
TE
AM
FL
Y

Team-Fly®

The Tomes of Delphi:
Basic 32-Bit Communications

Programming

Alan C. Moore
and

John C. Penman

Wordware Publishing, Inc.

Library of Congress Cataloging-in-Publication Data

Moore, Alan C., 1943-.
The Tomes of Delphi : basic 32-bit communications programming / by Alan C. Moore
and John C. Penman.

p. cm.
Includes bibliographical references and index.
ISBN 1-55622-752-3 (paperback)
1. Computer software—Development. 2. Delphi (Computer file). 3. Telecommunication
systems. I. Penman, John C. II. Title.

QA76.76.D47 M665 2002
005.1--dc21 2002011

CIP

© 2003, Wordware Publishing, Inc.

All Rights Reserved

2320 Los Rios Boulevard
Plano, Texas 75074

No part of this book may be reproduced in any form or by
any means without permission in writing from

Wordware Publishing, Inc.

Printed in the United States of America

ISBN 1-55622-752-3

10 9 8 7 6 5 4 3 2 1

0210

Delphi is a registered trademark of Borland Software Corporation in the United States and other countries. Other products
mentioned are used for identification purposes only and may be trademarks of their respective companies.

All inquiries for volume purchases of this book should be addressed to Wordware Publishing, Inc., at the above

address. Telephone inquiries may be made by calling:

(972) 423-0090

Dedications

To Ann, with all my love.

Alan C. Moore

To the memory of my dear mum, Marie Chisholm Penman, who passed away on
March 11, 2001.

John C. Penman

iii

Contents

Acknowledgments . xiv

Introduction . xvii

Part I: Winsock

Chapter 1: The Winsock API . 3

Introduction . 3
In the Beginning . 3
Network Protocols . 5
The OSI Network Model 1 . 6
Before Winsock . 7
Evolution of Winsock . 8
The Winsock Architecture . 9

Winsock 1.1 . 9
Winsock 2 . 10
New Features of Winsock . 11

Multiple Protocol Support . 11
Name Space Independence . 11
Scatter and Gather . 11
Overlapped I/O . 11
Quality of Service . 11
Multipoint and Multicast . 12
Conditional Acceptance. 12
Connect and Disconnect Data . 12
Socket Sharing . 12
Protocol-specific Addition . 12
Socket Groups . 12

Summary . 13

Chapter 2: Winsock Fundamentals . 15

Starting and Closing Winsock . 15
function WSAStartup . 16
function WSACleanup . 19

Handling Winsock Errors . 22
Errors and errors . 23

function WSAGetLastError . 24
procedure WSASetLastError . 25

v

The Many Faces of the Winsock DLL . 27
Summary . 28

Chapter 3: Winsock 1.1 Resolution . 29

Translation Functions . 30
function htonl . 31
function htons . 32
function ntohl . 32
function ntohs . 33

Miscellaneous Conversion Functions . 34
function inet_addr. 34
function inet_ntoa. 35

Resolution . 37
Resolving Using a HOSTS file . 38
Resolving Using DNS . 39
Resolving Using a Local Database File with DNS 40

Blocking and Asynchronous Resolution. 40
Host Resolution . 42

function gethostbyaddr . 42
function gethostbyname . 45
function gethostname. 47
function WSAAsyncGetHostByName 48
function WSAAsyncGetHostByAddr 54

Service Resolution . 55
function getservbyname . 55
function getservbyport . 58
function WSAAsyncGetServByName 60
function WSAAsyncGetServByPort . 61

Protocol Resolution . 62
function getprotobyname . 62
function getprotobynumber . 64
function WSAAsyncGetProtoByName. 66
function WSAAsyncGetProtoByNumber 67

Canceling an Outstanding Asynchronous Call 68
function WSACancelAsyncRequest . 68

Summary . 69

Chapter 4: Winsock 2 Resolution . 71

Translation Functions . 71
function WSAHtonl . 71
function WSAHtons. 74
function WSANtohl . 74
function WSANtohs . 75

Address and String Conversion Functions 76
function WSAAddressToString . 76

vi

Contents

function WSAStringToAddress . 78
Enumerating Network Protocols . 79

function WSAEnumProtocols . 86
Name Space Resolution and Registration . 87

Enumerating Name Spaces . 88
function WSAEnumNameSpaceProviders. 89

Registering a Service . 91
function WSAInstallServiceClass . 95
function WSASetService . 102
function WSARemoveServiceClass 102

Service Queries . 103
function WSALookupServiceBegin. 105
function WSALookupServiceNext . 109
WSALookupServiceEnd. 112

Helper Functions . 112
function WSAGetServiceClassInfo . 112
function WSAGetServiceClassNameByClassId 113

Functions for the Future . 115
Making Your Winsock Applications Agnostic 116

function getaddrinfo . 119
procedure freeaddrinfo . 126
function getnameinfo . 126
function gai_strerror . 132

Obsolete Functions . 132
Summary. 133

Chapter 5: Communications . 135

The Mechanics of Data Exchange . 136
Socket Creation . 137

function socket. 141
function WSASocket. 143

Making the Connection . 144
function connect . 147
function WSAConnect . 149
function getpeername . 154
function getsockname . 155

Sending Data. 160
function send. 161
function WSASend. 162
function sendto . 163
function WSASendTo . 164

Receiving Data . 165
function recv . 165
function WSARecv. 166
function recvfrom . 168

vii

Contents

function WSARecvfrom . 169
Breaking the Connection . 170

function shutdown . 172
function closesocket . 172
function WSASendDisconnect . 173
function WSARecvDisconnect . 174

Server Applications . 174
Preparation . 174
Duplicated Sockets . 178

function bind . 179
function listen . 179
function accept. 180
function WSAAccept. 181
function WSADuplicateSocket . 182

I/O Schemes . 183
Using Select. 183
Using WSAAsyncSelect . 185
Using WSAEventSelect . 188
Using Overlapped Routines . 191

Event Notification . 192
Completion I/O Schemes . 193
Completion Port I/O Scheme . 194
Which I/O Scheme to Use? . 195
To Block or Not to Block?. 196

Winsock and Multithreading . 198
function select . 203
function WSAAsyncSelect . 203
function WSACreateEvent . 210
function WSAWaitForMultipleEvents 215
function WSAEnumNetworkEvents 220
function WSAEventSelect . 221
function WSACloseEvent . 222
function WSAResetEvent . 222
function WSASetEvent . 223
function WSAGetOverlappedResult 224

Raw Sockets . 225
Microsoft Extensions to Winsock 2 . 239

function AcceptEx . 241
procedure GetAcceptExSockaddrs . 242
function TransmitFile . 243
function WSARecvEx . 245

Microsoft Extensions to Winsock 2 for Windows XP and
Windows .NET Server . 246

function ConnectEx . 247
function DisconnectEx . 248

viii

Contents

function TransmitPackets . 249
function WSANSPIoctl . 251
function WSARecvMsg . 252

IP Multicast . 253
What is IP Multicast?. 253
What Can You Do with IP Multicast? . 255
How Do You Develop a Simple IP Multicast Application? 256

function WSAJoinLeaf . 258
Obsolete Functions . 261

function WSACancelBlockingCall . 261
function WSAIsBlocking . 262
function WSASetBlockingHook . 263
function WSAUnhookBlockingHook 264

Summary. 264

Chapter 6: Socket Options . 265

Querying and Modifying Attributes . 265
Option Level = SOL_SOCKET . 270

Option = SO_DEBUG . 270
Option = SO_KEEPALIVE . 270
Option = SO_LINGER . 271
Option = SO_REUSEADDR. 271
Option = SO_RCVBUF and SO_SNDBUF 272

Option Level = IPPROTO_TCP . 272
Option = TCP_NODELAY. 272

Option Level = IPPROTO_IP . 272
Option = IP_OPTIONS . 272
Option = IP_HDRINCL . 273
Option = IP_TOS . 273
Option = IP_TTL . 273
Option = IP_MULTICAST_IF. 274
Option = IP_MULTICAST_TTL . 274
Option = IP_MULTICAST_LOOP . 274
Option = IP_ADD_MEMBERSHIP . 274
Option = IP_DROP_MEMBERSHIP . 274
Option = IP_DONTFRAGMENT . 274

Modifying I/O Behavior . 274
function getsockopt . 278
function setsockopt . 279
function ioctlsocket . 279
function WSAIoctl . 280

Summary. 281

ix

Contents

Part 2: TAPI

Chapter 7: Introduction to TAPI . 285

An Historical Review . 286
The World of Telephony Applications . 287
The Elements of a Telephony System . 290
Nature and Structure of TAPI . 292

Media Stream . 294
Varieties of Physical Connections . 295

Levels of Telephony Programming Using TAPI. 297
Summary. 304

Chapter 8: Line Devices, Essential Operations 305

Stages in Working with Telephony . 306
Three Notification Mechanisms . 307
TAPI Line Support—Basic and Extended Capabilities 309
Determining Capabilities and Configuring TAPI 309

Configuring TAPI . 311
TAPI’s VarString . 312
Line Initialization—Making a Connection with TAPI. 313
Let’s Negotiate . 317
Determining Capabilities. 318

Opening a Line Device . 319
Give Me Your ID . 320
Specifying Media Modes . 321
Working with Media Modes . 322

Closing a Line Device. 325
Reference for Basic TAPI Functions . 326

function lineClose . 327
function lineConfigDialog . 327
function lineConfigDialogEdit . 328
function lineGetAddressCaps . 330
structure LINEADDRESSCAPS . 332
structure LINECALLTREATMENTENTRY 346
function lineGetAddressID . 347
function lineGetAddressStatus . 348
structure LINEADDRESSSTATUS 349
LINEADDRFEATURE Constants . 353
function lineGetDevCaps . 355
structure LINEDEVCAPS . 356
LINEFEATURE_ Constants . 365
structure LINETERMCAPS . 365
structure LINETRANSLATECAPS 366
structure LINECARDENTRY . 367
structure LINELOCATIONENTRY 369

x

Contents

TE
AM
FL
Y

Team-Fly®

LINELOCATIONOPTION_ Constants. 371
function lineGetDevConfig . 372
function lineGetID. 373
function lineGetLineDevStatus. 375
structure LINEDEVSTATUS . 376
structure LINEAPPINFO . 378
function lineGetTranslateCaps . 379
function lineInitialize . 380
function lineInitializeEx . 382
function lineNegotiateAPIVersion . 384
function lineNegotiateExtVersion . 386
function lineOpen . 387
function lineSetDevConfig . 391
function lineShutdown . 392
function lineGetCountry . 393
structure LINECOUNTRYLIST . 394
structure LINECOUNTRYENTRY . 395
function lineGetIcon. 396
function lineSetAppSpecific . 397
function lineSetCurrentLocation . 398

Summary. 399

Chapter 9: Handling TAPI Line Messages 401

Line Callback . 401
function TLineCallback . 401

Issues Involving Messages . 416
LINE_ADDRESSSTATE Message . 417
LINE_AGENTSPECIFIC Message . 418
LINE_AGENTSTATUS Message . 418
LINE_APPNEWCALL Message. 419
LINE_CALLINFO Message . 420
LINE_CALLSTATE Message . 422
LINE_CLOSE Message . 426
LINE_CREATE Message . 427
LINE_DEVSPECIFIC Message . 428
LINE_DEVSPECIFICFEATURE Message 428
LINE_GATHERDIGITS Message . 428
LINE_GENERATE Message . 429
LINE_LINEDEVSTATE Message. 430
LINE_MONITORDIGITS Message . 433
LINE_MONITORMEDIA Message . 434
LINE_MONITORTONE Message. 435
LINE_PROXYREQUEST Message . 436
LINE_REMOVE Message . 437
LINE_REPLY Message . 438

xi

Contents

LINE_REQUEST Message . 438
LINE_AGENTSESSIONSTATUS Message. 439
LINE_QUEUESTATUS Message . 439
LINE_AGENTSTATUSEX Message . 440
LINE_GROUPSTATUS Message . 440
LINE_PROXYSTATUS Message . 441
LINE_APPNEWCALLHUB Message . 441
LINE_CALLHUBCLOSE Message . 442
LINE_DEVSPECIFICEX Message . 442
LINEPROXYREQUEST_ Constants . 442

Functions Related to Message Handling. 444
function lineGetMessage . 444
structure LINEINITIALIZEEXPARAMS 445
LINEINITIALIZEEXOPTION_ Constants. 445
structure LINEMESSAGE . 446
function lineGetStatusMessages . 447
function lineSetStatusMessages . 448
function lineSetCallPrivilege . 449

Chapter 10: Placing Outgoing Calls . 451

Canonical and Dialable Address Formats 451
Assisted Telephony . 453
TAPI Servers in Assisted Telephony . 457

Assisted Telephony Functions . 458
function tapiRequestMakeCall . 459
function tapiGetLocationInfo . 460

Establishing a Call with Low-Level Line Functions 461
Special Dialing Support . 464

function lineDial . 465
function lineMakeCall . 466
structure LINECALLPARAMS . 468
LINECALLPARAMFLAGS_ Constants 473
function lineTranslateAddress . 474
structure LINETRANSLATEOUTPUT 477
function lineTranslateDialog . 479

Summary. 480

Chapter 11: Accepting Incoming Calls 481

Finding the Right Application . 481
Unknown Media Type . 483
Prioritizing Media Modes. 484
Responsibilities of the Receiving Application 485
Media Application Duties . 486
Accepting an Incoming Call. 487
Ending a Call. 493

xii

Contents

Reference for Additional Basic TAPI Functions. 494
function lineAccept . 494
function lineAnswer . 496
function lineDeallocateCall . 497
function lineDrop . 498
function lineGetCallInfo. 499
structure LINECALLINFO . 500
function lineGetCallStatus . 508
structure LINECALLSTATUS . 509
function lineGetConfRelatedCalls . 510
function lineGetNewCalls . 511
structure LINECALLLIST . 513
function lineGetNumRings . 513
function lineGetRequest . 514
structure LINEREQMAKECALL . 515
structure LINEREQMEDIA . 516
function lineHandoff . 517
function lineRegisterRequestRecipient 519
LINEREQUESTMODE_ Constants 520
function lineSetNumRings . 520
function lineSetTollList . 521

Appendix A: Glossary of Important Communications Programming
Terms . 525

Appendix B: Error Codes, Their Descriptions, and Their Handling 531
Appendix C: Bibliography of Printed and Online Communications

Programming Resources . 543

Index . 547

xiii

Contents

Acknowledgments

Writing a book like this is a major endeavor. I want to take this opportunity to
thank some of the many people who helped make it possible. First, let me thank
my wife, Ann, and daughter, Treenah, for their support and patience during the
many hours I spent in front of a computer screen coding and writing. My col-
leagues at Kentucky State University have also been very supportive, especially
my new chairperson, Dr. Barbara Buck, who provided much encouragement for
my writing.

There are several people and one organization that had a great deal to do with
my getting involved with TAPI in the first place. The organization is Project
JEDI, which produced the translation of the TAPI header file for use in Delphi.
The pioneering work of the original translators, Alexander Staubo and Brad
Choate, was followed by the excellent new translation by Marcel van Brakel,
with contributions from Rudy Velthuis and myself.

The TAPI portion of this book is based to some extent on a series of articles I
wrote in Delphi Informant Magazine beginning in the late 1990s. Thanks to my
good friend Jerry Coffey, the editor of Delphi Informant Magazine, for his contin-
ued encouragement to explore and write about TAPI. Thanks also to Major Ken
Kyler, with whom I wrote the first three articles. Ken provided me with my first
introduction to the world of TAPI. I would be remiss if I did not acknowledge my
current co-author, John Penman. In the process of writing this book, we have
read each other’s text in some detail. Working with John on this book has been
delightful from the start. Finally, let me acknowledge my excellent technical edi-
tor, Gary Frerking, president of TurboPower. He was extremely helpful in
identifying portions of the text that were not clear and code that needed further
work.

Before closing, I want to acknowledge the importance of my guru and spiri-
tual teacher, the late Chogyam Trungpa, Rinpoche. The meditative disciplines
he introduced to me and so many others have helped make my life more full and
productive.

Alan C. Moore

xiv

As with any programming project, there are team players, project leaders, and
technical staff. In this context, Alan and I are project leaders who have written
this book, but without the team players and technical staff, there wouldn’t be a
book for us to write and you to read and hopefully assimilate some useful knowl-
edge. So, it is in this vein that I would like to thank the team players for their
contribution to making this book a reality. First, a special thanks must go to
Marcel van Brakel, a former JEDI knight of Project JEDI (www.jedi.org), who
gave some of his valuable time to test and debug all of the Winsock examples, as
well as provide constructive criticism and suggestions for the chapters. I would
also like to thank Chad Z. Hower for undertaking the role of technical editor for
the Winsock chapters, which he carried out so ably. To those two guys, thanks a
million!

I would also like to thank Alan C. Moore for his encouragement and wit dur-
ing the time we worked together on the book. You will be amazed to know that
we have never met in person, but we forged an excellent friendship through our
electronic collaboration on this book. Perhaps we will collaborate on another!

I would like to thank Jim Hill, Wes Beckwith, and the hard-working staff at
Wordware Publishing for their unfailing patience in spite of numerous missed
milestones.

To end on a personal note, I would like to express heartfelt thanks to my dad
for his unstinting and uncomplaining support for me while I was on contract in
Scotland during the last 18 months. Thanks for being a great dad.

Finally, I must thank my dear wife, Jocie, and my two children, David and
Diana, for their loving support during the development of this tome.

John C. Penman

xv

Acknowledgments

Introduction

Reliable communications using computers has been important for a long time,
starting with DOS bulletin boards and the early days of the Internet. In this
book, we will provide an introduction to two of the essential communications
technologies, Windows Sockets (Winsock), the backbone of the Internet on the
Windows platform, and the Telephony Application Programming Interface
(TAPI).

We will provide a complete introduction to Winsock and basic TAPI. We had
originally planned on covering many of the other Internet technologies and the
entire TAPI, but discovered that the material was too extensive to do justice to
any of these technologies. We plan to write another book dealing with advanced
communications programming in which we will cover the more difficult and
newer topics. Nevertheless, this work should provide all that you will need to
write useful Internet/Intranet or telephony applications. The advanced book will
build on this foundation and provide the means for going beyond basic
functionality.

This book is organized into two parts. Part I, written by John C. Penman, is a
complete introduction to Winsock programming. Chapter 1 provides an intro-
duction to this technology and a description of the Winsock-related chapters
that follow. Part II, written by Alan C. Moore, is a complete introduction to basic
TAPI programming. Chapter 7 provides an introduction to this technology and a
description of the TAPI-related chapters that follow. As in other volumes in
Wordware Publishing’s Tomes of Delphi series, most chapters include introduc-
tory sections on the various technologies, a complete reference to functions,
structures, and constants, and Delphi code examples.

The book concludes with three appendices providing a glossary of essential
communications terms, information about error handling in Winsock and TAPI,
and printed and Internet resources that provide additional information and pro-
gramming materials.

Let’s begin the journey!

xvii

Part I

Internet/Intranet
Programming with
Winsock

by John C. Penman

� Chapter 1 — The Winsock API

� Chapter 2 — Winsock Fundamentals

� Chapter 3 — Winsock 1.1 Resolution

� Chapter 4 — Winsock 2 Resolution

� Chapter 5 — Communications

� Chapter 6 — Socket Options

TE
AM
FL
Y

Team-Fly®

Chapter 1

The Winsock API

Introduction
In this chapter, we’ll outline the development of the Internet and the transport
protocols that underpin it. We’ll review the evolution of the Winsock Application
Programming Interface (API) from its origins. We will also examine the
Winsock 1.1 and 2 architectures, with particular emphasis on Winsock 2.

In the world of Windows, Winsock provides the crucial foundation upon which
all Internet applications run. Without Winsock, there would be no web brows-
ers, no file transfer, and none of the e-mail applications that we take so much for
granted in today’s Windows environment. Technologies like DCOM and n-tier
database systems would be difficult to implement.

Winsock is an API that is an integral part of Microsoft’s Windows Open Sys-
tems Architecture (WOSA), which we’ll discuss later in this chapter, as well as
in the second half of the book dealing with TAPI. Let’s start with the history of
the genesis of the Internet to the present.

In the Beginning
Nowadays, it’s easy to forget that the genesis of the Internet arose as a need for
a dependable and robust communication network for military and government
computers in the United States of America. In response to this need, in 1969
the Defense Advanced Research Projects Agency (DARPA) sponsored an exper-
imental network called Advanced Research Projects Agency Network
(ARPANET).

Before the birth of ARPANET, for one computer to communicate with
another on a network, both machines had to come from the same vendor. We
call this arrangement a homogeneous network. In contrast, ARPANET, a collec-
tion of different computers linked together, was a heterogeneous network.

As ARPANET developed, it became popular for connected institutions to
accomplish daily tasks such as e-mail and file transfer. In 1975, ARPANET
became operational. However, as you might have already guessed, research into
network protocols continued. Network protocols that developed early in the life

3

of ARPANET evolved into a set of network protocols called the Transmission
Control Protocol/Internet Protocol (TCP/IP) suite. The TCP/IP protocol suite

became a Military Standard in 1983, which made it mandatory for all computers
on ARPANET to use TCP/IP.

�NOTE: For brevity, we use TCP/IP as a shorthand for TCP/IP suite.

In 1983, ARPANET split into two networks: MILNET for unclassified military
use and ARPANET, which was the smaller of the two, for experimental
research. These networks became known as the Internet.

�NOTE: The meaning of the Internet is just a collection of smaller
networks to form a large network. Therefore, we can use the
generic term internet to refer to a network of smaller networks
that is not the Internet.

The Internet expanded further when DARPA invited more universities to use
the Internet for research and communications. In the early 1980s, however, uni-
versity computer sites were using the Berkeley Software Distribution (BSD)
UNIX, a variant of UNIX that did not have TCP/IP. DARPA funded Bolt Beranek
and Newman, Inc. to implement TCP/IP in BSD UNIX. Thus, TCP/IP became
an intimate part of UNIX.

Although TCP/IP became an important communications provider in BSD
UNIX, it was still difficult to develop network applications. Programmers at the
University of Berkeley created an abstract layer to sit on top of TCP/IP, which
became known as the Sockets layer. The version of BSD UNIX that incorporated
the Sockets layer for the first time was 4.2BSD, which was released in August
1983.

The Sockets layer made it easier and quicker to develop and maintain net-
work applications. The Sockets layer became a catalyst for the creation of
network applications, which further fueled the expansion of the Internet. With
the expansion of the Internet, TCP/IP became the network protocol of choice.

The following properties of TCP/IP explain the rapid acceptance of TCP/IP:

� It is vendor independent, meaning an open standard.

� It is a standard implementation on every computer from PCs to
supercomputers.

� It is used in local area networks (LANs) and wide area networks (WANs).

� It is used by commercial entities, government agencies, and universities.

4 � Chapter 1

The Internet’s rapid growth (and its continued growth) owes much to the devel-
opment of the Hypertext Transfer Protocol (HTTP) that has provided the
underpinnings for the World Wide Web. Rightly or wrongly, the ordinary man
and woman on the street now sees the World Wide Web as the Internet.
Internet protocols like HTTP, FTP, SMTP, and POP3 are high-level protocols
that operate seamlessly on top of the network protocols collectively known as
the TCP/IP protocol suite, or just TCP/IP. We’ll describe briefly the network
protocols that constitute the TCP/IP protocol suite in the next section.

Network Protocols
TCP/IP is a suite of network protocols upon which higher-level protocols, such
as FTP, HTTP, SMTP, and POP3, operate. This suite comprises the two major
protocols (TCP and IP) and a family of other protocols. We enumerate these as
follows:

� Transmission Control Protocol (TCP) is a connection-based protocol
that provides a stable, full duplex byte stream for an application. Applica-
tions like FTP and HTTP use this protocol.

� User Datagram Protocol (UDP) is a connectionless protocol that pro-
vides unreliable delivery of datagrams. (Note: Do not confuse “unreliable”
with quality in this context. Unreliable refers to the possibility that some
datagrams may not arrive at their destination, become duplicated, or
arrive out of sequence.) IP Multicast applications use this protocol.

� Internet Control Message Protocol (ICMP) is a protocol that handles
error and control information between hosts. Applications like ping and
traceroute use this protocol.

� Internet Protocol (IP) is a protocol that provides packet delivery for
TCP, UDP, and ICMP.

� Address Resolution Protocol (ARP) is a protocol that maps an Internet
address into a hardware address.

� Reverse Address Resolution Protocol (RARP) is a protocol that maps a
hardware address into an Internet address.

Fortunately, the BSD Sockets layer insulated the programmer from these proto-
cols and, with some exceptions, most network applications did not need to know
the intimate details of TCP/IP.

The Winsock API � 5

1

C
h
a
p

te
r

The OSI Network Model 1
In 1977, the International Organization for Standardization (ISO) created a refer-
ence schema for networking computers together. This networking model is a
guide, not a specification, for the construction of any network. This guide, Open
System Interconnection (OSI), states that a network should provide seven lay-
ers, as explained in Figure 1-1.

If we map TCP/IP using the OSI network model, we get the following simplified
diagram in Figure 1-2.

6 � Chapter 1

Figure 1-1

Figure 1-2

When a network application sends data to its peer across the network, the data
is sent down through the layers to the data link and back up again through the
layers on the peer’s side. The following diagram makes this clear.

Before Winsock
In the early years of the Internet, computers that used the Internet were of the
mainframe and minicomputer pedigree. Attached to these computers were
dumb terminals that were used for e-mail, file transfer, and network news. It
was natural, therefore, that when PCs appeared on the scene, there was some
demand for PCs to connect as “superior dumb terminals” to the Internet. In
response to this demand, developers ported BSD Sockets to the various DOS
platforms, such as MS-DOS and DR-DOS. Unfortunately, vendors developed
their own brand of TCP/IP stacks that were not completely compatible with
each other. This meant, of course, that network application developers had to
develop different versions of their applications to run on different stacks. This
proliferation of applications to run on different stacks quickly became a mainte-
nance nightmare. This problem continued in the Windows environment when
Windows 3.0 and 3.1 appeared in the early 1990s.

The Winsock API � 7

1

C
h
a
p

te
r

Figure 1-3

Evolution of Winsock
Winsock to the rescue! Development of network-aware applications became so
problematic that those leaders in the Windows communications industry orga-
nized a “Birds of a Feather” (BOF) conference at a prestigious trade show in
1991. At the end of the conference, delegates set up a committee to investigate
the creation of a standard API for TCP/IP for Windows. This led to a specifica-
tion that became Windows Sockets. The specification used much of BSD
Sockets as its foundation. Windows 3.1 was a “cooperative” multitasking operat-
ing system, which relied on applications to yield quickly to avoid tying up
resources such as the screen and mouse. Therefore, any Winsock application
that blocked (for example, when waiting for data to arrive on a recv() function)
would freeze the operating system, thus preventing any other application from
running. To get around this major difficulty, the specification included modifica-
tions and enhancements that would permit a Winsock application to run
asynchronously, avoiding a total freeze.

For example, the specification included functions such as WSAAsyncGet-
HostByAddr() and WSAAsyncGetHostByName(), which are asynchronous
versions of the gethostbyaddr() and gethostbyname() functions, respectively.
(We will examine the concept of blocking, non-blocking, and asynchronous oper-
ations later in the book.)

The first version of Winsock (1.0) appeared in June 1992. After some revi-
sion, another version (Winsock 1.1) appeared in January 1993. With the
introduction of Winsock, network applications proliferated, making interfacing
with the Internet easier than before.

One implementation of Winsock that soon became very common was Trum-
pet. Its developers took advantage of the Windows Dynamic Link Library (DLL)
technology to house the Winsock API.

Some of the benefits of using Winsock include the following:

� Provides an open standard

� Provides application source code portability

� Supports dynamic linking

Since its inception, Winsock 1.1 has exceeded all expectations. However, the
API focuses on TCP/IP to the exclusion of other protocol suites. This was a
deliberate and strategic decision to encourage vendors of TCP/IP stacks to use
the Windows Sockets specification in the early years. It worked!

Winsock is now the networking API of choice for all Windows platforms. Win-
dows Sockets Version 2 addresses the need to use protocol suites other than
TCP/IP. The Winsock 2 API can handle disparate protocol suites like DecNet,
IPX/SPX, ATM, and many more. We call this capability multiple protocol sup-
port, or simply protocol independence. This degree of flexibility permits the

8 � Chapter 1

development of generic network services. For example, an application could use
a different protocol to perform one task and another for a different task.
Although Winsock 2 adds new, flexible, and powerful features to the original
API, the API is backward compatible with Version 1.1. This means that existing
network applications developed for Winsock 1.1 can run without change under
Winsock 2.

The Winsock Architecture

Winsock 1.1

As you have no doubt already deduced, the main difference between the two
Winsock versions we’re discussing is that Winsock 1.1 uses the TCP/IP proto-
col suite exclusively, whereas Winsock 2 supports other protocols, such as
AppleTalk, IPX/SPX, and many others, as well as TCP/IP. Figure 1-4 shows the
simple interaction between a Winsock 1.1 application with the WINSOCK.DLL
or WSOCK.DLL. Because of its support for multiple protocols, the architecture
of Winsock 2 is necessarily more complex.

The Winsock API � 9

1

C
h
a
p

te
r

Figure 1-4

Winsock 2

Winsock 2 follows the Windows Open Systems Architecture (WOSA) model. In
the WOSA model, the structure has two distinct parts; one is the API for appli-
cation developers, and the other is the Service Provider Interface (SPI) for
protocol stack and name space service providers. This two-tier arrangement
allows Winsock to provide multiple protocol support, while using the same API.
For example, an application that uses the ATM protocol will use the same API
as the application that uses TCP/IP.

To make this clearer, take the scenario of a Winsock 2 server application that
has several installed protocols (for example, ATM, TCP/IP, IPX/SPX, and
AppleTalk). Because the server has access to each of these protocols, it can
transparently service requests from different clients that are using any of the
supported protocols.

The concept of the Service Provider Interface allows different vendors to
install their own brand of transport protocol, such as NetWare’s IPX/SPX. In
addition to providing (transport) protocol independence, the Winsock 2 architec-
ture also provides name space independence. Like the transport protocols, the
SPI allows vendors to install their name space providers, which provides resolu-
tion of hosts, services, and protocols. The Domain Name System (DNS) that we
use for resolving hosts on TCP/IP is an example of a name space provider.
NetWare’s Service Advertisement Protocol (SAP) is another. This capability
enables any application to select the name space provider most suited to its
needs. Figure 1-5 displays the Winsock 2 architecture. We’ll discuss more
details on protocol and name space independence in the next section.

10 � Chapter 1

Figure 1-5

New Features of Winsock

Although we’ll examine most of these new functions in detail in the chapters to
come, we’ll complete our overview of Winsock by enumerating these new fea-
tures briefly.

Multiple Protocol Support

Like BSD Sockets before it, Winsock 2 provides simultaneous multiple protocol
support. Winsock 2 has functions to allow an application to be protocol
independent.

Name Space Independence

Name registration is a process that associates a protocol-specific address with a
user-friendly name. For example, users find it easier to remember the address
of Wordware Publishing, which is wordware.com, than a numeric address like
150.09.23.78. To make this possible, we use the Domain Name System (DNS)
on TCP/IP to resolve host names to their IP addresses and vice versa.

There are three different types of name spaces: static, persistent, and
dynamic. DNS is a static service, which is the least flexible. It is not possible to
register a new name from Winsock using DNS. Dynamic name space, on the
other hand, allows registration on the fly. An example of a persistent name
space is Netware Directory Service (NDS).

Service Advertising Protocol (SAP) is a protocol for announcing dynamic
name space changes on NDS.

Unlike Winsock 1.1, Winsock 2 can support multiple independent name space
services in addition to the familiar DNS for TCP/IP.

Scatter and Gather

The support for “scatter and gather” is similar to the vectored I/O as supported
by BSD Sockets.

Overlapped I/O

Winsock 2 uses the overlapped I/O model from the Win32 API. We will explain
these functions in Chapter 5, “Communications.”

Quality of Service

With the increasing use of multimedia applications that require a varying and
often large bandwidth along with demanding timing requirements, the use of
Quality of Service has become an important tool to manage network traffic. We
will not discuss this tool, as it is beyond the scope of this book.

The Winsock API � 11

1

C
h
a
p

te
r

Multipoint and Multicast

Although Winsock 1.1 provides basic support for IP Multicast, Winsock 2 pro-
vides additional APIs that extend support for protocol-independent multipoint
and multicast datagram transmission.

Conditional Acceptance

Winsock 2 provides the capability to examine the attributes of a connection
request before accepting or rejecting the request. Using a callback function,
WSAAccept() captures the attributes, such as caller’s address, QOS information,
and any connect data. After processing the data gleaned from the connection
request, the application calls WSAAccept() again to accept, defer, or reject the
request.

Connect and Disconnect Data

The new functions that support this feature are WSAAccept(), WSARecv-
Disconnect(), WSASendDisconnect(), and WSAConnect().

Socket Sharing

Winsock 2 provides a means of sharing sockets between processes (but not
between threads). The new function that provides this feature is WSADuplicate-
Socket(). A process that requires sharing an existing socket does so through
existing interprocess mechanisms like DDE, OLE, and others. However, the
data itself is not shared, and each process needs to create its own event objects
via calls to WSACreateEvent().

Protocol-specific Addition

Although Winsock 2 provides a consistent API, some protocols require addi-
tional data structures that are specific to a particular protocol. For example,
ATM has extra data structures and special constants for its protocol. Although
our focus is on the TCP/IP protocols, we have provided Delphi Interface units
that translate the C headers containing the data structures for some of these
protocols, such as AppleTalk, ATM, NETBIOS, ISO TP4, IPX/SPX, and
BANYAN VINES.

Socket Groups

Winsock 2 introduces the concept of socket groups. An application can create a
set of sockets with each socket dedicated to a specific task. However, in the cur-
rent version (2.2), this feature is not yet supported, so we will not discuss it.

12 � Chapter 1

TE
AM
FL
Y

Team-Fly®

Summary
In this chapter, we covered the origins of the Internet, which led to the estab-
lishment of TCP/IP as the protocol suite of choice. We reviewed the evolution of
Winsock from BSD Sockets and briefly covered the Winsock 2 architecture and
its new features. To simplify coverage of the Winsock 2 API in the following
chapters, the functions are grouped by the following topics:

Table 1-1: Function groups

Topic Chapter

Starting and closing Winsock Chapter 2

Winsock error handling Chapter 2

Winsock 1.1 resolution Chapter 3

Winsock 2 resolution Chapter 4

Communications Chapter 5

Network events Chapter 5

Socket options Chapter 6

For the majority of these functions, we’ll demonstrate their usage with example
code.

�NOTE: These APIs are in the Winsock2.pas file on the companion CD
that comes with this book. This file should be on a path visible
to Delphi. By convention, you should put the Winsock2.pas file
in the directory \Delphi 5\Lib.

The Winsock API � 13

1

C
h
a
p

te
r

Chapter 2

Winsock Fundamentals

In the last chapter, we provided a brief overview of the origins of the Internet
and examined the evolution of BSD Sockets and the technology that gave birth
to the Internet and provided the basis for Window’s Internet technology, Win-
dows Sockets.

In this chapter, we’ll learn how to write a simple Winsock application that
essentially does nothing useful. However, it does demonstrate how to load and
unload Winsock correctly. We’ll also learn how to detect Winsock errors
properly.

Starting and Closing Winsock
In this chapter, we’ll build a simple application that demonstrates the two most
fundamental functions in the Winsock stable, WSAStartUp() and WSACleanup().
Without exception, your application must always call WSAStartUp() before call-
ing any other Winsock API function. If you neglect this essential step, your
application will fail, sometimes in spectacular fashion. Similarly, when your
application ends, it should always call WSACleanup().

At invocation, WSAStartup() performs several essential tasks, as follows:

� Loads Winsock into memory

� Registers the calling application

� Allocates resources for the calling application

� Obtains the implementation details for Winsock

You can use the implementation details returned by WSAStartup() to determine
if the version of Winsock is compatible with the version requested by the calling
application. Ideally, any application should run using any version of Winsock.
Winsock 1.1 applications can run unchanged using Winsock 2 because Winsock
2 seamlessly maps the Winsock 1.1 functions to their equivalents in Winsock 2.

To maintain this backward compatibility, WSAStartup() performs a negotia-
tion phase with the calling application. In this phase, the Winsock DLL and the
calling application negotiate the highest version that they both can support.

15

If Winsock supports the version requested by the application, the call suc-
ceeds and Winsock returns the highest version that it supports. In other words,
if a Winsock 1.1 application makes a request to load Winsock 1.1, and if Winsock
2 is present, the application will work with Winsock 2 because it supports all
versions up to 2, including 1.1.

This negotiation phase allows Winsock and the application to support a range
of Winsock versions. Table 2-1 shows the range of Winsock versions that an
application can use.

Table 2-1: Different versions of Winsock

App
Version

DLL
Version

Highest Version
Expected

Expected
Version

Highest Version
Supported

End Result

1.1 1.1 1.1 1.1 1.1 use 1.1

1.0, 1.1 1.0 1.1 1.0 1.0 use 1.0

1.0 1.0, 1.1 1.0 1.0 1.1 use 1.0

1.1 1.0, 1.1 1.1 1.1 1.1 use 1.1

1.1 1.0 1.1 1.0 1.0 Application fails

1.0 1.1 1.0 --- --- WSAVERNOTSUPPORTED

1.0, 1.1 1.0, 1.1 1.1 1.1 1.1 use 1.1

1.1, 2.0 1.1 2.0 1.1 1.1 use 1.1

2.0 2.0 2.0 2.0 2.0 use 2.0

It is only necessary for an application to call WSAStartup() and WSACleanup()
once. Sometimes, though, an application may call WSAStartup() more than
once. The golden rule is to make certain that the number of calls to WSAStart-
up() matches the number of calls to WSACleanup(). For example, if an
application calls WSAStartup() three times, it must call WSACleanup() three
times. That is, the first two calls to WSACleanup() do nothing except decrement
an internal counter in Winsock; the final call to WSACleanup() for the task frees
any resources.

Unlike Winsock 1.1 (which only supports one provider), the architecture of
Winsock 2 supports multiple providers, which we will discuss in Chapter 4.

function WSAStartup Winsock2.pas

Syntax

WSAStartup(wVersionRequired: WORD; var lpWSAData: TWSAData): Integer;
stdcall;

Description

This function initializes the Winsock DLL, registers the calling application, and
allocates resources. It allows the application to specify the minimum version of
Winsock it requires. The function also returns implementation information that

16 � Chapter 2

the calling application should examine for version compatibility. After successful
invocation of WSAStartup(), the application can call other Winsock functions.

Parameters

wVersionRequired: The highest version that the calling application requires. The
high-order byte specifies the minor version and the low-order byte the
major version. Under Windows 95, the highest version that is supported is
1.1. At the time of publication, the current version is 2.2. Table 2-2 pres-
ents which version of Winsock is available for all Windows operating
systems.

Table 2-2: Winsock versions for all Windows platforms

Operating System Winsock Version

Windows 3.1 1.1

Windows 95 1.1 (2.2) See Tip

Windows 98 2.2

Windows Millennium 2.2

Windows NT 4.0 2.2

Windows XP 2.2

�TIP: If you belong to that unique tribe of developers that still uses
Win95 as a development platform, and you want to develop
Winsock 2 applications for Windows 95, you will have to upgrade
Winsock 1.1. The upgrade is available from the Microsoft web
site (www.microsoft.com).

wsData: This is a placeholder for the WSAData record that contains implemen-
tation details for Winsock. When we call WSAStartUp(), the function
populates the WSAData record, which is defined in Winsock2.pas as
follows:

WSAData = record
wVersion: WORD;
wHighVersion: WORD;
szDescription: array [0..WSADESCRIPTION_LEN] of Char;
szSystemStatus: array [0..WSASYS_STATUS_LEN] of Char;
iMaxSockets: Word;
iMaxUdpDg: Word;
lpVendorInfo: PChar;
end;

LPWSADATA = ^WSAData;
TWsaData = WSAData;
PWsaData = LPWSADATA;

Table 2-3 describes these fields of the WSAData data structure.

Winsock Fundamentals � 17

2

C
h
a
p

te
r

Table 2-3: Values for the main members of the WSAData structure

Member Meaning

wVersion The version of the Windows Sockets specification that the Windows Sockets DLL expects the
calling application to use

wHighVersion The highest version of the Windows Sockets specification that this DLL can support (also
encoded as above). Normally this will be the same as wVersion.

szDescription A NULL-terminated ASCII string into which the Windows Sockets DLL copies a description of
the Windows Sockets implementation. The text may be up to 256 characters in length and
contain any characters except control and formatting characters. The information in this field
is often used by an application to provide a status message.

szSystemStatus A NULL-terminated ASCII string into which the Windows Sockets DLL copies relevant status
or configuration information. The Windows Sockets DLL should use this field only if the infor-
mation might be useful to the user or support staff; it should not be considered as an exten-
sion of the szDescription field.

iMaxSockets This field is retained for backward compatibility but should be ignored for version 2 and later,
as no single value can be appropriate for all underlying service providers.

iMaxUdpDg This value should be ignored for version 2 and onward. It is retained for backward compatibil-
ity with Windows Sockets specification 1.1 but should not be used when developing new
applications. For the actual maximum message size specific to a particular Windows Sockets
service provider and socket type, applications should use getsockopt() to retrieve the value of
option SO_MAX_MSG_SIZE after a socket has been created.

lpVendorInfo This value should be ignored for version 2 and onward. It is retained for backward compatibil-
ity with Windows Sockets specification 1.1. Applications needing to access vendor-specific
configuration information should use getsockopt() to retrieve the value of option
PVD_CONFIG. The definition of this value (if utilized) is beyond the scope of this
specification.

Return Value

If successful, WSAStartup() will return zero. As we’ll see when we cover other
Winsock functions, WSAStartup() is the exception to the rule in that it does not
return a Winsock error that we can use to determine the cause of that error.
Since WSAStartup() is a function that initializes the Winsock DLL, which
includes the WSAGetLastError() function to report Winsock-specific errors, it
cannot call WSAGetLastError() because the DLL is not loaded. It is a conun-
drum like the proverbial chicken and egg problem. Therefore, to test for the
success or failure to initialize Winsock, we just check for the return value of
zero. Listing 2-1 demonstrates how to check the return value from
WSAStartup().

Returning to the WSAData data structure, as far as programming Winsock
applications goes, the most important fields that you should always read or
check are wVersion and wHighVersion.

The WSAData structure in Winsock 2 no longer necessarily applies to a sin-
gle vendor’s stack. This means that Winsock 2 applications should ignore
iMaxSockets, iMaxUdpDg, and lpVendorInfo, as these are irrelevant. However,

18 � Chapter 2

you can retrieve provider-specific information by calling the getsockopt() func-
tion. We’ll discuss this function briefly in Chapter 6, “Socket Options.”

See Also

getsockopt, send, sendto, WSACleanup

Example

Listing 2-1 (program EX21 on the companion CD) shows how to load Winsock
using WSAStartup() and how to verify version compatibility. It also shows how
to close a Winsock application properly using WSACleanup().

function WSACleanup Winsock2.pas

Syntax

WSACleanup: Integer; stdcall;

Description

This function unloads the Winsock DLL. A call to WSACleanup() will cancel the
following operations: blocking and asynchronous calls, overlapped send and
receive operations, and close and free any open sockets. Please note that any
data pending may be lost.

Parameters

None

Return Value

If successful, the function will return a value of zero. Otherwise, the function
returns a value of SOCKET_ERROR. To retrieve information about the error,
call the WSAGetLastError() function. Possible error codes are WSANOT-
INITIALISED, WSAENETDOWN, and WSAEINPROGRESS.

See Appendix B for a detailed description of the error codes.

See Also

closesocket, shutdown, WSAStartup

Example

Listing 2-1 shows how to load and unload the Winsock DLL by calling
WSAStartup() and WSACleanup(), respectively.

Listing 2-1: Loading and unloading Winsock

{
Example EX21 demonstrates how to load and unload Winsock correctly.
It also demonstrates how to call different versions of Winsock. In this
example, the program expects an input of 1 for Winsock 1.1 or 2 for
Winsock 2.2. Failing that, the program displays a warning and halts.
To run this program from the IDE, Select Run|Parameters from the Run option
in the IDE toolbar and enter 1 or 2 in the Parameters edit box. To run the
application from the command line, type in the following:

Winsock Fundamentals � 19

2

C
h
a
p

te
r

ex21 1
or

ex21 2

for WinSock 1.1 or Winsock 2.2, respectively.
}
program EX21;

{$APPTYPE CONSOLE}

uses
WinSock2,
SysUtils;

const
Version1 : Word = $101; // Version 1.1
Version2 : word = $202; // Version 2.2

var
WSAData : TWSAData;
Version : Word;

begin
Version := 0;
if ParamStr(1) = '1' then
Version := Version1
else
if ParamStr(1) = '2' then
Version := Version2
else
begin
WriteLn('Missing version. Please input 1 for Version 1.1 or 2 for Version 2.2');
Halt;
end;
if WSAStartUp(Word(Version), WSAData) = 0 then // yes, Winsock does exist ...
try
WriteLn(Format('Version = %d.%d',[Hi(WSAData.wVersion),Lo(WSAData.wVersion)]));
WriteLn(Format('High Version = %d.%d',[Hi(WSAData.wHighVersion),

Lo(WSAData.wHighVersion)]));
WriteLn(Format('Description = %s',[WSAData.szDescription]));
WriteLn(Format('System Status = %s',[WSAData.szSystemStatus]));
WriteLn(Format('Maximum Number of Sockets = %d',[WSAData.iMaxSockets]));
WriteLn(Format('Maximum Size of a Datagram = %d bytes',[WSAData.iMaxUdpDg]));
if WSAData.lpVendorInfo <> NIL then
WriteLn(Format('Vendor Information = %s',[WSAData.lpVendorInfo]));

finally
WSACleanUp;
end
else WriteLn('Failed to initialize Winsock.');
end.

20 � Chapter 2

Figure 2-1 shows output from EX21 calling Winsock 1.1. Compare this output to
that produced by the same program but calling 2.2 in Figure 2-2.

Notice that the fields iMaxSockets and iMaxUdpDg, used to return the maximum
number of sockets and the maximum size of the message, respectively, give us
no useful information.

Winsock Fundamentals � 21

2

C
h
a
p

te
r

Figure 2-1

Figure 2-2

Handling Winsock Errors
Like any application, a Winsock application can fail. You cannot always prevent
an application error, but you can at least detect and handle any Winsock error.
There are two classes of Winsock errors. One is an error caused by inappropri-
ate calls to the Winsock function. A classic example of this is calling any other
Winsock function without first calling the WSAStartup() function. The other is a
network error, which is completely unpredictable, hence the importance of trap-
ping this type of error.

To help you detect and handle errors, Winsock provides two functions,
WSAGetLastError() and WSASetLastError(). When an error occurs, your appli-
cation should determine the error by calling WSAGetLastError() and take
appropriate action, depending on the context of the error. For example, when an
application makes an inappropriate call to an API, it should report the error and
retire gracefully. For a network error, the application should handle it in context.
For example, if a connection breaks, the application should report the error and
perform another task or retire altogether.

WSAGetLastError() is a wrapper for GetLastError(), which is a standard
function for reporting errors in Windows, and because GetLastError() uses a
TLS (thread local storage) entry in the calling threads context, WSAGetLast-
Error() is thread safe. (For more information on threads, consult The Tomes of

Delphi: Win32 Core API—Windows 2000 Edition by John Ayres (ISBN
1-55622-750-7) from Wordware Publishing, Inc.).

For a robust Winsock application, the strategy to employ is as follows: After
each call to a Winsock API, you must check the result of the function (which is
usually SOCKET_ERROR, though INVALID_SOCKET is used for certain func-
tion calls such as socket()). If there is an error, you call WSAGetLastError() to
determine the cause of the error. The application code should always provide a
means of handling the error gracefully and retiring, if necessary. You can use the
WSASetLastError() function to set an error code that your application can use
in certain situations. This function is similar to SetLastError(), which, like
GetLastError(), is also a member of the Win32 API.

WSAGetLastError() is not the only function to return a Winsock error code.
The other reporting functions are getsockopt(), WSAGetAsyncError(), and
WSAGetSelectError(). WSAGetAsyncError() and WSAGetSelectrror() are func-
tions that extract additional error information whenever an error occurs. You
should use WSAGetAsyncError() and WSAGetSelectError() rather than
WSAGetLastError() when you use Microsoft’s family of asynchronous func-
tions, which we will cover in Chapters 3 and 5.

22 � Chapter 2

TE
AM
FL
Y

Team-Fly®

The WSASetLastError() function is a useful function to deploy, provided you
are aware of the caveat emptor of using this function inappropriately. You use
WSASetLastError() to set a virtual error that your application can retrieve with
a call to WSAGetLastError(). However, any subsequent call to WSAGetLast-
Error() will wipe out the artificial error, which is where the caveat emptor comes
in if your program logic is incorrect. To explain the use of WSASetLastError(), I
have developed a rather contrived example in Listing 2-3.

Errors and errors
As you would expect, error codes, like socket functions, have a UNIX pedigree.
The list of errors and their brief descriptions are in Appendix B. As well as that
pedigree, we have Winsock-specific error codes resulting in a hybrid. If you
examine Winsock2.pas, you will see two blocks of error codes that begin with
WSA and E prefixes. These refer to Winsock and Berkeley error codes, respec-
tively. The Berkeley error codes are mapped to their Winsock equivalents. This
mapping is rather useful for UNIX developers porting their socket applications
to Windows. Thankfully, this detail is irrelevant to Delphi developers.

Rather than listing what’s common to Winsock and UNIX socket error codes,
the following list shows Winsock-specific error codes not found in UNIX. We
will describe some of these errors in detail when we discuss the Winsock func-
tions in the chapters to follow. Note that we will not discuss Quality of Service
(error codes from WSA_QOS_RECEIVERS to and including WSA_QOS_
RESERVED_PETYPE), as this is a topic for another tome.

Winsock Fundamentals � 23

2

C
h
a
p

te
r

WSASYSNOTREADY

WSAVERNOTSUPPORTED

WSANOTINITIALISED

WSAEDISCON

WSAENOMORE

WSAECANCELLED

WSAEINVALIDPROCTABLE

WSAEINVALIDPROVIDER

WSAEPROVIDERFAILEDINIT

WSASYSCALLFAILURE

WSASERVICE_NOT_FOUND

WSATYPE_NOT_FOUND

WSA_E_NO_MORE

WSA_E_CANCELLED

WSAEREFUSED

WSA_QOS_RECEIVERS

WSA_QOS_SENDERS

WSA_QOS_NO_SENDERS

WSA_QOS_NO_RECEIVERS

WSA_QOS_REQUEST_CONFIRMED

WSA_QOS_ADMISSION_FAILURE

WSA_QOS_POLICY_FAILURE

WSA_QOS_BAD_STYLE

WSA_QOS_BAD_OBJECT

WSA_QOS_TRAFFIC_CTRL_ERROR

WSA_QOS_GENERIC_ERROR

WSA_QOS_ESERVICETYPE

WSA_QOS_EFLOWSPEC

WSA_QOS_EPROVSPECBUF

WSA_QOS_EFILTERSTYLE

WSA_QOS_EFILTERTYPE

WSA_QOS_EFILTERCOUNT

Before concluding this section, here is a final word to the wise about error
codes: It is all very well for your application to handle Winsock exceptions and
report error codes as they arise. Your Winsock application should also present
exceptions in plain language as well as the actual error code for ease of error
reporting for the user. In the examples in this book, we use SysErrorMessage(),
a function that translates error codes into plain language that your user will
hopefully understand. The sting in the tail with this function is that it doesn’t
work across all Windows platforms. The SysErrorMessage() function works fine
on Windows 2000 but reports an empty string on Windows NT 4.0.

�TIP: Use SysErrorMessage() to present a meaningful explanation of
Winsock errors to your users.

Listing 2-3 demonstrates how to use SysErrorMessage().

function WSAGetLastError Winsock2.pas

Syntax

WSAGetLastError: Integer; stdcall;

Description

This function retrieves the error status for the last network operation that
failed.

Parameters

None

Return Value

The return value indicates the error code for the last operation that failed.

See Also

getsockopt, WSASetLastError

Example

Listing 2-2 (program EX22) shows how to use WSAGetLastError().

24 � Chapter 2

WSA_QOS_EOBJLENGTH

WSA_QOS_EFLOWCOUNT

WSA_QOS_EUNKOWNPSOBJ

WSA_QOS_EPOLICYOBJ

WSA_QOS_EFLOWDESC

WSA_QOS_EPSFLOWSPEC

WSA_QOS_EPSFILTERSPEC

WSA_QOS_ESDMODEOBJ

WSA_QOS_ESHAPERATEOBJ

WSA_QOS_RESERVED_PETYPE

Listing 2-2: Using WSAGetLastError()

{This example demonstrates how to use WSAGetLastError function. To create an artificial
error, we set the size of the Name array to zero before calling the function gethostname(),
which will cause Winsock to report a bad address due to an insufficient allocation to store
the name. We will examine the gethostname() function later in the book.
No inputs are required for this console application.

}
program EX22;

{$APPTYPE CONSOLE}

uses
SysUtils,
Winsock2;

var
WSAData : TWSAData;
Res : Integer;

begin
if WSAStartUp($101, WSAData) = 0 then
try
Res := gethostname('127.0.0.1',0); // this will always fail ...
if Res = Integer(SOCKET_ERROR) then
begin
WriteLn(Format('Call to gethostname() failed with error: %d',[WSAGetLastError]));
WriteLn(Format('Reason for the error is: %s',[SysErrorMessage(WSAGetLastError)]));
end;
finally
WSACleanUp;
end
else
WriteLn('Failed to load Winsock.');

end.

procedure WSASetLastError Winsock2.pas

Syntax

WSASetLastError (iError: Integer); stdcall;

Description

The function sets the error code that can be retrieved through the
WSAGetLastError() function.

Parameters

iError: Integer that specifies the error code to be returned by a subsequent
WSAGetLastError() call

Return Value

There is no return value.

See Also

getsockopt, WSAGetLastError

Winsock Fundamentals � 25

2

C
h
a
p

te
r

Example

Listing 2-3 (program EX23) shows how to use WSASetLastError() and
WSAGetLastError().

Listing 2-3: Using WSASetLastError() and WSAGetLastError()

{This contrived example demonstrates how to use the WSASetLastError() function}
program EX23;

{$APPTYPE CONSOLE}

uses
Dialogs,
SysUtils,
Winsock2;

var
WSAData : TWSAData;
Res,
OldError : Integer;

begin
if WSAStartUp($101, WSAData) = 0 then
try
// Create a virtual error, any old error code will do nicely ...
OldError := 10061;
WSASetLastError(OldError);
WriteLn(Format('Virtual error is: %d',[WSAGetLastError]));
WriteLn(Format('Reason for the virtual error is: %s',[SysErrorMessage(WSAGetLastError)]));

// Now create an artificial error ...
Res := gethostname('127.0.0.1',0); // This will always fail as length of the name is

zero...
if Res = Integer(SOCKET_ERROR) then
begin
WriteLn('An Artificial Error:');
WriteLn(Format('Call to gethostname() failed with error: %d',[WSAGetLastError]));
WriteLn(Format('Reason for the error is: %s',[SysErrorMessage(WSAGetLastError)]));
WriteLn;
WriteLn(Format('The virtual error is %d', [OldError]));
WSASetlastError(OldError);
WriteLn(Format('Reason for the virtual error is: %s',[SysErrorMessage(WSAGetLastError)]));
end;
finally
WSACleanUp;
end
else
WriteLn('Failed to load Winsock.');

end.

26 � Chapter 2

The Many Faces of the Winsock DLL
By this stage, you might have the impression that Winsock 2 is a monolithic API
wrapped in a DLL. Not so! At least, it is no longer true for Winsock 2. Unlike
Winsock 1.1, which had only one transport protocol to contend with, namely
TCP/IP, Winsock 2 is designed to handle transport protocols other than TCP/IP.
(If you cast your mind back to Chapter 1, Winsock is an integral component of
WOSA.) Complicating matters, Winsock 2 also has to handle different name
spaces for the resolution of names, services, and ports. (Don’t worry; we will
cover these topics in Chapter 4.) This complexity, which permits Winsock 2 to
be multilingual, is reflected in how Winsock 2 is structured across DLLs. This
sharing of tasks by DLLs becomes clear if you take a look at Table 2-4. As split
up as Winsock 2 is, the main DLL for the Winsock 2 API resides in the Ws2_32
DLL. Those applications that require Winsock 1.1 are handled by the Winsock
and WSock32 DLLs, which are 16-bit and 32-bit, respectively. When an applica-
tion calls the Winsock 1.1 API, Winsock 2 intercepts these calls and passes
them to the Winsock and Wsock32 DLLs as appropriate. This is known as
thunking. Winsock 2 delegates tasks to the appropriately called helper DLLs. For
example, Wshatm handles functions specific to the ATM transport protocol.

Table 2-4: How Winsock 2 is shared across DLLs

Winsock Files Function

Winsock.dll 16-bit Winsock 1.1

Wsock32.dll 32-bit Winsock 1.1

Ws2_32.dll Main Winsock 2.0

Mswsock.dll Microsoft extensions to Winsock. Mswsock.dll is an API that supplies services
that are not part of Winsock.

Ws2help.dll Platform-specific utilities. Ws2help.dll supplies operating system-specific code
that is not part of Winsock.

Wshtcpip.dll Helper for TCP

Wshnetbs.dll Helper for NetBT

Wshirda.dll Helper for IrDA (infrared sockets)

Wshatm.dll Helper for ATM

Wshisn.dll Helper for Netware

Wshisotp.dll Helper for OSI transports

Sfmwshat.dll Helper for Macintosh

Nwprovau.dll Name resolution provider for IPX

Rnr20.dll Main name resolution

Winrnr.dll LDAP name resolution

Msafd.dll Winsock interface to kernel

Afd.sys Winsock kernel interface to TDI transport protocols

Winsock Fundamentals � 27

2

C
h
a
p

te
r

Summary
We have learned how to load and unload Winsock. We also learned how to detect
Winsock and handle errors. In the next chapter, we’ll learn how to use the vari-
ous functions for resolving hosts and services. Resolution of hosts, ports, and
services is an essential step to perform before communication can occur
between peer applications.

28 � Chapter 2

Chapter 3

Winsock 1.1 Resolution

With the introduction of Winsock 2, Microsoft provided developers with a proto-
col-independent API that resolves hosts, protocols, and services in a more
flexible and powerful way than the services that came with Winsock 1.1. The
use of these new functions, though, comes at a price in terms of increased com-
plexity. As with most other Microsoft APIs, the original functions are still valid
and simpler to understand. However, it is worthwhile to pick up this technology
of protocol-independent functions for the resolving of hosts and services
because by using the concept of protocol independence, we can simplify the
whole process of resolving host names and services.

However, before we begin to explore the new functions, we must lay the
foundation by understanding the rudiments of resolving hosts, protocols, and
services. With that background, you will be prepared to master the more com-
plex Winsock 2 resolution functions. Therefore, we’ll concentrate on Winsock
1.1 resolution functions in this chapter and leave the Winsock 2 protocol-inde-
pendent functions to the next chapter. Before dealing with the Winsock 1.1
resolution functions in detail, we’ll examine the translation functions that handle
byte ordering.

Before dipping our toes in the unknown waters of Winsock resolution, let’s
consider this question: What is Winsock 1.1 resolution? We’ll use a simple anal-
ogy to discover an answer to this question. You use a telephone directory to
look up a telephone number to call your friend. The telephone directory enables
you to quickly retrieve your friend’s telephone number without having to
remember the number. When it comes to host name resolution, the same princi-
ple applies. When you want to connect with a host on the Internet, you need to
know its IP address, which, if you like, is the equivalent of the telephone num-
ber. Hosts on every TCP/IP network, including the Internet, use IP addresses
to identify themselves to each other. Unfortunately, the majority of humans (and
that includes Delphi developers) cannot remember IP addresses in their raw
form. In the early days of the Internet, IP addresses were routinely used but
became impossible when the Internet expanded. To resolve (no pun intended)
this problem, the mechanism of mapping names (essentially aliases) to IP
addresses came into being. The mapping of these aliases to their IP addresses is

29

called host name resolution. Because of mapping names that are user friendly,
that is, easy to remember, you don’t need to know the host’s IP address, pro-
vided you know its friendly name.

Establishing a mapping of a host name with an IP address is not the end of
the equation. Before you can communicate with a TCP/IP host, you need to
know the port upon which the host operates the desired service, like FTP and
HTTP. Extending the telephone directory analogy, you would either know your
friend’s extension or speak with the operator to put you through to your friend.
Perhaps in your case, you would speak to the operator to get through. This is
analogous to what we call service resolution. Added to this equation, we must
also resolve service names to their port numbers. Services such as FTP and
HTTP are well known to surfers on the Net, but hosts deal in numbers when it
comes to providing a service like FTP. Again, service names were invented to
make life easier for users. Like host name mapping, it is necessary to map
human understandable service names to their ports, which are numbers that
hosts can understand.

And that’s not all. We also need to resolve transport protocols to their proto-
col numbers. Hosts require knowing which transport protocols are needed to
operate a service. For example, FTP requires the TCP protocol, which hosts
translate as 6. We will continue to use the telephone directory analogy as we
examine the Winsock 1.1 resolution functions.

Translation Functions
Computers store numbers through byte ordering. There are two ways to repre-
sent numbers, little endian and big endian. Intel processors store numbers in
little endian format—from the least significant byte to the most significant byte
(right to left). On other processors (such as those that run some UNIX sys-
tems), numbers are in big-endian format—from the most significant byte to the
least significant byte—left to right. Since the Internet is a heterogeneous net-
work of different computers, incompatible byte ordering poses a significant
obstacle to communication. To overcome this barrier, current network standards
specify that ports used for communicating between computers should be in net-
work byte order (otherwise known as big endian format), irrespective of their
native byte ordering. That is, network byte order is big endian for use on the
TCP/IP network. You mustn’t forget that network addresses, datagram length,
and TCP/IP window sizes must also be in network byte order (big endian).

Figure 3-1 on the following page shows how little endian and big endian num-
bers are stored in memory.

So, before using resolution functions and starting communications, your
application needs to translate the native host byte (little endian) ordered num-
ber (for example, port number of the host on the PC) to network byte ordered

30 � Chapter 3

number first. That is, you must translate the port number into network byte
order. If this translation is not done, it is very likely that connecting with the
service on the host will never occur, even if the host name resolution works.
Another problem that can cause you to scratch your head is using the port in
host byte order instead of network byte order, which is a common lapse. How-
ever, it is not necessary to convert numerical data into network byte order; only
port numbers, services, and IP addresses need to be in network byte order.

The following trivial example shows graphically the effect of converting a
number in host byte order to network byte order and from network byte order
to host byte order:

host: 100d � 00000064h
network: 64000000h = 1677721600d

The following functions are used to convert from host byte order to network
byte order, or network byte order to host byte order.

function htonl Winsock2.pas

Syntax

htonl(hostlong: u_long): u_long; stdcall;

Description

This function translates a 32-bit integer from host byte order to network byte
order. In other words, it translates an integer in little endian format to big
endian format.

Parameters

hostlong: A 32-bit integer in host byte order

Winsock 1.1 Resolution � 31

3

C
h
a
p

te
r

Figure 3-1

Return Value

The function will return a value in network byte order.

See Also

htons, ntohl, ntohs, WSAHtonl, WSAHtons, WSANtohl, WSANtohs

Example

See Listing 3-1 (program EX31).

function htons Winsock2.pas

Syntax

htons(hostshort: u_short): u_short; stdcall;

Description

This function translates a 16-bit integer from host byte order to network byte
order. In other words, it translates an integer in little endian format to big
endian format.

Parameters

hostshort: A 16-bit number in host byte order

Return Value

The function will return a value in network byte order.

See Also

htonl, ntohl, ntohs, WSAHtonl, WSAHtons, WSANtohl, WSANtohs

Example

See Listing 3-1 (program EX31).

function ntohl Winsock2.pas

Syntax

ntohl(netlong: u_long): u_long; stdcall;

Description

This function converts a 32-bit integer from network byte order to host byte
order. In other words, it translates an integer in big endian format to little
endian format.

Parameters

netlong: A 32-bit integer in network byte order

Return Value

The function will return a value in host byte order.

32 � Chapter 3

TE
AM
FL
Y

Team-Fly®

See Also

htonl, htons, ntohs, WSAHtonl, WSAHtons, WSANtohl, WSANtohs

Example

See Listing 3-1 (program EX31).

function ntohs Winsock2.pas

Syntax

ntohs(netshort: u_short): u_short; stdcall;

Description

This function converts a 16-bit integer from network byte order to host byte
order. In other words, it translates an integer in big endian format to little
endian format.

Parameters

netshort: A 16-bit integer in network byte order

Return Value

The function will return a value in host byte order.

See Also

htonl, htons, ntohl, WSAHtonl, WSAHtons, WSANtohl, WSANtohs

Example

Listing 3-1 demonstrates how to use these functions: htonl(), htons(), ntohl(),
and ntohs(). This example requires a number on the command line. For exam-
ple, you would type the following:

EX31 n

where n is the number to convert.

Listing 3-1: Using htonl(), htons(), ntohl(), and ntohs()

{Example EX31 demonstrates how to convert numbers from network to host order and vice versa.
The following functions are used: htons(), htonl(), ntohs() and ntohl().}

program EX31;

{$APPTYPE CONSOLE}

uses
Dialogs,
SysUtils,
Winsock2;

const
WSVersion: Word = $101;

var
WSAData: TWSAData;

Winsock 1.1 Resolution � 33

3

C
h
a
p

te
r

Value: Cardinal;
Code: Integer;

begin
if ParamCount < 1 then
begin
WriteLn('Missing value. Please input a numerical value.');
Halt;

end;
// Convert input to a numerical value ...
Val(ParamStr(1), Value, Code);
// Check for bad conversion
if Code <> 0 then
begin
WriteLn(Format('Error at position: %d', [Code]));
Halt;

end;
if WSAStartUp(Word(WSVersion), WSAData) = 0 then // yes, Winsock does exist ...
try
WriteLn(Format('Using htonl() the value %d converted from host order to network order

(long format) = %d', [Value, htonl(Value)]));
WriteLn(Format('Using htons() the value %d converted from host order to network order

(short format) = %d', [Value, htons(Value)]));
WriteLn(Format('Using ntohl() the value %d converted from network order to host order

(long format) = %d', [Value, ntohl(Value)]));
WriteLn(Format('Using ntohs() the value %d converted from network order to host order

(short format) = %d', [Value, ntohs(Value)]));
finally
WSACleanUp;

end
else WriteLn('Failed to initialize Winsock.');

end.

Miscellaneous Conversion Functions
The functions we have just examined relate to translating numbers between dif-
ferent endian formats. What about IP addresses and their matching host names?
In this section, we will look at functions that convert an IP dotted address into a
network address and vice versa. Be aware, however, that these functions only
translate between different formats and don’t actually resolve names and IP
addresses; we will examine those functions that do later in this chapter.

function inet_addr Winsock2.pas

Syntax

inet_addr(cp: PChar): u_long; stdcall;

Description

This function converts a NULL-terminated string containing an Internet Proto-
col (IP) address in dotted decimal format into an Internet network address
(in_addr) in network byte order.

34 � Chapter 3

Parameters

cp: A pointer to a NULL-terminated string containing an Internet Protocol
address in dotted decimal format (e.g., 192.168.0.1)

Return Value

If successful, the function will return an unsigned long integer that contains a
binary representation of the Internet address. Otherwise, the function returns
the value INADDR_NONE. An invalid Internet Protocol address in dotted deci-
mal format will cause a failure. For example, if any number in the IP address
exceeds 255, the conversion will fail.

See Also

inet_ntoa

Example

See Listing 3-2 (program EX32).

function inet_ntoa Winsock2.pas

Syntax

inet_ntoa(inaddr: TInAddr): PChar; stdcall;

Description

This function translates an Internet network address into a NULL-terminated
string containing an IP address in dotted decimal format.

�TIP: Since the string returned by inet_ntoa() resides in a buffer in
memory, there is no guarantee that the contents of this buffer
will not be overwritten when your application makes another
Winsock call. It is safer to store the contents of the buffer
returned by inet_ntoa() should your application require it later.

Parameters

inaddr: A record that represents an IP address. The record, which is defined in
Winsock2.pas, looks like this:

in_addr = record
case Integer of
0: (S_un_b: SunB);
1: (S_un_c: SunC);
2: (S_un_w: SunW);
3: (S_addr: u_long);

end;
TInAddr = in_addr;
PInAddr = ^in_addr;

SunB = packed record
s_b1,

Winsock 1.1 Resolution � 35

3

C
h
a
p

te
r

s_b2,
s_b3,
s_b4: u_char;

end;

SunC = packed record
s_c1,
s_c2,
s_c3,
s_c4: Char;

end;

SunW = packed record
s_w1,
s_w2: u_short;

end;

where SunB and SunC are the addresses of the host formatted as four u_chars
and SunW is the address of the host formatted as two u_shorts.

Finally, S_addr is the address of the host formatted as a u_long.

Return Value

If successful, the function will return a pointer to a NULL-terminated string
containing the address in standard Internet dotted notation. Otherwise, it will
return NIL.

See Also

inet_addr

Example

Listing 3-2 shows how to use the inet_ntoa() and inet_addr() functions. The
example also shows that inet_ntoa() and inet_addr() are inverses of each other.

Listing 3-2: Using inet_ntoa() and inet_addr()

{This example demonstrates two functions inet_addr() and inet_ntoa().
The inet_addr function converts a null-terminated string containing
an Internet Protocol (IP) dotted address into an Internet network address
(in_addr) in network byte order.
The inet_ntoa function translates an Internet network address into a
null-terminated string containing a dotted IP address.}

program EX32;

{$APPTYPE CONSOLE}

uses
SysUtils,
Winsock2;

const
WSVersion: Word = $101;

var
WSAData: TWSAData;
Address: TInAddr; // socket address structure
Addr: Integer;

36 � Chapter 3

AddrStr: String;
begin
if WSAStartUp(WSVersion, WSAData) = 0 then // yes, Winsock does exist ...
try
Addr := inet_addr('127.0.0.1');
if Addr = INADDR_NONE then
WriteLn('Error converting 127.0.0.1')

else
WriteLn('inet_addr(127.0.0.1) returned: ' + IntToStr(Addr));
Address.S_addr :=16777343; // This is the address for 127.0.0.1 ...

AddrStr := String(inet_ntoa(Address));
if AddrStr = '' then
WriteLn('Error converting 16777343')

else
WriteLn('inet_ntoa(16777343) returned: ' + AddrStr);

finally
WSACleanUp;

end
else WriteLn('Failed to initialize Winsock.');

end.

Resolution
When you want to communicate with a host on the Internet, you must ascertain
that host’s network address. Each host on the Internet has a unique IP address
that has a name associated with it, usually a mnemonic or something that
matches the company’s name or product that has a corresponding network
address. A host can have many names assigned to the same host. For example,
Wordware Publishing, the publishers of this fine tome and many other excellent
publications, has a host name of www.wordware.com. The host name or alias
can be a mixture of alphabetic and numeric characters up to 255 characters long.
Host names can take various forms. The two most common forms are a nick-
name and a domain name. A nickname is an alias to an IP address that individual
people can assign and use. A domain name is a structured name that follows
Internet conventions.

�TIP: With Windows-based servers, the host name does not have to
match the Windows computer name.

In short, the “www” component is the service for the World Wide Web and
“wordware.com” is the domain. The domain has a registered DNS server (a
host that is running Domain Name System) that resolves the service (www) in
this domain to a specific host (or even hosts) that provide that service (which
may in fact exist outside of wordware.com). To put it in another way,
wordware.com is the DNS domain name and www is a “protocol entry”
(CNAME record) in the DNS zone database that will be mapped to a host name
by DNS. For your client application to communicate with the host, it has to look
up the network address for that host name. Think of this like a postal system;

Winsock 1.1 Resolution � 37

3

C
h
a
p

te
r

you cannot send mail to anyone unless you have his or her street address. Occa-
sionally, you may want to connect to a host that has no name at all but is
reachable through an IP address in decimal dotted format. Fortunately, this is a
rare beast nowadays. (The exception is the router, of which there are many. It is
a host that specializes in managing, or routing, traffic between networks. It
doesn’t offer any services, such as FTP and HTTP, and therefore has no name.)

There are three ways to resolve a host name, which are:

� Hosts file

� DNS server

� Local database file with DNS

Resolving Using a hosts File

The simplest way to resolve a host name to an IP address is to use a locally
stored database file. This database file (the name of which is a misnomer) is
nothing more than a text file that contains a list of IP addresses and their host
names. On Windows NT, Windows 2000, and Windows XP systems, this data-
base file is the hosts file (it has no extension), which resides in the
\system32\drivers\etc directory. For those of you who are planning to develop
sockets applications using Kylix for Linux, the database file is in the /etc direc-
tory. The following shows a typical hosts file.

Copyright (c) 1993-1999 Microsoft Corp.
#
This is a sample HOSTS file used by Microsoft TCP/IP for Windows.
#
This file contains the mappings of IP addresses to host names. Each
entry should be kept on an individual line. The IP address should
be placed in the first column followed by the corresponding host name.
The IP address and the host name should be separated by at least one
space.

127.0.0.1 localhost
192.168.1.1 newton.craiglockhart.com newton
192.168.1.2 laser.craiglockhart.com laser
192.168.1.3 galileo.craiglockhart.com galileo
192.168.1.4 hugyens.craiglockhart.com hugyens

The host name, such as newton.craiglockhart.com, is known as a fully qualified
domain name (FQDN). Rather than type out the FQDN of the host when you
need to connect every time, you can simply use another alias, which is in the
third column in the hosts file. In the case of newton.craiglockhart.com, it is
newton.

In the hosts file on both Windows and Linux systems, there is always a spe-
cial entry, which is 127.0.0.1, called localhost. This is a special IP address known
as the loopback address. What is so special about this address? Simply put,
instead of having a server on another machine, you can have the server on the

38 � Chapter 3

same machine as the client. In other words, the server and client share this
address, which is very convenient for testing client-server systems on the same
machine that has no network connection.

Although testing client server systems (I am referring to applications that
use Winsock) on the same machine is not an ideal way to test, it is a good way
to test the logic of such systems. For proper testing of such systems, it is pref-
erable to locate the server on a separate machine and the client on a separate
machine on a different network from that of the server. By this arrangement,
you can test the robustness of such a system under varying network loads, a
factor that is obviously missing from a stand-alone machine. Taking the tele-
phone book analogy further, the hosts file is like your personal numbers book.
Using the hosts file like a telephone directory is not the answer, as it is not
scaleable because it becomes unmanageable to maintain an expanding hosts file
when adding new hosts and deleting hosts. The solution to this management
problem comes in the form of DNS.

Resolving Using DNS

The Domain Name System (DNS) was designed to make host name resolution
scaleable and centrally manageable. A DNS server maintains a special database
that contains IP address mappings for fully qualified domain names (FQDNs).

When your Winsock application requires a connection with a host, it passes
an FQDN of the destination host. The application calls a Winsock function to
resolve the name to an IP address. The function passes the request to the DNS
resolver in the TCP/IP protocol stack, which is packaged as a DNS Name Query

packet. The resolver sends the packet to the DNS server. If the DNS server
resolves the name to an IP address, it sends back the IP address to the applica-
tion, which then uses the address to communicate with the host. However, this
is not the whole story, as we shall soon discover later in the chapter when we
discuss these functions.

Before concluding this section concerning DNS, let’s explore how DNS serv-
ers work. Every DNS host does not store all of its hosts’ IP addresses and their
FQDNs for the entire Internet; that would be an impossible mission to keep all
hosts’ DNS databases synchronized. Instead, each DNS host is responsible for a
region or zone of Internet hosts. When your client application wishes to connect
with a host, the first DNS host, which is the local DNS host to which your ISP
has configured your TCP/IP settings by default, attempts to resolve the FQDN
that your application sent. If no matching IP address is found, the DNS host
passes the request to an authoritative DNS host, which in turn attempts to
resolve the FQDN. This “passing the buck” approach is achieved by having the
database on each DNS host point to each other.

Winsock 1.1 Resolution � 39

3

C
h
a
p

te
r

Resolving Using a Local Database File with DNS

In many ways, this is the best solution because it’s flexible enough to resolve a
host using the database file (the hosts file) locally. If the host is not found, DNS
is invoked to resolve the host. This combined approach to resolving host names
operates like this:

1. Check the local database file (the host’s file) for a matching name.

2. If a matching name is not found in the local database file, the host name is
packaged as a DNS Name Query and sent to the configured DNS server
somewhere on another network.

However, resolution does not end with hosts. To make use of services such as
FTP and SMTP, you also need to resolve services that hosts provide, such as
the web (www) service for Wordware (www.wordware.com). It would need to be
resolved before you can surf that site. To complicate matters a little more,
resolving the underlying protocol for the required service is also necessary.

Before examining the Winsock 1.1 resolution functions in detail, we must
compare the pros and cons of using blocking and asynchronous functions.

Blocking and Asynchronous Resolution
Winsock provides two sets of functions to resolve hosts, protocols, and services.
The first set uses the concept of a blocking operation, and the second set uses
asynchronous mode.

Using a blocking function in the main thread of the application causes the
user interface to “freeze” during resolution. That is, the operation blocks until it
gets a result, preventing any input from the keyboard or mouse. Freezing the
user interface can be inconvenient and possibly not user friendly. However, the
time it takes to use a blocking function may be short if we are resolving over a
fast LAN. To overcome this freezing problem, you should use threads in your
application, a technique we will discuss later in Chapter 5. By putting a blocking
function on a background thread, the user is allowed to continue with other
tasks in the application.

�TIP: Freezing of the application or Windows may occur when using a
blocking function. To prevent this, place such functions in their
own thread. This will not work if you use the same thread for
both the user interface and the blocking functions.

As you’ll see then, you can resolve (pun not intended) this problem by placing
the blocking function on a background thread that will allow the user to interact
with the application interface.

40 � Chapter 3

When you use a blocking function, such as gethostbyaddr(), to resolve a host,
the process is a complex one (which we covered when we explored DNS) that
involves several steps like this:

Hosts file � DNS � WINS � broadcasts � LMHOSTS � DNS

The function queries the local database first. This database is just a text file
called “hosts” that contains the names of hosts and their corresponding IP
addresses. You will find this file in \Winnt\System32\drivers\etc on NT 4.0 and
Windows 2000 and in \Windows\System on Windows 95/98 systems. If there is
no entry that matches the query, the function contacts the local name server
(via a dial-up line or over a permanent connection) to use DNS (Domain Name
System) to search for a match. If there is no match, the Windows Internet
Naming Service (WINS) broadcasts a request. If this fails, DNS is called again. If
DNS cannot find a match, the function returns a NIL result. Looking at that
sequence of events, it is no wonder that a search for a match can take some
time because the calling thread or application is waiting for it to return, hence
the term “blocking.” However, if the host name is in the hosts file, then the
function will return quickly.

�TIP: To speed up lookups, you can store your favorite web site with
its IP address in the hosts file. A word of warning: This can fail if
the owners of the web site change the IP address without prior
warning.

Resolving a service or protocol is no different from resolving a host. When there
is no corresponding service, the function uses the DNS service to search the
CNAME records in the database. These functions, such as getservbyname(),
query the local database, which is located in the services file. If the function can-
not find a match, then it calls DNS. If there is no match, the function returns an
error. This is also true for resolving protocols, and the local database to use is in
the protocol file.

To overcome the problem of blocking, Winsock provides an additional set of
resolution functions that operate asynchronously. Using this set of asynchron-
ous functions, which is essentially a mapping of the set of blocking functions,
enables the user to interact with your application while resolution proceeds in
the background. These asynchronous functions take advantage of the Windows
messaging system.

When your application calls an asynchronous function, Winsock initiates the
operation and returns to the application immediately, passing back an asyn-
chronous task handle that your application uses to identify the operation. When
the operation is complete, Winsock copies the data returned into a buffer that is
provided by the application and sends a message to the application’s window.

Winsock 1.1 Resolution � 41

3

C
h
a
p

te
r

When the asynchronous operation is complete, your application’s message
window hWnd receives the message in the wMsg parameter. The wParam

parameter of this message contains the asynchronous task handle as returned
by the original function call. The high 16 bits of lParam contain an error code,
which may be any error as defined in Winsock2.pas. An error code of zero indi-
cates successful completion of the asynchronous operation. On successful
completion, the buffer passed to the asynchronous function contains a record. To
access this record, you should cast the original buffer address as a record
pointer. It is important to parse each message that your application receives.
Your application should call the WSAGetAsyncError() function to check the
lParam argument.

Note that if the error code is WSAENOBUFS, the size of the buffer specified
by buflen in the original call was too small to contain all the resultant informa-
tion. In this case, the low 16 bits of lParam contain the size of buffer required to
supply all the requisite information. If the application decides that the partial
data is inadequate, it may reissue the asynchronous function call with a buffer
large enough to receive all the desired information (i.e., no smaller than the low
16 bits of lParam).

If Winsock could not start the asynchronous operation, the function will
return a zero value, and you should call WSAGetLastError() to determine the
cause of the error. However, the price to pay for this is an increase in program
complexity and some overhead. Applications that use blocking functions are
simpler and cleaner.

Now we will return to the set of blocking functions.

Host Resolution

The blocking functions that resolve hosts are gethostbyaddr() and gethostby-
name(); their asynchronous equivalents are WSAAsyncGetHostByAddr() and
WSAAsyncGetHostByName(), respectively. To resolve the host name of the
machine that you are using, call the gethostname() function.

function gethostbyaddr Winsock2.pas

Syntax

gethostbyaddr(addr: PChar; len, type_: Integer): PHostEnt; stdcall;

Description

The function returns a pointer to the THostEnt record containing one or more
“names” and addresses that correspond to the given address. All strings are
NULL terminated.

42 � Chapter 3

TE
AM
FL
Y

Team-Fly®

The Hostent record is defined in Winsock2.pas as follows:

Hostent = record
h_name: PChar; // official name of host
h_aliases: PPChar; // alias list
h_addrtype: Smallint; // host address type
h_length: Smallint; // length of address
case Integer of
0: (h_addr_list: PPChar); // list of addresses
1: (h_addr: PPChar); // address, for backward compatibility

end;
THostEnt = hostent;
PHostEnt = ^hostent;

The members of this data structure are defined as:

h_name: Official name of the host

h_aliases: An array of NULL-terminated alternate names

h_addrtype: The type of address, which is usually AF_INET for TCP/IP on the
Internet. Other address types include AF_IPX for Netware, AF_ATM for
ATM, and AF_UNIX for UNIX.

h_length: The length, in bytes, of each address

h_addr_list: A list of NULL-terminated addresses for the host. Addresses are in
network byte order.

h_addr: An address

The pointer that you get back points to a record allocated by Winsock. As the
data is transient, your application should copy any information that it needs
before issuing any other Winsock function calls.

The field h_name is the official name of the host. If you’re using the DNS or
similar resolution system on the Internet, the name server will return a fully
qualified domain name (FQDN). If you’re using a local “hosts” database file, it
will return the first entry that matches the query.

Parameters

addr: A pointer to an address in network byte order

len: The length of the address in bytes

type_: The type of address, such as AF_INET for TCP/IP

Return Value

If successful, the function will return a pointer to the THostEnt record. Other-
wise, it will return NIL. To retrieve information about the error, call the
WSAGetLastError() function. Possible error codes are WSANOTINITIALISED,
WSAENETDOWN, WSAHOST_NOT_FOUND, WSATRY_AGAIN, WSA-
NO_RECOVERY, WSANO_DATA, WSAEINPROGRESS, WSAEFAULT, and
WSAEINTR.

See Appendix B for a detailed description of the error codes.

Winsock 1.1 Resolution � 43

3

C
h
a
p

te
r

See Also

gethostbyname, WSAAsyncGetHostByAddr

Example

Listing 3-3 (program EX33) shows how to use the gethostbyaddr() function.

Listing 3-3: Using gethostbyaddr()

{ The EX33 example demonstrates the gethostbyaddr() function.
The command line parameter to use is the IP address to resolve. For example,
to execute the program to resolve the IP address 127.0.0.1, you would
type the following:

EX33 127.0.0.1

The gethostbyaddr() function returns a pointer to the THostent record
containing one or more name(s) and addresses that correspond to the given
address. All strings are NULL terminated.}

program EX33;

{$APPTYPE CONSOLE}

uses
Dialogs,
SysUtils,
Winsock2;

const
WSVersion: Word = $101;

var
WSAData: TWSAData;
Address: Integer;
Hostent: PHostent;
HostName: string;
Len,
AddrType: Integer;

begin
if ParamCount < 1 then
begin
WriteLn('Error - missing IP address. Please supply an IP address in' + #10#13 + 'dotted

IP notation (e.g. 127.0.0.1).');
Halt;

end;
HostName := ParamStr(1);
if WSAStartUp(WSVersion, WSAData) = 0 then // yes, Winsock does exist ...
try
Address := inet_addr(PChar(HostName));
if Address <> INADDR_NONE then // Yes, this is a dotted IP address ...
begin
AddrType := AF_INET; // Address Family type, usually AF_INET for TCP/IP ...
Len := SizeOf(AddrType);
Hostent := gethostbyaddr(PChar(@Address), Len, AddrType);
if Hostent <> nil then // success! ...
WriteLn(Format('IP address %s successfully resolved to %s', [HostName,

Hostent^.h_name]))
else // failure, cannot resolve ...

44 � Chapter 3

WriteLn(Format('Call to gethostbyaddr() to resolve %s failed with error: %s',
[HostName, SysErrorMessage(WSAGetLastError)]));

end else WriteLn('IP address is required.');
finally
WSACleanUp;

end
else WriteLn('Failed to initialize Winsock.');

end.
end.

function gethostbyname Winsock2.pas

Syntax

gethostbyname(name: PChar): PHostEnt; stdcall;

Description

The function retrieves information for the host and returns a pointer to the
THostEnt record allocated by Winsock (see gethostbyaddr() for details of
THostEnt record). Your application must not modify this record or free any of
its components.

�TIP: As this data is transient, your application should copy any
information that it needs before issuing any other Winsock
function calls.

Parameters

name: A pointer to the NULL-terminated name (FQDN) of the host or domain

Return Value

If successful, the function will return a pointer to the THostEnt record.
Otherwise, it will return NIL. To retrieve information about the error, call the
WSAGetLastError() function. Possible error codes are WSANOTINITIALISED,
WSAENETDOWN, WSAHOST_NOT_FOUND, WSATRY_AGAIN, WSANO_
RECOVERY, WSANO_DATA, WSAEINPROGRESS, WSAEFAULT, and
WSAEINTR.

See Appendix B for a detailed description of the error codes.

See Also

WSAAsyncGetHostByName, gethostbyaddr

Example

Listing 3-4 (program EX34) demonstrates how to use the gethostbyname()
function.

Listing 3-4: Using gethostbyname()

{ Example EX34 demonstrates the gethostbyname() function.

The command line parameter to use is the host name to resolve. For example,

Winsock 1.1 Resolution � 45

3

C
h
a
p

te
r

to execute the program to resolve the host name localhost you would type the following:

EX34 localhost

The gethostbyname() function gets host information corresponding to a hostname.
All strings are NULL terminated.
The function returns a pointer to the THostent record.

}
program EX34;

{$APPTYPE CONSOLE}
uses
Dialogs,
SysUtils,
Winsock2;

const
WSVersion : Word = $101;

var
WSAData : TWSAData;
Hostent : PHostent;
HostName : String;
h_addr : PChar;
HostAddress : TSockAddrIn;
begin
if ParamCount < 1 then
begin
WriteLn('Error - missing hostname! Please supply a hostname.');
Halt;
end;
HostName := ParamStr(1);
if WSAStartUp(WSVersion, WSAData) = 0 then // yes, Winsock does exist ...
try
// Check if this string contains an Internet dotted address. Reject it if it is ...
if inet_addr(PChar(HostName)) = INADDR_NONE then
begin
Hostent := gethostbyname(PChar(HostName));
if Hostent <> NIL then
begin
Move(Hostent^.h_addr_list^, h_addr, SizeOf(Hostent^.h_addr_list^));
HostAddress.sin_addr.S_un_b.s_b1 := Byte(h_addr[0]);
HostAddress.sin_addr.S_un_b.s_b2 := Byte(h_addr[1]);
HostAddress.sin_addr.S_un_b.s_b3 := Byte(h_addr[2]);
HostAddress.sin_addr.S_un_b.s_b4 := Byte(h_addr[3]);
WriteLn(Format('Hostname %s successfully resolved to %s',[Hostname,

inet_ntoa(HostAddress.sin_addr)]));
end else WriteLn(Format('Call to gethostbyname() to resolve %s failed with error: %s',

[HostName, SysErrorMessage(WSAGetLastError)]));
end else WriteLn('This is not a valid host name!');

finally
WSACleanUp;
end else
WriteLn('Failed to load Winsock.');
end.

46 � Chapter 3

function gethostname Winsock2.pas

Syntax

gethostname(name: PChar; len: Integer): Integer; stdcall;

Description

This function determines the host name of the local machine. Some applications
need to be aware of the name of the machine on which they are running; using
gethostname() provides this name. The name returned by gethostname() may
be a simple name or an FQDN.

Parameters

name: A pointer to a buffer containing a NULL-terminated string for the host
name

len: The length of the buffer

Return Value

If the function succeeds, it will return a value of zero. Otherwise, it will return
SOCKET_ERROR. To retrieve the specific error code, call the function
WSAGetLastError(). Possible error codes are WSANOTINITIALISED,
WSAENETDOWN, WSAEINPROGRESS, and WSAEFAULT.

See Appendix B for a detailed description of the error codes.

See Also

gethostbyname, WSAAsyncGetHostByName

Example

Listing 3-5 (program EX35) shows how to use the gethostname() function.

Listing 3-5: Using gethostname()

{Example EX35 demonstrates the gethostname function.

The gethostname function returns the standard host name for the
local machine. }

program EX35;

{$APPTYPE CONSOLE}
uses
Dialogs,
SysUtils,
Winsock2;

const
WSVersion : Word = $101;

var
WSAData : TWSAData;
HostName : PChar;
begin
if WSAStartUp(WSVersion, WSAData) = 0 then // yes, Winsock does exist ...

Winsock 1.1 Resolution � 47

3

C
h
a
p

te
r

try
HostName := AllocMem(MAXGETHOSTSTRUCT);
try
if gethostname(HostName, MAXGETHOSTSTRUCT) <> Integer(SOCKET_ERROR) then
WriteLn(Format('Host name for the local machine is %s',[Hostname]))
else
WriteLn(Format('Call to gethostname() failed with error: %s',

[SysErrorMessage(WSAGetLastError)]));
finally
Freemem(HostName);
end;
finally
WSACleanUp;
end
else
WriteLn('Failed to load Winsock.');

end.

function WSAAsyncGetHostByName Winsock2.pas

Syntax

WSAAsyncGetHostByName(hWnd: HWND; wMsg: u_int; name, buf: PChar;
buflen: Integer): HANDLE; stdcall;

Description

This function asynchronously retrieves information corresponding to a host
name.

Parameters

hWnd: The handle of the window that should receive a message when the asyn-
chronous request completes

wMsg: The message to receive when the asynchronous request completes

name: A pointer to the NULL-terminated name of the host

buf: A pointer to the data area to receive the THostEnt data. The size of the
buffer must be larger than the size of THostEnt record.

buflen: The size of buf in bytes

Return Value

The return value will only specify if the operation started successfully; it will
not indicate success or failure of the operation itself.

If the operation starts successfully, the function will return a nonzero value of
type THandle. Otherwise, the function will return zero. To retrieve the specific
error code, call the function WSAGetLastError(). Possible errors are
WSAENETDOWN, WSAENOBUFS, WSAEFAULT, WSAHOST_NOT_FOUND,
WSATRY_AGAIN, WSANO_RECOVERY, and WSANO_DATA.

The following errors may occur at the time of the function call, which indicate
that the asynchronous operation could not start: WSANOTINITIALISED,
WSAENETDOWN, WSAEINPROGRESS, and WSAEWOULDBLOCK.

48 � Chapter 3

See Appendix B for a detailed description of the error codes.

See Also

gethostbyname, WSACancelAsyncRequest

Example

Listing 3-6 (program EX36) shows how to perform asynchronous lookup calls.

Listing 3-6: Performing asynchronous lookup calls

unit Main;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, ExtCtrls,
Winsock2;

const
ASYNC_EVENT = WM_USER+100;

type
TypeOfLookUp = (HostName, HostAddr, ServiceName, ServicePort, ProtocolName, ProtocolNumber);

TfrmMain = class(TForm)
gbService: TGroupBox;
btnServiceLookUp: TButton;
edService: TEdit;
Label1: TLabel;
rgbProtocols: TRadioGroup;
gbHost: TGroupBox;
edHost: TEdit;
gbProtocol: TGroupBox;
btnProtocolLookUp: TButton;
edProtocol: TEdit;
GroupBox4: TGroupBox;
Memo1: TMemo;
btnHost: TButton;
btnClose: TButton;
btnCancel: TButton;
Label2: TLabel;
edWinsVer: TEdit;
btnStart: TButton;
btnStop: TButton;
procedure Form1Destroy(Sender: TObject);
procedure btnServiceLookUpClick(Sender: TObject);
procedure btnProtocolLookUpClick(Sender: TObject);
procedure btnHostClick(Sender: TObject);
procedure btnCloseClick(Sender: TObject);
procedure btnCancelClick(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure btnStartClick(Sender: TObject);
procedure btnStopClick(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }
Host : PHostent;

Winsock 1.1 Resolution � 49

3

C
h
a
p

te
r

Service : PServent;
Protocol : PProtoent;
LookUpType : TypeOfLookUp;
AsyncBuff : array[0..MAXGETHOSTSTRUCT-1] of char;
TaskHandle : Integer;
TaskWnd : THandle;
WSRunning : Boolean;
WSAData : TWSADATA;
procedure AsyncOp(var Mess : TMessage);
procedure AbortAsyncOp;
end;

var
frmMain: TfrmMain;

implementation

{$R *.DFM}
procedure TfrmMain.AsyncOp(var Mess : TMessage);
var
MsgErr : Word;
h_addr : PChar;
SockAddress : TSockAddrIn;
begin
if Mess.Msg = ASYNC_EVENT then
begin
MsgErr := WSAGetAsyncError(Mess.lparam);
if MsgErr <> 0 then
Exception.Create('Error : ' + IntToStr(MsgErr));
case LookUpType of
HostName : begin

Host := PHostent(@AsyncBuff);
if Host = NIL then
begin
Memo1.Lines.Add('Unknown host');
Exit;
end;
if Host^.h_name = NIL then
begin
Memo1.Lines.Add('Host Lookup failed...');
Exit;
nd;
move(Host^.h_addr_list^, h_addr, SizeOf(Host^.h_addr_list^));
with SockAddress.sin_addr do
begin
S_un_b.s_b1 := byte(h_addr[0]);
S_un_b.s_b2 := byte(h_addr[1]);
S_un_b.s_b3 := byte(h_addr[2]);
S_un_b.s_b4 := byte(h_addr[3]);
memo1.Lines.Add('IP Address = ' + String(inet_ntoa

(SockAddress.sin_addr)));
end;
end;

HostAddr : begin
Host := PHostent(@AsyncBuff);
if Host = NIL then
begin
Memo1.Lines.Add('Unknown Host');
Exit;
end;

50 � Chapter 3

move(Host^.h_addr_list^, h_addr, SizeOf(Host^.h_addr_list^));
Memo1.Lines.Add('Host Name = ' + String(Host^.h_name));
end;

ServiceName : begin
Service := PServent(@AsyncBuff);
if Service = NIL then
begin
Memo1.Lines.Add('Unknown Service');
Exit;
end;
Memo1.Lines.Add('Service Port = ' + IntToStr(ntohs(Service^.s_port)));
end;

ServicePort : begin
Service := PServent(@AsyncBuff);
if Service = NIL then
begin
Memo1.Lines.Add('Unknown Service');
Exit;
end;
Memo1.Lines.Add('Service Name = ' + StrPas(Service^.s_name));
end;

ProtocolName : begin
Protocol := PProtoent(@AsyncBuff);
if Protocol = NIL then
begin
Memo1.Lines.Add('Unknown Protocol');
Exit;
nd;
Memo1.Lines.Add('Protocol Number = ' + IntToStr(Protocol^.p_proto));
end;

ProtocolNumber : begin
Protocol := PProtoent(@AsyncBuff);
if Protocol = NIL then
begin
Memo1.Lines.Add('Unknown Protocol');
Exit;
end;
Memo1.Lines.Add('Protocol Name = ' + String(Protocol^.p_name));
end;

end;// case
end // if
end;

procedure TfrmMain.AbortAsyncOp;
begin
if WSACancelAsyncRequest(THandle(TaskHandle)) = Integer(SOCKET_ERROR) then
Exception.Create('Error ' + SysErrorMessage(WSAGetLastError))
else
Memo1.Lines.Add('Asynchronous Lookup Operation cancelled...');

end;

procedure TfrmMain.Form1Destroy(Sender: TObject);
begin
if WSRunning then
begin
WSACleanUp;
DeAllocateHWND(TaskWND);
end;
end;

Winsock 1.1 Resolution � 51

3

C
h
a
p

te
r

procedure TfrmMain.btnServiceLookUpClick(Sender: TObject);
var
ProtocolName : String;
DummyValue, Code : integer;
begin
if (length(edService.Text) = 0) or (edService.Text = '') then
Exception.Create('You must enter a service name or port number!');
val(edService.Text, Dummyvalue, Code);
if Code <> 0 then // this is not a numerical value ...it is a service name
LookUpType := ServiceName
else
LookUpType := ServicePort;
FillChar(AsyncBuff, SizeOf(AsyncBuff), #0);
if rgbProtocols.ItemIndex = 0 then
ProtocolName := 'tcp'
else
ProtocolName := 'udp';
if LookupType = ServiceName then
TaskHandle := WSAAsyncGetServByName(TaskWnd, ASYNC_EVENT, PChar(edService.Text),

PChar(ProtocolName), @AsyncBuff[0], MAXGETHOSTSTRUCT)
else
Taskhandle := WSAAsyncGetServByPort(TaskWnd, ASYNC_EVENT, htons(StrToInt(edService.Text)),

PChar(ProtocolName),@AsyncBuff[0], MAXGETHOSTSTRUCT);
if TaskHandle = 0 then
begin
if LookUpType = ServiceName then
Exception.Create('Call to WSAAsyncGetServByName failed...')
else
Exception.Create('Call to WSAAsyncGetServByPort failed...');

end;
end;

procedure TfrmMain.btnProtocolLookUpClick(Sender: TObject);
var
DummyValue, Code : integer;
begin
if (length(edProtocol.Text) = 0) or (edProtocol.Text = '') then
Exception.Create('You must enter a protocol name or protocol number!');
val(edProtocol.Text, Dummyvalue, Code);
if Code <> 0 then // this is not a numerical value ...it is a service name
LookUpType := ProtocolName
else
LookUpType := ProtocolNumber;
FillChar(AsyncBuff, SizeOf(AsyncBuff), #0);
if LookUpType = ProtocolName then
TaskHandle := WSAAsyncGetProtoByName(TaskWnd,

ASYNC_EVENT,PChar(edProtocol.Text),@AsyncBuff[0], MAXGETHOSTSTRUCT)
else
TaskHandle := WSAAsyncGetProtoByNumber(TaskWnd,ASYNC_EVENT,StrToInt(edProtocol.Text),

@AsyncBuff[0], MAXGETHOSTSTRUCT);
if TaskHandle = 0 then
begin
if LookUpType = ProtocolName then
Exception.Create('Call to WSAAsyncGetProtoByName failed...')
else
Exception.Create('Call to WSAAsyncGetProtoByNumber failed...');

end;
end;

52 � Chapter 3

TE
AM
FL
Y

Team-Fly®

procedure TfrmMain.btnHostClick(Sender: TObject);
var
Count, Len : integer;
IPAddr : TInAddr;
begin
if (length(edHost.Text) = 0) or (edHost.Text = '') then
Exception.Create('You must enter a host name or IP Address!');
Len := length(edHost.text);
LookUpType := HostAddr;
for Count := 1 to Len do
if edHost.Text[Count] in ['a'..'z','A'..'Z'] then
begin
LookUpType := HostName;
Break;
end;
FillChar(AsyncBuff, SizeOf(AsyncBuff), #0);
if LookUpType = HostName then
TaskHandle := WSAAsyncGetHostByName(TaskWnd, ASYNC_EVENT,

PChar(edHost.Text),@AsyncBuff[0], MAXGETHOSTSTRUCT)
else
begin
IPAddr.S_addr := inet_addr(PChar(edHost.Text));
TaskHandle := WSAAsyncGetHostByAddr(TaskWnd, ASYNC_EVENT, PChar(@IPAddr), 4, AF_INET,

@AsyncBuff[0], MAXGETHOSTSTRUCT);
end;
if TaskHandle = 0 then
begin
if LookUpType = HostName then
Exception.Create('Call to WSAAsyncGetHostByName failed...')
else
Exception.Create('Call to WSAAsyncGetHostByAddr failed...');

end;
end;

procedure TfrmMain.btnCloseClick(Sender: TObject);
begin
Close;
end;

procedure TfrmMain.btnCancelClick(Sender: TObject);
begin
if WSACancelAsyncRequest(THandle(TaskHandle)) = Integer(SOCKET_ERROR) then
Exception.Create('Error ' + SysErrorMessage(WSAGetLastError))
else
Memo1.Lines.Add('Asynchronous Lookup Operation cancelled...');

end;

procedure TfrmMain.FormCreate(Sender: TObject);
begin
gbHost.Enabled := FALSE;
gbService.Enabled := FALSE;
gbProtocol.Enabled := FALSE;
btnCancel.Enabled := FALSE;
btnStop.Enabled := FALSE;
end;

procedure TfrmMain.btnStartClick(Sender: TObject);
begin
WSRunning := WSAStartUp($101, WSAData) = 0;
if WSRunning then

Winsock 1.1 Resolution � 53

3

C
h
a
p

te
r

begin
Memo1.Lines.Add('Winsock is running');
TaskWnd := AllocateHWND(AsyncOp);
gbHost.Enabled := TRUE;
gbService.Enabled := TRUE;
gbProtocol.Enabled := TRUE;
btnCancel.Enabled := TRUE;
btnStart.Enabled := FALSE;
btnStop.Enabled := TRUE;
end
else
Memo1.Lines.Add('Winsock is not running');

end;

procedure TfrmMain.btnStopClick(Sender: TObject);
begin
if WSRunning then
begin
WSACleanUp;
DeAllocateHWND(TaskWND);
gbHost.Enabled := FALSE;
gbService.Enabled := FALSE;
gbProtocol.Enabled := FALSE;
btnCancel.Enabled := FALSE;
btnStop.Enabled := FALSE;
btnStart.Enabled := TRUE;
WSRunning := FALSE;
end;
end;

end.

function WSAAsyncGetHostByAddr Winsock2.pas

Syntax

WSAAsyncGetHostByAddr(hWnd: HWND; wMsg: u_int; addr: PChar; len, type_:
Integer; buf: PChar; buflen: Integer): HANDLE; stdcall;

Description

This asynchronous function retrieves host information corresponding to an
address.

Parameters

hWnd: The handle of the window that should receive a message when the asyn-
chronous request completes

wMsg: The message to be received when the asynchronous request completes

addr: A pointer to the network address for the host. Host addresses are stored
in network byte order.

len: The length of the address

type_: The type of the address (for example, AF_INET for an IP address)

buf: A pointer to the data area to receive the THostEnt data

54 � Chapter 3

buflen: The size of data area in buf

Return Value

The return value will only specify if the operation started successfully; it will
not indicate success or failure of the operation itself.

If the operation starts successfully, the function will return a nonzero value of
type THandle. Otherwise, the function will return a zero. To retrieve the spe-
cific error code, call the function WSAGetLastError(). Possible error codes are
WSAENETDOWN, WSAENOBUFS, WSAEFAULT, WSAHOST_NOT_FOUND,
WSATRY_AGAIN, WSANO_RECOVERY, and WSANO_DATA.

The following errors may occur at the time of the function call, which indicate
that the asynchronous operation could not start: WSANOTINITIALISED,
WSAENETDOWN, WSAEINPROGRESS, and WSAEWOULDBLOCK.

See Appendix B for a detailed description of the error codes.

See Also

gethostbyaddr, WSACancelAsyncRequest

Example

See Listing 3-6 (program EX36).

Service Resolution

The blocking functions that resolve services are getservbyname() and
getservbyport(), and their asynchronous equivalents are WSAAsyncGetServBy-
Name() and WSAAsyncGetServByPort(), respectively.

function getservbyname Winsock2.pas

Syntax

getservbyname(name, proto: PChar): PServEnt; stdcall;

Description

The function returns information for the requested service and retrieves a
pointer to the TServEnt data structure that contains information corresponding
to a service name and protocol. The TServEnt record is defined as follows in
Winsock2.pas:

servent = record
s_name: PChar; // official service name
s_aliases: PPChar; // alias list
s_port: Smallint; // port number
s_proto: PChar; // protocol to use

end;
TServEnt = servent;
PServEnt = ^servent;

Winsock 1.1 Resolution � 55

3

C
h
a
p

te
r

The pointer that you receive points to a record allocated by Winsock. Your appli-
cation must not attempt to modify this record or free any of its parameters. This
data is transient, so your application should copy any information that it needs
before issuing any other Winsock function calls.

�TIP: To reinforce the previous point, remember the pointer you receive
points to a record allocated by Winsock. Your application must never
attempt to modify this record or free any of its parameters.

The members of this data structure are defined as:

s_name: The name of the service

s_aliases: An array of NULL-terminated strings populated with alternative
names

s_port: Port number for the service. Port numbers are always in network byte
order.

s_proto: The name of the protocol to use for the service

Parameters

name: A pointer to a NULL-terminated string representing the service name

proto: An optional pointer to a NULL-terminated string. If this argument is NIL,
the function returns a pointer to the TServEnt record.

Return Value

If successful, the function will return a pointer to the TServEnt record. Other-
wise, it will return an invalid pointer. To retrieve the specific error code, call the
function WSAGetLastError(). Possible error codes are WSANOTINITIALISED,
WSAENETDOWN, WSAHOST_NOT_FOUND, WSATRY_AGAIN, WSANO_
RECOVERY, WSANO_DATA, WSAEINPROGRESS, WSAEFAULT, and
WSAEINTR.

See Appendix B for a detailed description of the error codes.

See Also

getservbyport, WSAAsyncGetServByName

Example

Listing 3-7 (program EX37) shows how to use the getservbyname() function.

Listing 3-7: Using getservbyname()

{ Example EX37 demonstrates the getservbyname() function.
To execute this example you need to supply the service and protocol.
For example, supply smtp and tcp for the service and protocol, respectively.

EX37 smtp tcp

56 � Chapter 3

The getservbyname() function gets service information corresponding
to a service name and protocol.
The function returns a pointer to the TServent which contains
the name(s) and service number which correspond to the given service name.
All strings are NULL terminated.}

program EX37;

{$APPTYPE CONSOLE}
uses
Dialogs,
SysUtils,
Winsock2;

const
WSVersion : Word = $101;

var
WSAData : TWSAData;
Servent : PServent;
ProtocolName,
ServiceName : String;
Alias : PPChar;
ServiceCount : Integer;
begin
if ParamCount < 2 then
begin
WriteLn('Error - missing parameter(s)! '+#10#13+'Please supply a service name and

protocol (e.g. ftp tcp');
Halt;

end;
ServiceName := ParamStr(1);
ProtocolName := ParamStr(2);
if WSAStartUp(Word(WSVersion), WSAData) = 0 then // yes, Winsock does exist ...
try
Servent := getservbyname(PChar(ServiceName),PChar(ProtocolName));
if Servent <> NIL then
begin
WriteLn(Format('Official Service Name is %s',[Servent^.s_name]));
WriteLn(Format('Service Port is %d in network order',[Servent^.s_port]));
WriteLn(Format('Service Port is %d in host order',[ntohs(Servent^.s_port)]));
WriteLn(Format('Protocol is %s',[Servent^.s_proto]));
WriteLn('List of Aliases');
ServiceCount := 0;
Alias := Servent^.s_aliases;
while Alias^ <> nil do
begin
Inc(ServiceCount);
WriteLn(Format('Service Name [%d] is %s',[ServiceCount, Alias^]));
Inc(Alias);

end;
if ServiceCount = 0 then WriteLn('None');

end else
WriteLn(Format('Call to getservbyname() failed with error: %s',

[SysErrorMessage(WSAGetLastError)]));
finally
WSACleanUp;

end else
WriteLn('Failed to load Winsock.');

end.

Winsock 1.1 Resolution � 57

3

C
h
a
p

te
r

function getservbyport Winsock2.pas

Syntax

getservbyport(port: Integer; proto: PChar): PServEnt; stdcall;

Description

This function retrieves information about a service based on the port number
and protocol. Your application must not attempt to modify this record or free any
of its components. This data is transient, so your application should copy any
information that it needs before calling any other Winsock function calls.

Parameters

port: The port for a service, which must be in network byte order

proto: An optional pointer to a protocol name. If the argument is NIL, the func-
tion returns the first service entry that matches the port argument with
the s_port field of the TServEnt record. Otherwise, getservbyport()
matches both the port and the proto fields.

Return Value

If successful, getservbyport() will return a pointer to the TServEnt record that
is allocated by Winsock. Otherwise, it will return an invalid pointer. To retrieve
the specific error code, call the function WSAGetLastError(). Possible error
codes are WSANOTINITIALISED, WSAENETDOWN, WSAHOST_NOT_
FOUND, WSATRY_AGAIN, WSANO_RECOVERY, WSANO_DATA,
WSAEINPROGRESS, and WSAEFAULT.

See Appendix B for a detailed description of the error codes.

See Also

getservbyname, WSAAsyncGetServByPort

Example

Listing 3-8 (program EX38) shows how to use the getservbyport() function.

Listing 3-8: Using getservbyport()

{ Example EX38 demonstrates the getservbyport() function.

To execute this example, you need to supply the service and protocol.
For example, supply smtp and tcp for the service and protocol, respectively.

EX38 21 tcp

The getservbyport() function gets service information corresponding
to a service name and protocol.
The function returns a pointer to the Tservent, which contains
the name(s) and service number that correspond to the given service name.
All strings are NULL terminated.}

58 � Chapter 3

program EX38;

{$APPTYPE CONSOLE}
uses
Dialogs,
SysUtils,
Winsock2;

const
WSVersion : Word = $101;

var
WSAData : TWSAData;
Servent : PServent;
ProtocolName: String;
Alias : PPChar;
Port,
ServiceCount : Integer;
begin
Port := 0;
if ParamCount < 2 then
begin
WriteLn('Error - missing service port or protocol! '+#10#13+'Please supply a service name

and protocol (e.g. 21 tcp');
Halt;
end;
try
Port := StrToInt(ParamStr(1));
except on EConvertError do
begin
WriteLn(Format('Invalid Port %d',[Port]));
Halt;
end;
end;
ProtocolName := ParamStr(2);
if WSAStartUp(WSVersion, WSAData) = 0 then // yes, Winsock does exist ...
try
Servent := getservbyport(htons(Port),PChar(ProtocolName));
if Servent <> NIL then
begin
WriteLn(Format('Official Service Name is %s',[Servent^.s_name]));
WriteLn(Format('Service Port is %d in network order',[Servent^.s_port]));
WriteLn(Format('Service Port is %d in host order',[ntohs(Servent^.s_port)]));
WriteLn(Format('Protocol is %s',[Servent^.s_proto]));
ServiceCount := 0;
Alias := Servent^.s_aliases;
while Alias^ <> nil do
begin
Inc(ServiceCount);
WriteLn(Format('Service Name [%d] is %s',[ServiceCount, Alias^]));
Inc(Alias);

end;
if ServiceCount = 0 then WriteLn('None');

end else
WriteLn(Format('Call to getservbyport() failed with error: %s',

[SysErrorMessage(WSAGetLastError)]));
finally
WSACleanUp;

Winsock 1.1 Resolution � 59

3

C
h
a
p

te
r

end else
WriteLn('Failed to load Winsock.');

end.

function WSAAsyncGetServByName Winsock2.pas

Syntax

WSAAsyncGetServByName(hWnd: HWND; wMsg: u_int; name, proto, buf: PChar;
buflen: Integer): HANDLE; stdcall;

Description

This asynchronous function retrieves service information corresponding to a
service name and port.

Parameters

hWnd: The handle of the window that should receive a message when the asyn-
chronous request completes

wMsg: The message to be received when the asynchronous request completes

name: A pointer to a NULL-terminated string containing the service name

proto: A pointer to a protocol name, which may be NIL. If the argument is NIL,
the function searches for the first service entry for which s_name or one of
the s_aliases matches the given name above. Otherwise, WSAAsyncGet-
ServByName() matches both name and proto.

buf: A pointer to the buffer to receive the PServEnt record

buflen: The length of the buffer, buf

Return Value

The return value will only specify if the operation started successfully; it will
not indicate success or failure of the operation itself. If the operation starts suc-
cessfully, the function will return a nonzero value of type THandle. Otherwise,
the function will return a zero to indicate a failure. To retrieve the specific error
code, call the function WSAGetLastError(). Possible error codes are WSAE-
NETDOWN, WSAENOBUFS, WSAEFAULT, WSAHOST_NOT_FOUND,
WSATRY_ AGAIN, WSANO_RECOVERY, and WSANO_DATA.

The following errors may occur at the time of the function call, which indicate
that the asynchronous operation could not start: WSANOTINITIALISED, WSA-
ENETDOWN, WSAEINPROGRESS, and WSAEWOULDBLOCK.

See Appendix B for a detailed description of the error codes.

See Also

getservbyname, WSACancelAsyncRequest

60 � Chapter 3

Example

See Listing 3-6 (program EX36).

function WSAAsyncGetServByPort Winsock2.pas

Syntax

WSAAsyncGetServByPort(hWnd: HWND; wMsg: u_int; port: Integer; proto, buf:
PChar; buflen: Integer): HANDLE; stdcall;

Description

This asynchronous function retrieves service information corresponding to a
port and protocol.

Parameters

hWnd: The handle of the window that should receive a message when the asyn-
chronous request completes

wMsg: The message to be received when the asynchronous request completes

port: The port for the service in network byte order

proto: A pointer to a protocol name. This may be NIL, in which case WSAAsync-
GetServByPort() will search for the first service entry for which s_port

matches the given port. Otherwise, WSAAsyncGetServByPort(), matches
both port and proto.

buf: A pointer to the data area to receive the TServEnt data

buflen: The size of data area buf

Return Value

The return value will only specify if the operation started successfully; it will
not indicate success or failure of the operation itself.

If the operation starts successfully, the function will return a nonzero value of
type THandle. Otherwise, the function will return a zero. To retrieve the spe-
cific error code, call the function WSAGetLastError(). Possible error codes are
WSAENETDOWN, WSAENOBUFS, WSAEFAULT, WSAHOST_NOT_FOUND,
WSATRY_AGAIN, WSANO_RECOVERY, and WSANO_DATA.

The following errors may occur at the time of the function call, which indicate
that the asynchronous operation could not start: WSANOTINITIALISED, WSA-
ENETDOWN, WSAEINPROGRESS, and WSAEWOULDBLOCK.

See Appendix B for a detailed description of the error codes.

See Also

getservbyport, WSACancelAsyncRequest

Example

See Listing 3-6 (program EX36).

Winsock 1.1 Resolution � 61

3

C
h
a
p

te
r

Protocol Resolution

Before using a service, it is necessary to resolve the underlying protocol first.
Services such as FTP, SMTP, POP3, HTTP, and many others use TCP as their
transport protocol, which should be present. Other services, like TFTP (Trivial
File Transfer Protocol), use UDP instead. Some services, such as DNS, are
agnostic in that they can use either UDP or TCP.

The blocking functions that resolve services are getprotobyname() and get-
protobynumber(), and their asynchronous equivalents are WSAAsyncGetProto-
ByName() and WSAAsyncGetProtoByNumber(), respectively.

function getprotobyname Winsock2.pas

Syntax

getprotobyname(name: PChar): PProtoEnt; stdcall;

Description

This function retrieves protocol information corresponding to a protocol name.
The protoent record is defined in Winsock2.pas as follows:

protoent= record
p_name: PChar; // official protocol name
p_aliases: PPChar; // alias list
p_proto: Smallint; // protocol #

end;
TProtoEnt = protoent;
PProtoEnt = ^protoent;

The members of this data structure are defined as:

p_name: Official name of the protocol

p_aliases: An array of NULL-terminated strings that can hold alternative names

p_proto: The protocol number in host byte order

The PProtoEnt value that is returned points to a record that is allocated by
Winsock. The data is transient, so the application should copy any information
that it needs before calling any other Winsock function calls.

�TIP: The application must never attempt to modify this record or to
free any of its components.

Parameters

name: A pointer to a NULL-terminated protocol name

Return Value

If successful, the function will return a pointer to the PProtoEnt record. Other-
wise, it will return NIL. To retrieve the specific error code, call the function
WSAGetLastError(). Possible error codes are WSANOTINITIALISED,

62 � Chapter 3

TE
AM
FL
Y

Team-Fly®

WSAENETDOWN, WSAHOST_NOT_FOUND, WSATRY_AGAIN, WSANO_
RECOVERY, WSANO_DATA, WSAEINPROGRESS, WSAEFAULT, and
WSAEINTR.

See Appendix B for a detailed description of the error codes.

See Also

getprotobynumber, WSAAsyncGetProtoByName

Example

Listing 3-9 (program EX39) shows how to use the getprotobyname() function.

Listing 3-9: Using getprotobyname()

{ Example EX39 demonstrates the getprotobyname() function.

To execute this example, you need to supply the protocol.
For example, supply tcp for the protocol.

EX39 tcp

The getprotobyname() function gets protocol information corresponding to a
protocol name.
The getprotobyname() function returns a pointer to the TProtoEnt record,which
contains the name(s) and protocol number that correspond to the given
protocol name. All strings are NULL terminated.}

program EX39;

{$APPTYPE CONSOLE}
uses
Dialogs,
SysUtils,
Winsock2;

const
WSVersion : Word = $101;

var
WSAData: TWSAData;
Protocol: PProtoEnt;
ProtocolName: String;
Alias: PPChar;
ProtocolCount: Integer;
begin
if ParamCount < 1 then
begin
WriteLn('Error - missing protocol name! '+#10#13+'Please supply a protocol name(e.g. tcp');
Halt;
end;
ProtocolName := ParamStr(1);
if WSAStartUp(WSVersion, WSAData) = 0 then // yes, Winsock does exist ...
try
Protocol := getprotobyname(PChar(ProtocolName));
if Protocol <> NIL then
begin
with Protocol^ do
begin

Winsock 1.1 Resolution � 63

3

C
h
a
p

te
r

WriteLn(Format('Protocol Name is %s',[Protocol.p_name]));
WriteLn(Format('Protocol Number is %d',[Protocol.p_proto]));
end;
ProtocolCount := 0;
WriteLn(Format('The %s Protocol has the following aliases',[Protocol.p_name]));
Alias := Protocol^.p_aliases;
while Alias^ <> nil do
begin
Inc(ProtocolCount);
WriteLn(Format('Service Name [%d] is %s',[ProtocolCount, Alias^]));
Inc(Alias);

end;
if ProtocolCount = 0 then WriteLn('None');
end
else
WriteLn(Format('Call to getprotobyname() failed with error: %s',

[SysErrorMessage(WSAGetLastError)]));
finally
WSACleanUp;
end else
WriteLn('Failed to load Winsock.');

end.

function getprotobynumber Winsock2.pas

Syntax

getprotobynumber(proto: Integer): PProtoEnt; stdcall;

Description

This function retrieves information for a protocol corresponding to a protocol
number and returns a pointer to a protoent record, as described previously in
getprotobyname(). As in previous examples, your application must not attempt
to modify this record or free any of its components. Since the data is transient,
your application should copy any information that it needs before calling any
other Winsock function calls.

Parameters

proto: A protocol number in host byte order

Return Value

If successful, the function will return a pointer to the PProtoEnt record. Other-
wise, it will return NIL. To retrieve the specific error code, call the function
WSAGetLastError(). Possible error codes are WSANOTINITIALISED,
WSAENETDOWN, WSAHOST_NOT_FOUND, WSATRY_AGAIN, WSANO_
RECOVERY, WSANO_DATA, WSAEINPROGRESS, and WSAEINTR.

See Appendix B for a detailed description of the error codes.

See Also

getprotobyname, WSAAsyncGetProtoByNumber

64 � Chapter 3

Example

Listing 3-10 (program EX310) shows how to use the getprotobynumber()
function.

Listing 3-10: Using getprotobynumber()

{ Example EX310 demonstrates the getprotobynumber() function.

To execute this example, you need to supply the protocol number.
For example, supply 6 for the tcp protocol.

EX310 6

The getprotobynumber() function gets protocol information
corresponding to a protocol number.
This function returns a pointer to a ProtoEnt record.
The contents of the structure correspond to the given protocol number.}

program EX310;

{$APPTYPE CONSOLE}
uses
Dialogs,
SysUtils,
Winsock2;

const
WSVersion : Word = $101;

var
WSAData : TWSAData;
Protocol : PProtoEnt;
Alias : PPChar;
ProtoNumber,
ProtocolCount : Integer;
begin
if ParamCount < 1 then
begin
WriteLn('Error - missing protocol number! '+#10#13+'Please supply a protocol number.');
Halt;

end;
ProtoNumber := 0;
try
ProtoNumber := StrToInt(ParamStr(1));
except on EConvertError do
begin
ShowMessage(Format('Invalid input %s',[ParamStr(1)]));
Halt;
end;
end;
if WSAStartUp(Word(WSVersion), WSAData) = 0 then // yes, Winsock does exist ...
try
Protocol := getprotobynumber(ProtoNumber);
if Protocol <> NIL then
begin
with Protocol^ do
begin
WriteLn(Format('Protocol is %s',[Protocol.p_name]));

Winsock 1.1 Resolution � 65

3

C
h
a
p

te
r

WriteLn(Format('Protocol number is %d',[Protocol.p_proto]));
end;
ProtocolCount := 0;
WriteLn(Format('The %s Protocol has the following aliases',[Protocol.p_name]));
Alias := Protocol^.p_aliases;
while Alias^ <> nil do
begin
Inc(ProtocolCount);
WriteLn(Format('Protocol Name [%d] is %s',[ProtocolCount, Alias^]));
Inc(Alias);

end;
end
else
WriteLn(Format('Call to getprotobynumber() failed with error: %s',

[SysErrorMessage(WSAGetLastError)]));
finally
WSACleanUp;
end else
WriteLn('Failed to load Winsock.');

end.

function WSAAsyncGetProtoByName Winsock2.pas

Syntax

WSAAsyncGetProtoByName(hWnd: HWND; wMsg: u_int; name, buf: PChar;
buflen: Integer): HANDLE; stdcall;

Description

This asynchronous function retrieves protocol information corresponding to a
protocol name.

Parameters

hWnd: The handle of the window that should receive a message when the asyn-
chronous request completes

wMsg: The message to receive when the asynchronous request completes

name: A pointer to the NULL-terminated protocol name to resolve

buf: A pointer to the data area to receive the protoent data

buflen: The size of data area buf

Return Value

The return value will only indicate if the operation started successfully; it will
not indicate success or failure of the operation itself. If the operation starts suc-
cessfully, the function will return a nonzero value of type THandle. Otherwise,
the function will return a value of zero. To retrieve the specific error code, call
the function WSAGetLastError(). Possible error codes are WSAENETDOWN,
WSAENOBUFS, WSAEFAULT, WSAHOST_NOT_FOUND, WSATRY_AGAIN,
WSANO_RECOVERY, and WSANO_DATA.

66 � Chapter 3

The following errors may occur at the time of the function call, which indicate
that the asynchronous operation could not start: WSANOTINITIALISED,
WSAENETDOWN, WSAEINPROGRESS, and WSAEWOULDBLOCK.

See Appendix B for a detailed description of the error codes.

See Also

getprotobyname, WSACancelAsyncRequest

Example

See Listing 3-6 (program EX36).

function WSAAsyncGetProtoByNumber Winsock2.pas

Syntax

WSAAsyncGetProtoByNumber (hWnd: HWND; wMsg: u_int; number: Integer;
buf: PChar; buflen: Integer): HANDLE; stdcall;

Description

This asynchronous function retrieves protocol information corresponding to a
protocol number.

Parameters

hWnd: The handle of the window that should receive a message when the asyn-
chronous request completes

wMsg: The message to receive when the asynchronous request completes

number: The protocol number to be resolved, in host byte order

buf: A pointer to the data area to receive the TProtoEnt data

buflen: The size of data area buf

Return Value

The return value will only indicate if the operation started successfully; it will
not indicate success or failure of the operation itself.

If the operation starts successfully, the function will return a nonzero value of
type THandle. Otherwise, the function will return a value of zero. To retrieve
the specific error code, call the function WSAGetLastError(). Possible error
codes are WSAENETDOWN, WSAENOBUFS, WSAEFAULT, WSAHOST_
NOT_FOUND, WSATRY_AGAIN, WSANO_RECOVERY, and WSANO_DATA.

The following errors may occur at the time of the function call, which indicate
that the asynchronous operation could not start: WSANOTINITIALISED,
WSAENETDOWN, WSAEINPROGRESS, and WSAEWOULDBLOCK.

See Appendix B for a detailed description of the error codes.

See Also

getprotobynumber, WSACancelAsyncRequest

Winsock 1.1 Resolution � 67

3

C
h
a
p

te
r

Example

See Listing 3-6 (program EX36).

Canceling an Outstanding Asynchronous Call
It is sometimes necessary to cancel an outstanding asynchronous call. You
might want to abort the call for any reason. For example, the asynchronous call
was taking too long to complete, or the user of your application might want to
cancel the call before closing down the application. A call to WSACancelAsync-
Request() cancels any asynchronous call that is still being serviced.

function WSACancelAsyncRequest Winsock2.pas

Syntax

WSACancelAsyncRequest(hAsyncTaskHandle: THandle): Integer; stdcall;

Description

This function cancels an incomplete asynchronous operation.

Parameters

hAsyncTaskHandle: A handle to identify the asynchronous operation to cancel,
which is the handle previously assigned for the asynchronous operation

Return Value

If successful, the function will return a value of zero. Otherwise, it will return
the value SOCKET_ERROR. To retrieve the specific error code, call the func-
tion WSAGetLastError(). Possible error codes are WSANOTINITIALISED,
WSAENETDOWN, WSAEINVAL, WSAEINPROGRESS, and WSAEALREADY.

An attempt to cancel an existing asynchronous operation can fail with an
error code of WSAEALREADY for two reasons. First, the original operation has
already completed and the application has dealt with the resultant message.
Second, the original operation has already completed but the resultant message
is still waiting in the application message queue.

See Appendix B for a detailed description of the error codes.

See Also

WSAAsyncGetHostByAddr, WSAAsyncGetHostByName, WSAAsyncGetProto-
ByName, WSAAsyncGetProtoByNumber, WSAAsyncGetServByName,
WSAAsyncGetServByPort

Example

See Listing 3-6 (program EX36).

68 � Chapter 3

Summary
In this chapter, you have learned how to perform translation from host order to
network order and vice versa, and resolution of a host, service, and protocol
using the blocking and asynchronous functions. The next chapter focuses on
Winsock 2 style resolution that is protocol independent and is more flexible and
powerful than the old style Winsock 1.1 resolution functions.

Winsock 1.1 Resolution � 69

3

C
h
a
p

te
r

Chapter 4

Winsock 2 Resolution

In the last chapter, we discussed Winsock 1.1 style resolution. Because of its
simplicity and proven technology, the majority of existing applications still use
Winsock 1.1 resolution functions. Indeed, the Winsock 2 extensions do not
replace the original functions, but rather, they enhance the existing repertoire
by providing the means to register a service on the server side and perform
queries on the client side without the need to resolve ports, host names, and
services. As part of its armory, Winsock 2 provides tools to enumerate transport
protocols and name spaces that are required to register and query a service.

Although the Winsock 2 resolution and registration functions are more com-
plex than we have seen so far, mastering the implementation details of these
functions is a worthwhile investment on your part. One important reason is that
their inclusion will help make your application user friendly. These resolution
APIs also perform protocol-independent name registration.

First, however, we are going to skim through the new translation functions
that Winsock 2 introduced to extend the scope of the existing Winsock 1.1
translation tools. Then we will explore how to install a service, advertise a ser-
vice on the server side, and generate service queries from the client.

Translation Functions
Like their Winsock 1.1 peers, the following functions (which Winsock 2 desig-
nates with a WSA prefix to distinguish them from their Winsock 1.1 cousins)
perform operations that transcend the byte ordering incompatibility that exists
on the Internet. We have already covered this topic in some depth in the previ-
ous chapter; let’s briefly examine these functions.

function WSAHtonl Winsock2.pas

Syntax

WSAHtonl(s: TSocket; hostlong: u_long; lpnetlong: pu_long): u_int; stdcall;

71

Description

This function takes a 32-bit number in host byte order and returns a 32-bit num-
ber pointed to by the lpnetlong parameter in network byte order for the socket
descriptor s.

Parameters

s: A socket descriptor

hostlong: A 32-bit number in host byte order

lpnetlong: A pointer to a 32-bit number in network byte order

Return Value

If the function succeeds, it will return zero. If the function fails, the return value
will be SOCKET_ERROR. To retrieve the specific error code, call the function
WSAGetLastError(). Possible error codes are WSANOTINITIALISED, WSAE-
NETDOWN, WSAENOTSOCK, and WSAEFAULT.

See Appendix B for a detailed description of the error codes.

See Also

htonl, htons, ntohl, ntohs, WSAHtons, WSANtohl, WSANtohs

Example

Listing 4-1 (program EX41) shows how to use the WSAHtons(), WSAHtonl(),
WSANtohs(), and WSANtohl() functions.

Listing 4-1: Converting numbers from network order to host order

{ Example EX41 demonstrates how to convert numbers from network to host order and vice versa.

To execute this example, you need to supply a number. For example, to translate a number, say
21, type the following and press ENTER on the command line:

EX41 21

The following functions are used: WSAhtons, WSAhtonl,
WSAntohs, and WSAntohl.

}
program EX41;

{$APPTYPE CONSOLE}

uses
Dialogs,
SysUtils,
Winsock2,
Windows;

const
WSVersion = $0202;

var
WSAData : TWSAData;

72 � Chapter 4

TE
AM
FL
Y

Team-Fly®

Netlong : DWORD;
Netshort: WORD;
Value : Cardinal;
Code : Integer;
skt : TSocket;
Res : Integer;
begin
if ParamCount < 1 then
begin
WriteLn('Missing value. Please input a numerical value.');
Halt;
end;
// Convert input to a numerical value ...
Val(ParamStr(1), Value, Code);
// Check for bad conversion
if Code <> 0 then
begin
MessageDlg(Format('Error at position: %d',[Code]), mtError, [mbOk], 0);
Halt;
end;
if WSAStartUp(Word(WSVersion), WSAData) = 0 then // yes, Winsock does exist ...
try
skt := socket(AF_INET, SOCK_STREAM,0);
if skt = SOCKET_ERROR then
begin
WriteLn(Format('Call to socket() failed with error: %s',

[SysErrorMessage(WSAGetLastError)]));
end else
begin
{mvb you're not checking the result of the WSA functions ?!}
Res := WSAhtonl(skt, Value, Netlong);
if Res = SOCKET_ERROR then
WriteLn(Format('Call to WSAhtonl() failed with error: %s',

[SysErrorMessage(WSAGetLastError)]))
else
WriteLn(Format('Using WSAhtonl() the value %d converted from host order to network order

(long format) = %d',[Value, Netlong]));
Res := WSAhtons(skt, Value, Netshort);
if Res = SOCKET_ERROR then
WriteLn(Format('Call to WSAhtons() failed with error: %s',

[SysErrorMessage(WSAGetLastError)]))
else
WriteLn(Format('Using WSAhtons() the value %d converted from host order to network order

(short format) = %d',[Value, Netshort]));
Res := WSAntohl(skt, Value, Netlong);
if Res = SOCKET_ERROR then
WriteLn(Format('Call to WSAntohl() failed with error: %s',

[SysErrorMessage(WSAGetLastError)]))
else
WriteLn(Format('Using WSAntohl() the value %d converted from network order to host order

(long format) = %d',[Value, Netlong]));
Res := WSAntohs(skt, Value, Netshort);
if Res = SOCKET_ERROR then
WriteLn(Format('Call to WSAntohs() failed with error: %s',

[SysErrorMessage(WSAGetLastError)]))
else
WriteLn(Format('Using WSAntohs() the value %d converted from network order to host order

(short format) = %d',[Value, Netshort]));
closesocket(skt);
end;

Winsock 2 Resolution � 73

4

C
h
a
p

te
r

finally
WSACleanUp;
end
else WriteLn('Failed to initialize Winsock.');
end.

function WSAHtons Winsock2.pas

Syntax

WSAHtons(s: TSocket; hostshort: u_short; lpnetshort: pu_short): u_int; stdcall;

Description

This function converts a 16-bit number in host byte order and returns a 16-bit
number pointed to by the lpnetshort parameter in network byte order for the
socket descriptor s.

Parameters

s: A socket descriptor

hostshort: A 16-bit number in host byte order

lpnetshort: A pointer to a 16-bit number in network byte order

Return Value

If the function succeeds, it will return zero. If the function fails, the return value
will be SOCKET_ERROR. To retrieve the specific error code, call the function
WSAGetLastError(). Possible error codes are WSANOTINITIALISED, WSAE-
NETDOWN, WSAENOTSOCK, and WSAEFAULT.

See Appendix B for a detailed description of the error codes.

See Also

htonl, htons, ntohl, ntohs, WSAHtonl, WSANtohl, WSANtohs

Example

See Listing 4-1 (program EX41).

function WSANtohl Winsock2.pas

Syntax

WSANtohl(s: TSocket; netlong: u_long; lphostlong: pu_long): u_int; stdcall;

Description

This routine takes a 32-bit number in network byte order for the socket s and
returns a 32-bit number pointed to by the lphostlong parameter in host byte
order.

74 � Chapter 4

Parameters

s: A descriptor identifying a socket

netlong: A 32-bit number in network byte order

lphostlong: A pointer to a 32-bit number in host byte order

Return Value

If the function succeeds, it will return zero. If the function fails, it will return a
value of SOCKET_ERROR(). To retrieve the specific error code, call the func-
tion WSAGetLastError. Possible error codes are WSANOTINITIALISED,
WSAENETDOWN, WSAENOTSOCK, and WSAEFAULT.

See Appendix B for a detailed description of the error codes.

See Also

htonl, htons, ntohl, ntohs, WSAHtonl, WSAHtons, WSANtohs

Example

See Listing 4-1 (program EX41).

function WSANtohs Winsock2.pas

Syntax

WSANtohs(s: TSocket; netshort: u_short; lphostshort: pu_short): u_int; stdcall;

Description

This routine takes a 16-bit number in network byte order for the socket s and
returns a 16-bit number pointed to by the lphostshort parameter in host byte
order.

Parameters

s: A socket descriptor

netshort: A 16-bit number in network byte order

lphostshort: A pointer to a 16-bit number in host byte order

Return Value

If the function succeeds, it will return a value of zero. Otherwise, it will
return SOCKET_ERROR. To retrieve the specific error code, call the function
WSAGetLastError(). Possible error codes are WSANOTINITIALISED, WSAE-
NETDOWN, WSAENOTSOCK, and WSAEFAULT.

See Appendix B for a detailed description of the error codes.

See Also

htonl, htons, ntohl, ntohs, WSAHtonl, WSAHtons, WSANtohl

Winsock 2 Resolution � 75

4

C
h
a
p

te
r

Example

See Listing 4-1 (program EX41).

Address and String Conversion Functions
In this section, we will examine briefly the WSAAddressToString() and WSA-
StringToAddress() functions. Neither function exists in Winsock 1.1. These
functions convert a TSockAddr data structure into a string and vice versa using
the specified transport protocol. In a later section, we’ll discuss protocol inde-
pendence, which is a basic feature of the Winsock 2 architecture.

As well as specifying a transport protocol, such as TCP and UDP, we need to
specify the address family that supports the transport protocol. At the time of
publication, Winsock 2 supports only AF_INET and AF_ATM address families
with these conversion functions. These functions are defined below.

function WSAAddressToString Winsock2.pas

Syntax

WSAAddressToString (lpsaAddress: PSockAddr; dwAddressLength: DWORD;
lpProtocolInfo: PWSAPROTOCOL_INFO; lpszAddressString: PChar; lpdwAddress-
StringLength: PDWORD): u_int; stdcall;

Description

This function converts all components of a TSockAddr record into a readable
numeric string representation of the address. To translate the structure on the
specified transport protocol, you must supply the corresponding WSA-
PROTOCOL_INFO record in the lpProtocolInfo parameter. The TSockAddr data
structure is defined in Winsock2.pas as follows:

sockaddr = record
sa_family: u_short; // address family
sa_data: array [0..13] of Char; // up to 14 bytes of direct address

end;

TSockAddr = sockaddr;
PSockAddr = ^sockaddr;

Parameters

lpsaAddress: A pointer to a TSockAddr record to translate into a string

dwAddressLength: The length of the address, which may vary in size with differ-
ent protocols

lpProtocolInfo: An optional pointer to the WSAPROTOCOL_INFO record for the
transport protocol. If this is NIL, the function uses the first available pro-
vider of the protocol supporting the address family pointed to in lpsa-

Address. In the case of TCP/IP, the address family would be AF_INET.

76 � Chapter 4

lpszAddressString: A buffer that receives the human-readable address string

lpdwAddressStringLength: On input, the length of the lpszAddressString buffer.
On output, returns the length of the string actually copied into the buffer. If
the supplied buffer is not large enough, the function fails with a specific
error of WSAEFAULT, and this parameter is updated with the required size
in bytes.

Return Value

If the function succeeds, it will return a value of zero. Otherwise, it will return
SOCKET_ERROR(). To retrieve the specific error code, call the function WSA-
GetLastError(). Possible error codes are WSAEFAULT, WSAEINVAL,
WSANOTINITIALISED, and_NOT_ENOUGH_MEMORY.

See Appendix B for a detailed description of the error codes.

See Also

WSAStringToAddress

Example

Listing 4-2 (program EX42) shows how to use the address and string conver-
sion functions.

Listing 4-2: Using WSAStringToAddress() and WSAAddressToString()

{
Example EX42 demonstrates how to use WSAStringToAddress and
WSAAddressToString.
No command line parameters are required.

}
program EX42;

{$APPTYPE CONSOLE}

uses
Windows,
WinSock2,
ComObj,
SysUtils;

const
HostAddress = '127.0.0.1';

var
WSAData: TWSAData;

AddrStr: array[0..MAXGETHOSTSTRUCT – 1] of char;
AddrSize: Integer;
Res: DWORD;
LocalAddr: TSockAddrIn;

begin
if WSAStartUp($0202, WSAData) = 0 then

Winsock 2 Resolution � 77

4

C
h
a
p

te
r

try
LocalAddr.sin_family := AF_INET;
AddrSize := SizeOf(TSockAddrIn);
Res := WSAStringToAddress(PChar(HostAddress), AF_INET, NIL, @LocalAddr, AddrSize);
if Res = SOCKET_ERROR then
WriteLn('Call to WSAStringToAddress() failed with error: ' +

SysErrorMessage(WSAGetLastError))
else
begin
WriteLn('Address = ' + String(inet_ntoa(LocalAddr.sin_addr)));
Res := WSAAddressToString(@LocalAddr, SizeOf(TSockAddrIn), NIL, @AddrStr,

Cardinal(AddrSize));
if Res = SOCKET_ERROR then
WriteLn('Call to WSAAddressToString() failed with error: ' +

SysErrorMessage(WSAGetLastError))
else
WriteLn('Host = ' + String(AddrStr));

end;
finally
WSACleanUp;

end
else WriteLn('Windows Sockets initialization failed.');

end.

function WSAStringToAddress Winsock2.pas

Syntax

WSAStringToAddress(AddressString: PChar; AddressFamily: u_int; lpProtocolInfo:
PWSAPROTOCOL_INFO; lpAddress: PSockAddr; lpAddressLength: PInt): u_int;
stdcall;

Description

This function converts an address in a numeric string to a socket address
record. Such a record is required by Winsock functions that use the TSockAddr
data structure. The function will set default values in place of missing fields of
the address. For example, a missing port number will have the default value of
zero. To use a particular transport provider, such as TCP/IP, to do the conver-
sion, you should supply the corresponding pointer to the WSAPROTOCOL_
INFO record in the lpProtocolInfo parameter.

Parameters

AddressString: Pointer to the NULL-terminated string to convert

AddressFamily: The address family to which the string belongs (for example,
AF_INET for TCP/IP)

lpProtocolInfo: An optional pointer to the WSAPROTOCOL_INFO record associ-
ated with the provider to be used. If this is NIL, the function will use the
first available provider of the first protocol that supports the supplied
AddressFamily parameter.

lpAddress: A buffer filled with a single TSockAddr record.

78 � Chapter 4

lpAddressLength: The length of the lpAddress buffer to hold the TSockAddr
record. If the supplied buffer is not large enough, the function fails with a
specific error of WSAEFAULT and this parameter is updated with the
required size in bytes.

Return Value

If the function succeeds, it will return a value of zero. Otherwise, it returns
SOCKET_ERROR. To retrieve the specific error code, call the function
WSAGetLastError(). Possible error codes are WSAEFAULT, WSAEINVAL,
WSANOTINITIALISED, and WSA_NOT_ENOUGH_MEMORY.

See Appendix B for a detailed description of the error codes.

See Also

WSAAddressToString

Example

See Listing 4-2 (program EX42).

Enumerating Network Protocols
In some cases, it is necessary to determine what network protocols are avail-
able before your application can run. Of those installed protocols that are
available on the machine, you will need to determine which protocol has the
desired properties that match the application’s requirements.

Occasionally, the protocol that your application requires may not be present,
in which case you will have to install the required protocol. We’ll discuss how to
install a new protocol later in this chapter.

To determine what protocols are available on your machine, you use the
WSAEnumProtocols() function to enumerate these protocols. The WSAEnum-
Protocols() function returns an array of WSAPROTOCOL_INFO records, each
of which corresponds to a description for an installed protocol. On Windows
machines, TCP/IP is the default network protocol, and it will usually have two
IP entries, TCP and UDP.

