

out cbWritten: Largeint {number of bytes written to destination}

): HResult; {returns an OLE result}

Description

This method copies the indicated number of bytes from one stream into another. The

copy begins at the current seek position in the source stream and is copied into the des-

tination stream beginning at the destination stream’s seek position. The destination

stream can be the same as the source, and the seek position in each stream is adjusted

by the number of bytes read or written.

Shell File Functions � 561

C
h

a
p

te
r
1
1

Parameters

stm: A pointer to the destination stream object.

cb: Indicates the number of bytes to copy.

cbRead: A variable receiving the number of bytes read from the destination stream.

cbWritten: A variable receiving the number of bytes written to the destination stream.

Return Value

If the function succeeds, it returns S_OK, and the values returned in the cbRead and

cbWritten parameters are equal. If the function fails, it returns an OLE failure result

code from the following table, but the values returned in cbRead and cbWritten are

undefined and the seek positions in each stream are invalid.

See Also

IStorage.CopyTo, IStorage.CreateStream, IStream.Clone

Example

Please see Listing 11-4 in the introduction.

Table 11-26: IStream.CopyTo return values

Value Description

STG_E_INVALIDPOINTER The destination stream object pointer is invalid.

STG_E_MEDIUMFULL There is not enough space left on the storage device to
write changes.

STG_E_REVERTED Indicates that the storage object has been reverted.

IStream.Read ActiveX.pas

Syntax

Read(

pv: Pointer; {a pointer to a destination buffer}

cb: Longint; {number of bytes to read}

pcbRead: PLongint {number of bytes read}

): HResult; {returns an OLE result}

Description

This method reads the indicated number of bytes from the stream into a buffer, starting

at the stream’s current seek position. The stream must be opened in a read mode, and

the seek position is advanced by the number of bytes read.

Parameters

pv: A pointer to a buffer that receives the bytes read from the stream.

cb: Indicates the number of bytes to read from the stream into the buffer.

562 � Chapter 11

pcbRead: Indicates the number of bytes actually read from the stream. This parameter

can be set to NIL.

Return Value

If the function succeeds, it returns S_OK; otherwise, it returns an OLE failure result

code from the following table, but the value returned in pcbRead is undefined and the

seek position is invalid.

See Also

IStream.Write

Example

Please see Listing 11-4 in the introduction.

Table 11-27: IStream.Read return values

Value Description

S_FALSE Indicates that data could not be read from the stream.

STG_E_ACCESSDENIED Indicates the application does not have read permission to
access the stream.

STG_E_INVALIDPOINTER The destination stream object pointer is invalid.

STG_E_REVERTED Indicates that the storage object has been reverted.

IStream.Seek ActiveX.pas

Syntax

Seek(

dlibMove: Largeint; {number of bytes to move}

dwOrigin: Longint; {seek origin flags}

out libNewPosition: Largeint {returns the new seek position}

): HResult; {returns an OLE result}

Description

This method moves the seek position of the stream by the specified value according to

the flags specified in the dwOrigin parameter.

�Note: Setting the seek position before the beginning of the stream causes

the method to fail. However, setting the seek position past the end of

the stream is legal.

Parameters

dlibMove: Indicates the number of bytes to move the seek pointer, as defined by the

dwOrigin value. Set this parameter to zero and dwOrigin to STREAM_SEEK_CUR to

retrieve the current seek position.

Shell File Functions � 563

C
h

a
p

te
r
1
1

dwOrigin: A flag indicating the relative origin of the offset specified by the dlibMove

parameter. This can be one value from Table 11-28.

libNewPosition: When the function returns, this variable receives the updated seek

position, relative to the beginning of the stream.

Return Value

If the function succeeds, it returns S_OK; otherwise, it returns an OLE failure result

code from Table 11-29.

See Also

IStream.Read, IStream.Write

Example

Please see Listing 11-4 in the introduction.

Table 11-28: IStream.Seek dwOrigin values

Value Description

STREAM_SEEK_SET Indicates the new seek pointer is an offset relative to the
beginning of the stream. The offset uses the absolute value
of the dlibMove parameter.

STREAM_SEEK_CUR Indicates the new seek pointer is an offset relative to the
current seek pointer.

STREAM_SEEK_END Indicates the new seek pointer is an offset relative to the
end of the stream.

Table 11-29: IStream.Seek return values

Value Description

STG_E_INVALIDFUNCTION Either the dwOrigin parameter contains an invalid value or
the dlibMove parameter contains an invalid offset.

STG_E_REVERTED Indicates that the storage object has been reverted.

IStream.SetSize ActiveX.pas

Syntax

SetSize(

libNewSize: Largeint {the new size of the stream}

): HResult; {returns an OLE result}

Description

This method sets the size of the stream object. If the new size is larger than the original

stream, the new bytes are initialized to an undefined value. If the new size is smaller,

the stream data is truncated. The seek position is not affected by this method.

Parameters

libNewSize: Indicates the new size of the stream object, in bytes.

564 � Chapter 11

TE
AM
FL
Y

Team-Fly®

�Note: The structured storage file implementation of streams restricts their

size to a maximum of 232 bytes.

Return Value

If the function succeeds, it returns S_OK; otherwise, it returns an OLE failure result

code from the following table.

See Also

IStorage.CreateStream, IStream.Write

Example

Please see Listing 11-4 in the introduction.

Table 11-30: IStream.SetSize return values

Value Description

STG_E_INVALIDFUNCTION Indicates the libNewSize parameter is invalid.

STG_E_MEDIUMFULL There is not enough space left on the storage device to
write changes.

STG_E_REVERTED Indicates that the storage object has been reverted.

IStream.Stat ActiveX.pas

Syntax

Stat(

out statstg: TStatStg; {TStatStg statistical information structure}

grfStatFlag: Longint {statistic exclusion flags}

): HResult; {returns an OLE result}

Description

This method returns a structure initialized with statistical information regarding the

stream object.

Parameters

statstg: A pointer to a TStatStg structure that is initialized with stream information.

TStatStg is defined as:

TStatStg = record

pwcsName: POleStr; {the object name}

dwType: Longint; {the object type}

cbSize: Largeint; {the stream size}

mtime: TFileTime; {last modification time}

ctime: TFileTime; {the creation time}

atime: TFileTime; {last access time}

grfMode: Longint; {access mode flags}

grfLocksSupported: Longint; {region locking types supported}

Shell File Functions � 565

C
h

a
p

te
r
1
1

clsid: TCLSID; {storage object class identifier}

grfStateBits: Longint; {current state bits}

reserved: Longint; {reserved, not used}

end;

See IStorage.EnumElements for more details.

grfStatFlag: Flags indicating whether or not the pwcsName member of the TStatStg

structure should be returned. This can be one value from Table 11-31.

Return Value

If the function succeeds, it returns S_OK; otherwise, it returns an OLE failure result

code from Table 11-32.

See Also

IStorage.EnumElements, IStorage.Stat

Example

Please see Listing 11-4 in the introduction.

Table 11-31: IStream.Stat grfStatFlag values

Value Description

STATFLAG_DEFAULT Returns the element name in the pwcsName member.

STATFLAG_NONAME Does not return the element name in the pwcsName
member. This saves on resources and reduces the time
required to retrieve the information.

Table 11-32: IStream.Stat return values

Value Description

STG_E_ACCESSDENIED Indicates the application does not have permission to
access the stream.

STG_E_INSUFFICIENTMEMORY Operation failed due to insufficient available memory.

STG_E_INVALIDFLAG The value of the grfStatFlag parameter is not valid.

STG_E_INVALIDPARAMETER The value of one of the parameters is invalid.

IStream.Write ActiveX.pas

Syntax

Write(

pv: Pointer; {a pointer to a source buffer}

cb: Longint; {number of bytes to write}

pcbWritten: PLongint {number of bytes written}

): HResult; {returns an OLE result}

Description

This method writes the indicated number of bytes from the buffer into the stream, start-

ing at the stream’s current seek position. The stream must be opened in a write mode,

566 � Chapter 11

and the seek position is advanced by the number of bytes written. This method

increases the size of a stream if the seek position is at the end of the stream data when

the write occurs.

�Note: If the seek position is past the end of the stream when this method is

called, the buffer is written to the stream and the stream size is

increased appropriately, but the bytes between the end of the stream

and the seek position’s original position are initialized to undefined

values.

Parameters

pv: A pointer to the buffer containing the data to be written to the stream.

cb: Indicates the number of bytes to write from the buffer into the stream.

pcbWritten: Indicates the number of bytes actually written to the stream. This parame-

ter can be set to NIL.

Return Value

If the function succeeds, it returns S_OK; otherwise, it returns an OLE failure result

code from the following table, but the value returned in pcbWritten is undefined and

the seek position is invalid.

See Also

IStream.Read

Example

Please see Listing 11-4 in the introduction.

Table 11-33: IStream.Write return values

Value Description

STG_E_ACCESSDENIED Indicates the application does not have write permission to
the stream.

STG_E_CANTSAVE Data cannot be written to the disk for reasons unrelated to
access restrictions or insufficient storage space.

STG_E_INVALIDPOINTER The destination stream object pointer is invalid.

STG_E_REVERTED Indicates that the storage object has been reverted.

STG_E_WRITEFAULT Indicates a failure due to a disk error (returned when the
storage is opened using the STGM_SIMPLE flag).

SHAddToRecentDocs ShlObj.pas

Syntax

SHAddToRecentDocs(

uFlags: UINT; {a value indicating the contents of the pv parameter}

Shell File Functions � 567

C
h

a
p

te
r
1
1

pv: Pointer {a pointer to a buffer or an item ID list}

); {this procedure does not return a value}

Description

This function adds or removes files to the recent documents list. This list is accessed

through the Start button in the Documents menu item. Only registered documents

(those that have an associated executable file) can be added to this list.

Parameters

uFlags: A value indicating what the pv parameter contains. This parameter can contain

one value from the following table.

pv: Either a pointer to a null-terminated string containing the path and filename of a

document or a pointer to an item identifier list uniquely identifying the document. If

this parameter is NIL, the recent documents list is cleared.

See Also

SHGetFileInfo

Example

■ Listing 11-10: Adding a document to the recent documents list

procedure TForm1.Button1Click(Sender: TObject);
begin
{clear all documents from the recent docs list}
SHAddToRecentDocs(SHARD_PATH, nil);

end;

procedure TForm1.FileListBox1DblClick(Sender: TObject);
var
TheFileName: string;

begin
{retrieve the filename of the selected document}
TheFileName := FileListBox1.FileName;

{add it to the recent docs list. note that the file must be registered (must have an
associated executable) before it is added to the list}
SHAddToRecentDocs(SHARD_PATH, PChar(TheFileName));

end;

568 � Chapter 11

Table 11-34: SHAddToRecentDocs uFlags values

Value Description

SHARD_PATH The pv parameter contains the address of a null-terminated string con-
taining the path and filename of a document.

SHARD_PIDL The pv parameter contains the address of an item identifier list uniquely
identifying the document.

SHFileOperation ShellAPI.pas

Syntax

SHFileOperation(

const lpFileOp: TSHFileOpStruct {a pointer to a file operation data structure}

): Integer; {returns an integer value}

Description

This function copies, deletes, moves, or renames files or folders.

�Note: Use fully qualified path names with this function if it is used in a

multithreaded application. Using relative path names is not

thread-safe.

Parameters

lpFileOp: A TSHFileOpStruct that contains information about the files and the action

to perform. This structure is defined as:

TSHFileOpStruct = record

Wnd: HWND; {a handle to a window}

Shell File Functions � 569

C
h

a
p

te
r
1
1

Figure 11-5:

A document

was added to

the list

wFunc: UINT; {a flag indicating the operation}

pFrom: PAnsiChar; {a pointer to the source file names}

pTo: PAnsiChar; {a pointer to the destination names}

fFlags: FILEOP_FLAGS; {operation control flags}

fAnyOperationsAborted: BOOL; {aborted operation flag}

hNameMappings: Pointer; {a handle to a filename mapping object}

lpszProgressTitle: PAnsiChar; {the progress dialog box title}

end;

Wnd: A handle to a window used to display the progress of the file operation.

wFunc: A flag indicating the operation to perform. This member can be one value

from Table 11-35.

pFrom: A pointer to a buffer containing the filenames upon which to perform the

indicated operation. If multiple filenames are specified, each must be separated

with a null terminating character, and the entire buffer must end with two null ter-

minating characters. If the filenames do not contain a path, the source directory is

assumed to be the directory as reported by the GetCurrentDirectory function.

Standard DOS wildcard characters (i.e., “*”, “?”) can be used in the filename.

pTo: A pointer to a buffer containing the name of the destination file or directory.

If the fFlags member contains FOF_MULTIDESTFILES, this buffer can contain

multiple destination filenames, one for each source file. Each destination file-

name must be separated with a null terminating character, and the entire buffer

must end with two null terminating characters. If the filenames do not contain a

path, the destination directory is assumed to be the directory as reported by the

GetCurrentDirectory function. DOS wildcard characters cannot be used in this

member. For move and copy operations, destination directories that do not exist

are created when possible.

fFlags: An array of flags indicating the type of operation to perform on the speci-

fied files. This member can contain one or more values from Table 11-36.

fAnyOperationsAborted: This member receives a value of TRUE if any file oper-

ations were aborted by the user before completion. Otherwise, it receives a value

of FALSE.

hNameMappings: If the fFlags member contains the FOF_WANTMAPPING-

HANDLE flag, this member receives a pointer to a THandleToMappings struc-

ture containing an array of TSHNameMapping structures. These structures

contain the old and new path and filename for each file that was moved, copied,

or renamed. The filename mapping structure must be deleted using the

SHFreeNameMappings function.

lpszProgressTitle: A null-terminated string used as the title for the progress dia-

log box. This member is used only if the fFlags member contains the

FOF_SIMPLE- PROGRESS flag.

The THandleToMappings structure pointed to by the hNameMappings member is

defined as:

THandleToMappings = packed record

uNumberOfMappings: integer; {number of name mapping structures}

570 � Chapter 11

lpSHNameMapping: PSHNameMapping; {array of name mapping structures}

end;

uNumberOfMappings: Indicates the number of TSHNameMapping structures

pointed to by the lpSHNameMapping member.

lpSHNameMapping: Contains a pointer to the first TSHNameMapping structure

in the array.

The TSHNameMapping structures pointed to by the THandleToMappings structure

pointed to by the hNameMappings member are defined as:

TSHNameMapping = record

pszOldPath: PAnsiChar; {a pointer to a string}

pszNewPath: PAnsiChar; {a pointer to a string}

cchOldPath: Integer; {a string size value}

cchNewPath: Integer; {a string size value}

end;

pszOldPath: A null-terminated string specifying the original path and filename.

pszNewPath: A null-terminated string specifying the new path and filename.

cchOldPath: The number of characters in the pszOldPath member.

cchNewPath: The number of characters in the pszNewPath member.

Return Value

If the function succeeds, it returns a number greater than zero; otherwise, it returns

zero.

See Also

GetCurrentDirectory, SetCurrentDirectory, ShellExecute, SHFreeNameMappings

Example

■ Listing 11-11: Copying a file

type
{this structure is not defined in Delphi}
THandleToMappings = packed record
uNumberOfMappings: integer;
lpSHNameMapping: PSHNameMapping;

end;

const
{these SHFileOperation constants are not defined in Delphi}
FOF_NOCOPYSECURITYATTRIBS = $0800; // don’t copy NT file Security Attributes
FOF_NORECURSION = $1000; // don't recurse into directories
FOF_NO_CONNECTED_ELEMENTS = $2000; // don't operate on connected elements
FOF_WANTNUKEWARNING = $4000; // warn if deleting

var
Form1: TForm1;

Shell File Functions � 571

C
h

a
p

te
r
1
1

implementation

{$R *.DFM}

procedure TForm1.Button1Click(Sender: TObject);
var
FileOpInfo: TSHFileOpStruct; // holds information about the file
FileMappings: THandleToMappings; // holds the name mappings
iCount: Integer; // loop control
NameMapping: PSHNameMapping; // a name mapping structure

begin
with FileOpInfo do
begin
Wnd := Form1.Handle;
wFunc := FO_COPY; // perform a copy
pFrom := PChar(FileListBox1.FileName+#0+#0); // the source
pTo := PChar(DirectoryListBox2.Directory); // the destination directory

{indicate that we want files to be renamed if they already exist,
we want a mapping handle, and no recursion}
fFlags := FOF_RENAMEONCOLLISION or FOF_WANTMAPPINGHANDLE or FOF_NORECURSION;

end;

{perform the file operation}
SHFileOperation(FileOpInfo);

{if a mapping handle was returned, we had some files renamed, so let's
list their original file name}
if FileOpInfo.hNameMappings <> nil then
begin
{get the file mappings structure}
FileMappings := THandleToMappings(FileOpInfo.hNameMappings^);

{prepare to show the names}
memLog.Lines.Clear;
memLog.Lines.Add('Number of Files Renamed: ' +

IntToStr(FileMappings.uNumberOfMappings));

{loop through the file mapping array, displaying the original path
and file name of any files that were renamed}
NameMapping := FileMappings.lpSHNameMapping;
for iCount := 0 to FileMappings.uNumberOfMappings - 1 do
begin
memLog.Lines.Add(string(NameMapping.pszOldPath));
Inc(NameMapping);

end;

{finally, free the file mapping object}
SHFreeNameMappings(Cardinal(FileOpInfo.hNameMappings));

end;
end;

572 � Chapter 11

Table 11-35: SHFileOperation lpFileOp.wFunc values

Value Description

FO_COPY Copies the files specified by the pFrom member to the
location specified by the pTo member.

FO_DELETE Deletes the files specified by the pFrom member. The
pTo member is ignored.

FO_MOVE Moves the files specified by the pFrom member to the
location specified by the pTo member.

FO_RENAME Renames the files specified by the pFrom member. The
pTo member is ignored.

Table 11-36: SHFileOperation lpFileOp.fFlags values

Value Description

FOF_ALLOWUNDO The specified file is deleted to the recycle bin. If the
pFrom member does not contain a fully qualified path,
this value is ignored.

FOF_FILESONLY The operation is performed only on files if a wildcard
filename is specified (i.e., “*.pas”).

FOF_MULTIDESTFILES The pTo member contains one destination file for each
source file instead of one directory to which all source
files are deposited.

FOF_NOCONFIRMATION The user is never asked for confirmation, and the oper-
ation continues as if a response of “yes to all” was
indicated.

FOF_NOCONFIRMMKDIR Automatically creates a new directory if one is needed
without asking the user for confirmation.

FOF_NOCOPYSECURITYATTRIBS Windows NT/2000 and later: Does not copy the file
security attributes.

FOF_NOERRORUI There is no visual indication if an error occurs.

FOF_NORECURSION Performs the file operation on the files in the local
directory only and does not continue file operations in
subdirectories.

Shell File Functions � 573

C
h

a
p

te
r
1
1

Figure 11-6:

The file was

copied

Value Description

FOF_RENAMEONCOLLISION The source file is automatically given a new name, such
as “Copy #1 of..,” in a move, copy, or rename opera-
tion if a file in the target directory already has the same
name.

FOF_SILENT Does not display a progress dialog box.

FOF_SIMPLEPROGRESS Displays a progress dialog box but does not show
filenames.

FOF_WANTMAPPINGHANDLE The hNameMappings member receives a handle to a
filename mapping object if any files were renamed.
FOF_RENAMEONCOLLISION must be used in con-
junction with this flag.

FOF_WANTNUKEWARNING Displays a warning dialog box when a file is deleted.

SHFreeNameMappings ShellAPI.pas

Syntax

SHFreeNameMappings(

hNameMappings: THandle {a handle to a filename mapping object}

); {this procedure does not return a value}

Description

This function frees the filename mapping object as returned by the SHFileOperation

function.

Parameters

hNameMappings: A handle to the filename mapping object to free.

See Also

SHFileOperation

Example

Please see Listing 11-11 under SHFileOperation.

SHGetFileInfo ShellAPI.pas

Syntax

SHGetFileInfo(

pszPath: PAnsiChar; {a pointer to a filename string}

dwFileAttributes: DWORD; {file attribute flags}

var psfi: TSHFileInfo; {a pointer to a TSHFileInfo structure}

cbFileInfo: UINT; {the size of the TSHFileInfo structure}

uFlags: UINT {information retrieval flags}

): DWORD; {returns a double word value}

574 � Chapter 11

TE
AM
FL
Y

Team-Fly®

Description

This function retrieves information about a file, folder, directory, or drive root.

Parameters

pszPath: A pointer to a null-terminated string containing the path and filename of the

file whose information is to be retrieved. This can be either a long filename or in the

DOS 8.3 filename format. If the uFlags parameter contains the SHGFI_PIDL flag, this

parameter can point to an item identifier list for the file.

dwFileAttributes: An array of flags indicating the file attribute flags. This parameter

may contain one or more of the values from Table 11-37. If the uFlags parameter does

not contain the SHGFI_USEFILEATTRIBUTES flag, this parameter is ignored.

psfi: A pointer to a TSHFileInfo data structure. This structure contains the requested

information about the specified file. The TSHFileInfo structure is defined as:

TSHFileInfo = record

hIcon: HICON; {an icon handle}

iIcon: Integer; {an icon index}

dwAttributes: DWORD; {attribute flags}

szDisplayName: array [0..MAX_PATH-1] of AnsiChar; {display name string}

szTypeName: array [0..79] of AnsiChar; {file type string}

end;

hIcon: A handle to the icon that represents the specified file.

iIcon: The index of the file’s icon within the system image list.

dwAttributes: An array of flags that indicates the file’s attributes. This member

can be one or more of the values from Table 11-37.

szDisplayName: A null-terminated string indicating the display name of the spec-

ified file as it appears in the shell.

szTypeName: A null-terminated string describing the type of the specified file.

cbFileInfo: The size, in bytes, of the TSHFileInfo structure pointed to by the psfi

parameter. This parameter should be set to SizeOf(TSHFileInfo).

uFlags: An array of flags indicating the type of information to retrieve. This

parameter can be one or more of the values from Table 11-38.

Return Value

If the function succeeds, it returns a value greater than zero. Otherwise, it returns zero.

See Table 11-38 for descriptions of the return value.

See Also

ExtractAssociatedIcon, ExtractIcon, FindExecutable

Shell File Functions � 575

C
h

a
p

te
r
1
1

Example

■ Listing 11-12: Retrieving information about a file

const
{Delphi does not define these SHGetFileInfo constants}
SHGFI_ADDOVERLAYS = $000000020; // apply the appropriate overlays
SHGFI_OVERLAYINDEX = $000000040; // get the index of the overlay
SHGFI_ATTR_SPECIFIED = $000020000; // get only specified attributes

procedure TForm1.FileListBox1DblClick(Sender: TObject);
var
FileInfo: TSHFileInfo; // holds information about a file
TempIcon: TIcon; // a temporary icon object
ExeTypeInfo: DWORD; // for determining exe type
ExeType: string; // holds exe type indicator

begin
{retrieve information about the selected file}
SHGetFileInfo(PChar(FileListBox1.Filename), 0, FileInfo, SizeOf(TSHFileInfo),
SHGFI_DISPLAYNAME or SHGFI_ICON or SHGFI_TYPENAME);

{see if this is an executable}
ExeTypeInfo := SHGetFileInfo(PChar(FileListBox1.Filename), 0, FileInfo,

SizeOf(TSHFileInfo), SHGFI_EXETYPE);

{display the information about the selected file}
with ListBox1.Items do
begin
Clear;
Add('Display Name: ' + FileInfo.szDisplayName);
Add('Type Name: ' + FileInfo.szTypeName);
Add('Icon index: ' + IntToStr(FileInfo.iIcon));

{if this is an executable, display its type}
if LoWord(ExeTypeInfo) <> 0 then
begin
ExeType := Char(Lobyte(Loword(ExeTypeInfo))) +

Char(Hibyte(Loword(ExeTypeInfo)));

if (ExeType = 'NE') or (ExeType = 'PE') then
Add('Executable - Windows Application');

if ExeType = 'MZ' then
Add('Executable - DOS .exe, .com, or .bat');

end;
end;

{create a temporary icon object so we can
display the file icon in the image object}
TempIcon := TIcon.Create;
TempIcon.Handle := FileInfo.hIcon;
Image1.Picture.Assign(TempIcon);
TempIcon.Free;

end;

576 � Chapter 11

Table 11-37: SHGetFileInfo dwFileAttributes values

Value Description

FILE_ATTRIBUTE_READONLY The file is read only.

FILE_ATTRIBUTE_HIDDEN The file is hidden.

FILE_ATTRIBUTE_SYSTEM The file is a system file.

FILE_ATTRIBUTE_DIRECTORY The file is a directory folder.

FILE_ATTRIBUTE_ARCHIVE The file is an archive file.

FILE_ATTRIBUTE_NORMAL The file does not have any attributes.

FILE_ATTRIBUTE_TEMPORARY The file is a temporary file.

FILE_ATTRIBUTE_COMPRESSED The file is compressed.

Table 11-38: SHGetFileInfo uFlags values

Value Description

SHGFI_ADDOVERLAYS Apply appropriate overlays to the icon. This flag must be used in con-
junction with the SHGFI_ICON flag.

SHGFI_ATTR_SPECIFIED Used in combination with SHGFI_ATTRIBUTES, this flag indicates
that the dwAttributes member of the TSHFileInfo structure contains
the specific attributes that are desired.

SHGFI_ATTRIBUTES Retrieves the attributes of the specified file. These values are copied
to the dwAttributes member of the TSHFileInfo structure pointed to
by the psfi parameter.

SHGFI_DISPLAYNAME Retrieves the display name of the specified file. This string is copied
to the szDisplayName member of the TSHFileInfo structure pointed
to by the psfi parameter.

FOF_RENAMEONCOLLISION If the pszPath parameter points to an executable file, this flag returns
the type of executable file. The low-order word of the return value
will contain one of the following values:

0: Non-executable file

NE, PE: Windows application (high-order word will not be zero)

MZ: DOS executable, .com, or .bat file

Shell File Functions � 577

C
h

a
p

te
r
1
1

Figure 11-7:

The file

information

Value Description

SHGFI_EXETYPE (cont.) PE: Win32 console application (high-order word will be zero)

Note: This flag may not be used with any other flags.

SHGFI_ICON Retrieves a handle to the icon that represents the specified file. The
icon handle is copied to the hIcon member of the TSHFileInfo struc-
ture pointed to by the psfi parameter. The index of the icon in the
system image list is copied to the iIcon member of the TSHFileInfo
structure pointed to by the psfi parameter. The function returns the
handle to the system image list.

SHGFI_ICONLOCATION Retrieves the name of the file containing the icon that represents the
specified file. This filename is copied to the szDisplayName member
of the TSHFileInfo structure pointed to by the psfi parameter.

SHGFI_LARGEICON Retrieves the specified file’s large icon. This flag must be used in con-
junction with the SHGFI_ICON flag.

SHGFI_LINKOVERLAY Adds the link overlay graphic to the specified file’s icon. This flag
must be used in conjunction with the SHGFI_ICON flag.

SHGFI_OPENICON Retrieves the specified file’s open icon. This flag must be used in con-
junction with the SHGFI_ICON flag.

SHGFI_OVERLAYINDEX Returns the index of the overlay icon in the upper eight bits of the
iIcon member of the TSHFileInfo structure pointed to by the psfi
parameter.

SHGFI_PIDL Indicates that the pszPath parameter points to an item identifier list
instead of a path name.

SHGFI_SELECTED The file’s icon is combined with the system’s highlight color. This flag
must be used in conjunction with the SHGFI_ICON flag.

SHGFI_SHELLICONSIZE Retrieves the specified file’s icon modified to the size displayed by
the shell. This flag must be used in conjunction with the
SHGFI_ICON flag.

SHGFI_SMALLICON Retrieves the specified file’s small icon. This flag must be used in con-
junction with the SHGFI_ICON flag.

SHGFI_SYSICONINDEX Retrieves the index of the specified file’s icon within the system
image list. The icon index is copied to the iIcon member of the
TSHFileInfo structure pointed to by the psfi parameter. The function
returns the handle to the system image list.

SHGFI_TYPENAME Retrieves a string describing the specified file’s type. This string is
copied to the szTypeName of the TSHFileInfo structure pointed to
by the psfi parameter.

SHGFI_USEFILEATTRIBUTES Indicates the function should retrieve information only on files that
have the attributes specified by the dwFileAttributes parameter.

578 � Chapter 11

StgCreateDocFile ActiveX.pas

Syntax

StgCreateDocfile(

pwcsName: POleStr; {path and filename of structured storage file}

grfMode: Longint; {access mode flags}

reserved: Longint; {reserved, must be zero}

out stgOpen: IStorage {returns a pointer to an IStorage interface}

): HResult; {returns an OLE result}

Description

This function creates a new compound structured storage file.

�Note: If the file is created in transaction mode (i.e., the grfMode parameter

contains the STGM_TRANSACTED flag), changes to the file are not

reflected in the file system until IStorage.Commit is called.

Parameters

pwcsName: A null-terminated string containing the path and filename of the compound

structured storage file to create. If no path is given, the file will be created in the cur-

rent directory. If this parameter is set to NIL, the system creates a file with a unique

name.

grfMode: A series of flags indicating the access mode for the compound structured

storage file. This can be one or more values from Table 11-39.

reserved: Unused; must be set to zero.

stgOpen: If the function succeeds, this parameter returns a pointer to an IStorage inter-

face representing the created compound structured storage file.

Return Value

If the function succeeds, it returns S_OK; otherwise, it returns an OLE failure result

code from Table 11-40.

See Also

StgIsStorageFile, StgOpenStorage

Example

■ Listing 11-13: Creating a structured storage file

implementation

const
{Delphi does not define these constants}
STGM_NOSNAPSHOT = $00200000;
STGM_DIRECT_SWMR = $00400000;

STGC_CONSOLIDATE = 8;

Shell File Functions � 579

C
h

a
p

te
r
1
1

{$R *.dfm}

type
{our simple data structure}
TProprietaryInfo = record
InfoStr: shortstring;
InfoInt: Integer;

end;

procedure TForm1.Button1Click(Sender: TObject);
var
InfoStream: IStream; // points to the stream
RootStore: IStorage; // points to the root storage object
ProprietaryInfo: TProprietaryInfo; // our data structure
BytesWritten: Longint; // number of bytes written

begin
{initialize our data structure with some information}
ProprietaryInfo.InfoStr := 'Delphi Rocks!';
ProprietaryInfo.InfoInt := 12345;

{create a structured storage file on the disk, opened for writing}
StgCreateDocFile('ExampleFile.tst', STGM_CREATE or STGM_READWRITE or

STGM_SHARE_EXCLUSIVE, 0, RootStore);

{create the stream to hold our data}
RootStore.CreateStream('InfoBlock1', STGM_CREATE or STGM_READWRITE or

STGM_SHARE_EXCLUSIVE, 0, 0, InfoStream);

{now write the data into the stream}
InfoStream.Write(@ProprietaryInfo, SizeOf(TProprietaryInfo), @BytesWritten);

{when our interface objects go out of scope, Delphi frees them automatically,
and our data is flushed to the disk.}
ShowMessage('Structured Storage File Created');
Button1.Enabled := FALSE;

end;

procedure TForm1.Button2Click(Sender: TObject);
var
InfoStream: IStream; // points to the stream
RootStore: IStorage; // points to the root storage object
ProprietaryInfo: TProprietaryInfo; // our data structure
BytesRead: Longint; // number of bytes read

begin
{open the structured storage file that was previously created}
StgOpenStorage('ExampleFile.tst', nil, STGM_READWRITE or

STGM_SHARE_EXCLUSIVE, nil, 0, RootStore);

{open the stream within the structured storage file}
RootStore.OpenStream('InfoBlock1', nil, STGM_READ or

STGM_SHARE_EXCLUSIVE, 0, InfoStream);

{read the data from the stream into our data structure}
InfoStream.Read(@ProprietaryInfo, SizeOf(TProprietaryInfo), @BytesRead);

580 � Chapter 11

{display the data}
Label1.Caption := ProprietaryInfo.InfoStr;
Label2.Caption := IntToStr(ProprietaryInfo.InfoInt);

end;

Table 11-39: StgCreateDocFile grfMode values

Value Description

STGM_READ Indicates that the object’s data can be accessed but not modified. Can-
not be combined with STGM_WRITE or STGM_READWRITE.

STGM_WRITE Indicates that the object’s data can be modified, but not accessed. Can-
not be combined with STGM_READ or STGM_READWRITE.

STGM_READWRITE Indicates that the object’s data can be both accessed and modified.
Cannot be combined with STGM_READ or STGM_WRITE.

STGM_SHARE_DENY_NONE Indicates that other processes are not denied read or write access to
the object when opened. This is the default behavior. Cannot be com-
bined with other STGM_SHAREXXX flags.

STGM_SHARE_DENY_READ Indicates that other processes cannot open the object with read
access. Cannot be combined with other STGM_SHAREXXX flags.

STGM_SHARE_DENY_WRITE Indicates that other processes cannot open the object with write
access. Cannot be combined with other STGM_SHAREXXX flags.

STGM_SHARE_EXCLUSIVE Indicates that other processes cannot open the object in any mode.
Cannot be combined with other STGM_SHAREXXX flags.

STGM_PRIORITY Provides exclusive access to the most recently committed version of
the object and prevents other processes from committing changes to
the object while it is opened in priority mode. The STGM_DIRECT and
STGM_READ flags must be used with this flag, and the STGM_
DELETEONRELEASE flag must not be included.

STGM_CREATE Indicates that the specified object should be created. Any existing file
with the same name is deleted. Cannot be used with STGM_CON-
VERT.

STGM_CONVERT Creates the specified object and copies any existing data into a stream
named CONTENTS. Cannot be used with STGM_CREATE or
STGM_DELETEONRELEASE.

STGM_FAILIFTHERE Causes the function to fail if the specified object already exists. This is
the default behavior.

STGM_DIRECT Causes any changes to be written as they occur. Cannot be combined
with STGM_TRANSACTED.

STGM_TRANSACTED Any changes to the object are buffered and are only written when the
Commit method is called. Call the Revert method to discard any
changes since the last call to Commit. Cannot be combined with
STGM_DIRECT.

STGM_NOSCRATCH Must be used with STGM_TRANSACTED. This causes the system to
use any unused areas of the original file as a “scratch” storage space for
uncommitted changes. Without this flag, a temporary file is created to
store uncommitted changes.

Shell File Functions � 581

C
h

a
p

te
r
1
1

Value Description

STGM_NOSNAPSHOT Any changes to the file are written to the end of the file, instead of
making a temporary copy of the file. When the file is opened using this
flag, no other process can open the file without also using this flag. This
flag can only be used in combination with STGM_TRANSACTED and
only if the STGM_SHARE_EXCLUSIVE and STGM_SHARE_DENY
_WRITE flags are not specified. This can lead to very large files.

STGM_SIMPLE Creates a simple compound structured storage file. It offers efficient
performance but does not support substorages, and all streams are a
minimum of 4Kb in size.

STGM_DIRECT_SWMR Provides direct mode for single-writer, multi-reader operations.

STGM_DELETEONRELEASE Indicates that the file should be automatically destroyed when the
object is released. This flag is most often used when creating tempo-
rary files. Cannot be used simultaneously with STGM_CONVERT or
STGM_PRIORITY.

Table 11-40: StgCreateDocFile return values

Value Description

STG_E_ACCESSDENIED Indicates the application does not have permission to access the desti-
nation file.

STG_E_FILEALREADYEXISTS Indicates that a stream of the specified name already exists. This is
returned as a result of using the STGM_FAILIFTHERE flag.

STG_E_INSUFFICIENTMEMORY Operation failed due to insufficient available memory.

STG_E_INVALIDFLAG The value of the grfMode parameter is not valid.

STG_E_INVALIDFUNCTION The combination of values specified in grfMode is invalid.

STG_E_INVALIDNAME The value specified in the pwcsName parameter is invalid.

STG_E_INVALIDPOINTER The destination storage object pointer is invalid.

STG_E_SHAREVIOLATION Indicates that another process has the file open and locked.

STG_E_TOOMANYOPENFILES Indicates that there are too many open files.

STG_S_CONVERTED Indicates that an existing storage with the same name has been con-
verted into a stream called CONTENTS.

StgIsStorageFile ActiveX.pas

Syntax

StgIsStorageFile(

pwcsName: POleStr {path and filename of structured storage file}

): HResult; {returns an OLE result}

Description

This function indicates if the specified file is a compound structured storage file.

Parameters

pwcsName: A null-terminated string containing the path and filename of the compound

structured storage file.

582 � Chapter 11

Return Value

If the specified file is a compound structured storage file, it returns S_OK; otherwise, it

returns S_FALSE. The function returns STG_E_FILENOTFOUND if the specified file

could not be found.

See Also

StgCreateDocFile, StgOpenStorage

Example

Please see Listing 11-4 in the introduction and other examples in this chapter.

StgOpenStorage ActiveX.pas

Syntax

StgOpenStorage(

pwcsName: POleStr; {path and filename of structured storage file}

stgPriority: IStorage; {IStorage interface open in priority mode}

grfMode: Longint; {access mode flags}

snbExclude: TSNB; {elements to be excluded}

reserved: Longint; {reserved, must be zero}

out stgOpen: IStorage {returns a pointer to an IStorage interface}

): HResult; {returns an OLE result}

Description

This function opens a compound structured storage file and returns an IStorage inter-

face for the root storage of the specified file.

Parameters

pwcsName: A null-terminated string containing the path and filename of the compound

structured storage file to open.

stgPriority: A pointer to an IStorage interface for a root storage object that has been

opened in priority mode. When this function returns, the interface supplied to this

parameter is no longer valid, and the application should subsequently use the interface

returned in the stgOpen parameter. This parameter can be set to NIL.

grfMode: A series of flags indicating the access mode for the compound structured

storage file. This can be one or more values from Table 11-41.

snbExclude: A pointer to a series of element names that are excluded when the storage

file is opened (TSNB is defined as a PWideChar, so this is simply a pointer to a

null-terminated string). When the storage is opened, any excluded streams are set to a

length of zero and any excluded substorages have all of their elements removed. It is

typically used when reading storages opened in priority mode. The application is

responsible for rewriting the contents of any excluded items before changes are com-

mitted. This parameter can be set to NIL.

reserved: Reserved; must be set to zero.

Shell File Functions � 583

C
h

a
p

te
r
1
1

stgOpen: If the function succeeds, this parameter returns a pointer to an IStorage inter-

face representing the created compound structured storage file.

Return Value

If the function succeeds, it returns S_OK; otherwise, it returns an OLE failure result

code from Table 11-42.

See Also

StgCreateDocFile, StgIsStorageFile

Example

Please see Listing 11-13 under StgCreateDocFile and other examples in this chapter.

Table 11-41: StgOpenStorage grfMode values

Value Description

STGM_READ Indicates that the object’s data can be accessed but not modified. Can-
not be combined with STGM_WRITE or STGM_READWRITE.

STGM_WRITE Indicates that the object’s data can be modified but not accessed. Can-
not be combined with STGM_READ or STGM_READWRITE.

STGM_READWRITE Indicates that the object’s data can be both accessed and modified.
Cannot be combined with STGM_READ or STGM_WRITE.

STGM_SHARE_DENY_NONE Indicates that other processes are not denied read or write access to
the object when opened. This is the default behavior. Cannot be com-
bined with other STGM_SHAREXXX flags.

STGM_SHARE_DENY_READ Indicates that other processes cannot open the object with read
access. Cannot be combined with other STGM_SHAREXXX flags.

STGM_SHARE_DENY_WRITE Indicates that other processes cannot open the object with write
access. Cannot be combined with other STGM_SHAREXXX flags.

STGM_SHARE_EXCLUSIVE Indicates that other processes cannot open the object in any mode.
Cannot be combined with other STGM_SHAREXXX flags.

STGM_PRIORITY Provides exclusive access to the most recently committed version of
the object and prevents other processes from committing changes to
the object while it is opened in priority mode. The STGM_DIRECT
and STGM_READ flags must be used with this flag.

STGM_DIRECT Causes any changes to be written as they occur. Cannot be combined
with STGM_TRANSACTED.

STGM_TRANSACTED Any changes to the object are buffered and are only written when the
Commit method is called. Call the Revert method to discard any
changes since the last call to Commit. Cannot be combined with
STGM_DIRECT.

STGM_NOSCRATCH Must be used with STGM_TRANSACTED. This causes the system to
use any unused areas of the original file as a “scratch” storage space
for uncommitted changes. Without this flag, a temporary file is created
to store uncommitted changes.

584 � Chapter 11

TE
AM
FL
Y

Team-Fly®

Value Description

STGM_NOSNAPSHOT Any changes to the file are written to the end of the file, instead of
making a temporary copy of the file. When the file is opened using this
flag, no other process can open the file without also using this flag. This
flag can only be used in combination with STGM_TRANSACTED and
only if the STGM_SHARE_EXCLUSIVE and
STGM_SHARE_DENY_WRITE flags are not specified. This can lead to
very large files.

STGM_SIMPLE Opens the simple compound structured storage file in simple mode. It
offers efficient performance but does not support substorages, and all
streams are a minimum of 4Kb in size.

STGM_DIRECT_SWMR Provides direct mode for single-writer, multi-reader operations.

Table 11-42: StgOpenStorage return values

Value Description

STG_E_ACCESSDENIED Indicates the application does not have permission to access the desti-
nation file.

STG_E_FILEALREADYEXISTS Indicates that the specified file exists but is not a structured storage
file.

STG_E_FILENOTFOUND Indicates that the specified file does not exist.

STG_E_INSUFFICIENTMEMORY Operation failed due to insufficient available memory.

STG_E_INVALIDFLAG The value of the grfMode parameter is not valid.

STG_E_INVALIDFUNCTION The combination of values specified in grfMode is invalid.

STG_E_INVALIDNAME The value specified in the pwcsName parameter is invalid.

STG_E_INVALIDPOINTER The destination storage object pointer is invalid.

STG_E_NOTSIMPLEFORMAT Indicates that the structured storage file was not created in the simple
format.

STG_E_OLDDLL Indicates that the COM objects used to open the storage file are older
than the COM objects used to create it.

STG_E_OLDFORMAT Indicates that the structured storage file is in a beta format and is not
supported.

STG_E_PATHNOTFOUND The specified file path could not be found.

STG_E_SHAREVIOLATION Indicates that another process has the file open and locked.

STG_E_TOOMANYOPENFILES Indicates that there are too many open files.

Shell File Functions � 585

C
h

a
p

te
r
1
1

Chapter 12

Shell Folder FunctionsShell Folder Functions

The Windows user interface employs a specific metaphor to present the user with a

mechanism for storing, sorting, and retrieving various documents and objects within

their system: the folder. Folders are an inseparable part of the Windows Explorer inter-

face and are used for the organization of everything from documents and files to more

abstract concepts, such as remote machines. Consequently, the Windows Shell API

contains many functions for manipulating and retrieving information about folders.

