
Chapter 1

The First Steps

In an ideal world only a few lines of code would produce graphics right now. Alas, in
the real world, some preliminary housekeeping is necessary. In this chapter you will
learn how to make the necessary connection between Windows and OpenGL. The
plan is to produce some graphics as soon as possible, so be patient with the necessary
set up. In the spirit of getting to the interesting code as soon as possible, this chapter is
fairly short and ends with actual graphics output. Although it is just a simple colored
background, it shows that the code setting it up successfully did its job. Though trivial,
this simple scene is not just a token reward for enduring a necessary evil. The code for
producing it forms the basis for more advanced output.

DIRECTORY STRUCTURE

To use this book effectively you will be writing code along the way and will create
and save a number of projects, so pick a drive for keeping these OpenGL projects.
Create a directory and name it OpenGL. Under that directory create subdirectories
named Chapter.1, Chapter.2, etc. Some chapters may produce several projects, and
these each have their own subdirectories under the chapter directory. You can, of
course, organize in some other way, but the book proceeds as if you use the
recommended directory structure and names for your projects, so you must translate
as you go.

PRELIMINARY CODE

Getting Ready to Start to Begin

OpenGL is intended to be fairly platform-independent, rather than just for Windows.
Therefore OpenGL needs a link to Windows, using some special structures and API
extensions in Windows to provide this link. In Delphi a good place for the connection
is within a form's OnCreate event handler.

Create a new project and save it in a new directory under the OpenGL directory
created earlier. Name the new directory “Chapter.1,” name the project “First.Dpr,”
and name the main unit “First1.Pas”. Double-click the main form to set up the form's
OnCreate event handler. Define a variable of type TPixelFormatDescriptor and fill it
in. Defining the pixel format with this structure permits describing some properties

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

that the Windows GDI (graphics device interface) needs in order to work with
OpenGL.

procedure TForm1.FormCreate(Sender: TObject);
var
 pfd: TPixelFormatDescriptor;
 FormatIndex: integer;
begin
 fillchar(pfd,SizeOf(pfd),0);
 with pfd do
 begin
 nSize := SizeOf(pfd);
 nVersion := 1; {The current version of the desccriptor is 1}
 dwFlags := PFD_DRAW_TO_WINDOW or PFD_SUPPORT_OPENGL;
 iPixelType := PFD_TYPE_RGBA;
 cColorBits := 24; {support 24-bit color}
 cDepthBits := 32; {depth of z-axis}
 iLayerType := PFD_MAIN_PLANE;
 end; {with}
 FormatIndex := ChoosePixelFormat(Canvas.Handle,@pfd);
end; {FormCreate}

Inform the system of the desired properties by calling ChoosePixelFormat, passing it
form's device context and a pointer to the descriptor. Depending on what the device
context can support, the contents of the descriptor may be altered to reflect the best
approximation of the request. Windows uses Device Contexts, and OpenGL uses
Rendering Contexts. This code attempts to map them to each other.

DEVICE CONTEXT The use of a device context is not obvious in this code. In
Delphi, the Canvas property is a wrapper for a window's device context, and
Canvas.Handle is the handle to the device context. This code uses native Delphi
where possible, leaving out error checking and other details for clarity. Be patient for
a while; the code improves later.

DESCRIPTER FIELDS This descriptor has a number of fields that can remain zero
or the equivalent, so explicit assignment statements were unnecessary. Here is a quick
look at the rest of the contents of the descriptor to meet the current needs:

1.nSize. Windows structures often require the size of the structure as part of

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

the structure itself. This field follows that tradition.
2.nVersion. The version number of the descriptor structure is 1, so a 1 must
be stored here.
3.dwFlags. The bits are set by or-ing together some pre-defined constants.
PFD_DRAW_TO_WINDOW has an obvious meaning; you could be drawing
to a bitmap in memory instead. PFD_SUPPORT_OPENGL is certainly a
desired feature. Keep in mind that this code does not yet do anything with
OpenGL; it just gets Windows ready for OpenGL. These are Windows
structures and Windows API calls. Windows does not assume the code will
work with OpenGL unless the code tells it. ChoosePixelFormat attempts to
find a pixel format with the same flags set as those passed to it in the
descriptor.
4.iPixelType. Use RGBA (red, green, blue, alpha) pixels. Explanation of
Alpha comes later.
5.cColorBits. Support 24-bit color.
6.cDepthBits. Set the depth of the z-axis to 32. Explanation of depth comes
later.
7.iLayerType. The current version only supports the main plane.

ChoosePixelFormat is a function that returns an integer, stored in FormatIndex. It
returns zero to indicate an error, or a positive number as an index to the appropriate
pixel format. SetPixelFormat sets the pixel format of the device context, using that
index. Now the bottom of the OnCreate event handler looks like this:

 FormatIndex := ChoosePixelFormat(Canvas.Handle,@pfd);
 SetPixelFormat(Canvas.Handle,FormatIndex,@pfd);
end; {FormCreate}

The functions receive the handle to the window's device context and change the pixel
format of the window. So far none of the code produces visible results other than a
standard blank form, but keep coding. OpenGL will shine forth soon.

Starting to Begin

RENDERING CONTEXT Now that the code takes care of the pixel format, proceed
to the rendering context. Add GLContext to the private section of the form:

type

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

 TForm1 = class (TForm)
 procedure FormCreate(Sender: TObject);
private
 GLContext : HGLRC;
public
 { Public declarations }
end;

The HGLRC type is a handle to an OpenGL Rendering Context type. Here is its
declaration for the interface unit:

type
 HGLRC = THandle;

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

The new variable receives the result of wglCreateContext. This is one of several wgl
(Windows-GL) functions for managing rendering contexts. Place this call at the
bottom of the event handler:

 FormatIndex := ChoosePixelFormat(Canvas.Handle,@pfd);
 SetPixelFormat(Canvas.Handle,FormatIndex,@pfd);
 GLContext := wglCreateContext(Canvas.Handle);
end; {FormCreate}

As the name implies, this function creates the OpenGL rendering context needed by
the window. Now make it current:

 FormatIndex := ChoosePixelFormat(Canvas.Handle,@pfd);
 SetPixelFormat(Canvas.Handle,FormatIndex,@pfd);
 GLContext := wglCreateContext(Canvas.Handle);
 wglMakeCurrent(Canvas.Handle,GLContext);
end; {FormCreate}

CLEAN UP You should always put away your tools when finished with them, and
you should always put away windows resources when finished with them. Go to the
events page of the object inspector for the form. Double-click the OnDestroy event.
Fill in the event handler as follows:

procedure TForm1.FormDestroy(Sender: TObject);
begin
 wglMakeCurrent(Canvas.Handle,0);
 wglDeleteContext(GLContext);
end;

Passing a zero to wglMakeCurrent makes the previously current context no longer
current. Now that GLContext is no longer current, delete it with wglDeleteContext.

Begin

USES CLAUSE So far the code is nothing but Windows and Delphi code. The time
has arrived for some OpenGL code. Add OpenGL to a uses clause. Put it in the
interface section in order to use an OpenGL type in the interface.

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

uses
 Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
 Dialogs, OpenGL, Menus;

PAINT Again go to the events page of the form's object inspector. This time
double-click the OnPaint event. This event fires every time the window (form) needs
repainting, such as when the form has been partially (or fully) covered and then
exposed again. It also fires when the form first shows. Make this event handler like
the following:

procedure TForm1.FormPaint(Sender: TObject);
begin
 {background}
 glClearColor(0.0,0.4,0.0,0.0);
 glClear(GL_COLOR_BUFFER_BIT);

 {error checking}
 errorCode := glGetError;
 if errorCode<>GL_NO_ERROR then
 raise Exception.Create('Error in Paint'#13+
 gluErrorString(errorCode));
end;

The given OpenGL commands have the following declaration:

procedure glClear(mask:GLbitfield); stdcall;
procedure glClearColor(red,green,blue,alpha:GLclampf); stdcall;

Their implementations are simply references to the DLL which contains the code and
look like this:

procedure glClear; external opengl32;
procedure glClearColor; external opengl32;

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

ERROR CHECKING Notice this code introduces a little bit of error checking. This
method is small enough (so far) that including the error checking code at this point
does not obscure the main activity.

Use glClearColor to set the background color. Each color component ranges in
floating point value from zero to one. In this case the color has no red, 0.4 units of
green, and no blue. Set alpha to zero for now. The background color is a dark green (a
little less than half the maximum intensity of green, which would be 1.0).

This is a good time to introduce an OpenGL type. Much of this graphics library,
including color specifications, uses floating point numbers. To keep itself portable,
OpenGL defines a type called glFloat. Under Windows on Intel processors and
compatibles, glFloat is the same as a Delphi single, which is an IEEE (Institute for
Electrical and Electronics Engineers) 32 bit floating point value. In the interface unit
is a type declaration like this:

 glFloat = single;

Next call glClear and pass it a bit mask that tells it what to clear. This clears the
buffers enabled for writing colors. For error checking this segment of code introduces
the function glGetError, which appears often. It returns a number of type GLenum,
which is an alias for Cardinal. The following type declaration appear in the interface
unit:

 GLenum = Cardinal;

Store the result in errorCode, which you should add to the private section of the form
declaration.

ErrorCode: GLenum;

Compare the result to GL_NO_ERROR, a pre-defined constant of obvious meaning.
If there is an error, raise an exception. The application handles this exception simply
by displaying the message. The message includes another new function,
gluErrorString, from the OpenGL utility library. It returns a pointer to some text
(PChar). The text represents the meaning of the error number passed to the function.
Delphi's string concatenation knows how to handle that PChar.

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

The constant has this declaration:

 GL_NO_ERROR = 0;

Here is the declaration for the function:

function gluErrorString(errCode:GLenum):PChar; stdcall;

Since this function name begins with “glu,” its code is found in the other DLL:

function gluErrorString; external glu32;

Now, save the program (you have been warned!) and compile it. Do not run it from
the Delphi IDE (Integrated Development Environment). OpenGL programs
sometimes crash if launched from the IDE even though they work fine when run
independently. That is why it was so important to save your work before starting, just
in case you got stubborn and ran it from the IDE anyway. You might be lucky, but
you might not. Use the Windows Run command, giving it the appropriate path.
Behold! A dark green form!

MORE DEVICE CONTEXT Some of the code just written needs improving. The
time has arrived to demonstrate why. Drag the form by its title bar left and right and
up and down, so that parts are obscured and re-exposed repeatedly. Partially cover it
with some other window, then uncover it. Do this a number of times until something
strange happens. Eventually some part of the form fails to show green after exposure.

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

While Canvas.Handle is the handle to the device context, it is not reliable for these

purposes, because it is generated on the fly, when referenced, then released. So the device

context matched up with the rendering context at one point may not even exist at another

point. The rendering context would not then have a valid association. The application

needs a handle it can control. In the private section of the form define glDC:

type

 TForm1 = class (TForm)

 procedure FormCreate(Sender: TObject);

 procedure FormDestroy(Sender: TObject);

 procedure FormPaint(Sender: TObject);

 private

 GLContext: HGLRC;

 glDC: HDC;

 errorCode: GLenum;

 public

 { Public declarations }

 end ;

In the FormCreate method (OnCreate handler), call getDC and replace all references to

Canvas.Handle with glDC:

 glDC := getDC(handle);

 FormatIndex := ChoosePixelFormat(glDC,@pfd);

 SetPixelFormat(glDC,FormatIndex,@pfd);

 GLContext := wglCreateContext(glDC);

 wglMakeCurrent(glDC,GLContext);

end; {FormCreate}

Save the code again, compile it, then run it (independently). Now it works much more

reliably.

MORE ERROR HANDLING In the FormCreate method is the basic setup required to use

OpenGL under Windows. Now that the code has appeared in its simplicity, it is time to

complicate it with error checking. It is not exciting, but all good software requires some

kind of error handling or reporting. With these learning programs, if something fails, at

least some kind of clue should appear. Add a boolean to the form's private declaration. As

a field of a TObject descendant it is initialized to false. If you are not familiar with this

initialization, see Delphi's online help for the InitInstance method under TObject.

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

private

 GLContext: HGLRC;

 glDC: HDC;

 errorCode: GLenum;

 openGLReady: boolean;

In FormPaint test openGLReady because there is no point in calling OpenGL commands if

they were not even set up.

procedure TForm1.FormPaint(Sender: TObject);

begin

 if not openGLReady then

 exit;

 {background}

 glClearColor(0.0,0.4,0.0,0.0);

 glClear(GL_COLOR_BUFFER_BIT);

 {error checking}

 error := glGetError;

 if error<>GL_NO_ERROR then

 raise Exception.Create('Error in Paint'#13+

 gluErrorString(errorCode));

end;

FormCreate also needs to test some function results. On failure call GetLastError which

returns a Windows error code. If execution make it all the way to the end of the method,

the reward is setting OpenGLReady to true.

 glDC := getDC(handle);

 FormatIndex := ChoosePixelFormat(glDC,@pfd);

 if FormatIndex=0 then

 raise Exception.Create('ChoosePixelFormat failed '+

 IntToStr(GetLastError));

 if not SetPixelFormat(glDC,FormatIndex,@pfd) then

 raise Exception.Create('SetPixelFormat failed '+

 IntToStr(GetLastError));

GLContext := wglCreateContext(glDC);

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

 if GLContext=0 then

 raise Exception.Create('wglCreateContext failed '+

 IntToStr(GetLastError)');

 if not wglMakeCurrent(glDC,GLContext) then

 raise Exception.Create('wglMakeCurrent failed '+

 IntToStr(GetLastError)');

 OpenGLReady := true;

end; {FormCreate}

Be sure to save your work. The next chapter starts with this code as the foundation.

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

DEFINITIONS

Term Meaning

24-bit color On typical PC video hardware colors have three
components: red, green, and blue. Each color
component can range in integer value from 0
(none) to 255 (maximum intensity), allowing an
8-bit (1-byte) integer to specify each intensity. You
can specify 256*256*256 color combinations.
These 16,777,216 possible colors are more than
the human eye can distinguish. In a True Color or
24-bit color mode you can specify the color
components directly, using at least a 24-bit
number, but with a lesser “color depth” (number of
bits to specify a color), the number you use to
describe a color is just an index into a “palette” or
pre-defined array of colors.

Background color The color that shows through in a window when
nothing else is drawn at a particular location.
When a window is cleared, it is filled with the
appropriate background color.

Current context The active (currently being used) rendering
context.

Device Context A set of information about Windows drawing
modes and

commands.

GDI Graphics Device Interface. A standardized way of
specifying graphics operations under Windows
independently of the hardware.

Pixel Picture element. The smallest unit of drawing. A
dot.

Pixel format Those characteristics of a device context needed
for setting up a rendering context.

Rendering Context A set of information about OpenGL states and
commands under Windows.

RGBA Red, Green, Blue, Alpha. OpenGL’s method of
specifying color. Each of the three color

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

components are floating point values that range
from 0.0 (none) to 1.0 (maximum intensity). The
combination of the three “pure” colors produces
the color intended for the viewer. The alpha
component is reserved for a later chapter.

IDENTIFIER REFERENCE

Identifier Description

ChoosePixelFormat A Windows function that receives a handle to a device
context and a pointer to a pixel format descriptor. It returns
an integer index to Windows’ best attempt at a pixel format
matching the specifications in the descriptor.

getDC A Windows function that receives a handle to a window and
returns a handle to that window’s device context.

GetLastError A Windows function that returns an integer representing the
most recent error.

glClear An OpenGL command that erases a buffer, filling it with
the most recently specified background color. If the buffer
is the color buffer, then the window is filled with the
background color.

glClearColor An OpenGL command that receives red, blue, green, and
alpha floating point values sets the background color to be
used by glClear.

glEnum An OpenGL numeric type that maps to Delphi cardinal;

glFloat An OpenGL numeric type that maps to Delphi single.

glGetError An OpenGL function that returns an integer value
representing an error flag set by an OpenGL command, and
clears that flag. If no error flags are set when called, the
function returns the value of GL_NO_ERROR.

gluErrorString An OpenGL utility function that receives and error number
(such as returned by glGetError) and returns pointer to a
human-readable string (null-terminated) describing the
associated OpenGL error flag.

GL_NO_ERROR An OpenGL constant to represent a successful command.

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

HDC A Windows type. Handle to a device context.

HGLRC A Windows/OpenGL type. Handle to a renedering context.

SetPixelFormat A Windows function that specifies the pixel format to use
with the given device context. While ChoosePixelFormat
merely obtains an index to a pixel format, this function sets
that pixel format as the one to use. The function receives a
handle to the device context, an index to the desired pixel
format (such as the one returned by ChoosePixelFormat)
and a pointer to the pixel format descriptor (as modified by
ChoosePixelFormat). It returns true on success or false on
failure. Call GetLastError to learn more about the failure.

TPixelFormatDescriptor A Windows type. A structure of this type contains the fields
needed to select and set a pixel format.

wglCreateContext A Windows function that creates a rendering context for the
specified device context. It receives a handle to the device
context and returns a handle to the rendering context.

wglDeleteContext A Windows function that deletes the specified rendering
context. It received the handle to the rendering context and
returns true on success and false on failure.

wglMakeCurrent A Windows function that makes the specified rendering
context current (the one available for use) with the
specified device context. It receives the handle to the device
context and the handle to the rendering context and returns
true on success and false on failure.

SUMMARY

Chapter 1 showed how to:

1. Link the Windows graphics device context with the OpenGL rendering
context.
2. Use actual OpenGL commands to fill a window with a color.
3. Perform some basic error checking with OpenGL commands.

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

Chapter 2

Basics

OpenGL majors in three-dimensional graphics, but computer monitors operate with

essentially flat, two-dimensional screens. Representing a three-dimensional space on a

two-dimensional surface requires projection. Each point in the space projects

mathematically to an appropriate point on the surface. This chapter introduces OpenGL

commands to identify the part of the window to receive the projection, to set up the

projection, and to draw an object. Included with the projection is a clipping volume,

outside of which no drawing happens. These foundational concepts and commands permit

drawing something besides a mere background. This chapter also brings another Delphi

event handler into use.

Use the first chapter’s final code as the starting point in this chapter. If you have not

already done so, create a new directory under the “OPENGL” directory and name it

“Chapter.2.” In Delphi load the First.Dpr project and do a File|Save Project As in the

new directory, naming it “Rect.Dpr.” Do File|Save As for the “First1.Pas” unit.

Name it “Rect1.Pas” in the new directory.

VIEW PORT

Event Handler

Drawing a green background is a wonderful accomplishment, but by itself, a green

background is not very exciting. Drawing a shape ON the background is much more

interesting. For now, drawing a rectangle is the next great advance in OpenGL knowledge.

