ELP
IN A NUTSHELL

A Desktop Quick Reference

ELP
IN A NUTSHELL

A Desktop Quick Reference

Ray Lischner

O’REILLY*®

Beijing « Cambridge « Farnbam ¢ Kéin ¢ Paris + Sebastopol * Taipei » Tokyo

Delphi in a Nutshell
by Ray Lischner

Copynight © 2000 O'Reilly & Associates, Inc. All rights reserved.
Printed 1n the United States of America.

Published by O'Reilly & Associates, Inc., 101 Morris Street, Sebastopol, CA 95472.

Editor: simon Hayes

Production Editor: Madeleine Newell
Cover Designer: Ellie Volckhausen
Printing History:

March 2000: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are
registered trademarks of O'Reilly & Associates, Inc. The association between the
image of a lynx and the topic of Delpht 1s a trademark of O'Reilly & Associates, Inc.

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and O'Reilly & Associates, Inc. was aware of a trademark claim, the designations
have been printed 1n caps or 1nitial caps.

While every precaution has been taken in the preparation of this book, the publisher
assumes no responsibility for errors or omissions, or for damages resulting from the
use of the information contained herein.

Library of Congress Cataloging-in-Publication Daia

Lischner, Ray, 1961-
Delphi 1n a nutshell / by Ray Lischner.
p. cm.
ISBN 1-56592-659-5 (alk. paper)
1. Delphi (Computer file) 2. Computer software--Development. I. Title.

QA76.76.D47 L56 2000
005.26'8--dc21 99-086244

ISBN: 1-56592-659-5 [7/00]
[VH]

Table of Contents

Preface ..., vii
Chapter 1—Delphi Pascalc.ccccccoocvemrevireeereereenn. 1
UNIES 1ottt sttt 1
PIOGIAMS ..oiiiiiiiiiiiiie ettt ettt ert e 4
LIDIATIES ...iiiioniiiieiccieniece ettt ettt et ettt eas 5
PACKAZES .ooiiiicietitie e et 7
Data TYPES ..ooiiiiiiiiicic et et 8
Variables and CONStANLSc.cocevriririeiiiiiieee e 21
Exception Handlingc..cccoeerviinniininiiiieieeeeeieeee e 22
FUlE T/O ittt e et 26
Functions and Procedurescccovviiaiiiiiiiiieciiiieenecveveeis e 27
Chapter 2—The Delphbi Object Model 30
Classes and ODJECEScocecviiiiniiiiiiictiee et 30
INLEIFACES ..oiiiiiiiiiciiiccce ettt 53
Reference COUNUNGcooiviiiiiriieeece et 58
MESSAZESevivreveiierrireeiieit ettt ettt ettt et 61
Memory Managementcccoccvveiveirieesierienirieeeeereereneseetessees oo 62
Old-Style ObJECE TYPES ...ovvvivieeiieieriitiiiietererese oo 69
Chapter 3—Runtime Type Information 71
Virtual Method Table ..o, 71
Published Declarationsc.coeeverivinnniiiiinieiineee e 73
The TypINfo UNItccooviviiiiiiieiiiiiineerennnsen s 79

Virtual and Dynamic MethodSc...c.oooveevoveeeeeereeeceooseo. 86

Initialization and Finalizationccococoooeecoeoioe oo 88
Automated Methodsccoocovviiiiiiiiinioeeeeeeeeeee e 20
INEEITACES ..o 91
EXploring RTTIccccoceeimvinniinininnieneieeeeee oo, 91
Chapter 4—Concurrent Programming ... 95
Threads and PIrOCESSESociivovuieeeeereereeeseeeeeeoeoooooo, 95
The TThread Classoooovivviieiieeeeeeeeeeeesee oo 103
The BeginThread and EndThread Functionsc.......co.......... 108
Thread Local SIOTAZEc.vvvvivivieiiecoeeeeeeoeeeceeeeeeseoeooooo 109
PIOCESSESoviviviiieiicccce e 109
FULUIES oo 119
Chapter 5—Language Reference. ... 127
Chapter 6—System CONSIANLS ..o 422
Variant Type COdesccccovmniiiiiiriiieceeeeeereooeeeeee o 422
Open Ar1ay TYPEScccooviviriiiirieiieeeeeeeeeeeeeee oo, 423
Virtual Method Table OffSetscccocoooovvoeeeoiseoooe 424
Runtime Error COAeSoovvoviiiiiiivieieeoeeeeeeeceoeeoooe 425
Chapter 7—OPerators ..o 428
Unary OPeratorsccccoccerviriiiriiueeinisieeeeeeeeee oo oo, 428
Multiplicative OPeratorsccooooivivveieseeeveeeseeeoreoeeesceseosos) 430
AddItiVe OPEratorscocoevvivivereiiiiiieeeeeeeeeeeeeeeeee oo 431
ComparisOn OPEratorScoeeuiviiiieveiiiieeroeeeeeeeere oo 432
Chapter 8—Compiler Directives ..o 435
Appendix A—Command-Line ToOls ... 473
Appendix B—The SysUtils Unit ..o 488
TRAEXoooiiveiiiiieieeeeeceeeeeeeeeeeeeeeeeeeeeeeeeeee 543

%4

Preface

Borland’s Delphi is a combination of a modern programming language, an inte-
grated development environment (IDE), and the visual component library (VCL).
Delphi’s IDE 1s readily familiar to anyone who has used similar tools. For example,
a WYSIWYG form editor lets you design a window visually, with drag-and-drop
ease. More important, the framework 1s object-oriented, extensible and customiz-
able, due to the power and flexibility of the Delphi programming language.