�Note: Many of the functions documented in this chapter require constants

and function prototypes that do not exist in the shipping Delphi

source code at the time of publication. In order to make these

examples compile, you’ll need the file ShellExtra.pas, located in the

root directory for this chapter on the companion CD. This will not be

copied into the individual directories containing source code that

require this file. Rather, it will be indirectly referenced by that source

code, so make sure you duplicate the file structure on your hard drive

when you copy and recompile these examples.

Browsing for Folders

Some applications need to present the user with a standard dialog box for the purpose

of selecting a folder, such as specifying the starting point for a file search. The Win-

dows shell offers the SHBrowseForFolder function that displays such a dialog box.

This function has changed somewhat since its initial implementation under Windows

95. On systems prior to Windows 2000, the Browse for Folder dialog box offered basic

functionality and did not make use of some of the extended shell namespace capabili-

ties. Now, on Windows 2000 and later, the SHBrowseForFolder has extended flags that

allow the function to present an updated interface. This new interface includes a

resizable dialog box, drag-and-drop capability within the dialog box, shortcut menus,

creation of new folders, display of folders or files, deletion of folders or files, and

many other features users are accustomed to seeing when dealing with a presentation of

the shell’s namespace. To display the Browse for Folder dialog box using the new inter-

face, use the following code:

587

■ Listing 12-1: The new Browse for Folder interface

implementation

{$R *.dfm}

uses
ShellExtra;

procedure TForm1.Button1Click(Sender: TObject);
var
IDList: PItemIDList; // an item identifier list
BrowseInfo: TBrowseInfo; // the browse info structure
DispName: array[0..MAX_PATH] of Char; // display name of the selected item
ShellMalloc: IMalloc; // shell's memory allocator

begin
{setup the browse for folder information}
BrowseInfo.hwndOwner := Self.Handle;
BrowseInfo.pidlRoot := nil;
BrowseInfo.pszDisplayName := DispName;
BrowseInfo.lpszTitle := 'Select a File or Folder...';
BrowseInfo.ulFlags := BIF_NEWDIALOGSTYLE; // use the new user interface
BrowseInfo.lpfn := nil;
BrowseInfo.lParam := 0;

{when using the new UI, we must call CoInitialize before the call to
SHBrowseForFolder}
CoInitialize(nil);

{show the browse for folder dialog}
IDList := SHBrowseForFolder(BrowseInfo);

{every call to CoInitialize must be matched with a call to CoUninitialize}
CoUninitialize;

{display the name of the chosen item}
Label2.Caption := BrowseInfo.pszDisplayName;

{dispose of the item identifier list}
SHGetMalloc(ShellMalloc);
ShellMalloc.Free(IDList);

end;

�Note: The SHBrowseForFolder function returns an item identifier list,

which the caller is responsible for freeing. This is accomplished by

calling SHGetMalloc to retrieve a pointer to the system’s IMalloc

interface and using IMalloc.Free.

588 � Chapter 12

Item Identifier Lists

Each object in a shell’s namespace (such as files, folders, servers, workgroups, printers,

etc.) is uniquely identified by an object called an item identifier. An item identifier is a

variable length binary data structure whose content and format are known only to the

creator of the item identifier. Item identifiers can be retrieved from a number of the file

management functions.

The organization of the shell’s namespace is analogous to the organization of files in a

directory structure. The root of the shell’s namespace is the Desktop, and every object

under it can potentially contain other objects. An object’s item identifier is unique and

meaningful only within the context of its parent. Since container objects have an item

identifier that uniquely identifies it within its parent container, any object can be

uniquely identified by a list of item identifiers. Therefore, an item identifier list

uniquely identifies an object within the shell’s namespace by tracing a path from it to

the desktop. Many of the file management and manipulation functions use item identi-

fier lists to specify files or folders.

Item identifier lists are commonly used with shell Component Object Model (COM)

objects. They are also used with several API functions that deal with the shell’s

namespace. While it is easy enough to identify an object within the shell’s namespace

that has a physical representation in the file system by using a qualified path (i.e., the

StartMenu folder), some paths can be renamed, moved, or otherwise modified by the

user. Therefore, it is impossible to guarantee that a specific, known directory will be in

a specific place or even have a specific name. If your application uses an item identifier

list to point to an object in the namespace, retrieving the physical directory by using

API calls when necessary, you can avoid this pitfall.

Delphi vs. the Windows API

To deal with the shell namespace and shell folders is to deal with the Windows API

itself. There are no simple objects within Delphi that wrap these functions to make

them easier to use, not that any of them are overly complex. Perhaps the most complex

function is the SHBrowseForFolder API function. While there is not a standard object

encapsulating this function that is installed with Delphi at the time of publication, there

are many variations of freeware and shareware that offer such encapsulation. However,

all of these functions are relatively straightforward to use and can enrich your Delphi

applications in many ways.

Shell Folder Functions

The following shell folder functions are covered in this chapter.

Table 12-1: Shell folder functions

Function Description

SHBrowseForFolder Creates a dialog box allowing the user to choose a shell
folder.

Shell Folder Functions � 589

C
h

a
p

te
r
1
2

Function Description

SHEmptyRecycleBin Empties the recycle bin on a specified drive.

SHGetFolderLocation Retrieves the location of a shell namespace object as an item
identifier list.

SHGetFolderPath Retrieves a path name for a specified folder.

SHGetPathFromIDList Retrieves a path name from an item identifier list.

SHGetSettings Retrieves the status of various shell options.

SHGetSpecialFolderLocation Retrieves the location of a shell namespace object as an item
identifier list.

SHGetSpecialFolderPath Retrieves a path name for a specified folder.

SHQueryRecycleBin Retrieves the total size and number of files in the recycle bin.

SHBrowseForFolder ShlObj.pas

Syntax

SHBrowseForFolder(

var lpbi: TBrowseInfo {a pointer to a TBrowseInfo data structure}

): PItemIDList; {returns a pointer to an item identifier list}

Description

This function displays a dialog box allowing the user to choose a shell folder and

returns an item ID list representing then selected folder. The application is responsible

for freeing this item ID list by using the shell memory allocator’s IMalloc.Free method

(see SHGetMalloc for more details).

�Note: The caller is responsible for freeing the item identifier list. This must

be done via the IMalloc interface returned from SHGetMalloc.

Parameters

lpbi: A pointer to a TBrowseInfo structure. This structure holds information used to

display the dialog box and receives information from the dialog box indicating the

user’s choice. This structure is defined as:

TBrowseInfo = packed record

hwndOwner: HWND; {a handle to a window}

pidlRoot: PItemIDList; {a pointer to an item identifier list}

pszDisplayName: PAnsiChar; {a pointer to a string}

lpszTitle: PAnsiChar; {a pointer to a string}

ulFlags: UINT; {control flags}

lpfn: TFNBFFCallBack; {the address to a callback function}

lParam: LPARAM; {an application-defined value}

iImage: Integer; {a system image list image index}

end;

590 � Chapter 12

hwndOwner: A handle to the window that owns the dialog box.

pidlRoot: A pointer to an item identifier list specifying the root folder from which

the user starts the browse. If this member is NIL, the root of the namespace is

used as the starting point.

pszDisplayName: A pointer to a buffer that receives a null-terminated string con-

taining the display name of the selected folder. The size of this buffer is assumed

to be MAX_PATH bytes.

lpszTitle: A pointer to a null-terminated string containing the text displayed in the

caption of the dialog box.

ulFlags: An array of flags specifying the types of folders listed and other options.

This member can be one or more of the values from Table 12-2.

lpfn: A pointer to a callback function. This function is called whenever a user

action generates an event in the dialog box, such as selecting a folder. This mem-

ber can be set to NIL. The callback function syntax is described below.

lParam: An application-defined value that is passed to the callback function if

one is defined.

iImage: Receives an index into the system image list of the image that represents

the selected folder.

Return Value

If the function succeeds, it returns a pointer to an item identifier list specifying the cho-

sen folder. The location of the folder is relative to the root of the namespace. If the

function failed, or the user chose the Cancel button, the function returns NIL.

Callback Syntax

BrowseCallbackProc(

hWnd: HWND; {a handle to the dialog box window}

uMsg: UINT; {a dialog box event message}

lParam: LPARAM; {a message-specific value}

lpData: LPARAM {an application-defined value}

): Integer; {returns an integer value}

Description

The callback function is run whenever the user causes an event to take place in the

Browse for Folder dialog box. This callback function can perform any desired task.

Parameters

hWnd: A handle to the dialog box window. The callback function can use this parame-

ter to send a special message to the dialog box window. The available messages are

listed in Table 12-3.

uMsg: A value indicating the type of event that has occurred. This parameter can be

one value from Table 12-4.

lParam: A message-specific value. This value is dependent on the uMsg parameter.

Shell Folder Functions � 591

C
h

a
p

te
r
1
2

lpData: The application-defined value that was passed in the lParam member of the

TBrowseInfo structure.

Return Value

The callback function should always return a zero.

See Also

FindExecutable, ShellExecute, ShellExecuteEx, SHFileOperation, SHGetMalloc

Example

■ Listing 12-2: Browsing for a folder

{the callback function used by the browse for folder dialog
box. notice the export directive.}
function BrowseCallback(hWnd: HWND; uMsg: UINT; lParam: LPARAM;

lpData: LPARAM): Integer; stdcall; export;

var
Form1: TForm1;

implementation

{$R *.DFM}

procedure TForm1.Button1Click(Sender: TObject);
var
IDList: PItemIDList; // an item identifier list
BrowseInfo: TBrowseInfo; // the browse info structure
PathName: array[0..MAX_PATH] of char; // the path name
DisplayName: array[0..MAX_PATH] of char; // the file display name
ShellMalloc: IMalloc; // shell's memory allocator

begin
{initialize the browse information structure}
BrowseInfo.hwndOwner := Form1.Handle;
BrowseInfo.pidlRoot := nil;
BrowseInfo.pszDisplayName := DisplayName;
BrowseInfo.lpszTitle := 'Choose a file or folder';
BrowseInfo.ulFlags := BIF_STATUSTEXT; // display a status line
BrowseInfo.lpfn := @BrowseCallback;
BrowseInfo.lParam := 0;

{show the browse for folder dialog box}
IDList := SHBrowseForFolder(BrowseInfo);

{retrieve the path from the item identifier list that was returned}
SHGetPathFromIDList(IDList, @PathName);

{display the pathname and display name of the selected folder}
Label2.Caption := PathName;
Label4.Caption := BrowseInfo.pszDisplayName;

{dispose of the item identifier list}
SHGetMalloc(ShellMalloc);
ShellMalloc.Free(IDList);

592 � Chapter 12

end;

{this callback function is called whenever an action takes
place inside the browse for folder dialog box}
function BrowseCallback(hWnd: HWND; uMsg: UINT; lParam: LPARAM;

lpData: LPARAM): Integer;
var
PathName: array[0..MAX_PATH] of Char; // holds the path name

begin
{if the selection in the browse for folder dialog box has changed...}
if uMsg=BFFM_SELCHANGED then
begin
{...retrieve the path name from the item identifier list}
SHGetPathFromIDList(PItemIDList(lParam), @PathName);

{display this path name in the status line of the dialog box}
SendMessage(hWnd, BFFM_SETSTATUSTEXT, 0, Longint(PChar(@PathName)));

Result := 0;
end;

end;

Table 12-2: SHBrowseForFolder lpbi.uFlags values

Value Description

BIF_BROWSEFORCOMPUTER Allows the user to select only computers.

BIF_BROWSEFORPRINTER Allows the user to select only printers.

BIF_BROWSEINCLUDEFILES The browse dialog will display files as well as folders.

BIF_BROWSEINCLUDEURLS Windows 2000 and later: The browse dialog will dis-
play URLs. The URL is displayed only if the folder
containing the selected item supports URLs. Requires
the BIF_NEWDIALOGSTYLE and BIF_BROWSE-
INCLUDEFILES flags.

Shell Folder Functions � 593

C
h

a
p

te
r
1
2

Figure 12-1:

The Browse

for Folder

dialog box

Value Description

BIF_DONTGOBELOWDOMAIN The dialog box will not contain network folders below
the domain level.

BIF_EDITBOX Includes an edit box in the dialog, allowing the user to
type in the name of the desired item.

BIF_NEWDIALOGSTYLE Windows 2000 and later: This flag causes the dialog
box to display using an updated interface, including
window sizing, drag-and-drop capability, shortcut
menus, new folders, and other extended functionality.

Note: When this flag is used, the application must call
CoInitialize before the call to SHBrowseForFolder.

BIF_RETURNFSANCESTORS Allows the user to select only file system ancestors.

BIF_RETURNONLYFSDIRS Allows the user to select only file system directories.

BIF_SHAREABLE Windows 2000 or later: Allows the dialog to display
shareable resources on remote systems. Requires the
BIF_NEWDIALOGSTYLE flag.

BIF_STATUSTEXT Includes a status line in the dialog box. The callback
function can send a message to the dialog box specify-
ing what to display on this line.

BIF_UAHINT Windows 2000 or later: Adds a usage hint to the dia-
log box. Requires the BIF_NEWDIALOGSTYLE flag.

BIF_USENEWUI Windows 2000 or later: Causes the dialog box to dis-
play using an updated interface. This flag is equivalent
to combining the BIF_NEWDIALOGSTYLE and
BIF_EDITBOX flags.

Note: When this flag is used, the application must call
CoInitialize before the call to SHBrowseForFolder.

BIF_VALIDATE If the BIF_EDITBOX flag is included, this flag causes a
BFFM_VALIDATEFAILED message to be sent to the
callback procedure if the user types an invalid name
into the edit box.

Table 12-3: BrowseCallbackProc Browse for Folder dialog box messages

Value Description

BFFM_ENABLEOK Enables the OK button if the wParam parameter of the
message contains a non-zero value. If the wParam
parameter contains a zero, the OK button is disabled.

BFFM_SETSELECTION Selects a specific folder. If the wParam parameter of
the message contains TRUE, the lParam parameter
must contain a pointer to a string describing the path of
the folder. If the wParam parameter is FALSE, the
lParam parameter must contain a pointer to an item
identifier list specifying the selected folder.

594 � Chapter 12

TE
AM
FL
Y

Team-Fly®

Value Description

BFFM_SETSTATUSTEXT Sets the text of the status line in the dialog box. The
lParam parameter of the message must contain a
pointer to a null-terminated string for the status line.
This message is only valid if the BIF_STATUSTEXT flag
was specified in the ulFlags member of the TBrowse-
Info structure.

Table 12-4: BrowseCallbackProc uMsg values

Value Description

BFFM_INITIALIZED The Browse for Folder dialog box has finished
initializing. The lParam parameter contains zero.

BFFM_SELCHANGED The user has selected a folder. The lParam parameter
contains a pointer to an item identifier list specifying
the chosen folder.

BFFM_VALIDATEFAILED Indicates that the user typed an invalid name into the
edit box. The lpData parameter contains a pointer to
the string containing the name. Return a zero to close
the dialog or a non-zero value to keep the dialog open.

SHEmptyRecycleBin ShellExtra.pas

Syntax

SHEmptyRecycleBin(

hWnd: HWND; {parent window handle for dialog boxes}

pszRootPath: PAnsiChar; {root drive of recycle bin}

dwFlags: DWORD {option flags}

): HResult; {returns OLE result code}

Description

This function empties the recycle bin on the drive specified by the pszRootPath param-

eter. Various flags specified in the dwFlags parameter control options available to the

user and progress reports displayed on screen.

�Note: This function requires the Internet Explorer version 4.0 Desktop

Update to be installed (shell32.dll version 4.71 or higher).

Parameters

hWnd: A handle to a window used as the parent window for any dialog boxes that

might be displayed by this function. This parameter can be set to zero (indicating no

parent window).

pszRootPath: A null-terminated string indicating the path of the root drive containing

the desired recycle bin. This string can contain a fully qualified path (i.e., C:\Win-

dows\System) or can be set to NIL. If NIL is specified, all recycle bins on all drives are

emptied. This string cannot be longer than MAX_PATH characters.

Shell Folder Functions � 595

C
h

a
p

te
r
1
2

dwFlags: A combination of values controlling the behavior of this function. This value

may be a combination of one or more values from the following table.

Return Value

If the function succeeds, it returns S_OK; otherwise, it returns an OLE error code.

See Also

SHFileOperation, SHQueryRecycleBin

Example

■ Listing 12-3: Manipulating the recycle bin

implementation

{$R *.dfm}

uses
ShellExtra;

procedure TForm1.CheckRecycleBin;
var
RBInfo: TSHQueryRBInfo; // recycle bin information structure

begin
{initialize the query structure}
FillChar(RBInfo, SizeOf(TSHQueryRBInfo), #0);
RBInfo.cbSize := SizeOf(TSHQueryRBInfo);

{retrieve recycle bin information for drive C}
if SHQueryRecycleBin('c:\', @RBInfo) = S_OK then
begin
Label3.Caption := IntToStr(RBInfo.i64NumItems);
Label4.Caption := IntToStr(RBInfo.i64Size) + ' bytes';

end
else
raise Exception.Create('SHQueryRecycleBin failed!');

end;

procedure TForm1.FormCreate(Sender: TObject);
begin
{initialize our status when the form is created}
CheckRecycleBin;

end;

procedure TForm1.Button1Click(Sender: TObject);
begin
{empty the recycle bin on drive C}
SHEmptyRecycleBin(Handle, 'C:\', 0);

{now update our status}
CheckRecycleBin;

end;

596 � Chapter 12

Table 12-5: SHEmptyRecycleBin dwFlags values

Value Description

SHERB_NOCONFIRMATION Suppresses the display of a confirmation dialog box.

SHERB_NOPROGRESSUI Suppresses the display of a deletion progress dialog box.

SHERB_NOSOUND Suppresses any sounds played when the operation is
completed.

SHGetFolderLocation ShellExtra.pas

Syntax

SHGetFolderLocation(

hWnd: HWND; {a handle to a window}

csidl: Integer; {a folder location flag}

hToken: THandle; {user access token}

dwReserved: DWORD; {reserved}

var ppidl: PItemIDList {a pointer to an item identifier list}

): HResult; {returns an OLE result}

Description

This function retrieves an item identifier list specifying the location of the special

folder. Note that only those folders that are registered under the key HKEY_CUR-

RENT_USER\ Software\ Microsoft\ Windows\ CurrentVersion\ Explorer\ Shell Folders

will return an item identifier list specifying a file system folder that

SHGetPathFromIDList can use to retrieve a physical path name.

�Note: The caller is responsible for freeing the item identifier list. This must

be done via the IMalloc interface returned from SHGetMalloc.

�Note: This function is available only on Windows 2000 and later systems.

Parameters

hWnd: A handle to the owning window for dialog or message boxes.

csidl: A flag indicating the folder for which to retrieve the location. This parameter can

be one value from the following table.

Shell Folder Functions � 597

C
h

a
p

te
r
1
2

Figure 12-2:

Querying the

recycle bin

hToken: An access token used to indicate a specific user. This parameter is typically set

to zero (for all Windows versions prior to Windows 2000, this value must be set to

zero). A value of –1 indicates the default user.

dwReserved: Reserved.

ppidl: A pointer to an item identifier list that specifies the indicated folder’s location

relative to the root of the namespace.

Return Value

If the function succeeds, it returns S_OK; otherwise, it returns an OLE-defined error

result.

See Also

SHBrowseForFolder, SHGetFileInfo, SHGetFolderPath, SHGetPathFromIDList,

SHGetSpecialFolderLocation

Example

■ Listing 12-4: Retrieving the location of the Start menu folder

uses
ShellExtra;

{**
NOTE: The following example works only under Windows 2000 and later!!

**}

procedure TForm1.Button1Click(Sender: TObject);
var
IDList: PItemIDList; // item id list to retrieve
PathName: array[0..MAX_PATH] of Char; // stores the folder path
ShellMalloc: IMalloc; // shell’s memory allocator

begin
{retrieve the item id list for the start menu item}
SHGetFolderLocation(Handle, CSIDL_STARTMENU, 0, 0, IDList);

{retrieve the path from this id list}
SHGetPathFromIDList(IDList, @PathName);

{display the path}
Label2.Caption := PathName;

{dispose of the item identifier list}
SHGetMalloc(ShellMalloc);
ShellMalloc.Free(IDList);

end;

598 � Chapter 12

Table 12-6: SHGetFolderLocation csidl values

Value Description

CSIDL_ADMINTOOLS Windows 2000 and later: Retrieves the directory used to
store administrative tools. This directory is specific to a user
(i.e., <user name>\Start Menu\Programs\Administrative
Tools).

CSIDL_ALTSTARTUP Retrieves the directory of the user’s non-localized Startup
program group.

CSIDL_APPDATA Retrieves the directory used to store application-specific
data. This directory is specific to a user (i.e., Documents and
Settings\<user name>\Application Data).

CSIDL_BITBUCKET Retrieves the location of the recycle bin. This directory is not
in the registry and has hidden and system attributes to pre-
vent the user from moving or deleting it.

CSIDL_COMMON_ADMINTOOLS Windows 2000 and later: Retrieves the directory used to
store administrative tools available to any user (i.e., All
Users\Start Menu\Programs\Administrative Tools).

CSIDL_COMMON_ALTSTARTUP Windows NT and later: Retrieves the directory of the
non-localized Startup program group for all users.

CSIDL_COMMON_APPDATA Windows 2000 and later: Retrieves the directory used to
store application-specific data for all users of the computer
(i.e., Documents and Settings\All Users\Application Data).

CSIDL_COMMON_DESKTOPDIRECTORY Windows NT and later: Retrieves the directory containing
files and folders appearing on the desktop for all users (i.e.,
Documents and Settings\All Users\Desktop).

CSIDL_COMMON_DOCUMENTS Retrieves the directory used to store document files for all
users of the computer (i.e., Documents and Settings\All
Users\Documents).

CSIDL_COMMON_FAVORITES Windows NT and later: Retrieves the directory used to
store Favorite links for all users of the computer.

CSIDL_COMMON_PROGRAMS Windows NT and later: Retrieves the directory used to
store the directories for the common program groups
appearing in the Start menu for all users of the computer
(i.e., Documents and Settings\All Users\Start
Menu\Programs).

CSIDL_COMMON_STARTMENU Windows NT and later: Retrieves the directory used to
store the programs and directories appearing in the Start
menu for all users (i.e., Documents and Settings\All
Users\Start Menu).

CSIDL_COMMON_STARTUP Windows NT and later: Retrieves the directory used to
store the programs appearing in the Startup folder for all
users (i.e., Documents and Settings\All Users\Start Menu\
Programs\Startup).

CSIDL_CONTROLS Retrieves the virtual folder containing the icons for control
panel applets.

CSIDL_COOKIES Retrieves the directory used to store Internet cookies.

Shell Folder Functions � 599

C
h

a
p

te
r
1
2

Value Description

CSIDL_DESKTOP Retrieves the virtual folder for the root of the namespace,
the Windows desktop.

CSIDL_DESKTOPDIRECTORY Retrieves the directory used to store files and folders
appearing on the desktop (i.e., Documents and Set-
tings\<user name>\Desktop).

CSIDL_DRIVES Retrieves the My Computer virtual folder, which contains
storage devices, printers, the control panel, and may contain
mapped network drives.

CSIDL_FAVORITES Retrieves the directory used to store favorite links (i.e., Doc-
uments and Settings\<user name>\Favorites).

CSIDL_FLAG_CREATE Used to force the creation of a directory if it does not exist.
This is the only value that can be combined using a Boolean
OR with any other value in this table.

CSIDL_FONTS Retrieves the virtual folder containing fonts.

CSIDL_HISTORY Retrieves the directory used to store Internet history items.

CSIDL_INTERNET_CACHE Retrieves the directory used to store temporary Internet
files.

CSIDL_LOCAL_APPDATA Windows 2000 and later: Retrieves the directory used as a
data repository for local (non-roaming) applications.

CSIDL_MYPICTURES Windows 2000 and later: Retrieves the directory used as a
common storage target for pictures. This directory is specific
to a user (i.e., Documents and Settings\<user name>\My
Documents\My Pictures).

CSIDL_NETHOOD Retrieves the directory used to store the link files appearing
as objects under the My Network Places virtual folder (i.e.,
Documents and Settings\<user name>\NetHood).

CSIDL_NETWORK Retrieves the network neighborhood virtual folder repre-
senting the top level of the network hierarchy.

CSIDL_PERSONAL Retrieves the directory used to store document files. This
directory is specific to a user (i.e., Documents and Set-
tings\<user name>\My Documents).

CSIDL_PRINTERS Retrieves the virtual folder containing installed printers.

CSIDL_PRINTHOOD Retrieves the directory used to store the link files appearing
as objects under the Printers virtual folder (i.e., Documents
and Settings\<user name>\PrintHood).

CSIDL_PROGRAM_FILES Retrieves the directory of the Program Files folder.

CSIDL_PROGRAM_FILES_COMMON Windows 2000 and later: Retrieves the directory used to
store executables and other components that are shared
across applications (i.e., Program Files\Common).

CSIDL_PROGRAMS Retrieves the directory containing the directories of the pro-
gram groups appearing in the Start menu (i.e., Documents
and Settings\<user name>\Start Menu\Programs).

600 � Chapter 12

Value Description

CSIDL_RECENT Retrieves the directory used to store links for the user’s
most recently used documents (i.e., Documents and Set-
tings\<user name>\Recent).

CSIDL_SENDTO Retrieves the directory containing the Send To menu items
(i.e., Documents and Settings\<user name>\SendTo).

CSIDL_STARTMENU Retrieves the directory used to store the programs and
directories appearing in the Start menu (i.e., Documents and
Settings\<user name>\Start Menu).

CSIDL_STARTUP Retrieves the directory used to store the programs appear-
ing in the Startup (i.e., Documents and Settings\<user
name>\Start Menu\Programs\Startup).

CSIDL_SYSTEM Retrieves the System directory.

CSIDL_TEMPLATES Retrieves the directory used to store template files (i.e.,
Documents and Settings\<user name>\Templates).

CSIDL_WINDOWS Retrieves the Windows directory.

SHGetFolderPath SHFolder.pas

Syntax

SHGetFolderPath(

hwnd: HWND; {a handle to a window}

csidl: Integer; {a folder location flag}

hToken: THandle; {user access token}

dwFlags: DWORD; {path type flags}

pszPath: PAnsiChar {null-terminated path string}

): HRESULT; {returns an OLE result code}

Description

This function retrieves the physical path for the specified folder.

�Note: Only folders that physically exist in the file system are valid; the

function fails if a virtual folder (i.e., Printers, Dial-up Networking) is

specified.

Parameters

hwnd: A handle to a window used as an owner window for any dialog boxes spawned

by this function. This parameter may be zero.

csidl: A flag indicating the folder for which to retrieve the location. This parameter can

be one value from Table 12-7.

hToken: An access token used to indicate a specific user. This parameter is typically set

to zero (for all Windows versions prior to Windows 2000, this value must be set to

zero). A value of –1 indicates the default user.

Shell Folder Functions � 601

C
h

a
p

te
r
1
2

dwFlags: A flag indicating the type of path to return if the physical directory repre-

sented by the value in csidl can be moved or renamed by the user. This parameter can

be one value from Table 12-8.

pszPath: A pointer to a null-terminated string that receives the path. This string should

be of MAX_LENGTH length.

Return Value

If the function succeeds, it returns S_OK. S_FALSE is returned if the function suc-

ceeded but the specified folder does not exist. Otherwise, this function returns

E_INVALIDARG or a standard OLE error code.

See Also

SHAddToRecentDocs, SHGetFolderLocation, SHGetPathFromIDList,

SHGetSpecialFolderPath

Example

■ Listing 12-5: Retrieving the path for the My Documents folder

implementation

{$R *.dfm}

uses
ShellExtra;

procedure TForm1.Button1Click(Sender: TObject);
var
strPath: array[0..MAX_PATH] of Char; // receives the path string

begin
{retrieve the path for the My Documents folder}
SHGetFolderPath(Handle, CSIDL_PERSONAL, 0, SHGFP_TYPE_CURRENT, strPath);

{display the path}
Label2.Caption := strPath;

end;

Table 12-7: SHGetFolderPath csidl values

Value Description

CSIDL_ADMINTOOLS Windows 2000 and later: Retrieves the directory used to
store administrative tools. This directory is specific to a user
(i.e., <user name>\Start Menu\Programs\Administrative
Tools).

CSIDL_ALTSTARTUP Retrieves the directory of the user’s non-localized Startup
program group.

CSIDL_APPDATA Retrieves the directory used to store application-specific
data. This directory is specific to a user (i.e., Documents and
Settings\<user name>\Application Data).

602 � Chapter 12

Value Description

CSIDL_COMMON_ADMINTOOLS Windows 2000 and later: Retrieves the directory used to
store administrative tools available to any user (i.e., All
Users\Start Menu\Programs\Administrative Tools).

CSIDL_COMMON_ALTSTARTUP Windows NT and later: Retrieves the directory of the
non-localized Startup program group for all users.

CSIDL_COMMON_APPDATA Windows 2000 and later: Retrieves the directory used to
store application-specific data for all users of the computer
(i.e., Documents and Settings\All Users\Application Data).

CSIDL_COMMON_DESKTOPDIRECTORY Windows NT and later: Retrieves the directory containing
files and folders appearing on the desktop for all users (i.e.,
Documents and Settings\All Users\Desktop).

CSIDL_COMMON_DOCUMENTS Retrieves the directory used to store document files for all
users of the computer (i.e., Documents and Settings\All
Users\Documents).

CSIDL_COMMON_FAVORITES Windows NT and later: Retrieves the directory used to
store Favorite links for all users of the computer.

CSIDL_COMMON_PROGRAMS Windows NT and later: Retrieves the directory used to
store the directories for the common program groups
appearing in the Start menu for all users of the computer
(i.e., Documents and Settings\All Users\Start Menu\
Programs).

CSIDL_COMMON_STARTMENU Windows NT and later: Retrieves the directory used to
store the programs and directories appearing in the Start
menu for all users (i.e., Documents and Settings\All
Users\Start Menu).

CSIDL_COMMON_STARTUP Windows NT and later: Retrieves the directory used to
store the programs appearing in the Startup folder for all
users (i.e., Documents and Settings\All Users\Start Menu\
Programs\Startup).

CSIDL_COOKIES Retrieves the directory used to store Internet cookies.

CSIDL_DESKTOPDIRECTORY Retrieves the directory used to store files and folders
appearing on the desktop (i.e., Documents and Settings\
<user name>\Desktop).

CSIDL_FAVORITES Retrieves the directory used to store favorite links (i.e., Doc-
uments and Settings\<user name>\Favorites).

CSIDL_FLAG_CREATE Used to force the creation of a directory if it does not exist.
This is the only value that can be combined using a Boolean
OR with any other value in this table.

CSIDL_HISTORY Retrieves the directory used to store Internet history items.

CSIDL_INTERNET_CACHE Retrieves the directory used to store temporary Internet
files.

CSIDL_LOCAL_APPDATA Windows 2000 and later: Retrieves the directory used as a
data repository for local (non-roaming) applications.

Shell Folder Functions � 603

C
h

a
p

te
r
1
2

Value Description

CSIDL_MYPICTURES Windows 2000 and later: Retrieves the directory used as a
common storage target for pictures. This directory is specific
to a user (i.e., Documents and Settings\<user name>\My
Documents\My Pictures).

CSIDL_NETHOOD Retrieves the directory used to store the link files appearing
as objects under the My Network Places virtual folder (i.e.,
Documents and Settings\<user name>\NetHood).

CSIDL_PERSONAL Retrieves the directory used to store document files. This
directory is specific to a user (i.e., Documents and Set-
tings\<user name>\My Documents).

CSIDL_PRINTHOOD Retrieves the directory used to store the link files appearing
as objects under the Printers virtual folder (i.e., Documents
and Settings\<user name>\PrintHood).

CSIDL_PROGRAM_FILES Retrieves the directory of the Program Files folder.

CSIDL_PROGRAM_FILES_COMMON Windows 2000 and later: Retrieves the directory used to
store executables and other components that are shared
across applications (i.e., Program Files\Common).

CSIDL_PROGRAMS Retrieves the directory containing the directories of the pro-
gram groups appearing in the Start menu (i.e., Documents
and Settings\<user name>\Start Menu\Programs).

CSIDL_RECENT Retrieves the directory used to store links for the user’s
most recently used documents (i.e., Documents and Set-
tings\<user name>\Recent).

CSIDL_SENDTO Retrieves the directory containing the Send To menu items
(i.e., Documents and Settings\<user name>\SendTo).

CSIDL_STARTMENU Retrieves the directory used to store the programs and
directories appearing in the Start menu (i.e., Documents and
Settings\<user name>\Start Menu).

CSIDL_STARTUP Retrieves the directory used to store the programs appear-
ing in the Startup (i.e., Documents and Settings\<user
name>\Start Menu\Programs\Startup).

CSIDL_SYSTEM Retrieves the System directory.

CSIDL_TEMPLATES Retrieves the directory used to store template files (i.e.,
Documents and Settings\<user name>\Templates).

CSIDL_WINDOWS Retrieves the Windows directory.

Table 12-8: SHGetFolderPath dwFlags values

Value Description

SHGFP_TYPE_CURRENT Returns the folder’s current path.

SHGFP_TYPE_DEFAULT Returns the folder’s default path.

604 � Chapter 12

TE
AM
FL
Y

Team-Fly®

SHGetPathFromIDList ShlObj.pas

Syntax

SHGetPathFromIDList(

pidl: PItemIDList; {a pointer to an item identifier list}

pszPath: PChar {a pointer to a buffer}

): BOOL; {returns TRUE or FALSE}

Description

This function retrieves a string containing the path name of the file or folder identified

by the item identifier list.

Parameters

pidl: A pointer to an item identifier list that specifies a file or directory in the file sys-

tem. This function will fail if the item identifier list specifies a folder that is not in the

file system, such as the Printers or Control Panel folders.

pszPath: A pointer to a buffer that receives the name of the path. The size of the buffer

is assumed to be MAX_PATH bytes.

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE.

See Also

SHBrowseForFolder, SHGetFileInfo

Example

Please see Listing 12-2 under SHBrowseForFolder.

SHGetSettings ShlObj.pas

Syntax

SHGetSettings(

var lpss: TShellFlagState; {structure receiving shell option settings}

dwMask: DWORD {shell option setting flags}

); {this procedure does not return a value}

Description

This function indicates if various shell options are turned on or off.

�Note: When any of these settings are changed, a WM_SETTINGCHANGE

message is sent with lParam pointing to the string “ShellState.”

Shell Folder Functions � 605

C
h

a
p

te
r
1
2

�Note: This function requires the Internet Explorer version 4.0 Desktop

Update to be installed (shell32.dll version 4.71 or higher).

Parameters

lpss: A TShellFlagState structure that is initialized to indicate the state of the shell

option indicated by the dwMask parameter. The TShellFlagState structure is defined as:

TShellFlagState = packed record

Data: Word; {indicates if an option is on or off}

end;

Data: Contains a non-zero value if the option indicated by the dwMask parameter

is enabled or selected; it contains a zero if the option is disabled or unselected.

dwMask: A flag indicating which shell option to check. This parameter can be one

value from the following table.

See Also

GetSystemMetrics*

Example

■ Listing 12-6: Retrieving various shell option settings

procedure TForm1.FormCreate(Sender: TObject);
var
ShellFlagState: TShellFlagState; // holds the shell option setting

{simply sets the caption according to the value}
procedure SetValue(LabelObj: TLabel; Value: Boolean);
begin
if Value then
LabelObj.Caption := 'TRUE'

else
LabelObj.Caption := 'FALSE';

end;

begin
{retrieve the setting for the active desktop - view as webpage option}
SHGetSettings(ShellFlagState, SSF_DESKTOPHTML);
SetValue(Label6, WordBool(ShellFlagState.Data));

{retrieve the setting for the show map network drive button option}
SHGetSettings(ShellFlagState, SSF_MAPNETDRVBUTTON);
SetValue(Label7, WordBool(ShellFlagState.Data));

{retrieve the setting for the show all files option}
SHGetSettings(ShellFlagState, SSF_SHOWALLOBJECTS);
SetValue(Label8, WordBool(ShellFlagState.Data));

{retrieve the setting for the show file attributes in detail view option}
SHGetSettings(ShellFlagState, SSF_SHOWATTRIBCOL);
SetValue(Label9, WordBool(ShellFlagState.Data));

606 � Chapter 12

{retrieve the setting for the hide file extensions for known types option}
SHGetSettings(ShellFlagState, SSF_SHOWEXTENSIONS);
SetValue(Label10, WordBool(ShellFlagState.Data));

end;

Table 12-9: SHGetSettings dwMask values

Value Description

SSF_DESKTOPHTML Active Desktop – View as Web Page option.

SSF_DONTPRETTYPATH Allow All Uppercase Names option.

SSF_DOUBLECLICKINWEBVIEW Double-Click to Open an Item option.

SSF_HIDEICONS Not used.

SSF_MAPNETDRVBUTTON Show Map Network Drive Button in Toolbar option.

SSF_NOCONFIRMRECYCLE Display Delete Confirmation Dialog box option (in the
recycle bin).

SSF_SHOWALLOBJECTS Show All Files option.

SSF_SHOWATTRIBCOL Show File Attributes in Detail View option.

SSF_SHOWCOMPCOLOR Display Compressed Files and Folders With Alternate
Color option.

SSF_SHOWEXTENSIONS Hide File Extensions for Known File Types option.

SSF_SHOWINFOTIP Show Info Tips for Items in Folders and Desktop
option.

SSF_SHOWSYSFILES Do Not Show Hidden Files option.

SSF_WIN95CLASSIC Classic Style option.

SHGetSpecialFolderLocation ShlObj.pas

Syntax

SHGetSpecialFolderLocation(

hwndOwner: HWND; {a handle to a window}

nFolder: Integer; {a folder location flag}

var ppidl: PItemIDList {a pointer to an item identifier list}

): HResult; {returns an OLE result}

Description

This function retrieves an item identifier list specifying the location of the special

folder. Note that only those folders that are registered under the key HKEY_CUR-

RENT_USER\ Software\ Microsoft\ Windows\ CurrentVersion\ Explorer\ Shell Folders

will return an item identifier list specifying a file system folder that

SHGetPathFromIDList can use to retrieve a physical path name.

�Note: The caller is responsible for freeing the item identifier list. This must

be done via the IMalloc interface returned from SHGetMalloc.

Shell Folder Functions � 607

C
h

a
p

te
r
1
2

Parameters

hwndOwner: A handle to the owning window for dialog or message boxes.

nFolder: A flag indicating the folder for which to retrieve the location. This parameter

can be one value from the following table.

ppidl: A pointer to an item identifier list that specifies the indicated folder’s location

relative to the root of the namespace.

Return Value

If the function succeeds, it returns S_OK; otherwise, it returns an OLE-defined error

result.

See Also

SHBrowseForFolder, SHGetFileInfo, SHGetFolderLocation, SHGetPathFromIDList

Example

■ Listing 12-7: Retrieving the location of the Windows desktop directory

procedure TForm1.Button1Click(Sender: TObject);
var
IDList: PItemIDList; // the item identifier list
PathName: array[0..MAX_PATH] of char; // the path of the specified folder
ShellMalloc: IMalloc; // shell's memory allocator

begin
{retrieve the item identifier list specifying the
location of the Windows desktop directory}
SHGetSpecialFolderLocation(Form1.Handle, CSIDL_DESKTOPDIRECTORY, IDList);

{retrieve the path name}
SHGetPathFromIDList(IDList, @PathName);

{display the path name}
Label2.Caption := PathName;

{dispose of the item identifier list}
SHGetMalloc(ShellMalloc);
ShellMalloc.Free(IDList);

end;

Table 12-10: SHGetSpecialFolderLocation nFolder values

Value Description

CSIDL_ADMINTOOLS Windows 2000 and later: Retrieves the directory used to
store administrative tools. This directory is specific to a user
(i.e., <user name>\Start Menu\Programs\Administrative
Tools).

CSIDL_ALTSTARTUP Retrieves the directory of the user’s non-localized Startup
program group.

608 � Chapter 12

Value Description

CSIDL_APPDATA Retrieves the directory used to store application-specific
data. This directory is specific to a user (i.e., Documents and
Settings\<user name>\Application Data).

CSIDL_BITBUCKET Retrieves the location of the recycle bin. This directory is not
in the registry and has hidden system attributes to prevent
the user from moving or deleting it.

CSIDL_COMMON_ADMINTOOLS Windows 2000 and later: Retrieves the directory used to
store administrative tools available to any user (i.e., All
Users\Start Menu\Programs\Administrative Tools).

CSIDL_COMMON_ALTSTARTUP Windows NT and later: Retrieves the directory of the
non-localized Startup program group for all users.

CSIDL_COMMON_APPDATA Windows 2000 and later: Retrieves the directory used to
store application-specific data for all users of the computer
(i.e., Documents and Settings\All Users\Application Data).

CSIDL_COMMON_DESKTOPDIRECTORY Windows NT and later: Retrieves the directory containing
files and folders appearing on the desktop for all users (i.e.,
Documents and Settings\All Users\Desktop).

CSIDL_COMMON_DOCUMENTS Retrieves the directory used to store document files for all
users of the computer (i.e., Documents and Settings\All
Users\Documents).

CSIDL_COMMON_FAVORITES Windows NT and later: Retrieves the directory used to
store favorite links for all users of the computer.

CSIDL_COMMON_PROGRAMS Windows NT and later: Retrieves the directory used to
store the directories for the common program groups
appearing in the Start menu for all users of the computer (i.e.,
Documents and Settings\All Users\Start Menu\ Programs).

CSIDL_COMMON_STARTMENU Windows NT and later: Retrieves the directory used to
store the programs and directories appearing in the Start
menu for all users (i.e., Documents and Settings\All Users\
Start Menu).

CSIDL_COMMON_STARTUP Windows NT and later: Retrieves the directory used to
store the programs appearing in the Startup folder for all
users (i.e., Documents and Settings\All Users\Start Menu\
Programs\Startup).

CSIDL_CONTROLS Retrieves the virtual folder containing the icons for control
panel applets.

CSIDL_COOKIES Retrieves the directory used to store Internet cookies.

CSIDL_DESKTOP Retrieves the virtual folder for the root of the namespace, the
Windows desktop.

CSIDL_DESKTOPDIRECTORY Retrieves the directory used to store files and folders appear-
ing on the desktop (i.e., Documents and Settings\ <user
name>\Desktop).

CSIDL_DRIVES Retrieves the My Computer virtual folder, which contains
storage devices, printers, the control panel, and may contain
mapped network drives.

Shell Folder Functions � 609

C
h

a
p

te
r
1
2

Value Description

CSIDL_FAVORITES Retrieves the directory used to store favorite links (i.e., Doc-
uments and Settings\<user name>\Favorites).