The place for drawing is the form’s OnPaint event handler, but setting up the drawing

area also needs the OnResize handler. Go to the events page of the form’s object

inspector and double-click OnResize. In the event handler place a call to glViewPort and a

call to glOrtho, and a modicum of error checking:

procedure TForm1.FormResize(Sender: TObject);

begin

 if not openGLReady then

 exit;

 glViewPort(0,0,ClientWidth,ClientHeight);

 glOrtho(-1.0,1.0,-1.0,1.0,-1.0,1.0);

 errorCode := glGetError;

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

 if errorCode<>GL_NO_ERROR then

 raise Exception.Create('FormResize:'+gluErrorString(errorCode));

end

Declaration

Remember that OpenGL is fairly platform independent, so it does not inherently know

anything about the coordinate system of the operating environment. Use glViewPort to

make a connection between the coordinates used by the windowing system (Microsoft

Windows) and the coordinates used by OpenGL. Its declaration looks like this:

procedure glViewport(x,y:GLint; width,height:GLsizei); stdcall;

GLint and GLsizei both map to integer. The meaning of width and height are as expected,

but x and y need more attention. Windows measures from the upper left corner of a region,

but OpenGL measures from the lower left, as if it were relating to the first quadrant of a set

of Cartesian coordinates. The main thing to note is that the y-direction runs opposite to the

familiar Windows coordinates, but fits more naturally with coordinates commonly used in

mathematics.

If you are building your own interface unit, the Listing 2-1 encompasses the declarations

used thus far, plus a few more that are just waiting in the wings. Add other declarations

when they appear.

Listing 2-1. Beginning of an Interface Unit.

unit OpenGL;

interface

uses

 Windows;

const

 GL_COLOR_BUFFER_BIT = $4000;

 GL_NO_ERROR = 0;

Type

 HGLRC = THandle;

 GLenum = cardinal;

 GLbitfield = cardinal;

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

 GLfloat = single;

 GLclampf = single;

 GLint = integer;

 GLsizei = integer;

{regular commands}

procedure glClear(mask:GLbitfield); stdcall;

procedure glClearColor(red,green,blue,alpha:GLclampf); stdcall;

function glGetError: GLenum; stdcall;

procedure glViewport(x,y:GLint; width,height: GLsizei); stdcall;

{utility commands}

function gluErrorString(errCode:GLenum):PChar; stdcall;

implementation

{regular commands}

procedure glClear; external opengl32;

procedure glClearColor; external opengl32;

function glGetError; external opengl32;

procedure glViewport; external opengl32;

{utility commands}

function gluErrorString; external glu32;

initialization

 Set8087CW($133F);

end.

Analogy

Think of the form as a wall. With glViewPort cut a hole in the wall through which to view

a scene. In this case, cut a hole the size of the entire client area of the form, so all that is

left is the frame. A smaller “opening” is possible:

 glViewPort(50,30,80,70);

The above example starts at 50 pixels from the left side of the form and 30 pixels up from

the bottom of the form. It is 80 pixels wide and 70 pixels tall (going up from the bottom).

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

It may not be a good idea to specify such absolute coordinates without specifying a

non-resizable border or limiting the minimum window size.

One side note: glViewPort limits the portion of the window in which the scene is rendered,

but does not restrict the area in which the background is cleared. In the wall analogy think

of the background color as something sprayed onto the stage for the scene. Not only does

the spray go through the hole in the wall, but the spray also covers the entire wall! There

are remedies for this problem, but that subject comes later.

In simplest terms rendering is drawing with OpenGL. To render a scene is to use OpenGL

constructs and commands to cause pixels to illuminate in a pattern that represents the scene

envisioned by the programmer.

ORTHOGRAPHIC PROJECTION

Meaning

The call to glOrtho defines a clipping volume, which is a region in space in which objects

can be seen. Any part of a scene that lies outside of the region is not visible (clipped). Of

course, though the rendered scenes may be conceptually three-dimensional, they must be

projected onto a two-dimensional screen. The available projections are orthographic

projection and perspective projection. You get one guess as to which kind glOrtho uses. In

orthographic projection, also known as parallel projection, an object appears the same size

whether it is near or far from the viewer. Showing a simple, flat rectangle certainly does

not need anything more complicated. Here is the declaration:

procedure glOrtho(left,right,bottom,top,zNear,zFar: GLdouble); stdcall;

GLdouble is the same thing as a Delphi double, an IEEE 64 bit floating point value.

 GLdouble = double;

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

Left, right, bottom, and top describe the same area as the glViewPort, but with

programmer-defined values for the edges. The rendering commands use values relative to

these. In the above FormResize method, -1.0 is the new value given to the left side of the

view port, and 1.0 is the value for the right side. The bottom of the view port is now -1.0,

and the top is 1.0. The z-values represent directions perpendicular to the screen. The zNear

value represents the z-axis coordinate of the clipping region face nearest the viewer, while

zFar designates the face farthest from the viewer, deepest into the screen. Those values

represent in 3-dimensional space whatever the programmer wants them to mean.

Flexibility

Here is another example of glOrtho with glViewport:

 glViewPort(0,0,ClientWidth,ClientHeight);

 glOrtho(3.204,17.2,-11.0,1.45,5.025,41.0);

The call to glViewPort remains the same to isolate the effect, in this example, of changing

the values given to glOrtho. For example, the clipping region now has a value of 17.2 for

its right side. It is still located at the same place as before, which is the right side of the

view port, at ClientWidth. The value of 17.2 was just convenient. Delphi’s Object Pascal

language has a similar concept for arrays:

var

 first: array[0..9] of integer;

 second: array[1..10] of integer;

 third: array[100..109] of integer;

All three of the above variables are equivalent arrays of ten integers, but with different

starting points. Why not just use zero-based arrays? After all, that is all that is available in

some programming languages. The answer is that they are declared in a manner convenient

for the programmer. An alternate form may allow less typing in the coding of an algorithm,

or may more obviously represent some real world concept.

Similarly the programmer has the freedom to assign arbitrary values to the orthographic

clipping region. He may choose values for computational convenience or for better

conceptual representation of the scene. There is a little bit of order imposed on the glOrtho

universe, however. Negative z-values are in front of the view port in the window, and

positive z-values are behind the view port. Placing the clipping region entirely in front of

the view port strains the hole-in-the-wall analogy, but the comparison has already served

its purpose.

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

DRAWING

Command Placement

At last the time has arrived to draw something: a rectangle. As expected, the place to draw

the rectangle is in the OnPaint event handler. The drawing commands need to appear

between glBegin and glEnd; The latter requires no parameters; the former takes a

parameter to set the drawing mode:

procedure glBegin(mode:GLenum); stdcall;

procedure glEnd; stdcall;

Between glBegin and glEnd goes a list of vertices, and possibly a few commands related to

the vertices. Each vertex is simply a point in space specified by the glVertex command.

This command takes many forms, but only a few of them are appropriate here:

procedure glVertex2f (x,y: GLfloat); stdcall;

procedure glVertex3f (x,y,z: GLfloat); stdcall;

procedure glVertex4f (x,y,z,w: GLfloat); stdcall;

State Variables

In the FormPaint method (Listing 2-2), not only does glClearColor set the clear color

(background), but glColor sets the foreground color for drawing. These calls set state

variables which remain the same until similar calls explicitly change them. If the command

says to draw in blue, all drawing is done in blue until another call changes the state.

OpenGL’s state variables are in DLLs, not directly accessible to the programmer. You

read and write OpenGL’s state variables via function and procedure calls. The glColor

command is before glBegin in the current event handler method, but it is one of the limited

set of commands that can appear between glBegin and glEnd, since color changes are often

necessary in the midst of a drawing sequence.

Listing 2-2. Setting State Variables in FormPaint.

procedure TForm1.FormPaint(Sender: TObject);

begin

 if not openGLReady then

 exit;

 {green background}

 glClearColor(0.0,0.4,0.0,0.0);

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

 glClear(GL_COLOR_BUFFER_BIT);

 {red rectangle}

 glColor3f(0.5,0.0,0.0);

 glBegin(GL_POLYGON);

 glVertex2f(0.25,0.25);

 glVertex2f(0.75,0.25);

 glVertex2f(0.75,0.75);

 glVertex2f(0.25,0.75);

 glEnd;

 glFlush;

 errorCode := glGetError;

 if errorCode<>GL_NO_ERROR then

 raise Exception.Create('Error in Paint'#13+

 gluErrorString(errorCode));

end;

Here is the declaration of the glColor command used in the FormPaint method:

procedure glColor3f(red,green,blue:GLfloat); stdcall;

The new constant has this declaration:

 GL_POLYGON = 9;

Since glColor3f has arguments of 0.5, 0.0, and 0.0, OpenGL is drawing in half-intensity

red. Alpha is not specified, so it gets 0.0 also. In the calls to glVertex2f, no z-value is

passed, so all of the rectangle lies in the z = 0.0 plane. That means the rectangle lies in the

same plane as the view port, neither in front nor behind. Recall that glOrtho received

arguments of -1.0 for left and 1.0 for right. Since the x-values in glVertex are all positive,

the rectangle is entirely on the right side of the viewing area. The same is true of the

y-values, so the rectangle lies entirely in the upper half of the viewing area. Remember that

all the drawing coordinates are relative to the values defining the clipping region, so

changing the arguments to glOrtho could affect the size, shape, and position of the

drawing.

Drawing Mode

procedure glBegin(mode:GLenum); stdcall;

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

Note the argument passed to glBegin. GL_POLYGON informs OpenGL that the

subsequent vertex list establishes the corners of a polygon. The number of vertices between

glEnd and glBegin are the number of vertices in the polygon, which in this case is a

quadrilateral. The first side of the polygon is a line from the first vertex to the second. The

second side of the polygon is a line from the second vertex to the third, and so on until the

polygon closes with a line from the last vertex to the first. OpenGL knows to do all that

simply by being given GL_POLYGON. It further knows to fill in the interior of the

polygon with the color previously specified in glColor. What if a complete scene needs

more than one type of figure? Make multiple glBegin, glEnd pairs, passing the appropriate

mode arguments.

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

Another new command introduced here is glFlush. For the sake of efficiency, the graphics

engine does not necessarily start drawing as soon as it receives its first command. It may

continue to accumulate information in a buffer until given a little kick. The call to glFlush

forces it to start drawing.

 procedure glFlush; stdcall;

To illustrate another drawing mode, GL_LINES, Listing 2-3 is the code for the OnPaint

event handler that produced Figure 2-1, including a couple of new commands needed for

that purpose.

Figure 2-1. glViewPort and glOrtho

Listing 2-3. Using GL_LINES.

{white background}

glClearColor(1.0,1.0,1.0,0.0);

glClear(GL_COLOR_BUFFER_BIT);

{top of the form}

glColor3f(0.0,0.0,1.0);

glRectf(-300.0,300.0,300.0,345.0);

glLineWidth(2.0);

glColor3f(0.0,0.0,0.0);

glBegin(GL_LINES);

 {left side}

 glVertex2f(-300.0,-300.0);

 glVertex2f(-300.0,300.0);

 {bottom}

 glVertex2f(-300.0,-300.0);

 glVertex2f(300.0,-300.0);

 {right side}

 glVertex2f(300.0,-300.0);

 glVertex2f(300.0,300.0);

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

glEnd;

glLineWidth(1.0);

glBegin(GL_LINES);

 {view port measure left to right}

 glVertex2f(-300.0,-340.0); {line}

 glVertex2f(300.0,-340.0);

 glVertex2f(-300.0,-320.0); {end}

 glVertex2f(-300.0,-360.0);

 glVertex2f(-300.0,-340.0); {end}

 glVertex2f(-290.0,-330.0);

 glVertex2f(-300.0,-340.0); {arrow}

 glVertex2f(-290.0,-350.0);

 glVertex2f(300.0,-320.0); {arrow}

 glVertex2f(300.0,-360.0);

 glVertex2f(300.0,-340.0); {arrow}

 glVertex2f(290.0,-330.0);

 glVertex2f(300.0,-340.0); {arrow}

 glVertex2f(290.0,-350.0);

 {view port measure bottom to top}

 glVertex2f(-325.0,-300.0); {line}

 glVertex2f(-325.0,300.0);

 glVertex2f(-312.0,-300.0); {end}

 glVertex2f(-337.0,-300.0);

 glVertex2f(-312.0,300.0); {end}

 glVertex2f(-337.0,300.0);

 glVertex2f(-325.0,-300.0); {arrow}

 glVertex2f(-332.0,-285.0);

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

 glVertex2f(-325.0,-300.0); {arrow}

 glVertex2f(-318.0,-285.0);

 glVertex2f(-325.0,300.0); {arrow}

 glVertex2f(-332.0,285.0);

 glVertex2f(-325.0,300.0); {arrow}

 glVertex2f(-318.0,285.0);

 {ortho measure left to right}

 glVertex2f(-300.0,-260.0); {line}

 glVertex2f(300.0,-260.0);

 glVertex2f(-300.0,-260.0); {arrow}

 glVertex2f(-288.0,-272.0);

 glVertex2f(-300.0,-260.0); {arrow}

 glVertex2f(-290.0,-250.0);

 glVertex2f(300.0,-260.0); {arrow}

 glVertex2f(290.0,-250.0);

 glVertex2f(300.0,-260.0); {arrow}

 glVertex2f(288.0,-272.0);

 {ortho measure bottom to top}

 glVertex2f(-275.0,-300.0); {line}

 glVertex2f(-275.0,300.0);

 glVertex2f(-275.0,-300.0); {arrow}

 glVertex2f(-282.0,-285.0);

 glVertex2f(-275.0,-300.0); {arrow}

 glVertex2f(-268.0,-285.0);

 glVertex2f(-275.0,300.0); {arrow}

 glVertex2f(-282.0,285.0);

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

 glVertex2f(-275.0,300.0); {arrow}

 glVertex2f(-268.0,285.0);

glEnd;

When the drawing mode is GL_LINES, each pair of calls to glVertex defines a line

segment. The declaration for the new mode is:

GL_LINES = 1;

Rectangles are so common that OpenGL has a special command just for drawing them.

The first two parameters define one vertex, and the next two define the opposite vertex.

The rectangle assumes z = 0. The float version just introduced is one of many variations.

Also introduced is a command for setting the width of the lines in pixels. The default width

is 1.0.

procedure glRectf(x1,y1,x2,y2:GLfloat); stdcall;

procedure glLineWidth(width:GLfloat); stdcall;

ADDITIONAL CONSIDERATIONS

Naming Convention

You may have noticed by now that all the OpenGL command names begin with “gl.”

The graphics library has a well-defined naming convention, which this book mentions from

time to time. So far the “gl” prefix has dominated, which does apply to all OpenGL

commands. A “glu” prefix has also made a cameo appearance. It is the standard for all

commands of the utility library. Chapter 1 presented the “wgl” prefix for the extensions

to Microsoft Windows that support OpenGL rendering. Similarly the X Window System

(for Unix) extensions use a “glx” prefix, and OS/2 Presentation Manager extensions use

“pgl.”

The naming convention does not stop with prefixes. The glVertex commands, for example,

have a number suffix, such as 2, 3, or 4, indicating the number of parameters the command

requires. A later chapter explains the fourth (w) parameter, but for now, if it receives no

explicit value, it receives a value of 1.0. In the two-parameter version, even the z-value

goes without assignment, so it gets a 0.0 value by default. The “f” suffix indicates these

versions of glVertex take GLfloat parameters. Other paramter types are possible, so as

many as 24 different versions of the glVertex command are available.

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

The FormPaint method used the glColor3f command. The “3” indicates that this version

of the command takes three parameters, but there is another version of the command that

takes four parameters. The “f” indicates that the parameters are of type glFloat.

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

Error Handling in Depth

Chapter 1 introduced glGetError, but gave it only superficial treatment. Checking it every

time a command could possibly produce an error would have a performance penalty.

Notice that FormPaint performs a single call to glGetError at the end of the method.

Fortunately the graphics library is capable of storing multiple error codes. If several error

codes have accumulated, multiple calls to glGetError are required to clear them all.

Accordingly this application replaces its default exception handler. Place this at the end of

the private section of the form’s type declaration:

 procedure ExceptionGL(Sender:TObject;E:Exception);

The application’s OnException event handler activates whenever an exception climbs all

the way up the stack without being handled along the way. The default handler simply

displays the corresponding error message. To replace the default one with one more

suitable for OpenGL, place this at the beginning of the FormCreate method:

 Application.OnException := ExceptionGL;

Finally, here is the body of the new exception handler. By calling ShowException it does

what the old exception handler would have done, then in the loop it calls glGetError and

shows all the pending OpenGL errors until they have all been cleared:

procedure TForm1.ExceptionGL(Sender:TObject;E:Exception);

begin

 ShowException(Sender,E);

 repeat

 errorCode := glGetError;

 if errorCode<>GL_NO_ERROR then

 showMessage(gluErrorString(errorCode));

 until errorCode=GL_NO_ERROR;

end

Order of Events

Now, compile the program and launch it with the Windows “Run” command. Resize it

several ways. Watch the shape of the rectangle as you do the resizing. Careful observation

reveals that if the form only shrinks, the shape of the rectangle does not change. If the form

enlarges either horizontally or vertically or both, the shape of the rectangle changes

appropriately. An expected event is not firing. This calls for further investigation.

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

In the variable declaration section add:

 EventFile: TextFile;

So that an “Event.Log” text file opens for writing at program start, and closes at

program end, make the end of the unit look like this:

initialization

 assignFile(EventFile,’Event.Log’);

 rewrite(EventFile);

finalization

 closeFile(EventFile);

end.

To record each firing of the OnPaint event, at the beginning of FormPaint add the

following:

 writeln(EventFile, 'Paint '+IntToStr(TimeGetTime));

TimeGetTime is a Windows API call that returns the number of milliseconds since

Windows last loaded. To access it the unit needs MMSystem in the uses clause. Now, to

log each firing of the OnResize event, at the beginning of FormResize add this line:

 writeln(EventFile, 'Resize '+IntToStr(TimeGetTime));

Now compile and run as before. Wait about one second. Shrink the form from the right

side. Wait another second. Shrink the form from the bottom. Wait another second. Enlarge

the form a little at the bottom. Now close the form. Examine the contents of the Event.Log

file in the current (project) directory. At the top of the file are “Resize” and “Paint”

with nearly identical time stamps, only 10 or 20 milliseconds apart. They fired at program

start. About 1000 milliseconds later (depending on the accuracy of the “one second”

wait) is another “Resize” line. That fired when the form shrank from the right side.

Another 1000 milliseconds later is another “Resize” entry, which fired when the form

shrank from the bottom. Still 1000 millisconds later is another “Resize” followed

shortly by a “Paint.”

After careful consideration, this makes sense. When the form shrinks, Windows only sends

a Resize message. Why should Windows send a Paint message just for the covering of

some already painted territory? Only form enlargement in one or both directions exposes

new area that needs painting. Windows does not know about the special need to adjust the

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

interior of the form. Since the Windows Resize and Paint messages are what trigger the

Delphi OnResize and OnPaint events, a form shrinkage does not trigger the necessary

adjustment of the rectangle.

The way to remedy this little problem is to call FormPaint on those occasions when it

would otherwise be neglected. FormResize is called for every OnResize event, so that is a

good place to check whether either dimension enlarged. If not, then no OnPaint event

happens, so you must call FormPaint directly. After cleaning out the text file code, add

these fields to the private section of the form type declaration:

 oldw,

 oldh: integer;

The fields preserve the previous width and height for comparison with new values.

Initialize them at the end of the FormCreate method:

 yldw := ClientWidth;

 oldh := ClientHeight;

Finally, this code at the end of FormResize insures the FormPaint method always fires

when needed:

if (ClientWidth<=oldw) and (ClientHeight<=oldh) then

 FormPaint(Sender);

oldh := ClientHeight;

oldw := ClientWidth;

Save, compile and run (from Windows). Resize to your heart’s content.