The WSAPROTOCOL_INFO record, which is defined in Winsock2.pas, is as
follows:

_WSAPROTOCOL_INFO = record
dwServiceFlags1: DWORD;
dwServiceFlags2: DWORD;
dwServiceFlags3: DWORD;
dwServiceFlags4: DWORD;
dwProviderFlags: DWORD;
ProviderId: TGUID;
dwCatalogEntryId: DWORD;
ProtocolChain: WSAPROTOCOLCHAIN;
iVersion: Integer;
iAddressFamily: Integer;

Winsock 2 Resolution � 79

4

C
h
a
p

te
r

iMaxSockAddr: Integer;
iMinSockAddr: Integer;
iSocketType: Integer;
iProtocol: Integer;
iProtocolMaxOffset: Integer;
iNetworkByteOrder: Integer;
iSecurityScheme: Integer;
dwMessageSize: DWORD;
dwProviderReserved: DWORD;
szProtocol: array [0..WSAPROTOCOL_LEN] of WideChar;
end;
WSAPROTOCOL_INFOW = _WSAPROTOCOL_INFOW;
LPWSAPROTOCOL_INFOW = ^WSAPROTOCOL_INFOW;
TWsaProtocolInfoW = WSAPROTOCOL_INFOW;
PWsaProtocolInfoW = LPWSAPROTOCOL_INFOW;

Often, you do not know the exact number of available transport protocols that
are installed on your machine, and therefore the size of the buffer in which to
store the array of WSAPROTOCOL_INFO records is unknown. A call to
WSAEnumProtocols() will fail with the error of WSAENOBUFFS. To rectify
this defect, you must call WSAEnumProtocols() twice. The first call is to dis-
cover the size of the buffer to hold the array of WSAPROTOCOL_INFO entries.
To get this magic value, first set the buffer, lpProtocolBuffer, to NIL, and then set
the length of the buffer, lpdwBufferLength, to zero. With these values set, the
function will always fail with an error of WSAENOBUFS, but the
lpdwBufferLength parameter will contain the correct buffer size. You use this
buffer size in the second call to WSAEnumProtocols(). On successful comple-
tion of the second call, WSAEnumProtocols() returns an array of network
protocols installed on your machine.

Examining the WSAPROTOCOL_INFO record above, it does look over-
whelming with so much detail. From our perspective, the most useful fields to
use are dwServiceFlags1, iProtocol, iSocketType, and iAddressFamily. Later in the
chapter, we’ll demonstrate how to use these fields (program EX43 in Listing
4-3). To determine if an installed protocol supports a property that your applica-
tion requires, you should perform an AND bitwise operation on that property.
Table 4-1 (following Listing 4-3) shows a list of properties for all protocols. For
example, if your application requires a connectionless service, you would select
XPI_CONNECTIONLESS from Table 4-1 and perform an AND operation on
this property with the dwServiceFlags1 field. If the AND operation yields a non-
zero value, the protocol does support a connectionless service; otherwise, it
does not.

The WSAEnumProtocols() function also enumerates protocol chains that may
be present on the machine. Protocol chains link layered protocol entries
together. Like a chain in real life, the protocol chain has an anchor, which is like
the base layer protocol. In Windows, the TCP/IP protocol is usually the anchor
to which other protocols can attach to form a chain of layered protocols. (We say
that the protocols are layered because they lie on top of each other.) However,

80 � Chapter 4

we will not discuss the layered protocol chains, as these are in the realm of the
Service Provider Interface (SPI) (see Chapter 1 for the architecture of Winsock
2), which is beyond the scope of this book.

Before we leave the topic of protocol chains, let’s discuss a hypothetical
application that uses protocol chains. Say, for example, that you want to add a
simple security scheme to your company’s web site. Unfortunately, there isn’t a
product on the market that matches your requirement. So, you design and add
your own security protocol to scan packets of data sent by the browser clients.
To achieve a scanning scheme that is transparent to the clients, you add your
simple security protocol via the SPI to link with the TCP/IP service provider,
which in this scenario is the anchor or base of the protocol chain.

Listing 4-3 shows how to use WSAEnumProtocols(), and there is a working
example in program EX43.

Listing 4-3: Using WSAEnumProtocols()

{
Example EX43 demonstrates how to use WSAEnumProtocols.

No command line parameters are required.
}
program EX43;

{$APPTYPE CONSOLE}

uses
Windows,
WinSock2,
ComObj,
SysUtils;

var
WSAData: TWSAData;
BufferLength: DWORD;
Buffer, Info: PWSAProtocolInfo;
I, Count: Integer;
ExtendedInfo: Boolean;

function ByteOrderToString(O: DWORD): string;
begin
case O of
BIGENDIAN: Result := 'Big Endian';
LITTLEENDIAN: Result := 'Little Endian';

else
Result := 'Unknown';

end;
end;

function SocketTypeToString(T: DWORD): string;
begin
case T of
SOCK_STREAM: Result := 'Stream';
SOCK_DGRAM: Result := 'Datagram';

else
Result := 'Unknown';

Winsock 2 Resolution � 81

4

C
h
a
p

te
r

end;
end;

function AddressFamilyToString(F: DWORD): string;
begin
case F of
AF_UNIX: Result := 'local to host (pipes, portals';
AF_INET: Result := 'internetwork: UDP, TCP, etc.';
AF_IMPLINK: Result := 'arpanet imp addresses';
AF_PUP: Result := 'pup protocols: e.g. BSP';
AF_CHAOS: Result := 'mit CHAOS protocols';
AF_NS: Result := 'XEROX NS protocols';

// AF_IPX: Result := 'IPX protocols: IPX, SPX, etc.';
AF_ISO: Result := 'ISO protocols';

// AF_OSI: Result := 'OSI is ISO';
AF_ECMA: Result := 'european computer manufacturers';
AF_DATAKIT: Result := 'datakit protocols';
AF_CCITT: Result := 'CCITT protocols, X.25 etc';
AF_SNA: Result := 'IBM SNA';
AF_DECnet: Result := 'DECnet';
AF_DLI: Result := 'Direct data link interface';
AF_LAT: Result := 'LAT';
AF_HYLINK: Result := 'NSC Hyperchannel';
AF_APPLETALK: Result := 'AppleTalk';
AF_NETBIOS: Result := 'NetBios-style addresses';
AF_VOICEVIEW: Result := 'VoiceView';
AF_FIREFOX: Result := 'Protocols from Firefox';
AF_UNKNOWN1: Result := 'Somebody is using this!';
AF_BAN: Result := 'Banyan';
AF_ATM: Result := 'Native ATM Services';
AF_INET6: Result := 'Internetwork Version 6';
AF_CLUSTER: Result := 'Microsoft Wolfpack';
AF_12844: Result := 'IEEE 1284.4 WG AF';
AF_IRDA: Result := 'IrDA';
AF_NETDES: Result := 'Network Designers OSI & gateway enabled protocols';

else
Result := 'Unknown';

end;
end;

procedure DisplayProtocolInfo(const Info: PWSAProtocolInfo);
var
I: Integer;

begin
WriteLn(Info^.szProtocol);
WriteLn('Protocol Version: ' + IntToStr(Info^.iVersion));
WriteLn('Address Family: ' + AddressFamilyToString(Info^.iAddressFamily));
WriteLn('Provider: ' + GUIDToString(Info^.ProviderId));
if not ExtendedInfo then Exit;
WriteLn('Service Flags1: ' + IntToHex(Info^.dwServiceFlags1, 8)); // TODO ToString
WriteLn('Service Flags2: ' + IntToHex(Info^.dwServiceFlags2, 8));
WriteLn('Service Flags3: ' + IntToHex(Info^.dwServiceFlags3, 8));
WriteLn('Service Flags4: ' + IntToHex(Info^.dwServiceFlags4, 8));
WriteLn('Provider Flags: ' + IntToHex(Info^.dwProviderFlags, 8));
if Info^.dwProviderFlags and PFL_MULTIPLE_PROTO_ENTRIES <> 0 then WriteLn('

PFL_MULTIPLE_PROTO_ENTRIES');
if Info^.dwProviderFlags and PFL_RECOMMENDED_PROTO_ENTRY <> 0 then WriteLn('

PFL_RECOMMENDED_PROTO_ENTRY');
if Info^.dwProviderFlags and PFL_HIDDEN <> 0 then WriteLn(' PFL_HIDDEN');

82 � Chapter 4

TE
AM
FL
Y

Team-Fly®

if Info^.dwProviderFlags and PFL_MATCHES_PROTOCOL_ZERO <> 0 then WriteLn('
PFL_MATCHES_PROTOCOL_ZERO');

WriteLn('Catalog Entry: ' + IntToStr(Info^.dwCatalogEntryId));
WriteLn('Maximum Message Size: ' + IntToHex(Info^.dwMessageSize, 8));
WriteLn('Security Scheme: ' + IntToStr(Info^.iSecurityScheme));
WriteLn('Byte Order: ' + ByteOrderToString(Info^.iNetworkByteOrder));
WriteLn('Protocol: ' + IntToStr(Info^.iProtocol));
WriteLn('Protocol MaxOffset: ' + IntToStr(Info^.iProtocolMaxOffset));
WriteLn('Min Socket Address: ' + IntToStr(Info^.iMinSockAddr));
WriteLn('Max Socket Address: ' + IntToStr(Info^.iMaxSockAddr));
WriteLn('Socket Type: ' + SocketTypeToString(Info^.iSocketType));
Write('Protocol Chain: ');
for I := 0 to Info^.ProtocolChain.ChainLen - 1 do

Write(IntToStr(Info^.ProtocolChain.ChainEntries[I]) + ' ');
WriteLn;

end;

begin

ExtendedInfo := FindCmdLineSwitch('e', ['-', '/'], True);

if WSAStartUp($0202, WSAData) = 0 then
try
Assert(WSAData.wHighVersion >= 2);
BufferLength := 0;
if (WSAEnumProtocols(nil, nil, BufferLength) = Integer(SOCKET_ERROR)) and

(WSAGetLastError = WSAENOBUFS) then
begin
Buffer := AllocMem(BufferLength);
try
Count := WSAEnumProtocols(nil, Buffer, BufferLength);
if Count <> Integer(SOCKET_ERROR) then
begin
Info := Buffer;
for I := 0 to Count - 1 do
begin
Assert(not IsBadReadPtr(Info, SizeOf(TWSAProtocolInfo)));
DisplayProtocolInfo(Info);
WriteLn;
Inc(Info);

end;
end
else WriteLn('Failed to retrieve protocol information.');

finally
FreeMem(Buffer);

end;
end
else
begin
WriteLn('Unable to enumerate protocols.');
WriteLn('Error code: ' + IntToStr(WSAGetLastError));
WriteLn('Error message: ' + SysErrorMessage(WSAGetLastError));

end;
finally
WSACleanUp;

end
else WriteLn('Windows Sockets initialization failed.');

end.

Winsock 2 Resolution � 83

4

C
h
a
p

te
r

Table 4-1: Available properties for the dwServiceFlags1 field

Property Meaning

XP1_CONNECTIONLESS A protocol that provides connectionless (datagram) service. If not set, the pro-
tocol supports connection-oriented data transfer.

XP1_GUARANTEED_DELIVERY A protocol that guarantees that all data sent will reach the intended destination

XP1_GUARANTEED_ORDER A protocol that guarantees that data will only arrive in the order in which it
was sent and that it will not be duplicated. This characteristic does not neces-
sarily mean that the data will always be delivered, but any data that is delivered
is delivered in the order in which it was sent.

XP1_MESSAGE_ORIENTED A protocol that honors message boundaries, as opposed to a stream-oriented
protocol where there is no concept of message boundaries

XP1_PSEUDO_STREAM This is a message-oriented protocol, but message boundaries will be ignored
for all receives. This is convenient when an application does not desire mes-
sage framing to be done by the protocol.

XP1_GRACEFUL_CLOSE The protocol supports two-phase (graceful) close. If not set, only abortive
closes are performed.

XP1_EXPEDITED_DATA A protocol that supports expedited (urgent) data

XP1_CONNECT_DATA A protocol that supports connect data

XP1_DISCONNECT_DATA A protocol that supports disconnect data

XP1_SUPPORT_BROADCAST A protocol that supports a broadcast mechanism

XP1_SUPPORT_MULTIPOINT A protocol that supports a multipoint or multicast mechanism. Control and
data plane attributes follow immediately.

XP1_MULTIPOINT_CONTROL
_PLANE

Indicates whether the control plane is rooted (value = 1) or non-rooted
(value = 0)

XP1_MULTIPOINT_DATA_
PLANE

Indicates whether the data plane is rooted (value = 1) or non-rooted (value =
0)

XP1_QOS_SUPPORTED A protocol that supports quality of service requests

XP1_RESERVED This bit is reserved.

XP1_UNI_SEND A protocol that is unidirectional in the send direction

XP1_UNI_RECV A protocol that is unidirectional in the recv direction

XP1_IFS_HANDLES The socket descriptors returned by the provider are operating system
Installable File System (IFS) handles.

Table 4-2: The remaining fields of the WSAPROTOCOL_INFO record

Field Meaning

dwServiceFlags2 Reserved for additional protocol attribute definitions

dwServiceFlags3 Reserved for additional protocol attribute definitions

dwServiceFlags4 Reserved for additional protocol attribute definitions

dwProviderFlags Provides information about how this protocol is represented in the protocol
catalog

ProviderId A globally unique identifier assigned to the provider by the service provider
vendor. This value is useful for instances where more than one service pro-
vider is able to implement a particular protocol. An application may use the
ProviderId value to distinguish between providers that might otherwise be
indistinguishable.

84 � Chapter 4

Field Meaning

ProtocolChain A data structure representing a protocol chain consisting of one or more lay-
ered protocols on top of a base protocol

dwCatalogEntryId A unique identifier assigned by the WinSock 2 DLL for each WSAPROTO-
COL_INFO structure

iVersion A protocol version identifier

iAddressFamily A value to pass as the address family parameter to the socket or WSASocket
function to open a socket for this protocol. This value also uniquely defines the
record of protocol addresses (TSockAddr) used by the protocol.

iMaxSockAddr The maximum address length in bytes (e.g., 16 for IP version 4. We get the
value by calling the standard function, SizeOf, to compute the size of the
TSockAddr data structure.)

iMinSockAddr The minimum address length (same as iMaxSockAddr, unless protocol sup-
ports variable length addressing)

iSocketType The value to pass as the socket type parameter to the socket function in order
to open a socket for this protocol

iProtocol The value to pass as the protocol parameter to the socket function in order to
open a socket for this protocol

iProtocolMaxOffset The maximum value that may be added to iProtocol when supplying a value
for the protocol parameter to socket and WSASocket. Not all protocols allow
a range of values. When this is the case, iProtocolMaxOffset will be zero.

iNetworkByteOrder Currently these values are manifest constants (BIGENDIAN and
LITTLEENDIAN) that indicate either “big endian” or “little endian” with the
values 0 and 1, respectively.

iSecurityScheme Indicates the type of security scheme employed (if any). A value of
SECURITY_PROTOCOL_NONE is used for protocols that do not incorpo-
rate security provisions.

dwMessageSize The maximum message size supported by the protocol. This is the maximum
size that can be sent from any of the host’s local interfaces. For protocols that
do not support message framing, the actual maximum that can be sent to a
given address may be less. There is no standard provision to determine the
maximum inbound message size. The following special values are defined:

� 0: The protocol is stream-oriented and hence the concept of message
size is not relevant.

� $1: The maximum outbound (send) message size is dependent on the
underlying network MTU (maximum sized transmission unit) and hence
cannot be known until after a socket is bound. Applications should use
getsockopt to retrieve the value of SO_MAX_MSG_SIZE after the socket
has been bound to a local address.

� $FFFFFFFF: The protocol is message-oriented, but there is no maximum
limit to the size of messages that may be transmitted.

dwProviderReserved Reserved for use by service providers

szProtocol An array of characters that contains a human-readable name identifying the
protocol (for example, “SPX”). The maximum number of characters allowed
is WSAPROTOCOL_LEN, which is defined to be 255.

Winsock 2 Resolution � 85

4

C
h
a
p

te
r

Before we explore the topic of name space resolution and registration, we will
give a formal definition of WSAEnumProtocols(), which is defined in
Winsock2.pas.

function WSAEnumProtocols Winsock2.pas

Syntax

WSAEnumProtocols(lpiProtocols: PInt; lpProtocolBuffer:
PWSAPROTOCOL_INFO; lpdwBufferLength: PDWORD): u_int; stdcall;

Description

This function enumerates all available transport protocols and protocol chains
installed on the local machine. You may use the lpiProtocols parameter as a filter
to constrain the amount of information provided. Normally you set this parame-
ter to NIL, which will cause the function to return information on all available
transport protocols and protocol chains.

A TWSAProtocolInfo record is provided in the buffer pointed to by lpProtocol-

Buffer for each requested protocol. If the supplied buffer is not large enough (as
indicated by the input value of lpdwBufferLength), the value pointed to by
lpdwBufferLength will be updated to indicate the required buffer size. The appli-
cation should then obtain a large enough buffer and call this function again.

The ordering of the TWSAProtocolInfo records that appear in the buffer coin-
cides with the order of the protocol entries that the service provider registered
with the WinSock DLL. For more detailed information on protocol chains,
please refer to the WinSock 2 Service Provider Interface specification in the
MSDN Library Platform SDK in Appendix C.

Parameters

lpiProtocols: An optional array of iProtocol values. When this parameter is NIL,
information on all of the available protocols is returned. Otherwise, infor-
mation is retrieved only for those protocols listed in the array.

lpProtocolBuffer: A buffer of WSAPROTOCOL_INFO records. See Tables 4-1
and 4-2 for a detailed description of the contents of the
WSAPROTOCOL_INFO record.

lpdwBufferLength: On input, the size of the lpProtocolBuffer buffer passed to
WSAEnumProtocols(). On output, the minimum buffer size required to
retrieve all the requested information. The supplied buffer must be large
enough to hold all entries for the routine to succeed. The number of proto-
cols loaded on a machine is usually small.

86 � Chapter 4

Return Value

If the function succeeds, it will return the number of protocols. If the function
fails, it will return the value of SOCKET_ERROR. To retrieve the specific error
code, call the function WSAGetLastError(). Possible error codes are WSANOT-
INITIALISED, WSAENETDOWN, WSAEINPROGRESS, WSAEINVAL,
WSAENOBUFS, and WSAEFAULT.

See Appendix B for a detailed description of the error codes.

See Also

getsockopt, socket, WSASend, WSASendTo

Example

See Listing 4-3 for an example of how to use WSAEnumProtocols(). The full
code for this example is in EX43.

Name Space Resolution and Registration
In Chapter 3, we learned how to use the Winsock 1.1 functions to perform reso-
lution of hosts, protocols, and services. Winsock 2 extends this repertoire
considerably with its flexible and powerful functions to determine the name
spaces.

A name space is a collection of hosts, protocols, and services to which a com-
puter has access. All networked machines will have at least one name space
installed. You may have more than one name space on your machine. In addi-
tion, by using the functions that Winsock 2 provides, you can register a service
on the server side and generate service queries on the client side.

Suppose you want to advertise a new service. You do this by registering and
advertising the new service on the server. (We’ll describe these steps in detail
in the section “Registering a Service.”) On the client side, equipped with
Winsock 2, the application finds the service in a single step. Your client doesn’t
even have to know the port required for communicating with the service. With
the old style resolution, your client application has to be very knowledgeable
about the service it is trying to locate. That is, your client has to resolve the
server hosting the service and then resolve the service if it has an entry in the
Services file. If there is no entry for the service, which is usually the case with
private services, you need to supply the port to your client, which, of course,
requires prior knowledge.

Before communicating with a server, you need to enumerate the available
name spaces on your workstation first. After discovering the available name
spaces on your machine, you can use the appropriate name space provider to
find the service you want. Every registered service has a name space associated
with it, as we’ll see in the next section. To perform this enumeration, we use

Winsock 2 Resolution � 87

4

C
h
a
p

te
r

the WSAEnumNameSpaceProviders() function to list the available name space
providers that your client may have.

Enumerating Name Spaces

On a given machine, you may choose from a collection of name space models in
order to resolve hosts, protocols, and services. One of these is DNS, which is
the most common name space provider for TCP/IP. This is a common setup on
machines equipped with Winsock 1.1. Others exist for other protocols, such as
NDS (NetWare Directory Services) for Novell’s IPX networks.

There are three types of name spaces: static, dynamic, and persistent. DNS is
a static name space, which simply means that it cannot update its database
unless the DNS server goes offline for updating. This is not very flexible. On
the other hand, a dynamic name space can update on the fly. An example of a
dynamic name space is SAP (Service Advertising Protocol) for Novell’s IPX net-
works. A persistent name space, which is also dynamic, maintains registration
information on disk. NDS is a persistent name space.

The WSAEnumNameSpaceProviders() function lists all available name space
providers installed on the machine. The function returns an array of
TWSANameSpaceInfo records. Each record contains all of the registration infor-
mation for a name space provider. The TWSANameSpaceInfo record, which is
defined in Winsock2.pas, is as follows:

_WSANAMESPACE_INFO = record
NSProviderId: TGUID;
dwNameSpace: DWORD;
fActive: BOOL;
dwVersion: DWORD;
lpszIdentifier: LPWSTR;

end;
WSANAMESPACE_INFO = _WSANAMESPACE_INFO;
TWsaNameSpaceInfo = WSANAMESPACE_INFO;
PWsaNameSpaceInfo = PWSANAMESPACE_INFO;

Table 4-3 lists in detail the fields of the WSANAMESPACE_INFO.

Table 4-3: Fields of the WSANAMESPACE_INFO record

Field Description

NSProviderId The unique identifier for this name space provider

dwNameSpace Specifies the name space supported by this implementation of the provider

fActive If TRUE, indicates that this provider is active. If FALSE, the provider is inactive
and is not accessible for queries, even if the query specifically references this
provider.

dwVersion Name space version identifier

lpszIdentifier Display string for the provider

88 � Chapter 4

function WSAEnumNameSpaceProviders Winsock2.pas

Syntax

WSAEnumNameSpaceProviders(var lpdwBufferLength: DWORD; lpnspBuffer:
LPWSANAMESPACE_INFOW): Integer; stdcall;

Description

This function retrieves information about available name spaces on the local
machine.

Parameters

lpdwBufferLength: On input, the number of bytes contained in the buffer pointed
to by lpnspBuffer. On output (if the API fails and the error is WSAE-
FAULT), the minimum number of bytes to pass for the lpnspBuffer to
retrieve all the requested information. On input, the buffer must be large
enough to hold all of the name spaces.

lpnspBuffer: On success, this is a buffer containing WSANAMESPACE_INFO
records. The returned records are located consecutively at the head of the
buffer. The return value of WSAEnumNameSpaceProviders() is the num-
ber of WSANAMESPACE_INFO records.

Return Value

This function will return the number of WSANAMESPACE_INFO records cop-
ied into lpnspBuffer. Otherwise, it will return SOCKET_ERROR. To retrieve the
specific error code, call the function WSAGetLastError(). Possible error codes
are WSAEFAULT, WSANOTINITIALISED, and WSA_NOT_ENOUGH_
MEMORY.

See Appendix B for a detailed description of the error codes.

See Also

WSAGetLastError, WSAStartup

Example

Listing 4-4 (program EX44) shows how to use the WSAEnumNameSpace-
Providers() function.

Listing 4-4: Using WSAEnumNameSpaceProviders()

{No command line parameters are required.

Example EX44 demonstrates how to use WSAEnumNameSpaceProviders.
}
program EX44;

{$APPTYPE CONSOLE}

uses
Windows,
ComObj,

Winsock 2 Resolution � 89

4

C
h
a
p

te
r

WinSock2,
SysUtils;

var
WSAData: TWSAData;
Buffer, Info: PWSANameSpaceInfo;
BufferLength: DWORD;
I, Count: Integer;

function BoolToStr(B: Boolean): string;
begin
if B then Result := 'True' else Result := 'False';

end;

begin

if WSAStartUp($0202, WSAData) = 0 then
try
Assert(WSAData.wHighVersion >= 2);
BufferLength := 0;
if (WSAEnumNameSpaceProviders(BufferLength, nil) = Integer(SOCKET_ERROR)) and

(WSAGetLastError = WSAEFAULT) then
begin
Buffer := AllocMem(BufferLength);
try
Count := WSAEnumNameSpaceProviders(BufferLength, Buffer);
if Count <> Integer(SOCKET_ERROR) then
begin
Info := Buffer;
for I := 0 to Count - 1 do
begin
WriteLn(Info^.lpszIdentifier);
WriteLn('Provider GUID: ' + GUIDToString(Info^.NSProviderId));
WriteLn('Namespace: ' + IntToStr(Info^.dwNameSpace));
WriteLn('Active: ' + BoolToStr(Info^.fActive));
WriteLn('Version: ' + IntToStr(Info^.dwVersion));
WriteLn;
Inc(Info);

end;
end
else WriteLn('Failed to retrieve name space provider information.');

finally
FreeMem(Buffer);

end;
end
else WriteLn('Failed to retrieve name space provider information.');

finally
WSACleanUp;

end
else WriteLn('Windows Sockets initialization failed.');

end.

90 � Chapter 4

Registering a Service
Before any potential clients can communicate with your service, you need to
advertise it. This is analogous to advertising a product or service in the busi-
ness world. To advertise a new service to your potential clients on the network,
you need to call two functions, WSAInstallServiceClass() to install your new
service class and WSASetService() to register an instance of your service. You
must call these functions in that order.

The WSAInstallServiceClass() function creates a service class for the new
service, associating that service class with one or more name space providers.
In addition, the function defines essential properties of the new service, such as
whether the service is connection oriented or connectionless. It makes the
determination if the service will use a SOCK_STREAM or SOCK_DGRAM
type of socket for a TCP connection or UDP connection, respectively. However,
the function does not define how a client can establish a connection with the
service.

The single parameter that WSAInstallServiceClass() uses is a pointer to the
following data structure, which is defined in Winsock2.pas:

WSASERVICECLASSINFO = record
lpServiceClassId: PGUID;
lpszServiceClassName: LPSTR;
dwCount: DWORD;
lpClassInfos: LPWSANSCLASSINFOA;

end;

The first field, lpServiceClassId, is a pointer to the GUID that uniquely identifies
the service class. Creating a GUID is a straightforward step in which you call a
function defined in SVCGUID.PAS. For example, to create a service class for
the DNS name space provider, you call the SVCID_DNS function to create the
GUID. The second field, lpszServiceClassName, is a name of the service class.
The third field, dwCount, is the number of WSASERVICECLASSINFO records
passed in the last field, lpClassInfos, which is a pointer to the WSASERVICE-
CLASSINFO record that defines the name spaces and protocol characteristics
applicable to the service class. For example, if you want to register the service
class with two name space providers, say with SAP and the Windows NT
domain name spaces, then you must set dwCount to 4 because you set two
attributes for each name space.

The WSANSCLASSINFO record is as follows:

WSANSCLASSINFO = record
lpszName: LPWSTR;
dwNameSpace: DWORD;
dwValueType: DWORD;
dwValueSize: DWORD;
lpValue: LPVOID;

end;

Winsock 2 Resolution � 91

4

C
h
a
p

te
r

The first field, lpszName, defines the attribute that the service class possesses.
You should use one of the predefined values in Table 4-4 to define the attributes
for the class. The second field, dwNameSpace, is the name space that applies to
the service. The last three fields, dwValueType, dwValueSize, and lpValue,
describe the type of data associated with the service. For example, if the value
is a DWORD, dwValueType is set to REG_DWORD, and dwValueSize is the size
of lpValue, which is a pointer to the data.

Table 4-4: Service types

String Value Constant Define Name Space Description

SAPID SERVICE_TYPE_VALUE_SAPID NS_SAP SAP ID

ConnectionOriented SERVICE_TYPE_VALUE_CONN ConnectionOriented Any

TCPPORT SERVICE_TYPE_VALUE_TCPPORT NS_DNS TCP Port

UDPPORT SERVICE_TYPE_VALUE_UDPPORT NS_DNS UDP Port

After installing the new service class that describes the general properties of
your service, you must call WSASetService() to register an instance of the ser-
vice to make it visible on the network. This function requires three parameters:
lpqsRegInfo, essoperation, and dwControlFlags. The first parameter is a pointer to
the WSAQUERYSET data structure, which is defined in Winsock2.pas:

WSAQUERYSET = record
dwSize: DWORD;
lpszServiceInstanceName: LPWSTR;
lpServiceClassId: PGUID;
lpVersion: LPWSAVERSION;
lpszComment: LPWSTR;
dwNameSpace: DWORD;
lpNSProviderId: PGUID;
lpszContext: LPWSTR;
dwNumberOfProtocols: DWORD;
lpafpProtocols: LPAFPROTOCOLS;
lpszQueryString: LPWSTR;
dwNumberOfCsAddrs: DWORD;
lpcsaBuffer: LPCSADDR_INFO;
dwOutputFlags: DWORD;
lpBlob: LPBLOB;

end;

The second parameter, essoperation, specifies the type of operation to take
place. Table 4-5 defines the three types of operation.

Table 4-5: Types of operation for WSASetService

Operation Flag Meaning

RNRSERVICE_REGISTER Register the service.

RNRSERVICE_DEREGISTER Remove the entire service from memory.

RNRSERVICE_DELETE Remove the given instance of the service from the name space.

92 � Chapter 4

TE
AM
FL
Y

Team-Fly®

The final parameter, dwControlFlags, specifies either a value of zero or the flag
SERVICE_MULTIPLE. You should use the SERVICE_MULTIPLE setting
when you have a service that runs on more than one machine. For example, you
could have a special service that runs on ten machines. The SERVICE_
MULTIPLE value tells the WSASetService() function that the WSAQUERYSET
data structure, which is pointed to by the first parameter, would have details for
all ten machines providing the service. Table 4-6 enumerates possible flags that
you could use with one of the operation flags in Table 4-5 to specify the service.

Table 4-6: Possible flags for WSASetService() operations

Operation Flags Existing Service Non-existent Service

RNRSERVICE_REGISTER None Overwrite the object. Use only
addresses specified. Object is
REGISTERED.

Create a new object. Use only
addresses specified. Object is
REGISTERED.

RNRSERVICE_REGISTER SERVICE_
MULTIPLE

Update object. Add new
addresses to existing set.
Object is REGISTERED.

Create a new object. Use all
addresses specified. Object is
REGISTERED.

RNRSERVICE_DEREGISTER None Remove all addresses, but do
not remove object from name
space. Object is
DEREGISTERED.

WSASERVICE_NOT_FOUND

RNRSERVICE_DEREGISTER SERVICE_
MULTIPLE

Update object. Remove only
addresses that are specified.
Only mark object as
DEREGISTERED if no
addresses are present. Do not
remove from the name space.

WSASERVICE_NOT_FOUND

RNRSERVICE_DELETE None Remove object from the name
space.

WSASERVICE_NOT_FOUND

RNRSERVICE_DELETE SERVICE_
MULTIPLE

Remove only addresses that
are specified. Only remove
object from the name space if
no addresses remain.

WSASERVICE_NOT_FOUND

Table 4-7 lists the fields of the TWSAQuerySet data structure.

Table 4-7: The fields of the TWSAQuerySet data structure

Field Name Description

dwSize Must be set to the size of TWSAQuerySet data structure. This is a versioning
mechanism.

lpszServiceInstanceName Referenced string contains the service instance name

lpServiceClassId The GUID corresponding to this service class

lpVersion (Optional) Supplies service instance version number

lpszComment (Optional) An optional comment string

dwNameSpace See Table 4-8.

lpNSProviderId See Table 4-8.

lpszContext (Optional) Specifies the starting point of the query in a hierarchical name space

Winsock 2 Resolution � 93

4

C
h
a
p

te
r

Field Name Description

dwNumberOfProtocols The size of the protocol constraint array in bytes. Note that this can be zero.

lpafpProtocols Ignored

lpszQueryString Ignored

dwNumberOfCsAddrs The number of elements in the array of CSADDRO_INFO records referenced by
lpcsaBuffer

lpcsaBuffer A pointer to an array of CSADDRO_INFO records which contain the address(es)
that the service is listening on

dwOutputFlags Not applicable and ignored

lpBlob (Optional) A pointer to a provider-specific entity

In Table 4-8, by combining the dwNameSpace and lpNSProviderId parameters,
you could determine which name space providers to modify by this function.

Table 4-8: Different combinations of dwNameSpace and lpNSProviderID parameters

dwNameSpace lpNSProviderId Scope of Impact

Ignored Non NIL The specified name space provider

A valid name space ID NIL All name space providers that support the indicated name space

NS_ALL NIL All name space providers

The dwNumberOfProtocols field returns the number of supplied protocols, each
of which is pointed to by the AFPROTOCOLS data structure contained in the
PAFPROTOCOLS field.

The AFPROTOCOLS data structure, defined in Winsock2.pas, is:

AFPROTOCOLS = record
iAddressFamily: Integer;
iProtocol: Integer;

end;

The first field is the address family constant, such as AF_INET. The second
field is the protocol that is supported by the selected address family, such as
AF_INET. In this case, the protocol is IPPROTO_TCP.

In the WSAQUERYSET data structure, we have two important fields,
dwNumberOfCsAddrs and lpcsaBuffer. The dwNumberOfCsAddrs is the number
of CSADDR_INFO data structures, which you pass in the buffer pointed to by
lpcsaBuffer.

The CSADDR_INFO data structure, which is defined in Winsock2.pas,
defines the address family and the actual address at which the service is located.
In the mythical case of ten machines providing a service, there would be ten
instances of these data structures.

CSADDR_INFO = record
LocalAddr: SOCKET_ADDRESS;
RemoteAddr: SOCKET_ADDRESS;
iSocketType: Integer;
iProtocol: Integer;

end;

94 � Chapter 4

The LocalAddr and RemoteAddr fields specify the local and remote addresses,
respectively. During registration, the service is bound to the address set by
LocalAddr, and the RemoteAddr is the address that the client should use for the
connection and exchange of data. The iSocketType (for example, SOCK_
STREAM) and iProtocol (for example, PF_INET) fields specify which socket
type and protocol type the client should use, respectively.

The SOCKET_ADDRESS data structure, which is defined in Winsock2.pas,
is a container describing the properties of the addresses.

SOCKET_ADDRESS = record
lpSockaddr: LPSOCKADDR;
iSockaddrLength: Integer;

end;

Finally, registration of a service does not require the dwOutputFlags and lpBlob

fields to be populated. However, you must use these fields when querying a ser-
vice, which we’ll cover later in this chapter.

When a service class is no longer required (for example, for an update of the
service class), you call the WSARemoveServiceClass() function. This requires
just one parameter, lpServiceClassId, which is a pointer to the GUID identifying
that service class.

To complete this section, we give a formal definition of the WSAInstall-
ServiceClass(), WSASetService(), and WSARemoveServiceClass() functions for
the installation, registration, and removal of a service class, respectively.

function WSAInstallServiceClass Winsock2.pas

Syntax

WSAInstallServiceClass(lpServiceClassInfo: LPWSASERVICECLASSINFOW):
Integer; stdcall;

Description

This function registers a service class schema within a name space. The schema
includes the class name, class ID, and any name space-specific information that
is common to all instances of the service, such as the SAP ID or object ID.

Parameters

lpServiceClassInfo: Contains service class to name space-specific type mapping
information. Multiple mappings can be handled at one time.

Return Value

If the function succeeds, it will return a value of zero. Otherwise, it will return
SOCKET_ERROR. To retrieve the specific error code, call the function
WSAGetLastError(). Possible error codes are WSAEACCES, WSAEALREADY,
WSAEINVAL, WSANOTINITIALISED, and WSA_NOT_ENOUGH_MEMORY.

See Appendix B for a detailed description of the error codes.

Winsock 2 Resolution � 95

4

C
h
a
p

te
r

See Also

WSARemoveServiceClass, WSASetService

Example

Listing 4-5 (program EX45) shows how to create, install, and advertise a
service.

Listing 4-5: Using WSAInstallServiceClass() and WSASetService()

{

EX45 - This example demonstrates how to create, install, and advertise a service using
WSAInstallServiceClass and WSASetService.

No command line parameters are required.
}

program EX45;

{$APPTYPE CONSOLE}

uses
SysUtils, Windows, WinSock2, NspApi, Common;

const
MaxNumOfCSAddr = 10; // advertise at most 10 addresses

var
GSocket: TSocket; // Socket to server
ServiceRegInfo: WSAQUERYSET; // QuerySet to advertise service
EndProgram: Boolean = False; // signal the end of program when user hits "Ctrl-C"

function CtrlHandler(dwEvent: DWORD): BOOL; stdcall;
var
R: Integer;

begin
Result := True;
case dwEvent of
CTRL_C_EVENT,
CTRL_BREAK_EVENT,
CTRL_LOGOFF_EVENT,
CTRL_SHUTDOWN_EVENT,
CTRL_CLOSE_EVENT:
begin
EndProgram := True;
WriteLn('CtrlHandler: cleaning up...');
WriteLn('delete service instance...');
R := WSASetService(@ServiceRegInfo, RNRSERVICE_DELETE, 0);
if R = SOCKET_ERROR then WriteLn(Format('WSASetService DELETE error %d',

[WSAGetLastError]));
WriteLn('Removing Service class...');
R := WSARemoveServiceClass(ServiceGuid);
if R = SOCKET_ERROR then WriteLn(Format('WSARemoveServiceClass error %d',

[WSAGetLastError]));
if GSocket <> INVALID_SOCKET then
begin
closesocket(GSocket);
GSocket := INVALID_SOCKET;

96 � Chapter 4

end;
end;

else
Result := False;

end;
end;

function GetNTDSAvailable(var NTDSAvailable: Boolean): Boolean;
var
BufferLength: DWORD;
Buffer, Name Space: PWSANameSpaceInfo;
I, Count: Integer;

begin
NTDSAvailable := False;
Result := False;
BufferLength := 0;
if (WSAEnumNameSpaceProviders(BufferLength, nil) = SOCKET_ERROR) and (WSAGetLastError =

WSAEFAULT) then
begin
Buffer := AllocMem(BufferLength);
try
Count := WSAEnumNameSpaceProviders(BufferLength, Buffer);
if Count <> SOCKET_ERROR then
begin
Namespace := Buffer;
for I := 0 to Count - 1 do
begin
if Namespace^.dwNameSpace = NS_NTDS then
begin
NTDSAvailable := True;
Break;

end;
Inc(Namespace);

end;
Result := True;

end
else
begin
WriteLn('Error retrieving name space provider information.');
WriteLn('Error: ' + SysErrorMessage(WSAGetLastError));

end;
finally
FreeMem(Buffer);

end;
end
else
begin
WriteLn('Error retrieving required buffer size for WSAEnumNamespaceProviders.');
WriteLn('Error: ' + SysErrorMessage(WSAGetLastError));

end;
end;

function InstallClass: BOOL;
var
ServiceClassInfo: WSASERVICECLASSINFO;
NameSpaceClassInfo: array [0..1] of WSANSCLASSINFO;
Zero: DWORD;
ServiceClassName: string;
R: Integer;
NtdsAvailable: Boolean;

Winsock 2 Resolution � 97

4

C
h
a
p

te
r

begin
Result := False;
Zero :=0;
ServiceClassName := Format('TypeId %d', [ServerType]);
WriteLn(Format('Installing ServiceClassName: %s', [ServiceClassName]));
if GetNTDSAvailable(NtdsAvailable) and NtdsAvailable then
begin
// Setup Service Class info
FillChar(ServiceClassInfo, SizeOf(ServiceClassInfo), 0);
ServiceClassInfo.lpServiceClassId := @ServiceGuid;
ServiceClassInfo.lpszServiceClassName := PChar(ServiceClassName);
ServiceClassInfo.dwCount := 2;
ServiceClassInfo.lpClassInfos := @NameSpaceClassInfo;
FillChar(NameSpaceClassInfo, SizeOf(WSANSCLASSINFO) * 2, 0);
WriteLn('NTDS name space class installation');
NameSpaceClassInfo[0].lpszName := SERVICE_TYPE_VALUE_CONN;
NameSpaceClassInfo[0].dwNameSpace := NS_NTDS;
NameSpaceClassInfo[0].dwValueType := REG_DWORD;
NameSpaceClassInfo[0].dwValueSize := sizeof(DWORD);
NameSpaceClassInfo[0].lpValue := @Zero;
NameSpaceClassInfo[1].lpszName := SERVICE_TYPE_VALUE_UDPPORT;
NameSpaceClassInfo[1].dwNameSpace := NS_NTDS;
NameSpaceClassInfo[1].dwValueType := REG_DWORD;
NameSpaceClassInfo[1].dwValueSize := sizeof(DWORD);
NameSpaceClassInfo[1].lpValue := @Zero;
// Install the service class information
R := WSAInstallServiceClass(@ServiceClassInfo);
if R = SOCKET_ERROR then
begin
WriteLn(Format('WSAInstallServiceClass error %d', [WSAGetLastError]));
Exit;

end;
Result := True;

end;
end;
function Advertise: BOOL;
var
R: Integer;
NumOfCSAddr: Integer;
SockAddresses: array [0..MaxNumOfCSAddr - 1] of SOCKADDR;
CSAddresses: array [0..MaxNumOfCSAddr - 1] of CSADDR_INFO;
ComputerName: string;
Size: Cardinal;
HostEnt: PHostEnt;
SockAddr: SOCKADDR_IN;
NameLength: Integer;
AddressCount: Integer;
pSaIn: LPSOCKADDR_IN;
I: Integer;

begin
Result := False; // assume failure...
NumOfCSAddr := 0;
// Set up the WSAQuery data
FillChar(ServiceRegInfo, SizeOf(WSAQUERYSET), 0);
ServiceRegInfo.dwSize := SizeOf(WSAQUERYSET);
ServiceRegInfo.lpszServiceInstanceName := PChar(ServerName); // service instance name
ServiceRegInfo.lpServiceClassId := @ServiceGuid; // associated service class id
ServiceRegInfo.dwNameSpace := NS_ALL; // advertise to all name spaces
ServiceRegInfo.lpNSProviderId := nil;
ServiceRegInfo.lpcsaBuffer := @CSAddresses; // our bound socket addresses

98 � Chapter 4

ServiceRegInfo.lpBlob := nil;

Size := 255;
SetLength(ComputerName, Size);
GetComputerName(PChar(ComputerName), Size);
SetLength(ComputerName, StrLen(PChar(ComputerName)));
WriteLn(Format('HostName: %s', [ComputerName]));
HostEnt := gethostbyname(PChar(ComputerName));
if HostEnt = nil then Exit;

// bind to local host ip addresses and let system to assign a port number

FillChar(SockAddr, 0, SizeOf(SockAddr));
SockAddr.sin_family := AF_INET;
SockAddr.sin_addr.s_addr := htonl(INADDR_ANY);
SockAddr.sin_port := 0;

GSocket := socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
if INVALID_SOCKET = GSocket then
begin
WriteLn(Format('GSocket error %d', [WSAGetLastError]));
Exit;

end;

R := bind(GSocket, @SockAddr, SizeOf(SockAddr));
if SOCKET_ERROR = R then
begin
WriteLn(Format('bind error %d', [WSAGetLastError]));
Exit;

end;

NameLength := SizeOf(SockAddr);
if getsockname(GSocket, @SockAddr, NameLength) = SOCKET_ERROR then
begin
WriteLn(Format('getsockname error %d', [WSAGetLastError]));
Exit;

end;

AddressCount := 0; // total number of Ip Addresses for this host
while PPCharArray(HostEnt^.h_addr_list)^[AddressCount] <> nil do Inc(AddressCount);

WriteLn('IP addresses bound...');

for I := 0 to AddressCount - 1 do
begin
if I >= MaxNumOfCSAddr then
begin
WriteLn(Format('Max. number of GSocket address (%d) reached. We will not advertise

extra ones', [MaxNumOfCSAddr]));
Break;

end;
pSaIn := @SockAddresses[I];
Move(SockAddr, pSaIn^, SizeOf(SockAddr));
pSaIn^.sin_addr.s_addr := PInteger(PPCharArray(HostEnt^.h_addr_list)^[I])^;
pSaIn^.sin_port := SockAddr.sin_port;
WriteLn(Format('%40s', [GetSockAddrString(@SockAddresses[I])]));
CSAddresses[I].iSocketType := SOCK_DGRAM;
CSAddresses[I].iProtocol := IPPROTO_UDP;
CSAddresses[i].LocalAddr.lpSockaddr := @SockAddresses[I];

Winsock 2 Resolution � 99

4

C
h
a
p

te
r

CSAddresses[I].LocalAddr.iSockaddrLength := SizeOf(SockAddr);
CSAddresses[I].RemoteAddr.lpSockaddr := @SockAddresses[I];
CSAddresses[I].RemoteAddr.iSockaddrLength := SizeOf(SockAddr);
Inc(NumOfCSAddr); // increase the number SOCKADDR buffer used

end;

// update counters

ServiceRegInfo.dwNumberOfCsAddrs := NumOfCSAddr;

// Call WSASetService

WriteLn(Format('Advertise server of instance name: %s ...', [ServerName]));
R := WSASetService(@ServiceRegInfo, RNRSERVICE_REGISTER, 0);
if R = SOCKET_ERROR then
begin
WriteLn(Format('WSASetService error %d', [WSAGetLastError]));
Exit;

end;

WriteLn('Wait for client talking to me, hit Ctrl-C to terminate...');
Result := True;

end;

function ServerRecv: BOOL;
var
BytesReceived: Integer;
Buffer: array [0..1023] of Char;
PeerAddress: SOCKADDR;
PeerAddressLength: Integer;
R: Integer;

begin
PeerAddressLength := SizeOf(SOCKADDR);
BytesReceived := recvfrom(GSocket, Buffer, SizeOf(Buffer), 0, @PeerAddress,

PeerAddressLength);
if BytesReceived = SOCKET_ERROR then
begin
R := WSAGetLastError;
if (R <> WSAEWOULDBLOCK) and (R <> WSAEMSGSIZE) then
begin
WriteLn(Format('recv error: %d', [R]));
Result := False;
Exit;

end;
end
else
begin
WriteLn(Format('received: [%s ', [Buffer]));
WriteLn(Format(': %s]', [GetSockAddrString(@PeerAddress)]));

end;
Result := True;

end;

function DoRnrServer: BOOL;
var
Argp: Cardinal;

begin
// We're pessimistic, assume failure
Result := False;
// Install CTRL handler

100 � Chapter 4

if not SetConsoleCtrlHandler(@CtrlHandler, True) then
begin
WriteLn(Format('SetConsoleCtrlHandler failed to install console handler: %d',

[GetLastError]));
Exit;

end;
// Install the server class
if not InstallClass then Exit;
// Advertise the server instance
if not Advertise then Exit;
// Make our bound sockets non-blocking such that we can loop and test for data sent by
// client without blocking.
Argp := 1;
if ioctlsocket(GSocket, Integer(FIONBIO), Argp) = SOCKET_ERROR then
begin
WriteLn(Format('ioctlsocket[%d] error %d', [0, WSAGetLastError]));
Exit;

end;
// receive data from client who find our address thru Winsock 2 RnR
while True do
begin
if not ServerRecv then Exit;
if EndProgram then
begin
Result := True;
Exit;

end;
Sleep(100);

end;
end;

var
StartupData: TWSAData;
R: DWORD;

begin
R := WSAStartup($0202, StartupData);
if R = 0 then
try
GSocket := INVALID_SOCKET;
DoRnrServer;

finally
SetConsoleCtrlHandler(@CtrlHandler, False);
if WSACleanup = SOCKET_ERROR then
begin
WriteLn('Failed to clean-up Winsock.');
WriteLn('Error: ' + SysErrorMessage(WSAGetLastError));

end;
end
else
begin
WriteLn('Failed to initialize Winsock.');
WriteLn('Error: ' + SysErrorMessage(R));

end;
end.

Winsock 2 Resolution � 101

4

C
h
a
p

te
r

function WSASetService Winsock2.pas

Syntax

WSASetService(lpqsRegInfo: LPWSAQUERYSETW; essoperation:
WSAESETSERVICEOP; dwControlFlags: DWORD): Integer; stdcall;

Description

This function registers or removes a service instance within one or more name
spaces.

Parameters

lpqsRegInfo: Specifies service information for registration or identifies service
for removal

essoperation: An enumeration value, which may be one of the values in Table 4-5

dwControlFlags: This parameter can be set to either no value or SERVICE_
MULTIPLE. The function combines the value of dwControlFlags with the
essoperation parameter to set the behavior of WSASetService(). Table 4-6
lists all possible operating flags.

Return Value

If the function succeeds, it will return a value of zero. Otherwise, it will return
SOCKET_ERROR. To retrieve the specific error code, call the function
WSAGetLastError(). Possible error codes are WSAEACCES, WSAEINVAL,
WSANOTINITIALISED, WSA_NOT_ENOUGH_MEMORY, and
WSASERVICE_NOT_FOUND.

See Appendix B for a detailed description of the error codes.

See Also

WSAInstallServiceClass, WSARemoveServiceClass

Example

See Listing 4-5 (program EX45).

function WSARemoveServiceClass Winsock2.pas

Syntax

WSARemoveServiceClass(const lpServiceClassId: TGUID): Integer; stdcall;

Description

This function removes a service class permanently.

102 � Chapter 4

TE
AM
FL
Y

Team-Fly®

Parameters

lpServiceClassId: Pointer to the GUID identifying the service class for removal

Return Value

If the function succeeds, it will return a value of zero. Otherwise, it will return
SOCKET_ERROR. To retrieve the specific error code, call the function
WSAGetLastError(). Possible error codes are WSATYPE_NOT_FOUND,
WSAEACCES, WSANOTINITIALISED, WSAEINVAL, and WSA_NOT_
ENOUGH_MEMORY.

See Appendix B for a detailed description of the error codes.

See Also

WSAInstallServiceClass, WSASetService

Example

See Listing 4-5 (program EX45).

Service Queries
We have discussed how to register and advertise a service on the server. From
the client side’s point of view, how does it locate such a service? To find the ser-
vice, the client has to query the name space for the service. To perform this
query, your client has to call three functions: WSALookupServiceBegin(),
WSALookupServiceNext(), and WSALookupServiceEnd(), in that order.

A call to WSALookupServiceBegin() initiates the process by setting the
parameters that define the query. The function prototype, which is defined in
Winsock2.pas, is:

function WSALookupServiceBegin(lpqsRestrictions: LPWSAQUERYSETW;
dwControlFlags: DWORD;
var lphLookup: HANDLE): Integer; stdcall;

The first parameter, lpqsRestrictions, is a pointer to the WSAQUERYSET data
structure. You should set the fields of this structure to limit the name spaces to
query. (Remember that you could have more than one name space on your
machine.) The second parameter, dwControlFlags, defines the depth of search as
well as the type of data to return, which we’ll examine shortly. The last parame-
ter, lphLookup, is a pointer to THandle, which WSALookupServiceNext() uses
for searching.

To define the depth of searching and the type of data to return, use one flag or
a combination of flags from Table 4-9.

Winsock 2 Resolution � 103

4

C
h
a
p

te
r

Table 4-9: Flags for queries

Flag Description

LUP_DEEP Query deep as opposed to just the first level

LUP_CONTAINERS Return containers only

LUP_NOCONTAINERS Don’t return any containers

LUP_FLUSHCACHE If the provider has been caching information, ignore the cache and go query
the name space itself.

LUP_FLUSHPREVIOUS Used as a value for the dwControlFlags argument in WSALookupService-
Next. Setting this flag instructs the provider to discard the last result set,
which was too large for the supplied buffer, and move on to the next result
set.

LUP_NEAREST If possible, return results in the order of distance. The measure of distance is
provider specific.

LUP_RES_SERVICE Indicates whether prime response is in the remote or local part of
CSADDR_INFO record. The other part needs to be “useable” in either case.

LUP_RETURN_ALIASES Any available alias information is to be returned in successive calls to
WSALookupServiceNext, and each alias returned will have the
RESULT_IS_ALIAS flag set.

LUP_RETURN_NAME Retrieve the name as lpszServiceInstanceName

LUP_RETURN_TYPE Retrieve the type as lpServiceClassId

LUP_RETURN_VERSION Retrieve the version as lpVersion

LUP_RETURN_COMMENT Retrieve the comment as lpszComment

LUP_RETURN_ADDR Retrieve the addresses as lpcsaBuffer

LUP_RETURN_BLOB Retrieve the private data as lpBlob

LUP_RETURN_QUERY_STRING Retrieve unparsed remainder of the service instance name as
lpszQueryString

LUP_RETURN_ALL Retrieve all of the information

After a successful call to WSALookupServiceBegin(), the return value will be
zero. Otherwise, the function will return a SOCKET_ERROR, which you should
check for the cause of the error. The function returns a pointer to HANDLE,
lphLookup, which you pass to WSALookupServiceNext(). The function proto-
type for WSALookupServiceNext(), which is defined in Winsock2.pas, is as
follows:

function WSALookupServiceNext(hLookup: HANDLE;
dwControlFlags: DWORD;
var lpdwBufferLength: DWORD;
lpqsResults: LPWSAQUERYSETW): Integer; stdcall;

The handle returned by WSALookupServiceBegin() is passed into the first
parameter, hLookup, in WSALookupServiceNext(). The second parameter,
dwControlFlags, is similar to dwControlFlags in WSALookupServiceBegin(),
except WSALookupServiceNext() only supports LUP_FLUSHPREVIOUS (see
Table 4-9). The third parameter, lpdwBufferLength, is the size of the buffer
passed in the final parameter, lpqsResults. In a query, after calling WSALookup-

104 � Chapter 4

ServiceBegin(), you should call WSALookupServiceNext() repetitively (inside a
loop, for example) until there is no more data to be retrieved, which is indicated
by the WSA_E_NO_MORE or WSAENOMORE value returned by WSALookup-
ServiceNext(). The data returned by WSALookupServiceNext() is contained in
the buffer, lpqsResults. To retrieve the data, you must dereference the pointer to
the WSAQUERYSET data structure.

When WSALookupServiceNext() has done its searching, you must call
WSALookupServiceEnd() to release any resources allocated for the query. The
function prototype for WSALookupServiceEnd(), which is defined in
Winsock2.pas, is as follows:

function WSALookupServiceEnd(hLookup: HANDLE): Integer; stdcall;

The parameter, hLookup, is the same handle that WSALookupServiceBegin()
and WSALookupServiceNext() use.

We complete our coverage of these functions by giving a formal description of
them.

function WSALookupServiceBegin Winsock2.pas

Syntax

WSALookupServiceBegin(lpqsRestrictions: LPWSAQUERYSETW;
dwControlFlags: DWORD; var lphLookup: HANDLE): Integer; stdcall;

Description

This function initiates a client query that is constrained by the information con-
tained within a WSAQUERYSET record. The function only returns a handle,
which WSALookupServiceNext() uses to get the actual results.

As mentioned above, you use a pointer to the WSAQUERYSET record as an
input parameter to WSALookupServiceBegin() to qualify the query. Table 4-10
explains how you would use the WSAQUERYSET structure to construct a
query. Setting the optional fields of WSAQUERYSET to NIL will indicate to the
function not to include these fields as part of its search criteria.

Table 4-10: Fields to specify the type of query

TWSAQuerySet Field Name Query Interpretation

dwSize Must be set to the size of WSAQUERYSET. This is a versioning mechanism.

lpszServiceInstanceName (Optional) Referenced string contains service name. The semantics for
wildcarding within the string are not defined but may be supported by certain
name space providers.

lpServiceClassId (Required) The GUID corresponding to the service class

lpVersion (Optional) References desired version number and provides version comparison
semantics (i.e., version must match exactly or version must not be less than the
value supplied)

lpszComment Ignored for queries

Winsock 2 Resolution � 105

4

C
h
a
p

te
r

TWSAQuerySet Field Name Query Interpretation

dwNameSpace Identifier of a single name space in which to constrain the search or NS_ALL to
include all name spaces. See important tip below.

lpNSProviderId (Optional) References the GUID of a specific name space provider and limits the
query to this provider only

lpszContext (Optional) Specifies the starting point of the query in a hierarchical name space

dwNumberOfProtocols Size of the protocol constraint array; may be zero

lpafpProtocols (Optional) References an array of AFPROTOCOLS record. Only services that
utilize these protocols will be returned.

lpszQueryString (Optional) Some name spaces (such as whois++) support enriched SQL-like
queries which are contained in a simple text string. This parameter is used to
specify that string.

dwNumberOfCsAddrs Ignored for queries

lpcsaBuffer Ignored for queries

dwOutputFlags Ignored for queries

lpBlob (Optional) This is a pointer to a provider-specific entity.

�TIP: In most cases, applications that require a particular transport
protocol should constrain their query by address family and
protocol rather than by name space. This would allow an
application that wishes to locate a TCP/IP service, for example,
to have its query processed by all available name spaces, such as
the local hosts file, DNS, NIS, etc.

Parameters

lpqsRestrictions: Contains the search criteria. See Table 4-9 for details.

dwControlFlags: Controls the depth of the search

lphLookup: Handle to be used when calling WSALookupServiceNext() to start
retrieving the results set

Return Value

If the function succeeds, it will return a value of zero. Otherwise, it will return
SOCKET_ERROR. To retrieve the specific error code, call the function
WSAGetLastError(). Possible error codes are WSAEINVAL, WSANO_DATA,
WSANOTINITIALISED, WSASERVICE_NOT_FOUND, and WSA_NOT_
ENOUGH_MEMORY.

See Appendix B for a detailed description of the error codes.

See Also

WSALookupServiceEnd, WSALookupServiceNext

106 � Chapter 4

Example

Listing 4-6 (program EX46) shows how to use the WSALookupServiceBegin(),
WSALookupServiceNext(), and WSALookupServiceEnd() functions.

Listing 4-6: Calling WSALookupServiceBegin(), WSALookupServiceNext(), and

WSALookupServiceEnd()

program EX46;

{$APPTYPE CONSOLE}

uses
SysUtils,
Windows,
WinSock,
WinSock2,
NspApi,
common in 'common.pas';

procedure ClientSend(AddrInfo: LPCSADDR_INFO);
var
ComputerName, Message: string;
Size: Cardinal;
S: TSocket;

begin
// set up the message text to send
Size := 255;
SetLength(ComputerName, Size);
GetComputerName(PChar(ComputerName), Size);
SetLength(ComputerName, StrLen(PChar(ComputerName)));
Message := 'A message from the client: ' + ComputerName;
// create the socket
S := socket(AddrInfo^.RemoteAddr.lpSockaddr^.sa_family, AddrInfo^.iSocketType,

AddrInfo^.iProtocol);
if S <> INVALID_SOCKET then
begin
// connect, send message and close
if connect(s, PSockAddr(AddrInfo^.RemoteAddr.lpSockaddr),

AddrInfo^.RemoteAddr.iSockaddrLength) <> SOCKET_ERROR then
begin
if send(S, Message[1], Length(Message) + 1, 0) <> SOCKET_ERROR then
WriteLn('send a message to the peer...')

else
WriteLn(Format('send failed %d', [WSAGetLastError]))

end
else WriteLn(Format('connect failed %d', [WSAGetLastError]));
CloseSocket(S);

end
else WriteLn(Format('Failed socket call %d', [WSAGetLastError]));

end;

type
TCSAddrInfoArray = array [0..1024] of CSADDR_INFO;
PCSAddrInfoArray = ^TCSAddrInfoArray;

procedure DoRnrClient;
var
Restrictions: WSAQUERYSET;

Winsock 2 Resolution � 107

4

C
h
a
p

te
r

Protocols: array [0..1] of AFPROTOCOLS; // = {{AF_IPX, NSPROTO_IPX}, {AF_INET,
IPPROTO_UDP}};

Lookup: THandle;
R: Integer;
Length: DWORD;
ResultSet: LPWSAQUERYSET;
I: Integer;
RemoteAddr: LPSOCKADDR;
Buffer: Pointer;

begin
// Set up the query restrictions. We are only interested in a specific service over a

specific protocol.
Protocols[0].iAddressFamily := AF_INET;
Protocols[0].iProtocol := IPPROTO_UDP;
ZeroMemory(@Restrictions, SizeOf(Restrictions));
Restrictions.dwSize := SizeOf(Restrictions);
Restrictions.lpszServiceInstanceName := PChar(ServerName);
Restrictions.lpServiceClassId := @ServiceGuid;
Restrictions.dwNameSpace := NS_ALL;
Restrictions.dwNumberOfProtocols := 2;
Restrictions.lpafpProtocols := @Protocols;
// Execute query
if WSALookupServiceBegin(@Restrictions, LUP_RETURN_ADDR or LUP_RETURN_NAME, Lookup) =

SOCKET_ERROR then
begin
PrintError('WSALookupServiceBegin');
Exit;

end;
WriteLn(Format('Performing Query for service (type, name) = (%d, %s) . . .', [ServerType,

ServerName]));
// Now retrieve the result. Each call to WSALookupServiceNext returns one result set. We

use the very first
// one and ignore all others (if any). To retrieve all result sets, just put a loop around

the following code
// that terminates when WSALookupServiceNext returns SOCKET_ERROR and WSAGetLastError

returns WSA_E_NO_MORE
Buffer := nil;
try
// Note that the ResultSet record is actually variable length. Therefore we allocate a

buffer and let
// ResultSet point to that buffer. We quess that 1024 bytes will be sufficient for most

ResultSets
Length := 1024;
Buffer := AllocMem(Length);
ResultSet := Buffer;
R := WSALookupServiceNext(Lookup, 0, Length, ResultSet);
if (R = SOCKET_ERROR) and (WSAGetLastError = WSAEFAULT) then
begin
// Our 1024 bytes wasn't enough, allocate a larger buffer and try again. This time the

function should
// succeed because the function told us what size the buffer has to be (through the

Length parameter)
ReallocMem(Buffer, Length);
ResultSet := Buffer;
R := WSALookupServiceNext(Lookup, 0, Length, ResultSet);

end;
if R = SOCKET_ERROR then
begin
PrintError('WSALookupServiceNext');
WSALookupServiceEnd(Lookup);

108 � Chapter 4

Exit;
end;
// Success. Now loop through all the transport addresses in the result set and send a

message to each of them
if R = 0 then
begin
for I := 0 to ResultSet^.dwNumberOfCsAddrs - 1 do
begin
RemoteAddr := PCSAddrInfoArray(ResultSet^.lpcsaBuffer)^[I].RemoteAddr.lpSockaddr;
if RemoteAddr <> nil then
begin
WriteLn(Format('Name[%d]: %30s', [I, ResultSet^.lpszServiceInstanceName]));
WriteLn(Format('%40s', [GetSockAddrString(RemoteAddr)]));
ClientSend(@(PCSAddrInfoArray(ResultSet^.lpcsaBuffer)^[I]));

end;
end;

end;
finally
// Release query resources and buffer
WSALookupServiceEnd(Lookup);
FreeMem(Buffer);

end;
end;

var
StartupData: TWSAData;
R: DWORD;

begin
R := WSAStartup($0202, StartupData);
if R = 0 then
try
DoRnrClient;

finally
if WSACleanup = SOCKET_ERROR then
begin
WriteLn('Failed to clean-up Winsock.');
WriteLn('Error: ' + SysErrorMessage(WSAGetLastError));

end;
end
else
begin
WriteLn('Failed to initialize Winsock.');
WriteLn('Error: ' + SysErrorMessage(R));
Exit;

end;
end.

function WSALookupServiceNext Unit Winsock2.pas

Syntax

WSALookupServiceNext(hLookup: HANDLE; dwControlFlags: DWORD;
var lpdwBufferLength: DWORD; lpqsResults: LPWSAQUERYSETW): Integer;
stdcall;

Winsock 2 Resolution � 109

4

C
h
a
p

te
r

Description

We call this function with the hLookup parameter assigned by a previous call to
WSALookupServiceBegin() to retrieve the requested service information. The
provider will pass back a pointer to the WSAQUERYSET record in the lpqs-

Results buffer. The client should continue to call this function until it returns
WSA_E_NO_MORE, indicating that all of the WSAQUERYSET records have
been returned.

The dwControlFlags field specified in this function and in WSALookup-
ServiceBegin() are treated as “restrictions” for the purpose of combination. The
restrictions are combined between those at the invocation of WSALookup-
ServiceBegin() and those at the invocation of WSALookupServiceNext().
Therefore, the flags in WSALookupServiceNext() can never increase the
amount of data returned beyond what was requested in WSALookup-
ServiceBegin(), although it is not an error to specify more or fewer flags. The
flags specified at a given WSALookupServiceNext() apply only to that call.

The field dwControlFlags that is set either to LUP_FLUSHPREVIOUS or
LUP_RES_SERVICE are exceptions to the “combined restrictions” rule
(because they are “behavior” flags instead of “restriction” flags). If either of
these flags are used in WSALookupServiceNext(), they have their defined effect
regardless of the setting of the same flags in WSALookupServiceBegin().

For example, if LUP_RETURN_VERSION is specified in WSALookup-
ServiceBegin(), the service provider retrieves records including the “version.”
If LUP_RETURN_VERSION is not specified at WSALookupServiceNext(), the
returned information does not include the “version,” even though it was avail-
able. No error is generated.

Also, if LUP_RETURN_BLOB is not specified in WSALookupServiceBegin()
but is specified in WSALookupServiceNext(), the returned information does not
include the private data. No error is generated.

Table 4-11 describes how the query results are represented in the
WSAQUERYSET record.

Table 4-11: Query results in the WSAQUERYSET record

WSAQUERYSET Field
Name

Result Interpretation

dwSize Will be set to the size of the WSAQUERYSET. This is used as a versioning
mechanism.

lpszServiceInstanceName Referenced string contains service name

lpServiceClassId The GUID corresponding to the service class

lpVersion References version number of the particular service instance

lpszComment Optional comment string supplied by service instance

dwNameSpace Name space in which the service instance was found

lpNSProviderId Identifies the specific name space provider that supplied this query result

110 � Chapter 4

WSAQUERYSET Field
Name

Result Interpretation

lpszContext Specifies the context point in a hierarchical name space at which the service is
located

dwNumberOfProtocols Undefined for results

lpafpProtocols Undefined for results; all needed protocol information is in the CSADDR_INFO
records.

lpszQueryString When dwControlFlags includes LUP_RETURN_QUERY_STRING, this field returns
the unparsed remainder of the lpszServiceInstanceName specified in the original
query. For example, in a name space that identifies services by hierarchical names
that specify a host name and a file path within that host, the address returned might
be the host address and the unparsed remainder might be the file path. If the
lpszServiceInstanceName is fully parsed and LUP_RETURN_QUERY_STRING is
used, this field is NULL or points to a zero-length string.

dwNumberOfCsAddrs Indicates the number of elements in the array of CSADDR_INFO records

lpcsaBuffer A pointer to an array of CSADDR_INFO records, with one complete transport
address contained within each element

dwOutputFlags RESULT_IS_ALIAS flag indicates this is an alias result.

lpBlob (Optional) A pointer to a provider-specific entity

Parameters

hLookup: Handle returned from the previous call to WSALookupServiceBegin()

dwControlFlags: Flags to control the next operation. Currently only LUP_
FLUSHPREVIOUS is defined as a means to cope with a result set that is
too large. If an application does not wish to (or cannot) supply a large
enough buffer, setting LUP_FLUSHPREVIOUS instructs the provider to
discard the last result set, which was too large, and move on to the next
set for this call.

lpdwBufferLength: On input, the number of bytes contained in the buffer pointed
to by lpqsResults. On output, if the API fails and the error is WSAEFAULT,
then it contains the minimum number of bytes to pass for the lpqsResults to
retrieve the record.

lpqsResults: A pointer to a block of memory, which will contain one result set in
a WSAQUERYSET record on return

Return Value

If the function succeeds, it will return a value of zero. Otherwise, it will return
SOCKET_ERROR. To retrieve the specific error code, call the function
WSAGetLastError(). Possible error codes are WSA_E_NO_MORE,
WSA_E_CANCELLED, WSAEFAULT, WSAEINVAL, WSA_INVALID_
HANDLE, WSANOTINITIALISED, WSANO_DATA, WSASERVICE_NOT_
FOUND, and WSA_NOT_ENOUGH_MEMORY.

See Appendix B for a detailed description of the error codes.

Winsock 2 Resolution � 111

4

C
h
a
p

te
r

See Also

WSALookupServiceBegin, WSALookupServiceEnd

Example

See Listing 4-6 (program EX46).

WSALookupServiceEnd Winsock2.pas

Syntax

WSALookupServiceEnd(hLookup: HANDLE): u_int; stdcall;

Description

This function frees the handle, hLookup, after previous calls to WSALookup-
ServiceBegin() and WSALookupServiceNext().

Parameters

hLookup: Handle previously obtained by calling WSALookupServiceBegin()

Return Value

If the function succeeds, it will return a value of zero. Otherwise, it will return
SOCKET_ERROR. To retrieve the specific error code, call the function
WSAGetLastError(). Possible error codes are WSA_INVALID_HANDLE,
WSANOTINITIALISED, and WSA_NOT_ENOUGH_MEMORY.

See Appendix B for a detailed description of the error codes.

See Also

WSALookupServiceBegin, WSALookupServiceNext

Example

See Listing 4-6 (program EX46).

Helper Functions
We include the following functions for completeness, but we do not propose to
cover these in great detail. We have already come across two helper functions
early on in this chapter, WSAAddressToString() and WSAStringToAddress(). We
will now look at two more functions, WSAGetServiceClassInfo() and WSAGet-
ServiceClassNameByClassId().

function WSAGetServiceClassInfo Winsock2.pas

Syntax

WSAGetServiceClassInfo(const lpProviderId, lpServiceClassId: TGUID; var
lpdwBufSize: DWORD; lpServiceClassInfo: LPWSASERVICECLASSINFOW):
Integer; stdcall;

112 � Chapter 4

TE
AM
FL
Y

Team-Fly®

Description

This function retrieves all information pertaining to a specified service class
from a specified name space provider.

The service class information retrieved from a particular name space pro-
vider may not necessarily be the complete set of class information that was
supplied when the service class was installed. Individual name space providers
are only required to retain service class information that is applicable to the
name spaces that they support.

Parameters

lpProviderId: Pointer to a GUID, which identifies a specific name space provider

lpServiceClassId: Pointer to a GUID identifying the service class in question

lpdwBufSize: On input, the number of bytes contained in the buffer pointed to by
lpServiceClassInfo. On output, if the API fails and the error is
WSAEFAULT, then it contains the minimum number of bytes to pass for
lpServiceClassInfo to retrieve the record.

lpServiceClassInfo: Service class information from the indicated name space pro-
vider for the specified service class

Return Value

If the function succeeds, it will return a value of zero. Otherwise, it returns
SOCKET_ERROR. To retrieve the specific error code, call the function
WSAGetLastError(). Possible error codes are WSAEACCES, WSAEFAULT,
WSAEINVAL, WSANOTINITIALISED, WSATYPE_NOT_FOUND, and
WSA_NOT_ENOUGH_MEMORY.

See Appendix B for a detailed description of the error codes.

See Also

WSAStartup

Example

None

function WSAGetServiceClassNameByClassId Winsock2.pas

Syntax

WSAGetServiceClassNameByClassId(const lpServiceClassId: TGUID;
lpszServiceClassName: LPWSTR; var lpdwBufferLength: DWORD): Integer; stdcall;

Description

This function returns the name of the service associated with the given type,
such as the generic service name, like FTP or SMTP.

Winsock 2 Resolution � 113

4

C
h
a
p

te
r

Parameters

lpServiceClassId: Pointer to the GUID for the service class

lpszServiceClassName: Service name such as FTP, SMTP, etc.

lpdwBufferLength: On input, length of buffer returned by lpszServiceClassName.
On output, it is the length of the service name copied into lpszServiceClass-

Name.

Return Value

If the function succeeds, it will return a value of zero. Otherwise, it returns
SOCKET_ERROR. To retrieve the specific error code, call the function
WSAGetLastError(). Possible error codes are WSAEFAULT, WSAEINVAL,
WSANOTINITIALISED, and WSA_NOT_ENOUGH_MEMORY.

See Appendix B for a detailed description of the error codes.

See Also

WSAStartUp

Example

None

Apart from the helper functions that we just discussed (WSAGetServiceClass-
NameByClassId() and WSAGetServiceClassInfo()), there are other functions
that help us map well-known ports, services and service classes, and name
spaces to their allocated GUIDs, and vice versa. These are defined in
SvcGuid.pas. The following list shows these functions. There is one sting in the
tail. Remember, in Chapter 3, we stated that port numbers must be in network
byte order. Well, when we use the following helper functions, we break this car-
dinal rule. Instead, you supply and receive port numbers in host byte order.

�TIP: When using the helper functions in the following lists, you must
supply and receive port numbers in host byte order.

Functions that define and test TCP and UDP GUIDs from well-known ports

function SVCID_TCP_RR(Port, RR: Word): TGUID;

function SVCID_TCP(Port: Word): TGUID;

function SVCID_DNS(RecordType: Word): TGUID;

function IS_SVCID_DNS(const Guid: TGUID): Boolean;

function IS_SVCID_TCP(const Guid: TGUID): Boolean;

function PORT_FROM_SVCID_TCP(const Guid: TGUID): Word;

function RR_FROM_SVCID(const Guid: TGUID): Word;

procedure SET_TCP_SVCID_RR(var Guid: TGUID; _Port, _RR: Word);

procedure SET_TCP_SVCID(var Guid: TGUID; Port: Word);

114 � Chapter 4

function SVCID_UDP_RR(Port, RR: Word): TGUID;

function SVCID_UDP(Port: Word): TGUID;

function IS_SVCID_UDP(const Guid: TGUID): Boolean;

function PORT_FROM_SVCID_UDP(const Guid: TGUID): WORD;

procedure SET_UDP_SVCID_RR(var Guid: TGUID; Port, RR: WORD);

procedure SET_UDP_SVCID(var Guid: TGUID; Port: WORD);

Functions that define and test NetWare (SAP) services based on the SAP IDs

function SVCID_NETWARE(SapId: WORD): TGUID;

function IS_SVCID_NETWARE(const Guid: TGUID): Boolean;

function SAPID_FROM_SVCID_NETWARE(const Guid: TGUID): WORD;

procedure SET_NETWARE_SVCID(var Guid: TGUID; SapId: WORD);

Functions for the Future
Perhaps the title for this section is a bit misleading, as the functions that we are
about to discuss have been implemented on Windows XP, Windows 2000, and
NT 4.0. However, these new functions are not supported on Windows 95 and
Windows 98. These new functions came into being to support IPv6, a 128-bit
version of IP, which is known to followers of the Star Trek genre (I count myself
as one) as IPng (Internet Protocol the Next Generation). Why do we need a new
version of IP? Simply put, the projection is that the Internet will run out of
addresses by 2020. The design of IPv4 over the past 20 years or so has proved
to be stable and effective. Unfortunately, with the explosive growth of the
Internet (and it is showing no signs of abating), the address space is becoming a
scarce resource. Coupled with that is the problem of maintaining huge address
tables on DNS servers. After a long period of gestation, worthy of a book, IPv6
is now available on a limited basis. At present, there are islands of web servers
that use IPv6.

What benefits does IPv6 have over IPv4? There are several benefits but the
most important is the almost unlimited address space that 128-bit addressing
provides. Superficially, IPv4 and IPv6 are similar conceptually but the underly-
ing schema is so different that functions such as gethostbyname() don’t cut the
mustard with IPv6. Enter these new functions:

� getaddrinfo()

� freeaddrinfo()

� gai_strerror()

� getnameinfo()

In the case of gethostbyname(), you would use getaddrinfo() instead. The nice
thing about these new functions is that they work with IPv4 and IPv6, which
will enable you to support Winsock applications for IPv4 and IPv6. Not

Winsock 2 Resolution � 115

4

C
h
a
p

te
r

surprisingly, Microsoft calls these new functions agnostic functions. However,
there are still traps for the unwary, which we will explore in the next section.

Now that we know the reasons for moving away from IPv4 to IPv6, we need
to address the question, how different is IPv4 from IPv6? To answer this ques-
tion, let’s go back to the form of the IP address. All hosts (this is a generic term
for PCs, routers, servers, clients, etc.) on the Internet use the 32-bit IP dotted
address format, aaa.bbb.ccc.ddd. I do not propose to explain in great detail the
taxonomy of different types of addresses, but please refer to any good TCP/IP
and Windows Sockets texts (see Appendix C). Instead, I want to illustrate the
difference between an IPv4 IP address and an IPv6 IP address. Because IPv4
uses 32-bit addressing, IP dotted address format is relatively straightforward to
configure. Not so with IPv6 addresses, which, as you would expect with a
128-bit address scheme, are so much more complex that ordinary users are not
able to configure them manually. To illustrate this complexity, any IPv4 address
is always in the same format, aaa.bbb.ccc.ddd, or a 32-bit number (4 blocks
times 8 bytes); an IPv6 address is a 128-bit number in the following dotted deci-
mal format:

aaa.bbb.ccc.ddd.eee.fff.ggg.hhh.iii.jjj.kkk.lll.mmm.nnn.ooo.ppp

This represents a 128-bit address, which, you will agree, is much more complex
than an IPv4 address. It is much more difficult for a user to configure, simply
because it is longer. To make the IPv6 address more compact, the designers
have chosen the following format in hexadecimal notation:

aaa.bbb.ccc.ddd.eee.fff.ggg.hhh

This is called colon hex notation. Like IPv4, IPv6 has name-based addresses.
We will not explore this in any more detail, as this is a topic to which we will
return in a future book on advanced communications.

Making Your Winsock Applications Agnostic

To make your Winsock application capable of working with both IPv4 and IPv6,
you will need to follow the simple guidelines given below. For a detailed descrip-
tion, please refer to MSDN Platform SDK.

� Avoid using hard-coded IPv4 addresses in your application, such as
127.0.0.1 (INADDR_LOOPBACK), which is the loopback address. There
is a strong argument against hard coded IP addresses in an application
because the application can break if the network configuration changes;
for example, a host’s IP address is changed.

� Use data structures that are agnostic. That is, use SOCKADDR_
STORAGE to replace the IPv4 address structures SOCKADDR and
SOCKADDRIN.

116 � Chapter 4

� Replace IPv4-specific functions. Use getaddrinfo() to replace
gethostbyname().

� Always call Winsock 2.

� Adapt any dialogs that handle IPv4 addresses for handling IPv6 addresses,
which are more complex and vary unpredictably in length. At best,
because of the complex nature of IPv6 addresses, your application should
not require users to configure such addresses. Indeed, it has been argued
that IPv6- (and even IPv4-) based applications shouldn’t require the user
to enter or modify an IP address of a host, but instead rely on host names
to be resolved to their IP addresses transparently by the application.

As noted, we use getaddrinfo() to perform any required resolution of hosts, ser-
vices, protocols, and ports. The prototype for getaddrinfo() is defined in
WS2TCPIP.pas and is as follows:

function getaddrinfo(nodename, servname: PChar; hints: PAddrInfo; var res: PAddrInfo):
Integer; stdcall;

When you use getaddrinfo(), either or both nodename or servname must point to
a NULL-terminated string. The hints parameter is a pointer to the addrinfo
structure. On success, getaddrinfo() returns a linked list of addrinfo structures
in the res parameter.

The addrinfo structure is defined in WS2TCPIP.pas as follows:

LPADDRINFO = ^addrinfo;
addrinfo = record
ai_flags: Integer; // AI_PASSIVE, AI_CANONNAME, AI_NUMERICHOST
ai_family: Integer; // PF_xxx
ai_socktype: Integer; // SOCK_xxx
ai_protocol: Integer; // 0 or IPPROTO_xxx for IPv4 and IPv6
ai_addrlen: size_t; // Length of ai_addr
ai_canonname: PChar; // Canonical name for nodename
ai_addr: PSockAddr; // Binary address
ai_next: LPADDRINFO; // Next structure in linked list

end;
TAddrInfo = addrinfo;
PAddrInfo = LPADDRINFO;

To process the list, you need to use the pointer stored in the ai_next field of
each returned addrinfo structure until the ai_next field is a NIL pointer.

The ai_family, ai_socktype, and ai_protocol fields of the addrinfo structure cor-
respond to arguments in the socket function. The ai_addr field points to a
populated socket address. The length of ai_addr is stored in the ai_addrlen field.

You can determine which type of socket to use by assigning a value to the
ai_socktype field. For example, if your application “doesn’t care” about the type
of socket (for example, SOCK_STREAM, SOCK_RAW, or SOCK_DGRAM), you
could specify a value of zero for ai_socktype. For your application to use TCP,
you would assign a value of SOCK_STREAM to ai_socktype. The hints parame-
ter is used to pass the addrinfo structure.

Winsock 2 Resolution � 117

4

C
h
a
p

te
r

Before calling getaddrinfo(), there are rules that you must follow with respect
to the addrinfo structure:

� A value of PF_UNSPEC for ai_family indicates the caller will accept any
protocol family.

� A value of zero for ai_socktype indicates the caller will accept any socket
type.

� A value of zero for ai_protocol indicates the caller will accept any protocol.

� ai_addrlen must be zero.

� ai_canonname must be zero.

� ai_addr must be NIL.

� ai_next must be NIL.

However, if you want your application to work only with IPv6, then you should
assign PF_INET6 to ai_family. Occasionally, though, you might want your appli-
cation to use the default values. To do this, you should set the hints parameter
to NIL, which will enable your application to work with either IPv4 or IPv6. The
other fields are set to zero.

The last field in the addrinfo structure is ai_flags. Flags in this field are used
to determine the behavior of the getaddrinfo() function. There are three flags:

� AI_PASSIVE

� AI_CANONNAME

� AI_NUMERICHOST

If we want to use the returned socket address structure for binding (as you
would if your application is a server), you set ai_flags to AI_PASSIVE. If the
nodename parameter is NIL, the socket address in the addrinfo structure is set
to INADDR_ANY for IPv4 and IN6ADDR_ANY_INIT for IPv6. If, on the other
hand, ai_flags is not set to AI_PASSIVE, the returned socket address structure
is ready for a call, either to the connect(), send(), or sendto() functions. Note
that if nodename is NIL in this case, the socket address is set to the loopback
address.

If neither AI_CANONNAME nor AI_NUMERICHOST are used (that is,
ai_flags is zero), the getaddrinfo() function will attempt to resolve if the node-

name parameter contains the host name. If you set ai_flags to AI_CANON-
NAME, getaddrinfo() will return the canonical name of the host in the
ai_canonname field of the addrinfo structure on success. Beware, though, that
when getaddrinfo() returns successfully using the AI_CANNONNAME flag, the
ai_canonnname field could be set to NIL. Therefore, when your application uses
the AI_CANONNAME flag it must check that ai_canonname is not set to NIL.

118 � Chapter 4

When you use the AI_NUMERICHOST flag, the nodename parameter must
contain a host address; otherwise, the EAI_NONAME error is returned. This
prevents a name resolution service from being called.

As getaddrinfo() dynamically allocates memory for the addrinfo structure, it
has to be freed when your application is done with that information. Call the
freeaddrinfo() function.

The getnameinfo() function provides name resolution from an address to a
host name. The function prototype is defined in WS2TCPIP.pas and is as
follows:

function getnameinfo(sa: PSockAddr; salen: socklen_t; host: PChar; hostlen: DWORD; serv:
PChar; servlen: DWORD; flags: Integer): Integer; stdcall;

To simplify determining buffer requirements for the host and serv parameters,
the following values for maximum host name length and maximum service
name are defined in the Ws2tcpip.pas header file:

NI_MAXHOST = 1025;
NI_MAXSERV = 32;

To modify the behavior of getnameinfo(), set the flags parameter to one of the
following:

� NI_NOFQDN: Forces local hosts having only their Relative Distin-
guished Name (RDN) returned in the host parameter

� NI_NUMERICHOST: Returns the numeric form of the host name
instead of its name. The numeric form of the host name is also returned if
the host name cannot be resolved by DNS.

� NI_NAMEREQD: Host names that cannot be resolved by the Domain
Name System (DNS) result in an error.

� NI_NUMERICSERV: Returns the port number of the service instead of
its name

� NI_DGRAM: Indicates that the service is a datagram service. This flag is
necessary for the few services that provide different port numbers for
UDP and TCP service.

Now it’s time to give a formal definition of these new functions.

function getaddrinfo Ws2tcpip.pas

Syntax

getaddrinfo(nodename, servname: PChar; hints: PAddrInfo; var res: PAddrInfo):
Integer; stdcall;

Description

This function provides protocol-independent translation from host name to
address.

Winsock 2 Resolution � 119

4

C
h
a
p

te
r

Parameters

nodename: A pointer to a NULL-terminated string containing a host name or a
numeric host address string. The numeric host address string is a dotted
decimal IPv4 address or an IPv6 hexadecimal address.

servname: A pointer to a NULL-terminated string containing either a service
name or port number

hints: A pointer to an addrinfo structure that provides hints about the type of
socket the caller supports

res: A pointer to a linked list of one or more addrinfo structures for the host

Return Value

If the function succeeds, it will return a value of zero. Otherwise, it will return a
nonzero Windows Sockets error code, as found in Appendix B. Error codes
returned by getaddrinfo() map to the error codes based on IEFT recommenda-
tions. Table 4-12 shows this mapping between Windows Sockets error codes
(denoted as WSA*) and their IEFT equivalents.

Table 4-12: IEFT error codes mapped to their Winsock error codes

Error WSA* Equivalent Description

EAI_AGAIN WSATRY_AGAIN Temporary failure in name resolution

EAI_BADFLAGS WSAEINVAL Invalid value for ai_flags

EAI_FAIL WSANO_RECOVERY Non-recoverable failure in name resolution

EAI_FAMILY WSAEAFNOSUPPORT The ai_family member is not supported.

EAI_MEMORY WSA_NOT_ENOUGH_MEMORY Memory allocation failure

EAI_NODATA WSANO_DATA No address associated with nodename

EAI_NONAME WSAHOST_NOT_FOUND Neither nodename nor servname provided, or not
known

EAI_SERVICE WSATYPE_NOT_FOUND The servname parameter is not supported for
ai_socktype.

EAI_SOCKTYPE WSAESOCKTNOSUPPORT The ai_socktype member is not supported.

Instead of calling WSAGetLastError(), you can use the gai_strerror() function to
retrieve error messages based on the EAI_* codes returned by the
getaddrinfo() function. However, gai_strerror() is not thread safe. Therefore,
you should still continue to use WSAGetLastError().

See Appendix B for a detailed description of the error codes.

See Also

freeaddrinfo, gai_strerror

Example

Listing 4-7 (program EX47) shows how to use the getaddrinfo(), freeaddrinfo(),
and getnameinfo() functions.

120 � Chapter 4

Listing 4-7: Calling the getaddrinfo(), freeaddrinfo(), and getnameinfo() functions with select()

program EX47;

{$APPTYPE CONSOLE}

uses
Dialogs,
SysUtils,
Winsock2,
WS2tcpip;

const
DEFAULT_FAMILY = PF_UNSPEC;// // Accept either IPv4 or IPv6
DEFAULT_SOCKTYPE = SOCK_STREAM; // TCP
DEFAULT_PORT = '5001'; // Arbitrary, albeit a historical test port

BUFFER_SIZE = 64; // Set very small for demonstration purposes

var
Buffer: array[0..BUFFER_SIZE - 1] of Char;
Hostname: string; //[NI_MAXHOST];
Family: Integer = DEFAULT_FAMILY;
SocketType: Integer = DEFAULT_SOCKTYPE;
Port: string = DEFAULT_PORT;
Address: PChar = nil;
i, NumSocks, Res, FromLen, AmountRead: Integer;
From: SOCKADDR_STORAGE;
wsaData: TWSADATA;
Hints: TADDRINFO;
AddrInfo, AI: PAddrInfo;
ServSock: array [0..FD_SETSIZE-1] of TSocket;
SockSet: fd_set;
sktConnect: TSocket;

begin
if WSAStartup($202, wsaData) <> 0 then
begin
WriteLn('Call to WSAStartup failed!'); //failed to call
Exit;

end;

try
FillChar(Hints, SizeOf(Hints), 0);
with Hints do
begin
ai_family := Family;
ai_socktype := SocketType;
ai_flags := AI_NUMERICHOST or AI_PASSIVE;
Res := getaddrinfo(Address, PChar(Port), @Hints, AddrInfo);
if Res = SOCKET_ERROR then
begin
ShowMessage('Call to getaddrinfo failed.Error ' + IntToStr(WSAGetLastError));
Exit;

end;
end;

Winsock 2 Resolution � 121

4

C
h
a
p

te
r

{
By setting the AI_PASSIVE flag in the hints to getaddrinfo, we're
indicating that we intend to use the resulting address(es) to bind
to a socket(s) for accepting incoming connections. This means that
when the Address parameter is NULL, getaddrinfo will return one
entry per allowed protocol family containing the unspecified address
for that family.

For each address getaddrinfo returned, we create a new socket,
bind that address to it, and create a queue to listen on.

}
AI := AddrInfo;
i := 0;

while AI <> nil do
begin
if i = FD_SETSIZE then
begin
ShowMessage('getaddrinfo returned more addresses than we could use');
Break;

end;

if (AI^.ai_family <> PF_INET) and (AI^.ai_family <> PF_INET6) then
begin
AI := AddrInfo^.ai_next;
Inc(i);
Continue;

end;

// Open a socket with the correct address family for this address.

ServSock[i] := socket(AI^.ai_family, AI^.ai_socktype, AI^.ai_protocol);
if ServSock[i] = INVALID_SOCKET then
begin
WriteLn(Format('Call to socket() failed with error %d',[WSAGetLastError]));
AI := AddrInfo^.ai_next;
Inc(i);
Continue;

end;
{

bind() associates a local address and port combination
with the socket just created. This is most useful when
the application is a server that has a well-known port
that clients know about in advance.

}
if bind(ServSock[i], AI^.ai_addr, AI^.ai_addrlen) = SOCKET_ERROR then
begin
WriteLn(Format('Call to bind() failed with error %d', [WSAGetLastError]));
AI := AddrInfo^.ai_next;
Inc(i);
Continue;

end;
{

So far, everything we did was applicable to TCP as well as UDP.
However, there are certain fundamental differences between stream
protocols, such as TCP, and datagram protocols, such as UDP.

Only connection-orientated sockets, for example those of type

122 � Chapter 4

TE
AM
FL
Y

Team-Fly®

SOCK_STREAM, can listen() for incoming connections.
}

if SocketType = SOCK_STREAM then
begin
if listen(ServSock[i], 5) = SOCKET_ERROR then
begin
WriteLn(Format('Call to listen() failed with error %d', [WSAGetLastError]));
AI := AddrInfo^.ai_next;
Inc(i);
Continue;

end;
end;

WriteLn(Format('Listening on port %s, protocol %d, protocol family %d', [Port,
SocketType, AI^.ai_family]));

AI := AI^.ai_next;
Inc(i);

end;

freeaddrinfo(AddrInfo);

if i = 0 then
begin
WriteLn('Fatal error: unable to serve on any address.');
WSACleanup;
Halt;

end;

NumSocks := i;

{
We now put the server into an eternal loop,
serving requests as they arrive.

}

FD_ZERO(SockSet);

while TRUE do
begin
FromLen := SizeOf(From);

{
Check to see if we have any sockets remaining to be served
from previous time through this loop. If not, call select()
to wait for a connection request or a datagram to arrive.

}

for i := 0 to NumSocks - 1 do
begin
if FD_ISSET(ServSock[i], SockSet) then break;

end;

if i = NumSocks then
begin
for i := 0 to NumSocks - 1 do _FD_SET(ServSock[i], SockSet);
if select(NumSocks, @SockSet, nil, nil, nil) = SOCKET_ERROR then
begin
WriteLn(Format('Call to select() failed with error %d', [WSAGetLastError]));
WSACleanup;

Winsock 2 Resolution � 123

4

C
h
a
p

te
r

Halt;
end;

end;

for i := 0 to NumSocks - 1 do
begin
if FD_ISSET(ServSock[i], SockSet) then
begin
FD_CLR(ServSock[i], SockSet);
Break;

end;
end;

if SocketType = SOCK_STREAM then
begin

{
Since this socket was returned by the select(), we know we
have a connection waiting and that this accept() won't block.

}

sktConnect := accept(ServSock[i], @From, @FromLen);
if sktConnect = INVALID_SOCKET then
begin
WriteLn(Format('Call to accept() failed with error %d',[WSAGetLastError]));
WSACleanup;
Halt;

end;

SetLength(HostName, NI_MAXHOST);
if getnameinfo(@From, FromLen, PChar(HostName), NI_MAXHOST, nil, 0, NI_NUMERICHOST)

<> 0 then
HostName := '<unknown>'

else
SetLength(HostName, StrLen(PChar(HostName)));

WriteLn(Format('Accepted connection from %s', [HostName]));

{
This sample server only handles connections sequentially.
To handle multiple connections simultaneously, a server
would likely want to launch another thread or process at this
point to handle each individual connection. Alternatively,
it could keep a socket per connection and use select()
on the fd_set to determine which to read from next.

Here we just loop until this connection terminates.
}

while True do
begin

{
We now read in data from the client. Because TCP
does NOT maintain message boundaries, we may recv()
the client's data grouped differently than it was
sent. Since all this server does is echo the data it
receives back to the client, we don't need to concern
ourselves about message boundaries. But it does mean
that the message data we print for a particular recv()
below may contain more or less data than was contained
in a particular client send().

}

124 � Chapter 4

AmountRead := recv(sktConnect, Buffer, sizeof(Buffer), 0);
if AmountRead = SOCKET_ERROR then
begin
WriteLn(Format('Call to recv() failed with error %d', [WSAGetLastError]));
closesocket(sktConnect);
Break;

end;
if AmountRead = 0 then
begin
WriteLn('Client closed connection...');
closesocket(sktConnect);
Break;

end;
WriteLn(Format('Received %d bytes from client: %s', [AmountRead, Buffer]));
WriteLn('Echoing same data back to client...');
Res := send(sktConnect, Buffer, AmountRead, 0);
if Res = SOCKET_ERROR then
begin
WriteLn(Format('Call to send() failed with error %d', [WSAGetLastError]));
closesocket(sktConnect);
Break;

end;
end

end
else
begin

{
Since UDP maintains message boundaries, the amount of data
we get from a recvfrom() should match exactly the amount of
data the client sent in the corresponding sendto().

}
AmountRead := recvfrom(ServSock[i], Buffer, sizeof(Buffer), 0, @From, FromLen);
if AmountRead = SOCKET_ERROR then
begin
WriteLn(Format('Call to recvfrom() failed with error %d',[WSAGetLastError]));
closesocket(ServSock[i]);
Break;

end;
if AmountRead = 0 then
begin

{ This should never happen on an unconnected socket, but...}
WriteLn('recvfrom() returned zero, aborting...');
closesocket(ServSock[i]);
Break;

end;
Res := getnameinfo(@From, FromLen, PChar(HostName), SizeOf(HostName), nil, 0,

NI_NUMERICHOST);
if Res <> 0 then
begin
WriteLn(Format('Call to getnameinfo() failed with error %d', [Res]));
StrPCopy(PChar(Hostname), '<unknown>');

end;
WriteLn(Format('Received a %d byte datagram from %s', [AmountRead, HostName]));
WriteLn('Echoing same data back to client...');
Res := sendto(ServSock[i], Buffer, AmountRead, 0, @From, FromLen);
if Res = SOCKET_ERROR then
begin
WriteLn(Format('Call to send() failed with error %d', [WSAGetLastError]));

end;

Winsock 2 Resolution � 125

4

C
h
a
p

te
r

end;

end;
finally
WSACleanup;

end;

end.

procedure freeaddrinfo Ws2tcpip.pas

Syntax

freeaddrinfo(ai: PAddrInfo); stdcall;

Description

This function frees address information that getaddrinfo() dynamically allocates
in its addrinfo data structures.

Parameters

ai: A pointer to the addrinfo structure or linked list of addrinfo structures to be
freed. All dynamic storage pointed to within the addrinfo structure(s) is
also freed.

The freeaddrinfo() function frees the initial addrinfo structure pointed to in its ai

parameter, including any buffers to which its members point, and then continues
freeing any addrinfo structures linked by its ai_next member. The freeaddrinfo()
function continues freeing linked structures until ai_next is NULL.

Return Value

This procedure doesn’t return any error codes.

See Also

gai_strerror, getaddrinfo

Example

See Listings 4-7 and 4-8 (EX47 and EX48).

function getnameinfo Ws2tcpip.pas

Syntax

getnameinfo(sa: PSockAddr; salen: socklen_t; host: PChar; hostlen: DWORD; serv:
PChar; servlen: DWORD; flags: Integer): Integer; stdcall;

Description

The function provides name resolution from an address to a host name.

126 � Chapter 4

Parameters

sa: A pointer to a socket address structure containing the address and port num-
ber of the socket. For IPv4, the sa parameter points to a sockaddr_in
structure; for IPv6, the sa parameter points to a sockaddr_in6 structure.

salen: The length of the structure pointed to in the sa parameter

host: A pointer to the host name. The host name is returned as a fully qualified
domain name (FQDN) by default.

hostlen: The length of the buffer pointed to by the host parameter. The caller
must provide a buffer large enough to hold the host name, including termi-
nating NULL characters. A value of zero indicates the caller does not want
to receive the string provided in host.

serv: A pointer to the service name associated with the port number

servlen: The length of the buffer pointed to by the serv parameter. The caller
must provide a buffer large enough to hold the service name, including ter-
minating NULL characters. A value of zero indicates the caller does not
want to receive the string provided in serv.

flags: Used to customize processing of the getaddrinfo() function

Return Value

On success, the function will return zero. Otherwise, any nonzero value will
indicate failure. Use the WSAGetLastError() function to retrieve error
information.

See Also

getaddrinfo

Example

See Listings 4-7 and 4-8 (programs EX47 and EX48).

Listing 4-8: Calling the getaddrinfo() and getnameinfo() functions

program EX48;

{$APPTYPE CONSOLE}

uses
SysUtils,
Winsock2,
WS2tcpip;

{
This code assumes that at the transport level, the system only supports
one stream protocol (TCP) and one datagram protocol (UDP). Therefore,
specifying a socket type of SOCK_STREAM is equivalent to specifying TCP
and specifying a socket type of SOCK_DGRAM is equivalent to specifying UDP.

}

Winsock 2 Resolution � 127

4

C
h
a
p

te
r

const
DEFAULT_SERVER = nil; // Will use the loopback interface
DEFAULT_FAMILY = PF_UNSPEC;// Accept either IPv4 or IPv6
DEFAULT_SOCKTYPE = SOCK_STREAM; // TCP
DEFAULT_PORT = '5001';// Arbitrary, albeit a historical test port
DEFAULT_EXTRA = 0; // Number of "extra" bytes to send
BUFFER_SIZE = 65536;

type
TCharArray = array [0..BUFFER_SIZE - 1] of Char;

function ReceiveAndPrint(sktConn: TSocket; var Buffer: TCharArray; BufLen: Integer): Integer;
var
AmountRead: Integer;

begin
AmountRead := recv(sktConn, Buffer, BufLen, 0);
if AmountRead = SOCKET_ERROR then
begin
WriteLn(Format('Call to recv() failed with error %d', [WSAGetLastError]));
closesocket(sktConn);
WSACleanup;
Halt;

end;

{
We are not likely to see this with UDP, since there is no 'connection' established.

}

if AmountRead = 0 then
begin
WriteLn('Server closed connection...');
closesocket(sktConn);
WSACleanup;
Halt;

end;
WriteLn(Format('Received %d bytes from server: %s',[AmountRead, Buffer]));
Result := AmountRead;

end;

var
Buffer: TCharArray;
AddrName: array [0..NI_MAXHOST - 1] of Char;
Server: PChar = DEFAULT_SERVER;
Family: Integer = DEFAULT_FAMILY;
SocketType : Integer = DEFAULT_SOCKTYPE;
Port: string = DEFAULT_PORT;
i, Res, AddrLen, AmountToSend: Integer;
ExtraBytes: Integer = DEFAULT_EXTRA;
Iteration: Byte = 0;
MaxIterations: Byte = 1;
RunForever: Boolean = FALSE;
wsaData: TWSADATA;
Hints: TAddrInfo;
AddrInfo, AI: PAddrInfo;
sktConn: TSocket;
Addr: SOCKADDR_STORAGE;

begin
if WSAStartup($0202,wsaData) <> 0 then
begin

128 � Chapter 4

WriteLn('Call to WSAStartup() failed...');
Exit;

end;

try
{

By not setting the AI_PASSIVE flag in the hints to getaddrinfo, we're
indicating that we intend to use the resulting address(es) to connect
to a service. This means that when the Server parameter is NULL,
getaddrinfo will return one entry per allowed protocol family
containing the loopback address for that family.

}

FillChar(Hints, SizeOf(Hints), 0);
Hints.ai_family := Family;
Hints.ai_socktype := SocketType;
Res := getaddrinfo(Server, PChar(Port), @Hints, AddrInfo);
if Res <> 0 then
begin
WriteLn(Format('Call to getaddrinfo() failed with error %d. Unable to resolve address

[%s] and port [%s]', [gai_strerror(Res), Server, Port]));
WSACleanup;
Halt;

end;

{
Try each address getaddrinfo returned, until we find one to which
we can successfully connect.

}

AI := AddrInfo;
i := 0;
while AI <> NIL do
begin

{ Open a socket with the correct address family for this address. }
sktConn := socket(AI^.ai_family, AI^.ai_socktype, AI^.ai_protocol);
if sktConn = INVALID_SOCKET then
begin
WriteLn(Format('Call to socket() failed with error %d',[WSAGetLastError]));
ai := ai^.ai_next;
inc(i);
Continue;

end;

{
Notice that nothing in this code is specific to whether we
are using UDP or TCP.

When connect() is called on a datagram socket, it does not
actually establish the connection as a stream (TCP) socket
would. Instead, TCP/IP establishes the remote half of the
(LocalIPAddress, LocalPort, RemoteIP, RemotePort) mapping.
This enables us to use send() and recv() on datagram sockets,
instead of recvfrom() and sendto().

}

if Server <> nil then
WriteLn(Format('Attempting to connect to: %s', [Server]))

else
WriteLn('Attempting to connect');

Winsock 2 Resolution � 129

4

C
h
a
p

te
r

if connect(sktConn, AI^.ai_addr, AI^.ai_addrlen) <> SOCKET_ERROR then
Break;

i := WSAGetLastError;
if getnameinfo(AI^.ai_addr, AI^.ai_addrlen, AddrName, SizeOf(AddrName), nil, 0,

NI_NUMERICHOST) <> 0 then
StrPCopy(AddrName, '<unknown>');

WriteLn(Format('Call to connect() to %s failed with error %d', [AddrName, i]));
closesocket(sktConn);
ai := ai^.ai_next;
Inc(i);

end;

if AI = nil then
begin
WriteLn('Fatal error: unable to connect to the server...');
WSACleanup;
Halt;

end;

{
This demonstrates how to determine to where a socket is connected.

}

AddrLen := sizeof(Addr);
if getpeername(sktConn, @Addr, AddrLen) = SOCKET_ERROR then
begin
WriteLn(Format('Call to getpeername() failed with error %d', [WSAGetLastError]));

end
else
begin
if getnameinfo(@Addr, AddrLen, AddrName, SizeOf(AddrName), nil, 0, NI_NUMERICHOST) <> 0

then
StrPCopy(AddrName, '<unknown>');

WriteLn(Format('Connected to %s, port %u, protocol %u, protocol family %u',
[AddrName, ntohs(SS_PORT(@Addr)), AI^.ai_socktype, AI^.ai_family]));

end;

{ We are done with the address info chain, so we can free it. }

freeaddrinfo(AddrInfo);

{
Find out what local address and port the system picked for us.

}

AddrLen := SizeOf(Addr);
if getsockname(sktConn, @Addr, AddrLen) = SOCKET_ERROR then
begin
WriteLn(Format('Call to getsockname() failed with error %d',[WSAGetLastError]));

end else
begin
if getnameinfo(@Addr, AddrLen, AddrName, SizeOf(AddrName), NIL, 0, NI_NUMERICHOST) <> 0

then
StrPCopy(AddrName, '<unknown>');

WriteLn(Format('Using local address %s, port %d',[AddrName, ntohs(SS_PORT(@Addr))]));
end;

130 � Chapter 4

{
Send and receive in a loop for the requested number of iterations.

}

while RunForever or (Iteration < MaxIterations) do
begin

{ Compose a message to send. }

StrPCopy(Buffer, 'Message #' + IntToStr(Iteration + 1));
AmountToSend := Length('Message #' + IntToStr(Iteration + 1));

{ Send the message. Since we are using a blocking socket, this
call shouldn't return until it's able to send the entire amount.

}
Res := send(sktConn, Buffer, AmountToSend, 0);
if Res = SOCKET_ERROR then
begin
WriteLn(Format('Call to send() failed with error %d',[WSAGetLastError]));
WSACleanup;
Halt;

end;

WriteLn(Format('Sent %d bytes (out of %d bytes) of data',[Res, AmountToSend]));

{ Clear buffer just to prove we're really receiving something. }

FillChar(Buffer, sizeof(Buffer), #0);

{ Receive and print server's reply. }

ReceiveAndPrint(sktConn, Buffer, sizeof(Buffer));
Inc(Iteration);

end;// while RunForever

{ Tell system we're done sending. }

WriteLn('Done sending...');
shutdown(sktConn, SD_SEND);

{
Since TCP does not preserve message boundaries, there may still
be more data arriving from the server. So we continue to receive
data until the server closes the connection.

}

if SocketType = SOCK_STREAM then
while ReceiveAndPrint(sktConn, Buffer, sizeof(Buffer)) <> 0 do ;

closesocket(sktConn);

finally
WSACleanup;

end;

end.

Winsock 2 Resolution � 131

4

C
h
a
p

te
r

function gai_strerror Ws2tcpip.pas

Syntax

gai_strerror(ecode: Integer): PChar;

Description

This function retrieves error messages based on the EAI_* errors returned by
the getaddrinfo() function. Note that the gai_strerror() function is not thread
safe, and therefore, you should use WSAGetLastError() instead.

If the ecode parameter is not an error code value that getaddrinfo() returns,
the gai_strerror() function returns a pointer to a string that indicates an
unknown error.

Parameters

ecode: Error code from the list of available getaddrinfo() error codes. For a com-
plete listing of these error codes, see Table 4-12.

See Also

WSAGetLastError

Example

See Listing 4-7 (program EX47).

Obsolete Functions
Other functions that Winsock 1.1 developers use as part of their repertoire of
resolution tools are now obsolete and no longer supported. Although these func-
tions are retained for backward compatibility, you shouldn’t be tempted to use
them; instead, use the functions that we explored in this chapter. Learn to use
these new functions in your Winsock applications and you will reap the divi-
dends of ease of use for your applications. The following obsolete functions
should be avoided:

� GetAddressByName()

� EnumProtocols()

� GetNameByType()

� GetService()

� GetTypeByName()

� SetService()

These Microsoft-specific functions are defined in NspAPI.pas.
For more information on these obsolete functions, please refer to the MSDN

Library Platform SDK (see Appendix C).

132 � Chapter 4

TE
AM
FL
Y

Team-Fly®

Summary
In this chapter, we showed you how to use the Winsock 2 resolution and regis-
tration functions. Equipped with the knowledge gained from this and preceding
chapters, we are ready to explore the world of peer-to-peer communications.

Winsock 2 Resolution � 133

4

C
h
a
p

te
r

Chapter 5

Communications

In the last two chapters, we covered the resolution issues that an application
must address before communication with Winsock can begin. In this chapter, we
will come to grips with the communications process itself. As this is a huge
subject to cover, this chapter will be the longest by far on Winsock 2. However,
to make our voyage of discovery in this chapter easier to handle, we will exam-
ine the subject topic by topic, as follows:

� Socket creation

� Making the connection

� Data exchange

� Breaking the connection

� I/O schemes

� Raw sockets

� Microsoft extensions

� Microsoft extensions to Winsock 2 for Windows XP and Windows .NET
Server

� IP Multicast

� Obsolete functions

Unlike Winsock 1.1 applications, which use the TCP/IP protocol suite to com-
municate almost exclusively, Winsock 2 applications can select an appropriate
protocol from a pool of available protocols. This is a powerful and flexible fea-
ture. For example, a server application could select a protocol, such as IPX, in
response to a client using that same protocol and simultaneously servicing other
clients that are using TCP/IP. The design of Winsock 2 permits the addition of
new protocols as they become available. One such protocol, IrDA, is a relatively
recent addition to Winsock that allows it to be used also for IR (infrared sockets)
communication. In theory, Winsock 1.1 was designed to use other protocols
such as IPX/SPX in addition to TCP/IP; however, it was never used with other
protocols in the real world.

135

For space reasons, we will focus exclusively on the TCP/IP protocol suite,
which, in any case, is the most common set of protocols for communication on
the Internet and intranets. However, with the exception of socket creation,
which is protocol dependent, the principles that we will learn here for TCP/IP
also apply to other protocols such as IPX/SPX, etc.

The Mechanics of Data Exchange
Before examining these topics, we provide an overview of how data exchange
operates in practice. In general, in any Winsock conversation between the client
and server, the client application must initiate the connection by performing
these basic steps:

� Call WSAStartUp() to initialize Winsock (Chapter 2).

� If a host name is used, then resolve the target host’s Internet address.
Otherwise, skip this step (Chapters 3 and 4).

� Create a socket using socket() or WSASocket().

� Use the connect() or WSAConnect() function to link the client with the
server. Note that client applications using UDP do not require this step.

� Send and receive data until done.

� Close the socket by calling shutdown() and closesocket().

� Call WSACleanup() to free resources allocated by the application.

Depending on the type of application and the protocol used, the steps described
above can vary considerably. For example, an FTP client creates at least two
sockets: one socket for commands to send over the control channel and one or
more sockets for data transmission. (In FTP, a socket is created whenever data
is required, such as directory listings, file transfers, etc. When the data transfer
is complete, the socket is closed.)

Although things are deceptively simpler on the server side, a server applica-
tion must perform the following basic steps:

� Call WSAStartUp() to initialize Winsock.

� Create a socket using socket() or WSASocket().

� Call bind() to associate the socket with the local address, address family,
and port.

� Call listen() to listen for a connection on the designated port.

� On connection, call either accept() or WSAAccept() to accept the connec-
tion request and create a new socket for the connection. After accepting
the connection, the server continues to listen for new connections.

136 � Chapter 5

� Exchange data with the connected client until complete.

� On shutdown, call WSACleanup() to free resources.

As we can see, the steps that we have itemized above are for a server that ser-
vices many clients at a time. The steps above do not show, however, the
implementation of an I/O scheme that makes it possible for a server to serve
more than one client. We will cover such schemes in this chapter.

Before you can establish a communication link with another machine, you
need to create a socket first. But before we explore the process of creating a
socket, we must answer the question, “what is a socket?” A socket is an abstract
entity that describes an endpoint of the communication link. In terms of func-
tionality, a socket is like an electrical socket through which an electrical current
can pass. Using the electrical socket analogy, the current is the data that flows
from one socket to another across the circuit. So, when the socket is closed, no
data can enter the socket. Having defined what a socket is, we can now discuss
the creation of sockets.

Socket Creation
To create a socket, you may use one of two functions: socket() or WSASocket().
We learned from Chapter 4 that we need to select the appropriate address fam-
ily and transport protocol in order to use the service that is available, such as
FTP, SMTP, and other well-known protocols. For applications that use Winsock
1.1, the address family is usually AF_INET for the Internet. In addition to the
AF_INET address family, Winsock 2 provides additional address families, such
as AF_ATM and AF_IPX. In Chapter 4, we introduced different transport proto-
cols that require different address families. For example, you use the AF_ATM
address family for the ATM transport protocol.

The Transmission Control Protocol (TCP) sits on top of the IP’s datagram
service, thus providing reliability and flow control. TCP provides a virtual circuit
between the client and server, one that provides a reliable means of exchanging
data streams across a virtual circuit between server and client, and vice versa.
Why are we belaboring this point? It is a common misconception among neo-
phyte network programmers and even some who are more experienced that
data is transmitted in packets. That is not the case with TCP. So, a data stream
is simply that. For example, when a server sends data to a client, the server
sends a continuous stream of bytes without any boundaries. That is, TCP does-
n’t care in what format the data is being transmitted; to TCP, the data is just a
stream of bytes. (We saw in Chapter 1 that the TCP protocol sits on top of the
IP layer, which is the layer that actually transmits data as packets. To all intents
and purposes, though, TCP sees the data as byte streams.) Hence, the allegory

Communications � 137

5

C
h
a
p

te
r

of using an electrical socket becomes very clear; like an electrical current, the
data stream is simply a continuous stream of bytes that make up the data.

The fact that there are no boundaries to demarcate the start and end of differ-
ent sets of data is important. That is, any application using TCP has to send and
receive until there is no more data, and it is up to the application to handle the
data that it receives correctly. For example, let’s take the SMTP protocol; the
smtp server receives and forwards e-mail messages in the correct format
required for smtp, but as far as the TCP protocol is concerned, the data is trans-
mitted as a stream of bytes. We will come back to this topic of how TCP handles
the data when we discuss the send(), recv(), WSASend(), and WSARecv() func-
tions later in this chapter. The disadvantage of using TCP is its considerable
overhead, but it has the advantage of guaranteeing reliable delivery of data. This
apparent weakness is usually of little significance to the majority of network
applications. The protocols that use TCP are FTP, SMTP, POP3, NNTP, and
HTTP. A typical server (for example, an FTP server) usually handles hundreds
of clients with each client being connected via a virtual circuit.

Up to this point, we have been saying that TCP is “reliable,” but we do not
mean that TCP is infallible, which is a different matter. Let’s demonstrate what
we mean by this subtle distinction with a simple scenario, which is one that is
likely to happen when data is exchanged across the network, notably the
Internet. For example, take a server that uses the FTP protocol; TCP guaran-
tees the reliable delivery of data leaving the server and reliable reception of the
data by the client, but it does not guarantee that the data, which is encapsulated
as IP datagrams, will be transferred flawlessly over numerous routers between
the server and client. A router could fail, thus breaking the virtual circuit to
send the data into a cyber hole.

�TIP: Although TCP is reliable, it is not infallible.

In contrast, the User Datagram Protocol (UDP) is a much simpler (some might
say “primitive”) protocol than TCP in that it adds only a checksum facility to the
basic IP datagram service. Hence, as UDP does not provide flow control, it pro-
vides a one-shot connection, or connectionless transport, to transmit the data.
Because there is no flow control, this protocol does not guarantee reliable deliv-
ery of data at all. However, unlike TCP, it is capable of exchanging data between
multiple sources. As there is little overhead, a UDP client sends data immedi-
ately. The server and recipient, however, do not send acknowledgments of
receipt of data. Because UDP has this property of transmitting data to multiple
recipients, IP Multicast uses UDP as its transport protocol.

When you design a network application, you must ask yourself several ques-
tions, one of which is “Which protocol should I use, TCP or UDP?” There is a

138 � Chapter 5

basic rule to follow: If the data is required to be sent reliably, you must use TCP.
If not, you can use UDP to send “messages” or “heartbeats” between server
and client. If you wish to send data to more than one client, you would use UDP,
which is the protocol that IP Multicast uses. However, this simple rule falls
away if you wish to use Reliable IP Multicast to send data reliably to hundreds
or even thousands of clients.

After selecting a transport protocol and compatible address family, you then
create the socket. There are two functions, socket() and WSASocket(), to create
a socket. We will consider the socket() function first, which is the simpler of the
two. The prototype for socket() is:

function socket(af, type_, protocol: Integer): TSocket; stdcall;

The function creates a socket that is a combination of the address family, socket
type, and protocol parameters (which are the af, type_, and protocol parameters,
respectively). Every socket that you create will always have the overlapped
attribute set by default. What do we mean by an overlapped socket? An over-
lapped socket is simply an asynchronous socket. We will come back to this later
in this chapter. If you want to create a socket without the overlapped attribute,
you should call WSASocket() instead. You should use overlapped sockets in an
overlapped I/O scheme, which we will also cover later in this chapter.

Before learning about WSASocket(), let’s touch upon the socket types that
Winsock provides. Currently, Winsock supports five socket types,
SOCK_STREAM, SOCK_DGRAM, SOCK_RDM, SOCK_SEQPACKET, and
SOCK_RAW. According to the Winsock 2 specification, SOCK_RAW is an
optional socket type. Table 5-1 shows the different types of sockets. For the
moment, we will focus on the SOCK_STREAM and SOCK_DGRAM socket
types, but we will discuss the SOCK_RAW socket type later in this chapter. If
you wish to send data reliably, you should use SOCK_STREAM for TCP. Other-
wise, for transmission of messages or heartbeats, you should use
SOCK_DGRAM for UDP. (One such possible application is the synchronization
of computer clocks on the network.) For ICMP, such as that used by the ping
and traceroute type applications, you should use the SOCK_RAW socket type.

Table 5-1: Socket types supported by Winsock 2

Type Description

SOCK_STREAM Provides sequenced, reliable, two-way, connection-based byte streams with an
out-of-band data transmission mechanism. This type uses TCP for the Internet address
family.

SOCK_DGRAM Supports datagrams, which are connectionless, unreliable buffers of a fixed (typically
small) maximum length. This type uses UDP for the Internet address family.

SOCK_RAW Uses datagrams.

SOCK_SEQPACKET DECnet sockets use sequenced packets that maintain message boundaries across the
network.

SOCK_RDM Provides reliably delivered messages. That is, message boundaries in data are preserved.

Communications � 139

5

C
h
a
p

te
r

The second function, WSASocket(), creates a non-overlapped socket by default.
Unlike socket(), you can specify whether the socket is to be in overlapped or
non-overlapped mode. In certain situations, using an overlapped socket can
speed up data exchange considerably, which we will discuss under the “I/O
Schemes” section of this chapter.

The prototype for WSASocket() is:

function WSASocket(af, type_, protocol: Integer; lpProtocolInfo: LPWSAPROTOCOL_INFOW;
g: GROUP; dwFlags: DWORD): TSocket; stdcall;

Looking at the prototype, you can see that WSASocket() is considerably more
complex than the humble socket() function. The first three parameters are the
same as in socket(). The lpProtocolInfo parameter is a pointer to the
WSAPROTOCOL_INFO record, which defines the transport protocol for the
socket. When lpProtocolInfo is set to NIL, Winsock uses the first three parame-
ters for the address family, socket type, and protocol to define the socket. The
next parameter, g, is for the concept of socket groups that was introduced in ear-
lier Winsock 2 specifications but not used in the present incarnation of Winsock
2.

If you wish to use overlapped I/O, you need an overlapped socket. To obtain
such a socket, you should set the dwFlags parameter to the WSA_FLAG_
OVERLAPPED constant. This constant is in Table 5-2. The other constants,
such as WSA_FLAG_MULTIPOINT_C_ROOT, are for use with multicast
applications.

Table 5-2: Flags to determine socket behavior

Flag Description

WSA_FLAG_OVERLAPPED This flag creates an overlapped socket. Overlapped sockets may use
WSASend(), WSASendTo(), WSARecv(), WSARecvFrom(), and
WSAIoctl() for overlapped I/O operations, which initiates multiple opera-
tions simultaneously. All functions that allow overlapped operation
(WSASend(), WSARecv(), WSASendTo(), WSARecvFrom(), and
WSAIoctl()) also support non-overlapped usage on an overlapped socket
if the values for parameters related to overlapped operation are NIL.

WSA_FLAG_MULTIPOINT_C_ROOT Indicates that the socket created will be a c_root in a multipoint session.
It is only allowed if a rooted control plane is indicated in the protocol’s
WSAPROTOCOL_INFO structure.

WSA_FLAG_MULTIPOINT_C_LEAF Indicates that the socket created will be a c_leaf in a multicast session. It
is only allowed if XP1_SUPPORT_MULTIPOINT is indicated in the pro-
tocol’s WSAPROTOCOL_INFO structure.

WSA_FLAG_MULTIPOINT_D_ROOT Indicates that the socket created will be a d_root in a multipoint session.
It is only allowed if a rooted data plane is indicated in the protocol’s
WSAPROTOCOL_INFO structure.

WSA_FLAG_MULTIPOINT_D_LEAF Indicates that the socket created will be a d_leaf in a multipoint session.
It is only allowed if XP1_SUPPORT_MULTIPOINT is indicated in the
protocol’s WSAPROTOCOL_INFO structure.

Now we present a formal definition of the functions.

140 � Chapter 5

function socket Winsock2.pas

Syntax

socket(af, struct, protocol: integer): TSocket; stdcall;

Description

This function creates a socket.

Parameters

af: Address family

struct: Socket type

protocol: Protocol to use with the socket

Return Value

If the function succeeds, it will return a descriptor referencing the new socket.
If the function fails, it will return a value of INVALID_SOCKET. To retrieve the
error code, call the function WSAGetLastError(). Possible error codes are
WSANOTINITIALISED, WSAENETDOWN, WSAEAFNOSUPPORT, WSAEIN-
PROGRESS, WSAEMFILE, WSAENOBUFS, WSAEPROTONOSUPPORT,
WSAEPROTOTYPE, and WSAESOCKTNOSUPPORT.

See Appendix B for a detailed description of the error codes.

See Also

accept, bind, connect, getsockname, getsockopt, ioctlsocket, listen, recv,
recvfrom, select, send, sendto, setsockopt, shutdown, WSASocket

Example

See Listing 5-1 (program EX51).

Listing 5-1: A simple and generic blocking echo client that uses the UDP protocol

program EX51;

{$APPTYPE CONSOLE}

uses
SysUtils,

WinSock2;

const
MaxEchoes = 10;
DataBuffSize = 1024;
S = 'Hello';

var
WSAData: TWSAData;
Host: PHostent;
HostAddr: TSockAddrIn;
Addr: PChar;
skt: TSocket;

Communications � 141

5

C
h
a
p

te
r

NoEchoes,
Size: Integer;
HostName: String;
Res: Integer;
Buffer: array[0..DataBuffSize - 1] of char;

procedure CleanUp(S : String);
begin
WriteLn('Call to ' + S + ' failed with error: ' + SysErrorMessage(WSAGetLastError));
WSACleanUp;
Halt;

end;

begin
// Check for hostname from option ...
if ParamCount <> 1 then
begin
WriteLn('To run the echo client you must give a host name. For example, localhost for your

machine.');
Halt;

end;
if WSAStartUp($0202, WSAData) = 0 then
try
skt := socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
if skt = INVALID_SOCKET then
CleanUp('socket()');
HostName := ParamStr(1);
if inet_addr(PChar(HostName)) <> INADDR_NONE then
CleanUp('inet_addr()');
Host := gethostbyname(PChar(HostName));
if Host = NIL then
CleanUp('gethostbyname()');
move(Host^.h_addr_list^, Addr, SizeOf(Host^.h_addr_list^));
HostAddr.sin_family := AF_INET;
HostAddr.sin_port := htons(IPPORT_ECHO);
HostAddr.sin_addr.S_un_b.s_b1 := Byte(Addr[0]);
HostAddr.sin_addr.S_un_b.s_b2 := Byte(Addr[1]);
HostAddr.sin_addr.S_un_b.s_b3 := Byte(Addr[2]);
HostAddr.sin_addr.S_un_b.s_b4 := Byte(Addr[3]);
StrPCopy(Buffer, S);
Size := SizeOf(HostAddr);
for NoEchoes := 1 to MaxEchoes do
begin
Res := sendto(skt, Buffer, SizeOf(Buffer) ,0, @HostAddr, SizeOf(HostAddr));
if Res = SOCKET_ERROR then
CleanUp('sendto()');

Res := recvfrom(skt, Buffer, SizeOf(Buffer),0, @HostAddr, Size);
if Res = SOCKET_ERROR then
CleanUp('recv()');

WriteLn(Format('Message [%s] # %2d echoed from %s',[Buffer, NoEchoes,
inet_ntoa(HostAddr.sin_addr)]));
end;
closesocket(skt);
finally
WSACleanUp;
end
else WriteLn('Failed to load Winsock...');
end.

142 � Chapter 5

TE
AM
FL
Y

Team-Fly®

function WSASocket Winsock2.pas

Syntax

WSASocket(af: u_int; atype: u_int; protocol: u_int; lpProtocolInfo:
PWSAPROTOCOL_INFO; g: TGROUP; dwFlags: DWORD): TSocket; stdcall;

Description

This function creates a socket. By default, the socket created does not have the
overlapped attribute set.

Parameters

af: An address family specification

atype: A type specification for the new socket

protocol: A particular protocol to be used with the socket that is specific to the
indicated address family

lpProtocolInfo: A pointer to a WSAPROTOCOL_INFO structure that defines the
characteristics of the socket to be created

g: Reserved for future use with socket groups; the identifier of the socket group

dwFlags: The socket attribute specification

Return Value

If no error occurs, WSASocket() will return a descriptor referencing the new
socket. Otherwise, the function will return a value of INVALID_SOCKET. To
retrieve the error code, call the function WSAGetLastError(). Possible error
codes are WSANOTINITIALISED, WSAENETDOWN, WSAEAFNOSUPPORT,
WSAEINPROGRESS, WSAEMFILE, WSAENOBUFS, WSAEPROTONO-
SUPPORT, WSAEPROTOTYPE, WSAESOCKTNOSUPPORT, WSAEINVAL,
WSAEFAULT, WSAINVALIDPROVIDER, and WSAINVALIDPROCTABLE.

See Appendix B for a detailed description of the error codes.

See Also

accept, bind, connect, getsockname, getsockopt, ioctlsocket, listen, recv,
recvfrom, select, send, sendto, setsockopt, shutdown, socket

Example

See Listings 5-2 and 5-3 (programs EX52 and EX53).

Communications � 143

5

C
h
a
p

te
r

Making the Connection
After creating a socket, you are ready to exchange data—or are you? You cannot
exchange data on sockets of the SOCK_STREAM type until the socket is in a
connected state. We say that a connection exists when a local socket is con-
nected to the remote socket. With sockets of the SOCK_DGRAM type, you do
not normally need to connect with a peer before transmitting the data; however,
see the sidebar later in this section titled “Connected and Connectionless
Sockets.”

There are two functions that you can use to set up a connection with a socket
on the remote machine—connect() or WSAConnect(). You should use the
WSAConnect() function if you want to specify a minimum level of service for
the connection. To specify the required level of service, use the QOS (Quality of
Service) specific parameters based on the supplied flow specification. We will
not cover QOS, as it is beyond the scope of this book.

Let’s consider the simpler function first, which is connect(). We give the pro-
totype, which is defined in Winsock2.pas:

function connect(s: TSocket; name: PSockAddr; namelen: Integer): Integer; stdcall;

To create a connection with a peer, you need to supply three parameters to the
connect() function, which are s, the unconnected socket; name, a pointer to the
sockaddr_in record; and namelen, the size of the sockaddr_in record. You have
already seen how to create a socket, but we still need to define the details of the
peer with which to connect. To define the details of the peer, assign the values
to the sockaddr_in record, which is defined in WinSock2.pas as:

sockaddr_in = record
sin_family: Smallint;
sin_port: u_short;
sin_addr: in_addr;
sin_zero: array [0..7] of Char;

end;
TSockAddrIn = sockaddr_in;
PSockAddrIn = ^sockaddr_in;

Usually, you need to only assign sensible values to the first three
fields—sin_family, sin_port, and sin_addr. The last field, sin_zero, can be safely
ignored, as it is used to make the size of the record 16 bytes long. However,
some implementations use this field to distinguish different addresses bound to
the interfaces, which requires sin_zero to be populated with zeroes. Delphi auto-
matically assigns the sin_zero field to zero. To belabor the point, you should
ensure that the sin_zero field is set to zero by calling the Win32 function
ZeroMemory(), like this:

ZeroMemory(sockAddr, SizeOf(TSockAddrIn))

144 � Chapter 5

Calling this function will zero out all fields including sin_zero. Obviously, you
should call this function before assigning values.

The sin_family field is the protocol family, which is usually PF_INET for the
Internet. Note that when you create a socket that uses an address family, say,
AF_INET, you must also use the same family, which is PF_INET. The sin_port

field is the port for the service an application requires. For example, for FTP,
this would be 21.

�TIP: Recall the fact about byte ordering from Chapter 3 that you use
the network byte order for the sin_port field. For example, to
use the port for FTP, you would do the following assignment:
sockaddr. sin_port := htons(21)

where sockAddr is a sockaddr_in record
Ignore this simple caveat at your peril!

The sin_addr field is actually a variant record, as shown below:

in_addr = record
case Integer of
0: (S_un_b: SunB);
1: (S_un_c: SunC);
2: (S_un_w: SunW);
3: (S_addr: u_long);

end;
TInAddr = in_addr;
PInAddr = ^in_addr;

How you assign these fields depends on how you resolve the name of the peer
with which you wish to connect. When you call any of the following functions,
you must use the THostEnt record (see Chapter 3 for details of the structure
and how to call these functions to fill the THostEnt record) to populate the
fields of the sockaddr_in record: gethostbyname(), WSAGetHostByName(),
gethostbyaddr(), and WSAGetHostByAddr(). The following code snippet shows
how this is done:

Var
Hostent: PHostent;
h_addr: PChar;
HostAddress: TSockAddrIn; // remember this is an alias for sockaddr_in
begin

Hostent := gethostbyname(PChar(HostName));
if Hostent <> NIL then
begin
Move(Hostent^.h_addr_list^, h_addr, SizeOf(Hostent^.h_addr_list^));
with HostAddress.sin_addr do
begin
S_un_b.s_b1 := Byte(h_addr[0]);
S_un_b.s_b2 := Byte(h_addr[1]);
S_un_b.s_b3 := Byte(h_addr[2]);
S_un_b.s_b4 := Byte(h_addr[3]);

Communications � 145

5

C
h
a
p

te
r

After assigning the fields of the TSockAddrIn record, call connect() like this:

Res:= connect(skt, @HostAddr, SizeOf(TSockAddrIn));

If no error occurs, connect() returns zero to indicate that the connection now
exists. Otherwise, it returns SOCKET_ERROR, and you should always call
WSAGetLastError() to retrieve the error code.

Similarly, use the WSAConnect() function to set up a connection. However,
the function has four more parameters, as the following prototype clearly
shows:

function WSAConnect(s: TSocket; name: PSockAddr; namelen: Integer; lpCallerData: LPWSABUF;
lpCalleeData: LPWSABUF; lpSQOS: LPQOS; lpGQOS: LPQOS): Integer; stdcall;

However, by setting the last four parameters to NIL, you can call the function in
the same way you would call connect(), like this:

Res:= WSAConnect(skt, @HostAddr, SizeOf(TSockAddrIn), NIL, NIL, NIL, NIL);

However, using WSAConnect() this way is rather pointless as you can achieve
the same purpose with the simpler connect() function. To use the
WSAConnect() function to its full potential, you need to use parameters like
lpCallerData, lpCalleeData, lpSQOS, and lpGQOS. The parameters lpCallerData

and lpCalleeData are pointers to user data that is transferred to and from the
peer, respectively. The definition of LPWSABUF is defined in Winsock2.pas:

_WSABUF = record
len: u_long; // the length of the buffer
buf: PChar; // the pointer to the buffer

end;
WSABUF = _WSABUF;
LPWSABUF = ^_WSABUF;
TWsaBuf = WSABUF;
PWsaBuf = LPWSABUF;

The WSAConnect() function enables the application to request Quality of Ser-
vice (QOS) for incoming and outgoing traffic. QOS is not discussed in detail in
this book.

After a successful connection, you can use the getsockname() and getpeer-
name() functions to retrieve the names of the local and remote sockets,
respectively.

146 � Chapter 5

Connected and Connectionless Sockets

One of the established wisdoms in Winsock 1.1 is that all connected
sockets use SOCK_STREAM (TCP protocol) and connectionless
sockets use SOCK_DGRAM (UDP protocol). To use connectionless
sockets, you would use the sendto() and recvfrom() functions to send
and receive data. With the introduction of Winsock 2, these wisdoms
are no longer strictly true. In Winsock 2, you can use the send() and
recv() functions, which are normally used for connected sockets, with
connectionless sockets. As you shall discover later in this chapter,
Winsock 2 has introduced the WSARecv() and WSASend() functions,
which are extended versions of recv() and send(), respectively, that
you can also use with connectionless sockets. This will only be true
provided you use either WSAConnect() or connect() to create the
connection in the first place, which you can use to get the default peer
address that is required for a connectionless socket. You can also use
connected sockets with the sendto(), recvfrom(), WSARecvFrom()
and WSASendTo() functions.

function connect Winsock2.pas

Syntax

connect(s: TSocket; name: PSockAddr; namelen: Integer): Integer; stdcall;

Description

This function establishes a connection to a peer.

Parameters

s: An unconnected socket

name: The name of the socket in the sockaddr_in structure

namelen: The length of the name

Return Value

If the function succeeds, it will return a value of zero. Otherwise, it will return
SOCKET_ERROR. To retrieve the specific error code, call the function
WSAGetLastError. Possible error codes are WSANOTINITIALISED, WSAE-
NETDOWN, WSAEADDRINUSE, WSAEINTR, WSAEINPROGRESS,
WSAEALREADY, WSAEADDRNOTAVAIL, WSAEAFNOSUPPORT,
WSAECONNREFUSED, WSAEFAULT, WSAEINVAL, WSAEISCONN,
WSAENETUNREACH, WSAENOBUFS, WSAENOTSOCK, WSAETIMED-
OUT, WSAEWOULDBLOCK, and WSAEACCES.

See Appendix B for a detailed description of the error codes.

Communications � 147

5

C
h
a
p

te
r

See Also

accept, bind, getsockname, select, socket, WSAAsyncSelect, WSAConnect

Example

See Listing 5-2 (program EX54).

Listing 5-2: A simple and generic blocking echo client that uses the TCP protocol (socket stream)

program EX54;

{$APPTYPE CONSOLE}

uses
SysUtils,
WinSock2;

const
MaxEchoes = 10;
DataBuffSize = 1024;
S = 'Hello';

var
WSAData: TWSAData;
Host: PHostent;
HostAddr,
RemoteAddr: TSockAddrIn;
Addr: PChar;
Msg: PChar;
skt: TSocket;
NoEchoes,
Len,
Size: Integer;
HostName : String;
Res : Integer;
Buffer: array[0..1024 - 1] of char;
procedure CleanUp(S : String);
begin
WriteLn('Call to ' + S + ' failed with error: ' + SysErrorMessage(WSAGetLastError));
WSACleanUp;
Halt;

end;

begin
// Check for hostname from option ...
if ParamCount <> 1 then
begin
WriteLn('To run the echo client you must give a host name!');
Halt;

end;
if WSAStartUp($0202, WSAData) = 0 then
try
skt := socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
if skt = INVALID_SOCKET then
CleanUp('socket()');
HostName := ParamStr(1);
if inet_addr(PChar(HostName)) <> INADDR_NONE then
CleanUp('inet_addr()');
Host := gethostbyname(PChar(HostName));
if Host = NIL then

148 � Chapter 5

CleanUp('gethostbyname()');
move(Host^.h_addr_list^, Addr, SizeOf(Host^.h_addr_list^));
HostAddr.sin_family := AF_INET;
HostAddr.sin_port := htons(IPPORT_ECHO);
HostAddr.sin_addr.S_un_b.s_b1 := Byte(Addr[0]);
HostAddr.sin_addr.S_un_b.s_b2 := Byte(Addr[1]);
HostAddr.sin_addr.S_un_b.s_b3 := Byte(Addr[2]);
HostAddr.sin_addr.S_un_b.s_b4 := Byte(Addr[3]);
StrPCopy(Buffer,S);

Len := Length(S);
Msg := S;
Size := SizeOf(HostAddr);

// Attempt to connect first ...
Res := connect(skt,@HostAddr, Size);
if Res = SOCKET_ERROR then
CleanUp('connect()');

// Now call getpeername() to get the details of the remote host ...
Res := getpeername(skt, @RemoteAddr, Size);
if Res = SOCKET_ERROR then
CleanUp('getpeername()');
WriteLn('Details of the remote host:');
WriteLn(Format('Host name : %s',[String(inet_ntoa(RemoteAddr.sin_addr))]));
WriteLn(Format('Port : %d',[ntohs(RemoteAddr.sin_port)]));
WriteLn;
for NoEchoes := 1 to MaxEchoes do
begin
Res := send(skt, Buffer, SizeOf(Buffer) ,0);
if Res = SOCKET_ERROR then
CleanUp('send()');

Msg := '';
Res := recv(skt, Buffer, SizeOf(Buffer),0);
if Res = SOCKET_ERROR then
CleanUp('recv()');

WriteLn(Format('Message [%s] # %2d echoed from %s',[Buffer, NoEchoes,
inet_ntoa(HostAddr.sin_addr)]));
end;
closesocket(skt);
finally

WSACleanUp;
end
else WriteLn('Failed to load Winsock...');
end.

function WSAConnect Winsock2.pas

Syntax

WSAConnect(s: TSocket; name: PSockAddr; namelen: Integer; lpCallerData:
LPWSABUF; lpCalleeData: LPWSABUF; lpSQOS: LPQOS; lpGQOS: LPQOS):
Integer; stdcall;

Description

The WSAConnect() function establishes a connection to another socket applica-
tion, exchanges connect data, and specifies needed Quality of Service based on
the specified FLOWSPEC structure, which is not discussed here.

Communications � 149

5

C
h
a
p

te
r

Parameters

s: A descriptor identifying an unconnected socket

name: The name of the peer to which the socket is to be connected

namelen: The length of name

lpCallerData: A pointer to the user data that is to be transferred to the peer dur-
ing connection establishment

lpCalleeData: A pointer to the user data that is to be transferred back from the
peer during connection establishment

lpSQOS: A pointer to the flow specs for socket s, one for each direction

lpGQOS: Reserved for future use with socket groups. This is not implemented
in Winsock 2.2.

Return Value

If the function succeeds, it will return a value of zero. Otherwise, it will return
SOCKET_ERROR. To retrieve the specific error code, call the function
WSAGetLastError(). Possible error codes are WSANOTINITIALISED,
WSAENETDOWN, WSAEADDRINUSE, WSAEINTR, WSAEINPROGRESS,
WSAEALREADY, WSAEADDRNOTAVAIL, WSAEAFNOSUPPORT,
WSAECONNREFUSED, WSAEFAULT, WSAEINVAL, WSAEISCONN,
WSAENETUNREACH, WSAENOBUFS, WSAENOTSOCK, WSAEOPNOT-
SUPP, WSAEPROTONOSUPPORT, WSAETIMEDOUT, WSAEWOULD-
BLOCK, and WSAEACCES.

See Appendix B for a detailed description of the error codes.

See Also

accept, bind, connect, getsockname, getsockopt, select, socket,
WSAAsyncSelect, WSAEventSelect

Example

Listing 5-3 (program EX53) provides an example of using a generic echo server
with overlapped I/O.