CSIDL_FLAG_CREATE Used to force the creation of a directory if it does not exist.
This is the only value that can be combined using a Boolean
OR with any other value in this table.

CSIDL_FONTS Retrieves the virtual folder containing fonts.

CSIDL_HISTORY Retrieves the directory used to store Internet history items.

CSIDL_INTERNET_CACHE Retrieves the directory used to store temporary Internet
files.

CSIDL_LOCAL_APPDATA Windows 2000 and later: Retrieves the directory used as a
data repository for local (non-roaming) applications.

CSIDL_MYPICTURES Windows 2000 and later: Retrieves the directory used as a
common storage target for pictures. This directory is specific
to a user (i.e., Documents and Settings\<user name>\ My
Documents\My Pictures).

CSIDL_NETHOOD Retrieves the directory used to store the link files appearing
as objects under the My Network Places virtual folder (i.e.,
Documents and Settings\<user name>\NetHood).

CSIDL_NETWORK Retrieves the network neighborhood virtual folder represent-
ing the top level of the network hierarchy.

CSIDL_PERSONAL Retrieves the directory used to store document files. This
directory is specific to a user (i.e., Documents and Settings\
<user name>\My Documents).

CSIDL_PRINTERS Retrieves the virtual folder containing installed printers.

CSIDL_PRINTHOOD Retrieves the directory used to store the link files appearing
as objects under the Printers virtual folder (i.e., Documents
and Settings\<user name>\PrintHood).

CSIDL_PROGRAM_FILES Retrieves the directory of the Program Files folder.

CSIDL_PROGRAM_FILES_COMMON Windows 2000 and later: Retrieves the directory used to
store executables and other components that are shared
across applications (i.e., Program Files\Common).

CSIDL_PROGRAMS Retrieves the directory containing the directories of the pro-
gram groups appearing in the Start menu (i.e., Documents
and Settings\<user name>\Start Menu\Programs).

CSIDL_RECENT Retrieves the directory used to store links for the user’s most
recently used documents (i.e., Documents and Set-
tings\<user name>\Recent).

CSIDL_SENDTO Retrieves the directory containing the Send To menu items
(i.e., Documents and Settings\<user name>\SendTo).

CSIDL_STARTMENU Retrieves the directory used to store the programs and direc-
tories appearing in the Start menu (i.e., Documents and
Settings\<user name>\Start Menu).

610 � Chapter 12

Value Description

CSIDL_STARTUP Retrieves the directory used to store the programs appearing
in the Startup (i.e., Documents and Settings\<user
name>\Start Menu\Programs\Startup).

CSIDL_SYSTEM Retrieves the System directory.

CSIDL_TEMPLATES Retrieves the directory used to store template files (i.e., Doc-
uments and Settings\<user name>\Templates).

CSIDL_WINDOWS Retrieves the Windows directory.

SHGetSpecialFolderPath ShlObj.pas

Syntax

SHGetSpecialFolderPath(

hwndOwner: HWND; {a window handle}

lpszPath: PChar; {null-terminated path string}

nFolder: Integer; {folder location flags}

fCreate: BOOL {folder creation setting}

): BOOL; {returns TRUE or FALSE}

Description

This function retrieves the physical path for the specified folder.

�Note: This function requires the Internet Explorer version 4.0 Desktop

Update to be installed (shell32.dll version 4.71 or higher).

�Note: Only folders that physically exist in the file system are valid; the

function fails if a virtual folder (i.e., Printers, Dial-up Networking) is

specified. This function has been superceded by the SHGetFolderPath

function on Windows 2000 and later, but it may be used on earlier

systems if ShFolder.dll is present.

Parameters

hwndOwner: A handle to a window used as an owner window for any dialog boxes

spawned by this function. This parameter may be zero.

lpszPath: A pointer to a null-terminated string that receives the path. This string should

be of MAX_LENGTH length.

nFolder: A flag indicating the folder for which to retrieve the location. This parameter

can be one value from the following table.

fCreate: A Boolean value indicating whether the folder should be created if it does not

already exist. If the indicated folder does not exist and this value is set to TRUE, the

folder will be created.

Shell Folder Functions � 611

C
h

a
p

te
r
1
2

Return Value

This function returns TRUE if the path was retrieved, and FALSE otherwise.

See Also

SHAddToRecentDocs, SHGetFolderLocation, SHGetFolderPath,

SHGetPathFromIDList

Example

■ Listing 12-8: Retrieving the location of the Windows desktop directory

procedure TForm1.Button1Click(Sender: TObject);
var
PathName: array[0..MAX_PATH] of char; // the path name of the specified folder

begin
{retrieve the location of the Windows desktop directory}
SHGetSpecialFolderPath(Handle, PathName, CSIDL_DESKTOPDIRECTORY, FALSE);

{display the path name}
Label2.Caption := PathName;

end;

Table 12-11 SHGetSpecialFolderPath nFolder values

Value Description

CSIDL_ADMINTOOLS Windows 2000 and later: Retrieves the directory used to
store administrative tools. This directory is specific to a user
(i.e., <user name>\Start Menu\Programs\Administrative
Tools).

CSIDL_ALTSTARTUP Retrieves the directory of the user’s non-localized Startup
program group.

CSIDL_APPDATA Retrieves the directory used to store application-specific
data. This directory is specific to a user (i.e., Documents and
Settings\<user name>\Application Data).

CSIDL_COMMON_ADMINTOOLS Windows 2000 and later: Retrieves the directory used to
store administrative tools available to any user (i.e., All
Users\Start Menu\Programs\Administrative Tools).

CSIDL_COMMON_ALTSTARTUP Windows NT and later: Retrieves the directory of the
non-localized Startup program group for all users.

CSIDL_COMMON_APPDATA Windows 2000 and later: Retrieves the directory used to
store application-specific data for all users of the computer
(i.e., Documents and Settings\All Users\Application Data).

CSIDL_COMMON_DESKTOPDIRECTORY Windows NT and later: Retrieves the directory containing
files and folders appearing on the desktop for all users (i.e.,
Documents and Settings\All Users\Desktop).

CSIDL_COMMON_DOCUMENTS Retrieves the directory used to store document files for all
users of the computer (i.e., Documents and Settings\All
Users\Documents).

CSIDL_COMMON_FAVORITES Windows NT and later: Retrieves the directory used to
store favorite links for all users of the computer.

612 � Chapter 12

Value Description

CSIDL_COMMON_PROGRAMS Windows NT and later: Retrieves the directory used to
store the directories for the common program groups
appearing in the Start menu for all users of the computer
(i.e., Documents and Settings\All Users\Start Menu\
Programs).

CSIDL_COMMON_STARTMENU Windows NT and later: Retrieves the directory used to
store the programs and directories appearing in the Start
menu for all users (i.e., Documents and Settings\All
Users\Start Menu).

CSIDL_COMMON_STARTUP Windows NT and later: Retrieves the directory used to
store the programs appearing in the Startup folder for all
users (i.e., Documents and Settings\All Users\Start
Menu\Programs\Startup).

CSIDL_COOKIES Retrieves the directory used to store Internet cookies.

CSIDL_DESKTOPDIRECTORY Retrieves the directory used to store files and folders
appearing on the desktop (i.e., Documents and Settings\
<user name>\Desktop).

CSIDL_FAVORITES Retrieves the directory used to store favorite links (i.e.,
Documents and Settings\<user name>\Favorites).

CSIDL_HISTORY Retrieves the directory used to store Internet history items.

CSIDL_INTERNET_CACHE Retrieves the directory used to store temporary Internet
files.

CSIDL_LOCAL_APPDATA Windows 2000 and later: Retrieves the directory used as
a data repository for local (non-roaming) applications.

CSIDL_MYPICTURES Windows 2000 and later: Retrieves the directory used as
a common storage target for pictures. This directory is spe-
cific to a user (i.e., Documents and Settings\<user
name>\My Documents\My Pictures).

CSIDL_NETHOOD Retrieves the directory used to store the link files appearing
as objects under the My Network Places virtual folder (i.e.,
Documents and Settings\<user name>\NetHood).

CSIDL_PERSONAL Retrieves the directory used to store document files. This
directory is specific to a user (i.e., Documents and Set-
tings\<user name>\My Documents).

CSIDL_PRINTHOOD Retrieves the directory used to store the link files appearing
as objects under the Printers virtual folder (i.e., Documents
and Settings\<user name>\PrintHood).

CSIDL_PROGRAM_FILES Retrieves the directory of the Program Files folder.

CSIDL_PROGRAM_FILES_COMMON Windows 2000 and later: Retrieves the directory used to
store executables and other components that are shared
across applications (i.e., Program Files\Common).

CSIDL_PROGRAMS Retrieves the directory containing the directories of the pro-
gram groups appearing in the Start menu (i.e., Documents
and Settings\<user name>\Start Menu\Programs).

Shell Folder Functions � 613

C
h

a
p

te
r
1
2

Value Description

CSIDL_RECENT Retrieves the directory used to store links for the user’s
most recently used documents (i.e., Documents and Set-
tings\ <user name>\Recent).

CSIDL_SENDTO Retrieves the directory containing the Send To menu items
(i.e., Documents and Settings\<user name>\SendTo).

CSIDL_STARTMENU Retrieves the directory used to store the programs and
directories appearing in the Start menu (i.e., Documents and
Settings\<user name>\Start Menu).

CSIDL_STARTUP Retrieves the directory used to store the programs appear-
ing in the Startup (i.e., Documents and Settings\<user
name>\Start Menu\Programs\Startup).

CSIDL_SYSTEM Retrieves the System directory.

CSIDL_TEMPLATES Retrieves the directory used to store template files (i.e.,
Documents and Settings\<user name>\Templates).

CSIDL_WINDOWS Retrieves the Windows directory.

SHQueryRecycleBin ShellExtra.pas

Syntax

SHQueryRecycleBin(

pszRootPath: PChar; {a null-terminated string indicating a drive}

pSHQueryRBInfo: PSHQueryRBInfo {a pointer to a TSHQueryRBInfo structure}

): HResult; {returns an OLE result}

Description

This function retrieves the total size of and the number of items in the recycle bin on

the specified drive.

�Note: This function requires the Internet Explorer version 4.0 Desktop

Update to be installed (shell32.dll version 4.71 or higher).

Parameters

pszRootPath: A null-terminated string containing the path of the root drive containing

the recycle bin whose status is desired. At a minimum, this string requires a drive letter,

but it can contain folder and subfolder names. If this parameter is set to NIL, informa-

tion for all recycle bins on all drives is retrieved.

�Note: Under Windows 2000 and above, this parameter must contain a valid

path and cannot be set to NIL.

614 � Chapter 12

TE
AM
FL
Y

Team-Fly®

pSHQueryRBInfo: An address of a TSHQueryRBInfo structure that receives the recy-

cle bin information. This structure is defined as:

TSHQueryRBInfo = packed record

cbSize: DWORD; {size of the structure, in bytes}

i64Size: Int64; {the total size of all recycle bin items}

i64NumItems: Int64; {the number of items}

end;

cbSize: Indicates the size of the TSHQueryRBInfo structure, in bytes. This

parameter must be set to SizeOf(TSHQueryRBInfo) before the function is called.

i64Size: Indicates the total size of all objects in the specified recycle bin, in

bytes.

i64NumItems: Indicates the total number of items in the specified recycle bin.

Return Value

This function returns S_OK if successful; otherwise, it returns an OLE error code.

See Also

SHEmptyRecycleBin, SHFileOperation

Example

Please see Listing 12-3 under SHEmptyRecycleBin.

Shell Folder Functions � 615

C
h

a
p

te
r
1
2

Chapter 13

Shell Extension FunctionsShell Extension Functions

The Windows API provides application programmers with a plethora of functions that

can greatly extend application functionality. Shell extensions make it possible to do the

reverse: allow programmers to provide extended functionality to Windows. By using

shell extensions, programmers can give the Windows shell access to new functionality

that can enhance the user experience above and beyond what might be available in a

standard application.

Shell extensions are typically part of an application suite that provide extended func-

tionality outside of and beyond that offered by the applications themselves. For

example, WinZip uses shell extensions that allow users to drag and drop files directly

onto zipped archives. Other applications may use a shell extension that provides feed-

back on the state of files associated with that application. The functionality provided by

shell extensions is as varied as applications and can provide the user with interesting

and powerful ways to interact with an application or application files.

It is important to note that this chapter differs from others in this book in that direct

API functions are not discussed. This chapter discusses various COM interfaces and

how those interfaces are implemented to provide the functionality for a shell extension.

The reader is assumed to have basic knowledge of how COM objects work and are

implemented. An in-depth discussion of COM objects is beyond the scope of this book.

�Note: The unit references for each interface method indicate the unit in

which the interface is defined, not where the interface method is

implemented.

Shell Extension Basics

Implementing a shell extension is a relatively straightforward process, where getting

the shell to see the extension and load it at the appropriate time is concerned. What the

shell extension actually provides in the way of extended functionality can be as simple

or complicated as the programmer desires, and some extensions require a little more

work than others. However, in general, implementing a shell extension is accomplished

by following three simple steps:

617

1. Create a new COM object to contain the logic of the shell extension.

2. Implement specific methods for the appropriate interfaces.

3. Register the shell extension.

Creating the COM Object

To begin, create a new COM object that implements certain specific interfaces that are

used by the shell for a particular shell extension. Shell extensions are implemented as

in-process COM servers that Explorer loads when necessary. For the examples in this

book, COM automation servers are used. To create the COM object, first select File |

New from Delphi and click Other to bring up the New Items dialog box. Then, select

the ActiveX tab, select ActiveX Library, and click OK. This will create the DLL in

which the in-process COM server is implemented.

Once the DLL is created, the COM object itself must be defined. Select File | New

again, click Other, and go back to the ActiveX tab. Select Automation Object, and click

OK. This will open the Automation Object Wizard dialog box. Fill in the CoClass

Name box with the name of the COM object, and click OK. This will create the basic

COM object structure that is ready for implementation.

618 � Chapter 13

Figure 13-1:

The New

Items dialog

box

Figure 13-2:

The

Automation

Object Wizard

dialog box

�Note: These steps were based on Delphi 6 at the time of publication. Earlier

or later versions of Delphi may require a different method, and will

likely feature dialog boxes that look different from those depicted in

the screenshots.

Implementing Interface Methods

Now that the COM object has been created, the next step is to declare the shell exten-

sion interfaces that are implemented, and implement their methods. To declare the

interfaces, put them in the class definition of the object generated by the Automation

Object Wizard. Each interface’s methods must be declared and implemented by this

object, which will vary widely depending on the shell extension created.

Registering the Shell Extension

Once the COM object is fully implemented, it must be registered with the system. Reg-

istering a COM object is simply a matter of clicking Run | Register ActiveX Server

within Delphi. However, all shell extensions require additional entries in the registry to

inform Explorer that they exist and where they can be located. Different shell exten-

sions require different types of registration, and some require even additional steps

when registered under Windows NT/2000.

All COM objects are created through a class factory object, as seen in the Initialization

section of the COM object’s unit. A typical method for providing the additional regis-

tration required by shell extensions is to create a descendant of this class factory and

override the UpdateRegistry method. For some shell extensions, the ApproveShell-

Extension method of the class factory is also overridden to provide the additional

registry manipulation required under Windows NT/2000.

Some shell extensions are not immediately loaded and used by Explorer after installa-

tion. Often, the user must logout and log back in or reboot the system before the shell

extension is used. Typically, installation programs that are installing a shell extension

should ask the user to reboot to insure that Explorer sees the new extension.

URL Search Hook Shell Extensions

Web browsers use the URL search hook shell extension to provide translation of a URL

address for a protocol that it does not recognize. For example, this would be useful for

applications that wish to browse to Internet addresses using a proprietary URL address

format or for providing shortcuts to frequently visited addresses.

When an address is entered into the browser, the browser attempts to determine the

protocol used. If it does not recognize the protocol (i.e., “http://” is not present at the

beginning of the address), it begins loading URL search hook extensions. It loads each

registered extension, passing the entered address and receiving a translated address,

until the address is fully translated into a protocol the browser understands.

Shell Extension Functions � 619

C
h

a
p

te
r
1
3

Implementing URL Search Hook Shell Extensions

COM objects must implement the IURLSearchHook interface to become a URL search

hook shell extension. This interface contains only one method: Translate. This method

receives the URL address provided to the browser, translates the address, and returns

an Internet address to which the browser can navigate.

Registering URL Search Hook Shell Extensions

URL search hook shell extensions must be registered under the HKEY_CURRENT_

USER\Software\Microsoft\Internet Explorer\URLSearchHooks key. Simply write the

class identifier of the COM object as the value name, with no associated value.

■ Listing 13-1: Implementing IURLSearchHook

unit URLSearchHookXampleU;

{$WARN SYMBOL_PLATFORM OFF}

interface

uses
ComObj, ActiveX, URLSearchHookXmpl_TLB, StdVcl, ShlObj, Windows;

type
TURLSearchHookXmpl = class(TAutoObject, IURLSearchHookXmpl, IURLSearchHook)
protected
{IURLSearchHook Methods}
function Translate(lpwszSearchURL: PWideChar; cchBufferSize: DWORD):

HResult; stdcall;
end;

{the new class factory}
TURLSearchHookXmplFactory = class(TAutoObjectFactory)
public
procedure UpdateRegistry(Register: Boolean); override;

end;

implementation

uses
ComServ, Registry, SysUtils;

{ TURLSearchHookXmpl }

{provides the translation of unknown URL protocols}
function TURLSearchHookXmpl.Translate(lpwszSearchURL: PWideChar;
cchBufferSize: DWORD): HResult;

var
TransAddr: string; // holds the translated address

begin
{initialize values}
Result := E_FAIL;
TransAddr := '';

620 � Chapter 13

{provide translation for some 2-character shortcuts to frequently
visited web sites}
if UpperCase(lpwszSearchURL) = 'MS' then
TransAddr := 'http://msdn.microsoft.com'

else
if UpperCase(lpwszSearchURL) = 'BL' then
TransAddr := 'http://www.borland.com';

{indicate if the translation succeeded}
if TransAddr '' then
begin
StringToWideChar(TransAddr, lpwszSearchUrl, (Length(TransAddr) + 1) * 2);
Result := S_OK;

end;
end;

{ TURLSearchHookXmplFactory }

{provides additional registry manipulation for this shell extension}
procedure TURLSearchHookXmplFactory.UpdateRegistry(Register: Boolean);
var
TempReg: TRegistry;

begin
{perform normal registration}
inherited UpdateRegistry(Register);

{if this server is being registered, write a value into the
appropriate key to expose it to Explorer}
if Register then
CreateRegKey('Software\Microsoft\Internet Explorer\URLSearchHooks',

GUIDToString(ClassID), '', HKEY_CURRENT_USER)
else
begin
{upon unregistering, delete the value for this server but leave other
server values intact}
TempReg := TRegistry.Create;
try
TempReg.RootKey := HKEY_CURRENT_USER;
TempReg.OpenKey('Software\Microsoft\Internet Explorer\URLSearchHooks',

TRUE);
TempReg.DeleteValue(GUIDToString(ClassID))

finally
TempReg.Free;

end;
end;

end;

initialization
TURLSearchHookXmplFactory.Create(ComServer, TURLSearchHookXmpl,

Class_URLSearchHookXmpl,
ciMultiInstance, tmApartment);

end.

Shell Extension Functions � 621

C
h

a
p

te
r
1
3

Infotip Shell Extensions

Under Windows 98 with Internet Explorer 5 (or Windows 2000 and later), Explorer

uses Infotip shell extensions to provide additional information to the user when the

mouse is hovered over a file. This information is displayed like a pop-up tooltip (or in

the status bar under Windows 2000.

When the mouse cursor hovers over a file in Explorer, Explorer checks the registry for

the extension of the file to determine if an infotip extension is registered. If so, it loads

the extension and calls the GetInfoTip method, which in turn sends back a text string

that Explorer displays.

Implementing Infotip Shell Extensions

COM objects must implement the IQueryInfo, IPersistFile, and IPersist interfaces to

become an infotip shell extension (IPersist must be implemented because it is the

ancestor of IPersistFile). Only the Load method of IPersistFile is of actual interest; this

method is passed the name of the file whose information tip is to be displayed. All

other methods of IPersistFile and IPersist can return E_NOTIMPL.

The GetInfoTip method of IQueryInfo is called after IPersistFile.Load. GetInfoTip

assembles and returns the string that is displayed in Explorer as the tip for the file. The

GetInfoTip method receives a pointer to a wide char that receives this string, but the

memory for this string must be set by the shell extension using the shell’s memory

allocater. Use the SHGetMalloc API function to retrieve an IMalloc interface for the

shell’s memory allocater, and use the Alloc method to allocate memory for the string.

This must be done to allow the shell to dispose of the string when it is no longer

needed.

622 � Chapter 13

Figure 13-3:

The bitmap

infotip in

action

�Note: IQueryInfo declares a method called GetInfoFlags. This method is not

currently used, but it must be implemented and must return the value

E_NOTIMPL.

Registering Infotip Shell Extensions

Infotip extensions are registered under the HKEY_CLASSES_ROOT\<file

type>\ShellEx key. A key whose name must match the interface identifier for the

IQueryInfo interface must be written under this key, and its default value must be set to

the class identifier of the COM object. For example, the listing below implements an

infotip extension for bitmap files. The registry entry for this COM server is:

HKEY_CLASSES_ROOT
.bmp
ShellEx
{00021500-0000-0000-C000-000000000046} (IQueryInterface interface id)
Default = {DD952428-1E30-11D5-8978-0050DA8DB54F} (extension class id)

Additionally, Windows NT/2000 requires an entry for the COM object’s class identifier

into the HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\

Shell Extensions\Approved key.

■ Listing 13-2: A bitmap infotip shell extension

unit BMPInfoTipU;

interface

uses
ComObj, ActiveX, BMPInfoTip_TLB, StdVcl, ShlObj, Windows;

type
TBMPInfoTip = class(TAutoObject, IBMPInfoTip, IQueryInfo, IPersistFile,

IPersist)
protected
pMalloc: IMalloc; // pointer to the shell's memory allocater
FBMPFile: string; // the bitmap file

{IQueryInfo methods}
function GetInfoTip(dwFlags: DWORD; var ppwszTip: PWideChar): HResult; stdcall;
function GetInfoFlags(out pdwFlags: DWORD): HResult; stdcall;

{IPersistFile methods}
function IsDirty: HResult; stdcall;
function Load(pszFileName: POleStr; dwMode: Longint): HResult; stdcall;
function Save(pszFileName: POleStr; fRemember: BOOL): HResult; stdcall;
function SaveCompleted(pszFileName: POleStr): HResult; stdcall;
function GetCurFile(out pszFileName: POleStr): HResult; stdcall;

{IPersist methods}
function GetClassID(out classID: TCLSID): HResult; stdcall;

public
{TBMPInfoTip methods}
procedure Initialize; override;

Shell Extension Functions � 623

C
h

a
p

te
r
1
3

destructor Destroy; override;
end;

{the new class factory}
TBMPInfoTipFactory = class(TAutoObjectFactory)
protected
procedure ApproveShellExtension(Register: Boolean; const ClsID: string);
function GetProgID: string; override;

public
procedure UpdateRegistry(Register: Boolean); override;

end;

implementation

uses ComServ, Graphics, SysUtils, Registry;

{ TBMPInfoTip }

{ - IQueryInfo methods - }

function TBMPInfoTip.GetInfoTip(dwFlags: DWORD;
var ppwszTip: PWideChar): HResult;

var
FileInfo: string;
BitmapFile: TBitmap;

begin
{initialize values}
Result := E_FAIL;
FileInfo := 'File: ' + ExtractFileName(FBMPFile) + #13#10;
BitmapFile := TBitmap.Create;

try
{load the bitmap}
BitmapFile.LoadFromFile(FBMPFile);

{retrieve the width and height}
FileInfo := FileInfo + 'Width: ' + IntToStr(BitmapFile.Width) + #13#10;
FileInfo := FileInfo + 'Height: ' + IntToStr(BitmapFile.Height) + #13#10;

{retrieve the color depth}
FileInfo := FileInfo + 'Color Depth: ';
case BitmapFile.PixelFormat of
pfDevice : FileInfo := FileInfo + 'Device';
pf1bit : FileInfo := FileInfo + '1 bit (monochrome)';
pf4bit : FileInfo := FileInfo + '4 bit (16 color)';
pf8bit : FileInfo := FileInfo + '8 bit (256 color)';
pf15bit : FileInfo := FileInfo + '15 bit';
pf16bit : FileInfo := FileInfo + '16 bit (65,536 color)';
pf24bit : FileInfo := FileInfo + '24 bit (true color)';
pf32bit : FileInfo := FileInfo + '32 bit (true color + alpha)';
pfCustom : FileInfo := FileInfo + 'Custom';

end;

624 � Chapter 13

TE
AM
FL
Y

Team-Fly®

{allocate memory for the infotip string}
ppwszTip := pMalloc.Alloc(SizeOf(WideChar) * (Length(FileInfo) + 1));

{copy the infotip into the string}
if (ppwszTip nil) then
ppwszTip := StringToWideChar(FileInfo, ppwszTip, SizeOf(WideChar) *

Length(FileInfo) + 1);
finally
BitmapFile.Free;

end;

Result := S_OK;
end;

function TBMPInfoTip.GetInfoFlags(out pdwFlags: DWORD): HResult;
begin
{this method is declared, but is not used}
Result := E_NOTIMPL;

end;

{ - IPersistFile methods - }

function TBMPInfoTip.Load(pszFileName: POleStr; dwMode: Integer): HResult;
begin
{this method passes the file name to the shell extension}
FBMPFile := pszFileName;
Result := S_OK;

end;

function TBMPInfoTip.IsDirty: HResult;
begin
Result := E_NOTIMPL;

end;

function TBMPInfoTip.Save(pszFileName: POleStr; fRemember: BOOL): HResult;
begin
Result := E_NOTIMPL;

end;

function TBMPInfoTip.SaveCompleted(pszFileName: POleStr): HResult;
begin
Result := E_NOTIMPL;

end;

function TBMPInfoTip.GetCurFile(out pszFileName: POleStr): HResult;
begin
Result := E_NOTIMPL;

end;

{ - IPersist methods - }

function TBMPInfoTip.GetClassID(out classID: TCLSID): HResult;
begin
Result := E_NOTIMPL;

end;

Shell Extension Functions � 625

C
h

a
p

te
r
1
3

{ - TBMPInfoTip methods - }

procedure TBMPInfoTip.Initialize;
begin
inherited;

{retrieve a pointer to the shell's memory allocater}
if Failed(ShGetMalloc(pMalloc)) then
pMalloc := nil;

end;

destructor TBMPInfoTip.Destroy;
begin
inherited;
pMalloc := nil;

end;

{ TBMPInfoTipFactory }

{provides additional registry manipulation for Windows NT/2000}
procedure TBMPInfoTipFactory.ApproveShellExtension(Register: Boolean;
const ClsID: string);
var
TempReg: TRegistry;

begin
TempReg := TRegistry.Create;

try
TempReg.RootKey := HKEY_LOCAL_MACHINE;

{open the appropriate key}
if not TempReg.OpenKey('SOFTWARE\Microsoft\Windows\CurrentVersion\Shell

Extensions\Approved', True) then
Exit;

{register the extension appropriately}
if Register then
TempReg.WriteString(ClsID, Description)

else
TempReg.DeleteValue(ClsID);

finally
TempReg.Free;

end;
end;

function TBMPInfoTipFactory.GetProgID: string;
begin
{the ProgID is not needed for shell extensions}
Result := '';

end;

procedure TBMPInfoTipFactory.UpdateRegistry(Register: Boolean);
begin
{perform normal registration}
inherited UpdateRegistry(Register);
{perform registration for Windows NT/2000}

626 � Chapter 13

ApproveShellExtension(Register, GUIDToString(ClassID));

{write the appropriate value for registration}
if Register then
CreateRegKey('.bmp\shellex\' + SID_IQueryInfo, '', GUIDToString(ClassID))

else
DeleteRegKey('.bmp\shellex\' + SID_IQueryInfo);

end;

initialization
TBMPInfoTipFactory.Create(ComServer, TBMPInfoTip, CLASS_BMPInfoTip,

ciMultiInstance, tmApartment);

end.

Copy Hook Shell Extensions

Explorer uses copy hook shell extensions to determine if a shell folder or printer object

can be moved, copied, renamed, or deleted. Technically, without a copy hook shell

extension, these operations always succeed, but a copy hook shell extension can pro-

vide additional restraints and either permit or deny the processing of the operation.

Unfortunately, copy hook shell extensions work only on shell folders or printer objects;

they do not work on file objects.

When the user attempts to move, copy, rename, or delete a shell folder or printer,

Explorer begins loading registered copy hook shell extensions. It queries each one until

all copy hook shell extensions indicate that processing can continue or until one of

them indicates that the process should not be allowed. Copy hook shell extensions

merely indicate if the operation can continue or should be halted; they do not perform

the operation themselves nor are they notified if the operation actually succeeded.

Implementing Copy Hook Shell Extensions

COM objects must implement the ICopyHook interface to become a copy hook shell

extension. The only method in this interface, CopyCallback, is called when the user

tries to copy, rename, move, or delete a file folder or printer. CopyCallback receives

information about the source and destination folder (or printer) names and the nature of

the operation. Based on this information and the functionality provided by the handler,

CopyCallback returns a value to indicate if the operation should continue or is not

allowed.

Registering Copy Hook Shell Extensions

Copy hook shell extensions are registered under the HKEY_CLASSES_ROOT\Direc-

tory\ShellEx\CopyHookHandlers key. A key whose name is set to the class name of the

COM object must be written under this key, and its default value must be set to the

class identifier of the COM object. For printers, the registry key is the same, except

that instead of HKEY_CLASSES_ROOT\Directory, it must be located under

HKEY_CLASSES_ROOT\Printers. Additionally, Windows NT/2000 requires an entry

Shell Extension Functions � 627

C
h

a
p

te
r
1
3

for the COM object’s class identifier into the HKEY_LOCAL_MACHINE\Soft-

ware\Microsoft\Windows\CurrentVersion\Shell Extensions\Approved key.

■ Listing 13-3: Logging directory modifications

unit CopyHookXampleU;

{$WARN SYMBOL_PLATFORM OFF}

interface

uses
Windows, ComObj, ActiveX, CopyHookXample_TLB, StdVcl, ShlObj;

type
TCopyHookXmpl = class(TAutoObject, ICopyHookXmpl, ICopyHook)
protected
{ICopyHook Methods}
function CopyCallback(Wnd: HWND; wFunc, wFlags: UINT; pszSrcFile: PAnsiChar;
dwSrcAttribs: DWORD; pszDestFile: PAnsiChar; dwDestAttribs: DWORD): UINT; stdcall;

end;

{the new class factory}
TCopyHookXmplFactory = class(TAutoObjectFactory)
protected
procedure ApproveShellExtension(Register: Boolean; const ClsID: string);
function GetProgID: string; override;

public
procedure UpdateRegistry(Register: Boolean); override;

end;

implementation

uses
ComServ, Registry, SysUtils, ShellAPI, Classes;

{ TCopyHookXmpl }

function TCopyHookXmpl.CopyCallback(Wnd: HWND; wFunc, wFlags: UINT;
pszSrcFile: PAnsiChar; dwSrcAttribs: DWORD; pszDestFile: PAnsiChar;
dwDestAttribs: DWORD): UINT;

var
LogFile: TextFile;

begin
{open the log file}
AssignFile(LogFile, 'c:\CopyHookLog.txt');
if FileExists('c:\CopyHookLog.txt') then
Append(LogFile)

else
Rewrite(LogFile);

{record the operation into the log file}
case wFunc of
FO_MOVE : WriteLn(LogFile, 'Moved ' + pszSrcFile + ' to ' + pszDestFile +

#13#10#9 + 'Time: ' + TimeToStr(Now) + #13#10#13#10);
FO_COPY : WriteLn(LogFile, 'Copied ' + pszSrcFile + ' to ' + pszDestFile +

628 � Chapter 13

#13#10#9 + 'Time: ' + TimeToStr(Now) + #13#10#13#10);
FO_DELETE : WriteLn(LogFile, 'Deleted ' + pszSrcFile +

#13#10#9 + 'Time: ' + TimeToStr(Now) + #13#10#13#10);
FO_RENAME : WriteLn(LogFile, 'Renamed ' + pszSrcFile + ' to ' + pszDestFile +

#13#10#9 + 'Time: ' + TimeToStr(Now) + #13#10#13#10);
end;

{write and close the logfile}
CloseFile(LogFile);

Result := IDYES;
end;

{ TCopyHookXmplFactory }

{provides additional registry manipulation for Windows NT/2000}
procedure TCopyHookXmplFactory.ApproveShellExtension(Register: Boolean;
const ClsID: string);

var
TempReg: TRegistry;

begin
TempReg := TRegistry.Create;

try
TempReg.RootKey := HKEY_LOCAL_MACHINE;

{open the appropriate key}
if not TempReg.OpenKey('SOFTWARE\Microsoft\Windows\CurrentVersion\Shell

Extensions\Approved', True) then
Exit;

{register the extension appropriately}
if Register then
TempReg.WriteString(ClsID, Description)

else
TempReg.DeleteValue(ClsID);

finally
TempReg.Free;

end;
end;

function TCopyHookXmplFactory.GetProgID: string;
begin
{the ProgID is not needed for shell extensions}
Result := '';

end;

{provides additional registry manipulation for this shell extension}
procedure TCopyHookXmplFactory.UpdateRegistry(Register: Boolean);
var
TempReg: TRegistry;

begin
{perform normal registration}
inherited UpdateRegistry(Register);

{perform registration for Windows NT/2000}

Shell Extension Functions � 629

C
h

a
p

te
r
1
3

ApproveShellExtension(Register, GUIDToString(ClassID));

{register or unregister the shell extension}
if Register then
CreateRegKey('directory\shellex\CopyHookHandlers\' + ClassName, '',

GUIDToString(ClassID))
else
DeleteRegKey('directory\shellex\CopyHookHandlers\' + ClassName);

end;

initialization
TCopyHookXmplFactory.Create(ComServer, TCopyHookXmpl, CLASS_CopyHookXmpl,

ciMultiInstance, tmApartment);

end.

Shell Execute Hook Shell Extensions

Shell execute hook extensions are used when the ShellExecute or ShellExecuteEx API

functions are called. This occurs every time a file is double-clicked in Explorer or

when the Run dialog box is used. The shell execute hook extension can completely pro-

cess the request (preventing the call to ShellExecute or ShellExecuteEx), or it can

perform any desired processing and allow ShellExecute or ShellExecuteEx to continue

processing the request.

When ShellExecute or ShellExecuteEx is called, Explorer begins loading registered

shell execute hook extensions. It sends the request to each one, allowing the extension

to perform its processing. This continues until all extensions have processed the request

and allowed it to pass on to ShellExecute or ShellExecuteEx, or one of the extensions

processes the request completely.

630 � Chapter 13

Figure 13-4:

The copy hook

shell

extension log

Implementing Shell Execute Hook Shell Extensions

COM objects must implement the IShellExecuteHook interface to become a shell exe-

cute hook extension. This interface has one method, Execute, that is called every time

ShellExecute or ShellExecuteEx is called. This method is called first, allowing it to

suppress the final call to ShellExecute or ShellExecuteEx if necessary. This method

receives a pointer to a TShellExecuteInfo structure containing information about the

file being opened or executable being launched. If the extension handles the request

and launches the requested application, the hInstApp member of this structure should

be set to the instance handle of the application. If the extension did not launch the

requested application but wants to suppress the call to ShellExecute or ShellExecuteEx,

the hInstApp member should be set to a value greater than 32 to prevent the shell from

displaying an error message.

Registering Shell Execute Hook Shell Extensions

Shell execute hook extensions must be registered under the HKEY_LOCAL_MA-

CHINE\Software\Microsoft\Windows\CurrentVersion\Explorer\ShellExecuteHooks

key. Simply write the class identifier of the COM object as the value name, with no

associated value. Additionally, Windows NT/2000 requires an entry for the COM

object’s class identifier into the HKEY_LOCAL_MACHINE\Software\Microsoft\Win-

dows\CurrentVersion\Shell Extensions\Approved key.

■ Listing 13-4: Logging file execute operations

unit ShellExecHookXampleU;

{$WARN SYMBOL_PLATFORM OFF}

interface

uses
ComObj, ActiveX, ShellExecHookXample_TLB, StdVcl, ShlObj, ShellAPI;

type
TShellExecHookXmpl = class(TAutoObject, IShellExecHookXmpl, IShellExecuteHook)
protected
{IShellExecuteHook Methods}
function Execute(var ShellExecuteInfo: TShellExecuteInfo): HResult;stdcall;

end;

{the new class factory}
TShellHookExecXmplFactory = class(TAutoObjectFactory)
protected
procedure ApproveShellExtension(Register: Boolean; const ClsID: string);
function GetProgID: string; override;

public
procedure UpdateRegistry(Register: Boolean); override;

end;

Shell Extension Functions � 631

C
h

a
p

te
r
1
3

implementation

uses
ComServ, Registry, SysUtils, Windows;

{ TShellExecHookXmpl }

function TShellExecHookXmpl.Execute(var ShellExecuteInfo: TShellExecuteInfo): HResult;
var
LogFile: TextFile;

begin
{open the log file}
AssignFile(LogFile, 'c:\ShellExecHookLog.txt');
if FileExists('c:\ShellExecHookLog.txt') then
Append(LogFile)

else
Rewrite(LogFile);

{write the operation to the log file}
WriteLn(LogFile, 'Verb: ' + ShellExecuteInfo.lpVerb + ', File: ' +

ShellExecuteInfo.lpFile + #13#10#9 + 'Time: ' + TimeToStr(Now) +
#13#10);

{close the log file}
CloseFile(LogFile);

{indicate that the request was processed, but that default processing
should continue}
Result := S_FALSE;

end;

{ TShellHookExecXmpl }

{provides additional registry manipulation for Windows NT/2000}
procedure TShellHookExecXmplFactory.ApproveShellExtension(Register: Boolean;
const ClsID: string);

var
TempReg: TRegistry;

begin
TempReg := TRegistry.Create;

try
TempReg.RootKey := HKEY_LOCAL_MACHINE;

{open the appropriate key}
if not TempReg.OpenKey('SOFTWARE\Microsoft\Windows\CurrentVersion\Shell

Extensions\Approved', True) then
Exit;

{register the extension appropriately}
if Register then
TempReg.WriteString(ClsID, Description)

else
TempReg.DeleteValue(ClsID);

finally
TempReg.Free;

632 � Chapter 13

end;
end;

function TShellHookExecXmplFactory.GetProgID: string;
begin
{the ProgID is not needed for shell extensions}
Result := '';

end;

{provides additional registry manipulation for this shell extension}
procedure TShellHookExecXmplFactory.UpdateRegistry(Register: Boolean);
var
TempReg: TRegistry;

begin
{perform normal registration}
inherited UpdateRegistry(Register);

{perform registration for Windows NT/2000}
ApproveShellExtension(Register, GUIDToString(ClassID));

{if this server is being registered, write a value into the
appropriate key to expose it to Explorer}
if Register then
CreateRegKey('Software\Microsoft\Windows\CurrentVersion\Explorer\

ShellExecuteHooks', GUIDToString(ClassID), '',
HKEY_LOCAL_MACHINE)

else
begin
{upon unregistering, delete the value for this server but leave other
server values intact}
TempReg := TRegistry.Create;
try
TempReg.RootKey := HKEY_LOCAL_MACHINE;
TempReg.OpenKey('Software\Microsoft\Windows\CurrentVersion\Explorer\

ShellExecuteHooks', TRUE);
TempReg.DeleteValue(GUIDToString(ClassID))

finally
TempReg.Free;

end;
end;

end;

initialization
TShellHookExecXmplFactory.Create(ComServer, TShellExecHookXmpl,

Class_ShellExecHookXmpl,
ciMultiInstance, tmApartment);

end.

Shell Extension Functions � 633

C
h

a
p

te
r
1
3

Context Menu Handler Shell Extensions

When the user right-clicks an item on the desktop or from Explorer, the system dis-

plays a pop-up menu for the item. Context menu shell extensions add items to this

menu and allow the user quick access to specific functionality related to the selected

item. Any number of menu items can be added for the item from a single context menu

shell extension.

When the item is right-clicked, Explorer determines what default items are displayed in

the context menu and then begins loading registered context menu shell extensions. As

it loads each one, it queries the extension to retrieve the menu items to add to the con-

text menu. A single context menu extension can add one or more menu items as

necessary. This continues until all context menu shell extensions registered for the item

have had a chance to add their menu items. When the user selects a menu item added

by a context menu extension, this context menu extension is called to perform the spe-

cific functionality represented by the selected menu item.

Implementing Context Menu Handler Shell Extensions

COM objects must implement the IShellExtInit and IContextMenu interfaces to

become a context menu shell extension. IShellExtInit defines only one method, Initial-

ize, but unfortunately, TComObject also defines this method, so a method resolution

clause must be used. The IShellExtInit.Initialize method is called first when the context

menu extension is loaded. Initialize receives a data object and other parameters that

contain information about the selected file, and any initialization of the extension

should occur at this time.

The IContextMenu interface defines three methods: QueryContextMenu, GetCom-

mandString, and InvokeCommand. QueryContextMenu is called first and is passed the

handle of the menu into which the menu items are inserted, how the menu was

spawned, the index of the first menu item, and a range of valid menu item identifiers.

This method should use these values to insert appropriate menu items at the indicated

spot using the InsertMenu or InsertMenuItem API functions. GetCommandString is

called when the inserted menu item receives focus, and it simply returns a help string

for the menu item that is displayed in the Explorer status bar. Finally, when the user

selects the menu item, the InvokeCommand method is called, which carries out the

functionality on the selected file represented by the chosen menu item.

634 � Chapter 13

Figure 13-5:

The file

execute log

TE
AM
FL
Y

Team-Fly®

Registering Context Menu Handler Shell Extensions

Context menu shell extensions are registered under the HKEY_CLASSES_ROOT\<file

type>\ShellEx\ContextMenuHandlers key. To find the appropriate file type, look under

HKEY_CLASSES_ROOT for the extension of the file type associated with the context

menu. Its default value will be the file type under which the context menu is registered.

A key whose name is set to the class name of the COM object must be written under

this key, and its default value must be set to the class identifier of the COM object.

Additionally, Windows NT/2000 requires an entry for the COM object’s class identifier

into the HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\

Shell Extensions\Approved key.