Matrices and Command Placement

At this point the program is ready for a little experimentation with glOrtho. Change left

from –1.0 to 0.0, then save, compile and run as before.

 glOrtho(0.0,1.0,-1.0,1.0,-1.0,1.0);

Remember that the values given to the vertices of the rectangle are relative to the clipping

volume. Since the range of horizontal numbers in the call to glOrtho is half the former

range, the rectangle should be twice as wide as before. Program execution shows that to be

the case. Now, resize the form exactly one time. Something is wrong! The rectangle jumps

to the left side. Resize the form again. The rectangle is gone, never to be seen again!

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

This experience exposes another important concept. OpenGL relies heavily on matrices. A

matrix is a two-dimensional array of numbers for which a special set of mathematical

operations apply. For every call to glOrtho, OpenGL creates a matrix from the parameters

and multiplies it by the projection matrix. Each successive call changes the projection

matrix. The symmetrical numbers passed to glOrtho just masked the potential strange

behavior, but the unbalanced numbers for this version exposed the problem. One solution

is to move the call to glOrtho to the last line of the FormCreate method. Save, compile and

run. Resize the form a few times. Now the expected behavior manifests itself.

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

Go ahead and experiment some more with passing different values to glOrtho, leaving

everything else the same. These variations should give a sense of the relationship between

the values in the projection matrix and the values of the vertices.

View Port Manipulation

The view port is the next experimental subject. The orthographic projection can change

some of its boundary numbers, but still have the same boundary (the view port). Just the

arbitrary meaning of the numbers change. The view port boundary numbers have a real

meaning, which is window coordinates. Changing these numbers changes the actual

boundary of the view port.

Restore the call to glOrtho to its symmetrical arrangement, but leave it at the bottom of

FormCreate.

 glOrtho(-1.0,1.0,-1.0,1.0,-1.0,1.0);

end; {FormCreate}

In FormResize change the vertical extent in the call to glViewPort.

 glViewPort(0,0,ClientWidth,ClientHeight div 2);

Compile and run as before. From this point on using the Windows Run command rather

than running from the IDE is taken for granted and needs no further mention. Now the

view port only covers the lower half of the window. Remember that OpenGL coordinates

normally start from the bottom of the window, even when using “window coordinates.”

The red rectangle is still in the upper right quadrant of the view port, but since the view

port itself is confined to the lower half if the window, the rectangle is now in the lower half

of the window. Since the view port is only half as tall, the rectangle is half as tall as it was.

Now, try it the other way.

 glViewPort(0,0,ClientWidth div 2,ClientHeight);

Compile and run. This time everything lies on the left side of the screen. The rectangle is

still in the right side of the view port, but it lies in the left side of the window. Notice that

with these restrictions on the size of the view port, the background color still covers the

whole window. This experiment should be enough to give a good feel for glViewport, so

take out the div operators to restore the original appearance.

Mixing Windows Components

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

One of the really neat features of OpenGL is that it does not prevent using regular

Windows components. This opens many possibilities for user interaction with your

graphics constructs. The coming chapters will explore a number of different ways users

can give information to your applications. Since these are illustrations and exercises, they

are not the ultimate in slick, state-of-the-art front ends; they are just enough to demonstrate

a technique. For the first such demonstration, drop a MainMenu component on the form.

Right-Click the component and select the Menu Designer. Give it one menu item with a

caption of “&Z-Value.” Close the Menu Designer, click the menu item, and edit the

event handler as follows:

procedure TForm1.Zvalue1Click(Sender: TObject);

var

 zString: string[7];

begin

 zString := InputBox('Z-Value','float:','0.0');

end;

The first argument gives the title of the input box. The second is the prompt. “float:”

serves as a reminder to enter a floating point value. The third argument provides a default

value to return.

Position the form near the center of the screen or set the form’s Position property to

poScreenCenter. Save, compile and run. Click the menu item. Close the input box. The

menu showed properly. The input box showed properly. Since the form shows at or near

the center of the screen, and the input box shows near the center of the screen, the input

box has to obscure part of the form. Since there was no hole left in the form when the input

box closed, then the OnPaint event must have fired. The only adverse effect is the fact that

the view port is a little shorter, since the presence of the menu reduced the ClientHeight.

Pushing the (X,Y,Z) Limits

Add zvalue as a new field to the private section of the form declaration.

 private

 GLContext: HGLRC;

 glDC: HDC;

 errorCode: GLenum;

 openGLReady: boolean;

 oldw,

 oldh: integer;

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

 zvalue: glFloat;

 procedure ExceptionGL(Sender:TObject;E:Exception);

Edit the Zvalue1Click event handler.

procedure TForm1.Zvalue1Click(Sender: TObject);

var

 zString: string[7];

begin

 zString := InputBox('Z-Value','float:','0.0');

 zvalue := StrToFloat(zString);

end;

Change the calls to glVertex from the two-parameter version to the three-parameter version

inside FormPaint, using the freshly-minted zvalue as the third argument.

 glBegin(GL_POLYGON);

 glVertex3f(0.25,0.25,zvalue);

 glVertex3f(0.75,0.25,zvalue);

 glVertex3f(0.75,0.75,zvalue);

 glVertex3f(0.25,0.75,zvalue);

 glEnd;

Save, compile and run. Select the menu item and enter 0.5 in the input box (and press the

Ok button, of course). Do it again, but enter 1.0 as the value. Again, but use 1.01.

Something different happened! The rectangle disappeared! Every time the input box covers

part of form and closes, the form must re-paint. The results of each new zvalue appear as

soon as the box closes. As long as zvalue is between the z-axis limits of the clipping

volume (the glOrtho projection), the rectangle is visible. The side of the clipping volume

toward the viewer is at z = 1.0. The side of the clipping volume away from the viewer, into

the screen is at z = -1.0. As long as the rectangle lies between –1.0 and 1.0 on the z-axis,

it is visible. Values of 0.5, 1.0, -0.5, and -1.0 kept the figure in sight, but 1.01 and –1.01

made it vanish.

Use the Menu Designer to add two more main menu items. The captions are &Y-Value

and &X-Value. Add the following event handlers:

procedure TForm1.YValue1Click(Sender: TObject);

var

 yString: string[7];

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

begin

 yString := InputBox('Y-Value','float:','0.0');

 yvalue := StrToFloat(yString);

end;

procedure TForm1.XValue1Click(Sender: TObject);

var

 xString: string[7];

begin

 xString := InputBox('X-Value','float:','0.0');

 xvalue := StrToFloat(xString);

end;

Add xvalue and yvalue to private section of the form declaration:

 private

 GLContext: HGLRC;

 glDC: HDC;

 errorCode: GLenum;

 openGLReady: boolean;

 oldw,

 oldh: integer;

 xvalue,

 yvalue,

 zvalue: glFloat;

 procedure ExceptionGL(Sender:TObject;E:Exception);

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

Use the new fields in the drawing:

 glBegin(GL_POLYGON);

 glVertex3f(xvalue+0.25,yvalue+0.25,zvalue);

 glVertex3f(xvalue+0.75,yvalue+0.25,zvalue);

 glVertex3f(xvalue+0.75,yvalue+0.75,zvalue);

 glVertex3f(xvalue+0.25,yvalue+0.75,zvalue);

 glEnd;

Save, compile and run. Try 0.5 and –1.5 for yvalue, then go back to 0.0. Try the same

numbers for xvalue. Now the meaning of a clipping volume should be quite clear. If any

part of the figure goes outside the boundaries of the clipping volume, that part is clipped

off, but the rest remains visible.

Figure 2-2. Clipping with yvalue = 0.5

Naturally, good code uses a more reliable method of insuring a re-paint than just having an

input box go away, but for this little clipping demonstration, it was sufficient.

DEFINITIONS

Clipping The act of not drawing the part of a scene that lies beyond a
specified plane.

Clipping volume A volume enclosed by clipping planes. The parts of a scene
lying outside the volume are not drawn.

Foreground color The current drawing color.

Matrix A two-dimensional array of numbers for which special
mathematical operations have been defined.

Orthographic projection Parallel projection.

Parallel projection A projection that does not make size correction for distance.

Polygon A closed two-dimensional figure consisting of three or
more vertices with sides connecting one vertex to the next,
and finally a side connecting the last vertex to the first.

Projection The mathematical transformation of points in a
three-dimensional scene onto a flat surface, such as the

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

computer screen.

Quadrilateral A four-sided polygon.

Render To convert drawing elements into an image. To draw with
OpenGL.

State variables Much OpenGL information is contained in variables whose
values remain the same until deliberately changed. This
kind of information is a state. The varaibles that hold such
information are state variables.

Vertex A point in three-dimensional space, usually representing an
endpoint of a line segment or a corner of a polygon.

View port The portion of a window’s client area in which to draw the
clipping area.

IDENTIFIER REFERENCE

glBegin An OpenGL command designating the start of a list of
vertices. It receives a mode parameter that tells OpenGL
what to do with those vertices.

GLbitfield An OpenGL type that maps to Delphi cardinal.

GLclampf An OpenGL type equivalent to Delphi single.

glColor An OpenGL command that sets the foreground color.

GLdouble An OpenGL type equivalent to Delphi double.

glEnd An OpenGL command that terminates a list of vertices
started with glBegin.

GLenum An OpenGL type that maps to Delphi cardinal.

GLfloat An OpenGL type that maps to Delphi single.

glFlush An OpenGL command that forces drawing to the
screen.

GLint An OpenGL type that maps to Delphi integer.

glLineWidth An OpenGL command that specifies the width, in
pixels, of all subsequent lines drawn.

glOrtho An OpenGL command that specifies an orthographic
projection and clipping volume.

glRect An OpenGL command for drawing a rectangle.

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

GLsizei An OpenGL type that maps to Delphi integer.

glVertex An OpenGL command for specifying the coordinates of
a vertex.

glViewport An OpenGL command that specifies the viewport in
window coordinates.

GL_COLOR_BUFFER_BIT An OpenGL constant that identifies the color buffer.

GL_LINES An OpenGL constant to pass to glBegin. Each pair of
vertices then specifies a line segment, separate from any
of the other line segments.

GL_POLYGON An OpenGL constant to pass to glBegin. All the vertices
listed before glEnd are connected to form a polygon.

TimeGetTime A Windows function that returns the number of
milliseconds since Windows was started.

SUMMARY

Chapter 2 presented the following concepts:

1. Perform drawing in the window’s OnPaint event handler.
2. Drawing occurs within the bounds of the view port.
3. The view port definition uses the operating system’s window coordinates,
but counts in the y-direction from the bottom up.
4. Use glColor to set the foreground drawing color, changing as needed. The
color is one of many state variables that remain the same until the programmer
directly changes them via function or procedure call.
5. Presenting a 3-D scene on a 2-D screen requires projection.
6. Orthographic projection does not change the apparent size of an object to
correct for distance. It is also called parallel projection.
7. The projection is a volume in space bounded by the view port.
8. The programmer may assign the numbers defining the projection volume
for clarity or convenience.
9. The projection region is a clipping volume. Any part of a scene that lies
outside the volume simply does not appear.
10. Adjust the view port in the window’s OnResize event handler.
11. Projection involves matrix multiplication. Repeated invocation is repeated
multiplication which probably gives unintended results. The solution in this
chapter was to invoke projection only once in the FormCreate method.

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

12. OpenGL does not hinder the use of Windows features such as menus and
dialog boxes.
13. The glGetError function returns the error code number for recent
operations. It returns a number equal to GL_NO_ERROR if no errors have
accumulated. OpenGL stores accumulated errors, so the program must call
glGetError repeatedly until GL_NO_ERROR comes back.

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

Chapter 3

Introducing 3-D

Chapter 2 introduced drawing a two-dimensional figure and projecting it onto the screen.

However, OpenGL is rather under-utilized in 2-D. OpenGL shines in three-dimensional

operations. This chapter explores the third (z) dimension and shows a way to draw a cube

in three-dimensional space. The cube has six square faces with different colors for each.

This chapter shows how to rotate, move, and stretch the cube, as well as cut it open to

show what is inside.

The Rect program from chapter 2 makes a good starting point for the next program. Create

a new directory as before and name it “Chapter.3.” Under that directory create a

directory called “Cube.” In Delphi load the Rect.Dpr project and do a File|Save Project

As in the new directory, naming it “Cube.Dpr.” Do File|Save As for the “Rect1.Pas”

unit. Name it “Cube1.Pas” in the new directory.

DEPTH

The introduction of a third dimension calls for an understanding of the direction in which

that dimension runs. Construct a new FormPaint method as shown in Listing 3-1.

Listing 3-1. FormPaint Method with Depth.

procedure TForm1.FormPaint(Sender: TObject);

begin

 if not openGLReady then

 exit;

 {green background}

 glClearColor(0.0,0.4,0.0,0.0);

 glClear(GL_COLOR_BUFFER_BIT or GL_DEPTH_BUFFER_BIT);

 glBegin(GL_POLYGON); {near face}

 glColor3f(0.5,0.0,0.0);

 glVertex3f(-0.4,-0.4,-0.4);

 glVertex3f(+0.4,-0.4,-0.4);

 glVertex3f(+0.4,+0.4,-0.4);

 glVertex3f(-0.4,+0.4,-0.4);

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

 glEnd;

 glBegin(GL_POLYGON); {back face}

 glColor3f(0.0,0.0,0.5);

 glVertex3f(-0.2,-0.2,+0.4);

 glVertex3f(+0.6,-0.2,+0.4);

 glVertex3f(+0.6,+0.6,+0.4);

 glVertex3f(-0.2,+0.6,+0.4);

 glEnd;

 glFlush;

 errorCode := glGetError;

 if errorCode<>GL_NO_ERROR then

 raise Exception.Create('Error in Paint'#13+

 gluErrorString(errorCode));

end; {FormPaint}

The z value of the original (red) rectangle is –0.4. The second rectangle is 0.8 units

farther along the positive z direction with a z value of +0.4. The second (blue) rectangle

also lies 0.2 units farther in the positive x direction and 0.2 units farther in the positive y

direction, so that one rectangle does not completely obscure the other.

Without a depth test an object drawn later may appear on top of an object drawn earlier, no

matter how near or far the respective objects actually were. The explanation for the depth

test appears just a few paragraphs later, but for now, add some lines to the bottom of the

FormCreate method:

 glOrtho(-1.0,1.0,-1.0,1.0,-1.0,1.0);

 glEnable(GL_DEPTH_TEST);

 glMatrixMode(GL_MODELVIEW);

 glLoadIdentity;

end; {FormCreate}

Save, compile, and run to see the result. As Figure 3-1 shows, the red rectangle is in front

and the blue rectangle is in back. The conclusion is that with an orthographic projection,

the farther an object lies in the positive z direction, (or at least less negative), the farther

the object is from the viewer.

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

Figure 3-1. Depth

CUBE

Now you are ready for another illustration. For the sake of this illustration, comment out

the glEnable(GL_DEPTH_TEST) statement you just put in.

Square View Port

The new project name certainly suggests the next shape under discussion. A cube provides

a fairly simple figure for introducing 3-D. In geometry a cube has identical height, width,

and depth. Unfortunately the projection of such a figure onto the computer screen may not

look like a cube unless the view port is square. Since the current view port matches the

form’s client height and client width, those properties should be set equal to each other.

Select the form and go to the object inspector. Set ClientHeight to 340, and set

ClientWidth to 340.

Distinguish Faces

A cube has six square faces. In FormPaint draw six colored squares, using different colors

for each face for easy distinction. If all the faces of the cube were the same color, they

would blend into each other and obscure the shape. The application of lighting effects

solves such problems, but that subject comes later. Modify the FormPaint method as in

listing 3-2.

Listing 3-2. Six Colored Faces.

procedure TForm1.FormPaint(Sender: TObject);

begin

 if not openGLReady then

 exit;

 {green background}

 glClearColor(0.0,0.4,0.0,0.0);

 glClear(GL_COLOR_BUFFER_BIT or GL_DEPTH_BUFFER_BIT);

 glBegin(GL_POLYGON); {near face}

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

 glColor3f(0.5,0.0,0.0);

 glVertex3f(-0.4,-0.4,-0.4);

 glVertex3f(+0.4,-0.4,-0.4);

 glVertex3f(+0.4,+0.4,-0.4);

 glVertex3f(-0.4,+0.4,-0.4);

 glEnd;

 glBegin(GL_POLYGON); {right face}

 glColor3f(0.3,0.3,0.8);

 glVertex3f(+0.4,-0.4,-0.4);

 glVertex3f(+0.4,-0.4,+0.4);

 glVertex3f(+0.4,+0.4,+0.4);

 glVertex3f(+0.4,+0.4,-0.4);

 glEnd;

 glBegin(GL_POLYGON); {left face}

 glColor3f(0.5,0.0,0.5);

 glVertex3f(-0.4,-0.4,+0.4);

 glVertex3f(-0.4,-0.4,-0.4);

 glVertex3f(-0.4,+0.4,-0.4);

 glVertex3f(-0.4,+0.4,+0.4);

 glEnd;

 glBegin(GL_POLYGON); {back face}

 glColor3f(0.0,0.0,0.5);

 glVertex3f(+0.4,-0.4,+0.4);

 glVertex3f(-0.4,-0.4,+0.4);

 glVertex3f(-0.4,+0.4,+0.4);

 glVertex3f(+0.4,+0.4,+0.4);

 glEnd;

 glBegin(GL_POLYGON); {bottom face}

 glColor3f(0.5,0.5,0.0);

 glVertex3f(-0.4,-0.4,-0.4);

 glVertex3f(-0.4,-0.4,+0.4);

 glVertex3f(+0.4,-0.4,+0.4);

 glVertex3f(+0.4,-0.4,-0.4);

 glEnd;

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

 glBegin(GL_POLYGON); {top face}

 glColor3f(0.3,0.0,0.1);

 glVertex3f(-0.4,+0.4,-0.4);

 glVertex3f(+0.4,+0.4,-0.4);

 glVertex3f(+0.4,+0.4,+0.4);

 glVertex3f(-0.4,+0.4,+0.4);

 glEnd;

 glFlush;

 errorCode := glGetError;

 if errorCode<>GL_NO_ERROR then

 raise Exception.Create('Error in Paint'#13+

 gluErrorString(errorCode));

end; {FormPaint}

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

Depth Test

Save, compile, and run and admire the beautiful cube! Well, at least tolerate the colored

rectangle. Why is there no evidence of a third dimension? Actually the straight-on view

guarantees that only the front face shows. Or does it? Notice the color. The front face is

red. The back face is blue. The blue back face shows on the screen! Why? OpenGL drew

all six faces. The four edge-on faces have no effect, but the back face was drawn after the

front face, so it is the one that shows. Fortunately there is a way to tell OpenGL to test

depth and not draw pixels that should be hidden. This ability, as well as others, becomes

effective by means of the glEnable command:

procedure glEnable(cap:GLenum); stdcall;

Turn on each capability by passing the appropriate constant. Here is the declaration for the

depth-testing constant:

 GL_DEPTH_TEST = $0B71;

Enabling depth testing sets up a depth buffer that contains depth information on each pixel

within the clipping volume. Of the pixels that map to the same spot on the screen, OpenGL

draws only the one nearest the viewer. This process is OpenGL’s method of hidden

surface removal. The bottom of the FormCreate method with depth testing added follows:

 openGLReady := true;

 oldw := ClientWidth;

 oldh := ClientHeight;

 glOrtho(-1.0,1.0,-1.0,1.0,-1.0,1.0);

 glEnable(GL_DEPTH_TEST);

end; {FormCreate}

Matrices Revisited

Save, compile, and run. Observe that no change is evident. This means that more must be

done to make the depth test work. Therefore it is time to give more consideration to

matrices. OpenGL is full of them. Matrices describe the very scene itself, and there are

matrices for texture, for projection, etc. There are commands to select among those

matrices. There are even matrix stacks. Some commands, such as glLoadIdentity, directly

manipulate the active matrix, and other commands use their parameters to construct a

matrix, then multiply the appropriate matrix by the constructed matrix.