Listing 5-3: A generic echo server that uses overlapped I/O with event notification

program EX53;

{$APPTYPE CONSOLE}

uses
SysUtils,
Windows,
WinSock2;

const
MaxEchoes = 10;
DataBuffSize = 8192;

150 � Chapter 5

type

PSocketInfo = ^TSocketInfo;
TSocketInfo = record

Overlapped : WSAOverlapped;
skt : TSocket;
Buffer : array[0..DataBuffSize - 1] of char;
DataBuffer : WSABuf;
BytesSend,
BytesRecv : DWORD;

end;

var
WSAData: TWSAData;
DummyAddr,
HostAddr: TSockAddrIn;
sktListen,
sktAccept: TSocket;
Size: Integer;
EventTotal,
Flags,
ThreadID,
RecvBytes: DWORD;
EventArray : array[0..WSA_MAXIMUM_WAIT_EVENTS - 1] of WSAEVENT;
SocketInfo : array[0..WSA_MAXIMUM_WAIT_EVENTS - 1] of PSocketInfo;
Res : Integer;
CriticalSection : TRTLCriticalSection;

procedure CleanUp(S : String);
begin
WriteLn('Call to ' + S + ' failed with error: ' + SysErrorMessage(WSAGetLastError));
WSACleanUp;
Halt;

end;

function ProcessIO(lpParameter : Pointer) : DWORD; stdcall;
var
BytesTransferred,
Flags,
Index,
RecvBytes,
i: DWORD;
SktInfo: PSocketInfo;
begin
EventArray[EventTotal] := WSAEVENT(lpParameter);
while TRUE do
begin
Index := WSAWaitForMultipleEvents(EventTotal, @EventArray, FALSE, WSA_INFINITE, FALSE);
if Index = WSA_WAIT_FAILED then
begin
WriteLn('Call to WSAWaitForMultipleEvents() failed with error: ' +

SysErrorMessage(WSAGetLastError));
Result := 0;
Exit;

end;
if (Index - WSA_WAIT_EVENT_0) = 0 then
begin
WSAResetEvent(EventArray[0]);
continue;

Communications � 151

5

C
h
a
p

te
r

end;
SktInfo := PSocketInfo(GlobalAlloc(GPTR, SizeOf(TSocketInfo)));
SktInfo := SocketInfo[Index - WSA_WAIT_EVENT_0];
WSAResetEvent(EventArray[Index - WSA_WAIT_EVENT_0]);
if (WSAGetOverlappedResult(SktInfo^.skt,@SktInfo^.Overlapped, BytesTransferred, FALSE,

Flags) = FALSE) then
if (BytesTransferred = 0) then
begin
WriteLn(Format('Closing socket %d',[SktInfo^.skt]));
if closesocket(SktInfo^.skt) = SOCKET_ERROR then
begin
WriteLn(Format('Call to closesocket() failed with error: %s',

[SysErrorMessage(WSAGetLastError)]));
end;
GlobalFree(Cardinal(SktInfo));
WSACloseEvent(EventArray[Index - WSA_WAIT_EVENT_0]);

// Clean up SocketInfo & EventArray ...
EnterCriticalSection(CriticalSection);
if Index - WSA_WAIT_EVENT_0 + 1 <> EventTotal then
for i := Index - WSA_WAIT_EVENT_0 to EventTotal - 1 do
begin
EventArray[i] := EventArray[i+1];
SocketInfo[i] := SocketInfo[i+1];

end;
dec(EventTotal);
LeaveCriticalSection(CriticalSection);
continue;

end;
// Check if the BytesRecv field = 0 ...

if SktInfo^.BytesRecv = 0 then
begin
SktInfo^.BytesRecv := BytesTransferred;
SktInfo^.BytesSend := 0;

end
else
begin
SktInfo^.BytesSend := SktInfo^.BytesSend + BytesTransferred;

end;
if SktInfo^.BytesRecv > SktInfo^.BytesSend then
begin

// Post another WSASend() request ...
ZeroMemory(@SktInfo^.Overlapped, SizeOf(TOverlapped));
SktInfo^.Overlapped.hEvent := EventArray[Index - WSA_WAIT_EVENT_0];
SktInfo^.DataBuffer.buf := SktInfo^.Buffer + SktInfo^.BytesSend;
SktInfo^.DataBuffer.len := SktInfo^.BytesRecv - SktInfo^.BytesSend;
if WSASend(SktInfo^.skt, @SktInfo^.DataBuffer, 1, SktInfo^.BytesSend, 0,

@SktInfo^.Overlapped, NIL) = SOCKET_ERROR then
if WSAGetLastError <> ERROR_IO_PENDING then
begin
WriteLn(Format('Call to WSASend() failed with error: %s',

[SysErrorMessage(WSAGetLastError)]));
Result := 0;
Exit;
end

end else
begin
SktInfo^.BytesRecv := 0;

// We have more no bytes of data to receive ...
Flags := 0;
ZeroMemory(@SktInfo^.Overlapped, SizeOf(TOverlapped));

152 � Chapter 5

TE
AM
FL
Y

Team-Fly®

SktInfo^.Overlapped.hEvent := EventArray[Index - WSA_WAIT_EVENT_0];
SktInfo^.DataBuffer.len := DataBuffSize;
SktInfo^.DataBuffer.buf := SktInfo^.Buffer;
if WSARecv(SktInfo^.skt,@SktInfo^.DataBuffer, 1, RecvBytes, Flags,

@SktInfo^.Overlapped, NIL) = SOCKET_ERROR then
if WSAGetLastError <> ERROR_IO_PENDING then
begin
WriteLn(Format('Call to WSARecv() failed with error: %s',

[SysErrorMessage(WSAGetLastError)]));
Result := 0;
Exit;

end;
end;

end; // while ...
end;

begin
EventTotal := 0;
InitializeCriticalSection(CriticalSection);
if WSAStartUp($0202, WSAData) = 0 then
try
sktListen := WSASocket(AF_INET, SOCK_STREAM, 0, NIL, 0, WSA_FLAG_OVERLAPPED);
if sktListen = INVALID_SOCKET then
CleanUp('WSASocket()');
HostAddr.sin_family := AF_INET;
HostAddr.sin_port := htons(IPPORT_ECHO);
HostAddr.sin_addr.S_addr := htonl(INADDR_ANY);
Res := bind(sktListen, @HostAddr, SizeOf(HostAddr));
if Res = SOCKET_ERROR then
CleanUp('bind()');
Res := listen(sktListen,5);
if Res = SOCKET_ERROR then
CleanUp('listen()');

// Create a socket for accepting connections ...
sktAccept := WSASocket(AF_INET, SOCK_STREAM, 0, NIL, 0, WSA_FLAG_OVERLAPPED);
if sktAccept = INVALID_SOCKET then
CleanUp('WSASocket()');

// Create an event object ...
EventArray[0] := WSACreateEvent;
if EventArray[0] = WSA_INVALID_EVENT then
CleanUp('WSACreateEvent()');
if CreateThread(NIL, 0, @ProcessIO, NIL, 0, ThreadID) = 0{ NIL} then
CleanUp('CreateThread()');
EventTotal := 1;
DummyAddr.sin_family := AF_INET;
DummyAddr.sin_port := htons(IPPORT_ECHO);
DummyAddr.sin_addr.S_addr := INADDR_ANY;
Size := SizeOf(DummyAddr);
EventTotal := 1;

// Enter an infinite loop ...
while TRUE do
begin
sktAccept := accept(sktListen, @DummyAddr, @Size);
if sktAccept = INVALID_SOCKET then
CleanUp('accept()');
EnterCriticalSection(CriticalSection);

// Create a socket information structure to associate with the accepted socket ...
SocketInfo[EventTotal] := PSocketInfo(GlobalAlloc(GPTR, SizeOf(TSocketInfo)));
if SocketInfo[EventTotal] = NIL then
CleanUp('GlobalAlloc()');

Communications � 153

5

C
h
a
p

te
r

// Populate the SktInfo structure ...
SocketInfo[EventTotal]^.skt := sktAccept;
ZeroMemory(@SocketInfo[EventTotal]^.Overlapped, SizeOf(TOverlapped));
SocketInfo[EventTotal]^.BytesSend := 0;
socketInfo[EventTotal]^.BytesRecv := 0;
socketInfo[EventTotal]^.DataBuffer.len := DataBuffSize;
SocketInfo[EventTotal]^.DataBuffer.buf := SocketInfo[EventTotal]^.Buffer;
EventArray[EventTotal] := WSACreateEvent;
if EventArray[EventTotal] = WSA_INVALID_EVENT then
CleanUp('WSACreateEvent()');

SocketInfo[EventTotal]^.Overlapped.hEvent := EventArray[EventTotal];
// Post a WSARecv() request to begin receiving data on the socket ...

Flags := 0;
Res := WSARecv(SocketInfo[EventTotal]^.skt,@SocketInfo[EventTotal]^.DataBuffer,

1, RecvBytes, Flags, @SocketInfo[EventTotal]^.Overlapped, NIL);
if Res = SOCKET_ERROR then
if WSAGetLastError <> ERROR_IO_PENDING then
begin
CleanUp('WSARecv()');
Exit;
end;
inc(EventTotal);
LeaveCriticalSection(CriticalSection);

// Signal the first event in the event array to tell the worker thread to service
// an additional event in the event array ...

if WSASetEvent(EventArray[0]) = FALSE then
begin
CleanUp('WSASetEvent()');
Exit;
end;
end;// while ...
finally
WSACleanUp;
end
else WriteLn('Failed to load Winsock...');
end.

function getpeername Winsock2.pas

Syntax

getpeername(s: TSocket; name: PSockAddr; var namelen: Integer): Integer; stdcall;

Description

This function retrieves the name of the peer connected to the socket s and
stores it in the TSockAddr record in the name parameter.

Parameters

s: A descriptor identifying a connected socket

name: A pointer to the sockaddr_in record which is to receive the name of the
peer

namelen: A pointer to the size of the name record

154 � Chapter 5

Return Value

If the function succeeds, it will return a value of zero. Otherwise, it will return
SOCKET_ERROR. To retrieve the specific error code, call the function
WSAGetLastError(). Possible error codes are WSANOTINITIALISED, WSAE-
NETDOWN, WSAEFAULT, WSAEINPROGRESS, WSAENOTCONN, and
WSAENOTSOCK.

See Appendix B for a detailed description of the error codes.

See Also

bind, getsockname, socket

Example

See Listing 5-2 (program EX54).

function getsockname Winsock2.pas

Syntax

getsockname(s: TSocket; name: PSockAddr; var namelen: Integer): Integer; stdcall;

Description

This function retrieves the local name for a connected socket specified in the
name parameter.

Parameters

s: A descriptor identifying a bound socket

name: A pointer to the sockaddr_in record to receive the address (name) of the
socket

namelen: The size of the name parameter

Return Value

If the function succeeds, it will return a value of zero. Otherwise, it will return
SOCKET_ERROR. To retrieve the specific error code, call the function WSA-
GetLastError(). Possible error codes are WSANOTINITIALISED, WSAENET-
DOWN, WSAEFAULT, WSAEINPROGRESS, WSAENOTSOCK, and
WSAEINVAL.

See Appendix B for a detailed description of the error codes.

See Also

bind, getpeername, socket

Example

See Listings 4-5 and 5-6 (programs EX45 and EX58).

Listing 5-4 provides an example of a generic echo server using the select()
function.

Communications � 155

5

C
h
a
p

te
r

Listing 5-4: A generic echo server that uses the select() model

program EX55;

{$APPTYPE CONSOLE}

uses
SysUtils,
Windows,
WinSock2;

const
MaxEchoes = 10;
DataBuffSize = 8192;
S = 'Hello';
TotalSockets : Integer = 0;

type

PSocketInfo = ^TSocketInfo;
TSocketInfo = record

Overlapped : WSAOverlapped;
skt : TSocket;
Buffer : array[0..DataBuffSize - 1] of char;
DataBuffer : WSABuf;
BytesSend,
BytesRecv : DWORD;

end;

var
WSAData: TWSAData;
Host: PHostent;
DummyAddr,
HostAddr: TSockAddrIn;
Addr: PChar;
Msg: PChar;
sktListen,
sktAccept: TSocket;
NoEchoes,
Len,
i,
Size: Integer;
Flags,
Total: DWORD;
ThrdHandle: THandle;
ThreadID: DWORD;
AcceptEvent: WSAEvent;
HostName : String;
Res : Integer;
WriteSet,
ReadSet: FD_Set;
NonBlock: u_long;
SendBytes,
RecvBytes: DWORD;
SocketArray: array[0..FD_SETSIZE - 1] of PSocketInfo;
SocketInfo: PSocketInfo;

156 � Chapter 5

function CreateSocketInformation(skt: TSocket) : Boolean;
var
SI: PSocketInfo;

begin
WriteLn(Format('Accepted socket number %d', [skt]));
SI := PSocketInfo(GlobalAlloc(GPTR, SizeOf(TSocketInfo)));
if SI = NIL then
begin

WriteLn('Typecast failed with error');
Result := FALSE;
Exit;

end;
// Prepare SocketInfo structure for use.

SI^.skt := skt;
SI^.BytesSEND := 0;
SI^.BytesRECV := 0;
SocketArray[TotalSockets] := SI;
inc(TotalSockets);
Result := TRUE;

end;

procedure FreeSocketInformation(Index: DWORD);
var
SI : PSocketInfo;
i: DWORD;

begin
SI := PSocketInfo(SocketArray[Index]);
closesocket(SI^.skt);
WriteLn(Format('Closing socket number %d', [SI^.skt]));
GlobalFree(Cardinal(SI));

// Squash the socket array
for i := Index to TotalSockets do
SocketArray[i] := SocketArray[i + 1];

dec(TotalSockets);
RecvBytes := 0;
SendBytes := 0;

end;

procedure CleanUp(S : String);
begin
WriteLn('Call to ' + S + ' failed with error: ' + SysErrorMessage(WSAGetLastError));
WSACleanUp;
Halt;

end;

begin
if WSAStartUp($0202, WSAData) = 0 then
try
sktListen := WSASocket(AF_INET, SOCK_STREAM, 0, NIL, 0, WSA_FLAG_OVERLAPPED);
if sktListen = INVALID_SOCKET then
CleanUp('WSASocket()');
HostAddr.sin_family := AF_INET;
HostAddr.sin_port := htons(IPPORT_ECHO);
HostAddr.sin_addr.S_addr := htonl(INADDR_ANY);
Res := bind(sktListen, @HostAddr, SizeOf(HostAddr));
if Res = SOCKET_ERROR then
CleanUp('bind()');
Res := listen(sktListen,5);
if Res = SOCKET_ERROR then

Communications � 157

5

C
h
a
p

te
r

CleanUp('listen()');
for i:= 0 to FD_SETSIZE - 1 do
SocketArray[i] := AllocMem(SizeOf(TSocketInfo));

// Change the socket mode on the listening socket from blocking to
// non-block so the application will not block waiting for requests.
NonBlock := 1;
Res := ioctlsocket(sktListen, FIONBIO, NonBlock);
if Res = SOCKET_ERROR then
begin
WriteLn(Format('Call to ioctlsocket() failed with error %s',

[SysErrorMessage(WSAGetLastError)]));
Exit;

end;
FD_ZERO(ReadSet);
FD_ZERO(WriteSet);

while TRUE do
begin

// Prepare the Read and Write socket sets for network I/O notification.
FD_ZERO(ReadSet);
FD_ZERO(WriteSet);

// Always look for connection attempts.
_FD_SET(sktListen, ReadSet);

// Set Read and Write notification for each socket based on the
// current state the buffer. If there is data remaining in the
// buffer then set the Write set otherwise the read set.

for i := 0 to TotalSockets - 1 do
if SocketArray[i]^.BytesRecv > SocketArray[i]^.BytesSend then
_FD_SET(SocketArray[i]^.skt, WriteSet)
else
_FD_SET(SocketArray[i]^.skt, ReadSet);

Total := select(0, @ReadSet, @WriteSet, NIL, NIL);
if Total = SOCKET_ERROR then
begin
WriteLn(Format('Call to select() returned with error %d', [WSAGetLastError]));
Exit;

end;
// Check for arriving connections on the listening socket.

if FD_ISSET(sktListen, ReadSet) then
begin
dec(Total);
sktAccept := WSAAccept(sktListen, NIL, NIL, NIL, 0);
if sktAccept <> INVALID_SOCKET then
begin

// Set the accepted socket to non-blocking mode so the server will
// not get caught in a blocked condition on WSASends

NonBlock := 1;
if ioctlsocket(sktAccept, FIONBIO, NonBlock) = SOCKET_ERROR then
begin
WriteLn(Format('Call to ioctlsocket() failed with error %d', [WSAGetLastError]));
Exit;

end;
if CreateSocketInformation(sktAccept) = FALSE then
Exit;

end
else
begin
if WSAGetLastError <> WSAEWOULDBLOCK then
begin
WriteLn(Format('Call to accept() failed with error %d', [WSAGetLastError]));
Exit;

158 � Chapter 5

end
end;

end;
// Check each socket for Read and Write notification until the number
// of sockets in Total is satisfied.

if total > 0 then
for i := 0 to TotalSockets - 1 do //; i++)
begin
SocketInfo := PSocketInfo(SocketArray[i]);

// If the ReadSet is marked for this socket then this means data
// is available to be read on the socket.

if FD_ISSET(SocketInfo^.skt, ReadSet) then
begin
dec(Total);
SocketInfo^.DataBuffer.buf := SocketInfo^.Buffer;
SocketInfo^.DataBuffer.len := DataBuffSize;
Flags := 0;
if WSARecv(SocketInfo^.skt, @SocketInfo^.DataBuffer, 1, RecvBytes,

Flags, NIL, NIL) = SOCKET_ERROR then
begin
if WSAGetLastError <> WSAEWOULDBLOCK then
begin
WriteLn(Format('Call to WSARecv() failed with error %d', [WSAGetLastError]));
FreeSocketInformation(i);

end;
continue;

end
else
begin
SocketInfo^.BytesRecv := RecvBytes;

// If zero bytes are received, this indicates the peer closed the
// connection.

if RecvBytes = 0 then
begin
FreeSocketInformation(i);
continue;

end
end;
end;//
// If the WriteSet is marked on this socket then this means the internal
// data buffers are available for more data.
if FD_ISSET(SocketInfo^.skt, WriteSet) then
begin
dec(Total);
SocketInfo^.DataBuffer.buf := SocketInfo^.Buffer + SocketInfo^.BytesSEND;
SocketInfo^.DataBuffer.len := SocketInfo^.BytesRECV - SocketInfo^.BytesSEND;
if WSASend(SocketInfo^.skt, @SocketInfo^.DataBuffer, 1, SendBytes, 0,

NIL, NIL) = SOCKET_ERROR then
if WSAGetLastError <> WSAEWOULDBLOCK then
begin
WriteLn(Format('Call to WSASend() failed with error %d', [WSAGetLastError]));
FreeSocketInformation(i);

end;
continue;

end
else
begin
SocketInfo^.BytesSend := SocketInfo^.BytesSend + SendBytes;
if SocketInfo^.BytesSEND = SocketInfo^.BytesRECV then
begin

Communications � 159

5

C
h
a
p

te
r

SocketInfo^.BytesSend := 0;
SocketInfo^.BytesRECV := 0;

end;
end;

end;
end;

closesocket(sktListen);
finally
WSACleanUp;
end
else WriteLn('Failed to load Winsock...');
end.

Sending Data
Now that we have shown how to initiate a session with the peer using TCP, we
will consider how to send data on UDP and TCP. For TCP, you should use the
send() and WSASend() functions; for UDP, you should use the sendto() and
WSASendTo() functions. The WSASend() and WSASendTo() functions are
Winsock 2 specific functions that extend considerably the scope of the original
send() and sendto() functions.

Having initiated the connection with the peer using TCP, you may call either
the send() or WSASend() function to dispatch the data. If you are using UDP,
you can call either the sendto() or WSASendTo() function.

The send() function sends data on a connected socket. A successful comple-
tion of the call to send() does not mean that the data was delivered successfully.
You should use the sendto() function on a connectionless socket.

Although you can use the WSASend() and WSASendTo() functions with over-
lapped and non-overlapped sockets, you should use these functions for
overlapped I/O operations. These functions use multiple buffers to perform a
“scatter and gather” type of I/O, which will be described in detail in the section
titled “I/O Schemes.”

By varying the flags and dwFlags parameters with a constant from Table 5-3,
you can modify how you call any of these functions. Briefly, the MSG_DONT-
ROUTE constant tells the function not to perform any routing of data. Routing
and diagnostic applications only need to use this constant. The MSG_PEEK
constant tells the function to peek at the data in the receiving buffer without
taking any data out of the buffer. The MSG_OOB constant tells the function to
send or read urgent data in parallel with sending and receiving the normal data
stream. This is a potentially useful feature, but as you will see in the sidebar
titled “Out-of-Band Data Etiquette,” later in the chapter, the constant is not as
useful in practice as in theory.

When you use sendto(), you must never send data in chunks greater than
SO_MAX_MSG_SIZE, or fragmentation will occur. Not all networks have the
same maximum transmission unit (MTU), so sending a datagram greater than

160 � Chapter 5

SO_MAX_MSG_SIZE will probably result in broken datagrams, thus increasing
unnecessary overheads. In addition, not all TCP/IP service providers at the
receiving end are capable of reassembling a large fragmented datagram.

�TIP: Before an application sends a datagram, make sure that its size
does not exceed SO_MAX_MSG_SIZE. To determine the
largest possible datagram, call the getsockopt() function. You will
learn how to use this function in Chapter 6.

Table 5-3: Possible values for the flags parameter

Value Meaning

MSG_DONTROUTE Specifies that the data should not be subject to routing.

MSG_OOB Send out-of-band data on a stream style socket (SOCK_STREAM).

MSG_PARTIAL Specifies that lpBuffers only contains a partial message. Note that the error code
WSAEOPNOTSUPP will be returned by transports that do not support partial message
transmissions.

MSG_PEEK Copies the data from the system buffer into the receive buffer. The original data remains
in the system buffer.

function send Winsock2.pas

Syntax

send(s: TSocket; var buf; len, flags: Integer): Integer; stdcall;

Description

This function sends data on a connected socket s. The successful completion of
the call to send() does not mean that the data was successfully delivered.

Parameters

s: A descriptor identifying a connected socket

buf: A buffer containing the data to be transmitted

len: The length of the data in buf

flags: Specifies the way in which the call is made (see Table 5-3).

Return Value

If the function succeeds, it will return the number of bytes sent. If the function
fails, it will return a value of SOCKET_ERROR. To retrieve the error code, call
the function WSAGetLastError(). Possible error codes are WSANOTINITIAL-
ISED, WSAENETDOWN, WSAEACCES, WSAEINTR, WSAEINPROGRESS,
WSAEFAULT, WSAENETRESET, WSAENOBUFS, WSAENOTCONN,
WSAENOTSOCK, WSAEOPNOTSUPP, WSAESHUTDOWN, WSAEWOULD-
BLOCK, WSAEMSGSIZE, WSAEHOSTUNREACH, WSAEINVAL,
WSAECONNABORTED, WSAECONNRESET, and WSAETIMEDOUT.

Communications � 161

5

C
h
a
p

te
r

See Appendix B for a detailed description of the error codes.

See Also

recv, recvfrom, select, sendto, socket, WSAAsyncSelect, WSAEventSelect

Example

See Listing 5-6 (program EX58).

function WSASend Winsock2.pas

Syntax

WSASend(s: TSocket; lpBuffers: LPWSABUF; dwBufferCount: DWORD; var
lpNumberOfBytesSent: DWORD; dwFlags: DWORD; lpOverlapped: LPWSA-
OVERLAPPED; lpCompletionRoutine: LPWSAOVERLAPPED_COMPLETION_
ROUTINE): Integer; stdcall;

Description

This function extends the functionality provided by the send() function in two
important areas:

� It can be used in conjunction with overlapped sockets to perform over-
lapped send operations.

� It allows multiple send buffers to be specified, making it applicable to the
scatter and gather type of I/O.

Parameters

s: A descriptor identifying a connected socket

lpBuffers: A pointer to an array of _WSABUF records

dwBufferCount: The number of _WSABUF records in the lpBuffers array

lpNumberOfBytesSent: A pointer to the number of bytes sent by this call if the
I/O operation completes immediately

dwFlags: Specifies the way in which the call is made (see Table 5-3)

lpOverlapped: A pointer to a WSAOVERLAPPED record. This is ignored for
non-overlapped sockets.

lpCompletionRoutine: A pointer to the completion routine called when the send
operation has been completed. This is ignored for non-overlapped sockets.

Return Value

If no error occurs and the send operation has completed immediately,
WSASend() will return zero. To retrieve the error code, call the function
WSAGetLastError(). Possible error values are WSANOTINITIALISED,
WSAENETDOWN, WSAEACCES, WSAEINTR, WSAEINPROGRESS,
WSAEFAULT, WSAENETRESET, WSAENOBUFS, WSAENOTCONN,

162 � Chapter 5

TE
AM
FL
Y

Team-Fly®

WSAENOTSOCK, WSAEOPNOTSUPP, WSAESHUTDOWN, WSAEWOULD-
BLOCK, WSAEMSGSIZE, WSAEINVAL, WSAECONNABORTED,
WSAECONNRESET, WSA_IO_PENDING, and WSA_OPERATION_ABOR-
TED.

See Appendix B for a detailed description of the error codes.

See Also

WSACloseEvent, WSACreateEvent, WSAGetOverlappedResult, WSASocket,
WSAWaitForMultipleEvents

Example

See Listings 5-3, 5-4, 5-5, 5-7, and 5-8 (programs EX53, EX55, EX56, EX52, and
EX57).

function sendto Winsock2.pas

Syntax

sendto(s: TSocket; var buf; len, flags: Integer; toaddr: PSockAddr; tolen: Integer):
Integer; stdcall;

Description

This function sends a datagram on a connectionless socket to a specific destina-
tion. The successful completion of a call to sendto() does not indicate that the
data was successfully transmitted. As with the send() and WSASend() functions,
by using the flags parameter from Table 5-3, you can determine how you should
call sendto().

Parameters

s: A connected socket

buf: A buffer containing the data to send

len: The size of the data in buf

flags: Specifies the way in which the call is made (see Table 5-3)

toaddr: An optional pointer to the address of the target socket

tolen: The size of the address in toaddr

Return Value

If the function succeeds, it will return the number of bytes sent. If the function
fails, it will return a value of SOCKET_ERROR. To retrieve the error code, call
the function WSAGetLastError(). Possible error codes are WSANOTINITIAL-
ISED, WSAENETDOWN, WSAEACCES, WSAEINVAL, WSAEINTR,
WSAEINPROGRESS, WSAEFAULT, WSAENETRESET, WSAENOBUFS,
WSAENOTCONN, WSAENOTSOCK, WSAEOPNOTSUPP, WSAESHUT-
DOWN, WSAEWOULDBLOCK, WSAEMSGSIZE, WSAEHOSTUNREACH,

Communications � 163

5

C
h
a
p

te
r

WSAECONNABORTED, WSAECONNRESET, WSAEADDRNOTAVAIL,
WSAEAFNOSUPPORT, WSAEDESTADDRREQ, WSAENETUNREACH, and
WSAETIMEDOUT.

See Appendix B for a detailed description of the error codes.

See Also

recv, recvfrom, select, send, socket, WSAAsyncSelect, WSAEventSelect

Example

See Listing 5-3 (program EX53).

function WSASendTo Winsock2.pas

Syntax

WSASendTo(s: TSocket; lpBuffers: LPWSABUF; dwBufferCount: DWORD; var
lpNumberOfBytesSent: DWORD; dwFlags: DWORD; lpTo: PSockAddr; iTolen:
Integer; lpOverlapped: LPWSAOVERLAPPED; lpCompletionRoutine: LPWSA-
OVERLAPPED_COMPLETION_ROUTINE): Integer; stdcall;

Description

Like the sendto() function, this function sends a datagram to a specific destina-
tion. However, the function uses overlapped I/O where applicable and multiple
buffers, if applicable, to perform the scatter and gather type of I/O.

Parameters

s: A descriptor identifying a (possibly connected) socket

lpBuffers: A pointer to an array of TWSABUF records. Each TWSABUF record
contains a pointer to a buffer and the length of the buffer. This array must
remain valid for the duration of the send operation.

dwBufferCount: The number of TWSABUF records in the lpBuffers array

lpNumberOfBytesSent: A pointer to the number of bytes sent by this call if the
I/O operation completes immediately

dwFlags: Specifies the way in which the call is made (see Table 5-3)

lpTo: An optional pointer to the address of the target socket

iTolen: The size of the address in lpTo

lpOverlapped: A pointer to a WSAOVERLAPPED record, which is ignored for
non-overlapped sockets

lpCompletionRoutine: A pointer to the completion routine called when the send
operation has been completed, which is ignored for non-overlapped
sockets

164 � Chapter 5

Return Value

If no error occurs and the operation has completed immediately, the function
will return the value of zero. To retrieve the error code, call the function
WSAGetLastError(). Possible error values are WSANOTINITIALISED,
WSAEACCES, WSAEINTR, WSAEINPROGRESS, WSAEFAULT, WSAENET-
RESET, WSAENOBUFS, WSAENOTCONN, WSAENOTSOCK,
WSAEOPNOTSUPP, WSAESHUTDOWN, WSAEWOULDBLOCK, WSA-
EMSGSIZE, WSAEINVAL, WSAECONNABORTED, WSAECONNRESET,
WSAEADDRNOTAVAIL, WSAEAFNOSUPPORT, WSAEDESTADDRREQ,
WSAENETUN- REACH, WSA_IO_PENDING, and WSA_OPERA-
TION_ABORTED.

See Appendix B for a detailed description of the error codes.

See Also

WSACloseEvent, WSACreateEvent, WSAGetOverlappedResult, WSASocket,
WSAWaitForMultipleEvents

Example

None

Receiving Data
Now that we know how to transmit data, we must consider how the peer
receives the data. For the TCP protocol, these receiving functions are recv() and
WSARecv(), and for UDP, they are recvfrom() and WSARecvFrom().

The recvfrom() function uses a connectionless socket to receive a datagram
and captures the source address from which the datagram was sent. You should
use WSARecvFrom() primarily on a connectionless socket. By selecting a con-
stant from Table 5-3, you can set the flags or lpFlags parameters in recv(),
recvfrom(), WSARecv(), and WSARecvFrom() to modify how you call the
function.

function recv Winsock2.pas

Syntax

recv(s: TSocket; var buf; len, flags: Integer): Integer; stdcall;

Description

This function receives data from a connected socket

Communications � 165

5

C
h
a
p

te
r

Parameters

s: A descriptor identifying a connected socket

buf: A buffer for the incoming data

len: The length of buf

flags: Specifies the way in which the call is made (see Table 5-3)

Return Value

If the function succeeds, it will return the number of bytes received. If the con-
nection has been closed gracefully and all data received, the return value will be
zero. If the function fails, it will return a value of SOCKET_ERROR. To retrieve
the error code, call the function WSAGetLastError(). Possible error codes are
WSANOTINITIALISED, WSAENETDOWN, WSAEFAULT, WSAENOTCONN,
WSAEINTR, WSAEINPROGRESS, WSAENETRESET, WSAENOTSOCK,
WSAEOPNOTSUPP, WSAESHUTDOWN, WSAEWOULDBLOCK,
WSAEMSGSIZE, WSAEINVAL, WSAECONNABORTED, WSAETIMEDOUT,
and WSAECONNRESET.

See Appendix B for a detailed description of the error codes.

See Also

recvfrom, select, send, socket, WSAAsyncSelect

Example

See Listing 5-6 (program EX58).

function WSARecv Winsock2.pas

Syntax

WSARecv(s: TSocket; lpBuffers: LPWSABUF; dwBufferCount: DWORD; var
lpNumberOfBytesRecvd, lpFlags: DWORD; lpOverlapped: LPWSAOVERLAPPED;
lpCompletionRoutine: LPWSAOVERLAPPED_COMPLETION_ROUTINE): Integer;
stdcall;

Description

This function receives data from a connected socket and extends functionality
over the recv() function in three important areas:

� It can be used with overlapped sockets to perform overlapped receive
operations.

� It allows multiple receive buffers to be specified, making it applicable to
the scatter and gather type of I/O.

166 � Chapter 5

� The lpFlags parameter is both an INPUT and an OUTPUT parameter,
allowing applications to sense the output state of the MSG_PARTIAL flag
bit. Note, however, that the MSG_PARTIAL flag bit is not supported by all
protocols.

Parameters

s: A descriptor identifying a connected socket

lpBuffers: A pointer to an array of TWSABUF records. Each TWSABUF record
contains a pointer to a buffer and the length of the buffer.

dwBufferCount: The number of WSABUF records in the lpBuffers array

lpNumberOfBytesRecvd: A pointer to the number of bytes received by this call if
the receive operation completes immediately

lpFlags: A pointer to flags

lpOverlapped: A pointer to a WSAOVERLAPPED record (ignored for non-over-
lapped sockets)

lpCompletionRoutine: A pointer to the completion routine called when the
receive operation has been completed (ignored for non-overlapped
sockets)

Return Value

If no error occurs and the operation has completed immediately, the function
will return zero. The error code WSA_IO_PENDING indicates that the over-
lapped operation has been successfully initiated and that completion will be indi-
cated at a later time. Any other error code indicates that the overlapped
operation was not successfully initiated and no completion indication will occur.
To retrieve the error code, call the function WSAGetLastError(). Possible error
values are WSANOTINITIALISED, WSAENETDOWN, WSAENOTCONN,
WSAEINTR, WSAEINPROGRESS, WSAENETRESET, WSAENOTSOCK,
WSAEFAULT, WSAEOPNOTSUPP, WSAESHUTDOWN, WSAEWOULD-
BLOCK, WSAEMSGSIZE, WSAEINV, WSAECONNABORTED, WSAECONN-
RESET, WSAEDISCON, WSA_IO_PENDING, and WSA_OPERATION_
ABORTED.

See Appendix B for a detailed description of the error codes.

See Also

WSACloseEvent, WSACreateEvent, WSAGetOverlappedResult, WSASocket,
WSAWaitForMultipleEvents

Example

See Listings 5-3 and 5-7 (programs EX53 and EX57).

Communications � 167

5

C
h
a
p

te
r

function recvfrom Winsock2.pas

Syntax

recvfrom(s: TSocket; var buf; len, flags: Integer; from: PSockAddr; var fromlen:
Integer): Integer; stdcall;

Description

This function receives a datagram and captures the source address from which
the data was sent.

Parameters

s: A descriptor identifying a bound socket

buf: A buffer for the incoming data

len: The length of buf

flags: Specifies the way in which the call is made

from: An optional pointer to a buffer which will hold the source address upon
return

fromlen: An optional pointer to the size of the from buffer

Return Value

If the function succeeds, it will return the number of bytes received. If the con-
nection has been closed gracefully and all data received, the return value will be
zero. If the function fails, it will return a value of SOCKET_ERROR. To retrieve
the error code, call the function WSAGetLastError(). Possible error codes are
WSANOTINITIALISED, WSAENETDOWN, WSAEFAULT, WSAEINTR,
WSAEINPROGRESS, WSAEINVAL, WSAEISCONN, WSAENETRESET,
WSAENOTSOCK, WSAEOPNOTSUPP, WSAESHUTDOWN, WSAEWOULD-
BLOCK, WSAEMSGSIZE, WSAETIMEDOUT, and WSAECONNRESET.

See Appendix B for a detailed description of the error codes.

See Also

recv, send, socket, WSAAsyncSelect, WSAEventSelect

Example

See Listing 5-1 (program EX51).

168 � Chapter 5

function WSARecvFrom Winsock2.pas

Syntax

WSARecvFrom(s: TSocket; lpBuffers: LPWSABUF; dwBufferCount: DWORD;
var lpNumberOfBytesRecvd, lpFlags: DWORD; lpFrom: PSockAddr; lpFromlen:
PInteger; lpOverlapped: LPWSAOVERLAPPED; lpCompletionRoutine:
LPWSAOVERLAPPED_COMPLETION_ROUTINE): Integer; stdcall;

Description

This function extends the functionality provided by the recvfrom() function in
three important areas:

� It can be used in conjunction with overlapped sockets to perform over-
lapped receive operations.

� It allows multiple receive buffers to be specified, making it applicable to
the scatter and gather type of I/O.

� The lpFlags parameter is both an INPUT and an OUTPUT parameter,
allowing applications to sense the output state of the MSG_PARTIAL flag
bit. Note, however, that the MSG_PARTIAL flag bit is not supported by all
protocols.

Parameters

s: A descriptor identifying a socket

lpBuffers: A pointer to an array of TWSABUF records. Each TWSABUF record
contains a pointer to a buffer.

dwBufferCount: The number of TWSABUF records in the lpBuffers array

lpNumberOfBytesRecvd: A pointer to the number of bytes received by this call if
the receive operation completes immediately

lpFlags: A pointer to flags

lpFrom: An optional pointer to a buffer, which will hold the source address upon
the completion of the overlapped operation

lpFromlen: A pointer to the size of the lpFrom buffer, required only if lpFrom is
specified

lpOverlapped: A pointer to a WSAOVERLAPPED record (ignored for non-over-
lapped sockets)

lpCompletionRoutine: A pointer to the completion routine called when the
receive operation has been completed (ignored for non-overlapped
sockets)

Communications � 169

5

C
h
a
p

te
r

Return Value

If no error occurs and the operation has completed immediately, the function
will return zero. Otherwise, the function will return a value of SOCKET_
ERROR. Call WSAGetLastError() to retrieve a specific error code. The error
code WSA_IO_PENDING indicates that the overlapped operation has been suc-
cessfully initiated and that completion will be indicated later. Any other error
code indicates that the overlapped operation was not successfully initiated and
no completion indication will occur. Possible error codes are WSANOTINI-
TIALISED, WSAENETDOWN, WSAEFAULT, WSAEINTR, WSAEIN-
PROGRESS, WSAEINVAL, WSAEISCONN, WSAENETRESET, WSAENOT-
SOCK, WSAEOPNOTSUPP, WSAESHUTDOWN, WSAEWOULDBLOCK,
WSAEMSGSIZE, WSAECONNRESET, WSAEDISCON, WSA_IO_PENDING,
and WSA_OPERATION_ABORTED.

See Appendix B for a detailed description of the error codes.

See Also

WSACloseEvent, WSACreateEvent, WSAGetOverlappedResult, WSASocket,
WSAWaitForMultipleEvents

Example

None

Breaking the Connection
When data exchange is complete, you should close the connection with the
remote peer and free any sockets allocated for that exchange. To free these
sockets, you should call the shutdown() and closesocket() functions, in that
order. Calling shutdown() notifies the remote peer that you are done with the
data exchange and disables data communication on the socket, which is either
receiving or sending data.

If you set the how parameter in shutdown() to SD_RECEIVE, the affected
socket will not receive any more data from the remote peer. Likewise, if you set
how to SD_SEND, the socket will not send any data to the remote peer. Setting
how to SD_BOTH disables both sends and receives.

Then you should call closesocket() to close a socket and free resources allo-
cated to that socket. If you do not call closesocket() to close every socket at the
end of a session, you will deplete the pool of socket handles. When you call
closesocket(), any data that is pending will be lost. Thus, it is important that an
application retrieve any pending data before calling closesocket().

170 � Chapter 5

If you attempt to send data on the closed socket, the call will fail with the
error WSAENOTSOCK. Note that closing the socket will cause loss of pending
data; cancel any pending blocking or asynchronous calls and any pending over-
lapped operations on WSASend(), WSASendTo(), WSARecv(), WSARecvFrom(),
and WSAIoctl() with an overlapped socket.

�TIP: For every socket that you open, you must call closesocket() to
return socket resources to the system.

You can control the behavior of closesocket() by calling setsockopt() with the
socket options SO_LINGER and SO_DONTLINGER, as shown in Table 5-4. We
will discuss setsockopt() and these two options in Chapter 6.

Table 5-4: Socket options to control the behavior of closesocket()

Option Interval Type of Close Wait for Close?

SO_DONTLINGER Don’t care Graceful No

SO_LINGER Zero Hard No

SO_LINGER Nonzero Graceful Yes

�TIP: To prevent accidental loss of pending data on a connection, an
application should call shutdown() before calling closesocket().

Winsock 2 introduces two new functions to shut down a connection—
WSASendDisconnect() and WSARecvDisconnect(). Calling WSASend-
Disconnect() is the equivalent of calling shutdown() with SD_SEND, except that
WSASendDisconnect() also sends disconnect data in protocols that support it.
You should attach the disconnect data to the second parameter for retrieval by
the remote peer using WSARecvDisconnect(). If, however, the protocol that you
are using does not support the use of disconnect data, you should simply set the
second parameter, lpOutboundDisconnectData, to NIL. After a successful call,
the application cannot send any more data. However, the disabled socket is still
open, so you must still call closesocket() to close the socket and release
resources allocated to it.

Calling WSARecvDisconnect() is the same as calling shutdown() with
SD_RECV, except WSARecvDisconnect() can receive disconnect data in proto-
cols that support it. After a successful call to WSARecvDisconnect(), the
application will not receive any more data. Like WSASendDisconnect(), you can
receive disconnect data by retrieving the data from the lpInboundDisconnect-

Data parameter, provided that it is not set to NIL.

Communications � 171

5

C
h
a
p

te
r

function shutdown Winsock2.pas

Syntax

shutdown(s: TSocket; how: Integer): Integer; stdcall;

Description

This function disables data communication on any socket, which is either
receiving or sending.

Parameters

s: A descriptor identifying a socket

how: A flag that describes what type of operation will no longer be allowed

Return Value

If the function succeeds, it will return zero. If the function fails, it will return a
value of SOCKET_ERROR. To retrieve the error code, call the function
WSAGetLastError(). Possible error codes are WSANOTINITIALISED,
WSAENETDOWN, WSAEINVAL, WSAEINPROGRESS, WSAENOTCONN,
and WSAENOTSOCK.

See Appendix B for a detailed description of the error codes.

See Also

connect, socket

Example

See Listing 5-6 (program EX58).

function closesocket Winsock2.pas

Syntax

closesocket(s: TSocket): Integer; stdcall;

Description

This function closes a socket.

Parameters

s: A socket to close

Return Value

If the function succeeds, it will return a value of zero. Otherwise, it will return
SOCKET_ERROR. To retrieve the specific error code, call the function
WSAGetLastError. Possible error codes are WSANOTINITIALISED, WSAE-
NETDOWN, WSAENOTSOCK, WSAEINPROGRESS, WSAEINTR, and
WSAEWOULDBLOCK.

172 � Chapter 5

TE
AM
FL
Y

Team-Fly®

See Appendix B for a detailed description of the error codes.

See Also

accept, ioctlsocket, setsockopt, socket, WSAAsyncSelect, WSADuplicateSocket

Example

See Listing 5-1 (program EX51).

function WSASendDisconnect Winsock2.pas

Syntax

WSASendDisconnect(s: TSocket; lpOutboundDisconnectData: LPWSABUF):
Integer; stdcall;

Description

This function initiates termination of the connection on the connection-oriented
socket and sends disconnect data, if any.

�TIP: WSASendDisconnect() does not close the socket, and resources
attached to the socket will not be freed until closesocket() is
invoked.

Parameters

s: A descriptor identifying a socket

lpOutboundDisconnectData: A pointer to the outgoing disconnect data

Return Value

If the function succeeds, it will return zero. If the function fails, it will return a
value of SOCKET_ERROR. To retrieve the error code, call the function
WSAGetLastError(). Possible error codes are WSANOTINITIALISED, WSAE-
NETDOWN, WSAENOPROTOOPT, WSAEINPROGRESS, WSAENOTCONN,
WSAENOTSOCK, and WSAEFAULT.

See Appendix B for a detailed description of the error codes.

See Also

connect, socket

Example

None

Communications � 173

5

C
h
a
p

te
r

function WSARecvDisconnect Winsock2.pas

Syntax

WSARecvDisconnect(s: TSocket; lpInboundDisconnectData: LPWSABUF): Integer;
stdcall;

Description

This function disables reception on a connection-oriented socket and retrieves
the disconnect data from the remote party.

Parameters

s: A descriptor identifying a socket

lpInboundDisconnectData: A pointer to the incoming disconnect data

Return Value

If the function succeeds, it will return zero. Otherwise, it will return a value of
SOCKET_ERROR. To retrieve the error code, call the function WSAGetLast-
Error(). Possible error codes are WSANOTINITIALISED, WSAENETDOWN,
WSAEFAULT, WSAENOPROTOOPT, WSAEINPROGRESS, WSAENOTCONN,
and WSAENOTSOCK.

See Appendix B for a detailed description of the error codes.

See Also

connect, socket

Example

None

Server Applications
Up to now, we have been discussing data exchange from the client’s point of
view. It is now time for us to examine the functions that any typical server usu-
ally requires to service popular protocols, such as FTP, HTTP, SMTP, POP3, and
many others.

Preparation

Before a server can service requests from clients on any of these Internet pro-
tocols, it has to perform certain operations before it is ready to serve.

To begin with, a server is not required to resolve its own address, so that
step falls away. In addition, a server does not require either the connect() or the
WSAConnect() functions because it will be listening as opposed to connecting.
However, a server follows the same steps as the client to create a socket, but
after creating a socket, a server calls the bind() function to associate or bind the

174 � Chapter 5

socket with a port number of the service that the server is to provide. To pro-
vide this binding, bind() uses the sockaddr_in data structure, which is the same
structure used by the connect() and WSAConnect() functions.

Initially, when you create a socket with the socket() function, it exists in a
name space (address family), but it has no name assigned. You should use the
bind() function to associate or bind the socket by assigning a local name to it. In
the Internet address family, a name space consists of three parts: the address
family, a host address, and a port number that identifies the service. The
sin_family field must contain the address family that you used to create the
socket. Otherwise, a WSAEFAULT error will occur.

If you do not care what local address you assign to the server, you may spec-
ify the constant, INADDR_ANY, for the sa_data field of the name parameter.
This allows the underlying service provider to use any appropriate network
address. For TCP/IP, if you specify the port as zero, the service provider will
assign a unique port to the application with a value between 1024 and 5000.

After calling bind(), you can use getsockname() to learn the address and port
that has been assigned to the server. However, if the Internet address is set to
INADDR_ANY, the getsockname() function will not necessarily be able to sup-
ply the address until the socket is connected, since several addresses may be
valid if the host is multi-homed. (See Appendix A for the definition of
multi-homed.) Then you should call listen() to listen for a connection on the
designated port. When a connection request arrives, the listen() function
queues the request until the server is ready to deal with the request.

You can only use listen() on sockets that you created using the SOCK_
STREAM type. When a connection request arrives, the listen() function queues
the request until the server is ready to accept it via the accept() or
WSAAccept() function. When the queue is full, the number of connection
requests exceeds the backlog value set for the listen() function, and the server
sends an error message (WSAECONNREFUSED) back to the client.

An application may call listen() more than once on the same socket, which
has the effect of updating the current backlog for the listening socket. The back-

log parameter is limited to a reasonable value, as determined by the underlying
service provider. Illegal values are replaced by the nearest legal value. There is
no way to determine the actual backlog value used. However, if you use the SO-
MAXCONN constant, as defined by Winsock2.pas, the maximum is $7FFFFFFF
(2,147,483,647), an extremely large number.

When you get a connection request, call either accept() or WSAAccept() to
accept the connection. We will examine accept() first. The details that we pro-
vide concerning accept() also apply to WSAAccept(). The prototype for the
accept() function is as follows:

function accept(s: TSocket; addr: PSockAddr; addrlen: PInteger): TSocket; stdcall;

Communications � 175

5

C
h
a
p

te
r

When the server is ready to service a connection request, it will call accept() to
accept the connection. The accept() function creates a new socket that has the
same properties of the listening socket, including asynchronous events regis-
tered with WSAAsyncSelect() or WSAEventSelect(). If there are no connection
requests in the queue and the socket is specified as blocking, accept blocks until
a connection request appears. Otherwise, if the socket is non-blocking and no
pending connections are present on the queue, accept() returns the
WSAEWOULDBLOCK error. When this happens, the server application must
handle this so that it can continue to listen for more clients.

After accept() returns a new socket handle, the server uses the accepted
socket to perform other functions; it does not play any further role in accepting
new connection requests. Instead, the original socket allocated to the listen()
function continues to listen for new connection requests.

The first parameter, s, is the listening socket. The second parameter, addr, is
filled with the address of the connecting client. The address family in which the
communication is occurring determines the exact format of the addr parameter.
For example, if you use AF_INET (which is the address family you use for the
Internet), you should use the sockaddr_in record. The third parameter, addrlen,

contains the size of the second parameter. Like listen(), you should use accept()
only with sockets of the type SOCK_STREAM. If you set either addr to NIL or
addrlen to zero or both, you will not get any information about the remote
address of the accepted socket.

The prototype for WSAAccept() is as follows:

function WSAAccept(s: TSocket; addr: PSockAddr; addrlen: PInteger;
lpfnCondition: LPCONDITIONPROC; dwCallbackData: DWORD): TSocket; stdcall;

Like accept(), WSAAccept() takes the first connection in the queue of pending
connection requests on the listening socket. In addition, if the fourth parameter,
a pointer to condition function, lpfnCondition, is not NIL, the function checks
the request using the callback function. If the condition function returns
CF_ACCEPT, this routine creates a new socket. The newly created socket has
the same properties as the listening socket, including asynchronous events reg-
istered with WSAAsyncSelect() or WSAEventSelect(), which we will cover later
in this chapter. If the condition function returns CF_REJECT, then
WSAAccept() rejects the connection request. If the decision cannot be made
immediately, the condition function will return the value CF_DEFER to indicate
that no decision has been made and no action about this connection request
should be taken. When the application is ready to act on that connection
request, it will invoke WSAAccept() again and return either CF_ACCEPT or
CF_REJECT from the condition function.

For sockets that are blocking, and if no pending connections are present in
the queue, WSAAccept() will continue to block until a connection request
arrives. Otherwise, if the socket is non-blocking and this function is called when

176 � Chapter 5

no pending connections are present in the queue, WSAAccept() fails with the
error WSAEWOULDBLOCK.

After WSAAccept() returns a new socket handle, the server uses the
accepted socket to perform a task. The original listening socket remains open
for new connection requests.

The second parameter, addr, is filled with the address of the connecting cli-
ent. This call is used with connection-oriented socket types, such as SOCK_
STREAM. The condition function, defined in Winsock2.pas, is as follows:

LPCONDITIONPROC = function (lpCallerId, lpCallerData: LPWSABUF; lpSQOS, lpGQOS: LPQOS;
lpCalleeId, lpCalleeData: LPWSABUF; g: PGroup; dwCallbackData: DWORD): Integer; stdcall;

The LPCONDITIONPROC parameter is a pointer to the callback procedure in
WSAAccept(). lpCallerId and lpCallerData are parameters that contain the
address of the connecting client and any user data that was sent with the
connection request, respectively. Many network protocols do not support con-
nect-time caller data (lpCallerData). However, most conventional network
protocols can support caller ID (lpCallerId) information at connection-request
time. The buf field of the _WSABUF (see the definition for the prototype)
pointed to by lpCallerId points to a sockaddr_in data structure. The sockaddr_in
is interpreted according to its address family (typically by casting the sock-
addr_in to some type specific to the address family).

The lpSQOS parameter references the flow specifications for the socket
specified by the caller, one for each direction, and followed by any additional pro-
vider-specific parameters. The sending or receiving flow specification values
will be ignored as inappropriate for any unidirectional sockets. If lpSQOS is set
to NIL, there is no caller-supplied QOS and no negotiation is possible. A valid
lpSQOS indicates that a QOS negotiation is to occur or the provider is prepared
to accept the QOS request without negotiation.

A NIL value for lpGQOS indicates no caller-supplied group QOS. QOS infor-
mation may be returned if a QOS negotiation is to occur. (In any case, set this
parameter to NIL, as this feature is not implemented in the current version of
Winsock 2.)

lpCalleeId is a parameter that contains the local address of the connected cli-
ent. The buf field of the _WSABUF pointed to by lpCalleeId points to a
sockaddr_in structure. The sockaddr_in is interpreted according to its address
family (typically by casting the sockaddr_in to some type that is specific to the
address family).

lpCalleeData is a parameter used by the condition function to supply user data
back to the connecting client. lpCalleeData^.len contains the length of the
buffer allocated by Winsock and pointed to by lpCalleeData^.buf. If the length of
the buffer is zero, that is, empty, no user data will be transmitted back to the
connecting client. As data arrives, the condition function copies the amount of
the data up to the limit set by lpCalleeData^.len bytes of data into

Communications � 177

5

C
h
a
p

te
r

lpCalleeData^.buf, and then updates lpCalleeData^.len to indicate the actual
number of bytes transferred. If no user data is to be passed back to the caller,
the condition function should set lpCalleeData^.len to zero.

The dwCallbackData parameter value passed to the condition function is the
value passed as the dwCallbackData parameter in the original WSAAccept() call.
Only the Winsock 2 client interprets this value. This allows a client to pass
some context information from the server through to the condition function.
This gives the condition function any additional information required to deter-
mine whether to accept the connection or not. A typical usage is to pass a
(suitably cast) pointer to a data structure containing references to application-
defined objects with which this socket is associated.

Duplicated Sockets

Winsock 2 introduces a new function, WSADuplicateSocket(), to allow a server
to farm out another socket to serve a client while attending to other requests.

A server, or a parent process, calls WSADuplicateSocket() to obtain a special
TWSAPROTOCOL_INFO record. The server then passes the contents of this
record via a mechanism (usually by an InterProcess Call) to a child process,
which in turn uses it in a call to WSASocket() to obtain a descriptor for the
duplicated socket. Note that the child process can only access this special
TWSAPROTOCOL_INFO record once. Alternatively, you can share sockets
across threads in the same process without using WSADuplicateSocket(), since
a socket descriptor is valid in all of a process’s threads. Because Winsock does
not implement any type of access control, you will need to write extra code that
will manage the participating processes to coordinate their operations on a
shared socket.

When you use shared or duplicated sockets, you need to remember that if
you call setsockopt() (see Chapter 6 for details on this function) to change
attributes of the original socket, the change will be reflected in the duplicated
sockets. Calling closesocket() on a duplicated socket will remove that socket,
but the original socket will remain open. Event notification on shared sockets is
subject to the usual constraints of WSAAsyncSelect() and WSAEventSelect().
Calling either of these functions on any of the shared sockets will cancel any
previous event registration for that socket, regardless of which socket was used
to make that registration. Thus, a shared socket cannot deliver FD_READ
events to process A and FD_WRITE events to process B. For situations when
such tight coordination is required, we suggest that you use threads instead of
separate processes.

178 � Chapter 5

function bind Winsock2.pas

Syntax

bind(s: TSocket; name: PSockAddr; namelen: Integer): Integer; stdcall;

Description

This function binds or associates a local address with a socket. Binding to a spe-
cific port number (other than port 0) is discouraged for client applications, since
there is a danger of conflicting with another socket that is already using that
port number.

Parameters

s: A descriptor identifying an unbound socket

name: The address to assign to the socket

namelen: The length of name

Return Value

If the function succeeds, it will return a value of zero. Otherwise, it will return
SOCKET_ERROR. To retrieve the specific error code, call the function
WSAGetLastError(). Possible error codes are WSANOTINITIALISED, WSAE-
NETDOWN, WSAEADDRINUSE, WSAEADDRNOTAVAIL, WSAEFAULT,
WSAEINPROGRESS, WSAEINVAL, WSAENOBUFS, and WSAENOTSOCK.

See Appendix B for a detailed description of the error codes.

See Also

connect, getsockname, listen, setsockopt, socket, WSACancelBlockingCall

Example

See Listing 5-7 (program EX52).

function listen Winsock2.pas

Syntax

listen(s: TSocket; backlog: Integer): Integer; stdcall;

Description

This function establishes a socket to listen for an incoming connection.

Parameters

s: A descriptor identifying a bound, unconnected socket

backlog: The maximum length to which the queue of pending connection
requests may grow. If this value is SOMAXCONN, then the underlying
service provider responsible for socket s will set the backlog to a maxi-
mum “reasonable” value.

Communications � 179

5

C
h
a
p

te
r

Return Value

If the function succeeds, it will return a value of zero. Otherwise, it will return
SOCKET_ERROR. To retrieve the specific error code, call the function
WSAGetLastError(). Possible error codes are WSANOTINITIALISED, WSAE-
NETDOWN, WSAEADDRINUSE, WSAEINPROGRESS, WSAEINVAL,
WSAEISCONN, WSAEMFILE, WSAENOBUFS, WSAENOTSOCK, and
WSAEOPNOTSUPP.

See Appendix B for a detailed description of the error codes.

See Also

accept, connect, socket

Example

See Listing 5-7 (program EX52).

function accept Winsock2.pas

Syntax

accept(s: TSocket; addr: PSockAddr; addrlen: PInteger): TSocket; stdcall;

Description

This function takes the first connection in the queue of pending connections on
the listening socket and returns a handle to the new socket created by the
function.

Parameters

s: A descriptor for the socket that was called with the listen() function

addr: An optional pointer to a buffer that receives the address of the connecting
client. The exact format of the addr argument is determined by the
address family established when the socket was created.

addrlen: An optional pointer to an integer that contains the length of the address
addr

Return Value

If successful, the function will return a value of type TSocket, which is a
descriptor for the accepted socket. Otherwise, it will return a value of
INVALID_SOCKET. To retrieve the error code, call the function WSAGetLast-
Error(). Possible error codes are WSANOTINITIALISED, WSAENETDOWN,
WSAEFAULT, WSAEINTR, WSAEINPROGRESS, WSAEINVAL, WSAEM-
FILE, WSAENOBUFS, WSAENOTSOCK, WSAEOPNOTSUPP, and
WSAEWOULDBLOCK.

See Appendix B for a detailed description of the error codes.

180 � Chapter 5

See Also

bind, connect, listen, select, socket, WSAAccept, WSAAsyncSelect

Example

See Listing 5-7 (program EX52).

function WSAAccept Winsock2.pas

Syntax

WSAAccept(s: TSocket; addr: PSockAddr; addrlen: PInteger; lpfnCondition:
LPCONDITIONPROC; dwCallbackData: DWORD): TSocket; stdcall;

Description

This function performs the same operation as accept(). In addition, the function
has extra functionality in three areas:

� Conditionally accepts a connection based on the return value of a condi-
tion function

� Provides QOS flowspecs

� Allows transfer of connection data

Parameters

s: A descriptor for the socket that was called with the listen() function

addr: An optional pointer to a buffer that receives the address of the connecting
entity, as known to the communications layer. The exact format of the addr

argument is determined by the address family established when the socket
was created.

addrlen: An optional pointer to an integer that contains the length of the address
addr

lpfnCondition: The procedure instance address of the optional, application-sup-
plied, condition function that will make an accept or reject decision based
on the caller information passed in as parameters and optionally create
and/or join a socket group by assigning an appropriate value to the result
parameter g of this function.

dwCallbackData: The callback data passed back to the application as the value of
the dwCallbackData parameter of the condition function. Winsock does not
interpret this parameter.

Return Value

If successful, the function will return a value of type TSocket, which is a
descriptor for the accepted socket. Otherwise, the function will return a value
of INVALID_SOCKET. To retrieve the specific error code, call the function
WSAGetLastError(). Possible error codes are WSANOTINITIALISED,

Communications � 181

5

C
h
a
p

te
r

WSAECONNREFUSED, WSAENETDOWN, WSAEFAULT, WSAEINTR,
WSAEINPROGRESS, WSAEINVAL, WSAEMFILE, WSAENOBUFS,
WSAENOTSOCK, WSAEOPNOTSUPP, WSATRY_AGAIN,
WSAEWOULDBLOCK, and WSAEACCES.

See Appendix B for a detailed description of the error codes.

See Also

accept, bind, connect, getsockopt, listen, select, socket, WSAAsyncSelect,
WSAConnect

Example

See Listing 5-4 (program EX55).

function WSADuplicateSocket Winsock2.pas

Syntax

WSADuplicateSocket(s: TSocket; dwProcessId: DWORD; lpProtocolInfo:
LPWSAPROTOCOL_INFOW): Integer; stdcall;

Description

This function returns a pointer to the WSAPROTOCOL_INFO record that you
use to create a new socket descriptor for a shared socket.

Parameters

s: Specifies the local socket descriptor

dwProcessId: Specifies the ID of the target process for which the shared socket
will be used

lpProtocolInfo: A pointer to a buffer allocated by the client that is large enough to
contain a WSAPROTOCOL_INFO data structure. The service provider
copies the contents to this buffer.

Return Value

If the function succeeds, it will return zero. If the function fails, it will return a
value of SOCKET_ERROR. To retrieve the error code, call the function
WSAGetLastError. Possible error codes are WSANOTINITIALISED, WSAE-
NETDOWN, WSAEINVAL, WSAEINPROGRESS, WSAEMFILE, WSAENO-
BUFS, WSAENOTSOCK, and WSAEFAULT.

See Appendix B for a detailed description of the error codes.

See Also

WSASocket

Example

None

182 � Chapter 5

TE
AM
FL
Y

Team-Fly®

I/O Schemes
In this section, we will show you how to use standard I/O schemes. These
schemes use functions like select(), WSAAsyncSelect(), and WSAEventSelect().
The helper functions for WSAAsyncSelect() and WSAEventSelect() are
WSACreateEvent(), WSAEnumNetworkEvents(), WSACloseEvent(),
WSAResetEvent(), and WSAWaitForMultipleEvents(). We will also look at the
WSAGetOverlappedResult() function for overlapped I/O operations. We will also
explain when and how you would use these schemes. For now, we will introduce
these functions briefly.

When you use the select() function for network event notification, the sock-
ets that you use block by default. However, you can use ioctlsocket() (see
Chapter 6, “Socket Options,” for more details on this function) to make the
sockets non-blocking. We will discuss non-blocking and blocking sockets later in
the “To Block or Not to Block?” section.

The select() function is often known as a socket multiplex handler because it
can handle sets of sockets for reading and writing. The maximum number of
sockets that select() can handle is 64. To increase the number of sockets for an
application using select(), you can use threads—one set of sockets for each
thread. However, why make your life harder than it already is? Is there a more
sane approach than using select()? Yes; Winsock has an asynchronous version of
select() that takes advantage of Windows’ messaging system. This is the
WSAAsyncSelect() function.

Another function that is similar to WSAAsyncSelect() is WSAEventSelect().
The advantage of using WSAEventSelect() is that it does not require Windows
handles. This is perfect for servers and daemons, as they do not usually require
GUI front ends. Instead of using window handles, WSAEventSelect() uses the
event object model for notification of network events. We will demonstrate the
use of the WSAEventSelect() in a console application for a simple echo server.
In any case, we would advise you to use WSAAsyncSelect() or WSAEvent-
Select() over select() since these functions are easier to code and more robust.

Using Select()

Use the select() function to manage a collection of sockets. The function is a
Winsock derivative of the select() function in the Berkeley socket implementa-
tions and is provided for compatibility reasons for Berkeley socket applications.
The function is useful on Windows CE, where the current version of Winsock
does not provide asynchronous sockets and event objects. The select() function
is a synchronous version of WSAAsyncSelect(), but is much more difficult to
program. WSAAsyncSelect() and WSAEventSelect() are much more friendly
and efficient to use than select(). However, we will give a brief description of

Communications � 183

5

C
h
a
p

te
r

the select() function as well as a code example to complete our coverage of
communications functions.

The function responds to three events:

� Detects data on a socket ready to read using the recv() function

� Detects data on a socket ready to write using the send() function

� Detects out-of-band data on sockets

How do you use the select() function to respond to these events? Let’s look
first at the prototype for select, which is defined in Winsock2.pas as follows:

function select(nfds: Integer; readfds, writefds, exceptfds: PFdSet; timeout: PTimeVal):
Integer; stdcall;

You should ignore the first parameter, nfds, which is kept for compatibility with
Berkeley socket applications. More importantly, the next three parameters are
the heart of select()—readfds, writefds, and exceptfds. These are pointers to the
fd_set record, which is defined in Winsock2.pas as follows:

fd_set = record
fd_count: u_int; // how many are SET?
fd_array: array [0..FD_SETSIZE - 1] of TSocket; // an array of SOCKETs

end;
TFdSet = fd_set;
PFdSet = ^fd_set;

The readfds parameter points to a collection of sockets for reading, and writefds

points to a similar collection for writing. The exceptfds parameter is a pointer to
a collection of sockets for out-of-band data.

Another parameter, timeout, is a pointer to the TTimeVal packed record for
setting timeouts. The prototype of this data structure, defined in Winsock2.pas,
is as follows:

timeval = record
tv_sec: Longint; // seconds
tv_usec: Longint; // and microseconds

end;
TTimeVal = timeval;
PTimeVal = ^timeval;

If timeout is NIL, select() will block indefinitely waiting for data on the receiving
or sending sockets. If you provide values for the tv_sec and tv_usec fields,
select() will wait for a number of seconds, as indicated in tv_sec, and millisec-
onds, as set in tv_usec. If you set these values to zero, select() will return
immediately, but the code will need to poll select() frequently, which is not
efficient.

Before using select(), you will need to initialize the data structures by adding
socket handles to them. Winsock provides useful routines to manipulate these
data structures, including initialization. These routines are in Table 5-5.

184 � Chapter 5

Table 5-5: Routes to manipulate data structures

Name Description

FD_CLR Removes the descriptor s from set.

FD_ISSET Nonzero if s is a member of the set; zero otherwise.

_FD_SET Adds descriptor s to set.

FD_ZERO Initializes the set to NIL.

Below is a sequence of steps that you must perform before using select():

� Use the FD_ZERO routine to initialize the data structures (i.e., readfds,
writefds, and exceptfds).

� Use _FD_SET to add socket handles for reading to readfds. Repeat the
same procedure for socket handles for writing to writefds. In some applica-
tions, it may only be necessary to use select() on sockets for reading only,
in which case you may just initialize the set of sockets for reading and
ignore the set for writing. Optionally, you can add socket handles to
exceptfds for out-of-band data, but in our opinion, it is poor programming
practice to use out-of-band data (see the “Out-of-Band Data Etiquette”
section).

The following steps show how you would use select() in a simple application:
Step 1: Call select(), and wait for I/O activity to complete. The function

returns the total number of socket handles for each set of sockets.
Step 2: Using the number of socket handles returned by select(), you should

call the FD_ISSET routine to check which sockets have pending I/O in what
set.

Step 3: Process the sockets with pending I/O and return to Step 1 to call
select() again. This scheme continues until some predefined condition is met.

There is a simple echo server example (EX55) that uses select() that you can
study in Listing 5-4.

Using WSAAsyncSelect()

Calling WSAAsyncSelect() notifies Winsock to send a message to a nominated
window whenever a network event occurs. You should specify which network
events to detect when you make a call to WSAAsyncSelect(). Calling WSA-
AsyncSelect() automatically sets the socket in non-blocking mode. The
prototype for WSAAsyncSelect() is defined in Winsock2.pas as follows:

function WSAAsyncSelect(s: TSocket; hWnd: HWND; wMsg: u_int; lEvent: Longint): Integer;
stdcall;

The first parameter, s, is the socket that you want to put into non-blocking or,
more correctly, asynchronous mode. The second parameter, hWnd, specifies the
handle to the window for notification. The wMsg parameter identifies the

Communications � 185

5

C
h
a
p

te
r

message that the window handle is to receive when a network event occurs.
The value of the wMsg parameter must be greater than the value of WM_USER
to avoid message conflicts. The last parameter, lEvent, specifies which network
events to monitor. The network events you may specify are listed in Table 5-6.
To monitor more than one network event, you should call WSAAsyncSelect(),
like this:

WSAAsyncSelect(s, hwnd, WM_SOCKET, FD_CONNECT or FD_READ or FD_WRITE or FD_CLOSE)

This tells Winsock to monitor the following network events that occur when a
connection is made, pending read I/O, pending write I/O, or a connection is
closed, respectively.

Table 5-6: Network events

Value Meaning

FD_READ Required to receive notification of readiness for reading

FD_WRITE Required to receive notification of readiness for writing

FD_OOB Required to receive notification of the arrival of out-of-band data

FD_ACCEPT Required to receive notification of incoming connections

FD_CONNECT Required to receive notification of completed connection or
multipoint join operation

FD_CLOSE Required to receive notification of socket closure

FD_QOS Required to receive notification of socket Quality of Service (QOS)
changes

FD_GROUP_QOS Reserved for future use with socket groups; required to receive notifi-
cation of socket group Quality of Service (QOS) changes

FD_ROUTING_INTERFACE_CHANGE Required to receive notification of routing interface changes for the
specified destination(s)

FD_ADDRESS_LIST_CHANGE Required to receive notification of local address list changes for the
socket’s protocol family

During the lifetime of an application, you will often call WSAAsyncSelect() for a
socket more than once. A new call to WSAAsyncSelect() will cancel any previ-
ous WSAAsyncSelect() or WSAEventSelect() calls for the same socket. For
example, to receive notification for reading and writing, the application must call
WSAAsyncSelect() with both FD_READ and FD_WRITE, as the following code
snippet illustrates:

WSAAsyncSelect(s, hWnd, wMsg, FD_READ OR FD_WRITE);

It is not possible to specify different messages for different events. The follow-
ing code will not work properly because the second call to WSAAsyncSelect()
will cancel the effects of the first call, and only FD_WRITE events will be
reported with message wMsg2:

WSAAsyncSelect(s, hWnd, wMsg1, FD_READ); // first call
WSAAsyncSelect(s, hWnd, wMsg2, FD_WRITE); // second call overwrites original event

notification

186 � Chapter 5

To cancel all notifications, you need to set lEvent to zero, like this:

WSAAsyncSelect(s, hWnd, 0, 0);

Although in this case, calling WSAAsyncSelect() immediately disables event
message notification for the socket s, it is possible that messages may still be
waiting in the application’s message queue. The application must still receive
network event messages even after cancellation. Closing a socket with
closesocket() also cancels WSAAsyncSelect() message sending, but the same
caveat about messages in the queue prior to calling the socket() function still
applies.

When you call WSAAsyncSelect(), you must always check for any result from
the function. It is nearly always the case that the function could return a non-
fatal error of WSAEWOULDBLOCK, which means that the socket has no pend-
ing data for reading or writing. The code that you write with WSAAsyncSelect()
must handle this error as well as other errors. The code in Listing 5-8 shows
how you should handle the WSAEWOULDBLOCK error.

So far, we have discussed the notification of events, but we must complete
the puzzle by associating a procedure to handle the events themselves. We usu-
ally declare a message procedure somewhere in the interface section or in a
class or component like this:

procedure SomeEvent(var Mess : TMessage); message NETWORK_EVENT;

When you call WSAAsyncSelect(), you link this message procedure with the
message NETWORK_EVENT like this:

WSAAsyncSelect(s, hwnd, NETWORK_EVENT, FD_CONNECT or FD_READ or FD_WRITE or FD_CLOSE);

When you get a network event that you have requested Winsock to monitor on
your behalf, you must check for any errors on that event. To do this vital check,
you should call WSAGetSelectError() to evaluate the LParam field of the Mess

parameter returned in the SomeEvent procedure. If WSAGetSelectError()
returns zero, the network event is normal; otherwise, if there is a network
error, call WSAGetSelectError() again to determine the actual error. Whatever
error you get, your code must handle it gracefully. The prototype of WSAGet-
SelectError() is defined in Winsock2.pas as follows:

function WSAGetSelectError(Param: Longint): Word;

After verifying that the event has no errors, call WSAGetEventSelect() to
determine which event has occurred. The prototype is:

function WSAGetSelectEvent(Param: Longint): Word;

Pass the LParam field of the Mess parameter for inspection. The function
returns a network event. When you get an FD_READ event, the socket has
pending data ready to receive. Likewise, with FD_WRITE, the socket is ready
to send data.

Communications � 187

5

C
h
a
p

te
r

Using WSAEventSelect()

The WSAEventSelect() function is similar to WSAAsyncSelect(), except that
WSAEventSelect() does not use a window handle for network event notification.
Instead, WSAEventSelect() creates an event object for each socket. The func-
tion associates the event object with the network events that you wish Winsock
to monitor on your behalf. WSAEventSelect() processes the same events as
enumerated in Table 5-6. The prototype for WSAEventSelect() is defined in
Winsock2.pas as follows:

function WSAEventSelect(s: TSocket; hEventObject: WSAEVENT; lNetworkEvents: Longint):
Integer; stdcall;

The first parameter, s, is the socket that you want to monitor. The second
parameter, hEventObject, is the event object, which you create by calling
WSACreateEvent(). The prototype for WSACreateEvent(), which is defined in
Winsock2.pas, is as follows:

function WSACreateEvent:WSAEVENT; stdcall;

After calling WSACreateEvent(), this function creates an event associated with
a particular socket. The WSAEVENT data structure, which is also defined in
Winsock2.pas, is simply a handle.

The last parameter in WSAEventSelect(), lNetworkEvents, is a bit mask that
represents the network events of interest, such as those listed in Table 5-6.
Like WSAAsyncSelect(), you must perform a bit-wise operation to include more
than one event of interest. For example, if you wish to monitor FD_READ and
FD_WRITE events, then you would call the function like this:

WSAEventSelect(s, hEvent, FD_READ or FD_WRITE);

Normally, you would call WSAEventSelect() only once in the lifetime of an appli-
cation. Sometimes, though, you might find it necessary to call WSAEvent-
Select() more than once, in which case, the caveat that applies to WSAAsync-
Select() also applies to WSAEventSelect(). That is, calling WSAEventSelect()
for the second time will replace the original settings with fresh settings.

The event object has two operating states, signaled and non-signaled, as well
as two operating modes, manual reset and auto reset. When the event object is
created, it is in the non-signaled state, and its operating mode is manual reset.
Whenever a network event occurs that is associated with a socket marked for
monitoring, the event object’s operating state changes from non-signaled to sig-
naled. When this happens, the application should call WSAResetEvent() to reset
the event object back to the non-signaled state for further monitoring. The pro-
totype of WSAResetEvent() is defined in Winsock2.pas as follows:

function WSAResetEvent(hEvent: WSAEVENT): BOOL; stdcall;

188 � Chapter 5

The parameter, hEvent, is the event object that you wish to reset. The function
returns TRUE if the call is successful; otherwise, it returns FALSE for an error
condition. When you are finished with the event object, you must close it by
calling WSACloseEvent() to free resources allocated to that event object. The
prototype for WSACloseEvent() is defined in Winsock2.pas as follows:

function WSACloseEvent(hEvent: WSAEVENT): BOOL; stdcall;

After associating a socket with the event object, your application can start pro-
cessing I/O by waiting for network events to trigger the event object’s
operating state. The WSAWaitForMultipleEvents() function monitors these net-
work events by waiting on one or more event objects. The function returns
whenever a network event occurs to trigger an event object or when a set time-
out interval expires. The prototype for WSAWaitForMultipleEvents() is defined
in Winsock2.pas as follows:

function WSAWaitForMultipleEvents(cEvents: DWORD; lphEvents: PWSAEVENT;
fWaitAll: BOOL; dwTimeout: DWORD; fAlertable: BOOL): DWORD; stdcall;

The first parameter, cEvents, specifies the number of event objects in an array.
The second parameter, lphEvents, specifies a pointer to that array of event
objects. In the current implementation of Winsock, WSAWaitForMultiple-
Events() can support a maximum of 64 event objects, which means, therefore,
that the function can only support 64 sockets. However, to circumvent this
restriction, you can create additional worker threads, each using WSAWaitFor-
MultipleEvents() for that thread. The third parameter, fWaitAll, specifies the
behavior of WSAWaitForMultipleEvents(). If this parameter is TRUE, then
WSAWaitForMultipleEvents() will only return when all event objects are in a
signaled state. Otherwise, the function returns as soon as any of the event
objects become signaled. You should set this parameter to FALSE when you are
only using one socket at a time.

The fourth parameter, dwTimeout, specifies the time in milliseconds for
WSAWaitForMultipleEvents() to wait for a network event. If no network events
are ready before the timeout interval elapses, then WSAWaitForMultiple-
Events() returns the constant WSA_WAIT_TIMEOUT. The last parameter,
fAlertable, should always be FALSE. This parameter should only be set to TRUE
when you use completion routines in an overlapped I/O scheme, which we will
discuss later.

When a network event occurs, WSAWaitForMultipleEvents() returns a value
indicating which event object caused the function to return. At this point, the
application determines which event object caused the function to return by
indexing into the event array for a signaled event object and matching the
socket associated with the event object. You do this by using the following code
snippet:

Index := WSAWaitForMultipleEvents(NoEvents, EventArray, …);
SignaledEvent := EventArray[Index-WSA_WAIT_EVENT_0];

Communications � 189

5

C
h
a
p

te
r

Having retrieved the event object and its matching socket, you need to
determine what type of network event has occurred. You call WSAEnum-
NetworkEvents() to enumerate the event that interests you. The prototype for
WSAEnumNetworkEvents() is defined in Winsock2.pas as follows:

function WSAEnumNetworkEvents(s: TSocket; hEventObject: WSAEVENT; lpNetworkEvents:
LPWSANETWORKEVENTS): Integer; stdcall;

The first parameter, s, is the socket that is associated with the signaled event
object. The second parameter, hEventObject, is set to that event object that
became signaled. On return, the event object will be reset to the non-signaled
state automatically. This is an optional parameter, which you can set to NIL.
However, your application must call WSAResetEvent() to reset the signaled
event object for further processing. The last parameter, lpNetworkEvents, is a
pointer to the data structure _WSANETWORKEVENTS, which is defined in
Winsock2.pas. We show its prototype here:

WSANETWORKEVENTS = record
lNetworkEvents: Longint;
iErrorCode: array [0..FD_MAX_EVENTS - 1] of Integer;

end;
WSANETWORKEVENTS = _WSANETWORKEVENTS;
LPWSANETWORKEVENTS = ^WSANETWORKEVENTS;
TWsaNetworkEvents = WSANETWORKEVENTS;
PWsaNetworkEvents = LPWSANETWORKEVENTS;

This data structure contains the information that you need to determine which
network event has occurred. The lNetworkEvents field is a bit mask containing
those network events you have specified in the call to WSAEventSelect(). To
retrieve the network events from this parameter, you must perform an AND
operation, like this following code snippet:

if (lNetworkEvents and FD_READ) = FD_READ then
begin// Yes, this is a FD_READ event … so process it …
if iErrorCode[1] = WSAENETDOWN then
begin
Msg := 'Network down...';
// Broadcast error message …
end else
begin
// Process whatever it needs to be done …
end;
end;

Notice that in the preceding code snippet, we have used another field of the
_WSANETWORKEVENTS data structure, iErrorCode, to check for an error
condition that may have existed when the FD_READ event occurred. One of
the common network errors that you should guard against is a network failure,
which can happen at any time.

After processing the event, the application should continue to monitor net-
work events until some condition is met or when the application ends. Listing

190 � Chapter 5

5-8 demonstrates a working echo server using WSAEventSelect() and its helper
functions.

Using Overlapped Routines

Overlapped routines are those functions that use the overlapped data structure.
Those functions are WSAAccept(), WSASend(), WSARecv(), WSASendTo(), and
WSARecvFrom(). We examined these functions earlier in this chapter, but we
have left the discussion of overlapped I/O until now.

To use these functions to perform overlapped I/O, we must specify the sock-
ets as having the overlapped attribute set. Recall earlier that using the function
WSASocket() with the flag WSA_FLAG_OVERLAPPED will create an over-
lapped socket. Here is a code snippet that shows how to do this:

skt := WSASocket(AF_INET, SOCK_STREAM, 0, NIL, WSA_FLAG_OVERLAPPED);

You can call the socket() function instead, which will create an overlapped
socket by default. The data structure for implementing overlapped I/O is a
Win32 structure, which is defined in Windows.pas. We list its prototype here as
follows:

POverlapped = ^TOverlapped;
_OVERLAPPED = record
Internal: DWORD;
InternalHigh: DWORD;
Offset: DWORD;
OffsetHigh: DWORD;
hEvent: THandle;

end;
TOverlapped = _OVERLAPPED;
OVERLAPPED = _OVERLAPPED;

You may access the overlapped structure via the WSAOVERLAPPED alias
defined in Winsock2.pas. With the exception of the hEvent field, the fields are
for system use only. The hEvent field represents an event that you link with an
overlapped I/O request. To create this event, you should call WSACreate-
Event(). When you have created the event handle, assign this to the hEvent

field. Listing 5-3 demonstrates this technique. The second method we shall
examine is the completion routine, which operates differently from the event
notification method. Listing 5-2 demonstrates this technique.

Recall that functions such as WSASend() that use overlapped data structures
always return immediately. If the I/O operation completes successfully, the
overlapped function will return a value of zero. The associated event object has
been signaled or a completion routine is queued. However, if the I/O operation
fails, the function will return a value of SOCKET_ERROR. At this point, you
should check if the error code is WSA_IO_PENDING, which indicates that the
overlapped operation has been successfully started but completed. Eventually,
when the send buffers (in the case of WSASend()) are empty or receive buffers

Communications � 191

5

C
h
a
p

te
r

(in the case of WSARecv()) are full, Winsock will provide an overlapped indica-
tion. If the error code returned by WSAGetLastError() is not WSA_IO_PEND-
ING, then the overlapped operation has failed and no completion indication will
materialize.

How does Winsock provide an indication that an overlapped I/O is complete?
Winsock provides two methods to show an overlapped completion: event object
signaling and completion routine. Both use an overlapped data structure,
WSAOverlapped, which is an alias for the OVERLAPPED data structure that is
found in the Win32 API. The data structure is associated with the overlapped
operation. Let’s consider these two methods in detail.

Event Notification

This method to implement overlapped I/O uses the event objects with
WSAOVERLAPPED data structures. To map an event with the WSAOVER-
LAPPED structure, you should call WSACreateEvent() and assign that event to
the overlapped data structure. When you call a function such as WSARecv()
with a valid WSAOVERLAPPED structure, it returns immediately, usually with
a SOCKET_ERROR. This is normal behavior, and your application must call
WSAGetLastError() to check if the error is WSA_IO_PENDING, which means
that the I/O is still in progress. However, if WSAGetLastError() reports a differ-
ent error status, this could be due to a number of factors; one could be a
problem with the WSAOVERLAPPED data structure. When your application
gets an error other than WSA_IO_PENDING, your application should abort
gracefully.

After calling WSARecv(), you will enter an infinite loop structure, in which
you may call WSAWaitForMultipleEvents() (which we described earlier). The
function waits for a set time for one or more event objects to become signaled.
When this happens, you must call WSAGetOverlappedResult() to determine the
status of the overlapped data structure associated with that event. The proto-
type of WSAGetOverlappedResult(), which is defined in Winsock2.pas, is as
follows:

function WSAGetOverlappedResult(s: TSocket; lpOverlapped: LPWSAOVERLAPPED;
var lpcbTransfer: DWORD; fWait: BOOL; lpdwFlags: DWORD): BOOL; stdcall;

The first parameter, s, is the socket that you specified for the WSAOVER-
LAPPED data structure, which in this case you used with WSARecv(). The
second parameter, lpOverlapped, is a pointer to the WSAOVERLAPPED data
structure associated with WSARecv(). The third parameter, lpcbTransfer, is a
pointer to a variable containing the amount of data transferred in bytes during a
send or receive operation. The fourth parameter, fWait, determines whether the
function should wait for a pending overlapped I/O operation to complete. If fWait

is TRUE, the function does not return until the I/O operation is complete. If
fWait is FALSE, and the I/O operation is still pending, the function returns with

192 � Chapter 5

TE
AM
FL
Y

Team-Fly®

the error of WSA_IO_INCOMPLETE. In the case of using event objects, this
parameter has no relevance because when an event object is signaled, the over-
lapped I/O operation is complete. The last parameter, lpdwFlags, will receive
resulting flags in calls to the WSARecv() or WSARecvFrom() functions.

When WSAGetOverlappedResult() returns TRUE, the call has succeeded,
and the data pointed to by lpcbTransfer has been updated. If the function returns
FALSE, this could indicate one of the following causes:

� Overlapped I/O is still pending.

� Overlapped I/O has completed with errors.

The completion status cannot be determined because of errors in one or more
parameters that were supplied to WSAGetOverlappedResult().

When such an error occurs, your application must call WSAGetLastError() to
determine the cause of the fatal error.

Completion I/O Schemes

We will now consider the second method of using an overlapped I/O scheme:
the completion routine. Essentially, the second method uses a completion rou-
tine or callback function with a valid WSAOVERLAPPED data structure to
handle overlapped I/O requests. The prototype for a completion routine is:

procedure CompletionRoutine(dwError, cbTransferred : DWORD; lpOverlapped : PWSAOVERLAPPED;
dwFlags : DWORD);

Whenever an overlapped I/O request completes, the parameters contain infor-
mation regarding the completed overlapped I/O request. The first parameter,
dwError, contains the completion status for the overlapped operation. If dwError

is zero, this indicates a successful completion. Otherwise, if dwError is not zero,
you should check the cause of the error by calling WSAGetLastError(). The
second parameter, cbTransferred, indicates the number of bytes transferred for
that overlapped I/O request. If cbTransferred is zero, this indicates an error con-
dition, which you should check by calling WSAGetLastError(). The third
parameter, lpOverlapped, is a pointer to the overlapped data structure that you
used for the original call to an overlapped function, such as WSASend(), for that
overlapped I/O request. The last parameter, dwFlags, is not relevant.

Because the current scenario does not use event objects to notify the applica-
tion of a network event, the hEvent field of the overlapped data structure is not
used. You should use WSAWaitForMultipleEvents() to wait for a network event
to take place, but because this scenario does not use event objects, you have to
create a dummy event object for use with the WSAWaitForMultipleEvents()
function and set its fWait parameter to TRUE. When an overlapped request
completes, the completion routine executes and WSAWaitForMultipleEvents()
returns the constant WSA_IO_COMPLETION. At the same time, the comple-
tion routine posts another overlapped I/O request. This process continues until

Communications � 193

5

C
h
a
p

te
r

there are no more overlapped I/O requests. Listing 5-7 demonstrates this I/O
scheme.

Completion Port I/O Scheme

This I/O scheme is the most difficult to implement, but it has considerable
advantages over the I/O schemes that we have described up to now. The Com-
pletion Port I/O scheme scales well and offers the best performance. This
scheme is only available on Windows NT 4.0, Windows 2000, and Windows XP,
and it is the best possible scheme for servers that have to handle thousands of
connections, such as a web server.

This scheme uses a Win32 completion port object that handles overlapped
I/O requests using a supplied number of worker threads to service the over-
lapped requests.

To create a Win32 completion port object, you must call the CreateIoCom-
pletionPort() function. Its prototype is as follows:

function CreateIoCompletionPort(FileHandle, ExistingCompletionPort: THandle;
CompletionKey, NumberOfConcurrentThreads: DWORD): THandle; stdcall;

As well as creating the port object, the function returns a handle to the comple-
tion port object. The only parameter of interest is NumberOfConcurrentThreads,
which you need to set. (Ignore the other parameters, as they are not required.)
Setting this parameter sets the number of threads for each processor. To pre-
vent needless context switching, you should set the number of threads to one
per processor. By setting the parameter to zero, the function will allocate one
thread per processor on the system, like this:

CompletionPortHandle := CreateIOCompletionPort(INVALID_HANDLE_VALUE, 0, 0, 0);

The following steps describe briefly the operation of a completion port object:

1. Create a completion port.

2. Determine the number of processors on the server.

3. Create worker threads to service completed I/O requests on the comple-
tion port.

4. Start a listening socket (call listen()) on a specified port.

5. Accept an incoming connection request using the accept() function.

6. Create a data structure to encapsulate the data for that client and save the
accepted socket in the data structure.

7. Map the socket to the completion port object by calling CreateIoComple-
tionPort().

194 � Chapter 5

8. Start processing on the accepted socket using the overlapped I/O mecha-
nism. For example, when an I/O request completes, a worker thread
services the I/O requests.

9. Repeat Steps 5-8 until the server terminates.

We will not dive any further into the I/O Completion Port scheme, as it is a com-
plex topic that deserves a chapter to itself (see Appendix C for more
information), but Listing 5-5 will give some idea how to implement a simple I/O
Completion Port scheme.

Which I/O Scheme to Use?

Table 5-7 shows the availability of these I/O schemes we have been discussing.
After determining which I/O schemes are available on a platform, you need to
consider which of the I/O schemes you could use. Certain I/O schemes are not
appropriate for either a client or a server application. For example, you should
not implement a WSAAsyncSelect() I/O scheme for a web server that handles
hundreds, even thousands, of connections for performance reasons. Posting a
message to a window handle for every occurrence of a network event for each
connection incurs a heavy performance penalty. Simply put, it does not scale
well. On the other hand, using WSAAsyncSelect() for a client application is a
good move, but using WSAEventSelect() is even better for performance.
Remember that WSAEventSelect() does not use window messages for network
event handling.

Table 5-7: Availability of I/O schemes

Win 9x Win CE NT 4 Win2000 NT 3.x Win16 UNIX

Blocking � � � � � � �

Non-blocking � � � � � � X

Asynchronous � X � X � � X

Even Objects � � � X � X X

Overlapped �* � � � � X X

Threads � � � � � X �

* Although overlapped I/O is supported on Windows 95/98, it is not a true implementation.

We could discuss the pros and cons for each I/O scheme indefinitely, but a much
better solution would be to base our choice on the main points in the following
table:

Communications � 195

5

C
h
a
p

te
r

Table 5-8: Scheme suitability for client and server implementation

I/O Scheme Client Server

Blocking � �

Non-blocking � �

Asynchronous � �**

Event Objects � �

Overlapped � �

Threads � �

** In some situations, servers can use the asynchronous scheme. For example, notable Internet
components for Delphi that use the asynchronous scheme for their servers are Indy, Borland, and
ICS.

Observe from Table 5-8 that we have not discussed two schemes yet—blocking
and non-blocking socket I/O. We will discuss these in the next section.

If you were to develop a server application that handles thousands of concur-
rent connections, you would select an overlapped I/O scheme. If the server has
more than one processor, you would select the I/O Completion Port scheme.

On the client side, you would use either of the following: WSAAsyncSelect(),
WSAEventSelect(), and any of the overlapped I/O schemes. However, there is
one caveat that you should be aware of when using an overlapped I/O scheme
for a client: Windows 95/98 only supports a pseudo-implementation of over-
lapped I/O.

To Block or Not to Block?

Conceptually, from the coding point of view, using blocking sockets is easy to
implement. However, when you use blocking sockets, the user interface freezes
with considerable inconvenience to the user. One way to get around this freez-
ing problem is to use a background thread to handle blocking sockets, thus
leaving the user interface to work freely. The other approach is not to use a
background thread but instead poll or loop with timeouts. If your application
does not require interaction from the user, then using blocking sockets is a
simple and straightforward method.

Non-blocking sockets, on the other hand, are much more difficult to handle
and maintain. In terms of performance, they are inefficient, because your pro-
gram has to perform polling on a continuous basis. You could make life easier for
yourself by using the select() function to avoid the chore of polling. Although
using the select() function certainly makes polling redundant, select() has a
downside to it. The disadvantage is that it is inefficient, simply because your
application has to service whole sets of sockets in every loop.

However, all is not lost, as the designers of Winsock incorporated an asyn-
chronous version of select(), which is, of course, our old friend the WSAAsync-
Select() function. The designers of Winsock designed WSAAsyncSelect() to use

196 � Chapter 5

the Windows messaging system to get around the problem of polling that using
the select() function would entail. Using WSAEventSelect() is even easier than
WSAAsyncSelect() to use because it does not require a window handle to
operate.

We have been discussing select() in the GUI environment, but what about
using select() in a console application? Putting aside the inefficiency aspect of
select(), you could use select() in a server, as demonstrated in Listing 5-4 (pro-
gram EX55).

If you decide that your application needs to use non-blocking sockets, how do
you go about making sockets from a blocking mode to a non-blocking mode?

After creating your socket, simply call ioctlsocket() with the FIONBIO com-
mand, as shown in the following code snippet:

// Change the socket mode on the listening socket from blocking to
// non-blocking so the application will not block waiting for requests.
NonBlock := 1;
Res := ioctlsocket(sktListen, FIONBIO, NonBlock);
if Res = SOCKET_ERROR then
begin
WriteLn(Format('Call to ioctlsocket() failed with error %s',

[SysErrorMessage(WSAGetLastError)]));
Exit;

end;

Out-of-Band Data Etiquette

For reasons of portability and performance, we do not advise the
use of out-of-band (OOB) data. For most applications, it is not neces-
sary to use OOB data at all. However, some applications, such as
Telnet and Rlogin, use OOB data. What is OOB data? It is data that an
application can either send or receive bypassing the normal TCP
stream. For example, the receiving application could send OOB data
to tell the sending application to stop sending data.

Using OOB data to send urgent data is a rather risky strategy. If you
really need to send urgent data, we would advise you to use a second
socket to send or receive urgent data as the preferred solution. Alter-
natively, you could use UDP for the exchange of urgent or control data
on a second socket to complement the activity of the first socket. As
there is plenty of literature on the use of OOB data (see Appendix C
for resources), we will not refer to OOB again in the rest of this tome.

Communications � 197

5

C
h
a
p

te
r

Winsock and Multithreading
Any implementation of Winsock is thread safe, but only if you make it so. That
is, your application needs to use threads sensibly, which can be achieved by syn-
chronization. It is up to you to develop a multithreaded Winsock application that
synchronizes Winsock calls. For example, avoid a situation that could turn nasty
when your application fails to notify other threads when one thread closes a
socket.

If you want to use multithreading in a Winsock application, consider two sim-
ple caveats:

� Don’t use more than one thread to receive data on a socket because
Winsock does not duplicate data among threads. In other words, if an
application is using two threads to receive data on the same socket, data
will not be duplicated, but instead the first thread will receive one set of
data and the second thread will receive the next batch of data. This makes
synchronization difficult.

� If your application uses threads to call WSAAsyncSelect() on a single
socket, expect some trouble, as only the thread that made the last call to
WSAAsyncSelect() will receive further notification. The other threads will
continue to lurk in vain for a notification, since the notification for their
WSAAsyncSelect() function has been overridden by the last thread’s
WSAAsyncSelect() function. This caveat also applies to threads calling
WSAEventSelect() on the same socket.

To avoid those pitfalls listed above, you might want to consider using over-
lapped I/O, as we discussed earlier, because overlapped I/O schemes are
essentially thread friendly. One such scheme is the I/O Completion Port (see
Listing 5-5).

Listing 5-5: The I/O Completion Port scheme

program EX56;

{$APPTYPE CONSOLE}

uses
SysUtils,
Windows,
WinSock2;

const
MaxEchoes = 10;
DataBuffSize = 8192;
S = 'Hello';
ECHO_PORT = 9000;

type

PPerIOOperationData = ^TPerIOOperationData;

198 � Chapter 5

TPerIOOperationData = record
Overlapped: {WSA}TOverlapped;
Buffer : array[0..DataBuffSize - 1] of char;
DataBuffer : TWSABuf;
BytesSend,
BytesRecv : DWORD;

end;

PPerHandleData = ^TPerHandleData;
TPerHandleData = record

skt : TSocket;
end;

var
WSAData: TWSAData;
HostAddr: TSockAddrIn;
sktListen,
sktAccept: TSocket;
ThrdHandle: THandle;
Flags,
RecvBytes,
ThreadID: DWORD;
i,
Res: Integer;
CompletionPort: THandle;
PerIoData: PPerIOOperationData;
PerHandleData: PPerHandleData;
SystemInfo: TSystemInfo;
CriticalSection: TRTLCriticalSection;

function WorkerThread(lpCompletionPortID : Pointer) : DWORD; stdcall;
var
PerHandleData: PPerHandleData;
PerIoData: PPerIOOperationData;
BytesTransferred,
SendBytes,
RecvBytes,
Flags: DWORD;
begin
EnterCriticalSection(CriticalSection);
CompletionPort := THandle(lpCompletionPortID^);
PerIoData := PPerIOOperationData(GlobalAlloc(GPTR,SizeOf(TPerIOOperationData)));
PerHandleData := PPerHandleData(GlobalAlloc(GPTR,SizeOf(TPerHandleData)));
while TRUE do
begin
if not GetQueuedCompletionStatus(CompletionPort, BytesTransferred,

DWORD(PerHandleData){PerHandleData^.skt},
POverlapped(PerIoData),INFINITE) then

begin
WriteLn(Format('Call to GetQueuedCompletionStatus() failed with error

%d',[GetLastError]));
Result := 0;
Exit;

end;
// First check to see if an error has occurred on the socket and if so
// then close the socket and cleanup the SOCKET_INFORMATION structure
// associated with the socket.

if BytesTransferred = 0 then
begin
WriteLn(Format('Closing socket %d', [PerHandleData^.skt]));

Communications � 199

5

C
h
a
p

te
r

if closesocket(PerHandleData^.skt) = SOCKET_ERROR then
begin
WriteLn(Format('Call to closesocket() failed with error %d', [WSAGetLastError]));
Result := 0;
Exit;

end;
GlobalFree(Cardinal(PerHandleData));
GlobalFree(Cardinal(PerIoData));
continue;

end;

// Check to see if the BytesRECV field equals zero. If this is so, then
// this means a WSARecv call just completed so update the BytesRECV field
// with the BytesTransferred value from the completed WSARecv() call.
if PerIoData^.BytesRecv = 0 then
begin
PerIoData^.BytesRecv := BytesTransferred;
PerIoData^.BytesSend := 0;

end
else
begin
PerIoData^.BytesSend := PerIoData^.BytesSend + BytesTransferred;

end;
if PerIoData^.BytesRecv > PerIoData^.BytesSend then
begin
// Post another WSASend() request.
// Since WSASend() is not gauranteed to send all of the bytes requested,
// continue posting WSASend() calls until all received bytes are sent.
ZeroMemory(@PerIoData^.Overlapped, sizeof(TOVERLAPPED));
PerIoData^.DataBuffer.buf := PerIoData^.Buffer + PerIoData^.BytesSEND;
PerIoData^.DataBuffer.len := PerIoData^.BytesRecv - PerIoData^.BytesSend;
if WSASend(PerHandleData^.skt, @PerIoData^.DataBuffer, 1, SendBytes, 0,

@PerIoData^.Overlapped, NIL) = SOCKET_ERROR then
begin
if WSAGetLastError <> ERROR_IO_PENDING then
begin
WriteLn(Format('Call to WSASend() failed with error %d', [WSAGetLastError]));
Result := 0;
Exit;

end
end

end
else
begin
PerIoData^.BytesRecv := 0;
// Now that there are no more bytes to send post another WSARecv() request.
Flags := 0;
ZeroMemory(@PerIoData^.Overlapped, sizeof(TOVERLAPPED));
PerIoData^.DataBuffer.len := DataBuffSize;
PerIoData^.DataBuffer.buf := PerIoData^.Buffer;
if WSARecv(PerHandleData^.skt, @PerIoData^.DataBuffer, 1, RecvBytes, Flags,

@PerIoData^.Overlapped, NIL) = SOCKET_ERROR then
begin
if WSAGetLastError <> ERROR_IO_PENDING then
begin

WriteLn(Format('Call to WSARecv() failed with error %d', [WSAGetLastError]));
Result := 0;
Exit

end;
end;

200 � Chapter 5

end;
end;
LeaveCriticalSection(CriticalSection);
end;

procedure CleanUp(S : String);
begin
WriteLn('Call to ' + S + ' failed with error: ' + SysErrorMessage(WSAGetLastError));
WSACleanUp;
Halt;

end;

begin
if WSAStartUp($0202, WSAData) = 0 then
try
InitializeCriticalSection(CriticalSection);

// Set up I/O completion port ...
CompletionPort := CreateIOCompletionPort(INVALID_HANDLE_VALUE, 0, 0,0);
if CompletionPort = 0 then
begin
WriteLn(Format('Call to CreateIOCompletionPort() failed with error:

%d',[GetLastError]));
WSACleanUp;
Exit;

end;
// Determine how many processors on the system ...

GetSystemInfo(SystemInfo);
// Create worker threads based on the number of processors.
// Create 2 worker threads for each processor ..

for i := 0 to (SystemInfo.dwNumberOfProcessors * 2) - 1 do
begin
// Create a handle for a thread ...
ThrdHandle := CreateThread(NIL, 0, @WorkerThread, @CompletionPort, 0, ThreadID);
if ThrdHandle = 0 then
begin
WriteLn(Format('Call to CreateThread() failed with error: %d',[GetLastError]));
WSACleanUp;
Exit;

end;
CloseHandle(ThrdHandle);

end;
// Create a listening socket ...

sktListen := WSASocket(AF_INET, SOCK_STREAM, 0, NIL, 0, WSA_FLAG_OVERLAPPED);
if sktListen = INVALID_SOCKET then
CleanUp('WSASocket()');
HostAddr.sin_family := AF_INET;
HostAddr.sin_port := htons(ECHO_PORT);
HostAddr.sin_addr.S_addr := htonl(INADDR_ANY);
Res := bind(sktListen, @HostAddr, SizeOf(HostAddr));
if Res = SOCKET_ERROR then
CleanUp('bind()');

// Prepare the socket for listening ...
Res := listen(sktListen,5);
if Res = SOCKET_ERROR then
CleanUp('listen()');

// Enter a while loop to accept connections and assign to the completion port ...
while TRUE do
begin
sktAccept := WSAAccept(sktListen, NIL, NIL, NIL, 0);
if sktAccept = SOCKET_ERROR then

Communications � 201

5

C
h
a
p

te
r

begin
WriteLn(Format('Call to WSAAccept() failed with error %d', [WSAGetLastError]));
closesocket(sktListen);
WSACleanUp;
Exit;

end;
// Create a socket information structure to associate with the socket

PerHandleData := PPerHandleData(GlobalAlloc(GPTR,SizeOf(TPerHandleData)));
if PerHandleData = NIL then
begin
WriteLn(Format('Call to GlobalAlloc() failed with error %d', [GetLastError]));
closesocket(sktListen);
closesocket(sktAccept);
WSACleanUp;
Exit;

end;
// Associate the accepted socket with the original completion port.

WriteLn(Format('Success! Socket number %d connected', [sktAccept]));
PerHandleData^.skt := sktAccept;
Res := CreateIoCompletionPort(THANDLE(sktAccept), CompletionPort,

DWORD(PerHandleData),0);
if Res = 0 then
begin
WriteLn(Format('Call to CreateIoCompletionPort failed with error %d',

[GetLastError]));
closesocket(sktListen);
closesocket(sktAccept);
WSACleanUp;
Exit;

end;
// Create per I/O socket information structure to associate with the
// WSARecv call below.

PerIoData := PPerioOperationData(GlobalAlloc(GPTR, sizeof(TPERIOOPERATIONDATA)));
if PerIoData = NIL then
begin
WriteLn(Format('Call to GlobalAlloc() failed with error %d', [WSAGetLastError]));
closesocket(sktListen);
closesocket(sktAccept);
WSACleanUp;
Exit;

end;
ZeroMemory(@PerIoData^.Overlapped, sizeof(TOVERLAPPED));
PerIoData^.BytesSend := 0;
PerIoData^.BytesRecv := 0;
PerIoData^.DataBuffer.len := DataBuffSize;
PerIoData^.DataBuffer.buf := PerIoData^.Buffer;
Flags := 0;
Res := WSARecv(sktAccept, @PerIoData^.DataBuffer, 1, RecvBytes, Flags,

@PerIoData^.Overlapped, NIL);
if Res = SOCKET_ERROR then
begin
if WSAGetLastError <> ERROR_IO_PENDING then
begin
WriteLn(Format('Call to WSARecv() failed with error %d', [WSAGetLastError]));
closesocket(sktListen);
closesocket(sktAccept);
WSACleanUp;
Exit;

end;
end;

202 � Chapter 5

TE
AM
FL
Y

Team-Fly®

end;
closesocket(sktListen);

finally
WSACleanUp;
end
else WriteLn('Failed to load Winsock...');
end.

function select Winsock2.pas

Syntax

select(nfds: Integer; readfds, writefds, exceptfds: PFdSet; timeout: PTimeVal):
Integer; stdcall;

Description

This function determines the status of one or more sockets.

Parameters

nfds: This argument is ignored and included only for the sake of compatibility.

readfds: An optional pointer to a set of sockets to be checked for reading

writefds: An optional pointer to a set of sockets to be checked for writing

exceptfds: An optional pointer to a set of sockets to be checked for errors

timeout: The maximum time for select() to wait, or NIL for blocking operation

Return Value

If the function succeeds, it will return the number of descriptors that are ready.
The function will return zero if the time limit has expired. If the connection has
been closed gracefully and all data received, the return value will be zero. If the
function fails, it will return a value of SOCKET_ERROR. To retrieve the error
code, call the function WSAGetLastError(). Possible error codes are WSANOT-
INITIALISED, WSAEFAULT, WSAENETDOWN, WSAEINVAL, WSAEINTR,
WSAEINPROGRESS, and WSAENOTSOCK.

See Appendix B for a detailed description of the error codes.

See Also

accept, connect, recv, recvfrom, send, WSAAsyncSelect, WSAEventSelect

Example

See Listing 5-4 (program EX55).

function WSAAsyncSelect Winsock2.pas

Syntax

WSAAsyncSelect(s: TSocket; hWnd: HWND; wMsg: u_int; lEvent: Longint):
Integer; stdcall;

Communications � 203

5

C
h
a
p

te
r

Description

This function requests a Windows message-based notification of network events
for a socket.

Parameters

s: A descriptor identifying the socket for which event notification is required

hWnd: A handle identifying the window that should receive a message when a
network event occurs

wMsg: The message to be received when a network event occurs

lEvent: A bit mask that specifies a combination of network events in which the
application is interested

Return Value

If the function succeeds, it will return zero. If the function fails, it will return a
value of SOCKET_ERROR. To retrieve the error code, call the function
WSAGetLastError(). Possible error codes are for the following events:

FD_CONNECT: WSAEAFNOSUPPORT, WSAECONNREFUSED, WSAENET-
UNREACH, WSAEFAULT, WSAEUINVAL, WSAEISCONN, WSAEMFILE,
WSAENOBUFS, WSAENOTCONN, and WSAETIMEDOUT

FD_CLOSE: WSAENETDOWN, WSAECONNRESET, and WSAECONN-
ABORTED

FD_READ, FD_WRITE, FD_OOB, FD_ACCEPT, FD_QOS, FD_GROUP_QOS,
and FD_ADDRESS_LIST_CHANGE: WSAENETDOWN

FD_ROUTING_INTERFACE_CHANGE: WSAENETUNREACH and
WSAENETDOWN

See Appendix B for a detailed description of the error codes.

See Also

select, WSAEventSelect

Example

See Listing 5-6 (program EX58).

Listing 5-6: An asynchronous echo server that uses two different protocols, TCP and UDP

program EX58
unit Main;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, ExtCtrls, Buttons,
Winsock2;

const

204 � Chapter 5

SOCK_EVENT = WM_USER + 500;
NULL : Char = #0;

CRLF : array[0..2] of char = #13#10#0;

MaxBufferSize = MAXGETHOSTSTRUCT;

ECHO_PORT = 9000;

type

TCharArray = array[0..MAXGETHOSTSTRUCT - 1] of char;

TConditions = (Success, Failure, None);

TTransport = (TCP, UDP);

TfrmMain = class(TForm)
gbStatusMsg: TGroupBox;
memStatusMsg: TMemo;
gbOptions: TGroupBox;
gbPortNo: TGroupBox;
edPortNo: TEdit;
pnButtons: TPanel;
btnStart: TBitBtn;
btnStop: TBitBtn;
btnClose: TBitBtn;
rgbTransportProtocol: TRadioGroup;
gbWSVersion: TGroupBox;
edWSVersion: TEdit;
procedure btnStartClick(Sender: TObject);
procedure btnStopClick(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure btnCloseClick(Sender: TObject);
procedure rgTransportClick(Sender: TObject);
procedure FormDestroy(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }
FStatus : TConditions;
FMsg : String;
wsaData : TWSADATA;
FEchoPortNo,
FSocketNo,
FSkt : TSocket;
FWnd : HWND;
FCount : Integer;
FProtocol : PProtoEnt;
FService : PServent;
FSockAddrIn : TSockAddrIn;
FTransport : TTransport;
FRC : Integer;
FMsgBuff : TCharArray;
WSRunning: Boolean;
procedure GetServer;
procedure EchoEvent(var Mess : TMessage); message SOCK_EVENT;
procedure Start;

Communications � 205

5

C
h
a
p

te
r

procedure Stop;
function GetDatagram : TCharArray;
procedure SetDatagram(DataReqd : TCharArray);
end;

var
frmMain: TfrmMain;

implementation
{$R *.DFM}

procedure TfrmMain.btnStartClick(Sender: TObject);
begin
WSRunning := WSAStartUp($0202, wsaData) = 0;
if not WSRunning then
begin
btnStart.Enabled := FALSE;
btnStop.Enabled := FALSE;
memStatusMsg.Lines.Add('Cannot load Winsock ' + edWSVersion.Text);
Exit;
end;
case rgbTransportProtocol.ItemIndex of
0 : FTransport := TCP;
1 : FTransport := UDP;
end;// case
FWnd := AllocateHwnd(EchoEvent);
btnStart.Enabled := FALSE;
btnStop.Enabled := TRUE;
Start;

end;

procedure TfrmMain.btnStopClick(Sender: TObject);
begin
btnStart.Enabled := TRUE;
btnStop.Enabled := FALSE;
Stop;
end;

procedure TfrmMain.FormCreate(Sender: TObject);
begin
btnStop.Enabled := FALSE;
memStatusMsg.Clear;
end;

procedure TfrmMain.btnCloseClick(Sender: TObject);
begin
Close;
end;

procedure TfrmMain.rgTransportClick(Sender: TObject);
begin
if rgbTransportProtocol.ItemIndex = 0 then
FTransport := TCP
else
FTransport := UDP;

end;

procedure TfrmMain.GetServer;
begin
// Create a socket

206 � Chapter 5

case FTransport of
UDP : FSocketNo := socket(AF_INET, SOCK_DGRAM, IPPROTO_IP);
TCP : FSocketNo := socket(AF_INET, SOCK_STREAM, IPPROTO_IP);
end;
if FSocketNo <> INVALID_SOCKET then
begin
FMsg := Concat('Socket ',IntToStr(FSocketNo),' created...');
memStatusMsg.Lines.Add(FMsg);
FMsg := '';
case FTransport of
UDP : FProtocol := getprotobyname('udp');
TCP : FProtocol := getprotobyname('tcp');
end;
if FProtocol <> NIL then
begin
if FTransport = UDP then
Fmsg := Concat('udp',' protocol present...')
else
Fmsg := Concat('tcp',' protocol present...');
memStatusMsg.Lines.Add(FMsg);
FMsg := '';
case FTransport of
UDP :FService := getservbyname('echo','udp');
TCP :FService := getservbyname('echo','tcp');
end;
if FService <> NIL then
begin
Fmsg := Concat('echo',' service present...');
memStatusMsg.Lines.Add(FMsg);
FMsg := '';
FStatus := Success;
FSockAddrIn.sin_family := AF_INET;
FSockAddrIn.sin_port := FService^.s_port;
FSockAddrIn.sin_addr.s_addr := htonl(INADDR_ANY);
end else
begin
FStatus := Failure;
Fmsg := Concat('Failure: ',SysErrorMessage(WSAGetLastError));
memStatusMsg.Lines.Add(FMsg);
FMsg := '';
Exit;
end;
end;
end;
end;

procedure TfrmMain.EchoEvent(var Mess : TMessage);
var
MsgStr: TCharArray;
begin
case WSAGetSelectEvent(Mess.LParam) of
FD_ACCEPT : begin

FMsg := 'Accepting ...';
memStatusMsg.Lines.Add(Fmsg);
end;

FD_READ : begin
inc(FCount);
frmMain.memStatusMsg.Lines.Add('FD_READ ' + IntToStr(FCount));

// process the message ...

Communications � 207

5

C
h
a
p

te
r

FMsg := Concat('Message ', FMsg, ' received from
',StrPas(inet_ntoa(FSockAddrIn.sin_addr)));

// send the message back ...
memStatusMsg.Lines.Add(FMsg);
FMsg := '';
MsgStr := GetDatagram;
memStatusMsg.Lines.Add(MsgStr);
SetDatagram(MsgStr);
end;

FD_WRITE : begin
// memStatusmsg.Lines.Add('FD_WRITE...');

end;
end;

end;

procedure TfrmMain.Stop;
begin
if FTransport = TCP then
begin
shutdown(FSkt,1);
closesocket(Fskt);
end else
begin
shutdown(FSocketNo,1);
CloseSocket(FSocketNo);
end;
WSACleanUp;
end;

procedure TfrmMain.Start;
var
AddrSize,
Res: Integer;
ServerAddr: TSockAddrIn;
begin
GetServer;
if FStatus <> Success then
begin
Exit;
end;
if bind(FSocketNo, @FSockAddrIn, SizeOf(TSockAddrIn)) = Integer(SOCKET_ERROR) then
begin
FMsg := Concat('Failed to bind : ', SysErrorMessage(WSAGetLastError));
memStatusMsg.Lines.Add(FMsg);
memStatusMsg.Lines.Add('If this happens, this is likely to be caused by an echo server

already running on your machine.');
memStatusMsg.Lines.Add('To cure this problem, you must abort the service before you run

this server.');
FMsg := '';
FStatus := Failure;
Exit;
end;
{Now to determine port no. This should be in SockInfo }
AddrSize := SizeOf(TSockAddrIn);
if getsockname(FSocketNo, @ServerAddr, AddrSize) = SOCKET_ERROR then
begin
FMsg := Concat('Failed to get port : ',SysErrorMessage(WSAGetLastError));
memStatusMsg.Lines.Add(FMsg);
FMsg := '';
FStatus := Failure;

208 � Chapter 5

Exit;
end else
begin{success!}
FEchoPortNo := ntohs(ServerAddr.sin_port);
FMsg := Concat('Successful. Now listening on port ', IntToStr(FEchoPortNo));
memStatusMsg.Lines.Add(FMsg);
FMsg := '';
FCount := 0;
end;
if FTransport = UDP then
begin
if WSAAsyncSelect(FSocketNo, FWnd, SOCK_EVENT, FD_READ or FD_WRITE or FD_CONNECT

or FD_CLOSE)
= SOCKET_ERROR then {handle}

begin
FMsg := Concat('Error : ',SysErrorMessage(WSAGetLastError));
memStatusMsg.Lines.Add(FMsg);
FMsg := '';
FStatus := Failure;
Exit;
end;
end;
if FTransport = TCP then
begin
// listen ...
Res := listen(FSocketNo,5);
if Res = SOCKET_ERROR then
begin
memStatusMsg.Lines.Add(SysErrorMessage(WSAGetLastError));
Exit;
end;
AddrSize := SizeOf(FSockAddrIn);
Fskt := accept(FSocketNo, @FSockAddrIn, @AddrSize);
if WSAAsyncSelect(FSkt, FWnd, SOCK_EVENT, FD_READ or FD_WRITE or FD_CONNECT

or FD_CLOSE)
= SOCKET_ERROR then {handle}

begin
FMsg := Concat('Error : ',SysErrorMessage(WSAGetLastError));
memStatusMsg.Lines.Add(FMsg);
FMsg := '';
FStatus := Failure;
Exit;
end;
end;
end;

function TfrmMain.GetDatagram : TCharArray;
var
Size,
Response: Integer;
begin
Size := SizeOf(TSockAddrIn);
Response := 0;
case FTransport of
UDP : Response := recvfrom(FSocketNo, FMsgBuff, SizeOf(FMsgBuff), 0,

@FSockAddrIn, Size);
TCP : Response := recv(FSkt, FMsgBuff, SizeOf(FMsgBuff),0);
end;
if Response = SOCKET_ERROR then
begin { Error receiving data from remote host }

Communications � 209

5

C
h
a
p

te
r

if WSAGetLastError <> WSAEWOULDBLOCK then{this is a real error!}
begin
FStatus := Failure;
FMsg := Concat('Error reading data : ',SysErrorMessage(WSAGetLastError));
Result := '';
memStatusMsg.Lines.Add(Fmsg);
FMsg := '';
Exit;
end
end;
Result := FMsgBuff;
end;

procedure TfrmMain.SetDatagram(DataReqd : TCharArray);
var
Response: Integer;
begin
Response := 0;
case FTransport of
UDP : Response := sendto(FSocketNo, DataReqd, SizeOf(DataReqd), MSG_DONTROUTE,

@FSockAddrIn, SizeOf(TSockAddrIn));
TCP : Response := send(Fskt, DataReqd, SizeOf(DataReqd), 0);
end;
if Response = SOCKET_ERROR then
begin { Error sending data to remote host }
if WSAGetLastError <> WSAEWOULDBLOCK then{this is a real error!}
begin
FMsg := SysErrorMessage(WSAGetLastError);
memStatusMsg.Lines.Add(FMsg);
FStatus := Failure;
Exit;
end
end else
begin
FStatus := Success;
end;
end;

procedure TfrmMain.FormDestroy(Sender: TObject);
begin
DeallocateHwnd(FWnd);
if WSACleanUp = SOCKET_ERROR then // this should not happen!
begin
MessageDlg('Failed to close down WinSock!', mtError,

[mbOk], 0)
end;
end;

end.

function WSACreateEvent Winsock2.pas

Syntax

WSACreateEvent: WSAEVENT; stdcall;

Description

This function creates a new event object whose initial state is non-signaled.

210 � Chapter 5

Parameters

None

Return Value

If the function succeeds, it will return the handle of the new event object. Oth-
erwise, it will return the value WSA_INVALID_HANDLE. To retrieve the
specific error code, call the function WSAGetLastError(). Possible error codes
are WSANOTINITIALISED, WSAENETDOWN, WSAEINPROGRESS, and
WSA_NOT_ENOUGH_MEMORY.

See Appendix B for a detailed description of the error codes.

See Also

WSACloseEvent, WSAEnumNetworkEvents, WSAEventSelect,
WSAGetOverlappedResult, WSARecv, WSARecvFrom, WSAResetEvent,
WSASend, WSASendTo, WSASetEvent, WSAWaitForMultipleEvents

Example

See Listing 5-7 (program EX52).

Listing 5-7: A generic echo server that uses overlapped I/O with a callback routine

program EX52;

{$APPTYPE CONSOLE}

uses
SysUtils,
Windows,
WinSock2;

const
MaxEchoes = 10;
DataBuffSize = 8192;
S = 'Hello';

type

PSocketInfo = ^TSocketInfo;
TSocketInfo = record

Overlapped : TOverlapped;// WSAOverlapped
skt : TSocket;
Buffer : array[0..DataBuffSize - 1] of char;
DataBuffer : TWSABuf;
BytesSend,
BytesRecv : DWORD;

end;

var
WSAData: TWSAData;
DummyAddr: PSockAddrIn;
HostAddr: TSockAddrIn;
sktListen,
sktAccept: TSocket;
Size: PInteger;

Communications � 211

5

C
h
a
p

te
r

ThrdHandle: THandle;
ThreadID: DWORD;
AcceptEvent: WSAEvent;
Res: Integer;

// Callback routine ...
procedure Worker(Error, BytesTransferred : DWORD; Overlapped : PWSAOverlapped; InFlags :

DWORD); stdcall;
var
SendBytes,
Recvbytes,
Flags: DWORD;
Sktinfo : PSocketInfo;
begin
// Typecast the WSAOverlapped structure as a TSocketInfo structure ...

sktInfo := PSocketInfo(Overlapped);
if Error <> 0 then
WriteLn(Format('I/O operation failed with error %d',[Error]));

if BytesTransferred = 0 then
WriteLn(Format('Closing socket %d',[sktInfo^.skt]));
if (Error <> 0) or (BytesTransferred = 0) then
begin
closesocket(SktInfo^.skt);
GlobalFree(Cardinal(Sktinfo));
Exit;

end;
// Check to see if the BytesRecv = 0. If this is so,

if SktInfo^.BytesRecv = 0 then
begin
SktInfo^.BytesRecv := BytesTransferred;
SktInfo^.BytesSend := 0;
end
else
begin
SktInfo^.BytesSend := sktInfo^.BytesSend + BytesTransferred;

end;
if SktInfo^.BytesRecv > SktInfo^.BytesSend then
begin

// Post another WSASend() request ...
ZeroMemory(@SktInfo^.Overlapped, SizeOf(TOverlapped));
SktInfo^.DataBuffer.buf := SktInfo^.Buffer + Sktinfo^.BytesSend;
SktInfo^.DataBuffer.len := SktInfo^.BytesRecv - SktInfo^.BytesSend;
Res := WSASend(SktInfo^.skt, @SktInfo^.DataBuffer, 1, SendBytes, 0,

@SktInfo^.Overlapped, @Worker);
if Res = SOCKET_ERROR then
if WSAGetLastError <> WSA_IO_PENDING then
begin
WriteLn(Format('Call to WSASend() failed with error:

%s',[SysErrorMessage(WSAGetLastError)]));
Exit;
end;

end
else
begin
Sktinfo^.BytesRecv := 0;

// No more bytes to send so stop calling WSASend(), so
// post another WSARecv() request ...

Flags := 0;
ZeroMemory(@SktInfo^.Overlapped, SizeOf(TOverlapped));
SktInfo^.DataBuffer.len := DataBuffSize;

212 � Chapter 5

TE
AM
FL
Y

Team-Fly®

SktInfo^.DataBuffer.buf := SktInfo^.Buffer;
Res := WSARecv(SktInfo^.skt, @SktInfo^.DataBuffer, 1, RecvBytes,

Flags, @SktInfo^.Overlapped, @Worker);
if Res = SOCKET_ERROR then
if WSAGetlastError <> WSA_IO_PENDING then
begin
WriteLn(Format('Call to WSARecv() failed with error:

%s',[SysErrorMessage(WSAGetLastError)]));
Exit;

end;
end;

end;

function WorkerThread(lpParameter : Pointer) : DWORD; stdcall;
var
Flags,
Index,
RecvBytes: DWORD;
SktInfo: PSocketInfo;
EventArray : array[0..0] of WSAEvent;
begin
// save the Accept event in the array ...
EventArray[0] := WSAEvent(lpParameter^);
Index := 0;
while TRUE do
begin
Index := WSAWaitForMultipleEvents(1, @EventArray, FALSE, WSA_INFINITE, TRUE);
if Index = WSA_WAIT_FAILED then
begin
WriteLn('call to WSARecv() failed with error: ' + SysErrorMessage(WSAGetLastError));
Result := 0;
Exit;

end;
if Index <> WAIT_IO_COMPLETION then
break;// we have an accept() call already, so break out of the loop ...

end;// while
WSAResetEvent(EventArray[Index - WSA_WAIT_EVENT_0]);

// Now create a socket information structure to associate with the accepted socket ...
SktInfo := PSocketInfo(GlobalAlloc(GPTR, SizeOf(TSocketInfo)));
if Sktinfo = NIL then
begin
WriteLn('Call to GlobalAlloc() failed with error: ' + SysErrorMessage(GetLastError));
Result := 0;
Exit;
end;

// Populate the SktInfo structure ...
Sktinfo.skt := sktAccept;
ZeroMemory(@SktInfo^.Overlapped, SizeOf(TOverlapped));
SktInfo^.BytesSend := 0;
sktInfo^.BytesRecv := 0;
sktInfo^.DataBuffer.len := DataBuffSize;
SktInfo^.DataBuffer.buf := SktInfo^.Buffer;
Flags := 0;
Res := WSARecv(SktInfo^.skt, @SktInfo^.DataBuffer, 1, RecvBytes, Flags,

@SktInfo^.Overlapped, @Worker);
if Res = SOCKET_ERROR then
if WSAGetLastError <> WSA_IO_PENDING then
begin
WriteLn('Call to WSARecv() failed with error: ' + SysErrorMessage(WSAGetLastError));
Result := 0;

Communications � 213

5

C
h
a
p

te
r

Exit;
end;

// Success, there is a connection ...
WriteLn(Format('Socket %d connected...',[sktAccept]));

// JCP 080202 end;
end;

procedure CleanUp(S : String);
begin
WriteLn('Call to ' + S + ' failed with error: ' + SysErrorMessage(WSAGetLastError));
WSACleanUp;
Halt;

end;

begin
if WSAStartUp($0202, WSAData) = 0 then
try
sktListen := WSASocket(AF_INET, SOCK_STREAM, 0, NIL, 0, WSA_FLAG_OVERLAPPED);
if sktListen = INVALID_SOCKET then
CleanUp('WSASocket()');
HostAddr.sin_family := AF_INET;
HostAddr.sin_port := htons(IPPORT_ECHO);
HostAddr.sin_addr.S_addr := htonl(INADDR_ANY);
Res := bind(sktListen, @HostAddr, SizeOf(HostAddr));
if Res = SOCKET_ERROR then
CleanUp('bind()');
Res := listen(sktListen,5);
if Res = SOCKET_ERROR then
CleanUp('listen()');

// Create an event object ...
AcceptEvent := WSACreateEvent;
if AcceptEvent = WSA_INVALID_EVENT then
CleanUp('WSACreateEvent()');

// Create a worker thread to servuce completed I/O requests ...
ThrdHandle := CreateThread(NIL, 0, @WorkerThread, @AcceptEvent, 0, ThreadID);
if ThrdHandle = 0 then
begin
WriteLn('call to CreateThread failed with error: '+ SysErrorMessage(GetLastError));
closesocket(sktListen);
WSACleanUp;
halt;
end;
DummyAddr:= AllocMem(SizeOf(TSockAddrIn));
try
DummyAddr.sin_family := AF_INET;
DummyAddr.sin_port := htons(IPPORT_ECHO);
DummyAddr.sin_addr.S_addr := INADDR_ANY;
Size:= AllocMem(SizeOf(TSockAddrIn));
try
Size^ := SizeOf(DummyAddr);

// Enter an infinite loop ...
while TRUE do
begin
sktAccept := accept(sktListen, @DummyAddr, Size);
if not WSASetEvent(AcceptEvent) then
CleanUp('accept()');

end;
finally
Freemem(Size);

end;

214 � Chapter 5

finally
Freemem(DummyAddr);

end;
finally
WSACleanUp;
end
else WriteLn('Failed to load Winsock...');
end.

function WSAWaitForMultipleEvents Winsock2.pas

Syntax

WSAWaitForMultipleEvents(cEvents: DWORD; lphEvents: PWSAEVENT; fWaitAll:
BOOL; dwTimeout: DWORD; fAlertable: BOOL): DWORD; stdcall;

Description

This function returns when one or all of the specified event objects are in the
signaled state or when the timeout interval specified by dwTimeout expires.

Parameters

cEvents: Specifies the number of event object handles in the array pointed to by
lphEvents. The maximum number of event object handles is WSA_MAXI-
MUM_WAIT_EVENTS. One or more events must be specified.

lphEvents: Points to an array of event object handles

fWaitAll: Specifies the wait type. If fWaitAll is TRUE, the function returns when
all event objects in the lphEvents array are signaled at the same time. If
FALSE, the function returns when any one of the event objects is signaled.
In the latter case, the return value indicates the event object whose state
caused the function to return.

dwTimeout: Specifies the timeout interval, in milliseconds. The function returns
if the interval expires, even if conditions specified by the fWaitAll parame-
ter are not satisfied. If dwTimeout is zero, the function tests the state of
the specified event objects and returns immediately. If dwTimeout is
WSA_INFINITE, the function’s timeout interval never expires.

fAlertable: Specifies whether the function returns when the system queues an
I/O completion routine for execution by the calling thread. If fAlertable is
TRUE, the completion routine is executed and the function returns. If
FALSE, the completion routine is not executed when the function returns.

Return Value

If the function fails, the return value will be WSA_WAIT_FAILED. To obtain
extended error information, call WSAGetLastError(). The return value upon
success is one of the values in Table 5-9.

Communications � 215

5

C
h
a
p

te
r

Table 5-9: Return values for WSAWaitForMultipleEvents()

Value Meaning

WSA_WAIT_EVENT_0 to
(WSA_WAIT_EVENT_0 + cEvents – 1)

If fWaitAll is TRUE, the return value indicates that the state of all speci-
fied event objects is signaled. If fWaitAll is FALSE, the return value minus
WSA_WAIT_EVENT_0 indicates the lphEvents array index of the object
that satisfied the wait.

WAIT_IO_COMPLETION One or more I/O completion routines are queued for execution.

WSA_WAIT_TIMEOUT The timeout interval elapsed and the conditions specified by the fWaitAll
parameter are not satisfied.

WSANOTINITIALISED A successful WSAStartup must occur before using this API.

WSAENETDOWN The network subsystem has failed.

WSAEINPROGRESS A blocking Winsock 1.1 call is in progress or the service provider is still
processing a callback function.

WSA_NOT_ENOUGH_MEMORY There is not enough free memory available to complete the operation.

WSA_INVALID_HANDLE One or more of the values in the lphEvents array is not a valid event
object handle.

WSA_INVALID_PARAMETER The cEvents parameter does not contain a valid handle count.

See Also

WSACloseEvent, WSACreateEvent

Example

See Listing 5-8 (program EX57).

Listing 5-8: A generic echo server that uses the WSAEventSelect() model

program EX57;

{$APPTYPE CONSOLE}

uses
SysUtils,
Windows,
WinSock2;

const
MaxEchoes = 10;
DataBuffSize = 8192;
S = 'Hello';
EventTotal: DWORD = 0;
type

PSocketInfo = ^TSocketInfo;
TSocketInfo = record

Buffer: array[0..DataBuffSize - 1] of char;
DataBuffer: WSABuf;
skt: TSocket;
BytesSend,
BytesRecv : DWORD;
end;

var
WSAData: TWSAData;

216 � Chapter 5

EventArray: array[0..WSA_MAXIMUM_WAIT_EVENTS - 1] of WSAEVENT;
SocketArray: array[0..WSA_MAXIMUM_WAIT_EVENTS - 1] of PSocketInfo;
HostAddr: TSockAddrIn;
sktListen,
sktAccept: TSocket;
Flags,
RecvBytes,
SendBytes: DWORD;
Event: WSAEvent;
Res: Integer;
NetworkEvents: WSANETWORKEVENTS;
SocketInfo : PSocketInfo;

function CreateSocketInfo(skt: TSocket) : BOOLEAN;
var
SI: PSocketInfo;
begin
EventArray[EventTotal] := WSACreateEvent;
if EventArray[EventTotal] = WSA_INVALID_EVENT then
begin
WriteLn(Format('Call to WSACreateEvent() failed with error %d',[WSAGetLastError]));
Result := FALSE;
Exit;

end;
SI := PSocketInfo(GlobalAlloc(GPTR, SizeOf(TSocketInfo)));
if SI = NIL then
begin
WriteLn(Format('Call to GlobalAlloc() failed with error %d',[GetLastError]));
Result := FALSE;
Exit;

end;
// Now prepare the TSocketInfo record for use ...

SI^.skt := skt;
SI^.BytesSend := 0;
SI^.BytesRecv := 0;
SocketArray[EventTotal] := Si;
inc(EventTotal);
Result := TRUE;

end;

procedure FreeSocketInfo(Event: DWORD);
var
SI: PSocketInfo;
i: DWORD;

begin
SI := SocketArray[Event];
closesocket(SI^.skt);
GlobalFree(Cardinal(SI));
WSACloseEvent(EventArray[Event]);

// Close up some space ...
for i := Event {- 1} to EventTotal {- 1} do
begin
EventArray[i] := EventArray[i+1];
SocketArray[i] := SocketArray[i+1];

end;
dec(EventTotal);

end;

procedure CleanUp(S : String);
begin

Communications � 217

5

C
h
a
p

te
r

WriteLn('Call to ' + S + ' failed with error: ' + SysErrorMessage(WSAGetLastError));
WSACleanUp;
Halt;

end;

begin
if WSAStartUp($0202, WSAData) = 0 then
try
// Create a listening socket ...

sktListen := WSASocket(AF_INET, SOCK_STREAM, 0, NIL, 0, WSA_FLAG_OVERLAPPED);
if sktListen = INVALID_SOCKET then
CleanUp('WSASocket()');
CreateSocketInfo(sktListen);
Res := WSAEventSelect(sktListen,EventArray[EventTotal - 1],FD_ACCEPT or FD_CLOSE);
if Res = SOCKET_ERROR then
CleanUp('WSAEventSelect()');
HostAddr.sin_family := AF_INET;
HostAddr.sin_port := htons(IPPORT_ECHO);
HostAddr.sin_addr.S_addr := htonl(INADDR_ANY);
Res := bind(sktListen, @HostAddr, SizeOf(HostAddr));
if Res = SOCKET_ERROR then
CleanUp('bind()');

// Prepare the socket for listening ...
Res := listen(sktListen,5);
if Res = SOCKET_ERROR then
CleanUp('listen()');

// Enter a while loop to accept connections ...
while TRUE do
begin
Event := WSAWaitForMultipleEvents(EventTotal,@EventArray,FALSE,WSA_INFINITE,FALSE);
if Event = WSA_WAIT_FAILED then
CleanUp('WSAWaitForMultipleEvents()');

Res := WSAEnumNetworkEvents(SocketArray[Event - WSA_WAIT_EVENT_0]^.skt,EventArray
[Event - WSA_WAIT_EVENT_0], @NetworkEvents);

if Res = SOCKET_ERROR then
CleanUp('WSAEnumNetworkEvents()');

if (NetworkEvents.lNetworkEvents and FD_ACCEPT) = FD_ACCEPT then
begin
if NetworkEvents.iErrorCode[FD_ACCEPT_BIT] <> 0 then
begin
WriteLn(Format('FD_ACCEPT failed with error %d',

[NetworkEvents.iErrorCode[FD_ACCEPT_BIT]]));
break;

end;
sktAccept := WSAaccept(SocketArray[Event - WSA_WAIT_EVENT_0]^.skt, NIL, NIL,NIL,0);
if sktAccept = INVALID_SOCKET then
begin
WriteLn(Format('Call to accept() failed with error %d', [WSAGetLastError]));
break;

end;
if (EventTotal > WSA_MAXIMUM_WAIT_EVENTS) then
begin
WriteLn('Too many connections - closing socket.');
closesocket(sktAccept);
break;

end;
CreateSocketInfo(sktAccept);
if WSAEventSelect(sktAccept, EventArray[EventTotal - 1], FD_READ or FD_WRITE or

FD_CLOSE) = SOCKET_ERROR then
begin

218 � Chapter 5

WriteLn(Format('WSAEventSelect() failed with error %d', [WSAGetLastError]));
Exit;

end;
WriteLn(Format('Socket %d connected', [sktAccept]));

end;
// Try to read and write data to and from the data buffer if read and write events

occur.
if (NetworkEvents.lNetworkEvents and FD_READ = FD_READ) or

(NetworkEvents.lNetworkEvents and FD_WRITE = FD_WRITE) then
begin

if (NetworkEvents.lNetworkEvents and FD_READ = FD_READ) and
(NetworkEvents.iErrorCode[FD_READ_BIT] <> 0) then

begin
WriteLn(Format('FD_READ failed with error %d',

[NetworkEvents.iErrorCode[FD_READ_BIT]]));
break;

end;
if (NetworkEvents.lNetworkEvents and FD_WRITE = FD_WRITE{READ}) and

(NetworkEvents.iErrorCode[FD_WRITE_BIT] <> 0) then
begin
WriteLn(Format('FD_WRITE failed with error %d',

[NetworkEvents.iErrorCode[FD_WRITE_BIT]]));
break;

end;
SocketInfo := PSocketInfo(SocketArray[Event - WSA_WAIT_EVENT_0]);
// Read data only if the receive buffer is empty.
if SocketInfo^.BytesRECV = 0 then
begin

SocketInfo^.DataBuffer.buf := SocketInfo^.Buffer;
SocketInfo^.DataBuffer.len := DATABUFFSIZE;
Flags := 0;
if WSARecv(SocketInfo^.skt, @SocketInfo^.DataBuffer, 1, RecvBytes,

Flags, NIL, NIL) = SOCKET_ERROR then
begin

if WSAGetLastError <> WSAEWOULDBLOCK then
begin
FreeSocketInfo(Event - WSA_WAIT_EVENT_0);
Exit;//return;

end;
end
else
begin

SocketInfo^.BytesRecv := RecvBytes;
end

end;

// Write buffer data if it is available.
if SocketInfo^.BytesRecv > SocketInfo^.BytesSend then
begin
SocketInfo^.DataBuffer.buf := SocketInfo^.Buffer + SocketInfo^.BytesSEND;
SocketInfo^.DataBuffer.len := SocketInfo^.BytesRecv - SocketInfo^.BytesSEND;
if WSASend(SocketInfo^.skt, @SocketInfo^.DataBuffer, 1, SendBytes, 0,

NIL, NIL) = SOCKET_ERROR then
begin
if WSAGetLastError <> WSAEWOULDBLOCK then
begin
WriteLn(Format('WSASend() failed with error %d', [WSAGetLastError]));
FreeSocketInfo(Event - WSA_WAIT_EVENT_0);
Exit;

end;

Communications � 219

5

C
h
a
p

te
r

// A WSAEWOULDBLOCK error has occured. An FD_WRITE event will be posted
// when more buffer space becomes available

end
else
begin

SocketInfo^.BytesSEND := SocketInfo^.BytesSEND + SendBytes;
if SocketInfo^.BytesSEND = SocketInfo^.BytesRECV then
begin
SocketInfo^.BytesSEND := 0;
SocketInfo^.BytesRECV := 0;

end
end

end
end;
if (NetworkEvents.lNetworkEvents and FD_CLOSE) = FD_CLOSE then
begin
if NetworkEvents.iErrorCode[FD_CLOSE_BIT] <> 0 then
begin
WriteLn(Format('FD_CLOSE failed with error %d',

[NetworkEvents.iErrorCode[FD_CLOSE_BIT]]));
break;

end;
WriteLn(Format('Closing socket information %d', [SocketArray[Event -

WSA_WAIT_EVENT_0]^.skt]));
FreeSocketInfo(Event - WSA_WAIT_EVENT_0);

end;
end;// while ...
closesocket(sktListen);
finally
WSACleanUp;
end
else WriteLn('Failed to load Winsock...');
end.

function WSAEnumNetworkEvents Winsock2.pas

Syntax

WSAEnumNetworkEvents(s: TSocket; hEventObject: WSAEVENT;
lpNetworkEvents: LPWSANETWORKEVENTS): Integer; stdcall;

Description

The function performs three tasks: (1) records network events for the selected
socket, (2) clears the internal network events record, and (3) optionally resets
event objects.

WSAEnumNetworkEvents() works with WSAEventSelect(), which associ-
ates an event object with one or more network events.

Parameters

s: A descriptor identifying the socket

hEventObject: An optional handle identifying an associated event object to be
reset

220 � Chapter 5

lpNetworkEvents: A pointer to a _WSANETWORKEVENTS record that is filled
with a record of occurred network events and any associated error codes

Return Value

If the function succeeds, it will return zero. If the function fails, it will return a
value of SOCKET_ERROR. To retrieve the error code, call the function
WSAGetLastError(). Possible error codes for each of these events are:

FD_CONNECT: WSAEAFNOSUPPORT, WSAECONNREFUSED, WSAENET-
UNREACH, WSAENOBUFS, and WSAETIMEDOUT

FD_CLOSE: WSAENETDOWN, WSAECONNRESET, and WSAECONN-
ABORTED

FD_READ, FD_WRITE, FD_OOB, FD_ACCEPT, FD_QOS, FD_GROUP_QOS,
and FD_ADDRESS_LIST_CHANGE: WSAENETDOWN

FD_ROUTING_INTERFACE_CHANGE: WSAENETUNREACH and
WSAENETDOWN

See Appendix B for a detailed description of the error codes.

See Also

WSAEventSelect

Example

See Listing 5-8 (program EX57).

function WSAEventSelect Winsock2.pas

Syntax

WSAEventSelect(s: TSocket; hEventObject: WSAEVENT; lNetworkEvents:
Longint): Integer; stdcall;

Description

This function associates an event with the supplied set of network events.

Parameters

s: A descriptor identifying the socket

hEventObject: A handle identifying the event object to be associated with the
supplied set of FD_XXX network events

lNetworkEvents: A bit mask that specifies the combination of FD_XXX network
events in which the application has interest

Communications � 221

5

C
h
a
p

te
r

Return Value

If the function succeeds, it will return zero. If the function fails, it will return a
value of SOCKET_ERROR(). To retrieve the error code, call the function
WSAGetLastError. Possible error codes are WSANOTINITIALISED, WSAE-
NETDOWN, WSAEINVAL, WSAEINPROGRESS, and WSAENOTSOCK.

See Also

WSAAsyncSelect, WSACloseEvent, WSACreateEvent, WSAEnumNetwork-
Events, WSAWaitForMultipleEvents

Example

See Listing 5-8 (program EX57).

function WSACloseEvent Winsock2.pas

Syntax

WSACloseEvent(hEvent: WSAEVENT): BOOL; stdcall;

Description

This function closes an open event object handle.

Parameters

hEvent: Identifies an open event object handle

Return Value

If the function succeeds, it will return TRUE. If the function fails, it will return
FALSE. To retrieve the specific error code, call the function WSAGetLast-
Error(). Possible error codes are WSANOTINITIALISED, WSAENETDOWN,
WSAEINPROGRESS, and WSA_INVALID_HANDLE.

See Appendix B for a detailed description of the error codes.

See Also

WSACreateEvent, WSAEnumNetworkEvents, WSAEventSelect, WSAGetOver-
lappedResult, WSARecv, WSARecvFrom, WSAResetEvent, WSASend, WSA-
SendTo, WSASetEvent, WSAWaitForMultipleEvents

Example

See Listing 5-3 (program EX53).

function WSAResetEvent Winsock2.pas

Syntax

WSAResetEvent(hEvent: WSAEVENT): BOOL; stdcall;

222 � Chapter 5

TE
AM
FL
Y

Team-Fly®

Description

This function resets the state of the specified event object to non-signaled.

Parameters

hEvent: Identifies an open event object handle

Return Value

If the function succeeds, the return value will be TRUE. If the function fails,
the return value will be FALSE. To get extended error information, call
WSAGetLastError(). Possible error codes are WSANOTINITIALISED,
WSAENETDOWN, WSAEINPROGRESS, and WSA_INVALID_HANDLE.

See Appendix B for a detailed description of the error codes.

See Also

WSACloseEvent, WSACreateEvent, WSASetEvent

Example

See Listing 5-7 (program EX52).

function WSASetEvent Winsock2.pas

Syntax

WSASetEvent(hEvent: WSAEVENT): BOOL; stdcall;

Description

This function sets the state of the specified event object to be signaled.

Parameters

hEvent: Identifies an open event object handle.

Return Value

If the function succeeds, the return value will be TRUE. If the function fails, the
return value will be FALSE. To get extended error information, call WSAGet-
LastError(). Possible errors are WSANOTINITIALISED, WSAENETDOWN,
WSAEINPROGRESS, and WSA_INVALID_HANDLE.

See Appendix B for a detailed description of the error codes.

See Also

WSACloseEvent, WSACreateEvent, WSAResetEvent

Example

See Listing 5-7 (program EX52).

Communications � 223

5

C
h
a
p

te
r

function WSAGetOverlappedResult Winsock2.pas

Syntax

WSAGetOverlappedResult(s: TSocket; lpOverlapped: LPWSAOVERLAPPED; var
lpcbTransfer: DWORD; fWait: BOOL; lpdwFlags: DWORD): BOOL; stdcall;

Description

This function returns the results of an overlapped operation on the specified
socket.

Parameters

s: Identifies the socket. This is the same socket that was specified when the
overlapped operation was started by a call to WSARecv(),
WSARecvFrom(), WSASend(), WSASendTo(), or WSAIoctl().

lpOverlapped: Points to a WSAOVERLAPPED record that was specified when
the overlapped operation was started

lpcbTransfer: Points to a 35-bit variable that receives the number of bytes that
were actually transferred by a send or receive operation or by WSAIoctl()

fWait: Specifies whether the function should wait for the pending overlapped
operation to complete. If TRUE, the function does not return until the
operation has been completed. If FALSE and the operation is still pending,
the function returns FALSE and the WSAGetLastError() function returns
WSA_IO_INCOMPLETE. The fWait parameter may be set to TRUE only
if the overlapped operation selected event-based completion notification.

lpdwFlags: Points to a variable that will receive one or more flags that supple-
ment the completion status. If the overlapped operation was initiated via
WSARecv() or WSARecvFrom(), this parameter will contain the results
value for the lpFlags parameter.

Return Value

If the function succeeds, it will return TRUE, indicating the overlapped opera-
tion has completed successfully. If the function fails, it will return FALSE. To
retrieve the specific error code, call the function WSAGetLastError(). Possible
error codes are WSANOTINITIALISED, WSAENETDOWN, WSAENOTSOCK,
WSA_INVALID_HANDLE, WSA_INVALID_PARAMETER, WSA_IO_INCOM-
PLETE, and WSAEFAULT.

See Appendix B for a detailed description of the error codes.

See Also

WSAAccept, WSAConnect, WSACreateEvent, WSAIoctl, WSARecv,
WSARecvFrom, WSASend, WSASendTo, WSAWaitForMultipleEvents

224 � Chapter 5

Example

See Listing 5-3 (program EX53).

Raw Sockets
In this short section, we will expose raw sockets. Raw sockets are based on the
SOCK_RAW socket type in the AF_INET and AF_ATM address families. Unlike
other socket types, such as SOCK_STREAM and SOCK_DGRAM, support for
SOCK_RAW is purely optional in the AF_INET address family. That is, it is an
optional feature in the Winsock hierarchy that not all vendors support. Fortu-
nately for network developers, Microsoft supports this socket type for both
address families, but there is a sting in the tail. For one thing, there are restric-
tions on the use of raw sockets in the AF_INET address family. Not so with the
AF_ATM address family, as SOCK_RAW is the only socket type to use with the
AF_ATM address family. But we will not concern ourselves with ATM in this
book. (For more information on ATM, consult Appendix C.) So what is this
restriction, and why do we have it? Perhaps the best way to answer these ques-
tions is to answer the following questions first: What are raw sockets, and why
do we have them? Raw sockets work intimately with the IP and ICMP proto-
cols, which underpin the process of message delivery and error reporting
mechanisms, respectively. That is, sockets of the type SOCK_RAW provide
access to the link layer of the IP layer of the TCP/IP network. Familiar applica-
tions, such as ping, traceroute, and other low-level programs, use this intimacy
provided by raw sockets. It has been known for unscrupulous (and klutz) hack-
ers to hijack raw sockets to perform denial of service attacks on servers.
Because of this easy access to the link layer, it can pose a serious network secu-
rity problem. To overcome this hurdle without making it impossible to program
with raw socket, Microsoft imposes the following restriction on Windows NT
4.0, Windows 2000, and Windows XP: You have to have administrative privi-
leges. The following passage is from the Microsoft MSDN Platform SDK:

“On Windows NT/Windows 2000, raw socket support requires
administrative privileges. Users running Winsock applications that
make use of raw sockets must have administrative privileges on the
computer, otherwise raw socket calls fail with an error code of
WSAEACCESS.”