■ Listing 13-5: Context menu for converting JPEG images to bitmap

unit JPEGToBMPXmplU;

{$WARN SYMBOL_PLATFORM OFF}

interface

uses
ComObj, ActiveX, JPEGToBMPXmple_TLB, StdVcl, ShlObj, Windows;

type
TIJPEGToBMPContextMenu = class(TAutoObject, IIJPEGToBMPContextMenu,

IShellExtInit, IContextMenu)
private
FFileName: string;
FMenuItemIndex: UINT;

protected
{ IShellExtInit Methods }
function IShellExtInit.Initialize = ShellExtInitialize;
function ShellExtInitialize(pidlFolder: PItemIDList; lpdobj: IDataObject;
hKeyProgID: HKEY): HResult; stdcall;

{ IContextMenu Methods }
function QueryContextMenu(Menu: HMENU;
indexMenu, idCmdFirst, idCmdLast, uFlags: UINT): HResult; stdcall;

function InvokeCommand(var lpici: TCMInvokeCommandInfo): HResult; stdcall;
function GetCommandString(idCmd, uType: UINT; pwReserved: PUINT;
pszName: LPSTR; cchMax: UINT): HResult; stdcall;

end;

{the new class factory}
TJPEGToBMPObjectFactory = class(TAutoObjectFactory)
protected
procedure ApproveShellExtension(Register: Boolean; const ClsID: string);
function GetProgID: string; override;

public
procedure UpdateRegistry(Register: Boolean); override;

end;
implementation

uses

Shell Extension Functions � 635

C
h

a
p

te
r
1
3

ComServ, JPeg, Graphics, ShellAPI, SysUtils, Registry;

{provides jpeg to bitmap conversion logic}
procedure ConvertToBmp(JpegImg: string);
var
TempJpg: TJpegImage;
TempBMP: TBitmap;

begin
{load the jpeg}
TempJpg := TJpegImage.Create;
TempJpg.LoadFromFile(JpegImg);

{create the bitmap}
TempBMP := TBitmap.Create;

{set bitmap dimensions to match the jpeg}
TempBMP.Width := TempJpg.Width;
TempBMP.Height := TempJpg.Height;

{draw the jpeg to the bitmap}
TempBMP.Canvas.Draw(0, 0, TempJpg);

{save the bitmap}
TempBMP.SaveToFile(ChangeFileExt(JpegImg, '.bmp'));

{cleanup}
TempBMP.Free;
TempJpg.Free;

end;

{ TIJPEGToBMPContextMenu }

{ - IShellExtInit Methods - }

function TIJPEGToBMPContextMenu.ShellExtInitialize(pidlFolder: PItemIDList;
lpdobj: IDataObject; hKeyProgID: HKEY): HResult;

var
DataFormat: TFormatEtc;
StrgMedium: TStgMedium;

begin
Result := E_FAIL;

{if no object was provided, exit}
if lpdobj = nil then
Exit;

{prepare to retrieve information about the object}
DataFormat.cfFormat := CF_HDROP;
DataFormat.ptd := nil;
DataFormat.dwAspect :=DVASPECT_CONTENT;
DataFormat.lindex := -1;
DataFormat.tymed := TYMED_HGLOBAL;
if lpdobj.GetData(DataFormat, StrgMedium) S_OK then
Exit;

636 � Chapter 13

{valid only if one file is selected}
if DragQueryFile(StrgMedium.hGlobal, $FFFFFFFF, nil, 0) = 1 then
begin
{retrieve the file name}
SetLength(FFileName, MAX_PATH);
DragQueryFile(StrgMedium.hGlobal, 0, PChar(FFileName), MAX_PATH);

end;

{only one file selected, ready to go}
ReleaseStgMedium(StrgMedium);
Result := NOERROR;

end;

{ - IContextMenu Methods - }

{called to add items to the menu}
function TIJPEGToBMPContextMenu.QueryContextMenu(Menu: HMENU; indexMenu,
idCmdFirst, idCmdLast, uFlags: UINT): HResult;

begin
{only adding one menu item, so generate the result code accordingly}
Result := MakeResult(SEVERITY_SUCCESS, 0, 1);

{store the menu item index}
FMenuItemIndex := indexMenu;

{specify what the menu says, depending on where it was spawned}
if (uFlags = CMF_NORMAL) then // from the desktop
InsertMenu(Menu, indexMenu, MF_STRING or MF_BYPOSITION, idCmdFirst,

'Convert JPEG to Bitmap (from desktop)')
else
if (uFlags and CMF_VERBSONLY) = CMF_VERBSONLY then // from a shortcut
InsertMenu(Menu, indexMenu, MF_STRING or MF_BYPOSITION, idCmdFirst,

'Convert JPEG to Bitmap (from shortcut)')
else
if (uFlags and CMF_EXPLORE) = CMF_EXPLORE then // from explorer
InsertMenu(Menu, indexMenu, MF_STRING or MF_BYPOSITION, idCmdFirst,

'Convert JPEG to Bitmap (from Explorer)')
else
{fail for any other value}
Result := E_FAIL;

end;

{called to get the help string}
function TIJPEGToBMPContextMenu.GetCommandString(idCmd, uType: UINT;
pwReserved: PUINT; pszName: LPSTR; cchMax: UINT): HResult;

begin
Result := E_INVALIDARG;

{indicates the help string displayed in the bottom of the explorer when
the menu item is selected}
if (idCmd = FMenuItemIndex) and (uType = GCS_HELPTEXT) then
begin
StrLCopy(pszName, 'Convert the selected JPEG image to a bitmap', cchMax);
Result := NOERROR;

end;
end;

Shell Extension Functions � 637

C
h

a
p

te
r
1
3

{called to perform the functionality represented by the menu item}
function TIJPEGToBMPContextMenu.InvokeCommand(var lpici:

TCMInvokeCommandInfo): HResult;
begin
Result := E_FAIL;

{if a verb string is specified, don't process}
if HiWord(integer(lpici.lpVerb)) 0 then
Exit;

{if the index matches the index for the menu, convert the jpeg to a bitmap}
if LoWord(integer(lpici.lpVerb)) = FMenuItemIndex then
begin
ConvertToBmp(FFileName);
Result := NOERROR;

end;
end;

{ TJPEGToBMPObjectFactory }

{provides additional registry manipulation for Windows NT/2000}
procedure TJPEGToBMPObjectFactory.ApproveShellExtension(Register: Boolean;
const ClsID: string);

var
TempReg: TRegistry;

begin
TempReg := TRegistry.Create;

try
TempReg.RootKey := HKEY_LOCAL_MACHINE;

{open the appropriate key}
if not TempReg.OpenKey('SOFTWARE\Microsoft\Windows\CurrentVersion\Shell

Extensions\Approved', True) then
Exit;

{register the extension appropriately}
if Register then
TempReg.WriteString(ClsID, Description)

else
TempReg.DeleteValue(ClsID);

finally
TempReg.Free;

end;
end;

function TJPEGToBMPObjectFactory.GetProgID: string;
begin
{the ProgID is not needed for shell extensions}
Result := '';

end;

procedure TJPEGToBMPObjectFactory.UpdateRegistry(Register: Boolean);
begin
{perform normal registration}
inherited UpdateRegistry(Register);

638 � Chapter 13

{perform registration for Windows NT/2000}
ApproveShellExtension(Register, GUIDToString(ClassID));

{if this server is being registered, write a value into the
appropriate key to expose it to Explorer}
if Register then
CreateRegKey('jpegfile\shellex\ContextMenuHandlers\' + ClassName, '',

GUIDToString(ClassID), HKEY_CLASSES_ROOT)
else
DeleteRegKey('jpegfile\shellex\ContextMenuHandlers\' + ClassName);

end;

initialization
TJPEGToBMPObjectFactory.Create(ComServer, TIJPEGToBMPContextMenu,

Class_IJPEGToBMPContextMenu,
ciMultiInstance, tmApartment);

end.

Icon Handler Shell Extensions

Explorer uses icon handler shell extensions to display a non-default icon for a file or

folder object. Typically, this type of shell extension is used to provide icons for a file

on a per-instance basis. For example, such extensions could be used to display a differ-

ent icon for a specific file type based on its read-only attribute; a read-only file would

display a different icon than a normal file, even though the files are the same type.

When Explorer needs to draw the icon for a specific file type, it checks the registry for

the file type associated with the file extension to determine if an icon handler extension

is registered. If so, it loads the extension and retrieves either a handle to the appropriate

icon or a location of a file containing the icon and the icon’s index within that file.

Shell Extension Functions � 639

C
h

a
p

te
r
1
3

Figure 13-6:

The context

menu

extension

from Explorer

Implementing Icon Handler Shell Extensions

COM objects must implement the IExtractIcon, IPersistFile, and IPersist interfaces to

become an icon handler shell extension (IPersist must be implemented because it is the

ancestor of IPersistFile). Only the Load method of IPersistFile is of actual interest; this

method is passed the name of the file whose icon is to be extracted. All other methods

of IPersistFile and IPersist can return E_NOTIMPL.

IPersistFile.Load is called first and receives the name of the file whose icon is to be

determined. Explorer then calls the GetIconLocation method. This method should

return the name of a file containing the icon resource to use and the index of the icon

within the file. It also returns a combination of flags that instruct Explorer on how this

information is used. Typically, it indicates that the icon should be used on a per-

instance basis and that it shouldn’t be cached by the shell. However, in some imple-

mentations, the extension may need to pass back an actual handle to a specific icon. In

this case, the GIL_NOTFILENAME flag is passed back, indicating that the specified

filename and index do not identify a valid icon location. When this happens, Explorer

calls the Extract method, which returns a valid handle to a large and small icon.

Registering Icon Handler Shell Extensions

Icon handler shell extensions are registered under the HKEY_CLASSES_ROOT\<file

type>\ShellEx\IconHandler key. To find the appropriate file type, look under

HKEY_CLASSES_ROOT for the extension of the file type associated with the icon

handler. Its default value will be the file type under which the icon handler is regis-

tered. The default value of the HKEY_CLASSES_ROOT\<file type>\ShellEx\

IconHandler key must be set to the class identifier of the COM object. For icon han-

dlers that provide per-instance icons, the default value of HKEY_CLASSES_ROOT\

<file type>\DefaultIcon must be set to “%1.” Additionally, Windows NT/2000 requires

an entry for the COM object’s class identifier into the HKEY_LOCAL_MACHINE\

Software\Microsoft\Windows\CurrentVersion\Shell Extensions\Approved key.

■ Listing 13-6: Displaying different icons for read-only .pas files

unit ExtractIconXampleU;

{$WARN SYMBOL_PLATFORM OFF}

interface

uses
ComObj, ActiveX, ExtractIconXample_TLB, StdVcl, ShlObj, Windows;

type
TIExtractIconXmpl = class(TAutoObject, IIExtractIconXmpl, IPersistFile,

IExtractIcon)
private
FFileName: string;

protected
{IExtractIcon methods}
function GetIconLocation(uFlags: UINT; szIconFile: PAnsiChar; cchMax: UINT;

640 � Chapter 13

out piIndex: Integer; out pwFlags: UINT): HResult; stdcall;
function Extract(pszFile: PAnsiChar; nIconIndex: UINT;
out phiconLarge, phiconSmall: HICON; nIconSize: UINT): HResult; stdcall;

{IPersistFile methods}
function IsDirty: HResult; stdcall;
function Load(pszFileName: POleStr; dwMode: Longint): HResult; stdcall;
function Save(pszFileName: POleStr; fRemember: BOOL): HResult; stdcall;
function SaveCompleted(pszFileName: POleStr): HResult; stdcall;
function GetCurFile(out pszFileName: POleStr): HResult; stdcall;

{IPersist methods}
function GetClassID(out classID: TCLSID): HResult; stdcall;

end;

{the new class factory}
TExtractIconXmplFactory = class(TAutoObjectFactory)
protected
procedure ApproveShellExtension(Register: Boolean; const ClsID: string);
function GetProgID: string; override;

public
procedure UpdateRegistry(Register: Boolean); override;

end;

implementation

uses
ComServ, SysUtils, Registry;

{ - IPersistFile methods - }

function TIExtractIconXmpl.Load(pszFileName: POleStr; dwMode: Integer): HResult;
begin
{save the filename}
FFileName := pszFileName;
Result := S_OK;

end;

function TIExtractIconXmpl.IsDirty: HResult;
begin
Result := E_NOTIMPL;

end;

function TIExtractIconXmpl.Save(pszFileName: POleStr; fRemember: BOOL): HResult;
begin
Result := E_NOTIMPL;

end;

function TIExtractIconXmpl.SaveCompleted(pszFileName: POleStr): HResult;
begin
Result := E_NOTIMPL;

end;

function TIExtractIconXmpl.GetCurFile(out pszFileName: POleStr): HResult;
begin
Result := E_NOTIMPL;

Shell Extension Functions � 641

C
h

a
p

te
r
1
3

end;

{ - IPersist methods - }

function TIExtractIconXmpl.GetClassID(out classID: TCLSID): HResult;
begin
Result := E_NOTIMPL;

end;

{ - IExtractIcon methods - }

{called to extract icon handles}
function TIExtractIconXmpl.Extract(pszFile: PAnsiChar; nIconIndex: UINT;
out phiconLarge, phiconSmall: HICON; nIconSize: UINT): HResult;

begin
Result := NOERROR;
phiconSmall := 0; // no icon for the small icon

{load the appropriate icon}
case nIconIndex of
0 : phiconLarge := LoadIcon(hInstance, 'PASNORM');
1 : phiconLarge := LoadIcon(hInstance, 'PASREADONLY');

end;
end;

{called to get icon locations}
function TIExtractIconXmpl.GetIconLocation(uFlags: UINT;
szIconFile: PAnsiChar; cchMax: UINT; out piIndex: Integer;
out pwFlags: UINT): HResult;

begin
Result := NOERROR;

{indicate the name of this COM server dll, but this is not used}
StrLCopy(szIconFile, PChar(ComServer.ServerFileName), cchMax);

{indicate the icon to use based on the readonly attribute}
piIndex := 0;
if FileIsReadOnly(FFileName) then
piIndex := 1;

{indicate that this is a per-instance icon that shouldn't be cached,
and that the system should call Extract to get icon handles}
pwFlags := pwFlags or GIL_PERINSTANCE or GIL_DONTCACHE or GIL_NOTFILENAME;

end;

{ TExtractIconXmplFactory }

{provides additional registry manipulation for Windows NT/2000}
procedure TExtractIconXmplFactory.ApproveShellExtension(Register: Boolean;
const ClsID: string);

var
TempReg: TRegistry;

begin
TempReg := TRegistry.Create;

try

642 � Chapter 13

TempReg.RootKey := HKEY_LOCAL_MACHINE;

{open the appropriate key}
if not TempReg.OpenKey('SOFTWARE\Microsoft\Windows\CurrentVersion\Shell

Extensions\Approved', True) then
Exit;

{register the extension appropriately}
if Register then
TempReg.WriteString(ClsID, Description)

else
TempReg.DeleteValue(ClsID);

finally
TempReg.Free;

end;
end;

function TExtractIconXmplFactory.GetProgID: string;
begin
{the ProgID is not needed for shell extensions}
Result := '';

end;

procedure TExtractIconXmplFactory.UpdateRegistry(Register: Boolean);
var
TempReg: TRegistry;

begin
{perform normal registration}
inherited UpdateRegistry(Register);

{perform registration for Windows NT/2000}
ApproveShellExtension(Register, GUIDToString(ClassID));

{if this server is being registered, write a value into the
appropriate key to expose it to Explorer}
TempReg := TRegistry.Create;
TempReg.RootKey := HKEY_CLASSES_ROOT;

if Register then
begin
CreateRegKey('DelphiUnit\ShellEx\IconHandler', '', GUIDToString(ClassID),

HKEY_CLASSES_ROOT);

{make a backup of the original default icon location}
if TempReg.OpenKey('DelphiUnit\DefaultIcon', FALSE) then
TempReg.WriteString('DefaultIconBackup', TempReg.ReadString(''));

CreateRegKey('DelphiUnit\DefaultIcon', '', '%1', HKEY_CLASSES_ROOT);
end
else
begin
DeleteRegKey('DelphiUnit\ShellEx\IconHandler');

{restore the original default icon location, if it was backed up}
if TempReg.OpenKey('DelphiUnit\DefaultIcon', FALSE) then
if TempReg.ValueExists('DefaultIconBackup') then

Shell Extension Functions � 643

C
h

a
p

te
r
1
3

TempReg.WriteString('', TempReg.ReadString('DefaultIconBackup'));
end;

TempReg.Free;
end;

initialization
TExtractIconXmplFactory.Create(ComServer, TIExtractIconXmpl, Class_IExtractIconXmpl,
ciMultiInstance, tmApartment);

end.

Drag-Drop Handler Shell Extensions

A drag-drop handler shell extension allows files to be dragged and dropped on regis-

tered file types. A classic example is WinZip. WinZip registers a drag-drop handler

shell extension that, when files are dragged over a .zip file, allows those files to be

added to the .zip file they are dropped upon.

When a file or folder object is dragged over another file object, Explorer checks the

registry for the file type associated with the file extension to determine if a drag-drop

handler extension is registered. If so, it loads the drag-drop handler extension and calls

various methods to determine if a file will be accepted by the target and provides feed-

back as to what type of action the user is attempting.

Implementing Drag-Drop Handler Shell Extensions

COM objects must implement the IDropTarget, IPersistFile, and IPersist interfaces to

become a drag-drop handler shell extension (IPersist must be implemented because it is

the ancestor of IPersistFile). Only the Load method of IPersistFile is of actual interest;

644 � Chapter 13

Figure 13-7:

Different

icons for

read-only files TE
AM
FL
Y

Team-Fly®

this method is passed the name of the file over which another file is being dragged. All

other methods of IPersistFile and IPersist can return E_NOTIMPL.

IPersistFile.Load is called first and receives the name of the file identified as the drop

target. Explorer then calls the DragEnter method. This method should determine if the

dragged file is valid for this drop target and return a flag that changes the mouse cursor

to indicate what type of operation is being attempted, such as a copy or move opera-

tion. IDropTarget.DragOver is called every time the mouse is moved over the drop

target while still dragging a file, and IDropTarget.DragLeave is called when the mouse

leaves the drop target area. Finally, when the user releases the mouse button over the

drop target, IDropTarget.Drop is called to perform the functionality provided by the

shell extension based on the attempted drag-drop operation.

Registering Drag-Drop Handler Shell Extensions

Drag-drop handler shell extensions are registered under the HKEY_CLASSES_ROOT\

<file type>\ShellEx\DropHandler key. To find the appropriate file type, look under

HKEY_CLASSES_ROOT for the extension of the file type associated with the

drag-drop handler. Its default value will be the file type under which the drag-drop han-

dler is registered. The default value of the HKEY_CLASSES_ROOT\<file type>\

ShellEx\DropHandler key must be set to the class identifier of the COM object. Addi-

tionally, Windows NT/2000 requires an entry for the COM object’s class identifier into

the HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Shell

Extensions\Approved key.

■ Listing 13-7: Adding images to an HTML file via drag-drop

unit DropTargetXampleU;

{$WARN SYMBOL_PLATFORM OFF}

interface

uses
ComObj, ActiveX, DropTargetXample_TLB, StdVcl, Windows;

type
TIDropTargetXmple = class(TAutoObject, IIDropTargetXmple, IDropTarget,

IPersistFile, IPersist)
private
FFileName: string;

protected
{IDropTarget Methods}
function DragEnter(const dataObj: IDataObject; grfKeyState: Longint;
pt: TPoint; var dwEffect: Longint): HResult; stdcall;

function DragOver(grfKeyState: Longint; pt: TPoint;
var dwEffect: Longint): HResult; stdcall;

function DragLeave: HResult; stdcall;
function Drop(const dataObj: IDataObject; grfKeyState: Longint; pt: TPoint;
var dwEffect: Longint): HResult; stdcall;

{IPersistFile methods}

Shell Extension Functions � 645

C
h

a
p

te
r
1
3

function IsDirty: HResult; stdcall;
function Load(pszFileName: POleStr; dwMode: Longint): HResult; stdcall;
function Save(pszFileName: POleStr; fRemember: BOOL): HResult; stdcall;
function SaveCompleted(pszFileName: POleStr): HResult; stdcall;
function GetCurFile(out pszFileName: POleStr): HResult; stdcall;

{IPersist methods}
function GetClassID(out classID: TCLSID): HResult; stdcall;

end;

{the new class factory}
TDropTargetXmplFactory = class(TAutoObjectFactory)
protected
procedure ApproveShellExtension(Register: Boolean; const ClsID: string);
function GetProgID: string; override;

public
procedure UpdateRegistry(Register: Boolean); override;

end;

implementation

uses
ComServ, SysUtils, ShellAPI, Registry, Dialogs, Classes;

{ - IPersistFile methods - }

function TIDropTargetXmple.Load(pszFileName: POleStr; dwMode: Integer): HResult;
begin
{store the filename of the drop target}
FFileName := pszFileName;
Result := S_OK;

end;

function TIDropTargetXmple.IsDirty: HResult;
begin
Result := E_NOTIMPL;

end;

function TIDropTargetXmple.Save(pszFileName: POleStr; fRemember: BOOL): HResult;
begin
Result := E_NOTIMPL;

end;

function TIDropTargetXmple.SaveCompleted(pszFileName: POleStr): HResult;
begin
Result := E_NOTIMPL;

end;

function TIDropTargetXmple.GetCurFile(out pszFileName: POleStr): HResult;
begin
Result := E_NOTIMPL;

end;

{ - IPersist methods - }

646 � Chapter 13

function TIDropTargetXmple.GetClassID(out classID: TCLSID): HResult;
begin
Result := E_NOTIMPL;

end;

{ TIDropTargetXmple }

{called when the cursor enters the drop target area dragging a file}
function TIDropTargetXmple.DragEnter(const dataObj: IDataObject;
grfKeyState: Integer; pt: TPoint; var dwEffect: Integer): HResult;

var
DataFormat: TFormatEtc; // data object format information
StrgMedium: TStgMedium; // data object storage medium
FileName: string; // filename of dragged object

begin
{initialize}
Result := E_ABORT;
dwEffect := DROPEFFECT_NONE;

{if no object was provided, exit}
if dataObj = nil then
Exit;

{prepare to retrieve information about the object}
DataFormat.cfFormat := CF_HDROP;
DataFormat.ptd := nil;
DataFormat.dwAspect :=DVASPECT_CONTENT;
DataFormat.lindex := -1;
DataFormat.tymed := TYMED_HGLOBAL;

if dataObj.GetData(DataFormat, StrgMedium) S_OK then
Exit;

{valid only if one file is selected}
if DragQueryFile(StrgMedium.hGlobal, $FFFFFFFF, nil, 0) = 1 then
begin
{retrieve the filename of the dragged object}
SetLength(FileName, MAX_PATH);
DragQueryFile(StrgMedium.hGlobal, 0, PChar(FileName), MAX_PATH);
DragFinish(StrgMedium.hGlobal);

end
else
Exit;

{if this file is a jpeg or bitmap file, allow the operation}
if (Trim(ExtractFileExt(PChar(FileName))) = '.jpg') or

(Trim(ExtractFileExt(PChar(FileName))) = '.jpeg') or
(Trim(ExtractFileExt(PChar(FileName))) = '.bmp') then
dwEffect := DROPEFFECT_COPY;

{clean up}
ReleaseStgMedium(StrgMedium);

Result := S_OK;
end;

Shell Extension Functions � 647

C
h

a
p

te
r
1
3

{called when the mouse cursor leaves the drop target area}
function TIDropTargetXmple.DragLeave: HResult;
begin
Result := S_OK;

end;

{called every time the mouse cursor moves over the drop target area}
function TIDropTargetXmple.DragOver(grfKeyState: Integer; pt: TPoint;
var dwEffect: Integer): HResult;

begin
{indicate the copy effect}
dwEffect := DROPEFFECT_COPY;
Result := S_OK;

end;

{called when the file is dropped on the drop target}
function TIDropTargetXmple.Drop(const dataObj: IDataObject;
grfKeyState: Integer; pt: TPoint; var dwEffect: Integer): HResult;

var
DataFormat: TFormatEtc; // data object format information
StrgMedium: TStgMedium; // data object storage medium
FileName: string; // filename of dragged object
Msg, FileStr: string;
HtmlFile: TStringList;

begin
{initialize}
Result := E_ABORT;

{if no object was provided, exit}
if dataObj = nil then
Exit;

{prepare to retrieve information about the object}
DataFormat.cfFormat := CF_HDROP;
DataFormat.ptd := nil;
DataFormat.dwAspect :=DVASPECT_CONTENT;
DataFormat.lindex := -1;
DataFormat.tymed := TYMED_HGLOBAL;

if dataObj.GetData(DataFormat, StrgMedium) S_OK then
Exit;

{valid only if one file is selected}
if DragQueryFile(StrgMedium.hGlobal, $FFFFFFFF, nil, 0) = 1 then
begin
{get the name of the dropped file}
SetLength(FileName, MAX_PATH);
DragQueryFile(StrgMedium.hGlobal, 0, PChar(FileName), MAX_PATH);
DragFinish(StrgMedium.hGlobal);

end
else
Exit;

{retrieve the caption for the image, defaulting to the image filename}
Msg := Trim(FileName);
if not InputQuery('Image Caption', 'Please enter a caption for the image',

648 � Chapter 13

Msg) then
Exit;

{make sure the html template file exists}
if not FileExists(ExtractFilePath(ComServer.ServerFileName) +

'ImgsCollectionTemplate.html') then
Exit;

HtmlFile := TStringList.Create;
try
{load the html template file and retrieve its text}
HtmlFile.LoadFromFile(ExtractFilePath(ComServer.ServerFileName) +

'ImgsCollectionTemplate.html');
FileStr := HtmlFile.Text;

{insert an img tag into the html file right before the </body> tag}
Insert('<p>' + Msg+

'<p>'#13#10, FileStr, Pos('</body>', FileStr) - 1);

{set the contents of the html file and save}
HtmlFile.Text := FileStr;
HtmlFile.SaveToFile(ExtractFilePath(ComServer.ServerFileName) +

'ImgsCollectionTemplate.html');
finally
HtmlFile.Free;

end;

Result := S_OK;
end;

{ TDropTargetXmplFactory }

{provides additional registry manipulation for Windows NT/2000}
procedure TDropTargetXmplFactory.ApproveShellExtension(Register: Boolean;
const ClsID: string);

var
TempReg: TRegistry;

begin
TempReg := TRegistry.Create;

try
TempReg.RootKey := HKEY_LOCAL_MACHINE;

{open the appropriate key}
if not TempReg.OpenKey('SOFTWARE\Microsoft\Windows\CurrentVersion\Shell

Extensions\Approved', True) then
Exit;

{register the extension appropriately}
if Register then
TempReg.WriteString(ClsID, Description)

else
TempReg.DeleteValue(ClsID);

finally
TempReg.Free;

end;

Shell Extension Functions � 649

C
h

a
p

te
r
1
3

end;

function TDropTargetXmplFactory.GetProgID: string;
begin
{the ProgID is not needed for shell extensions}
Result := '';

end;

procedure TDropTargetXmplFactory.UpdateRegistry(Register: Boolean);
begin
{perform normal registration}
inherited UpdateRegistry(Register);

{perform registration for Windows NT/2000}
ApproveShellExtension(Register, GUIDToString(ClassID));

{write the appropriate value for registration}
if Register then
CreateRegKey('htmlfile\ShellEx\DropHandler', '', GUIDToString(ClassID),

HKEY_CLASSES_ROOT)
else
DeleteRegKey('htmlfile\ShellEx\DropHandler');

end;

initialization
TDropTargetXmplFactory.Create(ComServer, TIDropTargetXmple,

Class_IDropTargetXmple,
ciMultiInstance, tmApartment);

end.

650 � Chapter 13

Figure 13-8:

The HTML

page after

accepting a

dropped file

Delphi vs. the Windows API

While several Delphi units define the interfaces and constants for the shell extensions

discussed in this chapter, there are no VCL components or other objects that implement

these interfaces. Delphi does ship with good examples of a copy hook extension and a

context menu extension under the Demos\ActiveX directory, and there are plenty of

third-party applications that wrap the complexities of shell extension implementation to

speed development. However, the implementation of shell extensions is relatively

straightforward, and the trickiest part of getting shell extensions to work is getting

them registered correctly.

Shell Extension Functions

The following shell extension functions are covered in this chapter.

Table 13-1: Shell extension functions

Function Description

IContextMenu.GetCommandString Retrieves the help string or verb for the command.

IContextMenu.InvokeCommand Processes the menu item.

IContextMenu.QueryContextMenu Retrieves menu items to add to the context menu.

ICopyHook.CopyCallBack Approves or rejects the moving, renaming, copying,
or deleting of a folder or printer.

IDropTarget.DragEnter Indicates if the drag operation can be dropped and
what action is taken.

IDropTarget.DragLeave Called when the mouse cursor leaves the drop
target.

IDropTarget.DragOver Provides feedback when the mouse cursor is over a
drop target.

IDropTarget.Drop Performs the drop operation.

IExtractIcon.Extract Retrieves icon handles.

IExtractIcon.GetIconLocation Retrieves the location and index of an icon.

IQueryInfo.GetInfoFlags Not used, but must return E_NOTIMPL.

IQueryInfo.GetInfoTip Retrieves an information tip.

IShellExecuteHook.Execute Provides additional processing when ShellExecute or
ShellExecuteEx is called.

IShellExtInit.Initialize Used by Explorer to initialize certain shell extensions.

IURLSearchHook.Translate Performs URL address translation.

IContextMenu.GetCommandString ShlObj.ps

Syntax

GetCommandString(

idCmd: UINT; {menu command identifier index}

uType: UINT; {information flags}

Shell Extension Functions � 651

C
h

a
p

te
r
1
3

pwReserved: PUINT; {reserved, should be ignored}

pszName: LPSTR; {the desired string}

cchMax: UINT {the size of the pszName buffer}

): HResult; {returns an OLE result}

Description

This method is called to retrieve information about the command specified by the

idCmd parameter, such as the help string or the command verb. Based on the uType

flags, handlers should return the appropriate information in the pszName parameter.

Parameters

idCmd: Specifies the index of the command item within the menu.

uType: A flag indicating the type of information the shell is trying to retrieve. This can

be one value from the following table.

pwReserved: This parameter is reserved and should be ignored by handlers.

pszName: A null-terminated string that should be set to the desired information.

cchMax: The size of the null-terminated string buffer pointed to by the pszName

parameter.

Return Value

This method should return NOERROR if successful or an OLE error result otherwise.

See Also

IContextMenu.InvokeCommand, IContextMenu.QueryContextMenu

Example

Please see Listing 13-5 in the introduction.

Table 13-2: IContextMenu.GetCommandString uType values

Value Description

GCS_HELPTEXT The pszName parameter should be set to the help text for the
command.

GCS_VALIDATE The shell is not requesting string information, only validation that the
indicated command is available. Return NOERROR if the indicated com-
mand exists or S_FALSE if it does not.

GCS_VERB Indicates that pszName is set to a common verb, such as “open,” “print,”
etc.

IContextMenu.InvokeCommand ShlObj.pas

Syntax

InvokeCommand(

var lpici: TCMInvokeCommandInfo {a TCMInvokeCommandInfo structure}

): HResult; {returns an OLE result}

652 � Chapter 13

Description

Called when the user selects one of the commands added to the context menu, this

method instructs the handler to perform the functionality provided by the menu

command.

Parameters

lpici: A TCMInvokeCommandInfo structure containing information about the menu

command selected by the user. The TCMInvokeCommandInfo structure is defined as:

TCMInvokeCommandInfo = record

cbSize: DWORD; {size of the structure}

fMask: DWORD; {behavior flags}

hwnd: HWND; {owning window handle}

lpVerb: LPCSTR; {verb or menu index}

lpParameters: LPCSTR; {NIL}

lpDirectory: LPCSTR; {NIL}

nShow: Integer; {window show flags}

dwHotKey: DWORD; {application hot key}

hIcon: THandle; {application icon}

end;

cbSize: Indicates the size of the TCMInvokeCommand structure, in bytes.

fMask: A combination of flags that indicate additional behavior. This may be

zero or a combination of values from Table 13-3.

hwnd: Specifies a handle to the window owning the context menu.

lpVerb: If the user selected the menu item from the context menu, the high-order

word of this value is set to zero, and the low-order word contains the index of the

selected menu item. Otherwise, this value points to a null-terminated string indi-

cating the command verb (i.e., “open”), typically indicating that the command

was activated by another application.

lpParameters: This member is always NIL for context menu shell handlers.

lpDirectory: This member is always NIL for context menu shell handlers.

nShow: A flag indicating how the handler should display a window if it starts an

application. This can be one value from Table 13-4.

dwHotKey: Indicates an optional hot key that should be associated with any

application launched by the command.

hIcon: Indicates an optional icon that should be used for any application launched

by the command.

Return Value

This method should return NOERROR if successful or an OLE error result otherwise.

See Also

IContextMenu.GetCommandString, IContextMenu.QueryContextMenu

Shell Extension Functions � 653

C
h

a
p

te
r
1
3

Example

Please see Listing 13-5 in the introduction.

Table 13-3: IContextMenu.InvokeCommand TCMInvokeCommand.fMask values

Value Description

CMIC_MASK_HOTKEY Indicates that the dwHotKey member contains valid data.

CMIC_MASK_ICON Indicates that the hIcon member contains valid data.

CMIC_MASK_FLAG_NO_UI Prevents the display of user interface elements while pro-
cessing the command.

CMIC_MASK_NO_CONSOLE Prevents the creation of new consoles.

CMIC_MASK_ASYNCOK Indicates that the handler should wait for the DDE conver-
sation to terminate before returning.

Table 13-4: IContextMenu.InvokeCommand TCMInvokeCommand nShow values

Value Description

SW_HIDE The window is hidden and another window is activated.

SW_MINIMIZE The window is minimized and the next top-level window
in the system window list is activated.

SW_RESTORE The window is activated and displayed in its original size
and position.

SW_SHOW The window is activated and displayed in its current size
and position.

SW_SHOWDEFAULT The window is shown based on the wShowWindow mem-
ber of the TStartupInfo structure passed to the
CreateProcess function by the program that started the
application. This is used to set the initial show state of an
application’s main window. This flag should be used when
showing the window for the first time if the application
could be run from a shortcut. This flag will cause the win-
dow to be shown using the Run settings under the shortcut
properties.

SW_SHOWMAXIMIZED The window is activated and displayed in a maximized
state.

SW_SHOWMINIMIZED The window is activated and displayed as an icon.

SW_SHOWMINNOACTIVE The window is displayed as an icon. The active window
remains active.

SW_SHOWNA The window is displayed in its current state. The active
window remains active.

SW_SHOWNOACTIVE The window is displayed in its most recent state. The
active window remains active.

SW_SHOWNORMAL This is the same as SW_RESTORE.

654 � Chapter 13

TE
AM
FL
Y

Team-Fly®

IContextMenu.QueryContextMenu ShlObj.pas

Syntax

QueryContextMenu(

Menu: HMENU; {the menu handle}

indexMenu: UINT; {first menu item index}

idCmdFirst: UINT; {minimum menu item identifier}

idCmdLast: UINT; {maximum menu item identifier}

uFlags: UINT {behavior flags}

): HResult; {returns an OLE result}

Description

This method retrieves the menu items to add to the context menu. Menu items should

be added to the menu using the InsertMenu or InsertMenuItem API functions.

Parameters

Menu: A handle to the menu into which menu items are inserted.

indexMenu: Indicates the position within the menu at which the first menu item should

be inserted. This is a zero-based position.

idCmdFirst: Indicates the minimum value to use for menu item identifiers.

idCmdLast: Indicates the maximum value to use for menu item identifiers.

uFlags: Flags indicating how the menu was called. This can be one value from the fol-

lowing table.

�Note: There are other values defined for this parameter, but the listed values

are those that are valid for context menu handlers.

Return Value

If the method succeeds, it should return an OLE result code created by using the fol-

lowing line of code:

MakeResult(SEVERITY_SUCCESS, 0, <largest menu item identifier>-idCmdFirst+1);

Otherwise, it returns an OLE error code.

See Also

IContextMenu.GetCommandString, IContextMenu.InvokeCommand

Example

Please see Listing 13-5 in the introduction.

Shell Extension Functions � 655

C
h

a
p

te
r
1
3

Table 13-5: IContextMenu.QueryContextMenu uFlags values

Value Description

CMF_NORMAL Indicates normal operation (typically called from the desktop).

CMF_VERBSONLY Indicates that the menu was called from a shortcut.

CMF_EXPLORE Indicates that the menu was called from Explorer.

ICopyHook.CopyCallback ShlObj.pas

Syntax

CopyCallback(

Wnd: HWND; {a window handle}

wFunc: UINT, {operation flags}

wFlags: UINT; {control flags}

pszSrcFile: PAnsiChar; {source folder name}

dwSrcAttribs: DWORD; {source folder attributes}

pszDestFile: PAnsiChar; {destination folder name}

dwDestAttribs: DWORD {destination folder attributes}

): UINT; {returns on OLE result}

Description

This method determines if a folder or printer can be moved, copied, renamed, or

deleted.

Parameters

Wnd: A handle to a window that should be used as the parent window for any user

interface displayed (i.e., error message boxes, etc.).

wFunc: A flag indicating the operation to perform. This parameter may be one value

from Table 13-6.

wFlags: A combination of flags that indicate specific behavior for the operation. This

parameter may be one or more values from Table 13-7.

pszSrcFile: A null-terminated string containing the name of the source folder or printer.

dwSrcAttribs: A combination of flags indicating the attributes of the source folder. This

may be one or more values from Table 13-8.

pszDestFile: A null-terminated string containing the name of the destination folder or

printer.

dwDestAttribs: A combination of flags indicating the attributes of the destination

folder. This may be one or more values from Table 13-8.

Return Value

This method returns one value from Table 13-9.

See Also

CreateDirectory, CreateDirectoryEx, RemoveDirectory

656 � Chapter 13

Example

Please see Listing 13-3 in the introduction.

Table 13-6: ICopyHook.CopyCallback wFunc values

Value Description

FO_COPY Copies the files specified by the pszSrcFile parameter to the location
specified by the pszDestFile parameter.

FO_DELETE Deletes the files specified by the pszSrcFile parameter. The
pszDestFile parameter is ignored.

FO_MOVE Moves the files specified by the pszSrcFile parameter to the location
specified by the pszDestFile parameter.

FO_RENAME Renames the files specified by the pszSrcFile parameter. The
pszDestFile parameter is ignored.

Table 13-7: ICopyHook.CopyCallback wFlags values

Value Description

FOF_ALLOWUNDO The specified file is deleted to the recycle bin. If the pszSrcFile param-
eter does not contain a fully qualified path, this value is ignored.

FOF_FILESONLY The operation is performed only on files if a wildcard filename is speci-
fied (i.e., “*.pas”).

FOF_MULTIDESTFILES The pszDestFile parameter contains one destination file for each
source file instead of one directory to which all source files are
deposited.

FOF_NOCONFIRMATION The user is never asked for confirmation, and the operation continues
as if a response of “yes to all” was indicated.

FOF_NOCONFIRMMKDIR Automatically creates a new directory if one is needed without asking
the user for confirmation.

FOF_NOCOPYSECURITYATTRIBS Windows NT/2000 and later: Does not copy the file security
attributes.

FOF_NOERRORUI There is no visual indication if an error occurs.

FOF_NORECURSION Performs the file operation on the files in the local directory only and
does not continue file operations in subdirectories.

FOF_RENAMEONCOLLISION The source file is automatically given a new name, such as “Copy #1
of..,” in a move, copy, or rename operation if a file in the target direc-
tory already has the same name.

FOF_SILENT Does not display a progress dialog box.

FOF_SIMPLEPROGRESS Displays a progress dialog box but does not show filenames.

FOF_WANTMAPPINGHANDLE The hNameMappings member receives a handle to a filename map-
ping object if any files were renamed. FOF_RENAMEONCOLLISION
must be used in conjunction with this flag.

FOF_WANTNUKEWARNING Displays a warning dialog box when a file is deleted.

Shell Extension Functions � 657

C
h

a
p

te
r
1
3

Table 13-8: ICopyHook.CopyCallback dwSrcAttribs and dwDestAttribs values

Value Description

FILE_ATTRIBUTE_READONLY The object is read only.

FILE_ATTRIBUTE_HIDDEN The object is hidden.

FILE_ATTRIBUTE_SYSTEM The object is a system file.

FILE_ATTRIBUTE_DIRECTORY The object is a directory folder.

FILE_ATTRIBUTE_ARCHIVE The object is an archive file.

FILE_ATTRIBUTE_NORMAL The object does not have any attributes.

FILE_ATTRIBUTE_TEMPORARY The object is a temporary file.

FILE_ATTRIBUTE_COMPRESSED The object is compressed.

Table 13-9: ICopyHook.CopyCallback return values

Value Description

IDYES Allow the operation to continue.

IDNO Reject the operation on this folder or printer but allow any other
approved operations.

IDCANCEL Reject the operation and cancel all other operations.

IDropTarget.DragEnter ActiveX.pas

Syntax

DragEnter(

const dataObj: IDataObject; {an IDataObject interface for source data}

grfKeyState: Longint; {current keyboard state}

pt: TPoint; {mouse cursor coordinates}

var dwEffect: Longint {drag-drop effect flags}

): HResult; {returns an OLE result code}

Description

This method is called when the mouse cursor dragging an object enters a potential drop

target. It returns information indicating if the drop target is legal and the potential oper-

ation that will be performed.

Parameters

dataObj: A pointer to an IDataObject interface containing information and data about

the object being dragged. Use this interface to retrieve information about the dragged

item and determine if the object can be accepted.

�Note: While the example demonstrates how the IDataObject is used to

retrieve information about the dragged object, the IDataObject

interface is not discussed fully in this text.

658 � Chapter 13

grfKeyState: A combination of flags that indicate if specific keys on the keyboard are

currently depressed. This parameter may be one or more values from Table 13-10.

pt: A TPoint structure indicating the position of the mouse cursor, in screen coordinates

(pixels).

dwEffect: A flag indicating the result of the drop operation. This parameter may be one

value from Table 13-11.

Return Value

This method should return NOERROR if successful or an OLE error result code

otherwise.

See Also

IDropTarget.DragLeave, IDropTarget.DragOver, IDropTarget.Drop

Example

Please see Listing 13-7 in the introduction.

Table 13-10: IDropTarget.DragEnter grfKeyState values

Value Description

MK_CONTROL The Control key is depressed.

MK_SHIFT The Shift key is depressed.

MK_ALT The Alt key is depressed.

MK_LBUTTON The left mouse button is depressed.

MK_MBUTTON The middle mouse button is depressed.

MK_RBUTTON The right mouse button is depressed.

Table 13-11: IDropTarget.DragEnter dwEffect values

Value Description

DROPEFFECT_LINK Indicates a link operation (typically used when the Ctrl and Shift
keys are depressed).

DROPEFFECT_COPY Indicates a copy operation (typically used when the Ctrl key is
depressed).