The heart of Delphi is the Delphi Pascal programming language, which has key
features to support the IDE and VCL. It has all the power of a modern object-
ortented language, along with the elegance and simplicity of Pascal.

Delphi in a Nutshell is a comprehensive reference manual for Delphi Pascal. It
covers the entire language, and it also highlights ways to use the language effec-
tively Experienced Delphi programmers can use this book as an alphabetical
reference. Newcomers to Delph: should spend extra time with the first few chap-
ters. I hope that everyone will find something of value in these pages.

Not Your Father’s Pascal

Delphi Pascal is one of many object-oriented variants of Pascal. Over the years,
Delphi has evolved and is no longer recognizable as the Pascal you used in school
all those many years ago. In addition to unit-based modular programming and a
robust class model, Delphi Pascal has a number of other modern language
features, including the following:

e Interfaces (similar to Java™ and COM interfaces)
e Unicode strings
* Properties

e Exception handling

vii

Delphi started as a Windows programming language and environment, and many
Delphi programmers (myself included) consider Delphi to be the best Windows
development tool available. Delph: includes full support for COM and ActiveX, an
object-ortented widget library (called the Visual Component Library, or VCL), and
a rapid-application development environment that 1s extensible and customizable.

Delpbi for Linux

As [write this, Borland is hard at work porting Delph: to Linux. Perhaps when you
read this, Delphi for Linux will be available, bringing its integrated development
environment to X-Windows, including its WYSIWYG form editor, multi-tier data-
base support, and full CORBA support.

Until Borland finishes this work and releases Delphi for Linux, I can only specu-
late about how the final product will look. (No, T don’t get any special inside
information.) You can rely on the core language being the same in both Delphi for
Linux and Delphi for Windows, including classes, objects, mterfaces, strings,
dynamic arrays, exceptions, and the basic data types. Most of the built-in subrou-
tines will work the same under Linux as under Windows.

Some language features described in this book are clearly Windows specific, such
as the CmdShow and D11Proc varables or the FindHInstance function. If you
want to write code that 1s portable between Windows and Linux, you must avoid
these Windows-specific features.

Delphi for Windows 1s the best development environment for writing Windows
applications and libraries. To attain this premier position, Delphi has incorporated
a number of Windows-specific features. Borland has a goal of making Delphi for
Linux the best Linux development environment. To achieve that goal, we can
expect Delphi to include some Linux-specific features.

I'm just guessing, but I believe it will be feasible to write code that 1s portable
between Windows and Linux. However, you will have to sacrifice some features
that are unique to each environment. Writing components that are easily portable,
especially interactive controls, will probably be a daunting task. Making an appli-
cation that 1s portable will most likely be easter.

About This Book

The first four chapters of this book present information on how to use Delph:
effectively, and subsequent chapters form the language reference proper.

Chapter 1, Delpbi Pascal, discusses the differences between Delphi Pascal and
standard Pascal. If you have used Turbo Pascal or other variants of Obyect Pascal,
you should give Chapter 1 a quick read to learn about the new features that are
unique to Delphi Pascal. Similarly, if you haven't used Pascal since your college
days (all those years ago), you must read Chapter 1 to learn about the new and
nifty features n Delph: Pascal. You mught be surprised at how far the language
has come over the years.

Chapter 2, The Delph: Object Model, discusses classes and objects n greater depth.
If you have used other variants of Object Pascal, you must read this chapter

viii Preface

because Delphi’s object model 1s quite different. If you have experience with other
object-oriented programming languages, read Chapter 2 to learn the differences
between Delpht and other languages, such as Java and C++

Chapter 3, Runtime Type Information, covers the key to Delphi’s integrated devel-
opment environment. RTTI 1s not documented in Borland’s official help files, but
anyone writing or using components (that 1s, every Delphi programmer) should
understand the nature of RTTI, including its limitations and proper uses. Chapter 3
tells you everything there is to know about RTTI, and then some.

Chapter 4, Concurrent Programming, 1s about using Delphi 1n a modern, multi-
threaded, multiprocessor world. Delphi includes several language features to help
you write multithreaded applications, but these features can be difficult to use if
you do not have much experience with the tricks and traps of multithreaded
programming. Thus chapter gets you started using Delph: effectively to write
modern applications.

Chapter 5, Language Reference, 1s the bulk of the book. The alphabetical refer-
ence lists every keyword, directive, subroutine, type, and vanable in the Delphi
Pascal language and its system units. Full examples show you how to use the
language correctly and effectively

Chapter 6, System Constants, contains tables of related constants. Chapter 5 1s large
enough without adding these literals. Moving them to a separate chapter makes
the complete reference easier to use.

Chapter 7, Operators, describes all the arithmetic and other operators in Delphi
Pascal. Symbols do not alphabetize well, so listing the symbol operators in their
own chapter makes 1t easier to find information about a particular operator.

Chapter 8, Compiler Directives, lists all the special comments that you can include
1n your source code to control how Delphi compiles and links your program.

Appendix A, Command-Line Tools, describes the usage and options for the various
command-line tools that come with Delphi. These tools are not related to the
Delpht Pascal language, but they are often overlooked and can be extremely
useful for the Delpht professional.

Appendix B, The SysUtils Uni, lists all the subroutines, types, and variables in the
SysUtils unit. This unit 1s not built into the compiler (as the System unit 1s). It 1s
not part of the Delphi Pascal language, but is part of Delphi’s runtime library
Nonetheless, many Delphi professionals have come to rely on SysUtils as though
it were part of the language, and indeed, many subroutines in SysUtils are supe-
rior to their equivalents in the System unit (such as AnsiPos instead of Pos).