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

The ModelView Matrix

Consider a 4x4 matrix that represents the coordinate system of the scene. Call it the Model

matrix. Apply this matrix to every vertex in the scene as part of the process of illuminating

the appropriate dots on the screen. Now consider a 4x4 matrix that represents the

coordinates of the viewer. Call it the View matrix. Finally consider Einstein’s Theory of

Relativity. What?! Well, anyway, think of two automobiles side by side. The observer is in

the first car and sees the second car sliding backwards. Or is the first car with the observer

actually moving forward? Or does it matter? In a universe that contains only those two cars,

either description is equally valid. Similarly the Model matrix and the View matrix are

equally useful. In fact they are the same matrix. Its true name is the ModelView matrix.

Here is the OpenGL command that identifies which matrix other commands will affect:

procedure glMatrixMode(mode:GLenum); stdcall;

These are the constants to pass for the mode parameter:

 GL_MODELVIEW = $1700;

 GL_PROJECTION = $1701;

 GL_TEXTURE = $1702;

Here is the declaration of the command that sets the current matrix to be the identity matrix,

which is a matrix that, when multiplied with another matrix, leaves a product the same as

the other matrix.

procedure glLoadIdentity; stdcall;

For the three-dimensional rendering program to work, make the bottom of FormCreate

look like this:

 glEnable(GL_DEPTH_TEST);

 glMatrixMode(GL_MODELVIEW);

 glLoadIdentity;

end; {FormCreate}

So save, compile, and run. Ah! The correct face shows. But it still does not look like a

cube.

ROTATION

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

Three Faces

Looking at a cube straight on just does not reveal its third dimension. The cube must have

an orientation that shows more than one face. Indeed, a cube showing two faces is not

much better, because it still just looks like two rectangles side by side. The obvious answer

is to draw the cube skewed at some angle. Not only that, but the rotation must not be about

a single coordinate axis, or about any line parallel to a single axis, otherwise no more than

two faces can show.

glRotate

Drawing the cube rotated calls for some ugly math to apply to each vertex. Actually the

math involved looks fairly simple when expressed as matrices, but it is ugly because the

programmer has to carry out the details. There is a better way! Draw the cube simply, as

before, then let OpenGL rotate it. Here is the needed command in two versions:

procedure glRotated(angle,x,y,z:GLdouble); stdcall;

procedure glRotatef(angle,x,y,z:GLfloat); stdcall;

PURPOSE The purpose of this command is to define an axis of rotation and an amount of

rotation. The command then causes the scene to rotate about the axis. Or it causes the

coordinate system of the scene, and therefor the viewing angle of the observer, to rotate

about the axis. Take your choice; it is relative! What really happens is that OpenGL creates

a rotation matrix from the parameters and multiplies it with the active matrix, in this case,

the ModelView matrix.

PARAMETERS This simple program certainly does not need double precision to

accomplish its purpose, so the float version is the proper choice for the command.

Either version uses four parameters. The angle parameter defines the amount of rotation.

Interestingly it takes its value in degrees rather than radians, which is fortunate for mere

mortals who do not spend their days immersed in trigonometry. The x, y, and z parameters

define a point in three-dimensional space with respect to the coordinates of the clipping

(projection) volume.

The given point helps define the vector that serves as the axis of rotation. Two points can

define a line; the other point is (0.0,0.0,0.0), the origin for the projection coordinate system.

Think of a vector as a line with direction, from the origin toward the other point, and then

continuing on forever.

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

DIRECTION To understand the direction of rotation, imagine an observer located at the

origin looking toward the point defined by the x, y, and z parameters. The object turns

counter-clockwise with respect to that vantage point.

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

Action

In the Menu Designer add a fourth main menu item. Give it a caption of &Angle and exit

from the Menu Designer. Click the menu item to produce the event handler and fill it in as

follows:

procedure TForm1.Angle1Click(Sender: TObject);

var

 astring: string[7];

begin

 astring := InputBox('Angle of Rotation','float:','0.0');

 angle := StrToFloat(astring);

 glMatrixMode(GL_MODELVIEW);

 glLoadIdentity;

 glRotatef(angle,xvalue,yvalue,zvalue);

end;

The other three menu choices, left over from the Rect program, set the coordinates for the

point (other than the origin) that defines the axis of rotation. The new menu choice defines

the angle of rotation and performs the rotation. Notice that glMatrixMode makes the

ModelView matrix active every time, since that is the matrix on which to perform the

action. This action is one of several transformations. OpenGL enables the programmer to

perform three basic ModelView transformations or combinations thereof on the

ModelView matrix, rotation, translation (movement in a straight line through space), and

scale (changing the size of an object in each of the three dimensions independently). The

call to glLoadIdentity is present to insure that the rotation transformation acts from a

known and understood condition. Some situations may naturally call for allowing the

transformations to accumulate, but not this simple interactive angle entry.

Save, compile and run. Enter coordinates to define the axis (vector) of rotation. Enter

various angles and see the results. Notice that any multiple of 360.0 returns the cube to its

original orientation and that negative angles rotate the cube clockwise. All the different

colors for the faces help identify which faces come into view.

TWO-FACED POLYGONS

Open the Cube

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

There is no way to avoid it. Polygons are two-faced. That is not a character assassination

but a geometric statement. When a polygon facing the viewer rotates 180 degrees, it does

not disappear; it has a back face that the viewer can see. To illustrate, expose the inside of

the cube by commenting out the right side as in Listing 3-3.

Listing 3-3. Right Side Missing.

procedure TForm1.FormPaint(Sender: TObject);

begin

 if not openGLReady then

 exit;

 {green background}

 glClearColor(0.0,0.4,0.0,0.0);

 glClear(GL_COLOR_BUFFER_BIT or GL_DEPTH_BUFFER_BIT);

 glBegin(GL_POLYGON); {near face}

 glColor3f(0.5,0.0,0.0);

 glVertex3f(-0.4,-0.4,-0.4);

 glVertex3f(+0.4,-0.4,-0.4);

 glVertex3f(+0.4,+0.4,-0.4);

 glVertex3f(-0.4,+0.4,-0.4);

 glEnd;

(*

 glBegin(GL_POLYGON); {right face}

 glColor3f(0.3,0.3,0.8);

 glVertex3f(+0.4,-0.4,-0.4);

 glVertex3f(+0.4,-0.4,+0.4);

 glVertex3f(+0.4,+0.4,+0.4);

 glVertex3f(+0.4,+0.4,-0.4);

 glEnd;

 *)

 glBegin(GL_POLYGON); {left face}

 glColor3f(0.5,0.0,0.5);

 glVertex3f(-0.4,-0.4,+0.4);

 glVertex3f(-0.4,-0.4,-0.4);

 glVertex3f(-0.4,+0.4,-0.4);

 glVertex3f(-0.4,+0.4,+0.4);

 glEnd;

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

 glBegin(GL_POLYGON); {back face}

 glColor3f(0.0,0.0,0.5);

 glVertex3f(+0.4,-0.4,+0.4);

 glVertex3f(-0.4,-0.4,+0.4);

 glVertex3f(-0.4,+0.4,+0.4);

 glVertex3f(+0.4,+0.4,+0.4);

 glEnd;

 glBegin(GL_POLYGON); {bottom face}

 glColor3f(0.5,0.5,0.0);

 glVertex3f(-0.4,-0.4,-0.4);

 glVertex3f(-0.4,-0.4,+0.4);

 glVertex3f(+0.4,-0.4,+0.4);

 glVertex3f(+0.4,-0.4,-0.4);

 glEnd;

 glBegin(GL_POLYGON); {top face}

 glColor3f(0.3,0.0,0.1);

 glVertex3f(-0.4,+0.4,-0.4);

 glVertex3f(+0.4,+0.4,-0.4);

 glVertex3f(+0.4,+0.4,+0.4);

 glVertex3f(-0.4,+0.4,+0.4);

 glEnd;

 glFlush;

 errorCode := glGetError;

 if errorCode<>GL_NO_ERROR then

 raise Exception.Create('Error in Paint'#13+

 gluErrorString(errorCode));

end; {FormPaint}

Save, compile, and run. With the menus make xvalue and yvalue each equal to 1.0, but

leave zvalue alone. For the angle enter 30.0 (degrees). Note the inside face for the back

square and the top square. Experiment with various combinations of positive and negative

values for all four parameters until all interior faces have presented themselves.

Culling

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

There it is! Those polygons have a back side! What if the cube was not open? The

shocking truth is that even if there is no possible way to see the back side of the polygons,

OpenGL draws them! Fortunately depth testing (hidden surface removal) keeps them from

bleeding though. Better yet, an OpenGL command can tell it not even to draw them.

procedure glCullFace(mode:GLenum); stdcall;

The possible values for mode (with obvious meanings) are:

 GL_FRONT = $0404;

 GL_BACK = $0405;

 GL_FRONT_AND_BACK= $0408;

To cull faces means to remove them from the list of things to draw. Like many other

OpenGL options, the programmer must first enable this option before using it. The value to

give glEnable is:

 GL_CULL_FACE= $0B44;

Add some code so the bottom of FormCreate looks like this:

 glEnable(GL_DEPTH_TEST);

 glMatrixMode(GL_MODELVIEW);

 glLoadIdentity;

 glEnable(GL_CULL_FACE);

 glCullFace(GL_BACK);

end; {FormCreate}

Save, compile, and run yet again. As before, experiment with various combinations of

positive and negative values for all four parameters and see what the inside of the cube

looks like when the inner faces simply are not drawn.

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

VERTEX DIRECTION

How does OpenGL know which face of a polygon the programmer intended to be front

and which to be back? The answer lies in the order of the vertices. Consider the front

square of this chapter’s cube.

 glBegin(GL_POLYGON); {near face}

 glColor3f(0.5,0.0,0.0);

 glVertex3f(-0.4,-0.4,-0.4);

 glVertex3f(+0.4,-0.4,-0.4);

 glVertex3f(+0.4,+0.4,-0.4);

 glVertex3f(-0.4,+0.4,-0.4);

 glEnd;

Mentally number the vertices from one to four. Vertex one is the lower left corner. Vertex

two is the lower right corner. Vertex three is the upper right corner. Vertex four is the

upper left corner. Imagine movement from one to two to three to four and back to one. The

direction or winding is counter-clockwise, which is the default direction for OpenGL to

identify the front face of a polygon. Those same vertices, if viewed from the other side,

would present a clockwise winding. Figure 3-2 shows the counter-clockwise winding of

the front view.

Figure 3-2. Counter-Clockwise Winding.

Consider the back square of the cube. Its vertex order was designed to present a clockwise

winding from the viewer’s position, making the face inside the cube the back face and

the face outside the cube the front face. That is the usual arrangement. If the cube were

rotated 180 degrees around the z-axis, the front face of that square would be toward the

viewer. The next experiment reverses the back square’s winding. Here is the original

code for the back square:

 glBegin(GL_POLYGON); {back face}

 glColor3f(0.0,0.0,0.5);

 glVertex3f(+0.4,-0.4,+0.4);

 glVertex3f(-0.4,-0.4,+0.4);

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

 glVertex3f(-0.4,+0.4,+0.4);

 glVertex3f(+0.4,+0.4,+0.4);

 glEnd;

Rearrange the vertices to reverse the winding:

 glBegin(GL_POLYGON); {back face}

 glColor3f(0.0,0.0,0.5);

 glVertex3f(+0.4,+0.4,+0.4);

 glVertex3f(-0.4,+0.4,+0.4);

 glVertex3f(-0.4,-0.4,+0.4);

 glVertex3f(+0.4,-0.4,+0.4);

 glEnd;

Save, compile, and run. Give the xvalue 0.3, the yvalue 1.0, and the angle 50.0. While the

other interior faces have been culled, the interior face of the back square has been drawn.

With a large enough angle, the back square is toward the viewer, but since its exterior face

is a “back” face, it does not appear. Indeed, only the bottom of the cube shows at all.

TRANSLATION

Restore the original winding of the back square and uncomment the right square. While

rotation may be the most interesting transformation, it is certainly not the only one of

importance. Translation may be the most common transformation.

Menu

Use the Menu Designer to add &Translate as another main menu item. Click on it and fill

in the event handler thusly:

procedure TForm1.Translate1Click(Sender: TObject);

begin

 glMatrixMode(GL_MODELVIEW);

 glTranslatef(xvalue,yvalue,zvalue);

 Invalidate;

end;

The glTranslate command takes three parameters that specify the relative amount of

movement in each direction. The translation command has two forms:

procedure glTranslated(x,y,z:GLdouble); stdcall;

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

procedure glTranslatef x,y,z:GLfloat); stdcall;

Accumulation

Notice the absence of glLoadIdentity. Transformations will accumulate and demonstrate

the effects of combining different kinds. Comment out the glLoadIdentity in the

Angle1Click method as well. Notice also the presence of the Invalidate Windows API call.

This causes Windows to send a WM_PAINT message, which triggers the OnPaint event.

This is certainly superior to the (temporary) reliance on covering and uncovering the

window by another window.

More Clipping

As usual, save, compile, run, and play with the various menu choices and values. The

transformations accumulate, and may allow the cube to disappear altogether. Certainly the

translation transformation provides more opportunity to experiment with clipping. Enough

translation in the positive z direction provides some interesting effects. The far side of the

cube disappears as if cut off by an invisible wall.

Did you see that flicker each time you selected Translate? Ugh! Do not despair; the chapter

on animation shows how to redraw images without flicker.

Even more interesting is the effect of translation in the negative z direction. With just the

right z values, a face or a corner nearest the viewer disappears, allowing a peek inside the

cube without having to neglect drawing a square. What does the viewer see inside? He sees

a mysterious green nothing because of the culling, as in Figure 3-3, where clipping in both

the negative y direction and the negative z direction is evident.

Figure 3-3. Clipping and Culling.

SCALE

Menu

With the Menu Designer add still another main menu item, &Scale. Produce the following

event handler in the same manner as before:

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

procedure TForm1.Scale1Click(Sender: TObject);

begin

 glMatrixMode(GL_MODELVIEW);

 glScalef(xvalue,yvalue,zvalue);

 Invalidate;

end;

The only new command has the following declarations:

procedure glScaled(x,y,z:GLdouble); stdcall;

procedure glScalef(x,y,z:GLfloat); stdcall;

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

Description

The scale command multiplies the size of the objects in the scene. The value given for the

x parameter multiplies the x-dimension, the y value passed to the command multiplies the

y-dimension, and the z parameter’s value multiplies the z-dimension. A call to

glScale(2.0,2.0,2.0) makes the cube twice as wide, twice as tall, and twice as deep as the

original specifications. So why are there three parameters? Each dimension’s multiplier

has a separate specification so each dimension can be scaled differently. A call to

glScale(0.5,3.0,0.8) makes the cube (or whatever drawing follows) only half as wide, three

times as tall, and 80 percent of the original depth. The programmer can draw something

and then distort it freely. Of course a cube so mutilated is no longer a cube. Save, compile,

run, and experiment. Figure 3-4 shows a distorted (former) cube.

Figure 3-4. The Cube After glScale.

ORDER OF TRANSFORMATIONS

A New Interface

The admittedly clumsy interface used thus far has exhausted its usefulness. It was kept

simple in order to minimize distraction from the OpenGL coding, but further development

calls for a better user interface. The new interface is nothing elegant, but is a great

improvement.

Create a new directory under “Chapter.3” named “Multi.” Do a File|Save Project As

of Cube.Dpr into the new directory, calling it Mult.Dpr. Save Cube1.Pas as Multi.Pas.

Empty all the menu item event handlers by deleting the lines of code within and save again

so Delphi can remove the newly empty event handlers. In the Menu Designer delete the

existing menu items and put in &Parameters, &Transformation, &Identity, and &Cull

Disable. Create and fill in their event handlers as in Listing 3-4.

Listing 3-4. Menu Item Event Handlers.

procedure TForm1.Parameters1Click(Sender: TObject);

begin

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

 FormTransform.ShowModal;

end;

procedure TForm1.Transformation1Click(Sender: TObject);

var

 list: TStringList;

 lno: integer;

begin

 list := TStringList.Create;

 list.sorted := true;

 with list,transData do

 begin

 if translate then

 Add(OrT+'T');

 if scale then

 Add(OrS+'S');

 if rotate then

 Add(OrR+'R');

 if count=0 then

 exit;

 glMatrixMode(GL_MODELVIEW);

 for lno := 0 to count-1 do

 begin

 case strings[lno][2] of

 'R': begin

 glRotatef(ra,rx,ry,rz);

 end;

 'S': begin

 glScalef(sx,sy,sz);

 end;

 'T': begin

 glTranslatef(tx,ty,tz);

 end;

 end; {case}

 end; {for}

 end; {with}

 List.Free;

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

 Invalidate;

end;

procedure TForm1.Identity1Click(Sender: TObject);

begin

 glMatrixMode(GL_MODELVIEW);

 glLoadIdentity;

 Invalidate;

end;

procedure TForm1.Cull1Click(Sender: TObject);

begin

 glDisable(GL_CULL_FACE);

 Invalidate;

end;

Create a new form and name it FormTransform, then save the unit as Trans1. To the form

add three check boxes, four labels, ten edit controls, three radio groups, and two bit buttons

to look like Figure 3-5. An efficient way to describe the component names and properties

is to show the form as text as in Listing 3-5.