How does a ping application work? To put it simply: A ping application uses raw
sockets to send and receive ICMP messages in IP datagrams. Actually, this is an
oversimplification of a tricky process. Each ICMP message that the ping applica-
tion sends is prefaced with an IP header. Figure 5-1 shows this IP header.

Communications � 225

5

C
h
a
p

te
r

This is a complex header, but suffice it to be aware that TCP/IP protocols,
including ICMP, use this header. We won’t say any more about this header
except that it is used for IP routing, a topic not discussed further in this book.
We will refer to this header as we explain how ping works.

As we have found out, an ICMP message is encapsulated as part of the IP
datagram. Figure 5-2 shows graphically the structure of the IP datagram.

226 � Chapter 5

Figure 5-2: The

structure of the IP

datagram

Figure 5-1:

IP header

ICMP is part of the IP layer that is responsible for the communication of errors
and conditions that require attention. IP and other higher protocols, usually
TCP and UDP, interrogate ICMP for error conditions. Occasionally, ICMP will
voluntarily report errors to user processes when necessary. Figure 5-3 shows
the structure of the ICMP message that is used for echo request and echo reply
employed by the ping program. Again, this is not discussed further in this book.

There are many different types of messages generated by ICMP in response,
ranging from fatal error conditions to information reporting. Table 5-10 displays
these ICMP messages.

Table 5-10: ICMP messages

Type Code Description

0 0 Echo reply

3 Destination unreachable

0 Network unreachable

1 Host unreachable

2 Protocol unreachable

3 Port unreachable

4 Fragmentation needed but defragmentation bit is set

5 Source route failed

6 Destination network unknown

7 Destination host unknown

8 Source host isolated (obsolete)

9 Destination network administratively prohibited

10 Host network administratively prohibited

11 Network unreachable for TOS

12 Host unreachable for TOS

13 Communication administratively prohibited

14 Host precedence violation

15 Precedence cutoff in effect

Communications � 227

5

C
h
a
p

te
r

Figure 5-3: The

structure of the

ICMP message

Type Code Description

4 0 Source quench

5 Redirect:

0 Redirect for network

1 Redirect for host

2 Redirect for type-of-service and network

3 Redirect for type-of-service and host

8 0 Echo request

9 0 Router advertisement

10 0 Router solicitation

11 Time exceeded:

0 TTL equals 0 in transit

1 TTL equals 0 during reassembly

12 Parameter problem:

0 IP header bad (catchall error)

1 Required option missing

13 0 Timestamp request

14 0 Timestamp reply

15 0 Information request (obsolete)

16 0 Information request (obsolete)

17 0 Address mask request

18 0 Address mask request

As you can see from the table, there are 15 different types of messages. For the
ping application, there are only two messages that are of interest to us: type 0
and type 8.

The ping program was developed by Mike Muuss to check if a host was
reachable. The ping program sends an echo request (type 8) to the host. If the
host is “switched on,” it will send back an ICMP echo reply (type 0). Because of
the echoing behavior, its behavior is similar to sonar, so it is popularly called
ping. In the days before security became a serious concern, you were always
guaranteed to receive an ICMP echo reply when you sent an echo reply request
to the target host. This is no longer strictly true as firewalls tend to block out
strobes such as pings. In such situations, the host may be hidden behind the
firewall from the ping program but still “visible” to other applications using per-
mitted services such as FTP, SMTP, HTTP, and many others. (For followers of
Star Trek, it is similar to the cloaking device that hides a Romulan vessel.) In
spite of this apparent shortcoming, ping is still a useful network-debugging tool.

Like any client-server application pair, you use the ping program as an ICMP
client to send an ICMP echo request to a ping server. However, there is a differ-
ence between this client-server system and the other client-server systems,
such as FTP, SMTP, and many others. The difference is that the ping server is

228 � Chapter 5

not a user process like FTP; instead, it is a kernel process. In other words, the
ping server is part of the kernel and is “switched on” all the time.

Notice that the ping application in Listing 5-9 proceeds as follows:

1. Creates a socket of type SOCK_RAW with the protocol set to ICMP

2. Calls the setsockopt() function to set the timeout, which in this example is
two seconds

3. Resolves the name or IP address of the target host

4. Creates a pointer to TICMPHdr and populates the fields in steps 5 to 9

5. Sets the type field to ICMP_ECHOREQ

6. Sets the ID field to the current process ID by a call to GetCurrent-
ProcessId()

7. Sets the sequence number

8. Fills the buffer field to any value

9. Calculates the checksum and stores this value in TICMPHdr

10. Calls the sendto() function to send the datagram

11. Decodes the reply and display the results

The ping application repeats steps 5 to 11 inclusive as required. The checksum
that is calculated in step 9 is known as the IP checksum. Though we call this
checksum the IP checksum, it is used by other protocols such as UDP and TCP.
Why do we need a checksum? The checksum is used as a measure to detect
data corruption that may have occurred between the sender and the receiver.

If you cast your mind back to the beginning of this chapter, we stated that,
unlike TCP, UDP doesn’t provide a virtual circuit in which data is transported in
a well-behaved queue. Since UDP sits on top of IP, it inherits this behavior from
IP. And so it is with ICMP. The implication is that datagrams can arrive in any
order, be duplicated or simply be swallowed in a cyberspace black hole. This is
the reason for having steps 6 and 7. Raw sockets operate in promiscuous mode.
In other words, raw sockets will accept any datagrams that come down on the
wire irrespective of their source. To avoid receiving datagrams that come from
hosts not targeted by the ping program, you need to add some means of identi-
fying each datagram that you send out. The easiest way to do this is to call
GetCurrentProcessId() to get the identifier of your process, which in this case
is your ping program. So when your ping program receives a datagram, it checks
if the datagram returned by the target host contains the same process identifier.
Such a check is as simple as the following snippet of code:

if IcmpHeader^.Id <> GetCurrentProcessId then
begin
WriteLn('someone else''s packet!');
Exit;

end;

Communications � 229

5

C
h
a
p

te
r

On receipt of a datagram, the ping server reflects back the datagram. Since
datagrams can come in any order, you need to add a sequence identifier to each
datagram. Having this will allow you to detect which:

� datagrams have been dropped.

� datagrams are out of order.

� datagrams have died.

Your ping program must also check the code type returned by the ping server. It
should be type 0 for an echo reply. Sometimes, though, the ping server can
return types other than 0, so it is necessary for your ping application to check
this type code, as the following snippet of code from Listing 5-9 shows:

if IcmpHeader._Type <> ICMP_ECHOREPLY then
begin
WriteLn(Format('Non-echo type %d recvd',[IcmpHeader^._type]));
Exit;

end;

Listing 5-9: The ping program

program EX59;

{$APPTYPE CONSOLE}

uses
Dialogs, SysUtils, Windows, Winsock2,
Protocol;

const
DEF_PACKET_SIZE = 32;
MAX_PACKET_SIZE = 1024;
ICMP_MIN = 8;
ICMP_ECHOREPLY = 0; // ICMP type: echo reply
ICMP_ECHOREQ = 8; // ICMP type: echo request

type

TCharBuf = array[1..MAX_PACKET_SIZE] of char;

PICMPHdr = ^TICMPHdr;
TICMPHdr = packed record

Type: Byte; // Type
Code: Byte; // Code
Checksum: WORD; // Checksum
ID: WORD; // Identification
Seq: WORD; // Sequence
Data: LongWord; // Data

end;

var
bufIcmp: TCharBuf;
iDataSize: Integer = 44;
Res: Smallint; //DWORD;
I: Integer;
sktRaw: TSocket = INVALID_SOCKET;
DestAddr,FromAddr: TSockAddrIn;

230 � Chapter 5

Host: PHostent;
BRead: Integer;
FromLen: Integer = SizeOf(FromAddr);
TimeOut: Integer = 2000;
IcmpData: PChar;
RecvBuf: TCharBuf; //PChar;
Addr: Cardinal = 0;
icmp: PIcmpHdr;
SeqNo: Integer = 0;
wsaData: TWSADATA;
nCount: Integer = 0;
BWrote: Integer = 0;
FAddr: PChar;
HostName : String = 'localhost';
Forever: Boolean = FALSE;
Position: Integer;

procedure CopOut(Msg: String);
begin
WriteLn(Msg);
closesocket(sktRaw);
WSACleanUp;
Halt;

end;

{
The response is an IP packet. We must decode the IP header to locate
the ICMP data
}

procedure DecodeResponse(Buffer: TCharBuf; Bytes: Integer; var FromAddr: TSockAddrIn);
var
iphdr: PIpHeader;
IcmpHeader: PICMPHdr;
iphdrlen: Integer;
begin
iphdr := PIpHeader(@Buffer);
iphdrlen := (iphdr.x and $0F)* 4 ; // number of 32-bit words *4 = bytes
if Bytes < (iphdrlen + ICMP_MIN) then
WriteLn(Format('Too few bytes from %s',[inet_ntoa(FromAddr.sin_addr)]));

IcmpHeader := PIcmpHdr(@Buffer[iphdrlen + 1]);
if IcmpHeader._Type <> ICMP_ECHOREPLY then
begin
WriteLn(Format('Non-echo type %d recvd',[IcmpHeader^._type]));
Exit;

end;
if IcmpHeader^.Id <> GetCurrentProcessId then
begin
WriteLn('someone else''s packet!');
Exit;

end;
WriteLn(Format('%d bytes from %s:',[bytes, inet_ntoa(fromAddr.sin_addr)]));
WriteLn(Format(' icmp_seq = %d',[IcmpHeader^.Seq]));
WriteLn(Format(' time: %d ms ',[GetTickCount - LongWord(IcmpHeader^.Data)]));// timestamp

end;

{
This checksum is taken from Indy's IdICMPClient component. Grateful thanks to the
makers of Indy components.
}

Communications � 231

5

C
h
a
p

te
r

function CalcCheckSum: word;
type
PWordArray = ^TWordArray;
TWordArray = array[1..512] of word;

var
pwa: PWordarray;
dwChecksum: longword;
i, icWords, iRemainder: integer;

begin
icWords := iDataSize div 2;
iRemainder := iDatasize mod 2;
pwa := PWordArray(@bufIcmp);
dwChecksum := 0;
for i := 1 to icWords do
begin
dwChecksum := dwChecksum + pwa^[i];

end;
if (iRemainder <> 0) then
begin
dwChecksum := dwChecksum + byte(bufIcmp[iDataSize]);

end;
dwCheckSum := (dwCheckSum shr 16) + (dwCheckSum and $FFFF);
dwCheckSum := dwCheckSum + (dwCheckSum shr 16);
Result := word(not dwChecksum);

end;

begin
if ParamCount >= 1 then
begin
HostName := ParamStr(1);
Forever := ParamStr(2) = '-t' ; // we loop forever!
end;
if WSAStartUp($0202,wsaData) = 0 then
begin
try

{
Set up for sending and receiving pings
}

sktRaw := WSASocket (AF_INET, SOCK_RAW, IPPROTO_ICMP, NIL, 0, WSA_FLAG_OVERLAPPED);
if sktRaw = INVALID_SOCKET then
CopOut(Format('Call to WSASocket() failed: %d',[WSAGetLastError]));
Res := setsockopt(sktRaw,SOL_SOCKET,SO_RCVTIMEO,PChar(@Timeout), SizeOf(timeout));
if Res = SOCKET_ERROR then
CopOut(Format('Call to setsockopt(SO_RCVTIMEO) failed: %d',[WSAGetLastError]));
TimeOut := 2000;
Res := setsockopt(sktRaw,SOL_SOCKET,SO_SNDTIMEO,PChar(@timeout), SizeOf(timeout));
if Res = SOCKET_ERROR then
CopOut(Format('Call to setsockopt(SO_SNDTIMEO) failed: %d',[WSAGetLastError]));
FillChar(DestAddr,SizeOf(DestAddr),0);
DestAddr.sin_family := AF_INET;
DestAddr.sin_addr.s_addr := inet_addr(PChar(HostName));
if DestAddr.sin_addr.s_addr = INADDR_NONE then
begin
Host := gethostbyname(PChar(HostName));
if Host <> NIL then
begin
Move(Host.h_addr^, FAddr, Host.h_length);
DestAddr.sin_addr.S_un_b.s_b1 := Byte(FAddr[0]);
DestAddr.sin_addr.S_un_b.s_b2 := Byte(FAddr[1]);

232 � Chapter 5

TE
AM
FL
Y

Team-Fly®

DestAddr.sin_addr.S_un_b.s_b3 := Byte(FAddr[2]);
DestAddr.sin_addr.S_un_b.s_b4 := Byte(FAddr[3]);
DestAddr.sin_family := host.h_addrtype;

end
else
CopOut(Format('Call to gethostbyname() failed: %d',[WSAGetLastError]));

end;
while TRUE do
begin
if not Forever then
begin
inc(nCount);
if nCount = 4 then
break;

end;
{
Set up for sending and receiving pings
}

iDataSize := DEF_PACKET_SIZE + sizeof(TIcmpHdr);
FillChar(bufIcmp, sizeof(bufIcmp), 0);
icmp := PIcmpHdr(@bufIcmp);
with icmp^ do
begin
_type := ICMP_ECHOREQ;
code := 0;
CheckSum := 0;
id := word(GetCurrentProcessId);
seq := SeqNo;

{
Position := SizeOf(ICMP_ECHOREQ) + SizeOf(Code) + SizeOf(CheckSum) + SizeOf(id) +

SizeOf(SeqNo);
WriteLn('Position = ' + IntToStr(Position));
Move(Windows.GetTickCount, Data, SizeOf(LongWord)); // Not working either!!!!

}
Data := Windows.GetTickCount;// <<<< original code - doesn't work properly >>>>

{ Fill the buffer with junk after the initialized elements}
i := Succ(sizeof(TIcmpHdr));
while i <= iDataSize do
begin
bufIcmp[i] := 'E';
Inc(i);

end;
CheckSum := CalcCheckSum;
inc(SeqNo);
end;
BWrote := sendto(sktRaw, bufIcmp, idatasize, 0,@DestAddr, SizeOf(DestAddr));
if BWrote = SOCKET_ERROR then
begin
if WSAGetLastError = WSAETIMEDOUT then
begin
WriteLn('timed out');
continue;

end;
CopOut(Format('Call to sendto() failed: %d',[WSAGetLastError]));
end;
if BWrote < idatasize then
WriteLn(Format('Wrote %d bytes',[BWrote]));
BRead := recvfrom(sktRaw, RecvBuf, MAX_PACKET_SIZE,0,@FromAddr, FromLen);
if BRead = SOCKET_ERROR then
begin

Communications � 233

5

C
h
a
p

te
r

if WSAGetLastError = WSAETIMEDOUT then
begin
WriteLn('timed out');
continue;

end;
CopOut(Format('Call to recvfrom() failed: %d',[WSAGetLastError]));

end;
DecodeResponse(RecvBuf,BRead,FromAddr);
sleep(2000); { give it a break, man...}
end;//
finally
WSACleanUp;

end;
end else
ShowMessage('Unable to load Winsock 2!');

end.

The traceroute program is another well-known network debugger, devised by
Van Jacobson, that also uses the ICMP protocol. The entire traceroute program
is presented in Listing 5-10.

The principle of the traceroute program is that it allows us to track the route
that IP datagrams take between the sender and the receiver. Although it is not
always guaranteed that IP datagrams will always follow the same route for each
trace, most of the time they do. Unlike the client-server systems, including
ping, a traceroute application does not require a server in the client-server con-
text. Traceroute uses the ICMP message header and the TTL (time to live) field
in the IP header to perform “hops.” The TTL is a byte field that the sender
(your traceroute application) initializes to some value. If you set TTL to 10, this
represents a maximum of ten hops or the traversal of up to ten routers that the
datagrams can traverse. The algorithm for the traceroute application is best
shown as steps, which we present below:

1. Sets the TTL to 1.

2. Sends the IP datagram to the destination host.

3. The router on the route sends back the ICMP header message “time
exceeded.”

4. Increments the TTL by 1.

5. Repeats steps 2 through 4 until the destination host is reached or until the
TTL is equal to an arbitrary figure. When the destination host is reached,
the host sends back the ICMP message “port unreachable.”

How does the traceroute application know that it has reached the destination
host? Although the algorithm is simple, the devil is in the details. We present
the traceroute application in Listing 5-10. When you examine the listing, you
will appreciate that the traceroute application shares the same code as the ping
application. The obvious one is both applications use the same checksum
routine.

234 � Chapter 5

This sums up a brief introduction to raw sockets, which will allow you to
build your own low-level networking applications. However, there is one salient
fact to remember: You must have administrator privileges on Windows NT, Win-
dows 2000, or Windows XP before you can develop, debug, and run applications
that use raw sockets.

Listing 5-10: The traceroute application

program EX510;

{$APPTYPE CONSOLE}

uses
Dialogs,
SysUtils,
Windows,
Winsock2,
Protocol,
WS2tcpip;

const
DEF_PACKET_SIZE = 32;
MAX_PACKET_SIZE = 1024;
ICMP_MIN = 8; { Minimum size of ICMP header...}
ICMP_ECHOREPLY = 0; // ICMP type: echo reply
ICMP_ECHOREQ = 8; // ICMP type: echo request

{
Constants for ICMP message types ...
}
ICMP_DESTUNREACH = 3;
ICMP_SRCQUENCH = 4;
ICMP_REDIRECT = 5;
ICMP_TIMEOUT = 11;
ICMP_PARMERR = 12;

type

TCharBuffer = array[1..MAX_PACKET_SIZE] of char;

PICMPHdr = ^TICMPHdr;
TICMPHdr = record

Type: Byte; // Type
Code: Byte; // Code
Checksum: WORD; // Checksum
ID: WORD; // Identification
Seq: WORD; // Sequence
Data: LongWord; // Data
end;

var
BufIcmp,
RecvBuf: TCharBuffer;
iDataSize: Integer = 44;
Res: Integer;
I: Integer;
sktRaw: TSocket = INVALID_SOCKET;
DestAddr,FromAddr: TSockAddrIn;
Host: PHostent;
BRead: Integer;

Communications � 235

5

C
h
a
p

te
r

FromLen: Integer = SizeOf(FromAddr);
TimeOut: Integer = 10000;
Addr: Cardinal = 0;
icmp: PIcmpHdr;
SeqNo: Integer = 0;
wsaData: TWSADATA;
nCount: Integer = 0;
BWrote: Integer = 0;
FAddr: PChar;
HostName : String = 'localhost';
Forever: Boolean = FALSE;
bOption: Boolean = TRUE;
Done: Boolean = FALSE;
MaxHops: Byte = 255;
TTLCount: Byte;

procedure CopOut(Msg: String);
begin
WriteLn(Msg);
closesocket(sktRaw);
WSACleanUp;
Halt;

end;

{
Set a TTL for tracing ...

}
function SetTTL(skt: TSocket; TimeToLive: Integer) : Integer;
begin
Result := setsockopt(skt, IPPROTO_IP, IP_TTL, PChar(@TimeToLive), SizeOf(Integer));
if Result = SOCKET_ERROR then
CopOut(Format('Call to setsockopt(IP_TTL) failed: %d',[WSAGetLastError]));

end;

{
The response is an IP packet. We must decode the IP header to locate
the ICMP data
}

function DecodeResponse(Buffer: TCharBuffer; Bytes: Integer; FromAddr: TSockAddrIn; TTL:
Integer): Boolean;
var
iphdr: PIpHeader;
IcmpHeader: PICMPHdr;
iphdrlen: Integer;
Host: PHostent;
FinalDestAddr: TSockAddrIn; // struct in_addr inaddr = from->sin_addr;
P: Pointer;
Address: Longint;
begin
Result := FALSE;
iphdr := PIpHeader(@Buffer);
iphdrlen := (iphdr.x and $0F)* 4 ; // number of 32-bit words *4 = bytes
if Bytes < (iphdrlen + ICMP_MIN) then
WriteLn(Format('Too few bytes from %s',[inet_ntoa(FromAddr.sin_addr)]));

IcmpHeader := PIcmpHdr(@Buffer[iphdrlen + 1]);
case IcmpHeader._Type of
ICMP_ECHOREPLY: begin // Response from destination

Address := FromAddr.sin_addr.S_addr;
P := system.addr(Address);

236 � Chapter 5

Host := gethostbyaddr(P, 4, AF_INET);
if Host <> NIL then
WriteLn(Format('Host reached => %2d %s (%s) %d ms', [ttl,

Host^.h_name, inet_ntoa(FromAddr.sin_addr),GetTickCount -
LongWord(ICmpHeader.Data)]));

Result := TRUE;
end;

ICMP_TIMEOUT: begin // Response from router along the way
Address := FromAddr.sin_addr.S_addr;
P := system.addr(Address);
Host := gethostbyaddr(P, 4, AF_INET);
if Host <> NIL then
WriteLn(Format('%2d %s (%s)', [ttl, Host^.h_name,

inet_ntoa(FromAddr.sin_addr)]))
else
WriteLn(Format('%2d No host name (%s)', [ttl,

inet_ntoa(FromAddr.sin_addr)]));
Result := FALSE;

end;
ICMP_DESTUNREACH: begin // Can't reach the destination at all

WriteLn(Format('%2d %s reports: Host is unreachable', [ttl,
inet_ntoa(FromAddr.sin_addr)]));

Result := TRUE;
end

else
begin
WriteLn(Format('non-echo type %d received', [IcmpHeader^._type]));
Result := TRUE;

end;
end; // case

end;

function CalcCheckSum: word;
type
PWordArray = ^TWordArray;
TWordArray = array[1..512] of word;

var
pwa: PWordarray;
dwChecksum: longword;
i, icWords, iRemainder: integer;

begin
icWords := iDataSize div 2;
iRemainder := iDatasize mod 2;
pwa := PWordArray(@bufIcmp);
dwChecksum := 0;
for i := 1 to icWords do
begin
dwChecksum := dwChecksum + pwa^[i];

end;
if (iRemainder <> 0) then
begin
dwChecksum := dwChecksum + byte(bufIcmp[iDataSize]);

end;
dwCheckSum := (dwCheckSum shr 16) + (dwCheckSum and $FFFF);
dwCheckSum := dwCheckSum + (dwCheckSum shr 16);
Result := word(not dwChecksum);

end;
begin
if ParamCount >= 1 then
HostName := ParamStr(1);

Communications � 237

5

C
h
a
p

te
r

if WSAStartUp($0202,wsaData) = 0 then
begin
try

{
Set up for sending and receiving pings
}

sktRaw := WSASocket (AF_INET, SOCK_RAW, IPPROTO_ICMP, NIL, 0, WSA_FLAG_OVERLAPPED);
if sktRaw = INVALID_SOCKET then
CopOut(Format('Call to WSASocket() failed: %d',[WSAGetLastError]));
Res := setsockopt(sktRaw,SOL_SOCKET,SO_RCVTIMEO,PChar(@Timeout), SizeOf(timeout));
if Res = SOCKET_ERROR then
CopOut(Format('Call to setsockopt(SO_RCVTIMEO) failed: %d',[WSAGetLastError]));
TimeOut := 1000;
Res := setsockopt(sktRaw,SOL_SOCKET,SO_SNDTIMEO,PChar(@timeout), SizeOf(timeout));
if Res = SOCKET_ERROR then
CopOut(Format('Call to setsockopt(SO_SNDTIMEO) failed: %d',[WSAGetLastError]));
FillChar(DestAddr,SizeOf(DestAddr),0);

{
Set the socket to bypass the standard routing mechanisms
i.e. use the local protocol stack to the appropriate network interface

}

if setsockopt(sktRaw, SOL_SOCKET, SO_DONTROUTE, PChar(@bOption), SizeOf(BOOLEAN)) =
SOCKET_ERROR then

CopOut(Format('Call to setsockopt(SO_DONTROUTE) failed: %d', [WSAGetLastError]));
DestAddr.sin_family := AF_INET;
DestAddr.sin_addr.s_addr := inet_addr(PChar(HostName));
if DestAddr.sin_addr.s_addr = INADDR_NONE then
begin
Host := gethostbyname(PChar(HostName));
if Host <> NIL then
begin
Move(Host.h_addr^, FAddr, Host.h_length);
DestAddr.sin_addr.S_un_b.s_b1 := Byte(FAddr[0]);
DestAddr.sin_addr.S_un_b.s_b2 := Byte(FAddr[1]);
DestAddr.sin_addr.S_un_b.s_b3 := Byte(FAddr[2]);
DestAddr.sin_addr.S_un_b.s_b4 := Byte(FAddr[3]);
DestAddr.sin_family := host.h_addrtype;

end
else
CopOut(Format('Call to gethostbyname() failed: %d',[WSAGetLastError]));

end;
WriteLn(Format('Tracing route to %s [%s] over a maximum of %d hops: ', [ParamStr(1),

inet_ntoa(DestAddr.sin_addr), maxhops]));
TTLCount := 1;
while (TTLCount <= MaxHops) and (not Done) do
begin

{
Set up for sending and receiving pings
}

setTTL(sktRaw,TTLCount);
iDataSize := DEF_PACKET_SIZE + sizeof(TIcmpHdr);
FillChar(bufIcmp, sizeof(bufIcmp), 0);
icmp := PIcmpHdr(@bufIcmp);
with icmp^ do
begin
_type := ICMP_ECHOREQ;
code := 0;
CheckSum := 0;

238 � Chapter 5

id := word(GetCurrentProcessId);
seq := SeqNo;
Data := Windows.GetTickCount;

{ Fill the buffer with junk after the initialized elements}
i := Succ(sizeof(TIcmpHdr));
while i <= iDataSize do
begin
bufIcmp[i] := 'E';
Inc(i);

end;
CheckSum := CalcCheckSum;
inc(SeqNo);
end;
BWrote := sendto(sktRaw, bufIcmp, idatasize, 0,@DestAddr, SizeOf(DestAddr));
if BWrote = SOCKET_ERROR then
begin
if WSAGetLastError = WSAETIMEDOUT then
begin
WriteLn(Format('%2d *timed out',[SeqNo]));
continue;

end;
CopOut(Format('Call to sendto() failed: %d',[WSAGetLastError]));
end;
if BWrote < idatasize then
WriteLn(Format('Wrote %d bytes',[BWrote]));
BRead := recvfrom(sktRaw, RecvBuf, MAX_PACKET_SIZE,0,@FromAddr, FromLen);
if BRead = SOCKET_ERROR then
begin
if WSAGetLastError = WSAETIMEDOUT then
begin
WriteLn(Format('%2d *timed out',[SeqNo]));
continue;

end;
CopOut(Format('Call to recvfrom() failed: %d',[WSAGetLastError]));

end;
Done := DecodeResponse(RecvBuf,BRead,FromAddr, TTLCount);
sleep(2000); { give it a break, man...}
inc(TTLCount);
end;//
finally
WSACleanUp;

end;
end else
ShowMessage('Unable to load Winsock 2!');

end.

Microsoft Extensions to Winsock 2
In this section we will briefly explore Microsoft extensions to Winsock 2. The
extensions are:

� AcceptEx()

� GetAcceptExSockaddrs()

� TransmitFile()

� WSARecvEx()

Communications � 239

5

C
h
a
p

te
r

As you would expect, like the accept() function we examined earlier, AcceptEx()
is intended to be used by a server application.

The AcceptEx() function combines several socket functions into a single
operation. It performs three tasks:

� Accepts a new connection

� Returns both the local and remote addresses for the connection

� Receives the first block of data sent by the remote

To parse the first data that is accepted by AcceptEx(), you must use the
GetAcceptExSockaddrs() function to extract the first data into local and remote
addresses. No other function can do this because AcceptEx() writes the data in a
special format (called TDI) that only GetAcceptExSockaddrs() can parse. You
also need GetAcceptExSockaddrs() to find the sockaddr structures in the buffer
accepted by AcceptEx().

The TransmitFile() function uses the operating system’s cache manager to
transmit file data over a connected socket handle as a high-performance opera-
tion. Because of its high-performance file transfer capability, the function is best
suited for use on servers running Windows Server versions of operating
systems.

The WSARecvEx() function is similar to recv(), except the flags parameter in
WSARecvEx() is a variable parameter. Use this variable parameter to check
whether a partial or complete message has been received using a message-
oriented protocol. As with recv(), you can use WSARecvEx() to receive data
streams on stream-oriented protocols (TCP).

Although you can use WSARecvEx() with stream protocols, it is pointless to
do so because recv() can perform the task equally well, as it is designed to han-
dle data streams. Instead, you should use WSARecv() in situations where you
are likely to get partial messages on message-based protocols. When a partial
message is received (because the message is larger than the application’s buffer,
it arrives in several pieces), the MSG_PARTIAL bit is set in the flags parameter
to indicate to the application that a partial message has been received. When
your application receives the whole message at once, the MSG_PARTIAL bit is
not set. Contrast this behavior with recv(); recv() does not have a mechanism to
detect partial messages when they arrive. Theoretically, you could get away
with it by using recv() with a very large buffer to receive the data, but this is
rather expensive in terms of resources. Rather, it is more efficient to use
WSARecvEx(), which is designed to cope with partial messages.

Let’s wrap up this introductory section with a formal definition of these
functions.

240 � Chapter 5

function AcceptEx MSWSock.pas

Syntax

AcceptEx(sListenSocket, sAcceptSocket: TSocket; lpOutputBuffer: LPVOID;
dwReceiveDataLength, dwLocalAddressLength, dwRemoteAddressLength:
DWORD; var lpdwBytesReceived: DWORD; lpOverlapped: POVERLAPPED):
BOOL; stdcall;

Description

The function accepts a new connection, returns the local and remote address,
and receives the first block of data sent by the client application. Be aware that
this function is not supported on Windows 95/98/Me.

Parameters

sListenSocket: This is a descriptor identifying a socket that has already been
called with the listen() function. A server application waits for attempts to
connect on this socket.

sAcceptSocket: This is a descriptor identifying a socket on which to accept an
incoming connection. This socket must not be bound or connected.

lpOutputBuffer: A pointer to a buffer that receives the first block of data sent on
a new connection, the local address of the server, and the remote address
of the client. The receive data is written to the first part of the buffer start-
ing at offset zero, while the addresses are written to the latter part of the
buffer. This parameter must be specified on operating systems prior to
Windows 2000 and can be set to NIL on Windows 2000 or later. If this
parameter is set to NIL, no receive operation will be performed, nor will
local or remote addresses be available through the use of GetAcceptEx-
Sockaddrs() calls.

dwReceiveDataLength: This is the number of bytes in lpOutputBuffer that will be
used for the data at the start of the buffer. This size should not include the
size of the local address of the server, nor the remote address of the client;
they are appended to the output buffer. If dwReceiveDataLength is zero,
accepting the connection will not result in a receive operation. Instead,
AcceptEx() completes as soon as a connection arrives, without waiting for
any data.

dwLocalAddressLength: This is the number of bytes reserved for the local
address information. This value must be at least 16 bytes more than the
maximum address length for the transport protocol in use.

dwRemoteAddressLength: This is the number of bytes reserved for the remote
address information. This value must be at least 16 bytes more than the
maximum address length for the transport protocol in use. It must not be
zero.

Communications � 241

5

C
h
a
p

te
r

lpdwBytesReceived: This stores the number of bytes received. This parameter is
set only if the operation completes synchronously. If it returns ERROR_
IO_PENDING and is completed later, this parameter is never set and you
must obtain the number of bytes read from the completion notification
mechanism.

lpOverlapped: An overlapped structure that is used to process the request. This
parameter must be specified; it cannot be NIL.

Return Value

If no error occurs, the function will return TRUE. If the function fails, Accept-
Ex() will return FALSE. Use the WSAGetLastError() function to retrieve the
error information. If, however, WSAGetLastError() returns the code ERROR_
IO_PENDING, the operation was successfully initiated and is still in progress.

See Appendix B for a detailed description of the error codes.

See Also

WSAAccept, WSAConnect, WSACreateEvent, WSAIoctl, WSARecv,
WSARecvFrom, WSASend, WSASendTo, WSAWaitForMultipleEvents

procedure GetAcceptExSockaddrs MSWSock.pas

Syntax

GetAcceptExSockaddrs(lpOutputBuffer: LPVOID; dwReceiveDataLength,
dwLocalAddressLength, dwRemoteAddressLength: DWORD; var LocalSockaddr:
LPSOCKADDR; var LocalSockaddrLength: Integer; RemoteSockaddr:
LPSOCKADDR; var RemoteSockaddrLength: Integer); stdcall;

Description

The procedure parses the data obtained from a call to the AcceptEx() function
and passes the local and remote addresses to a sockaddr structure.

Parameters

lpOutputBuffer: A pointer to a buffer that will receive the first block of data sent
on a connection resulting from an AcceptEx() call. It must be the same
lpOutputBuffer parameter that was passed to AcceptEx().

dwReceiveDataLength: The number of bytes in the buffer used for receiving the
first data. This value must be equal to the dwReceiveDataLength parameter
that was passed to the AcceptEx() function.

dwLocalAddressLength: This is the number of bytes reserved for the local
address information, which must be equal to the dwLocalAddressLength

parameter that was passed to the AcceptEx() function.

242 � Chapter 5

TE
AM
FL
Y

Team-Fly®

dwRemoteAddressLength: This is the number of bytes reserved for the remote
address information, which must be equal to the dwRemoteAddressLength

parameter that was passed to the AcceptEx() function.

LocalSockaddr: This is a pointer to the sockaddr structure that will receive the
local address of the connection, which is the same information that would
be returned by getsockname(). This parameter must be specified.

LocalSockaddrLength: This is the size of the local address and must be specified.

RemoteSockaddr: A pointer to the sockaddr structure that will receive the
remote address of the connection, which is the same information that
would be returned by the getpeername() function. This parameter must be
specified.

RemoteSockaddrLength: This is the size of the local address, which must be
specified.

Return Value

This function does not return a value.

See Also

accept, getpeername, getsockname

function TransmitFile MSWSock.pas

Syntax

TransmitFile(hSocket: TSocket; hFile: HANDLE; nNumberOfBytesToWrite,
nNumberOfBytesPerSend: DWORD; lpOverlapped: POVERLAPPED; lpTransmit-
Buffers: LPTRANSMIT_FILE_BUFFERS; dwReserved: DWORD): BOOL; stdcall;

Description

The function transmits file data over a connected socket handle. This function
uses the operating system’s cache manager to retrieve the file data and provides
high-performance file data transfer over sockets.

Parameters

hSocket: This is a handle to a connected socket over which the function will
transmit the file data. The socket specified by hSocket must be a connec-
tion-oriented socket. The function does not support datagram sockets.
Sockets of type SOCK_STREAM, SOCK_SEQPACKET or SOCK_RDM
are connection-oriented sockets.

hFile: This is a handle to the open file that the function transmits. Since the
operating system reads the file data sequentially, you can improve caching
performance by opening the handle with FILE_FLAG_SEQUENTIAL_
SCAN. The hFile parameter is optional; if the hFile parameter is NIL, only
data in the header and/or the tail buffer is transmitted, and any additional

Communications � 243

5

C
h
a
p

te
r

action, such as socket disconnect or reuse, is performed as specified by the
dwFlags parameter.

nNumberOfBytesToWrite: A number of file bytes to transmit. The function will
complete when it has sent the specified number of bytes or when an error
occurs, whichever occurs first. Set nNumberOfBytesToWrite to zero in
order to transmit the entire file.

nNumberOfBytesPerSend: This is the size of each block of data that will be sent
in each send operation, in bytes. Windows’ sockets layer uses this specifi-
cation. To select the default send size, set nNumberOfBytesPerSend to
zero. The nNumberOfBytesPerSend parameter is useful for message proto-
cols that have limitations on the size of individual send requests.

lpOverlapped: A pointer to an overlapped structure. If the socket handle has
been opened as overlapped, you must specify this parameter to achieve an
overlapped (asynchronous) I/O operation. By default, socket handles are
opened as overlapped.

lpTransmitBuffers: A pointer to a TRANSMIT_FILE_BUFFERS data structure
that contains pointers to data to send before and after the file data is sent.
Set the lpTransmitBuffers parameter to NIL if you want to transmit only
the file data. The structure is defined in MSWSock.pas and is shown
below:

_TRANSMIT_FILE_BUFFERS = record
Head: LPVOID;
HeadLength: DWORD;
Tail: LPVOID;
TailLength: DWORD;

end;
TRANSMIT_FILE_BUFFERS = _TRANSMIT_FILE_BUFFERS;

dwReserved: The dwReserved parameter has six settings:

� TF_DISCONNECT — Starts a transport-level disconnect after all the
file data has been queued for transmission

� TF_REUSE_SOCKET — Prepares the socket handle to be reused.
When the TransmitFile() request completes, the socket handle can be
passed to the AcceptEx() function. It is only valid if
TF_DISCONNECT is also specified.

� TF_USE_DEFAULT_WORKER — Directs the Windows sockets ser-
vice provider to use the system’s default thread to process long
TransmitFile() requests. The system default thread can be adjusted
using the following registry parameter as a REG_DWORD:
CurrentControlSet\Services\afd\Parameters\TransmitWorker.

244 � Chapter 5

� TF_USE_SYSTEM_THREAD — Directs the Windows sockets ser-
vice provider to use system threads to process long TransmitFile()
requests

� TF_USE_KERNEL_APC — Directs the driver to use kernel Asyn-
chronous Procedure Calls (APCs) instead of worker threads to process
long TransmitFile() requests. Long TransmitFile() requests are
defined as requests that require more than a single read from the file
or a cache; the request therefore depends on the size of the file and
the specified length of the send packet.

Use of TF_USE_KERNEL_APC can deliver significant performance
benefits. It is possible (though unlikely), however, that the thread in
which context TransmitFile() is initiated is being used for heavy com-
putations; this situation may prevent APCs from launching. Note that
the Windows sockets kernel mode driver uses normal kernel APCs,
which launch whenever a thread is in a wait state, which differs from
user-mode APCs, which launch whenever a thread is in an alertable
wait state initiated in user mode.

� TF_WRITE_BEHIND — Completes the TransmitFile() request
immediately, without pending. If this flag is specified and Transmit-
File() succeeds, then the data has been accepted by the system but
not necessarily acknowledged by the remote end. Do not use this set-
ting with the TF_DISCONNECT and TF_REUSE_SOCKET flags.

Return Value

If the function succeeds, the return value will be TRUE. Otherwise, the return
value will be FALSE. To get extended error information, call WSAGetLast-
Error(). The function returns FALSE if an overlapped I/O operation is not
complete before TransmitFile() returns. In that case, WSAGetLastError()
returns ERROR_ IO_PENDING or WSA_IO_PENDING. Applications should
handle either ERROR_IO_PENDING or WSA_IO_PENDING.

See Appendix B for a detailed description of the error codes.

See Also

AcceptEx, WSAGetLastError

function WSARecvEx MSWSock.pas

Syntax

WSARecvEx(s: TSocket; buf: PChar; len: Integer; var flags: Integer): Integer; stdcall;

Description

The function is identical to the recv() function, except that the flags parameter
is a variable parameter. When a partial message is received while using the

Communications � 245

5

C
h
a
p

te
r

datagram protocol, the MSG_PARTIAL bit is set in the flags parameter on
return from the function.

Parameters

s: A descriptor identifying a connected socket

buf: A buffer to receive the incoming data

len: The size of buf

flags: An indicator specifying whether the message is fully or partially received
for datagram sockets

Return Value

If no error occurs, the function will return the number of bytes received. If the
connection has been closed, it will return a value of zero. Additionally, if a partial
message was received, the MSG_PARTIAL bit is set in the flags parameter. If a
complete message was received, MSG_PARTIAL is not set in flags.

Otherwise, a value of SOCKET_ERROR is returned. You should call
WSAGetLastError() to retrieve the specific error code that can be retrieved by
calling code.

See Appendix B for a detailed description of the error codes.

See Also

recvfrom, select, send, socket, WSAAsyncSelect

Microsoft Extensions to Winsock 2 for Windows XP

and Windows .NET Server
In this section we will briefly explore new functions for Windows XP and Win-
dows .NET Server.

Microsoft added several new functions to the Winsock 2 stable for Windows
XP and Windows .NET Server. These functions are specific to Microsoft’s
implementation of Windows Sockets 2, and there is no sure-fire guarantee that
other vendors will support these functions.

These functions, like those we explored briefly in the last chapter, such as
getaddrinfo(), are designed for Windows XP and offer support for IPv6.

These functions are listed below.

� ConnectEx()

� DisconnectEx()

� TransmitPackets()

� WSANSPIoctl()

� WSARecvMsg()

246 � Chapter 5

Like the getaddrinfo() function that we examined in Chapter 4, these new func-
tions are designed to simplify network programming by replacing some calls
with one call. In the case of the ConnectEx() function, you can open the connec-
tion on a specified socket and immediately send the first block of data if you
elect to do so. Contrast that feature with the current way to call connect() and
then send() or WSASend() in a loop to send the data. As you would expect, the
ConnectEx() function will only work with stream protocols like SOCK_
STREAM, SOCK_RDM, and SOCK_SEQPACKET. The big plus with
ConnectEx() is that it uses overlapped I/O (see the section “Using Overlapped
Routines”) and WSAConnect() doesn’t. Potentially, because of its ability to use
overlapped I/O, ConnectEx() can handle a large number of clients using a few
threads. This is simply not possible with WSAConnect(). Another useful feature
is that under certain error conditions, this function is able to reuse the socket.

The DisconnectEx() function closes the stream connection and allows the
socket handle to be reused. The DisconnectEx() function does not use datagram
sockets. You can use this function with an overlapped structure. To use
DisconnectEx(), you will need to call WSAIoctl() with SIO_GET_EXTEN-
SION_FUNCTION_POINTER to obtain a function pointer to it. We will discuss
WSAIoctl() in the next chapter.

The TransmitPackets() function is a cost-effective way to send data that is
held in memory or a data file on a connected socket because it uses the operat-
ing system cache manager to retrieve the data, locking the memory for the
shortest time possible to send the data. You can see why this is so if you cast
your mind back to how you send data using a function to read the data and then
call the send() or WSASend() functions. As with DisconnectEx(), you will need
to call WSAIoctl() to create a function pointer to TransmitPackets(). This func-
tion, unlike ConnectEx(), can be used with both connected and non-connected
sockets.

The WSANSPIoctl() function is used to set or retrieve operating parameters
associated with a name space query handle. You can use this either as a blocking
or non-blocking function, depending on the application. To make WSANSPIoctl()
non-blocking, you would use an overlapped structure in its parameter list; oth-
erwise, you would pass it as a pointer to nothing. The final function is
WSARecvMsg(), which receives data as well as optional control information
from connected and unconnected sockets. You can use this function instead of
WSARecv() and WSARecvFrom().

function ConnectEx MSWSock.pas

Syntax

LPFN_CONNECTEX = function (s: TSocket; name: PSockAddr; namelen: Integer;
lpSendBuffer: PVOID; dwSendDataLength: DWORD; lpdwBytesSent: LPDWORD;
lpOverlapped: LPOVERLAPPED): BOOL; stdcall;

Communications � 247

5

C
h
a
p

te
r

Description

The function establishes a connection to a specified socket and optionally sends
data once the connection is established. The function is only supported on con-
nection-oriented sockets.

Parameters

s: Descriptor identifying an unconnected, previously bound socket.

name: Name of the socket of the sockaddr structure to which to connect

namelen: Length of name, in bytes

lpSendBuffer: Pointer to the buffer to be transferred upon connection establish-
ment. This parameter is optional.

dwSendDataLength: Size of data in lpSendBuffer. Used when lpSendBuffer is not
NIL.

lpdwBytesSent: Number of bytes sent from lpSendBuffer. Used when lpSend-

Buffer is not NIL.

lpOverlapped: An overlapped structure used to process the request, which must
be specified and cannot be NIL.

Return Value

If successful, it will return TRUE; otherwise, it will return FALSE. You should
use the WSAGetLastError() function to get extended error information. If
WSAGetLastError() returns the code ERROR_IO_PENDING, the operation
has initiated successfully and is in progress. Under such circumstances, the call
may still fail when the overlapped operation completes.

If the error code returned is WSAECONNREFUSED, WSAENETUN-
REACH, or WSAETIMEDOUT, the application can call ConnectEx(),
WSAConnect(), or connect() again on the same socket.

See Appendix B for a detailed description of the error codes.

See Also

AcceptEx, bind, closesocket, connect, getsockopt, ReadFile, send, setsockopt,
TransmitFile, WriteFile, WSAConnect, WSARecv, WSASend, WSAStartUp

function DisconnectEx MSWSock.pas

Syntax

LPFN_DISCONNECTEX = function (s: TSocket; lpOverlapped: LPOVERLAPPED;
dwFlags: DWORD; dwReserved: DWORD): BOOL; stdcall;

Description

The function closes a connection on a socket and allows the socket handle to be
reused.

248 � Chapter 5

Parameters

s: A handle to a connected, connection-oriented socket

lpOverlapped: A pointer to an overlapped structure. If the socket handle has
been opened as overlapped, specifying this parameter will result in over-
lapped (asynchronous) I/O operation. Socket handles are overlapped by
default.

dwFlags: Specifies a flag that customizes processing of the function call. The
dwFlags parameter has one optional flag, TF_REUSE_SOCKET. This will
allow the socket handle to be reused by AcceptEx() or ConnectEx() when
DisconnectEx() is done.

dwReserved: Reserved. Must be zero. If nonzero, the error code WSAEINVAL
will be returned.

Return Value

If successful, the function will return TRUE; otherwise, it will return FALSE.
Use the WSAGetLastError() function to get extended error information. If
WSAGetLastError() returns the code ERROR_IO_PENDING, the operation
has been initiated successfully and is in progress.

See Appendix B for a detailed description of the error codes.

See Also

AcceptEx, connect, ConnectEx

function TransmitPackets MSWSock.pas

Syntax

LPFN_TRANSMITPACKETS = function (Socket: TSocket; lpPacketArray:
LPTRANSMIT_PACKETS_ELEMENT; ElementCount: DWORD; nSendSize:
DWORD; lpOverlapped: LPOVERLAPPED; dwFlags: DWORD): BOOL; stdcall;

Description

The function transmits in-memory data or file data over a connected socket.
The function uses the operating system cache manager to retrieve file data,
locking memory for the minimum time required to transmit and resulting in effi-
cient, high-performance transmission.

Parameters

Socket: A handle to the connected socket to be used in the transmission.
Although the socket does not need to be a connection-oriented circuit, the
default destination/peer should have been established using the connect(),
WSAConnect(), accept(), WSAAccept(), AcceptEx(), or WSAJoinLeaf()
functions.

Communications � 249

5

C
h
a
p

te
r

lpPacketArray: An array of type TRANSMIT_PACKETS_ELEMENT, describing
the data to be transmitted

ElementCount: The number of elements in lpPacketArray

nSendSize: The size of the data block used in the send operation. Set nSendSize

to zero to let the sockets layer select a default size for sending.

Setting nSendSize to $FFFFFFF enables the caller to control the size and
content of each send request, achieved by using the TP_ELEMENT_EOP
flag in the TRANSMIT_PACKETS_ELEMENT array pointed to in the
lpPacketArray parameter. This capability is useful for message protocols
that place limitations on the size of individual send requests. The structure
of TRANSMIT_PACKETS_ELEMENT is defined in MSWSock.pas and is
shown below:

_TRANSMIT_PACKETS_ELEMENT = record
dwElFlags: ULONG;
cLength: ULONG;
case Integer of
0: (
nFileOffset: LARGE_INTEGER;
hFile: HANDLE);

1: (
pBuffer: LPVOID);

end;
TRANSMIT_PACKETS_ELEMENT = _TRANSMIT_PACKETS_ELEMENT;
PTRANSMIT_PACKETS_ELEMENT = ^TRANSMIT_PACKETS_ELEMENT;
LPTRANSMIT_PACKETS_ELEMENT = ^TRANSMIT_PACKETS_ELEMENT;
TTransmitPacketElement = TRANSMIT_PACKETS_ELEMENT;
PTransmitPacketElement = PTRANSMIT_PACKETS_ELEMENT;

lpOverlapped: A pointer to an OVERLAPPED structure. If the socket handle
specified in the Socket parameter has been opened as overlapped, use this
parameter to achieve asynchronous (overlapped) I/O operation. Socket
handles are opened as overlapped by default.

dwFlags: Flags used to customize processing of the TransmitPackets() function.
Table 5-11 outlines the use of the dwFlags parameter.

Table 5-11: Possible values for the dwFlags parameter

Value Description

TF_DISCONNECT Starts a transport-level disconnect after all the file data has been queued for
transmission. This value applies only to connection-oriented sockets. Specifying
this flag for datagram sockets results in an error.

TF_REUSE_SOCKET Prepares the socket handle to be reused. When the TransmitPackets() function
completes, the socket handle can be passed to the AcceptEx() function. This
value is valid only when a connection-oriented socket and TF_DISCONNECT
are specified.

250 � Chapter 5

Value Description

TF_USE_DEFAULT_WORKER Directs Windows sockets to use the system’s default thread to process long
TransmitPackets() requests. Long TransmitPackets() requests are defined as
requests that require more than a single read from the file or a cache; the long
request definition, therefore, depends on the size of the file and the specified
length of the send packet. The system default thread can be adjusted using the
following registry parameter as a REG_DWORD: CurrentControlSet/Ser-
vices/AFD/Parameters/TransmitWorker.

TF_USE_SYSTEM_THREAD Directs Windows sockets to use system threads to process long Transmit-
Packets() requests. Long TransmitPackets() requests are defined as requests
that require more than a single read from the file or a cache; the long request
definition, therefore, depends on the size of the file and the specified length of
the send packet.

TF_USE_KERNEL_APC Directs Windows sockets to use kernel Asynchronous Procedure Calls (APCs)
instead of worker threads to process long TransmitPackets() requests. Long
TransmitPackets() requests are defined as requests that require more than a
single read from the file or a cache; the long request definition, therefore,
depends on the size of the file and the specified length of the send packet

Return Value

If successful, the function will return TRUE; otherwise, it will return FALSE.
Use the WSAGetLastError() function to retrieve extended error information.

See Appendix B for a detailed description of the error codes.

See Also

accept, AcceptEx, Connect, send, TransmitFile, WSAAccept, WSAConnect,
WSAGetOverlappedResult, WSAJoinLeaf

function WSANSPIoctl Winsock2.pas

Syntax

WSANSPIoctl(hLookup: HANDLE; dwControlCode: DWORD; lpvInBuffer:
LPVOID; cbInBuffer: DWORD; lpvOutBuffer: LPVOID; cbOutBuffer: DWORD;
lpcbBytesReturned: LPDWORD; lpCompletion: LPWSACOMPLETION): Integer;
stdcall;

Description

The function enables developers to make I/O control calls to a registered name
space.

Parameters:

hLookup: Lookup handle returned from a call to the WSALookupServiceBegin()
function.

dwControlCode: Control code of the operation to perform

lpvInBuffer: Pointer to the input buffer

cbInBuffer: Size of the input buffer

Communications � 251

5

C
h
a
p

te
r

lpvOutBuffer: Pointer to the output buffer

cbOutBuffer: Pointer to an integral value for the size of the output buffer

lpcbBytesReturned: Pointer to the number of bytes returned

lpCompletion: Pointer to a WSACompletion structure used for asynchronous
processing. Set lpCompletion to NIL to force blocking (synchronous)
execution.

Return Value

If successful, the function will return the code NO_ERROR. Otherwise, it will
return SOCKET_ERROR, and you should call WSAGetLastError() to retrieve a
specific error code.

See Appendix B for a detailed description of the error codes.

See Also

WSAGetLastError, WSALookupServiceBegin, WSALookupServiceEnd,
WSALookupServiceNext

function WSARecvMsg MSWSock.pas

Syntax

LPFN_WSARECVMSG = function (s: TSocket; lpMsg: LPWSAMSG;
lpdwNumberOfBytesRecvd: LPDWORD; lpOverlapped: LPWSAOVERLAPPED;
lpCompletionRoutine: LPWSAOVERLAPPED_COMPLETION_ROUTINE): INT;
stdcall;

Description

The function receives data and optional control information from connected and
unconnected sockets. This function can be used in place of the WSARecv() and
WSARecvFrom() functions.

Parameters

s: Descriptor identifying the socket

lpMsg: A _WSAMSG structure based on Posix.1g specification for the msghdr
structure. The structure is defined in MSWSock.pas as:

_WSAMSG = record
name: LPSOCKADDR; // Remote address
namelen: INT; // Remote address length
lpBuffers: LPWSABUF; // Data buffer array
dwBufferCount: DWORD; // Number of elements in the array
Control: WSABUF; // Control buffer
dwFlags: DWORD; // Flags

end;
WSAMSG = _WSAMSG;
PWSAMSG = ^WSAMSG;
LPWSAMSG = ^WSAMSG;
TWsaMsg = WSAMSG;

252 � Chapter 5

TE
AM
FL
Y

Team-Fly®

lpNumberOfBytesRecvd: A pointer to the number of bytes received, which
become immediately available when the WSARecvMsg() function call
completes

lpOverlapped: A pointer to a WSAOVERLAPPED structure, which is ignored for
non-overlapped structures

lpCompletionRoutine: A pointer to the completion routine called when the
receive operation completes, which is ignored for non-overlapped
structures

Return Value

On success and immediate completion, the function will return zero. When zero
is returned, the specified completion routine is called once the calling thread is
in the alertable state. On failure, the function will return a value of SOCKET_
ERROR. If a call to WSAGetLastError() returns the code WSA_IO_PENDING,
the overlapped operation has been successfully initiated, and completion will be
indicated using either events or completion ports.

See Appendix B for a detailed description of the error codes.

See Also

WSAMSG, WSAOverlapped, WSARecv, WSARecvFrom

IP Multicast
This section provides a brief but concise introduction to IP Multicast. This is a
fascinating topic in its own right and is the sole subject matter of many network-
ing tomes on the market. No wonder, since it is the communication technology
of the future. What we will cover here barely does justice to the topic, but hope-
fully it will give a taste of what you can do with it in the future. To set out our
brief exploration of this topic, we ask the following three questions:

� What is IP Multicast?

� What can you do with it?

� How do you develop a simple IP Multicast application?

What is IP Multicast?

Up to now, we have been looking at one type of IP address: unicast. You are for-
given if you thought that this was the only type of IP address. IP supports two
other types of addresses: broadcast and multicast. Strictly speaking, multicast is
IP Multicast in this book because there is a form of multicast for the AF_ATM
address family. We will not discuss multicast for the AF_ATM address family
nor will we cover broadcast in this book. Instead, we will focus on IP Multicast,
which is the prevalent form of multicast on the Internet.

Communications � 253

5

C
h
a
p

te
r

What is IP Multicast? The simplest answer to this question is that it is the
transfer of IP traffic between a sender and a group of receivers via a special IP
address, which, not surprisingly, is called an IP Multicast address. It is through
this special address that receivers, irrespective of their location on the network,
can, by listening to that address, receive all packets from the sender.

Because of this feature, a sender need only send one copy of the data to that
special address for delivery to all receivers listening on that address. As you can
imagine, IP Multicast (from now on when we refer to multicast we mean IP
Multicast) is a very efficient way of sending or “pushing” information to many
receivers. By no stretch of the imagination, it is certainly more efficient than
TCP, a protocol that can only offer a one-to-one communication circuit.

An analogy to the one-to-many delivery of data would be a radio station (the
sender) broadcasting music to anyone (the receiver) who tunes in to listen.

The properties of IP Multicast are:

� A collection of hosts (receivers) that listen on an IP Multicast address is
called a host group.

� Membership of the host group is dynamic. That is, any host can leave and
join the group at any time.

� There is no limitation to the number of hosts in a host group.

� A host group can consist of hosts that are spread across the Internet. That
is, the hosts need not be confined to a network segment.

� A sender need not be a member of the host group.

We have been discussing the issue of a special IP Multicast address as though it
were one address. Not so! There is a range of addresses, designated as Class D,
that are solely for IP Multicast. This class of addresses has a range from
224.0.0.0 to 239.255.255.255. Not all of these addresses are available for use by
all. Some of these addresses are reserved for special functions. Table 5-12 enu-
merates these reserved IP Multicast addresses. You are free to use any other IP
Multicast addresses in the range 224.0.1.0 to 238.255.255.255 inclusive but you
should be aware of a little caveat: Other IP Multicast applications might be
using your very own IP Multicast address for a very different purpose from
what you had in mind for your multicasting application. As this coverage is brief,
we will not discuss the ramifications of IP Multicast address collisions.

Table 5-12: Reserved IP Multicast addresses

Address Function

224.0.0.1 All hosts on this subnet

224.0.0.2 All routers on this subnet

224.0.0.5 Open Shortest Path First (OSPF) Version 2, designed to reach all OSPF routers
on a network

224.0.0.6 OSPF Version 2, designed to reach all OSPF designated routers on a network

254 � Chapter 5

Address Function

224.0.0.9 Routing Information Protocol (RIP) Version 2

224.0.1.1 Network Time Protocol

Now that we have established what multicast is, how does it actually work in
practice? As with other things in life, we have to start at the bottom: the hard-
ware layer. Let’s first consider a one-to-one operation (unicast). Every
networked PC on a network (usually an Ethernet) has an Ethernet card (a.k.a.
NIC, network interface card), which has a unique 48-bit address. Data that is
sent between NICs are encapsulated as frames. Each frame has a destination
address of the NIC hosted by the target PC. Every NIC on the LAN will receive
this frame. However, all NICs, except for the target NIC, will reject this frame,
as its destination address will not match with their address. The target NIC
accepts this frame and the encapsulated data percolates up from the hardware
layer to the TCP/IP stack and then the data is received by the Winsock
application.

What Can You Do with IP Multicast?

Unfortunately, the Internet remains a vast ocean of unicast addresses with
islands of multicast addresses. Due to this fact, there have been relatively few
applications that use multicast. In spite of the slow uptake of multicast applica-
tions, it is one of the delivery mechanisms of the future. One reason for this
situation is that the majority of routers were designed for unicast routing. This
is changing, however, with the replacement of existing routers by those that can
handle multicast routing. However, multicasting can occur between these
islands through a concept called IP Tunneling. IP Tunneling is simply a tech-
nique of wrapping IP Multicast datagrams as unicast datagrams. MBone
(Internet Multicast Backbone) uses this concept successfully to exchange data
between islands of multicast addresses. MBone is heavily used for audio and
video multicasts of Internet Engineering Task Force (IETF) meetings, and com-
munications and meetings of NASA, the U.S. House of Representatives, and the
Senate. We will not dive into the topic of IP Tunneling, as it is beyond the scope
of this book.

Those multicast applications that have appeared so far cater to the following
tasks:

� File transfer; file updates

� Transmission of data; live feeds

� Multimedia applications

Communications � 255

5

C
h
a
p

te
r

How Do You Develop a Simple IP Multicast Application?

In spite of the fact that the data propagation on the Internet is still predomi-
nantly unicast-based, there is nothing to stop you from developing a multicast
application for use on your LAN or company’s Intranet. Unlike routers on the
Internet, LANs are equipped to handle multicast because Ethernet cards are
preconfigured for multicast. The only problem you would have is that a router
sitting between your LANs may not support multicast routing. Without further
ado, let’s jump to it.

In fact, you would need to develop two Winsock 2 multicast applications; one
is the sender application that sits on one machine, and the other is the receiver
application that sits on PCs on the same LAN. Let’s discuss the server applica-
tion first.

�NOTE: The Winsock 1 version of IP Multicasting is implemented
differently, but we will not discuss the Winsock 1
implementation in this book.

Before the server can send any data, it has to perform several tasks, including
initializing special data structures and binding the multicast address that your
clients’ applications will tune in to listen. The following steps outline a typical
multicast sender using Winsock 2:

1. Call WSASocket() to create a UDP socket. You should call this function
with the dwFlags parameter set to WSA_FLAG_MULTIPOINT_C_LEAF,
WSA_FLAG_MULTIPOINT_D_LEAF, or WSA_FLAG_OVERLAPPED.
This is to indicate to Winsock that the socket is to be used for multicast.

2. Set up the socket address for the local interface and call bind().

3. Set up the socket address for the remote address (i.e., the IP Multicast
address to which the sender application will send the data.) For example,
the IP address would be something like 224.1.2.3.4.

4. By default, the TTL is set to 1. To send the data to the host group beyond
the local network, you will need to set the TTL to 8. Do this by calling
setsockopt() with the IP_MULTICAST_TTL option.

5. To disable loopback of datagrams, call setsockopt() with the IP_MULTI-
CAST_LOOP option.

6. Call WSAJoinLeaf() with the JL_BOTH option to join the host group. This
is not strictly necessary for a sender, but it is an absolute must for a
receiver.

7. Call sendto() to send the data until complete.

256 � Chapter 5

Steps for running a multicast receiver are essentially the same as the sender,
except in step 7 where the receiver receives the datagrams as they arrive at the
IP Multicast address. Listings 5-11 and 5-12 give the source code for the sender
and receiver applications. Although we haven’t discussed IP Multicast from the
perspective of the Winsock 1.1 developer, we have included the Winsock 1.1
version as EX513 on the companion CD. This application does not use
WSAJoinLeaf(), as it is a Winsock 2 function.

Naturally a full-fledged multicast sender and receiver would be more complex
than the steps described above. For example, in a file transfer using multicast,
the receiver would have to reassemble the datagrams to build the file. That is, if
the receiver finds any datagrams missing, corrupted, or duplicated, it would
need to notify the sender of this fact. This requires additional and complex algo-
rithms to solve this particular problem, which is beyond the scope of this book.
To join an IP Multicast session, you should call WSAJoinLeaf(). A sender does
not need to join the host group, but the receiver must in order to tune in to the
datagrams. In a simple multicast application as we have described above, we call
WSAJoinLeaf() like this:

WSAJoinLeaf(skt, @RemoteAddr, SizeOf(RemoteAddr), NIL, NIL, NIL, NIL, JL_BOTH);

The first parameter is the socket that we use to join the host group. The second
parameter is the socket address at which the receivers receive the data. The
third parameter specifies the size of the socket address. The following four
parameters, lpCallerData, lpCalleeData, lpSQOS, and lpGQOS, are set to NIL.
The lpCallerData and lpCalleeData parameters specify the exchange of user
data. The lpSQOS parameter specifies a pointer to a special structure that is
used for Quality of Service (QOS) mechanisms, which is beyond the scope of
this book. The lpGQOS parameter, which is not implemented in the current ver-
sion of Winsock 2, specifies the socket groups to be used with the structure for
QOS. The last parameter, dwFlags, specifies how the socket should be used. If
the socket is acting as a sender, use the JL_SENDER_ONLY flag. If the socket
is acting as a receiver, use JL_RECEIVER_ONLY. If you want the socket to
send and receive data, use the JL_BOTH flag. This raises an interesting
thought: If the sender can also act as a receiver, you could have a many-to-many
multicast session. For example, you could develop a many-to-many chat
application.

To conclude this short section, we will give a formal definition of the
WSAJoinLeaf() function.

Communications � 257

5

C
h
a
p

te
r

function WSAJoinLeaf Winsock2.pas

Syntax

WSAJoinLeaf(s: TSocket; name: PSockAddr; namelen: Integer; lpCallerData:
LPWSABUF; lpCalleeData: LPWSABUF; lpSQOS, lpGQOS: LPQOS; dwFlags:
DWORD): TSocket; stdcall;

Description

The function joins a leaf node into a multipoint session, exchanges connect data,
and specifies quality of service based on the specified FLOWSPEC structures.

Parameters

s: The descriptor identifying a multipoint socket

name: The name of the peer to which the socket is to be joined

namelen: The length of name

lpCallerData: A pointer to the user data that is to be transferred to the peer dur-
ing multipoint session establishment

lpCalleeData: A pointer to the user data that is to be transferred back from the
peer during multipoint session establishment

lpSQOS: A pointer to the FLOWSPEC structures for socket s, one for each
direction

lpGQOS: Reserved for future use with socket groups; a pointer to the
FLOWSPEC structures for the socket group (if applicable)

dwFlags: Flags to indicate that the socket is acting as a sender (JL_SENDER_
ONLY), receiver (JL_RECEIVER_ONLY), or both (JL_BOTH)

Return Value

If no error occurs, the function will return a socket descriptor for the newly
created multicast socket. Otherwise, the function will return a value of
INVALID_SOCKET. To retrieve a specific error code, you should call WSA-
GetLastError(). On a blocking socket, the return value will indicate success or
failure of the join operation. On the other hand, with a non-blocking socket, the
function will indicate a successful initiation of a join operation by returning a
valid socket descriptor. When you use this function with WSAAsyncSelect() or
WSAEventSelect(), and a network event (FD_CONNECT) occurs, an indication
will be given on the original socket s when the join operation completes, either
successfully or otherwise. If WSAGetLastError() returns one of these codes—
WSAECONNREFUSED, WSAENETUNREACH or WSAETIMEDOUT—you
can call WSAJoinLeaf() on the same socket.

See Appendix B for a detailed description of the error codes.

258 � Chapter 5

See Also

accept, bind, select, WSAAccept, WSAAsyncSelect, WSAEventSelect,
WSASocket

Example

Listing 5-11 (EX511) demonstrates how to use WSAJoinLeaf() when an IP
Multicast application sends data to the IP Multicast address 234.5.6.7 to which
receivers listen. Take a look at program EX512 (available on the companion
CD), which also demonstrates the use of WSAJoinLeaf(), as well as how to
receive data from program EX511.

Listing 5-11: A simple IP Multicast sender application

program EX511;

{$APPTYPE CONSOLE}

uses
SysUtils,
Windows,
Winsock2,
WS2tcpip;

const

MCASTADDR = '234.5.6.7';
MCASTPORT = 25000;
BUFSIZE = 1024;
DEFAULT_COUNT = 500;

var
Sender: Boolean = TRUE; // Act as a sender?
LoopBack: Boolean = FALSE; // Disable loopback?
dwInterface, // Local interface to bind to
dwMulticastGroup, // Multicast group to join
dwCount: DWORD; // Number of messages to send/receive
iPort: WORD; // Port number to use
wsaData: TWSADATA;
LocalAddr,
RemoteAddr,
FromAddr: TSockAddrIn;
skt,
sktMC: TSocket;
recvbuff,
sendbuff: array[0..BUFSIZE - 1] of char;
Len: Integer = SizeOf(TSockAddrIn);
optval,
Res: Integer;
i: DWORD;

begin
if WSAStartup($0202,wsaData) = 0 then
begin
try
dwInterface := INADDR_ANY;
dwMulticastGroup := inet_addr(MCASTADDR);
iPort := MCASTPORT;

Communications � 259

5

C
h
a
p

te
r

dwCount := DEFAULT_COUNT;
// Create a socket ...

skt := WSASocket(AF_INET, SOCK_DGRAM, 0, NIL, 0, WSA_FLAG_MULTIPOINT_C_LEAF or
WSA_FLAG_MULTIPOINT_D_LEAF or WSA_FLAG_OVERLAPPED);

if skt = INVALID_SOCKET then
begin
WriteLn(Format('Call to WsaSocket() failed with: %d', [WSAGetLastError]));
WSACleanup;
Halt;

end;
// Bind to the local interface. This is done to receive data.

LocalAddr.sin_family := AF_INET;
LocalAddr.sin_port := htons(iPort);
LocalAddr.sin_addr.s_addr := dwInterface;
Res := bind(skt, @LocalAddr, SizeOf(LocalAddr));
if Res = SOCKET_ERROR then
begin
WriteLn(Format('Call to bind() failed with: %d', [WSAGetLastError]));
closesocket(skt);
WSACleanup;
Halt;

end;
// Setup the SOCKADDR_IN structure describing the multicast group we want to join

RemoteAddr.sin_family := AF_INET;
RemoteAddr.sin_port := htons(iPort);
RemoteAddr.sin_addr.s_addr := dwMulticastGroup;

// Change the TTL to something more appropriate
optval := 8;
Res := setsockopt(skt, IPPROTO_IP, IP_MULTICAST_TTL, PChar(@optval), SizeOf(Integer));
if Res = SOCKET_ERROR then
begin
WriteLn(Format('Call to setsockopt(IP_MULTICAST_TTL) failed: %d',

[WSAGetLastError]));
closesocket(skt);
WSACleanup;
Halt;

end;
// Disable loopback ...

optval := 0;
Res := setsockopt(skt, IPPROTO_IP, IP_MULTICAST_LOOP, PChar(@optval), SizeOf(optval));
if Res = SOCKET_ERROR then
begin
WriteLn(Format('Call to setsockopt(IP_MULTICAST_LOOP) failed: %d',

[WSAGetLastError]));
closesocket(skt);
WSACleanup;
Halt;

end;
// Join the multicast group. Note that sockM is not used
// to send or receive data. It is used when you want to
// leave the multicast group. You simply call closesocket()
// on it.

sktMC := WSAJoinLeaf(skt, @RemoteAddr, SizeOf(RemoteAddr), NIL, NIL, NIL, NIL,
JL_BOTH);

if sktMC = INVALID_SOCKET then
begin
WriteLn(Format('Call to WSAJoinLeaf() failed: %d', [WSAGetLastError]));
closesocket(skt);
WSACleanup;
Halt;

260 � Chapter 5

end;
// Now send data

while TRUE do
begin

StrPCopy(sendbuff,Format('Server 1: This is a test: %d', [i+1]));
inc(i);
Res := sendto(skt, sendbuff, StrLen(sendbuff), 0, @RemoteAddr, SizeOf(RemoteAddr));
if Res = SOCKET_ERROR then
begin
WriteLn(Format('Call to sendto() failed with: %d',[WSAGetLastError]));
closesocket(sktMC);
closesocket(skt);
WSACleanup;
Halt;

end;
Sleep(250);

end;
// Leave the multicast group by closing sock
// For non-rooted control and data plane schemes, WSAJoinLeaf
// returns the same socket handle that you pass into it.
//

closesocket(skt);
finally
WSACleanup;

end;
end else
WriteLn('Unable to load Winsock 2!');

end.

Obsolete Functions
In this section, we will discuss obsolete functions to complete our coverage.
These functions are specific to Winsock 1.1, but we include these here for com-
pleteness. These functions manage Winsock 1.1 blocking functions.

�NOTE: Winsock 2 applications should not use any of the functions in
this section.

function WSACancelBlockingCall Winsock2.pas

Syntax

WSACancelBlockingCall : integer;

Description

This function cancels a blocking call that is in progress and any outstanding
blocking operation for this thread. You would use this function in two cases:

� In the first case, suppose our application is processing a message that has
been received while a blocking call is in progress. In this case,
WSAIsBlocking() will be TRUE.

Communications � 261

5

C
h
a
p

te
r

� In the second case, suppose that a blocking call is in progress, and
Winsock has called back to the application’s blocking hook function as
established by WSASetBlockingHook().

In each case, the original blocking call will terminate as soon as possible with
the error WSAEINTR. In the first case, the termination will not take place until
Windows message scheduling has caused control to revert to the blocking rou-
tine in Winsock. In the second case, the blocking call will terminate as soon as
the blocking hook function completes. Now we will consider the effects of call-
ing WSACancelBlockingCall() on blocking operations, such as connect(),
accept(), and select().

When you call WSACancelBlockingCall() to cancel a connect operation,
Winsock will terminate the blocking call as soon as possible. However, it may
not be possible to release the socket resources until the connection has com-
pleted (and then been reset) or timed out. This is likely to be noticeable only if
the application immediately tries to open a new socket (if no sockets are avail-
able) or connect to the same peer.

Canceling an accept() or select() call does not affect the sockets passed to
these calls, but the blocking call will fail. Canceling any other blocking operation
other than accept() and select() can leave the socket in an indeterminate state.
Therefore, to be on the safe side, you must always call closesocket() after can-
celing a blocking operation on a socket.

Return Value

If the function succeeds, it returns zero, indicating that the overlapped opera-
tion has completed successfully. If the function fails, it returns the value of
SOCKET_ERROR. To retrieve the specific error code, call the function
WSAGetLastError(). Possible error codes are WSANOTINITIALISED,
WSAENETDOWN, and WSAEOPNOTSUPP.

See Appendix B for a detailed description of the error codes.

See Also

WSAIsBlocking, WSASetBlockingHook, WSAUnhookBlockingHook

function WSAIsBlocking Winsock2.pas

Syntax

WSAIsBlocking: Bool;

Description

In a 16-bit environment like Windows 3.1, this function allows a Winsock 1.1
application to determine if it is executing while waiting for a previous blocking
call to complete. In other words, you can use the WSAIsBlocking function to

262 � Chapter 5

TE
AM
FL
Y

Team-Fly®

check if the task has been re-entered while waiting for an outstanding blocking
call to complete.

Return Value

The return value is TRUE if there is an outstanding blocking function awaiting
completion in the current thread. Otherwise, it is FALSE. Call WSAGetLast-
Error() to retrieve the error code.

See Appendix B for a detailed description of the error codes.

See Also

WSACancelBlockingCall, WSASetBlockingHook, WSAUnhookBlockingHook

function WSASetBlockingHook Winsock2.pas

Syntax

WSASetBlockingHook(lpBlockFunc: TFarProc): TFarProc; stdcall;

Description

This function establishes a blocking hook function supplied by your application.
A Winsock implementation includes a default mechanism by which blocking
socket functions are implemented. This function gives the application the ability
to execute its own function at “blocking” time in place of the default function.

Use the WSASetBlockingHook() function to create your own blocking hook
function to handle more complex message processing that the default blocking
mechanism cannot handle adequately. The only caveat here is that, with the
exception of WSACancelBlockingCall(), you cannot call other Winsock 1.1 func-
tions. Calling WSACancelBlockingCall() will, of course, cause the blocking loop
to terminate.

Parameters

lpBlockFunc: A pointer to the blocking function to be installed

Return Value

The return value is a pointer to the previously installed blocking function. An
application that calls the WSASetBlockingHook() function should save this
return value so that the application can restore it if necessary. (If “nesting” is
not important, the application may simply discard the value returned by
WSASetBlockingHook() and eventually use WSAUnhookBlockingHook() to
restore the default mechanism.) If the operation fails, a NIL pointer is returned,
and a specific error number may be retrieved by calling WSAGetLastError().
Possible error codes are WSANOTINITIALISED, WSAENETDOWN,
WSAEINPROGRESS, WSAEFAULT, and WSAEOPNOTSUPP.

See Appendix B for a detailed description of the error codes.

Communications � 263

5

C
h
a
p

te
r

See Also

WSACancelBlockingCall, WSAIsBlocking, WSAUnhookBlockingHook

function WSAUnhookBlockingHook Winsock2.pas

Syntax

WSAUnhookBlockingHook;

Description

This function restores the default blocking hook function. Calling this removes
any previous blocking hook that has been installed and reinstalls the default
blocking mechanism. That is, WSAUnhookBlockingHook() will always install
the default mechanism, and never the previous mechanism.

Return Value

If the function succeeds, it returns zero. If the function fails, it returns a value of
SOCKET_ERROR. To retrieve the error code, call the function WSAGet-
LastError(). Possible error codes are WSANOTINITIALISED, WSAEIN-
PROGRESS, and WSAEOPNOTSUPP.

See Appendix B for a detailed description of the error codes.

See Also

WSACancelBlockingCall, WSAIsBlocking, WSASetBlockingHook

Summary
We have reached the end of a particularly long chapter. In this chapter, we
learned the techniques of opening a connection, managing data exchange, and
breaking the connection. We also learned how to use the I/O schemes to man-
age the data exchange and to select which I/O scheme is appropriate for a
server or client application.

In the next chapter, which will be considerably shorter, we will examine ways
of modifying attributes of a socket, which will modify the way our application
handles the data transfer. Just as important, we will also discuss how to retrieve
an attribute of a socket.

264 � Chapter 5

Chapter 6

Socket Options

In the last chapter, we exposed the full spectrum of opening a connection, man-
aging data exchange, and closing a connection. In that discussion, we touched
upon the topic of setting and querying the attributes of a socket. In this chapter,
the last on Winsock 2, we will explore those functions that query and modify the
attributes of a socket. We will also explore the functions that control the I/O
behavior of a socket.

Querying and Modifying Attributes
In this section, we will learn how to use getsockopt() and setsockopt() to query
and modify the attributes of a socket, respectively.

Why would we want to query the attributes, or options, of a socket? And why
would we want to set the options? The answer to both of these questions is not
just to obtain the information, but to use the information gleaned from
getsockopt(), if we wish, to fine-tune the behavior of the socket. To fine-tune a
socket’s attributes, you should use setsockopt(). Let’s take an example from a
real-life situation. Very often, you may want to increase the timeout on a receiv-
ing socket from 2 to 20 seconds on an extremely slow network. You would use
the getsockopt() function to verify that the receiving socket’s timeout is,
indeed, 2 seconds. You would call it like the following:

// Retrieve the value to verify what we set ...
Res := getsockopt(skt, SOL_SOCKET, SO_RCVTIMEO, PChar(@Value),Size);
if Res = SOCKET_ERROR then

{rest of code}

Don’t worry about the parameters in getsockopt(), as we will explain these
shortly.

Having satisfied yourself that the timeout value is 2 seconds, call
setsockopt() to set a new timeout value of 20 seconds, as the following snippet
of code illustrates:

// Now set the time-out value to 20 ...
Value := 200;
Size := SizeOf(Value);
Res := setsockopt(skt, SOL_SOCKET, SO_RCVTIMEO, PChar(@Value), Size);

265

if Res = SOCKET_ERROR then

{rest of code}

Now that we have demonstrated how to use the getsockopt() and setsockopt()
functions (admittedly contrived), it’s time for us to examine these prototypes,
which are defined in Winsock2.pas. We will start with the getsockopt() function:

function getsockopt(s: TSocket; level, optname: Integer; optval: PChar; var optlen: Integer):
Integer; stdcall;

The first parameter, s, is the socket with options that you wish to query. The
second parameter, level, defines the level of the socket options. We will discuss
this parameter in detail shortly. The third parameter, optname, is the name of
the socket option that you wish to discover. The fourth parameter, optval, con-
tains the options set of that level for that socket. Note that this parameter is a
PChar type, so you always typecast this as a PChar variable.

In the case of the SO_RCVTIMEO option in the preceding code fragment,
typecast the time in seconds as a PChar variable. (This typecasting also applies
to setsockopt(), by the way.) The last parameter, optlen, defines the length of the
result. For example, when you call getsockopt() with the SO_LINGER option as
the optname parameter, optlen will be the size of the TLinger record (see the
definition of TLinger record in Winsock2.pas). For the majority of socket
options, the size of the socket option is usually the size of an integer. If a socket
option was never set with setsockopt(), getsockopt() returns the default value
for the socket option.

Remember from our discussion on WSAStartup() in Chapter 2 that it is not
possible to get full details of Winsock 2’s properties. You can get over this hur-
dle by calling getsockopt() to retrieve the details. For example, to retrieve
information on the maximum message size (from the iMaxUdpDg field in the
TWSAData record), you would call getsockopt() with the SO_MAX_MSG_SIZE
option.

When you want to modify the behavior of a socket, you should call
setsockopt() to set the attributes, or options, for that socket. We show its proto-
type, which is also defined in Winsock2.pas:

function setsockopt(s: TSocket; level, optname: Integer; optval: PChar; optlen: Integer):
Integer; stdcall;

Since the parameters for setsockopt() are similar to those for getsockopt(), we
will not describe them again. However, there are two types of socket options
that you must bear in mind, which are as follows:

� Boolean options — Enables or disables a feature or behavior. To enable a
Boolean option, you should set the optval parameter to a nonzero integer.
Conversely, to disable the option, you should set the optval parameter to
zero. The field optlen must always be equal to the size of an integer.

266 � Chapter 6

� Integer options — Require an integer value or record. For other
options, optval points to an integer or record that contains the desired
value for the option, and optlen is the length of the integer or record.

By now, you must be wondering about the mysterious second parameter, level,

that is common to both functions. The explanation is that the level parameter
refers to a particular grouping of socket options. We group these options into
units or, more often in Winsock parlance, into levels. Winsock 2 supports a num-
ber of levels, such as SOL_SOCKET, SOL_APPLETALK, and many others.
However, unlike Winsock 2, Winsock 1.1 provides support for only two levels of
socket options, SOL_SOCKET and IPPROTO_TCP. Some implementations of
Winsock 1.1 may support the IPPROTO_IP level. Both versions of Winsock (1
and 2) always support the SOL_SOCKET level, which is not protocol depend-
ent. Table 6-1 tabulates the options in both SOL_SOCKET and IPPROTO_TCP
levels that are common to both versions of Winsock.

As the focus in the rest of this chapter is on Microsoft’s implementation of
Winsock on Windows platforms, we will not cover levels that are relevant to
Novell’s IPX/SPX or Apple’s AppleTalk or ATM protocols. The levels that we
will cover here are SOL_SOCKET, IPPROTO_TCP, and IPPROTO_IP. Although
Microsoft recently added a new level, SOL_IRLMP for infrared devices, we will
not discuss SOL_IRLMP in this tome.

Table 6-1: Base levels

Level = SOL_SOCKET

Value Type Meaning Default

SO_ACCEPTCONN BOOL If TRUE, socket is listening. FALSE

SO_BROADCAST BOOL If TRUE, socket is configured for the transmis-
sion of broadcast messages.

FALSE

SO_DEBUG BOOL If TRUE, debugging is enabled. FALSE

SO_DONTLINGER BOOL If TRUE, the SO_LINGER option is disabled. TRUE

SO_DONTROUTE BOOL If TRUE, routing is disabled. FALSE

SO_ERROR Integer Retrieves error status and clear. 0

SO_KEEPALIVE BOOL Keepalives are being sent. FALSE

SO_LINGER TLinger Returns the current linger options. l_onoff is 0

SO_MAX_MSG_SIZE Unsigned integer Maximum outbound (send) size of a message
for message-oriented socket types (e.g.,
SOCK_DGRAM). There is no provision for
finding out the maximum inbound message
size. This has no meaning for stream-oriented
sockets.

Implementation
dependent

SO_OOBINLINE BOOL Out-of-band data is being received in the nor-
mal data stream.

FALSE

SO_PROTOCOL_INFO WSAPROTOCOL
_INFO

Description of protocol info for protocol that is
bound to this socket.

Protocol
dependent

Socket Options � 267

6

C
h
a
p

te
r

Value Type Meaning Default

SO_RCVBUF Integer Total per-socket buffer space reserved for
receives. This is unrelated to SO_MAX_MSG_
SIZE or the size of a TCP window.

Implementation
dependent

SO_REUSEADDR BOOL The socket may be bound to an address that is
already in use.

FALSE

SO_SNDBUF Integer Total per-socket buffer space reserved for
sends. This is unrelated to SO_MAX_MSG_
SIZE or the size of a TCP window.

Implementation
dependent

SO_TYPE Integer The type of the socket (e.g., SOCK_STREAM). As created via
socket API

PVD_CONFIG Service provider
dependent

An “opaque” data structure object from the
service provider associated with socket s. This
object stores the current configuration infor-
mation of the service provider. The exact for-
mat of this data structure is service provider
specific.

Implementation
dependent

Level = IPPROTO_TCP

Value Type Meaning Default

TCP_NODELAY BOOL Disables the Nagle algorithm for send
coalescing.

Implementation
dependent

�TIP: Unlike Winsock 1.1, retrieving configuration information for
Winsock 2 is not easy, if not impossible, because of Winsock 2’s
more elaborate architecture to support multiple protocols.
However, you can retrieve some of this information by calling
getsockopt() with the socket option PVD_CONFIG, providing
that you know the data structure of the record provided by the
Winsock vendor.

The socket options that all versions of Winsock support are a subset of the BSD
socket options. For those Delphi developers with a UNIX and Linux back-
ground, Tables 6-2 and 6-3 list those BSD socket options that getsockopt() and
setsockopt() under Winsock do not support.

Table 6-2: BSD socket options not supported by getsockopt()

Value Type Meaning

SO_RCVLOWAT Integer Receive low water mark

SO_SNDLOWAT Integer Send low water mark

TCP_MAXSEG Integer Get TCP maximum segment size

268 � Chapter 6

Table 6-3: BSD socket options not supported by setsockopt()

Value Type Meaning

SO_ACCEPTCONN BOOL Socket is listening

SO_RCVLOWAT Integer Receive low water mark

SO_SNDLOWAT Integer Send low water mark

SO_TYPE Integer Type of socket

Table 6-4 shows a complete list of levels and their corresponding grouping of
options that getsockopt() can use under Winsock 1.1 and Winsock 2.

Table 6-4: Levels and options that getsockopt() can use

Level = SOL_SOCKET

Value Type Meaning

SO_ACCEPTCONN BOOL FALSE unless a WSPListen()* has been performed.

SO_BROADCAST BOOL Allow transmission of broadcast messages on the socket.

SO_DEBUG BOOL Record debugging information.

SO_DONTLINGER BOOL Don't block close waiting for unsent data to be sent. Setting this
option is equivalent to setting SO_LINGER with l_onoff set to zero.

SO_DONTROUTE BOOL Do not route, but send directly to interface.

SO_KEEPALIVE BOOL Send keepalives.

SO_LINGER TLinger Linger on close if unsent data is present

SO_OOBINLINE BOOL Receive out-of-band data in the normal data stream.

SO_RCVBUF Integer Specify the total per-socket buffer space reserved for receives. This is
unrelated to SO_MAX_MSG_SIZE or the size of a TCP window.

SO_REUSEADDR BOOL Allow the socket to be bound to an address that is already in use.
(See bind().)

SO_SNDBUF Integer Specify the total per-socket buffer space reserved for sends. This is
unrelated to SO_MAX_MSG_SIZE or the size of a TCP window.

Level = IPPROTO_TCP**

Value Type Meaning

TCP_NODELAY BOOL Disables the Nagle algorithm for send coalescing.

* This is the listen() function in the Winsock 2 Service Provider API, which is not discussed in this tome.

**Included for backward compatibility with WinSock 1.1

There are constraints and traps that you should be aware of when using the
getsockopt() and setsockopt() functions that are easily overlooked during the
development process. I am often guilty of these lapses, so I will describe these
traps for both the wary and the not-so-wary.

A factor that you must remember is that some of these socket options are
platform specific. For example, the socket option SO_EXCLUSIVEADDRUSE is
only available in Winsock 2 on Windows 2000 and later. So when you use either

Socket Options � 269

6

C
h
a
p

te
r

the getsockopt() or setsockopt() functions with an unsupported socket option,
Winsock will return an error code of WSAENOPROTOOPT.

Another important constraint you should remember is that some of the
socket options are only available for inspection after the socket is connected.
For example, the option SO_CONNECT_TIME that you would use with
getsockopt() to return the time (in seconds) that the socket has been connected
would return an invalid value of $FFFFFFFF for a non-connected socket.

Another factor to consider is that some options only make sense with the cor-
rect socket type(s). For example, the option SO_DONTLINGER only applies to
sockets of the SOCK_STREAM type.

In the rest of this chapter, we will focus on options for each level that interest
us, namely, SOL_SOCKET, IPPROTO_TCP, and IPPROTO_IP. There is one
level that we will not be covering in this book, SOL_IRLMP, which deals with
infrared sockets. This option first appeared in Windows CE.

Option Level = SOL_SOCKET

Option = SO_DEBUG

Use this option to enable output of debugging information from a Winsock
implementation. The mechanism for generating the debug information and the
form it takes are beyond the scope of this book.

Option = SO_KEEPALIVE

Use this option on a stream socket (SOCK_STREAM) to enable an application
to keep a data stream connected by sending acknowledgment requests at set
intervals to the peer. The properties of this option are defined by RFC 1122.
One such property is the minimum period between transmissions of keep-alive
packets. This period is two hours, which is not always suitable for some applica-
tions. However, you can devise a keep-alive scheme in a client-server
application pair. Be aware that this option does not work with sockets of the
SOCK_DGRAM type. The option is off by default.

�TIP: On Windows 95 and 98 platforms, you can configure the duration
and frequency in the registry under the KeepAliveInterval and
KeepAliveTime keys. However, be aware that these keys are a
global setting and will affect all sockets.

270 � Chapter 6

� CAUTION: When dealing with the registry, as I have found to my
chagrin, it is very easy to corrupt the registry, making your
system unusable. So be very careful when you edit the registry.

Option = SO_LINGER

Use this option to control what action is required when you call closesocket() on
a socket that has data queued waiting to be sent. (To refresh your memory on
closesocket() and the SO_LINGER settings, please refer to Chapter 5.) To set
the desired behavior on the socket, you would create a record of the type
TLinger, which is defined in Winsock2.pas, and point to this record by the optval

parameter in setsockopt().

linger = record
l_onoff: u_short; // option on/off
l_linger: u_short; // linger time

end;

TLinger = linger;
PLinger = ^linger;

To enable SO_LINGER, you should set the l_onoff field to a value greater than
zero, and then set the l_linger field to zero or the desired timeout (in seconds)
and call setsockopt().

To enable SO_DONTLINGER (i.e., disable SO_LINGER), you should set the
l_onoff field to zero and call setsockopt().

�TIP: Enabling SO_LINGER with a nonzero timeout on a non-blocking
socket is not recommended.

Option = SO_REUSEADDR

By default, you cannot bind a socket (see Chapter 5 for the bind() function) to a
local address that is already in use. Sometimes, however, you may want to reuse
an address in this way. By calling this option with setsockopt(), you will be able
to bind a socket to an existing address. How can this be useful, you ask? Con-
sider a possible scenario. A server has crashed and is terminated by the
network administrator. It needs to be restarted immediately, but it cannot do so
because the port that was bound to the socket (bound by the bind() function)
that the server was using prior to the crash is no longer available, thus causing
a loss of service. (To dive into the reasons for this behavior would require us to
examine TCP in detail, which is beyond the scope of this book. If you are inter-
ested, see Appendix C.) You can avoid this aberrant behavior by using the
SO_REUSEADDR option. There is one caveat, however, which is that the
remote address must be different from the remote address being used by the
previous socket that is using the same local address.

Socket Options � 271

6

C
h
a
p

te
r

Option = SO_RCVBUF and SO_SNDBUF

By calling this option (SO_RCVBUF and SO_SNDBUF), you can adjust the size
of the buffers that the TCP/IP stack uses for receiving or sending data on a
socket, respectively. For a stream socket, SO_RCVBUF is the same as the maxi-
mum TCP window size.

�NOTE: Not all implementations support these options.

Option Level = IPPROTO_TCP

Option = TCP_NODELAY

Use this option to disable the TCP Nagle algorithm and vice versa. The TCP
Nagle algorithm, when enabled, reduces the number of small packets sent by a
host by buffering the data if there is unacknowledged data already “in flight” or
until a full-size packet can be sent. Using this algorithm enhances delivery of
data. However, for some applications (like a networking game or simulation),
this algorithm can impede performance, and you need to use the TCP_NODE-
LAY option to disable the algorithm. For some background on the Nagle
algorithm, consult RFC 896 (see Appendix C).

�TIP: Setting this option unwisely can have a significant negative
impact on network and application performance. For this reason,
unless you know what you are doing, it is usually discouraged.

Option Level = IPPROTO_IP

This level is for use with the IP protocol. You should use this level when you
want to either modify the IP header or add a socket to an IP Multicast group.
Winsock 1.1 and Winsock 2 both support this level. However, some options in
the IPPROTO_IP level in Winsock 1.1 differ from Winsock 2.

Option = IP_OPTIONS

You should use this option if you wish to modify some of the fields in the IP
header. For example, you could modify some of these fields to affect the
following:

272 � Chapter 6

TE
AM
FL
Y

Team-Fly®

� Security

� Record route

� Time-stamp

� Loose source routing

� Strict source routing

�NOTE: Be aware that not all hosts and routers support all of these
modifications.

The prototype for the IP header, which is defined in ICMP.PAS, is as follows:

PIpHdr = ^TipHdr;
TIpHdr = packed record // {

ip_hl; // header length
ip_v; // version
ip_tos : u_char; // type of service
ip_len : short; // total length
ip_id : u_short; // identification
ip_off : short; // fragment offset field
ip_ttl; // time to live
ip_p : u_char; // protocol
ip_cksum : u_short; // checksum
ip_src; // source address
ip_dst : TInAddr; // destination address

end;//} IP_HDR, *PIP_HDR, *LPIP_HDR;

Option = IP_HDRINCL

If you set this option to TRUE, it will force the sending function, such as send(),
to send an IP header ahead of the data that it is sending and will cause the
receiving function, such as recv(), to accept the IP header ahead of the data.
However, to make this option work, you must fill in the fields of the IP header
correctly. This option is only available on Windows 2000 and later. Like raw
sockets, the use of this option requires administrative privileges.

Option = IP_TOS

Use this option to indicate the type of service that specifies certain properties of
the packet.

Option = IP_TTL

You should use this option to specify the time to live in the TTL field in the IP
header. In other words, your goal is to limit the number of routers that the
packet can traverse before it is discarded. How does this work? As the router
receives the packet, it examines the header and decrements the TTL field by
one. When the field becomes zero, the router discards the packet. For example,
setting the option to two means that the packet can only do three hops (remem-
ber, you start the count from zero) before it dies.

Socket Options � 273

6

C
h
a
p

te
r

Option = IP_MULTICAST_IF

This option sets the local interface from which you can send multicast data on
the local machine. This only makes sense if your machine has more than one
network card. We call this machine multi-homed.

Option = IP_MULTICAST_TTL

This option has the same effect on data packets as IP_TTL, except it acts on
multicast data only.

Option = IP_MULTICAST_LOOP

To prevent loopback of data that you send, set this option to FALSE. The option
is TRUE by default.

Option = IP_ADD_MEMBERSHIP

For Winsock 1.1 applications, this is an option you use to add a socket to an IP
Multicast group.

Option = IP_DROP_MEMBERSHIP

Call this option to remove the socket from an IP Multicast group.

Option = IP_DONTFRAGMENT

When you set this option to TRUE, it tells the network not to fragment the IP
packet. However, if the size of the IP datagram exceeds the maximum transmis-
sion unit (MTU), the datagram will die. If the “don’t fragment” field in the IP
header is set, the network will generate an ICMP error message.

Modifying I/O Behavior
So far, we have described how to query and set the attributes of a socket using
options. In the rest of this chapter, we will consider how you might modify the
I/O behavior of a socket. There are two functions with which you can modify the
I/O behavior—ioctlsocket() and WSAIoctl(). These functions are defined in
Winsock2.pas, and their prototypes are listed as follows:

function ioctlsocket(s: TSocket; cmd: Longint; var argp: u_long): Integer; stdcall;

function WSAIoctl(s: TSocket; dwIoControlCode: DWORD; lpvInBuffer: LPVOID; cbInBuffer: DWORD;
lpvOutBuffer: LPVOID; cbOutBuffer: DWORD; var lpcbBytesReturned: DWORD; lpOverlapped:
LPWSAOVERLAPPED; lpCompletionRoutine: LPWSAOVERLAPPED_COMPLETION_ROUTINE): Integer; stdcall;

As you can see, the WSAIoctl() function, which is part of the Winsock 2 imple-
mentation, packs more power and functionality than ioctlsocket(), but we will
consider ioctlsocket() first as an introduction.

274 � Chapter 6

The first parameter refers to the socket, s, with which you want to work.
The second parameter, cmd, is the command that the function is to execute.
The third parameter, argp, stores the result of the operation on that socket.

The function ioctlsocket() supports the following commands: FIONBIO,
FIONREAD, and SIOCATMARK. These commands are present in all versions
of Winsock. Calling ioctlsocket() with the FIONBIO command enables or dis-
ables non-blocking mode on a socket (refer to Chapter 5).

The FIONREAD command determines the amount of data that can be read
from socket s. On a stream socket (e.g., SOCK_STREAM), argp points to an
unsigned long integer in which ioctlsocket() will store the result. The function
returns the size of the data that may be read in a single receive operation, which
may not be the same as the total amount of data queued on the socket. On a
datagram socket (SOCK_DGRAM), the function returns the size of the first
datagram queued on the socket, which might not be the same size as subse-
quent datagrams.

You should use FIONREAD on a socket that has the socket option SO_OOB-
INLINE already set. That is, the socket has been set to receive out-of-band data
(refer to Chapter 5). When you call ioctlsocket() with this command, the func-
tion determines if the data queued on the socket is out-of-band data or normal
data. If data to be read is out-of-band, the function will return a TRUE value in
the argp parameter. (For WSAIoctl(), the Boolean result points to the
lpvOutBuffer parameter, which we will describe later.)

As we have seen from the implementation, WSAIoctl() is more complex to
use than ioctlsocket(). However, at the price of complexity, not only can you use
WSAIoctl() either to set or retrieve operating parameters for the specified
socket, you can use it to set or retrieve the underlying transport protocol.

The first parameter, s, is the socket. The second parameter, dwIoControlCode,

defines the operational code to execute. For a listing of these commands, refer
to Table 6-5. The third and fourth parameters, lpvInBuffer and cbInBuffer, are
input buffers. The first is a pointer to the value to which you pass, and the sec-
ond is a pointer to the size of the first buffer. Similarly, the fifth parameter,
lpvOutBuffer, is a pointer to an output buffer that receives the data, and the sixth
parameter, cbOutBuffer, is the size of the output buffer. lpcbBytesReturned indi-
cates the number of bytes returned. Finally, if you set the lpOverlapped and
lpCompletionRoutine parameters to NIL, the function will treat the socket, s, as
a non-overlapped socket. You should use WSAIoctl() for overlapped I/O opera-
tions, in which case the parameters lpOverlapped and lpCompletionRoutine must
point to a valid overlapped structure and a callback routine, respectively.

In addition to the tasks described so far, you can use the ioctlsocket() and
WSAIoctl() functions for QOS and multicast applications, which are beyond the
scope of this tome.

Socket Options � 275

6

C
h
a
p

te
r

Table 6-5: Commands for ioctlsocket() and WSAIoctl()

Command Platform Function Input Output Winsock
Version

Description

SIO_ENABLE_
CIRCULAR_
QUEUEING

Windows
2000 and
NT 4.0

WSAIoctl Boolean Boolean 2 and
later

If the incoming
buffer overflows,
discard oldest mes-
sage first.

SIO_FIND_
ROUTE

Not
supported

WSAIoctl TSockAddrIn Boolean 2 and
later

Verifies that a route
to the given address
exists.

SIO_FLUSH Windows
2000 and
NT 4.0

WSAIoctl None None 2 and
later

Determines
whether OOB data
has been read.

SIO_GET_
BROADCAST_
ADDRESS

Windows
2000 and
NT 4.0

WSAIoctl None TSockAddrIn 2 and
later

Returns a broadcast
address for the
address family of the
socket.

SIO_GET_
EXTENSION_
FUNCTION_
POINTER

All Win32
platforms

WSAIoctl Tguid Function
pointer

2 and
later

Retrieves a function
pointer specific to
the underlying
provider.

SIO_CHK_QOS Windows
2000

WSAIoctl DWORD DWORD 2 and
later

Sets the QOS attrib-
utes for the socket.

SIO_GET_QOS Windows
2000 and
Windows
98

WSAIoctl None QOS
structure

2 and
later

Returns the QOS
data structure for
the socket.

SIO_SET_QOS Windows
2000 and
Windows
98

WSAIoctl QOS
structure

None 2 and
later

Sets the QOS prop-
erties for the
socket.

SIO_MULTI-
POINT_LOOP-
BACK

All Win32
platforms

WSAIoctl Boolean Boolean 2 and
later

Sets or gets whether
the multicast data
will be looped back
to the socket.

SIO_MULTI-
CAST_SCOPE

All Win32
platforms

WSAIoctl Integer Integer 2 and
later

Gets or sets the
time to live (TTL)
value for multicast
data.

SIO_KEEP-
ALIVE_VALS

Windows
2000

WSAIoctl tcp_keepalive
structure

tcp_keepalive
structure

2 and
later

Sets the TCP
keepalives active on
each connection.

SIO_RCVALL Windows
2000

WSAIoctl Unsigned
integer

None 2 and
later

Receives all packets
on the network.

SIO_RCVALL_M
CAST

Windows
2000

WSAIoctl Unsigned
integer

None 2 and
later

Receives all
multicast packets on
the network.

SIO_RCVALL_
IGMPMCAST

Windows
2000

WSAIoctl Unsigned
integer

None 2 and
later

Receives all IGMP
packets on the
network.

276 � Chapter 6

Command Platform Function Input Output Winsock
Version

Description

SIO_ROUTING_
INTERFACE_
QUERY

Windows
2000

WSAIoctl TSockAddrIn None 2 and
later

Determines
whether OOB data
has been read.

SIO_ROUTING_
INTERFACE_
CHANGE

Windows
2000

WSAIoctl TSockAddrIn None 2 and
later

Sends notification
when an interface to
a remote socket has
changed.

SIO_ADDRESS_
LIST_QUERY

All Win32
platforms

WSAIoctl None TSOCKET_
ADDRESS_
LIST structure

2 and
later

Returns a list of
interfaces to which
the socket can bind.

SIO_GET_INTER
FACE_LIST

All Win32
platforms

WSAIoctl None TINTERFACE
_INFO
structure

2 and
later

Returns a list of local
interfaces.

SO_SSL_GET_
CAPABILITIES

Windows
CE

WSAIoctl None DWORD 1.1 Returns the Winsock
security provider’s
capabilities.

SO_SSL_GET_
FLAGS

Windows
CE

WSAIoctl None DWORD 1.1 Returns s-channel-
specific flags for the
socket.

SO_SSL_SET_
FLAGS

Windows
CE

WSAIoctl DWORD None 1.1 Sets the socket’s
s-channel-specific
flags.

SO_SSL_GET_
PROTOCOLS

Windows
CE

WSAIoctl None SSLPROTO-
COLS

1.1 Returns a list of pro-
tocols supported by
the security
provider.

SO_SSL_SET_
PROTOCOLS

Windows
CE

WSAIoctl SSLPROTO-
COLS

None 1.1 Sets a list of proto-
cols that the under-
lying provider
should support.

SO_SSL_SET_
VALIDATE_
CERT_HOOK

Windows
CE

WSAIoctl SSLVALIDATE
CERTHOOK

None 1.1 Sets the validation
function for accept-
ing SSL certificates.

SO_SSL_PER-
FORM_HAND-
SHAKE

Windows
CE

WSAIoctl None None 1.1 Initiates a secure
handshake on a con-
nected socket.

SIO_GET_NUM
BER_OF_ATM_
DEVICES

Windows
2000

WSAIoctl None DWORD 2 and
later

Returns the number
of ATM adapters.

SIO_GET_ATM_
ADDRESS

Windows
2000

WSAIoctl DWORD TATM_
ADDRESS

2 and
later

Returns the ATM
address for the
given device.

SIO_ASSOCIATE
_PVC

Windows
2000

WSAIoctl TATM_PVC_
PARAMS
structure

None 2 and
later

Associates socket
with a permanent
virtual circuit.

SIO_GET_ATM_
CONNECTION
_ID

Windows
2000?

WSAIoctl &
ioctlsocket

None TATM_
CONNEC-
TION_ID

2 and
later

Determines
whether OOB data
has been read.

Socket Options � 277

6

C
h
a
p

te
r

Before we give formal definitions of the functions discussed, here is a word
about the examples. Unlike the previous chapters where we give examples of
using the functions, we have a collection of examples to demonstrate the usage
of these functions with different levels and options. Only two levels, SOL_
SOCKET and IPPROTO_IP, are used with getsockopt() and setsockopt() func-
tions. For a demonstration on how to use the ioctlsocket() function with the
FIONBIO option, please refer to Listing 5-4 in Chapter 5.

function getsockopt Winsock2.pas

Syntax

function getsockopt(s: TSocket; level, optname: Integer; optval: PChar; var optlen:
Integer): Integer; stdcall;

Description

This function retrieves the current socket option with a socket of any type, in
any state, and stores the result in optval.

Parameters

s: A descriptor identifying a socket

level: The level at which the option is defined. The supported levels include
SOL_SOCKET and IPPROTO_TCP.

optname: The socket option for which the value is to be retrieved

optval: A pointer to the buffer in which the value for the requested option is to
be returned

optlen: A pointer to the size of the optval buffer

Return Value

If the function succeeds, it will return a value of zero. Otherwise, it will return
SOCKET_ERROR. To retrieve the specific error code, call the function
WSAGetLastError(). Possible error codes are WSANOTINITIALISED,
WSAENETDOWN, WSAEFAULT, WSAEINPROGRESS, WSAEINVAL,
WSAENOPROTOOPT, and WSAENOTSOCK.

See Appendix B for a detailed description of the error codes.

See Also

setsockopt, socket, WSAAsyncSelect, WSAConnect, WSAGetLastError,
WSASetLastError

Example

See programs EX61, EX62, EX63, and EX64 on the companion CD.

278 � Chapter 6

function setsockopt Winsock2.pas

Syntax

function setsockopt(s: TSocket; level, optname: Integer; optval: PChar; optlen:
Integer): Integer; stdcall;

Description

This function sets a socket option for the socket.

Parameters

s: A descriptor identifying a socket

level: The level at which the option is defined. The supported levels include
SOL_SOCKET and IPPROTO_TCP.

optname: The socket option for which the value is to be set

optval: A pointer to the buffer in which the value for the requested option is
supplied

optlen: The size of the optval buffer

Return Value

If the function succeeds, it will return a value of zero. Otherwise, it will return
SOCKET_ERROR. To retrieve the specific error code, call the function WSA-
GetLastError(). Possible error codes are WSANOTINITIALISED, WSAENET-
DOWN, WSAEFAULT, WSAEINPROGRESS, WSAEINVAL, WSAENETRESET,
WSAENOPROTOOPT, WSAENOTCONN, and WSAENOTSOCK.

See Appendix B for a detailed description of the error codes.

See Also

bind, getsockopt, ioctlsocket, socket, WSAAsyncSelect, WSAEventSelect

Example

See programs EX65, EX66, EX67, and EX68 on the companion CD.

function ioctlsocket Winsock2.pas

Syntax

ioctlsocket(s: TSocket; cmd: Longint; var argp: u_long): Integer; stdcall;

Description

This function retrieves operating parameters associated with the socket, inde-
pendent of the protocol and communications subsystem.

6

C
h
a
p

te
r

Socket Options � 279

Parameters

s: A descriptor identifying a socket

cmd: The command to perform on the socket s

argp: A pointer to a parameter for cmd

Return Value

If the function succeeds, it returns a value of zero. Otherwise, it returns
SOCKET_ERROR. To retrieve the specific error code, call the function
WSAGetLastError(). Possible error codes are WSANOTINITIALISED,
WSAENETDOWN, WSAEINVAL, WSAEINPROGRESS, WSAENOTSOCK,
and WSAEFAULT.

See Appendix B for a detailed description of the error codes.

See Also

getsockopt, setsockopt, socket, WSAAsyncSelect, WSAEventSelect, WSAIoctl

Example

See Listing 5-4 in Chapter 5.

function WSAIoctl Winsock2.pas

Syntax

WSAIoctl(s: TSocket; dwIoControlCode: DWORD; lpvInBuffer: LPVOID;
cbInBuffer: DWORD; lpvOutBuffer: LPVOID; cbOutBuffer: DWORD; var
lpcbBytesReturned: DWORD; lpOverlapped: LPWSAOVERLAPPED;
lpCompletionRoutine: LPWSAOVERLAPPED_COMPLETION_ROUTINE):
Integer; stdcall;

Description

The function controls the mode of a socket.

Parameters

s: A handle to a socket

dwIoControlCode: The control code of the operation to perform

lpvInBuffer: A pointer to the input buffer

cbInBuffer: The size of the input buffer

lpvOutBuffer: A pointer to the output buffer

cbOutBuffer: The size of the output buffer

lpcbBytesReturned: The number of actual bytes of output

lpOverlapped: An address of the WSAOVERLAPPED record (ignored for
non-overlapped sockets)

280 � Chapter 6

lpCompletionRoutine: A pointer to the completion routine called when the opera-
tion has been completed (ignored for non-overlapped sockets)

Return Value

If the function succeeds, it will return zero. If the function fails, it will return a
value of SOCKET_ERROR. To retrieve the error code, call the function
WSAGetLastError(). Possible error codes are WSAENETDOWN,
WSAEFAULT, WSAEINVAL, WSAEINPROGRESS, WSAENOTSOCK,
WSAEOPNOTSUPP, and WSAEWOULDBLOCK.

See Appendix B for a detailed description of the error codes.

See Also

getsockopt, ioctlsocket, setsockopt, socket, WSASocket

Example

See program EX 69 on the companion CD.

Summary
In this short chapter, you discovered socket options and socket commands that
affect the behavior of a socket and I/O operations on a socket, respectively. This
chapter concludes our coverage of Winsock 2. It’s now time to explore TAPI.

Socket Options � 281

6

C
h
a
p

te
r

TE
AM
FL
Y

Team-Fly®

Part 2

Fundamentals of TAPI
Programming

by Alan C. Moore

� Chapter 7 — Introduction to TAPI

� Chapter 8 — Line Devices and Essential Operations

� Chapter 9 — Handling TAPI Line Messages

� Chapter 10 — Placing Outgoing Calls

� Chapter 11 — Accepting Incoming Calls

Chapter 7

Introduction to TAPI

Telephony has a magic ring (bad pun), just like telepathy; no wonder a recent
television commercial in the United States played with these two similar-sound-
ing words. The same sense of magic that must have struck early telephone
users—to be able to talk with someone in another town or country—struck
computer users when they were first able to place calls from their desktop
machines without lifting the phone handset from its cradle. Of course, this capa-
bility depends on certain hardware and software. Before the advent of the
computer sound card and the voice modem, such telephony was impossible.
With the addition of these hardware components and software to communicate
with them, telephony became not only possible, but a standard element of the
Windows desktop.

What can you do with telephony under Windows? As we’ll see, you can create
applications that support a wide range of sophisticated communications features
and services using a telephone line. You can provide support for speech and data
transmission with a variety of terminal devices. Your applications can also sup-
port complex connection types and call management scenarios, such as
conference calls, call waiting, and voice mail. Covering all of these is beyond the
scope of this book, but we’ll cover the most basic ones.

What makes it possible for you to write a Windows application that supports
all of these features in various types of calls? In a word, TAPI (the Telephony
Application Programming Interface). Described in the Microsoft TAPI Help file
(referred to as the TAPI Help file from this point on), TAPI “provides a
device-independent interface for carrying out telephony tasks.” As such, it is an
integral part of Microsoft’s Windows Open Systems Architecture (WOSA) just
like the Winsock API we discussed earlier. It provides transparent support for a
variety of communications hardware.

That Help file states that TAPI “simplifies the development of telephonic
applications by hiding the complexities of low-level communications program-
ming.” As the documentation points out, TAPI accomplishes this task by
abstracting telephony services, making them independent of the underlying
telephone network as well as the way the computer is connected to the switch
and phone set. As we’ll see, these connections to the switch may be established

285

in a variety of ways. They can be connected directly from the user’s workstation
or through a server on a LAN (local area network). Importantly, as the docu-
mentation stresses, “regardless of their nature, telephony devices and
connections are handled in a single, consistent manner, allowing developers to
apply the same programming techniques to a broad range of communications
functions.” We’ll discuss a number of specific instances in this chapter. First,
let’s take a superficial look at what you can do using TAPI.

With TAPI you can create full-featured communications applications or add
telephony support to database, spreadsheet, word-processing, and personal
information management applications. In fact, in any situation when you need to
send or receive data through a telephone network, TAPI is usually the answer.
Some of the functionality you can provide users of your applications includes the
ability to:

� Connect directly to a telephone network instead of having to use a special-
ized communications application

� Automatically dial telephone numbers

� Send or receive documents such as files, faxes, and electronic mail

� Retrieve data from news or information services

� Place and manage conference calls

� Manage voice mail

� Automate the processing of incoming calls by using caller ID

� Support collaborative computing over telephone lines

In this chapter, we’ll outline the development of Windows telephony and exam-
ine the evolution of TAPI from its origins. We’ll provide information about some
of the basic issues involved and lay the basis for understanding the functions,
structures, and constants that are part of TAPI. However, we will not be able to
discuss many of the more advanced line functions or any of the phone API
functions.

An Historical Review
TAPI originated in a manner similar to many other Windows APIs. Various ven-
dors were already developing support for telephony, but using their own
particular approaches. Of course, these approaches were proprietary and gener-
ally not compatible with each other. That was not the Windows way, following
WOSA. In the beginning—in the early 1990s (BT, or Before TAPI)—telephony
equipment was expensive, usually DOS-based, and supported by proprietary
software. Herman D’Hooge, an Intel engineer, is probably the single most
important person responsible for the creation of TAPI. He and his company

286 � Chapter 7

recognized the need for a single telephony API early on. There was a similar
interest in such an API at Microsoft, and the two companies, Microsoft and
Intel, decided to work together. Toward that goal, D’Hooge met one of Micro-
soft’s telephony engineers, Toby Nixon, with whom he worked to create the
first version of TAPI. That initial TAPI draft was presented to a group repre-
senting over 40 companies involved in telephony.

As you might imagine, the initial and limited draft went through major revi-
sions as feedback was received from these interested parties. The first public
release, TAPI 1.0, was presented in 1993 at a telephony conference in Dallas,
Texas. At the same time, another important piece of the puzzle was being devel-
oped at Intel—the Telephony Service Provider Interface (TSPI). What
TAPI was for the applications developer, TSPI was for the telephony hardware
provider.

Next came the testing phase, beginning in 1994, during which various ven-
dors tested their equipment with TSPI and TAPI. In the meantime, Microsoft
had decided that TAPI would be a part of each of its operating systems: TAPI
1.3 was supported by Windows 3.x; the next version, TAPI 1.4, shipped with
Windows 95; TAPI 2.0 shipped with Windows NT 4.0. This latest incarnation of
the Windows NT family supports TAPI 3.0. This book uses the latest Project
JEDI header translation, which supports version 3.0. However, we cover only
the most basic functions here.

The World of Telephony Applications
As we’ve discussed, telephony applications enable people to access telecommu-
nications systems from their computers, allowing them to manage voice calls
and data-transfer operations. You can use TAPI to provide such functionality
within any application, and it applies to various types of hardware, including
voice modems and cable modems, among others.

In short, TAPI allows your application to provide the local machine with
access to a telephone network, with all of its features and limitations. As a
developer, it is your job to provide the user interface, taking advantage of the
functionality in Windows that Delphi and TAPI provide. It also sends messages
for many of its events, so, with a little work, you can use a memo control to pro-
vide feedback on every step in placing or receiving a call, use drag and drop to
let the user send files or faxes over the telephone line, enable the user to initi-
ate a conference call (also using drag and drop to select the names of the
participants), and support other sophisticated scenarios.

As you have probably deduced, TAPI provides your application with access to
a variety of telephone network services. Although these services may use dif-
ferent technologies to establish calls and transmit voice and data, TAPI makes
these service-specific details transparent to applications. That’s what WOSA

Introduction to TAPI � 287

7

C
h
a
p

te
r

has intended to accomplish. With TAPI you can create applications that can take
advantage of any available service without including service-specific code in
your application.

Historically, most telephone connections in the world have been of a type
referred to as POTS, or Plain Old Telephone Service. Figure 7-1 shows a typical
POTS environment. POTS calls are generally transmitted digitally, except while
in the local loop. The latter is the portion of the telephone network that exists
between the individual telephone and the telephone company’s central switch-
ing office. It is within this loop that things get a bit complicated. Human speech
from a household telephone is generally transmitted in analog format. However,
the digital data from a computer must first be converted to analog by a modem.
The situation remains complex, but progress is taking place. For example, digi-
tal networks are gradually replacing analog in the local loop.

Fortunately, using TAPI for POTS is straightforward because of POTS’ compar-
ative simplicity. It normally uses only one type of information (such as data or
voice) per call, supports one channel per line, and so on. Most current uses for
TAPI are related to POTS, and most telephony programmers use TAPI exclu-
sively for POTS applications.

Does this mean that when you use TAPI you are restricted to POTS? Of
course not! With TAPI, you can make connections over various types of net-
works. You’ll recall our discussion of Integrated Services Digital Network
(ISDN) when we presented Winsock. You can also use TAPI to access ISDN
networks. Such networks provide all of the advantages of ISDN over POTS
since they:

� Are totally digital

� Are less error prone

� Provide faster data transmission, with speeds up to 128 kilobytes per sec-
ond (Kbps) on basic service

288 � Chapter 7

Figure 7-1: A typical POTS

environment

� Provide from 3 to 32 channels for simultaneous transmission of voice and
data

� Are based on a recognized international standard, that of Integrated Ser-
vices Digital Network, or ISDN

Let’s take a more detailed look at these advantages.
ISDN networks are completely digital and do not have to hassle with the ana-

log-to-digital conversions required under POTS with a modem. Because data
travels from one end of an ISDN network to the other in digital format, error
rates are lower than with the analog transmission that takes place on POTS. It
is also faster; at the time of publication, it has up to 128 Kbps on Basic Rate
Interface (BRI-ISDN) standard lines and is considerably higher on Primary Rate
Interface (PRI-ISDN) standard lines. How does this compare with modems?
Today’s maximum dial-up modem data rates (as of publication) are generally 56
Kbps or less, depending on the quality of the local loop, which varies with the
locality.

As we look to the future, we can foresee many advantageous developments.
As ISDN connections become more common, we’ll be able to send data to the
recipient while simultaneously having a phone conversation with that person.
Depending on its transmission rate, each ISDN line can provide a minimum of
three channels (two for voice or data and one strictly for data or signaling infor-
mation) and as many as 32 channels for simultaneous, independently operated
transmission of voice and data.

How do BRI-ISDN lines differ from PRI-ISDN lines? According to the specifi-
cation described in the TAPI Help file, BRI-ISDN lines provide two 64 Kbps “B”
channels and one 16 Kbps “D” channel. So-called B channels carry voice or
data, while so-called D channels carry signaling information or packet data.
PRI-ISDN lines differ by locality. In the United States, Canada, and Japan, the
PRI-ISDN lines have 23 64 Kbps B channels and one 64 Kbps D channel. In
European countries, the PRI-ISDN lines have 30 B channels and two D
channels.

What about other types of networks? You’ll be pleased to learn that you can
use TAPI with other digital networks, such as T1/E1 and Switched 56 service.
The latter enables local and long-distance telephone companies to provide sig-
naling at 56 Kbps over dial-up telephone lines. This service is quickly becoming
available throughout the United States and in many other countries. It should be
noted that to use it, you must have special equipment. Additionally and not sur-
prisingly, its connection capabilities are limited to calls to other facilities that
have the proper equipment. Still, its high speed and reasonable pricing make it a
good choice for many data communications needs (Switched 56 is used for data
calls only).

TAPI’s versatility doesn’t end here either! You can use it with other services,
such as with CENTREX, with digital Private Branch Exchanges (PBXs), and

Introduction to TAPI � 289

7

C
h
a
p

te
r

with key systems. CENTREX provides a number of special network services
(such as conferencing) but does not require any special equipment. This is pos-
sible because the user pays for the use of telephone company equipment over
regular telephone lines. Best of all, programming a CENTREX or PBX applica-
tion using TAPI is virtually the same as programming a POTS application. In
other words, regardless of the environment, there’s no need to make changes to
an application’s source code. Finally, TAPI can be used with various types of
hardware, voice modems, cable modems, DSL, and ISDN lines.

The Elements of a Telephony System
To understand the programming structure for TAPI, you need to understand the
Windows Open Systems Architecture (WOSA) model that we mentioned above
and discussed at length when we introduced Winsock in Chapter 1. We show the
main steps in the communication process between the elements in Figure 7-2
and will now explain how it works. First, your application will make one or more
function calls to TAPI.PAS to request the desired functionality. TAPI.PAS has
the job of providing an interface—or means of communication—with the TAPI
dynamic-link library (DLL). That DLL, in turn, will make calls to TAPI32 DLL,
which will then forward those application requests to the telephony service for
processing. Then, the DLL will communicate with TAPISRV.EXE, which has the
task of implementing and managing the TAPI functions. Finally, TAPISRV.EXE
will communicate with one or more telephony service providers (drivers) who
will control the hardware and do the actual work. These service providers are

290 � Chapter 7

Figure 7-2: The main steps in the communication

process between the elements of a telephony

system

also DLLs and their task is to carry out low-level, device-specific actions
needed to complete telephony tasks through hardware devices, such as fax
boards, ISDN cards, telephones, and modems. It’s important to note that appli-
cations link to and call functions only in the TAPI DLL; they never call the
service providers directly.

When an application calls a TAPI function, the TAPI dynamic-link library
validates and takes note of the parameters of the function and forwards it to
TAPISRV.EXE. This telephony service application processes the call and routes
a request to the appropriate service provider. To receive requests from
TAPISRV, a service provider must implement the Telephony Service Provider
Interface (TSPI) we mentioned earlier. Of course, a service provider has the
option of providing different levels of the service provider interface: basic, sup-
plementary, or extended. On the one hand, a simple service provider might
provide basic telephony service, such as support for outgoing calls through a
Hayes-compatible modem. On the other hand, a custom service provider writ-
ten by a third-party vendor might provide a full range of support, including
advanced features like conference calls. There is a vast array of possibilities.

�TIP: There is one golden rule regarding the behavior of service
providers: You can install any number of service providers on a
computer provided that the service providers do not attempt to
access the same hardware device(s) at the same time. The
installation program will generally associate specific hardware
with a specific service provider.

Some service providers have the ability to access multiple devices. In some
instances, a user will need to install a device driver along with the service pro-
vider. Most modern computers handle this kind of situation automatically,
distributing CD-ROMs or other media that include, install, and register needed
drivers and components. Often computer makers also distribute their own tele-
phony applications that take full advantage of the particular hardware (usually a
voice modem) and its drivers.

For the developer writing applications to run on various machines, there are
TAPI functions that determine which services are available on the given com-
puter; further, TAPI can determine which service providers are available and
provide information about their respective capabilities. In this way, any number
of applications can request services from the same service provider; TAPI will
take care of the job of managing access to the service provider.

As we’ve seen, service providers have a vital role to play in the world of
TAPI; they provide the hardware-independent interface or communications link
to various classes of device. This WOSA-based structure simplifies develop-
ment by letting programmers treat devices with similar properties in a similar

Introduction to TAPI � 291

7

C
h
a
p

te
r

manner. What are these device classes? They include such expected items as
telephones, modems, and even multimedia devices. Fortunately, your applica-
tion never needs to know which service provider controls which device.

This device class-centric structure helps make TAPI extensible because the
framework is flexible enough to classify and provide support for new equipment.
That’s good news because both hardware and software are being developed and
enhanced continually. Our perception of features changes also. Features that
were considered optional just a few years ago quickly become standard through
customer demands and vendor competition. As long as an application does not
depend on optional features, it can use any of the available services to carry out
its telephony tasks. As we’ve discussed and outlined in Figure 7-2, an applica-
tion must access the many different services through TAPI alone; TAPI
assumes the important responsibility to translate the requests from the applica-
tion into the required protocols and interfaces.

Nature and Structure of TAPI
TAPI is a huge application programming interface. Take a look at TAPI.pas,
developed by Project JEDI. Much of this API involves two device classes: line
device and phone device, with the former being paramount. Likewise, the API
defines two main sets of functions and messages, one for line devices and one
for phone devices. We will concentrate on the line API in this introductory
work, explaining all of its basic functions in detail.

The line device API, which we’ll begin to discuss in the next chapter, is a
device-independent representation or abstraction of a physical line device, such
as a modem. It can contain one or more identical communications channels
(used for signaling and/or information) between the application and the switch
or network. Because channels belonging to a single line have identical capabili-
ties, they are interchangeable. In many cases (such as with POTS), a service
provider will model a line as having just one channel. Other technologies, like
ISDN, offer more channels, and the service provider must treat them
accordingly.

A service provider can provide some rather sophisticated and powerful func-
tionality to users. For example, it might be possible for an application to request
the combination of multiple channels in a single call to give that call wider band-
width. As we just pointed about, with POTS, your application must generally
assign one channel per line. But with ISDN, a line’s channels are dynamically
allocated when an application makes or answers a call. Because these channels
have identical capabilities and are interchangeable, your application need not
identify which channel is to be used in a given function call. Channels are owned
and assigned by the service provider for the line device in a way that is

292 � Chapter 7

TE
AM
FL
Y

Team-Fly®

transparent to applications. The channel management method is abstract and
eliminates any need to introduce the naming of channels by TAPI.

We’ve briefly discussed line devices and will dive into that essential topic
with earnest beginning in Chapter 8, “Line Devices and Essential Operations.”
There is also another telephony device type—the phone device—that we’ll
mention briefly. Conceptually, just as a line device class is an abstraction of a
physical line device, the phone device class represents a device-independent
abstraction of a telephone set. There is one important difference: While you can
assume that the basic line device functions will always be available to you, you
cannot make any such assumption about phone devices. We will not discuss
phone devices in detail in this tome.

The TAPI architecture includes some truly beneficial features, not the least
of which is the way it treats line and phone devices as being independent of each
other. In other words, you can use a phone (device) without using an associated
line, and you can use a line (device) without using a phone. As a result, service
providers that fully implement this line/phone independence can offer uses for
these line and phone devices not defined or even considered by traditional tele-
phony protocols. The TAPI Help file provides several interesting examples. For
example, a person can use the handset of the desktop’s phone as a waveform
audio device for voice recording or playback, perhaps without the switch’s
knowledge that the phone is in use. In such an implementation, lifting the local
phone handset need not automatically send an off-hook signal to the switch. Of
course, for some functionality, it might be necessary to also relate to other
APIs, such as (in this case, possibly) the Waveform API. For more information
on this API, see Alan C. Moore’s The Tomes of Delphi: Win32 Multimedia API.
The capabilities of a service provider are limited by the capabilities of the hard-
ware and software used to interconnect the switch, the phone, and the
computer. We’ll briefly consider some of those limitations and future
possibilities.

Today, computer telephony is characterized by both current limitations and
future possibilities. Some of TAPI’s more advanced capabilities require that an
application be able, for example, to retrieve data from telephones. Even today,
most telephones cannot be connected directly to computers to control speech
calls and thus are currently incapable of supporting telephony functions beyond
the passive role they play in POTS. If some predications come to fruition, future
users will be able to install and configure telephone sets like other peripheral
computer devices. These telephone sets will no doubt be accompanied by new
types of cards that will control the flow of information between the computer
and the telephone itself. Other future possibilities include client-server configu-
rations that will allow users to take advantage of telephony services by
connecting over a local area network (LAN) to a server that has a specific type

Introduction to TAPI � 293

7

C
h
a
p

te
r

of board and associated software installed. Figure 7-3 shows a possible tele-
phony configuration over a LAN.

Media Stream

You’ll recall that when we discussed Winsock, we explained how that technol-
ogy allowed us to transmit byte streams. In TAPI, we talk about media streams
rather than byte streams. A media stream is simply the information exchanged
over a telephone call. That information can represent a variety of media. While
TAPI allows you to control the various line and phone devices available, includ-
ing discovering the type of media a specific line can handle, it does have one
limitation: It does not give you access to the content of the media stream.

How can you get that level of access? To manage a media stream, you must
use other Win32 functions from the APIs that support areas such as Communi-
cations, Wave Audio, or Media Control Interface (MCI). (The latter two APIs
are discussed in The Tomes of Delphi: Win32 Multimedia API.) Consider an
application that manages fax or data transmission. Such an application would use
the TAPI functions to control and monitor the line over which data bits were
being sent but would use the Communications functions to transmit the actual
data. Similarly, an application that recorded conversations or played greeting
messages would need to rely on the Wave API.

In the same manner, the media stream in a speech call (where speech refers
exclusively to human speech, not synthesized computer speech) is produced
and controlled not by TAPI, but by one human talking to another. However, the
line on which that call is established and monitored, and the call itself, remain in

294 � Chapter 7

Figure 7-3:

A possible

telephony

configuration

over a LAN

control of the TAPI application. (Note that voice is considered to be any signal
that can travel over a 3.1 kHz bandwidth channel.)

Varieties of Physical Connections

There’s more than one way in which lines and phones can be connected
between a desktop computer and a telephone network. The two common para-
digms are called phone-centric connections and computer-centric connections.
We’ll mention several specific configurations that could be supported by a ser-
vice provider with the caveat that some of the telephone hardware needed to
implement some configurations may not be widely available at the time of publi-
cation. Table 7-1 shows the various connection types described in the TAPI
Help file, beginning with the two most common ones.

Table 7-1: Three types of connections

Connection Type Description

Phone-centric Uses a single POTS line in which the computer is connected to the switch
through the desktop phone set. These phone sets typically connect to the
computer through one of its serial ports. When an application requests an
action, the corresponding service provider sends telephony commands
(often based on the Hayes AT command set) over a serial connection to the
telephone. Under this limited configuration, there is generally only line con-
trol, and the computer does not have access to the media stream.

Computer-centric Uses a computer add-in card or external box connected to both the tele-
phone network and the phone set. The service provider may easily inte-
grate modem and fax functions. It can also use the telephone as an audio I/O
device.

BRI-ISDN Similar in many ways to the computer-centric connection but allows for
using the two B channels in a variety of line configurations

See the TAPI Help file for the various models it suggests and tips on how to
work with these models.

We’ll discuss some of the other possibilities in more detail here, as they may
be applicable to your development needs.

Telephony can also be used on local area network servers. Such a server
might have multiple telephone line connections. It would have to be able to sup-
port a variety of TAPI operations initiated at any of the client computers
connected to it. As usual, these requests would be forwarded over the LAN to
the server. The server would support third-party call control between itself and
the switch to implement the client’s call-control requests. An advantage of this
model is that it offers a lower cost per computer for call control if the LAN is
already in use, and it also offers a reduced cost for media stream access if shared
devices are installed in the server. Those shared devices might include voice
digitizers, fax and/or data modems, or interactive voice response cards.
Although digitized media streams can be carried over the LAN, real-time

Introduction to TAPI � 295

7

C
h
a
p

te
r

transfer of media may be problematic with some LAN technologies due to
inconsistent throughput.

A LAN-based host can be connected to the switch using a switch-to-host link.
As with other tasks in a LAN environment, TAPI operations invoked at any of
the client computers will be forwarded over the LAN to the host. In response,
the host would then use a third-party switch-to-host link protocol to implement
the client’s call-control requests. Note that it is also possible for you to connect
a private branch exchange (PBX) directly to a LAN and integrate the server
functions into the PBX. Microsoft outlines the following sub-configurations in
the TAPI Help file:

� One that provides personal telephony functionality to each by associating
the PBX line with the computer (on a desktop) as a single line device with
one channel.

� One that allows applications to control calls on other stations by modeling
each third-party station as a separate line device. (In a PBX, a station is
anything to which a wire leads from the PBX.)

� One that sets all third-party stations as a single line device with one
address (phone number) assigned to it per station.

In the first sub-configuration, each client computer would have one line device
available. In the second, where one workstation can control calls on other
machines, your application must first open each line it wants to manipulate or
monitor. This setup is particularly important if you’re using a small number of
lines; however, it could involve a good deal of overhead if a large number of lines
is involved. In the third sub-configuration, only one device would be opened,
with that device providing monitoring and control of all addresses (all stations)
on the line. In this case, to originate a call on any of these stations, the applica-
tion must specify only the station’s address to the function that makes the call.
No extra line-opening operations are required. However, this modeling implies
that all stations have the same line device capabilities, although their address
capabilities could be different.

For TAPI applications, the computers used need not be desktop computers.
Such applications can also run on laptops and other portable computers con-
nected to the telephone network over a wireless connection. In fact, we used a
laptop as one of the test computers for the code in this book.

TAPI’s capabilities are expanding with every new version, but you must have
the right hardware to take full advantage. If you’re using a shared telephony
connection in which the computer’s connection is shared by other telephony
equipment, you must ensure that there is some control over the use of that
equipment, since neither the application nor the service provider can assume
that there are no other active devices on the line.

296 � Chapter 7

Levels of Telephony Programming Using TAPI
In the previous sections, we discussed parts of the Telephony Application Pro-
gramming Interface, with particular emphasis on the Line API and to a lesser
extent the Phone API. But we haven’t told the entire story. These two APIs
represent the low-level services of TAPI. As in other APIs (such as Multime-
dia), there are also a few high-level services that we’ll discuss presently. Similar
to those other APIs, the high-level services make the programmer’s work eas-
ier, while the low-level services provide additional functionality and flexibility.
The high-level services comprise the handful of functions that belong to the
Assisted Telephony services we’ll discuss in Chapter 10, “Placing Outgoing
Calls.”

What is the best way to conceptualize TAPI’s line capabilities? Generally,
these capabilities fall into two general groups: Basic Telephony and Supplemen-
tary Telephony. There are also Extended Telephony services that are
service-provider specific. Basic Telephony services constitute a minimal subset
of the Win32 telephony specification, one that corresponds roughly to the fea-
tures of POTS (Plain Old Telephone Service). The specification requires that
these features be available with every TAPI-capable line device. To put it
another way, every service provider must support these Basic Telephony ser-
vices. Of course, this is mainly an issue for hardware manufacturers and the
device driver developers. The good news for applications developers is that pro-
cesses that use only these basic functions should work with any TAPI service
provider.

We’ve mentioned some fairly exotic TAPI implementations that are pre-
sented in the documentation. These are all beyond the scope of this book, so we
should come back to Earth. Even today, many applications remain within the
world of services provided by Basic Telephony. The functions that are part of
Basic Telephony are shown in Table 7-2. These functions, which we’ll discuss in
detail in the remainder of this tome, fall into two categories: synchronous and
asynchronous. The former (synchronous) group of functions will always return a
result to the application immediately; the latter (asynchronous) functions will
indicate their completion in a REPLY message to the application. The functions
also belong to various categories depending on the type of task they perform.

Table 7-2: Basic Telephony functions

Function Meaning Group

lineInitializeEx A synchronous function that initializes the TAPI line abstrac-
tion for use by the invoking application

TAPI initialization
and shutdown

lineShutdown A synchronous function that shuts down an application’s use
of the line TAPI connection

TAPI initialization
and shutdown

lineNegotiateAPIVersion A synchronous function that allows an application to negoti-
ate a version of TAPI to use

Line version
negotiation

Introduction to TAPI � 297

7

C
h
a
p

te
r

Function Meaning Group

lineGetDevCaps A synchronous function that returns the capabilities of a given
line device

Line status and
capabilities

lineGetDevConfig A synchronous function that returns configuration of a media
stream device

Line status and
capabilities

lineGetLineDevStatus A synchronous function that returns current status of the
specified open line device

Line status and
capabilities

lineSetDevConfig A synchronous function that sets the configuration of the
specified media stream device

Line status and
capabilities

lineSetStatusMessages A synchronous function that specifies the status changes for
which an application wants to be notified

Line status and
capabilities

lineGetStatusMessages A synchronous function that returns an application’s current
line and address status message settings

Line status and
capabilities

lineGetID A synchronous function that retrieves a device ID associated
with the specified open line, address, or call

Line status and
capabilities

lineGetIcon A synchronous function that allows an application to retrieve
an icon for display to the user.

Line status and
capabilities

lineConfigDialog A synchronous function that causes the provider of the speci-
fied line device to display a dialog box that allows the user to
configure parameters related to the line device

Line status and
capabilities

lineConfigDialogEdit A synchronous function that displays a dialog box allowing the
user to change configuration information for a line device
(Version 1.4)

Line status and
capabilities

lineGetAddressCaps A synchronous function that returns the telephony capabili-
ties of an address

Addresses

lineGetAddressStatus A synchronous function that returns current status of a speci-
fied address

Addresses

lineGetAddressID A synchronous function that retrieves the address ID of an
address specified using an alternate format

Addresses

lineOpen A synchronous function that opens a specified line device for
providing subsequent monitoring and/or control of the line

Opening and clos-
ing line devices

lineClose A synchronous function that closes a specified opened line
device

Opening and clos-
ing line devices

lineTranslateAddress A synchronous function that translates between an address in
canonical format and an address in dialable format (See Chap-
ter 10 for an explanation of canonical and dialable formats.)

Address formats

lineSetCurrentLocation A synchronous function that sets the location used as the
context for address translation

Address formats

lineSetTollList A synchronous function that manipulates the toll list Address formats

lineGetTranslateCaps A synchronous function that returns address translation
capabilities

Address formats

lineGetCallInfo A synchronous function that returns mostly constant informa-
tion about a call

Call states and
events

lineGetCallStatus A synchronous function that returns complete call status
information for the specified call

Call states and
events

lineSetAppSpecific A synchronous function that sets an application-specific field
of a call’s information structure

Call states and
events

298 � Chapter 7

Function Meaning Group

lineRegisterRequestRecipient A synchronous function that registers or de-registers an
application as a request recipient for the specified request
mode

Request recipient
services. These
functions are used
only in support of
assisted telephony.
(See Chapters 10
and 11)

lineGetRequest A synchronous function that gets the next request from the
Telephony DLL

Request recipient
services

lineMakeCall Makes an outbound call and returns a call handle for it—
asynchronous

Making calls

lineDial Dials (parts of one or more) dialable addresses—
asynchronous

Making calls

lineAnswer Answers an inbound call—asynchronous Answering
inbound calls

lineSetNumRings A synchronous function that indicates the number of rings
after which inbound calls are to be answered

Toll saver support

lineGetNumRings A synchronous function that returns the minimum number of
rings requested with lineSetNumRings()

Toll saver support

lineSetCallPrivilege A synchronous function that sets an application’s privilege to
the privilege specified

Call privilege
control

lineDrop Disconnects a call or abandons a call attempt in progress—
asynchronous

Call drop

lineDeallocateCall A synchronous function that deallocates the specified call
handle

Call drop

lineHandoff A synchronous function that hands off call ownership and/or
changes an application’s privileges to a call

Call handle
manipulation

lineGetNewCalls A synchronous function that returns call handles to calls on a
specified line or address for which an application does not yet
have handles

Call handle
manipulation

lineGetConfRelatedCalls A synchronous function that returns a list of call handles that
are part of the same conference call as the call specified as a
parameter

Call handle
manipulation

lineTranslateDialog A synchronous function that displays a dialog box allowing the
user to change location and calling card information (Version
1.4)

Location and
country
information

lineGetCountry A synchronous function that retrieves dialing rules and other
information about a given country (Version 1.4)

Location and
country
information

What if you’re supporting something more sophisticated, such as a company’s
PBX phone system? Such a system could have internal capabilities greatly
exceeding the external (POTS) system to which it is connected for communicat-
ing with the outside world. To support the greater functionality of the PBX,
you’ll need the functions belonging to Supplementary Telephony. These func-
tions are listed in Table 7-3 and deal with issues such as bearer modes,
monitoring various call aspects (media, digits, and tones), media control actions,

Introduction to TAPI � 299

7

C
h
a
p

te
r

digit and tone manipulations, and advanced call operations. The latter group
includes features like call acceptance, rejection, redirecting, holding, forwarding,
parking, pickup, and completion. We do not go into a detailed discussion of these
extended TAPI functions in this book. However, since we’re currently providing
an overview, we will provide a complete one with all of the Supplementary Tele-
phony functions in Table 7-3.

Table 7-3: Supplementary Telephony functions

Function Meaning Group

lineSetCallParams A synchronous function that requests a change in the call
parameters of an existing call

Bearer mode and
rate

lineMonitorMedia A synchronous function that enables or disables media
mode notification on a specified call

Media monitoring

lineMonitorDigits A synchronous function that enables or disables digit
detection notification on a specified call

Digit monitoring and
gathering

lineGatherDigits A synchronous function that performs the buffered gath-
ering of digits on a call

Digit monitoring and
gathering

lineMonitorTones A synchronous function that specifies which tones to
detect on a specified call

Tone monitoring

lineSetMediaControl A synchronous function that sets up a call’s media
stream for media control

Media control

lineSetMediaMode A synchronous function that sets the media mode(s) of
the specified call in its LINECALLINFO structure

Media control

lineGenerateDigits A synchronous function that generates inband digits on a
call

Generating inband
digits and tones

lineGenerateTone A synchronous function that generates a given set of
inband tones on a call

Generating inband
digits and tones

lineAccept An asynchronous function that accepts an offered call
and starts alerting both caller (ringback) and called party
(ring)

Call accept and
redirect

lineRedirect An asynchronous function that redirects an offering call
to another address

Call accept and
redirect

lineDrop An asynchronous function that drops or disconnects the
specified call. Your application may specify user-to-user
information to be transmitted as part of the call discon-
necting process.

Call reject

lineHold An asynchronous function that places the specified call
on hard hold

Call hold

lineUnhold An asynchronous function that retrieves a held call Call hold

lineSecureCall An asynchronous function that secures an existing call
from interference by other events such as call waiting
beeps on data connections

Making calls

lineSetupTransfer An asynchronous function that prepares a specified call
for transfer to another address

Call transfer

lineCompleteTransfer An asynchronous function that transfers a call that was
set up for transfer to another call, or enters a three-way
conference.

Call transfer

300 � Chapter 7

Function Meaning Group

lineBlindTransfer An asynchronous function that transfers a call to another
party

Call transfer

lineSwapHold An asynchronous function that swaps the active call with
the call currently on consultation hold

Call transfer

lineSetupConference An asynchronous function that prepares a given call for
the addition of another party

Call conference

linePrepareAddToConference An asynchronous function that prepares to add a party
to an existing conference call by allocating a consultation
call that can later be added to the conference call that is
placed on conference hold

Call conference

lineAddToConference An asynchronous function that adds a consultation call to
an existing conference call

Call conference

lineRemoveFromConference An asynchronous function that removes a party from a
conference call

Call conference

linePark An asynchronous function that parks a given call at
another address

Call park

lineUnpark An asynchronous function that retrieves a parked call Call park

lineForward An asynchronous function that sets or cancels call for-
warding requests

Call forwarding

linePickup An asynchronous function that picks up a call that is
alerting at another number or picks up a call alerting at
another destination address and returns a call handle for
the picked-up call (linePickup can also be used for call
waiting)

Call pickup

lineReleaseUserUserInfo An asynchronous function that releases user-to-user
information, permitting the system to overwrite this
storage with new information (Version 1.4.)