Conventions Used in This Book
The following typographical conventions are used 1 this book:

Constant width
Used for Delphi identifiers and symbols, including all keywords and direc-
tives. In the language reference, constant width shows the syntax elements
that must be used exactly as shown. For example, the array declaration

Preface 1x

requires the square brackets and other symbols, and the type, array, and of
keywords to be used as shown:

type Name = array([Index type, ...] of Base type;

Constant width italic
Used in the language reference for syntax elements that must be replaced by
your code. In the previous example, you must supply the type Name, the
Index type, and the Base type.

Constant wWidth Bold
Used mn longer code examples to highlight the lines that contain the language
element being described.

Italic
Used to indicate variables, filenames, directory names, URLs, and glossary
terms.

Note Icons

The owl icon designates a tip, suggestion, or general note related to
the surrounding text.

5 The turkey icon designates a warning related to the surrounding text.

For More Information

When you have a question about Delphi, you should first consult the Delphi help
files. Delphi also comes with numerous examples (in the Demos directory) that are
often more helpful than the help files.

If you still cannot find the answer you seek, try posing your question to one of the
many Delphi newsgroups. Several standard newsgroups exist, and Borland maimn-
tains its own newsgroups on its server, Sorums.borland.com. In particular,
borland public.delphi.objectpascal s the appropriate newsgroup for questions
related to the Delphi Pascal language.

If you want to know about Delphi’s integrated development environment, about
the visual component library, or other topics on Delphi programming, the two
most popular books are Mastering Delphi 5, by Marco Cantu (Sybex, 1999) and
Deiphi 5 Developer’s Guide, by Steve Terxerra and Xavier Pacheco (Sams, 1999).

If you find errors or omissions 1 this book, please bring them to my attention by
sending email to nutshell@tempest-sw.com. 1 receive too much email to answer

x Preface

every message individually, but be assured that I read everything (everything that
makes it past my anti-spam filters, anyway).

How to Contact Us

The information in this book has been tested and verified to the best of our ability,
but mustakes and oversights do occur. Please let us know about errors you may
find, as well as your suggestions for future editions, by writing to:

O'Reilly & Associates, Inc.

101 Morris Street

Sebastopol, CA 95472

(800) 998-9938 (in the U.S. or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

You can also send us email messages. To be put on our mailing list or to request a
catalog, send mail to:

mfo@oreilly.com
To ask technical questions or to comment on the book, send email to:
bookquestions@oreilly.com

To find out about errata and any plans for future editions, you can access the
book’s web site at:

wwuw.oreilly.com/catalog/delph:
For more information about this book and others, see the O’Reilly web site:

www.oreilly.com

Acknowledgments

I thank Tim O’Reilly for taking a chance with his first Delphi title. I look forward
to reading and writing other Delphi books published by O'Reilly

The technical editors—Allen Bauer and Hallvard Vassbotn—did an excellent job of
spotting my mistakes. Hallvard’s copious and detailed comments were invaluable.
Any remaining mistakes are ones that I added after the editors finushed their thor-
ough work.

I thank my editor, Simon Hayes, and the entire team at O’Reilly—Bob Herbstman,
Troy Mott, and the design and production staff—for turning my humble manu-
script into this polished book you see now

None of my books would be possible without the support of family I thank my
wife, Cheryl, and the once-and-future programmer, Arthur, who makes it all
worthwhile.

Preface xi

)

CHAPT

R1

Delpbi Pascal

Delphi Pascal 1s an object-oriented extension of traditional Pascal. It is not quite a
proper superset of ISO standard Pascal, but if you remember Pascal from your
school days, you will easily pick up Delphi’s extensions. Delphi 1s not just a fancy
Pascal, though. Delphi adds powerful object-oriented features, without making the
language too complicated. Delpht has classes and objects, exception handling,
multithreaded programming, modular programming, dynamic and static linking,
OLE automation, and much, much more.

This chapter describes Delphi’s extenstons to Pascal. You should already be
familiar with traditional Pascal or one of the other popular extensions to Pascal,
such as Object Pascal. If you already know Borland’s Object Pascal from the Turbo
Pascal products, you will need to learn a new object model (detailed in Chapter 2,
The Delphbi Object Model), plus other new features.

Borland uses the name “Object Pascal” to refer to Delphi’s programming language,
but many other languages use the same name, which results in confusion. This
book uses the name “Delphi Pascal” to refer to the Delphi programming language,
leaving Obyject Pascal for the many other object-oriented variations of Pascal.

Units

Delphi Pascal is a modular programming language, and the basic module is called
a unit. To compile and link a Delphi program, you need a program source file
and any number of additional units in source or object form. The program source
file 1s usually called a project source file because the project can be a program or a
library—that is, a dynamically linked library (DLL).

When Delphi links a program or library, it can statically link all the units into a
single .exe or .dll file, or it can dynamically link to units that are in packages. A
package 1s a special kind of DLL that contains one or more units and some extra
logic that enables Delphi to hide the differences between a statically linked unit

o=
2
=)
=
=,
S
2
3]
[
~

and a dynamically linked unit in a package. See the section “Packages,” later 1n
this chapter, for more information about packages.

Forms and Files

Some units represent forms. A form is Delphi’s term for a window you can edit
with Delphi’s GUI builder. A form description is stored in a .dfm file, which
contamns the form’s layout, contents, and properties.