DROPEFFECT_MOVE Indicates a move operation.

DROPEFFECT_NONE Indicates no operation will be performed (typically used when the
method fails).

Shell Extension Functions � 659

C
h

a
p

te
r
1
3

IDropTarget.DragLeave ActiveX.pas

Syntax

DragLeave: HResult; {returns an OLE result code}

Description

This method is called when the mouse leaves the drop target. Any drag operation feed-

back should be removed.

Return Value

This method should return NOERROR if successful or an OLE error code otherwise.

See Also

IDropTarget.DragEnter, IDropTarget.DragOver, IDropTarget.Drop

Example

Please see Listing 13-7 in the introduction.

IDropTarget.DragOver ActiveX.pas

Syntax

DragOver(

grfKeyState: Longint; {current keyboard state}

pt: TPoint; {mouse cursor coordinates}

var dwEffect: Longint {drag-drop effect flags}

): HResult; {returns an OLE result code}

Description

This method is called when the mouse cursor moves over a potential drop target. This

method is called frequently, and any code in its implementation should be optimized

and should not perform any time-consuming process.

Parameters

grfKeyState: A combination of flags that indicate if specific keys on the keyboard are

currently depressed. This parameter may be one or more values from Table 13-12.

pt: A TPoint structure indicating the position of the mouse cursor, in screen coordinates

(pixels).

dwEffect: A flag indicating the result of the drop operation. This parameter may be one

value from Table 13-13.

Return Value

This method should return NOERROR if successful or an OLE error code otherwise.

See Also

IDropTarget.DragEnter, IDropTarget.DragLeave, IDropTarget.Drop

660 � Chapter 13

Example

Please see Listing 13-7 in the introduction.

Table 13-12: IDropTarget.DragOver grfKeyState values

Value Description

MK_CONTROL The Control key is depressed.

MK_SHIFT The Shift key is depressed.

MK_ALT The Alt key is depressed.

MK_LBUTTON The left mouse button is depressed.

MK_MBUTTON The middle mouse button is depressed.

MK_RBUTTON The right mouse button is depressed.

Table 13-13: IDropTarget.DragOver dwEffect values

Value Description

DROPEFFECT_LINK Indicates a link operation (typically used when the Ctrl and Shift
keys are depressed).

DROPEFFECT_COPY Indicates a copy operation (typically used when the Ctrl key is
depressed).

DROPEFFECT_MOVE Indicates a move operation.

DROPEFFECT_NONE Indicates no operation will be performed (typically used when the
method fails).

IDropTarget.Drop ActiveX.pas

Syntax

Drop(

const dataObj: IDataObject; {an IDataObject interface for source data}

grfKeyState: Longint; {current keyboard state}

pt: TPoint; {mouse cursor coordinates}

var dwEffect: Longint {drag-drop effect flags}

): HResult; {returns an OLE result code}

Description

This method is called when the dragged object is dropped over the drop target. It

should perform the drop operation indicated by the dwEffect parameter.

Parameters

dataObj: A pointer to an IDataObject interface containing information and data about

the object being dragged. Use this interface to retrieve information about the dragged

item and perform the drop operation.

Shell Extension Functions � 661

C
h

a
p

te
r
1
3

�Note: While the example demonstrates how the IDataObject is used to

retrieve information about the dragged object, the IDataObject

interface is not discussed fully in this text.

grfKeyState: A combination of flags that indicate if specific keys on the keyboard are

currently depressed. This parameter may be one or more values from Table 13-14.

pt: A TPoint structure indicating the position of the mouse cursor, in screen coordinates

(pixels).

dwEffect: A flag indicating the drop operation to perform. This parameter may be one

value from Table 13-15.

Return Value

This method should return NOERROR if successful or an OLE error result code

otherwise.

See Also

IDropTarget.DragEnter, IDropTarget.DragLeave, IDropTarget.DragOver

Example

Please see Listing 13-7 in the introduction.

Table 13-14: IDropTarget.Drop grfKeyState values

Value Description

MK_CONTROL The Control key is depressed.

MK_SHIFT The Shift key is depressed.

MK_ALT The Alt key is depressed.

MK_LBUTTON The left mouse button is depressed.

MK_MBUTTON The middle mouse button is depressed.

MK_RBUTTON The right mouse button is depressed.

Table 13-15: IDropTarget.Drop dwEffect values

Value Description

DROPEFFECT_LINK Indicates a link operation (typically used when the Ctrl and Shift
keys are depressed).

DROPEFFECT_COPY Indicates a copy operation (typically used when the Ctrl key is
depressed).

DROPEFFECT_MOVE Indicates a move operation.

DROPEFFECT_NONE Indicates no operation will be performed (typically used when
the method fails).

662 � Chapter 13

IExtractIcon.Extract ShlObj.pas

Syntax

Extract(

pszFile: PAnsiChar; {icon location string}

nIconIndex: UINT; {icon index}

out phiconLarge: HICON; {the large icon handle}

out phiconSmall: HICON; {the small icon handle}

nIconSize: UINT {size of icon}

): HResult; {returns an OLE result code}

Description

This method retrieves handles to a large and small icon for the file.

Parameters

pszFile: A null-terminated string indicating the location of the icon. This is the same

value as that returned by IExtractIcon.GetIconLocation.

nIconIndex: The index of the icon. This is the same value as that returned by

IExtractIcon.GetIconLocation.

phiconLarge: This parameter is set to the handle of the large icon that is loaded by this

method.

phiconSmall: This parameter is set to the handle of the small icon that is loaded by this

method.

nIconSize: Indicates the desired size of the icon, in pixels. The low-order word con-

tains the size of the large icon, and the high-order word contains the size of the small

icon.

�Note: Icons are always square, so this size indicates both width and height.

Return Value

This method returns NOERROR if icons were extracted; otherwise, it returns

S_FALSE to indicate that the shell should use a default icon.

See Also

IExtractIcon.GetIconLocation, LoadIcon

Example

Please see Listing 13-6 in the introduction.

IExtractIcon.GetIconLocation ShlObj.pas

Syntax

GetIconLocation(

uFlags: UINT; {icon flags}

Shell Extension Functions � 663

C
h

a
p

te
r
1
3

szIconFile: PAnsiChar; {icon location}

cchMax: UINT; {location buffer size}

out piIndex: Integer; {icon index}

out pwFlags: UINT {icon information flags}

): HResult; {returns an OLE result code}

Description

This function retrieves the location of a file containing the desired icon and the index

of the icon within that file.

Parameters

uFlags: A combination of flags indicating the icon to retrieve. This parameter may be

one or more values from Table 13-16.

szIconFile: A null-terminated string buffer that receives the path and filename of the

file containing the icon to extract.

cchMax: Indicates the size of the buffer pointed to by the szIconFile parameter.

piIndex: This parameter receives the index of the icon within the file specified in the

szIconFile parameter.

pwFlags: This parameter receives a combination of flags that indicate additional infor-

mation about the indicated icon. This parameter may be one or more values from Table

13-17.

Return Value

This method returns NOERROR if successful or S_FALSE if the shell should use a

default icon.

See Also

IExtractIcon.Extract, LoadIcon

Example

Please see Listing 13-6 in the introduction.

Table 13-16: IExtractIcon.GetIconLocation uFlags values

Value Description

GIL_DEFAULTICON Indicates a default icon.

GIL_FORSHELL Indicates the icon is to be displayed in a shell folder.

GIL_FORSHORTCUT Indicates the icon is to be used for a shortcut (do not apply a
shortcut overlay).

GIL_OPENICON Indicates the icon to be displayed should specify an open state. If
this flag is not included, the icon should be in a closed state (typi-
cally used for folders).

664 � Chapter 13

TE
AM
FL
Y

Team-Fly®

Table 13-17: IExtractIcon.GetIconLocation pwFlags values

Value Description

GIL_DONTCACHE Instructs the shell not to cache the icon.

GIL_NOTFILENAME Indicates that the specified icon location and icon index do not
specify a valid icon. This causes the system to call IExtract-
Icon.Extract.

GIL_PERINSTANCE Indicates each file associated with the icon handler can have its
own icon.

IQueryInfo.GetInfoFlags ShlObj.pas

Syntax

GetInfoFlags(

out pdwFlags: DWORD {unused}

): HResult; {returns an OLE result code}

Description

This method is not currently used but must return E_NOTIMPL in implementations.

Parameters

pdwFlags: This parameter is not used and should be ignored.

Return Value

This method must return E_NOTIMPL.

See Also

IQueryInfo.GetInfoTip

Example

Please see Listing 13-2 in the introduction.

IQueryInfo.GetInfoTip ShlObj.pas

Syntax

GetInfoTip(

dwFlags: DWORD; {unused}

var ppwszTip: PWideChar {the information tip}

): HResult; {returns an OLE result code}

Description

This method retrieves the text to use for the information tip of the item.

Parameters

dwFlags: This parameter is not used and should be ignored.

Shell Extension Functions � 665

C
h

a
p

te
r
1
3

ppwszTip: A null-terminated string indicating the information tip to display. The mem-

ory for this string must be allocated by using the IMalloc interface returned by the

SHGetMalloc function.

Return Value

This method returns NOERROR if it succeeds; otherwise, it returns an OLE error code.

See Also

SHGetMalloc

Example

Please see Listing 13-2 in the introduction.

IShellExecuteHook.Execute ShlObj.pas

Syntax

Execute(

var ShellExecuteInfo: TShellExecuteInfo {a TShellExecuteInfo structure}

): HResult; {returns an OLE result code}

Description

This method is called any time the ShellExecute or ShellExecuteEx functions are

called. This happens when a file is double-clicked in Explorer or when the Run dialog

box is used.

Parameters

ShellExecuteInfo: A TShellExecuteInfo structure containing information about the

action to perform on a specific file. The TShellExecuteInfo structure is defined as:

TShellExecuteInfo = record

cbSize: DWORD; {size of the structure in bytes}

fMask: ULONG; {flags indicating how to use other members}

Wnd: HWND; {a handle to a parent window}

lpVerb: PAnsiChar; {a pointer to a string describing the action}

lpFile: PAnsiChar; {a pointer to a filename or folder name}

lpParameters: PAnsiChar; {a pointer to executable file parameters}

lpDirectory: PAnsiChar; {a pointer to the default directory name}

nShow: Integer; {file display flags}

hInstApp: HINST; {a handle to an application instance}

These fields are optional:

lpIDList: Pointer; {a pointer to an item identifier list}

lpClass: PAnsiChar; {a pointer to the name of a file class or GUID}

hkeyClass: HKEY; {a handle to the file class registry key}

dwHotKey: DWORD; {the hot key associated with the application}

hIcon: THandle; {a handle to an icon for the file class}

hProcess: THandle; {a process handle for the newly launched

666 � Chapter 13

application}

end;

cbSize: The size of the TShellExecuteInfo structure, in bytes. This member is set

to SizeOf(TShellExecuteInfo).

fMask: A series of flags that indicate if the optional members of the structure are

used. This member can be one or more values from Table 13-18.

Wnd: A handle to a parent window that receives message boxes if an error

occurs.

lpVerb: A pointer to a null-terminated string specifying the action to perform on

the file or folder indicated by the lpFile member. Table 13-19 lists the standard

actions that can be performed on a file or folder. However, these actions are not

limited to those listed in the table. This member is dependent on the actions regis-

tered for the document or application in the registry, and new actions can be

created through the Options menu in the Windows Explorer.

�Note: On Windows prior to Windows 2000, if this member is NIL, the

default verb is used if it is valid and available in the registry for the

indicated file; otherwise, the “open” verb is used by default. On

Windows 2000 and later systems, if this member is NIL, it attempts

the steps listed above, and if neither verb is available, it uses the first

verb listed for this filename in the registry.

lpFile: A pointer to a null-terminated string containing the name of a document,

executable file, or folder.

lpParameters: If the lpFile member indicates an executable file, this member con-

tains a pointer to a null-terminated string specifying the command line

parameters to pass to the executable file. The parameters are separated by spaces.

If the lpFile member specifies a document or folder, this parameter is NIL.

lpDirectory: A pointer to a null-terminated string containing the path to the

default directory. If this parameter is NIL, the current directory is used as the

working directory.

nShow: A flag that determines how the executable file indicated by the lpFile

member is to be displayed when it is launched. This parameter can be one value

from Table 13-20.

hInstApp: If the handler executes the application, this member must be set to the

hInstance handle of the new process.

These fields are optional:

lpIDList: A pointer to an item identifier list that uniquely identifies the execut-

able file to launch. This member is ignored if the fMask member does not contain

SEE_MASK_IDLIST.

lpClass: A pointer to a null-terminated string containing the name of a file class

or globally unique identifier (GUID). This member is ignored if the fMask mem-

ber does not contain SEE_MASK_CLASSNAME.

Shell Extension Functions � 667

C
h

a
p

te
r
1
3

hkeyClass: A handle to the registry key for the file class. This member is ignored

if the fMask member does not contain SEE_MASK_CLASSKEY.

dwHotKey: The hot key to associate with the launched executable file. The

low-order word contains the virtual key code, and the high-order word contains a

modifier flag. The modifier flag can be one or more values from Table 13-21.

This member is ignored if the fMask member does not contain

SEE_MASK_HOTKEY.

hIcon: A handle to an icon to use for the file class. This member is ignored if the

fMask member does not contain SEE_MASK_ICON. Alternatively, if the fMask

member contains SEE_MASK_HMONITOR, this member should contain a han-

dle to the monitor upon which the application or document is displayed.

hProcess: If the method succeeds, this member should be set to the process han-

dle of the application that was started. This member is set to zero if the fMask

member does not contain SEE_MASK_NOCLOSEPROCESS or if no new pro-

cess was launched.

Return Value

This method returns NOERROR to indicate that the hook completely processed the

request; this prevents ShellExecute or ShellExecuteEx from performing any other pro-

cessing. Return S_FALSE to let ShellExecute or ShellExecuteEx continue processing

the request.

�Note: In the event that NOERROR is returned, the hInstApp member of the

TShellExecuteInfo structure should contain a value greater than 32 to

prevent the system from displaying an error message.

See Also

ShellExecute, ShellExecuteEx

Example

Please see Listing 13-4 in the introduction.

Table 13-18: IShellExecuteHook.Execute ShellExecuteInfo.fMask values

Value Description

SEE_MASK_CLASSKEY Use the class key specified by the hkeyClass member. This flag over-
rides the SEE_MASK_CLASSNAME flag.

SEE_MASK_CLASSNAME Use the class name specified by the lpClass member.

SEE_MASK_CONNECTNETDRV The lpFile member specifies a Universal Naming Convention path.

SEE_MASK_DOENVSUBST Expand any environment variables included in the lpFile or lpDirectory
members.

SEE_MASK_FLAG_DDEWAIT If a DDE conversation is started, wait for it to end before returning.

SEE_MASK_FLAG_NO_UI Do not display error message boxes if errors occur.

668 � Chapter 13

Value Description

SEE_MASK_HMONITOR Indicates a specific monitor on a multimonitor system. Use the hIcon
member to indicate the monitor. This flag cannot be combined with
the SEE_MASK_ICON flag.

SEE_MASK_HOTKEY Use the hotkey specified by the dwHotKey member.

SEE_MASK_ICON Use the icon specified by the hIcon member. This flag cannot be com-
bined with the SEE_MASK_HMONITOR flag.

SEE_MASK_IDLIST Use the item identifier list specified by the lpIDList member.

SEE_MASK_INVOKEIDLIST Use the item identifier list specified by the lpIDList member. If the
lpIDList member is NIL, the function creates an item identifier list and
launches the application. This flag overrides the SEE_MASK_IDLIST
flag.

SEE_MASK_NOCLOSEPROCESS Causes the hProcess member to receive a handle to the process
started. The process continues to run after the ShellExecuteEx func-
tion ends.

SEE_MASK_NO_CONSOLE For console applications, this creates a new console for the new pro-
cess instead of inheriting the parent’s console.

SEE_MASK_UNICODE Indicates a Unicode application.

Table 13-19: IShellExecuteHook.Execute ShellExecuteInfo.lpVerb values

Value Description

“find” Initiates a search starting from the directory specified in the
lpDirectory member.

“edit” Opens the application associated with the file specified by the lpFile
member and passes the file to it for editing.

“open” Opens the file or folder or launches the executable file identified by
the lpFile member.

“print” Prints the document identified by the lpFile member. If the lpFile mem-
ber identifies an executable file, it is launched as if a value of “open”
had been specified.

“explore” Opens a Windows Explorer window onto the folder identified by the
lpFile parameter.

Table 13-20: IShellExecuteHook.Execute ShellExecuteInfo.nShow values

Value Description

SW_HIDE The window is hidden and another window is activated.

SW_MAXIMIZE Maximizes the window.

SW_MINIMIZE The window is minimized and the next top-level window in the rela-
tive z-order is activated.

SW_RESTORE The window is activated and displayed in its original size and position.

SW_SHOW The window is activated and displayed in its current size and position.

Shell Extension Functions � 669

C
h

a
p

te
r
1
3

Value Description

SW_SHOWDEFAULT The window is shown based on the wShowWindow member of the
TStartupInfo structure passed to the CreateProcess function by the
program that started the application. This is used to set the initial show
state of an application’s main window. This flag should be used when
showing the window for the first time if the application could be run
from a shortcut. This flag will cause the window to be shown using the
Run settings under the shortcut properties.

SW_SHOWMAXIMIZED The window is activated and displayed in a maximized state.

SW_SHOWMINIMIZED The window is activated and displayed as an icon.

SW_SHOWMINNOACTIVE The window is displayed as an icon. The active window remains active.

SW_SHOWNA The window is displayed in its current state. The active window
remains active.

SW_SHOWNOACTIVE The window is displayed in its most recent state. The active window
remains active.

SW_SHOWNORMAL This is the same as SW_RESTORE.

Table 13-21: IShellExecuteHook.Execute ShellExecuteInfo.dwHotKey modifier flag values

Value Description

HOTKEYF_ALT The Alt key must be held down.

HOTKEYF_CONTROL The Ctrl key must be held down.

HOTKEYF_SHIFT The Shift key must be held down.

IShellExtInit.Initialize ShlObj.pas

Syntax

Initialize(

pidlFolder: PItemIDList; {item ID list}

lpdobj: IDataObject; {an IDataObject interface}

hKeyProgID: HKEY {registry key}

): HResult; {returns an OLE result code}

Description

This method is called by Explorer when initializing context menu or property sheet

shell extensions. These handlers should perform any internal initialization in the imple-

mentation of this method.

Parameters

pidlFolder: For property sheet extensions, this parameter is NIL. For context menu

extensions, this parameter is a pointer to an item identifier list for the folder containing

the selected file object whose context menu is displayed.

lpdobj: A pointer to an IDataObject interface containing information and data about the

selected file objects.

670 � Chapter 13

�Note: While the example demonstrates how the IDataObject is used to

retrieve information about the dragged object, the IDataObject

interface is not discussed fully in this text.

hKeyProgID: Indicates the registry key for the file class of the selected object.

Return Value

This method returns NOERROR if it succeeds; otherwise, it returns an OLE error code.

See Also

IContextMenu.GetCommandString, IContextMenu.InvokeCommand,

IContextMenu.QueryContextMenu

Example

Please see Listing 13-5 in the introduction.

IURLSearchHook.Translate ShlObj.pas

Syntax

Translate(

lpwszSearchURL: PWideChar; {URL address buffer}

cchBufferSize: DWORD {size of the buffer}

): HResult; {returns an OLE result code}

Description

This method performs translation of Internet addresses entered into Explorer and is

called when the browser cannot determine the protocol of the URL address. It is typi-

cally used to provide translation for custom URL protocols.

Parameters

lpwszSearchURL: This points to a null-terminated wide string indicating the URL

address entered into the browser. This method should set this parameter to the trans-

lated URL address.

cchBufferSize: The size of the buffer pointed to by the lpwszSearchURL.

Return Value

This method returns one value from the following table.

See Also

ShellExecute, ShellExecuteEx

Example

Please see Listing 13-1 in the introduction.

Shell Extension Functions � 671

C
h

a
p

te
r
1
3

Table 13-22: IURLSearchHook Translate return values

Value Description

S_OK Indicates that the URL address was fully translated, the lpwszSearchURL
parameter contains a URL address to which the browser can navigate, and
no other URL translation hooks are called.

S_FALSE Indicates that the URL address was partially translated. The
lpwszSearchURL parameter contains the partially translated URL, and the
system will continue to call any other registered URL search hooks.

E_FAIL Indicates that the URL address was not translated and the
lpwszSearchURL parameter was not modified. The system will continue
to call any other registered URL search hooks.

672 � Chapter 13

Chapter 14

Specialized Shell FunctionsSpecialized Shell Functions

The Windows Shell API contains a plethora of functions that give the developer access

to a wide variety of shell functionality. Some of these functions are very specific, giv-

ing the developer power to create applications that interact with certain parts of the

shell in very specific ways. Certain functions allow the developer to extend the Control

Panel by adding control panel applets. You can also create new appbars, windows that

live on the side of the screen similar to the Windows taskbar. Even adding an icon to

the taskbar tray area is possible with these functions. In this chapter, we’ll examine

many of these functions and more.

Control Panel Applications

Control panel applications are simply DLLs with an extension of “.cpl” that are called

by the control panel process. This DLL may contain one or more applets, which appear

within the control panel as individual icons. Typically, control panel applets take the

role of configuration utilities for system-level functions and applications, such as the

Date/Time or Desktop Themes applets. Other control panel applets may be used as con-

figuration utilities for a family or group of applications, like Delphi’s BDE

Administrator. Whatever their function, control panel applets provide a useful meta-

phor for the developer to present the user with a tool in a common location for the

purposes of configuration, maintenance, etc.

The CplApplet Function

Windows communicates with the control panel application DLL by sending messages

to a specific exported function. The DLL must export only one function, and it must be

called CplApplet. The definition of CplApplet is:

function CplApplet(hwndCPl: THandle; uMsg: DWORD;
lParam1, lParam2: Longint): Longint; stdcall;

No matter how many applets are presented by the control panel application DLL, all

communication between Windows and the control panel application takes place

through CplApplet. The first parameter, hwndCPl, is a handle to the control panel

application window and can be used to establish ownership of dialog boxes and other

windows that the control panel applet will display. The uMsg parameter contains the

673

message identifier, and the last two parameters will vary depending on the specific

message sent.

Control Panel Messages

The messages Windows sends to the CplApplet function occur in a specific order. For-

tunately, the order in which the messages are sent is well defined, as is the method by

which each message should be responded to. Windows begins sending messages to the

control panel application when the control panel is first displayed and again when the

user double-clicks its icon from within the control panel.

The very first message sent to CplApplet after Windows loads the DLL is CPL_INIT.

At this time, the application should perform any application-wide initialization, such as

allocating memory or initializing global variables. The CplApplet function should

return a non-zero value to indicate that initialization was successful and processing

should continue. If, for some reason, the application could not complete initialization,

the CplApplet function should return zero. This causes Windows to terminate execution

and unload the control panel application DLL.

The next message received by CplApplet is CPL_GETCOUNT. CplApplet should sim-

ply return the number of applets implemented by the control panel application.

After CPL_GETCOUNT, Windows sends CplApplet two separate messages:

CPL_INQUIRE and CPL_NEWINQUIRE. These messages are sent a number of times

equal to the value returned from the CPL_GETCOUNT message; in essence, these

messages are sent once for each applet implemented by the control panel. The purpose

of these messages is to retrieve information about the applet, which is displayed to the

user in the control panel. For each message, the lParam1 parameter contains the

zero-based index of the applet. The lParam2 parameter contains a pointer to either a

TCplInfo or TNewCplInfo data structure, depending on the message sent (TCplInto for

the CPL_INQUIRE message or TNewCplInfo for the CPL_NEWINQUIRE). The

CplApplet function must fill out these structures with information such as the applet’s

icon, name, and a descriptive string (see the CplApplet function description for more

information). Responding to CPL_INQUIRE is the typical method of presenting this

information; most control panel applications should ignore the CPL_NEWINQUIRE

message for better performance. Return a non-zero value to indicate that the messages

were processed.

�Note: The CPL_NEWINQUIRE message is sent before the CPL_INQUIRE

message. If CplApplet returns a non-zero value when processing

CPL_NEWINQUIRE, the CPL_INQUIRE message will not be sent

(for this specific applet).

When the user double-clicks the control panel application icon, CplApplet receives a

CPL_DBLCLICK message. This signals the applet to display its window. Any applet

specific initialization can occur at this time. The lParam1 parameter contains the applet

number, and the lParam2 parameter contains an application-defined value. Show the

applet’s window, and return a non-zero value to indicate the message was handled.

674 � Chapter 14

TE
AM
FL
Y

Team-Fly®

When the control panel is unloading the control panel application DLL, CplApplet

receives the CPL_STOP message once for each applet. Again, lParam1 contains the

applet number. Any applet-specific cleanup should occur at this time.

Finally, after all of the CPL_STOP messages have been sent, CplApplet receives one

final message before the DLL is unloaded: CPL_EXIT. This allows the application to

clean up any global initialization (such as deallocating memory).

Writing Control Panel Applications

To write a control panel application, begin by creating a new DLL project. Make sure

that you specify a new extension of .cpl under project options (or include the {$E CPL}

compiler directive somewhere). Once this is done, it’s a simple matter of writing and

exporting the CplApplet function. The following example demonstrates a simple con-

trol panel application implementing one applet. So that the mechanics of writing a

control panel application are not confused with applet functionality, this example applet

doesn’t do anything other than display a dialog box.

�Note: In order for the control panel applet to show up in the control panel, it

must be copied to the Windows system directory (or the system32

directory for Windows NT/2000 and later systems).

■ Listing 14-1: A simple control panel application

The DLL project file:

library CplAppletXmple;
uses
SysUtils,
Classes,
CplAppletMainU in 'CplAppletMainU.pas' {CplAppletMain};

{$E CPL} // force an extension of .cpl

{$R extraresources.RES}

exports CPlApplet name 'CPlApplet';

begin
end.

The primary unit of the example application:

unit CplAppletMainU;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, ComCtrls, ShellCtrls,
Cpl; {Cpl is required for message constants and data structures}

type

Specialized Shell Functions � 675

C
h

a
p

te
r
1
4

TCplAppletMain = class(TForm)
Label1: TLabel;
ShellTreeView1: TShellTreeView;
ShellComboBox1: TShellComboBox;

private
{ Private declarations }

public
{ Public declarations }

end;

{the control panel applet entry point definition}
function CplApplet(hwndCPl: THandle; uMsg: DWORD;

lParam1, lParam2: Longint): Longint; stdcall;

implementation

{$R *.dfm}

var
CplAppletMainForm: TCplAppletMain;

{control panel applet entry point}
function CplApplet(hwndCPl: THandle; uMsg: DWORD;

lParam1, lParam2: Longint): Longint; stdcall;
begin
case uMsg of
{Sent when the control panel application is loaded. Any initialization
(such as allocating memory) should occur at this time. The application
should return a non-zero value to indicate that processing should
continue.}
CPL_INIT : begin

Result := 1; // tell it to keep processing
end;

{Sent to retrieve the number of applets supported by the control panel DLL.
The application should return the number of applets supported. lParam1 and
lParam2 are not defined.}
CPL_GETCOUNT : begin

Result := 1; // we only have one applet
end;

{Sent to retrieve information about each applet within the control panel
application DLL. This message is sent to the DLL as many times as was
returned by the CPL_GETCOUNT message (essentially once per applet).
Return a non-zero value to indicate that this message was handled.}
CPL_INQUIRE : begin

{these are resource ids; see the extraresources.rc
file}
PCPLInfo(lParam2)^.idIcon := 2;
PCPLInfo(lParam2)^.idName := 1;
PCPLInfo(lParam2)^.idInfo := 2;

{no application specific data}
PCPLInfo(lParam2)^.lData := 0;

Result := 1; // continue processing
end;

676 � Chapter 14

{Sent when the control panel application's icon is double-clicked, this
indicates that the control panel should display its dialog box. Return a
non-zero value to indicate that this message was handled.}
CPL_DBLCLK : begin

{create and show the dialog box}
CplAppletMainForm := TCplAppletMain.Create(nil);
CplAppletMainForm.ShowModal;
CplAppletMainForm.Free;

Result := 1; // continue processing
end;

{Sent when the control panel application is closing. This message is sent
to the DLL as many times as was returned by the CPL_GETCOUNT message
(essentially once per applet). Any applet specific cleanup
(i.e., deallocating memory) should be performed at this time. Return a
non-zero value to indicate this message was handled.}
CPL_STOP : begin

{nothing to cleanup}
Result := 1;

end;
{Sent when the control panel application is closing, the control panel will
send this message to the applet just before the call to FreeLibrary to
unload the control panel application DLL. Any non-applet specific cleanup
(such as deallocation of memory) should occur at this time. Return a
non-zero value to indicate this message was processed.}
CPL_EXIT : begin

{nothing to cleanup}
Result := 1;

end;
{Sent to retrieve information about each applet within the control panel
application DLL. This message is sent to the DLL as many times as was
returned by the CPL_GETCOUNT message (essentially once per applet).
This message is typically ignored.}
CPL_NEWINQUIRE : begin

Result := 0;
end;

{Sent to indicate that the control panel should display its dialog box.
However, this message may carry additional information regarding the
behavior of its execution.}
CPL_STARTWPARMS : begin

Result := 0;
end;

else
{Any other undocumented messages are not handled.}
Result := 0;

end;
end;

end.

Specialized Shell Functions � 677

C
h

a
p

te
r
1
4

Application Bars

The Windows 95 and NT shells introduce a new user interface item known as an appli-

cation bar. An appbar is a window that is associated with a particular edge of the

screen. The space occupied by the appbar is reserved for its own use, and the system

prevents other windows from using this area. There are several popular applications

that ship with appbars, most of which provide the user with an alternative form of file

management than that offered by the Start menu. The Windows taskbar is a special type

of appbar.

The SHAppBarMessage function provides the interface to the Windows shell for regis-

tering an appbar and controlling its position. The application communicates with the

shell through this function by sending it application bar messages. An appbar is regis-

tered by using the SHAppBarMessage function to send the system an ABM_NEW

message. When an application creates an appbar, it should use the ABM_QUERYPOS

message to retrieve an approved area for the appbar to reside. The ABM_SETPOS

message is then used to inform the system that the appbar is occupying the specified

rectangular area of the screen. The MoveWindow function is used to physically move

the appbar window into the approved area. Once the appbar is in position, it receives

appbar notification messages through the application-defined message identifier to

inform it of events that might affect its appearance. These events include such things as

a change in the state of the Windows taskbar or the launching or shutdown of a full

screen application.

The appbar gives the Delphi developer an alternative to using a top-level window as

the primary user interface. The following example demonstrates how Delphi can create

a Windows application bar.

678 � Chapter 14

Figure 14-1:

The test

applet in the

control panel

■ Listing 14-2: Creating an appbar using Delphi

unit AppBarMessageU;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, ShellAPI;

const
{the application-defined appbar message identifier}
WM_DELAPPBAR = WM_USER+1;

type
TForm1 = class(TForm)
Button1: TButton;
Button2: TButton;
procedure FormActivate(Sender: TObject);
procedure FormDestroy(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure FormPaint(Sender: TObject);

private
{ Private declarations }
procedure CreateParams(var Params: TCreateParams); override;

public
{ Public declarations }
{the appbar message handler}
procedure WMDelAppBar(var Msg: TMessage); message WM_DELAPPBAR;

end;

var
Form1: TForm1;
{the TAppBarData structure must be global to the unit}
AppBarInfo: TAppBarData;

implementation

{$R *.DFM}

{we must override the CreateParams method to insure the appropriate styles are used}
procedure TForm1.CreateParams(var Params: TCreateParams);
begin
inherited CreateParams(Params);
{the appbar must be a popup toolwindow to function properly}
Params.ExStyle := WS_EX_TOOLWINDOW;
Params.Style := WS_POPUP or WS_CLIPCHILDREN;

end;

procedure TForm1.FormCreate(Sender: TObject);
begin
{provide the TAppBarData structure with the handle to the appbar window}
AppBarInfo.hWnd := Form1.Handle;
{register the new appbar}
SHAppBarMessage(ABM_NEW, AppBarInfo);

Specialized Shell Functions � 679

C
h

a
p

te
r
1
4

{ask the system for an approved position}
SHAppBarMessage(ABM_QUERYPOS, AppBarInfo);

{adjust the new position to account for the appbar window height}
AppBarInfo.rc.Bottom := AppBarInfo.rc.Top+50;

{inform the system of the new appbar position}
SHAppBarMessage(ABM_SETPOS, AppBarInfo);

{physically move the appbar window into position}
MoveWindow(AppBarInfo.hWnd, AppBarInfo.rc.Left, AppBarInfo.rc.Top,

AppBarInfo.rc.Right-AppBarInfo.rc.Left,
AppBarInfo.rc.Bottom-AppBarInfo.rc.Top, TRUE);

end;

procedure TForm1.FormDestroy(Sender: TObject);
begin
{provide the TAppBarData structure with the required information}
AppBarInfo.cbSize := SizeOf(TAppBarData);
AppBarInfo.hWnd := Form1.Handle;
AppBarInfo.lParam := 0;

{unregister the appbar}
SHAppBarMessage(ABM_REMOVE, AppBarInfo);

end;

procedure TForm1.FormActivate(Sender: TObject);
begin
{activate the appbar}
SHAppBarMessage(ABM_ACTIVATE, AppBarInfo);

end;

procedure TForm1.FormPaint(Sender: TObject);
var
Loop: Integer;

begin
{this will fill the appbar with a gradient from yellow to red}
for Loop := 0 to (Width div 20) do
begin
Canvas.Brush.Color := RGB(255,255-((255 div 20)*Loop),0);
Canvas.Brush.Style := bsSolid;
Canvas.FillRect(Rect((Width div 20)*Loop,0,((Width div 20)*Loop)+

(Width div 20),Height));
end;

{paint a caption on the appbar}
Canvas.Font.Name := 'Arial';
Canvas.Font.Size := 20;
Canvas.Font.Color := clBlue;
Canvas.Font.Style := [fsBold];
Canvas.Brush.Style := bsClear;
Canvas.TextOut(10,10,'Delphi App Bar');

end;

{this message handler is called whenever an event has
occurred that could affect the appbar}

680 � Chapter 14

procedure TForm1.WMDelAppBar(var Msg: TMessage);
begin
{the wParam parameter of the message contains the
appbar notification message identifier}
case Msg.wParam of
ABN_FULLSCREENAPP: ShowMessage('FullScreenApp notification message

received.');
ABN_POSCHANGED: ShowMessage('PosChanged notification message received.');
ABN_STATECHANGE: ShowMessage('StateChange notification message

received.');
ABN_WINDOWARRANGE: ShowMessage('WindowArrange notification message

received.');
end;

end;

procedure TForm1.Button1Click(Sender: TObject);
begin
Close;

end;

initialization
{initialize the TAppBarData structure with the required information}
AppBarInfo.uEdge := ABE_TOP;
AppBarInfo.rc := Rect(0,0,GetSystemMetrics(SM_CXSCREEN),50);
AppBarInfo.cbSize := SizeOf(TAppBarData);
AppBarInfo.uCallbackMessage := WM_DELAPPBAR;

end.

Tray Icon Applications

The taskbar tray notification area is a perfect spot for displaying a user interface hook

for applications that run in the background. It is common practice now to add an icon

to this notification area, displaying a dialog box or menu when the user clicks on the

icon. Some examples of common applications that take this approach are the Task

Scheduler, Volume Control, and anti-virus scanners. This is all accomplished through

the use of the Shell_NotifyIcon API function.

Specialized Shell Functions � 681

C
h

a
p

te
r
1
4

Figure 14-2:

The Delphi

appbar in

action

Creating a Tray Icon Application

Creating a tray icon application is no different than creating any other type of applica-

tion, with the exception that you will use Shell_NotifyIcon to actually add the icon to

the notification tray. You will also need to provide a method handler for the message

sent from the icon (more on this below).

To create a tray icon application, start by designing your application and implementing

whatever functionality the application provides to the user. Then, in the Create method,

you will fill out a TNotifyIconData data structure with some specific information about

the application. This data structure requires a handle to the window that receives notifi-

cation messages from the icon. You will also need to provide a unique identifier for the

icon. This is required because an application can add multiple icons to the tray notifica-

tion area; the identifiers let the application know which icon was activated by or

manipulated by the user. Additionally, you need to provide an application-defined noti-

fication message. This is the message that is sent to the application when the icon is

clicked and can be easily defined by using the WM_USER constant. Finally, by provid-

ing the handle to the application’s icon (or whatever icon you wish to display), the text

of the tooltip that is displayed when the user hovers the mouse over the icon, and some

flags that indicate which members of the data structure are defined, you call the

Shell_NotifyIcon function to display the icon in the tray notification area.

Messages

When the user interacts with the icon, the system sends the application-defined mes-

sage to the window identified in the TNotifyIconData structure. The wParam member

of the message holds the identifier of the icon with which the user interacted. The

lParam member contains the actual message associated with the event.

Typically, these messages include various mouse and keyboard messages, such as

WM_MOUSEMOVE, WM_LBUTTONDOWN, WM_LBUTTONUP, WM_LBUT-

TONDBLCLICK, WM_KEYDOWN, or WM_KEYUP. However, under Windows

2000 and later, additional messages are sent depending on how the icon was activated.

If the icon is selected by the keyboard and activated by pressing the Spacebar or Enter

key, the system sends a NIN_KEYSELECT message. If the icon is selected by the

mouse and activated by pressing the Spacebar or Enter key, the system sends a

NIN_SELECT message. Additionally, if the tray icon is using balloon tooltips, several

different messages are sent when the balloon tooltip is displayed or hidden.

Balloon Tooltips

Windows 2000 and later introduced a new type of tooltip that the tray icon can display.

This tooltip looks like a cartoon-style conversation balloon with a stem that points to

the icon. In order to use this functionality, the system must have version 5.0 or later of

shell32.dll (standard on Windows 2000 and later systems). To use a balloon tooltip, ini-

tialize the TNotifyIconData structure as outlined above. Some additional flags are

necessary, and the szInfo, uTimeout, szInfoTitle, and dwInfoFlags members must be

initialized. The szInfo member is set to the text that is displayed within the balloon.

682 � Chapter 14

The szInfoTitle is used to provide a title for the balloon tooltip. The uTimeout value,

measured in milliseconds, indicates how long the balloon tooltip should be displayed

before it hides itself. Finally, the dwInfoFlags member contains a flag indicating an

icon to display in the balloon tooltip. Once all of this is done, use the NIM_MODIFY

command to display the balloon tooltip. The following example demonstrates how to

add a tray notification icon using balloon tooltips.

■ Listing 14-3: A tray notification icon using balloon tooltips

const
WM_TRAYICONCLICKED = WM_USER+1; // the application-defined notification message

type
TForm1 = class(TForm)
ListBox1: TListBox;
Button1: TButton;
Label1: TLabel;
procedure FormCreate(Sender: TObject);
procedure FormDestroy(Sender: TObject);
procedure Button1Click(Sender: TObject);

private
{the message handler for the tray icon notification message}
procedure WMTrayIconClicked(var Msg: TMessage); message WM_TRAYICONCLICKED;

public
procedure DisplayBalloonTooltip;

end;

var
Form1: TForm1;
IconData: TNotifyIconData; // the tray notification icon data structure

const
DELTRAYICON = 1; // the tray icon ID

implementation

{$R *.DFM}

{NOTE: This example must be run under Windows 2000 or later to see the
balloon tooltip}

procedure TForm1.FormCreate(Sender: TObject);
begin
{initialize the tray notification icon structure}
with IconData do
begin
cbSize := SizeOf(TNotifyIconData);
Wnd := Form1.Handle;
uID := DELTRAYICON;
uFlags := NIF_ICON or NIF_MESSAGE or NIF_TIP;
uCallbackMessage := WM_TRAYICONCLICKED;
hIcon := Application.Icon.Handle;
szTip := 'Delphi TrayIcon';
dwState := 0;
dwStateMask := 0;

Specialized Shell Functions � 683

C
h

a
p

te
r
1
4

end;

{notify the system that we are adding a tray notification icon}
Shell_NotifyIcon(NIM_ADD, @IconData);

{display the balloon tooltip when we start}
DisplayBalloonTooltip;

end;
procedure TForm1.WMTrayIconClicked(var Msg: TMessage);
begin
{the tray icon has received a message, so display it}
case Msg.lParam of
WM_LBUTTONDBLCLK : Listbox1.Items.Add('Double Click');
WM_LBUTTONDOWN : Listbox1.Items.Add('Mouse Down');
WM_LBUTTONUP : Listbox1.Items.Add('Mouse Up');

end;
End;

procedure TForm1.FormDestroy(Sender: TObject);
begin
{remove the icon from the system}
Shell_NotifyIcon(NIM_DELETE, @IconData);

end;

procedure TForm1.DisplayBalloonTooltip;
begin
{initialize the structure to include the necessary information for
displaying balloon tooltips}
IconData.uFlags := IconData.uFlags or NIF_INFO;
IconData.szInfo := 'Hello, I''m a balloon tooltip';
IconData.uTimeout := 5000;
IconData.szInfoTitle := 'Tooltip Title';
IconData.dwInfoFlags := NIIF_INFO;

{display the balloon tooltip}
Shell_NotifyIcon(NIM_MODIFY, @IconData);

end;

procedure TForm1.Button1Click(Sender: TObject);
begin
{display the balloon tooltip on command}
DisplayBalloonTooltip;

end;

684 � Chapter 14

TE
AM
FL
Y

Team-Fly®

Delphi vs. the Windows API

Delphi has a great template available in the repository for creating control panel

applets. This template hides much of the complexity of creating control panel applets,

and it is very easy to extend the control panel using this template. However, there is no

functionality built in to Delphi’s control panel applet template to allow dynamically

changing the icon, title, and description. If you need this functionality from a control

panel applet, you will have to use the Windows API.

However, most of the functions discussed in this chapter have no Delphi equivalent. If

you want to create an appbar or add a tray notification icon, you will have to use the

Windows API. Some of these functions are quite complex, but they are straightforward

in their implementation and allow the developer to take advantage of certain Windows

features that would otherwise be out of reach.

Specialized Shell Functions

The following specialized shell functions are covered in this chapter.

Table 14-1: Specialized shell functions

Function Description

CplApplet Entry point for control panel applications.

IMalloc.Alloc Allocates a block of memory.

IMalloc.DidAlloc Indicates if the block of memory was allocated by the calling
instance of IMalloc.

IMalloc.Free Frees an allocated block of memory.

IMalloc.GetSize Retrieves the size of a block of memory.

Specialized Shell Functions � 685

C
h

a
p

te
r
1
4

Figure 14-3:

The balloon

tooltip

Function Description

IMalloc.HeapMinimize Defragments the system memory heap.

IMalloc.Realloc Reallocates a previously allocated block of memory.