Sending information
to remote party

lineSendUserUserInfo An asynchronous function that sends user-to-user infor-
mation to the remote party on the specified call

Sending information
to remote party

lineCompleteCall An asynchronous function that places a call completion
request

Call completion

lineUncompleteCall An asynchronous function that cancels a call completion
request

Call completion

lineSetTerminal An asynchronous function that specifies the terminal
device to which the specified line, address events, or call
media stream events are routed

Setting a terminal for
phone conversations

lineGetAppPriority A synchronous function that retrieves handoff and/or
Assisted Telephony priority information for an applica-
tion (Version 1.4)

Application priority

lineSetAppPriority A synchronous function that sets the handoff and/or
Assisted Telephony priority for an application (Version
1.4)

Application priority

lineAddProvider A synchronous function that installs a telephony service
provider (Version 1.4)

Service provider
management

lineConfigProvider A synchronous function that displays the configuration
dialog box of a service provider (Version 1.4)

Service provider
management

7

C
h
a
p

te
r

Introduction to TAPI � 301

Function Meaning Group

lineRemoveProvider A synchronous function that removes an existing tele-
phony service provider (Version 1.4)

Service provider
management

lineGetProviderList A synchronous function that retrieves a list of installed
service providers (Version 1.4)

Service provider
management

lineAgentSpecific An asynchronous function that allows the application to
access proprietary handler-specific functions of the agent
handler associated with the address (Version 2.0)

Agents

lineGetAgentActivityList An asynchronous function that obtains the list of activi-
ties from which an application selects the functions an
agent is performing (Version 2.0)

Agents

lineGetAgentCaps An asynchronous function that obtains the agent-related
capabilities supported on the specified line device (Ver-
sion 2.0)

Agents

lineGetAgentGroupList An asynchronous function that obtains the list of agent
groups into which an agent can log into on the automatic
call distributor (Version 2.0)

Agents

lineGetAgentStatus An asynchronous function that obtains the agent-related
status on the specified address (Version 2.0)

Agents

lineSetAgentActivity An asynchronous function that sets the agent activity
code associated with a particular address (Version 2.0)

Agents

lineSetAgentGroup An asynchronous function that sets the agent groups into
which the agent is logged into on a particular address
(Version 2.0)

Agents

lineSetAgentState An asynchronous function that sets the agent state asso-
ciated with a particular address (Version 2.0)

Agents

lineProxyMessage A synchronous function that is used by a registered
proxy request handler to generate TAPI messages (Ver-
sion 2.0)

Proxies

lineProxyResponse A synchronous function that indicates completion of a
proxy request by a registered proxy handler (Version
2.0)

Proxies

lineSetCallQualityOfService An asynchronous function that requests a change of the
quality of service parameters for an existing call (Version
2.0)

Quality of service

lineSetCallData An asynchronous function that sets the CallData mem-
ber of the LINECALLINFO structure (Version 2.0)

Miscellaneous

lineSetCallTreatment An asynchronous function that sets the sounds the user
hears when a call is unanswered or on hold (Version 2.0)

Miscellaneous

lineSetLineDevStatus An asynchronous function that sets the line device status
(Version 2.0)

Miscellaneous

Table 7-4 lists all of the functions in the Phone API. These functions are not
covered in this book.

302 � Chapter 7

TE
AM
FL
Y

Team-Fly®

Table 7-4: Phone functions

Function Meaning Group

phoneInitializeEx A synchronous function that initializes the Telephony API
phone abstraction for use by the invoking application

TAPI initialization
and shutdown

phoneShutdown A synchronous function that shuts down the application’s
use of the phone Telephony API

TAPI initialization
and shutdown

phoneNegotiateAPIVersion A synchronous function that allows an application to
negotiate an API version to use

Phone version
negotiation

phoneOpen A synchronous function that opens the specified phone
device, giving the application either owner or monitor
privileges

Opening and closing
phone devices

phoneClose A synchronous function that closes a specified open
phone device

Opening and closing
phone devices

phoneGetDevCaps A synchronous function that returns the capabilities of a
given phone device

Phone status and
capabilities

phoneGetID A synchronous function that returns a device ID for the
given device class associated with the specified phone
device

Phone status and
capabilities

phoneGetIcon A synchronous function that allows an application to
retrieve an icon for display to the user

Phone status and
capabilities

phoneConfigDialog A synchronous function that causes the provider of the
specified phone device to display a dialog box that allows
the user to configure parameters related to the phone
device

Phone status and
capabilities

phoneSetHookSwitch An asynchronous function that sets the hookswitch
mode of one or more of the hookswitch devices of an
open phone device

Hookswitch devices

phoneGetHookSwitch A synchronous function that queries the hookswitch
mode of a hookswitch device of an open phone device

Hookswitch devices

phoneSetVolume An asynchronous function that sets the volume of a
hookswitch device’s speaker of an open phone device

Hookswitch devices

phoneGetVolume A synchronous function that returns the volume setting
of a hookswitch device’s speaker of an open phone
device

Hookswitch devices

phoneSetGain An asynchronous function that sets the gain of a
hookswitch device’s mic of an open phone device

Hookswitch devices

phoneGetGain A synchronous function that returns the gain setting of a
hookswitch device’s mic of an opened phone device

Hookswitch devices

phoneSetDisplay An asynchronous function that writes information to the
display of an open phone device

Display

phoneGetDisplay A synchronous function that returns the current con-
tents of a phone’s display

Display

phoneSetRing An asynchronous function that rings an open phone
device according to a given ring mode

Ring

phoneGetRing A synchronous function that returns the current ring
mode of an opened phone device

Ring

phoneSetButtonInfo An asynchronous function that sets the information asso-
ciated with a button on a phone device

Buttons

Introduction to TAPI � 303

7

C
h
a
p

te
r

Function Meaning Group

phoneGetButtonInfo A synchronous function that returns information associ-
ated with a button on a phone device

Buttons

phoneSetLamp An asynchronous function that illuminates a lamp on a
specified open phone device in a given lamp lighting
mode

Lamps

phoneGetLamp A synchronous function that returns the current lamp
mode of the specified lamp

Lamps

phoneSetData An asynchronous function that downloads a buffer of
data to a given data area in the phone device

Data areas

phoneGetData A synchronous function that uploads the contents of a
given data area in the phone device to a buffer

Data areas

phoneSetStatusMessages A synchronous function that specifies the status changes
for which the application wants to be notified

Status

phoneGetStatusMessages A synchronous function that returns the status changes
for which the application wants to be notified

Status

phoneGetStatus A synchronous function that returns the complete status
of an open phone device

Status

In the preceding tables we presented the full telephony services, divided into
the Line API and the Phone API. These APIs can be used to implement power-
ful telephonic functionality in applications. On the other hand, TAPI’s high-level
programming interface, Assisted Telephony, can be used to add minimal (but
useful) telephonic functionality to non-telephony applications. In Chapter 10,
we’ll examine Assisted Telephony along with other more involved ways of plac-
ing outgoing telephone calls. However, before we do that, we need to discuss
the basic issues of initializing TAPI, configuring TAPI, and dealing with TAPI
messages.

Summary
In this chapter, we have examined the history and the definition of TAPI, includ-
ing the manner in which it fits into WOSA. We have explored the range of TAPI
applications, current and future relationships to hardware, media streams, and a
variety of other related topics. Finally, we have provided a summary of all of the
TAPI functions, many of which will be discussed in the remaining chapters. Now
we are ready to discuss specifics and begin working with TAPI code.

304 � Chapter 7

305

Chapter 8

Line Devices and Essential
Operations

The largest part of TAPI is the part that deals with so-called “lines.” We’ll refer
to this application programming interface here as the Line API. This part of
TAPI is huge and grows larger with each new version. It comprises all of the
constants, structures, and functions that begin with “line.” We’ll devote the
remainder of this book to an examination of a major portion of this API. In this
chapter, we’ll provide an overview followed by a detailed discussion of the
essential line operations, such as initializing, opening, closing, and configuring
line devices. In the next chapter, we’ll discuss the closely related topic of setting
up a callback function to handle telephony messages from Windows. In that
chapter, we’ll also provide a detailed discussion of those messages. We’ll devote
the final two chapters to information about providing users with the ability to
place calls and answer calls, respectively. As we did in Part I in our discussion of
Winsock, we’ll provide a detailed reference on the line constants, structures,
and functions that support this functionality in this and the remaining chapters.

We’ll begin by considering an important question: What exactly is a line
device? The TAPI Help file defines a line device as “a physical device such as a
fax board, a modem, or an ISDN card that is connected to an actual telephone
line.” Line devices have a crucial function: They provide support for a wide
range of telephony functionality, enabling applications to send and/or receive
information to/from a telephone or telephone network. A line device is not a
physical line; rather, it provides a logical representation or abstraction of such a
physical line device.

In this chapter, we’ll begin by providing an overview of the various stages in
working with telephony devices. Then we’ll show how to initialize telephony
devices. As indicated above, we’ll postpone our discussion of message handling
until the next chapter. We’ll briefly discuss the different levels of line functional-
ity and provide a detailed discussion on configuring line devices. We’ll then
discuss the process of opening line devices, determining capabilities, and

working with media modes. We’ll conclude the chapter with an in-depth refer-
ence to the functions and structures that support this and related functionalities.

Stages in Working with Telephony
In terms of the process involved, working with telephony is similar to working
with many other computer technologies, including multimedia. First you must
establish a connection with the hardware through its driver(s). You accomplish
this task by initializing TAPI as we do in the process of initializing our TAPI
class. After you’ve established a connection to TAPI (and its DLL), you must
follow the stages in the process that are shown in Figure 8-1. They can be sum-
marized in this manner: First you must check the capabilities of the TAPI
devices on a particular computer and properly configure a device to carry out
the tasks you want to accomplish. Next, you must open the device you’ve iden-
tified, setting up a callback mechanism so your application can deal with
messages sent back from Windows to that application. (Again, we’ll discuss the
callback mechanism and the specific messages in detail in Chapter 9, “Handling
TAPI Line Messages.”) Then the real fun begins—you must provide a range of
useful telephony tasks for your users. These can range from the simple placing
and answering of calls to setting up conference calls (if your system supports
this advanced feature). Finally, you must shut things down properly. In this
chapter, we’ll go through the four stages in some detail. In the second half of the
chapter, we’ll expose all of the functions and structures that support these
steps.

Before you can discover TAPI capabilities, you must first establish a relation-
ship with TAPI itself. Applications using TAPI versions 1.4 and earlier must use
the lineInitialize() function to accomplish this. That function is now obsolete but

306 � Chapter 8

Figure 8-1: Stages in working

with a communications

device

is still included in newer TAPI versions for backward compatibility. More recent
TAPI versions use the lineInitializeEx() function. Both functions share five
parameters that store information on the TAPI connection, including the
address of a callback function that handles the Windows messages. The new
function includes two additional parameters. One indicates the highest TAPI
version it is designed to support and the other points to a LINEINITIALIZEEX-
PARAMS structure. That structure contains additional parameters that are used
to communicate between the TAPI and your application.

Three Notification Mechanisms
When you call the lineInitializeEx() function to establish the communication link
we’ve been discussing, you must select one of three notification mechanisms.
Any of these mechanisms will allow your application to receive information
about telephony events. The three mechanisms that TAPI provides are Hidden
Window, Event Handle, and Completion Port. We’ll discuss each mechanism
beginning with the means of invoking it, its basic qualities, and the issues or
constraints associated with it.

To select a particular mechanism, you must specify its associated constant in
the dwOptions field of its final parameter (a LINEINITIALIZEEXPARAMS
structure) as follows:

� Hidden Window mechanism (the only one available to TAPI 1.x applica-
tions): Use the LINEINITIALIZEEXOPTION_USEHIDDENWINDOW
constant.

� Event Handle mechanism: Use the LINEINITIALIZEEXOPTION_
USEEVENT constant.

� Completion Port mechanism: Use the LINEINITIALIZEEXOPTION_
USECOMPLETION PORT constant.

Each of these mechanisms behaves in a somewhat different way. As its name
implies, the Hidden Window mechanism instructs TAPI to create a hidden win-
dow to which all messages will be sent. The Event Handle mechanism instructs
TAPI to create an event object on behalf of your application, returning a handle
to the object in the hEvent field in the LINEINITIALIZEEXPARAMS structure.
Finally, the Completion Port mechanism instructs TAPI to send a message to
your application whenever a telephony event occurs using the PostQueued-
CompletionStatus() function. Note that it is your responsibility to set up a
completion port. TAPI will send a message to the completion port that your
application specifies in the hCompletionPort field of the LINEINITIALIZEEX-
PARAMS structure. The message will be tagged with the completion key that
the application specified in the dwCompletionKey field in LINEINITIALIZEEX-

Line Devices and Essential Operations � 307

8

C
h
a
p

te
r

PARAMS. In the TapiIntf.pas unit, we have demonstrated the first two of these
mechanisms.

There are also issues or possible constraints that come up with each of these
mechanisms. We will mention some of the warnings specified in the TAPI Help
file. If you use the Hidden Windows mechanism, you must provide a means of
handling messages in a queue and you must poll that queue regularly to avoid
delaying processing of telephony events. Delphi handles much of this automati-
cally in its handling of Windows messages. Still, you need to write the callback
routine so that it responds to each TAPI event. In the TapiIntf.pas unit, we
define several new messages to inform the calling application of telephony
states. Be aware that when you call the lineShutdown() function, TAPI will auto-
matically handle the details of shutting things down, destroying the hidden
window in the process.

With the Event Handle mechanism, your application should not attempt to
manipulate a TAPI event directly, such as by calling SetEvent(), ResetEvent(),
CloseHandle(), or similar Windows functions. If you ignore this warning, your
application could likely manifest strange and unpredictable behavior. Instead of
using any of the previously mentioned Windows functions, your application
should simply wait for this event using other Windows functions, such as
WaitForSingleObject() or MsgWaitForMultipleObjects().

As we’ve seen, the Completion Port mechanism requires you to perform
additional chores. Importantly, you must first create the completion port using
the Windows CreateIoCompletionPort() function. While we do not use this
approach with TAPI in our sample code, we did discuss the CreateIoComple-
tionPort() function and its use with Winsock in Chapter 5. Once you have set up
the mechanism, your application will retrieve events using the GetQueued-
CompletionStatus() function. When GetQueuedCompletionStatus() returns, it
will send the specified dwCompletionKey to your application. TAPI will write this
value to the DWORD pointed to by the lpCompletionKey parameter, with a
pointer to a LINEMESSAGE structure returned to the location pointed to by
lpOverlapped. After your application has processed the event, you must release
the memory used to contain the LINEMESSAGE structure. Because your appli-
cation created the completion port itself (unlike the objects that TAPI creates
for you automatically), you must also close it, but be careful not to close the
completion port until after you have called the lineShutdown() function. For
additional information on these three methods, see the TAPI Help file.

308 � Chapter 8

TAPI Line Support—Basic and Extended Capabilities
As we mentioned already, systems can have one or more line devices. And TAPI
provides you with a straightforward means through which to refer to individual
ones. To accomplish this, you should simply enumerate the line device IDs.
These will always have a range from zero to one less than the value of dwNum-

Devs. For convenience, in our TapiIntf unit, we store the value of dwNumDevs in
a property of the main class so that it is available whenever we need it.

When working with TAPI, you should not assume that a particular line device
is capable of performing a specific TAPI function, unless, of course, it is one of
the basic ones. To make this determination, you should first query the device’s
capabilities by calling the lineGetDevCaps() and lineGetAddressCaps() func-
tions. Again, valid address IDs for the latter function range from zero to one less
than the number of addresses returned by lineGetDevCaps(). Let’s explore
TAPI capabilities further.

�TIP: When working with TAPI, never assume that a particular line
device will be capable of performing every TAPI function; if you
want to include any functionality beyond the basic line functions,
check the device’s capabilities using lineGetDevCaps().

Determining Capabilities and Configuring TAPI
If your application needs to use functionality beyond that of Basic Telephony,
you must first determine the line device’s capabilities as we mentioned earlier.
Bear in mind that these capabilities can vary considerably depending upon such
factors as network configuration (client versus client-server), specific hardware
installed, service-provider software (especially drivers), and the telephone net-
work to which the computer is connected. As stated already, you can safely
assume that all of the capabilities of Basic Telephony will be available, but you
can’t assume anything beyond that.

To perform correctly, your application must find the proper TAPI version to
use. To accomplish this, you must call the lineNegotiateAPIVersion() function to
determine the API version and the lineNegotiateExtVersion() function to deter-
mine the extension version to use. In our example code, we store these values
in properties of our TAPI class for later use.

The lineGetDevCaps() function will provide you with the telephony capabili-
ties available on a given line device. This information will be returned in a data
structure of the type LINEDEVCAPS. You should use this information to make
programming decisions. You could also display it to the user. Figure 8-2 shows a
dialog box from one of our sample applications that demonstrates how to pro-
vide such a summary. If your application is feature-rich and designed to work

Line Devices and Essential Operations � 309

8

C
h
a
p

te
r

under a variety of telephony environments, you should be careful to disable any
extended functionality that you find is not supported.

Be aware that since new versions of TAPI include increased capabilities, this
(LINEDEVCAPS) and similar structures will tend to get larger with each new
version. Let’s take a look at this important structure in more detail and explain
how to deal with some of the more difficult issues.

If you need to work with device-specific extensions, you should use the Dev-
Specific (dwDevSpecificSize and dwDevSpecificOffset) variably sized area of this
data structure.

Note that older applications (using older TAPI versions, especially 1.x) don’t
include this field as part of the LINEADDRESSCAPS structure. Variable struc-
tures can be very tricky in TAPI, since they often vary in size from one version
to the next. Here’s yet another reason for determining and taking account of the
TAPI version you’re working with. After you call the lineGetAddressCaps()
function, you should check the dwAPIVersion parameter to get this information
from TAPI. This is the proper way to handle version-sensitive situations.

When calling either lineGetDevCaps() or lineGetAddressCaps(), it is quite
possible to pass a size that’s too small in the dwTotalSize parameter. When this
happens, you’ll get an error of LINEERR_STRUCTURETOOSMALL. You can
handle the situation easily in code by testing for this specific error and then
reallocating memory to the particular structure, either LINEDEVCAPS or
LINEADDRESSCAPS. You can get the amount of memory needed by examining
the dwNeededSize parameter of the respective structure. As we’ve discussed,
the reason why this issue comes up is that the size of these structures varies
with different versions of TAPI.

There are also issues related to service providers. A new service provider
(which may or may not support a new TAPI version) has the important respon-
sibility to examine the TAPI version passed to it. If the TAPI version used by

310 � Chapter 8

Figure 8-2: TAPI line device

capabilities

the application is less than the highest version supported by the provider, the
service provider must not fill in those fields that are not supported in older
TAPI versions, since these fixed fields would fall in the variable portion of the
older structure. Additionally, new applications must be cognizant of the TAPI
version negotiated and should not attempt to examine the contents of fields in
the fixed portion beyond the original end of the fixed portion of the structure for
that negotiated TAPI version.

Configuring TAPI

Are there resources to provide users with the ability to view and edit configura-
tion information? Yes! TAPI provides two functions for this purpose, lineConfig-
Dialog() and lineConfigDialogEdit(). Both functions cause the service provider
to display a modal dialog box (see Figure 8-3) that allows the user to configure
parameters related to the specified line. But there is a significant difference
between the two functions: The lineConfigDialog() function changes the config-
uration information immediately (dangerous in some situations), while the
lineConfigDialogEdit() function saves the information in a structure that can be
used to update the configuration later when you call to the lineSetDevConfig()
function.

If necessary, you can use either function’s lpszDeviceClass parameter in order to
show a specific sub-screen of the full configuration information available. Some
of the common strings that can be used in this parameter are “comm.” and
“tapi/line.” You can find a complete list in the TAPI Help file. The former
(comm) would be appropriate if the line supports the venerable Comm API. In
that case, the provider would display information related specifically to comm.
The latter string (tapi/line) would be more appropriate for the TAPI line func-
tions we are discussing here.

Line Devices and Essential Operations � 311

8

C
h
a
p

te
r

Figure 8-3: A modal dialog box

TAPI’s VarString

An interesting feature of LineConfigDialogEdit() is the structure it uses to store
configuration data. This structure, called a VarString, is defined in the TAPI
Help file and the original Project JEDI translation of TAPI.pas file (note that I
added an additional field to point to the variable data in this structure):

PVarString = ^TVarString;
varstring_tag = packed record
dwTotalSize,
dwNeededSize,
dwUsedSize,
dwStringFormat,
dwStringSize,
dwStringOffset: DWORD;
// Modified by Alan C. Moore: new field, next line added
data : array [0..0] of byte;

end;

The first three fields of this structure—dwTotalSize, dwNeededSize, and
dwUsedSize—are common to many structures in Microsoft APIs. They are so
common, in fact, that they are sometimes omitted in the documentation. The
first, dwTotalSize, indicates the total size (in bytes) allocated to the data struc-
ture. Generally, it is your responsibility to allocate sufficient memory, at least for
the fixed portion of the data structure. However, like similar structures in this
and other APIs, there is a variable portion of this structure whose size may not
be known in advance. The reason is that different vendors will include different
configuration information of different sizes.

How should you deal with this variable data part of the structure? A common
approach is to guess the size of the variable portion and allocate memory equal
to the fixed size and the estimated maximum variable size. You must also set
dwTotalSize to this exact size. Further, you should initialize the bytes in the
structure to 0. (Setting the dwStringFormat field is probably not needed but was
added during the debugging phase in an attempt to correct a problem that we
will discuss presently.) Here is code from TAPIIntf.pas that accomplishes this,
where FDeviceConfig is a pointer to a VarString structure:

if FDeviceConfig=Nil then
begin
FDeviceConfig := AllocMem(SizeOf(VarString)+1000);
FillChar(FDeviceConfig^, SizeOf(VarString)+1000, 0);
FDeviceConfig.dwTotalSize := SizeOf(VarString)+1000;
FDeviceConfig.dwStringFormat := STRINGFORMAT_BINARY;

end;

The dwNeededSize field holds the size (in bytes) needed to hold all the returned
information. The dwUsedSize field holds the size (in bytes) of the portion of the
structure that contains useful information. These latter two fields are set after
calling a function that fills the structure with configuration information.

312 � Chapter 8

TE
AM
FL
Y

Team-Fly®

Before calling lineConfigDialogEdit(), you need to call lineGetDevConfig() to
retrieve initial configuration data. This configuration data will always be specific
to the media stream associated with the specified line device. For a data modem
(indicated by using the datamodem string when calling the lineGetDevConfig()
and lineConfigDialogEdit() functions), the user could specify properties like data
rate, character format, modulation schemes, and error control protocol settings.
Whenever you open a line with the LINEMAPPER constant, you should call the
lineGetID() function afterward to retrieve the actual ID number of the specific
device associated with a line. You can then use that ID number to call other
functions. In this case, you would definitely need it when you call lineGetDev-
Config() to get the configuration information.

Once you have retrieved and stored configuration information in a VarString,
you can use that information to restore the configuration if the user of your
application wishes to later. You should call the lineSetDevConfig() function to
return to the earlier configuration settings. We’ll demonstrate all of these tech-
niques in our discussion of these functions later in this chapter.

Again, the exact format of the data contained within the variable portion of
the VarString structure is device-specific. In addition, and most important, this
data is for TAPI’s internal use only! Your application should never attempt to
access the data directly or manipulate it; that task will be handled by TAPI using
the various functions we will discuss. The data must be stored intact and/or cop-
ied intact as we have shown in our sample code. Since the data is specific to a
single device and its associated media stream, you should not attempt to pass it
to any other device, even one of the same device class. Now that we’ve dis-
cussed configuring line devices, we’ll examine the process of line initialization,
establishing a communications link with TAPI.

Line Initialization—Making a Connection with TAPI

Laying the foundation to perform even the most basic telephony operation is an
involved process. First, you need to initialize TAPI itself. Next, you need to
negotiate one or two TAPI versions for your application to use, taking into
account the different TAPI versions and versions of service providers by differ-
ent vendors. After that, you can examine each of the TAPI devices present on a
computer, determining its capabilities, or you can take a shortcut and use the
LINEMAPPER constant to find a device that meets your needs. Finally, having
performed the preliminary steps, you may open the line device that has the
capabilities you need. These steps are summarized in Figure 8-4. We’ll examine
them in some detail now.

As we just stated, your application needs a connection with TAPI to use any
of TAPI’s basic or supplementary line functions. You need such a connection
even to call the configuration functions we discussed above. The TTapiInterface

Line Devices and Essential Operations � 313

8

C
h
a
p

te
r

class we develop in this book handles this chore automatically. The sample
application, TAPIInitTest.dpr (see Figure 8-5), tests the initialization routines in
the TTapiInterface class.

The connection with TAPI is essential for your application to receive telephony
messages from Windows. Your application can establish this connection using
either the lineInitializeEx() or the phoneInitializeEx() function. We will discuss
the former function in detail in the second half of this chapter. Certain parame-
ters of these functions allow your application to specify the message notification
mechanism your application desires to use. We will provide specific information
about the lineInitializeEx() function later in this chapter.

Neither initialization function—lineInitializeEx() nor phoneInitializeEx()—
is device specific. The same can be said of the anachronistic functions they
replace—lineInitialize() and phoneInitialize(). When your application calls any of
these functions, TAPI does not interact with any particular device (line or
phone) or an abstraction of any device. Rather, TAPI begins by simply setting up
the telephony environment. These tasks include loading the TAPI DLL, loading
TAPISRV.EXE, and loading the device drivers specified in the Windows registry.
Devices include telephony service providers and any needed components. TAPI
must also establish a communication link (as we have described above) between
itself and the calling application during its initialization process. TAPI will con-
sult the Windows registry to retrieve information about registered telephony
applications. If TAPI determines that the registry contains an invalid entry, it

314 � Chapter 8

Figure 8-4

Figure 8-5: Testing the

initialization routines

will return an INIFILECORRUPT error. When this error occurs (regardless of
the initialization function that triggered it), you should notify the user so that he
or she may attempt to resolve the problem. The user may need to rebuild the
registry or a portion thereof. That’s the bad news. The good news is that the
user can often invoke the Telephony Control Panel dialog box to accomplish this
task rather than having to edit the registry manually.

Another possible error, LINEERR_NODRIVER, will occur if the telephony
driver was not installed properly. Usually this means that your application can-
not locate a critical element, such as a previously installed service provider or a
required component (often a device driver) of the service provider. When your
application encounters this error, you should again advise the user to correct
the problem, this time using the Driver Setup capabilities of the Telephony
Control Panel.

As we have stated, your application must call a line initialization function
prior to calling any line functions. What happens if you call an initialization func-
tion more than once (for example, to specify a different message notification
scheme)? You can expect to get an error, as we’ll discuss presently. So, before
calling lineInitializeEx() for a different purpose, you must first call lineShut-
down(). Note that both lineInitializeEx() and lineShutdown() and the
corresponding phone functions operate synchronously. They always return a
success or failure indication rather than an asynchronous Request ID.

�TIP: If you need to call lineInitializeEx() a second time (to establish a
different kind of connection), be sure to call lineShutdown() first
to close the existing connection.

Upon successful completion, the lineInitializeEx() function will return two
essential pieces of information to your application: an application handle and the
number of available line devices. In our TAPI class, we store both of these val-
ues for later use by other functions. An application handle represents the
application’s connection to TAPI. For TAPI, this value identifies the calling
application. TAPI functions that use line or call handles (explained later in this
chapter) do not require an application handle. This is because an application can
determine its application handle from the specified line, phone, or call handle.

As we mentioned briefly, the lineInitializeEx() function also returns the num-
ber of line devices available to an application through TAPI. Device identifiers
(device IDs) are used to identify line devices. As in other Windows APIs, these
device IDs are zero-based positive integers ranging from zero to one less than
the number of line devices. For example, if lineInitializeEx() reports that there
are two line devices in a system, the valid line device IDs would be 0 and 1; if it
reported five, the valid line device IDs would be 0, 1, 2, 3, and 4.

Line Devices and Essential Operations � 315

8

C
h
a
p

te
r

As with most other APIs, it is equally important to properly shut TAPI down
(in Winsock we called WSACleanUp() for this purpose). Once your application is
finished calling TAPI’s line functions, you must call the lineShutdown() function,
passing its application handle (the one set when you called lineInitialize() or
lineInitializeEx()) to that function. This enables TAPI to terminate an applica-
tion’s usage of its functionality and free any resources assigned to that
application. If you neglect to do this, it is possible that some resources may not
be freed. We do this automatically when we call the destructor for our TAPI
class.

Another critical issue is version control. As time goes on, there have been,
and will continue to be, new versions of TAPI (as of publication, version 3, asso-
ciated with Windows 2000, is the most recent), of applications that use TAPI,
and of service providers that relate to TAPI. These new versions will almost
certainly define new features, new functions to access those features, and new
fields in data structures to hold new information.

Among other things, TAPI version numbers are helpful in providing guidance
in the interpretation of various data structures. Over time, many of these data
structures have grown to support new functionality. Examine TAPI.pas,
included on the companion CD-ROM accompanying this book. You’ll notice that
the Project JEDI folks who translated the TAPI C header file have indicated the
new fields added in TAPI versions 2.0, 2.2, and 3.0. In our TAPI wrapper class,
we provide two initializations, one for TAPI 2.2 (that supports Windows 9.x) and
one for TAPI 3.0 (for Windows 2000 and beyond). Here are the routines that
accomplish this, the first initializing TAPI for Windows 9.x and the second for
Windows 2000:

procedure TTapiInterface.InitToWin9X;
begin
FCountryCode := 0;
FVersion := $00020002;
FExtVersion := $00000000;
fNumLineDevs := 0;
FAPIVersion := $00020002;
FLoVersion := $00010004;
FHiVersion := $00020002;

end;

procedure TTapiInterface.InitToWin2000;
begin
FCountryCode := 0;
FVersion := $00030000;
FExtVersion := $00030000;
fNumLineDevs := 0;
FAPIVersion := $00030000;
FLoVersion := $00010004;
FHiVersion := $00030000;

end;

316 � Chapter 8

Let’s Negotiate

Given the possibility of different application versions, TAPI versions, and
vendor service-provider versions, how does TAPI allow for optimal interoper-
ability? Once again, TAPI provides a simple solution. It uses a two-step version
negotiation mechanism in which an application agrees on two different version
numbers. The first one is the version number for Basic and Supplementary
Telephony. This negotiation result is referred to as the TAPI version. The sec-
ond is for provider-specific extensions, if any, and is referred to as the extension

version. These versions must be “agreed upon” by all of the players—your
application, TAPI itself, and the service provider for each line device. Not sur-
prisingly, the format of the data structures and data types used by TAPI’s basic
and supplementary features is defined by the TAPI version, while the extension
version determines the format of the data structures defined by the vendor-spe-
cific extensions.

Let’s take a detailed look at this two-step version negotiation process. First,
you must negotiate the TAPI version number, obtaining the extension ID that is
associated with any vendor-specific extensions supported on the device. Sec-
ond, you may need to negotiate the extension version. Be aware that there are
certain situations in which you should skip the process of version negotiation. If
your application does not use any TAPI extensions, you can certainly skip this
second negotiation. In this case, extensions will not be activated by the service
provider. If your application does require extensions, and the service provider’s
extensions (the extension ID) are not recognized by your application, you
should skip the negotiation for extension version as well. However, in our TAPI
class, we negotiate both. Note that each vendor will define its own set of legal
(recognized) versions for each set of extension specifications it supports.

We’ve discussed the negotiation process, but we have not discussed the func-
tions used to negotiate the TAPI version and the extension version. The first
function is lineNegotiateAPIVersion(). In addition to returning an appropriate
TAPI version, it also retrieves the extension ID. If no extensions are supported,
this number will be set to zero. When you call this function, you must provide a
range of TAPI versions with which your application is compatible. With this
information, TAPI will then negotiate with the line’s service provider to deter-
mine which TAPI version range it supports. Then TAPI selects a version
number (usually but not always the highest version number) in the overlapping
version range supplied by your application, the TAPI DLL, and the service
provider.

Now for the second negotiation, which is the one that’s not always used. If
you need to use available extended functionality, you must call the lineNego-
tiateExtVersion() function to negotiate the extension version. This process is
similar to the primary negotiation phase we just discussed. In this case, your

Line Devices and Essential Operations � 317

8

C
h
a
p

te
r

application will include, as parameters to the function call, the already
agreed-upon TAPI version and the extension version range it supports. TAPI
will pass this information to the service provider for the line. In turn, the ser-
vice provider will check the TAPI version and the extension version range
against its own and will select the appropriate extension version number, if one
exists.

These two functions—lineNegotiateAPIVersion() and lineNegotiateExt-
Version()—lay an important foundation for other functions, including one we’ll
be considering soon, lineGetDevCaps(). When you call this latter function to
retrieve device capabilities for a particular line, those results will reflect the
results of version negotiation. These line device capabilities will be consistent
with both the TAPI version and the line’s device-specific extension capabilities.
Note that your application must specify both of these version numbers when it
opens a line. This enables your application, the TAPI DLL, and the service pro-
vider to agree upon a specific TAPI version or versions as we discussed above.
Again, if you don’t need to use device-specific extensions, the extension version
should be set to zero.

Sometimes multiple applications will open the same line device. When this
happens, the first application to open the device has a special status. That appli-
cation will select the TAPI version(s) for all future applications that may also
use that particular line device; note that service providers do not support multi-
ple versions simultaneously. If your application must open multiple line devices,
you should follow the advice in the TAPI Help file and operate all of the line
devices under the same TAPI version.

Determining Capabilities

As promised, we’ll now explore the process of determining a line device’s capa-
bilities. To determine such capabilities, you must use the lineGetDevCaps()
function. Remember, before calling this function, your application must go
through the process we just described above—you must negotiate the TAPI
version number to use and, if desired, the extension version to use. (These are
included among this function’s parameters). As we’ve seen, the TAPI and
extension version numbers are those under which TAPI and the service pro-
vider will operate. This way, your application will know in advance the
functionality available to it. In the TapiInterface class we develop, we store
many types of capabilities as Boolean properties.

What if the version ranges do not overlap? In that case, the application, TAPI,
or service-provider versions will be incompatible and TAPI will return an error.
In our sample code, we show how to display this information for the user. If this
function does complete successfully, it will return information about the line
capabilities in its last parameter, a pointer to a variably sized structure of type

318 � Chapter 8

LINEDEVCAPS. This structure will be filled with the line device’s capabilities
data. You may use this information in making programming decisions or display
it for the user.

A single line can include a number of addresses. That number of addresses
will be indicated in one of the fields of the LINEDEVCAPS structure. Similar to
line IDs, address IDs range from zero to one less than the returned number.
Address capabilities can vary just as line capabilities vary. To discover these
address capabilities, you should call the lineGetAddressCaps() function for each
available dwDeviceID/dwAddressID combination.

Opening a Line Device
Now that we have laid the proper foundation, we are ready for the final step,
which is actually opening a line device. Once you have obtained a line device’s
capabilities, your application must actually open that line device before it can
access its telephony functions. Keep this in mind: As defined by TAPI, a line
device is an abstraction of a line. Therefore, opening a line and opening a line
device can be thought of as interchangeable. When an application has opened a
line device successfully, it will receive a handle for it. The application can then
perform any of the common tasks on that line, including accepting inbound calls,
placing outbound calls, or monitoring and logging call activities on the line.
Usually an application that has successfully opened a line device can use that
device to make an outbound call. The exception is a situation in which that line
supports only inbound calls.

To open a line device for any purpose, you should call the lineOpen() function.
Of course, when your application is finished using the line device, you should
close it by calling the lineClose() function. You can call the lineOpen() function
in one of two ways: with a device ID or without a device ID.

Using the first method, call the lineOpen() function with a specific line
device, including its line device ID in the dwDeviceID parameter. This will open
that specific line device. If an application is interested in handling inbound calls,
it will generally use this approach so that the application will be aware of the
specific line that wants to handle inbound calls. When a line device has been
opened successfully, your application will receive a handle representing the
open line.

Using the second method, your application must specify the properties it
wants from a line device and use the value LINEMAPPER instead of a specific
line-device ID as the parameter for the lineOpen() function. The function will
open any available line device that supports the properties you specified. Of
course, opening a line in this manner may fail. However, if it is successful, you
can determine the line device ID by calling the lineGetID() function and

Line Devices and Essential Operations � 319

8

C
h
a
p

te
r

specifying the handle (lphLine) to the open line device returned by the call to
lineOpen().

There are some cases in which a line cannot be opened. Fortunately, these
are sometimes temporary in nature. You can generally determine the reason by
examining the error code returned by the lineOpen() function.

�NOTE: The example code on the companion CD always checks these
error codes and reports any problem.

Let’s discuss some of the possible errors. A result of LINEERR_ALLOCATED
indicates that the line could not be opened because of a persistent condition,
such as a serial port having been opened in exclusive mode by another process.
A result of LINEERR_RESOURCEUNAVAIL indicates a dynamic resource
over-commitment. Such an over-commitment may be transitory, such as during
the process of monitoring media modes or tones. In such a case, changes in
these activities by other applications may make it possible for your application
to reopen the line within a short period of time.

LINEERR_REINIT is another important error. It always indicates that your
application has made an illegal attempt to reinitialize TAPI. As we mentioned
earlier, you are not permitted to do that! Sometimes such an attempt could be
made inadvertently, perhaps the result of adding or removing a TSP (Telephony
Service Provider). When this happens, TAPI will reject calls to the lineOpen()
function, returning the LINEERR_REINIT error until the last application (using
TAPI) shuts down its usage of TAPI (by calling lineShutdown()). At that point,
you may begin the process again with a new configuration and call lineInitialize-
Ex(). All of the error codes are listed in our reference to this function at the end
of the chapter.

Give Me Your ID

Closely related to the lineOpen() function is the lineGetID() function. Earlier we
discussed the LINEMAPPER constant, which locates an appropriate device
given a list of requested services. Given the current line handle, the lineGetID()
function will retrieve a line device ID—the real line device ID of the opened
line. You can also use this function to retrieve the device ID of a phone device or
media device. The latter might include such device classes as Waveform, MIDI,
phone, and line. Any of these might be associated in some way with a call, an
address, or a line. Once you have retrieved the ID, you can use it with the
appropriate API (such as Wave, MIDI, Phone, or Line) to select the correspond-
ing media device associated with the specified call.

320 � Chapter 8

Specifying Media Modes

In opening a line, one important issue we need to discuss concerns the media
mode(s) it will support. This is particularly important if your application sup-
ports inbound calls or wants to be the target of call handoffs on a line. The
media modes that a particular line can support are specified in the lineOpen()
function’s dwMediaModes parameter. When you call this function, it will register
your application as having an interest in monitoring calls or receiving ownership
of calls that are of the specified media mode(s). As usual, you must accomplish
this by including certain flags in this parameter, as follows: If an application is
interested in monitoring calls, it should specify LINECALLPRIVI-
LEGE_MONITOR; if it is interested only in outbound calls, it should specify
LINECALLPRIVILEGE_NONE; if it wants to control unclassified calls (calls of
unknown media mode), it should specify LINECALLPRIVILEGE_OWNER and
LINEMEDIAMODE_UNKNOWN; if it knows the specific media mode with
which it wants to deal, it should specify that media mode. Of course, you may
specify more than one of these bits by using the OR operator.

Each service provider has a default media mode. When you specify other
media modes in calling lineOpen(), those will be added to the one(s) already
there, starting with the provider’s default value. Your application may specify
multiple flags simultaneously to handle multiple media modes. After the line has
been opened, the lineMonitorMedia() function will modify the mask that con-
trols LINE_MONITORMEDIA messages. But sometimes problems can occur.
For example, if you open a line device with owner privilege and an extension
media mode has not been registered, you will receive a LINEERR_INVAL-
MEDIAMODE error. In addition, conflicts may arise if multiple applications
open the same line device for the same media mode. These conflicts can be
resolved by a priority scheme in which the user assigns relative priorities to
applications. With this approach, only the application with the highest priority
for a given media mode will ever receive ownership (unsolicited) of a call of that
media mode.

There are two ways in which an application may receive ownership of a call:
when an inbound call first arrives and when a call is handed off. How may my
application receive such ownership, you ask? Any application—even a lower
priority application—can acquire ownership by calling lineGetNewCalls() or
lineGetConfRelatedCalls(). What if your application opens a line for monitoring
when calls already exist on that line? In such a case, LINE_CALLSTATE mes-
sages for those existing calls will not automatically be passed to the new
monitoring application. However, your application can query the number of cur-
rent calls on the line and obtain handles to these calls by invoking the
lineGetNewCalls() function.

Line Devices and Essential Operations � 321

8

C
h
a
p

te
r

If you want your application to handle automated voice calls, you should also
select the interactive voice constant and receive the lowest priority for interac-
tive voice. Here’s why: Service providers will report all voice media modes as
interactive voice. If your application does not perform media mode determina-
tion for the UNKNOWN media type and has not opened the line device for
interactive voice, voice calls will not be able to reach the automated voice appli-
cation. They will simply be dropped. For more information on this, see the TAPI
Help file.

There are still more interesting possibilities. A single application, or different
instantiations of an application, may open the same line multiple times with the
same or different parameters. Keep in mind what we discussed earlier: When
you open a line device, you must specify the negotiated TAPI version. If you
want to use the line’s extended capabilities, you should specify the line’s
device-specific extension version. You’ll recall that these version numbers are
obtained by calling the lineNegotiateAPIVersion() and lineNegotiateExtVer-
sion() functions, respectively. This version numbering allows the mixing and
matching of different application versions with different TAPI versions and ser-
vice provider versions.

Earlier we discussed using the LINEMAPPER constant with lineOpen() to
allow an application to select a line indirectly. When you do this, you must spec-
ify the specific services you want from that line. There are other issues
involved. The TAPI Help file stresses that when you open a line device using
LINEMAPPER, you must pay attention to all of the fields from the beginning of
the LINECALLPARAMS data structure through the dwAddressMode field. If
dwAddressMode has a value of LINEADDRESSMODE_ADDRESSID, TAPI will
regard any address on the line as acceptable; otherwise, if dwAddressMode is
LINEADDRESSMODE_DIALABLEADDR, TAPI will search for a specific origi-
nating address (phone number). In this latter case, if dwAddressMode is a
provider-specific extension, dwOrigAddressSize and dwOrigAddressOffset will be
relevant along with the portion of the variable part of the structure to which
they point. If dwAddressMode is a provider-specific extension, additional infor-
mation may be contained in the dwDeviceSpecific variably sized field.

Working with Media Modes

Additionally, different “lines” handle different media. Not surprisingly, TAPI
needs to know about the media with which it will be working. It accomplishes
this through media modes, the support for which is determined by the service
provider. While TAPI can work with many media, it does have its limitations.
For example, TAPI is not designed to provide support for fax transmissions.
One solution is to use the functions available through MAPI, the Microsoft

322 � Chapter 8

TE
AM
FL
Y

Team-Fly®

Messaging API, to send and receive faxes. You could also use the older COM
port functions. However, such a discussion is beyond the scope of this book.

How does TAPI determine the initial media mode(s)? When a service pro-
vider receives notification of a call’s existence, it first determines the call’s
media mode to the best of its ability. This process varies with telephony sys-
tems. On a POTS line, TAPI will receive a ringing voltage, but with EPBX or
ISDN, it will wait for a protocol message informing it that a call is incoming. In
some cases, TAPI will be able to identify the single correct media mode. In oth-
ers, it may have to settle for narrowing it down to a few possibilities. Not
surprisingly, these first media mode settings are simply referred to as initial
media modes. The TAPI Help file suggests the following as considerations used
for setting initial media mode bits:

� Service provider configuration: The service provider’s configuration is
intended to work with a single media mode or specific media modes only.

� Hardware limitations: Limitations of the communications hardware are
usually reflected in the service provider’s configuration; however, a partic-
ular card being used could further restrict available media modes.

� Call to lineOpen() function: Media modes possible are limited by appli-
cation requests during calls to the lineOpen() function. TAPI will combine
all of the media modes requested by various applications and send the sum
of them to the service provider when calling the service provider function
TSPI_lineSetDefaultMediaDetection().

� Caller ID/ Direct Inward Dialing: With Direct Inward Dialing (DID) at
the called address, the switch will supply the service provider with the
digits that were dialed (the called address). It is possible to configure a
service provider so that particular called addresses are associated with
particular media modes.

� Distinctive ringing: The ring pattern of an incoming call can be com-
pared with a predetermined pattern indicating a certain media mode.

� ISDN: On an ISDN network, the service provider may analyze an incom-
ing call’s protocol frames to determine the media mode. If the call is indi-
cated as a 3.1 kHz voice call, it is still possible that the actual media mode
on the call could be working with other forms of data.

� Auto answer and probe: Some providers give you the option to let the
service provider answer the call automatically and conduct some of the
probing itself. TAPI will give the call to the correct application with the
correct media mode identified.

Line Devices and Essential Operations � 323

8

C
h
a
p

te
r

Unfortunately, these approaches may not be enough to determine the media
mode definitively. When a service provider passes the new call to TAPI, it will
send a LINE_CALLSTATE message, including in the message all that it knows
about the call’s media mode(s). We’ll now discuss the details of the possible
cases.

When the service provider knows the call’s media unambiguously, one flag
(for that particular media mode) will be set in LINECALLINFO’s dwMediaMode

field. In this case, the media mode cannot be the single bit LINEMEDIA-
MODE_UNKNOWN; that is a different scenario. TAPI gives ownership of the
call to the highest priority application that has opened a line for this media
mode. It also provides call handles with monitor privileges to all other monitor-
ing applications on the line.

In addition to placing voice calls, your users may wish to send data over a
phone line. To do this, the line must be available (not busy) and the connection
must be established. After that, data can be sent. An application accomplishes
this by giving control back to the user, who, using a dialog box, specifies the file
to send and then initiates the data transmission. Though TAPI functions con-
tinue to manage the opened line and the call in progress, actual transmission is
started and controlled by non-TAPI functions. In this case, for example, the
Comm API could be used to control the media stream. Nevertheless, setting up
a data call is similar to setting up a speech call. Once the call is established, the
duty of data transmission is transferred outside of TAPI to the people who wish
to speak, although the line and call continue to be monitored by the application
using TAPI functions.

As we discovered above, even if a service provider does not know the exact
media mode of a call, it might still know of the possible media modes. In such a
case, the service provider sets a combination of likely media mode bit flags,
including LINEMEDIAMODE_UNKNOWN, and passes the call to TAPI. The
service provider sets these bits both in the dwMediaMode field of the LINE-
CALLINFO record and in the dwParam3 parameter of the first LINE_CALL-
STATE message it sends to TAPI.

In this scenario, the service provider considers only the media modes it is
capable of handling and for which applications have opened the line with owner
privileges. It becomes aware of these media modes through the call to the func-
tion, TSPI_SetDefaultMediaDetection(). TAPI will inform the provider about
the union of all the lines that have been opened with a specified media mode.
However, there is a limitation: The service provider can use this union to
enable only the specific media mode detections in which applications are inter-
ested. If no applications have opened the line for ownership, the provider will
not consider any media mode(s). Incoming calls will still be delivered to TAPI,
but no initial ownership will be possible. Nevertheless, applications with

324 � Chapter 8

monitoring status will still be informed of the call, and if none of them change
their privilege to owner and answer the call, the call will remain unanswered.

Closing a Line Device
As we mentioned above, when you initialize TAPI, you must shut it down when
you’re finished. Similarly, when you open a line device, you must shut it down
when you’re finished using it. This could hardly be easier. To close a line, you
simply call the lineClose() function. After you’ve closed the line by calling this
function, your application’s handle for that line device will no longer be valid.

A LINE_LINEDEVSTATE message will be sent to other interested applica-
tions to inform them about the state change on the line. If an application calls
lineClose() while it still has active calls on the opened line, the application’s
ownership of these calls will be revoked. If the application is the sole owner of
these calls, the calls will be dropped as well. It is good programming practice for
an application to dispose of the calls it owns on an opened line by explicitly
relinquishing ownership and/or by dropping these calls prior to closing the line.

If the close is successful, a LINE_LINEDEVSTATE message will be sent to
all applications that are monitoring the line status of open/close changes. Out-
standing asynchronous replies will be suppressed. Service providers may find it
useful or necessary to forcibly reclaim line devices from an application that has
opened a line. This may be useful to prevent a misbehaving application from
monopolizing the line device for too long. If this happens, a LINE_CLOSE mes-
sage will be sent to the application, specifying the line handle of the line device
that was closed.

After it is called, the lineOpen() function we discussed above will allocate
resources to the invoking application. Consequently, other applications may be
prevented from opening a line if resources are unavailable. Because of that pos-
sibility, an application that uses a line device (such as for making outbound calls)
should only occasionally close the line to free resources and allow other applica-
tions to open the line.

�TIP: Be resource aware. Close line devices not being used in order to
free their resources.

In certain environments, it may be desirable for a line device that is currently
open by an application to be forcibly reclaimed (possibly by the use of some con-
trol utility) from the application’s control. This feature can be used to prevent a
single rogue application or user from monopolizing a line. It can also be used
when the user wants to reconfigure the line parameters and has told the service
provider directly through its Setup function in the Telephony Control Panel that
the provider should forcibly close the line. When this occurs, an application will

Line Devices and Essential Operations � 325

8

C
h
a
p

te
r

receive a LINE_CLOSE message for the open line device that was forcibly
closed.

While the lineClose() function closes a single line, the lineShutdown() func-
tion does something even more drastic—it disconnects an application from its
connection to TAPI. Be aware that if you call this function when the application
still has lines open or calls active, the call handles will be deleted; this is equiva-
lent to calling the lineClose() function automatically on each open line, a rather
brutal way to proceed. It is better practice for applications to explicitly close all
open lines before calling the lineShutdown() function. If such a shutdown is per-
formed while asynchronous requests are outstanding, those requests will be
canceled. Additionally, an application that has registered as an Assisted Tele-
phony request recipient should de-register itself by calling lineRegisterRequest-
Recipient(), using the value FALSE for the bEnable parameter.

The TAPI Help file points out that if you call this function while your applica-
tion has active calls on the line, your application will lose ownership of those
calls. If your application had been the sole owner of these calls, they will be
dropped. You should always dispose of calls on an opened line by explicitly giv-
ing up ownership and/or by dropping them. If successful, TAPI will send a
LINE_LINEDEVSTATE message to all monitoring applications indicating that
the open/close line status has changed. Any outstanding asynchronous replies
will be suppressed. Finally, as we have pointed out already, if your application
uses a line device only occasionally, it should close that line at the first opportu-
nity in order to free up its resources. Failure to do so could prevent other
applications from opening the line.

In the above introduction, we briefly discussed some of the TAPI line mes-
sages. For a detailed description of each message and an example of handling
messages in a callback function, see Chapter 9.

Reference for Basic TAPI Functions
In this section we will provide a reference for the basic TAPI functions, those
that support initialization, configuration, capabilities checking, opening, and
closing. We’ll begin with the function we have just mentioned, lineClose(), and
discuss the remaining functions in alphabetical order. We’ll also discuss the
structures and constants that are used with these functions. Each function ref-
erence includes Delphi code from our TAPI class. These functions are used in
one of the sample applications available on the companion CD.

326 � Chapter 8

function lineClose TAPI.pas

Syntax

function lineClose(hLine: HLINE): Longint; stdcall;

Description

This function closes the specified open line device.

Parameters

hLine: A handle (HLINE) to the open line device to be closed. After the line has
been successfully closed, this handle is no longer valid.

Return Value

Returns zero if the request is successful or a negative error number if an error
has occurred. Possible return values are LINEERR_INVALLINEHANDLE,
LINEERR_RESOURCEUNAVAIL, LINEERR_NOMEM, LINEERR_UNIN-
ITIALIZED, LINEERR_OPERATIONFAILED, and LINEERR_OPERATION-
UNAVAIL.

See Also

LINE_CLOSE, LINE_LINELINEDEVSTATE, lineOpen

Example

Listing 8-1 shows how to close a line device that is open.

Listing 8-1: Closing a line device

function TTapiInterface.CloseLine: boolean;
begin
result := True;
if NOT fLineIsOpen then exit;
if NOT LineClose(fLineApp)=0 then
result := False;

end;

function lineConfigDialog TAPI.pas

Syntax

function lineConfigDialog(dwDeviceID: DWORD; hwndOwner: HWND;
lpszDeviceClass: LPCSTR): Longint; stdcall;

Description

This function causes the service provider of the specified line device to display
a dialog box that allows the user to configure parameters related to that line
device.

Line Devices and Essential Operations � 327

8

C
h
a
p

te
r

Parameters

dwDeviceID: A DWORD holding the line device to be configured

hwndOwner: A handle (HWND) to a window to which the dialog is to be
attached. It can be set to NIL to indicate that any window created during
the function should have no owner window.

lpszDeviceClass: A pointer to a NULL-terminated string (LPCSTR) that identi-
fies a device class name. This device class allows the application to select a
specific secondary screen of configuration information applicable to that
device class. This parameter is optional and can be set to NIL or empty, in
which case the highest level configuration is selected.

Return Value

Returns zero if the request is successful or a negative error number if an error
has occurred. Possible return values are LINEERR_BADDEVICEID,
LINEERR_NOMEM, LINEERR_INUSE, LINEERR_OPERATIONFAILED,
LINEERR_INVALDEVICECLASS, LINEERR_RESOURCEUNAVAIL,
LINEERR_INVALPARAM, LINEERR_UNINITIALIZED, LINEERR_INVAL-
POINTER, LINEERR_OPERATIONUNAVAIL, and LINEERR_NODEVICE.

See Also

lineConfigDialogEdit, lineGetID

Example

Listing 8-2 shows how to call the lineConfigDialog() function to show the config-
uration dialog box.

Listing 8-2: Calling lineConfigDialog() to show the configuration dialog box

procedure TfrmConfigDialogDemo.btnShowConfigDialogClick(Sender: TObject);
begin
If lineConfigDialog(DWORD(0), 0, Nil) <> 0 then
ShowMessage('Could not display Line Configuration Dialog Box')

else
if NOT TapiInterface.GetLineConfiguration then
ShowMessage('Could not retrieve Line Configuration Information');

end;

function lineConfigDialogEdit TAPI.pas

Syntax

function lineConfigDialogEdit(dwDeviceID: DWORD; hwndOwner: HWND;
lpszDeviceClass: LPCSTR; lpDeviceConfigIn: Pointer; dwSize: DWORD;
lpDeviceConfigOut: PVarString): Longint; stdcall;

328 � Chapter 8

Description

This function causes the provider of the specified line device to display a dialog
box (attached to hwndOwner of the application) that allows the user to configure
parameters related to the line device.

Parameters

dwDeviceID: A DWORD holding the line device to be configured

hwndOwner: A handle (of type HWND) to a window to which the dialog box is to
be attached. It can be set to NIL to indicate that any window created during
the function should have no owner window.

lpszDeviceClass: A pointer to a NULL-terminated string (LPCSTR) that identi-
fies a device class name. This device class allows the application to select a
specific subscreen of configuration information applicable to that device
class. This parameter is optional and can be left NULL or empty, in which
case the highest level configuration is selected.

lpDeviceConfigIn: A pointer to the opaque configuration data structure that was
returned by the lineGetDevConfig() function or from a previous call to this
function (lineConfigDialogEdit()). The date is returned in the variable por-
tion of the VarString structure.

dwSize: A DWORD indicating the number of bytes in the structure pointed to by
lpDeviceConfigIn. This value will have been returned in the dwStringSize

field in the Varstring structure returned by lineGetDevConfig() or a previ-
ous call to this function (lineConfigDialogEdit()).

lpDeviceConfigOut: A pointer to the memory location of type VarString
(PVarString) in which the device configuration structure is returned. If
the request is successfully completed, this location will be filled with the
device configuration. The dwStringFormat field in the VarString structure
will be set to STRINGFORMAT_BINARY. Before you call the lineGetDev-
Config() function or initiate a future call to this function (lineConfigDialog-
Edit()), you should set the dwTotalSize field of this structure to indicate the
amount of memory available to TAPI for returning information.

Return Value

Returns zero if the request is successful or a negative error number if an error
has occurred. Possible return values are LINEERR_BADDEVICEID, LINE-
ERR_OPERATIONFAILED, LINEERR_INVALDEVICECLASS, LINEERR_
RESOURCEUNAVAIL, LINEERR_INVALPARAM, LINEERR_STRUCTURE-
TOOSMALL, LINEERR_INVALPOINTER, LINEERR_UNINITIALIZED,
LINEERR_NODRIVER, LINEERR_OPERATIONUNAVAIL, LINEERR_
NOMEM, and LINEERR_NODEVICE.

Line Devices and Essential Operations � 329

8

C
h
a
p

te
r

See Also

lineConfigDialog, lineGetDevConfig, lineGetID, lineSetDevConfig, VarString

Example

Listing 8-3 shows how to call the lineConfigDialogEdit() function to show the
configuration dialog box.

Listing 8-3: Calling lineConfigDialogEdit() to show the configuration dialog box

procedure TTapiInterface.OpenlineConfigDialogEdit;
begin
TAPIResult := 0; // Need to initialize to use in function
if NOT fLineIsOpen then

OpenLine(TAPIResult, False);
if NOT GetLineID then exit;
if NOT GetLineConfiguration then Exit;

if FDeviceConfigOut=Nil then
begin
FDeviceConfigOut := AllocMem(SizeOf(VarString)+10000);
FDeviceConfigOut.dwTotalSize := SizeOf(VarString)+10000;
FDeviceConfigOut.dwStringFormat := STRINGFORMAT_BINARY;

end;
FConfigSize := FDeviceConfig.dwStringSize;
TAPIResult := lineConfigDialogEdit(
DWord(0), HWND(AppHandle), PChar
('comm/datamodem'),
@FDeviceConfig.data,
FDeviceConfig.dwStringSize,
FDeviceConfigOut);
If TAPIResult<> 0 then ReportError(TAPIResult)
else FDeviceConfig^ := pVarString(FDeviceConfigOut)^;

end;

function lineGetAddressCaps TAPI.pas

Syntax

function lineGetAddressCaps(hLineApp: HLINEAPP; dwDeviceID, dwAddressID,
dwAPIVersion, dwExtVersion: DWORD; lpAddressCaps: PLineAddressCaps):
Longint; stdcall;

Description

This function queries the specified address on the specified line device to deter-
mine its telephony capabilities.

Parameters

hLineApp: The handle (HLINEAPP) to the application’s registration with TAPI

dwDeviceID: A DWORD holding the address on the given line device whose
capabilities are to be queried

dwAddressID: A DWORD holding the line device containing the address to be
queried

330 � Chapter 8

dwAPIVersion: A DWORD holding the version number of the Telephony API to
be used. The high-order word contains the major version number; the
low-order word contains the minor version number. This number is
obtained by lineNegotiateAPIVersion().

dwExtVersion: A DWORD holding the version number of the service pro-
vider-specific extensions to be used. This number can be left zero if no
device-specific extensions are to be used. Otherwise, the high-order word
contains the major version number, and the low-order word contains the
minor version number.

lpAddressCaps: A pointer (PLineAddressCaps) to a variably sized structure of
type LINEADDRESSCAPS. If the request is successfully completed, this
structure is filled with address capabilities information. Before you call
lineGetAddressCaps(), you should set the dwTotalSize field of this struc-
ture to indicate the amount of memory available to TAPI for returning
information.

Return Value

This function returns zero if the request is successful or a negative error
number if an error has occurred. Possible return values are LINEERR_BAD-
DEVICEID, LINEERR_NOMEM, LINEERR_INCOMPATIBLEAPIVERSION,
LINEERR_OPERATIONFAILED, LINEERR_INCOMPATIBLEEXTVERSION,
LINEERR_RESOURCEUNAVAIL, LINEERR_INVALADDRESSID, LINEERR_
STRUCTURETOOSMALL, LINEERR_INVALAPPHANDLE, LINEERR_
UNINITIALIZED, LINEERR_INVALPOINTER, LINEERR_OPERATION-
UNAVAIL, LINEERR_NODRIVER, and LINEERR_NODEVICE.

See Also

LINEADDRESSCAPS, lineGetDevcaps, lineNegotiateAPIVersion

Example

Listing 8-4 shows how to use this function to get an address’s capabilities.

Listing 8-4: Getting an address’s capabilities

function TTapiInterface.GetAddressCapsSize(var SizeReturned : DWord): boolean;
var
TempAddrCaps : PLineAddressCaps;

begin
TempAddrCaps := Nil;
TempAddrCaps := AllocMem(SizeOf(LineAddressCaps));
try
TempAddrCaps^.dwTotalSize := SizeOf(LineAddressCaps);
TAPIResult := LineGetAddressCaps(fLineApp, 0, 0, FAPIVersion,
0, TempAddrCaps);

result := TAPIResult=0;
if NOT result then ReportError(TAPIResult)
else SizeReturned := TempAddrCaps^.dwNeededSize;

finally // wrap up

Line Devices and Essential Operations � 331

8

C
h
a
p

te
r

FreeMem(TempAddrCaps, SizeOf(LineAddressCaps));
TempAddrCaps := Nil;

end; // try/finally
end;

structure LINEADDRESSCAPS TAPI.pas

The huge LINEADDRESSCAPS structure (TLineAddressCaps in TAPI.pas)
describes the capabilities of a specified line address. The lineGetAddressCaps()
function and the TSPI_lineGetAddressCaps() function return this structure. It is
defined as follows in TAPI.pas:

type
PLineAddressCaps = ^TLineAddressCaps;
lineaddresscaps_tag = packed record
dwTotalSize,
dwNeededSize,
dwUsedSize,
dwLineDeviceID,
dwAddressSize,
dwAddressOffset,
dwDevSpecificSize,
dwDevSpecificOffset,
dwAddressSharing,
dwAddressStates,
dwCallInfoStates,
dwCallerIDFlags,
dwCalledIDFlags,
dwConnectedIDFlags,
dwRedirectionIDFlags,
dwRedirectingIDFlags,
dwCallStates,
dwDialToneModes,
dwBusyModes,
dwSpecialInfo,
dwDisconnectModes,
dwMaxNumActiveCalls,
dwMaxNumOnHoldCalls,
dwMaxNumOnHoldPendingCalls,
dwMaxNumConference,
dwMaxNumTransConf,
dwAddrCapFlags,
dwCallFeatures,
dwRemoveFromConfCaps,
dwRemoveFromConfState,
dwTransferModes,
dwParkModes,
dwForwardModes,
dwMaxForwardEntries,
dwMaxSpecificEntries,
dwMinFwdNumRings,
dwMaxFwdNumRings,
dwMaxCallCompletions,
dwCallCompletionConds,
dwCallCompletionModes,
dwNumCompletionMessages,
dwCompletionMsgTextEntrySize,
dwCompletionMsgTextSize,
dwCompletionMsgTextOffset,

332 � Chapter 8

TE
AM
FL
Y

Team-Fly®

dwAddressFeatures: DWORD; // TAPI v1.4
{$IFDEF TAPI20}

dwPredictiveAutoTransferStates, // TAPI v2.0
dwNumCallTreatments, // TAPI v2.0
dwCallTreatmentListSize, // TAPI v2.0
dwCallTreatmentListOffset, // TAPI v2.0
dwDeviceClassesSize, // TAPI v2.0
dwDeviceClassesOffset, // TAPI v2.0
dwMaxCallDataSize, // TAPI v2.0
dwCallFeatures2, // TAPI v2.0
dwMaxNoAnswerTimeout, // TAPI v2.0
dwConnectedModes, // TAPI v2.0
dwOfferingModes, // TAPI v2.0
dwAvailableMediaModes: DWORD; // TAPI v2.0

{$ENDIF}
end;
TLineAddressCaps = lineaddresscaps_tag;
LINEADDRESSCAPS = lineaddresscaps_tag;

Each of the parameters of LINEADDRESSCAPS is described in Table 8-1.

Table 8-1: Parameters of the LINEADDRESSCAPS structure

Parameter Meaning

dwTotalSize This field specifies the total size in bytes allocated to this data structure.

dwNeededSize This field specifies the size in bytes for this data structure that is needed to hold
all the returned information.

dwUsedSize This field specifies the size in bytes of the portion of this data structure that
contains useful information.

dwLineDeviceID This field specifies the device ID of the line device with which this address is
associated.

dwAddressSize This field specifies the size in bytes of the variably sized address field and the
offset in bytes from the beginning of this data structure.

dwAddressOffset This field specifies the size in bytes of the variably sized address field and the
offset in bytes from the beginning of this data structure.

dwDevSpecificSize This field specifies the size in bytes of the variably sized device-specific field and
the offset in bytes from the beginning of this data structure.

dwDevSpecificOffset This field specifies the size in bytes of the variably sized device-specific field and
the offset in bytes from the beginning of this data structure.

dwAddressSharing This field specifies the sharing mode of the address. Values include the following
constants:
LINEADDRESSSHARING_PRIVATE indicates that an address with private shar-
ing mode is only assigned to a single line or station.
LINEADDRESSSHARING_BRIDGEDEXCL indicates that an address with a
bridged-exclusive sharing mode is assigned to one or more other lines or sta-
tions (the exclusive portion refers to the fact that only one of the bridged par-
ties can be connected with a remote party at any given time).
LINEADDRESSSHARING_BRIDGEDNEW indicates that an address with a
bridged-new sharing mode is assigned to one or more other lines or stations
(the new portion refers to the fact that activities by the different bridged parties
result in the creation of new calls on the address).

Line Devices and Essential Operations � 333

8

C
h
a
p

te
r

Parameter Meaning

dwAddressSharing LINEADDRESSSHARING_BRIDGEDSHARED indicates that an address with a
bridged-shared sharing mode is also assigned to one or more other lines or sta-
tions (the shared portion refers to the fact that if one of the bridged parties is
connected with a remote party, the remaining bridged parties can share in the
conversation, as in a conference, by activating that call appearance).
LINEADDRESSSHARING_MONITORED indicates that an address with a moni-
tored address mode simply monitors the status of that address (the status is
either idle or in use; the message LINE_ADDRESSSTATE notifies the applica-
tion about these changes).

dwAddressStates This field contains the address states changes for which the application may get
notified in the LINE_ADDRESSSTATE message. It uses one of the LINE-
ADDRESSSTATE_ constants described in Table 8-2.

dwCallInfoStates This field specifies the call information elements that are meaningful for all calls
on this address. An application may get notified about changes in some of these
states in LINE_CALLINFO messages. It uses the LINECALLINFOSTATE_
constants described in Table 8-3.

dwCallerIDFlags This field specifies an item of party ID information that may be provided for
calls on this address. It uses the LINECALLPARTYID_ constants shown in Table
8-4.

dwCalledIDFlags This field specifies an item of party ID information that may be provided for
calls on this address. It uses the LINECALLPARTYID_ constants shown in Table
8-4.

dwConnectedIDFlags This field specifies an item of party ID information that may be provided for
calls on this address. It uses the LINECALLPARTYID_ constants shown in Table
8-4.

dwRedirectionIDFlags This field specifies an item of party ID information that may be provided for
calls on this address. It uses the LINECALLPARTYID_ constants shown in Table
8-4.

dwRedirectingIDFlags This field specifies an item of party ID information that may be provided for
calls on this address. It uses the LINECALLPARTYID_ constants shown in Table
8-4.

dwCallStates This field specifies the various call states that can possibly be reported for calls
on this address. This parameter uses the LINECALLSTATE_ constants shown in
Table 8-5.

dwDialToneModes This field specifies the various dial tone modes that can possibly be reported for
calls made on this address. This field is meaningful only if the dial tone call state
can be reported. It uses the following LINEDIALTONEMODE_ constants:
LINEDIALTONEMODE_NORMAL indicates that this is a “normal” dial tone,
which typically is a continuous tone.
LINEDIALTONEMODE_SPECIAL indicates that this is a special dial tone indi-
cating a certain condition is currently in effect.
LINEDIALTONEMODE_INTERNAL indicates that this is an internal dial tone,
as within a PBX.
LINEDIALTONEMODE_EXTERNAL indicates that this is an external (public
network) dial tone.
LINEDIALTONEMODE_UNKNOWN indicates that the dial tone mode is cur-
rently unknown but may become known later.
LINEDIALTONEMODE_UNAVAIL indicates that the dial tone mode is unavail-
able and will not become known.

334 � Chapter 8

Parameter Meaning

wBusyModes This field specifies the various busy modes that can possibly be reported for
calls made on this address. This field is meaningful only if the busy call state can
be reported. It uses the following LINEBUSYMODE_ constants:
LINEBUSYMODE_STATION indicates that the busy signal means that the
called party’s station is busy (this is usually signaled with a “normal” busy tone).
LINEBUSYMODE_TRUNK indicates that the busy signal means that a trunk or
circuit is busy (this is usually signaled with a “long” busy tone).
LINEBUSYMODE_UNKNOWN indicates that the busy signal’s specific mode is
currently unknown but may become known later.
LINEBUSYMODE_UNAVAIL indicates that the busy signal’s specific mode is
unavailable and will not become known.

dwSpecialInfo This field specifies the various special information types that can possibly be
reported for calls made on this address. This field is meaningful only if the
specialInfo call state can be reported. It uses the following LINESPECIALINFO_
constants:
LINESPECIALINFO_NOCIRCUIT indicates that this special information tone
precedes a no-circuit or emergency announcement (trunk blockage category).
LINESPECIALINFO_CUSTIRREG indicates that this special information tone
precedes one of the following: a vacant number, an Alarm Indication Signal
(AIS), a Centrex number change with a nonworking station, an access code that
was not dialed or dialed in error, or a manual intercept operator message (cus-
tomer irregularity category).
LINESPECIALINFO_REORDER indicates that this special information tone pre-
cedes a reorder announcement (equipment irregularity category).
LINESPECIALINFO_UNKNOWN indicates that specifics about the special
information tone are currently unknown but may become known later.
LINESPECIALINFO_UNAVAIL indicates that specifics about the special infor-
mation tone are unavailable and will not become known.

dwDisconnectModes This field specifies the various disconnect modes that can possibly be reported
for calls made on this address. This field is meaningful only if the disconnected
call state can be reported. It uses the following LINEDISCONNECTMODE_
constants:
LINEDISCONNECTMODE_NORMAL indicates that this is a “normal” discon-
nect request by the remote party; the call was terminated normally.
LINEDISCONNECTMODE_UNKNOWN indicates that the reason for the dis-
connect request is unknown.
LINEDISCONNECTMODE_REJECT indicates that the remote user has
rejected the call.
LINEDISCONNECTMODE_PICKUP indicates that the call was picked up from
elsewhere.
LINEDISCONNECTMODE_FORWARDED indicates that the call was for-
warded by the switch.
LINEDISCONNECTMODE_BUSY indicates that the remote user’s station is
busy.
LINEDISCONNECTMODE_NOANSWER indicates that the remote user’s sta-
tion does not answer.
LINEDISCONNECTMODE_NODIALTONE indicates that a dial tone was not
detected within a service-provider defined timeout at a point during dialing
when one was expected (such as at a “W” in the dialable string), a situation that
can also occur without a service provider-defined timeout period or without a
value specified in the dwWaitForDialTone member of the LINEDIALPARAMS
structure.

Line Devices and Essential Operations � 335

8

C
h
a
p

te
r

Parameter Meaning

dwDisconnectModes
(cont.)

LINEDISCONNECTMODE_BADADDRESS indicates that the destination
address in invalid.
LINEDISCONNECTMODE_UNREACHABLE indicates that the remote user
could not be reached.
LINEDISCONNECTMODE_CONGESTION indicates that the network is
congested.
LINEDISCONNECTMODE_INCOMPATIBLE indicates that the remote user’s
station equipment is incompatible with the type of call requested.
LINEDISCONNECTMODE_UNAVAIL indicates that the reason for the discon-
nect is unavailable and will not become known later.

dwMaxNumActiveCalls This field specifies the maximum number of active call appearances that the
address can handle. This number does not include calls on hold or calls on hold
pending transfer or conference.

dwMaxNumOnHoldCalls This field specifies the maximum number of call appearances at the address that
can be on hold.

dwMaxNumOnHoldPendingCalls This field specifies the maximum number of call appearances at the address that
can be on hold pending transfer or conference.

dwMaxNumConference This field specifies the maximum number of parties that can be conferenced in a
single conference call on this address.

dwMaxNumTransConf This field specifies the number of parties (including “self”) that can be added in
a conference call that is initiated as a generic consultation call using lineSetup-
Transfer().

dwAddrCapFlags This field specifies a series of packed bit flags that describe a variety of address
capabilities. It uses the LINEADDRCAPFLAGS_ constants shown in Table 8-6.

dwCallFeatures This field specifies the switching capabilities or features available for all calls on
this address using the LINECALLFEATURE_ constants explained in Table 8-7.
This member represents the call-related features which may possibly be avail-
able on an address (static availability as opposed to dynamic availability).
Invoking a supported feature requires the call to be in the proper state and the
underlying line device to be opened in a compatible mode. A zero in a bit posi-
tion indicates that the corresponding feature is never available. A one indicates
that the corresponding feature may be available if the application has the right
privileges to the call and the call is in the appropriate state for the operation to
be meaningful. This field allows an application to discover which call features
can be (and which can never be) supported by the address.

dwRemoveFromConfCaps This field specifies the address’s capabilities for removing calls from a confer-
ence call. It uses the following LINEREMOVEFROMCONF_ constants:
LINEREMOVEFROMCONF_NONE indicates that parties cannot be removed
from the conference call.
LINEREMOVEFROMCONF_LAST indicates that only the most recently added
party can be removed from the conference call.
LINEREMOVEFROMCONF_ANY indicates that any participating party can be
removed from the conference call.

dwRemoveFromConfState Using the LINECALLSTATE_ constants, this field specifies the state of the call
after it has been removed from a conference call. (See Table 8-5.)

dwTransferModes This field specifies the address’s capabilities for resolving transfer requests. It
uses the following LINETRANSFERMODE_ constants:
LINETRANSFERMODE_TRANSFER indicates to resolve the initiated transfer
by transferring the initial call to the consultation call.

336 � Chapter 8

Parameter Meaning

dwTransferModes
(cont.)

LINETRANSFERMODE_CONFERENCE indicates to resolve the initiated
transfer by conferencing all three parties into a three-way conference call (in
this case a conference call is created and returned to the application).

dwParkModes This field specifies the different call park modes available at this address using
the LINEPARKMODE_ constants:
LINEPARKMODE_DIRECTED specifies directed call park in which the address
where the call is to be parked must be supplied to the switch.
LINEPARKMODE_NONDIRECTED specifies non-directed call park in which
the address where the call is parked is selected by the switch and provided by
the switch to the application.

dwForwardModes This field specifies the different modes of forwarding available for this address.
It uses the LINEFORWARDMODE_ constants described in Table 8-8.

dwMaxForwardEntries This field specifies the maximum number of entries that can be passed to
lineForward in the lpForwardList parameter.

dwMaxSpecificEntries This field specifies the maximum number of entries in the lpForwardList param-
eter passed to lineForward() that can contain forwarding instructions based on
a specific caller ID (selective call forwarding). This field is zero if selective call
forwarding is not supported.

dwMinFwdNumRings This field specifies the minimum number of rings that can be set to determine
when a call is officially considered “no answer.”

dwMaxFwdNumRings This field specifies the maximum number of rings that can be set to determine
when a call is officially considered “no answer.” If this number of rings cannot
be set, then dwMinFwdNumRings and dwMaxFwdNumRings will be equal.

dwMaxCallCompletions This field specifies the maximum number of concurrent call completion
requests that can be outstanding on this line device. Zero implies that call com-
pletion is not available.

dwCallCompletionCond This field specifies the different call conditions under which call completion can
be requested using the following LINECALLCOMPLCOND_ constants:
LINECALLCOMPLCOND_BUSY indicates to complete the call under the busy
condition.
LINECALLCOMPLCOND_NOANSWER indicates to complete the call under
the ringback no answer condition.

dwCallCompletionModes This field specifies the way in which the call can be completed using the follow-
ing LINECALLCOMPLCOND_ constants:
LINECALLCOMPLMODE_CAMPON indicates to queue the call until the call
can be completed.
LINECALLCOMPLMODE_CALLBACK requests the called station to return
the call when it returns to idle.
LINECALLCOMPLMODE_INTRUDE adds the application to the existing call at
the called station if busy (barge in).
LINECALLCOMPLMODE_MESSAGE leaves a short predefined message for
the called station (Leave Word Calling); a specific message can be identified.

dwNumCompletionMessages This field specifies the number of call completion messages that can be selected
from using the LINECALLCOMPLMODE_MESSAGE option. Individual mes-
sages are identified by values in the range zero through one less than
dwNumCompletionMessages.

dwCompletionMsgTextEntrySize This field specifies the size in bytes of each of the call completion text descrip-
tions pointed to by dwCompletionMsgTextSize/Offset.

Line Devices and Essential Operations � 337

8

C
h
a
p

te
r

Parameter Meaning

dwCompletionMsgTextSize This field specifies the size in bytes of the data structure of the variably sized
field containing descriptive text about each of the call completion messages.
Each message is dwCompletionMsgTextEntrySize bytes long. The string format
of these textual descriptions is indicated by dwStringFormat in the line’s device
capabilities.

dwCompletionMsgTextOffset This field specifies the offset in bytes from the beginning of the data structure of
the variably sized field containing descriptive text about each of the call comple-
tion messages. Each message is dwCompletionMsgTextEntrySize bytes long.
The string format of these textual descriptions is indicated by dwStringFormat
in the line’s device capabilities.

dwAddressFeatures This field specifies the features available for this address using the LINEADDR-
FEATURE_ constants. Invoking a supported feature requires the address to be
in the proper state and the underlying line device to be opened in a compatible
mode. A zero in a bit position indicates that the corresponding feature is never
available. A one indicates that the corresponding feature may be available if the
address is in the appropriate state for the operation to be meaningful. This field
allows an application to discover which address features can be (and which can
never be) supported by the address.

dwPredictiveAutoTransferStates This field specifies the call state or states upon which a call made by a predictive
dialer can be set to automatically transfer the call to another address—one or
more of the LINECALLSTATE_ constants. A value of zero indicates that auto-
matic transfer-based on call state is unavailable. (See Table 8-5.)

dwNumCallTreatments This field specifies the number of entries of LINECALLTREATMENTENTRY
structures. These entries are delimited by the dwCallTreatmentSize and
dwCallTreatmentOffset fields of the LINECALLTREATMENT structure.

dwCallTreatmentListSize This field specifies the total size in bytes of LINEADDRESSCAPS of an array of
LINECALLTREATMENTENTRY structures, indicating the call treatments sup-
ported on the address (which can be selected using lineSetCallTreatment()).
The value will be dwNumCallTreatments times SIZEOF (LINECALLTREAT-
MENTENTRY).

dwCallTreatmentListOffset This field specifies the offset from the beginning of LINEADDRESSCAPS of an
array of LINECALLTREATMENTENTRY structures, indicating the call treat-
ments supported on the address (which can be selected using lineSetCall-
Treatment()). The value will be dwNumCallTreatments times SIZEOF
(LINECALLTREATMENTENTRY).

dwDeviceClassesSize This field specifies the length in bytes of LINEADDRESSCAPS of a string con-
sisting of the device class identifiers supported on this address for use with
lineGetID(), separated by NULLS; the last class indentifier is followed by two
NULLS.

dwDeviceClassesOffset This field specifies the offset from the beginning of LINEADDRESSCAPS of a
string consisting of the device class identifiers supported on this address for use
with lineGetID(), separated by NULLS; the last class identifier is followed by
two NULLS.

dwMaxCallDataSize This field specifies the maximum number of bytes that an application can set in
LINECALLINFO using lineSetCallData().

dwCallFeatures2 This field specifies additional switching capabilities or features available for all
calls on this address using the LINECALLFEATURE2_ constants. It is an exten-
sion of the dwCallFeatures member.

338 � Chapter 8

Parameter Meaning

dwMaxNoAnswerTimeout This field specifies the maximum value in seconds that can be set in the
dwNoAnswerTimeout member in LINECALLPARAMS when making a call. A
value of zero indicates that automatic abandonment of unanswered calls is not
supported by the service provider or that the timeout value is not adjustable by
applications.

dwConnectedModes This field specifies the LINECONNECTEDMODE_ values that may appear in
the dwCallStateMode member of LINECALLSTATUS and in LINE_CALLSTATE
messages for calls on this address.

dwOfferingModes This field specifies the LINEOFFERINGMODE_ values that may appear in the
dwCallStateMode member of LINECALLSTATUS and in LINE_CALLSTATE
messages for calls on this address.

dwAvailableMediaModes This field specifies the media modes that can be invoked on new calls created
on this address, when the dwAddressFeatures member indicates that new calls
are possible. If this field is zero, it indicates that the service provider either does
not know or cannot indicate which media modes are available, in which case
any or all of the media modes indicated in the dwMediaModes field in
LINEDEVCAPS may be available.

Table 8-2: LINEADDRESSSTATE_ constants used in the LINEADDRESSCAPS dwAddressStates parameter

Constant Meaning

LINEADDRESSSTATE_OTHER This constant indicates that address status items, other than those listed below,
have changed. The application should check the current address status to
determine which items have changed.

LINEADDRESSSTATE_
DEVSPECIFIC

This constant indicates that the device-specific item of the address status has
changed.

LINEADDRESSSTATE_
INUSEZERO

This constant indicates that the address has changed to idle (it is not in use by
any stations).

LINEADDRESSSTATE_
INUSEONE

This constant indicates that the address has changed from being idle or from
being in use by many bridged stations to being in use by just one station.

LINEADDRESSSTATE_
INUSEMANY

This constant indicates that the monitored or bridged address has changed to
being in use by one station to being used by more than one station.

LINEADDRESSSTATE_
NUMCALLS

This constant indicates that the number of calls on the address has changed.
This is the result of events such as a new inbound call, an outbound call on the
address, or a call changing its hold status.

LINEADDRESSSTATE_
FORWARD

This constant indicates that the forwarding status of the address has changed,
including the number of rings for determining a “no answer” condition. The
application should check the address status to retrieve details about the
address’s current forwarding status.

LINEADDRESSSTATE_
TERMINALS

This constant indicates that the terminal settings for the address have changed.

LINEADDRESSSTATE_
CAPSCHANGE

This constant indicates that, due to configuration changes made by the user or
other circumstances, one or more of the fields in the LINE_ADDRESSCAPS
structure for the address have changed. The application should use lineGet-
AddressCaps() to read the updated structure.

Line Devices and Essential Operations � 339

8

C
h
a
p

te
r

Constant Meaning

LINEADDRESSSTATE_
CAPSCHANGE
(cont.)

If a service provider sends a LINE_ADDRESSSTATE message containing this
value to TAPI, TAPI will pass it along to applications that have negotiated TAPI
version 1.4 or above; applications negotiating a previous API version will receive
LINE_LINEDEVSTATE messages specifying LINE_DEVSTATE_REINIT, requir-
ing them to shut down and reinitialize their connection to TAPI in order to
obtain the updated information.

Table 8-3: LINECALLINFOSTATE_ constants used in the LINEADDRESSCAPS dwCallInfoStates parameter

Parameter Meaning

LINECALLINFOSTATE_OTHER This constant indicates that call information items, other than those listed
below, have changed. The application should check the current call information
to determine which items have changed.

LINECALLINFOSTATE_
DEVSPECIFIC

This constant indicates the device-specific field of the call information.

LINECALLINFOSTATE_
BEARERMODE

This constant indicates the bearer mode field of the call information record.

LINECALLINFOSTATE_RATE This constant indicates the rate field of the call information record.

LINECALLINFOSTATE_
MEDIAMODE

This constant indicates the media mode field of the call information record.

LINECALLINFOSTATE_
APPSPECIFIC

This constant indicates the application-specific field of the call information
record.

LINECALLINFOSTATE_CALLID This constant indicates the caller ID field of the call information record.

LINECALLINFOSTATE_
RELATEDCALLID

This constant indicates the related caller ID field of the call information record.

LINECALLINFOSTATE_ORIGIN This constant indicates the origin field of the call information record.

LINECALLINFOSTATE_
REASON

This constant indicates the reason field of the call information record.

LINECALLINFOSTATE_
COMPLETIONID

This constant indicates the completion ID field of the call information record.

LINECALLINFOSTATE_
NUMOWNERINCR

This constant indicates that the number of the owner field in the call informa-
tion record was increased.

LINECALLINFOSTATE_
NUMOWNERDECR

This constant indicates that the number of the owner field in the call informa-
tion record was decreased.

LINECALLINFOSTATE_
NUMMONITORS

This constant indicates that the number of the monitors field in the call informa-
tion record has changed.

LINECALLINFOSTATE_TRUNK This constant indicates that the trunk field of the call information record has
changed.

LINECALLINFOSTATE_
CALLERID

This constant indicates that one of the caller ID-related fields of the call infor-
mation record has changed.

LINECALLINFOSTATE_
CALLEDID

This constant indicates that one of the called ID-related fields of the call infor-
mation record has changed.

LINECALLINFOSTATE_
CONNECTEDID

This constant indicates that one of the connected ID-related fields of the call
information record has changed.

LINECALLINFOSTATE_
REDIRECTIONID

This constant indicates that one of the redirection ID-related fields of the call
information record has changed.

340 � Chapter 8

Parameter Meaning

LINECALLINFOSTATE_
REDIRECTINGID

This constant indicates that one of the redirecting ID-related fields of the call
information record has changed.

LINECALLINFOSTATE_
DISPLAY

This constant indicates the display field of the call information record.

LINECALLINFOSTATE_
USERUSERINFO

This constant indicates the user-to-user information of the call information
record.

LINECALLINFOSTATE_
HIGHLEVELCOMP

This constant indicates the high-level compatibility field of the call information
record.

LINECALLINFOSTATE_
LOWLEVELCOMP

This constant indicates the low-level compatibility field of the call information
record.

LINECALLINFOSTATE_
CHARGINGINFO

This constant indicates the charging information of the call information record.

LINECALLINFOSTATE_
TERMINAL

This constant indicates the terminal mode information of the call information
record.

LINECALLINFOSTATE_
DIALPARAMS

This constant indicates the dial parameters of the call information record.

LINECALLINFOSTATE_
MONITORMODES

This constant indicates that one or more of the digit, tone, or media monitoring
fields in the call information record has changed.

Table 8-4: LINECALLPARTYID_ constants used with various LINEADDRESSCAPS ID flags

Constant Meaning

LINECALLPARTYID_BLOCKED This constant indicates that the caller ID information for the call has been
blocked by the caller but would otherwise have been available.

LINECALLPARTYID_
OUTOFAREA

This constant indicates that the caller ID information for the call is not available
because it is not propagated all the way by the network.

LINECALLPARTYID_NAME This constant indicates that the caller ID information for the call is the caller’s
name (from a table maintained inside the switch). It is provided in the caller ID
name variably sized field.

LINECALLPARTYID_ADDRESS This constant indicates that the caller ID information for the call is the caller’s
number and is provided in the caller ID variably sized field.

LINECALLPARTYID_PARTIAL This constant indicates that the caller ID information for the call is valid but is
limited to partial number information.

LINECALLPARTYID_
UNKNOWN

This constant indicates that the caller ID information is currently unknown; it
may become known later.

LINECALLPARTYID_UNAVAIL This constant indicates that the caller ID information is unavailable and will not
become known later.

Line Devices and Essential Operations � 341

8

C
h
a
p

te
r

Table 8-5: LINECALLSTATE_ constants used with the LINEADDRESSCAPS dwCallStates parameter

Constant Meaning

LINECALLSTATE_IDLE This constant indicates that the call is idle; no call exists.

LINECALLSTATE_OFFERING This constant indicates that the call is being offered to the station, signaling the
arrival of a new call. In some environments, a call in the offering state does not
automatically alert the user; alerting is done by the switch instructing the line to
ring. It does not affect any call states.

LINECALLSTATE_ACCEPTED This constant indicates that the call was offered and has been accepted. This
indicates to other (monitoring) applications that the current owner application
has claimed responsibility for answering the call. In ISDN, this also initiates
alerting to both parties.

LINECALLSTATE_DIALTONE This constant indicates that the call is receiving a dial tone from the switch,
which means that the switch is ready to receive a dialed number.

LINECALLSTATE_DIALING This constant indicates that the destination address information (a phone num-
ber) is being sent to switch over the call. Note that the operation,
lineGenerateDigits(), does not place the line into the dialing state.

LINECALLSTATE_RINGBACK This constant indicates that the call is receiving ringback from the called
address. Ringback indicates that the other station has been reached and is being
alerted.

LINECALLSTATE_BUSY This constant indicates that the call is receiving a busy tone. A busy tone indi-
cates that the call cannot be completed—either a circuit (trunk) or the remote
party’s station are in use.

LINECALLSTATE_
SPECIALINFO

This constant indicates that special information is being sent by the network.
Special information is typically sent when the destination cannot be reached.

LINECALLSTATE_
CONNECTED

This constant indicates that the call has been established and the connection is
made. Information is able to flow over the call between the originating address
and the destination address.

LINECALLSTATE_
PROCEEDING

This constant indicates that the dialing process has completed and the call is
proceeding through the switch or telephone network.

LINECALLSTATE_ONHOLD This constant indicates that the call is on hold by the switch.

LINECALLSTATE_
CONFERENCED

This constant indicates that the call is currently a member of a multiparty con-
ference call.

LINECALLSTATE_
ONHOLDPENDCONF

This constant indicates that the call is currently on hold while it is being added
to a conference.

LINECALLSTATE_
ONHOLDPENDTRANSF

This constant indicates that the call is currently on hold awaiting transfer to
another number.

LINECALLSTATE_
DISCONNECTED

This constant indicates that the remote party has disconnected from the call.

LINECALLSTATE_UNKNOWN This constant indicates that the state of the call is not known. This situation may
be due to limitations of the call progress detection implementation.

342 � Chapter 8

TE
AM
FL
Y

Team-Fly®

Table 8-6: LINEADDRCAPFLAGS_ constants used with the LINEADDRESSCAPS dwAddrCapFlags parameter

Constant Meaning

LINEADDRCAPFLAGS_
FWDNUMRINGS

This constant indicates whether the number of rings for a “no answer” can be
specified when forwarding calls on no answer.

LINEADDRCAPFLAGS_
PICKUPGROUPID

This constant indicates whether or not a group ID is required for call pickup.

LINEADDRCAPFLAGS_SECURE This constant indicates whether or not calls on this address can be made secure
at call setup time.

LINEADDRCAPFLAGS_
BLOCKIDDEFAULT

This constant indicates whether the network by default sends or blocks caller
ID information when making a call on this address. If TRUE (set), ID informa-
tion is blocked by default; if FALSE, ID information is transmitted by default.

LINEADDRCAPFLAGS_
BLOCKIDOVERRIDE

This constant indicates whether the default setting for sending or blocking of
caller ID information can be overridden per call. If TRUE, override is possible; if
FALSE, override is not possible.

LINEADDRCAPFLAGS_DIALED This constant indicates whether a destination address can be dialed on this
address for making a call. TRUE if a destination address must be dialed; FALSE
if the destination address is fixed (as with a “hot phone”).

LINEADDRCAPFLAGS_
ORIGOFFHOOK

This constant indicates whether the originating party’s phone can automatically
be taken offhook when making calls.

LINEADDRCAPFLAGS_
DESTOFFHOOK

This constant indicates whether the called party’s phone can automatically be
forced offhook when making calls.

LINEADDRCAPFLAGS_
FWDCONSULT

This constant indicates whether call forwarding involves the establishment of a
consultation call.

LINEADDRCAPFLAGS_
SETUPCONFNULL

This constant indicates whether setting up a conference call starts out with an
initial call (FALSE) or with no initial call (TRUE).

LINEADDRCAPFLAGS_
AUTORECONNECT

This constant indicates whether dropping a consultation call automatically
reconnects to the call on consultation hold. TRUE if reconnect happens auto-
matically; otherwise, FALSE.

LINEADDRCAPFLAGS_
COMPLETIONID

This constant indicates whether the completion IDs returned by
lineCompleteCall() are useful and unique. TRUE if useful; otherwise, FALSE.

LINEADDRCAPFLAGS_
TRANSFERHELD

This constant indicates whether a (hard) held call can be transferred. Often,
only calls on consultation hold may be able to be transferred.

LINEADDRCAPFLAGS_
CONFERENCEHELD

This constant indicates whether a (hard) held call can be added to a conference
call. Often, only calls on consultation hold may be able to be added to as a con-
ference call.

LINEADDRCAPFLAGS_
PARTIALDIAL

This constant indicates whether partial dialing is available.

LINEADDRCAPFLAGS_
FWDSTATUSVALID

This constant indicates whether the forwarding status in the
LINEADDRESSSTATUS structure for this address is valid.

LINEADDRCAPFLAGS_
FWDINTEXTADDR

This constant indicates whether internal and external calls can be forwarded to
different forwarding addresses. This flag is meaningful only if forwarding of
internal and external calls can be controlled separately. It is TRUE if internal and
external calls can be forwarded to different destination addresses; otherwise,
FALSE.

Line Devices and Essential Operations � 343

8

C
h
a
p

te
r

Constant Meaning

LINEADDRCAPFLAGS_
FWDBUSYNAADDR

This constant indicates whether call forwarding for busy and for no answer can
use different forwarding addresses. This flag is meaningful only if forwarding for
busy and for no answer can be controlled separately. It is TRUE if forwarding
for busy and for no answer can use different destination addresses; otherwise,
FALSE.

LINEADDRCAPFLAGS_
ACCEPTTOALERT

This constant will be TRUE if an offering call must be accepted using the
lineAccept() function, alerting the users at both ends of the call; otherwise, it
will be FALSE. Typically, this is only used with ISDN.

LINEADDRCAPFLAGS_
CONFDROP

This constant will be TRUE if invoking lineDrop() on a conference call parent
also has the side effect of dropping (disconnecting) the other parties involved in
the conference call; FALSE if dropping a conference call still allows the other
parties to talk among themselves.

Table 8-7: LINECALLFEATURE_ constants used with the LINEADDRESSCAPS dwCallFeatures parameter

Constant Associated Function/TAPI Version

LINECALLFEATURE_ACCEPT lineAccept()/All

LINECALLFEATURE_
ADDTOCONF

lineAddToConference()/All

LINECALLFEATURE_ANSWER lineAnswer()/All

LINECALLFEATURE_
BLINDTRANSFER

lineBlindTransfer()/All

LINECALLFEATURE_
COMPLETECALL

lineCompleteCall()/All

LINECALLFEATURE_
COMPLETETRANSF

lineCompleteTransfer()/All

LINECALLFEATURE_DIAL lineDial()/All

LINECALLFEATURE_DROP lineDrop()/All

LINECALLFEATURE_
GATHERDIGITS

lineGatherDigits()/All

LINECALLFEATURE_
GENERATEDIGITS

lineGenerateDigits()/All

LINECALLFEATURE_
GENERATETONE

lineGenerateTone()/All

LINECALLFEATURE_HOLD lineHold()/All

LINECALLFEATURE_
MONITORDIGITS

lineMonitorDigits()/All

LINECALLFEATURE_
MONITORMEDIA

lineMonitorMedia()/All

LINECALLFEATURE_
MONITORTONES

lineMonitorTones()/All

LINECALLFEATURE_PARK linePark()/All

LINECALLFEATURE_
PREPAREADDCONF

linePrepareAddToConference()/All

LINECALLFEATURE_
REDIRECT

lineRedirect()/All

344 � Chapter 8

Constant Associated Function/TAPI Version

LINECALLFEATURE_
REMOVEFROMCONF

lineRemoveFromConference()/All

LINECALLFEATURE_
SECURECALL

lineSecureCall()/All

LINECALLFEATURE_
SENDUSERUSER

lineSendUserUserInfo()/All

LINECALLFEATURE_
SETCALLPARAMS

lineSetCallParams()/All

LINECALLFEATURE_
SETMEDIACONTROL

lineSetMediaControl()/All

LINECALLFEATURE_
SETTERMINAL

lineSetTerminal()/All

LINECALLFEATURE_
SETUPCONF

lineSetupConference()/All

LINECALLFEATURE_
SETUPTRANSFER

lineSetupTransfer()/All

LINECALLFEATURE_
SWAPHOLD

lineSwapHold()/All

LINECALLFEATURE_UNHOLD lineUnhold()/All

LINECALLFEATURE_
RELEASEUSERUSERINFO

lineReleaseUserUserInfo()/TAPI 1.4

LINECALLFEATURE_
SETTREATMENT

lineSetTreatment()/TAPI 2.0

LINECALLFEATURE_SETQOS lineSetCallQualityOfService()/TAPI 2.0

Table 8-8: LINEFORWARDMODE_ constants used with the LINEADDRESSCAPS dwForwardModes parameter

Constant Meaning

LINEFORWARDMODE_
UNCOND

This constant indicates to forward all calls unconditionally, irrespective of their
origin. You should use this value when unconditional forwarding for internal and
external calls cannot be controlled separately. Unconditional forwarding over-
rides forwarding on busy and/or no answer conditions.

LINEFORWARDMODE_
UNCONDINTERNAL

This constant indicates to forward all internal calls unconditionally. Use this
value when unconditional forwarding for internal and external calls can be con-
trolled separately.

LINEFORWARDMODE_
UNCONDEXTERNAL

This constant indicates to forward all external calls unconditionally. Use this
value when unconditional forwarding for internal and external calls can be con-
trolled separately.

LINEFORWARDMODE_
UNCONDSPECIFIC

This constant indicates to forward all calls that originated at a specified address
unconditionally (selective call forwarding).

LINEFORWARDMODE_BUSY This constant indicates to forward all calls on busy, irrespective of their origin.
Use this value when forwarding for internal and external calls on busy and
when on no answer cannot be controlled separately.

LINEFORWARDMODE_
BUSYINTERNAL

This constant indicates to forward all internal calls on busy. Use this value when
forwarding for internal and external calls on busy and when on no answer can
be controlled separately.

Line Devices and Essential Operations � 345

8

C
h
a
p

te
r

Constant Meaning

LINEFORWARDMODE_
BUSYEXTERNAL

This constant indicates to forward all external calls on busy. Use this value
when forwarding for internal and external calls on busy and when on no answer
can be controlled separately.

LINEFORWARDMODE_
BUSYSPECIFIC

This constant indicates to forward all calls that originated at a specified address
on busy (selective call forwarding).

LINEFORWARDMODE_
NOANSW

This constant indicates to forward all calls on no answer, irrespective of their
origin. Use this value when call forwarding for internal and external calls on no
answer cannot be controlled separately.

LINEFORWARDMODE_
NOANSWINTERNAL

This constant indicates to forward all internal calls on no answer. Use this value
when forwarding for internal and external calls on no answer can be controlled
separately.

LINEFORWARDMODE_
NOANSWEXTERNAL

This constant indicates to forward all external calls on no answer. Use this value
when forwarding for internal and external calls on no answer can be controlled
separately.

LINEFORWARDMODE_
NOANSWSPECIFIC

This constant indicates to forward all calls that originated at a specified address
on no answer (selective call forwarding).

LINEFORWARDMODE_
BUSYNA

This constant indicates to forward all calls on busy/no answer, irrespective of
their origin. Use this value when forwarding for internal and external calls on
busy and on no answer cannot be controlled separately.

LINEFORWARDMODE_
BUSYNAINTERNAL

This constant indicates to forward all internal calls on busy/no answer. Use this
value when call forwarding on busy and on no answer cannot be controlled
separately for internal calls.

LINEFORWARDMODE_
BUSYNAEXTERNAL

This constant indicates to forward all external calls on busy/no answer. Use this
value when call forwarding on busy and on no answer cannot be controlled
separately for internal calls.

LINEFORWARDMODE_
BUSYNASPECIFIC

This constant indicates to forward all calls that originated at a specified address
on busy/no answer (selective call forwarding).

See Also

LINEADDRESSCAPS, LINECALLTREATMENTENTRY, lineGetDevCaps,
lineNegotiateAPIVersion

structure LINECALLTREATMENTENTRY TAPI.pas

The LINECALLTREATMENTENTRY structure provides information on the
type of call treatment, such as music, recorded announcement, or silence, on
the current call. The LINEADDRESSCAPS structure can contain an array of
LINECALLTREATMENTENTRY structures. It is defined as follows in
TAPI.pas:

PLineCallTreatmentEntry = ^TLineCallTreatmentEntry;
linecalltreatmententry_tag = packed record
dwCallTreatmentID, // TAPI v2.0
dwCallTreatmentNameSize, // TAPI v2.0
dwCallTreatmentNameOffset: DWORD; // TAPI v2.0

end;
TLineCallTreatmentEntry = linecalltreatmententry_tag;
LINECALLTREATMENTENTRY = linecalltreatmententry_tag;

The fields of the structure are described in Table 8-9.

346 � Chapter 8

Table 8-9: Fields of the LINECALLTREATMENTENTRY structure

Field Member

dwCallTreatmentID This field is one of the LINECALLTREATMENT_ constants (if the treatment is of
a predefined type) or a service provider-specific value. Those constants are:
LINECALLTREATMENT_BUSY indicates that when the call is not actively con-
nected to a device (offering or onhold), the party hears a busy signal.
LINECALLTREATMENT_MUSIC indicates that when the call is not actively con-
nected to a device (offering or onhold), the party hears music.
LINECALLTREATMENT_RINGBACK indicates that when the call is not actively
connected to a device (offering or onhold), the party hears ringback tone.
LINECALLTREATMENT_SILENCE indicates that when the call is not actively
connected to a device (offering or onhold), the party hears silence.

dwCallTreatmentNameSize This field indicates the size, in bytes, (including the terminating NULL) of a
NULL-terminated string identifying the treatment. This would ordinarily describe
the content of the music or recorded announcement. If the treatment is of a pre-
defined type, a meaningful name should still be specified (for example,
“Silence\0,” “Busy Signal\0,” “Ringback\0,” or “Music\0.”)

dwCallTreatmentNameOffset This field indicates the offset from the beginning of LINEADDRESSCAPS of a
NULL-terminated string identifying the treatment. This would ordinarily describe
the content of the music or recorded announcement. If the treatment is of a pre-
defined type, a meaningful name should still be specified (for example,
“Silence\0,” “Busy Signal\0,” “Ringback\0,” or “Music\0.”)

See Also

LINEADDRESSCAPS, lineGetAddressCaps, lineSetCallTreatment

function lineGetAddressID TAPI.pas

Syntax

function lineGetAddressID(hLine: HLINE; var dwAddressID: DWORD; dwAddress-
Mode: DWORD; lpsAddress: LPCSTR; dwSize: DWORD): Longint; stdcall;

Description

This function returns the address ID associated with an address in a different
format on the specified line.

Parameters

hLine: A handle (HLINE) to the open line device

var dwAddressID: A pointer to a DWORD-sized memory location in which the
address ID will be returned

dwAddressMode: A DWORD holding the address mode of the address contained
in lpsAddress. The dwAddressMode parameter is allowed to have only a sin-
gle flag set. This parameter uses the LINEADDRESSMODE_ constant
LINEADDRESSMODE_DIALABLEADDR, which indicates that the
address is specified by its dialable address. The lpsAddress parameter is
the dialable address or canonical address format.

Line Devices and Essential Operations � 347

8

C
h
a
p

te
r

lpsAddress: A pointer (LPCSTR) to a data structure holding the address
assigned to the specified line device. The format of the address is deter-
mined by dwAddressMode. Because the only valid value is LINEAD-
DRESSMODE_DIALABLEADDR, lpsAddress uses the common dialable
number format and is NULL-terminated.

dwSize: A DWORD indicating the size of the address contained in lpsAddress.

Return Value

This function returns zero if the request is successful or a negative error
number if an error has occurred. Possible return values are LINEERR_INVAL-
LINEHANDLE, LINEERR_OPERATIONUNAVAIL, LINEERR_INVALAD-
DRESSMODE, LINEERR_OPERATIONFAILED, LINEERR_INVALPOINTER,
LINEERR_RESOURCEUNAVAIL, LINEERR_INVALADDRESS, LINEERR_
UNINITIALIZED, and LINEERR_NOMEM.

See Also

lineMakeCall

Example

Listing 8-5 shows how to get an address’s ID.

Listing 8-5: Getting an address’s ID

function TTapiInterface.GetAddressID: boolean;
begin
TapiResult := lineGetAddressID(fLine, fAddressID,
LINEADDRESSMODE_DIALABLEADDR, PChar(FPhoneNumber),
SizeOf(FPhoneNumber));

result := TapiResult=0;
if not result then ReportError(TapiResult);

end;

function lineGetAddressStatus TAPI.pas

Syntax

function lineGetAddressStatus(hLine: HLINE; dwAddressID: DWORD;
lpAddressStatus: PLineAddressStatus): Longint; stdcall;

Description

This function allows an application to query the specified address for its current
status.

Parameters

hLine: A handle (HLINE) to the open line device

dwAddressID: A DWORD indicating an address on the given open line
device—the address to be queried

348 � Chapter 8

lpAddressStatus: A pointer (PLineAddressStatus) to a variably sized data struc-
ture of type LINEADDRESSSTATUS. Before you call lineGetAddress-
Status(), you should set the dwTotalSize field of the LINEADDRESS-
STATUS structure to indicate the amount of memory available to TAPI for
returning information.

Return Value

This function returns zero if the request is successful or a negative error
number if an error has occurred. Possible return values are LINEERR_INVAL-
ADDRESSID, LINEERR_RESOURCEUNAVAIL, LINEERR_INVALLINEHAN-
DLE, LINEERR_STRUCTURETOOSMALL, LINEERR_INVALPOINTER,
LINEERR_UNINITIALIZED, LINEERR_NOMEM, LINEERR_OPERATION-
UNAVAIL, and LINEERR_OPERATIONFAILED.

See Also

LINEADDRESSSTATUS

Example

Listing 8-6 shows how to get the status of an address on an open line.

Listing 8-6: Getting the status of an address on an open line

function TTapiInterface.GetAddressStatus: boolean;
var
ATAPIResult: LongInt;

begin
if CallState <> csConnected then
begin
ShowMessage('Call must be connected to get address status');
exit;

end;
if fLineAddressStatus=Nil then
fLineAddressStatus := AllocMem(SizeOf(LineAddressStatus)+1000);

fLineAddressStatus.dwTotalSize := SizeOf(LineAddressStatus)+1000;
TapiResult := lineGetAddressStatus(fLine, fAddressID,
fLineAddressStatus);

result := TapiResult=0;
if NOT result then ReportError(TapiResult);

end;

structure LINEADDRESSSTATUS TAPI.pas

The LINEADDRESSSTATUS structure describes the current status of an
address. It is defined as follows in TAPI.pas:

PLineAddressStatus = ^TLineAddressStatus;
lineaddressstatus_tag = packed record
dwTotalSize,
dwNeededSize,
dwUsedSize,
dwNumInUse,
dwNumActiveCalls,
dwNumOnHoldCalls,
dwNumOnHoldPendCalls,

Line Devices and Essential Operations � 349

8

C
h
a
p

te
r

dwAddressFeatures,
dwNumRingsNoAnswer,
dwForwardNumEntries,
dwForwardSize,
dwForwardOffset,
dwTerminalModesSize,
dwTerminalModesOffset,
dwDevSpecificSize,
dwDevSpecificOffset: DWORD;

end;
TLineAddressStatus = lineaddressstatus_tag;
LINEADDRESSSTATUS = lineaddressstatus_tag;

The parameters of the LINEADDRESSSTATUS structure are explained in
Table 8-10.

Table 8-10: Parameters of the LINEADDRESSSTATUS structure

Parameter Meaning

dwTotalSize This field specifies the total size in bytes allocated to this data structure.

dwNeededSize This field specifies the size in bytes for this data structure that is needed to hold all the
returned information.

dwUsedSize This field specifies the size in bytes of the portion of this data structure that contains
useful information.

dwNumInUse This field specifies the number of stations that are currently using the address.

dwNumActiveCalls This field specifies the number of calls on the address that are in call states other than
idle, onHold, onHoldPendingTransfer, and onHoldPendingConference.

dwNumOnHoldCalls This field specifies the number of calls on the address in the onHold state.

dwNumOnHoldPendCalls This field specifies the number of calls on the address in the onHoldPendingTransfer or
onHoldPendingConference state.

dwAddressFeatures This field specifies the address-related API functions that can be invoked on the address
in its current state. It uses the following LINEADDRFEATURE_ constants (the full list of
constants is given in Table 8-11):
LINEADDRFEATURE_FORWARD indicates the address can be forwarded.
LINEADDRFEATURE_MAKECALL indicates an outbound call can be placed on the
address.
LINEADDRFEATURE_PICKUP indicates a call can be picked up at the address.
LINEADDRFEATURE_SETMEDIACONTROL indicates media control can be set on this
address.
LINEADDRFEATURE_SETTERMINAL indicates the terminal modes for this address can
be set.
LINEADDRFEATURE_SETUPCONF indicates a conference call with a NULL initial call
can be set up at this address.
LINEADDRFEATURE_UNCOMPLETECALL indicates call completion requests can be
canceled at this address.
LINEADDRFEATURE_UNPARK indicates calls can be unparked using this address.

dwNumRingsNoAnswer This field specifies the number of rings set for this address before an unanswered call is
considered as no answer.

350 � Chapter 8

Parameter Meaning

dwForwardNumEntries The number of entries in the array referred to by dwForwardSize and
dwForwardOffset.

dwForwardSize The size in bytes of the data structure of the variably sized field that describes the
address’s forwarding information. This information is an array of dwForwardNum-
Entries elements of type LINEFORWARD. The offsets of the addresses in the array are
relative to the beginning of the LINEADDRESSSTATUS structure. The offsets
dwCallerAddressOffset and dwDestAddressOffset in the variably sized field of type
LINEFORWARD pointed to by dwForwardSize and dwForwardOffset are relative to
the beginning of the LINEADDRESSSTATUS data structure (the “root” container).

dwForwardOffset This field specifies the offset in bytes from the beginning of the data structure of the
variably sized field that describes the address’s forwarding information. This information
is an array of dwForwardNumEntries elements of type LINEFORWARD. The offsets of
the addresses in the array are relative to the beginning of the LINEADDRESSSTATUS
structure. The offsets dwCallerAddressOffset and dwDestAddressOffset in the variably
sized field of type LINEFORWARD pointed to by dwForwardSize and dwForwardOffset
are relative to the beginning of the LINEADDRESSSTATUS data structure (the “root”
container).

dwTerminalModesSize This field specifies the size in bytes of the data structure of the variably sized device field
containing an array with DWORD-sized entries that use the LINETERMMODE_ con-
stants. This array is indexed by terminal IDs, in the range from zero to one less than
dwNumTerminals. Each entry in the array specifies the current terminal modes for the
corresponding terminal set with the lineSetTerminal() function for this address. Values
are:
LINETERMMODE_LAMPS indicates that these are lamp events sent from the line to the
terminal.
LINETERMMODE_BUTTONS indicates that these are button-press events sent from
the terminal to the line.
LINETERMMODE_DISPLAY indicates that this is display information sent from the line
to the terminal.
LINETERMMODE_RINGER indicates that this is ringer-control information sent from
the switch to the terminal.
LINETERMMODE_HOOKSWITCH indicates that these are hookswitch events sent
between the terminal and the line.
LINETERMMODE_MEDIATOLINE indicates that this is the unidirectional media stream
from the terminal to the line associated with a call on the line (you should use this value
when the routing of both unidirectional channels of a call’s media stream can be con-
trolled independently).
LINETERMMODE_MEDIAFROMLINE indicates that this is the unidirectional media
stream from the line to the terminal associated with a call on the line (you should use
this value when the routing of both unidirectional channels of a call’s media stream can
be controlled independently).
LINETERMMODE_MEDIABIDIRECT indicates that this is the bidirectional media
stream associated with a call on the line and the terminal (you should use this value
when the routing of both unidirectional channels of a call’s media stream cannot be con-
trolled independently).

Line Devices and Essential Operations � 351

8

C
h
a
p

te
r

Parameter Meaning

dwTerminalModesOffset This field specifies the offset in bytes from the beginning of this data structure of the
variably sized device field containing an array with DWORD-sized entries that use the
LINETERMMODE_ constants. This array is indexed by terminal IDs, in the range from
zero to one less than dwNumTerminals. Each entry in the array specifies the current
terminal modes for the corresponding terminal set with the lineSetTerminal() function
for this address. Values are:
LINETERMMODE_LAMPS indicates that these are lamp events sent from the line to the
terminal.
LINETERMMODE_BUTTONS indicates that these are button-press events sent from
the terminal to the line.
LINETERMMODE_DISPLAY indicates that this is display information sent from the line
to the terminal.
LINETERMMODE_RINGER indicates that this is ringer-control information sent from
the switch to the terminal.
LINETERMMODE_HOOKSWITCH indicates that these are hookswitch events sent
between the terminal and the line.
LINETERMMODE_MEDIATOLINE indicates that this is the unidirectional media stream
from the terminal to the line associated with a call on the line (you should use this value
when the routing of both unidirectional channels of a call’s media stream can be con-
trolled independently).
LINETERMMODE_MEDIAFROMLINE indicates that this is the unidirectional media
stream from the line to the terminal associated with a call on the line (you should use
this value when the routing of both unidirectional channels of a call’s media stream can
be controlled independently).
LINETERMMODE_MEDIABIDIRECT indicates that this is the bidirectional media
stream associated with a call on the line and the terminal (you should use this value
when the routing of both unidirectional channels of a call’s media stream cannot be con-
trolled independently).

deDevSpecificSize This field specifies the size in bytes of the data structure’s variably sized device-specific
field.

dwDevSpecificOffset This field specifies the offset in bytes from the beginning of this data structure’s variably
sized device-specific field.

Device-specific extensions should use the DevSpecific (dwDevSpecificSize and
dwDevSpecificOffset) variably sized area of this data structure.

This data structure is returned by lineGetAddressStatus(). When items in
this data structure change as a consequence of activities on the address, a
LINE_ADDRESSSTATE message will be sent to the application. A parameter
to this message is the address state, the constant LINEADDRESSSTATE_,
which is an indication that the status item in this record changed.

See Also

LINE_ADDRESSSTATE, LINEFORWARD, lineGetAddressStatus,
lineSetTerminal

352 � Chapter 8

TE
AM
FL
Y

Team-Fly®

Example

Listing 8-7 shows how to query the lpAddressStatus field of the lineGet-
AddressStatus() function to retrieve information about a particular call.

Listing 8-7: Querying the lpAddressStatus field of lineGetAddressStatus() to retrieve call

information

procedure TForm1.btnTestGetAddressStatusClick(Sender: TObject);
var
ALineAddressStatus : pLineAddressStatus;

begin
ALineAddressStatus := AllocMem(SizeOf(TLineAddressStatus)+1000);
ALineAddressStatus.dwTotalSize := SizeOf(TLineAddressStatus)+1000;
if NOT TapiInterface.GetAddressStatus(ALineAddressStatus) then
ShowMessage('Could not get address status')

else
begin
cbLineForward.Checked := DWordIsSet(ALineAddressStatus^.dwAddressFeatures,

LINEADDRFEATURE_FORWARD);
cbLineMakeCall.Checked := DWordIsSet(ALineAddressStatus^.dwAddressFeatures,

LINEADDRFEATURE_MAKECALL);
cbLinePickup.Checked := DWordIsSet(ALineAddressStatus^.dwAddressFeatures,

LINEADDRFEATURE_PICKUP);
cbLineSetMediaControl.Checked :=
DWordIsSet(ALineAddressStatus^.dwAddressFeatures,

LINEADDRFEATURE_SETMEDIACONTROL);
cbLineSetTerminal.Checked :=
DWordIsSet(ALineAddressStatus^.dwAddressFeatures,
LINEADDRFEATURE_SETTERMINAL);

cbLineSetupConf.Checked := DWordIsSet(ALineAddressStatus^.dwAddressFeatures,
LINEADDRFEATURE_SETUPCONF);

cbLineUncompleteCall.Checked :=
DWordIsSet(ALineAddressStatus^.dwAddressFeatures,
LINEADDRFEATURE_UNCOMPLETECALL);

cbLineUnpark.Checked := DWordIsSet(ALineAddressStatus^.dwAddressFeatures,
LINEADDRFEATURE_UNPARK);

end;
FreeMem(ALineAddressStatus);
ALineAddressStatus := Nil;

end;

LINEADDRFEATURE Constants

The LINEADDRFEATURE_ constants list the operations that can be invoked
on an address. These constants are explained in Table 8-11.

Table 8-11: LINEADDRFEATURE_ constants

Constant Meaning

LINEADDRFEATURE_
FORWARD

This constant indicates that the address can be forwarded.

LINEADDRFEATURE_
MAKECALL

This constant indicates that an outgoing call can be placed on the address.

LINEADDRFEATURE_
PICKUP

This constant indicates that a call can be picked up at the address.

Line Devices and Essential Operations � 353

8

C
h
a
p

te
r

Constant Meaning

LINEADDRFEATURE_
PICKUPDIRECT

This constant indicates that the linePickup() function can be used to pick up a call on a
specific address.

LINEADDRFEATURE_
PICKUPGROUP

This constant indicates that the linePickup() function can be used to pick up a call in the
group.

LINEADDRFEATURE_
PICKUPHELD

This constant indicates that the linePickup() function (with a NULL destination address)
can be used to pick up a call that is held on the address. This is normally used only in a
bridged-exclusive arrangement.

LINEADDRFEATURE_
PICKUPWAITING

This constant indicates that the linePickup() function (with a NULL destination address)
can be used to pick up a call waiting call. Note that this does not necessarily indicate that
a waiting call is actually present because it is often impossible for a telephony device to
automatically detect such a call; it does, however, indicate that the hook-flash function
will be invoked to attempt to switch to such a call.

LINEADDRFEATURE_
SETMEDIACONTROL

This constant indicates that media control can be set on this address.

LINEADDRFEATURE_
SETTERMINAL

This constant indicates that the terminal modes for this address can be set.

LINEADDRFEATURE_
SETUPCONF

This constant indicates that a conference call with a NULL initial call can be set up at this
address.

LINEADDRFEATURE_
UNCOMPLETECALL

This constant indicates that call completion requests can be canceled at this address.

LINEADDRFEATURE_
UNPARK

This constant indicates that calls can be unparked using this address. Note: If none of the
new modified “PICKUP” bits is set in the dwAddressFeatures member in LINE-
ADDRESSSTATUS, but the LINEADDRFEATURE_PICKUP bit is set, then any of the
pickup modes may work; the service provider has simply not specified which ones.

LINEADDRFEATURE_
FORWARDDND

This constant indicates that the lineForward() function (with an empty destination
address) can be used to turn on the Do Not Disturb feature on the address.
LINEADDRFEATURE_FORWARD will also be set.

LINEADDRFEATURE_
FORWARDFWD

This constant indicates that the lineForward() function can be used to forward calls on
the address to other numbers. LINEADDRFEATURE_FORWARD will also be set. Note:
If neither of the new modified “FORWARD” bits is set in the dwAddressFeatures mem-
ber in LINEADDRESSSTATUS, but the LINEADDRFEATURE_FORWARD bit is set, then
any of the forward modes may work; the service provider has simply not specified which
ones. No extensibility. All 32 bits are reserved. This constant is used both in LINE-
ADDRESSCAPS (returned by lineGetAddressCaps()) and in LINEADDRESSSTATUS
(returned by lineGetAddressStatus()). LINEADDRESSCAPS reports the availability of the
address features by the service provider (mainly the switch) for a given address. An
application would make this determination when it initializes. The LINEADDRESS-
STATUS structure reports, for a given address, which address features can actually be
invoked while the address is in the current state. An application would make this deter-
mination dynamically after address-state changes, typically caused by call-related activi-
ties on the address.

See Also

LINEADDRESSCAPS, LINEADDRESSSTATUS, lineForward, lineGetAddress-
Caps, lineGetAddressStatus, linePickup

354 � Chapter 8

function lineGetDevCaps TAPI.pas

Syntax

function lineGetDevCaps(hLineApp: HLINEAPP; dwDeviceID, dwAPIVersion,
dwExtVersion: DWORD; lpLineDevCaps: PLineDevCaps): Longint; stdcall;

Description

This function queries a specified line device to determine its telephony capabili-
ties. The returned information is valid for all addresses on the line device.

Parameters

hLineApp: The handle (HLINEAPP) to the application’s registration with TAPI

dwDeviceID: A DWORD indicating the line device to be queried

dwAPIVersion: A DWORD indicating the version number of the telephony API
to be used. The high-order word contains the major version number; the
low-order word contains the minor version number. This number is
obtained by lineNegotiateAPIVersion().

dwExtVersion: A DWORD indicating the version number of the service
provider-specific extensions to be used. This number is obtained by
lineNegotiateExtVersion(). It can be left at zero if no device-specific exten-
sions are to be used. Otherwise, the high-order word contains the major
version number, and the low-order word contains the minor version
number.

lpLineDevCaps: A pointer (PLineDevCaps) to a variably sized structure of type
LINEDEVCAPS. Upon successful completion of the request, this structure
is filled with line device capabilities information. Prior to calling lineGet-
DevCaps(), the application should set the dwTotalSize field of the
LINEDEVCAPS structure to indicate the amount of memory available to
TAPI for returning information.

Return Value

Returns zero if the request is successful or a negative error number if an error
has occurred. Possible return values are LINEERR_BADDEVICEID, LINE-
ERR_NOMEM, LINEERR_INCOMPATIBLEAPIVERSION, LINEERR_OPER-
ATIONFAILED, LINEERR_INCOMPATIBLEEXTVERSION, LINEERR_
RESOURCEUNAVAIL, LINEERR_INVALAPPHANDLE, LINEERR_STRUCT-
URETOOSMALL, LINEERR_INVALPOINTER, LINEERR_UNINITIALIZED,
LINEERR_NODRIVER, LINEERR_OPERATIONUNAVAIL, and
LINEERR_NODEVICE.

See Also

LINEDEVCAPS, lineGetAddressCaps, lineNegotiateAPIVersion,
lineNegotiateExtVersion

Line Devices and Essential Operations � 355

8

C
h
a
p

te
r

Example

Listing 8-8 shows how to retrieve an address’s capabilities.

Listing 8-8: Retrieving an address’s capabilities

// Caller must inialize TempLineDevCaps to proper memory size
function TTapiInterface.GetDeviceCaps(DeviceNum : DWord;

var TempLineDevCaps: PLINEDEVCAPS) : boolean;
var

LocalString : String;
begin
TempLineDevCaps^.dwTotalSize := FDeviceCapsAllocSize;
TAPIResult := LineGetDevCaps(fLineApp, DeviceNum, FApiVersion, 0,
TempLineDevCaps);

result := TAPIResult=0;
if NOT result then ReportError(TAPIResult);
if NOT GetAddressCapsSize(FAddressCapsAllocSize)
then ShowMessage('Could not get address caps size');

end;

structure LINEDEVCAPS TAPI.pas

The LINEDEVCAPS structure contains information about the capabilities of a
line device. Device-specific extensions use the DevSpecific variably sized por-
tion of this data structure (defined by dwDevSpecificSize and dwDevSpecific-

Offset) to store their information. Note that older applications using earlier ver-
sions of TAPI will likely have been compiled without the variable sized field in
the LINEDEVCAPS structure. So, you cannot simply use SizeOf(LINEDEV-
CAPS) to set the memory for this and other structures that contain variable por-
tions. In our sample code, we use SizeOf(TLineDevCaps)+1000; we also use
this approach with similar structures with variably sized portions.

Your application must pass a dwAPIVersion parameter when calling the
lineGetDevCaps() function. TAPI uses this value to receive guidance when
retrieving capabilities. If your application uses a dwTotalSize value that is less
than the size of the fixed portion of the structure (as defined in the dwAPI-

Version specified), the function will return an error of LINEERR_STRUCTURE-
TOOSMALL. You may want to check for this particular error and reallocate
more memory if it is returned.

If you allocate sufficient memory in your application before calling the line-
GetDevCaps() function (which in turn calls the related TSPI function), TAPI will
set the dwNeededSize and dwUsedSize fields to the fixed size of the structure as
it existed in the specified TAPI version. Service providers are responsible for
examining the version of TAPI and taking appropriate action (see the TAPI Help
file for additional details).

356 � Chapter 8

The LINEDEVCAPS structure is defined as follows in TAPI.pas:

PLineDevCaps = ^TLineDevCaps;
linedevcaps_tag = packed record
dwTotalSize,
dwNeededSize,
dwUsedSize,
dwProviderInfoSize,
dwProviderInfoOffset,
dwSwitchInfoSize,
dwSwitchInfoOffset,
dwPermanentLineID,
dwLineNameSize,
dwLineNameOffset,
dwStringFormat,
dwAddressModes,
dwNumAddresses,
dwBearerModes,
dwMaxRate,
dwMediaModes,
dwGenerateToneModes,
dwGenerateToneMaxNumFreq,
dwGenerateDigitModes,
dwMonitorToneMaxNumFreq,
dwMonitorToneMaxNumEntries,
dwMonitorDigitModes,
dwGatherDigitsMinTimeout,
dwGatherDigitsMaxTimeout,
dwMedCtlDigitMaxListSize,
dwMedCtlMediaMaxListSize,
dwMedCtlToneMaxListSize,
dwMedCtlCallStateMaxListSize,
dwDevCapFlags,
dwMaxNumActiveCalls,
dwAnswerMode,
dwRingModes,
dwLineStates,
dwUUIAcceptSize,
dwUUIAnswerSize,
dwUUIMakeCallSize,
dwUUIDropSize,
dwUUISendUserUserInfoSize,
dwUUICallInfoSize: DWORD;
MinDialParams,
MaxDialParams,
DefaultDialParams: TLineDialParams;
dwNumTerminals,
dwTerminalCapsSize,
dwTerminalCapsOffset,
dwTerminalTextEntrySize,
dwTerminalTextSize,
dwTerminalTextOffset,
dwDevSpecificSize,
dwDevSpecificOffset,
dwLineFeatures: DWORD; // TAPI v1.4

{$IFDEF TAPI20}
dwSettableDevStatus, // TAPI v2.0
dwDeviceClassesSize, // TAPI v2.0
dwDeviceClassesOffset: DWORD; // TAPI v2.0

{$ENDIF}

Line Devices and Essential Operations � 357

8

C
h
a
p

te
r

{$IFDEF TAPI22}
PermanentLineGuid: TGUID; // TAPI v2.2

{$ENDIF}
{$IFDEF TAPI30}

dwAddressTypes: DWORD; // TAPI v3.0
ProtocolGuid: TGUID; // TAPI v3.0
dwAvailableTracking: DWORD; // TAPI v3.0

{$ENDIF}
end;
TLineDevCaps = linedevcaps_tag;
LINEDEVCAPS = linedevcaps_tag;

The LINEDEVCAPS structure describes the capabilities of a line device. Its
many fields are described in Table 8-12.

Table 8-12: Fields of the LINEDEVCAPS structure

Field Meaning

dwTotalSize This field specifies the total size in bytes allocated to this data structure.

dwNeededSize This field specifies the size in bytes for this data structure that is needed to hold
all the returned information.

dwUsedSize This field specifies the size in bytes of the portion of this data structure that con-
tains useful information.

dwProviderInfoSize This field specifies the size in bytes of the variably sized field containing service
provider information. The dwProviderInfoSize/Offset field pair is intended to
provide information about the provider hardware and/or software, such as the
vendor name and version numbers of hardware and software. This information
can be useful when a user needs to call customer service with problems regard-
ing the provider.

dwProviderInfoOffset This field specifies the offset in bytes from the beginning of this data structure of
the variably sized field containing service provider information. The
dwProviderInfoSize/Offset field pair is intended to provide information about
the provider hardware and/or software, such as the vendor name and version
numbers of hardware and software. This information can be useful when a user
needs to call customer service with problems regarding the provider.

dwSwitchInfoSize This field specifies the size in bytes of the variably sized device field containing
switch information. The dwSwitchInfoSize/Offset field pair is intended to pro-
vide information about the switch to which the line device is connected, such as
the switch manufacturer, the model name, the software version, and so on. This
information can be useful when a user needs to call customer service with prob-
lems regarding the switch.

dwSwitchInfoOffset This field specifies the offset in bytes from the beginning of this data structure of
the variably sized device field containing switch information. The dwSwitchInfo-
Size/Offset field pair is intended to provide information about the switch to
which the line device is connected, such as the switch manufacturer, the model
name, the software version, and so on. This information can be useful when a
user needs to call customer service with problems regarding the switch.

dwPermanentLineID This field specifies the permanent DWORD identifier by which the line device is
known in the system’s configuration. It is a permanent name for the line device.
This permanent name (as opposed to dwDevice ID) does not change as lines are
added or removed from the system. It can therefore be used to link line-specific
information in INI files (or other files) in a way that is not affected by adding or
removing other lines.

358 � Chapter 8

Field Meaning

dwLineNameSize This field specifies the size in bytes of the variably sized device field containing a
user configurable name for this line device. This name can be configured by the
user when configuring the line device’s service provider and is provided for the
user’s convenience.

dwLineNameOffset This field specifies the offset in bytes from the beginning of this data structure of
the variably sized device field containing a user configurable name for this line
device. This name can be configured by the user when configuring the line
device’s service provider and is provided for the user’s convenience.

dwStringFormat This field specifies the string format used with this line device. It uses the follow-
ing STRINGFORMAT_ constants:
STRINGFORMAT_ASCII indicates the ASCII string format using one byte per
character.
STRINGFORMAT_DBCS indicates the DBCS string format using two bytes per
character.
STRINGFORMAT_ UNICODE, indicating the Unicode string format using two
bytes per character.

dwAddressModes This field specifies the mode by which the originating address is specified. This
field uses the LINEADDRESSMODE_ constants.

dwNumAddresses This field specifies the number of addresses associated with this line device. Indi-
vidual addresses are referred to by address IDs. Address IDs range from zero to
one less than the value indicated by dwNumAddresses.

dwBearerModes This field is a flag array that specifies the different bearer modes that the address
is able to support. It uses the following LINEBEARERMODE_ constants:
LINEBEARERMODE_VOICE indicates a regular 3.1kHz analog voice grade
bearer service (bit integrity is not assured; voice can support fax and modem
media modes).
LINEBEARERMODE_SPEECH indicates G.711 speech transmission on the call
(the network may use processing techniques such as analog transmission, echo
cancellation, and compression/decompression. Bit integrity is not assured. Also,
speech is not intended to support fax and modem media modes).
LINEBEARERMODE_MULTIUSE indicates multi-use mode defined by ISDN.
LINEBEARERMODE_DATA indicates the unrestricted data transfer on the call
(the data rate is specified separately).
LINEBEARERMODE_ALTSPEECHDATA indicates the alternate transfer of
speech or unrestricted data on the same call (ISDN).
LINEBEARERMODE_NONCALLSIGNALING indicates a non-call-associated
signaling connection from the application to the service provider or switch
(treated as a “media stream” by the Telephony API).
LINEBEARERMODE_PASSTHROUGH indicates that the service provider will
give direct access to the attached hardware for control by the application (this
mode is used primarily by applications desiring temporary direct control over
asynchronous modems accessed via the Win32 comm functions for the purpose
of configuring or using special features not otherwise supported by the service
provider).

dwMaxRate This field contains the maximum data rate in bits per second for information
exchange over the call.

dwMediaModes This field is a flag array that specifies the different media modes the address is
able to support. It uses the LINEMEDIAMODE_ constants described in Table
8-24.

Line Devices and Essential Operations � 359

8

C
h
a
p

te
r

Field Meaning

dwGenerateToneModes This field specifies the different kinds of tones that can be generated on this line.
It uses the following LINETONEMODE_ constants:
LINETONEMODE_CUSTOM indicates that the tone is a custom tone defined
by the specified frequencies.
LINETONEMODE_RINGBACK indicates that the tone to be generated is
ringback tone.
LINETONEMODE_BUSY indicates that the tone is a standard (station) busy
tone.
LINETONEMODE_BEEP indicates that the tone is a beep, as used to announce
the beginning of a recording.
LINETONEMODE_BILLING indicates that the tone is a billing information tone,
such as a credit card prompt tone.

dwGenerateToneMaxNumFreq This field specifies the maximum number of frequencies that can be specified in
describing a general tone using the LINEGENERATETONE data structure when
generating a tone using lineGenerateTone(). A value of zero indicates that tone
generation is not available.

dwGenerateDigitModes This field specifies the digit modes that can be generated on this line. It uses the
following LINEDIGITMODE_ constants:
LINEDIGITMODE_PULSE indicates to generate digits as pulse/rotary pulse
sequences.
LINEDIGITMODE_DTMF indicates to generate digits as DTMF tones.

dwMonitorToneMaxNumFreq This field specifies the maximum number of frequencies that can be specified in
describing a general tone using the LINEMONITORTONE data structure when
monitoring a general tone using lineMonitorTones(). A value of zero indicates
that tone monitor is not available.

dwMonitorToneMaxNumEntries This field specifies the maximum number of entries that can be specified in a
tone list to lineMonitorTones().

dwMonitorDigitModes This field specifies the digit modes that can be detected on this line. It uses the
following LINEDIGITMODE_ constants:
LINEDIGITMODE_PULSE indicates to detect digits as audible clicks that are the
result of rotary pulse sequences.
LINEDIGITMODE_DTMF indicates to detect digits as DTMF tones.
LINEDIGITMODE_DTMFEND indicates to detect the down edges of digits
detected as DTMF tones.

dwGatherDigitsMinTimeout This field specifies the minimum values in milliseconds that can be specified for
both the first digit and inter-digit timeout values used by lineGatherDigits(). If
both this field and the next are zero, timeouts are not supported.

dwGatherDigitsMaxTimeout This field specifies the maximum values in milliseconds that can be specified for
both the first digit and inter-digit timeout values used by lineGatherDigits(). If
both this field and the previous are zero, timeouts are not supported.

dwMedCtlDigitMaxListSize This field specifies the maximum number of entries that can be specified in the
digit list parameter of lineSetMediaControl().

dwMedCtlMediaMaxListSize This field specifies the maximum number of entries that can be specified in the
media list parameter of lineSetMediaControl().

dwMedCtlToneMaxListSize This field specifies the maximum number of entries that can be specified in the
tone list parameter of lineSetMediaControl().

dwMedCtlCallStateMaxListSize This field specifies the maximum number of entries that can be specified in the
call state list parameter of lineSetMediaControl().

dwDevCapFlags This field specifies various Boolean device capabilities. It uses the
LINEDEVCAPFLAGS_ constants described in Table 8-13.

360 � Chapter 8

Field Meaning

dwMaxNumActiveCalls This field specifies the maximum number of (minimum bandwidth) calls that can
be active (connected) on the line at any one time. The actual number of active
calls may be lower if higher bandwidth calls have been established on the line.

dwAnswerMode This field specifies the effect on the active call when answering another offering
call on a line device. This field uses the following LINEANSWERMODE_ con-
stants:
LINEANSWERMODE_NONE indicates that answering another call on the same
line has no effect on the existing active call(s) on the line.
LINEANSWERMODE_DROP indicates that the currently active call will be auto-
matically dropped.
LINEANSWERMODE_HOLD indicates that the currently active call will auto-
matically be placed on hold.

dwRingModes This field specifies the number of different ring modes that can be reported in
the LINE_LINEDEVSTATE message with the ringing indication. Different ring
modes range from one to dwRingModes. Zero indicates no ring.

dwLineStates This field specifies the different line status components for which the application
may be notified in a LINE_LINEDEVSTATE message on this line. It uses the
LINEDEVSTATE_ constants described in Table 8-14.

dwUUIAcceptSize This field specifies the maximum size of user-to-user information that can be
sent during a call accept.

dwUUIAnswerSize This field specifies the maximum size of user-to-user information that can be
sent during a call answer.

dwUUIMakeCallSize This field specifies the maximum size of user-to-user information that can be
sent during a make call.

dwUUIDropSize This field specifies the maximum size of user-to-user information that can be
sent during a call drop.

dwUUISendUserUserInfoSize This field specifies the maximum size of user-to-user information that can be
sent separately any time during a call with lineSendUserUserInfo.

dwUUICallInfoSize This field specifies the maximum size of user-to-user information that can be
received in the LINECALLINFO structure.

MinDialParams This field specifies the minimum values for the dial parameters (in milliseconds)
that can be set for calls on this line. Dialing parameters can be set to values in
this range. The granularity of the actual settings is service provider-specific.

MaxDialParams This field specifies the maximum values for the dial parameters in milliseconds
that can be set for calls on this line. Dialing parameters can be set to values in
this range. The granularity of the actual settings is service provider-specific.

DefaultDialParams This field specifies the default dial parameters used for calls on this line. These
parameter values can be overridden on a per-call basis.

dwNumTerminals This field specifies the number of terminals that can be set for this line device, its
addresses, or its calls. Individual terminals are referred to by terminal IDs and
range from zero to one less than the value indicated by dwNumTerminals.

dwTerminalCapsSize This field specifies the size in bytes of the variably sized device field containing
an array with entries of type LINETERMCAPS. This array is indexed by terminal
IDs, in the range from zero to dwNumTerminals minus one. Each entry in the
array specifies the terminal device capabilities of the corresponding terminal.

Line Devices and Essential Operations � 361

8

C
h
a
p

te
r

Field Meaning

dwTerminalCapsOffset This field specifies the offset in bytes from the beginning of this data structure of
the variably sized device field containing an array with entries of type
LINETERMCAPS. This array is indexed by terminal IDs, in the range from zero
to dwNumTerminals minus one. Each entry in the array specifies the terminal
device capabilities of the corresponding terminal.

dwTerminalTextEntrySize This field specifies the size in bytes of each of the terminal text descriptions
pointed at by dwTerminalTextSize/Offset.

dwTerminalTextSize This field specifies the size in bytes of the variably sized field containing descrip-
tive text about each of the line’s available terminals. Each message is
dwTerminalTextEntrySize bytes long. The string format of these textual descrip-
tions is indicated by dwStringFormat in the line’s device capabilities.

dwTerminalTextOffset This field specifies the offset in bytes from the beginning of this data structure of
the variably sized field containing descriptive text about each of the line’s avail-
able terminals. Each message is dwTerminalTextEntrySize bytes long. The string
format of these textual descriptions is indicated by dwStringFormat in the line’s
device capabilities.

dwDevSpecificSize This field specifies the size in bytes of the variably sized device-specific field.

dwDevSpecificOffset This field specifies the offset in bytes from the beginning of this data structure of
the variably sized device-specific field.

dwLineFeatures This field specifies the features available for this line using the LINEFEATURE_
constants shown in Table 8-15. Invoking a supported feature requires the line to
be in the proper state and the underlying line device to be opened in a compati-
ble mode. A zero in a bit position indicates that the corresponding feature is
never available. A one indicates that the corresponding feature may be available
if the line is in the appropriate state for the operation to be meaningful. This
field allows an application to discover which line features can be (and which can
never be) supported by the device.

Table 8-13: LINEDEVCAPFLAGS_ constants used in the dwDevCapFlags field of the LINEDEVCAPS structure

Constant Meaning

LINEDEVCAPFLAGS_
CROSSADDRCONF

This constant specifies whether calls on different addresses on this line can be
added to a conference call.

LINEDEVCAPFLAGS_
HIGHLEVCOMP

This constant specifies whether high-level compatibility information elements
are supported on this line.

LINEDEVCAPFLAGS_
LOWLEVCOMP

This constant specifies whether low-level compatibility information elements are
supported on this line.

LINEDEVCAPFLAGS_
MEDIACONTROL

This constant specifies whether media control operations are available for calls
at this line.

LINEDEVCAPFLAGS_
MULTIPLEADDR

This constant specifies whether lineMakeCall() or lineDial() can deal with multi-
ple addresses at once (such as for inverse multiplexing).

LINEDEVCAPFLAGS_
CLOSEDROP

This constant specifies what happens when an open line is closed while the
application has calls active on the line. If TRUE (set), then lineClose() will drop
(that is, clear) all calls on the line if the application is the sole owner of those
calls. Knowing the setting of this flag ahead of time makes it possible for the
application to display an OK/Cancel dialog box for the user, warning that the
active call will be lost. If CLOSEDROP is FALSE, a lineClose() function call will
not automatically drop any calls that are still active on the line if the service pro-
vider knows that some other device can keep the call alive.

362 � Chapter 8

TE
AM
FL
Y

Team-Fly®

Constant Meaning

LINEDEVCAPFLAGS_
CLOSEDROP
(cont.)

For example, if an analog line has the computer and phoneset both connected
directly to them (in a party-line configuration), the service provider should set
the flag to FALSE, as the offhook phone will automatically keep the call active
even after the computer powers down.

LINEDEVCAPFLAGS_
DIALBILLING

The remaining three flag constants indicate whether the “$,” “@,” or “W”
dialable string modifier is supported for a given line device (see discussion of
dialable addresses in Chapter 10). It is TRUE if the modifier is supported; other-
wise, FALSE. Note that the “?” (prompt user to continue dialing) is never sup-
ported by a line device. These flags allow an application to determine “up front”
which modifiers would result in the generation of a LINEERR. The application
has the choice of pre-scanning dialable strings for unsupported characters or
passing the “raw” string from lineTranslateAddress() directly to the provider as
part of lineMakeCall() (lineDial(), etc.) and let the function generate an error to
tell it which unsupported modifier occurs first in the string.

LINEDEVCAPFLAGS_
DIALQUIET

See LINEDEVCAPFLAGS_DIALBILLING.

LINEDEVCAPFLAGS_
DIALDIALTONE

See LINEDEVCAPFLAGS_DIALBILLING.

Table 8-14: LINEDEVSTATE_ constants used with the dwLineStates field of the LINEDEVCAPS structure

Constant Meaning

LINEDEVSTATE_OTHER This constant specifies that device-status items other than those listed below
have changed. The application should check the current device status to deter-
mine which items have changed.

LINEDEVSTATE_RINGING This constant indicates that the switch tells the line to alert the user.

LINEDEVSTATE_
CONNECTED

This constant indicates that the line was previously disconnected and is now
connected to TAPI.

LINEDEVSTATE_
DISCONNECTED

This constant indicates that the line was previously connected and is now dis-
connected from TAPI.

LINEDEVSTATE_MSGWAITON This constant indicates that the “message waiting” indicator is turned on.

LINEDEVSTATE_
MSGWAITOFF

This constant indicates that the “message waiting” indicator is turned off.

LINEDEVSTATE_
NUMCOMPLETIONS

This constant indicates that the number of outstanding call completions on the
line device has changed.

LINEDEVSTATE_INSERVICE This constant indicates that the line is connected to TAPI. This happens when
TAPI is first activated or when the line wire is physically plugged in and in service
at the switch while TAPI is active.

LINEDEVSTATE_
OUTOFSERVICE

This constant indicates that the line is out of service at the switch or physically
disconnected. TAPI cannot be used to operate on the line device.

LINEDEVSTATE_
MAINTENANCE

This constant indicates that maintenance is being performed on the line at the
switch. TAPI cannot be used to operate on the line device.

LINEDEVSTATE_OPEN This constant indicates that the line has been opened.

LINEDEVSTATE_CLOSE This constant indicates that the line has been closed.

LINEDEVSTATE_NUMCALLS This constant indicates that the number of calls on the line device has changed.

LINEDEVSTATE_TERMINALS This constant indicates that the terminal settings have changed.

LINEDEVSTATE_ROAMMODE This constant indicates that the roam mode of the line device has changed.