Every .dfm file has an associated pas file, which contains the code for that form.
Forms and .dfm files are part of Delphi’s mtegrated development environment
(IDE), but are not part of the formal Delphi Pascal language. Nonetheless, the
language includes several features that exist solely to support Delphi’s IDE and
form descriptions. Read about these features 1n depth in Chapter 3, Runtime Type
Information.

A bmary .dfn file 1s actually a 16-bit .res (Windows resource) file,
which maintamns compatibility with the first version of Delphi. Ver-
sions 2 and later produce only 32-bit programs, so Delphi’s linker
converts the .dfin resource to a 32-bit resource automatically Thus,
binary .dfm files are usually compatible with all versions of Delphu.
Delphi 5 also supports textual .dfin files. These files are plain text
and are not compatible with prior versions of Delphi, at least not
without conversion back to the bimary format. The only way to tell
whether a .dfm file is binary or text is to open the file and check the
contents. An easy way to do this programmatically 1s to test the first
three bytes, which are always $FF $0A $00 1 a binary .dfn file.

Table 1-1 briefly describes the files you are likely to find in Delphi and what they
are used for. Files marked with “UDE)” are not part of Delphi Pascal, but are used
by the IDE.

Table 1-1: Delph: Files

Extension | Description

.bpg Project group (IDE)

.bpl Compiled package (special kind of DLL)

.cfg Options for the command line compiler

.dcp Compiled package mnformation, needed to link with a package
.der Component bitmap resource (IDE)

.deu Unit object code

.dfm Form description (IDE)

.dof Project options file (IDE)

.dpk Source file for building a package

.dpr Main source file for a program or library

.drc Resource script for resourcestring declarations

2 Chapter 1— Delpht Pascal

Table 1-1. Delph: Files (continued)

Extension | Description

.dsk Desktop layout (IDE)

pas Unit source code

.res Windows resource (every .dpr has an associated .res file)

Separating Interface from Implementation

A unit has two parts: interface and implementation. The interface part declares the
types, variables, constants, and routines that are visible to other units. The imple-
mentation section provides the guts of the routines declared in the interface
section. The implementation section can have additional declarations that are
private to the unit’s implementation. Thus, units are Delphi’s primary means of
information hiding.

One unit can use another unit, that is, import the declarations from that other unit.
A change to a unit’s interface requires a recompilation of all units that use the
changed declaration in the modified unit. Delphi’s compiler manages this automat-
1cally, so you don’t need to use makefiles to compile Delphi projects.

You can use a unit in the interface or implementation section, and the choice 1s
mmportant when building a project:

e If unit A uses unit B 1n its interface section, changes to unit B’s interface are
propagated as changes to unit A’s interface. Delphi must recompile all the
units that use unit A.

e If unit A uses unit B in its implementation section, only unit A must be recom-
piled to use the new declarations in unit B. .

Units cannot have crcular references in their interface sections. Sometimes, you
will run into two class declarations that contain mutually dependent declarations.
The simplest solution is to use a single unit, but if you have reasons to declare the
classes in separate units, you can use an abstract base class in one or both units to
eliminate the circular dependency (See Chapter 2 for more information.)

Initializing and Finalizing

Every unit can have an initialization and a finalization section. Code in every
initialization section runs before the program or library’s main begin-end block.
Code 1 the finalization section runs after the program terminates or when the
library is unloaded. Delphi runs the initialization sections using a depth-first
traversal of the unit dependency tree. In other words, before a unit’s iitialization
code runs, Delphi runs the initialization section of every unit it uses. A unit 1s
initialized only once. Example 1-1 demonstrates how Delphi 1nitializes and final-
izes units.

Example 1-1. Showing the Order of Unit Initialization

program Examplel_1;
uses unita;
{$AppType Console}

Units 3

jeased 1ydjag

Example 1-1. Shounng the Order of Unit Initialization (continued)

begin
Writeln('Example 1-1 main program');
end.

unit unita;
interface
uses unitB;
implementation
initialization
WriteLn('unitA initialization');
finalization
Writeln('unitA finalization');
end.

unit unitB;
interface
implementation
initialization

WriteIn('unitB initialization');
finalization

WriteIn('unitB finalization');
end.

When you compile and run Example 1-1, be sure to run it from a command
prompt, not the IDE, or else the console will appear and disappear before you can
see the output, which is shown as Example 1-2.

Example 1-2: The Output from Running Example 1-1

W:\nutshell>examplel 1
unitB initialization
unitA initialization
Example 1-1 main program
unitA finalization
unitB finalization

The System and SysInit Units

The System and SysInit units are automatically included in every unit, so all of
the declarations in these units are effectively part of the Delphi Pascal language,
and the compiler has special knowledge about many of the functions and proce-
dures 1n the System and SysInit units. Chapter 5, Language Reference, 1s a
complete reference to the system routines and declarations meant for your use.

Programs

A Delphi program looks similar to a traditional Pascal program, starting with the
program keyword and using a begin-end block for the mamn program. Delphi
programs are usually short, though, because the real work takes place in one or
more separate units. In a GUI application, for example, the main program usually

4 Chapter 1~ Delphi Pascal

calls an mitialization procedure, creates one or more forms (windows), and calls a
procedure for the Windows event loop.

For compatibility with standard Pascal, Delphi allows a parameter list after the
program name, but—like most modern Pascal compilers—it 1gnores the identifiers
listed there.

In a GUI application, you cannot use the standard Pascal I/O procedures because
there is no input device to read from and no output device to write to. Instead,
you can compile a console application, which can read and write using standard
Pascal I/O routines. (See Chapter 8, Compiler Directives, to learn about the
$appType directive, which tells Delphi to build a console or a GUI application.)