SHAppBarMessage Registers and controls an application bar.

SHChangeNotify Indicates that the application has performed an action that may
affect the shell.

ShellAbout Displays the shell About dialog box.

ShellExecute Launches an executable file.

ShellExecuteEx Launches an executable file. This function provides more options
than ShellExecute.

Shell_NotifyIcon Registers a tray notification icon.

SHGetMalloc Retrieves a pointer to the shell’s IMalloc interface.

CplApplet Cpl.pas

Syntax

CplApplet(

hwndCPl: THandle; {window handle of controlling application}

uMsg: DWORD; {message identifier}

lParam1: Longint; {message data}

lParam2: Longint {message data}

): Longint; {returns a message-dependent value}

Description

CplApplet is not an API function, but a user-defined entry point used by control panel

applications. This is the function Windows calls within the control panel DLL, and so it

is implemented by individual control panel application libraries.

�Note: While CplApplet is not defined in the Cpl.pas unit (as it is not an API

function per se), Cpl.pas is required in the Uses clause as it defines

the constants and structures used by and referred to within calls to

this function.

Parameters

hwndCPl: A window handle for the main window of the controlling application,

intended to be used as the parent window for dialog boxes.

uMsg: The message sent to the control panel application. This can be one value from

Table 14-2.

lParam1: Message-specific information. See Table 14-2.

lParam2: Message-specific information. See Table 14-2. With some specific messages,

this may be a pointer to either a TCPLInfo structure or a TNewCPLInfo structure.

These structures are defined as:

686 � Chapter 14

TCPLInfo = packed record

idIcon: Integer; {icon resource identifier}

idName: Integer; {string resource identifier}

idInfo: Integer; {string resource identifier}

lData : Longint; {application-defined data}

end;

idIcon: A resource identifier indicating the icon to display for the applet. This

resource should be compiled into the DLL.

idName: A resource identifier indicating the name of the applet. This resource

should be compiled into the DLL.

idInfo: A resource identifier indicating the description of the applet. This

resource should be compiled into the DLL.

lData: This member can contain any longint value and is designed to provide

application-specific data to an applet.

�Note: Instead of actual resource identifiers, an application can use the

constant CPL_DYNAMIC_RES for the idIcon, idName, and idInfo

members. This indicates that these values can change and is useful for

control panel applications that need to change their icon, name, or

description based upon the current status of the system. If any of

these members are set to CPL_DYNAMIC_RES, the control panel

application is loaded every time information from any of these

members is required, and a CPL_NEWINQUIRE message is sent to

perform the query. Although this allows a control panel application to

provide dynamic information based on changing system states, it will

cause a performance decrease and users will notice significantly

slower display times when opening the control panel.

TNewCPLInfo = packed record

dwSize: DWORD; {size of structure}

dwFlags: DWORD; {ignored}

dwHelpContext: DWORD; {ignored}

lData: Longint; {application-defined data}

hIcon: HICON; {icon identifier}

szName: array[0..31] of AnsiChar; {applet name}

szInfo: array[0..63] of AnsiChar; {applet description}

szHelpFile: array[0..127] of AnsiChar; {ignored}

end;

dwSize: This member must be set to SizeOf(TNewCPLInfo).

dwFlags: Ignored, not used.

dwHelpContext: Ignored, not used.

lData: This member can contain any longint value and is designed to provide

application-specific data to an applet.

Specialized Shell Functions � 687

C
h

a
p

te
r
1
4

hIcon: The identifier of an icon displayed for this applet.

szName: A null-terminated string containing the name of the applet.

szInfo: A null-terminated string containing the description of the applet. This is

displayed in the control panel when the applet’s icon is selected.

szHelpFile: Ignored, not used.

Return Value

This function returns a value that is dependent on the specific message. See the follow-

ing table for more information.

See Also

DLLMain*

Example

Please see Listing 14-1 in the introduction.

Table 14-2: CplApplet uMsg values

Value Description

CPL_DBLCLK Sent when the control panel application’s icon is double-clicked, this indicates that
the control panel should display its dialog box. lParam1 contains the applet num-
ber, and lParam2 contains the user-defined lData value (see the CPL_INQUIRE
message). Return a non-zero value to indicate this message was processed.

CPL_EXIT Sent when the control panel application is closing. The control panel will send this
message to the applet just before the call to FreeLibrary to unload the control
panel application DLL. Any non-applet-specific cleanup (such as deallocation of
memory) should occur at this time. lParam1 and lParam2 are not defined. Return
a non-zero value to indicate this message was processed.

CPL_GETCOUNT Sent to retrieve the number of applets supported by the control panel DLL. The
application should return the number of applets supported. lParam1 and lParam2
are not defined.

CPL_INIT Sent when the control panel application is loaded. Any initialization (such as allo-
cating memory) should occur at this time. The application should return a
non-zero value to indicate that processing should continue. If a zero is returned,
the control panel applet DLL is released. lParam1 and lParam2 are not defined.

CPL_INQUIRE Sent to retrieve information about each applet within the control panel applica-
tion DLL. This message is sent to the DLL as many times as was returned by the
CPL_GETCOUNT message (essentially, once per applet). lParam1 contains the
applet number for the query (this is zero-based). lParam2 contains a pointer to a
TCPLInfo structure. The idIcon field should be set to the resource ID for an icon
to display (this resource should be linked into the DLL). The idName field should
be set to the resource ID for a string that is displayed as the applet name. The
idInfo field should be a resource ID for a string that is used to describe the applet.
The final member, lData, can be set to any longint value (an application-defined
value). Return a non-zero value to indicate this message was processed.

688 � Chapter 14

Value Description

CPL_NEWINQUIRE Sent to retrieve information about each applet within the control panel applica-
tion DLL. This message is sent to the DLL as many times as was returned by the
CPL_GETCOUNT message (essentially, once per applet). lParam1 contains the
applet number for the query (this is zero-based). lParam2 contains a pointer to a
TNewCPLInfo structure. The dwSize member must be set to SizeOf(TNew-
CPLInfo). The dwFlags and dwHelpContext members are ignored and are not
used. The lpData member can be set to any longint value (an application-defined
value). hIcon should be set to the handle of an icon to display. The szName mem-
ber should be set to a null-terminated string that is displayed as the applet name.
The szInfo member should be set to a null-terminated string that is used to
describe the applet. The final member, szHelpFile, is ignored and not used. The
CPL_NEWINQUIRE message is sent before the CPL_INQUIRE message, and if
the message handler returns a non-zero value when processing
CPL_NEWINQUIRE, the CPL_INQUIRE message will not be sent (for this spe-
cific applet).

Note: Under Windows 95 and Windows NT, control panel applications should
respond only to the CPL_INQUIRE message and should ignore the
CPL_NEWINQUIRE message for better performance.

CPL_SELECT Obsolete, and no longer used.

CPL_STARTWPARAMS Similar in function to CPL_DBLCLICK, this message is sent to indicate that the
control panel should display its dialog box. However, this message may carry addi-
tional information regarding the behavior of its execution. lParam1 contains the
applet number. lParam2 contains a pointer to a string containing the extra execu-
tion information. Return a non-zero value to indicate this message was processed.

CPL_STOP Sent when the control panel application is closing. This message is sent to the DLL
as many times as was returned by the CPL_GETCOUNT message (essentially,
once per applet). Any applet-specific cleanup (i.e., deallocating memory) should
be performed at this time. lParam1 contains the applet number. lParam2 contains
the user-defined lData value (see the CPL_INQUIRE message). Return a non-zero
value to indicate this message was processed.

IMalloc.Alloc ActiveX.pas

Syntax

Alloc(

cb: Longint {the size of the memory block}

): Pointer; {returns a pointer to allocated memory}

Description

This method allocates a block of memory, returning a pointer to the allocated block.

Parameters

cb: Indicates the size of the memory block to allocate, in bytes.

Specialized Shell Functions � 689

C
h

a
p

te
r
1
4

�Note: The actual memory size of the allocated block may be larger than the

indicated value, as memory is allocated in 4-byte chunks so that it

will be aligned along 32-bit boundaries.

Return Value

If the function succeeds, it returns a pointer to the newly allocated memory block; oth-

erwise, it returns NIL.

See Also

IMalloc.Free, IMalloc.Realloc

Example

■ Listing 14-4: Using the shell’s IMalloc interface to manipulate memory

procedure TForm1.Button1Click(Sender: TObject);
var
SMalloc: IMalloc; // holds a pointer to the shell's IMalloc interface
MemBlock: Pointer; // the example memory block

begin
{retrieve a pointer to the shell's IMalloc interface}
SHGetMalloc(SMalloc);

{allocate a block of 100 bytes}
MemBlock := SMalloc.Alloc(100);

{if the memory block was successfully allocated (and it was allocated by
this process)...}
if (MemBlock nil) and (SMalloc.DidAlloc(MemBlock) = 1) then
begin
{display the size of the memory block}
ListBox1.Items.Add('Mem Size: ' + IntToStr(SMalloc.GetSize(MemBlock)));

{now reallocate it to a smaller amount. note that while we've instructed
the shell to allocate 50 bytes, it actually allocates 52 bytes because
the memory allocated will align to 32-bit intervals}
MemBlock := SMalloc.Realloc(MemBlock, 50);
ListBox1.Items.Add('Mem Size: ' + IntToStr(SMalloc.GetSize(MemBlock)));

{defragment the shell's memory heap}
SMalloc.HeapMinimize;

{free our memory block. Delphi will automatically release the IMalloc
interface as soon as it goes out of scope (i.e., when the procedure exits)}
SMalloc.Free(MemBlock);

end;
end;

690 � Chapter 14

IMalloc.DidAlloc ActiveX.pas

Syntax

DidAlloc(

pv: Pointer {a pointer to a memory block}

): Integer; {returns an allocation flag}

Description

This method is used to determine if the calling instance of IMalloc allocated the speci-

fied memory block.

Parameters

pv: A pointer to the memory block.

Return Value

This function returns 1 if the specified memory block was allocated by the calling

instance of IMalloc. It returns 0 if the block was not allocated by the calling instance.

A –1 is returned if the function could not determine if the memory block was allocated

by the calling instance or not.

See Also

IMalloc.Alloc, IMalloc.Realloc

Example

Please see Listing 14-4 under IMalloc.Alloc.

IMalloc.Free ActiveX.pas

Syntax

Free(

pv: Pointer {a pointer to a memory block}

); {this procedure does not return a value}

Description

This method frees the specified memory block.

Parameters

pv: A pointer to a memory block to be freed.

See Also

IMalloc.Alloc, IMalloc.Realloc

Example

Please see Listing 14-4 under IMalloc.Alloc.

Specialized Shell Functions � 691

C
h

a
p

te
r
1
4

IMalloc.GetSize ActiveX.pas

Syntax

GetSize(

pv: Pointer {a pointer to a memory block}

): Longint; {returns the size, in bytes}

Description

This method returns the size of the specified memory block, in bytes.

Parameters

pv: A pointer to the memory block whose size is to be retrieved.

Return Value

If the function is successful, it returns the size of the specified memory block, in bytes;

otherwise, it returns –1.

See Also

IMalloc.Alloc, IMalloc.Realloc

Example

Please see Listing 14-4 under IMalloc.Alloc.

IMalloc.HeapMinimize ActiveX.pas

Syntax

HeapMinimize; {no parameters}

Description

This function defragments the system memory heap. Applications that have been run-

ning for a long time and allocating, reallocating, and freeing memory should call this

function periodically.

See Also

IMalloc.Alloc, IMalloc.Free, IMalloc.Realloc

Example

Please see Listing 14-4 under IMalloc.Alloc.

692 � Chapter 14

IMalloc.Realloc ActiveX.pas

Syntax

Realloc(

pv: Pointer; {a pointer to a block of memory}

cb: Longint {the size of the new block of memory}

): Pointer; {returns a pointer to allocated memory}

Description

This method reallocates a previously allocated block of memory, returning a pointer to

the reallocated block.

Parameters

pv: A pointer to a block of memory previously allocated from a call to IMalloc.Alloc.

If this parameter is NIL, the function allocates a new block of memory and otherwise

acts like a call to IMalloc.Alloc.

cb: Indicates the size of the new block of memory, in bytes. The previous contents of

the memory block remain unchanged. However, if the new size is larger than the previ-

ous size, the new areas within the block of memory will be undefined.

�Note: The actual memory size of the allocated block may be larger than the

indicated value, as memory is allocated in 4-byte chunks so that it

will be aligned along 32-bit boundaries.

Return Value

If the function succeeds, it returns a pointer to the newly allocated block of memory.

Otherwise, it returns NIL.

�Note: Memory blocks can be moved by this function, so you should always

use the returned pointer to refer to the new memory block.

See Also

IMalloc.Alloc, IMalloc.Free

Example

Please see Listing 14-4 under IMalloc.Alloc.

SHAppBarMessage ShellAPI.pas

Syntax

SHAppBarMessage(

dwMessage: DWORD; {the appbar message}

var pData: TAppBarData {a pointer to a TAppBarData data structure}

): UINT; {returns a message-dependent value}

Specialized Shell Functions � 693

C
h

a
p

te
r
1
4

Description

This function creates an application bar. An appbar is a window that is associated with

a particular edge of the screen and reserves that screen space for its own use. Windows

prevents other windows from using this space, moving them if necessary. Note that the

application bar window must use the WS_EX_TOOLWINDOW and WS_POPUP

styles to work properly.

Parameters

dwMessage: The application bar message identifier. This parameter can be one value

from Table 14-3.

pData: A pointer to a TAppBarData data structure. This structure provides information

to the SHAppBarMessage function and receives information as a result of the function

call. The TAppBarData structure is defined as:

TAppBarData = record

cbSize: DWORD; {the size of the TAppBarData structure}

hWnd: HWND; {a handle to a window}

uCallbackMessage: UINT; {an application-defined message identifier}

uEdge: UINT; {a screen edge flag}

rc: TRect; {a rectangle in screen coordinates}

lParam: LPARAM; {a message-dependent value}

end;

cbSize: The size of the TAppBarData data structure, in bytes. This member

should be set to SizeOf(TAppBarData).

hWnd: A handle to the appbar window.

uCallbackMessage: An application-defined message identifier. This message is

sent to the window identified by the hWnd parameter to notify it of events. The

wParam parameter of this message will contain one of the notification messages

from Table 14-4.

uEdge: A flag indicating which edge of the screen is associated with the appbar.

This member can be one value from Table 14-5.

rc: A TRect structure that holds the coordinates of the appbar window. These

coordinates are in terms of the screen.

lParam: A message-dependent value. See Table 14-4 for an explanation of when

this member is used.

Return Value

If the function succeeds, it returns a message-specific value; otherwise, it returns zero.

See Table 14-3 for a description of possible return values.

See Also

CreateWindow, CreateWindowEx, MoveWindow

694 � Chapter 14

TE
AM
FL
Y

Team-Fly®

Example

■ Listing 14-5: Retrieving the Windows taskbar coordinates

procedure TForm1.Button1Click(Sender: TObject);
var
AppBarInfo: TAppBarData; // holds the appbar information

begin
{initialize the appbar data structure with the information needed}
AppBarInfo.cbSize := SizeOf(TAppBarData);
AppBarInfo.hWnd := Form1.Handle;

{retrieve the coordinates of the Windows taskbar...}
SHAppBarMessage(ABM_GETTASKBARPOS, AppBarInfo);

{...and display them}
Button1.Caption := 'Left: '+IntToStr(AppBarInfo.rc.Left)+

' Top: '+IntToStr(AppBarInfo.rc.Top)+
' Right: '+IntToStr(AppBarInfo.rc.Right)+
' Bottom: '+IntToStr(AppBarInfo.rc.Bottom);

end;

Table 14-3: SHAppBarMessage dwMessage values

Value Description

ABM_ACTIVATE Notifies Windows that an appbar has been activated. The appbar
should call this message when it receives a WM_ACTIVATE message.
The cbSize and hWnd members of the TAppBarData structure must
be initialized. All other members are ignored. This message is ignored
if the hWnd parameter identifies an autohide appbar, as the system
automatically sets their z-order. The function will always return a value
greater than zero when using this message.

ABM_GETAUTOHIDEBAR Retrieves the window handle of the autohide appbar associated with
the specified screen edge. The cbSize, hWnd, and uEdge members of
the TAppBarData structure must be initialized. All other members are
ignored. If the function succeeds, it returns a handle to the appbar win-
dow associated with the specified screen edge. If the function fails, or
there is no appbar associated with the specified screen edge, the func-
tion returns zero.

Specialized Shell Functions � 695

C
h

a
p

te
r
1
4

Figure 14-4:

The taskbar

coordinates

Value Description

ABM_GETSTATE Retrieves the autohide and always-on-top states of the Windows
taskbar. The cbSize and hWnd members of the TAppBarData structure
must be initialized. All other members are ignored. If the function suc-
ceeds, it returns either ABS_ALWAYSONTOP, a constant indicating
the taskbar is in the always-on-top state, or ABS_AUTOHIDE, a con-
stant indicating the taskbar is in the autohide state. The function can
return both values if necessary. If the function fails, or the Windows
taskbar is in neither state, it returns zero.

ABM_GETTASKBARPOS Retrieves the bounding rectangular coordinates of the Windows
taskbar. The cbSize and hWnd members of the TAppBarData structure
must be initialized. All other members are ignored. If the function suc-
ceeds, it returns a value greater than zero, and the rc member will
contain the bounding rectangle, in screen coordinates, of the Windows
taskbar. If the function fails, it returns zero.

ABM_NEW Registers a new appbar with the system. The function specifies the
application-defined message identifier that is used to send the appbar
notification messages. This message should be called before any other
appbar messages. To register an autohide appbar, use the ABM_SET-
AUTOHIDEBAR message. The cbSize, hWnd, and uCallbackMessage
members of the TAppBarData structure must be initialized. All other
members are ignored. If the function succeeds, it returns a non-zero
value. If the function fails, or the specified appbar is already registered,
it returns zero.

ABM_QUERYPOS Requests a bounding rectangle and screen edge position for the
appbar. The system adjusts the specified rectangle so the appbar will
not interfere with the Windows taskbar or any other appbar. The
appbar should send this message before sending the ABM_SETPOS
message. The cbSize, hWnd, uEdge, and rc members of the
TAppBarData structure must be initialized. All other members are
ignored. When the function returns, the rc member contains the
adjusted coordinates for the new appbar position. This message causes
the function to always return a non-zero value.

ABM_REMOVE Unregisters an appbar from the system. The cbSize and hWnd mem-
bers of the TAppBarData structure must be initialized. All other
members are ignored. The function will always return a non-zero value
when using this message. The ABN_POSCHANGED notification mes-
sage is sent to all other appbars after this message is processed.

ABM_SETAUTOHIDEBAR Registers or unregisters an autohide appbar. The system only allows
one autohide appbar per screen edge. The lParam member of the
TAppBarData structure is set to a non-zero value to register an
autohide appbar or to zero to unregister the appbar. The cbSize,
hWnd, uEdge, and lParam members of the TAppBarData structure
must be initialized. All other members are ignored. If the function suc-
ceeds, it returns a non-zero value. If the function fails, or an appbar is
already registered for the specified edge, the function returns zero.

696 � Chapter 14

Value Description

ABM_SETPOS Sets a bounding rectangle and screen edge position for the appbar. The
system adjusts the specified rectangle so the appbar will not interfere
with the Windows taskbar or any other appbar. The cbSize, hWnd,
uEdge, and rc members of the TAppBarData structure must be initial-
ized. All other members are ignored. When the function returns, the
rc member contains the adjusted coordinates for the new appbar posi-
tion. This message causes the function to always return a non-zero
value. The system sends all appbars the ABN_POSCHANGED notifi-
cation message after this message is processed.

ABM_WINDOWPOSCHANGED Notifies the system that the appbar’s position has changed. The appbar
should call this message when responding to the WM_WINDOWPOS-
CHANGED message. The cbSize and hWnd members of the
TAppBarData structure must be initialized. All other members are
ignored. This message causes the function to always return a non-zero
value. This message is ignored if the hWnd member identifies an
autohide appbar.

Table 14-4: SHAppBarMessage pData.uCallbackMessage wParam notification messages

Value Description

ABN_FULLSCREENAPP Notifies an appbar when a full screen application is opening or closing.
When a full screen application starts, the appbar must go to the bot-
tom of the z-order. When the full screen application shuts down, the
appbar can restore its original position in the z-order. If the lParam
parameter is a non-zero value, it indicates that the full screen app is
opening. If the lParam parameter is zero, the full screen app is shutting
down.

ABN_POSCHANGED Notifies the appbar of an event that may affect its size and position,
such as adding, removing, or resizing another appbar, or changing the
Windows taskbar position or state. Upon receiving this message, the
appbar should send the ABM_QUERYPOS message followed by the
ABM_SETPOS message to determine if its position has changed. The
MoveWindow function is then called to physically move the appbar
window into its new position.

ABN_STATECHANGE Notifies the appbar that the taskbar’s autohide or always-on-top state
has changed.

ABN_WINDOWARRANGE Notifies the appbar that the user has selected the Cascade, Tile Hori-
zontally, or Tile Vertically command from the Windows taskbar
context menu. If the lParam parameter is a non-zero value, it indicates
that the arrangement command has started and no windows have
been moved. A value of zero indicates that the arrangement command
has finished and all windows are in their final positions. The appbar
receives this message twice, once before the operation starts and again
after the operation has finished.

Specialized Shell Functions � 697

C
h

a
p

te
r
1
4

Table 14-5: SHAppBarMessage pData.uEdge values

Value Description

ABE_BOTTOM The bottom edge of the screen.

ABE_LEFT The left edge of the screen.

ABE_RIGHT The right edge of the screen.

ABE_TOP The top edge of the screen.

SHChangeNotify ShlObj.pas

Syntax

SHChangeNotify(

wEventId: Longint; {event identifier}

uFlags: UINT; {event-dependent flags}

dwItem1: Pointer; {event-dependent value}

dwItem2: Pointer {event-dependent value}

); {this procedure does not return a value}

Description

This function notifies the system of an action performed by the application that may

affect the shell.

Parameters

wEventId: Flags indicating the type of event that has occurred and how it may affect

the shell. This parameter may contain one or more values from Table 14-6.

uFlags: Flags indicating the meaning of the dwItem1 and dwItem2 parameters. This

value is dependent on the value of the wEventId parameter and can contain one value

from Table 14-7.

dwItem1: A value or a pointer to a value, dependent on the values of the wEventId and

uFlags parameters. See Tables 14-6 and 14-7 for more details.

dwItem2: A value or a pointer to a value, dependent on the values of the wEventId and

uFlags parameters. See Tables 14-6 and 14-7 for more details.

See Also

CreateDirectory, CreateDirectoryEx, CreateFile, DeleteFile, RemoveDirectory,

SystemParametersInfo

Example

■ Listing 14-6: Creating a directory and informing the shell

{Note: this example creates a directory under the directory in which the
example runs. thus, you cannot run this example straight off of the CD, you
must copy the example to your hard drive first.}
procedure TForm1.Button1Click(Sender: TObject);
var
CurDirectory: array[0..MAX_PATH] of char;

begin

698 � Chapter 14

{get the current directory}
GetCurrentDirectory(MAX_PATH, CurDirectory);

{create a directory}
CreateDirectory(PChar(string(CurDirectory) + '\DummyDirectory'), nil);

{inform the system we've created a new directory}
SHChangeNotify(SHCNE_MKDIR, SHCNF_PATH, PChar(string(CurDirectory) +

'\DummyDirectory'), nil);
end;

Table 14-6: SHChangeNotify wEventId values

Value Description

SHCNE_ALLEVENTS Indicates that all events have occurred.

SHCNE_ASSOCCHANGED Indicates that a file association has changed.

uFlags: Must contain SHCNF_IDLIST.

dwItem1, dwItem2: Unused, set to NIL.

SHCNE_ATTRIBUTES Indicates that the attributes of an item or folder have
changed.

uFlags: Must contain SHCNF_IDLIST or SHCNF_PATH.

dwItem1: Indicates the item or folder that has changed.

dwItem2: Unused; set to NIL.

SHCNE_CREATE Indicates that a non-folder item has been created.

uFlags: Must contain SHCNF_IDLIST or SHCNF_PATH.

dwItem1: Indicates the created item.

dwItem2: Unused; set to NIL.

SHCNE_DELETE Indicates that a non-folder item has been deleted.

uFlags: Must contain SHCNF_IDLIST or SHCNF_PATH.

dwItem1: Indicates the deleted item.

dwItem2: Unused; set to NIL.

SHCNE_DISKEVENTS Indicates all of the disk events have occurred.

SHCNE_DRIVEADD Indicates that a new drive has been added.

uFlags: Must contain SHCNF_IDLIST or SHCNF_PATH.

dwItem1: Indicates the root of the drive that was added.

dwItem2: Unused; set to NIL.

SHCNE_DRIVEADDGUI Indicates that a new drive has been added, and the shell
should create a window for the drive.

uFlags: Must contain SHCNF_IDLIST or SHCNF_PATH.

dwItem1: Indicates the root of the drive that was added.

dwItem2: Unused; set to NIL.

Specialized Shell Functions � 699

C
h

a
p

te
r
1
4

Value Description

SHCNE_DRIVEREMOVED Indicates that a drive has been removed.

uFlags: Must contain SHCNF_IDLIST or SHCNF_PATH.

dwItem1: Indicates the root of the drive that was
removed.

dwItem2: Unused; set to NIL.

SHCNE_FREESPACE Indicates that the amount of free space on a drive has
changed.

uFlags: Must contain SHCNF_IDLIST or SHCNF_PATH.

dwItem1: Indicates the root of the drive whose free
space has changed.

dwItem2: Unused; set to NIL.

SHCNE_GLOBALEVENTS Indicates all of the global events have occurred.

SHCNE_INTERRUPT Indicates that the specified event occurred as a result of
a system interrupt. This value must be combined with
other values from this table and cannot be used alone.

SHCNE_MEDIAINSERTED Indicates storage media (i.e., a floppy disk or CD-ROM)
has been inserted into a drive.

uFlags: Must contain SHCNF_IDLIST or SHCNF_PATH.

dwItem1: Indicates the root of the drive that has had
new media inserted.

dwItem2: Unused; set to NIL.

SHCNE_MEDIAREMOVED Indicates storage media (i.e., a floppy disk or CD-ROM)
has been removed from a drive.

uFlags: Must contain SHCNF_IDLIST or SHCNF_PATH.

dwItem1: Indicates the root of the drive that has had
media removed.

dwItem2: Unused; set to NIL.

SHCNE_MKDIR Indicates a new directory has been created.

uFlags: Must contain SHCNF_IDLIST or SHCNF_PATH.

dwItem1: Indicates the new directory or folder.

dwItem2: Unused; set to NIL.

SHCNE_NETSHARE Indicates that a folder is now being shared over the
network.

uFlags: Must contain SHCNF_IDLIST or SHCNF_PATH.

dwItem1: Indicates the directory or folder being shared.

dwItem2: Unused; set to NIL.

SHCNE_NETUNSHARE Indicates that a folder is no longer being shared over the
network.

uFlags: Must contain SHCNF_IDLIST or SHCNF_PATH.

dwItem1: Indicates the directory or folder no longer
being shared.

dwItem2: Unused; set to NIL.

700 � Chapter 14

Value Description

SHCNE_RENAMEFOLDER Indicates that a folder has been renamed.

uFlags: Must contain SHCNF_IDLIST or SHCNF_PATH.

dwItem1: Contains the previous PIDL or name of the
folder.

dwItem2: Contains the new PIDL or name of the folder.

SHCNE_RENAMEITEM Indicates that a non-folder item has been renamed.

uFlags: Must contain SHCNF_IDLIST or SHCNF_PATH.

dwItem1: Contains the previous PIDL or name of the
item.

dwItem2: Contains the new PIDL or name of the item.

SHCNE_RMDIR Indicates that a folder has been deleted.

uFlags: Must contain SHCNF_IDLIST or SHCNF_PATH.

dwItem1: Indicates the directory or folder that was
deleted.

dwItem2: Unused; set to NIL.

SHCNE_SERVERDISCONNECT Indicates that the computer has disconnected from a
server.

uFlags: Must contain SHCNF_IDLIST or SHCNF_PATH.

dwItem1: Indicates the server that was disconnected.

dwItem2: Unused; set to NIL.

SHCNE_UPDATEDIR Indicates that the contents of a folder or directory have
changed.

uFlags: Must contain SHCNF_IDLIST or SHCNF_PATH.

dwItem1: Indicates the folder or directory that has
changed.

dwItem2: Unused; set to NIL.

SHCNE_UPDATEIMAGE Indicates that an image in the system image list has been
changed.

uFlags: Must contain SHCNF_DWORD.

dwItem1: Indicates the index of the image in the system
image list that was changed.

dwItem2: Unused; set to NIL.

SHCNE_UPDATEITEM Indicates that a non-folder item has changed.

uFlags: Must contain SHCNF_IDLIST or SHCNF_PATH.

dwItem1: Indicates the item that has changed.

dwItem2: Unused; set to NIL.

Specialized Shell Functions � 701

C
h

a
p

te
r
1
4

Table 14-7: SHChangeNotify uFlags values

Value Description

SHCNF_DWORD Indicates that the dwItem1 and dwItem2 parameters are
DWORD values.

SHCNF_FLUSH Indicates that the function should not return until the notifica-
tion has been delivered and processed by all affected objects.

SHCNF_FLUSHNOWAIT Indicates that the function should return immediately (notifica-
tion is delivered to affected objects asynchronously).

SHCNF_IDLIST Indicates that the dwItem1 and dwItem2 parameters are point-
ers to item identifier lists. The PIDLs must be relative to the
desktop folder.

SHCNF_PATH Indicates that the dwItem1 and dwItem2 parameters are point-
ers to null-terminated strings containing qualified path and file
names.

SHCNF_PRINTER Indicates that the dwItem1 and dwItem2 parameters are point-
ers to null-terminated strings containing friendly printer names.

ShellAbout ShellAPI.pas

Syntax

ShellAbout(

Wnd: HWND; {a handle to a parent window}

szApp: PChar; {a pointer to the title bar text}

szOtherStuff: PChar; {a pointer to descriptive text}

Icon: HICON {a handle to an icon}

): Integer; {returns an integer value}

Description

This function displays the shell About dialog box. This is the About box that is dis-

played when About Windows is selected in the Windows Explorer. This dialog box

displays an icon and text that is specific to the Windows operating system.

Parameters

Wnd: A handle to a parent window. If this parameter is zero, the About box acts like a

modeless dialog box. If a handle is specified, the About box will be modal.

szApp: A pointer to text that is displayed in the title bar and on the first line of the

About box.

szOtherStuff: A pointer to text that is displayed after the copyright information.

Icon: A handle to an icon that is displayed in the dialog box. If this parameter is zero,

the dialog box will display the Windows or Windows NT icon.

Return Value

If the function succeeds, it returns a non-zero value; otherwise, it returns zero.

702 � Chapter 14

See Also

GetSystemInfo

Example

■ Listing 14-7: Displaying the ShellAbout dialog box

procedure TForm1.Button1Click(Sender: TObject);
begin
{call the Microsoft shell about box}
ShellAbout(Form1.Handle, 'ShellAbout Example',

'This is a simple example of how to use the ShellAbout API function.',0);
end;

ShellExecute ShellAPI.pas

Syntax

ShellExecute(

hWnd: HWND; {a handle to a parent window}

Operation: PChar; {a pointer to a string describing the action}

FileName: PChar; {a pointer to a filename or folder name}

Parameters: PChar; {a pointer to executable file parameters}

Directory: PChar; {a pointer to the default directory name}

ShowCmd: Integer {file display flags}

): HINST; {returns an instance handle}

Description

This function performs the specified action on the specified file and can be used to

print a document, edit a file, search for a file, launch an executable file, or open a direc-

tory folder.

Parameters

hWnd: A handle to a parent window that receives message boxes if an error occurs.

Specialized Shell Functions � 703

C
h

a
p

te
r
1
4

Figure 14-5:

The

ShellAbout

dialog box

Operation: A pointer to a null-terminated string specifying the action to perform on the

file or folder indicated by the FileName parameter. Table 14-8 lists the standard actions

that can be performed on a file or folder. However, these actions are not limited to

those listed in the table. This parameter is dependent on the actions registered for the

document or application in the registry, and new actions can be created through the

Options menu in the Windows Explorer.

�Note: On Windows prior to Windows 2000, if this parameter is NIL, the

default verb is used if it is valid and available in the registry for the

indicated file; otherwise, the “open” operation is used by default. On

Windows 2000 and later systems, if this parameter is NIL, it attempts

the steps listed above, and if neither verb is available, it uses the first

verb listed for this filename in the registry.

FileName: A pointer to a null-terminated string containing the name of a document,

executable file, or folder.

Parameters: If the FileName parameter indicates an executable file, this parameter con-

tains a pointer to a null-terminated string specifying the command line parameters to

pass to the executable file. The parameters must be separated by spaces. If the File-

Name parameter specifies a document or folder, this parameter should be NIL.

Directory: A pointer to a null-terminated string containing the path to the default direc-

tory. If this parameter is NIL, the current directory is used as the working directory.

ShowCmd: A flag that determines how the executable file indicated by the FileName

parameter is to be displayed when it is launched. This parameter can be one value from

Table 14-9.

Return Value

If the function succeeds, it returns the instance handle of the application that was

launched or the handle to a dynamic data exchange server application. If the function

fails, it returns a value from Table 14-10. This value will be less than 32.

See Also

FindExecutable, IShellExecuteHook.Execute, ShellExecuteEx

Example

■ Listing 14-8: Opening files

procedure TForm1.FileListBox1DblClick(Sender: TObject);
begin

{open the file that was double-clicked in the file list box}
ShellExecute(Form1.Handle, 'open', PChar(FileListBox1.FileName), nil, nil,

SW_SHOWNORMAL);
end;

704 � Chapter 14

TE
AM
FL
Y

Team-Fly®

Table 14-8: ShellExecute operation values

Value Description

“find” Initiates a search starting from the specified directory.

“edit” Opens the application associated with the file specified by
the FileName parameter and passes the file to it for editing.

“open” Opens the file or folder or launches the executable file
identified by the FileName parameter.

“print” Prints the document identified by the FileName parameter.
If the FileName parameter identifies an executable file, it is
launched as if a value of “open” had been specified.

“explore” Opens a Windows Explorer window onto the folder identi-
fied by the FileName parameter.

Table 14-9: ShellExecute ShowCmd values

Value Description

SW_HIDE The window is hidden and another window is activated.

SW_MAXIMIZE Maximizes the window.

SW_MINIMIZE The window is minimized and the next top-level window in
the relative z-order is activated.

SW_RESTORE The window is activated and displayed in its original size
and position.

SW_SHOW The window is activated and displayed in its current size
and position.

SW_SHOWDEFAULT The window is shown based on the wShowWindow mem-
ber of the TStartupInfo structure passed to the Create-
Process function by the program that started the applica-
tion. This is used to set the initial show state of an
application’s main window. This flag should be used when
showing the window for the first time if the application
could be run from a shortcut. This flag will cause the win-
dow to be shown using the Run settings under the shortcut
properties.

SW_SHOWMAXIMIZED The window is activated and displayed in a maximized
state.

SW_SHOWMINIMIZED The window is activated and displayed as an icon.

SW_SHOWMINNOACTIVE The window is displayed as an icon. The active window
remains active.

SW_SHOWNA The window is displayed in its current state. The active
window remains active.

SW_SHOWNOACTIVE The window is displayed in its most recent state. The active
window remains active.

SW_SHOWNORMAL This is the same as SW_RESTORE.

Specialized Shell Functions � 705

C
h

a
p

te
r
1
4

Table 14-10: ShellExecute return value error codes

Value Description

0 Not enough memory or resources.

ERROR_FILE_NOT_FOUND The file specified by the FileName parameter could not
be found.

ERROR_PATH_NOT_FOUND The directory specified by the Directory parameter
could not be found.

ERROR_BAD_FORMAT The executable file is invalid or corrupt.

SE_ERR_ACCESSDENIED Access to the specified file was denied.

SE_ERR_ASSOCINCOMPLETE There is an incomplete or invalid executable file associa-
tion for the specified file.

SE_ERR_DDEBUSY The requested DDE transaction could not be completed
due to other DDE transactions in progress.

SE_ERR_DDEFAIL The requested DDE transaction failed.

SE_ERR_DDETIMEOUT The requested DDE transaction failed because the DDE
request timed out.

SE_ERR_DLLNOTFOUND A required dynamic-link library could not be found.

SE_ERR_FNF The file specified by the FileName parameter could not
be found.

SE_ERR_NOASSOC There is no executable file associated with the given file-
name extension. Also returned if the “print” verb is used
on files that are not printable.

SE_ERR_OOM The operation could not be completed due to insuffi-
cient memory.

SE_ERR_PNF The directory specified by the Directory parameter
could not be found.

SE_ERR_SHARE A sharing violation has occurred.

ShellExecuteEx ShellAPI.ps

Syntax

ShellExecuteEx(

lpExecInfo: PShellExecuteInfo {a pointer to a file execution information structure}

):BOOL; {returns TRUE or FALSE}

Description

Similar to ShellExecute, this function performs an action on a file and can be used to

print a document, launch an executable file, or open a directory folder.

Parameters

lpExecInfo: A pointer to a TShellExecuteInfo structure. This structure contains infor-

mation about the action to perform on a particular file and will receive information

once the action is completed. The TShellExecuteInfo structure is defined as:

706 � Chapter 14

TShellExecuteInfo = record

cbSize: DWORD; {size of the structure in bytes}

fMask: ULONG; {flags indicating how to use other members}

Wnd: HWND; {a handle to a parent window}

lpVerb: PAnsiChar; {a pointer to a string describing the action}

lpFile: PAnsiChar; {a pointer to a filename or folder name}

lpParameters: PAnsiChar; {a pointer to executable file parameters}

lpDirectory: PAnsiChar; {a pointer to the default directory name}

nShow: Integer; {file display flags}

hInstApp: HINST; {a handle to an application instance}

The following fields are optional:

lpIDList: Pointer; {a pointer to an item identifier list}

lpClass: PAnsiChar; {a pointer to the name of a file class or GUID}

hkeyClass: HKEY; {a handle to the file class registry key}

dwHotKey: DWORD; {the hot key associated with the application}

hIcon: THandle; {a handle to an icon for the file class}

hProcess: THandle; {a process handle for the newly launched

application}

end;

cbSize: The size of the TShellExecuteInfo structure, in bytes. This member must

be set to SizeOf(TShellExecuteInfo).

fMask: A series of flags that indicate if the optional members of the structure

should be used. This member can be one or more values from Table 14-11.

Wnd: A handle to a parent window that receives message boxes if an error

occurs.

lpVerb: A pointer to a null-terminated string specifying the action to perform on

the file or folder indicated by the lpFile member. Table 14-12 lists the standard

actions that can be performed on a file or folder. However, these actions are not

limited to those listed in the table. This member is dependent on the actions regis-

tered for the document or application in the registry, and new actions can be

created through the Options menu in the Windows Explorer.

�Note: On Windows prior to Windows 2000, if this member is NIL, the

default verb is used if it is valid and available in the registry for the

indicated file; otherwise, the “open” verb is used by default. On

Windows 2000 and later systems, if this member is NIL, it attempts

the steps listed above, and if neither verb is available, it uses the first

verb listed for this filename in the registry.

lpFile: A pointer to a null-terminated string containing the name of a document,

executable file, or folder.

lpParameters: If the lpFile member indicates an executable file, this member con-

tains a pointer to a null-terminated string specifying the command line

parameters to pass to the executable file. The parameters must be separated by

Specialized Shell Functions � 707

C
h

a
p

te
r
1
4

spaces. If the lpFile member specifies a document or folder, this parameter

should be NIL.

lpDirectory: A pointer to a null-terminated string containing the path to the

default directory. If this parameter is NIL, the current directory is used as the

working directory.

nShow: A flag that determines how the executable file indicated by the lpFile

member is to be displayed when it is launched. This parameter can be one value

from Table 14-13.

hInstApp: If the function succeeds, this member contains a value greater than 32

upon return. If the function fails, this member will contain one of the values from

Table 14-14.

The following fields are optional. These members do not have to be set in order

for the ShellExecuteEx function to work properly.

lpIDList: A pointer to an item identifier list that uniquely identifies the execut-

able file to launch. This member is ignored if the fMask member does not contain

SEE_MASK_IDLIST.

lpClass: A pointer to a null-terminated string containing the name of a file class

or globally unique identifier (GUID). This member is ignored if the fMask mem-

ber does not contain SEE_MASK_CLASSNAME.

hkeyClass: A handle to the registry key for the file class. This member is ignored

if the fMask member does not contain SEE_MASK_CLASSKEY.

dwHotKey: The hot key to associate with the launched executable file. The

low-order word contains the virtual key code, and the high-order word contains a

modifier flag. The modifier flag can be one or more values from Table 14-15.

This member is ignored if the fMask member does not contain

SEE_MASK_HOTKEY.

hIcon: A handle to an icon to use for the file class. This member is ignored if the

fMask member does not contain SEE_MASK_ICON. Alternatively, if the fMask

member contains SEE_MASK_HMONITOR, this member should contain a han-

dle to the monitor upon which the application or document is displayed.

hProcess: If the function succeeds, upon return this member contains a process

handle of the application that was started. This member is set to zero if the fMask

member does not contain SEE_MASK_NOCLOSEPROCESS or if no new pro-

cess was launched.

Return Value

If the function succeeds, it returns TRUE, and the hInstApp member of the TShell-

ExecuteInfo structure contains an instance handle to the application that was started. If

the function fails, it returns FALSE, and the hInstApp member will be set to one of the

values from Table 14-14. To get extended error information, call the GetLastError

function.

See Also

IShellExecuteHook.Execute, ShellExecute

708 � Chapter 14

Example

■ Listing 14-9: Another way to open files

procedure TForm1.FileListBox1DblClick(Sender: TObject);
var

ExecInfo: TShellExecuteInfo;
begin

{fill in the TShellExecuteInfo structure information}
ExecInfo.cbSize := SizeOf(TShellExecuteInfo);
ExecInfo.fMask := SEE_MASK_NOCLOSEPROCESS;
ExecInfo.Wnd := Form1.Handle;
ExecInfo.lpVerb := 'Open';
ExecInfo.lpFile := PChar(FileListBox1.FileName);
ExecInfo.lpParameters := '';
ExecInfo.lpDirectory := '';
ExecInfo.nShow := SW_SHOWNORMAL;

{open the specified file}
ShellExecuteEx(@ExecInfo);

end;

Table 14-11: ShellExecuteEx lpExecInfo.fMask values

Value Description

SEE_MASK_CLASSKEY Use the class key specified by the hkeyClass member.
This flag overrides the SEE_MASK_CLASSNAME flag.