Line Devices and Essential Operations � 363

8

C
h
a
p

te
r

Constant Meaning

LINEDEVSTATE_BATTERY This constant indicates that the battery level has changed significantly (cellular).

LINEDEVSTATE_SIGNAL This constant indicates that the signal level has changed significantly (cellular).

LINEDEVSTATE_DEVSPECIFIC This constant indicates that the line’s device-specific information has changed.

LINEDEVSTATE_REINIT This constant indicates that items have changed in the configuration of line
devices. To become aware of these changes (such as for the appearance of new
line devices), the application should reinitialize its use of TAPI. The hDevice
parameter is left NULL for this state change as it applies to any of the lines in the
system.

LINEDEVSTATE_LOCK This constant indicates that the locked status of the line device has changed.

LINEDEVSTATE_
CAPSCHANGE

This constant indicates that, due to configuration changes made by the user or
other circumstances, one or more of the fields in the LINEDEVCAPS structure
for the address have changed. The application should use lineGetDevCaps() to
read the updated structure. If a service provider sends a LINE_LINEDEVSTATE
message containing this value to TAPI, TAPI will pass it along to applications that
have negotiated this or a subsequent API version; applications negotiating a pre-
vious API version will receive LINE_LINEDEVSTATE messages specifying
LINEDEVSTATE_REINIT, requiring them to shut down and reinitialize their con-
nection to TAPI in order to obtain the updated information.

LINEDEVSTATE_
CONFIGCHANGE

This constant indicates that configuration changes have been made to one or
more of the media devices associated with the line device. The application, if it
desires, may use lineGetDevConfig() to read the updated information. If a ser-
vice provider sends a LINE_LINEDEVSTATE message containing this value to
TAPI, TAPI will pass it along to applications that have negotiated this or a subse-
quent API version; applications negotiating a previous API version will not
receive any notification.

LINEDEVSTATE_
TRANSLATECHANGE

This constant indicates that, due to configuration changes made by the user or
other circumstances, one or more of the fields in the LINETRANSLATECAPS
structure have changed. The application should use lineGetTranslateCaps() to
read the updated structure. If a service provider sends a LINE_LINEDEVSTATE
message containing this value to TAPI, TAPI will pass it along to applications that
have negotiated this or a subsequent API version; applications negotiating a pre-
vious API version will receive LINE_LINEDEVSTATE messages specifying
LINEDEVSTATE_REINIT, requiring them to shut down and reinitialize their con-
nection to TAPI in order to obtain the updated information.

LINEDEVSTATE_
COMPLCANCEL

This constant indicates that the call completion identified by the completion ID
contained in parameter dwParam2 of the LINE_LINEDEVSTATE message has
been externally cancelled and is no longer considered valid (if that value were to
be passed in a subsequent call to lineUncompleteCall(), the function would fail
with LINEERR_INVALCOMPLETIONID). If a service provider sends a
LINE_LINEDEVSTATE message containing this value to TAPI, TAPI will pass it
along to applications that have negotiated this or a subsequent API version;
applications negotiating a previous API version will not receive any notification.

LINEDEVSTATE_REMOVED This constant indicates that the device is being removed from the system by the
service provider (most likely through user action, via a control panel or similar
utility). A LINE_LINEDEVSTATE message with this value will normally be imme-
diately followed by a LINE_CLOSE message on the device. Subsequent attempts
to access the device prior to TAPI being reinitialized will result in LINEERR_
NODEVICE being returned to the application. If a service provider sends a
LINE_LINEDEVSTATE message containing this value to TAPI, TAPI will pass it
along to applications that have negotiated this or a subsequent API version;
applications negotiating a previous API version will not receive any notification.

364 � Chapter 8

LINEFEATURE_ Constants

The LINEFEATURE_ constants are defined in Table 8-15. They list the opera-
tions that can be invoked on a line using TAPI. The LINEFEATURE_ constants
are used in LINEDEVSTATUS (returned by the lineGetLineDevStatus() func-
tion). LINEDEVSTATUS reports, for a given line, which line features can
actually be invoked while the line is in the current state. An application would
make this determination dynamically after line state changes, typically caused
by address or call-related activities on the line.

Table 8-15: LINEFEATURE_ constants

Constant Meaning

LINEFEATURE_DEVSPECIFIC This constant indicates that device-specific operations can be used on the line.

LINEFEATURE_
DEVSPECIFICFEAT

This constant indicates that device-specific features can be used on the line.

LINEFEATURE_FORWARD This constant indicates that forwarding of all addresses can be used on the line.

LINEFEATURE_
FORWARDDND

This constant indicates that the lineForward() function (with an empty destina-
tion address) can be used to turn on the Do Not Disturb feature on all
addresses on the line. LINEFEATURE_FORWARD will also be set. This flag is
exposed only to applications that negotiate a TAPI version of 2.0 or higher.

LINEFEATURE_
FORWARDFWD

This constant indicates that the lineForward() function can be used to forward
calls on all addresses on the line to other numbers. LINEFEATURE_FORWARD
will also be set. This flag is exposed only to applications that negotiate a TAPI
version of 2.0 or higher.

LINEFEATURE_MAKECALL This constant indicates that an outgoing call can be placed on this line using an
unspecified address.

LINEFEATURE_
SETDEVSTATUS

This constant indicates that the lineSetLineDevStatus() function can be invoked
on the line device. This flag is exposed only to applications that negotiate a TAPI
version of 2.0 or higher.

LINEFEATURE_
SETMEDIACONTROL

This constant indicates that media control can be set on this line.

LINEFEATURE_SETTERMINAL This constant indicates that terminal modes for this line can be set.

structure LINETERMCAPS TAPI.pas

The LINETERMCAPS structure describes the capabilities of a line’s terminal
device. This structure does not support extensions. It is defined as follows in
TAPI.pas:

PLineTermCaps = ^TLineTermCaps;
linetermcaps_tag = packed record
dwTermDev,
dwTermModes,
dwTermSharing: DWORD;

end;
TLineTermCaps = linetermcaps_tag;
LINETERMCAPS = linetermcaps_tag;

The fields of the LINETERMCAPS structure are described in Table 8-16.

Line Devices and Essential Operations � 365

8

C
h
a
p

te
r

Table 8-16: Fields of the LINETERMCAPS structure

Field Meaning

dwTermDev This field specifies the device type of the terminal. It uses the following LINETERMDEV_
constants:
LINETERMDEV_PHONE indicates that the terminal is a phone set.
LINETERMDEV_HEADSET indicates that the terminal is a headset.
LINETERMDEV_SPEAKER indicates that the terminal is an external speaker and
microphone.

dwTermModes This field specifies the terminal mode(s) the device is able to deal with. It uses the following
LINETERMMODE_ constants:
LINETERMMODE_BUTTONS indicates that button-press events will be sent from the ter-
minal to the line.
LINETERMMODE_LAMPS indicates lamp events sent from the line to the terminal.
LINETERMMODE_DISPLAY indicates display information was sent from the line to the ter-
minal.
LINETERMMODE_RINGER indicates that ringer-control information was sent from the
switch to the terminal.
LINETERMMODE_HOOKSWITCH indicates that hookswitch events were sent from the
terminal to the line.
LINETERMMODE_MEDIATOLINE indicates the unidirectional media stream from the ter-
minal to the line associated with a call on the line (use this value when the routing of both
unidirectional channels of a call’s media stream can be controlled independently).
LINETERMMODE_MEDIAFROMLINE indicates the unidirectional media stream from the
line to the terminal associated with a call on the line (use this value when the routing of both
unidirectional channels of a call’s media stream can be controlled independently).
LINETERMMODE_MEDIABIDIRECT indicates that this is the bidirectional media stream
associated with a call on the line and the terminal (use this value when the routing of both
unidirectional channels of a call’s media stream cannot be controlled independently).

dwTermSharing This field specifies how the terminal device is shared between line devices. It uses the follow-
ing LINETERMSHARING_ constants:
LINETERMSHARING_PRIVATE indicates that the terminal device is private to a single line
device.
LINETERMSHARING_SHAREDEXCL indicates that the terminal device can be used by mul-
tiple lines (the last line device to do a lineSetTerminal() to the terminal for a given terminal
mode will have exclusive connection to the terminal for that mode).
LINETERMSHARING_SHAREDCONF indicates that the terminal device can be used by mul-
tiple lines (the lineSetTerminal() requests of the various terminals end up being “merged” at
the terminal).

structure LINETRANSLATECAPS TAPI.pas

The LINETRANSLATECAPS structure describes the address translation capa-
bilities. This structure does not support extensions. It is defined as follows in
TAPI.pas:

PLineTranslateCaps = ^TLineTranslateCaps;
linetranslatecaps_tag = packed record
dwTotalSize,
dwNeededSize,
dwUsedSize,
dwNumLocations,
dwLocationListSize,
dwLocationListOffset,

366 � Chapter 8

dwCurrentLocationID,
dwNumCards,
dwCardListSize,
dwCardListOffset,
dwCurrentPreferredCardID: DWORD;

end;
TLineTranslateCaps = linetranslatecaps_tag;
LINETRANSLATECAPS = linetranslatecaps_tag;

The fields of the LINETRANSLATECAPS structure are described in Table
8-17.

Table 8-17: Fields of the LINETRANSLATECAPS structure

Field Meaning

dwTotalSize This field specifies the total size in bytes allocated to this data structure.

dwNeededSize This field specifies the size in bytes for this data structure that is needed to hold all
the returned information.

dwUsedSize This field specifies the size in bytes of the portion of this data structure that con-
tains useful information.

dwNumLocations This field specifies the number of entries in the LocationList. It includes all locations
defined, including 0 (default).

dwLocationListSize This field specifies the total number of bytes in the entire list of locations known to
address translation. The list consists of a sequence of LINELOCATIONENTRY
structures.

dwLocationListOffset This field points to the first byte of the first LINELOCATIONENTRY structure in a
list of locations known to address translation. The list consists of a sequence of
LINELOCATIONENTRY structures.

dwCurrentLocationID This field specifies the dwPermanentLocationID from the LINELOCATIONENTRY
for the current location.

dwNumCards This field specifies the number of entries in the CardList.

dwCardListSize This field indicates the total number of bytes in the entire list of calling cards known
to address translation. It includes only non-hidden card entries and always includes
card 0 (direct dial). The list consists of a sequence of LINECARDENTRY structures.

dwCardListOffset This field points to the first byte of the first LINECARDENTRY structure in the list
of calling cards known to address translation. It includes only non-hidden card
entries and always includes card 0 (direct dial). The list consists of a sequence of
LINECARDENTRY structures.

dwCurrentPreferredCardID This field specifies the dwPreferredCardID from the LINELOCATIONENTRY for
the current location.

See Also

LINECARDENTRY, LINELOCATIONENTRY

structure LINECARDENTRY TAPI.pas

The LINECARDENTRY structure describes a calling card. The LINETRANS-
LATECAPS structure can contain an array of LINECARDENTRY structures.
Older applications compiled with earlier TAPI versions will have no knowledge
of these new fields. If they use SIZEOF(LINECARDENTRY), they may end up
with a structure size that is too small. Because this is an array in the variable

Line Devices and Essential Operations � 367

8

C
h
a
p

te
r

portion of a LINETRANSLATECAPS structure, it is imperative that older appli-
cations receive LINECARDENTRY structures in the format they previously
expected, or they will not able to index properly through the array. The applica-
tion passes in a dwAPIVersion parameter with the lineGetTranslateCaps()
function, which can be used for guidance by TAPI in handling this situation.
The lineGetTranslateCaps() function should use the LINECARDENTRY fields
and size that correspond to the indicated TAPI version when building the
LINETRANSLATECAPS structure to be returned to the application. The
LINECARDENTRY structure is defined as follows in TAPI.pas:

PLineCardEntry = ^TLineCardEntry;
linecardentry_tag = packed record
dwPermanentCardID,
dwCardNameSize,
dwCardNameOffset,
dwCardNumberDigits, // TAPI v1.4
dwSameAreaRuleSize, // TAPI v1.4
dwSameAreaRuleOffset, // TAPI v1.4
dwLongDistanceRuleSize, // TAPI v1.4
dwLongDistanceRuleOffset, // TAPI v1.4
dwInternationalRuleSize, // TAPI v1.4
dwInternationalRuleOffset, // TAPI v1.4
dwOptions: DWORD; // TAPI v1.4

end;
TLineCardEntry = linecardentry_tag;
LINECARDENTRY = linecardentry_tag;

The fields of the LINECARDENTRY structure are described in the Table 8-18.

Table 8-18: Fields of the LINECARDENTRY structure

Field Meaning

dwPermanentCardID This field indicates the permanent identifier that identifies the card.

dwCardNameSize This field indicates the size of a NULL-terminated string (size includes the NULL)
that describes the card in a user-friendly manner.

dwCardNameOffset This field indicates the offset to the beginning of a NULL-terminated string (size
includes the NULL) that describes the card in a user-friendly manner.

dwCardNumberDigits This field indicates the number of digits in the existing card number. The card
number itself is not returned for security reasons (it is stored in scrambled form
by TAPI). The application can use this to insert filler bytes into a text control in
“password” mode to show that a number exists.

dwSameAreaRuleSize This field indicates the total number of bytes in the dialing rule defined for calls to
numbers in the same area code. The rule is a NULL-terminated string.

dwSameAreaRuleOffset This field indicates the offset, in bytes, from the beginning of the LINETRANS-
LATECAPS structure holding the dialing rule defined for calls to numbers in the
same area code. The rule is a NULL-terminated string.

dwLongDistanceRuleSize This field indicates the total number of bytes in the dialing rule defined for calls to
numbers in other areas in the same country/region. The rule is a NULL-termi-
nated string

dwLongDistanceRuleOffset This field indicates the offset, in bytes, from the beginning of the LINETRANS-
LATECAPS structure holding the dialing rule defined for calls to numbers in other
areas in the same country/region. The rule is a NULL-terminated string

368 � Chapter 8

Field Meaning

dwInternationalRuleSize This field indicates the total number of bytes in the dialing rule defined for calls to
numbers in other countries/regions. The rule is a NULL-terminated string.

dwInternationalRuleOffset This field indicates the offset, in bytes, from the beginning of the LINETRANS-
LATECAPS structure holding the dialing rule defined for calls to numbers in other
countries/regions. The rule is a NULL-terminated string.

dwOptions This field indicates the other settings associated with this calling card using the
LINECARDOPTION_ constants.

structure LINELOCATIONENTRY TAPI.pas

The LINELOCATIONENTRY structure describes a location used to provide an
address translation context. The LINETRANSLATECAPS structure can contain
an array of LINELOCATIONENTRY structures. Older applications compiled
with earlier TAPI versions will not know about these new fields and will use a
LINELOCATIONENTRY size that is smaller than the new size. Because this is
an array in the variable portion of a LINETRANSLATECAPS structure, it is
imperative that older applications receive LINELOCATIONENTRY structures
in the format they previously expected, or they are not able to index through
the array properly. The application passes in a dwAPIVersion parameter with the
lineGetTranslateCaps() function, which can be used for guidance by TAPI in
handling this situation. The lineGetTranslateCaps() function should use the
LINELOCATIONENTRY members and size that match the indicated API ver-
sion when building the LINETRANSLATECAPS structure to be returned to the
application. This structure does not support extensions. It is defined as follows
in TAPI.pas:

PLineLocationEntry = ^TLineLocationEntry;
linelocationentry_tag = packed record
dwPermanentLocationID,
dwLocationNameSize,
dwLocationNameOffset,
dwCountryCode,
dwCityCodeSize,
dwCityCodeOffset,
dwPreferredCardID,

dwLocalAccessCodeSize, // TAPI v1.4
dwLocalAccessCodeOffset, // TAPI v1.4
dwLongDistanceAccessCodeSize, // TAPI v1.4
dwLongDistanceAccessCodeOffset, // TAPI v1.4
dwTollPrefixListSize, // TAPI v1.4
dwTollPrefixListOffset, // TAPI v1.4
dwCountryID, // TAPI v1.4
dwOptions, // TAPI v1.4
dwCancelCallWaitingSize, // TAPI v1.4
dwCancelCallWaitingOffset: DWORD; // TAPI v1.4

end;
TLineLocationEntry = linelocationentry_tag;
LINELOCATIONENTRY = linelocationentry_tag;

Line Devices and Essential Operations � 369

8

C
h
a
p

te
r

The fields of the LINELOCATIONENTRY structure are described in Table
8-19.

Table 8-19: Fields of the LINELOCATIONENTRY structure

Field Meaning

dwPermanentLocationID This field indicates the permanent identifier that identifies the location.

dwLocationNameSize This field indicates the size of a NULL-terminated string (size includes the
NULL) that describes the location in a user-friendly manner.

dwLocationNameOffset This field indicates the offset to the beginning of a NULL-terminated string
(size includes the NULL) that describes the location in a user-friendly
manner.

dwCountryCode This field indicates the country code of the location.

dwCityCodeSize This field indicates the size of a NULL-terminated string (the size includes
the NULL) specifying the city/area code associated with the location. This
information, along with the country code, can be used by applications to
“default” entry fields for the user when entering phone numbers to encour-
age the entry of proper canonical numbers.

dwCityCodeOffset This field indicates the offset to the beginning of a NULL-terminated string
specifying the city/area code associated with the location. This information,
along with the country code, can be used by applications to “default” entry
fields for the user when entering phone numbers to encourage the entry of
proper canonical numbers.

dwPreferredCardID This field indicates the preferred calling card when dialing from this location.

dwLocalAccessCodeSize This field indicates the size, in bytes, of a NULL-terminated string containing
the access code to be dialed before calls to addresses in the local calling
area.

dwLocalAccessCodeOffset This field indicates the offset, in bytes, from the beginning of the
LINETRANSLATECAPS structure of a NULL-terminated string containing
the access code to be dialed before calls to addresses in the local calling
area.

dwLongDistanceAccessCodeSize This field indicates the size, in bytes, of a NULL-terminated string containing
the access code to be dialed before calls to addresses outside the local call-
ing area.

dwLongDistanceAccessCodeOffset This field indicates the offset, in bytes, from the beginning of the
LINETRANSLATECAPS structure of a NULL-terminated string containing
the access code to be dialed before calls to addresses outside the local call-
ing area.

dwTollPrefixListSize This field indicates the size, in bytes, of a NULL-terminated string containing
the toll prefix list for the location. The string contains only prefixes consist-
ing of the digits “0” through “9,” separated from each other by a single “,”
(comma) character.

dwTollPrefixListOffset This field indicates the offset, in bytes, from the beginning of the
LINETRANSLATECAPS structure of a NULL-terminated string containing
the toll prefix list for the location. The string contains only prefixes consist-
ing of the digits “0” through “9,” separated from each other by a single “,”
(comma) character.

370 � Chapter 8

Field Meaning

dwCountryID This field indicates the country identifier of the country/region selected for
the location. This can be used with the lineGetCountry() function to obtain
additional information about the specific country/region, such as the coun-
try/region name (the dwCountryCode member cannot be used for this pur-
pose because country codes are not unique).

dwOptions This field indicates the options in effect for this location, with values taken
from the LINELOCATIONOPTION_ constants.

dwCancelCallWaitingSize This field indicates the size, in bytes, of a NULL-terminated string containing
the dial digits and modifier characters that should be prefixed to the dialable
string (after the pulse/tone character) when an application sets the LINE-
TRANSLATEOPTION_CANCELCALLWAITING bit in the dwTranslate-
Options parameter of lineTranslateAddress(). If no prefix is defined, this
may be indicated by dwCancelCallWaitingSize being set to zero or by it
being set to 1 and dwCancelCallWaitingOffset pointing to an empty string
(single NULL byte).

dwCancelCallWaitingOffset This field indicates the offset, in bytes, from the beginning of the LINE-
TRANSLATECAPS structure of a NULL-terminated string containing the
dial digits and modifier characters that should be prefixed to the dialable
string (after the pulse/tone character) when an application sets the LINE-
TRANSLATEOPTION_CANCELCALLWAITING bit in the dwTranslate-
Options parameter of lineTranslateAddress(). If no prefix is defined, this
may be indicated by dwCancelCallWaitingSize being set to zero or by it
being set to 1 and dwCancelCallWaitingOffset pointing to an empty string
(single NULL byte).

See Also

lineGetCountry, lineGetTranslateCaps, lineTranslateAddress,
LINETRANSLATECAPS

LINELOCATIONOPTION_ Constants

The LINELOCATIONOPTION_ constants (defined in Table 8-20) define values
used in the dwOptions member of the LINELOCATIONENTRY structure that is
returned as part of the LINETRANSLATECAPS structure returned by the
lineGetTranslateCaps() function.

Table 8-20: LINELOCATIONOPTION_ constants

Constant Meaning

LINELOCATIONOPTION_
PULSEDIAL

This constant indicates if the default dialing mode at this location is pulse
dialing. If this bit is set, lineTranslateAddress() will insert a “P” dial modifier
at the beginning of the dialable string returned when this location is
selected. If this bit is not set, lineTranslateAddress() will insert a “T” dial
modifier at the beginning of the dialable string.

Line Devices and Essential Operations � 371

8

C
h
a
p

te
r

function lineGetDevConfig TAPI.pas

Syntax

function lineGetDevConfig(dwDeviceID: DWORD; lpDeviceConfig: PVarString;
lpszDeviceClass: LPCSTR): Longint; stdcall;

Description

This function returns an “opaque” data structure object, the contents of which
are specific to the line (service provider) and device class. The data structure
object stores the current configuration of a media-stream device associated with
the line device.

Parameters

dwDeviceID: A DWORD holding the line device to be configured

lpDeviceConfig: A pointer (PVarString) to the memory location of type VarString
where the device configuration structure is returned. If the request is suc-
cessfully completed, this location is filled with the device configuration.
The dwStringFormat field in the VarString structure will be set to
STRINGFORMAT_BINARY. Before you call lineGetDevConfig(), you
should set the dwTotalSize field of this structure to indicate the amount of
memory available to TAPI for returning information.

lpszDeviceClass: A pointer (LPCSTR) to a NULL-terminated ASCII string that
specifies the device class of the device whose configuration is requested.
Valid device class lineGetID() strings are the same as those specified for
the function.

Return Value

This function returns zero if the function is successful or a negative error
number if an error has occurred. Possible return values are LINEERR_BAD-
DEVICEID, LINEERR_NODRIVER, LINEERR_INVALDEVICECLASS,
LINEERR_OPERATIONUNAVAIL, LINEERR_INVALPOINTER, LINEERR_
RESOURCEUNAVAIL, LINEERR_STRUCTURETOOSMALL, LINEERR_
OPERATIONFAILED, LINEERR_NOMEM, LINEERR_UNINITIALIZED, and
LINEERR_NODEVICE.

See Also

lineConfigDialog, lineGetID, lineSetDevConfig, VarString

Example

Listing 8-9 shows how to retrieve configuration information on a line.

Listing 8-9: Retrieving configuration information on a line

function TTapiInterface.GetLineConfiguration: boolean;
begin
if FDeviceConfig=Nil then

372 � Chapter 8

TE
AM
FL
Y

Team-Fly®

begin
FDeviceConfig := AllocMem(SizeOf(VarString)+10000);
FillChar(FDeviceConfig^, SizeOf(VarString)+10000, 0);
FDeviceConfig.dwTotalSize := SizeOf(VarString)+10000;
FDeviceConfig.dwStringFormat := STRINGFORMAT_BINARY;

end;
TAPIResult := lineGetDevConfig(DWord(fLine),

FDeviceConfig,
'comm/datamodem');

result := TAPIResult=0;
if not result then ReportError(TAPIResult)
else
flineConfigInfoEntered := True;

end;

function lineGetID TAPI.pas

Syntax

function lineGetID(hLine: HLINE; dwAddressID: DWORD; hCall: HCALL;
dwSelect: DWORD; lpDeviceID: PVarString; lpszDeviceClass: LPCSTR): Longint
stdcall;

Description

This function returns a device ID for the specified device class associated with
the selected line, address, or call. Given a line handle, it can be used to retrieve
a line-device ID. This function is particularly useful in determining the actual
line-device ID of a line that was opened using the LINEMAPPER constant as
the device ID. It can also be used to obtain the device ID of a phone device or a
media device for use with the appropriate API associated with that device (such
as Phone, MIDI, Wave, or Audio).

Parameters

hLine: A handle (HLINE) to an open line device

dwAddressID: A DWORD holding an address on the given open line device

hCall: A handle (HCALL) to a call

dwSelect: A DWORD that specifies whether the requested device ID is associ-
ated with the line, address, or single call. The dwSelect parameter can only
have a single flag set. This parameter uses the following LINECALL-
SELECT_ constants:
LINECALLSELECT_LINE selects the specified line device (the hLine

parameter must be a valid line handle; hCall and dwAddressID are ignored).
LINECALLSELECT_ADDRESS selects the specified address on the line
(both hLine and dwAddressID must be valid; hCall is ignored).
LINECALLSELECT_CALL selects the specified call (hCall must be valid;
hLine and dwAddressID are both ignored).

Line Devices and Essential Operations � 373

8

C
h
a
p

te
r

lpDeviceID: A pointer (PVarString) to a memory location of type VarString
where the device ID is returned. If the request is succesfully completed,
this location is filled with the device ID. The format of the returned infor-
mation depends on the method used by the device class API for naming
devices. Before you call lineGetID(), you should set the dwTotalSize field of
this structure to indicate the amount of memory available to TAPI for
returning information.

lpszDeviceClass: A pointer (LPCSTR) to a NULL-terminated ASCII string that
specifies the device class of the device whose ID is requested. Valid device
class strings are those used in the SYSTEM.INI section to identify device
classes. This parameter provides a place for the provider to return differ-
ent icons based on the type of service being referenced by the caller. The
permitted strings are the same as those used in the SYSTEM.INI section
to identify device classes.

Return Value

This function returns zero if the request is successful or a negative error
number if an error has occurred. Possible return values are LINEERR_INVAL-
LINEHANDLE, LINEERR_NOMEM, LINEERR_INVALADDRESSID, LINE-
ERR_OPERATIONUNAVAIL, LINEERR_INVALCALLHANDLE, LINE-
ERR_OPERATIONFAILED, LINEERR_INVALCALLSELECT, LINEERR_RE-
SOURCEUNAVAIL, LINEERR_INVALPOINTER, LINEERR_STRUCTURE-
TOOSMALL, LINEERR_NODEVICE, and LINEERR_UNINITIALIZED.

See Also

VarString

Example

Listing 8-10 shows how to retrieve a line ID.

Listing 8-10: Retrieving a line ID

function TTapiInterface.GetLineID: boolean;
var
TempStr: string;

begin
TAPIResult := lineGetID(fLine, 0, 0,
LINECALLSELECT_LINE, PVarString(FDeviceID), 'tapi/line');

result := TAPIResult=0;
if NOT Result then
ReportError(TAPIResult);

end;

374 � Chapter 8

function lineGetLineDevStatus TAPI.pas

Syntax

function lineGetLineDevStatus(hLine: HLINE; lpLineDevStatus: PLineDevStatus):
Longint; stdcall;

Description

This function enables an application to query the specified open line device for
its current status.

Parameters

hLine: A handle (HLINE) to the open line device to be queried

lpLineDevStatus: A pointer (PLineDevStatus) to a variably sized data structure
of type LINEDEVSTATUS. If the request is successfully completed, this
structure is filled with the line’s device status. Before you call
lineGetLineDevStatus(), you should set the dwTotalSize field of the
LINEDEVSTATUS structure to indicate the amount of memory available
to TAPI for returning information.

Return Value

This function returns zero if the request is successful or a negative error
number if an error has occurred. Possible return values are LINEERR_INVAL-
LINEHANDLE, LINEERR_RESOURCEUNAVAIL, LINEERR_INVAL-
POINTER, LINEERR_STRUCTURETOOSMALL, LINEERR_NOMEM,
LINEERR_UNINITIALIZED, LINEERR_OPERATIONFAILED, and
LINEERR_OPERATIONUNAVAIL.

See Also

LINEDEVSTATUS, lineGetAddressStatusExample

Example

Listing 8-11 shows how to get a line device’s status.

Listing 8-11: Getting a line device’s status

function TTapiInterface.GetLineDevStatus: boolean;
begin
if fLineDevStatus=Nil then
fLineDevStatus := AllocMem(SizeOf(TLineDevStatus)+1000);

fLineDevStatus.dwTotalSize := SizeOf(TLineDevStatus)+1000;
TapiResult := lineGetLineDevStatus(fLine, fLineDevStatus);
result := TapiResult=0;
if NOT result then ReportError(TAPIResult);

end;

Line Devices and Essential Operations � 375

8

C
h
a
p

te
r

structure LINEDEVSTATUS TAPI.pas

The LINEDEVSTATUS structure describes the current status of a line device.
The lineGetLineDevStatus() and the TSPI_lineGetLineDevStatus() functions
return the LINEDEVSTATUS structure. Device-specific extensions should use
the DevSpecific (dwDevSpecificSize and dwDevSpecificOffset) variably sized area
of this data structure. The members dwAvailableMediaModes through dwApp-

InfoOffset are available only to applications that open the line device with an API
version of 2.0 or later. It is defined as follows in TAPI.pas:

PLineDevStatus = ^TLineDevStatus;
linedevstatus_tag = packed record
dwTotalSize,
dwNeededSize,
dwUsedSize,
dwNumOpens,
dwOpenMediaModes,
dwNumActiveCalls,
dwNumOnHoldCalls,
dwNumOnHoldPendCalls,
dwLineFeatures,
dwNumCallCompletions,
dwRingMode,
dwSignalLevel,
dwBatteryLevel,
dwRoamMode,
dwDevStatusFlags,
dwTerminalModesSize,
dwTerminalModesOffset,
dwDevSpecificSize,
dwDevSpecificOffset: DWORD;

{$IFDEF TAPI20}
dwAvailableMediaModes, // TAPI v2.0
dwAppInfoSize, // TAPI v2.0
dwAppInfoOffset: DWORD; // TAPI v2.0

{$ENDIF}
end;
TLineDevStatus = linedevstatus_tag;
LINEDEVSTATUS = linedevstatus_tag;

The fields of the LINEDEVSTATUS structure are defined in Table 8-21.

Table 8-21: Fields of the LINEDEVSTATUS structure

Field Meaning

dwTotalSize This field indicates the total size, in bytes, allocated to this data structure.

dwNeededSize This field indicates the size, in bytes, for this data structure that is needed to hold all
the returned information.

dwUsedSize This field indicates the size, in bytes, of the portion of this data structure that contains
useful information.

dwNumOpens This field indicates the number of active opens on the line device.

dwOpenMediaModes This field is a bit array that indicates for which media types the line device is currently
open.

dwNumActiveCalls This field indicates the number of calls on the line in call states other than idle,
onHold, onHoldPendingTransfer, and onHoldPendingConference.

376 � Chapter 8

Field Meaning

dwNumOnHoldCalls This field indicates the number of calls on the line in the onHold state.

dwNumOnHoldPendCalls This field indicates the number of calls on the line in the onHoldPendingTransfer or
onHoldPendingConference state.

dwLineFeatures This field specifies the line-related TAPI functions that are currently available on this
line. This member uses one or more of the LINEFEATURE_ constants. See Table
8-15.

dwNumCallCompletions This field indicates the number of outstanding call completion requests on the line.

dwRingMode This field indicates the current ring mode on the line device.

dwSignalLevel This field indicates the current signal level of the connection on the line. This is a value
in the range of $00000000 (weakest signal) to $0000FFFF (strongest signal).

dwBatteryLevel This field indicates the current battery level of the line device hardware. This is a value
in the range of $00000000 (battery empty) to $0000FFFF (battery full).

dwRoamMode This field indicates the current roam mode of the line device. This member uses one
of the LINEROAMMODE_ constants.

dwDevStatusFlags This field specifies the status flags indicate information, such as whether the device is
locked. It consists of one or more members of LINEDEVSTATUSFLAGS_ constants.

dwTerminalModesSize This field specifies the size in bytes of the data structure of the variably sized device
field containing an array with DWORD-sized entries that use the LINETERMMODE_
constants. This array is indexed by terminal IDs, in the range from zero to one less
than dwNumTerminals. Each entry in the array specifies the current terminal modes
for the corresponding terminal set with the lineSetTerminal() function for this address.
The values are:
LINETERMMODE_LAMPS indicates that these are lamp events sent from the line to
the terminal.
LINETERMMODE_BUTTONS indicates that these are button-press events sent from
the terminal to the line.
LINETERMMODE_DISPLAY indicates that this is display information sent from the
line to the terminal.
LINETERMMODE_RINGER indicates that this is ringer-control information sent from
the switch to the terminal.
LINETERMMODE_HOOKSWITCH indicates that these are hookswitch events sent
between the terminal and the line.
LINETERMMODE_MEDIATOLINE indicates that this is the unidirectional media
stream from the terminal to the line associated with a call on the line (use this value
when the routing of both unidirectional channels of a call’s media stream can be con-
trolled independently).

dwTerminalModesOffset This field indicates the offset, in bytes, from the beginning of this data structure of the
variably sized device field containing an array with DWORD-sized entries that use the
LINETERMMODE_ constants. This array is indexed by terminal IDs, in the range from
zero to dwNumTerminals minus one. Each entry in the array specifies the current ter-
minal modes for the corresponding terminal set using the lineSetTerminal() function
for this line. Values are the same as those listed under dwTerminalModesSize.

dwDevSpecificSize This field indicates the size, in bytes, of the variably sized device-specific field.

dwDevSpecificOffset This field indicates the offset, in bytes, from the beginning of the variably sized
device-specific field.

Line Devices and Essential Operations � 377

8

C
h
a
p

te
r

Field Meaning

dwAvailableMediaModes This field indicates the media types that can be invoked on new calls created on this
line device, when the dwLineFeatures member indicates that new calls are possible. If
this member is zero, it indicates that the service provider either does not know or
cannot indicate which media types are available, in which case any or all of the media
types indicated in the dwMediaModes member in LINEDEVCAPS may be available.

dwAppInfoSize This field indicates the length, in bytes, of an array of LINEAPPINFO structures. The
dwNumOpens member indicates the number of elements in the array. Each element
in the array identifies an application that has the line open.

dwAppInfoOffset This field indicates the offset from the beginning of LINEDEVSTATUS. The
dwNumOpens member indicates the number of elements in the array. Each element
in the array identifies an application that has the line open.

See Also

LINEAPPINFO, LINEDEVCAPS, lineGetLineDevStatus, lineSetTerminal,
TSPI_lineGetLineDevStatus

structure LINEAPPINFO TAPI.pas

The LINEAPPINFO structure contains information about the application that is
currently running. The LINEDEVSTATUS structure can contain an array of
LINEAPPINFO structures. The structure is defined in TAPI.pas as follows:

PLineAppInfo = ^TLineAppInfo;
lineappinfo_tag = packed record
dwMachineNameSize, // TAPI v2.0
dwMachineNameOffset, // TAPI v2.0
dwUserNameSize, // TAPI v2.0
dwUserNameOffset, // TAPI v2.0
dwModuleFilenameSize, // TAPI v2.0
dwModuleFilenameOffset, // TAPI v2.0
dwFriendlyNameSize, // TAPI v2.0
dwFriendlyNameOffset, // TAPI v2.0
dwMediaModes, // TAPI v2.0
dwAddressID: DWORD; // TAPI v2.0

end;
TLineAppInfo = lineappinfo_tag;
LINEAPPINFO = lineappinfo_tag;

The fields of the LINEAPPINFO structure are described in Table 8-22.

Table 8-22: Fields of the LINEAPPINFO structure

Field Member

dwMachineNameSize Size, in bytes, of a string specifying the name of the computer on which the applica-
tion is executing.

dwMachineNameOffset Offset from the beginning of LINEDEVSTATUS of a string specifying the name of the
computer on which the application is executing.

dwUserNameSize Size, in bytes, of a string specifying the user name under whose account the applica-
tion is running.

dwUserNameOffset Offset from the beginning of LINEDEVSTATUS of a string specifying the user name
under whose account the application is running.

378 � Chapter 8

Field Member

dwModuleFilenameSize Size, in bytes, of a string specifying the module filename of the application. This string
can be used in a call to lineHandoff() to perform a directed handoff to the application.

dwModuleFilenameOffset Offset from the beginning of LINEDEVSTATUS of a string specifying the module file-
name of the application. This string can be used in a call to lineHandoff() to perform a
directed handoff to the application.

dwFriendlyNameSize Size, in bytes, of the string provided by the application to lineInitialize() or
lineInitializeEx(), which should be used in any display of applications to the user.

dwFriendlyNameOffset Offset from the beginning of LINEDEVSTATUS of the string provided by the applica-
tion to lineInitialize() or lineInitializeEx(), which should be used in any display of appli-
cations to the user.

dwMediaModes The media types for which the application has requested ownership of new calls;
zero if when it opened the line, dwPrivileges did not include LINECALLPRIVILEGE_
OWNER.

dwAddressID If the line handle was opened using LINEOPENOPTION_SINGLEADDRESS, it con-
tains the address identifier specified; set to $FFFFFFFF if the single address option
was not used. An address identifier is permanently associated with an address; the
identifier remains constant across operating system upgrades.

See Also

LINEDEVSTATUS, lineGetLineDevStatus, lineHandoff, lineInitialize,
lineInitializeEx, TSPI_lineGetLineDevStatus

function lineGetTranslateCaps TAPI.pas

Syntax

function lineGetTranslateCaps(hLineApp: HLINEAPP; dwAPIVersion: DWORD;
lpTranslateCaps: PLineTranslateCaps): Longint; stdcall;

Description

This function returns address translation capabilities.

Parameters

hLineApp: The application handle (HLINEAPP) returned by lineInitializeEx(). If
an application has not yet called the lineInitializeEx() function, it can set
the hLineApp parameter to NULL.

dwAPIVersion: A DWORD that indicates the highest version of TAPI supported
by the application (not necessarily the value negotiated by lineNegotiate-
APIVersion() on some particular line device).

lpTranslateCaps: A pointer (PLineTranslateCaps) to a location to which a
LINETRANSLATECAPS structure will be loaded. Before you call lineGet-
TranslateCaps(), you should set the dwTotalSize field of the structure to
indicate the amount of memory available to TAPI for returning
information.

Line Devices and Essential Operations � 379

8

C
h
a
p

te
r

Return Value

This function returns zero if the request is successful or a negative error
number if an error has occurred. Possible return values are LINEERR_
INCOMPATIBLEAPIVERSION, LINEERR_NOMEM, LINEERR_INIFILE-
CORRUPT, LINEERR_OPERATIONFAILED, LINEERR_INVALAPP-
HANDLE, LINEERR_RESOURCEUNAVAIL, LINEERR_INVALPOINTER,
LINEERR_STRUCTURETOOSMALL, and LINEERR_NODRIVER.

See Also

lineInitializeEx, lineNegotiateAPIVersion, LINETRANSLATECAPS

Example

Listing 8-12 shows how to retrieve the address translation capabilities for a line.

Listing 8-12: Retrieve a line’s address translation capabilities

function TTapiInterface.GetTranslateCaps: boolean;
var
I: Integer;

begin
TapiResult := lineGetTranslateCaps(fLineApp, FHiVersion, fLineTranslateCaps);
result := TapiResult=0;
if NOT result then ReportError(TAPIResult)
else
begin
fNumLocations := fLineTranslateCaps^.dwNumLocations ;
for I := 0 to fNumLocations-1 do // Iterate
begin
fPLineLocationEntry := Pointer(fLineTranslateCaps);
Inc(fPLineLocationEntry, fLineTranslateCaps.dwLocationListOffset
+ ((fLineTranslateCaps.dwLocationListSize * (I+1))-
fLineTranslateCaps.dwLocationListSize));

fPLineLocationEntry := AllocMem(SizeOf(LineLocationEntry));
with fPLineLocationEntry^ do
LocationArray[I] := DWord(dwPermanentLocationID);

FreeMem(fPLineLocationEntry, SizeOf(fPLineLocationEntry^));
fPLineLocationEntry := Nil;

end; // for loop
end;

end;

function lineInitialize TAPI.pas

Syntax

function lineInitialize(lphLineApp: PHLineApp; hInstance: HINST; lpfnCallback:
TLineCallback; lpszAppName: LPCSTR; var dwNumDevs: DWORD): Longint;
stdcall;

Description

This function is obsolete. It continues to be exported by TAPI.DLL and
TAPI32.DLL for backward compatibility with applications using API versions
1.3 and 1.4. Applications that use TAPI version 2.0 or greater must use

380 � Chapter 8

lineInitializeEx() instead. This function initializes the application’s use of
TAPI.DLL for subsequent use of the line abstraction. It registers the applica-
tion’s specified notification mechanism and returns the number of line devices
available to the application. A line device is any device that provides an imple-
mentation for the line-prefixed functions in the telephony API.

Parameters

lphLineApp: A pointer (PHLineApp) to a location that is filled with the applica-
tion’s usage handle for TAPI

hInstance: The instance handle (HINST) of the client application or DLL

lpfnCallback: The address of a callback function (TLineCallback) that is invoked
to determine status and events on the line device, addresses, or calls. For
more information, see lineCallbackFunc() (in the TAPI Help file) and
TLineCallback.

lpszAppName: A pointer (LPCSTR) to a NULL-terminated ASCII string that
contains only displayable ASCII characters. If this parameter is not NULL,
it contains an application-supplied name for the application. This name is
provided in the LINECALLINFO structure to indicate, in a user-friendly
way, which application originated, or originally accepted or answered the
call. This information can be useful for call logging purposes. If lpszApp-

Name is NULL, the application’s filename is used instead.

var dwNumDevs: A pointer to a DWORD-sized location. Upon successful com-
pletion of this request, this location is filled with the number of line
devices available to the application.

Return Value

This function returns zero if the request is successful or a negative error
number if an error has occurred. Possible return values are LINEERR_INVAL-
APPNAME, LINEERR_OPERATIONFAILED, LINEERR_INIFILECORRUPT,
LINEERR_RESOURCEUNAVAIL, LINEERR_INVALPOINTER,
LINEERR_REINIT, LINEERR_NODRIVER, LINEERR_NODEVICE,
LINEERR_NOMEM, and LINEERR_NOMULTIPLEINSTANCE.

See Also

lineInitializeEx

Example

This function is obsolete and no listing is provided. See the example for the next
function (Listing 8-13) for an idea on how the lineInitialize() function could be
used.

Line Devices and Essential Operations � 381

8

C
h
a
p

te
r

function lineInitializeEx TAPI.pas

Syntax

function lineInitializeEx(lphLineApp: PHLineApp; hInstance: HINST; lpfnCallback:
TLineCallback; lpszAppName: LPCSTR; var dwNumDevs, dwAPIVersion:
DWORD; var LineInitializeExParams: TLineInitializeExParams): Longint; stdcall;

Description

This function initializes the application’s use of TAPI for subsequent use of the
line abstraction. It registers the application’s specified notification mechanism
and returns the number of line devices available to the application. A line device
is any device that provides an implementation for the line-prefixed functions in
the telephony API.

Parameters

lphLineApp: A pointer (PHLineApp) to a location that is filled with the applica-
tion’s usage handle for TAPI

hInstance: The instance handle (HINST) of the client application or DLL. The
application or DLL may pass NULL for this parameter, in which case TAPI
will use the module handle of the root executable of the process (for pur-
poses of identifying call handoff targets and media mode priorities).

lpfnCallback: The address (TLineCallback) of a callback function that is invoked
to determine status and events on the line device, addresses, or calls when
the application is using the “hidden window” method of event notification
(for more information see lineCallbackFunc() in the TAPI Help file and
TLineCallback). This parameter is ignored and should be set to NULL
when the application chooses to use the “event handle” or “completion
port” event notification mechanisms.

lpszAppName: A pointer to a NULL-terminated ASCII string (LPCSTR) that
contains only displayable ASCII characters. If this parameter is not NULL,
it contains an application-supplied name of the application. This name is
provided in the LINECALLINFO structure to indicate, in a user-friendly
way, which application originated, or originally accepted or answered the
call. This information can be useful for call logging purposes. If lpsz-

FriendlyAppName is NULL, the application’s module filename is used
instead (as returned by the Windows API GetModuleFileName() function).

var dwNumDevs: A pointer to a DWORD-sized location. Upon successful com-
pletion of this request, this location is filled with the number of line
devices available to the application.

dwAPIVersion: A pointer to a DWORD-sized location. The application must ini-
tialize this DWORD before calling this function to the highest API version
it is designed to support (for example, the same value it would pass into

382 � Chapter 8

TE
AM
FL
Y

Team-Fly®

the dwAPIHighVersion parameter of lineNegotiateAPIVersion()). Artifi-
cially high values must not be used; the value must be accurately set (for
this release, to $00020000). TAPI will translate any newer messages or
structures into values or formats supported by the application’s version.
Upon successful completion of this request, this location is filled with the
highest API version supported by TAPI (for this release, $00020000),
thereby allowing the application to detect and adapt to having been
installed on a system with an older version of TAPI.

var LineInitializeExParams: A pointer (TLineInitializeExParams) to a structure
of type LINEINITIALIZEEXPARAMS containing additional parameters
used to establish the association between the application and TAPI (specif-
ically, the application’s selected event notification mechanism and
associated parameters)

Return Value

Returns zero if the request is successful or a negative error number if an error
has occurred. Possible return values are LINEERR_INVALAPPNAME,
LINEERR_OPERATIONFAILED, LINEERR_INIFILECORRUPT, LINEERR_
INVALPOINTER, LINEERR_REINIT, LINEERR_NOMEM, and LINEERR_
INVALPARAM.

See Also

Line Callback (Chapter 9), LINECALLINFO, lineGetAddressCaps, lineGetDev-
Caps, lineGetMessage, lineInitialize, LINEINITIALIZEEXPARAMS,
LINEMESSAGE, lineNegotiateAPIVersion, lineShutdown

Example

Listing 8-13 shows how to prepare for and call the lineInitializeEx() function.
Note that our initialization routine provides options for opening TAPI with ver-
sion 2.2 or 3.0 and using either the Hidden Window or Event Handle method.

Listing 8-13: Preparing for and calling the lineInitializeEx() function

function TTapiInterface.TapiLineInitializeUsingWindow: boolean;
begin
FPLineInitializeExParams.dwTotalSize := SizeOf(TLineInitializeExParams);
FPLineInitializeExParams.dwOptions := LINEINITIALIZEEXOPTION_USEHIDDENWINDOW;
TAPIResult := LineInitializeEx(pHLineApp(@fLineApp), 0, ALineCallback, Nil,
Cardinal(fNumLineDevs), FHiVersion, FPLineInitializeExParams);
result := TAPIResult=0;
if NOT result then ReportError(TAPIResult);

end;

function TTapiInterface.TapiLineInitializeUsingEvent: boolean;
begin
FPLineInitializeExParams.dwTotalSize := SizeOf(TLineInitializeExParams);
FPLineInitializeExParams.dwOptions := LINEINITIALIZEEXOPTION_USEEVENT;
TAPIResult := LineInitializeEx(pHLineAPP(@fLineApp), 0, @ALineCallback, Nil,
Cardinal(fNumLineDevs), FAPIVersion, FPLineInitializeExParams);

Line Devices and Essential Operations � 383

8

C
h
a
p

te
r

result := TAPIResult=0;
if NOT result then ReportError(TAPIResult);

end;

function TTapiInterface.TapiLineInitialize(ATAPIVersion : TTapiVersion;
ATAPIInitMethod : TTAPIInitMethod): boolean;

var
i : integer;

begin
Result := false;
case ATAPIVersion of //
tvWin95 : InitToWin9X;
tvWin2000 : InitToWin2000;

end; // case
case ATAPIInitMethod of //
timHiddenWindow : if NOT TapiLineInitializeUsingWindow then
begin
ShowMessage('Could Not Initialize TAPI');
exit;

end;
timEventHandle : if NOT TapiLineInitializeUsingEvent then
begin
ShowMessage('Could Not Initialize TAPI');
exit;

end;
timCompletionPort : ShowMessage('This method is not supported');

end; // case
TAPI_Initialized := True;
OnSendTapiMessage('Devices available: ' + IntToStr(fNumLineDevs));
if NOT NegotiateVersionOfTAPI then
begin
ShowMessage('Could Not Negotiate a TAPI Version');
exit;

end;
for I := 0 to (fNumLineDevs-1) do // Iterate
begin
TAPIResult := lineNegotiateExtVersion(fLineApp, I, DWord(FAPIVersion),
DWord(FLoVersion), DWord(FHiVersion), FExtVersion);

if TAPIResult <> 0 then
begin
ReportError(TAPIResult);
FExtVersion := 0;

end;
end; // for
result := True;
GetDeviceCapsSize(FDeviceCapsAllocSize);
GetAddressCapsSize(FAddressCapsAllocSize);

end;

function lineNegotiateAPIVersion TAPI.pas

Syntax

function lineNegotiateAPIVersion(hLineApp: HLINEAPP; dwDeviceID,
dwAPILowVersion, dwAPIHighVersion: DWORD; var dwAPIVersion: DWORD; var
lpExtensionID: TLineExtensionID): Longint; stdcall;

384 � Chapter 8

Description

This function allows an application to negotiate an API version to use.

Parameters

hLineApp: The handle (HLINEAPP) to the application’s registration with TAPI

dwDeviceID: A DWORD indicating the line device to be queried

dwAPILowVersion: A DWORD indicating the least recent API version the appli-
cation is compliant with. The high-order word is the major version
number; the low-order word is the minor version number.

dwAPIHighVersion: A DWORD indicating the most recent API version the appli-
cation is compliant with. The high-order word is the major version
number; the low-order word is the minor version number.

var dwAPIVersion: A pointer to a DWORD-sized location that contains the API
version number that was negotiated. If negotiation is successful, this num-
ber will be in a range between dwAPILowVersion and dwAPIHighVersion.

var lpExtensionID: A pointer (TLineExtensionID) to a structure of type
LINEEXTENSIONID. If the service provider for the specified dwDeviceID

supports provider-specific extensions, then upon a successful negotiation,
this structure is filled with the extension ID of these extensions. This
structure contains all zeroes if the line provides no extensions. An applica-
tion can ignore the returned parameter if it does not use extensions.

Return Value

This function returns zero if the request is successful or a negative error
number if an error has occurred. Possible return values are LINEERR_BAD-
DEVICEID, LINEERR_NODRIVER, LINEERR_INCOMPATIBLEAPI-
VERSION, LINEERR_OPERATIONFAILED, LINEERR_INVALAPPHANDLE,
LINEERR_RESOURCEUNAVAIL, LINEERR_UNINITIALIZED, LINEERR_
NOMEM, LINEERR_OPERATIONUNAVAIL, and LINEERR_NODEVICE.

See Also

LINEEXTENSIONID, lineInitializeEx, lineNegotiateExtVersion

Example

Listing 8-14 shows how to call the lineNegotiateAPIVersion() function.

Listing 8-14: Calling the lineNegotiateAPIVersion() function

function TTapiInterface.NegotiateVersionOfTAPI: boolean;
begin
TAPIResult := LineNegotiateAPIVersion(fLineApp, 0, DWord(FLoVersion),
DWord(FHiVersion), DWord(FAPIVersion), FLineExtensionID);
result := (TAPIResult = 0);
if result then OnSendTapiMessage('Negotiation of TAPI version successful')

Line Devices and Essential Operations � 385

8

C
h
a
p

te
r

else
ReportError(TAPIResult);

end;

function lineNegotiateExtVersion TAPI.pas

Syntax

function lineNegotiateExtVersion(hLineApp: HLINEAPP; dwDeviceID,
dwAPIVersion, dwExtLowVersion, dwExtHighVersion: DWORD; var dwExtVersion:
DWORD): Longint; stdcall;

Description

This function allows an application to negotiate an extension version to use with
the specified line device. This operation need not be called if the application
does not support extensions.

Parameters

hLineApp: The handle (HLINEAPP) to the application’s registration with TAPI

dwDeviceID: A DWORD indicating the line device to be queried

dwAPIVersion: A DWORD indicating the API version number that was negoti-
ated for the specified line device using lineNegotiateAPIVersion()

dwExtLowVersion: A DWORD indicating the least recent extension version of
the extension ID returned by lineNegotiateAPIVersion() that the applica-
tion is compliant with. The high-order word is the major version number;
the low-order word is the minor version number.

dwExtHighVersion: A DWORD indicating the most recent extension version of
the extension ID returned by lineNegotiateAPIVersion() that the applica-
tion is compliant with. The high-order word is the major version number;
the low-order word is the minor version number.

var dwExtVersion: A pointer to a DWORD-sized location that contains the exten-
sion version number that was negotiated. If negotiation is successful, this
number will be in the range between dwExtLowVersion and
dwExtHighVersion.

Return Value

This function returns zero if the request is successful or a negative error
number if an error has occurred. Possible return values are LINEERR_BAD-
DEVICEID, LINEERR_NOMEM, LINEERR_INCOMPATIBLEAPIVERSION,
LINEERR_NODRIVER, LINEERR_INCOMPATIBLEEXTVERSION, LINE-
ERR_OPERATIONFAILED, LINEERR_INVALAPPHANDLE, LINEERR_RE-
SOURCEUNAVAIL, LINEERR_INVALPOINTER, LINEERR_UNINITIAL-
IZED, LINEERR_NODEVICE, and LINEERR_OPERATIONUNAVAIL.

386 � Chapter 8

See Also

lineInitializeEx, lineNegotiateAPIVersion

Example

See Listing 8-13.

function lineOpen TAPI.pas

Syntax

function lineOpen(hLineApp: HLINEAPP; dwDeviceID: DWORD; lphLine: PHLine;
dwAPIVersion, dwExtVersion, dwCallbackInstance, dwPrivileges, dwMediaModes:
DWORD; lpCallParams: PLineCallParams): Longint; stdcall;

Description

This function opens the line device specified by its device ID and returns a line
handle for the corresponding opened line device. This line handle is used in sub-
sequent operations on the line device. To stop handling requests on the line, the
application simply calls the lineClose() function.

Parameters

hLineApp: A handle (HLINEAPP) to the application’s registration with TAPI

dwDeviceID: A DWORD that identifies the line device to be opened. It can
either be a valid device ID or the value LINEMAPPER, indicating that this
value is used to open a line device in the system that supports the proper-
ties specified in lpCallParams. The application can use lineGetID() to
determine the ID of the line device that was opened.

lphLine: A pointer (PHLine) to an HLINE handle, which is then loaded with the
handle representing the opened line device. Use this handle to identify the
device when invoking other functions on the open line device.

dwAPIVersion: A DWORD indicating the API version number under which the
application and Telephony API have agreed to operate. This number is
obtained with lineNegotiateAPIVersion().

dwExtVersion: A DWORD indicating the extension version number under which
the application and the service provider agree to operate. This number is
obtained with lineNegotiateExtVersion(), and is zero if the application does
not use any extensions.

dwCallbackInstance: A DWORD containing user-instance data passed back to
the application with each message associated with this line or addresses or
calls on this line. This parameter is not interpreted by the Telephony API.

dwPrivileges: A DWORD indicating the privilege the application wants for the
calls it is notified for. This parameter can be a combination of the
LINECALLPRIVILEGE_ constants shown in Table 8-23. For applications

Line Devices and Essential Operations � 387

8

C
h
a
p

te
r

using API version 2.0 or greater, values for this parameter can also be
combined with the LINEOPENOPTION_ constants. Other flag combina-
tions return the LINEERR_INVALPRIVSELECT error.

dwMediaModes: A DWORD indicating the media mode or modes of interest to
the application. This parameter is used to register the application as a
potential target for inbound call and call handoff for the specified media
mode. This parameter is meaningful only if the bit LINECALLPRIVI-
LEGE_OWNER in dwPrivileges is set (and ignored if it is not). This
parameter uses the LINEMEDIAMODE_ constants shown in Table 8-24.

lpCallParams: A pointer (PLineCallParams) to a structure of type LINECALL-
PARAMS. This pointer is only used if LINEMAPPER is used; otherwise,
lpCallParams is ignored. It describes the call parameter that the line
device should be able to provide.

Return Value

This function returns zero if the request is successful or a negative error
number if an error has occurred. Possible return values are LINEERR_AL-
LOCATED, LINEERR_LINEMAPPERFAILED, LINEERR_BADDEVICEID,
LINEERR_NODRIVER, LINEERR_INCOMPATIBLEAPIVERSION, LINE-
ERR_NOMEM, LINEERR_INCOMPATIBLEEXTVERSION, LINEERR_OP-
ERATIONFAILED, LINEERR_INVALAPPHANDLE, LINEERR_RESOURCE-
UNAVAIL, LINEERR_INVALMEDIAMODE, LINEERR_STRUCTURE-
TOOSMALL, LINEERR_INVALPOINTER, LINEERR_UNINITIALIZED,
LINEERR_INVALPRIVSELECT, LINEERR_REINIT, LINEERR_NODEVICE,
and LINEERR_OPERATIONUNAVAIL.

See Also

LINE_CALLSTATE, LINE_MONITORMEDIA, LINE_PROXYREQUEST,
LINECALLPARAMS, lineClose, lineInitializeEx, lineMakeCall, lineNegotiate-
APIVersion, lineNegotiateExtVersion, and lineShutdown. In the TAPI Help file,
see lineForward, lineGetConfRelatedCalls, lineGetNewCalls, lineMonitorMedia,
linePickup, lineProxyMessage, lineProxyResponse, lineSetupConference,
lineUnpark

Example

Listing 8-15 shows how to call the lineOpen() function.

Listing 8-15: Calling the lineOpen() function

function TTapiInterface.OpenLine(var OpenResult: DWord;
AcceptCalls : boolean): boolean;

begin
if NOT TAPI_Initialized then
if NOT TapiLineInitialize(TAPIVersion, TAPIInitMethod) then
begin
ShowMessage('Could not Initialize TAPI');

388 � Chapter 8

result := false;
exit

end;
OpenResult := 0;
if AutoSelectLine then // automatically select the device
// use LINEMAPPER to get an appropriate line
if AcceptCalls then
// open a line (outgoing and incoming calls) and get the line handle
OpenResult := LineOpen(fLineApp, LINEMAPPER, @fLine,
FVersion, 0, 0, LINECALLPRIVILEGE_OWNER, fMediaMode,
@fLineCallParams)

else
OpenResult := LineOpen(fLineApp, LINEMAPPER, @fLine,
FAPIVersion, 0, 0, LINECALLPRIVILEGE_NONE, fMediaMode, nil)

else
if AcceptCalls then

// open a line (outgoing and incoming calls) and get the line handle
OpenResult := LineOpen(fLineApp, FDev, @fLine,
FAPIVersion, 0, 0, LINECALLPRIVILEGE_OWNER,
fMediaMode,
@fLineCallParams)

else
OpenResult := LineOpen(fLineApp, FDev, @fLine,
FAPIVersion, 0, 0, LINECALLPRIVILEGE_NONE, fMediaMode, nil);
// open a line (outgoing calls only) and get the line handle

result := OpenResult=0;
if Not Result then ReportError(OpenResult)
else
fLineIsOpen := True;

end;

Table 8-23: LINECALLPRIVILEGE_ constants used in the lineOpen() function’s dwPrivileges parameter

Constant Meaning

LINECALLPRIVILEGE_NONE This constant indicates that the application wants to make only outbound
calls.

LINECALLPRIVILEGE_MONITOR This constant indicates that the application only wants to monitor inbound
and outbound calls.

LINECALLPRIVILEGE_OWNER This constant indicates that the application wants to own inbound calls of
the types specified in dwMediaModes.

LINECALLPRIVILEGE_MONITOR
+ LINECALLPRIVILEGE_OWNER

This constant indicates that the application wants to own inbound calls of
the types specified in dwMediaModes, but if it cannot be an owner of a call,
it wants to be a monitor.

LINEOPENOPTION_
SINGLEADDRESS

This constant indicates that the application is interested only in new calls
that appear on the address specified by the dwAddressID field in the
LINECALLPARAMS structure pointed to by the lpCallParams parameter
(which must be specified). If LINEOPENOPTION_SINGLEADDRESS is
specified but either lpCallParams is invalid or the included dwAddressID
does not exist on the line, the open fails with LINERR_INVALADDRESSID.
In addition to setting the dwAddressID member of the LINECALLPARAMS
structure to the desired address, the application must also set dwAddress-
Mode in LINECALLPARAMS to LINEADDRESSMODE_ ADDRESSID.

Line Devices and Essential Operations � 389

8

C
h
a
p

te
r

Constant Meaning

LINEOPENOPTION_
SINGLEADDRESS
(cont.)

The LINEOPENOPTION_SINGLEADDRESS option affects only TAPI’s
assignment of initial call ownership of calls created by the service provider
using a LINE_NEWCALL message. An application that opens the line with
LINECALLPRIVILEGE_MONITOR will continue to receive monitoring han-
dles to all calls created on the line. Furthermore, the application is not
restricted in any way from making calls or performing other operations that
affect other addresses on the line opened.

LINEOPENOPTION_PROXY This constant indicates that the application is willing to handle certain types
of requests from other applications that have the line open, as an adjunct to
the service provider. Requests will be delivered to the application using
LINE_PROXYREQUEST messages; the application responds to them by
calling lineProxyResponse() and can also generate TAPI messages to other
applications having the line open by calling lineProxyMessage(). When this
option is specified, the application must also specify which specific proxy
requests it is prepared to handle. It does so by passing, in the lpCallParams
parameter, a pointer to a LINECALLPARAMS structure in which the
dwDevSpecificSize and dwDevSpecificOffset members have been set to
delimit an array of DWORDs. Each element of this array shall contain one of
the LINEPROXYREQUEST_ constants. For example, a proxy handler appli-
cation that supports all five of the Agent-related functions would pass in an
array of five DWORDs (dwDevSpecificSize would be 20 decimal) containing
the five defined LINEPROXYREQUEST_ values.

LINEOPENOPTION_PROXY
(cont.)

The proxy request handler application can run on any machine that has
authorization to control the line device. However, requests will always be
routed through the server on which the service provider is executing that
actually controls the line device. Thus, it is most efficient if the application
handling proxy requests (such as ACD agent control) executes directly on
the server along with the service provider. Subsequent attempts by the
same application or other applications to open the line device and register
to handle the same proxy requests as an application that is already regis-
tered fail with LINEERR_NOTREGISTERED.

Table 8-24: LINEMEDIAMODE_ constants

Constant Meaning

LINEMEDIAMODE_UNKNOWN This constant indicates that the target application is the one that
handles calls of unknown media mode (unclassified calls).

LINEMEDIAMODE_INTERACTIVEVOICE This constant indicates that the target application is the one that
handles calls with the interactive voice media mode (live
conversations).

LINEMEDIAMODE_AUTOMATEDVOICE This constant indicates that voice energy is present on the call, and
the voice is locally handled by an automated application.

LINEMEDIAMODE_DATAMODEM This constant indicates that the target application is the one that
handles calls with the data modem media mode.

LINEMEDIAMODE_G3FAX This constant indicates that the target application is the one that
handles calls with the group 3 fax media mode.

LINEMEDIAMODE_TDD This constant indicates that the target application is the one that
handles calls with the TDD (Telephony Devices for the Deaf) media
mode.

390 � Chapter 8

Constant Meaning

LINEMEDIAMODE_G4FAX This constant indicates that the target application is the one that
handles calls with the group 4 fax media mode.

LINEMEDIAMODE_DIGITALDATA This constant indicates that the target application is the one that
handles calls that are digital data calls.

LINEMEDIAMODE_TELETEX This constant indicates that the target application is the one that
handles calls with the teletex media mode.

LINEMEDIAMODE_VIDEOTEX This constant indicates that the target application is the one that
handles calls with the videotex media mode.

LINEMEDIAMODE_TELEX This constant indicates that the target application is the one that
handles calls with the telex media mode.

LINEMEDIAMODE_MIXED This constant indicates that the target application is the one that
handles calls with the ISDN mixed media mode.

LINEMEDIAMODE_ADSI This constant indicates that the target application is the one that
handles calls with the ADSI (Analog Display Services Interface)
media mode.

LINEMEDIAMODE_VOICEVIEW This constant indicates that the media mode of the call is VoiceView.

function lineSetDevConfig TAPI.pas

Syntax

function lineSetDevConfig(dwDeviceID: DWORD; lpDeviceConfig: Pointer;
dwSize: DWORD; lpszDeviceClass: LPCSTR): Longint; stdcall;

Description

This function allows the application to restore the configuration of a media
stream device on a line device to a setup previously obtained using
lineGetDevConfig(). For example, the contents of this structure could specify
data rate, character format, modulation schemes, and error control protocol set-
tings for a “datamodem” media device associated with the line.

Parameters

dwDeviceID: A DWORD indicating the line device to be configured

lpDeviceConfig: A pointer to the opaque configuration data structure that was
returned by lineGetDevConfig() in the variable portion of the VarString
structure

dwSize: A DWORD indicating the number of bytes in the structure pointed to by
lpDeviceConfig. This value will have been returned in the dwStringSize

field in the VarString structure returned by lineGetDevConfig().

lpszDeviceClass: A pointer (LPCSTR) to a NULL-terminated ASCII string that
specifies the device class of the device whose configuration is to be set.
Valid device class strings are the same as those specified for the
lineGetID() function.

Line Devices and Essential Operations � 391

8

C
h
a
p

te
r

Return Value

This function returns zero if the function is successful or a negative error
number if an error has occurred. Possible return values are LINEERR_BAD-
DEVICEID, LINEERR_NODRIVER, LINEERR_INVALDEVICECLASS,
LINEERR_OPERATIONUNAVAIL, LINEERR_INVALPOINTER, LINE-
ERR_OPERATIONFAILED, LINEERR_INVALPARAM, LINEERR_RE-
SOURCEUNAVAIL, LINEERR_INVALLINESTATE, LINEERR_UNINITIAL-
IZED, LINEERR_NOMEM, and LINEERR_NODEVICE.

See Also

lineConfigDialog, lineGetDevConfig, lineGetID, VarString

Example

Listing 8-16 shows how to use the lineSetDevConfig() function.

Listing 8-16: Using the lineSetDevConfig() function

function TTapiInterface.SetLineConfiguration: boolean;
begin
TAPIResult := lineSetDevConfig(DWord(0), @FDeviceConfigOut.data,

FConfigSize, 'comm/datamodem');
//can substitute 'tapi/line' for last parameter

result := TAPIResult=0;
if not result then ReportError(TAPIResult)
else FlineConfigInfoEntered := True;

end;

function lineShutdown TAPI.pas

Syntax

function lineShutdown(hLineApp: HLINEAPP): Longint; stdcall;

Description

This function shuts down the application’s usage of the line abstraction of API.

Parameters

hLineApp: The application’s usage handle (HLINEAPP) for the line API

Return Value

This function returns zero if the request is successful or a negative error
number if an error has occurred. Possible return values are LINEERR_INVAL-
APPHANDLE, LINEERR_RESOURCEUNAVAIL, LINEERR_NOMEM, and
LINEERR_UNINITIALIZED.

See Also

lineClose

392 � Chapter 8

TE
AM
FL
Y

Team-Fly®

Example

Listing 8-17 shows how to shut down TAPI.

Listing 8-17: Shutting down TAPI

function TTapiInterface.ShutdownLine: boolean;
begin
TAPIResult := LineShutdown(fLineApp);
result := (TAPIResult = 0);
If result then
begin
OnSendTapiMessage('success!');
result := True;
TAPI_Initialized := False;
TapiInterface.SetLineIsOpen(False);
Exit;

end
else
ReportError(TAPIResult);

end;

function lineGetCountry TAPI.pas

Syntax

function lineGetCountry(dwCountryID, dwAPIVersion: DWORD;
lpLineCountryList: PLineCountryList): Longint; stdcall; // TAPI v1.4

Description

This function fetches the stored dialing rules and other information related to a
specified country, the first country in the country list, or all countries.

Parameters

dwCountryID: A DWORD holding the country ID (not the country code) of the
country for which information is to be obtained. If the value 1 is specified,
information on the first country in the country list is obtained. If the value
0 is specified, information on all countries is obtained (which may require a
great deal of memory—20 Kbytes or more).

dwAPIVersion: A DWORD indicating the highest version of TAPI supported by
the application (not necessarily the value negotiated by lineNegotiateAPI-
Version() on some particular line device).

lpLineCountryList: A pointer (PLineCountryList) to a location to which a
LINECOUNTRYLIST structure will be loaded. Before you call
lineGetCountry(), you should set the dwTotalSize field of this structure to
indicate the amount of memory available to TAPI for returning
information.

Line Devices and Essential Operations � 393

8

C
h
a
p

te
r

Return Value

This function returns zero if the request is successful or a negative error
number if an error has occurred. Possible return values are LINEERR_
INCOMPATIBLEAPIVERSION, LINEERR_NOMEM, LINEERR_INIFILE-
CORRUPT, LINEERR_OPERATIONFAILED, LINEERR_INVALCOUNTRY-
CODE, LINEERR_STRUCTURETOOSMALL, and LINEERR_INVAL-
POINTER.

See Also

LINECOUNTRYLIST, lineNegotiateAPIVersion

Example

Listing 8-18 shows how to call this function and retrieve the number of coun-
tries in the current country list.

Listing 8-18: Retrieving the number of countries in the current country list

function TTapiInterface.GetCountryInfo(ACountry : DWord): boolean;
begin
TapiResult := lineGetCountry(ACountry, fHiVersion,
fPLineCountryList);

result := TapiResult=0;
if result then
NumCountries := fPLineCountryList^.dwNumCountries

else
begin
ReportError(TAPIResult);
NumCountries := 0;

end;
end;

structure LINECOUNTRYLIST TAPI.pas

The LINECOUNTRYLIST structure describes a list of countries. A structure of
this type is returned by the function lineGetCountry(). This structure cannot be
extended. The structure is defined as follows in TAPI.pas:

PLineCountryList = ^TLineCountryList;
linecountrylist_tag = packed record
dwTotalSize, // TAPI v1.4
dwNeededSize, // TAPI v1.4
dwUsedSize, // TAPI v1.4
dwNumCountries, // TAPI v1.4
dwCountryListSize, // TAPI v1.4
dwCountryListOffset: DWORD; // TAPI v1.4

end;
TLineCountryList = linecountrylist_tag;
LINECOUNTRYLIST = linecountrylist_tag;

The fields of the LINECOUNTRYLIST structure are described in Table 8-25.

394 � Chapter 8

Table 8-25: Fields of the LINECOUNTRYLIST structure

Field Meaning

dwTotalSize This field specifies the total size in bytes allocated to this data structure.

dwNeededSize This field specifies the size in bytes for this data structure that is needed to hold all
the returned information.

dwUsedSize This field specifies the size in bytes of the portion of this data structure that contains
useful information.

dwNumCountries This field specifies the number of LINECOUNTRYENTRY structures present in the
array denominated by dwCountryListSize and dwCountryListOffset.

dwCountryListSize This field specifies the size in bytes of an array of LINECOUNTRYENTRY elements,
which provide the information on each country.

dwCountryListOffset This field specifies the offset in bytes from the beginning of this data structure of an
array of LINECOUNTRYENTRY elements, which provide the information on each
country.

structure LINECOUNTRYENTRY TAPI.pas

The LINECOUNTRYENTRY structure provides the information for a single
country entry. An array of 1 or more of these structures is returned as part of
the LINECOUNTRYLIST structure returned by the function lineGetCountry.
This structure cannot be extended. It is defined as follows in TAPI.pas:

PLineCountryEntry = ^TLineCountryEntry;
linecountryentry_tag = packed record
dwCountryID, // TAPI v1.4
dwCountryCode, // TAPI v1.4
dwNextCountryID, // TAPI v1.4
dwCountryNameSize, // TAPI v1.4
dwCountryNameOffset, // TAPI v1.4
dwSameAreaRuleSize, // TAPI v1.4
dwSameAreaRuleOffset, // TAPI v1.4
dwLongDistanceRuleSize, // TAPI v1.4
dwLongDistanceRuleOffset, // TAPI v1.4
dwInternationalRuleSize, // TAPI v1.4
dwInternationalRuleOffset: DWORD; // TAPI v1.4

end;
TLineCountryEntry = linecountryentry_tag;
LINECOUNTRYENTRY = linecountryentry_tag;

The fields of the LINECOUNTRYENTRY structure are described in Table 8-26.

Table 8-26: Fields of the LINECOUNTRYENTRY structure

Field Meaning

dwCountryID This field specifies the country ID of the entry. The country ID is an internal identifier
which allows multiple entries to exist in the country list with the same country code
(for example, all countries in North America and the Caribbean share country code
1, but they require separate entries in the list).

dwCountryCode This field specifies the actual country code of the country represented by the entry
(that is, the digits that would be dialed in an international call). Only this value should
ever be displayed to users (country IDs should never be displayed, as they would be
confusing).

Line Devices and Essential Operations � 395

8

C
h
a
p

te
r

Field Meaning

dwNextCountryID This field specifies the country ID of the next entry in the country list. Because coun-
try codes and IDs are not assigned in any regular numeric sequence, the country list
is a single linked list, with each entry pointing to the next. The last country in the list
has a dwNextCountryID value of 0. When the LINECOUNTRYLIST structure is
used to obtain the entire list, the entries in the list will be in sequence as linked by
their dwNextCountryID fields.

dwCountryNameSize This field specifies the size in bytes of a NULL-terminated string giving the name of
the country.

dwCountryNameOffset This field specifies the offset in bytes from the beginning of the LINECOUNTRYLIST
structure of a NULL-terminated string giving the name of the country.

dwSameAreaRuleSize This field specifies the size in bytes of a NULL-terminated ASCII string containing the
dialing rule for direct-dialed calls to the same area code.

dwSameAreaRuleOffset This field specifies the offset in bytes from the beginning of the LINECOUNTRYLIST
structure of a NULL-terminated ASCII string containing the dialing rule for
direct-dialed calls to the same area code.

dwLongDistanceRuleSize This field specifies the size in bytes of a NULL-terminated ASCII string containing the
dialing rule for direct-dialed calls to other areas in the same country.

dwLongDistanceRuleOffset This field specifies the offset in bytes from the beginning of the LINECOUNTRYLIST
structure of a NULL-terminated ASCII string containing the dialing rule for
direct-dialed calls to other areas in the same country.

dwInternationalRuleSize This field specifies the size in bytes of a NULL-terminated ASCII string containing the
dialing rule for direct-dialed calls to other countries.

dwInternationalRuleOffset This field specifies the offset in bytes from the beginning of the LINECOUNTRYLIST
structure of a NULL-terminated ASCII string containing the dialing rule for
direct-dialed calls to other countries.

function lineGetIcon TAPI.pas

Syntax

function lineGetIcon(dwDeviceID: DWORD; lpszDeviceClass: PChar; lphIcon:
PHICON): Longint; stdcall;

Description

This function allows an application to retrieve a service line device-specific (or
provider-specific) icon for display to the user.

Parameters

dwDeviceID: DWORD indicating the line device whose icon is requested

lpszDeviceClass: A pointer (LPCSTR) to a NULL-terminated string that identi-
fies a device class name. This device class allows the application to select a
specific sub-icon applicable to that device class. This parameter is optional
and can be left NULL or empty, in which case the highest-level icon associ-
ated with the line device rather than a specified media stream device
would be selected.

396 � Chapter 8

lphIcon: A pointer (PHICON) to a memory location in which the handle to the
icon is returned.

Return Value

This function returns zero if the request is successful or a negative error
number if an error has occurred. Possible return values are LINEERR_BAD-
DEVICEID, LINEERR_OPERATIONFAILED, LINEERR_INVALPOINTER,
LINEERR_RESOURCEUNAVAIL, LINEERR_INVALDEVICECLASS, LINE-
ERR_UNINITIALIZED, LINEERR_NOMEM, and LINEERR_NODEVICE.

See Also

lineGetID

Example

Listing 8-19 shows how to get a line device’s icon.

Listing 8-19: Getting a line device’s icon

function TTapiInterface.GetLineIcon: boolean;
begin
if fPLineIcon=Nil then
fPLineIcon := AllocMem(1000);

TapiResult := lineGetIcon(0, Nil, fPLineIcon);
result := TapiResult=0;
if NOT result then ReportError(TAPIResult);

end;

function lineSetAppSpecific TAPI.pas

Syntax

function lineSetAppSpecific(hCall: HCALL; dwAppSpecific: DWORD): Longint;
stdcall;

Description

This function enables an application to set the application-specific field of the
specified call’s call-information record.

Parameters

hCall: A handle (HCALL) to the call whose application-specific field needs to be
set. The application must be an owner of the call. The call state of hCall

can be any state.

dwAppSpecific: A DWORD holding the new content of the dwAppSpecific field
for the call’s LINECALLINFO structure. This value is not interpreted by
the Telephony API.

Line Devices and Essential Operations � 397

8

C
h
a
p

te
r

Return Value

This function returns zero if the request is successful or a negative error num-
ber if an error has occurred. Possible return values are LINEERR_INVAL-
CALLHANDLE, LINEERR_RESOURCEUNAVAIL, LINEERR_NOMEM,
LINEERR_UNINITIALIZED, LINEERR_NOTOWNER, LINEERR_OPERA-
TIONUNAVAIL, or LINEERR_OPERATIONFAILED.

See Also

LINE_CALLINFO, LINECALLINFO, lineGetCallInfo

Example

Listing 8-20 shows how to call the lineSetAppSpecific() function.

Listing 8-20: Calling the lineSetAppSpecific() function

function TTapiInterface.SetDevSpecificInfo(AppSpecificInfo : DWord): boolean;
begin
TapiResult := lineSetAppSpecific(fCall, AppSpecificInfo);
result := TapiResult=0;
if NOT result then ReportError(TAPIResult);

end;

function lineSetCurrentLocation TAPI.pas

Syntax

function lineSetCurrentLocation(hLineApp: HLINEAPP; dwLocation: DWORD):
Longint; stdcall;

Description

This function sets the location used as the context for address translation.

Parameters

hLineApp: The application handle (HLINEAPP) returned by lineInitializeEx(). If
an application has not yet called the lineInitializeEx() function, it can set
the hLineApp parameter to NIL.

dwLocation: A DWORD specifying a new value for the CurrentLocation entry in
the [Locations] section in the registry. It must contain a valid permanent
ID of a Location entry in the [Locations] section, as obtained from
lineGetTranslateCaps(). If it is valid, the CurrentLocation entry is updated.

Return Value

This function returns zero if the request is successful or a negative error num-
ber if an error has occurred. Possible return values are LINEERR_INIFILE-
CORRUPT, LINEERR_NOMEM, LINEERR_INVALAPPHANDLE, LINEERR_
OPERATIONFAILED, LINEERR_INVALLOCATION, LINEERR_RESOURCE-
UNAVAIL, LINEERR_NODRIVER, and LINEERR_UNINITIALIZED.

398 � Chapter 8

See Also

lineGetTranslateCaps, lineInitializeEx

Example

Listing 8-21 shows how to change the current location.

Listing 8-21: Changing the current location

function TTapiInterface.SetCurrentLocation(ALocation : DWord): boolean;
begin
TapiResult := lineSetCurrentLocation(fLineApp, ALocation);
result := TapiResult=0;
if NOT result then ReportError(TAPIResult);

end;

Summary
In this chapter we have taken a detailed look at initializing and configuring
TAPI. While we have covered most of the essential topics, there is one that we
have postponed until the next chapter, handling TAPI messages. The reason is
simple—this is one of the most important and involved of TAPI topics and
deserves its own chapter. After that, we’ll be prepared to explore the two most
common TAPI tasks, placing and accepting phone calls.

Line Devices and Essential Operations � 399

8

C
h
a
p

te
r

Chapter 9

Handling TAPI Line
Messages

In the previous chapter we discussed initializing and configuring TAPI. While
we have covered most of the essential topics, there is one that we have post-
poned until this chapter—handling TAPI messages. As you are no doubt aware,
Windows is an event-driven operating system. To maintain its hardware inde-
pendence, TAPI relies on messages sent from the Windows operating system to
indicate changing hardware states. In this chapter we will examine all of the
messages that relate to TAPI lines.

Line Callback
Messages enable application programmers to react to changes and inform the
user about those developments. As with many other technologies and Windows’
interfaces to those technologies, TAPI provides a callback mechanism so that
Windows can send these messages back to your application. The callback rou-
tine prototype is declared as follows in TAPI.pas:

function TLineCallback TAPI.pas

Syntax

TLineCallback = procedure(hDevice, dwMessage: DWORD; dwInstance,
dwParam1, dwParam2, dwParam3: DWORD_PTR) stdcall; LINECALLBACK =
TLineCallback;

Description

This function serves as a placeholder for the application-supplied function name.

Parameters

hDevice: A DWORD that serves as a handle to either a line device or a call asso-
ciated with the callback. You can determine the specific nature of this
handle—line handle or call handle—by the context provided by dwMessage.

401

Even though this parameter refers to a handle, applications must use the
DWORD type for this parameter because using the THandle type may
generate an error.

dwMessage: A line or call device message

dwInstance: Callback instance data passed back to the application in the callback.
Note that this DWORD is not interpreted by TAPI.

dwParam1: One parameter (DWORD_PTR) for the message

dwParam2: A second parameter (DWORD_PTR) for the message

dwParam3: A third parameter (DWORD_PTR) for the message

Return Value

No return value

You will always need to define your own callback routine when invoking TAPI.
We’ll discuss that process presently. The LINE_ messages carry the informa-
tion. They tend to be expanded in each new version of TAPI and are declared as
constant values in TAPI.PAS as follows:

const
LINE_ADDRESSSTATE = 0;
LINE_CALLINFO = 1;
LINE_CALLSTATE = 2;
LINE_CLOSE = 3;
LINE_DEVSPECIFIC = 4;
LINE_DEVSPECIFICFEATURE = 5;
LINE_GATHERDIGITS = 6;
LINE_GENERATE = 7;
LINE_LINEDEVSTATE = 8;
LINE_MONITORDIGITS = 9;
LINE_MONITORMEDIA = 10;
LINE_MONITORTONE = 11;
LINE_REPLY = 12;
LINE_REQUEST = 13;
LINE_CREATE = 19; // TAPI v1.4
LINE_AGENTSPECIFIC = 21; // TAPI v2.0
LINE_AGENTSTATUS = 22; // TAPI v2.0
LINE_APPNEWCALL = 23; // TAPI v2.0
LINE_PROXYREQUEST = 24; // TAPI v2.0
LINE_REMOVE = 25; // TAPI v2.0
LINE_AGENTSESSIONSTATUS = 27; // TAPI v2.2
LINE_QUEUESTATUS = 28; // TAPI v2.2
LINE_AGENTSTATUSEX = 29; // TAPI v2.2
LINE_GROUPSTATUS = 30; // TAPI v2.2
LINE_PROXYSTATUS = 31; // TAPI v2.2
LINE_APPNEWCALLHUB = 32; // TAPI v3.0
LINE_CALLHUBCLOSE = 33; // TAPI v3.0
LINE_DEVSPECIFICEX = 34; // TAPI v3.0

As mentioned above and in the TAPI Help file, with each initialization option
(such as the Hidden Windows one that we use in our sample code) your applica-
tion must specify a way to handle TAPI messages. Here we use a callback
routine to handle TAPI messages. Such a callback routine generally consists of a

402 � Chapter 9

TE
AM
FL
Y

Team-Fly®

large case statement that can respond to all of the possible messages from the
particular device. These may be used to notify your application when asyn-
chronous events occur. They are sent to an application via the message
notification mechanism the application specified when it called the lineInitialize-
Ex() function. Since we are not doing this in a Delphi form unit, but rather in
our TAPI class unit, we send custom messages back to the calling application so
that it may take actions or display information. Those messages are defined in
our TAPIIntf.pas as follows:

Const
WM_TapiErrReceived = WM_User + 117;
WM_TapiMsgReceived = WM_User + 118;
WM_TapiIncomingCall = WM_User + 119;

Each of these messages is fired from within the callback function, where we also
store error or status messages in string variables. While the prototype of the
callback routine is very simple, its implementation is not. Often it includes sev-
eral long case statements at several levels. Below we show the callback
routines for both line and phone devices:

procedure ALineCallBack(hDevice, dwMessage, dwInstance, dwParam1,
dwParam2, dwParam3 : DWORD); stdcall;

begin
case dwMessage of
LINE_ADDRESSSTATE:
case dwParam2 of //
LINEADDRESSSTATE_OTHER:
TapiInterface.OnSendTapiMessage
('Address-status items other than the common ones '+

'have changed.');
LINEADDRESSSTATE_DEVSPECIFIC: TapiInterface.OnSendTapiMessage
('A device-specific ' +
'item of the address status has changed');

LINEADDRESSSTATE_INUSEZERO: TapiInterface.OnSendTapiMessage
('address has changed to idle ' +
' is now in use by zero stations');

LINEADDRESSSTATE_INUSEONE:
TapiInterface.OnSendTapiMessage
('Address has changed from state idle or from being used by many ' +
'bridged stations to the state of being used by just one station; ');

LINEADDRESSSTATE_INUSEMANY: TapiInterface.OnSendTapiMessage
('monitored or bridged address has ' +
'changed from the state of being used by one station to that of ' +
'being used by more than one station; ');

LINEADDRESSSTATE_NUMCALLS: TapiInterface.OnSendTapiMessage
('the number of calls on '+
'the address has changed for some reason');

LINEADDRESSSTATE_FORWARD: TapiInterface.OnSendTapiMessage
('forwarding status of the ' +
'address has changed');

LINEADDRESSSTATE_TERMINALS: TapiInterface.OnSendTapiMessage
('terminal settings ' +
'for the address have changed');

LINEADDRESSSTATE_CAPSCHANGE: TapiInterface.OnSendTapiMessage
('One or more LINEADDRESSCAPS ' +
'fields have changed');

Handling TAPI Line Messages � 403

9

C
h
a
p

te
r

Else TapiInterface.OnSendTapiMessage
('Undefined LINEADDRESSSTATE change');

end; // dwParam2 case
LINE_CALLINFO:
begin
TapiInterface.OnSendTapiMessage
('Call information about a specified call has changed');
case dwParam1 of //
LINECALLINFOSTATE_OTHER :
TapiInterface.OnSendTapiMessage
('Additional informational items have changed');

LINECALLINFOSTATE_DEVSPECIFIC :
TapiInterface.OnSendTapiMessage
('Device-specific field of the call-information record ' +
'has changed');

LINECALLINFOSTATE_BEARERMODE :
TapiInterface.OnSendTapiMessage
('bearer mode field of the call-information record ' +
'has changed');

LINECALLINFOSTATE_RATE :
TapiInterface.OnSendTapiMessage
('rate field of the call-information record has changed');

LINECALLINFOSTATE_MEDIAMODE:
TapiInterface.OnSendTapiMessage
('media mode field of the call-information record ' +
'has changed');

LINECALLINFOSTATE_APPSPECIFIC:
TapiInterface.OnSendTapiMessage
('Application-specific field of the call-information ' +
'record has changed');

LINECALLINFOSTATE_CALLID:
TapiInterface.OnSendTapiMessage
('Call ID field of the ' +
'call-information record has changed');

LINECALLINFOSTATE_RELATEDCALLID:
TapiInterface.OnSendTapiMessage
('related call ID field of the call-information record ' +
'has changed');

LINECALLINFOSTATE_ORIGIN:
TapiInterface.OnSendTapiMessage
('Origin field of the ' +
'call-information record has changed');

LINECALLINFOSTATE_REASON:
TapiInterface.OnSendTapiMessage
('Reason field of the call-information record has changed');

LINECALLINFOSTATE_COMPLETIONID:
TapiInterface.OnSendTapiMessage
('Completion ID field of the call-information ' +
'record has changed');

LINECALLINFOSTATE_NUMOWNERINCR:
TapiInterface.OnSendTapiMessage
('Number of owner fields in the call-information ' +
'record was increased');

LINECALLINFOSTATE_NUMOWNERDECR:
TapiInterface.OnSendTapiMessage
('Number of owner fields in the call-information ' +
'record was decreased');

LINECALLINFOSTATE_NUMMONITORS:
TapiInterface.OnSendTapiMessage
('Number of monitors fields in the call-information ' +

404 � Chapter 9

'record has changed');
LINECALLINFOSTATE_TRUNK:
TapiInterface.OnSendTapiMessage
('Trunk field of the call information record has changed');

LINECALLINFOSTATE_CALLERID :
TapiInterface.OnSendTapiMessage
('one of the callerID-related fields of the call ' +
'information record has changed');

LINECALLINFOSTATE_CALLEDID:
TapiInterface.OnSendTapiMessage
('one of the calledID-related fields of the call ' +
'information record has changed');

LINECALLINFOSTATE_CONNECTEDID: TapiInterface.OnSendTapiMessage
('one of the connectedID-related fields of the call '
+ 'information record has changed');

LINECALLINFOSTATE_REDIRECTIONID:
TapiInterface.OnSendTapiMessage
('one of the redirectionID-related fields of the ' +
'call information record has changed');

LINECALLINFOSTATE_REDIRECTINGID:
TapiInterface.OnSendTapiMessage
('one of the redirectingID-related fields of the ' +
'call information record has changed');

LINECALLINFOSTATE_DISPLAY:
TapiInterface.OnSendTapiMessage
('Display field of call information record has changed');

LINECALLINFOSTATE_USERUSERINFO:
TapiInterface.OnSendTapiMessage
('User-to-user information of call information record ' +
'has changed');

LINECALLINFOSTATE_HIGHLEVELCOMP:
TapiInterface.OnSendTapiMessage
('high-level compatibility field of the call ' +
'information record has changed');

LINECALLINFOSTATE_LOWLEVELCOMP:
TapiInterface.OnSendTapiMessage
('the low-level compatibility field of the call ' +
'information record has changed');

LINECALLINFOSTATE_CHARGINGINFO:
TapiInterface.OnSendTapiMessage
('the charging information of the call information ' +
'record has changed');

LINECALLINFOSTATE_TERMINAL:
TapiInterface.OnSendTapiMessage
('the terminal mode ' +
'information of the call information record has changed');

LINECALLINFOSTATE_DIALPARAMS:
TapiInterface.OnSendTapiMessage
('the dial parameters of the call information record ' +
'has changed');

LINECALLINFOSTATE_MONITORMODES: TapiInterface.OnSendTapiMessage
('one or more call ' +
'information fields has changed');

Else TapiInterface.OnSendTapiMessage
('Other LINECALLINFOSTATE information has changed');

end; // case
end;

LINE_CALLSTATE:
begin //reports asynchronous responses
case dwParam1 of

Handling TAPI Line Messages � 405

9

C
h
a
p

te
r

LINECALLSTATE_IDLE:
begin
TapiInterface.CallState := csIdle;
TapiInterface.OnSendTapiMessage(
'The call is idle - no call actually exists.');

end;
LINECALLSTATE_OFFERING:
begin
TapiInterface.CallState := csOffering;
TapiInterface.CurrentCall := dwParam1;
if dwParam3<>LINECALLPRIVILEGE_OWNER then
if NOT TapiInterface.SetCallPrivilege
(TapiInterface.CurrentCall, cplOwner) then
TapiInterface.OnSendTapiMessage
('Cannot accept call because we don''t '+
'have owner privileges .')

else
begin
TapiInterface.OnSendTapiMessage
('Attempting to accept incoming call');

lineAccept(TapiInterface.CurrentCall, Nil, 0);
SendMessage(MainInstance, WM_TapiIncomingCall, 0, 0);

end;
end;

LINECALLSTATE_ACCEPTED:
begin
TapiInterface.CallState := csAccepted;
TapiInterface.OnSendTapiMessage(
'The call was offering and has been accepted.');

if TapiInterface.App.MessageBox('Do you want to accept this call?',
'Incoming Phone Call', MB_OKCANCEL + MB_ICONQUESTION)=IDOK then
lineAnswer(TapiInterface.CurrentCall, Nil, 0);

end;
LINECALLSTATE_DIALTONE:
begin
TapiInterface.CallState := csDialtone;
TapiInterface.OnSendTapiMessage('The call is receiving a dial tone.');
TapiInterface.PlaceCall;

end;
LINECALLSTATE_DIALING:
begin
TapiInterface.CallState := csDialing;
TapiInterface.OnSendTapiMessage('Dialing ' +
TapiInterface.PhoneNumber);

end;
LINECALLSTATE_RINGBACK:
begin
TapiInterface.CallState := csRingback;
TapiInterface.OnSendTapiMessage
('The call is receiving ringback.');

end;
LINECALLSTATE_BUSY:
begin // note
TapiInterface.CallState := csBusy;
case dwParam2 of
LINEBUSYMODE_STATION:
TapiInterface.OnSendTapiMessage(
'Busy signal; called party''s station is busy.');

LINEBUSYMODE_TRUNK:
TapiInterface.OnSendTapiMessage(

406 � Chapter 9

'Busy signal; trunk or circuit is busy.');
LINEBUSYMODE_UNKNOWN:
TapiInterface.OnSendTapiMessage(

'Busy signal; specific mode is currently unkown');
LINEBUSYMODE_UNAVAIL:
TapiInterface.OnSendTapiMessage(

'Busy signal; specific mode is unavailable');
else
TapiInterface.OnSendTapiMessage(
'The call is receiving an unidentifiable busy tone.');

end;
TapiInterface.ShutdownLine;

end;
LINECALLSTATE_SPECIALINFO:
begin
TapiInterface.CallState := csSpecial;
TapiInterface.OnSendTapiMessage(

'Special information is sent by the network.');
end;

LINECALLSTATE_CONNECTED:
begin
TapiInterface.CallState := csConnected;
TapiInterface.OnSendTapiMessage
('The call has been established and the connection is made.');

TapiInterface.OnSendTapiMessage('LCB (LINE_CALLSTATE): ' +
'The call has been established and the connection is made.');

end;
LINECALLSTATE_PROCEEDING:
begin
TapiInterface.CallState := csProceeding;
TapiInterface.OnSendTapiMessage
('Dialing has completed and the call is proceeding.');

Exit;
end;

LINECALLSTATE_ONHOLD:
begin
TapiInterface.CallState := csOnhold;
TapiInterface.OnSendTapiMessage
('The call is on hold by the switch.');

end;
LINECALLSTATE_CONFERENCED:
begin
TapiInterface.CallState := csConferenced;
TapiInterface.OnSendTapiMessage
('The call is ' +
'currently a member of a multi-party conference call.');

end;
LINECALLSTATE_ONHOLDPENDCONF:
begin
TapiInterface.CallState := csOnholdconf;
TapiInterface.OnSendTapiMessage
('The call is currently ' +
'on hold while it is being added to a conference.');

end;
LINECALLSTATE_ONHOLDPENDTRANSFER :
begin
TapiInterface.CallState := csOnholdPendTransfer;
TapiInterface.OnSendTapiMessage
('The call is currently ' +
'on hold while a transfer is pending.');

Handling TAPI Line Messages � 407

9

C
h
a
p

te
r

end;
LINECALLSTATE_DISCONNECTED:
begin
TapiInterface.CallState := csDisconnected;
TapiInterface.OnSendTapiMessage
('The line has been disconnected.');

case dwParam2 of
LINEDISCONNECTMODE_NORMAL:
TapiInterface.OnSendTapiMessage
(#9 + 'This is a "normal" disconnect request.');

LINEDISCONNECTMODE_UNKNOWN:
TapiInterface.OnSendTapiMessage
(#9+'The reason for the disconnect request is unknown.');

LINEDISCONNECTMODE_REJECT:
TapiInterface.OnSendTapiMessage
(#9 + 'The remote user has rejected the call.');

LINEDISCONNECTMODE_PICKUP:
TapiInterface.OnSendTapiMessage
(#9 + 'The call was picked up from elsewhere.');

LINEDISCONNECTMODE_FORWARDED:
TapiInterface.OnSendTapiMessage
(#9 + 'The call was forwarded by the switch.');

LINEDISCONNECTMODE_BUSY:
TapiInterface.OnSendTapiMessage
(#9 + 'The remote user''s station is busy.');

LINEDISCONNECTMODE_NOANSWER:
TapiInterface.OnSendTapiMessage
(#9 + 'The remote user''s station does not answer.');

LINEDISCONNECTMODE_BADADDRESS:
TapiInterface.OnSendTapiMessage
(#9 + 'The destination address in invalid.');

LINEDISCONNECTMODE_UNREACHABLE:
TapiInterface.OnSendTapiMessage
(#9 + 'The remote user could not be reached.');

LINEDISCONNECTMODE_CONGESTION:
TapiInterface.OnSendTapiMessage
(#9 + 'The network is congested.');

LINEDISCONNECTMODE_INCOMPATIBLE:
TapiInterface.OnSendTapiMessage(#9 +
'The remote user''s station equipment is incompatible');

LINEDISCONNECTMODE_UNAVAIL:
TapiInterface.OnSendTapiMessage
(#9 + 'The reason for the disconnect is unavailable');

Else TapiInterface.OnSendTapiMessage
(#9 + 'The reason is not known');

end;
end;

LINECALLSTATE_UNKNOWN:
begin
TapiInterface.CallState := csUnknown;
TapiInterface.OnSendTapiMessage
('The state of the call is not known.');

end;
else
begin
TapiInterface.CallState := csUnknown;
TapiInterface.OnSendTapiMessage
('The state of the call is not known.');

end;
end;

408 � Chapter 9

end;
LINE_LINEDEVSTATE:
case dwParam1 of // incomplete list

LINEDEVSTATE_RINGING:
TapiInterface.OnSendTapiMessage
('(Ringing) Ring, ring, ring...');

LINEDEVSTATE_CONNECTED:
TapiInterface.OnSendTapiMessage
('Connected...');

LINEDEVSTATE_DISCONNECTED:
TapiInterface.OnSendTapiMessage
('Disconnected...');

LINEDEVSTATE_MSGWAITON:
TapiInterface.OnSendTapiMessage
('"message waiting" indicator is turned on.');

LINEDEVSTATE_MSGWAITOFF:
TapiInterface.OnSendTapiMessage(
'"message waiting" indicator is turned off.');

LINEDEVSTATE_NUMCOMPLETIONS:
TapiInterface.OnSendTapiMessage
('The number of outstanding' +
' call completions on the line device has changed.');

LINEDEVSTATE_INSERVICE:
TapiInterface.OnSendTapiMessage
('The line is connected to TAPI');

LINEDEVSTATE_OUTOFSERVICE:
TapiInterface.OnSendTapiMessage
('The line is out of service');

LINEDEVSTATE_MAINTENANCE:
TapiInterface.OnSendTapiMessage
('Line maintenance heing performed');

LINEDEVSTATE_OPEN:
TapiInterface.OnSendTapiMessage
('Line opened by another application');

LINEDEVSTATE_CLOSE:
TapiInterface.OnSendTapiMessage
('Line closed by another application');

LINEDEVSTATE_NUMCALLS:
TapiInterface.OnSendTapiMessage
('Number of calls on line has changed');

LINEDEVSTATE_TERMINALS:
TapiInterface.OnSendTapiMessage
('Terminal settings have changed');

LINEDEVSTATE_ROAMMODE:
TapiInterface.OnSendTapiMessage
('Cellular roaming mode has changed');

LINEDEVSTATE_BATTERY:
TapiInterface.OnSendTapiMessage
('Cellular battery level has changed');

LINEDEVSTATE_SIGNAL:
TapiInterface.OnSendTapiMessage
('Cellular signal has changed');

LINEDEVSTATE_DEVSPECIFIC:
TapiInterface.OnSendTapiMessage
('Device-specific information has changed');

LINEDEVSTATE_LOCK:
TapiInterface.OnSendTapiMessage
('Lock status of line has changed');

LINEDEVSTATE_CAPSCHANGE:
TapiInterface.OnSendTapiMessage

Handling TAPI Line Messages � 409

9

C
h
a
p

te
r

('LCB (LINE_LINEDEVSTATE): capabilities of line have changed');
LINEDEVSTATE_TRANSLATECHANGE:

TapiInterface.OnSendTapiMessage
('Capabilities of line have changed');

LINEDEVSTATE_REINIT: // line device has changed or been modified
if (dwParam2 = 0) then
begin

TapiInterface.OnSendTapiMessage
('Shutdown required');

TapiInterface.ShutdownLine;
end;

LINEDEVSTATE_OTHER:
TapiInterface.OnSendTapiMessage
('Other line device state.');

else TapiInterface.OnSendTapiMessage
('Other line device state.');

end; // inner case
LINE_REPLY:
if (dwParam2 = 0) then

TapiInterface.OnSendTapiMessage
('LineMakeCall completed successfully')

else
TapiInterface.OnSendTapiMessage
('LineMakeCall failed');

{$IFDEF TAPI14}
LINE_CREATE:

TapiInterface.OnSendTapiMessage('Line Acreated');
{$ENDIF}
{$IFDEF TAPI20}

LINE_AGENTSPECIFIC:
TapiInterface.OnSendTapiMessage
('status of an ACD agent on a currently open line has changed');

LINE_AGENTSTATUS:
begin
TapiInterface.OnSendTapiMessage
('Status of an ACD agent on a currently open line has changed');
if LINEAGENTSTATE_GROUP in [dwParam2] then
TapiInterface.OnSendTapiMessage
('The Group List in LINEAGENTSTATUS has been updated. ');

if LINEAGENTSTATE_STATE in [dwParam2] then
TapiInterface.OnSendTapiMessage
('The dwState member in LINEAGENTSTATUS has been updated.');

if LINEAGENTSTATE_NEXTSTATE in [dwParam2] then
TapiInterface.OnSendTapiMessage
('The dwNextState member in LINEAGENTSTATUS has been updated. ');

if LINEAGENTSTATE_ACTIVITY in [dwParam2] then
TapiInterface.OnSendTapiMessage('The ActivityID, ActivitySize, or ActivityOffset

members in ' + 'LINEAGENTSTATUS has been updated. ');
if LINEAGENTSTATE_ACTIVITYLIST in [dwParam2] then
TapiInterface.OnSendTapiMessage
('The List member in LINEAGENTACTIVITYLIST has been updated. ' +
'The application can call lineGetAgentActivityList to get the ' +
'updated list.');

if LINEAGENTSTATE_GROUPLIST in [dwParam2] then
TapiInterface.OnSendTapiMessage
('The List member in LINEAGENTGROUPLIST has been updated. ' +
'The application can call lineGetAgentGroupList to get the ' +
'updated list.');

if LINEAGENTSTATE_CAPSCHANGE in [dwParam2] then
TapiInterface.OnSendTapiMessage

410 � Chapter 9

('The capabilities in LINEAGENTCAPS have been updated. ' +
'The application can call lineGetAgentCaps to get the updated ' +
'list. ');

if LINEAGENTSTATE_VALIDNEXTSTATES in [dwParam2] then
TapiInterface.OnSendTapiMessage
('The dwValidNextStates member in LINEAGENTSTATUS has been ' +
'updated. ');

end;
LINE_APPNEWCALL:
TapiInterface.OnSendTapiMessage
('A new call handle has been created spontaneously');

LINE_PROXYREQUEST:
TapiInterface.OnSendTapiMessage
('Request sent to a registered proxy function handler');

LINE_REMOVE:
TapiInterface.OnSendTapiMessage
('A device has been removed from this line');

{$ENDIF}
{$IFDEF TAPI22}

LINE_AGENTSESSIONSTATUS:
TapiInterface.OnSendTapiMessage
('The status of an ACD agent session has changed.');

LINE_QUEUESTATUS:
TapiInterface.OnSendTapiMessage
('The status of an ACD queue has changed');

LINE_AGENTSTATUSEX:
TapiInterface.OnSendTapiMessage
('The status of an ACD agent has changed');

LINE_GROUPSTATUS:
TapiInterface.OnSendTapiMessage
('The status of an ACD group has changed');

LINE_PROXYSTATUS:
TapiInterface.OnSendTapiMessage('The available proxies have changed');

{$ENDIF}
{$IFDEF TAPI30}

LINE_APPNEWCALLHUB:
TapiInterface.OnSendTapiMessage('A new call hub has been created.');

LINE_CALLHUBCLOSE:
TapiInterface.OnSendTapiMessage('A call hub has been closed.');

LINE_DEVSPECIFICEX:
TapiInterface.OnSendTapiMessage
('A device-specific event has occurred on a line, address, or call');

else
TapiInterface.OnSendTapiMessage
('An unspecified event has occurred on a line, address, or call');

{$ENDIF}
end; // outer case

end;

// Callback to handle TAPI messages from the phone device
// For future development
procedure APhoneCallBack(hDevice, dwMessage, dwInstance, dwParam1,
dwParam2, dwParam3 : DWORD); stdcall;

begin
begin // Write TAPI results to string list for use

// by Delphi components in TAPIForm unit
case dwMessage of
PHONE_BUTTON:
begin
case dwParam2 of

Handling TAPI Line Messages � 411

9

C
h
a
p

te
r

PHONEBUTTONMODE_CALL:
TapiInterface.OnSendTapiMessage
('The button is assigned to a call appearance.');

PHONEBUTTONMODE_FEATURE:
TapiInterface.OnSendTapiMessage
('The button is assigned to requesting features from the switch,'

+ 'such as hold, conference, and transfer.');
PHONEBUTTONMODE_KEYPAD:
TapiInterface.OnSendTapiMessage
('The button is one of the twelve keypad buttons,' +

'''0'' through ''9'', ''*'', and ''#''.');
PHONEBUTTONMODE_LOCAL:
TapiInterface.OnSendTapiMessage
('The button is a local function button, such as mute or '
+ 'volume control.');

PHONEBUTTONMODE_DISPLAY:
TapiInterface.OnSendTapiMessage
('The button is a "soft" button associated with the phone''s display.'
+ ' A phone set can have zero or more display buttons.');

end; // case
end;

PHONE_CLOSE: TapiInterface.OnSendTapiMessage
('Phone device has been closed');

PHONE_CREATE: TapiInterface.OnSendTapiMessage
('A New Phone Device has been created');

PHONE_DEVSPECIFIC: TapiInterface.OnSendTapiMessage
('A device-specific event has occurred');

PHONE_REMOVE: TapiInterface.OnSendTapiMessage
('A phone device has been removed from the system');

PHONE_REPLY:
begin
if dwParam2=0 then
TapiInterface.OnSendTapiMessage
('Async Function Call successful')

else
TapiInterface.OnSendTapiMessage
('Async Function Call not successful')

end;
PHONE_STATE:
begin
case dwParam1 of //
PHONESTATE_OTHER: TapiInterface.OnSendTapiMessage
('Phone-status items other than expected ' +
'ones have changed.');

PHONESTATE_CONNECTED: TapiInterface.OnSendTapiMessage
('The connection between the phone device ' +
'and TAPI established.');

PHONESTATE_DISCONNECTED: TapiInterface.OnSendTapiMessage
('Connection between phone device and TAPI broken.');

PHONESTATE_OWNER: TapiInterface.OnSendTapiMessage
('Number of owners for the phone device has changed.');

PHONESTATE_MONITORS: TapiInterface.OnSendTapiMessage
('Number of monitors for the phone device has changed.');

PHONESTATE_DISPLAY: TapiInterface.OnSendTapiMessage
('The display of the phone has changed.');

PHONESTATE_LAMP: TapiInterface.OnSendTapiMessage
('A lamp of the phone has changed.');

PHONESTATE_RINGMODE: TapiInterface.OnSendTapiMessage
('The ring mode of the phone has changed.');

412 � Chapter 9

TE
AM
FL
Y

Team-Fly®

PHONESTATE_RINGVOLUME: TapiInterface.OnSendTapiMessage
('The ring volume of the phone has changed.');

PHONESTATE_HANDSETHOOKSWITCH: TapiInterface.OnSendTapiMessage
('The handset hookswitch state has changed.');

PHONESTATE_HANDSETVOLUME: TapiInterface.OnSendTapiMessage
('The handset''s speaker volume setting ' +
'has changed.');

PHONESTATE_HANDSETGAIN: TapiInterface.OnSendTapiMessage
('The handset''s microphone gain ' +
'setting has changed.');

PHONESTATE_SPEAKERHOOKSWITCH: TapiInterface.OnSendTapiMessage
('The speakerphone''s hookswitch ' +
'state has changed.');

PHONESTATE_SPEAKERVOLUME: TapiInterface.OnSendTapiMessage
('The speakerphone''s speaker volume' +
' setting has changed.');

PHONESTATE_SPEAKERGAIN: TapiInterface.OnSendTapiMessage
('The speakerphone''s microphone gain ' +
'setting state has changed.');

PHONESTATE_HEADSETHOOKSWITCH: TapiInterface.OnSendTapiMessage
('The headset''s hookswitch state has changed.');

PHONESTATE_HEADSETVOLUME: TapiInterface.OnSendTapiMessage
('The headset''s speaker volume setting has changed.');

PHONESTATE_HEADSETGAIN: TapiInterface.OnSendTapiMessage
('The headset''s microphone gain setting has changed.');

PHONESTATE_SUSPEND: TapiInterface.OnSendTapiMessage
('The application''s use of the phone ' +
'device is temporarily suspended.');

PHONESTATE_RESUME: TapiInterface.OnSendTapiMessage
('The application''s use of the phone device' +
'has resumed after having been suspended for some time.');

PHONESTATE_DEVSPECIFIC: TapiInterface.OnSendTapiMessage
('The phone''s device-specific information' +
' has changed.');

PHONESTATE_REINIT: TapiInterface.OnSendTapiMessage
('Items have changed in the configuration of phone devices.');

PHONESTATE_CAPSCHANGE: TapiInterface.OnSendTapiMessage
('One or more of PHONECAPS'' fields has changed.');

PHONESTATE_REMOVED: TapiInterface.OnSendTapiMessage
('A device is being removed from the system ' +
'by the service provider');

end; // case
end;

end;
end;

end;

The TAPI Help file provides very detailed information about each message. We
have included most of that information here. First, we will provide an overview.
We group messages into two different tables: The 20 older messages (TAPI 2.0
and earlier) are in Table 9-1 and the newer messages are in Table 9-2. After
that, we will provide detailed information about each one, its use, and its
parameters.

Handling TAPI Line Messages � 413

9

C
h
a
p

te
r

Table 9-1: Older TAPI messages (Version 2.0 and earlier)

Message Meaning

LINE_ADDRESSSTATE This message will be sent to an application when the status of an address
changes on a currently open line. You can call the lineGetAddressStatus() func-
tion to determine the current status of the address.

LINE_AGENTSPECIFIC This message will be sent to an application when the status of an ACD agent
changes on a currently open line. You can call the lineGetAgentStatus() func-
tion to determine the current status of the agent.

LINE_AGENTSTATUS This message will be sent to an application when the status of an ACD agent
changes on a currently open line.You can call the lineGetAgentStatus() function
to determine the current status of the agent.

LINE_APPNEWCALL This message will be sent to an application to inform it when a new call handle
has been spontaneously created on its behalf. This does not include situations
in which the handle is created through a TAPI call from an application. In that
case the handle will be returned through a pointer parameter passed to the
function.

LINE_CALLINFO This message will be sent to an application when the call information about the
specified call has changed. You can call the lineGetCallInfo() function to deter-
mine the current call information.

LINE_CALLSTATE This message will be sent to an application when the status of the specified call
has changed. Typically, several such messages will be received during the life-
time of a call. Windows notifies applications of new incoming calls using this
message; new calls are initially in the offering state. You can call the
lineGetCallStatus() function to retrieve more detailed information about the
current status of the call.

LINE_CLOSE This message will be sent to an application when the specified line device has
been forcibly closed. The line device handle or any call handles for calls on the
line will no longer be valid once this message has been sent.

LINE_CREATE This message will be sent to an application to inform it that a new line device
had been created.

LINE_DEVSPECIFIC This message will be sent to an application to notify it about device-specific
events occurring on a line, address, or call. The specific meaning of the mes-
sage and the interpretation of the parameters are device specific.

LINE_DEVSPECIFICFEATURE This message will be sent to an application to notify it about device-specific
events occurring on a line, address, or call. The specific meaning of the mes-
sage and the interpretation of the parameters are device specific.

LINE_GATHERDIGITS This message will be sent to an application when the current buffered
digit-gathering request has been terminated or canceled. You may examine the
digit buffer after this message has been received by an application.

LINE_GENERATE This message will be sent to an application to notify it that the current digit or
tone generation has terminated. Only one such generation request can be in
progress on a given call at any time. This message is also sent when either digit
or tone generation is canceled.

LINE_LINEDEVSTATE This message will be sent to an application when the state of a line device has
changed. You can call the lineGetLineDevStatus() function to determine the
new status of the line.

LINE_MONITORDIGITS This message will be sent to an application when a digit is detected. The
lineMonitorDigits() function controls the process of sending this message.

414 � Chapter 9

Message Meaning

LINE_MONITORMEDIA This message will be sent to an application when a change in the call’s media
mode is detected. The lineMonitorMedia() function controls the process of
sending this message.

LINE_MONITORTONE This message will be sent to an application when a tone is detected. The
lineMonitorTones() function controls the process of sending this message.

LINE_PROXYREQUEST This message sends a request to a registered proxy function handler.

LINE_REMOVE This message will be sent to an application to inform it of the removal (deletion
from the system) of a line device. Generally, this is not used for temporary
removals, such as extraction of PCMCIA devices. Rather, it is used only in the
case of permanent removals in which the service provider would no longer
report the device when TAPI was reinitialized.

LINE_REPLY This message will be sent to an application to report the results of function
calls that completed asynchronously.

LINE_REQUEST This message will be sent to an application to report the arrival of a new
request from another application (see Chapter 8, “Line Devices and Essential
Operations” for an example).

Table 9-2: Newer TAPI messages (Version 2.2 and later)

Message Meaning

LINE_AGENTSESSIONSTATUS This message will be sent when the status of an ACD agent session changes on
an agent handler for which an application currently has an open line. This mes-
sage is generated using the lineProxyMessage() function.

LINE_QUEUESTATUS This message will be sent when the status of an ACD queue changes on an
agent handler for which an application currently has an open line. This message
is generated using the lineProxyMessage() function.

LINE_AGENTSTATUSEX This message will be sent when the status of an ACD agent changes on an
agent handler for which an application currently has an open line. This message
is generated using the lineProxyMessage() function.

LINE_GROUPSTATUS This message will be sent when the status of an ACD group changes on an
agent handler for which an application currently has an open line. This message
is generated using the lineProxyMessage() function.

LINE_PROXYSTATUS This (listed incorrectly as LINE_QUEUESTATUS in MS Help) message will be
sent when the available proxies change on a line that an application currently
has open.

TAPI LINE_APPNEWCALLHUB This message will be sent to inform an application when a new call hub has
been created.

TAPI LINE_CALLHUBCLOSE This message will be sent when a call hub has been closed.

TAPI LINE_DEVSPECIFICEX This message will be sent to notify an application about device-specific events
occurring on a line, address, or call. The meaning of the message and the inter-
pretation of the parameters are device specific.

A message always contains a handle to the object whose behavior it is reporting.
The object could be a phone device, a line device, or a call. How does an applica-
tion determine the type of handle? Actually, it can do this rather easily by
examining the message type. As you can tell from Tables 9-1 and 9-2, messages
can carry out a number of functions. Often they will notify an application about a

Handling TAPI Line Messages � 415

9

C
h
a
p

te
r

change in an object’s status. These kinds of messages always provide the
object’s handle and indicate which status item has changed. Your application can
obtain the object’s full status by calling one of the “get status” functions.

What actually happens when an event occurs? Invariably, messages may be
sent to zero, one, or more applications. The target applications for a message
will be determined by various factors. Among these are the following:

� The meaning of the message; the purpose it is attempting to fulfill

� The target application’s level of privilege in relationship to the telephony
object

� The initiator (application) of the particular request to which the message
is responding

� Special message masking set by your application

Issues Involving Messages
There are a number of issues concerning messages, mainly restrictions on
where they will be sent. Here are some of the main restrictions:

� The Windows operating system will send asynchronous reply messages
only to the application that originated the request; such messages cannot
be masked.

� Windows will send messages that signal the completion of digit or tone
generation or the gathering of digits only to the application that initiated
the particular task.

� Windows will send messages that indicate a change in line or address
states to all applications that have opened the line, provided that the mes-
sage has been enabled via lineSetStatusMessages().

� The operating system will send messages that indicate changes to a call’s
state or changes to other information regarding a call to all applications
that have a handle to the call.

� The system will send messages that signal a digit detection, tone detec-
tion, or media mode detection to any application (one or more) that
requested monitoring of the particular event.

There are other issues of backward compatability and timing that we’ll discuss
with certain messages.

As we’ve implied, there’s an intimate relationship between these messages
and the callback routine. One of the complex issues is that each message
requires different values to be entered or returned in the callback routine. In
some cases, a particular parameter could have a large number of such values. To

416 � Chapter 9

provide a complete reference, we have included this information under the par-
ticular messages in this section.

LINE_ADDRESSSTATE Message

Windows will send the LINE_ADDRESSSTATE message to an application
when the status of an address on a currently open line has changed. It will send
this message to any application that has opened the particular line device and
enabled this message. You can control and queue the sending of this message
for the various status items by using the lineGetStatusMessages() and
lineSetStatusMessages() functions. Address status reporting is disabled by
default.

Table 9-3: Parameter values for the LINE_ADDRESSSTATE message

Parameter Value(s)

hDevice Line device handle

dwInstance Callback instance supplied when the line was opened

dwParam1 ID of the address whose status changed

dwParam2 The address state that changed. It can be a combination of one or more of the following values:
LINEADDRESSSTATE_OTHER indicates that address-status items other than those listed below
have changed. It is recommended that an application check the current address status to determine
which items have changed.
LINEADDRESSSTATE_DEVSPECIFIC indicates that the device-specific item of the address status
has changed.
LINEADDRESSSTATE_INUSEZERO indicates that the address has changed to idle (e.g., it is now in
use by zero stations).
LINEADDRESSSTATE_INUSEONE indicates that the address has changed from the idle state or
from being used by many bridged stations to the state of being used by just one station.
LINEADDRESSSTATE_INUSEMANY indicates that the monitored or bridged address has changed
from the state of being used by one station to that of being used by more than one station.
LINEADDRESSSTATE_NUMCALLS indicates that the number of calls on the address has changed
(as a result of events such as a new inbound call, an outbound call on the address, or a call changing
its hold status).
LINEADDRESSSTATE_FORWARD indicates that the forwarding status of the address has changed,
including the number of rings for determining a no answer condition (an application should check
the address status to determine details about the address’s current forwarding status).
LINEADDRESSSTATE_TERMINALS indicates that the terminal settings for the address have
changed.
LINEADDRESSSTATE_CAPSCHANGE indicates that one or more of the fields in the
LINEADDRESSCAPS structure for the address have changed because of configuration changes
made by the user or other circumstances. You should call the lineGetAddressCaps() function to
read the updated structure. Applications that supportTAPI versions less than 1.04 will receive a
LINEDEVSTATE_REINIT message, requiring them to shut down and reinitialize their connection to
TAPI in order to obtain the updated information.

dwParam3 Not used

Handling TAPI Line Messages � 417

9

C
h
a
p

te
r

LINE_AGENTSPECIFIC Message

Windows will send a LINE_AGENTSPECIFIC message to an application when
the status of an ACD agent on a currently open line has changed. You can call
the lineGetAgentStatus() function to determine the current status of the agent.
This message will not be sent to applications that support older versions of
TAPI.

Table 9-4: Parameter values for the LINE_AGENTSPECIFIC message

Parameter Value(s)

hDevice An application’s handle to the line device

dwInstance Callback instance supplied when the line was opened

dwParam1 Index into the array of handler extension IDs in the LINEAGENTCAPS structure of the
handler extension with which the message is associated

dwParam2 Specific to the handler extension. Generally, this value will be used to cause an application
to call the lineAgentSpecific() function in order to gather further details of the message.

dwParam3 Specific to the handler extension

LINE_AGENTSTATUS Message

Windows will send a LINE_AGENTSTATUS message to an application when
the status of an ACD agent changes on a currently open line. You can call the
lineGetAgentStatus() function to determine the current status of the agent.
This message will not be sent to applications that support older versions of
TAPI.

Table 9-5: Parameter values for the LINE_AGENTSTATUS message

Parameter Value(s)

hDevice An application’s handle to the line device on which the agent status has changed

dwInstance Callback instance supplied when opening the line associated with the call

dwParam1 Identifier of the address on the line on which the agent status has changed

dwParam2 Specifies the agent status that has changed; can be a combination of LINEAGENTSTATE_
constant values (see Table 9-6)

dwParam3 If dwParam2 includes the LINEAGENTSTATUS_STATE bit, this parameter indicates the
new value of the dwState member in LINEAGENTSTATUS. Otherwise, this parameter is
set to 0.

Table 9-6: LINEAGENTSTATE_ flags

Flag Meaning

LINEAGENTSTATE_
GROUP

The group list in LINEAGENTSTATUS has been updated.

LINEAGENTSTATE_
STATE

The dwState member in LINEAGENTSTATUS has been updated.

LINEAGENTSTATE_
NEXTSTATE

The dwNextState member in LINEAGENTSTATUS has been updated.

418 � Chapter 9

Flag Meaning

LINEAGENTSTATE_
ACTIVITY

One of the following members in LINEAGENTSTATUS has been updated: ActivityID,
ActivitySize, or ActivityOffset.

LINEAGENTSTATE_
ACTIVITYLIST

The list member in LINEAGENTACTIVITYLIST has been updated. An application can call
lineGetAgentActivityList() to get the updated list.

LINEAGENTSTATE_
GROUPLIST

The list member in LINEAGENTGROUPLIST has been updated. An application can call
lineGetAgentGroupList() to get the updated list.

LINEAGENTSTATE_
CAPSCHANGE

The capabilities in LINEAGENTCAPS have been updated. An application can call
lineGetAgentCaps() to get the updated list.

LINEAGENTSTATE_
VALIDSTATES

The dwValidStates member in LINEAGENTSTATUS has been updated.

LINEAGENTSTATE_
VALIDNEXTSTATES

The dwValidNextStates member in LINEAGENTSTATUS has been updated.

LINE_APPNEWCALL Message

Generally, a call handle is created in response to an application’s calling a TAPI
function. Windows returns that handle through a pointer parameter passed to
the function, but sometimes TAPI spontaneously creates a new call handle. The
documentation is silent on when this might happen, but we assume that it would
be in response to an incoming call of which the telephony application(s) are not
aware. To accept such a call, an application must have a handle to that call. In
newer versions of TAPI (since version 2), Windows will send a LINE_APP-
NEWCALL message to an application to inform it when it has created such a
call handle. The parameters of this message (see Table 9-7) provide enough
information for a telephony application to create a new call object in the correct
context. In particular, those parameters include the handle (hLine) to the line
device on which the call was created and the identifier (dwAddressID) repre-
senting the address on the line on which the call appears. These are stored in
the first and third parameters, respectively. Finally, this message will always be
followed immediately by a LINE_CALLSTATE message indicating the initial
state of the call.

For older applications—those which negotiated a TAPI version prior to TAPI
2—the process is a bit more difficult. For these applications, Windows will send
only a LINE_CALLSTATE to them. After receiving that particular message,
these applications will need to create a new call object (setting its dwParam3 to
a nonzero value). Older applications will not immediately know the call handle
and the other information the newer message provides. To get this information,
they must call the lineGetCallInfo() function. That function will return the hLine

and dwAddressID associated with the call. However, there are two more issues
these older TAPI versions must deal with. In addition to calling the lineGet-
CallInfo() function, you must scan all known call handles in order to determine
that the call is indeed a new call; finally, you must also make certain that what

Handling TAPI Line Messages � 419

9

C
h
a
p

te
r

appears to be a new call handle is not, in fact, one that your application has just
deallocated. For more information, see the TAPI Help file.

Table 9-7: Parameter values for the LINE_APPNEWCALL message

Parameter Value(s)

hDevice An application’s handle to the line device on which the call has been created

dwInstance The callback instance supplied when opening the call’s line

dwParam1 Identifier of the address on the line on which the call appears

dwParam2 An application’s handle to the new call

dwParam3 An application’s privilege to the new call (LINECALLPRIVILEGE_OWNER or
LINECALLPRIVILEGE_MONITOR)

LINE_CALLINFO Message

Windows will send a LINE_CALLINFO message to an application when infor-
mation about a specified call has changed. This could occur when you call one of
the following functions: lineOpen(), lineClose(), lineShutdown(), lineSet-
CallPrivilege(), lineGetNewCalls(), or lineGetConfRelatedCalls(). TAPI will
create an individual LINECALLINFO structure for every inbound and outbound
call that contains the basic static information about the call.

You can call the lineGetCallInfo() function to determine the current call infor-
mation. TAPI will send a LINE_CALLINFO message with an indication of
NumOwnersIncr, NumOwnersDecr, and/or NumMonitorsChanged to all applica-
tions that already have a handle for that call. This situation can occur when
another application is changing ownership or monitoring status of a call. Your
telephony applications could use this information when receiving a handle for a
call through the LINE_CALLSTATE message or notification through a
LINE_CALLINFO message that parts of the call information structure have
changed. These messages supply the handle for the call as a parameter.

Be aware that Windows does not send LINE_CALLINFO messages when a
notification of a new call is provided in a LINE_CALLSTATE message. The rea-
son is that the call information already reflects the correct number of owners
and monitors at the time the LINE_CALLSTATE messages are sent.
LINE_CALLINFO messages are also suppressed when TAPI offers a call to
monitoring applications through the LINECALLSTATE_UNKNOWN mecha-
nism. Also, be aware that an application that causes a change in the number of
owners or monitors (for example, by invoking lineDeallocateCall() or lineSet-
CallPrivilege()) will not receive a message itself indicating that the change has
been made. No LINE_CALLINFO messages will be sent for a call after that call
has entered the idle state. TAPI does not report changes in the number of own-
ers and monitors when applications deallocate their handles for the idle call.

420 � Chapter 9

Table 9-8: Parameter values for the LINE_CALLINFO message

Parameter Value(s)

hDevice A handle to the call

dwInstance Callback instance supplied when opening the call’s line

dwParam1 The call information item that has changed. It can be a combination of one or more of
the LINECALLINFOSTATE_ values shown in Table 9-9.

dwParam2 Unused

dwParam3 Unused

Table 9-9: LINECALLINFOSTATE_ constants used in the dwParam1 field of the LINE_CALLINFO message

Constant Meaning

LINECALLINFOSTATE_
OTHER

This constant indicates that informational items other than those listed below have
changed (in this case, you should check the current call information to determine which
items have changed).

LINECALLINFOSTATE_
DEVSPECIFIC

This constant indicates that the device-specific field of the call information record has
changed.

LINECALLINFOSTATE_
BEARERMODE

This constant indicates that the bearer mode field of the call information record has
changed.

LINECALLINFOSTATE_
RATE

This constant indicates that the rate field of the call information record has changed.

LINECALLINFOSTATE_
MEDIAMODE

This constant indicates that the media mode field of the call information record has
changed.

LINECALLINFOSTATE_
APPSPECIFIC

This constant indicates that an application-specific field of the call information record has
changed.

LINECALLINFOSTATE_
CALLID

This constant indicates that the call ID field of the call information record has changed.

LINECALLINFOSTATE_
RELATEDCALLID

This constant indicates that the related call ID field of the call information record has
changed.

LINECALLINFOSTATE_
ORIGIN

This constant indicates that the origin field of the call information record has changed.

LINECALLINFOSTATE_
REASON

This constant indicates that the reason field of the call information record has changed.

LINECALLINFOSTATE_
COMPLETIONID

This constant indicates that the completion ID field of the call information record has
changed.

LINECALLINFOSTATE_
NUMOWNERINCR

This constant indicates that the number of owner fields in the call information record
was increased.

LINECALLINFOSTATE_
NUMOWNERDECR

This constant indicates that the number of owner fields in the call information record
was decreased.

LINECALLINFOSTATE_
NUMMONITORS

This constant indicates that the number of monitors fields in the call information record
has changed.

LINECALLINFOSTATE_
TRUNK

This constant indicates that the trunk field of the call information record has changed.

LINECALLINFOSTATE_
CALLERID

This constant indicates that one of the callerID-related fields of the call information
record has changed.

LINECALLINFOSTATE_
CALLEDID

This constant indicates that one of the calledID-related fields of the call information
record has changed.

Handling TAPI Line Messages � 421

9

C
h
a
p

te
r

Constant Meaning

LINECALLINFOSTATE_
CONNECTEDID

This constant indicates that one of the connectedID-related fields of the call information
record has changed.

LINECALLINFOSTATE_
REDIRECTIONID

This constant indicates that one of the redirectionID-related fields of the call informa-
tion record has changed.

LINECALLINFOSTATE_
REDIRECTINGID

This constant indicates that one of the redirectingID-related fields of the call information
record has changed.

LINECALLINFOSTATE_
DISPLAY

This constant indicates that the display field of the call information record has changed.

LINECALLINFOSTATE_
USERUSERINFO

This constant indicates that the user-to-user information of the call information record
has changed.

LINECALLINFOSTATE_
HIGHLEVELCOMP

This constant indicates that the high-level compatibility field of the call information
record has changed.

LINECALLINFOSTATE_
LOWLEVELCOMP

This constant indicates that the low-level compatibility field of the call information
record has changed.

LINECALLINFOSTATE_
CHARGINGINFO

This constant indicates that the charging information of the call information record has
changed.

LINECALLINFOSTATE_
TERMINAL

This constant indicates that the terminal mode information of the call information
record has changed.

LINECALLINFOSTATE_
DIALPARAMS

This constant indicates that the dial parameters of the call information record has
changed.

LINECALLINFOSTATE_
MONITORMODES

This constant indicates that one or more of the digit, tone, or media monitoring fields in
the call information record has changed.

LINE_CALLSTATE Message

Windows will send a LINE_CALLSTATE message to an application when the
status of the specified call has changed. Windows uses this message to notify
applications of new incoming calls, always starting off in the offering state.
Typically, an application will receive several such messages during the lifetime
of a call.

You can call the lineGetCallStatus() function to retrieve more detailed infor-
mation about the current status of the call. Windows will send this message to
any application that has a handle for that call. The LINE_CALLSTATE message
will also notify those applications that have assumed responsibility to monitor
calls on a line about the existence and the state of outbound calls. The line-
GetCallStatus() function returns the dynamic status of a call, while the
lineGetCallInfo() function returns primarily static information about a call. Such
status information includes the current call’s state, detailed mode information,
and a list of the available API functions an application can invoke on the call
while the call is in this state. You may want an application to request this infor-
mation when it receives notification about a call state change through the
LINE_CALLSTATE message.

These outbound calls may be established in one of two ways—by other tele-
phony applications or manually by the user (for example, on an attached phone

422 � Chapter 9

TE
AM
FL
Y

Team-Fly®

device). The call state of such calls will reflect the actual state of the call, which
will not be in the offering state. By examining the call state, an application can
determine if the call is an inbound call that it needs to answer.

A LINE_CALLSTATE message with an unknown call state may be sent to a
monitoring application by another requesting application. This process will gen-
erally be the result of a successful call to any of the following line_ functions:
lineMakeCall(), lineForward(), lineUnpark(), lineSetupTransfer(), linePickup(),
lineSetupConference(), or linePrepareAddToConference(). The communication
process is fairly complex. At the same time that a requesting application is sent
a LINE_REPLY (success) for a requested operation, any of the other applica-
tions monitoring the line will be sent the LINE_CALLSTATE (unknown)
message. The LINE_CALLSTATE message uses information provided by the
service provider to inform requesting and monitoring applications about the
actual call state of the newly generated call. This process will occur shortly after
the previously discussed messages.

Note that this particular message cannot be disabled. A LINE_CALLSTATE
(unknown) message will be sent to monitoring applications only if a call to the
lineCompleteTransfer() function causes telephone calls to be resolved into a
three-way conference.

There are backward compatibility issues affecting this message. Older appli-
cations using earlier TAPI versions will not be expecting any particular value in
the dwParam2 parameter of a LINECALLSTATE_CONFERENCED message.
In such cases, TAPI will pass the parent call the hConfCall value in dwParam2

regardless of theTAPI version of an application receiving the message. In the
case of a conference call that was initiated by the service provider, the older
application will generally not be aware that the parent call has become a confer-
ence call. The exception to this—the case in which it might be aware—would
occur if it were to spontaneously examine other information, such as by calling
the lineGetConfRelatedCalls() function.

Table 9-10: Parameter values for the LINE_CALLSTATE message

Parameter Value(s)

hDevice A handle to the call

dwInstance The callback instance supplied when opening the call’s line

dwParam1 The new call state. This parameter must be one, and only one, of the
LINECALLSTATE_ values shown in Table 9-11.

dwParam2 Call state-dependent information. If dwParam1 is LINECALLSTATE_BUSY, dwParam2
contains details about the busy mode. This parameter uses the LINEBUSYMODE_
constants shown in Table 9-12. If dwParam1 is LINECALLSTATE_CONNECTED,
dwParam2 contains details about the connected mode using one of the following
LINECONNECTEDMODE_ constants:
LINECONNECTEDMODE_ACTIVE indicates that the call is connected at the current
station (the current station is a participant in the call).

Handling TAPI Line Messages � 423

9

C
h
a
p

te
r

Parameter Value(s)

dwParam2
(cont.)

LINECONNECTEDMODE_INACTIVE indicates that the call is active at one or more
other stations, but the current station is not a participant in the call.
If dwParam1 is LINECALLSTATE_DIALTONE dwParam2 contains the details about
the dial tone mode using the following LINEDIALTONEMODE_ constants:
LINEDIALTONEMODE_NORMAL indicates that this is a “normal” dial tone, which
typically is a continuous tone.
LINEDIALTONEMODE_SPECIAL indicates that this is a special dial tone indicating
that a certain condition is currently in effect.
LINEDIALTONEMODE_INTERNAL indicates that this is an internal dial tone, as
within a PBX.
LINEDIALTONEMODE_EXTERNAL indicates that this is an external (public net-
work) dial tone.
LINEDIALTONEMODE_UNKNOWN indicates that the dial tone mode is currently
unknown but may become known later.
LINEDIALTONEMODE_UNAVAIL indicates that the dial tone mode is unavailable
and will not become known.
If dwParam1 is LINECALLSTATE_OFFERING, dwParam2 contains details about the
connected mode using the following LINEOFFERINGMODE_ constants:
LINEOFFERINGMODE_ACTIVE indicates that the call is alerting at the current sta-
tion (will be accompanied by LINEDEVSTATE_RINGING messages), and if any appli-
cation is set up to automatically answer, it may do so.
LINEOFFERINGMODE_INACTIVE indicates that the call is being offered at more
than one station, but the current station is not alerting (for example, it may be an
attendant station where the offering status is advisory, such as blinking a light).
If dwParam1 is LINECALLSTATE_SPECIALINFO, dwParam2 contains the details
about the special information mode using the following LINESPECIALINFO_ con-
stants:
LINESPECIALINFO_NOCIRCUIT indicates that this special information tone pre-
cedes a “no circuit” or emergency announcement (trunk blockage category).
LINESPECIALINFO_CUSTIRREG indicates that this special information tone precedes
one of the following: a vacant number, an Alarm Indication Signal (AIS), a Centrex
number change with a nonworking station, an access code that was not dialed or
dialed in error, or a manual intercept operator message (customer irregularity cate-
gory).
LINESPECIALINFO_REORDER indicates that this special information tone precedes a
reorder announcement (equipment irregularity category).
LINESPECIALINFO_UNKNOWN indicates that specifics about the special informa-
tion tone are currently unknown but may become known later.
LINESPECIALINFO_UNAVAIL indicates that specifics about the special information
tone are unavailable and will not become known.
If dwParam1 is LINECALLSTATE_DISCONNECTED, dwParam2 will contain details
about the disconnect mode using the following LINEDISCONNECTMODE_ con-
stants:
LINEDISCONNECTMODE_NORMAL, which is a “normal” disconnect request by
the remote party, indicates that the call was terminated normally.
LINEDISCONNECTMODE_UNKNOWN indicates that the reason for the discon-
nect request is unknown.
LINEDISCONNECTMODE_REJECT indicates that the remote user has rejected the
call.
LINEDISCONNECTMODE_PICKUP indicates that the call was picked up from else-
where.
LINEDISCONNECTMODE_FORWARDED indicates that the call was forwarded by
the switch.

424 � Chapter 9

Parameter Value(s)

dwParam2
(cont.)

LINEDISCONNECTMODE_BUSY indicates that the remote user’s station is busy.
LINEDISCONNECTMODE_NOANSWER indicates that the remote user’s station
does not answer.
LINEDISCONNECTMODE_NODIALTONE indicates that a dial tone was not
detected within a service provider-defined timeout, at a point during dialing when one
was expected, such as at a “W” in the dialable string (note that this situation can also
occur without a service provider-defined timeout period or a value specified in the
dwWaitForDialTone member of the LINEDIALPARAMS structure).
LINEDISCONNECTMODE_BADADDRESS indicates that the destination address in
invalid.
LINEDISCONNECTMODE_UNREACHABLE indicates that the remote user could
not be reached.
LINEDISCONNECTMODE_CONGESTION indicates that the network is congested.
LINEDISCONNECTMODE_INCOMPATIBLE indicates that the remote user’s station
equipment is incompatible for the type of call requested.
LINEDISCONNECTMODE_UNAVAIL indicates that the reason for the disconnect is
unavailable and will not become known later.
If dwParam1 is LINECALLSTATE_CONFERENCED, dwParam2 will contain the
hConfCall of the parent call of the conference of which the subject hCall is a member.
If the call specified in dwParam2 was not previously considered by an application to be
a parent conference call (hConfCall), the application must make this change in status
as a result of this message. If the application does not have a handle to the parent call
of the conference (because it has previously called lineDeallocateCall() on that handle)
dwParam2 will be set to NULL.

dwParam3 If zero, this parameter indicates that there has been no change in an application’s privi-
lege for the call. If nonzero, it specifies an application’s privilege to the call. This will
occur in the following situations: (1) The first time that an application is given a handle
to this call. (2) When an application is the target of a call handoff (even if an application
already was an owner of the call). This parameter uses the following LINECALL-
PRIVILEGE_ constants:
LINECALLPRIVILEGE_MONITOR indicates that an application has monitor privilege.
LINECALLPRIVILEGE_OWNER indicates that an application has owner privilege.

Table 9-11: LINECALLSTATE_ constants used with the dwParam1 field of the LINE_CALLSTATE message

Constant Meaning

LINECALLSTATE_IDLE This constant indicates that the call is idle—no call actually exists.

LINECALLSTATE_
OFFERING

This constant indicates that the call is being offered to the station, signaling the arrival
of a new call. In some environments, a call in the offering state does not automatically
alert the user (alerting is done by the switch instructing the line to ring; it does not
affect any call states).

LINECALLSTATE_
ACCEPTED

This constant indicates that the call was offered and has been accepted; this indicates
to other (monitoring) applications that the current owner application has claimed
responsibility for answering the call. In ISDN, this also indicates that alerting to both
parties has started.

LINECALLSTATE_
DIALTONE

This constant indicates that the call is receiving a dial tone from the switch, which
means that the switch is ready to receive a dialed number.

LINECALLSTATE_
DIALING

This constant indicates that destination address information (a phone number) is being
sent to switch over the call (note that lineGenerateDigits() does not place the line into
the dialing state).

Handling TAPI Line Messages � 425

9

C
h
a
p

te
r

Constant Meaning

LINECALLSTATE_
RINGBACK

This constant indicates that the call is receiving ringback from the called address.
Ringback indicates that the other station has been reached and is being alerted.

LINECALLSTATE_BUSY This constant indicates that the call is receiving a busy tone. Busy tone indicates that
the call cannot be completed; either a circuit (trunk) or the remote party’s station are
in use.

LINECALLSTATE_
SPECIALINFO

This constant indicates that special information will be sent by the network (such
information is typically sent when the destination cannot be reached).

LINECALLSTATE_
CONNECTED

This constant indicates that the call has been established and the connection is made
(information is able to flow over the call between the originating address and the des-
tination address).

LINECALLSTATE_
PROCEEDING

This constant indicates that dialing has completed and the call is proceeding through
the switch or telephone network.

LINECALLSTATE_
ONHOLD

This constant indicates that the call is on hold by the switch.

LINECALLSTATE_
CONFERENCED

This constant indicates that the call is currently a member of a multiparty conference
call.

LINECALLSTATE_
ONHOLDPENDCONF

This constant indicates that the call is currently on hold while it is being added to a
conference.

LINECALLSTATE_ON-
HOLDPENDTRANSFER
(N

(Not LINECALLSTATE_ONHOLDPENTRANSFER as indicated in one Microsoft Help
File) This constant indicates that the call is currently on hold awaiting transfer to
another number.

LINECALLSTATE_
DISCONNECTED

This constant indicates that the remote party has disconnected from the call.

LINECALLSTATE_
UNKNOWN

This constant indicates that the state of the call is not known (this may be due to limi-
tations of the call progress detection implementation).

Table 9-12: LINEBUSYMODE_ constants used with the dwParam2 field of the LINE_CALLSTATE message

Constant Meaning

LINEBUSYMODE_
STATION

This constant indicates that the busy signal indicates that the called party’s station is
busy (this is usually signaled by means of a “normal” busy tone).

LINEBUSYMODE_
TRUNK

This constant indicates that the busy signal indicates that a trunk or circuit is busy. This
is usually signaled with a “long” busy tone.

LINEBUSYMODE_
UNKNOWN

This constant indicates that the busy signal’s specific mode is currently unknown but
may become known later.

LINEBUSYMODE_
UNAVAIL

This constant indicates that the busy signal’s specific mode is unavailable and will not
become known.

LINE_CLOSE Message

Windows will send a LINE_CLOSE message to an application when the speci-
fied line device has been forcibly closed. You might wonder why this would
occur. One reason is to prevent a single application from monopolizing a line
device for too long. Another might be in response to a user modifying the con-
figuration of the line or its driver. In some cases, a service provider may forcibly
close the line device despite the user’s desire to immediately effect

426 � Chapter 9

configuration changes. What about reopening a line after it has been so rudely
closed? The ability to reopen a line immediately after it has been forcibly closed
will depend on the specific telephony device. In any case, the line device handle
or any call handles for calls on the line will no longer be valid once this message
has been sent.

Table 9-13: Parameter values for the LINE_CLOSE message

Parameter Value(s)

hDevice A handle to the line device that was closed. This handle is no longer valid.

dwInstance The callback instance supplied when opening the line

dwParam1 Not used

dwParam2 Not used

dwParam3 Not used

LINE_CREATE Message

Windows will send a LINE_CREATE message to an application to inform it that
a new line device has been created. Applications supporting TAPI version 1.4 or
above are candidates to receive the LINE_CREATE message. Older applica-
tions—those negotiating a TAPI version of 1.3 or less—will be sent a
LINE_LINEDEVSTATE message specifying LINEDEVSTATE_REINIT. This
situation requires these older applications to shut down their use of TAPI and
call lineInitialize() again to obtain the new number of devices. Unlike previous
versions of TAPI, however, newer versions do not require all applications to
shut down before allowing applications to reinitialize. Reinitialization can take
place immediately when a new device is created; however, complete shutdown
is required when a service provider is removed from the system. This message
informs an application of the existence of a new device along with its new
device ID. An application can then decide if it wants to attempt to work with the
new device. This message will be sent to all applications supporting this or sub-
sequent versions of TAPI that have called either lineInitialize() or
lineInitalizeEx(). This notification includes applications that do not have any line
devices open at the time.