A program’s uses declaration lists the units that make up the program. Each unit
name can be followed by an in directive that specifies a filename. The IDE and
compiler use the filename to locate the units that make up the project. Units
without an in directive are usually library units, and are not part of the project’s
source code. If 2 unit has an associated form, the IDE also stores the form name 1n
a comment. Example 1-3 shows a typical program source file.

Example 1-3: A Typical Program File

program Typical;

uses
Forms,
Main in 'Main.pas' {MainForm},
MoreStuff in 'MoreStuff.pas' {Form2},
Utils in 'Utils.pas';

{SR *.RES}

begin
Application.Initialize;
Application.CreateForm(TMainForm, MainForm);
Application.CreateForm(TForm2, Form2);
Application.Run;

end.

The Forms unit 1s part of the standard Delphi library, so it does not have an in
directive and source file. The other units have source filenames, so Delphi’s IDE
manages those files as part of the project. To learn about the $R compiler direc-
tive, see Chapter 8. The Application object 1s part of Delphi’s visual component
library and is not covered 1n this book. Consult Delphi’s online help for informa-
tion about the Application object and the rest of the VCL.

Libraries

A Delphi library compiles to a standard Windows DLL. A library source file looks
the same as a program source file, except that it uses the library keyword
instead of program A library typically has an exports declaration, which lists the
routines that the DLL exports. The exports declaration is optional, and if you
intend to use a unit in a library, it’s usually best to put the exports declaration 1n

Libraries 5

[
S
=
S5
S
w
S
Y]
2

the unit, close to the subroutine you are exporting. If you don’t use the unit in a
library, the exports declaration has no impact.

The main body of the library—its begin-end block—executes each time the
library is loaded into an application. Thus, you don’t need to write a DLL proce-
dure to handle the DLI_PROCESS_ATTACH event. For process detach and thread
events, though, you must write a handler. Assign the handler to the D11Proc vari-
able. Delphi takes care of registering the procedure with Windows, and Windows
calls the procedure when a process detaches or when a thread attaches or
detaches. Example 1-4 shows a simple DLL procedure.

Example 1-4: DLL Attach and Detach Viewer
library Attacher;

uses Windows;

procedure Log{const Msg: string);
begin

MessageBox (0, PChar (Msg), 'Attacher’', Mb_IconInformation + Mb OK);
end;

procedure AttachDetachProc(Reason: Integer);

begin
case Reason of
D11_Process_Detach: Log('Detach Process' };
D11 _Thread Attach: Log('Attach Thread' }:
D11 _Thread Detach: Log('Detach Thread'):
else Log('Unknown reason!');
end;

end;

begin
// This code runs each time the DLL is loaded into a new process.
Log('Attach Process');
DllProc := @AttachDetachProc;

end.

Using Dynamic Memory

When using a DLL, you must be careful about dynamic memory. Any memory
allocated by a DLL is freed when the DLL 1s unloaded. Your application mght
retain pointers to that memory, though, which can cause access violations or
worse problems if you aren’t careful. The simplest solution is to use the ShareMem
unit as the first unit in your application and in every library the application loads.
The ShareMem unit redirects all memory requests to a single DLL (BorindMM.dlD),
which is loaded as long as the application is running. You can load and unload
DLLs without worrying about dangling pointers.

Sharing Objects

SharelMem solves one kind of memory problem, but not another: class identity If
class A is used in the application and in a DLL, Delphi cannot tell that both

6 Chapter 1- Delph: Pascal

modules use the same class. Although both modules use the same class name, this
doesn’t mean the classes are identical. Delphi takes the safest course and assumes
the classes are different; if you know better, you have no easy way to inform
Delphu.

Sometimes, having separate class identities does not cause any problems, but if
your program tries to use an object reference across a DLL boundary, the is and
as operators will not work the way you expect them to. Because the DLL thinks
class A is different from the application’s class A, the is operator always returns
False.

One way to circumvent this problem is not to pass objects across DLL boundaries.
If you have a graphic object, for example, don’t pass a TBitmap object, but pass a
Windows handle (HBITMAP) instead. Another solution 1s to use packages. Delphi
automatically manages the class 1dentities in packages to avoid this problem.

Setting the Image Base

When you create a library, be sure to set the Image Base option. Windows must
load every module (DLL and application) at a unique image base address. Delphi’s
default is $00400000, but Windows uses that address for the application, so it
cannot load a DLL at the same address. When Windows must move a DLL to a
different address, you incur a performance penalty, because Windows must rewrite
a relocation table to reflect the new addresses. You cannot guarantee that every
DLL will have a unuque address because you cannot control the addresses other
DLL authors use, but you can do better than the default. You should at least make
sure your DLLs use a different image base than any of the standard Delpht pack-
ages and Windows DLLs. Use Windows Quick View to check a file’s image base.

Packages

Delpht can link a unit statically with a program or library, or it can link units
dynamically To link dynamically to one or more units, you must put those units in
a package, which is a special kind of DLL. When you write a program or library,
you don't need to worry about how the units will be linked. If you decide to use a
package, the units in the package are not linked into your .exe or .4/, but instead,
Delphi compiles a reference to the package’s DLL (which has the extension .bpl/
for Borland Package Library).

Packages avoid the problems of DLLs, namely, managing memory and class identi-
ties. Delphi keeps track of the classes defined in each unit and makes sure that the
application and all associated packages use the same class identity for the same
class, so the is and as operators work correctly

Design-Time Versus Runtime

Delphi’s IDE uses packages to load components, custom forms, and other design-
time units, such as property editors. When you write components, keep therr
design-time code 1n a design-time package, and put the actual component class in
a runtime package. Applications that use your component can link statically with
the component’s .dcu file or link dynamically with the runtime package that

Packages 7

[
2
=
E‘
S
@
X
Q
—

contamns your component. By keeping the design-time code in a separate package,
you avoid linking any extraneous code into an application.