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

Listing 3-5. FormTransform as Text.

object FormTransform: TFormTransform

 Left = 200

 Top = 100

 Width = 360

 Height = 185

 Caption = 'Transformation Parameters'

 Font.Charset = DEFAULT_CHARSET

 Font.Color = clWindowText

 Font.Height = -11

 Font.Name = 'MS Sans Serif'

 Font.Style = []

 PixelsPerInch = 96

 TextHeight = 13

 object Label1: TLabel

 Left = 76

 Top = 4

 Width = 7

 Height = 13

 Caption = 'X'

 end

 object Label2: TLabel

 Left = 120

 Top = 4

 Width = 7

 Height = 13

 Caption = 'Y'

 end

 object Label3: TLabel

 Left = 164

 Top = 4

 Width = 7

 Height = 13

 Caption = 'Z'

 end

 object Label4: TLabel

 Left = 208

 Top = 4

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

 Width = 27

 Height = 13

 Caption = 'Angle'

 end

 object CheckBoxTranslate: TCheckBox

 Left = 4

 Top = 20

 Width = 64

 Height = 24

 Caption = 'Translate'

 TabOrder = 0

 OnClick = CheckBoxTranslateClick

 end

 object CheckBoxScale: TCheckBox

 Left = 4

 Top = 56

 Width = 64

 Height = 24

 Caption = 'Scale'

 TabOrder = 5

 OnClick = CheckBoxScaleClick

 end

 object CheckBoxRotate: TCheckBox

 Left = 4

 Top = 92

 Width = 64

 Height = 24

 Caption = 'Rotate'

 TabOrder = 10

 OnClick = CheckBoxRotateClick

 end

 object EditTX: TEdit

 Left = 72

 Top = 20

 Width = 40

 Height = 21

 Enabled = False

 TabOrder = 1

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

 end

 object EditTY: TEdit

 Left = 116

 Top = 20

 Width = 40

 Height = 21

 Enabled = False

 TabOrder = 2

 end

 object EditTZ: TEdit

 Left = 160

 Top = 20

 Width = 40

 Height = 21

 Enabled = False

 TabOrder = 3

 end

 object EditRA: TEdit

 Left = 204

 Top = 92

 Width = 40

 Height = 21

 Enabled = False

 TabOrder = 14

 end

 object EditSX: TEdit

 Left = 72

 Top = 56

 Width = 40

 Height = 21

 Enabled = False

 TabOrder = 6

 end

 object EditSY: TEdit

 Left = 116

 Top = 56

 Width = 40

 Height = 21

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

 Enabled = False

 TabOrder = 7

 end

 object EditSZ: TEdit

 Left = 160

 Top = 56

 Width = 40

 Height = 21

 Enabled = False

 TabOrder = 8

 end

 object EditRX: TEdit

 Left = 72

 Top = 92

 Width = 40

 Height = 21

 Enabled = False

 TabOrder = 11

 end

 object EditRY: TEdit

 Left = 116

 Top = 92

 Width = 40

 Height = 21

 Enabled = False

 TabOrder = 12

 end

 object EditRZ: TEdit

 Left = 160

 Top = 92

 Width = 40

 Height = 21

 Enabled = False

 TabOrder = 13

 end

 object BitBtnOk: TBitBtn

 Left = 60

 Top = 124

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

 Width = 90

 Height = 25

 Enabled = False

 TabOrder = 16

 OnClick = BitBtnOkClick

 Kind = bkOK

 end

 object BitBtnCancel: TBitBtn

 Left = 220

 Top = 124

 Width = 80

 Height = 25

 TabOrder = 17

 Kind = bkCancel

 end

 object RadioGroupT: TRadioGroup

 Left = 252

 Top = 14

 Width = 97

 Height = 32

 Columns = 3

 Enabled = False

 ItemIndex = 0

 Items.Strings = (

 '1'

 '2'

 '3')

 TabOrder = 4

 OnClick = RadioGroupClick

 end

 object RadioGroupS: TRadioGroup

 Left = 252

 Top = 50

 Width = 97

 Height = 32

 Columns = 3

 Enabled = False

 ItemIndex = 1

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

 Items.Strings = (

 '1'

 '2'

 '3')

 TabOrder = 9

 OnClick = RadioGroupClick

 end

 object RadioGroupR: TRadioGroup

 Left = 252

 Top = 86

 Width = 97

 Height = 32

 Columns = 3

 Enabled = False

 ItemIndex = 2

 Items.Strings = (

 '1'

 '2'

 '3')

 TabOrder = 15

 OnClick = RadioGroupClick

 end

end

Figure 3-5. Parameter Data Entry Form for Transformations

The text version of the form identified the names of the event handlers, and the code for

unit Trans1 in Listing 3-6 reveals the contents of the event handlers:

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

Listing 3-6. The Trans1 Unit.

unit Trans1;

interface

uses

 Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,

 Dialogs, StdCtrls, Buttons, OpenGL, ExtCtrls;

type

 TFormTransform = class(TForm)

 Label1: TLabel;

 Label2: TLabel;

 Label3: TLabel;

 Label4: TLabel;

 CheckBoxTranslate: TCheckBox;

 CheckBoxScale: TCheckBox;

 CheckBoxRotate: TCheckBox;

 EditTX: TEdit;

 EditTY: TEdit;

 EditTZ: TEdit;

 EditRA: TEdit;

 EditSX: TEdit;

 EditSY: TEdit;

 EditSZ: TEdit;

 EditRX: TEdit;

 EditRY: TEdit;

 EditRZ: TEdit;

 BitBtnOk: TBitBtn;

 BitBtnCancel: TBitBtn;

 RadioGroupT: TRadioGroup;

 RadioGroupS: TRadioGroup;

 RadioGroupR: TRadioGroup;

 procedure BitBtnOkClick(Sender: TObject);

 procedure CheckBoxTranslateClick(Sender: TObject);

 procedure CheckBoxScaleClick(Sender: TObject);

 procedure CheckBoxRotateClick(Sender: TObject);

 procedure RadioGroupClick(Sender: TObject);

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

 private

 { Private declarations }

 public

 { Public declarations }

 end;

var

 FormTransform: TFormTransform;

 transData: record

 translate,

 scale,

 rotate: boolean;

 orT,

 orS,

 orR: char;

 tx,ty,tz,

 sx,sy,sz,

 rx,ry,rz,ra: GLfloat;

 end;

implementation

{$R *.DFM}

procedure TFormTransform.BitBtnOkClick(Sender: TObject);

begin

 ModalResult := mrNone;

 with transData do

 begin

 translate := checkBoxTranslate.Checked;

 scale := checkBoxScale.Checked;

 rotate := checkBoxRotate.Checked;

 if translate then

 begin

 tx := StrToFloat(EditTX.Text);

 ty := StrToFloat(EditTY.Text);

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

 tz := StrToFloat(EditTZ.Text);

 end;

 if scale then

 begin

 sx := StrToFloat(EditSX.Text);

 sy := StrToFloat(EditSY.Text);

 sz := StrToFloat(EditSZ.Text);

 end;

 if rotate then

 begin

 rx := StrToFloat(EditRX.Text);

 ry := StrToFloat(EditRY.Text);

 rz := StrToFloat(EditRZ.Text);

 ra := StrToFloat(EditRA.Text);

 end;

 orT := char(48+RadioGroupT.ItemIndex);

 orS := char(48+RadioGroupS.ItemIndex);

 orR := char(48+RadioGroupR.ItemIndex);

 end; {with}

 ModalResult := mrOk;

end;

procedure TFormTransform.CheckBoxTranslateClick(Sender: TObject);

var

 chck: boolean;

begin

 with Sender as TCheckBox do

 chck := checked;

 EditTX.Enabled := chck;

 EditTY.Enabled := chck;

 EditTZ.Enabled := chck;

 RadioGroupT.Enabled := chck;

 BitBtnOk.Enabled := chck

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

 or EditSX.Enabled

 or EditRX.Enabled;

end;

procedure TFormTransform.CheckBoxScaleClick(Sender: TObject);

var

 chck: boolean;

begin

 with Sender as TCheckBox do

 chck := checked;

 EditSX.Enabled := chck;

 EditSY.Enabled := chck;

 EditSZ.Enabled := chck;

 RadioGroupS.Enabled := chck;

 BitBtnOk.Enabled := chck

 or EditTX.Enabled

 or EditRX.Enabled;

end;

procedure TFormTransform.CheckBoxRotateClick(Sender: TObject);

var

 chck: boolean;

begin

 with Sender as TCheckBox do

 chck := checked;

 EditRX.Enabled := chck;

 EditRY.Enabled := chck;

 EditRZ.Enabled := chck;

 EditRA.Enabled := chck;

 RadioGroupR.Enabled := chck;

 BitBtnOk.Enabled := chck

 or EditSX.Enabled

 or EditTX.Enabled;

end;

procedure TFormTransform.RadioGroupClick(Sender:TObject);

type

 TRange=0..2;

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

 SRange=Set of TRange;

var

 ch: char;

 Xii,

 Uii,

 Tii,

 Sii,

 Rii: integer;

 Used: SRange;

 ar: array['R'..'T'] of TRadioGroup;

 notif: TNotifyEvent;

begin

 {build set of used values to find what's left}

 Tii := RadioGroupT.ItemIndex;

 Sii := RadioGroupS.ItemIndex;

 Rii := RadioGroupR.ItemIndex;

 Used := [Tii]+[Sii]+[Rii];

 Xii := TRadioGroup(Sender).ItemIndex;

 {build array of rg for convenient searching}

 ar['T'] := RadioGroupT;

 ar['S'] := RadioGroupS;

 ar['R'] := RadioGroupR;

 {find rg not the sender but with same ItemIndex}

 for ch := 'R' to 'T' do

 with ar[ch] do

 if (ar[ch]<>Sender) and (ItemIndex=Xii) then

 begin

 for Uii := 0 to 2 do

 if not (Uii in Used) then

 begin

 notif := OnClick;

 OnClick := nil; {prevent second triggering}

 {set to unused ItemIndex and leave}

 ar[ch].ItemIndex := Uii;

 OnClick := notif;

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

 exit;

 end; {for if}

 end; {for with if}

end;

end.

The scope of this book is to teach OpenGL with Delphi, with the assumption that the

reader is at least somewhat experienced in programming with Delphi. Therefore the

ordinary Delphi code is presented with little comment.

Simultaneous Commands

This program still draws the same old cube, but provides for specifying two or three

transformations (with independent parameters) to apply to the cube at the same time. The

check boxes allow the user to specify which transformations to apply, and the radio groups

allow the user to specify the order in which to apply them. The edit controls allow the user

to specify the floating point values for the various parameters.

The event handler for the &Transformation menu item performs the transformations

specified on the secondary form. TForm1.Transformation1Click creates a sorted string list

that identifies the order in which to perform the transformation. The handler sets the matrix

mode to GL_MODELVIEW and performs the transformations in the appropriate order,

using the arguments stored in the transData record. The call to Invalidate insures that

FormPaint fires after the transformation calls.

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

Save, compile, run, and experiment, not only with the values to give to each transformation,

but also with the order of the transformation. Admittedly the difference is subtle for just

one “object” in the scene, but many combinations will show a difference according to

the sequence of the transformations. Order does matter; try it and see.

DEFINITIONS

Culling Removing faces from the list of things to draw based on
front or back designation.

Depth buffer A list of information about the distance of pixels from the
viewer.

Depth test Determination of whether to draw pixels by comparing
their distance from the viewer with that of other pixels at
the same screen position.

Hidden surface removal Not drawing surface that would otherwise be obscured from
the viewer anyway.

Identity matrix A matrix whose product with a second matrix is identical to
the second matrix.

ModelView matrix The matrix representing the coordinate system.

Origin The point located at (0.0,0.0,0.0).

Scale Each dimension of an object is adjusted independently by
specified factors.

Transformation Adjusting the coordinate system.

Translation Moving an object through space.

Vector A line with direction from a starting point toward a second
point, then continuing on forever. Vectors are specified as if
the first point were the origin and the second point simply
sets the direction. With the first point understood to be the
origin, the second point alone identifies the vector.

IDENTIFIER REFERENCE

glCullFace An OpenGL command that specifies culling of front or
back faces or both.

glEnable An OpenGL command that allows certain features.

glLoadIdentity An OpenGL command that sets the specified matrix

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

equal to the identity matrix.

glMatrixMode An OpenGL command that makes the specified matrix
the currently active matrix.

glRotate An OpenGL command that performs the rotation
transformation.

glScale An OpenGL command that performs the scale
transformation.

glTranslate An OpenGL command that performs the translation
transformation.

GL_BACK An OpenGL constant for glCullFace.

GL_CULL_FACE An OpenGL constant for glEnable.

GL_DEPTH_BUFFER_BIT An OpenGL constant for glClear.

GL_DEPTH_TEST An OpenGL constant for glEnable.

GL_FRONT An OpenGL constant for glCullFace.

GL_FRONT_AND_BACK An OpenGL constant for glCullFace.

GL_MODELVIEW An OpenGL constant for glMatrixMode.

GL_PROJECTION An OpenGL constant for glMatrixMode.

GL_TEXTURE An OpenGL constant for glMatrixMode.

Invalidate A Windows function that causes Windows to send
WM_PAINT and returns true on success, false on
failure.

SUMMARY

Chapter 3 introduced three-dimensional rendering with these concepts:

1. Left to itself, OpenGL draws all surfaces whether they should show or not.
2. Turn on Depth Testing with glEnable to allow hidden surface removal.
3. The ModelView matrix represents the coordinate system of the scene or the
coordinates of the viewer, whichever is convenient.
4. The ModelView transformations are rotation, transformation, and scale.
5. Use glRotate to rotate the scene counter-clockwise by a certain angle about
a given axis.
6. Polygons have two faces. Cull back or front faces with glCullFace. Pass it
GL_FRONT, GL_BACK, or GL_FRONT_AND_BACK.

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

7. Determine clockwise or counter-clockwise winding of a polygon by the
order of specifying the vertices. By default the front face of a polygon has
counter-clockwise winding.
8. Successive transformations before painting accumulate, and changing the
order of the transformations can produce different results.
9. Use the Invalidate Windows API call to insure that a window redraws.

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

Chapter 4

Perspective

Orthographic, or parallel, projection is fine for many purposes, but when the goal is

realism in the graphics, perspective projection may be more appropriate. In the real world

the fact that objects appear smaller when more distant is universally familiar. Artists

recognize that elements of a scene appear to come together to a vanishing point at some

great distance. This chapter shows how to produce this realistic effect and to position

vertices in such an environment.

ILLUSTRATION

With OpenGL the programmer can construct a (you guessed it!) matrix to project a scene

onto the computer screen in a manner that simulates perspective. This process is called

(appropriately) perspective projection. Consider two parallel lines as in the following code.

 glBegin(GL_LINES);

 glVertex3f(-0.5,0.1,-2.2);

 glVertex3f(-0.5,15.0,-32.2);

 glVertex3f(+0.5,0.1,-2.2);

 glVertex3f(+0.5,15.0,-32.2);

 glEnd;

The two line segments run side by side off into the z distance, rising in the y direction.

Figure 4-1 shows how they appear with perspective projection. Although reproducing this

effect requires more code than given here, this is enough to show that the two lines are

indeed parallel. The apparent convergence of the lines is due entirely to the perspective

projection.

Figure 4-1. Parallel Lines in Perspective Projection

COMMAND

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

To set up the perspective projection matrix, use this command:

procedure glFrustum(left,right,bottom,top,zNear,zFar:GLdouble);stdcall;

Clipping Volume

What in the world is a frustum? Basically a frustum is a pyramid with the top chopped off.

Since the clipping volume looks like a frustum with a rectangular base, lying horizontally,

the command name makes sense. Figure 4-2 shows the shape of the clipping volume.

Figure 4-2. Clipping Volume from glFrustum.

Parameters

Notice that the parameters for glFrustum are the same as the parameters for glOrtho. In

general these parameters have a similar usage, but there are enough differences between

them to warrant caution. Just as in glOrtho, left, right, bottom, and top define a rectangle.

In glOrtho, however, the front rectangle and the rear rectangle are identical except for their

z value, so only one rectangle specification is sufficient. In glFrustum, the near and the far

rectangles are very different sizes, but the command only takes the values for the near

rectangle.

How in the world does this command define the far rectangle? The answer lies in the usage

of the znear and zfar parameters. The znear value is the distance from the viewer to the

near face of the frustum, which is the “cut” across the pyramid. The znear distance must

be expressed as a positive number. The zfar value is the distance to the farther face of the

furstum (base of the pyramid), which must be a positive number larger than znear. In effect

the viewer is at the apex of the pyramid, so znear and zfar are enough to define the base of

the frustum from its front face, as Figure 4-2 suggests.

DEPTH

Previous Cube

Create a directory (under the OpenGL directory, of course) and name it Chapter.4. Under

that directory create a directory named Multi. Copy the files from OpenGL\Chapter.3

\Multi to OpenGL\Chapter.4\Multi. Open this project in Delphi and edit the FormCreate

method in Multi.Pas. Replace

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

 glOrtho(-1.0,1.0,-1.0,1.0,-1.0,1.0);

with

 glMatrixMode(GL_PROJECTION);

 glFrustum(-1.0,1.0,-1.0,1.0,2.0,37.0);

This command change maps the same near face rectangle, but specifies the z range

differently, as well as providing a different projection. The clipping volume starts at 2.0

units from the viewer and extends to 37.0 units from the viewer. In glOrtho znear and zfar

just provided a range of values whose meaning was entirely up to the programmer. With

parallel projection apparent sizes are not affected by distance from the viewer, so that

distance is not a consideration. With perspective projection, distance from the viewer is a

primary ingredient.

Compile and Run. Nothing but the green background shows because under the new

coordinate system the cube was constructed entirely in front of the front clipping face. Use

transformations to bring the cube into view. Fill out the parameters as in Figure 4-3, click

Ok, and select Transformation from the menu.

Figure 4-3. Parameters to Bring the Cube into View

Now the cube shows, but it looks a little strange. It is like the back is larger than the front.

Test this theory with a rotation transformation. Set it up as in Figure 4-4.

Figure 4-4. Parameters to Rotate the Cube

Sure enough, the back of the cube appears larger than the front. Since this is the opposite

of what perspective projection should produce, something must be wrong. This is a good

time to test the coordinates.

Test

Like the depth test in Chapter 3 draw two rectangles in the FormPaint method, replacing

the current contents. The reason for the choice of z coordinates will soon become evident.

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

Save the project as Depth.Dpr in OpenGL\Chapter.4\Depth and save the main unit as

Depth1.Pas in the Depth directory also. Remove the Trans1 unit from the project, remove

the uses Trans1 statement from the main unit, remove the Main Menu control and empty

the contents of the menu item event handlers. Adjust the form’s ClientHeight back to 340.

Here is what FormPaint should look like:

procedure TForm1.FormPaint(Sender: TObject);

begin

 if not openGLReady then

 exit;

 {green background}

 glClearColor(0.0,0.4,0.0,0.0);

 glClear(GL_COLOR_BUFFER_BIT or GL_DEPTH_BUFFER_BIT);

 glBegin(GL_POLYGON); {near face}

 glColor3f(0.5,0.0,0.0);

 glVertex3f(-0.4,-0.4,-2.4);

 glVertex3f(+0.4,-0.4,-2.4);

 glVertex3f(+0.4,+0.4,-2.4);

 glVertex3f(-0.4,+0.4,-2.4);

 glEnd;

 glBegin(GL_POLYGON); {back face}

 glColor3f(0.0,0.0,0.5);

 glVertex3f(-0.2,-0.2,-2.8);

 glVertex3f(+0.6,-0.2,-2.8);

 glVertex3f(+0.6,+0.6,-2.8);

 glVertex3f(-0.2,+0.6,-2.8);

 glEnd;

 glFlush;

 errorCode := glGetError;

 if errorCode<>GL_NO_ERROR then

 raise Exception.Create('Error in Paint'#13+

 gluErrorString(errorCode));

end; {FormPaint}

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

Save, Compile, and Run. Again the red rectangle is in front of the blue rectangle. But look

again at the z coordinates of the two rectangles. The farther (blue) rectangle is more

negative in the z direction than the near rectangle. In the orthographic projection clipping

volume a more distant point is more positive (or less negative) than a nearer point, and the

specifications of the cube vertices took that fact into account. So when the same vertices

appeared in a perspective projection clipping volume whose z coordinates run in the

opposite direction, naturally the cube was distorted.