Table 9-14: Parameter values for the LINE_CREATE message

Parameter Value(s)

hDevice Not used

dwInstance Not used

dwParam1 The dwDeviceID of the newly created device

dwParam2 Not used

dwParam3 Not used

Handling TAPI Line Messages � 427

9

C
h
a
p

te
r

LINE_DEVSPECIFIC Message

Windows will send a LINE_DEVSPECIFIC message to an application to notify
it about device-specific events occurring on a line, address, or call. The specific
meaning of the message and the interpretation of the parameters are device
specific. This message is used by a service provider in conjunction with the
lineDevSpecific() function.

Table 9-15: Parameter values for the LINE_DEVSPECIFIC message

Parameter Value(s)

hDevice A handle to either a line device or call. This is device specific.

dwInstance The callback instance supplied when opening the line

dwParam1 Device specific

dwParam2 Device specific

dwParam3 Device specific

LINE_DEVSPECIFICFEATURE Message

Windows will send a LINE_DEVSPECIFICFEATURE message to an applica-
tion to notify it about device-specific events occurring on a line, address, or call.
The meaning of the message and the interpretation of the parameters are
device specific. The LINE_DEVSPECIFICFEATURE message is used by a ser-
vice provider in conjunction with the lineDevSpecificFeature() function.

Table 9-16: Parameter values for the LINE_DEVSPECIFICFEATURE message

Parameter Value(s)

hDevice A handle to either a line device or call. This is device specific.

dwInstance The callback instance supplied when opening the line

dwParam1 Device specific

dwParam2 Device specific

dwParam3 Device specific

LINE_GATHERDIGITS Message

Windows will send a LINE_GATHERDIGITS message to an application when
the current buffered digit-gathering request has terminated or been canceled.
You can examine the digit buffer after the application has received this message.
Note that this message will be sent only to the application that initiated the digit
gathering on the telephony call using the lineGatherDigits() function.

If the lineGatherDigits() function is used to cancel a previous request to
gather digits, Windows will send a LINE_GATHERDIGITS message to an appli-
cation with dwParam1 set to LINEGATHERTERM_CANCEL. This indicates
that the originally specified buffer contains the digits gathered up to the point of
cancellation. Because the time stamp specified by dwParam3 may have been

428 � Chapter 9

generated on a computer other than the one on which an application is running,
you should use this only for comparison to other similarly time-stamped mes-
sages generated on the same line device. Those messages include LINE_GEN-
ERATE, LINE_MONITORDIGITS, LINE_MONITORMEDIA, and
LINE_MONITORTONE.

With this information, you can ascertain the relative timing or separation
between events. The TAPI Help file points out that the tick count can “wrap
around” after approximately 49.7 days and recommends that you take this into
account when performing calculations. If the service provider used does not
generate the time stamp (for example, if it was created using an earlier version
of TAPI), then TAPI will provide a time stamp at the point closest to the service
provider generating the event so that the synthesized time stamp will be as
accurate as possible.

Table 9-17: Parameter values for the LINE_GATHERDIGITS message

Parameter Value(s)

hDevice A handle to the call

dwInstance The callback instance supplied when opening the line

dwParam1 Provides the reason why digit gathering was terminated. This parameter must be one and only
one of the following LINEGATHERTERM_ constants:
LINEGATHERTERM_BUFFERFULL indicates that the requested number of digits has been gath-
ered (e.g., the buffer is full).
LINEGATHERTERM_TERMDIGIT indicates that one of the termination digits matched a
received digit (the matched termination digit is the last digit in the buffer).
LINEGATHERTERM_FIRSTTIMEOUT indicates that the first digit timeout expired (the buffer
contains no digits).
LINEGATHERTERM_INTERTIMEOUT indicates that the inter-digit timeout expired. The buffer
contains at least one digit.
LINEGATHERTERM_CANCEL indicates that the request was canceled by this application, by
another application, or because the call terminated.

dwParam2 Not used

dwParam3 The “tick count” (number of milliseconds since Windows started) at which the digit gathering
completed. For TAPI versions prior to 2.0, this parameter is unused.

LINE_GENERATE Message

Windows will send a LINE_GENERATE message to an application to notify it
that the current digit or tone generation has terminated. Be aware that only one
such generation request can be in progress on a given call at any time. Windows
will also send this message when either digit or tone generation is canceled. It
will send the LINE_GENERATE message only to the application that requested
the digit or tone generation.

Because the time stamp specified by dwParam3 may have been generated on
a computer other than the one on which the application is running, you should
use this only for comparison to other similarly time-stamped messages gener-
ated on the same line device. Those messages include LINE_GATHERDIGITS,

Handling TAPI Line Messages � 429

9

C
h
a
p

te
r

LINE_MONITORDIGITS, LINE_MONITORMEDIA, and LINE_MONITOR-
TONE.

As with previous similar messages, with this information, you can ascertain
the relative timing or separation between events. The TAPI Help file points out
that the tick count can “wrap around’ after approximately 49.7 days and recom-
mends that you take this into account when performing calculations. If the
service provider used does not generate the time stamp (for example, if it was
created using an earlier version of TAPI), then TAPI will provide a time stamp
at the point closest to the service provider generating the event so that the syn-
thesized time stamp will be as accurate as possible.

Table 9-18: Parameter values for the LINE_GENERATE message

Parameter Value(s)

hDevice A handle to the call

dwInstance The callback instance supplied when opening the line

dwParam1 This parameter provides the reason why digit or tone generation was terminated. This parame-
ter must be one and only one of the following LINEGENERATETERM_ constants:
LINEGENERATETERM_DONE indicates that the requested number of digits have been gener-
ated, or the requested tones have been generated for the requested duration.
LINEGENERATETERM_CANCEL indicates that the digit or tone generation request was
canceled by this application, by another application, or because the call terminated.

dwParam2 Not used

dwParam3 The “tick count” (number of milliseconds since Windows started) at which the digit or tone gen-
eration completed. For versions prior to TAPI 2.0, this parameter is unused.

LINE_LINEDEVSTATE Message

Windows will send a LINE_LINEDEVSTATE message to an application when
the state of a line device has changed. You can call the lineGetLineDevStatus()
function to determine the new status of the line. Applications can use this func-
tion to query a line device about its current line status. Note that the status
information returned applies globally to all addresses on the line device. Simi-
larly, use lineGetAddressStatus() to determine the status information about a
specific address on a line. You can control the process of sending the
LINE_LINEDEVSTATE message by using the lineSetStatusMessages() func-
tion. Using this function, an application can specify the status item changes
about which it wants to be notified. By default, all status reporting will be dis-
abled with the exception of LINEDEVSTATE_REINIT, which can never be
disabled. This message will be sent to all applications that have a handle to the
line, including those that called lineOpen() with the dwPrivileges parameter set
to LINECALLPRIVILEGE_NONE, LINECALLPRIVILEGE_OWNER,
LINECALLPRIVILEGE_MONITOR, or valid combinations of these.

430 � Chapter 9

Table 9-19: Parameter values for the LINE_LINEDEVSTATE message

Parameter Value(s)

hDevice A handle to the line device. This parameter is NULL when dwParam1 is
LINEDEVSTATE_REINIT.

dwInstance The callback instance supplied when opening the line. If the dwParam1 parameter is
LINEDEVSTATE_REINIT, the dwCallbackInstance parameter is not valid and is set to
zero.

dwParam1 This parameter indicates that the line device status item has changed. The parameter can
be a combination of the LINEDEVSTATE_ constants explained in Table 9-20.

dwParam2 The interpretation of this parameter depends on the value of dwParam1. If dwParam1 is
LINEDEVSTATE_RINGING, dwParam2 contains the ring mode with which the switch
instructs the line to ring. Valid ring modes are numbers in the range of one to
dwNumRingModes, where dwNumRingModes is a line device capability. If dwParam1 is
LINEDEVSTATE_REINIT, and the message was issued by TAPI as a result of translation of
a newTAPI message into a REINIT message, then dwParam2 will contain the dwMsg
parameter of the original message (for example, LINE_CREATE or LINE_LINEDEV-
STATE). If dwParam2 is zero, the REINIT message is a “real” REINIT message that
requires an application to call the lineShutdown() function at its earliest convenience.

dwParam3 The interpretation of this parameter depends on the value of dwParam1 and, in some
cases, also on the value of dwParam2. If dwParam1 is LINEDEVSTATE_RINGING,
dwParam3 will contain the ring count for this ring event, with those counts starting at
zero. If dwParam1 is LINEDEVSTATE_REINIT and TAPI issues a message responding to
the translation of a new API message into a REINIT error message, dwParam3 will con-
tain the dwParam1 parameter of the original message depending on the value of
dwParam2. In this case, if dwParam2 is LINE_LINEDEVSTATE, dwParam3 will be
LINEDEVSTATE_TRANSLATECHANGE or some other LINEDEVSTATE_ value; if
dwParam2 is LINE_CREATE, dwParam3 will contain the new device ID.

Table 9-20: LINEDEVSTATE_ constants used with the dwParam1 field of the LINE_LINEDEVSTATE message

Constant Meaning

LINEDEVSTATE_
OTHER

This constant indicates that device status items other than those listed below have
changed (in this case, you should check the current device status to determine which
items have changed).

LINEDEVSTATE_
RINGING

This constant indicates that the switch tells the line to alert the user (service providers
notify applications on each ring cycle by sending messages containing this constant).

LINEDEVSTATE_
CONNECTED

This constant indicates that the line was previously disconnected but is now connected to
TAPI again.

LINEDEVSTATE_
DISCONNECTED

This constant indicates that this line was previously connected and is now disconnected
from TAPI.

LINEDEVSTATE_
MSGWAITON

This constant indicates that the “message waiting” indicator is turned on.

LINEDEVSTATE_
MSGWAITOFF

This constant indicates that the “message waiting” indicator is turned off.

LINEDEVSTATE_
NUMCOMPLETIONS

This constant indicates that the number of outstanding call completions on the line device
has changed.

LINEDEVSTATE_
INSERVICE

This constant indicates that the line is connected to TAPI, a situation that occurs when
TAPI is first activated or when the line wire is physically plugged in and in service at the
switch while TAPI is active.

Handling TAPI Line Messages � 431

9

C
h
a
p

te
r

Constant Meaning

LINEDEVSTATE_
OUTOFSERVICE

This constant indicates that the line is out of service at the switch or physically discon-
nected, resulting in TAPI not being able to operate on the line device.

LINEDEVSTATE_
MAINTENANCE

This constant indicates that maintenance is being performed on the line at the switch
resulting in TAPI not being able to operate on the line device.

LINEDEVSTATE_
OPEN

This constant indicates that the line has been opened by another application.

LINEDEVSTATE_
CLOSE

This constant indicates that the line has been closed by another application.

LINEDEVSTATE_
NUMCALLS

This constant indicates that the number of calls on the line device has changed.

LINEDEVSTATE_
TERMINALS

This constant indicates that the terminal settings have changed.

LINEDEVSTATE_
ROAMMODE

This constant indicates that the roaming state of the line device has changed.

LINEDEVSTATE_
BATTERY

This constant indicates that the battery level of a cellular phone has changed significantly.

LINEDEVSTATE_
SIGNAL

This constant indicates that the signal level of a cellular phone has changed significantly.

LINEDEVSTATE_
DEVSPECIFIC

This constant indicates that the line’s device-specific information has changed.

LINEDEVSTATE_
REINIT

This constant indicates that items have changed in the configuration of line devices (in
order to discover these changes, an application should reinitialize its use of TAPI and set
the dwDevice parameter to NULL for this state change, as it applies to any of the lines in
the system).

LINEDEVSTATE_
LOCK

This constant indicates that the locked status of the line device has changed (see the
description of the LINEDEVSTATUSFLAGS_LOCKED bit of the LINEDEVSTATUS-
FLAGS_ constants).

LINEDEVSTATE_
CAPSCHANGE

This constant indicates that one or more of the fields in the LINEDEVCAPS structure for
the address have changed due to configuration changes made by the user or other cir-
cumstances (an application should use lineGetDevCaps() to read the updated structure).

LINEDEVSTATE_
CONFIGCHANGE

This constant indicates that configuration changes have been made to one or more of the
media devices associated with the line device (an application may call lineGetDevConfig()
to read the updated information).

LINEDEVSTATE_
TRANSLATECHANGE

This constant indicates that, due to configuration changes made by the user or other cir-
cumstances, one or more of the fields in the LINETRANSLATECAPS structure have
changed (you should call lineGetTranslateCaps() to read the updated structure).

LINEDEVSTATE_
COMPLCANCEL

This constant indicates that the call completion identified by the completion ID contained
in parameter dwParam2 of the LINE_LINEDEVSTATE message has been externally can-
celed and is no longer considered valid (if that value were to be passed in a subsequent
call to lineUncompleteCall(), the function would fail with LINEERR_INVALCOM-
PLETIONID).

432 � Chapter 9

TE
AM
FL
Y

Team-Fly®

Constant Meaning

LINEDEVSTATE_
REMOVED

This constant indicates that the device is being removed from the system by the service
provider (most likely through user action, a control panel, or similar utility). A
LINE_LINEDEVSTATE message with this value will normally be immediately followed by
a LINE_CLOSE message on the device. Subsequent attempts to access the device prior
to TAPI being reinitialized will result in LINEERR_NODEVICE being returned to an appli-
cation. If a service provider sends a LINE_LINEDEVSTATE message containing this value
to TAPI, TAPI will pass it along to applications that have negotiated TAPI version 1.4 or
above; applications negotiating a previous TAPI version will not receive any notification.

LINE_MONITORDIGITS Message

Windows will send a LINE_MONITORDIGITS message to an application when
a digit has been detected. The lineMonitorDigits() function controls the process
of sending this message. To be a candidate to receive this message, an applica-
tion must have enabled digit monitoring.

Because the time stamp specified by dwParam3 may have been generated on
a computer other than the one on which an application is running, you should
use this only for comparison to other similarly time-stamped messages gener-
ated on the same line device. Those messages include LINE_GATHERDIGITS,
LINE_GENERATE, LINE_MONITORMEDIA, and LINE_MONITORTONE.

As with previous similar messages, with this information you can ascertain
the relative timing or separation between events. The TAPI Help file points out
that the tick count can “wrap around” after approximately 49.7 days and recom-
mends that you take this into account when performing calculations. If the
service provider used does not generate the time stamp (for example, if it was
created using an earlier version of TAPI), then TAPI will provide a time stamp
at the point closest to the service provider generating the event so that the syn-
thesized time stamp will be as accurate as possible.

Table 9-21: Parameter values for the LINE_MONITORDIGITS message

Parameter Value(s)

hDevice A handle to the call

dwInstance The callback instance supplied when opening the call’s line

dwParam1 The low-order byte contains the last digit received in ASCII.

dwParam2 The digit mode that was detected. This parameter must be one and only one of the fol-
lowing LINEDIGITMODE_ constants:
LINEDIGITMODE_PULSE directs TAPI to detect digits as audible clicks that are the
result of rotary pulse sequences (valid digits for pulse are 0 through 9).
LINEDIGITMODE_DTMF directs TAPI to detect digits as DTMF tones (valid digits for
DTMF are 0 through 9, A, B, C, D, *, and #).
LINEDIGITMODE_DTMFEND directs TAPI to detect and provide application notifica-
tion of DTMF down edges (valid digits for DTMF are 0 through 9, A, B, C, D, *, and #).

dwParam3 The “tick count” (number of milliseconds since Windows started) at which the specified
digit was detected. For TAPI versions prior to version 2.0, this parameter is unused.

Handling TAPI Line Messages � 433

9

C
h
a
p

te
r

LINE_MONITORMEDIA Message

Windows will send a LINE_MONITORMEDIA message to an application when
a change in the call’s media mode has been detected. The lineMonitorMedia()
function controls the process of sending this message. To be a candidate to
receive this message, an application must have enabled media monitoring

Because the time stamp specified by dwParam3 may have been generated on
a computer other than the one on which an application is running, you should
use this only for comparison to other similarly time-stamped messages gener-
ated on the same line device. Those messages include LINE_GATHERDIGITS,
LINE_MONITORDIGITS, LINE_GENERATE, and LINE_MONITORTONE.

As with previous similar messages, with this information you can ascertain
the relative timing or separation between events. The TAPI Help file points out
that the tick count can “wrap around” after approximately 49.7 days and recom-
mends that you take this into account when performing calculations. If the
service provider used does not generate the time stamp (for example, if it was
created using an earlier version of TAPI), then TAPI will provide a time stamp
at the point closest to the service provider generating the event so that the syn-
thesized time stamp will be as accurate as possible.

Table 9-22: Parameter values for the LINE_MONITORMEDIA message

Parameter Value(s)

hDevice A handle to the call

dwInstance The callback instance supplied when opening the line

dwParam1 The new media mode. This parameter must be one and only one of the following
LINEMEDIAMODE_ constants:
LINEMEDIAMODE_INTERACTIVEVOICE indicates the presence of voice energy has
been detected and the call is treated as an interactive call with humans on both ends.
LINEMEDIAMODE_AUTOMATEDVOICE indicates the presence of voice energy has
been detected and the call is locally handled by an automated application.
LINEMEDIAMODE_DATAMODEM indicates a data modem session has been detected.
LINEMEDIAMODE_G3FAX indicates a group 3 fax has been detected.
LINEMEDIAMODE_TDD indicates a TDD (Telephony Devices for the Deaf) session has
been detected.
LINEMEDIAMODE_G4FAX indicates a group 4 fax has been detected.
LINEMEDIAMODE_DIGITALDATA indicates digital data has been detected.
LINEMEDIAMODE_TELETEX indicates a teletex session has been detected. Teletex is
one of the telematic services.
LINEMEDIAMODE_VIDEOTEX indicates a videotex session has been detected. Video-
tex is one the telematic services.
LINEMEDIAMODE_TELEX indicates a telex session has been detected. Telex is one the
telematic services.
LINEMEDIAMODE_MIXED indicates a mixed session has been detected. Mixed is one
of the telematic services.
LINEMEDIAMODE_ADSI indicates an ADSI (Analog Display Services Interface) session
has been detected.
LINEMEDIAMODE_VOICEVIEW indicates the media mode of the call is VoiceView.

dwParam2 Not used

434 � Chapter 9

Parameter Value(s)

dwParam3 The “tick count” (number of milliseconds since Windows started) at which the specified
media was detected. For TAPI versions prior to 2.0, this parameter is unused.

LINE_MONITORTONE Message

Windows will send a LINE_MONITORTONE message to an application when a
tone is detected. The lineMonitorTones() function controls the process of send-
ing this message. Because the time stamp specified by dwParam3 may have
been generated on a computer other than the one on which an application is
running, you should use this only for comparison to other similarly time-
stamped messages generated on the same line device. Those messages include
LINE_GATHERDIGITS, LINE_MONITORDIGITS, LINE_MONITORMEDIA,
and LINE_GENERATE.

As with previous similar messages, with this information you can ascertain
the relative timing or separation between events. The TAPI Help file points out
that the tick count can “wrap around” after approximately 49.7 days and recom-
mends that you take this into account when performing calculations. If the
service provider used does not generate the time stamp (for example, if it was
created using an earlier version of TAPI), then TAPI will provide a time stamp
at the point closest to the service provider generating the event so that the syn-
thesized time stamp will be as accurate as possible.

Table 9-23: Parameter values for the LINE_MONITORTONE message

Parameter Value(s)

hDevice A handle to the call

dwInstance The callback instance supplied when opening the call’s line

dwParam1 An application-specific dwAppSpecific field of the LINEMONITORTONE structure for
the tone that was detected

dwParam2 Not used

dwParam3 The “tick count” (number of milliseconds since Windows started) at which the specified
media was detected. For TAPI versions prior to 2.0, this parameter is unused.

LINE_PROXYREQUEST Message

Windows uses the LINE_PROXYREQUEST message to send a request to a
registered proxy function handler. This message will be sent only to the first
application that registered to handle proxy requests of the type being delivered.
An application should process the request contained in the proxy buffer and call
lineProxyResponse() to return data or deliver results. Processing of the request
should be done within the context of an application’s TAPI callback function,
only if it can be performed immediately without waiting for response from any
other entity.

Handling TAPI Line Messages � 435

9

C
h
a
p

te
r

If an application needs to communicate with other entities, the request
should be queued within an application and you should exit the callback func-
tion. This approach will ensure that there is no delay in an application’s receipt
of further TAPI messages. The Microsoft Help file provides examples that
might result in blocking of messages.

When the LINE_PROXYREQUEST is sent to the proxy handler, TAPI has
already returned a positive dwRequestID function result to the original applica-
tion and has unblocked the calling thread to continue execution. At that point, an
application is awaiting a LINE_REPLY message, which is automatically gener-
ated when the proxy handler application calls lineProxyResponse().

Do not free the memory pointed to by lpProxyRequest; TAPI will take care of
that during the execution of the lineProxyResponse() function. You must call
lineProxyResponse() once and only once for each LINE_PROXYREQUEST
message.

If an application receives a LINE_CLOSE message while it has pending proxy
requests, it should call lineProxyResponse() for each pending request, passing
in an appropriate dwResult value (such as LINEERR_OPERATIONFAILED).

Table 9-24: Parameter values for the LINE_PROXYREQUEST message

Parameter Value(s)

hDevice An application’s handle to the line device on which the agent status has changed

dwInstance The callback instance supplied when opening the call’s line

dwParam1 Pointer to a LINEPROXYREQUEST structure containing the request to be pro-
cessed by the proxy handler application

dwParam2 Reserved

dwParam3 Reserved

LINE_REMOVE Message

Windows will send a LINE_REMOVE message to an application to inform it of
the removal (deletion from the system) of a line device. Generally, this is not
used for temporary removals, such as extraction of PCMCIA devices. Rather, it
is used only in the case of permanent removals in which the service provider
would no longer report the device when TAPI was reinitialized.

As in the case of other messages, there are backward compatibility issues.
Applications supporting TAPI version 2.0 or above will be sent a
LINE_REMOVE message informing them that the device has been removed
from the system. The LINE_REMOVE message will have been preceded by a
LINE_CLOSE message on each line handle if an application had the line open.
This message will be sent to all applications supporting TAPI version 2.0 or
above that have called lineInitializeEx(), including those that do not have any
line devices open at the time.

436 � Chapter 9

Older applications will be sent a LINE_LINEDEVSTATE message specifying
LINEDEVSTATE_REMOVED, followed by a LINE_CLOSE message. Unlike
the LINE_REMOVE message, however, these older applications can receive
these messages only if they have the line open when it is removed. If they do
not have the line open, their only indication that the device was removed would
be receiving a LINEERR_NODEVICE error when attempting to access the
device.

Following the removal of a device, any attempt to access it by its device ID
will result in a LINEERR_NODEVICE error. After all TAPI applications have
been shut down and TAPI has been reinitialized, the removed device will no
longer occupy a device ID. After a LINE_REMOVE message is received from a
service provider, no further calls will be made to that service provider using that
line device ID.

Table 9-25: Parameter values for the LINE_REMOVE message

Parameter Value(s)

hDevice Reserved; set to 0

dwInstance Reserved; set to 0

dwParam1 Identifier of the line device that was removed

dwParam2 Reserved; set to 0

dwParam3 Reserved; set to 0

LINE_REPLY Message

Windows will send a LINE_REPLY message to an application to report the
results of function calls that completed asynchronously. Functions that operate
asynchronously will return a positive request ID value to an application along
with a reply message to identify the request that was completed. The other
parameter for the LINE_REPLY indicates success or failure. Possible errors are
the same as those defined by the corresponding function. This message cannot
be disabled. In some cases, an application may fail to receive the LINE_REPLY
message corresponding to a call to an asynchronous function. This occurs if the
corresponding call handle is deallocated before the message has been received.

Table 9-26: Parameter values for the LINE_REPLY message

Parameter Value(s)

hDevice Not used

dwInstance Returns an application’s callback instance

dwParam1 The request ID for which this is the reply

dwParam2 The success or error indication. You should cast this parameter into a LONG.
Zero indicates success; a negative number indicates an error.

dwParam3 Not used

Handling TAPI Line Messages � 437

9

C
h
a
p

te
r

LINE_REQUEST Message

As with the previous message, Windows will send a LINE_REQUEST message
to an application to report the results of function calls that completed
asynchronously. This message will be sent to the highest priority application
that has registered for the corresponding request mode. This message indicates
the arrival of an Assisted Telephony request (see Chapter 8) of the specified
request mode. If dwParam1 is LINEREQUESTMODE_MAKECALL or
LINEREQUESTMODE_MEDIACALL, an application can call the lineGet-
Request() function (using the corresponding request mode) to receive the
request. If dwParam1 is LINEREQUESTMODE_DROP, the message will con-
tain all of the information the request recipient needs in order to perform the
request.

Table 9-27: Parameter values for the LINE_REQUEST message

Parameter Value(s)

hDevice Not used

dwInstance The registration instance of an application specified in lineRegisterRequest-
Recipient()

dwParam1 The request mode of the newly pending request. This parameter uses one of
the following LINEREQUESTMODE_ constants:
LINEREQUESTMODE_MAKECALL indicates a tapiRequestMakeCall
request.
LINEREQUESTMODE_DROP indicates to drop the call.
LINEREQUESTMODE_MEDIACALL indicates to make a media call.

dwParam2 If dwParam1 is set to LINEREQUESTMODE_DROP, dwParam2 will contain
the hWnd of an application requesting the drop. Otherwise, dwParam2 is
unused.

dwParam3 If dwParam1 is set to LINEREQUESTMODE_DROP, the low-order word of
dwParam3 contains the wRequestID as specified by an application requesting
the drop. Otherwise, dwParam3 is unused.

LINE_AGENTSESSIONSTATUS Message

Windows will send a LINE_AGENTSESSIONSTATUS message when the sta-
tus of an ACD agent session changes on an agent handler for which an
application currently has an open line. This message is generated using the
lineProxyMessage() function.

438 � Chapter 9

Table 9-28: Parameter values for the LINE_AGENTSESSIONSTATUS message

Parameter Value(s)

hDevice An application’s handle to the line device on which the agent session status
has changed

dwInstance The callback instance supplied when opening the line

dwParam1 A handle of the agent session whose status has changed

dwParam2 Specifies the agent session status that has changed; can be one or more of the
LINE_AGENTSESSIONSTATUS constants

dwParam3 If dwParam2 includes the LINEAGENTSTATUSEX_STATE bit, dwParam3
indicates the new value of the agent state, which is one of the
LINEAGENTSTATEEX_ constants. Otherwise, dwParam3 is set to zero.

LINE_QUEUESTATUS Message

Windows will send a LINE_QUEUESTATUS message when the status of an
ACD queue changes on an agent handler for which an application currently has
an open line. This message is generated using the lineProxyMessage() function.

Table 9-29: Parameter values for the LINE_QUEUESTATUS message

Parameter Value(s)

hDevice An application’s handle to the line device. This relates to the agent handler.

dwInstance The callback instance supplied when opening the line

dwParam1 The identifier of the queue whose status has changed

dwParam2 Specifies the queue status that has changed; can be one or more of the
LINEQUEUESTATUS_ constants

dwParam3 Reserved; set to zero

LINE_AGENTSTATUSEX Message

Windows will send a LINE_AGENTSTATUSEX message when the status of an
ACD agent changes on an agent handler for which an application currently has
an open line. This message is generated using the lineProxyMessage() function.

Table 9-30: Parameter values for the LINE_AGENTSTATUSEX message

Parameter Value(s)

hDevice An application’s handle to the line device. This relates to the agent handler.

dwInstance The callback instance supplied when opening the line

dwParam1 The handle of the agent whose status has changed

dwParam2 Specifies the queue status that has changed; can be one or more of the
LINEQUEUESTATUS_ constants

dwParam3 If dwParam2 includes the LINEAGENTSTATUSEX _STATE bit, the
dwParam3 field will indicate the new value of the agent state, which will be
one of the LINEAGENTSTATEEX_ constants. Otherwise, dwParam3 will be
set to zero.

Handling TAPI Line Messages � 439

9

C
h
a
p

te
r

LINE_GROUPSTATUS Message

Windows will send a LINE_GROUPSTATUS message when the status of an
ACD group changes on an agent handler for which an application currently has
an open line. This message is generated using the lineProxyMessage() function.

Table 9-31: Parameter values for the LINE_GROUPSTATUS message

Parameter Value(s)

hDevice An application’s handle to the line device. This relates to the agent handler.

dwInstance The callback instance supplied when opening the line

dwParam1 Reserved; set to zero

dwParam2 Specifies the group status that has changed. An application can invoke
lineGetGroupList() to determine the changes in available groups. The
dwParam2 parameter is one or more of the LINEGROUPSTATUS_ constants.

dwParam3 Reserved; set to zero

LINE_PROXYSTATUS Message

Windows will send a LINE_PROXYSTATUS (listed incorrectly as “LINE_
QUEUESTATUS” in MS Help) message when the available proxies change on a
line that an application currently has open. TAPISRV generates this message
during a lineOpen() function using LINEPROXYSTATUS_OPEN and LINE-
PROXYSTATUS_ALLOPENFORACD or a lineClose() function using
LINEPROXYSTATUS_CLOSE (all LINEPROXYSTATUS_ constants).

Table 9-32: Parameter values for the LINE_PROXYSTATUS message

Parameter Value(s)

hDevice An application’s handle to the line device. This relates to the agent handler.

dwInstance The callback instance supplied when opening the line

dwParam1 Specifies the queue status that has changed; can be one or more of the
LINEPROXYSTATUS_ constants

dwParam2 If dwParam1 is set to LINEPROXYSTATUS_OPEN or LINEPROXYSTATUS_
CLOSE, dwParam2 indicates the related proxy request type, which is one of
the following: LINEPROXYREQUEST_SETAGENTGROUP, LINEPROXY-
REQUEST_SETAGENTSTATE, LINEPROXYREQUEST_SETAGENTACTIVITY,
LINEPROXYREQUEST_GETAGENTCAPS, LINEPROXYREQUEST_GET-
AGENTSTATUS, LINEPROXYREQUEST_AGENTSPECIFIC, LINEPROXY-
REQUEST_GETAGENTACTIVITYLIST, LINEPROXYREQUEST_GETAGENT-
GROUPLIST, LINEPROXYREQUEST_CREATEAGENT, LINEPROXY-
REQUEST_SETAGENTMEASUREMENTPERIOD, LINEPROXYREQUEST_
GETAGENTINFO, LINEPROXYREQUEST_CREATEAGENTSESSION,
LINEPROXYREQUEST_GETAGENTSESSIONLIST, LINEPROXYREQUEST_
SETAGENTSESSIONSTATE, LINEPROXYREQUEST_ GETAGENTSESSION-
INFO, LINEPROXYREQUEST_GETQUEUELIST, LINEPROXYREQUEST_
SETQUEUEMEASUREMENTPERIOD, LINEPROXYREQUEST_GETQUEUE-
INFO, LINEPROXYREQUEST_GETGROUPLIST, or LINEPROXYREQUEST_
SETAGENTSTATEEX; otherwise, dwParam2 is set to zero.

440 � Chapter 9

Parameter Value(s)

dwParam3 Reserved; set to zero

LINE_APPNEWCALLHUB Message

Windows will send a LINE_APPNEWCALLHUB message to inform an applica-
tion when a new call hub has been created.

Table 9-33: Parameter values for the LINE_APPNEWCALLHUB message

Parameter Value(s)

hDevice A handle to the call

dwInstance The callback instance supplied when opening the call’s line

dwParam1 The tracking level on the new hub, as defined by one of the
LINECALLHUBTRACKING_ constants

dwParam2 Reserved; should be set to 0

dwParam3 Not used; should be set to 0

LINE_CALLHUBCLOSE Message

Windows will send a LINE_CALLHUBCLOSE message when a call hub has
been closed. Since this message originates with TAPI and not with a service
provider, there is no corresponding TSPI message.

Table 9-34: Parameter values for the LINE_CALLHUBCLOSE message

Parameter Value(s)

hDevice A handle to the call

dwInstance The callback instance supplied when opening the call’s line

dwParam1 Reserved; set to 0

dwParam2 Reserved; set to 0

dwParam3 Reserved; set to 0

LINE_DEVSPECIFICEX Message

Windows will send a LINE_DEVSPECIFICEX message to notify an application
about device-specific events occurring on a line, address, or call. The meaning
of the message and the interpretation of the parameters are device specific. The
LINE_DEVSPECIFICEX message is used by a service provider in conjunction
with the lineDevSpecific() function. Its meaning is device specific.

Table 9-35: Parameter values for the LINE_DEVSPECIFICEX message

Parameter Value(s)

hDevice A handle to either a line device or call. This parameter is device specific.

dwInstance The callback instance supplied when opening the line

dwParam1 Device specific

Handling TAPI Line Messages � 441

9

C
h
a
p

te
r

Parameter Value(s)

dwParam2 Device specific

dwParam3 Device specific

LINEPROXYREQUEST_ Constants

The LINEPROXYREQUEST_ constants are defined as follows in TAPI.PAS:

LINEPROXYREQUEST_SETAGENTGROUP = $00000001; // TAPI v2.0

LINEPROXYREQUEST_SETAGENTSTATE = $00000002; // TAPI v2.0

LINEPROXYREQUEST_SETAGENTACTIVITY = $00000003; // TAPI v2.0

LINEPROXYREQUEST_GETAGENTCAPS = $00000004; // TAPI v2.0

LINEPROXYREQUEST_GETAGENTSTATUS = $00000005; // TAPI v2.0

LINEPROXYREQUEST_AGENTSPECIFIC = $00000006; // TAPI v2.0

LINEPROXYREQUEST_GETAGENTACTIVITYLIST = $00000007; // TAPI v2.0

LINEPROXYREQUEST_GETAGENTGROUPLIST = $00000008; // TAPI v2.0

LINEPROXYREQUEST_CREATEAGENT = $00000009; // TAPI v2.2

LINEPROXYREQUEST_SETAGENTMEASUREMENTPERIOD = $0000000A; // TAPI v2.2

LINEPROXYREQUEST_GETAGENTINFO = $0000000B; // TAPI v2.2

LINEPROXYREQUEST_CREATEAGENTSESSION = $0000000C; // TAPI v2.2

LINEPROXYREQUEST_GETAGENTSESSIONLIST = $0000000D; // TAPI v2.2

LINEPROXYREQUEST_SETAGENTSESSIONSTATE = $0000000E; // TAPI v2.2

LINEPROXYREQUEST_GETAGENTSESSIONINFO = $0000000F; // TAPI v2.2

LINEPROXYREQUEST_GETQUEUELIST = $00000010; // TAPI v2.2

LINEPROXYREQUEST_SETQUEUEMEASUREMENTPERIOD = $00000011; // TAPI v2.2

LINEPROXYREQUEST_GETQUEUEINFO = $00000012; // TAPI v2.2

LINEPROXYREQUEST_GETGROUPLIST = $00000013; // TAPI v2.2

LINEPROXYREQUEST_SETAGENTSTATEEX = $00000014; // TAPI v2.2

These constants are used in TAPI version 2.0 and later, and they occur in two
contexts. First, they can be used in an array of DWORD values in the LINE-
CALLPARAMS structure passed in with lineOpen() when the LINEOPEN-
OPTION_PROXY option is specified to indicate which functions an application
is willing to handle; second, they can be used in the LINEPROXYREQUEST
structure passed to the handler application by a LINEPROXYREQUEST_ mes-
sage to indicate the type of request that is to be processed and the format of the
data in the buffer. Table 9-36 shows each of these constants and the function
with which it is associated.

442 � Chapter 9

TE
AM
FL
Y

Team-Fly®

Table 9-36: LINEPROXYREQUEST_ constants

Constant Associated Function

LINEPROXYREQUEST_AGENTSPECIFIC lineAgentSpecific()

LINEPROXYREQUEST_CREATEAGENT lineCreateAgent()

LINEPROXYREQUEST_CREATEAGENTSESSION lineCreateAgentSession()

LINEPROXYREQUEST_GETAGENTACTIVITYLIST lineGetAgentActivityList()

LINEPROXYREQUEST_GETAGENTCAPS lineGetAgentCaps()

LINEPROXYREQUEST_GETAGENTGROUPLIST lineGetAgentGroupList()

LINEPROXYREQUEST_GETAGENTINFO lineGetAgentInfo()

LINEPROXYREQUEST_GETAGENTSESSIONINFO lineGetAgentSessionInfo()

LINEPROXYREQUEST_GETAGENTSESSIONLIST lineGetAgentSessionList()

LINEPROXYREQUEST_GETAGENTSTATUS lineGetAgentStatus()

LINEPROXYREQUEST_GETGROUPLIST lineGetGroupList()

LINEPROXYREQUEST_GETQUEUEINFO lineGetQueueInfo()

LINEPROXYREQUEST_GETQUEUELIST lineGetQueueList()

LINEPROXYREQUEST_SETAGENTACTIVITY lineSetAgentActivity()

LINEPROXYREQUEST_SETAGENTGROUP lineSetAgentGroup()

Functions Related to Message Handling
There are several functions associated with messages. Let’s take a look at them
and their related structures.

function lineGetMessage TAPI.pas

Syntax

function lineGetMessage(hLineApp: HLINEAPP; var lpMessage: TLineMessage;
dwTimeout: DWORD): Longint; stdcall; // TAPI v2.0

Description

This function returns the next TAPI message that is queued for delivery to an
application that is using the Event Handle notification mechanism (see
lineInitializeEx() for further details).

Parameters

hLineApp: The handle (HLINEAPP) returned by lineInitializeEx(). The applica-
tion must have set the LINEINITIALIZEEXOPTION_USEEVENT option
in the dwOptions member of the LINEINITIALIZEEXPARAMS structure.

var lpMessage: A pointer (TLineMessage) to a LINEMESSAGE structure. Upon
successful return from this function, the structure will contain the next
message that had been queued for delivery to the application.

Handling TAPI Line Messages � 443

9

C
h
a
p

te
r

dwTimeout: A DWORD indicating the timeout interval, in milliseconds. The
function returns if the interval elapses, even if no message can be
returned. If dwTimeout is zero, the function checks for a queued message
and returns immediately. If dwTimeout is INFINITE, the function’s time-
out interval never elapses.

Return Value

This function returns zero if the request is successful or a negative error
number if an error has occurred. Possible return values are LINEERR_INVAL-
APPHANDLE, LINEERR_OPERATIONFAILED, LINEERR_INVALPOINTER,
and LINEERR_NOMEM.

See Also

lineInitializeEx, LINEINITIALIZEEXPARAMS, LINEMESSAGE, lineShutdown

Example

None

structure LINEINITIALIZEEXPARAMS TAPI.pas

The LINEINITIZALIZEEXPARAMS structure describes parameters supplied
when making calls using LINEINITIALIZEEX. It is defined as follows in
TAPI.pas:

PLineInitializeExParams = ^TLineInitializeExParams;
lineinitializeexparams_tag = packed record
dwTotalSize, // TAPI v2.0
dwNeededSize, // TAPI v2.0
dwUsedSize, // TAPI v2.0
dwOptions: DWORD; // TAPI v2.0
Handles: TTAPIHandleUnion;
dwCompletionKey: DWORD; // TAPI v2.0

end;
TLineInitializeExParams = lineinitializeexparams_tag;
LINEINITIALIZEEXPARAMS = lineinitializeexparams_tag;

The fields of this structure are described in Table 9-37.

Table 9-37: Fields of the LINEINITIALIZEEXPARAMS structure

Field Meaning

dwTotalSize The total size, in bytes, allocated to this data structure

dwNeededSize The size, in bytes, for this data structure that is needed to hold all the
returned information

dwUsedSize The size, in bytes, of the portion of this data structure that contains useful
information

dwOptions One of the LINEINITIALIZEEXOPTION_ constants (see Table 9-38) that
specifies the event notification mechanism that the application desires to
use

handles If dwOptions specifies LINEINITIALIZEEXOPTION_USEEVENT, TAPI
returns the event handle in this field.

444 � Chapter 9

Field Meaning

dwCompletionKey If dwOptions specifies LINEINITIALIZEEXOPTION_USECOMPLETION-
PORT, the application must specify in this field the handle of an existing
completion port opened using CreateIoCompletionPort(). If dwOptions
specifies LINEINITIALIZEEXOPTION_USECOMPLETIONPORT, the
application must specify in this field a value that is returned through the
lpCompletionKey parameter of GetQueuedCompletionStatus() to identify
the completion message as a telephony message.

LINEINITIALIZEEXOPTION_ Constants

The LINEINITIALIZEEXOPTION_ constants specify which event notification
mechanism to use when initializing a session. They are described in Table 9-38.

Table 9-38: LINEINITIALIZEEXOPTION_ constants

Constant Meaning

LINEINITIALIZEEXOPTION_
CALLHUBTRACKING

The application desires to use the call hub tracking event notifica-
tion mechanism. This constant is exposed only to applications
that negotiate a TAPI version of 3.0 or higher.

LINEINITIALIZEEXOPTION_
USECOMPLETIONPORT

The application desires to use the Completion Port event notifi-
cation mechanism. This flag is exposed only to applications that
negotiate a TAPI version of 2.0 or higher.

LINEINITIALIZEEXOPTION_
USEEVENT

The application desires to use the Event Handle event notifica-
tion mechanism. This flag is exposed only to applications that
negotiate a TAPI version of 2.0 or higher.

LINEINITIALIZEEXOPTION_
USEHIDDENWINDOW

The application desires to use the Hidden Window event notifi-
cation mechanism. This flag is exposed only to applications that
negotiate a TAPI version of 2.0 or higher.

structure LINEMESSAGE TAPI.pas

The LINEMESSAGE structure contains parameter values specifying a change
in status of the line that the application currently has open. The lineGet-
Message() function returns the LINEMESSAGE structure. (For information
about parameter values passed in this structure, see Line Device Messages in
the TAPI Help file.) It is defined as follows in TAPI.pas:

PLineMessage = ^TLineMessage;
linemessage_tag = packed record
hDevice, // TAPI v2.0
dwMessageID, // TAPI v2.0
dwCallbackInstance, // TAPI v2.0
dwParam1, // TAPI v2.0
dwParam2, // TAPI v2.0
dwParam3: DWORD; // TAPI v2.0

end;
TLineMessage = linemessage_tag;
LINEMESSAGE = linemessage_tag;

The fields of the LINEMESSAGE structure are described in Table 9-39.

Handling TAPI Line Messages � 445

9

C
h
a
p

te
r

Table 9-39: Fields of the LINEMESSAGE structure

Field Meaning

hDevice A handle to either a line device or a call. The nature of this han-
dle (line handle or call handle) can be determined by the context
provided by dwMessageID.

dwMessageID A line or call device message

dwCallbackInstance Instance data passed back to the application, which was specified
by the application in the dwCallBackInstance parameter of
lineInitializeEx(). This DWORD is not interpreted by TAPI.

dwParam1 A parameter for the message

dwParam2 A parameter for the message

dwParam3 A parameter for the message

function lineGetStatusMessages TAPI.pas

Syntax

function lineGetStatusMessages(hLine: HLINE; var dwLineStates, dwAddressStates:
DWORD): Longint; stdcall;

Description

This function enables an application to query which notification messages the
application is set up to receive for events related to status changes for the spec-
ified line or any of its addresses.

Parameters

hLine: A handle (HLINE) to the line device

var dwLineStates: A DWORD holding a bit array that identifies for which line
device status changes a message is to be sent to the application. If a flag is
TRUE, that message is enabled; if FALSE, it is disabled. Note that multiple
flags can be set. This parameter uses the LINEDEVSTATE_ constants
shown in Table 9-20.

dwAddressStates: A DWORD holding a bit array that identifies for which address
status changes a message is to be sent to the application. If a flag is TRUE,
that message is enabled; if FALSE, it is disabled. Multiple flags can be set.
This parameter uses the LINEADDRESSSTATE_ constants shown in
Table 8-2.

Return Value

Returns zero if the request is successful or a negative error number if an error
has occurred. Possible return values are LINEERR_INVALLINEHANDLE,
LINEERR_OPERATIONFAILED, LINEERR_INVALPOINTER, LINEERR_
RESOURCEUNAVAIL, LINEERR_NOMEM, and LINEERR_UNINITIALIZED.

446 � Chapter 9

See Also

LINE_CLOSE, LINE_LINEDEVSTATE, lineSetStatusMessages

Example

Listing 9-1 shows how your application can query which notification messages it
is set up to receive for line or line address status events.

Listing 9-1: Querying which notification messages an application is set up to receive

function TTapiInterface.GetStatusMessages: boolean;
begin
fLineStates := LINEDEVSTATE_OTHER or LINEDEVSTATE_RINGING or
LINEDEVSTATE_CONNECTED or LINEDEVSTATE_NUMCOMPLETIONS or
LINEDEVSTATE_DISCONNECTED;
fAddressStates := LINEADDRESSSTATE_DEVSPECIFIC or
LINEADDRESSSTATE_OTHER or LINEADDRESSSTATE_INUSEZERO or
LINEADDRESSSTATE_INUSEONE or LINEADDRESSSTATE_INUSEMANY or
LINEADDRESSSTATE_NUMCALLS;
TapiResult := lineGetStatusMessages(fLine,
fLineStates, fAddressStates);

fLineStatesSelected := fLineStates;
fAddressStatesSelected := fAddressStates;
result := TapiResult=0;
if NOT result then ReportError(TAPIResult);

end;

function lineSetStatusMessages TAPI.pas

Syntax

function lineSetStatusMessages(hLine: HLINE; dwLineStates, dwAddressStates:
DWORD): Longint; stdcall;

Description

This function enables an application to specify which notification messages the
application wants to receive for events related to status changes for the speci-
fied line or any of its addresses.

Parameters

hLine: A handle (HLINE) to the line device

dwLineStates: A DWORD holding a bit array that identifies for which line device
status changes a message is to be sent to the application. This parameter
uses the LINEDEVSTATE_ constants explained in Table 9-20.

dwAddressStates: A DWORD holding a bit array that identifies for which address
status changes a message is to be sent to the application. This parameter
uses the LINEADDRESSSTATE_ constants described in Table 8-2.

Handling TAPI Line Messages � 447

9

C
h
a
p

te
r

Return Value

This function returns zero if the request is successful or a negative error
number if an error has occurred. Possible return values are LINEERR_
INVALADDRESSSTATE, LINEERR_OPERATIONFAILED, LINEERR_
INVALLINEHANDLE, LINEERR_RESOURCEUNAVAIL, LINEERR_INVAL-
LINESTATE, LINEERR_UNINITIALIZED, LINEERR_NOMEM, and
LINEERR_OPERATIONUNAVAIL.

See Also

LINE_CLOSE, LINE_LINEDEVSTATE, lineInitialize, lineInitializeEx,
lineOpen

Example

Listing 9-2 shows how to call the lineSetStatusMessages() function.

Listing 9-2: Calling the lineSetStatusMessages() function

function TTapiInterface.SetStatusMessages(RequestedLineStates,
RequestedAddressStates : DWord): boolean;

begin
TapiResult := lineSetStatusMessages(fLine, RequestedLineStates,

RequestedAddressStates);
result := TapiResult=0;
if NOT result then ReportError(TAPIResult);

end;

function lineSetCallPrivilege TAPI.pas

Syntax

function lineSetCallPrivilege(hCall: HCALL; dwCallPrivilege: DWORD): Longint;
stdcall;

Description

This function sets the application’s privilege to the specified privilege.

Parameters

hCall: A handle (HCALL) to the call whose privilege is to be set. The call state
of hCall can be any state.

dwCallPrivilege: A DWORD indicating the privilege the application wants to
have for the specified call. Only a single flag can be set. This parameter
uses the following LINECALLPRIVILEGE_ constants:
LINECALLPRIVILEGE_MONITOR indicates that the application requests
monitor privilege to the call (these privileges allow the application to mon-
itor state changes and query information and status about the call).
LINECALLPRIVILEGE_OWNER indicates that the application requests
owner privilege to the call (these privileges allow the application to manip-
ulate the call in ways that affect the state of the call).

448 � Chapter 9

Return Value

This function returns zero if the request is successful or a negative error
number if an error has occurred. Possible return values are LINEERR_IN-
VALCALLHANDLE, LINEERR_OPERATIONFAILED, LINEERR_INVAL-
CALLSTATE, LINEERR_RESOURCEUNAVAIL, LINEERR_INVALCALL-
PRIVILEGE, LINEERR_UNINITIALIZED, and LINEERR_NOMEM.

See Also

lineDrop

Example

Listing 9-3 shows how to use the lineSetCallPrivilege() function.

Listing 9-3: Using the lineSetCallPrivilege() function

function TTapiInterface.SetCallPrivilege(ACall : HCall; LevelRequested :
TCallPrivilegeLevel): boolean;

begin
if LevelRequested = cplOwner then
TapiResult := lineSetCallPrivilege(ACall, LINECALLPRIVILEGE_OWNER)

else
TapiResult := lineSetCallPrivilege(ACall, LINECALLPRIVILEGE_MONITOR);

result := TapiResult=0;
if NOT result then ReportError(TAPIResult);

end;

In this chapter we have taken a detailed look at TAPI messages, but we have
not yet looked at the essential TAPI functions of placing and receiving calls. We
will cover those important topics in the remaining two chapters.

Handling TAPI Line Messages � 449

9

C
h
a
p

te
r

Chapter 10

Placing Outgoing Calls

In the last two chapters we laid a solid foundation for starting to work with
TAPI. We have discussed the essential functions and structures used to initial-
ize TAPI, open and close line devices, and handle TAPI messages. We are now
ready to do something worthwhile—place outgoing calls.

We will examine two ways to place calls, one simple and the other more
involved. Both of these phone calling approaches depend on a dialable phone
number, one that is properly formatted so that TAPI can use it in placing an out-
going call. Once you have such a phone number, you may use either of the two
programming approaches to allow your users to place that call. We’ll start by
considering the various types of phone number representations, or addresses,
as they are called in TAPI. Then, we’ll consider how Assisted Telephony pro-
vides a simple way to add call placing functionality to a wide variety of
application types. Finally, we’ll examine the standard, low-level manner of plac-
ing calls, one that depends on the foundation we have laid in the previous two
chapters.

Canonical and Dialable Address Formats
In TAPI a phone number or address can exist in more than one format. The two
common address formats are canonical and dialable. There is also a displayable

address, which is the basic phone number without any special or control charac-
ters—the one you would actual display or the user would enter. Since phone
number formats tend to vary from one country to another, there needs to be a
standard international format for storing them. Enter the canonical address for-
mat. With it you can represent any phone number from anywhere in the world.
Because of that, the canonical format is ideal for storing phone numbers in a
database.

A canonical address or phone number is an ASCII string that contains certain
characters with specific meanings in a specific order. All canonical addresses
begin with the plus (+) character. This character has the function of identifying
the string as a canonical address, nothing more. This is followed by the country
code, a variable length string of digits delimited by a space character at the end.

451

Next is an optional area code, another variable length string of digits surrounded
by parentheses, as in (301). Next is the subscriber number, the main phone
number. This portion consists of the digits that represent that dialable number
with possible formatting characters that we’ll discuss presently under dialable
addresses.

There may or may not be additional information in the canonical address. To
indicate the presence of additional information after its end, the subscriber
number will be followed by a pipe (|) character. That will be followed by the
additional and optional parts that could include the sub-address portion or the
name portion. The former could represent an e-mail address or an ISDN
subaddress. The latter would simply be the name of the subscriber, a name that
could be displayed. For additional information, see the TAPI Help file.

A dialable address is equally complex. It consists of the main portions we just
discussed in relation to canonical addresses and more. Those elements are
shown in Table 10-1 (see the TAPI Help file for additional information).

Table 10-1: Elements of a dialable address

Element Meaning

Dialable number A series of digits and modifier characters (0-9 A-D * # , ! W w P p T t @ $?) delimited by the
dialable address string, the end of the string, or by one of the following characters: | ^ CRLF
(#13#10).

! This character indicates that a hookflash (one-half second onhook, followed by one-half second
offhook before continuing) is to be inserted in the dial string.

P or p This character indicates that dialing is done using the older pulse method on the digits that
follow.

T or t This character indicates that dialing is done using the newer tone (DTMF) dialing method on the
digits that follow.

, This character indicates that dialing is to be paused. The duration of a pause is device specific
and can be retrieved from the line’s device capabilities. You may use multiple commas to pro-
vide longer pauses.

W or w This character indicates to wait for a dial tone until proceeding with dialing.

@ This character indicates to “wait for a quiet answer” (at least one ringback tone followed by
several seconds of silence) before dialing the remainder of the dialable address.

$ This character indicates entering or dialing the billing information should wait for a “billing sig-
nal” (such as a credit card prompt tone).

? This character indicates that the user will be prompted before continuing with dialing. The “?”
character forces the provider to reject the string as invalid, alerting the application to break the
string into pieces and prompt the user.

; This character, if placed at the end of a partially specified dialable address string, indicates that
the dialable number information is incomplete and that additional address information will be
provided later. It is allowed only in the DialableNumber portion of an address.

| This optional character indicates that the information following it up to the next + | ^ CRLF
(or the end of the dialable address string) should be treated as subaddress information

Sub address A variably sized string containing a subaddress and delimited by the next + | ^ CRLF or the
end of the address string

452 � Chapter 10

TE
AM
FL
Y

Team-Fly®

Element Meaning

^ This optional character indicates that the information following it up to the next CRLF or the
end of the dialable address string should be treated as an ISDN name.

Name A variably sized string containing name information and delimited by CRLF or the end of the
dialable address string

CRLF This optional character pair indicates that the current dialable number is following by another
dialable number.

The dialable address is important since many TAPI functions need to use it.
With such a dialable address, you can implement any of the functionality out-
lined in Table 10-1. For example, in our sample Call Manager, we allow the user
to select pulsed dialing in a check box. If checked, we append a “p” to the begin-
ning of the dialable address, which causes the modem to use the pulse-dialing
method instead of tone dialing.

While the canonical and dialable address formats are similar, there are impor-
tant differences. Canonical addresses are more universal and applicable to many
telephone systems. On the other hand, dialable addresses enable you to actually
send phone numbers as parameters to and from Windows TAPI functions. The
latter takes into account local considerations and often includes additional digits
needed by the local system. For example, you may have to add digits like 1, 8, or
9 for long distance and/or an outside line. In the sample code, we append a letter
“p” at the beginning of the string if the Pulse Dialing box is checked on the sam-
ple Call Manager program that accompanies this chapter and the next.

Assisted Telephony
Later in this chapter, we’ll begin to create a full-featured Call Manager applica-
tion using many of the low-level TAPI functions we discussed in previous
chapters. However, we don’t always need that degree of sophistication. Some-
times all we need to provide is limited call placing functionality within a word
processor, spreadsheet, database application, or personal information managers
(PIM). Conveniently for developers, TAPI includes a small subset of functions
called Assisted Telephony for just this kind of situation.

The goal of Assisted Telephony is to provide the basic functionality of placing
voice calls or media calls in a Win32-based application. With Assisted Telephony,
your application can essentially ignore the complex details of the full TAPI ser-
vices we’ve discussed and will continue to expose in this and the next chapter.
It extends basic telephony functionality to any type of application from which a
user might want to place a phone call. For example, you could use the Assisted
Telephony function tapiRequestMakeCall() to allow users of a spreadsheet appli-
cation to automatically dial telephone numbers stored in that spreadsheet by
simply double-clicking on the field containing the phone number.

Placing Outgoing Calls � 453

10

C
h
a
p

te
r

Be aware that functionality beyond simple dialing (such as the transmission
and reception of data) requires additional data-transfer APIs, including the com-
munications functions of the Comm API. One note of caution: Since Assisted
Telephony and full TAPI are used and implemented in different ways, you
should not mix Assisted Telephony function calls and Telephony API function
calls within the same application. While your users can place calls, they cannot
accept incoming calls. For that you need the full TAPI to create a Call Manager.
However, if you’re looking for an easy-to-use means to allow your users to
make phone calls without having to use the low-level TAPI functions, Assisted
Telephony is the answer.

�TIP: Never mix Assisted Telephony function calls and Telephony API
function calls within the same application.

You need two kinds of applications to implement Assisted Telephony: Assisted
Telephony clients and servers. The clients use Assisted Telephony by calling
certain functions that have a prefix of “tapi.” An example would be any applica-
tion that includes a Dial button to execute a command that dials a phone
number. On the other hand, an Assisted Telephony server is able to execute
such Telephony API functions that have been requested by another (client)
application calling a “tapi”-prefixed function. How can we be sure such an appli-
cation will be available? That is generally not an issue. In fact, most modern
computers come equipped with voice modems and include a Call Manager pro-
gram that can access these TAPI services.

Every Assisted Telephony server must be registered with Windows, includ-
ing any that you may write yourself. A server accomplishes this self-registration
by calling the lineRegisterRequestRecipient() function. Once it has done this, it
will be available for client applications that want to request its services. The
Assisted Telephony functions (beginning with the prefix “tapi”) are known as
request functions. The Assisted Telephony applications that process these
requests are known as request recipients. Now we’ll examine some of the subtle
details of Assisted Telephony.

When an application uses the Assisted Telephony services to initiate a
request, that request is temporarily queued by TAPI. The request recipient
application (server) that retrieves these requests will execute them on behalf of
the Assisted Telephony application (client). You should call the tapiRequest-
MakeCall() function to establish a voice call. Note that a “requesting” or client
application will not control the call; instead, the Call Manager application that
assumes the role of server will control the call. If you need to control a call, you
should use another approach (which we will discuss later in this chapter)
instead of the Assisted Telephony approach we are discussing here.

454 � Chapter 10

With TAPI, a user may set different recipient applications or the same recipi-
ent application to handle each of these services. As we indicated above, an
application becomes a request recipient by registering itself using the
lineRegisterRequestRecipient() function, specifying TRUE for the value of the
bEnable parameter. On the other hand, if you specify FALSE for this parameter,
the function will unregister that application as a request recipient. A server
application should do this when it has determined that its recipient duties are
finished for the current session. When it calls the lineRegisterRequest-
Recipient() function, the server application will select the services it wants to
handle by specifying them in the dwRequestMode parameter of the function. One
possible value for a request is LINEREQUESTMODE_MAKECALL, indicating
that the application wants to handle tapiRequestMakeCall() requests.

If multiple applications register for the same service(s), a priority scheme
will be used to select the application that will be the preferred one for handling
requests. This priority scheme is the same as that used for call handoff and for
the routing of incoming calls. It is based on a list of filenames in the Handoff-
Priorities section of the Windows registry.

How does a client application request TAPI services? The process by which
such an application may request services is shown in Figure 10-1. Here’s how it
works. First, an application must request some basic telephony service, such as
placing a call. When TAPI receives an Assisted Telephony request, it first
attempts to identify a request recipient—an application currently registered to
process that particular type of request. If such a request recipient can be
located, the request is then queued. The highest priority application that has
registered itself for that request’s service is sent a LINE_REQUEST message.
That message notifies the request recipient that a new request has arrived,
including information about the request’s mode.

Placing Outgoing Calls � 455

10

C
h
a
p

te
r

Figure 10-1: The process of

requesting TAPI services

What if TAPI is unable to find an appropriate request server? If it cannot find a
currently running application to process the request, it will try to launch an
application that has been registered as having the necessary capabilities. This
particular registration information, if it exists, will be stored in the Handoff-
Priorities section of the Windows registry. TAPI will attempt to launch
applications in the order in which they are listed in that section. If no application
is currently registered, TAPI will not give up yet. It will continue by examining
the list of request-processing applications in the associated entry within that
section of the Windows registry.

Of course, there may be situations in which a server application cannot be
found or used. If the associated line is missing, if there are no applications listed
on it, or if none of the applications in the list can be launched, the request will
be rejected with the TAPIERR_NOREQUESTRECIPIENT error. However,
when a request recipient is launched (directly by TAPI or otherwise), it will
accept the responsibility to call the lineRegisterRequestRecipient() function
during the startup process in order to register itself as a request recipient.

As a good citizen among Windows technologies, TAPI will always relate to
the registry using a systematic approach: If one or more applications are listed
in the Windows registry entry, TAPI will begin with the first listed application
(highest priority). It will attempt to launch that application by calling Create-
Process(). If that fails, it will then attempt to launch the next application in the
list, continuing until there are no applications left to try.

When a request recipient (server) application has been launched successfully,
TAPI will queue the request and return an indication of success. This will occur
early in the process, before the request recipient deals with the request that
caused it to be opened. After such an application has been launched, it will call
the lineRegisterRequestRecipient() function, which in turn will cause a LINE_
REQUEST message to be sent by Windows. This message signals that the
request has been queued. If for some reason the launched application never
becomes properly registered, any request that caused it to be opened will
remain in the queue indefinitely or at least until an application becomes prop-
erly registered for that type of request.

To summarize the process, if TAPI finds an appropriate application already
registered and running or is able to successfully launch one, it will then queue
the request and send a LINE_REQUEST message to the server application. It
will also return a success result for the function call to the Assisted Telephony
application. Be aware that this success message will indicate only that the
request has been accepted and queued; it will not necessarily indicate that it has
been successfully executed.

456 � Chapter 10

TAPI Servers in Assisted Telephony

We’ve seen how TAPI locates an appropriate server application, but how do
these server applications themselves work? When the server application is
ready to process a request, it will call the function lineGetRequest(). By calling
this function, the server will receive whatever information it needs, such as an
address (dialable) to dial. The server will then process the request using the
various telephony API functions (lineMakeCall(), lineDrop() and so on) that
would otherwise be used to place the call. When you call lineGetRequest(), you
are essentially removing the request from TAPI’s radar screen. After that func-
tion call, the request parameters will be copied to an application-allocated
request buffer. The size and interpretation of the contents of that buffer will
vary depending on the request mode. Since these functions are part of Basic
TAPI and not Assisted Telephony, we’ll discuss them later in this chapter.

A TAPI server must fulfill certain responsibilities. Importantly, it must
ensure that it uses the correct parameters when executing requests from a cli-
ent using Assisted Telephony. When doing so, it will follow these steps:

1. The request recipient will receive a LINE_REQUEST message from Win-
dows alerting it that requests can exist for it in the request queue.
Essentially, this triggers the application to call the lineGetRequest() func-
tion and continue to call it until the queue is drained (if the request is to
make a new call) or to drop an existing call. This message will not contain
the parameters for the request, except in the case of a request to drop an
existing call.

2. If the request is to make a new call, the Assisted Telephony server must
first allocate the memory needed to store the needed information and then
call the lineGetRequest() function to retrieve the full request information,
including the request’s parameters. After this, the server will have all the
information it needs, such as the number to dial or the identification of the
maker of the request.

3. Finally, the server executes the request by invoking the appropriate
low-level TAPI function or set of functions.

Sometimes TAPI cannot launch a server application that is capable of perform-
ing the duties of a request recipient. When this happens, the Assisted
Telephony call will fail, returning the TAPIERR_NOREQUESTRECIPIENT
error.

What kind of information is processed during an Assisted Telephony request?
How is that information processed by the various systems involved? The TAPI
Help file provides the following description and makes certain
recommendations:

Placing Outgoing Calls � 457

10

C
h
a
p

te
r

� The default registry entry should list a Call Manager application in the pri-
ority list for tapiRequestMakeCall(). It would be helpful, but is not essen-
tial, for that call manager application to have a menu option that allows
users to set it to the highest priority.

� When an Assisted Telephony recipient application has been launched auto-
matically by TAPI, and assuming that it is the only TAPI application in the
system, this action will initialize TAPI. It will go through all of the steps
we described in Chapter 8. If the Assisted Telephony recipient application
initializes and shuts down the line device before registering for Assisted
Telephony requests, TAPI will be shut down as well, and the Assisted
Telephony request will be lost. Assisted Telephony requests might also be
lost if another TAPI application that is launched performs a TAPI initial-
ization and shutdown.

Assisted Telephony Functions
Having examined the role of Assisted Telephony servers, we will now return
our attention to Assisted Telephony clients and the specific functions they must
call to request these services. There are four functions associated with Assisted
Telephony: tapiRequestMakeCall(), tapiGetLocationInfo(), tapiRequestMedia-
Call(), and tapiRequestDrop(). Since the last two are obsolete and nonfunctional
in Win32-based applications, you should avoid using them; although they are
included in TAPI.pas for backward compatibility, we will not discuss them in this
book. The first function, tapiRequestMakeCall(), will attempt to establish a
voice call between the application user and a remote party specified by its phone
number.

Here’s how the process works: Windows will send the request to place the
call to TAPI, which will then pass it to an application that is registered as a
recipient of such requests—a Call Manager application. Note that after your
application has made such a request, the call will be controlled entirely from the
call manager application. Assisted Telephony applications cannot manage calls
themselves. By using this function, the call manager application will handle the
more complex telephony aspects and any needed user-interface operations.
Therefore, any application for which you provide this kind of telephony support
need not be modified in any substantial way. Without a doubt, Assisted Tele-
phony is the easiest form of telephony programming. Use it whenever you can.

Using the Assisted Telephony functions is extremely straightforward. To
enable your application to have a call placed by tapiRequestMakeCall(), you
need only provide the call’s destination phone number. TAPI will forward the
request to the appropriate server application, which in turn will actually place
the call on behalf of your application. As you may be aware, a default call control

458 � Chapter 10

application is provided as part of Win32 Telephony. At the same time, users have
the option to replace this with a call control application of their choice.

There are certain situations where you may encounter problems with
Assisted Telephony. If you attempt to invoke tapiRequestMakeCall() when no
call control application is running, the function will return the TAPIERR_
NOREQUESTRECIPIENT error indication. If the call control application is not
running, TAPI will attempt to launch the highest priority call control application
(which is listed for tapiRequestMakeCall() in the registry). If you try to invoke
this function when the Assisted TAPI request queue is full, it will return the
TAPIERR_REQUESTQUEUEFULL error. Now we’ll provide a reference for
the functions themselves.

function tapiRequestMakeCall TAPI.pas

Syntax

function tapiRequestMakeCall(lpszDestAddress, lpszAppName, lpszCalledParty,
lpszComment: LPCSTR): Longint; stdcall;

Description

This function requests that a voice call be established. For this to work, a Call
Manager application must be responsible for establishing the call on behalf of
the requesting application; the call will then be controlled by the user’s Call
Manager application.

Parameters

lpszDestAddress: An LPCSTR that points to a memory location where the
NULL-terminated destination address of the call request is located. The
address can be in canonical address format or the dialable address format.
Note that the validity of the specified address will not be checked by this
operation. The maximum length of the address is TAPIMAXDEST-
ADDRESSSIZE characters, which includes the NULL terminator.

lpszAppName: An LPCSTR that points to a memory location where a user-
friendly application name (NULL-terminated string) of the call request is
stored. This pointer may be left NULL if the application does not wish to
supply an application name. The maximum length of the address is TAPI-
MAXAPPNAMESIZE characters, which includes the NULL terminator.
Longer strings will be truncated.

lpszCalledParty: An LPCSTR that points to a memory location where the ASCII
NULL-terminated called party name for the called party is located. This
pointer may be left NULL if the application does not wish to supply this
information. The maximum length of the string is TAPIMAXCALLED-
PARTYSIZE characters, which includes the NULL terminator. Longer
strings are truncated.

Placing Outgoing Calls � 459

10

C
h
a
p

te
r

lpszComment: An LPCSTR that points to a memory location where the ASCII
NULL-terminated comment about the call is located. This pointer may be
left NULL if the application does not wish to supply a comment. The maxi-
mum length of the address is TAPIMAXCOMMENTSIZE characters,
which includes the NULL terminator. Longer strings are truncated.

Return Value

This function returns zero if the request is successful or a negative error num-
ber if an error has occurred. Possible error return values are TAPIERR_
NOREQUESTRECIPIENT, TAPIERR_INVALDESTADDRESS, TAPIERR_
REQUESTQUEUEFULL, and TAPIERR_INVALPOINTER.

Example

Listing 10-1 shows how to call the Assisted Telephony dialing function.

Listing 10-1: Calling the Assisted Telephony dialing function

function TTapiInterface.DialWithAssistedTelephony: boolean;
begin
if PhoneNumber='' then
begin
ShowMessage('You need to enter a phone number');
result := false;
exit;

end;
// using assisted telephony
TAPIResult := TapiRequestMakeCall(
PChar(PhoneNumber), // the phone number
'', // application name, optional, could use PChar(Application.Title)
'', // optional, this is the name of the person being called
''); // optional comment

result := TAPIResult=0;
if NOT result then ReportError(TAPIResult);

end;

function tapiGetLocationInfo TAPI.pas

Syntax

function tapiGetLocationInfo(lpszCountryCode, lpszCityCode: LPCSTR): Longint;
stdcall;

Description

This function returns the country code and city (area) code to the application;
these are the values the user set in the current location parameters in the tele-
phony control panel. The application can use this information to assist the user
in forming proper canonical telephone numbers, such as by offering these as
defaults when new numbers are entered in a phone book entry or database
record.

460 � Chapter 10

Parameters

lpszCountryCode: A pointer to a NULL-terminated ASCII string specifying the
country code for the current location. You should allocate at least eight
bytes of storage at this location to hold the string (TAPI will not return
more than eight bytes, including the terminating NULL character). TAPI
will return an empty string if the country code has not been set for the
current location.

lpszCityCode: A pointer to a NULL-terminated ASCII string specifying the city
(area) code for the current location. You should allocate at least eight bytes
of storage at this location to hold the string (TAPI will not return more
than eight bytes, including the terminating NULL). TAPI will return an
empty string if the city code has not been set for the current location.

Return Value

Returns zero if the request is successful or a negative error number if an error
has occurred. A possible return value is TAPIERR_REQUESTFAILED.

As we indicated, there are two Assisted Telephony functions that are no longer
used. These are the tapiRequestMediaCall() function and the tapiRequest-
Drop() function. Both are nonfunctional in Win32-based applications and obso-
lete for all classes of Windows-based applications. Microsoft advises not to use
either function, and we have not covered them here. If you need to work with
either function in support of an older TAPI application, see the TAPI Help file
and the declarations in TAPI.pas for information. We have concluded our discus-
sion of Assisted Telephony and the various types of phone numbers (addresses).
Now we’ll turn our attention to low-level TAPI functions used in placing a call.

Establishing a Call with Low-Level Line Functions
In previous chapters, we provided an overview of the process to initialize and
close down TAPI and those to open and close line devices. Please be aware that
an understanding of the material in those chapters is essential as a foundation
for the functions and functionality we will be discussing from this point onward.
Now we’ll begin the process of examining some of the important functions used
between opening and closing a line device. In the next chapter we’ll complete
that process and discuss handling incoming calls.

As we stated already, one of the most common tasks a telephony application
can perform is placing a call. Once an application has opened the line device, it
can place a call using the lineMakeCall() function. During this process, it must
specify the address (phone number and area code) to be called in the lpszDest-

Address parameter and the media mode (datamodem, in this case) desired in the
lpCallParams parameter. This function will return a positive “request ID” if
completed asynchronously or a negative error number if a problem has

Placing Outgoing Calls � 461

10

C
h
a
p

te
r

occurred. Negative return values describe specific error states. LINEERR_
CALLUNAVAIL, for example, indicates that the line is probably in use (some-
one else already has an active call). If dialing completes successfully, messages
will be sent to an application to inform it about the call’s progress. Applications
typically use these messages to display status reports to the user, as we demon-
strate in our Call Manager.

Later, when the lineMakeCall() function has successfully set up the call, your
application will receive a LINE_REPLY message (the asynchronous reply to
lineMakeCall()). At this point, your application will not necessarily have estab-
lished a connection to the remote destination station quite yet; rather, it has
simply established a call at the local end, perhaps indicated by the presence of a
dial tone. This LINE_REPLY message simply informs the application that the
call handle returned by lineMakeCall() is valid.

As shown in Figure 10-2, a call can go through various states. Each of these
states is reflected in a LINE_CALLSTATE message, which we discussed in
Chapter 9. These states include dial tone present, dialing, ringback, and, if the
connection succeeds, LINECALLSTATE_CONNECTED. (To see the complete
list of call states, see the LINECALLSTATUS structure.) After your application
receives this message indicating a successful connection, it can begin sending
data.

462 � Chapter 10

Figure 10-2: States of a successful outgoing call

TE
AM
FL
Y

Team-Fly®

What about data calls, calls that send files or other data over a phone line rather
than enable a voice conversation? Interestingly, TAPI’s programming model
treats data calls in a manner similar to voice calls. This is demonstrated by the
fact that this same function, lineMakeCall(), can be used to initiate calls of both
types. If LINEBEARERMODE_DATA is specified in a field of the lpCallParams

parameter of lineMakeCall(), the call will be set up to send data. To select
speech transmission, you must use a different value. If you specify 0, TAPI will
establish a default 3.1 kHz voice call—one that can support the speech, fax, and
modem media modes.

Again, we must emphasize that the low-level call placing method we’re about
to discuss depends on the TAPI initialization functions we discussed in Chapter
8. Once your application has initialized TAPI, determined that a given line offers
the needed set of capabilities, and opened that line, you can access various tele-
phony functions for either incoming or outgoing calls on the line. (Of course, we
take care of these details in all of the sample applications.) The usual way to
place a call on that line is to call the lineMakeCall() function, specifying the line
handle and a dialable destination address.

The first step is to dial the call (using a dialable address). When you call the
lineMakeCall() function, it will first attempt to obtain a call appearance on a line
address, and then it will wait for a dial tone. Finally, it will dial the specified
address or phone number. The TAPI Help file defines a call appearance simply
as a “connection to the switch over which a call can be made.” Interestingly,
once your application has established the connection, that call appearance will
exist, even if the call itself has not yet been placed. After the call has been
established, the call appearance will remain in existence until the call transi-
tions to the idle state. If calls controlled by other applications exist on the line,
these calls would normally be in an on hold state and would typically be forced
to stay on hold until your application either dropped its current call or placed it
on hold. If dialing is successful, a handle to a call with owner privileges will be
returned to your application.

Before you call the lineMakeCall() function, you must set up the parameters
for the call and store them in a LINECALLPARAMS data structure. The
lineMakeCall() function has a parameter that points to this structure. Using this
structure’s fields, you can specify the quality of service you want to request
from the network. You can also specify a variety of ISDN call setup parameters.
If you neglect to provide a LINECALLPARAMS structure to lineMakeCall(),
don’t worry; TAPI will provide a default POTS voice-grade call with a set of
default values.

�TIP: Use LINECALLPARAMS to accurately keep track of and report
call information (such as the identification of the called party).

Placing Outgoing Calls � 463

10

C
h
a
p

te
r

The phone call’s origination address will also be included in LINECALL-
PARAMS. Using this field, your application can specify the address on the line
where it wants the call to originate. It can do so by specifying an address ID,
though in some configurations, it is more practical to identify the originating
address by its position in a directory. As we stated previously, do not mix func-
tion calls of the line API with the functions of Assisted Telephony. The actions
requested by lineMakeCall() would happen automatically in response to another
application that requested that functionality by calling the Assisted Telephony
function tapiRequestMakeCall().

Once dialing is complete and the call is in the process of being established, it
passes through a number of different states. Windows will inform an application
of these states (the progress of the call) using LINE_CALLSTATE messages.
Relying on this mechanism, your application can keep track of these stages and
determine if the call is actually reaching the called party.

�TIP: A robust telephony application should base its behavior on the
information received in these messages and not make
assumptions about a call’s state. In fact, you should consider
passing this information along to an application’s user in a status
bar or memo control, as we do in our sample Call Manager
application.

If you want your application to take special call setup parameters into consider-
ation, you must supply them to lineMakeCall(). The TAPI Help file emphasizes
that call setup parameters are required for the following actions:

� To request a special bearer mode, bandwidth, or media mode for a call

� To send user-to-user information (with ISDN)

� To secure the call

� To block the sending of a caller ID to the called party

� To take the phone off the hook automatically at the originator and/or the
called party

Special Dialing Support
As we’ve emphasized, dialing a phone number is one of the most basic and
essential telephony functions. As we’ve discussed, the lineMakeCall() function
performs this task for simple calls, but what about more complex situations that
involve dialing on an existing call appearance, such as transferring a call or add-
ing a call to a conference? TAPI provides the lineDial() function for this purpose.

Here’s how this process works. First, you must set up a call for transferring
or conferencing. Second, TAPI will automatically allocate a consultation call, and

464 � Chapter 10

you can call the lineDial() function to perform the actual dialing of this consulta-
tion call. Third, if needed, you may invoke lineDial() multiple times in multi-
stage dialing if the line’s device capabilities allow it. You may also include multi-
ple addresses in a single dial string, but they must be separated by the CRLF
(#13#10) character pair.

Of course, different service providers will support different functionality.
Those that support inverse multiplexing could establish individual, physical
calls with each of the addresses. They can return a single call handle to the
aggregate of all calls to an application. In this scenario, all of the addresses
would use the same country code. Those service providers that support inverse
multiplexing may allow multiple addresses to be provided at once.

From TAPI’s perspective, dialing is considered complete when the address
has been passed to the service provider, not when the call is finally connected.
As before, Windows informs an application of the progress of the call using
LINE_CALLSTATE messages. If you want to provide the ability for the user to
abort a call attempt while that call is in the process of being established, you
should use the lineDrop() function.

If you want to indicate that dialing is complete, you can set the lpszDest-

Address parameter of the lineDial() function to an empty string. However, you
should do this only if that parameter (lpszDestAddress) in the previous calls to
the lineMakeCall() and lineDial() had strings that were terminated with
semicolons.

The lineDial() function can return various results to indicate success or fail-
ure. If it returns LINEERR_INVALADDRESS, no dialing took place. If it
returns LINEERR_DIALBILLING, LINEERR_DIALQUIET, LINEERR_DIAL-
DIALTONE, or LINEERR_DIALPROMPT, none of the usual actions performed
by lineDial() have occurred; none of the dialable addresses before the offending
character have been dialed, and therefore, no hookswitch state has changed.

function lineDial TAPI.pas

Syntax

function lineDial(hCall: HCALL; lpszDestAddress: LPCSTR; dwCountryCode:
DWORD): Longint; stdcall;

Description

This function dials the specified dialable number on the specified call.

Parameters

hCall: A handle (HCALL) to the call on which a number is to be dialed. The
application must be an owner of the call. The call state of hCall can be any
state except idle and disconnected.

Placing Outgoing Calls � 465

10

C
h
a
p

te
r

lpszDestAddress: An LPCSTR holding the destination to be dialed using the stan-
dard dialable number format

dwCountryCode: A DWORD holding the country code of the destination. This is
used by the implementation to select the call progress protocols for the
destination address. If a value of zero is specified, a service provider-
defined default call progress protocol is used.

Return Value

This function returns a positive request ID if the function will be completed
asynchronously or a negative error number if an error has occurred. The
dwParam2 parameter of the corresponding LINE_REPLY message is zero if the
function is successful or a negative error number if an error has occurred. Pos-
sible return values are LINEERR_ADDRESSBLOCKED, LINEERR_INVAL-
POINTER, LINEERR_DIALBILLING, LINEERR_NOMEM, LINEERR_
DIALDIALTONE, LINEERR_NOTOWNER, LINEERR_DIALPROMPT,
LINEERR_OPERATIONFAILED, LINEERR_DIALQUIET, LINEERR_
OPERATIONUNAVAIL, LINEERR_INVALCALLHANDLE, LINEERR_
RESOURCEUNAVAIL, LINEERR_INVALCALLSTATE, LINEERR_ UNINI-
TIALIZED, and LINEERR_INVALCOUNTRYCODE.

See Also

LINE_CALLSTATE, LINE_REPLY, lineDrop, lineMakeCall

Example

Listing 10-2 shows how to use the lineDial() function when placing a phone call.

Listing 10-2: Placing a phone call with TAPI

function TTapiInterface.PlaceCall: boolean;
begin
TapiResult := lineDial(FCall, '', 0);
result := TapiResult>0;
If NOT Result then
ReportError(TapiResult)

else
OnSendTapiMessage('Number dialing initiated successfully');

end;

function lineMakeCall TAPI.pas

Syntax

function lineMakeCall(hLine: HLINE; lphCall: PHCall; lpszDestAddress: LPCSTR;
dwCountryCode: DWORD; CallParams: PLineCallParams): Longint; stdcall;

Description

This function places a call on the specified line to the specified destination
address. Optionally, call parameters can be specified to request anything beyond
the default call setup parameters.

466 � Chapter 10

Parameters

hLine: A handle (HLINE) to the open line device on which a call is to be
originated

lphCall: A pointer (PHCall) to an HCALL handle. The handle is only valid after
the LINE_REPLY message is received by the application indicating that
the lineMakeCall() function successfully completed. Use this handle to
identify the call when invoking other telephony operations on the call. The
application will initially be the sole owner of this call. This handle is void if
the function returns an error (synchronously or asynchronously by the
reply message).

lpszDestAddress: A pointer (LPCSTR) to the destination address. This follows
the standard dialable number format. This pointer can be NULL for
non-dialed addresses (as with a hot phone) or when all dialing will be per-
formed using lineDial(). In the latter case, lineMakeCall() allocates an
available call appearance that would typically remain in the dial tone state
until dialing begins. Service providers that have inverse multiplexing capa-
bilities may allow an application to specify multiple addresses at once.

dwCountryCode: A DWORD indicating the country code of the called party. If a
value of zero is specified, a default is used by the implementation.

CallParams: A pointer (PLineCallParams) to a LINECALLPARAMS structure.
This structure allows the application to specify how it wants the call to be
set up. If NULL is specified, a default 3.1 kHz voice call is established and
an arbitrary origination address on the line is selected. This structure
allows the application to select elements such as the call’s bearer mode,
data rate, expected media mode, origination address, blocking of caller ID
information, and dialing parameters.

Return Value

This function returns a positive request ID if the function will be completed
asynchronously or a negative error number if an error has occurred. The
dwParam2 parameter of the corresponding LINE_REPLY message is zero if the
function is successful or a negative error number if an error has occurred. Pos-
sible return values are LINEERR_ADDRESSBLOCKED, LINEERR_INVAL-
LINEHANDLE, LINEERR_BEARERMODEUNAVAIL, LINEERR_INVAL-
LINESTATE, LINEERR_CALLUNAVAIL, LINEERR_INVALMEDIAMODE,
LINEERR_DIALBILLING, LINEERR_INVALPARAM, LINEERR_ DIAL-
DIALTONE, LINEERR_INVALPOINTER, LINEERR_DIALPROMPT,
LINEERR_INVALRATE, LINEERR_DIALQUIET, LINEERR_NOMEM,
LINEERR_INUSE, LINEERR_OPERATIONFAILED, LINEERR_INVAL-
ADDRESS, LINEERR_OPERATIONUNAVAIL, LINEERR_INVALADDRESS-
ID, LINEERR_RATEUNAVAIL, LINEERR_INVALADDRESSMODE,

Placing Outgoing Calls � 467

10

C
h
a
p

te
r

LINEERR_RESOURCEUNAVAIL, LINEERR_INVALBEARERMODE,
LINEERR_STRUCTURETOOSMALL, LINEERR_INVALCALLPARAMS,
LINEERR_UNINITIALIZED, LINEERR_INVALCOUNTRYCODE, and
LINEERR_USERUSERINFOTOOBIG.

See Also

LINE_CALLSTATE, LINE_REPLY, LINECALLPARAMS, LINEDEVSTATUS,
lineDial, lineDrop, lineGetLineDevStatus

Example

Listing 10-3 shows how to place a call with the lineMakeCall() function.

Listing 10-3: Placing a call with the lineMakeCall() function

function TTapiInterface.RequestLine(var ATAPIResult: DWord): boolean;
begin
App := @Application;
if not fLineIsOpen then // if a line is open, no need to open one
begin
OpenLine(ATAPIResult, false);
if ATAPIResult<>0 then
begin
result := false;
ReportError(TAPIResult);
Exit; // no point in continuing if we cannot open line

end;
end;

// now place the call
if PulseDialing then
ATAPIResult := LineMakeCall(fLine, @FCall, PChar('p'+PhoneNumber),
FCountryCode, FPLineCallParams)

else
ATAPIResult := LineMakeCall(fLine, @FCall, PChar(PhoneNumber), FCountryCode,
FPLineCallParams);

result := ATAPIResult>0;
if result then OnSendTapiMessage('Placing phone call was successful')
else ReportError(ATAPIResult);

end;

structure LINECALLPARAMS TAPI.pas

The LINECALLPARAMS structure describes parameters supplied when mak-
ing calls using the lineMakeCall() and TSPI_lineMakeCall() functions. The
LINECALLPARAMS structure is also used as a parameter in other operations,
such as the lineOpen() function. This structure is defined as follows in
TAPI.pas:

PLineCallParams = ^TLineCallParams;
linecallparams_tag = packed record {// Defaults: }
dwTotalSize, {// --------- }
dwBearerMode, {// voice }
dwMinRate, {// (3.1kHz) }
dwMaxRate, {// (3.1kHz) }
dwMediaMode, {// interactiveVoice }
dwCallParamFlags, {// 0 }
dwAddressMode, {// addressID }

468 � Chapter 10

dwAddressID: DWORD; {// (any available) }
DialParams: TLineDialParams; {// (0, 0, 0, 0) }
dwOrigAddressSize, {// 0 }
dwOrigAddressOffset,
dwDisplayableAddressSize,
dwDisplayableAddressOffset,
dwCalledPartySize, {// 0 }
dwCalledPartyOffset,
dwCommentSize, {// 0 }
dwCommentOffset,
dwUserUserInfoSize, {// 0 }
dwUserUserInfoOffset,
dwHighLevelCompSize, {// 0 }
dwHighLevelCompOffset,
dwLowLevelCompSize, {// 0 }
dwLowLevelCompOffset,
dwDevSpecificSize, {// 0 }
dwDevSpecificOffset: DWORD;

{$IFDEF TAPI20}
dwPredictiveAutoTransferStates, // TAPI v2.0
dwTargetAddressSize, // TAPI v2.0
dwTargetAddressOffset, // TAPI v2.0
dwSendingFlowspecSize, // TAPI v2.0
dwSendingFlowspecOffset, // TAPI v2.0
dwReceivingFlowspecSize, // TAPI v2.0
dwReceivingFlowspecOffset, // TAPI v2.0
dwDeviceClassSize, // TAPI v2.0
dwDeviceClassOffset, // TAPI v2.0
dwDeviceConfigSize, // TAPI v2.0
dwDeviceConfigOffset, // TAPI v2.0
dwCallDataSize, // TAPI v2.0
dwCallDataOffset, // TAPI v2.0
dwNoAnswerTimeout, // TAPI v2.0
dwCallingPartyIDSize, // TAPI v2.0
dwCallingPartyIDOffset: DWORD; // TAPI v2.0

{$ENDIF}
{$IFDEF TAPI30}

dwAddressType: DWORD; // TAPI v3.0
{$ENDIF}
end;
TLineCallParams = linecallparams_tag;
LINECALLPARAMS = linecallparams_tag;

If your application requires device-specific extensions, you should use the
DevSpecific (dwDevSpecificSize and dwDevSpecificOffset) variably sized area of
this data structure. This structure is used as a parameter to the lineMakeCall()
function we discussed earlier when setting up a call. You can use its fields to
enable your application to specify the quality of service you want from the net-
work or to set a variety of ISDN call setup parameters. As we indicated above, if
you do not supply a LINECALLPARAMS structure when calling lineMakeCall(),
TAPI will assume that a default POTS voice-grade call is being requested and
use the default values.

Note that the fields DialParams through dwDevSpecificOffset will be ignored
when an lpCallParams parameter is specified with the lineOpen() function. The
fields dwPredictiveAutoTransferStates through dwCallingPartyIDOffset will be

Placing Outgoing Calls � 469

10

C
h
a
p

te
r

available only to applications that open the line device with a TAPI version of
2.0 or higher. The dwAddressType field will be available only to applications that
open the line device with a TAPI version of 3.0 or later. The fields of this struc-
ture are defined in Table 10-2; for additional information on these fields, see the
TAPI Help file.

Table 10-2: Fields of the LINECALLPARAMS structure

Field Meaning

dwTotalSize This field indicates the total size, in bytes, allocated to this data structure. This
size should be big enough to hold all the fixed and variably sized portions of this
data structure.

dwBearerMode This field indicates the bearer mode for the call. This member uses one of the
LINEBEARERMODE_ constants. If dwBearerMode is zero, the default value is
LINEBEARERMODE_VOICE.

dwMinRate This field indicates the minimum value of the data rate range requested for the
call’s data stream in bps (bits per second). When making a call, the service pro-
vider attempts to provide the highest available rate in the requested range.

dwMaxRate This field indicates the maximum value of the data rate range requested for the
call’s data stream in bps (bits per second).

dwMediaMode This field indicates the expected media type of the call. This member uses one
of the LINEMEDIAMODE_ constants. If dwMediaMode is zero, the default
value is LINEMEDIAMODE_INTERACTIVEVOICE.

dwCallParamFlags This field holds flags that specify a collection of Boolean call setup parameters.
This member uses one or more of the LINECALLPARAMFLAGS_ constants.

dwAddressMode This field indicates the mode by which the originating address is specified using
one of the LINEADDRESSMODE_ constants. Its value cannot be
LINEADDRESSMODE_ADDRESSID for the lineOpen() function call.

dwAddressID This field indicates the address identifier of the originating address if
dwAddressMode is set to LINEADDRESSMODE_ADDRESSID.

DialParams This field indicates the dial parameters to be used on this call of type
LINEDIALPARAMS. When a value of zero is specified for this field, the default
value for the field is used as indicated in the DefaultDialParams member of the
LINEDEVCAPS structure.

dwOrigAddressSize This field indicates the size, in bytes, of the variably sized field holding the origi-
nating address of this data structure. The format of this address is dependent on
the dwAddressMode member.

dwOrigAddressOffset This field indicates the offset, in bytes, from the beginning of the variably sized
field holding the originating address of this data structure. The format of this
address is dependent on the dwAddressMode member.

dwDisplayableAddressSize This field indicates that the size of the displayable string is used for logging pur-
poses. The content of these members is recorded in the dwDisplayable-
AddressOffset and dwDisplayableAddressSize members of the call’s
LINECALLINFO message.

dwDisplayableAddressOffset This field indicates the offset to the displayable string used for logging purposes.
The content of these members is recorded in the dwDisplayableAddressOffset
and dwDisplayableAddressSize members of the call’s LINECALLINFO message.

470 � Chapter 10

Field Meaning

dwCalledPartySize This field is the size, in bytes, of the variably sized field holding called-party
information from the beginning of this data structure. This information can be
specified by the application that makes the call and is made available in the call’s
information structure for logging purposes. The format of this field is that of
dwStringFormat, as specified in LINEDEVCAPS.

dwCalledPartyOffset This field is the offset, in bytes, from the beginning of this data structure of the
variably sized field holding called-party information. This information can be
specified by the application that makes the call and is made available in the call’s
information structure for logging purposes. The format of this field is that of
dwStringFormat, as specified in LINEDEVCAPS.

dwCommentSize This field is the size, in bytes, of the variably sized field holding comments about
the call. This information can be specified by the application that makes the call
and is made available in the call’s information structure for logging purposes.
The format of this field is that of dwStringFormat, as specified in
LINEDEVCAPS.

dwCommentOffset This field is the offset, in bytes, of the variably sized field holding comments
about the call from the beginning of this data structure. This information can be
specified by the application that makes the call and is made available in the call’s
information structure for logging purposes. The format of this field is that of
dwStringFormat, as specified in LINEDEVCAPS.

dwUserUserInfoSize This field is the size, in bytes, of the variably sized field holding user-user infor-
mation. The protocol discriminator field for the user-user information, if
required, should appear as the first byte of the data pointed to by dwUserUser-
InfoOffset and must be accounted for in dwUserUserInfoSize.

dwUserUserInfoOffset This field is the offset, in bytes, of the variably sized field holding user-user infor-
mation from the beginning of this data structure.

dwHighLevelCompSize This field is the size, in bytes, of the variably sized field holding high-level com-
patibility information.

dwHighLevelCompOffset This field is the offset, in bytes, from the beginning of this data structure of the
variably sized field holding high-level compatibility information.

dwLowLevelCompSize This field is the size, in bytes, of the variably sized field holding low-level com-
patibility information.

dwLowLevelCompOffset This field is the offset, in bytes, from the beginning of this data structure of the
variably sized field holding low-level compatibility information.

dwDevSpecificSize This field is the size, in bytes, of the variably sized field holding device-specific
information.

dwDevSpecificOffset This field is the offset, in bytes, from the beginning of this data structure of the
variably sized field holding device-specific information.

dwPredictiveAutoTransferStates This field indicates the LINECALLSTATE_ constants that would cause the call to
be blind-transferred to the specified target address. It is set to zero if automatic
transfer is not desired.

dwTargetAddressSize This field is the size, in bytes, of a string specifying the target dialable address
(not dwAddressID); used in the case of certain automatic actions.

dwTargetAddressOffset This field is the offset from the beginning of LINECALLPARAMS of a string spec-
ifying the target dialable address (not dwAddressID); used in the case of certain
automatic actions.

Placing Outgoing Calls � 471

10

C
h
a
p

te
r

Field Meaning

dwSendingFlowspecSize This field is the total size, in bytes, of a WinSock2 FLOWSPEC structure fol-
lowed by WinSock2 provider-specific data, equivalent to what would have been
stored in SendingFlowspec.len in a WinSock2 QOS structure. It specifies the
quality of service desired in the sending direction on the call. The provider-spe-
cific portion following the FLOWSPEC structure must not contain pointers to
other blocks of memory because TAPI does not know how to marshal the data
pointed to by the private pointer(s) and convey it through interprocess commu-
nication to the application.

dwSendingFlowspecOffset This field is the offset from the beginning of LINECALLPARAMS of a WinSock2
FLOWSPEC structure followed by WinSock2 provider-specific data, equivalent
to what would have been stored in SendingFlowspec.len in a WinSock2 QOS
structure. It specifies the quality of service desired in the sending direction on
the call. The provider-specific portion following the FLOWSPEC structure must
not contain pointers to other blocks of memory because TAPI does not know
how to marshal the data pointed to by the private pointer(s) and convey it
through interprocess communication to the application.

dwReceivingFlowspecSize This field is the total size, in bytes, of a WinSock2 FLOWSPEC structure fol-
lowed by WinSock2 provider-specific data, equivalent to what would have been
stored in ReceivingFlowspec.len in a WinSock2 QOS structure. It specifies the
quality of service desired in the receiving direction on the call. The provider-
specific portion following the FLOWSPEC structure must not contain pointers
to other blocks of memory because TAPI does not know how to marshal the
data pointed to by the private pointer(s) and convey it through interprocess
communication to the application.

dwReceivingFlowspecOffset This field is the offset from the beginning of LINECALLPARAMS of a WinSock2
FLOWSPEC structure followed by WinSock2 provider-specific data, equivalent
to what would have been stored in ReceivingFlowspec.len in a WinSock2 QOS
structure. It specifies the quality of service desired in the receiving direction on
the call. The provider-specific portion following the FLOWSPEC structure must
not contain pointers to other blocks of memory, because TAPI does not know
how to marshal the data pointed to by the private pointer(s) and convey it
through interprocess communication to the application.

dwDeviceClassSize This field is the size, in bytes, of a NULL-terminated string (the size includes the
NULL) that indicates the device class of the device whose configuration is speci-
fied in DeviceConfig. Valid device class strings are the same as those specified
for the lineGetID function().

dwDeviceClassOffset This field is the offset from the beginning of LINECALLPARAMS of a NULL-ter-
minated string (the size includes the NULL) that indicates the device class of the
device whose configuration is specified in DeviceConfig. Valid device class
strings are the same as those specified for the lineGetID() function.

dwDeviceConfigSize This field is the number of bytes of the opaque configuration data structure
pointed to by dwDevConfigOffset. This value is returned in the dwStringSize
member in the VarString structure returned by lineGetDevConfig(). If the size is
zero, the default device configuration is used. This allows the application to set
the device configuration before the call is initiated.

dwDeviceConfigOffset This field is the offset from the beginning of LINECALLPARAMS of the opaque
configuration data structure pointed to by dwDevConfigOffset. This value is
returned in the dwStringSize member in the VarString structure returned by
lineGetDevConfig(). If the size is zero, the default device configuration is used.
This allows the application to set the device configuration before the call is
initiated.

472 � Chapter 10

TE
AM
FL
Y

Team-Fly®

Field Meaning

dwCallDataSize This field is the size, in bytes, of the application-modifiable call data to be initially
attached to the call.

dwCallDataOffset This field is the offset from the beginning of LINECALLPARAMS of the applica-
tion-settable call data to be initially attached to the call.

dwNoAnswerTimeout This field is the number of seconds, after the completion of dialing, that the call
should be allowed to wait in the PROCEEDING or RINGBACK states before it
is automatically abandoned by the service provider with a LINECALL-
STATE_DISCONNECTED and LINEDISCONNECTMODE_NOANSWER. A
value of zero indicates that the application does not desire automatic call
abandonment.

dwCallingPartyIDSize This field is the size, in bytes, of a NULL-terminated string (the size includes the
NULL) that specifies the identity of the party placing the call. If the content of
the identifier is acceptable and a path is available, the service provider passes
the identifier along to the called party to indicate the identity of the calling party.

dwCallingPartyIDOffset This field is the offset from the beginning of LINECALLPARAMS of a NULL-ter-
minated string (the size includes the NULL) that specifies the identity of the
party placing the call. If the content of the identifier is acceptable and a path is
available, the service provider passes the identifier along to the called party to
indicate the identity of the calling party.

dwAddressType This field is the address type used for the call. This member of the structure is
available only if the negotiated TAPI version is 3.0 or higher.

LINECALLPARAMFLAGS_ Constants

The LINECALLPARAMFLAGS_ constants are defined in Table 10-3. They
describe various status flags about a call.

Table 10-3: LINECALLPARAMFLAGS_ constants

Constant Meaning

LINECALLPARAMFLAGS_
BLOCKID

This constant indicates that the originator identity should be concealed (block
caller ID).

LINECALLPARAMFLAGS_
DESTOFFHOOK

This constant indicates that the called party’s phone should be automatically
taken offhook.

LINECALLPARAMFLAGS_IDLE This constant indicates that the call should be originated on an idle call appear-
ance and not join a call in progress. When using the lineMakeCall() function, if
the LINECALLPARAMFLAGS_IDLE value is not set and there is an existing call
on the line, the function breaks into the existing call if necessary to make the
new call. If there is no existing call, the function makes the new call as specified.

LINECALLPARAMFLAGS_
NOHOLDCONFERENCE

This constant is used only in conjunction with lineSetupConference() and
linePrepareAddToConference(). The address to be added to a conference with
the current call is specified in the TargetAddress member in LINECALL-
PARAMS. The consultation call does not physically draw dial tone from the
switch but will progress through various call establishment states (for example,
dialing and proceeding). When the consultation call reaches the connected state,
the conference is automatically established; the original call, which had remained
in the connected state, enters the conferenced state; the consultation call enters
the conferenced state; and the hConfCall enters the connected state.

Placing Outgoing Calls � 473

10

C
h
a
p

te
r

Constant Meaning

LINECALLPARAMFLAGS_
NOHOLDCONFERENCE
(cont.)

If the consultation call fails (enters the disconnected state followed by idle), the
hConfCall also enters the idle state, and the original call (which may have been
an existing conference, in the case of linePrepareAddToConference()) remains
in the connected state. The original party (or parties) never perceives the call as
having gone onhold. This feature is often used to add a supervisor to an ACD
agent call when necessary to monitor interactions with an irate caller.

LINECALLPARAMFLAGS_
ONESTEPTRANSFER

This constant is used only in conjunction with lineSetupTransfer(). It combines
the operation of lineSetupTransfer() followed by lineDial() on the consultation
call into a single step. The address to be dialed is specified in the TargetAddress
member in LINECALLPARAMS. The original call is placed in onholdpending-
tranfer state, as if lineSetupTransfer() were called normally, and the consultation
call is established normally. The application must still call lineCompleteTransfer()
to affect the transfer. This feature is often used when invoking a transfer from a
server over a third-party call control link because such links frequently do not
support the normal two-step process.

LINECALLPARAMFLAGS_
ORIGOFFHOOK

This constant indicates that the originator’s phone should be automatically taken
offhook.

LINECALLPARAMFLAGS_
PREDICTIVEDIAL

This constant is used only when placing a call on an address with predictive dial-
ing capability (LINEADDRCAPFLAGS_PREDICTIVEDIALER is on in the
dwAddrCapFlags member in LINEADDRESSCAPS). The bit must be on to
enable the enhanced call progress and/or media device monitoring capabilities
of the device. If this bit is not on, the call will be placed without enhanced call
progress or media type monitoring, and no automatic transfer will be initiated
based on call state.

LINECALLPARAMFLAGS_
SECURE

This constant indicates that the call should be set up as secure.

function lineTranslateAddress TAPI.pas

Syntax

function lineTranslateAddress(hLineApp: HLINEAPP; dwDeviceID, dwAPIVersion:
DWORD; lpszAddressIn: LPCSTR; dwCard, dwTranslateOptions: DWORD;
lpTranslateOutput: PLineTranslateOutput): Longint; stdcall;

Description

This function translates the specified address into another format.

Parameters

hLineApp: The application handle (HLINEAPP) returned by lineInitializeEx(). If
an application has not yet called the lineInitializeEx() function, it can set
the hLineApp parameter to NULL.

dwDeviceID: A DWORD holding the device ID for the line device upon which
the call is intended to be dialed, so variations in dialing procedures on dif-
ferent lines can be applied to the translation process.

dwAPIVersion: A DWORD indicating the highest version of TAPI supported by
the application (not necessarily the value negotiated by lineNegotiate-
APIVersion() on some particular line device).

474 � Chapter 10

lpszAddressIn: A pointer (LPCSTR) to a NULL-terminated ASCII string contain-
ing the address from which the information is to be extracted for
translation. It must be in either the canonical address format or an arbi-
trary string of dialable digits (non-canonical). This parameter must not be
NULL. If lpszAddressIn contains a subaddress, name field, or additional
addresses separated from the first address by ASCII CR and LF characters,
only the first address is translated, and the remainder of the string is
returned to the application without modification.

dwCard: A DWORD indicating the credit card to be used for dialing. This field is
only valid if the CARDOVERRIDE bit is set in dwTranslateOptions. This
field specifies the permanent ID of a card entry in the [Cards] section in
the registry (as obtained from lineTranslateCaps()), which should be used
instead of the PreferredCardID specified in the definition of the
CurrentLocation. It does not cause the PreferredCardID parameter of the
current location entry in the registry to be modified; the override applies
only to the current translation operation. This field is ignored if the
CARDOVERRIDE bit is not set in dwTranslateOptions.

dwTranslateOptions: A DWORD indicating the associated operations to be per-
formed prior to the translation of the address into a dialable string. This
parameter uses the LINETRANSLATEOPTION_ constants explained in
Table 10-4.

lpTranslateOutput: A pointer (PLineTranslateOutput) to an application-allocated
memory area to contain the output of the translation operation of type
LINETRANSLATEOUTPUT. Before you call lineTranslateAddress(), you
should set the dwTotalSize field of this structure to indicate the amount of
memory available to TAPI for returning information.

Return Value

This function returns zero if the request is successful or a negative error num-
ber if an error has occurred. Possible return values are LINEERR_BAD-
DEVICEID, LINEERR_INVALPOINTER, LINEERR_INCOMPATIBLE-
APIVERSION, LINEERR_NODRIVER, LINEERR_INIFILECORRUPT,
LINEERR_NOMEM, LINEERR_INVALADDRESS, LINEERR_OPERATION-
FAILED, LINEERR_INVALAPPHANDLE, LINEERR_RESOURCEUNAVAIL,
LINEERR_INVALCARD, LINEERR_STRUCTURETOOSMALL, and
LINEERR_INVALPARAM.

See Also

LINECALLPARAMS, lineInitializeEx, lineNegotiateAPIVersion, LINE-
TRANSLATEOUTPUT

Placing Outgoing Calls � 475

10

C
h
a
p

te
r

Example

Listing 10-4 shows how to call the lineTranslateAddress() function.

Listing 10-4: Calling the lineTranslateAddress() function

procedure TTapiInterface.ShowLineTranslateDialog(APhoneNum : string; AHandle :
THandle);

var
TempNumber : string;
begin
TempNumber := '+1' + Copy(APhoneNum, 2, Length(APhoneNum)-1);
if FDev<0 then
TapiResult := lineTranslateDialogA(fLineApp, 0, APIVersion, AHandle,

LPCStr(TempNumber))
else
TapiResult := lineTranslateDialogA(fLineApp, FDev, APIVersion, AHandle,

LPCStr(TempNumber));
if TapiResult<>0 then
ShowMessage('Could not show Line Translate Dialog Box')

else
lineTranslateAddress(fLineApp, FDev, APIVersion, PChar(fPhoneNumber), 0,

LineTranslateOptions, @FTranslateOutput);
end;

Table 10-4: LINETRANSLATEOPTION_ constants used in the lineTranslateAddress() function’s dwTranslateOptions

parameter

Constant Meaning

LINETRANSLATEOPTION_
CARDOVERRIDE

If this bit is set, dwCard specifies the permanent ID of a card entry in the [Cards]
section in the registry (as obtained from lineTranslateCaps()), which should be used
instead of the PreferredCardID specified in the definition of the CurrentLocation. It
does not cause the PreferredCardID parameter of the current location entry in the
registry to be modified; the override applies only to the current translation opera-
tion. The dwCard field is ignored if the CARDOVERRIDE bit is not set.

LINETRANSLATEOPTION_
CANCELCALLWAITING

If a Cancel Call Waiting string is defined for the location, setting this bit will cause
that string to be inserted at the beginning of the dialable string. This is commonly
used by data modem and fax applications to prevent interruption of calls by call
waiting beeps. If no Cancel Call Waiting string is defined for the location, this bit has
no effect. Note that applications using this bit are advised to also set the LINE-
CALLPARAMFLAGS_SECURE bit in the dwCallParamFlags field of the LINECALL-
PARAMS structure passed in to lineMakeCall() through the lpCallParams parame-
ter, so if the line device uses a mechanism other than dialable digits to suppress call
interrupts, that mechanism will be invoked.

LINETRANSLATEOPTION_
FORCELOCAL

If the number is local but would have been translated as a long distance call (LINE-
TRANSLATERESULT_INTOLLLIST bit set in the LINETRANSLATEOUTPUT
structure), this option will force it to be translated as local. This is a temporary
override of the toll list setting.

LINETRANSLATEOPTION_
FORCELD

If the address could potentially have been a toll call but would have been translated
as a local call (LINETRANSLATERESULT_NOTINTOLLLIST bit set in the LINE-
TRANSLATEOUTPUT structure), this option will force it to be translated as long
distance. This is a temporary override of the toll list setting.

476 � Chapter 10

structure LINETRANSLATEOUTPUT TAPI.pas

The LINETRANSLATEOUTPUT structure describes the result of an address
translation. It does not support extensions. It is defined as follows in TAPI.pas:

PLineTranslateOutput = ^TLineTranslateOutput;
linetranslateoutput_tag = packed record
dwTotalSize,
dwNeededSize,
dwUsedSize,
dwDialableStringSize,
dwDialableStringOffset,
dwDisplayableStringSize,
dwDisplayableStringOffset,
dwCurrentCountry,
dwDestCountry,
dwTranslateResults: DWORD;

end;
TLineTranslateOutput = linetranslateoutput_tag;
LINETRANSLATEOUTPUT = linetranslateoutput_tag;

These fields are described in Table 10-5.

Table 10-5: Fields of the LINETRANSLATEOUTPUT structure

Field Meaning

dwTotalSize This field indicates the total size in bytes allocated to this data structure.

dwNeededSize This field indicates the size in bytes for this data structure that is needed to hold all
the returned information.

dwUsedSize This field indicates the size in bytes of the portion of this data structure that contains
useful information.

dwDialableStringSize This field indicates the size in bytes of the NULL-terminated ASCII string that con-
tains the translated output that can be passed to the lineMakeCall(), lineDial(), or
other function requiring a dialable string. The output is always a NULL-terminated
ASCII string (NULL is accounted for in Size). Ancillary fields, such as name and
subaddress, are included in this output string if they were in the input string. This
string may contain private information, such as calling card numbers. It should not be
displayed to the user, in order to prevent inadvertent visibility to unauthorized
persons.

dwDialableStringOffset This field indicates the offset, in bytes, to the NULL-terminated ASCII string that
contains the translated output that can be passed to the lineMakeCall(), lineDial(), or
other function requiring a dialable string. The output is always a NULL-terminated
ASCII string (NULL is accounted for in size). Ancillary fields, such as name and
subaddress, are included in this output string if they were in the input string. This
string may contain private information, such as calling card numbers. It should not be
displayed to the user, in order to prevent inadvertent visibility to unauthorized
persons.

dwDisplayableStringSize This field indicates the translated output that can be displayed to the user for confir-
mation. It will be identical to DialableString, except calling card digits will be replaced
with the “friendly name” of the card enclosed within bracket characters (for exam-
ple, “[AT&T Card]”), and ancillary fields, such as name and subaddress, will be
removed. It should normally be safe to display this string in call-status dialog boxes
without exposing private information to unauthorized persons. This information is
also appropriate to include in call logs.

Placing Outgoing Calls � 477

10

C
h
a
p

te
r

Field Meaning

dwDisplayableStringOffset This field indicates the offset, in bytes, to the NULL-terminated ASCII string that
contains the translated output that can be displayed to the user for confirmation. It
will be identical to DialableString, except calling card digits will be replaced with the
“friendly name” of the card enclosed within bracket characters (for example,
“[AT&T Card]”), and ancillary fields, such as name and subaddress, will be removed.
It should normally be safe to display this string in call-status dialog boxes without
exposing private information to unauthorized persons. This information is also
appropriate to include in call logs.

dwCurrentCountry This field contains the the country code configured in CurrentLocation. This value
may be used to control the display by the application of certain user interface ele-
ments, local call progress tone detection, and other purposes.

dwDestCountry This field contains the destination country code of the translated address. This value
may be passed to the dwCountryCode parameter of lineMakeCall() and other dialing
functions (so that the call progress tones of the destination country, such as a busy
signal, will be properly detected). This field is set to zero if the destination address
passed to lineTranslateAddress() is not in canonical format.

dwTranslateResults This field indicates the information derived from the translation process, which may
assist the application in presenting user-interface elements. This field uses the
LINETRANSLATERESULT_ constants described in Table 10-6.

Table 10-6: LINETRANSLATERESULT_ constants used with the dwTranslateResults field of the

LINETRANSLATEOUTPUT structure

Constant Meaning

LINETRANSLATERESULT_
CANONICAL

This constant indicates that the input string was in valid canonical format.

LINETRANSLATERESULT_
INTERNATIONAL

If this bit is on, the call is being treated as an international call (country code specified
in the destination address is different from the country code specified for the
CurrentLocation).

LINETRANSLATERESULT_
LONGDISTANCE

If this bit is on, the call is being treated as a long distance call (country code specified
in the destination address is the same, but area code is different from those specified
for the CurrentLocation).

LINETRANSLATERESULT_
LOCAL

If this bit is on, the call is being treated as a local call (country code and area code
specified in the destination address are the same as those specified for the
CurrentLocation).

LINETRANSLATERESULT_
INTOLLLIST

If this bit is on, the local call is being dialed as long distance because the country has
toll calling and the prefix appears in the TollPrefixList of the CurrentLocation.

LINETRANSLATERESULT_
NOTINTOLLLIST

If this bit is on, the country supports toll calling, but the prefix does not appear in the
TollPrefixList, so the call is dialed as a local call. Note that if both INTOLLIST and
NOTINTOLLIST are off, the current country does not support toll prefixes and
user-interface elements related to toll prefixes should not be presented to the user;
if either such bit is on, the country does support toll lists, and the related user-inter-
face elements should be enabled.

LINETRANSLATERESULT_
DIALBILLING

This constant indicates that the returned address contains a “$.”

LINETRANSLATERESULT_
DIALQUIET

This constant indicates that the returned address contains a “@.”

LINETRANSLATERESULT_
DIALDIALTONE

This constant indicates that the returned address contains a “W.”

478 � Chapter 10

Constant Meaning

LINETRANSLATERESULT_
DIALPROMPT

This constant indicates that the returned address contains a “?.”

function lineTranslateDialog TAPI.pas

Syntax

function lineTranslateDialog(hLineApp: HLINEAPP; dwDeviceID, dwAPIVersion:
DWORD; hwndOwner: HWND; lpszAddressIn: LPCSTR): Longint; stdcall; // TAPI
v1.4

Description

This function displays an application modal dialog that allows the user to change
the current location, adjust location and calling card parameters, and see the
effect on a phone number about to be dialed.

Parameters

hLineApp: The application handle (HLINEAPP) returned by lineInitializeEx(). If
an application has not yet called the lineInitializeEx() function, it can set
the hLineApp parameter to NULL.

dwDeviceID: A DWORD indicating the device ID for the line device upon which
the call is intended to be dialed, so variations in dialing procedures on dif-
ferent lines can be applied to the translation process

dwAPIVersion: A DWORD indicating the highest version of TAPI supported by
the application (not necessarily the value negotiated by lineNegotiate-
APIVersion() on the line device indicated by dwDeviceID)

hwndOwner: A handle (HWND) to a window to which the dialog is to be
attached. It can be a NULL value to indicate that any window created dur-
ing the function should have no owner window.

lpszAddressIn: A pointer (LPCSTR) to a NULL-terminated ASCII string contain-
ing a phone number that will be used in the lower portion of the dialog to
show the effect of the user’s changes to the location parameters. The num-
ber must be in canonical format; if non-canonical, the phone number
portion of the dialog will not be displayed. This pointer can be left NULL,
in which case the phone number portion of the dialog will not be displayed.
If lpszAddressIn contains a subaddress, name field, or additional addresses
separated from the first address by ASCII CR and LF characters, only the
first address is used in the dialog.

Placing Outgoing Calls � 479

10

C
h
a
p

te
r

Return Value

This function returns zero if the request is successful or a negative error num-
ber if an error has occurred. Possible return values are LINEERR_BAD-
DEVICEID, LINEERR_INVALPARAM, LINEERR_INCOMPATIBLEAPI-
VERSION, LINEERR_INVALPOINTER, LINEERR_INIFILECORRUPT,
LINEERR_NODRIVER, LINEERR_INUSE, LINEERR_NOMEM, LINEERR_
INVALADDRESS, LINEERR_INVALAPPHANDLE, and LINEERR_
OPERATIONFAILED.

See Also

lineGetTranslateCaps, lineInitializeEx, lineNegotiateAPIVersion,
lineTranslateAddress

Example

See Listing 10-4.

Summary
In this chapter we have explored the various means of placing calls with TAPI:
high level and low level. We have also discussed the various types of addresses
or phone numbers with which TAPI works. Equally important in a full-featured
Call Manager application is accepting incoming phone calls. That is the topic of
our next chapter, “Accepting Incoming Calls.”

480 � Chapter 10

Chapter 11

Accepting Incoming Calls

In the last chapter we explored the high-level and low-level means of placing
calls with TAPI along with the various types of addresses or phone numbers
with which TAPI works. Equally important in a full-featured Call Manager appli-
cation is the ability to accept incoming phone calls. We’ll concentrate on that
topic in this chapter. We’ll begin by discussing the process that TAPI must go
through in finding the right application to handle an incoming call. Then we’ll
discuss the process of answering such a call. Finally, we’ll examine all of the
functions that are used to support these activities.

Finding the Right Application
When a call arrives, we have no way of knowing what kind of call it may be
(voice, data, or something else). As we discussed in Chapter 8, TAPI uses media
modes to differentiate different kinds of calls. These media modes have a con-
siderable impact on how TAPI deals with incoming calls.

When a call arrives, information about that call, including its media mode, is
contained in its LINECALLINFO structure. If just one media mode bit (exclud-
ing the unknown bit) has been set in the structure’s dwMediaMode field, TAPI
will attempt to find a suitable telephony application to handle it. In doing so, it
will follow a consistent procedure based on the current state of the system and
information saved by the user in the registry. These steps are summarized suc-
cinctly in Figure 11-1. As enumerated in the TAPI Help file, these are the steps
it takes to find and possibly launch an application to handle an incoming call:

1. The service provider notifies the TAPI dynamic-link library that a call is
arriving.

2. TAPI examines the information in the HandoffPriorities section of the reg-
istry to discover which applications, if any, are interested in handling calls
having this one’s media mode. Often, this information is exposed through a
Preferences option in an application’s user interface.

3. TAPI considers the first appropriate application listed, reading left to right,
as the highest priority application. If that application is currently running

481

and has the arriving call’s line open for the requested media mode, it gets
ownership of the call. If it is not running or does not have that line open,
TAPI again uses the information in the registry to find an interested appli-
cation in the correct state, to which it gives the call.

4. If none of the applications listed in the registry are in the proper state,
TAPI looks for other applications that are currently executing and that also
have the particular line open for that media mode (though they are not
listed in the registry). The relative priority among these unlisted applica-
tions is arbitrary and not necessarily associated with the sequence in
which they were launched or opened on the line.

If your application has the particular line open for monitoring, it also will receive
a handle to all of the calls on that line. Because of that, your application could
step up, claim ownership of the call by invoking the lineSetCallPrivilege() func-
tion, and go ahead and answer it. (We discuss this function and provide Delphi
code in the reference section of this chapter.) Be aware that this behavior could
result in problems in handling the call and the TAPI Help file discourages it.

If no application becomes an owner of the call, TAPI will eventually drop the
call, but this will happen only if no appropriate owner can be found and the call
state is neither idle nor offering. Of course, the calling party can also drop the
call. (On an ISDN network, this event becomes known when a “call-disconnect”
frame is received.) If the call is not explicitly dropped, it can go into an idle state
after the expiration of a timeout. Such a timeout is usually based on the absence
of ringing. (The service provider would need to assume that the calling party
has dropped the call and implemented the timeout.) Because there were no

482 � Chapter 11

Figure 11-1: Finding and

launching an application to

handle an incoming call

TE
AM
FL
Y

Team-Fly®

applications that could take the call successfully, this situation usually means
that the incoming call reached a wrong number.

Unknown Media Type
When a call is coming in, TAPI is constantly monitoring its progress. It checks
the first LINE_CALLSTATE message delivered by the service provider to find
out the type of media that is arriving. Sometimes, this is not indicated explicitly
and the unknown media bit will be set. Here’s how that works.

If TAPI discovers that the messages’s param3 LINEMEDIAMODE_
UNKNOWN bit is set, it will begin a process of probing, as outlined in Figure
11-2. First, it will determine whether or not an application has already opened
the specific line and is prepared to accept calls of the unknown media type.
There are two possible cases: a suitable unknown application is running or one
is not running. We’ll examine each.

In the first instance, at least one unknown application will be open and available
on a line. In this scenario, the TAPI dynamic-link library will give an ownership
handle for the incoming call to the highest priority unknown application. That
application will receive a LINE_CALLSTATE message with dwParam3 set to
owner. As we indicated, it will also pass monitoring handles to the other applica-
tions that have the line open for monitoring.

This unknown application could then attempt to perform media determina-
tion itself or use the assistance of the other media-related applications. In the
latter case, these other applications would perform probes for their supported

Accepting Incoming Calls � 483

11

C
h
a
p

te
r

Figure 11-2: The

probing

process

media mode(s). The unknown application could also simply pass the call to
another media application by calling the lineHandoff() function. The unknown

application would want to examine LINECALLINFO’s dwMediaMode field to
determine the possible remaining media candidates. In doing so, it would select
the highest priority media (see below) as the initial handoff target. It would call
the lineHandoff() function, specifying the single highest priority destination
media mode as the target.

In the second instance, if no unknown application has opened the line, the
TAPI dynamic-link library itself will assume the role of an unknown application,
passing an owner handle for the call to the highest priority application that is
registered for the highest priority media mode whose flag is set in the
LINECALLINFO structure’s dwMediaMode field. TAPI will examine all of the
appropriate applications in priority order until a suitable one is found.

What if no appropriate owner application can be found? In that case, the call
will remain in the offering state until either a monitoring application becomes an
owner by calling the lineSetCallPrivilege() function or until the call is aban-
doned by the calling party. In the latter case, it will simply transition to the idle
state. After that, all monitoring applications will deallocate their handles to the
call.

Prioritizing Media Modes
Having briefly examined the two general possibilities, we will now explore how
TAPI prioritizes media modes. These media modes have a default order, begin-
ning with the first one that will be tried during media type handoff to the last
one that will be tried. The order is as follows:

1. LINEMEDIAMODE_INTERACTIVEVOICE

2. LINEMEDIAMODE_DATAMODEM

3. LINEMEDIAMODE_G3FAX

4. LINEMEDIAMODE_TDD

5. LINEMEDIAMODE_G4FAX

6. LINEMEDIAMODE_DIGITALDATA

7. LINEMEDIAMODE_TELETEX

8. LINEMEDIAMODE_VIDEOTEX

9. LINEMEDIAMODE_TELEX

10. LINEMEDIAMODE_MIXED

11. LINEMEDIAMODE_ADSI

484 � Chapter 11

If a handoff fails, the unknown application should clear that media mode flag in
LINECALLINFO’s dwMediaMode member and try the next one in the list. If the
handoff indicates TARGETSELF, the current unknown application is itself the
highest priority application for the media mode for which it was trying to hand
off the call. Therefore, it should go ahead and do the probing itself.

If the handoff indicates SUCCESS, a different application is the highest prior-
ity application for the media mode for which the call was being handed off. The
unknown application should deallocate the call handle or change its status to
that of a monitor while the new owner takes control and proceeds with probing.

Responsibilities of the Receiving Application
A receiving application has certain responsibilities. Most importantly, it gains
control of the call. If the probe is successful, it should set the correct media
mode bit. If the probe fails, the application should clear the failed media mode
bit in LINECALLINFO and hand the call off to the next highest priority applica-
tion, which can give it a try. If no more media mode bits are set, the handoff will
fail, since no suitable owner application could be found for the call.

In the end, the media mode may be identified through monitoring or success-
ful probing, though the unknown bit may still be set in dwMediaMode in the data
structure, LINECALLINFO. This situation is a bit fluid. The application that
received the call cannot be absolutely sure that it is the highest priority applica-
tion for the identified media mode. It is now the duty of that application to
ensure that the call goes to the highest priority application. To do so, it must fol-
low these steps:

1. It must call the lineSetMediaMode() function, which will write to the
dwMediaMode field of the call, turning off the unknown bit and specifying
the newly identified media mode bit.

2. It should call the lineHandoff() function to return the call to TAPI, which
will assume the task of finding the highest priority application for that
media mode.

3. As indicated above, if this application is itself the highest priority applica-
tion for this media mode, it will receive a LINEERR_TARGETSELF
return value (for the lineHandoff() function call). This tells the application:
“No, you are already the highest priority application for that media mode;
deal with it.”

The application in question never loses control of the call, and it continues han-
dling the call normally. If the call to the lineHandoff() function succeeds, there
was a higher priority application for the identified media mode, and the applica-
tion that called lineHandoff() should deallocate its handle or become a monitor,
allowing the highest priority application to handle the call.

Accepting Incoming Calls � 485

11

C
h
a
p

te
r

�TIP: Be aware of this: As long as the unknown bit remains set, a
receiving application will still not know that the highest priority
media mode is present on the call. Therefore, it must probe for
it. It will consider the media mode to be present only if the
unknown bit is off. Only then can it relate to the call as one of
that media mode.

The TAPI Help file recommends that unknown applications use default priori-
ties when probing for applications to accept calls of unknown media modes.
They point out that this protects human callers from hearing unpleasant fax or
modem signals. Specifically, they recommend probing first for voice, which will
occur automatically if an application follows the order stated in the default media
mode list described earlier.

If your application will be probing for high-priority media modes, the TAPI
Help file recommends turning media monitoring on. This feature, invoked by
calling the lineMonitorMedia() function, will detect signals that indicate particu-
lar media. The Help file provides an interesting example in which one applica-
tion may be playing an outgoing “leave a message” voice message, while at the
same time an incoming call starts sending a fax “calling” tone after which it
waits for a handshake. In order to not lose the fax call, the local application
would need to monitor for this tone while playing the voice message. Deter-
mining the lower priority media (the fax call) while actively probing for the
higher priority media (voice) is not only a safer method, it also helps prevent
the loss of a call. It is quite efficient since it can shorten the probing process.

Media Application Duties
When a suitable media application has been located and the call has been given
to that application, the latter must assume certain duties. If that application
receives the call as a handoff target, it should first check LINECALLINFO’s
dwMediaMode bit flags. If it finds that only a single media mode flag is set, the
call will be considered to be officially of that media mode, and the application can
act accordingly.

As you may have guessed, if the unknown flag and other media mode flags
are set, the media mode of the call will still be officially unknown, with the
assumption that it could operate using one of the media modes for which a flag
is set in LINECALLINFO. In this case, the application should next probe for the
highest priority media mode. This continued probing can follow different direc-
tions. If more than one bit is set in LINECALLINFO and the call has not been
answered, the application must call the lineAnswer() function to continue prob-
ing. On the other hand, if the call has already been answered, the application can
continue probing without having to first answer the call.

486 � Chapter 11

If the probe succeeds (for either the highest priority media mode or for
another one), the application should set LINECALLINFO’s dwMediaMode field
to the particular media mode that the probe recognized. If the actual media
mode is this expected media mode, the application can handle it. Otherwise (if it
identifies another media mode), it must first attempt to hand off the call in case
it is not the highest priority application for the detected media mode.

If the probe fails, the application should clear the flag for that media mode in
dwMediaMode in LINECALLINFO and hand the call off to the unknown applica-
tion. It should also deallocate its call handle or revert back to monitoring the
call. If an attempt to hand off the call to the unknown application fails, no
unknown application is running. It is then the responsibility of the application
that currently owns the call to attempt to hand it off to the next highest priority
media mode (while leaving LINECALLINFO’s dwMediaMode unknown bit
turned on so the process may continue). If that handoff fails, the application
should turn off that media bit and attempt the next higher priority bit, until the
handoff succeeds or until all of the bits are off except for the unknown bit.

If none of the media modes were determined to be the actual one, only the
unknown flag will remain set in LINECALLINFO’s dwMediaMode when the
media application attempts to hand the call off to unknown. The final call to
lineHandoff() will fail if the application is the only remaining owner of the call.
This failure informs the application that it should drop the call and then
deallocate the call’s handle. At this point, the call is abandoned. Of course, you
should use the information available to inform the user of the failure and indi-
cate the reasons for it.

Accepting an Incoming Call
Now that we have examined the process of dealing with media modes, espe-
cially the unknown media mode, we are ready to discuss the process of
accepting a call. If you’re writing a Call Manager application (as we do in the
code accompanying this book), you’ll want your users to be able to receive calls
as well as place calls. After an application has properly opened a line device, it
will be notified whenever a call arrives on that line.

To properly open a line to receive incoming calls, your application must regis-
ter a privilege other than a privilege of none. It must also indicate a media
mode. If your application has opened a line with LINECALLPRIVILEGE_
MONITOR, it will receive a LINE_CALLSTATE message for every call that
arrives on the line. If it has opened a line with LINECALLPRIVILEGE_
OWNER, it will receive a LINE_CALLSTATE message only if it has become an
owner of the call or is the target of a directed handoff. In this notification, TAPI
will give the handoff receiving application a handle to the incoming call. That
application will keep this handle until it deallocates the call.

Accepting Incoming Calls � 487

11

C
h
a
p

te
r

Using the mechanism you set up when you initialize TAPI, Windows will
inform applications of call arrivals and all other call-state events using the
LINE_CALLSTATE message. This message provides the call handle, an appli-
cation’s privilege to the call, and the call’s new state. The call state for an
unanswered inbound call will always be offering. You can call the
lineGetCallInfo() function to obtain information about an offering call before
accepting it.

This function call will also cause the call information in the LINECALLINFO
data structure to be updated. By knowing the call state and other information,
your application can determine whether or not it needs to answer the call. You’ll
recall that we stressed the importance of this structure at the beginning of this
chapter. What kind of call information is stored in the LINECALLINFO struc-
ture? Among other things, it includes the information shown in Table 11-1.

Table 11-1: Information stored in the LINECALLINFO structure

Information Description

Bearer mode, rate This is the bearer mode (voice, data) and data rate (in bits per second) of the
call for digital data calls.

Media mode The current media mode of the call. Unknown is the mode specified if this
information is unknown, and the other set bits indicate which media modes
might possibly exist on the call. For more information, see Multiple-
Application Programming in the TAPI Help file.

Call origin Indicates whether the call originated from an internal caller, an external
caller, or an unknown caller.

Reason for the call Describes why the call is occurring. Possible reasons include a direct call, a
call transferred from another number, a busy call forwarded from another
number, a call unconditionally forwarded from another number, a call picked
up from another number, a call completion request, a callback reminder (the
reason for the call will be given as unknown if this information is not known),
user-to-user information sent by the remote station (ISDN), and so on.

In addition to the reasons for the call listed in Table 11-1, there are several
involving call identifiers, as shown in Table 11-2.

Table 11-2: Call reasons involving call identifiers

ID Type Description

Caller-ID Identifies the originating party of the call. This can be in a variety of (name or
number) formats, determined by what the switch or network provides.

Called-ID Identifies the party originally dialed by the caller

Connected-ID Identifies the party to which the call was actually connected. This may be dif-
ferent from the called party if the call was diverted.

Redirection-ID Identifies to the caller the number toward which diversion was invoked

Redirecting-ID Identifies to the diverted-to user the party from which diversion was
invoked

488 � Chapter 11

The LINE_CALLSTATE message also has the duty of notifying monitoring
applications that a call has been established by other applications or manually by
the user. One example, given in the TAPI Help file, concerns an attached phone
device (if the telephony hardware and the service provider support monitoring
of actions on external equipment). The call state of such calls reflects the actual
state of the call, as follows: An inbound call for which ownership is given to
another application is indicated to the monitor applications as initially being in
the offering state. An outbound call placed by another application would nor-
mally first appear to the monitoring applications in the dial-tone state.

The fact that a call is offered does not necessarily mean that the user is being
alerted of its arrival. Once alerting (ringing) has begun, a separate LINE_LINE-
DEVSTATE message will be sent with a ringing indication to inform an
application. In some telephony environments, it may be necessary for an appli-
cation to accept the call (with lineAccept()) before ringing starts. An application
can determine whether or not this is necessary by checking the LINEADDR-
CAPFLAGS_ACCEPTTOALERT bit.

When it comes to providing information about a call, some telephony environ-
ments can provide information when the call is initially offered; others cannot.
For example, if caller ID is not provided by the network until after the second
ring, caller ID will be unknown at the time the call is first offered. When it does
become known shortly thereafter, a LINE_CALLINFO message will notify the
application about the change in the party ID information of the call.

Now we can discuss the specific details of accepting and answering calls. As
before, we’ll see differences on different types of networks. On a POTS net-
work, the only reason for an application to call lineAccept() would be to inform
other applications that it has accepted responsibility to present the call to the
user. The lineAccept() function is discussed in detail later in this chapter. Simi-
larly, on an ISDN line, the effect of accepting a call is simply to make other
applications aware that some application has accepted responsibility for handling
the call.

On an ISDN network, accepting a call also involves informing the switch that
an application will present the call to the user. This is accomplished by alerting
the user, either by ringing or by popping up a dialog box on the computer. If the
LINEADDRCAPFLAGS_ACCEPTTOALERT bit is set, an application must call
lineAccept() for the call or the call will not ring.

Accepting Incoming Calls � 489

11

C
h
a
p

te
r

�NOTE: If an application fails to call the lineAccept() function quickly
enough (the timeout may be as short as three seconds on some
ISDN networks), the network will assume that the station is
powered off or disconnected and act accordingly. Under these
circumstances, it will likely either deflect the call (if Forward is
on and No Answer is activated) or send a disconnect message to
the calling station.

Be aware that these terms are quite specific. Accepting a call is not the same as
answering a call. With POTS, answering a call simply means to go offhook. On
an ISDN line, it means to tell the switch to place the call in a connected state.
Prior to answering, there is no physical connection for the call between the
switch and the destination, though the call is connected from the caller to the
switch.

You can program your telephony applications to wait a minimum number of
rings before abandoning a call or answering it automatically to accept voice mail.
You should use the lineGetNumRings() function to determine the number of
times an inbound call on the given address should ring before the call is to be
answered. Waiting a certain number of rings allows callers to be spared the
charge of a call connection if it seems that the call will not be answered by the
desired party (usually a person). This feature is sometimes called toll-saver sup-

port. Applications can use the functions lineGetNumRings() and lineSetNum-
Rings() in combination to provide a mechanism to support toll-saver features for
multiple independent applications. These two functions are discussed in the ref-
erence section at the end of this chapter.

Any application that receives a handle for a call in the offering state, along
with a LINE_LINEDEVSTATE ringing message, should wait a number of rings
equal to the number returned by lineGetNumRings() before answering the call
in order to honor the toll-saver settings across all applications. The function
lineGetNumRings() will return the minimum number of rings an application has
specified with the function lineSetNumRings(). Because this number may vary
dynamically, an application should call lineGetNumRings() each time it has the
option to answer a call. In other words, it should check the number of rings
whenever it is the owner of a call that is still in the offering state. A separate
LINE_LINEDEVSTATE ringing message will be sent to an application for each
ring cycle.

If the service provider is set to auto-answer calls, it will answer after a cer-
tain number of rings. Service providers do not have access to the minimum ring
information established by lineSetNumRings() and will therefore make their
own determination of when to automatically answer an incoming call. When a
call has been answered by a service provider, it will be delivered initially to the
owning application. Since it will already be in the connected state, an application

490 � Chapter 11

need not be concerned with counting rings or answering the call. In our sample
Call Manager application, we give the user the opportunity to set how many
rings should transpire before automatically answering and possibly playing a
recorded message.

You might wonder how an application takes ownership of a call. In general,
when one application learns that another application wants ownership of a call, it
will simply relinquish ownership of the call to that other application. Although
there can be many co-owners of a call, multiple ownership should be a transi-
tory state.

There is one case in which it is valid for an application to actively take owner-
ship of a call owned by another application—when it is instructed to do so by
the user interacting with a user interface. This would be appropriate, for exam-
ple, if the user wanted to end a voice conversation, but keep the line open,
transferring the call to a fax application to send a fax. Of course, the fax applica-
tion would take ownership from the previous owner of the original application
that had controlled the voice call. The TAPI Help file also describes a less polite
method, whereby an application could forcibly become owner of a call.

Be aware that there are potential pitfalls. For example, there is no way to
shield a call from another application’s attempt to become its owner. Generally,
there isn’t any reason to do so. Once an application is informed that another
application has become an owner, it should do the responsible thing—abandon
its activities on the call and relinquish ownership. This makes sense, since such
changes in ownership are almost always the result of explicit actions by the
user.

At some point, an application will be finished with a call and want to relin-
quish it. An application can relinquish ownership of a call by calling lineSetCall-
Privilege() to change its status to that of a monitor application. Or, it could sim-
ply call the lineDeallocateCall() function to indicate that it has no further
interest in the call. Be aware, however, that you cannot give up your responsi-
bilities if no other application is willing to assume them. If an application
happens to be the sole owner of the call and cannot hand off ownership to
another application, TAPI will not permit it to change to being a monitor or to
deallocate its call handle. In this situation, the application has no choice but to
drop the call.

Now we’re ready to consider how to handle incoming calls and line privileges.
The following is implicit within what we have discussed so far: An application
cannot refuse ownership of a call for which it receives an owner handle. An
application’s relationship to a call—whether the application will receive owner
or monitor privileges to the call—will be decided before the call arrives, when
the application opens the line on which the call is established by the remote
caller. Next we’ll examine the details.

Accepting Incoming Calls � 491

11

C
h
a
p

te
r

If the application opens the line using lineOpen() with the dwPrivilege param-
eter set to LINECALLPRIVILEGE_MONITOR, it will automatically receive a
handle with monitoring privileges for all incoming calls on the line. It can then
choose to become an owner by calling the lineSetCallPrivilege() function. The
fact that it indicated MONITOR when it opened the line does not prevent it
from later becoming an owner by calling lineSetCallPrivilege() or originating a
call with lineMakeCall() (an application is always an owner of calls it places
regardless of the privilege specified with lineOpen()).

When an incoming call has been offered to an application and the latter is an
owner of the call, the application can then answer the call using the line-
Answer() function. Once the application has answered the call, the latter’s call
state will typically transition to “connected,” at which time information can be
exchanged over the line.

We’ve laid the groundwork for dealing with incoming calls. Now we’ll exam-
ine some of the more subtle details. Sometimes, you may have a situation in
which multiple telephony applications are capable of running simultaneously. In
this situation, TAPI must be able to identify an appropriate application to
become the initial owner of each incoming call. In general, incoming calls reach
their destination, or target application, in a process involving two or three steps:
First, the service provider learns that a new call has arrived and passes it to the
TAPI dynamic-link library. Second, TAPI initiates the process to give the call to
an appropriate application. Finally, the applications themselves sometimes need
to conduct a probing process, as we discussed in some detail above. In such a
probing process, the call may be handed off between applications one or more
times.

Having identified an incoming call, an application must secure that call. If the
new call arrives while another call exists on that line or address, a similar notifi-
cation process will be followed as for an initial call. Here, the call information
may be supplied following the same mechanism as for any incoming call. If an
application does not want any interference by outside events for a call from the
switch or phone network, it should secure the call. Securing a call can be done
at the time the call is made by providing a parameter to lineMakeCall() or later
(when the call already exists) with lineSecureCall(). The call will be secure until
the call is disconnected. Securing a call may be useful, for example, when cer-
tain network tones (such as those for call waiting) could disrupt a call’s media
stream, such as receiving a fax.

Sometimes, you may wish to log call information. An application can call the
function lineGetCallInfo() in order to obtain information about a call. Although
this function fills the LINECALLINFO structure with a large amount of data,
applications may need to maintain additional items, such as the start and stop
time of the call. You can also include call state information in a log, as we do in
the Call Manager application. Those states are diagrammed in Figure 11-3.

492 � Chapter 11

TE
AM
FL
Y

Team-Fly®

In developing your applications, you might consider the TAPI Help file’s
suggestions:

� Free the call’s handle (hCall) when the call goes idle (e.g., when a
LINECALLSTATE_IDLE message is received for the call). At any point in
the call’s existence prior to its deallocation, monitoring applications can
retrieve information about the call.

� To keep the call’s log sheet complete, log the fact that the call has gone
idle.

� Some applications may also need to update the user interface to show that
important events have occurred, such as the fact that a fax is being
received.

Ending a Call
Besides placing and accepting calls, another very common task, of course, is
ending a call. When the call has ended, your application will receive a
LINE_CALLSTATE message that will inform it that the state of a line device
has changed. Generally, this means that a remote disconnect has occurred. Of
course, you may also disconnect a call at the local end (it “goes on-hook”) by
calling the lineDrop() function. Alternatively, your application itself may choose
to end the call by invoking the lineDrop() function before it receives a remote-
disconnect message. In previous chapters, we discussed closing a line and shut-
ting down TAPI. It is important that you perform these tasks in a specific order.
Here are the steps that you might use to end a call, close the line, and shut
down TAPI (assuming the user wishes to end all telephony activity):

Accepting Incoming Calls � 493

11

C
h
a
p

te
r

Figure 11-3: States

of a successful

incoming call: the

probing process

1. An application could first call lineDrop(), which will place the call in the
idle state. The call will still exist with the application maintaining its han-
dle to the call. If it needs to, the application could still examine the call
information record.

2. An application might then call lineDeallocateCall() to release the call han-
dle for the finished call. After this, the call will no longer exist.

3. An application is now ready to call lineClose() to close the line; it should do
this only if it expects no more further calls on that line. After this, there
will be no more incoming or outgoing calls on that line.

4. Before closing, an application should call lineShutdown() to end its use of
TAPI’s functions for the current session.

As we discussed in Chapter 8, when your application is finished using a line
device, you should close the device by calling lineClose() for the line device
handle. As we stated there, after you’ve closed the line, your application’s han-
dle for that line device will no longer be valid.

In the next section, we provide a reference for the additional basic TAPI func-
tions, especially those that support dealing with incoming calls. We also discuss
the structures and constants that are used with these functions. Each function
reference includes Delphi code from our TAPI class. Every function is used in
one of the sample applications.

Reference for Additional Basic TAPI Functions

function lineAccept Tapi.pas

Syntax

function lineAccept(hCall: HCALL; lpsUserUserInfo: LPCSTR; dwSize: DWORD):
Longint; stdcall;

Description

This function accepts the specified offered call. It may optionally send the speci-
fied user-to-user information to the calling party. It is typically used in tele-
phony environments like Integrated Services Digital Network (ISDN) that
support an alerting process associated with incoming calls independent from the
initial offering of the call; it also can be used with non-ISDN systems. When a
call arrives, it is initially in the offering state. During that brief time period the
application may reject the call by using the lineDrop() function, redirect it by
using the lineRedirect() function, answer it by using the lineAnswer() function,
or accept it by using this function (lineAccept()). After a call has been accepted
by an application, its call state typically transitions to that of accepted. Applica-
tions are alerted of state changes by the LINE_LINEDEVSTATE message. An

494 � Chapter 11

application may also send user-to-user information when a call has been
accepted.

Parameters

hCall: A handle to the call to be accepted or rejected. The application must be an
owner of the call. The call state of hCall must be offering.

lpsUserUserInfo: A pointer (of type LPCSTR) to a string containing user-to-user
information to be sent to the remote party as part of the call accept. This
pointer can be set to NIL if no user-to-user information is to be sent.
User-to-user information is only sent if supported by the underlying net-
work (see the LINEDEVCAPS structure). The protocol discriminator field
for the user-to-user information, if required, should appear as the first byte
of the buffer pointed to by lpsUserUserInfo. You must account for the added
size in the dwSize parameter.

dwSize: A DWORD that holds the size (in bytes) of the user-to-user information
in lpsUserUserInfo. If lpsUserUserInfo is set to NIL, no user-to-user infor-
mation is sent to the calling party and dwSize will be ignored.

Return Value

This function returns a positive request ID if the function will be completed
asynchronously or a negative error number if an error occurred. The dwParam2

parameter of the corresponding LINE_REPLY message will be set to zero if the
function is successful or to a negative error number if an error occurred. Possi-
ble error return values are LINEERR_INVALCALLHANDLE, LINEERR_
RESOURCEUNAVAIL, LINEERR_INVALCALLSTATE, LINEERR_OPERA-
TIONUNAVAIL, LINEERR_NOTOWNER, LINEERR_UNINITIALIZED,
LINEERR_INVALPOINTER, LINEERR_OPERATIONFAILED, LINEERR_
NOMEM, and LINEERR_USERUSERINFOTOOBIG.