SEE_MASK_CLASSNAME Use the class name specified by the lpClass member.

SEE_MASK_CONNECTNETDRV The lpFile member specifies a Universal Naming Con-
vention path.

SEE_MASK_DOENVSUBST Expand any environment variables included in the
lpFile or lpDirectory members.

SEE_MASK_FLAG_DDEWAIT If a DDE conversation is started, wait for it to end
before returning.

SEE_MASK_FLAG_NO_UI Do not display error message boxes if errors occur.

SEE_MASK_HMONITOR Indicates a specific monitor on a multimonitor system.
Use the hIcon member to indicate the monitor. This
flag cannot be combined with the SEE_MASK_ICON
flag.

SEE_MASK_HOTKEY Use the hotkey specified by the dwHotKey member.

SEE_MASK_ICON Use the icon specified by the hIcon member. This flag
cannot be combined with the SEE_MASK_HMONI-
TOR flag.

SEE_MASK_IDLIST Use the item identifier list specified by the lpIDList
member.

SEE_MASK_INVOKEIDLIST Use the item identifier list specified by the lpIDList
member. If the lpIDList member is NIL, the function
creates an item identifier list and launches the applica-
tion. This flag overrides the SEE_MASK_IDLIST flag.

Specialized Shell Functions � 709

C
h

a
p

te
r
1
4

Value Description

SEE_MASK_NOCLOSEPROCESS Causes the hProcess member to receive a handle to
the process started. The process continues to run
after the ShellExecuteEx function ends.

SEE_MASK_NO_CONSOLE For console applications, this creates a new console
for the new process instead of inheriting the parent’s
console.

SEE_MASK_UNICODE Indicates a Unicode application.

Table 14-12: ShellExecuteEx lpExecInfo.lpVerb values

Value Description

“find” Initiates a search starting from the directory specified
in the lpDirectory member.

“edit” Opens the application associated with the file specified
by the lpFile member and passes the file to it for
editing.

“open” Opens the file or folder or launches the executable file
identified by the lpFile member.

“print” Prints the document identified by the lpFile member. If
the lpFile member identifies an executable file, it is
launched as if a value of “open” had been specified.

“explore” Opens a Windows Explorer window onto the folder
identified by the lpFile parameter.

Table 14-13: ShellExecuteEx lpExecInfo.nShow values

Value Description

SW_HIDE The window is hidden and another window is
activated.

SW_MAXIMIZE Maximizes the window.

SW_MINIMIZE The window is minimized and the next top-level win-
dow in the relative z-order is activated.

SW_RESTORE The window is activated and displayed in its original
size and position.

SW_SHOW The window is activated and displayed in its current
size and position.

SW_SHOWDEFAULT The window is shown based on the wShowWindow
member of the TStartupInfo structure passed to the
CreateProcess function by the program that started
the application. This is used to set the initial show
state of an application’s main window. This flag should
be used when showing the window for the first time if
the application could be run from a shortcut. This flag
will cause the window to be shown using the Run set-
tings under the shortcut properties.

710 � Chapter 14

Value Description

SW_SHOWMAXIMIZED The window is activated and displayed in a maximized
state.

SW_SHOWMINIMIZED The window is activated and displayed as an icon.

SW_SHOWMINNOACTIVE The window is displayed as an icon. The active win-
dow remains active.

SW_SHOWNA The window is displayed in its current state. The
active window remains active.

SW_SHOWNOACTIVE The window is displayed in its most recent state. The
active window remains active.

SW_SHOWNORMAL This is the same as SW_RESTORE.

Table 14-14: ShellExecuteEx lpExecInfo.hInstApp error codes

Value Description

SE_ERR_ACCESSDENIED Access to the specified file was denied.

SE_ERR_ASSOCINCOMPLETE There is an incomplete or invalid executable file asso-
ciation for the specified file.

SE_ERR_DDEBUSY The requested DDE transaction could not be com-
pleted due to other DDE transactions in progress.

SE_ERR_DDEFAIL The requested DDE transaction failed.

SE_ERR_DDETIMEOUT The requested DDE transaction failed because the
DDE request timed out.

SE_ERR_DLLNOTFOUND A required dynamic-link library could not be found.

SE_ERR_FNF The file specified by the FileName parameter could
not be found.

SE_ERR_NOASSOC There is no executable file associated with the given
filename extension.

SE_ERR_OOM The operation could not be completed due to insuffi-
cient memory.

SE_ERR_PNF The directory specified by the Directory parameter
could not be found.

SE_ERR_SHARE A sharing violation has occurred.

Table 14-15: ShellExecuteEx lpExecInfo.dwHotKey modifier flag values

Value Description

HOTKEYF_ALT The Alt key must be held down.

HOTKEYF_CONTROL The Ctrl key must be held down.

HOTKEYF_SHIFT The Shift key must be held down.

Specialized Shell Functions � 711

C
h

a
p

te
r
1
4

Shell_NotifyIcon ShellAPI.pas

Syntax

Shell_NotifyIcon(

dwMessage: DWORD; {a notify icon message}

lpData: PNotifyIconData {a pointer to a notify icon data structure}

): BOOL; {returns TRUE or FALSE}

Description

This function adds, modifies, or removes a notification icon from the taskbar system

tray.

Parameters

dwMessage: A notification icon message identifier indicating the action to perform.

This can be one value from Table 14-16.

lpData: A pointer to a TNotifyIconData data structure. This structure is defined as:

TNotifyIconData = record

cbSize: DWORD; {the size of the TNotifyIconData structure}

Wnd: HWND; {a handle to a window}

uID: UINT; {an application-defined identifier}

uFlags: UINT; {modification flags}

uCallbackMessage: UINT; {an application-defined message identifier}

hIcon: HICON; {a handle to an icon}

szTip: array [0..127] of AnsiChar; {a tooltip string}

dwState: DWORD; {icon state flags}

dwStateMask: DWORD; {icon state bit mask}

szInfo: array[0..255] of AnsiChar; {balloon tooltip text}

uTimeout: UINT; {balloon tooltip timeout (or behavior version)}

szInfoTitle: array[0..63] of AnsiChar; {balloon tooltip title}

dwInfoFlags: DWORD {balloon tooltip icons}

end;

cbSize: The size of the TNotifyIconData structure, in bytes. This member should

be set to SizeOf(TNotifyIconData).

�Note: When running the application under versions of Windows prior to

Windows 2000, this member should be set to SizeOf(ShellAPI.T-

NotifyIcon).

Wnd: A handle to the window that receives notification messages when an event

happens to the icon in the system tray. The value in the uID member indicates

which icon is associated with the notification messages.

uID: An application-defined identifier for the notification icon.

712 � Chapter 14

uFlags: A combination of flags that indicate which other members of the

TNotifyIconData structure are valid and should be used. This member can be any

combination of the values in Table 14-17.

uCallbackMessage: An application-defined message. This message is sent to the

window associated with the window handle set in the Wnd member whenever a

mouse event happens in the icon in the system tray or when the icon is selected

and activated by the keyboard. The wParam parameter of the message will con-

tain the identifier of the icon affected by the message (as defined by the uID

member above when the icon is first added). The lParam member contains the

mouse or keyboard message identifier of the event that occurred. When running

under Windows 2000 or later, the system will send various messages as outlined

in Table 14-18.

hIcon: A handle to an icon to display in the system tray.

szTip: A pointer to a null-terminated string used as the tooltip text for the notifi-

cation icon.

�Note: On machines running a version of Windows prior to Windows 2000,

this member can have a maximum of 64 characters.

dwState: Windows 2000 or later: A flag indicating the state of the icon. This

member can be zero or one value from Table 14-19.

dwStateMask: Windows 2000 or later: A flag indicating which bits of the

dwState member are to be retrieved or modified. This member can be set to one

value from Table 14-19.

szInfo: Windows 2000 or later: A null-terminated string used as the text of a

balloon tooltip. Set this member to NIL to remove the tooltip.

uTimeout: Windows 2000 or later: Indicates the time-out value for the balloon

tooltip, in milliseconds. As of publication, Windows defines a minimum and

maximum time- out of 10 seconds to 30 seconds, respectively. Any time-out

value greater than or less than these values gets rounded to the nearest minimum

or maximum value.

This member has an additional use. When the dwMessage parameter is set to

NIM_SETVERSION, the value of this member instructs Windows which behav-

ior version to use. Setting this member to zero indicates the system should use the

Windows 95 behavior. Alternatively, setting this member to

NOTIFYICON_VERSION indicates the system should use the Windows 2000

behavior.

�Note: Setting the version on Windows prior to Windows 2000 has no effect.

szInfoTitle: Windows 2000 or later: A null-terminated string used as the title of

a balloon tooltip.

dwInfoFlags: Windows 2000 or later: A flag indicating an icon to use in the bal-

loon tooltip. This member may be set to one value from Table 14-20.

Specialized Shell Functions � 713

C
h

a
p

te
r
1
4

Return Value

If the function succeeds, it returns TRUE; otherwise, it returns FALSE.

See Also

SHAppBarMessage

Example

■ Listing 14-10: Adding an icon to the system tray

const
{Delphi does not define some of the new constants used in Shell_NotifyIcon}
NIM_SETFOCUS = $00000003; // return focus to taskbar notification area
NIM_SETVERSION = $00000004; // sets the behavior

NIF_STATE = $00000008; // indicates dwState and dwStateMask are valid
NIF_INFO = $00000010; // use a balloon tooltip

NIS_HIDDEN = $00000001; // icon is hidden
NIS_SHAREDICON = $00000002; // icon is shared

NIIF_NONE = $00000000; // no icon
NIIF_INFO = $00000001; // information icon
NIIF_WARNING = $00000002; // warning icon
NIIF_ERROR = $00000003; // error icon

NOTIFYICON_VERSION = 3; // using Windows 2000 behavior

NIN_SELECT = (WM_USER + 0); // icon selected by the mouse
NINF_KEY = $1;
NIN_KEYSELECT = (NIN_SELECT or NINF_KEY); // icon selected by the keyboard

NIN_BALLOONSHOW = (WM_USER + 2); // balloon is shown
NIN_BALLOONHIDE = (WM_USER + 3); // balloon is hidden
NIN_BALLOONTIMEOUT = (WM_USER + 4); // balloon hidden due to timeout
NIN_BALLOONUSERCLICK = (WM_USER + 5); // balloon hidden due to mouse click

type
{the new TNotifyIcon structure, required to take advantage of new
functionality introduced by Windows 2000}
PNotifyIconData = ^TNotifyIconData;
TNotifyIconData = record
cbSize: DWORD; {the size of the TNotifyIconData structure}
Wnd: HWND; {a handle to a window}
uID: UINT; {an application-defined identifier}
uFlags: UINT; {modification flags}
uCallbackMessage: UINT; {an application-defined message identifier}
hIcon: HICON; {a handle to an icon}
szTip: array [0..127] of AnsiChar; {a tooltip string}
dwState: DWORD; {icon state flags}
dwStateMask: DWORD; {icon state bit mask}
szInfo: array[0..255] of AnsiChar; {balloon tooltip text}
uTimeout: UINT; {balloon tooltip timeout (or behavior version)}
szInfoTitle: array[0..63] of AnsiChar; {balloon tooltip title}
dwInfoFlags: DWORD {balloon tooltip icons}

714 � Chapter 14

TE
AM
FL
Y

Team-Fly®

end;

const
{the application-defined notification message}
WM_TRAYICONCLICKED = WM_USER+1;

type
TForm1 = class(TForm)
ListBox1: TListBox;
Label1: TLabel;
procedure FormCreate(Sender: TObject);
procedure FormDestroy(Sender: TObject);

private
{ Private declarations }
{the message handler for the tray icon notification message}
procedure WMTrayIconClicked(var Msg: TMessage); message WM_TRAYICONCLICKED;

public
{ Public declarations }

end;

var
Form1: TForm1;
IconData: TNotifyIconData; // the tray notification icon data structure

const
DELTRAYICON = 1; // the tray icon ID

implementation

{$R *.DFM}

procedure TForm1.FormCreate(Sender: TObject);
begin
{initialize the tray notification icon structure}
with IconData do
begin
cbSize := SizeOf(ShellAPI.TNotifyIconData);
Wnd := Form1.Handle;
uID := DELTRAYICON;
uFlags := NIF_ICON or NIF_MESSAGE or NIF_TIP;
uCallbackMessage := WM_TRAYICONCLICKED;
hIcon := Application.Icon.Handle;
szTip := 'Delphi TrayIcon';

end;

{notify the system that we are adding a tray notification icon}
Shell_NotifyIcon(NIM_ADD, @IconData);

end;

procedure TForm1.WMTrayIconClicked(var Msg: TMessage);
begin
{the tray icon has received a message, so display it}
case Msg.lParam of

WM_LBUTTONDBLCLK: Listbox1.Items.Add('Double Click');
WM_LBUTTONDOWN: Listbox1.Items.Add('Mouse Down');
WM_LBUTTONUP: Listbox1.Items.Add('Mouse Up');

Specialized Shell Functions � 715

C
h

a
p

te
r
1
4

end;
end;

procedure TForm1.FormDestroy(Sender: TObject);
begin
{remove the icon from the system}
Shell_NotifyIcon(NIM_DELETE, @IconData);

end;

Table 14-16: Shell_NotifyIcon dwMessage values

Value Description

NIM_ADD Adds a notification icon to the taskbar system tray.

NIM_DELETE Deletes a notification icon from the taskbar system tray.

NIM_MODIFY Modifies a notification icon in the taskbar system tray.

NIM_SETFOCUS Windows 2000 and later: Returns the focus to the taskbar notifi-
cation tray. This message should be used when notification icons
complete any user interface operation.

NIM_SETVERSION Windows 2000 and later: Indicates which version of tray icon
behavior to use. The uTimeout member of the TNotifyIconData
structure contains the value indicating the behavior (see above).

Table 14-17: Shell_NotifyIcon lpData.uFlags values

Value Description

NIF_ICON The icon handle in the hIcon member is valid.

NIF_MESSAGE The message identifier in the uCallbackMessage member is valid.

NIF_TIP The tooltip string pointed to by the szTip member is valid.

NIF_STATE The state values in the dwState and dwStateMask members are
valid.

NIF_INFO Indicates the use of a balloon tooltip instead of a regular tooltip.
The values in the szInfo, uTimeout, szInfoTitle, and dwInfoFlags
members are valid.

716 � Chapter 14

Figure 14-6:

The new

notification

icon

Table 14-18: Shell_NotifyIcon lpData.uCallbackMessage values

Value Description

NIN_KEYSELECT Windows 2000 or later: The user selected the notifica-
tion icon via the keyboard and activated it by pressing the
Spacebar or Enter key.

NIN_SELECT Windows 2000 or later: The user selected the notifica-
tion icon with the mouse and activated it by pressing the
Spacebar or Enter key.

NIN_BALLOONSHOW Windows 2000 or later: The balloon tooltip has been
shown.

NIN_BALLOONHIDE Windows 2000 or later: The balloon tooltip has been
hidden (not sent when the balloon tooltip was hidden due
to timeout or the user clicking the mouse).

NIN_BALLOONTIMEOUT Windows 2000 or later: The balloon tooltip was hidden
due to timeout.

NIN_BALLOONUSERCLICK Windows 2000 or later: The balloon tooltip was hidden
because the user clicked the mouse.

Table 14-19: Shell_NotifyIcon lpData.dwState and lpData.dwStateMask values

Value Description

NIS_HIDDEN Windows 2000 or later: The icon is hidden.

NIS_SHAREDICON Windows 2000 or later: The icon is shared.

Table 14-20: Shell_NotifyIcon lpData.dwInfoFlags values

Value Description

NIIF_ERROR Displays an error icon.

NIIF_INFO Displays an info icon.

NIIF_NONE No icon is displayed.

NIIF_WARNING Displays a warning icon.

SHGetMalloc ShlObj.pas

Syntax

SHGetMalloc(

var ppMalloc: IMalloc {IMalloc pointer}

): HResult; {returns an OLE result}

Description

This function retrieves a pointer to the shell’s IMalloc interface.

Parameters

ppMalloc: A variable that receives a pointer to the shell’s IMalloc interface.

Return Value

If the function succeeds, it returns S_OK; otherwise, it returns E_FAIL.

Specialized Shell Functions � 717

C
h

a
p

te
r
1
4

See Also

IMalloc.Alloc, IMalloc.DidAlloc, IMalloc.Free, IMalloc.GetSize,

IMalloc.HeapMinimize, IMalloc.Realloc,

Example

Please see Listing 14-4 under IMalloc.Alloc.

718 � Chapter 14

Appendix A

Bibliography

There exists quite a large knowledge base on Windows programming in general and

Delphi programming in particular. The information for this book is based in part on

research and knowledge gleaned from the following books:

Beveridge and Wiener, Multithreading Applications in Win32, [Addison-Wesley

Developers Press, 1997]

Calvert, Charles, Delphi 2 Unleashed [Sams Publishing, 1996]

Cluts, Nancy, Programming The Windows 95 User Interface [Microsoft Press, 1995]

Cooke and Telles, Windows 95 How-To [Waite Group Press, 1996]

Esposito, Dino, Visual C++ Windows Shell Programming, [Wrox Press, 1998]

Frerking, Wallace, and Niddery, Borland Delphi How-To [Waite Group Press, 1995]

Harmon, Eric, Delphi COM Programming, [Macmillan Technical Publishing, 2000]

Jarol, Haygood, and Coppola, Delphi 2 Multimedia Adventure Set [Coriolis Group

Books, 1996]

Konopka, Ray, Developing Custom Delphi 3 Components [Coriolis Group Books,

1997]

Lischner, Ray, Secrets of Delphi 2 [Waite Group Press, 1996]

Miller, Powell, et. al., Special Edition Using Delphi 3 [QUE, 1997]

Pacheco and Teixeira, Delphi 2 Developers Guide [Sams Publishing, 1996]

Petzold and Yao, Programming Windows 95 [Microsoft Press, 1996]

Pietrek, Matt, Windows 95 System Programming Secrets [IDG Books, 1995]

Rector and Newcomer, Win32 Programming [Addison-Wesley Developers Press, 1997]

Richter, Jeffrey, Advanced Windows, [Microsoft Press, 1997]

Roberts, Scott, Programming Microsoft Internet Explorer 5, [Microsoft Press, 1999]

Simon, Gouker, and Barnes, Windows 95 Win32 Programming API Bible [Waite Group

Press, 1996]

Swan and Cogswell, Delphi 32-Bit programming Secrets [IDG Books, 1996]

Thorpe, Danny, Delphi Component Design [Addison-Wesley Developers Press, 1997]

Wallace and Tendon, Delphi 2 Developer’s Solutions [Waite Group Press, 1996]

719

Appendix B

Virtual Key Code ChartVirtual Key Code Chart

Virtual Key Code Decimal Value Hex Value Description

VK_LBUTTON 1 $1 Left mouse button

VK_RBUTTON 2 $2 Right mouse button

VK_CANCEL 3 $3 Ctrl+Break key combination

VK_MBUTTON 4 $4 Middle mouse button

VK_BACK 8 $8 Backspace

VK_TAB 9 $9 Tab

VK_CLEAR 12 $C Numeric Keypad 5, NumLock off

VK_RETURN 13 $D Enter

VK_SHIFT 16 $10 Shift

VK_CONTROL 17 $11 Ctrl

VK_MENU 18 $12 Alt

VK_PAUSE 19 $13 Pause

VK_CAPITAL 20 $14 Caps Lock

VK_ESCAPE 27 $1B Esc

VK_SPACE 32 $20 Space bar

VK_PRIOR 33 $21 Page Up

VK_NEXT 34 $22 Page Down

VK_END 35 $23 End

VK_HOME 36 $24 Home

VK_LEFT 37 $25 Left cursor key

VK_UP 38 $26 Up cursor key

VK_RIGHT 39 $27 Right cursor key

VK_DOWN 40 $28 Down cursor key

VK_SNAPSHOT 44 $2C Print Screen

VK_INSERT 45 $2D Insert

VK_DELETE 46 $2E Delete

VK_LWIN 91 $5B Left Windows key on a Windows 95
compatible keyboard

721

Virtual Key Code Decimal Value Hex Value Description

VK_RWIN 92 $5C Right Windows key on a Windows 95
compatible keyboard

VK_APPS 93 $5D Menu key on a Windows 95 compatible
keyboard

VK_NUMPAD0 96 $60 Numeric keypad 0

VK_NUMPAD1 97 $61 Numeric keypad 1

VK_NUMPAD2 98 $62 Numeric keypad 2

VK_NUMPAD3 99 $63 Numeric keypad 3

VK_NUMPAD4 100 $64 Numeric keypad 4

VK_NUMPAD5 101 $65 Numeric keypad 5

VK_NUMPAD6 102 $66 Numeric keypad 6

VK_NUMPAD7 103 $67 Numeric keypad 7

VK_NUMPAD8 104 $68 Numeric keypad 8

VK_NUMPAD9 105 $69 Numeric keypad 9

VK_MULTIPLY 106 $6A Numeric keypad multiply (*)

VK_ADD 107 $6B Numeric keypad add (+)

VK_SUBTRACT 109 $6D Numeric keypad subtract (–)

VK_DECIMAL 110 $6E Numeric keypad decimal (.)

VK_DIVIDE 111 $6F Numeric keypad divide (/)

VK_F1 112 $70 F1

VK_F2 113 $71 F2

VK_F3 114 $72 F3

VK_F4 115 $73 F4

VK_F5 116 $74 F5

VK_F6 117 $75 F6

VK_F7 118 $76 F7

VK_F8 119 $77 F8

VK_F9 120 $78 F9

VK_F10 121 $79 F10

VK_F11 122 $7A F11

VK_F12 123 $7B F12

VK_F13 124 $7C F13

VK_F14 125 $7D F14

VK_F15 126 $7E F15

VK_F16 127 $7F F16

VK_F17 128 $80 F17

VK_F18 129 $81 F18

VK_F19 130 $82 F19

VK_F20 131 $83 F20

722 � Appendix B

Virtual Key Code Decimal Value Hex Value Description

VK_F21 132 $84 F21

VK_F22 133 $85 F22

VK_F23 134 $86 F23

VK_F24 135 $87 F24

VK_NUMLOCK 144 $90 Num Lock

VK_SCROLL 145 $91 Scroll Lock

VK_LSHIFT 160 $A0 Left shift key

VK_RSHIFT 161 $A1 Right shift key

VK_LCONTROL 162 $A2 Left Ctrl key

VK_RCONTROL 163 $A3 Right Ctrl key

VK_LMENU 164 $A4 Left Alt key

VK_RMENU 165 $A5 Right Alt key

Virtual Key Code Chart � 723

TE
AM
FL
Y

Team-Fly®

Appendix C

Tertiary Raster OperationTertiary Raster Operation

Codes

ROP Code Boolean Operation

$00000042 Result is all black

$00010289 NOT (brush OR source OR destination)

$00020C89 NOT (brush OR source) AND destination

$000300AA NOT (brush OR source)

$00040C88 NOT (brush OR destination) AND source

$000500A9 NOT (brush OR destination)

$00060865 NOT (brush OR NOT(source XOR destination))

$000702C5 NOT (brush OR (source AND destination))

$00080F08 NOT brush AND source AND destination

$00090245 NOT (brush OR (source XOR destination))

$000A0329 NOT brush AND destination

$000B0B2A NOT (brush OR (source AND NOT destination))

$000C0324 NOT brush AND source

$000D0B25 NOT (brush OR (NOT source AND destination))

$000E08A5 NOT (brush OR NOT (source OR destination))

$000F0001 NOT brush

$00100C85 brush AND NOT (source OR destination)

$001100A6 NOT (source OR destination)

$00120868 NOT (source OR NOT (brush XOR destination))

$001302C8 NOT (source OR (brush AND destination))

$00140869 NOT (destination OR NOT (brush XOR source))

$001502C9 NOT (destination OR (brush AND source))

$00165CCA brush XOR (source XOR (destination AND NOT (brush AND source)))

$00171D54 NOT (source XOR ((source XOR brush) AND (source XOR destination)))

$00180D59 (brush XOR source) AND (brush XOR destination)

$00191CC8 NOT (source XOR (destination AND NOT (brush AND source)))

$001A06C5 brush XOR (destination OR (source AND brush))

$001B0768 NOT (source XOR (destination AND (brush XOR source)))

725

ROP Code Boolean Operation

$001C06CA brush XOR (source OR (brush AND destination))

$001D0766 NOT (destination XOR (source AND (brush XOR destination)))

$001E01A5 brush XOR (source OR destination)

$001F0385 NOT (brush AND (source OR destination))

$00200F09 brush AND NOT source AND destination

$00210248 NOT (source OR (brush XOR destination))

$00220326 NOT source AND destination

$00230B24 NOT (source OR (brush AND NOT destination))

$00240D55 (source XOR brush) AND (source XOR destination)

$00251CC5 NOT (brush XOR (destination AND NOT (source AND brush)))

$002606C8 source XOR (destination OR (brush AND source))

$00271868 source XOR (destination OR NOT (brush XOR source))

$00280369 destination AND (brush XOR source)

$002916CA NOT (brush XOR (source XOR (destination OR (brush AND source))))

$002A0CC9 destination AND NOT (brush AND source)

$002B1D58 NOT (source XOR ((source XOR brush) AND (brush AND destination)))

$002C0784 source XOR (brush AND (source OR destination))

$002D060A brush XOR (source OR NOT destination)

$002E064A brush XOR (source OR (brush XOR destination))

$002F0E2A NOT (brush AND (source OR NOT destination))

$0030032A brush AND NOT source

$00310B28 NOT (source OR (NOT brush AND destination))

$00320688 source XOR (brush OR source OR destination)

$00330008 NOT source

$003406C4 source XOR (brush OR (source AND destination))

$00351864 source XOR (brush OR NOT (source XOR destination))

$003601A8 source XOR (brush OR destination)

$00370388 NOT (source AND (brush OR destination))

$0038078A brush XOR (source AND (brush OR destination))

$00390604 source XOR (brush OR NOT destination)

$003A0644 source XOR (brush XOR (source XOR destination))

$003B0E24 NOT (source AND (brush OR NOT destination))

$003C004A brush XOR source

$003D18A4 source XOR (brush OR NOT (source OR destination))

$003E1B24 source XOR (brush OR (NOT source AND destination))

$003F00EA NOT (brush AND source)

$00400F0A brush AND source AND NOT destination

$00410249 NOT (destination OR (brush XOR source))

726 � Appendix C

ROP Code Boolean Operation

$00420D5D (source XOR destination) AND (brush XOR destination)

$00431CC4 NOT (source XOR (brush AND NOT (source AND destination)))

$00440328 source AND NOT destination

$00450B29 NOT (destination OR (brush AND NOT source))

$004606C6 destination XOR (source OR (brush AND destination))

$0047076A NOT (brush XOR (source AND (brush XOR destination)))

$00480368 source AND (brush XOR destination)

$004916C5 NOT (brush XOR (destination XOR (source OR (brush AND destination))))

$004A0789 destination XOR (brush AND (source OR destination))

$004B0605 brush XOR (NOT source OR destination)

$004C0CC8 source AND NOT (brush AND destination)

$004D1954 NOT (source XOR ((brush XOR source) OR (source XOR destination)))

$004E0645 brush XOR (destination OR (brush XOR source))

$004F0E25 NOT (brush AND (NOT source OR destination))

$00500325 brush AND NOT destination

$00510B26 NOT (destination OR (NOT brush AND source))

$005206C9 destination XOR (brush OR (source AND destination))

$00530764 NOT (source XOR (brush AND (source XOR destination)))

$005408A9 NOT (destination OR NOT (brush OR source))

$00550009 NOT destination

$005601A9 destination XOR (brush OR source)

$00570389 NOT (destination AND (brush OR source))

$00580785 brush XOR (destination AND (brush OR source))

$00590609 destination XOR (brush OR NOT source)

$005A0049 brush XOR destination

$005B18A9 destination XOR (brush OR NOT (source OR destination))

$005C0649 destination XOR (brush OR (source XOR destination))

$005D0E29 NOT (destination AND (brush OR NOT source))

$005E1B29 destination XOR (brush OR (source AND NOT destination))

$005F00E9 NOT (brush AND destination)

$00600365 brush AND (source XOR destination)

$006116C6 NOT (destination XOR (source XOR (brush OR (source AND destination))))

$00620786 destination XOR (source AND (brush OR destination))

$00630608 source XOR (NOT brush OR destination)

$00640788 source XOR (destination AND (brush OR source))

$00650606 destination XOR (NOT brush OR source)

$00660046 source XOR destination

$006718A8 source XOR (destination OR NOT (brush OR source))

Tertiary Raster Operation Codes � 727

ROP Code Boolean Operation

$006858A6 NOT (destination XOR (source XOR (brush OR NOT (source OR destination))))

$00690145 NOT (brush XOR (source XOR destination))

$006A01E9 destination XOR (brush AND source)

$006B178A NOT (brush XOR (source XOR (destination AND (source OR brush))))

$006C01E8 source XOR (brush AND destination)

$006D1785 NOT (brush XOR (destination XOR (source AND (brush OR destination))))

$006E1E28 source XOR (destination AND (brush OR NOT source))

$006F0C65 NOT (brush AND NOT (source XOR destination))

$00700CC5 brush AND NOT (source AND destination)

$00711D5C NOT (source XOR ((source XOR destination) AND (brush XOR destination)))

$00720648 source XOR (destination OR (brush XOR source))

$00730E28 NOT (source AND (NOT brush OR destination))

$00740646 destination XOR (source OR (brush XOR destination))

$00750E26 NOT (destination AND (NOT brush OR source))

$00761B28 source XOR (destination OR (brush AND NOT source))

$007700E6 NOT (source AND destination)

$007801E5 brush XOR (source AND destination)

$00791786 NOT (destination XOR (source XOR (brush AND (source OR destination))))

$007A1E29 destination XOR (brush AND (source OR NOT destination))

$007B0C68 NOT (source AND NOT (brush XOR destination))

$007C1E24 source XOR (brush AND (NOT source OR destination))

$007D0C69 NOT(destination AND NOT (source XOR brush))

$007E0955 (brush XOR source) OR (source XOR destination)

$007F03C9 NOT (brush AND source AND destination)

$008003E9 brush AND source AND destination

$00810975 NOT ((brush XOR source) OR (source XOR destination))

$00820C49 NOT (brush XOR source) AND destination

$00831E04 NOT (source XOR (brush AND (NOT source OR destination)))

$00840C48 source AND NOT (brush XOR destination)

$00851E05 NOT (brush XOR (destination AND (NOT brush OR source)))

$008617A6 destination XOR (source XOR (brush AND (source OR destination)))

$008701C5 NOT (brush XOR (source and destination))

$00800C6 source AND destination

$00891B08 NOT (source XOR (destination OR (brush AND NOT source)))

$008A0E06 (NOT brush OR source) AND destination

$008B0666 NOT(destination XOR (source OR (brush OR destination)))

$008C0E08 source AND (NOT brush OR destination)

$008D0668 NOT (source XOR (destination OR (brush XOR source)))

728 � Appendix C

ROP Code Boolean Operation

$008E1D7C source XOR ((source XOR destination AND (brush XOR destination))

$008F0CE5 NOT (brush AND NOT (source AND destination))

$00900C45 brush AND NOT (source XOR destination)

$00911E08 NOT (source XOR (destination AND (brush OR NOT source)))

$009217A9 destination XOR (brush XOR (source AND (brush OR destination)))

$009301C4 NOT (source XOR (brush AND destination))

$009417AA brush XOR (source XOR (destination AND (brush OR source)))

$009501C9 NOT (destination XOR (brush AND source))

$00960169 brush XOR source XOR destination

$0097588A brush XOR (source XOR (destination OR NOT (brush OR source)))

$00981888 NOT (source XOR (destination OR NOT (brush OR source)))

$00990066 NOT (source XOR destination)

$009A0709 (brush AND NOT source)XOR destination

$009B07A8 NOT (source XOR (destination AND (brush OR source)))

$009C0704 source XOR (brush AND NOT destination)

$009D07A6 NOT (destination XOR (source AND (brush OR destination)))

$009E16E6 (source XOR (brush OR (source AND destination)))XOR destination

$009F0345 NOT(brush AND (source XOR destination))

$00A000C9 brush AND destination

$00A11B05 NOT (brush XOR (destination OR (NOT brush AND source)

$00A20E09 (brush OR NOT source) AND destination

$00A30699 NOT (destination XOR (brush OR (source XOR destination)))

$00A41885 NOT (brush XOR (destination OR NOT (brush OR source)))

$00A50065 NOT (brush XOR destination)

$00A60706 (NOT brush AND source) XOR destination

$00A707A5 NOT (brush XOR (destination AND (brush OR source)))

$00A803A9 (brush OR source) AND destination

$00A90189 NOT ((brush OR source) XOR destination)

$00AA0029 destination

$00AB0889 NOT(brush OR source) OR destination

$00AC0744 source XOR (brush AND (source XOR destination))

$00AD06E9 NOT (destination XOR (brush OR (source AND destination)))

$00AE0B06 (NOT brush AND source) OR destination

$00AF0229 NOT brush OR destination

$00B00E05 brush AND (NOT source OR destination)

$00B10665 NOT (brush OR (destination OR (brush XOR source)))

$00B12974 source XOR ((brush XOR source) OR (source XOR destination))

$00B03CE8 NOT (source AND NOT (brush AND destination))

Tertiary Raster Operation Codes � 729

ROP Code Boolean Operation

$00B4070A brush XOR (source AND NOT destination)

$00B507A9 NOT (destination XOR (brush AND (source OR destination)))

$00B616E9 destination XOR (brush XOR (source OR (brush AND destination)))

$00B70348 NOT (source And (brush XOR destination))

$00B8074A brush XOR (source AND (brush XOR destination))

$00B906E6 NOT (destination XOR (source OR (brush AND destination)))

$00BA0B09 (brush AND NOT source) OR destination

$00BB0226 NOT source OR destination

$00BC1CE4 source XOR (brush AND NOT (source AND destination))

$00BD0D7D NOT ((brush XOR destination) AND (source XOR destination))

$00BE0269 (brush XOR source) OR destination

$00BF08C9 NOT (brush AND source) OR destination

$00C000CA brush AND source

$00C11B04 NOT (source XOR (brush OR (NOT source AND destination)))

$00C21884 NOT (source XOR (brush OR NOT(source OR destination)))

$00C3006A NOT (brush XOR source)

$00C40E04 source AND (brush OR NOT destination)

$00C50664 NOT (source XOR (brush OR (source XOR destination)))

$00C60708 source XOR (NOT brush AND destination)

$00C707AA NOT (brush XOR (source AND (brush OR destination))

$00C803A8 source AND (brush OR destination)

$00C90184 NOT (source XOR (brush OR destination))

$00CA0749 destination XOR (brush AND (source XOR destination))

$00CB06E4 NOT (source XOR (brush OR (source AND destination))

$00CC0020 source

$00CD0888 source OR NOT (brush OR destination)

$00CE0B08 source OR (NOT brush AND destination)

$00CF0224 source OR NOT brush

$00D00E0A brush AND (source OR NOT destination)

$00D1066A NOT (brush XOR (source OR (brush XOR destination)))

$00D20705 brush XOR (NOT source AND destination)

$00D307A4 NOT (source XOR (brush AND (source OR destination)))

$00D41D78 source XOR ((brush XOR source AND (brush XOR destination))

$00D50CE9 NOT (destination AND NOT (brush AND source))

$00D616EA brush XOR (source XOR (destination OR (brush AND source)))

$00D70349 NOT (destination AND (brush XOR source))

$00D80745 brush XOR (destination AND (brush XOR source))

$00D906E8 NOT (source XOR (destination OR (brush AND source)))

730 � Appendix C

ROP Code Boolean Operation

$00DA1CE9 destination XOR (brush AND NOT (source XOR destination))

$00DB0D75 NOT ((brush XOR source) AND (source XOR destination)

$00DC0B04 source OR (brush AND NOT destination)

$00DD0228 source OR NOT destination

$00DE0268 source OR (brush XOR destination)

$00DF08C8 source OR NOT (brush AND destination)

$00E003A5 brush AND (destination OR source)

$00E10185 NOT (brush XOR (source OR destination))

$00E20746 destination XOR (source AND (brush XOR destination))

$00E306EA NOT (brush XOR (source OR (brush AND destination)))

$00E40748 source XOR (destination AND (brush XOR source))

$00E506E5 NOT (brush XOR (destination OR (brush AND source)

$00E61CE8 source XOR (destination AND NOT (brush AND source))

$00E70D79 NOT ((brush XOR source) AND (brush XOR destination))

$00E81D74 source XOR ((brush XOR source) AND (source XOR destination))

$00E95CE6 NOT (destination XOR (source XOR (brush AND NOT (source AND destination))))

$00EA02E9 (brush AND source) OR destination

$00EB0849 NOT (brush XOR source) OR destination

$00EC02E8 source OR (brush AND destination)

$00ED0848 source OR NOT (brush XOR destination)

$00EE0086 source OR destination

$00EF0A08 NOT brush OR source OR destination

$00F00021 brush

$00F10885 brush OR NOT (source OR destination)

$00F20B05 brush OR (NOT source AND destination)

$00F3022A brush OR NOT source

$00F40B0A brush OR (source AND NOT destination)

$00F50225 brush OR NOT destination

$00F60265 brush OR (source XOR destination)

$00F708C5 brush OR NOT (source AND destination)

$00F802E5 brush OR (source AND destination)

$00F90845 brush OR NOT (source XOR destination)