Note that the design-time package requires the runtime package because you
cannot link one unit ito multiple packages. Think of an application or library as a
collection of units. You cannot include a unit more than once in a single
program—it doesn’t matter whether the units are linked statically or dynamucally
Thus, if an application uses two packages, the same unit cannot be contained
both packages. That would be the equivalent of linking the unit twice.

Building a Package

To build a package, you need to create a .dpk file, or package source file. The
.apk file lists the units the package contams, and it also lists the other packages the
new package requires. The IDE includes a convenient package editor, or you can
edit the .dpk file by hand, using the format shown in Example 1-5.

Example 1-5: Sample Package Source File

package Sample;

{$R 'COMP.DCR'}

{$IMAGEBASE $09400000)
{$DESCRIPTION 'Sample Components'}

requires
vel50;

containg
Comp in 'Comp.pas’;

end.

As with any DLL, make sure your packages use unique addresses for their Image
Base options. The other options are self-explanatory You can include options as
compiler directives 1n the .dpk file (as explamned 1n Chapter 8), or you can let the
package editor in the IDE write the options for you.

Data Types

Delph1 Pascal supports several extensions to the standard Pascal data types. Like
any Pascal language, Delphi supports enumerations, sets, arrays, integer and
enumerated subranges, records, and varant records. If you are accustomed to C or
C++, make sure you understand these standard Pascal types, because they can
save you time and headache. The differences include the following:

* Instead of bit masks, sets are usually easter to read.

* You can use pomters mstead of arrays, but arrays are easter and offer bounds-
checking.

* Records are the equivalent of structures, and vanant records are like unions.

8 Chapter 1— Delphi Pascal

Integer Types

The basic integer type is Integer. The Integer type represents the natural size
of an integer, given the operating system and platform. Currenily, Integer repre-
sents a 32-bit integer, but you must not rely on that. The future undoubtedly holds
a 64-bit operating system running on 64-bit hardware, and calling for a 64-bit
Integer type. To help cope with future changes, Delphi defines some types
whose size depends on the natural mnteger size and other types whose sizes are
fixed for all future versions of Delpht. Table 1-2 lists the standard integer types.
The types marked with natural size might change in future versions of Delphi,
which means the range will also change. The other types will always have the size
and range shown.

Table 1-2: Standard Integer Types

Type Size Range in Deipht 5
Integer natural | —2,147,483,648 .. 2,147 483,647
Cardinal | natural | 0 .. 4,294,967,295

shortiInt | 8 bits -128 .. 127
Byte 8 bits 0.. 255
SmallInt | 16 bits 32,768 .. 32,767
Word 16 bits | 0 .. 65,535

LongInt 32 bits | —2,147,483,648 .. 2,147,483,647
LongWord | 32 bits 0 .. 4,294,967,295
Int64 64 bits -9,223,372,036,854,775,808 .. 9,223,372,036,854,775,807

Real Types

Delphi has several floating-point types. The basic types are Single, Double, and
Extended. Single and Double correspond to the standard sizes for the IEEE-754
standard, which 1s the basis for floating-point hardware on Intel platforms and in
Windows. Extended is the Intel extended precision format, which conforms to the
mimmum requirements of the IEEE-754 standard for extended double precision.
Delph1 defines the standard Pascal Real type as a synonym for Double. See the
descriptions of each type in Chapter 5 for details about representation.

The floating-point hardware uses the full precision of the Extended
type for its computations, but that doesn’t mean you should use
Extended to store numbers. Extended takes up 10 bytes, but the
Double type is only 8 bytes and is more efficient to move into and
out of the floating-point unit. In most cases, you will get better per-
formance and adequate precision by using Double.

Errors in floating-pomnt arithmetic, such as dividing by zero, result in runtime
errors. Most Delphi applications use the SysUtils unit, which maps runtime
errors into exceptions, so you will usually receive a floating-point exception for

Data Types 9

)
L
=)
=
=
g
»
o
Y
2

such errors. Read more about exceptions and errors in “Exception Handling,” later
in this chapter.

The floating-pont types also have representations for infinity and not-a-number
(NaN). These special values don’t arise normally unless you set the floating-point
control word. You can read more about infinity and NaN in the IEEE-754 stan-
dard, which 1s available for purchase from the IEEE. Read about the floating-point
control word i Intel’s architecture manuals, especially the Pentium Developer’s
Manual, volume 3, Architecture and Programming Manual, Intel's manuals are
available online at btip://developer.intel.com/design/processor/

Delphi also has a fixed-pomt type, Currency This type represents numbers with
four decimal places in the range -922,337,203,685,477 5808 to 922,337,203,685,477.
5807, which 1s enough to store the gross income for the entire planet, accurate to
a hundredth of a cent. The Currency type employs the floating-pomnt processor,
using 64 bits of precision in two’s complement form. Because Currency 1s a
floating-pomt type, you cannot use any integer operators (such as bit shifting or
masking).

% The floating-point unit (FPU) can perform calculations in single-
47 precision, double-precision, or extended-precision mode. Delphi sets
the FPU to extended precision, which provides full support for the
Extended and Currency types. Some Windows API functions, how-
ever, change the FPU to double precision. At double precision, the
FPU maintains only 53 bits of precision instead of 64.