Better Cube

In Delphi load the previous project under Chapter.4, Multi.Dpr. Adapt the coordinates of

the cube vertices to the new z direction reality. Remember that moving away from the

viewer is to travel in the negative z direction, even though the znear and zfar parameters

are positive and more positive respectively. Make the FormPaint method look like this:

procedure TForm1.FormPaint(Sender: TObject);

begin

 if not openGLReady then

 exit;

 {green background}

 glClearColor(0.0,0.4,0.0,0.0);

 glClear(GL_COLOR_BUFFER_BIT or GL_DEPTH_BUFFER_BIT);

 glBegin(GL_POLYGON); {near face}

 glColor3f(0.5,0.0,0.0);

 glVertex3f(-0.4,-0.4,+0.4);

 glVertex3f(+0.4,-0.4,+0.4);

 glVertex3f(+0.4,+0.4,+0.4);

 glVertex3f(-0.4,+0.4,+0.4);

 glEnd;

 glBegin(GL_POLYGON); {right face}

 glColor3f(0.3,0.3,0.8);

 glVertex3f(+0.4,-0.4,+0.4);

 glVertex3f(+0.4,-0.4,-0.4);

 glVertex3f(+0.4,+0.4,-0.4);

 glVertex3f(+0.4,+0.4,+0.4);

 glEnd;

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

 glBegin(GL_POLYGON); {left face}

 glColor3f(0.5,0.0,0.5);

 glVertex3f(-0.4,-0.4,-0.4);

 glVertex3f(-0.4,-0.4,+0.4);

 glVertex3f(-0.4,+0.4,+0.4);

 glVertex3f(-0.4,+0.4,-0.4);

 glEnd;

 glBegin(GL_POLYGON); {back face}

 glColor3f(0.0,0.0,0.5);

 glVertex3f(+0.4,-0.4,-0.4);

 glVertex3f(-0.4,-0.4,-0.4);

 glVertex3f(-0.4,+0.4,-0.4);

 glVertex3f(+0.4,+0.4,-0.4);

 glEnd;

 glBegin(GL_POLYGON); {bottom face}

 glColor3f(0.5,0.5,0.0);

 glVertex3f(-0.4,-0.4,+0.4);

 glVertex3f(-0.4,-0.4,-0.4);

 glVertex3f(+0.4,-0.4,-0.4);

 glVertex3f(+0.4,-0.4,+0.4);

 glEnd;

 glBegin(GL_POLYGON); {top face}

 glColor3f(0.3,0.0,0.1);

 glVertex3f(-0.4,+0.4,+0.4);

 glVertex3f(+0.4,+0.4,+0.4);

 glVertex3f(+0.4,+0.4,-0.4);

 glVertex3f(-0.4,+0.4,-0.4);

 glEnd;

 glFlush;

 errorCode := glGetError;

 if errorCode<>GL_NO_ERROR then

 raise Exception.Create('Error in Paint'#13+

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

 gluErrorString(errorCode));

end; {FormPaint}

For convenience, move the cube inside the clipping volume with a call to glTranslatef near

the bottom of the FormCreate method. Place it there so it will only happen once.

 glLoadIdentity;

 glTranslatef(0.0,0.0,-2.4);

 glEnable(GL_CULL_FACE);

 glCullFace(GL_BACK);

end; {FormCreate}

MOVEMENT

Rotation

Set up a transformation using the parameters of Figure 4-4, then perform the rotation.

Notice that since the cube is so close to the front clipping face, the rotation sends a corner

right outside the clipping volume. Now it is apparent that clipping works just like in the

orthographic projection clipping volume. Notice too that back face culling also works as

expected. The exposed interior of the cube reveals a green nothing. Select Cull Disable

from the menu and behold the interior faces of the cube.

Translation

In the parameter screen uncheck rotation and check translation. Set z to –0.1 and the rest

to 0.0. Click Ok, and select Transformation from the menu repeatedly until the entire cube

is inside the clipping volume. Now the image, shown in Figure 4-5, demonstrates clearly

that the far side of the cube appears smaller than the near side.

Figure 4-5. Near and Far Sides of a Cube in Perspective

Next hold down Alt+T so that the keyboard starts repeating. Watch the cube retreat into

the distance. Now that’s perspective!

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

MULTIPLE OBJECTS

Matrix Stack

Most scenes built with OpenGL consist of more than just a single object on a plain

background. Building various objects in the right places is an obvious way to build more

complex scenes, but it can get tedious. Suppose the scene has a number of objects that are

similar to each other and the programmer has to describe them over and over. Isn’t

computer software supposed to relieve people of certain tiresome repetitive tasks? OpenGL

provides a way!

Put a commonly used object in its own procedure or method. Build it around the origin

(0.0,0.0,0.0) for ease of coding. Rotate it, translate it, even scale it, to put it in the right

place, with the right orientation, and in the right shape. Then (this is important!) restore the

ModelView matrix to its former condition and build and place another object.

What programming structure useful for saving and restoring something comes to mind? A

stack would be nice. Indeed, as mentioned previously, OpenGL even provides a matrix

stack. The commands for storing the current matrix on the stack, and retrieving it back,

are:

procedure glPopMatrix; stdcall;

procedure glPushMatrix; stdcall;

Reuse an Object

Save the Mult project as Obj.Dpr in a new directory named Objects under Chapter.4.

Remove Trans1.Pas from the project and save Multi.Pas as Objct.Pas in the new directory.

Delete the menu object from the form, and empty all the menu item event handlers, and

adjust the ClientHeight of the form back to 340.

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

The object of choice these days is a cube. To make it available for reuse, collect the code

to draw the cube and put it in a separate method.

procedure TForm1.Cube;

begin

 glBegin(GL_POLYGON); {near face}

 glColor3f(0.5,0.0,0.0);

 glVertex3f(-0.4,-0.4,+0.4);

 glVertex3f(+0.4,-0.4,+0.4);

 glVertex3f(+0.4,+0.4,+0.4);

 glVertex3f(-0.4,+0.4,+0.4);

 glEnd;

 glBegin(GL_POLYGON); {right face}

 glColor3f(0.3,0.3,0.8);

 glVertex3f(+0.4,-0.4,+0.4);

 glVertex3f(+0.4,-0.4,-0.4);

 glVertex3f(+0.4,+0.4,-0.4);

 glVertex3f(+0.4,+0.4,+0.4);

 glEnd;

 glBegin(GL_POLYGON); {left face}

 glColor3f(0.5,0.0,0.5);

 glVertex3f(-0.4,-0.4,-0.4);

 glVertex3f(-0.4,-0.4,+0.4);

 glVertex3f(-0.4,+0.4,+0.4);

 glVertex3f(-0.4,+0.4,-0.4);

 glEnd;

 glBegin(GL_POLYGON); {back face}

 glColor3f(0.0,0.0,0.5);

 glVertex3f(+0.4,-0.4,-0.4);

 glVertex3f(-0.4,-0.4,-0.4);

 glVertex3f(-0.4,+0.4,-0.4);

 glVertex3f(+0.4,+0.4,-0.4);

 glEnd;

 glBegin(GL_POLYGON); {bottom face}

 glColor3f(0.5,0.5,0.0);

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

 glVertex3f(-0.4,-0.4,+0.4);

 glVertex3f(-0.4,-0.4,-0.4);

 glVertex3f(+0.4,-0.4,-0.4);

 glVertex3f(+0.4,-0.4,+0.4);

 glEnd;

 glBegin(GL_POLYGON); {top face}

 glColor3f(0.3,0.0,0.1);

 glVertex3f(-0.4,+0.4,+0.4);

 glVertex3f(+0.4,+0.4,+0.4);

 glVertex3f(+0.4,+0.4,-0.4);

 glVertex3f(-0.4,+0.4,-0.4);

 glEnd;

end;

Declare the method at the end of the private section of the form:

 private

 GLContext: HGLRC;

 glDC: HDC;

 errorCode: GLenum;

 openGLReady: boolean;

 oldw,

 oldh: integer;

 procedure ExceptionGL(Sender:TObject;E:Exception);

 procedure Cube;

 public

Make a Scene

This is enough information to build a scene with multiple copies of the cube. Make the

FormPaint method look like this:

procedure TForm1.FormPaint(Sender: TObject);

begin

 if not openGLReady then

 exit;

 {background}

 glClearColor(0.6,0.8,0.8,0.0);

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

 glClear(GL_COLOR_BUFFER_BIT or GL_DEPTH_BUFFER_BIT);

 glPushMatrix;

 glTranslatef(-0.7,0.7,-2.8);

 Cube;

 glPopMatrix;

 glPushMatrix;

 glTranslatef(1.9,-1.6,-5.4);

 Cube;

 glPopMatrix;

 glFlush;

 errorCode := glGetError;

 if errorCode<>GL_NO_ERROR then

 raise Exception.Create('Error in Paint'#13+

 gluErrorString(errorCode));

end; {FormPaint}

Notice the sequence: push the ModelView matrix, translate to the desired location, call the

routine that builds the object about the origin, and pop the matrix. Do this for each object

in the scene; even if a given object is not repeated, it is usually simpler to construct at the

origin, especially if it has symmetry. In this simple example only a translation appears

before each cube, but any combination the three transformations could take its place.

Save, Compile, and Run. Behold a 3-D, two-object scene! Notice the marvelous new

background color. Perhaps its name should be “Clear Blue Sky with Light Smog.”

Figure 4-6 shows how it looks. The new color, though far from pretty, provides better

contrast for the cubes.

Figure 4-6. Two Cubes in Perspective

INDEPENDENT MOVEMENT

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

The techniques for creating multiple copies of an object and placing them in different

places also lend themselves to moving the objects separately. To demonstrate, add some

fields to the private section of the form type declaration:

 x1,y1,z1,x2,y2,z2,xr1,yr1,zr1,

 xr2,yr2,zr2,angle1,angle2,sign: glFloat;

Initialize sign at the very bottom of the FormCreate method:

 sign := 0.1;

Translate

In the FormPaint method replace

 glTranslatef(-0.7,0.7,-2.8);

with

 glTranslatef(x1,y1,z1);

Also replace

 glTranslatef(1.9,-1.6,-5.4);

with

 glTranslatef(x2,y2,z2);

Now that the arguments in the glTranslatef calls are variables, code to manipulate the

variables is appropriate. Using the Object Inspector set the form’s KeyPreview property

to true. On the Events page double click the OnKeyPress event and fill in the following

event handler:

procedure TForm1.FormKeyPress(Sender: TObject; var Key: Char);

var

 ok: boolean;

begin

 ok := true;

 case Key of

 '+': sign := 0.1;

 '-': sign := -0.1;

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

 'X': x1 := x1+sign;

 'x': x2 := x2+sign;

 'Y': y1 := y1+sign;

 'y': y2 := y2+sign;

 'Z': z1 := z1+sign;

 'z': z2 := z2+sign;

 else

 ok := false;

 end; {case}

 if ok then

 Invalidate;

end;

Whenever the user executes a keystroke the FormKeyPress method tests the character in

the case statement and adjusts the variables accordingly. Pressing “+” or “-” sets the

sign variable accordingly. The letters “x”, “y”, and “z” set the corresponding

variables, with the capital letters setting x1, etc., and the lowercase letters setting x2, etc. If

a desired letter came through, then a call to Invalidate causes the FormPaint method to fire

again.

The sign variable starts with a positive value of one tenth. Pressing “-” changes it to

negative one tenth and pressing “+” changes it back. This value adds to the other

variables in response to the appropriate letter. Save, Compile, and Run. Start by pressing

the minus key, then pressing and holding a capital “Z” until a cube comes into view.

Since the variables are fields of the form, they start as 0.0 unless explicitly changed. That

means both cubes remain out of site at the origin until the user gives them a lot of negative

z. Capital letters affect one cube and lower case letters affect the other cube. Experiment

with pressing the desired keys and enjoy the power of moving the two cubes

independently.

Rotate

Being able to move two cubes independently represents a definite advance in the available

OpenGL power, but rotating the cubes separately is an even greater advance. Better yet is

the power to combine rotation and translation for each cube (independently). The variables

have already been declared. After each glTranslatef goes a glRotatef:

 glTranslatef(x1,y1,z1);

 glRotatef(angle1,xr1,yr1,zr1);

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

 glTranslatef(x2,y2,z2);

 glRotatef(angle2,xr2,yr2,zr2);

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

The case statement in the FormKeyPress method needs an addition so that it can

manipulate the rotation variables. The letters to check are upper and lower case “r,”

“s,” and “t.”

 'a': angle2 := angle2+10.0*sign;

 'r': xr2 := xr2+sign;

 's': yr2 := yr2+sign;

 't': zr2 := zr2+sign;

 'A': angle1 := angle1+10.0*sign;

 'R': xr1 := xr1+sign;

 'S': yr1 := yr1+sign;

 'T': zr1 := zr1+sign;

The letters “r,” “s,” and “t” set up the axis of rotation for each cube. Each axis is

a vector (line segment with direction) from (0.0,0.0,0.0) toward the vertex constructed

from (xr1,yr1,yr1) or (xr2,yr2,zr2). The letter “a” adjusts the amount of rotation (angle1

or angle2) about the appropriate vector. It would be nice to have a little help visualizing the

axes of rotation. Add the following method to draw a representation of the coordinate axes

along with the two rotation vectors:

procedure TForm1.Axes;

begin

 glLineWidth(3.0);

 glBegin(GL_LINES);

 glColor3f(0.0,0.0,0.0);

 glVertex3f(+0.0,+0.0,+0.4);

 glVertex3f(+0.0,+0.0,-0.4);

 glVertex3f(+0.4,+0.0,+0.0);

 glVertex3f(-0.4,+0.0,+0.0);

 glVertex3f(+0.0,+0.4,+0.0);

 glVertex3f(+0.0,-0.4,+0.0);

 glEnd;

 glLineWidth(1.0);

 glBegin(GL_LINES);

 glColor3f(1.0,1.0,0.0);

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

 glVertex3f(0.0,0.0,0.0);

 glVertex3f(xr1,yr1,zr1);

 glColor3f(0.0,1.0,1.0);

 glVertex3f(0.0,0.0,0.0);

 glVertex3f(xr2,yr2,zr2);

 glEnd;

end;

Declare the new method at the bottom of the form’s private section:

 procedure ExceptionGL(Sender:TObject;E:Exception);

 procedure Cube;

 procedure Axes;

 public

 { Public declarations }

 end;

Call the Axes method inside the FormPaint method, just before the call to glFush.

Translate it along the z axis to bring it inside the clipping volume. Translate it a little along

the x and y axes so that the viewer will see it slightly from above and from the side, to

make its three-dimensional nature more evident.

 glPushMatrix;

 glTranslatef(-0.6,-0.6,-2.8);

 Axes;

 glPopMatrix;

 glFlush;

Save, Compile, and Run. In addition to all the previous abilities of the program, it can now

use the three new letters to rotate the cubes. Whew!

Transformation Order Revisited

About the only thing left for this structure is to add scaling as well, but that would not add

much to the OpenGL knowledge because the results are easy to predict. There is something

else that can contribute significantly to the level of OpenGL understanding. The ability to

switch back and forth between rotating before translation and rotating after translation

reveals a dramatic difference between the two. Add the following to the case statement:

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

 'B': before := true;

 'b': before := false;

The form declaration needs to include the before field:

 errorCode: GLenum;

 before,

 openGLReady: boolean;

 oldw,

 oldh: integer;

 x1,y1,z1,x2,y2,z2,xr1,yr1,zr1,

 xr2,yr2,zr2,angle1,angle2,sign: glFloat;

 procedure ExceptionGL(Sender:TObject;E:Exception);

 procedure Cube;

 procedure Axes;

FormPaint needs an enhancement using the value of the before field to control whether the

call to glRotatef happens before or after the call to glTranslatef:

 glPushMatrix;

 if before then

 glRotatef(angle1,xr1,yr1,zr1);

 glTranslatef(x1,y1,z1);

 if not before then

 glRotatef(angle1,xr1,yr1,zr1);

 Cube;

 glPopMatrix;

 glPushMatrix;

 if before then

 glRotatef(angle2,xr2,yr2,zr2);

 glTranslatef(x2,y2,z2);

 if not before then

 glRotatef(angle2,xr2,yr2,zr2);

 Cube;

 glPopMatrix;

Again Save, Compile, and Run. Bring the cubes into view and position and orient them as

you please, but be sure to include some rotation for each of them. Now press “B” and

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

“b” to show the difference between rotation before translation and rotation after

translation. The experiment with order of transformations at the end of Chapter 3 gave

small distinctions, but this time the difference is exceedingly obvious. For example, a small

rotation about the y axis changes the direction of the cube’s own personal z axis, so a

subsequent translation along the z axis sends it off in a different direction than if the

translation happens first. Try it and see.

Another View

Frankly, transformations in OpenGL can be very confusing, so any aid to comprehension is

welcome. For this purpose think of the translations as applying to the objects rather than

the coordinate system. Then think of the transformations as happening in reverse order.

When you push and pop the ModelView matrix several times, treat this reverse order

concept separately between each push and pop.

Different people may need to consider OpenGL transformations in different ways to

understand them. Possibly this alternate view will be the best one for many readers of this

book.

DEFINITIONS

Frustum A geometric figure formed when the top of a cone or
pyramid is cut off by a plane parallel to the base.

Perspective projection A projection in which the apparent size of each object is
adjusted for distance from the viewer.

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

IDENTIFIER REFERENCE

glFrustum An OpenGL command that sets up perspective projection
and the clipping volume.

glPopMatrix An OpenGL command that saves the current OpenGL
matrix on the matrix stack.

glPushMatrix An OpenGL command that retrieves a matrix from the
matrix stack and makes it the current OpenGL matrix.

SUMMARY

Here are the high points of Chapter 4:

1. The shape of the clipping region for perspective projection is a frustum,
which is a pyramid with the top chopped off.
2. The command is glFrustum; the parameters are the same as for glOrtho, but
the znear and zfar parameters have different effects and must be positive.
3. To move away from the viewer, deeper into the screen, is to move in the
negative z direction.
4. The effects of clipping and back face culling are the same as with glOrtho.
5. When viewed in perspective, parallel lines appear to converge in the
distance, and objects appear smaller as they retreat into the distance.
6. Use glPushMatrix to save the ModelView matrix and glPopMatrix to
restore it. Placing transformations between those calls allows for independent
positioning and movement of objects in a scene.
7. Rotation changes the orientation of the axes so that a subsequent translation
may go off in a different direction.When planning a positioning or movement
within a scene, be careful about the order of the transformations.
8. OpenGL transformations seem to take effect in the reverse order of their
specification in program code.

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

Chapter 5

Lighting

In the real world things are visible because of light. All light comes from various sources,

usually identifiable, but even when the source is unknown, the light was actually emitted

from somewhere. Not only does the visibility of everything (except those objects that emit

their own light) depend on light emitted from somewhere and reflected to the viewer, but

the detailed appearance of each object depends on properties of the material composing the

illuminated surface. A realistic graphics system should incorporate these facts. This chapter

explores lighting and material properties.

Building on the work of Chapter 4, Save Obj.Dpr as ALight.Dpr in

OpenGL\Chapter.5\Ambient. Save the main unit as ALight1.Pas.

ENABLE LIGHTING

One of the great features of OpenGL is the ability to produce realistic effects through

simulation of lighting. In the code in the first four chapters, OpenGL provided the

equivalent of lighting so that the objects were visible. Now is the time to provide lighting

specifications directly. Here is a necessary OpenGL constant:

 GL_LIGHTING = $0B50;

At the bottom of the FormCreate method enable lighting:

glEnable(GL_LIGHTING);

Save, Compile and Run. Maneuver one of the cubes into the viewing volume (clipping

region). Ugh! The red square is black! Rotate the cube so that two more faces show at least

a little. They are black, too! It is difficult to distinguish one face from another because the

have exactly the same color. Now that the program is taking responsibility for making the

objects in the scene visible, OpenGL is taking no responsibility at all. Obviously the

program needs to do more than just enable lighting.