$00FA0089 brush OR destination

$00FB0A09 brush OR NOT source OR destination

$00FC008A brush OR source

$00FD0A0A brush OR source OR NOT destination

$00FE02A9 brush OR source OR destination

$00FF0062 Result is all white

Tertiary Raster Operation Codes � 731

Appendix D

ASCII Character SetASCII Character Set

Dec Hex Char Description

0 00 NULL Null

1 01 Start of heading

2 02 Start of text

3 03 End of text

4 04 End of transmission

5 05 Inquiry

6 06 Acknowledge

7 07 Bell

8 08 Backspace

9 09 Horizontal tab

10 0A Line feed

11 0B Vertical tab

12 0C Form feed

13 0D Carriage return

14 0E Shift out

15 0F Shift in

16 10 Data link escape

17 11 Device control 1

18 12 Device control 2

19 13 Device control 3

20 14 Device control 4

21 15 Negative acknowledge

22 16 Synchronous idle

23 17 End transmission block

24 18 Cancel

25 19 End of medium

26 1A Substitute

27 1B Escape

28 1C File separator

733

Dec Hex Char Description

29 1D Group separator

30 1E Record separator

31 1F Unit separator

Dec Hex Char Dec Hex Char Dec Hex Char

32 20 SPACE 65 41 98 62

33 21 66 42 99 63

34 22 67 43 100 64

35 23 68 44 101 65

36 24 69 45 102 66

37 25 70 46 103 67

38 26 71 47 104 68

39 27 72 48 105 69

40 28 73 49 106 6A

41 29 74 4A 107 6B

42 2A 75 4B 108 6C

43 2B 76 4C 109 6D

44 2C 77 4D 110 6E

45 2D 78 4E 111 6F

46 2E 79 4F 112 70

47 2F 80 50 113 71

48 30 81 51 114 72

49 31 82 52 115 73

50 32 83 53 116 74

51 33 84 54 117 75

52 34 85 55 118 76

53 35 86 56 119 77

54 36 87 57 120 78

55 37 88 58 121 79

56 38 89 59 122 7A

57 39 90 5A 123 7B

58 3A 91 5B 124 7C

59 3B 92 5C 125 7D

60 3C 93 5D 126 7E

61 3D 94 5E 127 7F

62 3E 95 5F 128 80

63 3F 96 60 129 81

64 40 97 61 130 82

734 � Appendix D

TE
AM
FL
Y

Team-Fly®

Dec Hex Char Dec Hex Char Dec Hex Char

131 83 170 AA 209 D1

132 84 171 AB 210 D2

133 85 172 AC 211 D3

134 86 173 AD 212 D4

135 87 174 AE 213 D5

136 88 175 AF 214 D6

137 89 176 B0 215 D7

138 8A 177 B1 216 D8

139 8B 178 B2 217 D9

140 8C 179 B3 218 DA

141 8D 180 B4 219 DB

142 8E 181 B5 220 DC

143 8F 182 B6 221 DD

144 90 183 B7 222 DE

145 91 184 B8 223 DF

146 92 185 B9 224 E0

147 93 186 BA 225 E1

148 94 187 BB 226 E2

149 95 188 BC 227 E3

150 96 189 BD 228 E4

151 97 190 BE 229 E5

152 98 191 BF 230 E6

153 99 192 C0 231 E7

154 9A 193 C1 232 E8

155 9B 194 C2 233 E9

156 9C 195 C3 234 EA

157 9D 196 C4 235 EB

158 9E 197 C5 236 EC

159 9F 198 C6 237 ED

160 A0 199 C7 238 EE

161 A1 200 C8 239 EF

162 A2 201 C9 240 F0

163 A3 202 CA 241 F1

164 A4 203 CB 242 F2

165 A5 204 CC 243 F3

166 A6 205 CD 244 F4

167 A7 206 CE 245 F5

168 A8 207 CF 246 F6

169 A9 208 D0 247 F7

ASCII Character Set � 735

Dec Hex Char Dec Hex Char Dec Hex Char

248 F8 251 FB 254 FE

249 F9 252 FC 255 FF

250 FA 253 FD

736 � Appendix D

Index

32-bit user data, 40

A
accessibility features, 339

ClickLock, 407, 419

FilterKeys, 403, 415 see also TFilterKeys

HighContrast, 404, 416 see also THighContrast

MouseKeys, 408, 419 see also TMouseKeys

SerialKeys, 410, 421 see also TSerialKeys

ShowSounds, 420, 421

SoundSentry, 339, 410, 421 see also TSoundSentry

StickyKeys, 411, 421 see also TStickyKeys

ToggleKeys, 411, 422 see also TToggleKeys

ActivateKeyboardLayout, 194

AddAtom, 252

adding

a document to the recent documents list, 568-569

a string to the global atom table, 292-293

a string to the local atom table, 253

an icon to the system tray, 714-716

an integer atom, 304

images to an HTML file via drag-drop, 645-650

AdjustWindowRect, 12-13

AdjustWindowRectEx, 14-15

AnyPopup, 50

application bars, 678

application launch bar with file drag-and-drop

functionality, 513-516

atom tables, 249-250

global, 249

local, 249

B
balloon tooltips, 682-683

BeginDeferWindowPos, 15-16

bitmap infotip shell extension, 623-627

bringing the Windows Explorer into the foreground, 102

BringWindowToTop, 17

browsing for a folder, 587, 592-593

C
callback functions, 5-6

carets, 437

CascadeWindows, 18-19

cascading MDI child windows, 19

ChangeClipboardChain, 318

changing

a button’s parent, 103

the desktop wallpaper, 340

the keyboard input focus, 101-102

the size of non-client buttons, 399-401

CharLower, 253-254

CharLowerBuff, 255-256

CharNext, 256

CharPrev, 257

CharToOem, 257-258

CharToOemBuff, 259

CharUpper, 259-260

CharUpperBuff, 260

checking for processor features, 384

ChildWindowFromPoint, 51

ChildWindowFromPointEx, 52-53

ClickLock, 407, 419

clipboard

conversion formats, 314

delayed rendering, 314

internals, 313

manipulation functions, 317-318

viewers, 317

ClipCursor, 195

CloseClipboard, 319

CloseHandle, 112

CloseWindow, 19-20

CloseWindow example using OpenIcon and IsIconic, 20

COM objects, 617-619

CompareFileTime, 113

CompareString, 261-262

comparing

two file times, 113-115

two strings, 300, 301-302

two strings for equality, 264

concatenating two strings, 298-299

constants, 4

context menu for converting JPEG images to

bitmap, 635-639

Index � 737

context menu handler shell extensions, 634 see also

IContextMenu

example, 635-639

implementing, 634

registering, 635

control panel applications, 673

messages, 674-675

simple, 675-678

writing, 675

controlling mouse activity, 241-243

converting

a virtual key code, 307

characters and strings to lowercase, 254-255

characters to the OEM character set and back, 258

icons to bitmaps and back, 439-441

coordinated universal time format (UTC), 110

copy hook shell extensions, 627 see also ICopyHook

example, 628-630

implementing, 627

registering, 627-628

CopyFile, 115-116

CopyIcon, 443

copying

a structured storage file, 539-540

files, 116, 571-573

the application icon, 443-444

CountClipboardFormats, 319

CplApplet, 686-688

CreateCaret, 444-445

CreateCursor, 446

CreateDirectory, 117

CreateDirectoryEx, 119-120

CreateFile, 120-122

CreateFileMapping, 126-128

CreateIcon, 448-449

CreateIconFromResource, 451-452

CreateIconFromResourceEx, 453-454

CreateIconIndirect, 455

creating

a directory, 117-119

a directory and informing the shell, 698-699

a mapped file object, 128-131

a new caret shape, 445

a new cursor, 446-448

a solid black box caret, 437-438

a structured storage file, 579-581

a tray icon application, 682

a unique filename, 161-162

a window with a client area 300 pixels high

and 300 pixels wide, 13-14

a WinHelp help file, 482

an appbar using Delphi, 679-681

an HTMLHelp help file, 485-486

an icon at run time, 449-451

an icon from resource information, 452-453, 454-455

an icon indirectly, 456-457

and reading structured storage files, 517-518

the COM object, 618

creating, reading, and writing to a new file, 122-124

cursor, see also LoadCursor, LoadCursorFromFile

hiding and displaying, 480

mask, 438-439

setting a new system cursor, 478

D
data types, Windows, 1-3

DeferWindowPos, 20-21

delayed rendering of information, 314-317

DeleteAtom, 265

DeleteFile, 132

deleting a file to the recycle bin, 516-517

DestroyCaret, 457

DestroyCursor, 458

DestroyIcon, 458

determining if a window is a Unicode window, 96

displaying

a WinHelp pop-up topic, 483-484

a WinHelp topic, 483

an HTMLHelp pop-up, 487

an HTMLHelp topic, 486

class information for Delphi components, 42-44

different icons for read-only .pas files, 640-644

the client and window rectangle coordinates, 78-79

the cursor, 480

the ShellAbout dialog box, 703

the Topics dialog box, 484

window and class information, 44-48

DosDateTimeToFileTime, 133

DragAcceptFiles, 530-531

DragDetect, 195-196

drag-drop handler shell extensions, 644 see also

IDropTarget

example, 645-650

implementing, 644-645

registering, 645

DragFinish, 532

DragQueryFile, 532-533

DragQueryPoint, 534

DrawIcon, 459

DrawIconEx, 459-460

E
embedding the HTMLHelp window into an

application, 489-490

EmptyClipboard, 320

EnableWindow, 54

738 � Index

enabling and disabling a window, 54-55

EndDeferWindowsPos, 23

EnumChildWindows, 55-56

EnumClipboardFormats, 320-321

enumerating

available clipboard formats, 321-322

child windows, 56-57

system locales, 269

the property entries in a window property list, 58-60

the system code pages, 267

window property entries with user data, 61-63

enumeration functions, 42

EnumProps, 57-58

EnumPropsEx, 60-61

EnumSystemCodePages, 266

EnumSystemLocales, 268

EnumThreadWindows, 63-64

EnumWindows, 65

ExpandEnvironmentStrings, 342-343

expanding an environment variable, 343

exploring a folder, 516

ExtractAssociatedIcon, 461-462

ExtractIcon, 462-463

ExtractIconEx, 464-465

extracting

icons associated with a file, 462

large and small icons, 465-466

the icon from a file, 463-464

F
file-based applications, 513

file input/output functions, 111-112

file times, 110

files, see also shell file functions, structured storage

copying, 116, 571-573

creating, 109

deleting to the recycle bin, 516-517

finding, 145-147

getting and setting attributes of, 173-176

opening, 704, 709

relative and qualified paths, 109

FileTimeToDosDateTime, 134

FileTimeToLocalFileTime, 135

FileTimeToSystemTime, 135-136

FilterKeys, 403, 415

FindAtom, 270

FindClose, 140

FindCloseChangeNotification, 140

FindExecutable, 534-535

FindFirstChangeNotification, 141

FindFirstFile, 143-145

finding

a child window, 68-69

a child window at a specific coordinate, 51-52, 53

a control’s parent window, 83-84

a window, 67

a window at a specific coordinate, 107-108

all windows belonging to a thread, 64

an executable file and opening documents, 535-537

any pop-up window, 51

files, 145-147

the length of a string, 303

the top sibling window and its nearest neighbor

in the z-order, 82-83

FindNextChangeNotification, 147-148

FindNextFile, 148

FindWindow, 67

FindWindowEx, 68

flashing a window, 69-70

FlashWindow, 69

FlushFileBuffers, 149

FlushViewOfFile, 149-150

folders, see also shell folder functions

browsing, 587, 592-593

exploring, 516

new browse interface, 588

FormatMessage, 270-272

formatting

an array of arguments, 309-310

dates, 283-284

messages, 272-274

strings, 250, 308

FreeEnvironmentStrings, 344

function parameters, 6-7

functions,

callback, 5-6

importing, 4-5

G
GetACP, 276

GetActiveWindow, 70

GetAsyncKeyState, 197

GetAtomName, 279

GetCapture, 198

GetCaretBlinkTime, 198

GetCaretPos, 199

GetClassInfo, 70-71

GetClassInfoEx, 72-73

GetClassLong, 75

GetClassName, 77

GetClientRect, 78

GetClipboardData, 322-323

GetClipboardFormatName, 325

GetClipboardOwner, 325-326

GetClipboardViewer, 326

GetClipCursor, 199

Index � 739

GetCommandLine, 344

GetComputerName, 345

GetCPInfo, 280

GetCPInfoEx, 281

GetCurrentDirectory, 150

GetCursor, 467

GetCursorPos, 200

GetDateFormat, 282-283

GetDesktopWindow, 79

GetDiskFreeSpaceEx, 345-346

GetDoubleClickTime, 200

GetDriveType, 347

GetEnvironmentStrings, 348

GetEnvironmentVariable, 349-350

GetFileAttributes, 151

GetFileInformationByHandle, 152-153

GetFileSize, 155

GetFileTime, 156

GetFileType, 156-157

GetFileVersionInfo, 157-158

GetFileVersionInfoSize, 158

GetFocus, 80

GetForegroundWindow, 80-81

GetFullPathName, 159

GetIconInfo, 467-468

GetInputState, 201

GetKeyboardLayout, 201

GetKeyboardLayoutList, 202

GetKeyboardLayoutName, 202-203

GetKeyboardState, 203

GetKeyboardType, 204

GetKeyNameText, 206

GetKeyState, 208

GetLocaleInfo, 350-351

GetLocalTime, 359-360

GetLogicalDrives, 360

GetLogicalDriveStrings, 362

GetNextWindow, 82

GetOEMCP, 286

GetOpenClipboardWindow, 326

GetParent, 83

GetPriorityClipboardFormat, 327

GetProp, 84

GetShortPathName, 159-160

GetStartupInfo, 363-364

GetSystemDefaultLangID, 364-365

GetSystemDefaultLCID, 365

GetSystemDirectory, 366

GetSystemInfo, 367-368

GetSystemTime, 371

GetSystemTimeAsFileTime, 371-372

GetTempFileName, 160-161

GetTempPath, 162-163

GetTimeFormat, 288-289

GetTimeZoneInformation, 372-373

getting

and setting file attributes, 173-176

and setting the window text, 91-92

the child window at the top of the z-order, 86

the window with the input focus, 80

GetTopWindow, 84-85

GetUserDefaultLangID, 375

GetUserDefaultLCID, 375-376

GetUserName, 376

GetVersionEx, 377-378

GetVolumeInformation, 379-380

GetWindow, 85-86

GetWindowLong, 87

GetWindowPlacement, 23-24

GetWindowRect, 90

GetWindowsDirectory, 382-383

GetWindowText, 90-91

GetWindowTextLength, 92

giving an extended window style window a client

area of 300 x 300 pixels, 15

global atom table, 249

GlobalAddAtom, 291-292

GlobalDeleteAtom, 293

GlobalFindAtom, 293-294

GlobalGetAtomName, 294

H
handles, 4

help functions, 491 see also HTMLHelp, WinHelp

HideCaret, 471

hiding and displaying the cursor, 480

HighContrast, 404, 416

hot tracking, 404

HTMLHelp, 485, 491-498

advantages, 490-491

architecture, 485

context-sensitive help, 488

creating a help file, 485-486

disadvantages, 490-491

displaying a help topic, 486

displaying a pop-up topic, 487

embedding the HTMLHelp window into an

application, 489-490

using, 486-490

I
icon handler shell extensions, 639 see also IExtractIcon

example, 640-644

implementing, 640

registering, 640

icon masks, 438-439

740 � Index

icon to bitmap conversion, 439

icon, cursor, and caret functions, 442-443

IContextMenu.GetCommandString, 651-652

IContextMenu.InvokeCommand, 652-653

IContextMenu.QueryContextMenu, 655

ICopyHook.CopyCallback, 656

IDropTarget.DragEnter, 658-659

IDropTarget.DragLeave, 660

IDropTarget.DragOver, 660

IDropTarget.Drop, 661-662

IExtractIcon.Extract, 663

IExtractIcon.GetIconLocation, 663-664

IMalloc.Alloc, 689-690

IMalloc.DidAlloc, 691

IMalloc.Free, 691

IMalloc.GetSize, 692

IMalloc.HeapMinimize, 692

IMalloc.Realloc, 693

implementing

context menu handler shell extensions, 634

copy hook shell extensions, 627

drag-drop handler shell extensions, 644-645

icon handler shell extensions, 640

infotip shell extensions, 622-623

interface methods, 619

IURLSearchHook, 620-621

shell execute hook shell extensions, 631

URL search hook shell extensions, 621

importing Windows functions, 4-5

incorrectly imported functions, 5

information storage, 39

informing WinHelp it is no longer needed, 484

infotip shell extensions, 622 see also IQueryInfo

example, 623-627

implementing, 622-623

registering, 623

InitAtomTable, 295

input functions, 192-193

input locale identifier, 191

Input Method Editor (IME), 191

interrogating clipboard format availability, 328-329

IQueryInfo.GetInfoFlags, 665

IQueryInfo.GetInfoTip, 665-666

IsCharAlpha, 295-296

IsCharAlphaNumeric, 296-297

IsCharLower, 297

IsCharUpper, 297-298

IsChild, 92-93

IsClipboardFormatAvailable, 328

IShellExecuteHook.Execute, 666-668

IShellExtInit.Initalize, 670-671

IsIconic, 94

IsProcessorFeaturePresent, 383-384

IStorage.Commit, 537

IStorage.CopyTo, 539

IStorage.CreateStorage, 540-541

IStorage.CreateStream, 543-544

IStorage.DestoryElement, 545-546

IStorage.EnumElements, 546-547

IStorage.MoveElementTo, 549

IStorage.OpenStorage, 552-553

IStorage.OpenStream, 554-555

IStorage.RenameElement, 556

IStorage.Revert, 557

IStorage.SetClass, 557-558

IStorage.Stat, 558-559

IStream.Clone, 560

IStream.CopyTo, 561-562

IStream.Read, 562-563

IStream.Seek, 563-564

IStream.SetSize, 564-565

IStream.Stat, 565-566

IStream.Write, 566-567

IsWindow, 94

IsWindowEnabled, 95

IsWindowUnicode, 95-96

IsWindowVisible, 96

IsZoomed, 97

item identifier lists, 588

IURLSearchHook.Translate, 671

J
joyGetDevCaps, 211-213

joyGetNumDevs, 213

joyGetPos, 214

joyGetPosEx, 215-216

joyGetThreshold, 218-219

joyReleaseCapture, 219

joySetCapture, 220

joySetThreshold, 224

joystick motion in Delphi, 221-223

K
keybd_event, 209

keyboard, 191

L
listing the window text for every top-level window

in the system, 66

LoadCursor, 471-472

LoadCursorFromFile, 472-473

LoadIcon, 474

loading

a cursor from a file, 473

a keyboard layout, 225-227

LoadKeyboardLayout, 225

Index � 741

local atom table, 249

LocalFileTimeToFileTime, 163

LockFile, 164

logging

directory modifications, 628-630

file execute operations, 631-634

LookupIconIdFromDirectory, 475

LookupIconIdFromDirectoryEx, 475-476

lstrcampi, 301

lstrcat, 298

lstrcmp, 299-300

lstrcpy, 302

lstrlen, 303

M
MakeIntAtom, 303-304

manipulating the recycle bin, 596-597

MapViewOfFile, 165

MapVirtualKey, 228

MapVirtualKeyEx, 230-231

messages, 682

modifying

caret position and blink time, 237

class settings, 76

window styles at run time, 87-89

mouse, 192

Sonar feature, 408, 419

trails, 408, 419

Vanish feature, 408, 420

mouse_event, 231-232

MouseKeys, 408, 419

MoveFile, 166

MoveWindow, 24-25

moving

a toolbar with its owner window, 10-11

a window, 25

substreams into the root storage, 549-551

N
new Browse for Folder interface, 588

O
OEMKeyScan, 234-235

OemToChar, 305

OemToCharBuff, 305-306

OpenClipboard, 329

OpenFileMapping, 167

OpenIcon, 25-26

opening files, 704, 709

P
paths, see relative path, qualified path

property lists, 39

Q
qualified path, 109

R
ReadFile, 168-169

reading data from a cloned stream, 560-561

rearranging the z-order of child windows, 18

RegisterClipboardFormat, 330

registering

context menu handler shell extensions, 635

copy hook shell extensions, 627-628

drag-drop handler shell extensions, 645

icon handler shell extensions, 640

infotip shell extensions, 623

shell execute hook shell extensions, 631

the shell extension, 619

URL search hook shell extensions, 620

relative path, 109

ReleaseCapture, 235

RemoveDirectory, 170

RemoveProp, 98

replacing the window procedure at run time, 42

repositioning multiple windows, 16-17

retrieving

a formatted time string, 290

a handle to the currently active window, 70

a handle to the desktop window, 79

a handle to the foreground window, 81

a list of available drives, 360-361

and setting the file time, 136-139

class information for all child windows, 74-75

drive types, 347-348

file information from a handle, 153-155

file version information, 182-185

information about a file, 576-577

information about the keyboard, 204-205

information about the main form’s class, 71-72

information about the Windows version, 378

information on dropped files, 531-532

information on system cursors and icons, 468-470

keystroke names, 206-207

locale information, 351-352

the command line, 344-345

the current ANSI code page, 277-278

the current OEM code page, 286-287

the environment strings, 349

the free disk space, 346-347

the location of the Start menu folder, 598

the location of the Windows desktop directory, 608, 612

the names of the logical drives, 362-363

the path for the My Documents folder, 602

the startup information, 364

the system default language identifier, 365

742 � Index

the system information, 368-369

the system time in 100-nanosecond intervals, 372

the username, 377

the window opening the clipboard, 327

the Windows directory, 383

the Windows system directory, 366

the Windows taskbar coordinates, 695

time zone information, 374-375

various shell option settings, 606-607

volume information, 380-382

S
search hook, see URL search hook shell extensions

SearchPath, 170-171

SerialKeys, 410, 421

SetActiveWindow, 98-99

SetCapture, 235-236

SetCaretBlinkTime, 236

SetCaretPos, 238

SetClassLong, 99-100

SetClipboardData, 330-331

SetClipboardViewer, 335

SetComputerName, 385

SetCurrentDirectory, 171-172

SetCursor, 477

SetCursorPos, 238-239

SetDoubleClickTime, 239

SetEndOfFile, 172

SetEnvironmentVariable, 386-387

SetFileAttributes, 173

SetFilePointer, 177-178

SetFileTime, 178-179

SetFocus, 101

SetForegroundWindow, 102

SetKeyboardState, 240

SetLocaleInfo, 388

SetLocalTime, 393

SetParent, 102-103

SetProp, 104

SetSystemCursor, 477-478

SetSystemTime, 395

SetTimeZoneInformation, 396-397

setting

a new system cursor, 478

and retrieving clipboard data, 331-333

and retrieving environment variables, 387-388

and retrieving the 32-bit user data value, 40-41

and retrieving the computer name, 386

and retrieving the current local time, 394

and retrieving the system time, 395-396

locale information, 388-389

the volume name, 398

the window position, 30-31

SetVolumeLabel, 397-398

SetWindowLong, 104-105

SetWindowPlacement, 26-27

SetWindowPos, 29-30

SetWindowText, 106-107

SHAddToRecentDocs, 567-568

SHAppBarMessage, 693-694

SHBrowserForFolder, 590-592

SHChangeNotify, 698

shell execute hook shell extensions, 630 see also

IShellExecuteHook

example, 631-634

implementing, 631

registering, 631

shell extension functions, 651

shell extensions, 617-619

context menu handler, 634-639 see also IContextMenu

copy hook, 627-630 see also ICopyHook

creating, 618-619

drag-drop handler, 644-650 see also IDropTarget

icon handler, 639-644 see also IExtractIcon

implementing interface methods, 619

infotip, 622-627 see also IQueryInfo

registering, 619

shell execute hook, 630-634 see also IShellExecuteHook

URL search hook, 619-621 see also IURLSearchHook

shell file functions, 529-530

shell folder functions, 589-590

shell functions, specialized, 685-686

Shell_NotifyIcon, 712-714

ShellAbout, 702

ShellExecute, 703-704

ShellExecuteEx, 706-708

SHEmptyRecycleBin, 595-596

SHFileOperation, 569-571

SHFreeNameMappings, 574

SHGetFileInfo, 574-575

SHGetFolderLocation, 597-598

SHGetFolderPath, 601-602

SHGetMalloc, 717

SHGetPathFromIDList, 605

SHGetSettings, 605-606

SHGetSpecialFolderLocation, 607-608

SHGetSpecialFolderPath, 611-612

ShowCaret, 479

ShowCursor, 479-480

showing

a window asynchronously, 36

a window based on shortcut properties, 34

ShowOwnedPopups, 32

ShowSounds, 410, 421

ShowWindow, 33-34

ShowWindowAsync, 35-36

Index � 743

SHQueryRecycleBin, 614-615

simple control panel application, 675-678

simulating the PRNTSCRN key using keydb_event, 210

SoundSentry, 339, 410, 421

special effects, 10

specialized shell functions, 685-686

StgCreateDocFile, 579

StgIsStorageFile, 582-583

StgOpenStorage, 583-584

StickyKeys, 411, 421

storages, 517 see also IStorage

streams, 517 see also IStream

string and atom functions, 251-252

strings, 4

comparing, 264, 300, 301-302

concatenating, 298-299

converting to lowercase, 254-255

finding the length of, 303

formatting, 250, 308

structured storage, 517

copying, 539-540

creating, 579-581

creating and reading, 517-518

transacted, 518

structured storage file editor, 518-529

subclassing a window, 41

SwapMouseButton, 240-241

system information functions, 341-342

SystemParametersInfo, 398-399

SystemTimeToFileTime, 179

T
TAccessTimeout, 422-423

TAnimationInfo, 423

TAppBarData, 694

TBrowseInfo, 590-591

TByHandleFileInformation, 152-153

TCMInvokeCommandInfo, 653

TCPInfo, 280

TCPInfoEx, 281-282

TCPLInfo, 687

testing

character attributes, 296

child window status, 93

for a maximized state, 97-98

for a valid window handle, 95

the visibility of a window, 97

TFileTime, 110

TFilterKeys, 423

THandleToMappings, 570-571

THelpWinInfo, 510

THHAKLink, 493

THHFtsQuery, 494

THHLastError, 495

THHNNotify, 492

THHNTrack, 492

THHPopup, 494-495

THHWinType, 495-498

THighContrast, 424

TIconInfo, 455, 467-468

TIconMetrics, 425

TileWindows, 37

time, file, 110 see also coordinated universal

time format (UTC)

TJoyCaps, 211-212

TJoyInfo, 214

TJoyInfoEx, 215-216

TKeyboardState, 203

TMetafilePict, 324, 334-335

TMinimizedMetrics, 425

TMouseKeys, 426

TMultiKeyHelp, 509

TNewCPLInfo, 687-688

TNonClientMetrics, 427-428

TNotifyIconData, 712-713

ToAscii, 306-307

ToggleKeys, 411, 422

toggling

active windows, 99

the show state of owned pop-up windows, 32-33

TOSVersionInfo, 377-378

TOverlapped, 169, 190

transacted storage files, 518

translating scan codes to ASCII values, 246

tray icon applications, 681

balloon tooltips, 682-683

creating, 682

example, 683-685

messages, 682

tray notification icon using balloon tooltips, 683-685

TSecurityAttributes, 117, 120, 121, 127

TSerialKeys, 431-432

TShellExecuteInfo, 666-668, 707-708

TShellFlagState, 606

TSHFileinfo, 575

TSHFileOpStruct, 569-570

TSHNameMapping, 571

TSHQueryRBInfo, 615

TSoundSentry, 428-429

TStartupInfo, 363-364

TStatStg, 547-548, 558-559, 565-566

TStickyKeys, 430

TSystemInfo, 367-368

TSystemTime, 136, 179, 283, 289, 360, 371, 393, 395

TTimeZoneInformation, 373, 397

TToggleKeys, 431

744 � Index

TE
AM
FL
Y

Team-Fly®

TVSFixedFileInfo, 186-187

TWin32FindData, 144, 148

TWindowPlacement, 24, 26-27

TWndClass, 71

TWndClassEx, 73

U
Unicode, 7

UnloadKeyboardLayout, 244

UnlockFile, 180

UnMapViewOfFile, 181

URL search hook shell extensions, 619-621 see also

IURLSearchHook

example, 620-621

implementing, 620

registering, 620

using

CompareString to perform a sort, 262-263

DragDetect in a graphics paint application, 196-197

FindWindowEx to find a child window, 68-69

HTMLHelp, 486-490

MapVirtualKey to translate keyboard

characters, 228-229

mouse_event to control the mouse

programmatically, 232-233

the shell’s IMalloc interface to manipulate memory, 690

the SoundSentry accessibility feature, 339-340

WinHelp, 482-484

V
VerLanguageName, 433

VerQueryValue, 181-182

vertically tiling MDI child windows, 38

viewing the clipboard contents, 335-338

VkKeyScan, 244-245

VkKeyScanEx, 245

W
waiting for a filename change, 142-143

window

placement information, 27-28

property list, 39

subclassing, 41

window-specific information, 40

z-order, 9

window information functions, 49-50

window movement functions, 12

WindowFromPoint, 107

Windows data types, 1-3

constants, 4

handles, 4

strings, 4

Windows functions, importing, 4-5

WinHelp, 481, 509-510

advantages, 484-485

architecture, 482

creating help file, 482

disadvantages, 484-485

displaying a pop-up topic, 483-484

displaying a topic, 483

displaying the Topics dialog box, 484

no longer needed, 484

using, 482-484

WriteFile, 188-190

writing control panel applications, 675

wvsprintf, 307-308

Z
z-order, 9-10

child windows, 10

top-level windows, 10

topmost windows, 10

Index � 745

746 � Index

About the CD

The companion CD-ROM contains the code and compiled executables for every exam-

ple in the book. The files are organized by chapter and listing, and are accessible using

Windows Explorer.

There is also a comprehensive Windows help file covering every function explained in

the book.

Warning By opening the CD package, you accept the terms and conditions of the

CD/Source Code Usage License Agreement on the following page.

Opening the CD pac age ma es this boo nonreturnable

	The Tomes of Delphi: Win32 Shell API Windows 2000 Edition
	Dedication
	Contents
	Foreword
	Acknowledgments
	Introduction
	The Chapters
	Conventions
	Function Descriptions
	Sample Programs
	Who This Book is For

	Chapter 1 Delphi and the Windows API
	Windows Data Types
	Handles
	Constants
	Strings

	Importing Windows Functions
	Callback Functions
	Function Parameters
	Unicode
	Delphi vs. the Windows API

	Chapter 2 Window Movement Functions
	Z- order
	Special Effects
	Delphi vs. the Windows API
	Window Movement Functions
	AdjustWindowRect Windows. pas
	AdjustWindowRectEx Windows. pas
	BeginDeferWindowPos Windows. pas
	BringWindowToTop Windows. pas
	CascadeWindows Windows. pas
	CloseWindow Windows. pas
	DeferWindowPos Windows. pas
	EndDeferWindowPos Windows. pas
	GetWindowPlacement Windows. pas
	MoveWindow Windows. pas
	OpenIcon Windows. pas
	SetWindowPlacement Windows. pas
	SetWindowPos Windows. pas
	ShowOwnedPopups Windows. pas
	ShowWindow Windows. pas
	ShowWindowAsync Windows. pas
	TileWindows Windows. pas

	Chapter 3 Window Information Functions
	Information Storage
	Window- specific Information
	Subclassing a Window
	Knowing It All
	Delphi vs. the Windows API
	Window Information Functions
	AnyPopup Windows. pas
	ChildWindowFromPoint Windows. pas
	ChildWindowFromPointEx Windows. pas
	EnableWindow Windows. pas
	EnumChildWindows Windows. pas
	EnumProps Windows. pas
	EnumPropsEx Windows. pas
	EnumThreadWindows Windows. pas
	EnumWindows Windows. pas
	FindWindow Windows. pas
	FindWindowEx Windows. pas
	FlashWindow Windows. pas
	GetActiveWindow Windows. pas
	GetClassInfo Windows. pas
	GetClassInfoEx Windows. pas
	GetClassLong Windows. pas
	GetClassName Windows. pas
	GetClientRect Windows. pas
	GetDesktopWindow Windows. pas
	GetFocus Windows. pas
	GetForegroundWindow Windows. pas
	GetNextWindow Windows. pas
	GetParent Windows. pas
	GetProp Windows. pas
	GetTopWindow Windows. pas
	GetWindow Windows. pas
	GetWindowLong Windows. pas
	GetWindowRect Windows. pas
	GetWindowText Windows. pas
	GetWindowTextLength Windows. pas
	IsChild Windows. pas
	IsIconic Windows. pas
	IsWindow Windows. pas
	IsWindowEnabled Windows. pas
	IsWindowUnicode Windows. pas
	IsWindowVisible Windows. pas
	IsZoomed Windows. pas
	RemoveProp Windows. pas
	SetActiveWindow Windows. pas
	SetClassLong Windows. pas
	SetFocus Windows. pas
	SetForegroundWindow Windows. pas
	SetParent Windows. pas
	SetProp Windows. pas
	SetWindowLong Windows. pas
	SetWindowText Windows. pas
	WindowFromPoint Windows. pas

	Chapter 4 File Input/Output Functions
	File Creation
	File Times
	Delphi vs. the Windows API
	File Input/ Output Functions
	CloseHandle Windows. pas
	CompareFileTime Windows. pas
	CopyFile Windows. pas
	CreateDirectory Windows. pas
	CreateDirectoryEx Windows. pas
	CreateFile Windows. pas
	CreateFileMapping Windows. pas
	DeleteFile Windows. pas
	DosDateTimeToFileTime Windows. pas
	FileTimeToDosDateTime Windows. pas
	FileTimeToLocalFileTime Windows. pas
	FileTimeToSystemTime Windows. pas
	FindClose Windows. pas
	FindCloseChangeNotification Windows. pas
	FindFirstChangeNotification Windows. pas
	FindFirstFile Windows. pas
	FindNextChangeNotification Windows. pas
	FindNextFile Windows. pas
	FlushFileBuffers Windows. pas
	FlushViewOfFile Windows. pas
	GetCurrentDirectory Windows. pas
	GetFileAttributes Windows. pas
	GetFileInformationByHandle Windows. pas
	GetFileSize Windows. pas
	GetFileTime Windows. pas
	GetFileType Windows. pas
	GetFileVersionInfo Windows. pas
	GetFileVersionInfoSize Windows. pas
	GetFullPathName Windows. pas
	GetShortPathName Windows. pas
	GetTempFileName Windows. pas
	GetTempPath Windows. pas
	LocalFileTimeToFileTime Windows. pas
	LockFile Windows. pas
	MapViewOfFile Windows. pas
	MoveFile Windows. pas
	OpenFileMapping Windows. pas
	ReadFile Windows. pas
	RemoveDirectory Windows. pas
	SearchPath Windows. pas
	SetCurrentDirectory Windows. pas
	SetEndOfFile Windows. pas
	SetFileAttributes Windows. pas
	SetFilePointer Windows. pas
	SetFileTime Windows. pas
	SystemTimeToFileTime Windows. pas
	UnlockFile Windows. pas
	UnMapViewOfFile Windows. pas
	VerQueryValue Windows. pas
	WriteFile Windows. pas

	Chapter 5 Input Functions
	The Keyboard
	The Mouse
	Delphi vs. the Windows API
	Input Functions
	ActivateKeyboardLayout Windows. pas
	ClipCursor Windows. pas
	DragDetect Windows. pas
	GetAsyncKeyState Windows. pas
	GetCapture Windows. pas
	GetCaretBlinkTime Windows. pas
	GetCaretPos Windows. pas
	GetClipCursor Windows. pas
	GetCursorPos Windows. pas
	GetDoubleClickTime Windows. pas
	GetInputState Windows. pas
	GetKeyboardLayout Windows. pas
	GetKeyboardLayoutList Windows. pas
	GetKeyboardLayoutName Windows. pas
	GetKeyboardState Windows. pas
	GetKeyboardType Windows. pas
	GetKeyNameText Windows. pas
	GetKeyState Windows. pas
	keybd_ event Windows. pas
	joyGetDevCaps Mmsystem. pas
	joyGetNumDevs Mmsystem. pas
	joyGetPos Mmsystem. pas
	joyGetPosEx Mmsystem. pas
	joyGetThreshold Mmsystem. pas
	joyReleaseCapture Mmsystem. pas
	joySetCapture Mmsystem. pas
	joySetThreshold Mmsystem. pas
	LoadKeyboardLayout Windows. pas
	MapVirtualKey Windows. pas
	MapVirtualKeyEx Windows. pas
	mouse_ event Windows. pas
	OEMKeyScan Windows. pas
	ReleaseCapture Windows. pas
	SetCapture Windows. pas
	SetCaretBlinkTime Windows. pas
	SetCaretPos Windows. pas
	SetCursorPos Windows. pas
	SetDoubleClickTime Windows. pas
	SetKeyboardState Windows. pas
	SwapMouseButton Windows. pas
	UnloadKeyboardLayout Windows. pas
	VkKeyScan Windows. pas
	VkKeyScanEx Windows. pas

	Chapter 6 String and Atom Functions
	Atom Tables
	String Formatting
	Delphi vs. the Windows API
	String and Atom Functions
	AddAtom Windows. pas
	CharLower Windows. pas
	CharLowerBuff Windows. pas
	CharNext Windows. pas
	CharPrev Windows. pas
	CharToOem Windows. pas
	CharToOemBuff Windows. pas
	CharUpper Windows. pas
	CharUpperBuff Windows. pas
	CompareString Windows. pas
	DeleteAtom Windows. pas
	EnumSystemCodePages Windows. pas
	EnumSystemLocales Windows. pas
	FindAtom Windows. pas
	FormatMessage Windows. pas
	GetACP Windows. pas
	GetAtomName Windows. pas
	GetCPInfo Windows. pas
	GetCPInfoEx Windows. pas
	GetDateFormat Windows. pas
	GetOEMCP Windows. pas
	GetTimeFormat Windows. pas
	GlobalAddAtom Windows. pas
	GlobalDeleteAtom Windows. pas
	GlobalFindAtom Windows. pas
	GlobalGetAtomName Windows. pas
	InitAtomTable Windows. pas
	IsCharAlpha Windows. pas
	IsCharAlphaNumeric Windows. pas
	IsCharLower Windows. pas
	IsCharUpper Windows. pas
	lstrcat Windows. pas
	lstrcmp Windows. pas
	lstrcmpi Windows. pas
	lstrcpy Windows. pas
	lstrlen Windows. pas
	MakeIntAtom Windows. pas
	OemToChar Windows. pas
	OemToCharBuff Windows. pas
	ToAscii Windows. pas
	wvsprintf Windows. pas

	Chapter 7 Clipboard Manipulation Functions
	Clipboard Internals
	Conversion Formats
	Delayed Rendering
	Clipboard Viewers
	Delphi vs. the Windows API
	Clipboard Manipulation Functions
	ChangeClipboardChain Windows. pas
	CloseClipboard Windows. pas
	CountClipboardFormats Windows. pas
	EmptyClipboard Windows. pas
	EnumClipboardFormats Windows. pas
	GetClipboardData Windows. pas
	GetClipboardFormatName Windows. pas
	GetClipboardOwner Windows. pas
	GetClipboardViewer Windows. pas
	GetOpenClipboardWindow Windows. pas
	GetPriorityClipboardFormat Windows. pas
	IsClipboardFormatAvailable Windows. pas
	OpenClipboard Windows. pas
	RegisterClipboardFormat Windows. pas
	SetClipboardData Windows. pas
	SetClipboardViewer Windows. pas

	Chapter 8 System Information Functions
	Accessibility Features
	Delphi vs. the Windows API
	System Information Functions
	ExpandEnvironmentStrings Windows. pas
	FreeEnvironmentStrings Windows. pas
	GetCommandLine Windows. pas
	GetComputerName Windows. pas
	GetDiskFreeSpaceEx SysUtils. pas
	GetDriveType Windows. pas
	GetEnvironmentStrings Windows. pas
	GetEnvironmentVariable Windows. pas
	GetLocaleInfo Windows. pas
	GetLocalTime Windows. pas
	GetLogicalDrives Windows. pas
	GetLogicalDriveStrings Windows. pas
	GetStartupInfo Windows. pas
	GetSystemDefaultLangID Windows. pas
	GetSystemDefaultLCID Windows. pas
	GetSystemDirectory Windows. pas
	GetSystemInfo Windows. pas
	GetSystemTime Windows. pas
	GetSystemTimeAsFileTime Windows. pas
	GetTimeZoneInformation Windows. pas
	GetUserDefaultLangID Windows. pas
	GetUserDefaultLCID Windows. pas
	GetUserName Windows. pas
	GetVersionEx Windows. pas
	GetVolumeInformation Windows. pas
	GetWindowsDirectory Windows. pas
	IsProcessorFeaturePresent Windows. pas
	SetComputerName Windows. pas
	SetEnvironmentVariable Windows. pas
	SetLocaleInfo Windows. pas
	SetLocalTime Windows. pas
	SetSystemTime Windows. pas
	SetTimeZoneInformation Windows. pas
	SetVolumeLabel Windows. pas
	SystemParametersInfo Windows. pas
	VerLanguageName Windows. pas

	Chapter 9 Icon, Cursor, and Caret Functions
	Carets
	Icon and Cursor Masks
	Icon to Bitmap Conversion
	Delphi vs. the Windows API
	Icon, Cursor, and Caret Functions
	CopyIcon Windows. pas
	CreateCaret Windows. ps
	CreateCursor Windows. pas
	CreateIcon Windows. pas
	CreateIconFromResource Windows. pas
	CreateIconFromResourceEx Windows. pas
	CreateIconIndirect Windows. pas
	DestroyCaret Windows. pas
	DestroyCursor Windows. pas
	DestroyIcon Windows. pas
	DrawIcon Windows. pas
	DrawIconEx Windows. pas
	ExtractAssociatedIcon ShellAPI. pas
	ExtractIcon ShellAPI. pas
	ExtractIconEx ShellAPI. pas
	GetCursor Windows. pas
	GetIconInfo Windows. pas
	HideCaret Windows. pas
	LoadCursor Windows. pas
	LoadCursorFromFile Windows. pas
	LoadIcon Windows. pas
	LookupIconIdFromDirectory Windows. pas
	LookupIconIdFromDirectoryEx Windows. pas
	SetCursor Windows. pas
	SetSystemCursor Windows. pas
	ShowCaret Windows. pas
	ShowCursor Windows. pas

	Chapter 10 Help Functions
	WinHelp
	WinHelp Architecture
	Creating a WinHelp Help File
	Using WinHelp
	Advantages/Disadvantages

	HTMLHelp
	HTMLHelp Architecture
	Creating an HTMLHelp Help File
	Using HTMLHelp
	Advantages/Disadvantages

	Delphi vs. the Windows API
	Help Functions
	HTMLHelp
	WinHelp Windows. pas

	Chapter 11 Shell File Functions
	File- based Applications
	Structured Storage
	Creating and Reading Structured Storage Files
	Delphi vs. the Windows API
	Shell File Functions
	DragAcceptFiles ShellAPI. pas
	DragFinish ShellAPI. pas
	DragQueryFile ShellAPI. pas
	DragQueryPoint ShellAPI. pas
	FindExecutable ShellAPI. pas
	IStorage. Commit ActiveX. pas
	IStorage. CopyTo ActiveX. pas
	IStorage. CreateStorage ActiveX. pas
	IStorage. CreateStream ActiveX. pas
	IStorage. DestroyElement ActiveX. pas
	IStorage. EnumElements ActiveX. pas
	IStorage. MoveElementTo ActiveX. pas
	IStorage. OpenStorage ActiveX. pas
	IStorage. OpenStream ActiveX. pas
	IStorage. RenameElement ActiveX. pas
	IStorage. Revert ActiveX. pas
	IStorage. SetClass ActiveX. pas
	IStorage. Stat ActiveX. pas
	IStream. Clone ActiveX. pas
	IStream. CopyTo ActiveX. pas
	IStream. Read ActiveX. pas
	IStream. Seek ActiveX. pas
	IStream. SetSize ActiveX. pas
	IStream. Stat ActiveX. pas
	IStream. Write ActiveX. pas
	SHAddToRecentDocs ShlObj. pas
	SHFileOperation ShellAPI. pas
	SHFreeNameMappings ShellAPI. pas
	SHGetFileInfo ShellAPI. pas
	StgCreateDocFile ActiveX. pas
	StgIsStorageFile ActiveX. pas
	StgOpenStorage ActiveX. pas

	Chapter 12 Shell Folder Functions
	Browsing for Folders
	Item Identifier Lists
	Delphi vs. the Windows API
	Shell Folder Functions
	SHBrowseForFolder ShlObj. pas
	SHEmptyRecycleBin ShellExtra. pas
	SHGetFolderLocation ShellExtra. pas
	SHGetFolderPath SHFolder. pas
	SHGetPathFromIDList ShlObj. pas
	SHGetSettings ShlObj. pas
	SHGetSpecialFolderLocation ShlObj. pas
	SHGetSpecialFolderPath ShlObj. pas
	SHQueryRecycleBin ShellExtra. pas

	Chapter 13 Shell Extension Functions
	Shell Extension Basics
	Creating the COM Object

	URL Search Hook Shell Extensions
	Implementing URL Search Hook Shell Extensions
	Registering URL Search Hook Shell Extensions

	Infotip Shell Extensions
	Implementing Infotip Shell Extensions

	Copy Hook Shell Extensions
	Implementing Copy Hook Shell Extensions
	Registering Copy Hook Shell Extensions

	Shell Execute Hook Shell Extensions
	Implementing Shell Execute Hook Shell Extensions
	Registering Shell Execute Hook Shell Extensions

	Context Menu Handler Shell Extensions
	Implementing Context Menu Handler Shell Extensions
	Registering Context Menu Handler Shell Extensions

	Icon Handler Shell Extensions
	Implementing Icon Handler Shell Extensions
	Registering Icon Handler Shell Extensions

	Drag- Drop Handler Shell Extensions
	Implementing Drag- Drop Handler Shell Extensions
	Registering Drag- Drop Handler Shell Extensions

	Delphi vs. the Windows API
	Shell Extension Functions
	IContextMenu. GetCommandString ShlObj. ps
	IContextMenu. InvokeCommand ShlObj. pas
	IContextMenu. QueryContextMenu ShlObj. pas
	ICopyHook. CopyCallback ShlObj. pas
	IDropTarget. DragEnter ActiveX. pas
	IDropTarget. DragLeave ActiveX. pas
	IDropTarget. DragOver ActiveX. pas
	IDropTarget. Drop ActiveX. pas
	IExtractIcon. Extract ShlObj. pas
	IExtractIcon. GetIconLocation ShlObj. pas
	IQueryInfo. GetInfoFlags ShlObj. pas
	IQueryInfo. GetInfoTip ShlObj. pas
	IShellExecuteHook. Execute ShlObj. pas
	IShellExtInit. Initialize ShlObj. pas
	IURLSearchHook. Translate ShlObj. pas

	Chapter 14 Specialized Shell Functions
	Control Panel Applications
	The CplApplet Function
	Control Panel Messages

	Application Bars
	Tray Icon Applications
	Creating a Tray Icon Application
	Messages
	Balloon Tooltips

	Delphi vs. the Windows API
	Specialized Shell Functions
	CplApplet Cpl. pas
	IMalloc. Alloc ActiveX. pas
	IMalloc. DidAlloc ActiveX. pas
	IMalloc. Free ActiveX. pas
	IMalloc. GetSize ActiveX. pas
	IMalloc. HeapMinimize ActiveX. pas
	IMalloc. Realloc ActiveX. pas
	SHAppBarMessage ShellAPI. pas
	SHChangeNotify ShlObj. pas
	ShellAbout ShellAPI. pas
	ShellExecute ShellAPI. pas
	ShellExecuteEx ShellAPI. ps
	Shell_ NotifyIcon ShellAPI. pas
	SHGetMalloc ShlObj. pas

	Appendix A Bibliography
	Appendix B Virtual Key Code Chart
	Appendix C Tertiary Raster Operation Codes
	Appendix D ASCII Character Set
	Index
	About the CD