When the FPU uses double precision, you have no reason to use Extended
values, which is another reason to use Double for most computations. A bigger
problem is the Currency type. You can try to track down exactly which functions
change the FPU control word and reset the precision to extended precision after
the errant functions return. (See the Set8087CW function 1n Chapter 5.) Another
solution is to use the Int64 type instead of Currency, and implement your own
fixed-point scaling in the manner shown in Example 1-6.

Example 1-6: Using IntG4 1o Store Currency Values

resourcestring
sInvalidCurrency = 'Invalid Currency string: ''$s''';
const
Currency64Decimals = 4; // number of fixed decimal places
Currencyé4Scale = 10000; // 10**DecimalédDecimals
type
Currency64 = type Inté4;

function Currency64ToString(Value: Currency64) : string;
begin
Result := Format ('%d%s%.4d’,
[Value div Currency64Scale,
DecimalSeparator,
Abs (Value mod Currency64Scale)]);
end;

10 Chapter 1- Delphi Pascal

Example 1-6: Using Int64 to Store Currvency Values (continued)

=]
function StringToCurrency64(const Str: string): Currency64; %
var =
Code: Integer; §
Fraction: Integer; 8
FractionString: string[Currencyé64Decimals]; —~
I: Integer;
begin

// Convert the integer part and scale by Currencyé64Scale
Val(Str, Result, Code);
Result := Result * Currencyé64Scale;

if Code = 0 then
// integer part only in Str
Exit

else if Str[Code] = DecimalSeparator then
begin
// The user might specify more or fewer than 4 decimal points,
// but at most 4 places are meaningful.
FractionString := Copy(Str, Code+l, Currency64Decimals);
// Pad migsing digits with zeros.
for I := Length(FractionString)+l to Currencyé4Decimals do
FractionString([I] := '0';
SetLength (FractionString, Currency64Decimals);

// Convert the fractional part and add it to the result.
Val (FractionString, Fraction, Code);
if Code = 0 then

begin
if Result < 0 then
Result := Result - Fraction
else
Result := Result + Fraction;
Exit;
end;
end;

// The string is not a valid currency string (signed, fixed point

// number) .
raise EConvertError.CreateFmt(sInvalidCurrency, [Strl);

end;

Arrays

In additional to standard Pascal arrays, Delph: defines several extensions for use in
special circumstances. Dynamic arrays are arrays whose size can change at run-
time. Open arrays are array parameters that can accept any size array as actual
arguments. A special case of open arrays lets you pass an array of heterogeneous
types as an argument to a routine. Delphi does not support conformant arrays, as
found in ISO standard Pascal, but open arrays offer the same functionality

Data Types 11

Dynamic arrays

A dynamic array 1s an array whose size is determmed at runtime. You can make a
dynamic array grow or shrink while the program runs. Declare a dynamic array
without an index type. The index 1s always an integer, and always starts at zero. At
runtime you can change the size of a dynamic array with the SetLength proce-
dure. Assignment of a dynamic array assigns a reference to the same array Unlike
strngs, dynamic arrays do not use copy-on-write, so changing an element of a
dynamic array affects all references to that array Delphi manages dynamic arrays
using reference counting so when an array goes out of scope, its MEMmory 1S auto-
matically freed. Example 1-7 shows how to declare and use a dynamic array

Example 1-7: Using a Dynawmic Array

var
I: Integer;
Data: array of Double; // Dynamic array storing Double values
F: TextFile; // Read data from this file
Value: Double;
begin
AssignFile(F, 'Stuff.dat');
Reset (F);
while not Eof (F) do
begin
Readln(F, Value);
// Inefficient, but simple way to grow a dynamic array. In a real
// program, you should increase the array size in larger chunks,
// not one element at a time.
SetLength(Data, Length(Data) + 1);
Data[Length(Data)] := Value;
end;
CloseFile(F);
end;

2, Delphi checks array indices to make sure they are i bounds.
(Assuming you have not disabled range checks; see the $R directive
in Chapter 8.) Empty dynamic arrays are an exception. Delphi repre-
sents an empty dynamic array as a nil pomter. If you attempt to
access an element of an empty dynamic array, Delphi dereferences
the nil pointer, resulting in an access violation, not a range check
error.

Open arrays

You can declare a parameter to a function or procedure as an open array. When
calling the routine, you can pass any size array (with the same base type) as an
argument. The routine should use the Low and High functions to determine the
bounds of the array (Delphi always uses zero as the lower bound, but the Low
and High functions tell the maintainer of your code exactly what the code 1s

12 Chapter 1— Delphi Pascal

doing. Hard-coding 0 1s less clear.) Be sure to declare the parameter as const if
the routine does not need to modify the array, or as var if the routine modifies
the array contents.

The declaration for an open array argument looks like the declaration for a
dynamic array, which can cause some confusion. When used as a parameter, an
array declaration without an index type is an open array When used to declare a
local or global variable, a field in a class, or a new type, an array declaration
without an index means a dynamic array.

You can pass a dynamuc array to a routine that declares its argument as an open
array, and the routine can access the elements of the dynamic array, but cannot
change the array’s size. Because open arrays and dynamic arrays are declared
identically, the: only way to declare a parameter as a dynamic array is to declare a
new type identifier for the dynamic array type, as shown below-

procedure CantGrow(var Data: array of integer);
begin

// Data is an open array, so it cannot change size.
end;

type
TArrayOfInteger = array of integer; // dynamic array type
procedure Grow(var Data: TArrayOfInteger);
begin
// Data is a dynamic array, so it can change size.
SetLength(Data, Length(Data) + 1);
end;

You can pass a dynamuc array to the CantGrow procedure, but the array is passed
as an open array, not as a dynamic array The procedure can access or change the
elements of the array, but it cannot change the size of the array

If you must call a Delphi function from another language, you can pass an open
array argument as a pointer to the first element of the array and the array length
minus one as a separate 32-bit integer argument. In other words, the lower bound
for the array index 1s always zero, and the second parameter 1s the upper bound.