Basically three kinds of lighting are available through OpenGL, Ambient, Diffuse, and

Specular. This chapter will examine each of them in turn.

AMBIENT LIGHT

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

Definition

Ambient light has no apparent source, but seems to come from all directions. In the real

world, all light has a source, but some light may be reflected and scattered from several

surfaces before finally reaching the viewer. The source of such light may be difficult or

impossible to trace. This kind of light is called ambient light. OpenGL simulates this effect

by providing illumination equally from all directions. It can be associated with a particular

light or it can have no specific source, just magically appearing (at the programmer’s

command).

Commands and Constants

The command for defining a light is a variation of glLight. Use the “f” suffix to use

glFloat parameters. Many commands, including ones already discussed, have a vector

version, indicated by a “v” suffix. The vector version substitutes a pointer to an array in

place of several scalar parameters. The glLight command only takes three parameters in

any version, so only the vector version meets the current need. The glLightModel

command takes three parameters and also has a vector version suitable for the occasion.

Then there is the glColorMaterial command, which introduces the idea of material

properties. The relevant declarations follow. First a necessary type:

 PGLfloat = ^GLFloat;

Here are some useful constants:

 GL_LIGHT_MODEL_AMBIENT = $0B53;

 GL_COLOR_MATERIAL = $0B57;

 GL_AMBIENT = $1200;

 GL_LIGHT0 = $4000;

 GL_LIGHT1 = $4001;

 GL_LIGHT2 = $4002;

 GL_LIGHT3 = $4003;

 GL_LIGHT4 = $4004;

 GL_LIGHT5 = $4005;

 GL_LIGHT6 = $4006;

 GL_LIGHT7 = $4007;

Finally, the commands:

procedure glColorMaterial(face,mode:GLenum); stdcall;

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

procedure glLightModelfv(pname:GLenum;params:PGLfloat); stdcall;

procedure glLightfv(light,pname:GLenum;params:PGLfloat); stdcall;

Consider the parameters in the commands. The face parameter can be GL_FRONT,

GL_BACK, or GL_FRONT_AND_BACK. Right now GL_FRONT is sufficient. The

mode parameter specifies the kind of lighting to which the material property relates. The

example under development uses GL_AMBIENT. The params pointer could be pointing to

a single glFloat, or the first element of an array of them. While this is very C-like, Delphi

can handle it nicely. The pname parameter identifies the purpose for two of the commands.

The command for the simplest method of implementing ambient light is glLightModel.

Pass it GL_LIGHT_MODEL_AMBIENT for the first parameter.

THE EASY WAY

Lighting introduces a new level of complexity to the specification of an object’s

appearance. A simple color specification does not tell the whole story about how a surface

responds to light. Material properties allow a more complete way to describe responses to

light. The present example avoids some of the complexity by having the material color

track the current color by means of the glColorMaterial command. This is one of the

options that requires enabling before use.

At the bottom of the FormCreate method, after the enabling of lighting , initialize the array

and place some of the new commands with the appropriate arguments.

 AmbientDef[0] := 1.0; {red}

 AmbientDef[1] := 1.0; {green}

 AmbientDef[2] := 1.0; {blue}

 AmbientDef[4] := 1.0; {alpha}

 glEnable(GL_COLOR_MATERIAL);

 glColorMaterial(GL_FRONT,GL_AMBIENT);

 glLightModelfv(GL_LIGHT_MODEL_AMBIENT,@AmbientDef);

In this version of the glLightModel command, using GL_LIGHT_MODEL_AMBIENT,

means the array contains the color specification of the ambient light. Here, giving

maximum intensity (1.0) to the red, green, and blue components specifies a white ambient

light. A later chapter covers alpha; just set it to 1.0 for now. Declare the array in the private

section of the form.

 AmbientDef: array[0..3] of glFloat;

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

Save, Compile, and Run. Now the cubes look like they did before. So what did the new

commands accomplish? One benefit is control. Experiment with decreasing the red, green,

and blue components of AmbientDef (positions 0, 1, and 2 in the array). Reducing the

overall intensity of the ambient light or giving it a color bias produces effects that may be

desirable in some applications.

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

THE HARD WAY

A more flexible approach uses the glLight command. Make a new directory named

OpenGL\Chapter.5\Ambient0. In that directory save the program as Amb0.Dpr and the

main unit as Ambient0.Pas. Change the bottom of the FormCreate method to this:

 glEnable(GL_LIGHTING);

 AmbientDef[0] := 1.0; {red}

 AmbientDef[1] := 1.0; {green}

 AmbientDef[2] := 1.0; {blue}

 AmbientDef[3] := 1.0; {alpha}

 glLightfv(GL_LIGHT0,GL_AMBIENT,@AmbientDef);

 glEnable(GL_LIGHT0);

This approach defines a particular light (LIGHT0) instead of just setting up a light model.

At least eight lights are available; some implementations of OpenGL may allow more.

Notice that you must turn on any light you want to use. This example switches on LIGHT0

with glEnable(GL_LIGHT0). To use a light, the simple color tracking of glColorMaterial

is not adequate. So instead of glColor commands inside the Cube method, use glMaterial

commands. A vector version is most convenient, so define an array at the top of Cube. For

this example there is no attempt to produce the same colors as before.

procedure TForm1.Cube;

var

 ambient: array[0..3] of glFloat;

begin

 fillchar(ambient,sizeOf(ambient),0);

 ambient[3] := 1.0; {alpha}

 glBegin(GL_POLYGON); {near face}

 ambient[0] := 0.5; {red}

 glMaterialfv(GL_FRONT,GL_AMBIENT,@ambient);

 glVertex3f(-0.4,-0.4,+0.4);

 glVertex3f(+0.4,-0.4,+0.4);

 glVertex3f(+0.4,+0.4,+0.4);

 glVertex3f(-0.4,+0.4,+0.4);

 glEnd;

 glBegin(GL_POLYGON); {right face}

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

 ambient[1] := 0.5; {green} {total=yellow}

 glMaterialfv(GL_FRONT,GL_AMBIENT,@ambient);

 glVertex3f(+0.4,-0.4,+0.4);

 glVertex3f(+0.4,-0.4,-0.4);

 glVertex3f(+0.4,+0.4,-0.4);

 glVertex3f(+0.4,+0.4,+0.4);

 glEnd;

 glBegin(GL_POLYGON); {left face}

 ambient[0] := 0.0; {red} {total=green}

 glMaterialfv(GL_FRONT,GL_AMBIENT,@ambient);

 glVertex3f(-0.4,-0.4,-0.4);

 glVertex3f(-0.4,-0.4,+0.4);

 glVertex3f(-0.4,+0.4,+0.4);

 glVertex3f(-0.4,+0.4,-0.4);

 glEnd;

 glBegin(GL_POLYGON); {back face}

 ambient[2] := 0.5; {blue} {total=turquoise}

 glMaterialfv(GL_FRONT,GL_AMBIENT,@ambient);

 glVertex3f(+0.4,-0.4,-0.4);

 glVertex3f(-0.4,-0.4,-0.4);

 glVertex3f(-0.4,+0.4,-0.4);

 glVertex3f(+0.4,+0.4,-0.4);

 glEnd;

 glBegin(GL_POLYGON); {bottom face}

 ambient[1] := 0.0; {green} {total=blue}

 glMaterialfv(GL_FRONT,GL_AMBIENT,@ambient);

 glVertex3f(-0.4,-0.4,+0.4);

 glVertex3f(-0.4,-0.4,-0.4);

 glVertex3f(+0.4,-0.4,-0.4);

 glVertex3f(+0.4,-0.4,+0.4);

 glEnd;

 glBegin(GL_POLYGON); {top face}

 ambient[0] := 0.5; {red} {total=magenta/magenta}

 glMaterialfv(GL_FRONT,GL_AMBIENT,@ambient);

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

 glVertex3f(-0.4,+0.4,+0.4);

 glVertex3f(+0.4,+0.4,+0.4);

 glVertex3f(+0.4,+0.4,-0.4);

 glVertex3f(-0.4,+0.4,-0.4);

 glEnd;

end;

Save, Compile, and Run. Bring the cubes into view and move them around. Notice

something rather strange. A side of the cube facing directly toward the viewer is brighter

than the same side with a significantly different angle to the viewer.

That is not the behavior of ambient light. Perhaps it has been set too bright. Ambient light

is often a minor part of the total light in a scene. In the FormCreate method cut it down as

follows:

 AmbientDef[0] := 0.3; {red}

 AmbientDef[1] := 0.3; {green}

 AmbientDef[2] := 0.3; {blue}

 AmbientDef[3] := 1.0; {alpha}

Save, Compile, and Run. Manipulate the scene as before. Alas, there is little noticeable

difference between ambient light at 30% and ambient light at 100%. Something is very

wrong.

Actually, LIGHT0 has a special characteristic different from LIGHT1, LIGHT2 or any of

the others. LIGHT0 by default has a white light diffuse component and a white light

specular component. The default ambient component is black, but the present code

replaced the default value. To see the effect of ambient light alone requires replacing the

diffuse and specular parts (with black). Make these changes to the FormCreate method:

 glEnable(GL_LIGHTING);

 fillchar(AmbientDef,SizeOf(AmbientDef),0);

 glLightfv(GL_LIGHT0,GL_DIFFUSE,@AmbientDef);

 glLightfv(GL_LIGHT0,GL_SPECULAR,@AmbientDef);

 AmbientDef[0] := 0.3; {red}

 AmbientDef[1] := 0.3; {green}

 AmbientDef[2] := 0.3; {blue}

 AmbientDef[3] := 1.0; {alpha}

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

 glLightfv(GL_LIGHT0,GL_AMBIENT,@AmbientDef);

 glEnable(GL_LIGHT0);

The new constants are:

 GL_DIFFUSE = $1201;

 GL_SPECULAR = $1202;

Now Save, Compile, and Run. Bring the cubes into view. What a difference! The cubes are

rather dim, which is natural for only 30% ambient illumination, but most importantly, they

are uniformly dim. This is how ambient light should appear!

Can OpenGL handle bright white ambient light, or did the earlier supposition that the

ambient light was set out of natural range have merit? Find out by replacing all the 0.3

values in AmbientDef with 1.0. Save, Compile, Run, and move cubes around. Now

uniform illumination abounds. Though it is quite bright, the ambient light appears evenly

distributed regardless of angle, which is the right behavior for ambient light.

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

DIFFUSE LIGHT

Definition

Imagine a lamp lighting a large room. Much of the light bounces off many surfaces before

reaching a viewer. While the light actually came from the lamp, it seems simply to be

everywhere. This is the ambient portion of the light. Obviously, however, some of the light

proceeds directly from the source to the surface of some object in the room and reflects

directly to the viewer. However, unless the surface is a mirror, the light tends to scatter

rather than bounce off at a predictable angle. In the real world nothing is perfectly smooth,

but some things have been polished enough that the surface irregularities are too small to

matter. Such surfaces are “shiny.” Most surfaces have irregularities large enough to

scatter most light as in Figure 5-1. These surfaces are “flat.” Unless the surface is white,

it will absorb some colors from the light and reflect the rest, thus defining its color in terms

of the portion of the light it reflects. This scattering effect determines the diffuse portion of

the light. Not only does OpenGL allow the definition of at least eight light sources, but it

also allows independent specification of the ambient portion and diffuse portion of each

light.

Figure 5-1. Diffuse Reflection from a Flat Surface

Positional Lamps

Save the project as Difu.Dpr in a new directory called OpenGL\Chapter.5\Dif1 and save

the main unit as Diffus.Pas. For the lamp under development, most light shines directly on

an object from the lamp (the diffuse portion), and a lesser contribution comes from

multiple reflections (the ambient portion). Prepare to change the AmbientDef assignments

in the FormCreate method as follows, but do not type it in just yet:

 glEnable(GL_LIGHTING);

 AmbientDef[0] := 0.3; {red}

 AmbientDef[1] := 0.3; {green}

 AmbientDef[2] := 0.3; {blue}

 AmbientDef[3] := 1.0; {alpha}

While bland, homogenized arrays like this provide a simple, fairly language-independent

way of passing data to the OpenGL DLL’s, Delphi allows more meaningful structures

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

that use memory exactly the same way. The following type declaration of a record

structure is more intuitive and does not require the programmer to memorize the order of

the colors:

 TLightDesc=record

 red,

 green,

 blue,

 alpha: glFloat;

 end;

Wait! Don’t type that in either! Arrays use contiguous memory, but record structures

may have “holes” in the data due to memory alignment by the compiler. This particular

record structure is safe (for the moment) because each of the elements is four bytes in size,

but to guarantee that the record memory layout is exactly the same as the array memory

layout, use the packed reserved word and place the declaration just above the form’s

class declaration:

type

 TLightDesc=packed record

 red,

 green,

 blue,

 alpha: glFloat;

 end;

TForm1 = class(TForm)

Of course the type for the AmbientDef field within the form declaration should become:

 AmbientDef: TLightDesc;

Now the new assignments to AmbientDef in the FormCreate method can proceed:

 glEnable(GL_LIGHTING);

 with AmbientDef do

 begin

 red := 0.3;

 green := 0.3;

 blue := 0.3;

 alpha := 1.0;

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

 end;

The key distinction between diffuse light and ambient light is that the source of diffuse

light has a position. Therefore a demonstration of diffuse light requires the ability to set the

position of the lamp. Accordingly add these lines to the case statement in the

FormKeyPress method:

 'l': xl := xl+sign;

 'm': yl := yl+sign;

 'n': zl := zl+sign;

In the form’s class declaration add these “L” variable declarations to describe the

lamp position:

 xl,yl,zl,

 x1,y1,z1,x2,y2,z2,xr1,yr1,zr1,

 xr2,yr2,zr2,angle1,angle2,sign: glFloat;

 AmbientDef: TLightDesc;

 LightPlace: TLightPlace;

LightPlace is also new and needs a type declaration.

type

 TLightDesc=packed record

 red,

 green,

 blue,

 alpha: glFloat;

 end;

 TLightPlace=packed record

 x,

 y,

 z,

 w: glFloat;

 end;

TForm1 = class(TForm)

In the FormPaint method, place some code to manipulate the light position:

 glPushMatrix;

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

 if before then

 glRotatef(angle2,xr2,yr2,zr2);

 glTranslatef(x2,y2,z2);

 if not before then

 glRotatef(angle2,xr2,yr2,zr2);

 Cube;

 glPopMatrix;

 glPushMatrix;

 glTranslatef(xl,yl,zl);

 glLightfv(GL_LIGHT0,GL_POSITION,@LightPlace);

 glPopMatrix;

Save, Compile, Run, and bring a cube barely into view, then go two keystrokes more down

the negative z-axis. Move the cube near the upper left corner of the form. The cube appears

very bright, but that will change as the lamp moves.

Press the minus key, then press the lowercase “n” repeatedly. After about five such

presses, a slight difference is noticeable. As you continue to advance the lamp down the

negative z-axis, watch the shading develop on the cube!

Now it should be possible to have a uniformly colored cube that still shows its

three-dimensional nature by its shading in a diffuse light source. In the Cube method

change the type of the ambient local variable:

procedure TForm1.Cube;

var

 ambient: TLightDesc;

begin

Remove all assignements to ambient inside the Cube method and replace them with one set

of assignments as follows:

procedure TForm1.Cube;

var

 ambient: TLightDesc;

begin

 ambient.red := 0.2;

 ambient.green := 0.5;

 ambient.blue := 0.8;

 ambient.alpha := 1.0;

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

 glMaterialfv(GL_FRONT,GL_AMBIENT,@ambient);

 glBegin(GL_POLYGON); {near face}

Save, Compile, Run, and perform movements as before. Around the 22
nd
 “n” press the

shading of the cube is more than sufficient to distinguish the faces. Enjoy! This is

tremendous progress from the first step of making a colored background.

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

Different Material Colors

Various material properties can be set independently, including colors for ambient

reflectivity, specular reflectivity, and diffuse reflectivity. Allowing the surface to reflect

ambient light differently from diffuse light provides for some interesting effects. Adjust the

top of the Cube method as follows:

procedure TForm1.Cube;

var

 diffuse,

 ambient: TLightDesc;

begin

 ambient.red := 0.2;

 ambient.green := 0.5;

 ambient.blue := 0.8;

 ambient.alpha := 1.0;

 diffuse.red := 0.8;

 diffuse.green := 0.5;

 diffuse.blue := 0.2;

 diffuse.alpha := 1.0;

 glMaterialfv(GL_FRONT,GL_DIFFUSE,@diffuse);

 glMaterialfv(GL_FRONT,GL_AMBIENT,@ambient);

 glBegin(GL_POLYGON); {near face}

Save, etc. as before. This version more clearly demonstrates the ambient contribution and

the diffuse contribution from the light source. At first the diffuse light reflection color

clearly dominates. As the light advances down the negative z-axis until it is almost past the

near face of the cube, ambient reflection clearly shows one color, and diffuse reflection

another color. When the light moves a little more, the ambient reflection color will

completely dominate. Why does the diffuse contribution wane before the light is past the

cube? Another behavior of real light reflecting off real surfaces is the fact that as the angle

from the light source to the surface flattens, less of the diffuse light reflects to the viewer.

Figure 5-2 illustrates light shining on a surface from an acute angle (left) and from a more

obtuse angle (right). The right side of the illustration shows less of the scattered (diffuse)

light reaching the viewer. OpenGL reproduces this behavior nicely.

Figure 5-2. Diffuse Light at Different Angles.

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

So far the exercises have depended on the fact that LIGHT0 has a white diffuse component

by default. The next exercise illustrates colored light on surfaces of different color.

Accordingly, at the bottom of the FormCreate method, make the light pure red and

explicitly define the diffuse component.

 glEnable(GL_LIGHTING);

 with AmbientDef do

 begin

 red := 0.6;

 green := 0.0;

 blue := 0.0;

 alpha := 1.0;

 end;

 LightPlace.w := 1.0;

 glLightfv(GL_LIGHT0,GL_AMBIENT,@AmbientDef);

 glLightfv(GL_LIGHT0,GL_DIFFUSE,@AmbientDef);

 glEnable(GL_LIGHT0);

end; {FormCreate}

Save … well, you know the drill. Now, since the only light is red, that is the only light

reflected, so the cube looks pure red. What will happen if the material property has no red

component? Find out by removing the red at the top of the Cube method. At the same time

return the cube to having only one color response to the light.

procedure TForm1.Cube;

var

 ambient: TLightDesc;

begin

 ambient.red := 0.0;

 ambient.green := 0.5;

 ambient.blue := 0.8;

 ambient.alpha := 1.0;

 glMaterialfv(GL_FRONT,GL_DIFFUSE,@ambient);

 glMaterialfv(GL_FRONT,GL_AMBIENT,@ambient);

 glBegin(GL_POLYGON); {near face}

Repeat the steps and see the result. The cube is black. Only red light is available. The cube

reflects no red light. Therefore the cube reflects no virtually light.

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

Spotlights

The light source discussed so far can be a spotlight. First, this naked light needs some

clothes. For this stage of the learning adventure, dress it in a … cube. Save the project as

Spot.Dpr in OpenGL\Chapter.5\Spot, and save the main unit as Spot1.pas in that directory.