See Also

LINE_REPLY, lineAnswer, LINEDEVCAPS, lineDrop, lineRedirect (in TAPI
Help file)

Example

See the use of this function in the ALineCallBack() procedure given in the “Line
Callback” section of Chapter 9.

Accepting Incoming Calls � 495

11

C
h
a
p

te
r

function lineAnswer TAPI.pas

Syntax

function lineAnswer(hCall: HCALL; lpsUserUserInfo: LPCSTR; dwSize: DWORD):
Longint; stdcall;

Description

This function answers the specified offering call.

Parameters

hCall: A handle (HCALL) to the call to be answered. The application must be an
owner of this call. The call state of hCall must be offering or accepted.

lpsUserUserInfo: A pointer to a string (LPCSTR) that contains user-to-user
information to be sent to the remote party at the time of answering the
call. This pointer can be set to NIL if no user-to-user information is to be
sent. User-to-user information is only sent if the functionality is supported
by the underlying network (see LINEDEVCAPS). The protocol
discriminator field for the user-to-user information, if required, should
appear as the first byte of the buffer pointed to by lpsUserUserInfo and
must be accounted for in the dwSize parameter.

dwSize: A DWORD indicating the size, in bytes, of the user-to-user information
in lpsUserUserInfo. If lpsUserUserInfo is NIL, no user-to-user information
is sent to the calling party and dwSize will be ignored.

Return Value

Returns a positive request ID if the function will be completed asynchronously
or a negative error number if an error has occurred. The dwParam2 parameter
of the corresponding LINE_REPLY message is zero if the function is successful
or a negative error number if an error has occurred. Possible return values are
LINEERR_INUSE, LINEERR_OPERATIONUNAVAIL, LINEERR_INVAL-
CALLHANDLE, LINEERR_OPERATIONFAILED, LINEERR_INVALCALL-
STATE, LINEERR_RESOURCEUNAVAIL, LINEERR_INVALPOINTER,
LINEERR_UNINITIALIZED, LINEERR_NOMEM, LINEERR_USERUSER-
INFOTOOBIG, and LINEERR_NOTOWNER.

See Also

LINE_CALLSTATE, LINE_REPLY, LINEDEVCAPS

Example

The code fragment in Listing 11-1, responding to a LINECALLSTATE_
ACCEPTED message in the line TLineCallback() function (see Chapter 9),
answers an incoming call.

496 � Chapter 11

Listing 11-1: Answering an incoming call

LINECALLSTATE_ACCEPTED:
begin
TapiInterface.CallState := csAccepted;
TapiInterface.OnSendTapiMessage(
'The call was offering and has been accepted.');

if TapiInterface.App.MessageBox('Do you want to accept this call?',
'Incoming Phone Call', MB_OKCANCEL + MB_ICONQUESTION)=IDOK then
lineAnswer(TapiInterface.CurrentCall, Nil, 0);

end;

function lineDeallocateCall TAPI.pas

Syntax

function lineDeallocateCall(hCall: HCALL): Longint; stdcall;

Description

This function deallocates the specified call handle.

Parameter

hCall: The call handle (HCALL) to be deallocated. An application with monitor-
ing privileges for a call can always deallocate its handle for that call. An
application with owner privilege for a call can deallocate its handle, except
when the application is the sole owner of the call and the call is not in the
idle state. The call handle will no longer be valid after it has been
deallocated.

Return Value

This function returns zero if the request is successful or a negative error num-
ber if an error has occurred. Possible return values are LINEERR_INVAL-
CALLHANDLE, LINEERR_OPERATIONFAILED, LINEERR_INVALCALL-
STATE, LINEERR_RESOURCEUNAVAIL, LINEERR_NOMEM, and
LINEERR_UNINITIALIZED.

See Also

LINE_REPLY, lineDrop, lineShutdown

Example

Listing 11-2 shows how to use lineDeallocateCall() in the process of completely
hanging up a call and freeing resources.

Listing 11-2: Hanging up a call completely

function TTapiInterface.HangUp: Boolean;
begin
TAPIResult := lineDrop(FCall, Nil, 0);
result := TapiResult>0;
If NOT Result then
ReportError(TapiResult)

else
OnSendTapiMessage('line drop successful');

Accepting Incoming Calls � 497

11

C
h
a
p

te
r

if result then
begin
TAPIResult := lineDeallocateCall(FCall);
result := TapiResult=0;
If NOT Result then
ReportError(TapiResult)

else
OnSendTapiMessage('line deallocation successful');

end;
end;

function lineDrop TAPI.pas

Syntax

function lineDrop(hCall: HCALL; lpsUserUserInfo: LPCSTR; dwSize: DWORD):
Longint; stdcall;

Description

This function drops or disconnects the specified call. The application has the
option to specify user-to-user information to be transmitted as part of the call
disconnect.

Parameters

hCall: A handle (HCALL) to the call to be dropped. The application must be an
owner of the call. The call state of hCall can be any state except idle.

lpsUserUserInfo: A pointer to a string (LPCSTR) containing user-to-user infor-
mation to be sent to the remote party as part of the call disconnect. This
pointer can be left NULL if no user-to-user information is to be sent.
User-to-user information is only sent if supported by the underlying net-
work (see LINEDEVCAPS). The protocol discriminator field for the
user-to-user information, if required, should appear as the first byte of the
buffer pointed to by lpsUserUserInfo, and must be accounted for in dwSize.

dwSize: A DWORD indicating the size in bytes of the user-to-user information
in lpsUserUserInfo. If lpsUserUserInfo is NULL, no user-to-user informa-
tion is sent to the calling party and dwSize is ignored.

Return Value

This function returns a positive request ID if the function will be completed
asynchronously or a negative error number if an error has occurred. The
dwParam2 parameter of the corresponding LINE_REPLY message is zero if the
function is successful or a negative error number if an error has occurred. Pos-
sible return values are LINEERR_INVALCALLHANDLE, LINEERR_
OPERATIONUNAVAIL, LINEERR_NOMEM, LINEERR_OPERATION-
FAILED, LINEERR_NOTOWNER, LINEERR_RESOURCEUNAVAIL,
LINEERR_INVALPOINTER, LINEERR_USERUSERINFOTOOBIG,
LINEERR_INVALCALLSTATE, and LINEERR_UNINITIALIZED.

498 � Chapter 11

See Also

LINE_CALLSTATE, LINE_REPLY, LINEDEVCAPS

Example

See Listing 11-2.

function lineGetCallInfo TAPI.pas

Syntax

function lineGetCallInfo(hCall: HCALL; lpCallInfo: PLineCallInfo): Longint; stdcall;

Description

This function enables an application to obtain fixed information about the speci-
fied call.

Parameters

hCall: A handle (HCALL) to the call to be queried. The call state of hCall can be
any state.

lpCallInfo: A pointer (PLineCallInfo) to a variably sized data structure of type
LINECALLINFO. If the request is succesfully completed, this structure is
filled with call-related information. Before you call lineGetCallInfo(), you
should set the dwTotalSize field of the LINECALLINFO structure to indi-
cate the amount of memory available to TAPI for returning information.

Return Value

This function returns zero if the request is successful or a negative error num-
ber if an error has occurred. Possible return values are LINEERR_INVAL-
CALLHANDLE, LINEERR_RESOURCEUNAVAIL, LINEERR_INVAL-
POINTER, LINEERR_STRUCTURETOOSMALL, LINEERR_NOMEM,
LINEERR_UNINITIALIZED, LINEERR_OPERATIONFAILED, and
LINEERR_OPERATIONUNAVAIL.

See Also

LINE_CALLINFO, LINE_CALLSTATE, LINECALLINFO

Example

Listing 11-3 shows how to retrieve call information.

Listing 11-3: Retrieving call information

function TTapiInterface.GetCallInfo: boolean;
begin
if CallState <> csConnected then
begin
ShowMessage('Call must be connected to get address status');
result := false;
exit;

end;

Accepting Incoming Calls � 499

11

C
h
a
p

te
r

if fLineCallInfo=Nil then
fLineCallInfo := AllocMem(SizeOf(TLineCallInfo)+1000);

fLineCallInfo.dwTotalSize := SizeOf(LineCallInfo)+1000;
TapiResult := lineGetCallInfo(fCall, fLineCallInfo);
result := TapiResult=0;
if NOT result then ReportError(TapiResult);

end;

structure LINECALLINFO TAPI.pas

The huge LINECALLINFO structure contains information about a call. This
information remains relatively fixed for the duration of a particular call. A num-
ber of functions use LINECALLINFO. The structure is returned by the
lineGetCallInfo() function and the TSPI_lineGetCallInfo() function. If a part of
the structure does change, a LINE_CALLINFO message is sent to the applica-
tion indicating which information item has changed. Dynamically changing
information about a call, such as call progress status, is available in the
LINECALLSTATUS structure, returned by a call to the lineGetCallStatus()
function.

If your application uses device-specific extensions, you should use the
DevSpecific (dwDevSpecificSize and dwDevSpecificOffset) variably sized area of
this data structure. The members dwCallTreatment through dwReceivingFlow-

specOffset are available only to applications that open the line device with an API
version of 2.0 or later.

�NOTE: The preferred format for the specification of the contents of the
dwCallID field and the other five similar fields (dwCallerIDFlag,
dwCallerIDSize, dwCallerIDOffset, dwCallerIDNameSize, and
dwCallerIDNameOffset) is the TAPI canonical number format
that we discussed in detail in Chapter 9.

For example, a ICLID of “4258828080” received from the
switch should be converted to “+1 (425) 8828080” before being
placed in the LINECALLINFO structure. This standardized
format facilitates searching of databases and callback functions
implemented in applications.

This structure is defined as follows in TAPI.pas:

PLineCallInfo = ^TLineCallInfo;
linecallinfo_tag = packed record
dwTotalSize,
dwNeededSize,
dwUsedSize: DWORD;
hLine: HLINE;
dwLineDeviceID,
dwAddressID,
dwBearerMode,
dwRate,
dwMediaMode,

500 � Chapter 11

dwAppSpecific,
dwCallID,
dwRelatedCallID,
dwCallParamFlags,
dwCallStates,
dwMonitorDigitModes,
dwMonitorMediaModes: DWORD;
DialParams: TLineDialParams;
dwOrigin,
dwReason,
dwCompletionID,
dwNumOwners,
dwNumMonitors,
dwCountryCode,
dwTrunk,
dwCallerIDFlags,
dwCallerIDSize,
dwCallerIDOffset,
dwCallerIDNameSize,
dwCallerIDNameOffset,
dwCalledIDFlags,
dwCalledIDSize,
dwCalledIDOffset,
dwCalledIDNameSize,
dwCalledIDNameOffset,
dwConnectedIDFlags,
dwConnectedIDSize,
dwConnectedIDOffset,
dwConnectedIDNameSize,
dwConnectedIDNameOffset,
dwRedirectionIDFlags,
dwRedirectionIDSize,
dwRedirectionIDOffset,
dwRedirectionIDNameSize,
dwRedirectionIDNameOffset,
dwRedirectingIDFlags,
dwRedirectingIDSize,
dwRedirectingIDOffset,
dwRedirectingIDNameSize,
dwRedirectingIDNameOffset,
dwAppNameSize,
dwAppNameOffset,
dwDisplayableAddressSize,
dwDisplayableAddressOffset,
dwCalledPartySize,
dwCalledPartyOffset,
dwCommentSize,
dwCommentOffset,
dwDisplaySize,
dwDisplayOffset,
dwUserUserInfoSize,
dwUserUserInfoOffset,
dwHighLevelCompSize,
dwHighLevelCompOffset,
dwLowLevelCompSize,
dwLowLevelCompOffset,
dwChargingInfoSize,
dwChargingInfoOffset,
dwTerminalModesSize,
dwTerminalModesOffset,

Accepting Incoming Calls � 501

11

C
h
a
p

te
r

dwDevSpecificSize,
dwDevSpecificOffset: DWORD;

{$IFDEF TAPI20}
dwCallTreatment, // TAPI v2.0
dwCallDataSize, // TAPI v2.0
dwCallDataOffset, // TAPI v2.0
dwSendingFlowspecSize, // TAPI v2.0
dwSendingFlowspecOffset, // TAPI v2.0
dwReceivingFlowspecSize, // TAPI v2.0
dwReceivingFlowspecOffset: DWORD; // TAPI v2.0

{$ENDIF}
{$IFDEF TAPI30}

dwAddressType: DWORD; // TAPI v3.0
{$ENDIF}
end;
TLineCallInfo = linecallinfo_tag;
LINECALLINFO = linecallinfo_tag;

The fields of this structure are defined in Table 11-3.

Table 11-3: Fields of the LINECALLINFO structure

Field Meaning

dwTotalSize This field indicates the total size, in bytes, allocated to this data structure.

dwNeededSize This field indicates the size, in bytes, for this data structure that is needed to hold all
the returned information.

dwUsedSize This field indicates the size, in bytes, of the portion of this data structure that con-
tains useful information.

hLine This field indicates the handle for the line device with which this call is associated.

dwLineDeviceID This field indicates the device identifier of the line device with which this call is
associated.

dwAddressID This field indicates the address identifier permanently associated with the address
where the call exists.

dwBearerMode This field indicates the current bearer mode of the call. This field uses one of the
LINEBEARERMODE_ constants.

dwRate This field indicates the rate of the call’s data stream in bps (bits per second).

dwMediaMode This field indicates the media type of the information stream currently on the call. It
is determined by the owner of the call. It uses the LINEMEDIAMODE_ constants.

dwAppSpecific This field is not interpreted by the API implementation and service provider. It can be
set by any owner application of this call with the lineSetAppSpecific() function.

dwCallID This field indicates a unique identifier to each call assigned by the switch or service
provider.

dwRelatedCallID This field indicates the related call ID. Telephony environments that use the call ID
may often find it necessary to relate one call to another.

dwCallParamFlags This field indicates a collection of call-related parameters when the call is outgoing.
These are the same call parameters specified in lineMakeCall(), using one or more of
the LINECALLPARAMFLAGS_ constants.

dwCallStates This field indicates the call states, one or more of the LINECALLSTATE_ constants
(see Table 9-11), for which the application can be notified on this call. The
dwCallStates member is constant in LINECALLINFO and does not change depend-
ing on the call state.

502 � Chapter 11

TE
AM
FL
Y

Team-Fly®

Field Meaning

dwMonitorDigitModes This field indicates the various digit modes, one or more of the LINEDIGITMODE_
constants, for which monitoring is currently enabled.

dwMonitorMediaModes This field indicates the various media types for which monitoring is currently
enabled; one or more of the LINEMEDIAMODE_ constants.

DialParams This field indicates the dialing parameters currently in effect on the call of type
LINEDIALPARAMS. Unless these parameters are set by either lineMakeCall() or
lineSetCallParams(), their values are the same as the defaults used in the
LINEDEVCAPS structure.

dwOrigin This field indicates the identifiers where the call originated; one of the
LINECALLORIGIN_ constants.

dwReason This field indicates the reason why the call occurred; one of the
LINECALLREASON_ constants.

dwCompletionID This field indicates the completion identifier for the incoming call if it is the result of a
completion request that terminates. This identifier is meaningful only if dwReason is
LINECALLREASON_CALLCOMPLETION.

dwNumOwners This field indicates the number of application modules with different call handles with
owner privilege for the call.

dwNumMonitors This field indicates the number of application modules with different call handles with
monitor privilege for the call.

dwCountryCode This field indicates the country code of the destination party. It is zero if unknown.

dwTrunk This field indicates the number of the trunk over which the call is routed. This mem-
ber is used for both incoming and outgoing calls. The dwTrunk member should be
set to $FFFFFFFF if it is unknown.

dwCallerIDFlags This field includes flags indicating the validity and content of the caller, or originator,
party identifier information. It uses one of the LINECALLPARTYID_ constants.

dwCallerIDSize This field indicates the size, in bytes, of the variably sized field containing the caller
party ID number information of this data structure.

dwCallerIDOffset This field indicates the offset, in bytes, from the beginning of this data structure of
the variably sized field containing the caller party ID number information.

dwCallerIDNameSize This field indicates the size, in bytes, of the variably sized field containing the caller
party ID name information.

dwCallerIDNameOffset This field indicates the offset, in bytes, from the beginning of this data structure of
the variably sized field containing the caller party ID name information.

dwCalledIDFlags This field includes flags indicating the validity and content of the called party ID infor-
mation. The called party corresponds to the originally addressed party. This member
uses one of the LINECALLPARTYID_ constants.

dwCalledIDSize This field indicates the size, in bytes, of the variably sized field containing the called
party ID number information.

dwCalledIDOffset This field indicates the offset, in bytes, from the beginning of this data structure of
the variably sized field containing the called party ID number information.

dwCalledIDNameSize This field indicates the size, in bytes, of the variably sized field containing the called
party ID name information.

dwCalledIDNameOffset This field indicates the offset, in bytes, from the beginning of this data structure of
the variably sized field containing the called party ID information.

Accepting Incoming Calls � 503

11

C
h
a
p

te
r

Field Meaning

dwConnectedIDFlags This field includes flags indicating the validity and content of the connected party ID
information. The connected party is the party that was actually connected to. This
may be different from the called party ID if the call was diverted. This member uses
one of the LINECALLPARTYID_ constants.

dwConnectedIDSize This field indicates the size, in bytes, of the variably sized field containing the con-
nected party identifier number information.

dwConnectedIDOffset This field indicates the offset, in bytes, from the beginning of this data structure of
the variably sized field containing the connected party identifier number information.

dwConnectedIDNameSize This field indicates the size, in bytes, of the variably sized field containing the con-
nected party identifier name information.

dwConnectedIDNameOffset This field indicates the offset, in bytes, from the beginning of this data structure of
the variably sized field containing the connected party identifier name information.

dwRedirectionIDFlags This field includes flags indicating the validity and content of the redirection party
identifier information. The redirection party identifies the address to which the ses-
sion was redirected. This member uses one of the LINECALLPARTYID_ constants.

dwRedirectionIDSize This field indicates the size, in bytes, of the variably sized field containing the redirec-
tion party identifier number information, and the offset, in bytes, from the beginning
of this data structure.

dwRedirectionIDOffset This field indicates the size, in bytes, of the variably sized field containing the redirec-
tion party identifier number information, and the offset, in bytes, from the beginning
of this data structure.

dwRedirectionIDNameSize This field indicates the size, in bytes, of the variably sized field containing the redirec-
tion party identifier name information.

dwRedirectionIDNameOffset This field indicates the offset, in bytes, from the beginning of this data structure of
the variably sized field containing the redirection party identifier name information.

dwRedirectingIDFlags This field includes flags indicating the validity and content of the redirecting party
identifier information. The redirecting party identifies the address that redirects the
session. This member uses one of the LINECALLPARTYID_ constants.

dwRedirectingIDSize This field indicates the size, in bytes, of the variably sized field containing the redi-
recting party identifier number information.

dwRedirectingIDOffset This field indicates the offset, in bytes, from the beginning of this data structure of
the variably sized field containing the redirecting party identifier number information.

dwRedirectingIDNameSize This field indicates the offset, in bytes, from the beginning of this data structure of
the variably sized field containing the redirecting party identifier number information.

dwRedirectingIDNameOffset This field indicates the offset, in bytes, from the beginning of this data structure of
the variably sized field containing the redirecting party identifier name information.

dwAppNameSize This field indicates the size, in bytes, of the variably sized field holding the
user-friendly application name of the application that first originated, accepted, or
answered the call. This is the name that an application can specify in lineInitializeEx().
If the application specifies no such name, then the application’s module filename is
used instead.

dwAppNameOffset This field indicates the offset, in bytes, from the beginning of this data structure of
the variably sized field holding the user-friendly application name of the application
that first originated, accepted, or answered the call. This is the name that an applica-
tion can specify in lineInitializeEx(). If the application specifies no such name, then the
application’s module filename is used instead.

504 � Chapter 11

Field Meaning

dwDisplayableAddressSize This field indicates the size of the displayable string that is used for logging purposes.
The information is obtained from LINECALLPARAMS for functions that initiate calls.
The lineTranslateAddress() function returns appropriate information to be placed in
this field in the dwDisplayableAddressSize field of the LINETRANSLATEOUTPUT
structure.

dwDisplayableAddressOffset This field indicates the offset of the displayable string that is used for logging pur-
poses. The information is obtained from LINECALLPARAMS for functions that initi-
ate calls. The lineTranslateAddress() function returns appropriate information to be
placed in this field in the dwDisplayableAddressOffset field of the LINETRANSLATE-
OUTPUT structure.

dwCalledPartySize This field indicates the size, in bytes, of the variably sized field holding a user-friendly
description of the called party. This information can be specified with lineMakeCall()
and can be optionally specified in the lpCallParams parameter whenever a new call is
established. It is useful for call logging purposes.

dwCalledPartyOffset This field indicates the offset, in bytes, from the beginning of this data structure of
the variably sized field holding a user-friendly description of the called party. This
information can be specified with lineMakeCall() and can be optionally specified in
the lpCallParams parameter whenever a new call is established. It is useful for call
logging purposes.

dwCommentSize This field indicates the size, in bytes, of the variably sized field holding a comment
about the call provided by the application that originated the call using
lineMakeCall(). This information can be optionally specified in the lpCallParams
parameter whenever a new call is established.

dwCommentOffset This field indicates the offset, in bytes, from the beginning of this data structure of
the variably sized field holding a comment about the call provided by the application
that originated the call using lineMakeCall(). This information can be optionally speci-
fied in the lpCallParams parameter whenever a new call is established.

dwDisplaySize This field indicates the size, in bytes, of the variably sized field holding raw display
information. Depending on the telephony environment, a service provider may
extract functional information from this member pair for formatting and presentation
most appropriate for this telephony configuration.

dwDisplayOffset This field indicates the offset, in bytes, from the beginning of this data structure.
Depending on the telephony environment, a service provider may extract functional
information from this member pair for formatting and presentation most appropriate
for this telephony configuration.

dwUserUserInfoSize This field indicates the size, in bytes, of the variably sized field holding user-user
information. The protocol discriminator field for the user-user information, if used,
appears as the first byte of the data pointed to by dwUserUserInfoOffset and is
accounted for in dwUserUserInfoSize.

dwUserUserInfoOffset This field indicates the offset, in bytes, from the beginning of this data structure of
the variably sized field holding user-user information. The protocol discriminator field
for the user-user information, if used, appears as the first byte of the data pointed to
by dwUserUserInfoOffset and is accounted for in dwUserUserInfoSize.

dwHighLevelCompSize This field indicates the size, in bytes, of the variably sized field holding high-level
compatibility information. The format of this information is specified by other stan-
dards (ISDN Q.931).

dwHighLevelCompOffset This field indicates the offset, in bytes, from the beginning of this data structure of
the variably sized field holding high-level compatibility information. The format of this
information is specified by other standards (ISDN Q.931).

Accepting Incoming Calls � 505

11

C
h
a
p

te
r

Field Meaning

dwLowLevelCompSize This field indicates the size, in bytes, of the variably sized field holding low-level com-
patibility information. The format of this information is specified by other standards
(ISDN Q.931).

dwLowLevelCompOffset This field indicates the offset, in bytes, from the beginning of this data structure of
the variably sized field holding low-level compatibility information. The format of this
information is specified by other standards (ISDN Q.931).

dwChargingInfoSize This field indicates the size, in bytes, of the variably sized field holding charging infor-
mation. The format of this information is specified by other standards (ISDN Q.931).

dwChargingInfoOffset This field indicates the offset, in bytes, from the beginning of this data structure of
the variably sized field holding charging information. The format of this information is
specified by other standards (ISDN Q.931).

dwTerminalModesSize This field indicates the size, in bytes, of the variably sized device field containing an
array with DWORD-sized entries. Array entries are indexed by terminal identifiers in
the range from zero to one less than dwNumTerminals. Each entry in the array spec-
ifies the current terminal modes for the corresponding terminal set with the
lineSetTerminal() function for this call’s media stream, as specified by one of the
LINETERMMODE_ constants described in Table 11-4.

dwTerminalModesOffset This field indicates the offset, in bytes, from the beginning of this data structure of
the variably sized device field containing an array with DWORD-sized entries. Array
entries are indexed by terminal identifiers in the range from zero to one less than
dwNumTerminals. Each entry in the array specifies the current terminal modes for
the corresponding terminal set with the lineSetTerminal() function for this call’s
media stream, as specified by one of the LINETERMMODE_ constants described in
Table 11-4.

dwDevSpecificSize This field indicates the size, in bytes, of the variably sized field holding device-specific
information.

dwDevSpecificOffset This field indicates the offset, in bytes, from the beginning of this data structure of
the variably sized field holding device-specific information.

dwCallTreatment This field indicates the call treatment currently being applied on the call or that is
applied when the call enters the next applicable state. It can be zero if call treatments
are not supported.

dwCallDataSize This field indicates the size, in bytes, of the call data that can be set by the applica-
tion.

dwCallDataOffset This field indicates the offset, in bytes, from the beginning of LINECALLINFO of the
call data that can be set by the application.

dwSendingFlowspecSize This field indicates the total size, in bytes, of a WinSock2 FLOWSPEC structure fol-
lowed by WinSock2 provider-specific data, equivalent to what would have been
stored in SendingFlowspec.len in a WinSock2 QOS structure. It specifies the quality
of service currently in effect in the sending direction on the call. The provider-spe-
cific portion following the FLOWSPEC structure must not contain pointers to other
blocks of memory because TAPI does not know how to marshal the data pointed to
by the private pointer(s) and convey it through interprocess communication to the
application.

506 � Chapter 11

Field Meaning

dwSendingFlowspecOffset This field indicates the offset from the beginning of LINECALLINFO of a WinSock2
FLOWSPEC structure followed by WinSock2 provider-specific data, equivalent to
what would have been stored in SendingFlowspec.len in a WinSock2 QOS structure.
It specifies the quality of service currently in effect in the sending direction on the
call. The provider-specific portion following the FLOWSPEC structure must not con-
tain pointers to other blocks of memory because TAPI does not know how to mar-
shal the data pointed to by the private pointer(s) and convey it through interprocess
communication to the application

dwReceivingFlowspecSize This field indicates the total size, in bytes, of a WinSock2 FLOWSPEC structure fol-
lowed by WinSock2 provider-specific data, equivalent to what would have been
stored in ReceivingFlowspec.len in a WinSock2 QOS structure. It specifies the quality
of service currently in effect in the receiving direction on the call. The provider-spe-
cific portion following the FLOWSPEC structure must not contain pointers to other
blocks of memory because TAPI does not know how to marshal the data pointed to
by the private pointer(s) and convey it through interprocess communication to the
application.

dwReceivingFlowspecOffset This field indicates the offset from the beginning of LINECALLINFO of a WinSock2
FLOWSPEC structure followed by WinSock2 provider-specific data, equivalent to
what would have been stored in ReceivingFlowspec.len in a WinSock2 QOS struc-
ture. It specifies the quality of service currently in effect in the receiving direction on
the call. The provider-specific portion following the FLOWSPEC structure must not
contain pointers to other blocks of memory because TAPI does not know how to
marshal the data pointed to by the private pointer(s) and convey it through
interprocess communication to the application.

dwAddressType The address type used for the call. This member of the structure is available only if
the negotiated TAPI version is 3.0 or higher. Possible line address types include
LINEADDRESSTYPE_PHONENUMBER, indicating a standard phone number,
LINEADDRESSTYPE_SDP, indicating a Session Description Protocol (SDP) confer-
ence, LINEADDRESSTYPE_EMAILNAME, indicating a domain name, and
LINEADDRESSTYPE_IPADDRESS, indicating an IP address.

Table 11-4: LINETERMMODE_ constants

Constant Meaning

LINETERMMODE_LAMPS Indicates that these are lamp events sent from the line to the terminal

LINETERMMODE_
BUTTONS

Indicates that these are button-press events sent from the terminal to the line

LINETERMMODE_
DISPLAY

Indicates that this is display information sent from the line to the terminal

LINETERMMODE_
RINGER

Indicates that this is ringer-control information sent from the switch to the terminal

LINETERMMODE_
HOOKSWITCH

Indicates that these are hookswitch events sent between the terminal and the line

LINETERMMODE_
MEDIATOLINE

Indicates that this is the unidirectional media stream from the terminal to the line
associated with a call on the line (use this value when the routing of both unidirec-
tional channels of a call’s media stream can be controlled independently)

LINETERMMODE_
MEDIAFROMLINE

Indicates that this is the unidirectional media stream from the line to the terminal
associated with a call on the line (use this value when the routing of both unidirec-
tional channels of a call’s media stream can be controlled independently)

Accepting Incoming Calls � 507

11

C
h
a
p

te
r

Constant Meaning

LINETERMMODE_
MEDIABIDIRECT

Indicates that this is the bidirectional media stream associated with a call on the line
and the terminal (use this value when the routing of both unidirectional channels of a
call’s media stream cannot be controlled independently)

function lineGetCallStatus TAPI.pas

Syntax

function lineGetCallStatus(hCall: HCALL; lpCallStatus: PLineCallStatus): Longint;
stdcall;

Description

This function returns the current status of the specified call.

Parameters

hCall: A handle (HCALL) to the call to be queried. The call state of hCall can be
any state.

lpCallStatus: A pointer (PLineCallStatus) to a variably sized data structure of
type LINECALLSTATUS. If the request is successfully completed, this
structure is filled with call status information. Before you call lineGetCall-
Status(), you should set the dwTotalSize field of the LINECALLSTATUS
structure to indicate the amount of memory available to TAPI for returning
information.

Return Value

This function returns zero if the request is successful or a negative error num-
ber if an error has occurred. Possible return values are LINEERR_INVAL-
CALLHANDLE, LINEERR_RESOURCEUNAVAIL, LINEERR_INVAL-
POINTER, LINEERR_STRUCTURETOOSMALL, LINEERR_NOMEM,
LINEERR_UNINITIALIZED, LINEERR_OPERATIONFAILED, and
LINEERR_OPERATIONUNAVAIL.

See Also

LINE_CALLSTATE, LINECALLSTATUS, lineGetCallInfo

Example

Listing 11-4 shows how to get a call’s status.

Listing 11-4: Getting a call’s status

function TTapiInterface.GetCallStatus: boolean;
begin
if fLineCallStatus=Nil then
fLineCallStatus := AllocMem(SizeOf(TLineCallStatus)+1000);

fLineCallStatus.dwTotalSize := SizeOf(TLineCallStatus)+1000;
TapiResult := lineGetCallStatus(fCall, fLineCallStatus);
result := TapiResult=0;
if NOT result then ReportError(TapiResult);

end;

508 � Chapter 11

structure LINECALLSTATUS TAPI.pas

The LINECALLSTATUS structure describes the current status of a call. The
information in this structure, as returned with lineGetCallStatus(), depends on
the device capabilities of the address, the ownership of the call by the invoking
application, and the current state of the call being queried. Device-specific
extensions should use the DevSpecific (dwDevSpecificSize and dwDevSpecific-

Offset) variably sized area of this data structure. The application is sent a
LINE_CALLSTATE message whenever the call state of a call changes. This
message only provides the new call state of the call. Additional status about a
call is available with lineGetCallStatus(). The members dwCallFeatures2 and
tStateEntryTime are available only to applications that open the line device with
a TAPI version of 2.0 or greater. This structure is defined as follows in
TAPI.pas:

PLineCallStatus = ^TLineCallStatus;
linecallstatus_tag = packed record
dwTotalSize,
dwNeededSize,
dwUsedSize,
dwCallState,
dwCallStateMode,
dwCallPrivilege,
dwCallFeatures,
dwDevSpecificSize,
dwDevSpecificOffset: DWORD;

{$IFDEF TAPI20}
dwCallFeatures2: DWORD; // TAPI v2.0
{$IFDEF WIN32}
tStateEntryTime: TSystemTime; // TAPI v2.0
{$ELSE}
tStateEntryTime: array[0..7] of WORD; // TAPI v2.0
{$ENDIF}

{$ENDIF}
end;
TLineCallStatus = linecallstatus_tag;
LINECALLSTATUS = linecallstatus_tag;

The various fields of this structure are described in Table 11-5.

Table 11-5: Fields of the LINECALLSTATUS structure

Field Meaning

dwTotalSize The total size in bytes allocated to this data structure

dwNeededSize The size in bytes for this data structure that is needed to hold all the returned information

dwUsedSize The size in bytes of the portion of this data structure that contains useful information

dwCallState Specifies the current call state of the call. This field uses the LINECALLSTATE_ constants
described in Table 8-5.

dwCallStateMode The interpretation of the dwCallStateMode field is call-state-dependent. It specifies the
current mode of the call while in its current state (if that state defines a mode). This field
uses the LINECALLSTATE_ constants described in Table 9-11.

Accepting Incoming Calls � 509

11

C
h
a
p

te
r

Field Meaning

dwCallPrivilege The application’s privilege for this call. This field uses the following LINECALLPRIVILEGE_
constants:
LINECALLPRIVILEGE_MONITOR indicates that the application has monitor privilege.
LINECALLPRIVILEGE_OWNER indicates that the application has owner privilege.

dwCallFeatures These flags indicate which Telephony API functions can be invoked on the call, given the
availability of the feature in the device capabilities, the current call state, and call ownership
of the invoking application. A zero indicates the corresponding feature cannot be invoked
by the application on the call in its current state; a one indicates the feature can be
invoked. This field uses the LINECALLFEATURE_ constants described in Table 8-7.

dwDevSpecificSize The size in bytes of the variably sized device-specific field

dwDevSpecificOffset The offset in bytes from the beginning of this data structure

dwCallFeatures2 Indicates additional functions can be invoked on the call, given the availability of the feature
in the device capabilities, the current call state, and call ownership of the invoking applica-
tion. It has an extension of the dwCallFeatures field. This field uses LINECALLFEATURE2_
constants.

tStateEntryTime The Coordinated Universal Time at which the current call state was entered

See Also

LINE_CALLSTATE, LINEDIALPARAMS, lineGetCallStatus

function lineGetConfRelatedCalls TAPI.pas

Syntax

function lineGetConfRelatedCalls(hCall: HCALL; lpCallList: PLineCallList): Longint;
stdcall;

Description

This function returns a list of call handles that are part of the same conference
call as the specified call. The specified call is either a conference call or a partic-
ipant call in a conference call. New handles are generated for those calls for
which the application does not already have handles, and the application is
granted monitor privilege to those calls.

Parameters

hCall: A handle (HCALL) to a call. This is either a conference call or a partici-
pant call in a conference call. For a conference parent call, the call state of
hCall can be any state. For a conference participant call, it must be in the
conferenced state.

lpCallList: A pointer (PLineCallList) to a variably sized data structure of type
LINECALLLIST. If the request is succesfully completed, call handles to all
calls in the conference call are returned in this structure. The first call in
the list is the conference call, and the other calls are the participant calls.
The application is granted monitor privilege to those calls for which it does
not already have handles; the privileges to calls in the list for which the

510 � Chapter 11

application already has handles is unchanged. Before you call lineGetConf-
RelatedCalls(), you should set the dwTotalSize field of the LINECALLLIST
structure to indicate the amount of memory available to TAPI for returning
information.

Return Value

Returns zero if the request is successful or a negative error number if an error
has occurred. Possible return values are LINEERR_INVALCALLHANDLE,
LINEERR_OPERATIONFAILED, LINEERR_NOCONFERENCE, LINEERR_
RESOURCEUNAVAIL, LINEERR_INVALPOINTER, LINEERR_STRUC-
TURETOOSMALL, LINEERR_NOMEM, and LINEERR_UNINITIALIZED.

See Also

LINE_CALLSTATE, lineCompleteTransfer, lineGetCallInfo, lineGetCallStatus,
lineSetCallPrivilege

Example

Listing 11-5 shows how to get the list of conference-related calls.

Listing 11-5: Getting the list of conference-related calls

function TTapiInterface.GetConfRelatedCalls: boolean;
begin
if fCallList=Nil then
fCallList := AllocMem(SizeOf(fCallList)+1000);

fCallList.dwTotalSize := SizeOf(fCallList)+1000;
TapiResult := lineGetConfRelatedCalls(fCall, fCallList);
result := TapiResult=0;
if NOT result then ReportError(TAPIResult);

end;

function lineGetNewCalls TAPI.pas

Syntax

function lineGetNewCalls(hLine: HLINE; dwAddressID, dwSelect: DWORD;
lpCallList: PLineCallList): Longint; stdcall;

Description

This function returns call handles to calls on a specified line or address for
which the application currently does not have handles. The application is
granted monitor privilege to these calls.

Parameters

hLine: A handle (HLINE) to an open line device

dwAddressID: A DWORD holding an address on the given open line device

dwSelect: A DWORD holding the selection of requested calls. This dwSelect

parameter can only have one bit set. This parameter should be selected
from one of the following LINECALLSELECT_ constants:

Accepting Incoming Calls � 511

11

C
h
a
p

te
r

LINECALLSELECT_LINE, which selects calls on the specified line
device. The hLine parameter must be a valid line handle; dwAddressID is
ignored;
LINECALLSELECT_ADDRESS, which selects calls on the specified
address on the specified line device. Both hLine and dwAddressID must be
valid.

lpCallList: A pointer(PLineCallList) to a variably sized data structure of type
LINECALLLIST. If the request is successfully completed, call handles to
all selected calls are returned in this structure. Before you call lineGet-
NewCalls(), you should set the dwTotalSize field of the LINECALLLIST
structure to indicate the amount of memory available to TAPI for returning
information.

Return Value

This function returns zero if the request is successful or a negative error num-
ber if an error has occurred. Possible return values are LINEERR_INVAL-
ADDRESSID, LINEERR_OPERATIONFAILED, LINEERR_INVALCALL-
SELECT, LINEERR_RESOURCEUNAVAIL, LINEERR_INVALLINEHANDLE,
LINEERR_STRUCTURETOOSMALL, LINEERR_INVALPOINTER,
LINEERR_UNINITIALIZED, and LINEERR_NOMEM.

See Also

LINECALLLIST, lineGetCallInfo, lineGetCallStatus, lineSetCallPrivilege

Example

Listing 11-6 shows how to get the handles to monitor calls not presently owned.

Listing 11-6: Getting the handles to monitor calls not presently owned

function TTapiInterface.GetNewCalls: boolean;
begin
if fCallList=Nil then
fCallList := AllocMem(SizeOf(fCallList)+1000);

fCallList.dwTotalSize := SizeOf(fCallList)+1000;
TapiResult := lineGetNewCalls(fLine, 0,
LINECALLSELECT_LINE, fCallList);

result := TapiResult=0;
if NOT result then ReportError(TAPIResult);

end;

512 � Chapter 11

TE
AM
FL
Y

Team-Fly®

structure LINECALLLIST TAPI.pas

The LINECALLLIST structure describes a list of call handles. A structure of
this type is returned by the functions lineGetNewCalls() and lineGetConf-
RelatedCalls(). No extensions are used with this structure. This structure is
defined as follows in TAPI.pas:

PLineCallList = ^TLineCallList;
linecalllist_tag = packed record
dwTotalSize,
dwNeededSize,
dwUsedSize,
dwCallsNumEntries,
dwCallsSize,
dwCallsOffset: DWORD;

end;
TLineCallList = linecalllist_tag;
LINECALLLIST = linecalllist_tag;

The fields of this structure are defined in Table 11-6.

Table 11-6: Fields of the LINECALLLIST structure

Fields Meaning

dwTotalSize The total size in bytes allocated to this data structure

dwNeededSize The size in bytes for this data structure that is needed to hold all the
returned information

dwUsedSize The size in bytes of the portion of this data structure that contains useful
information

dwCallsNumEntries The number of handles in the hCalls array

dwCallsSize The size in bytes of the variably sized field (which is an array of
HCALL-sized handles)

dwCallsOffset The offset in bytes from the beginning of this data structure of the variably
sized field (which is an array of HCALL-sized handles)

See Also

lineGetConfRelatedCalls, lineGetNewCalls

function lineGetNumRings TAPI.pas

Syntax

function lineGetNumRings(hLine: HLINE; dwAddressID: DWORD; var
dwNumRings: DWORD): Longint; stdcall;

Description

This function determines the number of times an inbound call on the given
address should ring prior to answering the call.

Accepting Incoming Calls � 513

11

C
h
a
p

te
r

Parameters

hLine: A handle (HLINE) to the open line device

dwAddressID: A DWORD indicating the number of rings that is the minimum of
all current lineSetNumRings() requests

var dwNumRings: A DWORD holding an address on the line device

Return Value

This function returns zero if the request is successful or a negative error num-
ber if an error has occurred. Possible return values are LINEERR_INVAL-
ADDRESSID, LINEERR_OPERATIONFAILED, LINEERR_INVALLINE-
HANDLE, LINEERR_RESOURCEUNAVAIL, LINEERR_INVALPOINTER,
LINEERR_UNINITIALIZED, and LINEERR_NOMEM.

See Also

LINE_LINEDEVSTATE, lineSetNumRings

Example

Listing 11-7 shows how to determine the number of rings an inbound call will
be given before it is answered.

Listing 11-7: Determining the number of rings an inbound call will be given before it is answered

function TTapiInterface.GetNumRings(var NumRings : DWord): boolean;
begin
TapiResult := lineGetNumRings(fLine, fAddressID,
NumRings);

result := TapiResult=0;
if NOT result then ReportError(TAPIResult);

end;

function lineGetRequest TAPI.pas

Syntax

function lineGetRequest(hLineApp: HLINEAPP; dwRequestMode: DWORD;
lpRequestBuffer: Pointer): Longint; stdcall;

Description

This function retrieves the next by-proxy request for the specified request
mode.

Parameters

hLineApp: The application’s usage handle (HLINEAPP) for the line portion of
TAPI

dwRequestMode: A DWORD indicating the type of request that is to be obtained.
Note that dwRequestMode can only have one bit set. This parameter uses
the LINEREQUESTMODE_ constant LINEREQUESTMODE_
MAKECALL.

514 � Chapter 11

lpRequestBuffer: A pointer to a memory buffer where the parameters of the
request are to be placed. The size of the buffer and the interpretation of
the information placed in the buffer depends on the request mode. The
application-allocated buffer is assumed to be of sufficient size to hold the
request. If dwRequestMode is LINEREQUESTMODE_MAKECALL, inter-
pret the content of the request buffer using the LINEREQMAKECALL
structure. If dwRequestMode is LINEREQUESTMODE_MEDIACALL,
interpret the content of the request buffer using the LINEREQMEDIA-
CALL structure.

Return Value

This function returns zero if the request is successful or a negative error num-
ber if an error has occurred. Possible return values are LINEERR_INVALAPP-
HANDLE, LINEERR_NOTREGISTERED, LINEERR_INVALPOINTER,
LINEERR_OPERATIONFAILED, LINEERR_INVALREQUESTMODE,
LINEERR_RESOURCEUNAVAIL, LINEERR_NOMEM, LINEERR_
UNINITIALIZED, and LINEERR_NOREQUEST.

See Also

LINE_REQUEST, LINEREQMAKECALL, tapiRequestMakeCall

Example

Listing 11-8 shows how to retrieve the next by-proxy request.

Listing 11-8: Retrieving the next by-proxy request

function TTapiInterface.GetLineRequest: boolean;
begin
if fLineReqMakeCallRec=Nil then
fLineReqMakeCallRec := AllocMem(SizeOf(TLineReqMakeCall));

TapiResult := lineGetRequest(fLine,
LINEREQUESTMODE_MAKECALL, fLineReqMakeCallRec);

result := TapiResult=0;
if NOT result then ReportError(TAPIResult);

end;

structure LINEREQMAKECALL TAPI.pas

The LINEREQMAKECALL structure describes a tapiRequestMakeCall()
request.

The szDestAddress field contains the address of the remote party; the other
fields are useful for logging purposes. An application must use this structure to
interpret the request buffer it received from lineGetRequest() with the
LINEREQUESTMODE_MAKECALL request mode. It is defined as follows in
TAPI.pas:

PLineReqMakeCall = ^TLineReqMakeCall;
linereqmakecall_tag = packed record
szDestAddress: array[0..TAPIMAXDESTADDRESSSIZE - 1] of Char;
szAppName: array[0..TAPIMAXAPPNAMESIZE - 1] of Char;

Accepting Incoming Calls � 515

11

C
h
a
p

te
r

szCalledParty: array[0..TAPIMAXCALLEDPARTYSIZE - 1] of Char;
szComment: array[0..TAPIMAXCOMMENTSIZE - 1] of Char;

end;
TLineReqMakeCall = linereqmakecall_tag;
LINEREQMAKECALL = linereqmakecall_tag;

The fields of the LINEREQMAKECALL structure are described in Table 11-7.

Table 11-7: Fields of the LINEREQMAKECALL structure

Field Member

szDestAddress The NULL-terminated destination address [size TAPIMAXADDRESSSIZE] of
the make-call request. The address can use the canonical address format or
the dialable address format. The maximum length of the address is
TAPIMAXDESTADDRESSSIZE characters, which includes the NULL termina-
tor. Longer strings are truncated.

szAppName The ASCII NULL-terminated string [size TAPIMAXAPPNAMESIZE] holding
the user-friendly application name or filename of the application that origi-
nated the request. The maximum length of the address is TAPIMAXAPP-
NAMESIZE characters, which includes the NULL terminator.

szCalledParty The ASCII NULL-terminated string [size TAPIMAXCALLEDPARTYSIZE]
holding the user-friendly called-party name. The maximum length of the
called-party information is TAPIMAXCALLEDPARTYSIZE characters, which
includes the NULL terminator.

szComment The ASCII NULL-terminated string [size TAPIMAXCOMMENTSIZE] com-
ment about the call request. The maximum length of the comment string is
TAPIMAXCOMMENTSIZE characters, which includes the NULL terminator.

structure LINEREQMEDIACALL TAPI.pas

The LINEREQMEDIACALL structure describes a request initiated by a call to
the lineGetRequest() function. It is defined as follows in TAPI.pas:

PLineReqMediaCall = ^TLineReqMediaCall;
linereqmediacall_tag = packed record
hWnd: HWND;
wRequestID: WPARAM;
szDeviceClass: array[0..TAPIMAXDEVICECLASSSIZE - 1] of Char;
ucDeviceID: array[0..TAPIMAXDEVICEIDSIZE - 1] of Byte;
dwSize,
dwSecure: DWORD;
szDestAddress: array[0..TAPIMAXDESTADDRESSSIZE - 1] of Char;
szAppName: array[0..TAPIMAXAPPNAMESIZE - 1] of Char;
szCalledParty: array[0..TAPIMAXCALLEDPARTYSIZE - 1] of Char;
szComment: array[0..TAPIMAXCOMMENTSIZE - 1] of Char;

end;
TLineReqMediaCall = linereqmediacall_tag;
LINEREQMEDIACALL = linereqmediacall_tag;

{$IFDEF TAPI20}
PLineReqMediaCallW = ^TLineReqMediaCallW;
linereqmediacallW_tag = packed record
hWnd: HWND;
wRequestID: WPARAM;
szDeviceClass: array[0..TAPIMAXDEVICECLASSSIZE - 1] of WideChar;
ucDeviceID: array[0..TAPIMAXDEVICEIDSIZE - 1] of Byte;
dwSize,

516 � Chapter 11

dwSecure: DWORD;
szDestAddress: array[0..TAPIMAXDESTADDRESSSIZE - 1] of WideChar;
szAppName: array[0..TAPIMAXAPPNAMESIZE - 1] of WideChar;
szCalledParty: array[0..TAPIMAXCALLEDPARTYSIZE - 1] of WideChar;
szComment: array[0..TAPIMAXCOMMENTSIZE - 1] of WideChar;

end;
TLineReqMediaCallW = linereqmediacallW_tag;
LINEREQMEDIACALLW = linereqmediacallW_tag;

The fields of the LINEREQMEDIACALL structure are described in Table 11-8.

Table 11-8: Fields of the LINEREQMEDIACALL structure

Field Member

hWnd Handle to the window of the application which made the request

wRequestID Identifier of the request used to match an asynchronous response

szDeviceClass The device class [size TAPIMAXDEVICECLASSSIZE] required to fill the
request

ucDeviceID The device identifier of size TAPIMAXDEVICEIDSIZE

dwSize Size in bytes of this structure

dwSecure Undocumented DWORD field; may be for future use

szDestAddress Destination address of size TAPIMAXDESTADDRESSSIZE

szAppName Name of application which made the request of size
TAPIMAXAPPNAMESIZE

szCalledParty Called party name of size TAPIMAXCALLEDPARTYSIZE

szComment Comment buffer of size TAPIMAXCOMMENTSIZE

See Also

lineGetRequest

function lineHandoff TAPI.pas

Syntax

function lineHandoff(hCall: HCALL; lpszFileName: LPCSTR; dwMediaMode:
DWORD): Longint; stdcall;

Description

This function gives ownership of the specified call to another application. The
application can be either specified directly by its filename or indirectly as the
highest priority application that handles calls of the specified media mode.

Parameters

hCall: A handle (HCALL) to the call to be handed off. The application must be
an owner of the call. The call state of hCall can be any state.

lpszFileName: A pointer (LPCSTR) to a NULL-terminated ASCII string. If this
pointer parameter is non-NULL, it contains the filename of the application
that is the target of the handoff. If NULL, the handoff target is the highest

Accepting Incoming Calls � 517

11

C
h
a
p

te
r

priority application that has opened the line for owner privilege for the
specified media mode. A valid filename does not include the path of the
file.

dwMediaMode: A DWORD indicating the media mode used to identify the target
for the indirect handoff. The dwMediaMode parameter indirectly identifies
the target application that is to receive ownership of the call. This parame-
ter is ignored if lpszFileName is not NULL. Only a single flag may be set in
the dwMediaMode parameter at any one time. This parameter uses the
LINEMEDIAMODE_ constants shown in Table 11-9.

Return Value

Returns zero if the request is successful or a negative error number if an error
has occurred. Possible return values are LINEERR_INVALCALLHANDLE,
LINEERR_OPERATIONFAILED, LINEERR_INVALMEDIAMODE,
LINEERR_TARGETNOTFOUND, LINEERR_INVALPOINTER, LINEERR_
TARGETSELF, LINEERR_NOMEM, LINEERR_UNINITIALIZED, and
LINEERR_NOTOWNER.

See Also

LINECALLINFO, lineGetCallStatus, lineOpen, lineSetCallPrivilege,
lineSetMediaMode

Example

Listing 11-9 shows how to hand off a call to another application.

Listing 11-9: Handing off a call to another application

function TTapiInterface.HandoffLine(ACall : HCall; TargetApp : string;
ModeDesired : DWord): boolean;

begin
TapiResult := lineHandoff(ACall, PChar(TargetApp), ModeDesired);
result := TapiResult=0;
if NOT result then ReportError(TAPIResult);

end;

Table 11-9: LINEMEDIAMODE_ constants used in the lineHandoff() function’s dwMediaMode parameter

Constant Meaning

LINEMEDIAMODE_UNKNOWN The target application is the one that handles calls of unknown
media mode (unclassified calls).

LINEMEDIAMODE_INTERACTIVEVOICE The target application is the one that handles calls with the interac-
tive voice media mode (live conversations).

LINEMEDIAMODE_AUTOMATEDVOICE Voice energy is present on the call and the voice is locally handled
by an automated application.

LINEMEDIAMODE_DATAMODEM The target application is the one that handles calls with the data
modem media mode.

LINEMEDIAMODE_G3FAX The target application is the one that handles calls with the group 3
fax media mode.

518 � Chapter 11

Constant Meaning

LINEMEDIAMODE_TDD The target application is the one that handles calls with the TDD
(Telephony Devices for the Deaf) media mode.

LINEMEDIAMODE_G4FAX The target application is the one that handles calls with the group 4
fax media mode.

LINEMEDIAMODE_DIGITALDATA The target application is the one that handles calls that are digital
data calls.

LINEMEDIAMODE_TELETEX The target application is the one that handles calls with the teletex
media mode.

LINEMEDIAMODE_VIDEOTEX The target application is the one that handles calls with the video-
tex media mode.

LINEMEDIAMODE_TELEX The target application is the one that handles calls with the telex
media mode.

LINEMEDIAMODE_MIXED The target application is the one that handles calls with the ISDN
mixed media mode.

LINEMEDIAMODE_ADSI The target application is the one that handles calls with the ADSI
(Analog Display Services Interface) media mode.

LINEMEDIAMODE_VOICEVIEW The media mode of the call is VoiceView.

function lineRegisterRequestRecipient TAPI.pas

Syntax

function lineRegisterRequestRecipient(hLineApp: HLINEAPP; dwRegistration-
Instance, dwRequestMode, bEnable: DWORD): Longint; stdcall;

Description

This function registers the invoking application as a recipient of requests for the
specified request mode.

Parameters

hLineApp: The application’s usage handle (HLINEAPP) for the line portion of
TAPI

dwRegistrationInstance: An application-specific DWORD value that is passed
back as a parameter of the LINE_REQUEST message. This message noti-
fies the application that a request is pending. This parameter is ignored if
bEnable is set to zero. This parameter is examined by TAPI only for regis-
tration, not for deregistration. The dwRegistrationInstance value used
while deregistering need not match the dwRegistrationInstance used while
registering for a request mode.

dwRequestMode: A DWORD indicating the type or types of request for which the
application registers. One or both bits may be set. This parameter uses the
following LINEREQUESTMODE_ constant:
LINEREQUESTMODE_ MAKECALL, which indicates a tapiRequest-
MakeCall() request.

Accepting Incoming Calls � 519

11

C
h
a
p

te
r

bEnable: A DWORD that can be set to TRUE or FALSE. If TRUE, the applica-
tion registers; if FALSE, the application deregisters for the specified
request modes.

Return Value

This function returns zero if the request is successful or a negative error num-
ber if an error has occurred. Possible return values are LINEERR_INVALAPP-
HANDLE, LINEERR_OPERATIONFAILED, LINEERR_INVALREQUEST-
MODE, LINEERR_RESOURCEUNAVAIL, LINEERR_NOMEM, and
LINEERR_UNINITIALIZED.

See Also

LINE_REQUEST, lineGetRequest, lineShutdown, tapiRequestMakeCall

Example

Listing 11-10 shows how to call the lineRegisterRequestRecipient() function.

Listing 11-10: Calling the lineRegisterRequestRecipient() function

function TTapiInterface.RegisterRequestRecipient: boolean;
begin
TapiResult := lineRegisterRequestRecipient(fLineApp,
fRegistrationInstance, LINEREQUESTMODE_MAKECALL, 1);

result := TapiResult=0;
if NOT result then ReportError(TAPIResult);

end;

LINEREQUESTMODE_ Constants

The LINEREQUESTMODE_ bit-flag constants describe different types of tele-
phony requests that can be made from one application to another. They are
defined in Table 11-10.

Table 11-10: LINEREQUESTMODE_ constants

Constant Meaning

LINEREQUESTMODE_DROP A tapiRequestDrop request

LINEREQUESTMODE_MAKECALL A tapiRequestMakeCall request

LINEREQUESTMODE_MEDIACALL A tapiRequestMediaCall request

function lineSetNumRings TAPI.pas

Syntax

function lineSetNumRings(hLine: HLINE; dwAddressID, dwNumRings: DWORD):
Longint; stdcall;

Description

This function sets the number of rings that must occur before an incoming call
is answered. This function can be used to implement a toll-saver-style function.
It allows multiple independent applications to each register the number of rings.

520 � Chapter 11

The function lineGetNumRings() returns the minimum number of all the num-
ber of rings requested. It can be used by the application that answers inbound
calls to determine the number of rings it should wait before answering the call.

Parameters

hLine: A handle (HLINE) to the open line device

dwAddressID: A DWORD holding an address on the line device

dwNumRings: A DWORD indicating the number of rings before a call should be
answered in order to honor the toll-saver requests from all applications

Return Value

This function returns zero if the request is successful or a negative error num-
ber if an error has occurred. Possible return values are LINEERR_INVALLINE-
HANDLE, LINEERR_OPERATIONFAILED, LINEERR_INVALADDRESSID,
LINEERR_RESOURCEUNAVAIL, LINEERR_NOMEM, and LINEERR_
UNINITIALIZED.

See Also

LINE_CALLSTATE, LINE_LINEDEVSTATE, lineGetNumRings

Example

Listing 11-11 shows how to call the lineSetNumRings() function.

Listing 11-11: Calling the lineSetNumRings() function

function TTapiInterface.SetNumRings(RequestedRings : Cardinal): boolean;
begin
TapiResult := lineSetNumRings(fLine, fAddressID, RequestedRings);
result := TapiResult=0;
if NOT result then ReportError(TAPIResult);

end;

function lineSetTollList TAPI.pas

Syntax

function lineSetTollList(hLineApp: HLINEAPP; dwDeviceID: DWORD;
lpszAddressIn: LPCSTR; dwTollListOption: DWORD): Longint; stdcall;

Description

This function manipulates the toll list.

Parameters

hLineApp: The application handle (HLINEAPP) returned by lineInitializeEx(). If
an application has not yet called the lineInitializeEx() function, it can set
the hLineApp parameter to NULL.

Accepting Incoming Calls � 521

11

C
h
a
p

te
r

dwDeviceID: A DWORD holding the device ID for the line device upon which
the call is intended to be dialed, so variations in dialing procedures on dif-
ferent lines can be applied to the translation process.

lpszAddressIn: A pointer (LPCSTR) to a NULL-terminated ASCII string contain-
ing the address from which the prefix information is to be extracted for
processing. This parameter must not be NULL, and it must be in the
canonical address format.

dwTollListOption: A DWORD indicating the toll list operation to be performed.
Only a single flag can be set. This parameter uses the following LINE-
TOLLLISTOPTION_ constants:
LINETOLLLISTOPTION_ADD causes the prefix contained within the
string pointed to by lpszAddressIn to be added to the toll list for the current
location.
LINETOLLLISTOPTION_REMOVE causes the prefix to be removed from
the toll list of the current location (if toll lists are not used or are not rele-
vant to the country indicated in the current location, the operation has no
effect).

Return Value

This function returns zero if the request is successful or a negative error num-
ber if an error has occurred. Possible return values are LINEERR_BAD-
DEVICEID, LINEERR_NODRIVER, LINEERR_INVALAPPHANDLE,
LINEERR_NOMEM, LINEERR_INVALADDRESS, LINEERR_OPERATION-
FAILED, LINEERR_INVALPARAM, LINEERR_RESOURCEUNAVAIL,
LINEERR_INIFILECORRUPT, LINEERR_UNINITIALIZED, and LINEERR_
INVALLOCATION.

See Also

lineInitializeEx

Example

Listing 11-12 shows how to call the lineSetTollList() function. The CallAddress

parameter in the SetTollList() method must be in the canonical format we dis-
cussed in Chapter 10. The sample application calls this function in this manner
(note the canonical number in the string):

if NOT TapiInterface.SetTollList('+1 (502) 597-6000', LINETOLLLISTOPTION_ADD)
then ShowMessage('Could not set toll list');.

522 � Chapter 11

TE
AM
FL
Y

Team-Fly®

Listing 11-12: Calling the lineSetTollList() function

function TTapiInterface.SetTollList(CallAddress : string;
TollListAction : DWord): boolean;

begin
TapiResult := lineSetTollList(fLineApp, 0{fLine}, PChar(CallAddress), TollListAction);
result := TapiResult=0;
if NOT result then ReportError(TAPIResult);

end;

In this, our final chapter, we have examined the issues, functions, and structures
used in accepting incoming calls. In this book, we have examined all of the basic
TAPI line functions. The remaining TAPI functions, including those supporting
phone devices, are topics for another book.

Accepting Incoming Calls � 523

11

C
h
a
p

te
r

Appendix A

Glossary of Important
Communications Programming
Terms

address With TAPI, the actual telephone number, generally including the
national or international code. Under Winsock, an integer value used
to identify a particular computer that must appear in each packet sent
to the computer.

address binding The translation of a higher-layer address into an equivalent lower-
layer address. For example, translation of a computer’s IP address to
the computer’s Ethernet addresses.

address mask A synonym for subnet mask.

address resolution Conversion of a protocol address into a corresponding physical
address (IP address => Ethernet address). Depending on the under-
lying network, resolution may require broadcasting on a local net-
work. See ARP.

API Application Program Interface. The specifications of the operations
an application program must invoke to communicate over a network.
The Windows Sockets API is the most popular for Internet communi-
cation on Windows platforms. The Telephony API (TAPI) is the basic
interface for telephony programming.

ARP The Address Resolution Protocol maps an IP address to the equiva-
lent hardware address.

ARPANET A pioneering network that developed into the Internet.

Assisted Telephony The high-level telephony functions that provide easy access to
call-placing functionality in non-telephony applications.

ATM Asynchronous Mode Transfer, which is a connection-oriented net-
work technology that uses small, fixed-sized cells at the lowest layer.
ATM has the potential advantage of being able to support voice,
video, and data with a single underlying technology.

525

Basic Telephony Telephony line device services that are available under any TAPI
implementation regardless of the service provider. An application can
always assume these services will be available.

big endian A format for storage or transmission of binary data in which the most
significant byte (bit) comes first. The TCP/IP standard network byte
order is big endian. See little endian.

BSD UNIX Berkeley Software Distribution UNIX. The version of UNIX released
by University of California, Berkeley or one of the commercial sys-
tems derived from it. BSD UNIX was the first to include TCP/IP
protocols.

canonical phone
number

An ASCII string intended to function as a universally constant phone
number, consisting of country code, area code, phone number, possi-
bly other data, and always beginning with a plus (+) character.

CENTREX CENTRal EXchange. Provides centralized network services (such as
conferencing) without the need to install special in-house equipment
(as one might find with a PBX). With CENTREX, the user must pay
for the use of those services.

checksum This is a computation that uses one’s complement of 16-bit words to
provide a basic check for integrity of the data.

client-server A system in which a client requests and receives data from a server.

Completion Port
mechanism

During TAPI’s initialization, this method sets up a mechanism for
handling TAPI messages that uses a completion port, one that your
application sets up and specifies in the hCompletionPort field in
LINEINITIALIZEEXPARAMS. Whenever a telephony event needs
to be sent to an application, TAPI will send it by calling the
PostQueuedCompletionStatus() function.

CR-LF Carriage return and line feed pair (#13#10) that is required to mark
the end of the data stream in high-level protocols, such as FTP,
HTTP, and many others.

DARPA Defense Advanced Research Projects Agency; sponsor of ARPANET.

dialable phone
number

An address or phone number that can be dialed on the particular line.
A dialable address contains part addressing information and is part
navigational in nature. A phone number string that does not begin
with a “+” character is assumed to be dialable.

DNS The Domain Name System is an online distributed database system
for mapping human-readable machine names into IP addresses. DNS
servers throughout the connected Internet implement a hierarchical
name space that allows sites freedom in assigning machine names
and addresses. DNS also support separate mappings between mail
destinations and IP addresses.

526 � Appendix A

dotted decimal
notation

This is a notation to represent a 32-bit binary integer that consists of
four 8-bit numbers written in base 10 with periods separating them.
Many TCP/IP applications accept dotted decimal notation in place of
destination machine names.

event handle
mechanism

During its initialization using this mechanism, TAPI creates an event
object for the application, returning a handle to the object in the
hEvent field in LINEINITIALIZEEXPARAMS.

Extended Telephony Telephony services that vary from one service provider to another.
An application that provides any of these services must check for
their availability before exposing them for the user.

firewall A configuration of routers and networks placed between an organiza-
tion’s internal network and a connection to the Internet to provide
security.

Hidden Window
mechanism

During TAPI’s initialization, this method creates a hidden window to
which all messages will be sent; it is the only one available to TAPI
1.x applications.

ICMP Internet Control Message Protocol is an integral part of IP that han-
dles errors and control messages. Routers and hosts use ICMP to
send reports of problems about datagrams back to the original source
that sent the datagram. ICMP also includes an echo request/reply
used to test whether a destination is reachable and responding.

ICMPv6 Version 6 of ICMP.

internet A collection of networks interconnected by routers to function logi-
cally as a large virtual network.

Internet The collection of networks and routers that spans the world. It uses
TCP/IP protocols to form a large and virtual network.

IP The Internet Protocol is the base protocol for all protocols. It handles
hardware-independent addressing, routing, fragmentation, and reas-
sembly of packets.

IP address In IPv4, an IP address is a 32-bit number.

IP Multicast This is a technology that permits replication of data from a single
sender to many receivers. The technology relies on a special class of
addresses, Class D.

IP router An intelligent device that routes incoming IP datagrams to other
routers or hosts according to the IP address in the destination part of
the IP header. See router.

IPng A synonym for IPv6, Internet Protocol’s next generation. It is also
known as IPv6.7

Glossary of Important Communications Programming Terms � 527

A

A
p

p
e
n
d
ix

IPv4 Internet Protocol version 4 is the official name of the current version
of IP.

ISDN Integrated Services Digital Network is a technology that provides a
minimum of three channels (two for voice or data and one strictly for
data or signaling information) and as many as 32 channels for simulta-
neous, independently operated transmission of voice and data.

ISP An Internet Service Provider provides access to the Internet for
dial-up and connected users.

LAN A Local Area Network is a physical network that spans short dis-
tances (up to a few thousand meters). See MAN and WAN.

line device One of the two principle TAPI abstractions (the other being a phone
device) representing an actual physical line, such as a modem, fax
device, or ISDN card, that is connected to an actual telephone line.

little endian A format for storage or transmission of binary data in which the
least-significant byte (bit) comes first. See big endian.

MAC This is an acronym for Media Access Control. Each network card has
a MAC address to identify itself to the network.

MAN Metropolitan Area Network is a physical network that operates at
high speed over distances sufficient for a city. See LAN and WAN.

mask See subnet mask.

MBone A cooperative agreement among sites to forward multicast datagrams
across the Internet by use of IP tunneling.

media modes TAPI uses media modes to keep track of the media being transferred
over a line. Media are the forms in which data can be transmitted
over a line, the four main types being voice, speech, fax, and data.
Specific media could include normal interactive voice, automated
voice, a specific fax format, and quite a few others.

MTU Maximum Transmission Unit defines the largest amount of data that
can be transmitted in one segment. The MTU is determined by the
network hardware. It is typically 1500.

multicast A technique that allows copies of a single packet to be passed to a
selected subset of all possible destinations. Some hardware (e.g.,
Ethernet) supports multicast by allowing a network interface to
belong to one or more multicast groups. See IP Multicast.

multihomed A computer is said to be multihomed if it has multiple network inter-
faces. These interfaces can be separate network interface cards
(NICs) or multiple IP addresses on one NIC.

528 � Appendix A

network byte order The TCP/IP standard for transmission of integers that specifies the
most significant byte appears first (big endian).

NIC Network Interface Card is a device that plugs into the bus on a com-
puter and connects the computer to a network.

OSI Open Systems Interconnection is a collection of protocols developed
by the International Organization for Standardization (ISO) as a com-
petitor to TCP/IP.

PBX Private Branch Exchange. An organization’s internal telephone sys-
tem, one that might include functionality exceeding that of the local
telephone company itself.

phone device An abstraction of a physical phone with some of the features of such a
device including newer ones, such as buttons, data storage, and
display.

PING Packet InterNet Groper is the name of a program to test reachability
of destinations by sending an ICMP echo request and waiting for a
reply.

POTS Plain Old Telephone Service.

PPP The Point to Point Protocol is a protocol for framing IP when sending
across a serial line.

promiscuous mode In this mode, a network interface hardware allows the host computer
to receive all packets on the network.

QOS Quality of Service sets limits on the loss, delay, jitter, and minimum
throughput that a network guarantees to deliver.

RFC Request For Comments is a document that is either a series of notes
that contain surveys, measurements, ideas, techniques, and observa-
tions, or proposed and accepted TCP/IP protocol standards.

router A special-purpose, dedicated computer that attaches to two or more
networks and forwards packets from one to the other. In particular, an
IP router forwards IP datagrams among the networks to which it con-
nects. A router uses the destination address on a datagram to choose
the next router to which it forwards the datagram.

socket A “plug” or an endpoint of the communication link.

subnet mask A bit mask used to select the bits from an IP address that correspond
to the subnet. Each mask is 32 bits long. Bits set to one identify a
network and bits set to zero identify a host.

TAPI Telephony Application Programming Interface. A series of functions,
structures, and constants that provide support for the full range of
telephony functionality in Windows.

Glossary of Important Communications Programming Terms � 529

A

A
p

p
e
n
d
ix

TCP Transmission Control Protocol is the protocol that defines a virtual
circuit between two computers, thus enabling them to exchange data
in byte streams.

TSPI The Telephony Service Provider Interface is the programming means
through which a service provider delivers different levels of the tele-
phony support—basic, supplementary, or extended. TAPI must call
TAPISRV.EXE to implement and manage its functions; TAPISRV.EXE
then communicates with one or more telephony service providers
(drivers) to fulfill the telephony request.

TTL Time To Live is a technique used in best-effort delivery systems to
avoid endlessly looping packets. For example, each IP datagram is
assigned an integer time to live when it is created. Each router dec-
rements the time to live field when the datagram arrives, and a router
discards any datagrams if the time to live counter reaches zero.

UDP User Datagram Protocol is the protocol that allows an application on
one machine to send a datagram to an application on another. UDP
uses IP to deliver datagrams. The difference between UDP and IP is
that UDP uses a port number, allowing the sender to distinguish
among multiple applications on a remote machine.

WAN Wide Area Network is a physical network that spans large geographic
distances, such as continents. See LAN and MAN.

Winsock This is an abbreviation for Windows Sockets.

WOSA Microsoft’s Windows Open Systems Architecture, used with TAPI
and the Winsock API, provides transparent support for communica-
tions hardware and just about every other type of hardware through a
device-independent interface.

530 � Appendix A

Appendix B

Error Codes, Their Descriptions,
and Their Handling

In this appendix we will provide the names, descriptions, and numerical values
of Winsock and TAPI line error codes. Additional information on the TAPI
errors can be found in the TAPI Help file. Please be aware, however, that not
every error is listed (we have indicated the ones omitted). As a bonus, we will
show the code we use for handling TAPI errors in a single, centralized routine.

Winsock Errors
Name Description Code Number

WSAEINTR Interrupted system call 10004

WSAEBADF Bad file number 10009

WSAEACCES Permission denied 10013

WSAEFAULT Bad address 10014

WSAEINVAL Invalid argument 10022

WSAEMFILE Too many open files 10024

WSAEWOULDBLOCK Operation would block 10035

WSAEINPROGRESS Operation now in progress 10036

WSAEALREADY Operation already in progress 10037

WSAENOTSOCK Socket operation on nonsocket 10038

WSAEDESTADDRREQ Destination address required 10039

WSAEMSGSIZE Message too long 10040

WSAEPROTOTYPE Protocol wrong type for socket 10041

WSAENOPROTOOPT Protocol not available 10042

WSAEPROTONOSUPPORT Protocol not supported 10043

WSAESOCKTNOSUPPORT Socket not supported 10044

WSAEOPNOTSUPP Operation not supported on socket 10045

WSAEPFNOSUPPORT Protocol family not supported 10046

WSAEAFNOSUPPORT Address family not supported 10047

WSAEADDRINUSE Address already in use 10048

WSAEADDRNOTAVAIL Can’t assign requested address 10049

531

Name Description Code Number

WSAENETDOWN Network is down 10050

WSAENETUNREACH Network is unreachable 10051

WSAENETRESET Network dropped connection on reset 10052

WSAECONNABORTED Software caused connection abort 10053

WSAECONNRESET Connection reset by peer 10054

WSAENOBUFS No buffer space available 10055

WSAEISCONN Socket is already connected 10056

WSAENOTCONN Socket is not connected 10057

WSAESHUTDOWN Can’t send after socket shutdown 10058

WSAETOOMANYREFS Too many references: can’t splice 10059

WSAETIMEDOUT Connection timed out 10060

WSAECONNREFUSED Connection refused 10061

WSAELOOP Too many levels of symbolic links 10062

WSAENAMETOOLONG File name is too long 10063

WSAEHOSTDOWN Host is down 10064

WSAEHOSTUNREACH No route to host 10065

WSAENOTEMPTY Directory is not empty 10066

WSAEPROCLIM Too many processes 10067

WSAEUSERS Too many users 10068

WSAEDQUOT Disk quota exceeded 10069

WSAESTALE Stale NFS file handle 10070

WSAEREMOTE Too many levels of remote in path 10071

WSASYSNOTREADY Network subsystem is unusable 10091

WSAVERNOTSUPPORTED Winsock DLL cannot support this application 10092

WSANOTINITIALISED Winsock not initialized 10093

WSAEDISCON Graceful shutdown in progress 10101

WSAENOMORE All results have been retrieved. Note that this error
code will be removed in future versions. Use
WSA_E_NO_MORE instead.

10102

WSAECANCELLED A call to WSALookupServiceEnd was made while this
call was still processing. The call has been canceled.

10103

WSAEINVALIDPROCTABLE The procedure call table is invalid 10104

WSAEINVALIDPROVIDER The requested service provider is invalid 10105

WSAEPROVIDERFAILEDINIT Unable to initialize a service provider 10106

WSASYSCALLFAILURE System call failure 10107

WSASERVICE_NOT_FOUND No such service is known. The service cannot be found
in the specified name space.

10108

WSATYPE_NOT_FOUND Specified class was not found 10109

WSA_E_NO_MORE No more results can be returned by WSALookup-
ServiceNext()

10110

WSA_E_CANCELLED A call to WSALookupServiceEnd() was made while this
call was still processing. The call has been canceled.

10111

532 � Appendix B

TE
AM
FL
Y

Team-Fly®

Name Description Code Number

WSAEREFUSED A database query failed because it was actively refused. 10112

WSAHOST_NOT_FOUND Host not found 11001

WSATRY_AGAIN Non authoritative—host not found 11002

WSANO_RECOVERY Non-recoverable error 11003

WSANO_DATA Valid name, no data record of requested type 11004

WSA_QOS_RECEIVERS At least one Reserve has arrived 11005

WSA_QOS_SENDERS At least one Path has arrived 11006

WSA_QOS_NO_SENDERS There are no senders. 11007

WSA_QOS_NO_RECEIVERS There are no receivers. 11008

WSA_QOS_REQUEST_CONFIRMED Reserve has been confirmed 11009

WSA_QOS_ADMISSION_FAILURE Error due to lack of resources 11010

WSA_QOS_POLICY_FAILURE Rejected for administrative reasons—bad credentials 11011

WSA_QOS_BAD_STYLE Unknown or conflicting style 11012

WSA_QOS_BAD_OBJECT Problem with some part of the filterspec or provider-
specific buffer in general

11013

WSA_QOS_TRAFFIC_CTRL_ERROR Problem with some part of the flowspec 11014

WSA_QOS_GENERIC_ERROR General error 11015

WSA_QOS_ESERVICETYPE Invalid service type in flowspec 11016

WSA_QOS_EFLOWSPEC Invalid flowspec 11017

WSA_QOS_EPROVSPECBUF Invalid provider-specific buffer 11018

WSA_QOS_EFILTERSTYLE Invalid filter style 11019

WSA_QOS_EFILTERTYPE Invalid filter type 11020

WSA_QOS_EFILTERCOUNT Incorrect number of filters 11021

WSA_QOS_EOBJLENGTH Invalid object length 11022

WSA_QOS_EFLOWCOUNT Incorrect number of flows 11023

WSA_QOS_EUNKOWNPSOBJ Unknown object in provider-specific buffer 11024

WSA_QOS_EPOLICYOBJ Invalid policy object in provider-specific buffer 11025

WSA_QOS_EFLOWDESC Invalid flow descriptor in the list 11026

WSA_QOS_EPSFLOWSPEC Inconsistent flow spec in provider-specific buffer 11027

WSA_QOS_EPSFILTERSPEC Invalid filter spec in provider-specific buffer 11028

WSA_QOS_ESDMODEOBJ Invalid shape discard mode object in provider-specific
buffer

11029

WSA_QOS_ESHAPERATEOBJ Invalid shaping rate object in provider-specific buffer 11030

WSA_QOS_RESERVED_PETYPE Reserved policy element in provider-specific buffer 11031

The following list of TAPI errors is complete. As such, some of these errors
apply to functions that are not discussed in this book.

Error Codes, Their Descriptions, and Their Handling � 533

B

A
p

p
e
n
d
ix

TAPI Errors
Constant Name Description DWord Value

LINEERR_ALLOCATED The line cannot be opened due to a persistent
condition.

$80000001

LINEERR_BADDEVICEID The specified device ID or line device ID is invalid or
out of range.

$80000002

LINEERR_BEARERMODEUNAVAIL The bearer mode of a call cannot be changed to the
specified bearer mode.

$80000003

LINEERR_CALLUNAVAIL All call appearances on the specified address are cur-
rently in use.

$80000005

LINEERR_COMPLETIONOVERRUN The maximum number of outstanding call completions
has been exceeded.

$80000006

LINEERR_CONFERENCEFULL The maximum number of parties for a conference has
been reached, or requested number of parties cannot
be satisfied.

$80000007

LINEERR_DIALBILLING The dialable address parameter of a function contains
dialing control characters that were not processed by
the service provider.

$80000008

LINEERR_DIALDIALTONE The dialable address parameter contains dialing control
characters that are not processed by the service
provider.

$80000009

LINEERR_DIALPROMPT The dialable address parameter contains dialing control
characters that are not processed by the service
provider.

$8000000A

LINEERR_DIALQUIET The dialable address parameter contains dialing control
characters that are not processed by the service
provider.

$8000000B

LINEERR_INCOMPATIBLEAPI-
VERSION

The application requested an API version or version
range that is either incompatible or cannot be sup-
ported by the Telephony API implementation and/or
corresponding service provider.

$8000000C

LINEERR_INCOMPATIBLEEXT-
VERSION

The application requested an extension version range
that is either invalid or cannot be supported by the cor-
responding service provider.

$8000000D

LINEERR_INIFILECORRUPT The TELEPHON.INI file cannot be read or understood
properly by TAPI because of internal inconsistencies or
formatting problems. For example, the [Locations],
[Cards], or [Countries] section of the TELEPHON.INI
file may be corrupted or inconsistent.

$8000000E

LINEERR_INUSE The line device is in use and cannot currently be config-
ured, allow a party to be added, allow a call to be
answered, allow a call to be placed, or allow a call to
be transferred.

$8000000F

LINEERR_INVALADDRESS The specified address is either invalid or not allowed. $80000010

534 � Appendix B

Constant Name Description DWord Value

LINEERR_INVALADDRESSID A specified address is either invalid or not allowed. If
invalid, the address contains invalid characters or digits,
or the destination address contains dialing control char-
acters (W, @, $, or ?) that are not supported by the
service provider. If not allowed, the specified address is
either not assigned to the specified line or is not valid
for address redirection.

$80000011

LINEERR_INVALADDRESSMODE The specified address ID is either invalid or out of
range.

$80000012

LINEERR_INVALADDRESSSTATE dwAddressStates contains one or more bits that are
not LINEADDRESSSTATE_ constants.

$80000013

LINEERR_INVALAPPHANDLE The application handle (such as specified by an
hLineApp parameter) or the application registration
handle is invalid.

$80000014

LINEERR_INVALAPPNAME The specified application name is invalid. If an applica-
tion name is specified by the application, it is assumed
that the string does not contain any non-displayable
characters, and is zero-terminated.

$80000015

LINEERR_INVALBEARERMODE The specified bearer mode is invalid. $80000016

LINEERR_INVALCALLCOMPLMODE The specified completion is invalid. $80000017

LINEERR_INVALCALLHANDLE The specified call handle is not valid. For example, the
handle is not NULL but does not belong to the given
line. In some cases, the specified call device handle is
invalid.

$80000018

LINEERR_INVALCALLPARAMS The specified call parameters are invalid. $80000019

LINEERR_INVALCALLPRIVILEGE The specified call privilege parameter is invalid. $8000001A

LINEERR_INVALCALLSELECT The specified select parameter is invalid. $8000001B

LINEERR_INVALCALLSTATE The current state of a call is not in a valid state for the
requested operation.

$8000001C

LINEERR_INVALCALLSTATELIST The specified call state list is invalid. $8000001D

LINEERR_INVALCARD The permanent card ID specified in dwCard could not
be found in any entry in the [Cards] section in the
registry.

$8000001E

LINEERR_INVALCOMPLETIONID The completion ID is invalid. $8000001F

LINEERR_INVALCONFCALL-
HANDLE

The specified call handle for the conference call is
invalid or is not a handle for a conference call.

$80000020

LINEERR_INVALCONSULTCALL-
HANDLE

The specified consultation call handle is invalid. $80000021

LINEERR_INVALCOUNTRYCODE The specified country code is invalid. $80000022

LINEERR_INVALDEVICECLASS The line device has no associated device for the given
device class, or the specified line does not support the
indicated device class.

$80000023

LINEERR_INVALDEVICEHANDLE The specified device handle is invalid. (Not included in
TAPI Help file.)

$80000024

LINEERR_INVALDIALPARAMS The specified dialing parameters are invalid. $80000025

LINEERR_INVALDIGITLIST The specified digit list is invalid. $80000026

Error Codes, Their Descriptions, and Their Handling � 535

B

A
p

p
e
n
d
ix

Constant Name Description DWord Value

LINEERR_INVALDIGITMODE The specified digit mode is invalid. $80000027

LINEERR_INVALDIGITS The specified termination digits are not valid. $80000028

LINEERR_INVALEXTVERSION The specified extension version is not valid. $80000029

LINEERR_INVALGROUPID The specified group ID is invalid. $8000002A

LINEERR_INVALLINEHANDLE The specified call, device, line device, or line handle is
invalid.

$8000002B

LINEERR_INVALLINESTATE The current line state does not permit changing the
device configuration.

$8000002C

LINEERR_INVALLOCATION The permanent location ID specified in dwLocation
could not be found in any entry in the [Locations] sec-
tion in the registry.

$8000002D

LINEERR_INVALMEDIALIST The specified media list is invalid. $8000002E

LINEERR_INVALMEDIAMODE The list of media types to be monitored contains invalid
information, the specified media mode parameter is
invalid, or the service provider does not support the
specified media mode.

$8000002F

LINEERR_INVALMESSAGEID The number given in dwMessageID is outside the range
specified by the dwNumCompletionMessages field in
the LINEADDRESSCAPS structure.

$80000030

LINEERR_INVALPARAM A parameter (such as dwTollListOption, dwTranslate-
Options, dwNumDigits, or a structure pointed to by
lpDeviceConfig) contains invalid values, a country code
is invalid, a window handle is invalid, or the specified
forward list parameter contains invalid information.

$80000032

LINEERR_INVALPARKID The specified park ID is invalid. (Not included in TAPI
Help file.)

$80000033

LINEERR_INVALPARKMODE The specified park mode is invalid. $80000034

LINEERR_INVALPOINTER One or more of the specified pointer parameters (such
as lpCallList, lpdwAPIVersion, lpExtensionID, lpdwExt-
Version, lphIcon, lpLineDevCaps, and lpToneList) are
invalid, or a required pointer to an output parameter is
NULL.

$80000035

LINEERR_INVALPRIVSELECT An invalid flag or combination of flags was set for the
dwPrivileges parameter.

$80000036

LINEERR_INVALRATE The specified bearer mode is invalid. $80000037

LINEERR_INVALREQUESTMODE The specified request mode is invalid. $80000038

LINEERR_INVALTERMINALID The specified terminal identifier parameter
(dwTerminalID) is invalid.

$80000039

LINEERR_INVALTERMINALMODE One or more of the terminal modes (LINETERM-
MODE_ constants) specified in the dwTerminalModes
parameter is invalid.

$8000003A

LINEERR_INVALTIMEOUT Timeouts are not supported or the values of either or
both of the parameters dwFirstDigitTimeout or
dwInterDigitTimeout fall outside the valid range speci-
fied by the call’s line-device capabilities.

$8000003B

536 � Appendix B

Constant Name Description DWord Value

LINEERR_INVALTONE The specified custom tone does not represent a valid
tone or is made up of too many frequencies or the
specified tone structure does not describe a valid tone.

$8000003C

LINEERR_INVALTONELIST The specified tone list is invalid. $8000003D

LINEERR_INVALTONEMODE The specified tone mode parameter is invalid. $8000003E

LINEERR_INVALTRANSFERMODE The specified transfer mode parameter is invalid. $8000003F

LINEERR_LINEMAPPERFAILED LINEMAPPER was the value passed in the dwDeviceID
parameter, but no lines were found that match the
requirements specified in the lpCallParams parameter.

$80000040

LINEERR_NOCONFERENCE The specified call is not a conference call handle or a
participant call.

$80000041

LINEERR_NODEVICE The specified device ID, which was previously valid, is
no longer accepted because the associated device has
been removed from the system since TAPI was last ini-
tialized. Alternately, the line device has no associated
device for the given device class.

$80000042

LINEERR_NODRIVER Either TAPIADDR.DLL could not be located or the
telephone service provider for the specified device
found that one of its components is missing or corrupt
in a way that was not detected at initialization time.
The user should be advised to use the telephony con-
trol panel to correct the problem.

$80000043

LINEERR_NOMEM Insufficient memory to perform the operation or
unable to lock memory.

$80000044

LINEERR_NOREQUEST Either there is currently no request pending of the indi-
cated mode, or the application is no longer the highest
priority application for the specified request mode.

$80000045

LINEERR_NOTOWNER The application does not have owner privilege to the
specified call.

$80000046

LINEERR_NOTREGISTERED The application is not registered as a request recipient
for the indicated request mode.

$80000047

LINEERR_OPERATIONFAILED The operation failed for an unspecified or unknown
reason.

$80000048

LINEERR_OPERATIONUNAVAIL The operation is not available, such as for the given
device or specified line.

$80000049

LINEERR_RATEUNAVAIL The service provider currently does not have enough
bandwidth available for the specified rate.

$8000004A

LINEERR_RESOURCEUNAVAIL Insufficient resources to complete the operation. For
example, a line cannot be opened due to a dynamic
resource over-commitment.

$8000004B

LINEERR_REQUESTOVERRUN Request overrun. (Not defined in TAPI Help file.) $8000004C

LINEERR_STRUCTURETOOSMALL The dwTotalSize field indicates insufficient space to
contain the fixed portion of the specified structure.

$8000004D

LINEERR_TARGETNOTFOUND A target for the call handoff was not found. $8000004E

LINEERR_TARGETSELF The application invoking this operation is the target of
the indirect handoff.

$8000004F

Error Codes, Their Descriptions, and Their Handling � 537

B

A
p

p
e
n
d
ix

Constant Name Description DWord Value

LINEERR_UNINITIALIZED The operation was invoked before any application
called lineInitialize() or lineInitializeEx().

$80000050

LINEERR_USERUSERINFOTOOBIG The string containing user-to-user information exceeds
the maximum number of bytes specified.

$80000051

LINEERR_REINIT Attempt to reinitialize TAPI not permitted. $80000052

LINEERR_ADDRESSBLOCKED The specified address is blocked from being dialed on
the specified call.

$80000053

LINEERR_BILLINGREJECTED Attempt to bill rejected. (Not included in TAPI Help
file.)

$80000054

LINEERR_INVALFEATURE The dwFeature parameter is invalid. $80000055

LINEERR_NOMULTIPLEINSTANCE A telephony service provider, which does not support
multiple instances, is listed more than once in the [Pro-
viders] section in the registry. The application should
advise the user to use the telephony control panel to
remove the duplicated driver.

$80000056

LINEERR_INVALAGENTID The specified agent identifier is not valid. $80000057

LINEERR_INVALAGENTGROUP The specified agent group information is not valid or
contains errors.

$80000058

LINEERR_INVALPASSWORD The specified password is not correct and the
requested action has not been carried out.

$80000059

LINEERR_INVALAGENTSTATE The specified agent state is not valid or contains errors. $8000005A

LINEERR_INVALAGENTACTIVITY The specified agent activity is not valid. $8000005B

LINEERR_DIALVOICEDETECT No description available. (Not included in TAPI Help
file.)

$8000005C

LINEERR_USERCANCELLED Operation canceled by user. (Not included in TAPI
Help file.)

$8000005D

LINEERR_INVALADDRESSTYPE Invalid address type. (Not included in TAPI Help file.) $8000005E

LINEERR_INVALAGENTSESSION-
STATE

Agent session is invalid. (Not included in TAPI Help
file.)

$8000005F

LINEERR_DISCONNECTED Line has been disconnected. (Not included in TAPI
Help file).

$80000060

The following error-handling method responds to each of the errors listed
above:

procedure TTapiInterface.ReportError(ErrorNumber : DWord);
begin
case ErrorNumber of
LINEERR_ALLOCATED: ErrorStr := 'The line cannot be opened due ' +
'to a persistent condition, such as a serial port being opened ' +
'exclusively by another process.';

LINEERR_BADDEVICEID: ErrorStr := 'The specified device ID or ' +
' line device ID is invalid or out of range. ';

LINEERR_BEARERMODEUNAVAIL: ErrorStr := 'The call's bearer mode ' +
'cannot be changed to the specified bearer mode.';

LINEERR_CALLUNAVAIL: ErrorStr := 'All call appearances on the' +
' specified address are currently in use.';

LINEERR_COMPLETIONOVERRUN: ErrorStr := 'The maximum number of ' +

538 � Appendix B

'outstanding call completions has been exceeded. ';
LINEERR_CONFERENCEFULL: ErrorStr := 'The maximum number of ' +
'parties for a conference has been reached, or the requested number of ' +
' parties cannot be satisfied. ';

LINEERR_DIALBILLING: ErrorStr := 'The dialable address ' +
'parameter contains dialing control characters that are not processed by ' +
'the service provider.';

LINEERR_DIALDIALTONE: ErrorStr := 'The dialable address' +
' parameter contains dialing control characters that are not processed by' +
' the service provider. ';

LINEERR_DIALPROMPT: ErrorStr := 'The dialable address ' +
'parameter contains dialing control characters that are not processed by' +
' the service provider. ';

LINEERR_DIALQUIET: ErrorStr := 'The dialable address' +
' parameter contains dialing control characters that are not processed' +
' by the service provider.';

LINEERR_INCOMPATIBLEAPIVERSION: ErrorStr := 'The application requested' +
' an API version or version range that is either incompatible or cannot' +
' be supported by the TAPI implementation and/or service provider. ';

LINEERR_INCOMPATIBLEEXTVERSION: ErrorStr := 'The application ' +
'requested an extension version range that is either invalid or cannot ' +
'be supported by the corresponding service provider. ';

LINEERR_INIFILECORRUPT: ErrorStr := 'The TELEPHON.INI file cannot' +
' be read or understood properly by TAPI. ';

LINEERR_INUSE: ErrorStr := 'The line device is in' +
' use and cannot currently be configured or otherwise manipulated.';

LINEERR_INVALADDRESS: ErrorStr := 'A specified address is ' +
'either invalid or not allowed.';

LINEERR_INVALADDRESSID: ErrorStr := 'The specified address ID' +
' is either invalid or out of range. ';

LINEERR_INVALADDRESSMODE: ErrorStr := 'The specified address mode' +
' is invalid. ';

LINEERR_INVALADDRESSSTATE: ErrorStr := 'dwAddressStates contains' +
' one or more bits that are not LINEADDRESSSTATE_ constants. ';

LINEERR_INVALAPPHANDLE: ErrorStr := 'The application handle ' +
'or the application registration handle is invalid. ';

LINEERR_INVALAPPNAME: ErrorStr := 'Invalid Application Name';
LINEERR_INVALBEARERMODE: ErrorStr := 'The specified bearer mode ' +
'is invalid. ';

LINEERR_INVALCALLCOMPLMODE: ErrorStr := 'The specified completion ' +
'is invalid.';

LINEERR_INVALCALLHANDLE: ErrorStr := 'The specified call handle ' +
'is not valid.';

LINEERR_INVALCALLPARAMS: ErrorStr := 'The specified call ' +
'parameters are invalid. ';

LINEERR_INVALCALLPRIVILEGE: ErrorStr := 'The specified select ' +
'parameter is invalid. ';

LINEERR_INVALCALLSELECT: ErrorStr := 'The specified select ' +
'parameter is invalid.';

LINEERR_INVALCALLSTATE: ErrorStr := 'The current state of a ' +
'call is not in a valid state for the requested operation. ';

LINEERR_INVALCALLSTATELIST: ErrorStr := 'The specified call state' +
' list is invalid.';

LINEERR_INVALCARD: ErrorStr := 'The permanent card ID ' +
'specified in dwCard could not be found in any entry in the [Cards] ' +
'section in the registry. ';

LINEERR_INVALCOMPLETIONID: ErrorStr := 'The completion ID is invalid.';
LINEERR_INVALCONFCALLHANDLE: ErrorStr := 'The specified conference ' +
'call handle is invalid or is not a handle for a conference call. ';

LINEERR_INVALCONSULTCALLHANDLE: ErrorStr := 'The specified consultation' +

Error Codes, Their Descriptions, and Their Handling � 539

B

A
p

p
e
n
d
ix

' call handle is invalid. ';
LINEERR_INVALCOUNTRYCODE: ErrorStr := 'The specified country code' +
' is invalid. ';

LINEERR_INVALDEVICECLASS: ErrorStr := 'The line device has no ' +
' associated device for the given device class, or the specified line' +
' does not support the indicated device class. ';

LINEERR_INVALDEVICEHANDLE: ErrorStr := 'Invalid device handle';
LINEERR_INVALDIALPARAMS: ErrorStr := 'Invalid dial parameters';
LINEERR_INVALDIGITLIST: ErrorStr := 'Invalid digit list';
LINEERR_INVALDIGITMODE: ErrorStr := 'Invalid digit mode';
LINEERR_INVALDIGITS: ErrorStr := 'Invalid digits';
LINEERR_INVALEXTVERSION: ErrorStr := 'Invalid EXT version';
LINEERR_INVALGROUPID: ErrorStr := 'Invalid group ID';
LINEERR_INVALLINEHANDLE: ErrorStr := 'Invalid line handle';
LINEERR_INVALLINESTATE: ErrorStr := 'Invalid line state';
LINEERR_INVALLOCATION: ErrorStr := 'Invalid location';
LINEERR_INVALMEDIALIST: ErrorStr := 'Invalid media list';
LINEERR_INVALMEDIAMODE: ErrorStr := 'Invalid media mode';
LINEERR_INVALMESSAGEID: ErrorStr := 'Invalid message ID';
LINEERR_INVALPARAM: ErrorStr := 'A parameter contains an' +
'invalid value';

LINEERR_INVALPARKID: ErrorStr := 'Invalid Park ID';
LINEERR_INVALPARKMODE: ErrorStr := 'Invalid Park mode';
LINEERR_INVALPOINTER: ErrorStr := 'One or more of the specified' +
' pointer parameters is/are invalid';

LINEERR_INVALPRIVSELECT: ErrorStr := 'An invalid flag or ' +
'combination of flags was set for the dwPrivileges parameter.';

LINEERR_INVALRATE: ErrorStr := 'The specified bearer mode ' +
'is invalid. ';

LINEERR_INVALREQUESTMODE: ErrorStr :=
'The specified request mode is invalid. ';

LINEERR_INVALTERMINALID: ErrorStr :=
'The specified terminal mode parameter is invalid. ';

LINEERR_INVALTERMINALMODE: ErrorStr :=
'The specified terminal modes parameter is invalid. ';

LINEERR_INVALTIMEOUT: ErrorStr := 'Timeouts are not supported ' +
'or the values of one or both of the parameters dwFirstDigitTimeout or ' +
'dwInterDigitTimeout are invalid.';

LINEERR_INVALTONE: ErrorStr := 'The specified custom tone ' +
'is invalid contains too many frequencies.';

LINEERR_INVALTONELIST: ErrorStr :=
'The specified tone list is invalid. ';

LINEERR_INVALTONEMODE: ErrorStr := 'The specified tone mode ' +
'parameter is invalid.';

LINEERR_INVALTRANSFERMODE: ErrorStr := 'The specified transfer mode ' +
' parameter is invalid.';

LINEERR_LINEMAPPERFAILED: ErrorStr := 'no lines were found that ' +
'match the requirements specified when using the LINEMAPPER constant.';

LINEERR_NOCONFERENCE: ErrorStr :=
'The specified call is not a conference call handle or a participant call.';

LINEERR_NODEVICE: ErrorStr :=
'The specified previously valid device ID can no longer be accepted.';

LINEERR_NODRIVER: ErrorStr :=
'Driver problem for the specified device; use the Telephony Control Panel' +
' to correct the problem.';

LINEERR_NOMEM: ErrorStr :=
'Insufficient memory to perform the operation.';

LINEERR_NOREQUEST: ErrorStr :=
'No request pending of the indicated modeor application problem.';

LINEERR_NOTOWNER: ErrorStr :=

540 � Appendix B

'The application does not have owner privilege to the specified call. ';
LINEERR_NOTREGISTERED: ErrorStr :=
'Application not registered as request recipient for the indicated mode.';

LINEERR_OPERATIONFAILED: ErrorStr :=
'Operation failed for an unspecified or unknown reason.';

LINEERR_OPERATIONUNAVAIL: ErrorStr :=
'Operation not available for the given device or specified line.';

LINEERR_RATEUNAVAIL: ErrorStr :=
'Insufficient bandwidth available for the specified rate.';

LINEERR_RESOURCEUNAVAIL: ErrorStr :=
'Insufficient resources to complete the operation.';

LINEERR_REQUESTOVERRUN: ErrorStr :=
'Line Request overrun.';

LINEERR_STRUCTURETOOSMALL: ErrorStr :=
'The dwTotalSize field indicates insufficient space to contain the ' +
'fixed portion of the specified structure.';

LINEERR_TARGETNOTFOUND: ErrorStr :=
'A target for the call handoff was not found.';

LINEERR_TARGETSELF: ErrorStr :=
'The telephony application invoking this operation is the target ' +
'of the indirect handoff.';

LINEERR_UNINITIALIZED: ErrorStr :=
'The operation was invoked before any application called lineInitialize,' +
' lineInitializeEx.';

LINEERR_USERUSERINFOTOOBIG: ErrorStr :=
'The string containing user-to-user information exceeds the maximum number' +
' of bytes specified in one of fields.';

LINEERR_REINIT: ErrorStr :=
'Improper attempt to reinitialize TAPI; must close TAPI down first.';

LINEERR_ADDRESSBLOCKED: ErrorStr :=
'This address is blocked.';

LINEERR_BILLINGREJECTED: ErrorStr :=
'Billing attempt rejected.';

LINEERR_INVALFEATURE: ErrorStr :=
'Requested feature not available.';

LINEERR_NOMULTIPLEINSTANCE: ErrorStr :=
'Multiple instances not permitted';

{$IFDEF TAPI20}
LINEERR_INVALAGENTID: ErrorStr :=
'Invalid agent ID';

LINEERR_INVALAGENTGROUP: ErrorStr :=
'Invalid agent group.';

LINEERR_INVALPASSWORD: ErrorStr :=
'Invalid password.';

LINEERR_INVALAGENTSTATE: ErrorStr :=
'Invalid agent state.';

LINEERR_INVALAGENTACTIVITY: ErrorStr :=
'Invalid agent activity.';

LINEERR_DIALVOICEDETECT: ErrorStr :=
'Dial Voice Mode Detected.';

{$ENDIF}
{$IFDEF TAPI22}
LINEERR_USERCANCELLED: ErrorStr :=
'Line request canceled by user.';

{$ENDIF}
{$IFDEF TAPI30}
LINEERR_INVALADDRESSTYPE: ErrorStr :=
'Invalid address type.';

{$ENDIF}
{$IFDEF TAPI22}

Error Codes, Their Descriptions, and Their Handling � 541

B

A
p

p
e
n
d
ix

LINEERR_INVALAGENTSESSIONSTATE: ErrorStr :=
'Invalid agent session state.';

LINEERR_DISCONNECTED: ErrorStr :=
'Line disconnected.';

{$ENDIF}
end; { case }

end;

This centralized error-handling routine makes it possible to create more suc-
cinct code. Compare an older version of one of the methods in the TAPI
interface unit with a newer version that calls the above method:

(* Old Version that includes error handling within it *)
function TTapiInterface.GetAddressID: boolean;
begin
TapiResult := lineGetAddressID(fLine, fAddressID,
LINEADDRESSMODE_DIALABLEADDR, PChar(FPhoneNumber),
SizeOf(FPhoneNumber));

result := TapiResult=0;
if result then exit;
case TAPIResult of //
LINEERR_UNINITIALIZED: TempStr := 'UNINITIALIZED';
LINEERR_INVALPOINTER: TempStr := 'INVALPOINTER';
LINEERR_INVALADDRESSMODE: TempStr := 'INVALADDRESSMODE';
LINEERR_NOMEM: TempStr := 'NOMEM';
LINEERR_INVALCALLHANDLE: TempStr := 'INVALCALLHANDLE';
LINEERR_OPERATIONUNAVAIL: TempStr := 'OPERATIONUNAVAIL';
LINEERR_OPERATIONFAILED: TempStr := 'OPERATIONFAILED';
LINEERR_INVALLINEHANDLE: TempStr := 'INVALLINEHANDLE';
LINEERR_RESOURCEUNAVAIL: TempStr := 'RESOURCEUNAVAIL';

end; // case
ShowMessage('Could not get Address ID because of error: ' + TempStr);

end;

(* New version of method that calls centralized error handling routine *)

function TTapiInterface.GetAddressID: boolean;
begin
TapiResult := lineGetAddressID(fLine, fAddressID,
LINEADDRESSMODE_DIALABLEADDR, PChar(FPhoneNumber),
SizeOf(FPhoneNumber));

result := TapiResult=0;
if not result then ReportError(TapiResult);

end;

542 � Appendix B

TE
AM
FL
Y

Team-Fly®

Appendix C

Bibliography of Printed and Online
Communications Programming
Resources

Delphi TAPI Articles

“Delphi and TAPI Part I: An Introduction to Telephony Programming”
by Major Ken Kyler and Alan C. Moore, Ph.D. Delphi Informant Magazine, July
1998, available online at http://www.delphizine.com/features/1998/07/
di199807am_f/di199807am_f.asp.

“Delphi and TAPI Part II: Building a Telephony Application”
by Major Ken Kyler and Alan C. Moore, Ph.D. Delphi Informant Magazine,
August 1998, available online at http://www.delphizine.com/features/1998/08/
di199808am_f/di199808am_f.asp.

“Delphi and TAPI Part III: Wrapping Up Telephony”
by Major Ken Kyler and Alan C. Moore, Ph.D. Delphi Informant Magazine,
September 1998, available online at http://www.delphizine.com/features/
1998/09/di199809am_f/di199809am_f.asp.

“Extending TAPI Playing and Recording Sounds During Telephony Calls”
by Robert Keith Elias and Alan C. Moore, Ph.D. Delphi Informant Magazine,
November 1999, available online at http://www.delphizine.com/features/1999/
11/di199911re_f/di199911re_f.asp.

“Single-Tier Database Apps—Putting the ClientDataSet Component to Work”
by Bill Todd (some reference to TAPI, using a TAPI dialer in a database
application), Delphi Informant Magazine, January 1998, available online at
http://www.delphizine.com/features/1998/01/di199801bt_f/di199801bt_f.asp.

543

Microsoft White Papers on TAPI

“IP Telephony with TAPI 3.0”
(white paper on Microsoft site) http://www.microsoft.com/windows2000/
techinfo/howitworks/communications/telephony/iptelephony.asp

“Other Microsoft White Papers on TAPI 3.0”
http://www.microsoft.com/windows2000/techinfo/howitworks/communications/
telephony/

“Introductory Articles and Links to Other Microsoft White Papers on Communica-
tions and Networking”
http://www.microsoft.com/windows2000/technologies/communications/de-
fault.asp

Telephony Articles

Toward 2000 Part 8: Telephony
http://www.nss.co.uk/Windows2000/Telephony.htm

Programmer’s Heaven – Delphi and Kylix Zone, TAPI Files
http://www.programmersheaven.com/zone2/cat70/index.htm

TAPI Programming Resources

There are a number of Delphi TAPI solutions on Torry’s Pages at http://www.torry.
net/tapi.htm.

TAPI Books (printed and online)

Windows Telephony Programming: A Developer’s Guide to TAPI

by Chris Sells, [ISBN: 0-201-63450-3], Addison-Wesley. A classic work by one
of the early TAPI gurus. Excellent advice and code examples.

Communications Programming for Windows 95

by Charles A. Mirho and Andre Terrisse, [ISBN: 1-55615-668-5], Microsoft
Press. An early reference that contains excellent information on early TAPI
versions along with information on basic communications programming with
the Serial Port, Simple Messaging, and TAPI.

“MAPI, SAPI, and TAPI Developer’s Guide”
by Michael C. Amundsen, available online at http://developer.grup.com.tr/misc/
mapi/.

Winsock Books

Effective TCP/IP Programming

by Jon C. Snader, [ISBN: 0-201-61589-4], Addison-Wesley, 2000.

544 � Appendix C

TCP/IP Illustrated Volume 1—The Protocols

by W. Richard Stevens, [ISBN: 0-201-63346-9], Addison-Wesley, 2001.

TCP/IP Illustrated Volume 2

by Gary R. Wright and W. Richard Stevens, [ISBN: 0-201-63354-X],
Addison-Wesley, 2000.

Internetworking with TCP/IP—Principles, Protocols, and Architectures

by Douglas E. Comer, [ISBN: 0-13-018380-6], Prentice-Hall, 2000.

Unix Network Programming

by W. Richard Stevens, [ISBN:0-13-949876-1], Prentice-Hall, 1990.

Network Programming for Microsoft Windows

by Anthony Jones and Jim Ohlund, [ISBN: 0-7356-0560-2], Microsoft Press,
1999.

Windows Sockets Network Programming

by Bob Quinn and David Shute, [ISBN: 0-201-63372-8], Addison-Wesley, 1996.

Programming Winsock

by Arthur Dumas, [ISBN: 0-672-30594-1], SAMS, 1995.

Other Internet Programming and Winsock Sources

There are numerous sites on the Internet that cater to Winsock and TCP/IP
issues. Below are just a few of the many:

http:///www.microsoft.com
http://www.sockets.com
http://www.winsock2.com
http://www.sockaddr.com
http://www.tangentsoft.net/wskfaq
http://www.google.com/search?q=winsock+tutorial

Internet Programming and Winsock Newsgroups
alt.winsock
alt.winsock.programming
comp.os.ms-windows.networking.tcp-ip
comp.os.ms-windows.networking.windows:
comp.os.ms-windows.programmer.networks
comp.os.ms-windows.programmer.tools.winsock

RFCs

For more information on the protocols, such as IP, ICMP, UDP, and TCP, take a
look at http://www.ietf.org/rfc.html.

Bibliography of Printed and Online Communications Programming Resources � 545

C

A
p

p
e
n
d
ix

Index

A

accept(), 136, 175-176, 180-181, 194
AcceptEx(), 239-240, 241-242
address family, 76, 94, 137, 145, 174

AF_ATM, 43, 76, 137, 225
AF_INET, 43, 76, 137, 225
AF_IPX, 43, 137
AF_UNIX, 43

Address Resolution Protocol (ARP), 5
ARPANET, 3-4
Assisted Telephony, 326, 453-458

clients and servers, 454-458
functions, 458-459
requesting services, 455-456
TAPI servers in, 457-458

asynchronous, 40-42, 55, 62, 68, 69, 139, 176,
195-196

B

Basic Telephony, 297
line functions, 297-299

big endian, 30-31
bind(), 136, 175, 179, 256
blocking, 40-42, 55, 62, 176, 195-196, 247,

261-262, 263-264
BSD Sockets, 7-8
BSD UNIX, 4
byte ordering, 29-30

C

call accepting application, responsibilities of,
485-486

callback function (TAPI line and phone callback
functions), 401-414

canonical addresses, 451, 453

canonical phone numbers, see canonical
addresses

closesocket(), 136, 170-171, 172-173, 178, 262
Completion Port mechanism (TAPI), 307-308
CompletionRoutine(), 193
connect(), 136, 144, 146, 147-149
ConnectEx(), 246-248
CreateIoCompletionPort(), 194

D

DARPA, 3-4
data exchange, 136-137

data structures, see TAPI structures, Winsock
structures

dialable addresses, 451-453
elements of, 452-453

dialable phone numbers, see dialable addresses
dialing,

pulse, 453
tone, 453

DisconnectEx(), 246-247, 248-249
domain name, 37
Domain Name System (DNS), 10-11, 37-38,

39-40, 41, 87, 91, 118
Dynamic Linked Library (DLL), 8-9, 16-17, 27

E

EnumProtocols(), 132

errors, see TAPI errors, Winsock errors
Event Handle mechanism (TAPI), 307-308

F

freeaddrinfo(), 115, 126
FTP, 136, 143
fully qualified domain name (FQDN), 38, 39

547

G

gai_strerror(), 115, 120, 132
GetAcceptExSockaddrs(), 239-240, 242-243
GetAddressByName(), 132
getaddrinfo(), 115, 117, 119-126
GetCurrentProcessId(), 229
gethostbyaddr(), 8, 42-45
gethostbyname(), 8, 45-46, 115, 117
gethostname(), 47-48
GetNameByType(), 132
getnameinfo(), 115, 119, 126-131
getpeername(), 154-155
getprotobyname(), 62-64
getprotobynumber(), 64-66
getservbyname(), 55-57
getservbyport(), 58-60
GetService(), 132
getsockname(), 155, 175
getsockopt(), 22, 161, 265-266, 268-269, 278
GetTypeByName(), 132

H

helper functions, 114-115
heterogeneous network, 3
Hidden Window mechanism (TAPI), 307-308
homogeneous network, 3
host, 37
host name, 37
host name resolution, 29-30
htonl(), 31-32
htons(), 32
HTTP, 5

Hypertext Transfer Protocol, see HTTP

I

inet_addr(), 34-35
inet_ntoa(), 35-37
internet, 4
Internet, 3-5, 7, 29-30, 37, 71, 114-115, 255
Internet Control Message Protocol (ICMP), 5,

225-229, 234
Internet Protocol (IP), 5, 227-229, 253-254
INVALID_SOCKET, 22
I/O schemes, 183, 195-196

completion, 193-194

Completion Port, 194-195, 198-203
ioctlsocket(), 183, 197, 274-277, 279-280
IP addresses, 29-31, 37-40, 115-117, 256
IP checksum, 229
IP datagram, 226, 234
IP header, 225-226
IP layer, 137, 225, 227
IP Multicast, 12, 138-139, 253-257
IP Tunneling, 255
IPv4, 115-118
IPv6, 115-118
ISDN networks and TAPI, 288-289

L

line address capabilities, 309
Line API, 305
line device, 305

capabilities of, 309-311
opening, 319-320

line messages, 401 see also messages and TAPI
messages

lineAccept(), 494-495
lineAnswer(), 496-497
lineClose(), 319, 325-326, 327
lineConfigDialog(), 311, 327-328
lineConfigDialogEdit(), 311, 313, 328-330
lineDeallocateCall(), 497-498
lineDial(), 465-466
lineDrop(), 498-499
lineGetAddressCaps(), 309-310, 330-332
lineGetAddressID(), 347-348
lineGetAddressStatus(), 348-349
lineGetCallInfo(), 499-500
lineGetCallStatus(), 508
lineGetConfRelatedCalls(), 510-511
lineGetCountry(), 393-394
lineGetDevCaps(), 309-310, 355-356
lineGetDevConfig(), 313, 372-373
lineGetIcon(), 396-397
lineGetID(), 313, 319-320, 373-374
lineGetLineDevStatus(), 375
lineGetMessage(), 443-444
lineGetNewCalls(), 321, 511-512
lineGetNumRings(), 513-514
lineGetRequest(), 514-515

548

Index

lineGetStatusMessages(), 446-447
lineGetTranslateCaps(), 379-380
lineHandoff(), 517-519
lineInitialize(), 314, 380-381
lineInitializeEx(), 307, 314-316, 382-384
lineMakeCall(), 466-468
lineNegotiateAPIVersion(), 317-318, 322,

384-386
lineNegotiateEXTVersion(), 317-318, 322,

386-387
lineOpen(), 319-322, 325, 387-390
lineRegisterRequestRecipient(), 326, 519-520
lineSetAppSpecific(), 397-398
lineSetCallPrivilege(), 448-449
lineSetCurrentLocation(), 398-399
lineSetNumRings(), 520-521
lineSetStatusMessages(), 447-448
lineSetTollList(), 521-523
lineShutdown(), 315-316, 320, 392-393
lineTranslateAddress(), 474-476
lineTranslateDialog(), 479-480
listen(), 136, 175, 179-180, 194
little endian, 30-31
local area networks (LAN) and TAPI, 295-296

M

MBone, 255
media application, duties of, 486-487
media modes,

and TAPI, 321-325
prioritizing, 484

media stream, 294

messages, 414-416 see also TAPI messages
issues concerning, 416

multicast, see IP Multicast
multimedia and TAPI, 293-294, 320
multithreading, 198

N

name spaces, 11, 87-88
network, 30-31
network events, 186
non-blocking, 176-177, 185, 198, 247, 258
ntohl(), 32-33
ntohs(), 33-34

O

obsolete functions, 132, 261-264
OSI network model, 6-7
out-of-band data, (OOB), 182, 184, 197
overlapped I/O, 11, 139-140, 160, 164, 183,

191-195, 246
examples, 150-154, 211-215

P

Phone functions, 303-304
phoneInitialize(), 314
phoneInitializeEx(), 314
ping, 228-234
POTS (Plain Old Telephone Service), 288
Private Branch Exchange (PBX), using with TAPI,

296
Project JEDI, 316
protocol family, 145
protocol independence, 8-10
protocols,

Address Resolution Protocol (ARP), 5
connectionless, 5
Internet Control Message Protocol (ICMP), 5,
225-229, 234

Internet Protocol (IP), 5, 227-229, 253-254
Reverse Address Resolution Protocol, (RARP),
5

TCP/IP, 4-10, 29-30, 39, 79-81, 174, 225-226
Transmission Control Protocol (TCP), 5, 79,
91, 119, 137-139, 227, 229, 254

User Datagram Protocol (UDP), 5, 79, 91,
119, 138-139, 197, 227, 229

Q

Quality of Service (QOS), 11, 144, 146, 177

R

recv(), 165-166
recvfrom(), 165, 168
resolution, 37-38

using DNS, 39-40
using hosts file, 38-39
using local database file, 40

Reverse Address Resolution Protocol (RARP), 5

549

Index

S

select(), 183-185, 196-197, 203
send(), 160, 161-162
sendto(), 160, 163-164, 229, 256
service resolution, 30
SetService(), 132
setsockopt(), 170, 178, 229, 256, 265-266,

268-270, 279
shutdown(), 136, 170, 172
socket groups, 12
socket levels, 267-268

IPPROTO_IP, 267, 272-274, 278
IPPROTO_TCP, 267-269, 272, 279
SOL_SOCKET, 267-269, 270-272, 278, 279

socket options, 171, 265-270
SO_DONTLINGER, 171
SO_LINGER, 171, 271

socket types, 139, 225
SOCK_DGRAM, 90, 139, 144, 147, 225, 270,
275

SOCK_RAW, 139, 225
SOCK_RDM, 139, 243, 247
SOCK_SEQPACKET, 139, 243, 247
SOCK_STREAM, 90, 139, 144, 147, 175-176,
225, 243, 247, 270, 275

socket(), 136, 137, 139-140, 141-142, 191
SOCKET_ERROR, 22
sockets, 137

behavior, 140
connected, 144, 147, 160, 243
connectionless, 147, 160
non-overlapped, 160
overlapped, 139-140, 160
raw, 225
sharing, 12

Sockets layer, 4
Supplementary Telephony, 299-300

line functions, 300-302
SysErrorMessage(), 24

T

TAPI,
accepting calls with, 487-493
configuring, 311
determining capabilities in, 318-319

devices, 292-294, 305
ending a call, 493-494
history of, 286-287
implementations of, 287-290
initializing, 313-316
messages, 414-415
negotiating versions of, 317-318
notification mechanisms, 307
placing calls with, 461-464

TAPI 2.2, 316
TAPI 3.0, 316
TAPI constants

LINEAGENTSTATE_, 418-419
LINEADDRCAPFLAGS_, 343-344
LINEADDRESSFEATURE_, 350
LINEADDRESSSTATE_, 339-340
LINEADDRFEATURE_, 353-354
LINEANSWERMODE_, 361
LINEBEARERMODE_, 359
LINEBUSYMODE_, 335, 426
LINECALLFEATURE_, 344-345
LINECALLINFOSTATE_, 340-341, 421-422
LINECALLPARAMFLAGS_, 473-474
LINECALLPARTYID_, 341
LINECALLPRIVILEGE_, 389-390
LINECALLSTATE_, 342, 425-426
LINECALLTREATMENT_, 347
LINECONNECTEDMODE_, 423-424
LINEDEVCAPFLAGS_, 362-363
LINEDEVSTATE_, 363-364, 431-433
LINEDIALTONEMODE_, 424
LINEDIGITMODE_, 360
LINEDISCONNECTMODE_, 424-425
LINEFEATURE_, 365
LINEFORWARDMODE_, 345-346
LINEGATHERTERM_, 429
LINEINITIALIZEEXOPTION_, 445
LINELOCATIONOPTION_, 371
LINEMAPPER, 313, 319-320, 322
LINEMEDIAMODE_, 390-391, 518-519
LINEOFFERINGMODE_, 424
LINEPROXYREQUEST_, 442-443
LINEREQUESTMODE_, 520
LINESPECIALINFO_, 424
LINETERMDEV_, 366

550

Index

LINETERMMODE_, 351-352, 365, 507
LINETERMSHARING_, 366
LINETONEMODE_, 360
LINETRANSLATEOPTION_, 476
LINETRANSLATERESULT_, 478-479

TAPI errors, see also Appendix B
INIFILECORRUPT, 315
LINEERR_ALLOCATED, 320
LINEERR_INVALMEDIAMODE, 321
LINEERR_NODRIVER, 315
LINEERR_REINIT, 320
LINEERR_RESOURCEUNAVAIL, 320
LINEERR_STRUCTURETOOSMALL, 310

TAPI functions
lineAccept(), 494-495
lineAnswer(), 496-497
lineClose(), 319, 325-326, 327
lineConfigDialog(), 311, 327-328
lineConfigDialogEdit(), 311, 313, 328-330
lineDeallocateCall(), 497-498
lineDial(), 465-466
lineDrop(), 498-499
lineGetAddressCaps(), 309-310, 330-332
lineGetAddressID(), 347-348
lineGetAddressStatus(), 348-349
lineGetCallInfo(), 499-500
lineGetCallStatus(), 508
lineGetConfRelatedCalls(), 510-511
lineGetCountry(), 393-394
lineGetDevCaps(), 309-310, 355-356
lineGetDevConfig(), 313, 372-373
lineGetIcon(), 396-397
lineGetID(), 313, 319-320, 373-374
lineGetLineDevStatus(), 375
lineGetMessage(), 443-444
lineGetNewCalls(), 321, 511-512
lineGetNumRings(), 513-514
lineGetRequest(), 514-515
lineGetStatusMessages(), 446-447
lineGetTranslateCaps(), 379-380
lineHandoff(), 517-519
lineInitialize(), 314, 380-381
lineInitializeEx(), 307, 314-316, 382-384
lineMakeCall(), 466-468

lineNegotiateAPIVersion(), 317-318, 322,
384-386

lineNegotiateEXTVersion(), 317-318, 322,
386-387

lineOpen(), 319-322, 325, 387-390
lineRegisterRequestRecipient(), 326, 519-520
lineSetAppSpecific(), 397-398
lineSetCallPrivilege(), 448-449
lineSetCurrentLocation(), 398-399
lineSetNumRings(), 520-521
lineSetStatusMessages(), 447-448
lineSetTollList(), 521-523
lineShutdown(), 315-316, 320, 392-393
lineTranslateAddress(), 474-476
lineTranslateDialog(), 479-480
phoneInitialize(), 314
phoneInitializeEx(), 314
tapiGetLocationInfo(), 460-461
tapiRequestDrop(), 458
tapiRequestMakeCall(), 453-454, 459-460
tapiRequestMediaCall(), 458
TLineCallback(), 401-413

TAPI line device, closing, 325-326
TAPI messages

LINE_ADDRESSSTATE, 417
LINE_AGENTSESSIONSTATUS, 438-439
LINE_AGENTSPECIFIC, 418
LINE_AGENTSTATUS, 418-419
LINE_AGENTSTATUSEX, 439
LINE_APPNEWCALL, 419-420
LINE_APPNEWCALLHUB, 441
LINE_CALLHUBCLOSE, 441
LINE_CALLINFO, 420-422
LINE_CALLSTATE, 422-426
LINE_CLOSE, 325-326, 426-427
LINE_CREATE, 427
LINE_DEVSPECIFIC, 428
LINE_DEVSPECIFICEX, 441-442
LINE_DEVSPECIFICFEATURE, 428
LINE_GATHERDIGITS, 428-429
LINE_GENERATE, 429-430
LINE_GROUPSTATUS, 440
LINE_LINEDEVSTATE, 325-326, 430-433
LINE_MONITORDIGITS, 433
LINE_MONITORMEDIA, 434-435

551

Index

LINE_MONITORTONE, 435
LINE_PROXYREQUEST, 435-436
LINE_PROXYSTATUS, 440-441
LINE_QUEUESTATUS, 439
LINE_REMOVE, 436-437
LINE_REPLY, 437
LINE_REQUEST, 438

tapiGetLocationInfo(), 460-461
tapiRequestDrop(), 458
tapiRequestMakeCall(), 453-454, 459-460
tapiRequestMediaCall(), 458
TAPI structures

LineAddressCaps, 310, 332-339
LineAddressStatus, 349-353
LineAppInfo, 378-379
LineCallInfo, 500-507
LineCallList, 513
LineCallParams, 468-473
LineCallStatus, 509-510
LineCallTreatmentEntry, 346-347
LineCardEntry, 367-369
LineCountryEntry, 395-396
LineCountryList, 394-395
LineDevCaps, 309-310, 319, 356-362
LineDevStatus, 376-378
LineInitializeExParams, 444-445
LineLocationEntry, 369-371
LineMessage, 445-446
LineReqMakeCall, 515-516
LineReqMediaCall, 516-517
LineTermCaps, 365-366
LineTranslateCaps, 366-367
LineTranslateOutput, 477-478

TCP/IP, 4-10, 29-30, 39, 79-81, 174, 225-226
telephony, 269

physical connections in, 295-296
working with, 306-307

Telephony Application Programming Interface,

see TAPI

Telephony, Assisted, see Assisted Telephony
Telephony Service Provider, 320, 465

Telephony Service Provider Interface, see TSPI
telephony systems, elements of, 290-291
TLineCallback(), 401-413
traceroute, 234-239

Transmission Control Protocol (TCP), 5, 79, 91,
119, 137-139, 227, 229, 254

TransmitFile(), 239-240, 243-245
TransmitPackets(), 246-247, 249-251
TSPI, 287

U

UNIX, 4
unknown media mode type, 483-486
User Datagram Protocol (UDP), 5, 79, 91, 119,

138-139, 197, 227, 229

V

VarString, 312-313

W

Windows, 3, 7-8, 37, 39, 40, 79-80
Windows 2000, 38, 41, 115, 194, 225, 235, 241
Windows 3.1, 8
Windows 95/98, 41, 115, 196, 241, 270
Windows CE, 183
Windows .NET Server, 246
Windows NT 4.0, 38, 41, 115, 194, 225, 235
Windows Open Systems Architecture (WOSA), 3,

10
and TAPI, 285

Windows Sockets, 8
Windows XP, 38, 115, 194, 225, 235, 246
Winsock 1.1, 8-9, 15-16, 21, 27, 29-30, 131, 135,

147, 261, 267
architecture, 9

Winsock 2, 8-9, 15-16, 21, 27, 29, 71, 76, 87,
135, 139, 147, 160, 171, 178, 246, 256, 267

architecture, 10
extensions, 239-240, 246-247
features, 11-12

Winsock DLL, 27

Winsock errors, 23-24 see also Appendix B
handling, 22-24

Winsock functions
accept(), 136, 175-176, 180-181, 194
AcceptEx(), 239-240, 241-242
bind(), 136, 175, 179, 256
closesocket(), 136, 170-171, 172-173, 178,
262

CompletionRoutine(), 193

552

Index

TE
AM
FL
Y

Team-Fly®

connect(), 136, 144, 146, 147-149
ConnectEx(), 246-248
CreateIoCompletionPort(), 194
DisconnectEx(), 246-247, 248-249
EnumProtocols(), 132
freeaddrinfo(), 115, 126
gai_strerror(), 115, 120, 132
GetAcceptExSockaddrs(), 239-240, 242-243
GetAddressByName(), 132
getaddrinfo(), 115, 117, 119-126
GetCurrentProcessId(), 229
gethostbyaddr(), 8, 42-45
gethostbyname(), 8, 45-46, 115, 117
gethostname(), 47-48
GetNameByType(), 132
getnameinfo(), 115, 119, 126-131
getpeername(), 154-155
getprotobyname(), 62-64
getprotobynumber(), 64-66
getservbyname(), 55-57
getservbyport(), 58-60
GetService(), 132
getsockname(), 155, 175
getsockopt(), 22, 161, 265-266, 268-269, 278
GetTypeByName(), 132
htonl(), 31-32
htons(), 32
inet_addr(), 34-35
inet_ntoa(), 35-37
ioctlsocket(), 183, 197, 274-277, 279-280
listen(), 136, 175, 179-180, 194
ntohl(), 32-33
ntohs(), 33-34
recv(), 165-166
recvfrom(), 165, 168
select(), 183-185, 196-197, 203
send(), 160, 161-162
sendto(), 160, 163-164, 229, 256
SetService(), 132
setsockopt(), 170, 178, 229, 256, 265-266,
268-270, 279

shutdown(), 136, 170, 172
socket(), 136, 137, 139-140, 141-142, 191
SysErrorMessage(), 24
TransmitFile(), 239-240, 243-245

TransmitPackets(), 246-247, 249-251
WSAAccept(), 136, 175-178, 181-182, 191
WSAAddressToString(), 76-78
WSAAsyncGetHostByAddr(), 8, 54-55
WSAAsyncGetHostByName(), 8, 48-54
WSAAsyncGetProtoByName(), 66-67
WSAAsyncGetProtoByNumber(), 67-68
WSAAsyncGetServByName(), 60
WSAAsyncGetServByPort(), 61
WSAAsyncSelect(), 176, 178, 183, 185-187,
195-197, 203-210, 258

WSACancelAsyncRequest(), 68
WSACancelBlockingCall(), 261-262
WSACleanup(), 15-16, 19-21, 136-137
WSACloseEvent(), 189, 222
WSAConnect(), 136, 144, 146, 149-154
WSACreateEvent(), 188, 192, 210-215
WSADuplicateSocket(), 178, 182
WSAEnumNameSpaceProviders(), 87, 89-90
WSAEnumNetworkEvents(), 190, 220-221
WSAEnumProtocols(), 79-81, 86-87
WSAEventSelect(), 176, 178, 183, 188-191,
195-197, 221-222, 258

WSAGetAsyncError(), 22, 42
WSAGetLastError(), 18, 22-23, 24-25, 42, 192
WSAGetOverlappedResult(), 192-193,
224-225

WSAGetSelectError(), 22, 187
WSAGetServiceClassInfo(), 112-113
WSAGetServiceClassNameByClassId(),
113-114

WSAHtonl(), 71-74
WSAHtons(), 74
WSAInstallServiceClass(), 91, 95-101
WSAIoctl(), 247, 274-277, 280-281
WSAIsBlocking(), 262-263
WSAJoinLeaf(), 256-261
WSALookupServiceBegin(), 103-104, 105-109
WSALookupServiceEnd(), 105, 111
WSALookupServiceNext(), 104-105, 109-112
WSANSPIoctl(), 246-247, 251-252
WSANtohl(), 74-75
WSANtohs(), 75-76
WSARecv(), 165, 166-167, 191
WSARecvDisconnect(), 171, 174

553

Index

WSARecvEx(), 239-249, 245-246
WSARecvFrom(), 165, 169-170, 191
WSARecvMsg(), 246-247, 252-253
WSARemoveServiceClass(), 102-103
WSAResetEvent(), 188-189, 222-223
WSASend(), 160, 162-163, 191
WSASendDisconnect(), 170, 173-174
WSASendTo(), 160, 164-165, 191
WSASetBlockingHook(), 263-264
WSASetEvent(), 223
WSASetLastError(), 22-23, 25-26
WSASetService(), 91, 102
WSASocket(), 136, 137, 140, 143, 178, 191,
256

WSAStartUp(), 15-19, 22, 136
WSAStringToAddress(), 78-79
WSAUnhookBlockingHook(), 264-265
WSAWaitForMultipleEvents(), 189, 193,
215-220

ZeroMemory(), 144-145
Winsock structures

addrinfo, 117-119
AFPROTOCOLS, 94
CSADDR_INFO, 94-95
in_addr, 35-36, 145
linger, 271
sockaddr_in, 144-145
SOCKET_ADDRESS, 95
TFdSet, 184
THostent, 43
TIpHdr, 273
TOverLapped, 191-192
TProtoEnt, 62
TRANSMIT_FILE_BUFFERS, 244
TRANSMIT_PACKETS_ELEMENT, 250
TServEnt, 55-56
TSockAddr, 76
TSockAddrIn, 144-146
TTimeVal, 184
WSABUF, 146
WSAData, 17-18
WSAMSG, 252
WSANameSpaceInfo, 88
WSANETWORKEVENTS, 190
WSANSCLASSINFO, 91-92

WSAPROTOCOL_INFO, 79-80
WSAQUERYSET, 92-94
WSASERVICECLASSINFO, 91

WOSA, see Windows Open Systems Architecture
WSAAccept(), 136, 175-178, 181-182, 191
WSAAddressToString(), 76-78
WSAAsyncGetHostByAddr(), 8, 54-55
WSAAsyncGetHostByName(), 8, 48-54
WSAAsyncGetProtoByName(), 66-67
WSAAsyncGetProtoByNumber(), 67-68
WSAAsyncGetServByName(), 60
WSAAsyncGetServByPort(), 61
WSAAsyncSelect(), 176, 178, 183, 185-187,

195-197, 203-210, 258
WSACancelAsyncRequest(), 68
WSACancelBlockingCall(), 261-262
WSACleanup(), 15-16, 19-21, 136-137
WSACloseEvent(), 189, 222
WSAConnect(), 136, 144, 146, 149-154
WSACreateEvent(), 188, 192, 210-215
WSADuplicateSocket(), 178, 182
WSAEnumNameSpaceProviders(), 87, 89-90
WSAEnumNetworkEvents(), 190, 220-221
WSAEnumProtocols(), 79-81, 86-87
WSAEventSelect(), 176, 178, 183, 188-191,

195-197, 221-222, 258
WSAGetAsyncError(), 22, 42
WSAGetLastError(), 18, 22-23, 24-25, 42, 192
WSAGetOverlappedResult(), 192-193, 224-225
WSAGetSelectError(), 22, 187
WSAGetServiceClassInfo(), 112-113
WSAGetServiceClassNameByClassId(), 113-114
WSAHtonl(), 71-74
WSAHtons(), 74
WSAInstallServiceClass(), 91, 95-101
WSAIoctl(), 247, 274-277, 280-281
WSAIsBlocking(), 262-263
WSAJoinLeaf(), 256-261
WSALookupServiceBegin(), 103-104, 105-109
WSALookupServiceEnd(), 105, 111
WSALookupServiceNext(), 104-105, 109-112
WSANSPIoctl(), 246-247, 251-252
WSANtohl(), 74-75
WSANtohs(), 75-76
WSARecv(), 165, 166-167, 191

554

Index

WSARecvDisconnect(), 171, 174
WSARecvEx(), 239-249, 245-246
WSARecvFrom(), 165, 169-170, 191
WSARecvMsg(), 246-247, 252-253
WSARemoveServiceClass(), 102-103
WSAResetEvent(), 188-189, 222-223
WSASend(), 160, 162-163, 191
WSASendDisconnect(), 170, 173-174
WSASendTo(), 160, 164-165, 191
WSASetBlockingHook(), 263-264

WSASetEvent(), 223
WSASetLastError(), 22-23, 25-26
WSASetService(), 91, 102
WSASocket(), 136, 137, 140, 143, 178, 191, 256
WSAStartUp(), 15-19, 22, 136
WSAStringToAddress(), 78-79
WSAUnhookBlockingHook(), 264-265
WSAWaitForMultipleEvents(), 189, 193, 215-220

Z

ZeroMemory(), 144-145

555

Index

Looking for more?
Check out Wordware’s market-leading Delphi

Developer’s, Kylix Developer, and JBuilder Libraries

featuring the following new releases.

Visit us online at www.wordware.com for more information.

Use the following coupon code for online specials: moore-7523

The Tomes of Delphi:

Win32 Shell API—

Windows 2000 Edition

1-55622-749-3

$59.95

7½ x 9¼

768 pp.

Kylix 2

Development

1-55622-774-4

$54.95

7½ x 9¼

664 pp.

The Tomes of Delphi:

Win32 Core API—

Windows 2000 Edition

1-55622-750-7

$59.95

7½ x 9¼

760 pp.

The Tomes of Kylix:

The Linux API

1-55622-823-6

$59.95

7½ x 9¼

560 pp.

Charlie Calvert’s Learn

JBuilder

1-55622-330-7 • $59.95

7½ x 9¼ • 912 pp.

JBuilder 7 JFC and Swing

Programming

1-55622-900-3 • $59.95

7½ x 9¼ • 550 pp.

JBuilder 7 OpenTools API

Developer’s Guide

1-55622-955-0 • $49.95

7½ x 9¼ • 500 pp.

About the CD

The CD-ROM that accompanies this book includes example programs demon-
strating the use of Winsock and TAPI functions. The examples are organized
into folders named for the chapters and are located in the Source Files folder.

Many of the Winsock examples are console programs that simply demon-
strate Winsock functions and techniques. Each of these is simply a stand-alone
project. There are also a few GUI projects (such as EX36), which are organized
into separate folders.

The majority of the TAPI examples are functions in the file TAPIInft.pas, a
unit that introduces a large class that wraps many TAPI functions. Some of the
example programs make calls into this class to demonstrate various aspects of
TAPI, while others emphasize initialization and configuration issues and demon-
strate practical tasks like placing and receiving phone calls.

See the Readme file on the CD for more information about the examples.

� Warning: By opening the CD package, you accept the terms and
conditions of the CD/Source Code Usage License Agreement on
the following page.

Opening the CD package makes this book nonreturnable.

CD/Source Code Usage License Agreement

Please read the following CD/Source Code usage license agreement before opening the CD and using the con-
tents therein:

1. By opening the accompanying software package, you are indicating that you have read and agree to be bound
by all terms and conditions of this CD/Source Code usage license agreement.

2. The compilation of code and utilities contained on the CD and in the book are copyrighted and protected by
both U.S. copyright law and international copyright treaties, and is owned by Wordware Publishing, Inc. Indi-
vidual source code, example programs, help files, freeware, shareware, utilities, and evaluation packages,
including their copyrights, are owned by the respective authors.

3. No part of the enclosed CD or this book, including all source code, help files, shareware, freeware, utilities,
example programs, or evaluation programs, may be made available on a public forum (such as a World Wide
Web page, FTP site, bulletin board, or Internet news group) without the express written permission of
Wordware Publishing, Inc. or the author of the respective source code, help files, shareware, freeware, utili-
ties, example programs, or evaluation programs.

4. You may not decompile, reverse engineer, disassemble, create a derivative work, or otherwise use the
enclosed programs, help files, freeware, shareware, utilities, or evaluation programs except as stated in this
agreement.

5. The software, contained on the CD and/or as source code in this book, is sold without warranty of any kind.
Wordware Publishing, Inc. and the authors specifically disclaim all other warranties, express or implied, includ-
ing but not limited to implied warranties of merchantability and fitness for a particular purpose with respect to
defects in the disk, the program, source code, sample files, help files, freeware, shareware, utilities, and evalu-
ation programs contained therein, and/or the techniques described in the book and implemented in the
example programs. In no event shall Wordware Publishing, Inc., its dealers, its distributors, or the authors be
liable or held responsible for any loss of profit or any other alleged or actual private or commercial damage,
including but not limited to special, incidental, consequential, or other damages.

6. One (1) copy of the CD or any source code therein may be created for backup purposes. The CD and all accom-
panying source code, sample files, help files, freeware, shareware, utilities, and evaluation programs may be
copied to your hard drive. With the exception of freeware and shareware programs, at no time can any part of
the contents of this CD reside on more than one computer at one time. The contents of the CD can be copied
to another computer, as long as the contents of the CD contained on the original computer are deleted.

7. You may not include any part of the CD contents, including all source code, example programs, shareware,
freeware, help files, utilities, or evaluation programs in any compilation of source code, utilities, help files,
example programs, freeware, shareware, or evaluation programs on any media, including but not limited to CD,
disk, or Internet distribution, without the express written permission of Wordware Publishing, Inc. or the
owner of the individual source code, utilities, help files, example programs, freeware, shareware, or evaluation
programs.

8. You may use the source code, techniques, and example programs in your own commercial or private applica-
tions unless otherwise noted by additional usage agreements as found on the CD.

� Warning: By opening the CD package, you accept the terms and
conditions of the CD/Source Code Usage License Agreement.

Opening the CD package makes this book nonreturnable.

	The Tomes of Delphi: Basic 32-Bit Communications Programming
	Contents
	Acknowledgments
	Introduction
	Part I Internet/Intranet Programming with Winsock
	Chapter 1 The Winsock API
	Introduction
	In the Beginning
	Network Protocols
	The OSI Network Model 1
	Before Winsock
	Evolution of Winsock
	The Winsock Architecture
	Winsock 1.1
	Winsock 2
	New Features of Winsock

	Summary

	Chapter 2 Winsock Fundamentals
	Starting and Closing Winsock
	Handling Winsock Errors
	Errors and errors
	The Many Faces of the Winsock DLL
	Summary

	Chapter 3 Winsock 1.1 Resolution
	Translation Functions
	Miscellaneous Conversion Functions
	Resolution
	Resolving Using a hosts File
	Resolving Using DNS
	Resolving Using a Local Database File with DNS

	Blocking and Asynchronous Resolution
	Host Resolution
	Service Resolution
	Protocol Resolution

	Canceling an Outstanding Asynchronous Call
	Summary

	Chapter 4 Winsock 2 Resolution
	Translation Functions
	Address and String Conversion Functions
	Enumerating Network Protocols
	Name Space Resolution and Registration
	Enumerating Name Spaces

	Registering a Service
	Service Queries
	Helper Functions
	Functions for the Future
	Making Your Winsock Applications Agnostic

	Obsolete Functions
	Summary

	Chapter 5 Communications
	The Mechanics of Data Exchange
	Socket Creation
	Making the Connection
	Sending Data
	Receiving Data
	Breaking the Connection
	Server Applications
	Preparation
	Duplicated Sockets

	I/ O Schemes
	Using Select()
	Using WSAAsyncSelect()
	Using WSAEventSelect()
	Using Overlapped Routines

	Winsock and Multithreading
	Raw Sockets
	Microsoft Extensions to Winsock 2
	Microsoft Extensions to Winsock 2 for Windows XP
	and Windows .NET Server
	IP Multicast
	What is IP Multicast?
	What Can You Do with IP Multicast?
	How Do You Develop a Simple IP Multicast Application?

	Obsolete Functions
	Summary

	Chapter 6 Socket Options
	Querying and Modifying Attributes
	Option Level = SOL_ SOCKET
	Option Level = IPPROTO_ TCP
	Option Level = IPPROTO_ IP

	Modifying I/ O Behavior
	Summary

	Part 2 Fundamentals of TAPI Programming
	Chapter 7 Introduction to TAPI
	An Historical Review
	The World of Telephony Applications
	The Elements of a Telephony System
	Nature and Structure of TAPI
	Media Stream
	Varieties of Physical Connections

	Levels of Telephony Programming Using TAPI
	Summary

	Chapter 8 Line Devices and Essential Operations
	Stages in Working with Telephony
	Three Notification Mechanisms
	TAPI Line Support— Basic and Extended Capabilities
	Determining Capabilities and Configuring TAPI
	Configuring TAPI
	TAPI’s VarString
	Line Initialization— Making a Connection with TAPI
	Let’s Negotiate
	Determining Capabilities

	Opening a Line Device
	Give Me Your ID
	Specifying Media Modes
	Working with Media Modes

	Closing a Line Device
	Reference for Basic TAPI Functions
	Summary

	Chapter 9 Handling TAPI Line Messages
	Line Callback
	Issues Involving Messages
	LINE_ ADDRESSSTATE Message
	LINE_ AGENTSPECIFIC Message
	LINE_ AGENTSTATUS Message
	LINE_ APPNEWCALL Message
	LINE_ CALLINFO Message
	LINE_ CALLSTATE Message
	LINE_ CLOSE Message
	LINE_ CREATE Message
	LINE_ DEVSPECIFIC Message
	LINE_ DEVSPECIFICFEATURE Message
	LINE_ GATHERDIGITS Message
	LINE_ GENERATE Message
	LINE_ LINEDEVSTATE Message
	LINE_ MONITORDIGITS Message
	LINE_ MONITORMEDIA Message
	LINE_ MONITORTONE Message
	LINE_ PROXYREQUEST Message
	LINE_ REMOVE Message
	LINE_ REPLY Message
	LINE_ REQUEST Message
	LINE_ AGENTSESSIONSTATUS Message
	LINE_ QUEUESTATUS Message
	LINE_ AGENTSTATUSEX Message
	LINE_ GROUPSTATUS Message
	LINE_ PROXYSTATUS Message
	LINE_ APPNEWCALLHUB Message
	LINE_ CALLHUBCLOSE Message
	LINE_ DEVSPECIFICEX Message
	LINEPROXYREQUEST_ Constants

	Functions Related to Message Handling

	Chapter 10 Placing Outgoing Calls
	Canonical and Dialable Address Formats
	Assisted Telephony
	TAPI Servers in Assisted Telephony

	Assisted Telephony Functions
	Establishing a Call with Low- Level Line Functions
	Special Dialing Support
	Summary

	Chapter 11 Accepting Incoming Calls
	Finding the Right Application
	Prioritizing Media Modes
	Responsibilities of the Receiving Application
	Media Application Duties
	Accepting an Incoming Call
	Ending a Call
	Reference for Additional Basic TAPI Functions
	Winsock Errors
	TAPI Errors
	Delphi TAPI Articles
	Microsoft White Papers on TAPI
	Telephony Articles
	TAPI Programming Resources
	TAPI Books (printed and online)
	Winsock Books
	Other Internet Programming and Winsock Sources
	Internet Programming and Winsock Newsgroups
	RFCs

	Index
	About the CD