Give the Cube method the ability to set its material color from a passed parameter. Adjust

its declaration inside the form class declaration and add a few fields.

 CubeColor,

 SpotColor,

 DiffDef,

 AmbientDef: TLightDesc;

 LightPlace: TLightPlace;

 procedure ExceptionGL(Sender:TObject;E:Exception);

 procedure Cube(matColor:TLightDesc);

 procedure Axes;

Now change its implementation code to handle the parameter.

procedure TForm1.Cube(matColor:TLightDesc);

begin

 glMaterialfv(GL_FRONT,GL_AMBIENT,@matColor);

 glMaterialfv(GL_FRONT,GL_DIFFUSE,@matColor);

 glBegin(GL_POLYGON); {near face}

Set the color records in the FormCreate method.

 glEnable(GL_LIGHTING);

 with AmbientDef do

 begin

 red := 0.3;

 green := 0.3;

 blue := 0.3;

 alpha := 1.0;

 end;

 with DiffDef do

 begin

 red := 1.0;

 green := 1.0;

 blue := 1.0;

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

 alpha := 1.0;

 end;

 with CubeColor do

 begin

 red := 0.5;

 green := 0.0;

 blue := 0.8;

 alpha := 1.0;

 end;

 with SpotColor do

 begin

 red := 0.0;

 green := 0.5;

 blue := 0.5;

 alpha := 1.0;

 end;

 LightPlace.w := 1.0;

 glLightfv(GL_LIGHT0,GL_AMBIENT,@AmbientDef);

 glLightfv(GL_LIGHT0,GL_DIFFUSE,@DiffDef);

Make the two calls to Cube in the FormPaint method use the parameter.

 Cube(CubeColor);

Also adjust the code that positions the light Be sure to make this cube smaller with

glScalef.

 glPushMatrix;

 glScalef(0.33,0.33,0.33);

 glTranslatef(xl,yl,zl);

 glLightfv(GL_LIGHT0,GL_POSITION,@LightPlace);

 Cube(SpotColor);

 glPopMatrix;

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

Now, go back to the bottom of the FormCreate method and initialize some positions so you

will not have to do so much work to position the objects. Note that the “l” in the

variable names is an ell not a one.

 z2 := -2.7;

 x2 := -0.7;

 y2 := 0.7;

 zl := -6.7;

 xl := -1.8;

 yl := -2.1;

end; {FormCreate}

Since the glScale command affects translation (and rotation), as well as the object size,

adjust the case statement in the FormKeyPress method.

 'l': xl := xl+3.0*sign;

 'm': yl := yl+3.0*sign;

 'n': zl := zl+3.0*sign;

Save, Compile, and Run. (You are remembering not to run from the IDE, aren’t you?)

The magenta (or purple) cube and the cyan (blue-green, turquoise, whatever) “spotlight”

are visible from the start. Use the “l,” “m,” and “n” keys to move the spotlight

around. The center of the small cyan cube tracks the position of the light source so that the

cube appears to BE the light source. Notice the effect different light positions have on

illumination of the magenta cube.

A really interesting effect is the illumination of the small cube from the inside, so that the

sides of the cube appear to be translucent. This brings up an important fact. OpenGL

knows nothing about shadows. When you “shine” an OpenGL light source on an

OpenGL object, you see a very good representation of real illumination. However, if you

interpose another seemingly solid OpenGL object between the light source and the first

object, the more distant object receives illumination just as if there were nothing in the way.

The consequence of this fact is that if you want shadows, you will have to program them

yourself. Do not despair; it can be done. More about that comes later.

Notice that only half of the cyan cube lights up. By default an OpenGL diffuse light source

has a 180 degree spread as shown in figure 5-3, which includes the cyan cube that

represented the spotlight. A real spotlight is more focused, and OpenGL permits this effect

with an appropriate constant in a familiar command.

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

 glLightf(GL_LIGHT0,GL_SPOT_CUTOFF,cutoff);

Figure 5-3. Default Spread of a Diffuse Light Source.

The new constant has this value:

 GL_SPOT_CUTOFF = $1206;

Express the value of the cutoff variable in degrees. Think of the light spreading from a

spotlight as a cone of light. The angle from the center of the cone to the edge of the cone is

the cutoff angle, as shown in figure 5-4.

Figure 5-4. The Spotlight Cutoff Angle.

Add the cutoff field to the “ell” line in the form’s class declaration.

 xl,yl,zl,xrl,yrl,zrl,cutoff,

 x1,y1,z1,x2,y2,z2,xr1,yr1,zr1,

 xr2,yr2,zr2,angle1,angle2,sign: glFloat;

Use the cutoff field in the FormCreate method.

 glLightfv(GL_LIGHT0,GL_AMBIENT,@AmbientDef);

 glLightfv(GL_LIGHT0,GL_DIFFUSE,@DiffDef);

 cutoff := 55.0;

 glLightf(GL_LIGHT0,GL_SPOT_CUTOFF,cutoff);

 glEnable(GL_LIGHT0);

Save, Compile, Run. Move the spotlight around with “l,” “m,” and “n.” Notice

that you must move the spotlight closer to the magenta cube in the x and y directions or

farther in the positive z direction in order to illuminate the magenta cube.

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

Directional Spotlights

A feature still missing from the spotlight illustrated thus far in the chapter is the ability to

aim it. What kind of spotlight is it that you can’t … spot? One thing needed for that

purpose is to add some more “ell” fields in the form class declaration.

 xl,yl,zl,xrl,yrl,zrl,anglel,cutoff,

 x1,y1,z1,x2,y2,z2,xr1,yr1,zr1,

 xr2,yr2,zr2,angle1,angle2,sign: glFloat;

The xrl, yrl, and zrl fields set up the axis of rotation for the cyan cube and the aiming

direction of the spotlight. Similarly the anglel field is the number of degrees of rotation

about the axis for both the cube and the aiming of the spotlight. The default aim of a

spotlight is a vector from the origin (0.0,0.0,0.0) to (0.0,0.0,-1.0) down the negative z-axis,

which points toward the far face of the cube at its starting position. Therefore aiming the

far face of the cube effectively aims the spotlight.

To manipulate those fields, add to the case statement in the FormKeyPress method.

 'k': anglel := anglel+30.0*sign;

 'o': xrl := xrl+3.0*sign;

 'p': yrl := yrl+3.0*sign;

 'q': zrl := zrl+3.0*sign;

Add a new type:

 TLightDesc=packed record

 red,

 green,

 blue,

 alpha: glFloat;

 end;

 TLightPlace=packed record

 x,

 y,

 z,

 w: glFloat;

 end;

 TPosition=packed record

 x,

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

 y,

 z: glFloat;

 end;

Add a new field of that type in the form’s class declaration:

 AmbientDef: TLightDesc;

 LightPlace: TLightPlace;

 SpotDirect: TPosition;

Initialialize SpotDirect in the FormCreate method to match the default value of a spotlight

direction. Except for the z field, the zeros that come automatically from creating an

instance of the form are sufficient.

 with SpotColor do

 begin

 red := 0.0;

 green := 0.5;

 blue := 0.5;

 alpha := 1.0;

 end;

 SpotDirect.z := -1.0;

 LightPlace.w := 1.0;

Finally, to the FormPaint method add the use of SpotDirect and the rotational “ell”

fields.

 glPushMatrix;

 glScalef(0.33,0.33,0.33);

 if before then

 glRotatef(anglel,xrl,yrl,zrl);

 glTranslatef(xl,yl,zl);

 if not before then

 glRotatef(anglel,xrl,yrl,zrl);

 glLightfv(GL_LIGHT0,GL_POSITION,@LightPlace);

 glLightfv(GL_LIGHT0,GL_SPOT_DIRECTION,@SpotDirect);

 Cube(SourceColor);

Save, Compile, Run, and press the plus key. Press the lower-case “o” to set the axis of

rotation for the spotlight in the positive x direction. Press and hold the lower-case “k” to

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

produce rotation of the spotlight about the x-axis. Watch the change in lighting on the

magenta cube as the spotlight direction changes. That is not a bad effect for just a little

code. There is certainly a lot of power in simple OpenGL commands! Notice the brilliance

the face of the cyan cube from which the light seems to emanate.

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

EMISSION

Definition

Here is a profound revelation. Light sources emit light. They glow. A surface that glows

looks different from a surface that merely reflects light. OpenGL provides a way to

produce this effect. Notice that the subject is the appearance of surfaces. Therefore the

appropriate command is glMaterialfv rather than glLightfv. The new constant is:

 GL_EMISSION = $1600;

The purpose of the use of GL_EMISSION is to intensify the surface color so that it seems

to glow. It does not add to the light shed on other surfaces.

Implementation

Save the spot project as Emission.Dpr in OpenGL\Chapter.5\Emit. Save the main unit as

Emit1.Pas in the same directory. Since the use of GL_EMISSION applies to the material

properties of a face in the spotlight cube, some special purpose code is necessary for this

illustration. In the Cube method surround the {back face} part with material commands.

The if statement tests for a red component so the magenta cubes will not be affected, but

the cyan cube will be affected. Remember this is just special code for a brief illustration.

 if matColor.red=0.0 then

 glMaterialfv(GL_FRONT,GL_EMISSION,@matColor);

 glBegin(GL_POLYGON); {back face}

 glVertex3f(+0.4,-0.4,-0.4);

 glVertex3f(-0.4,-0.4,-0.4);

 glVertex3f(-0.4,+0.4,-0.4);

 glVertex3f(+0.4,+0.4,-0.4);

 glEnd;

 glMaterialfv(GL_FRONT,GL_EMISSION,@black);

The black emission statement confines the effect of the previous emission statement to the

one face, otherwise everything would eventually end up with GL_EMISSION. Of course

the black field requires declaration within the form’s class declaration. Happily it will

automatically be initialized to all zeros.

 black: TLightDesc;

 LightPlace: TLightPlace;

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

 SpotDirect: TPosition;

Frankly, since the back face of the cyan cube already almost seems to glow, using

matColor with GL_EMISSION will have no noticeable effect. Replace it with the emit

field.

if matColor.red=0.0 then

 glMaterialfv(GL_FRONT,GL_EMISSION,@emit);

Declare emit in the form’s class declaration:

 emit: TLightDesc;

 black: TLightDesc;

 LightPlace: TLightPlace;

 SpotDirect: TPosition;

Initialize emit in the FormCreate method:

 with emit do

 begin

 red := 0.6;

 green := 1.0;

 blue := 1.0;

 alpha := 1.0;

 end;

end; {FormCreate}

Save, Compile, Run, press plus, and press little “o.” Hold down little “k” until the

back side partially faces the viewer. Notice the intensity of the back face. This illustrates a

feature that is seldom used, but you may find handy on special occasions.

To see why you needed glMaterialfv(GL_FRONT,GL_EMISSION,@black), comment it

out, re-compile, and re-run. GL_EMISSION affected everything. Ugh! The effect of a

glMaterial command remains until explicitly changed.

Remember that emission is just a surface effect in OpenGL; it is not one of the three kinds

of light that come from a light source. The next topic deals with such a type of light.

SPECULAR LIGHT

Definition

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

The third component of light from a light source is specular light. Ambient light has been

scattered from many surfaces and seems to come from all directions. Diffuse light comes

from a specific direction (the source, of course), but scatters from surfaces, giving a soft,

“flat” appearance to surfaces. Ambient and Diffuse components of a light source

commonly share the same color. Specular light is also directional, but much “tighter” in

reflection than diffuse light, often with a different color. Specular light more closely

follows the classical rule of reflection wherein the angle of reflection equals the angle of

incidence, as in Figure 5-5.

Figure 5-5. Specular Reflection Angles.

As you might expect, the result of reflection of specular light depends greatly on the

material properties of the surface. You may have noticed that in the real world surfaces

that are smooth and “shiny” often show a small bright spot in bright, direct light. The

bright spot is known as the specular highlight. With OpenGL you can give a surface the

appearance of being smooth and shiny by producing such a bright spot. While the color of

the surface with respect to ambient and diffuse light may vary, the color of the specular

highlight tends toward white.

Implementation

To demonstrate the specular component of a light source, load the Spot.Dpr project from

OpenGL\Chapter.5\Spot. Create a new directory called OpenGL\Chapter.5\Spec and save

the project as Specular.Dpr into the new directory. Save its main unit as Spec1.Pas in the

same directory. At the bottom of the FormCreate method add a new glLightfv command.

 glLightfv(GL_LIGHT0,GL_SPECULAR,@SpecDef);

end; {FormCreate}

Actually, LIGHT0 by default has a pure white specular component, but this illustration

needs something a little less intense. Assign a medium gray to it.

 with SpecDef do

 begin

 red := 0.5;

 green := 0.5;

 blue := 0.5;

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

 alpha := 1.0;

 end;

 glLightfv(GL_LIGHT0,GL_SPECULAR,@SpecDef);

end; {FormCreate}

Oh yes! Be sure to declare SpecDef in the form’s class declaration.

 CubeColor,

 SpotColor,

 DiffDef,

 SpecDef,

 AmbientDef: TLightDesc;

 LightPlace: TLightPlace;

 SpotDirect: TPosition;

For convenience, change the initial value of z2 from –2.7 to –3.7, moving the larger

cube farther back, so that the spotlight cube will not bury itself in the larger cube in the

coming illustration.

 z2 := -3.7;

 x2 := -0.7;

 y2 := 0.7;

 zl := -6.7;

 xl := -1.8;

 yl := -2.1;

To the specular light component add the surface color response to that light.

 glLightfv(GL_LIGHT0,GL_SPECULAR,@SpecDef);

 glMaterialfv(GL_FRONT,GL_SPECULAR,@SpecDef);

end; {FormCreate}

Notice that the new glMaterialfv command is in the FormCreate method. Remember that

such a command remains in effect until another command changes it. By placing it here,

with no contradictory command elsewhere, you give all surfaces the same response to

specular light for all time. Well, it lasts for as long as the program runs, anyway.

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

The specular effect needs one more specification. Remember that specular highlights

appear on shiny surfaces. Naturally OpenGL defines a constant for setting shininess in a

command.

 GL_SHININESS = $1601;

The shininess property is an integer that can range in value from 0 to 128. Therefore the

property needs an integer form of the glMaterial command. Give it maximum shininess for

this illustration.

 glLightfv(GL_LIGHT0,GL_SPECULAR,@SpecDef);

 glMaterialfv(GL_FRONT,GL_SPECULAR,@SpecDef);

 glMateriali(GL_FRONT,GL_SHININESS,128);

end; {FormCreate}

Save, Compile, Run, and press plus. Press little “m” four times to raise the spotlight

toward the magenta cube. Do you see the faint light streak running from the lower left

corner to the upper right corner of the near face? It is not much, but that is as good as it

gets with a face of a cube. To see a better specular highlight, you need a surface with some

curvature. A later chapter introduces curved surfaces.

HOW MUCH LIGHT

So far you have seen three light source components: Ambient, Diffuse, and Specular. Each

of these has three color components: red, green, and blue. There is also an alpha

component, which still must be put off until later. Never fear! You will see alpha when the

time is right. You have also seen material properties which specify the response to light.

Material properties also have Ambient, Diffuse, and Specular parts. Each of these also has

the three color components.

So what determines how much light of each color reaches the viewer? Would you believe a

simple multiplication? Figure 5-6 illustrates.

Figure 5-6. Multiplying a Light Component.

DEFINITIONS

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

Term Meaning

Ambient light Light that has reflected from various surfaces and seems to
come from all directions with no readily identifiable source.
The component of an OpenGL light source used to simulate
that effect.

Diffuse light Light that comes from an identifiable source and scatters
when reflected. The component of an OpenGL light source
used to simulate that effect.

Flat surface A surface with enough roughness to scatter most light it
reflects, producing a dull, non-glossy appearance. A surface
that is not shiny.

Material properties Characteristics of a surface that affect its appearance.

Shiny surface A mirror-like surface. A surface that is smooth enough that
much of the light it reflects is not scattered, giving a glossy
appearance. Such a surface may be characterized by a
specular highlight under a suitable light source.

Specular highlight A bright spot that appears on a smooth, shiny surface under
a strong light source.

Specular light The component of an OpenGL light source used to
determine the color and intensity of a specular highlight.

Spotlight A light source with both position and direction. The space
illuminated by the source is shaped like a cone. The cone is
defined by an angle from the “aim” direction of the light.

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

IDENTIFIER REFERENCE

Identifier Description

glColorMaterial An OpenGL command that causes material
properties to track the current color set by glColor.
It takes two parameters. The first tells which face
or faces will be affected. The second tells which
properties will track the current color. You must
enable color tracking for this to work.

glLight An OpenGL command that defines characteristics
of an OpenGL light source. You must enable
lighting and enable the specific light.

glLightModel An OpenGL command that provides a simplified
method of setting up a lighting environment
instead of defining specific lights.

glMaterial An OpenGL command for defining material
properties.

GL_AMBIENT An OpenGL constant specifying the ambient
portion of light or material properties in various
OpenGL commands.

GL_BACK An OpenGL constant specifying the back face of
polygons to be affected in various OpenGL
commands.

GL_COLOR_MATERIAL The OpenGL constant to pass to enable or disable
color tracking.

GL_DIFFUSE An OpenGL constant specifying the diffuse
portion of light or material properties in various
OpenGL commands.

GL_EMISSION An OpenGL constant to pass to the glMaterial
command, so that the affected surfaces appear to
be glowing.

GL_FRONT An OpenGL constant specifying the front face of
polygons to be affected in various OpenGL
commands.

GL_FRONT_AND_BACK An OpenGL constant specifying both the front

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

and back faces of polygons to be affected in
various OpenGL commands.

GL_LIGHT0 .. GL_LIGHT7 OpenGL constants for specifying specific
OpenGL light sources.

GL_LIGHTING An OpenGL constant to pass to glEnable or
glDisable to turn on or turn off lighting
calculations.

GL_LIGHT_MODEL_AMBIENT An OpenGL constant to pass to glLightModel to
specify global ambient light.

GL_SPECULAR An OpenGL constant specifying the specular
portion of light or material properties in various
OpenGL commands.

GL_SPOT_CUTOFF An OpenGL constant to pass to glLight to specify
the angle that defines the cone of illumination
from a spotlight.

Packed An Object Pascal reserved word used to make a
data structure take the minimum amount of
memory. The elements of the structure fit together
with no unused memory between them because
the compiler does not attempt to align the data
elements on word or double-word boundaries.

PGLfloat A data type which is a pointer to a Glfloat.

SUMMARY

Chapter 5 presented new levels of realism with lighting. Here are the high points:

1. Use glEnable(GL_LIGHTING) to inform OpenGL that you will take
responsibility for lighting specification.
2. OpenGL allows at least eight separate light sources.
3. All light has a source. Each light source has three components whose color
compositions can be separately identified:
a. Ambient light seems to come from all directions.
b. Diffuse light comes from a specific direction and scatters upon reflection,
giving a soft, flat appearance to surfaces.
c. Specular light reflects sharply and appears as a specular highlight on
smooth surfaces.

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

4. Specify the color response of a surface to each light component with the
glMaterial commands.
5. Emission is also a material property for OpenGL.
6. In addition to the color response to specular light, you must also specify the
smoothness or shininess of the surface with the GL_SHININESS constant in
the glMateriali command.

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