You can also create an open array argument by enclosing a series of values in
square brackets. The open array expression can be used only as an open array
argument, so you cannot assign such a value to an array-type variable. You cannot
use this construct for a var open array. Creating an open array on the fly 1s a
convenent shortcut, avoiding the need to declare a const array:

Avg := ComputeAverage([1l, 5, 7, 42, 10, -13]);

The Slice function is another way to pass an array to a function or procedure.
Slice lets you pass part of an array to a routine. Chapter 5 describes Slice in
detail.

Type variant open arrays

Another kind of open array parameter 1s the type varant open array, or array of
const. A variant open array lets you pass a heterogeneous array, that is, an array
where each element of the array can have a different type. For each array element,

Data Types 13

[
2
=)
=
=
N
(4
8
=

Delphi creates a TVarRec record, which stores the element’s type and value. The
array of TvarRec records is passed to the routine as a const open array The
routine can examine the type of each element of the array by checking the VType
member of each TVarRec record. Type variant open arrays give you a way to pass
a variable size argument list to a routine n a type-safe manner.

TVarRec is a variant record similar to a Variant, but implemented differently
Unlike a Variant, you can pass an object reference using TVarRec. Chapter 6,
System Constants, lists all the types that TVarRec supports. Example 1-8 shows a
simple example of a routine that converts a type variant open array to a string.

Example 1-8: Converting Type Variant Data to a String

function AsString(const Args: array of const): string;
var
I: Integer;
S: String;
begin
Result := '';
for I := Low(Args) to High(Args) do
begin
case Args[I].VType of
vtAnsiString:
S := PChar (Args([I].VAnsiString);
vtBoolean:
if Args[I].VBoolean then
S := 'True'
else
S := 'False’;
vtChar:
S := Args(I].VChar;
vtClass:
S := Args[I].VClass.ClassName;
vtCurrency:
S := FloatToStr (Args[I].VCurrency”);
vtExtended:
S := FloatToStr (Args([I].VExtended”);
vtInt64:
S := IntToStr(Args([I].VInt64");
vtInteger:
S := IntToStr(Args[I].VInteger);
vtInterface:
S := Format('%p', [Args[I].VInterfacel);
vtObject:
S := Args[I].VObject.ClassName;
vtPChar:
S := Args[I].VPChar;
vtPointer:
S := Format('%p', [Args[I].VPointer]);
vtPWideChar:
S := Args[I].vPWideChar;
vtString:
S := Args([I].VString”;

14 Chapter 1— Delphi Pascal

Example 1-8: Converting Type Variant Data to a String (continued)

vtVariant:
S := Args[I].VVariant”;
vtWideChar:
S := Args[I].VWideChar;
vtWideString:
S := WideString(Args[I].VWideString);
else
raise Exception.CreateFmt ('Unsupported VType=%d',
[Args([I].VType]);
end;
Result := Result + S;
end;
end;
Strings

Delphi has four kinds of strings: short, long, wide, and zero-terminated. A short
string 1s a counted array of characters, with up to 255 characters in the string. Short
strings are not used much in Delphi programs, but if you know a string will have
fewer than 255 characters, short strings incur less overhead than long strings.

Long strings can be any size, and the size can change at runtime. Delph: uses a
copy-on-write system to minimize copying when you pass strings as arguments to
routines or assign them to variables. Delphi maintains a reference count to free the
memory for a string automatically when the string is no longer used.

Wide strings are also dynamically allocated and managed, but they do not use
reference counting. When you assign a wide string to a WideString variable,
Delph: copies the entire string.

% Delphi checks string references the same way it checks dynamic
array references, that 1s, Delphi checks subscripts to see if they are in
range, but an empty long or wide string is represented by a nil
pointer. Testing the bounds of an empty long or wide string, there-
fore, results in an access violation instead of a range check error.

A zero-terminated string is an array of characters, indexed by an integer starting
from zero. The string does not store a size, but uses a zero-valued character to
mark the end of the string. The Windows API uses zero-terminated strings, but you
should not use them for other purposes. Without an explicit size, you lose the
benefit of bounds checking, and performance suffers because some operations
require two passes over the string contents or must process the string contents
more slowly, always checking for the terminating zero value. Delphi will also treat
a pointer to such an array as a string.

For your convenience, Delphi stores a zero value at the end of long and wide
strings, so you can easily cast a long string to the type PAnsiChar, PChar, or
PwWideChar to obtain a pointer to a zero-terminated stning. Delphi’s PChar type is
the equivalent of char* in C or C++

Data Types 15

=]
L
B
=
&
o
o
8
2

String literals

You can write a string literal in the standard Pascal way, or use a pound sign (#)
followed by an integer to specify a character by value, or use a caret (») followed
by a letter to specify a control character. You can mix any kind of string to form a
single literal, for example:

'Normal string: '#13#10'Next line (after CR-LF)'~I'That was a ''TAB'''

The caret (*) character toggles the sixth bit ($40) of the character’s value, which
changes an upper case letter to its control character equivalent. If the character 15
lowercase, the caret clears the fifth and sixth bits ($60). This means you can apply
the caret to nonalphabetic characters. For example, ~2 is the same as 'r' because
'2" has the ordinal value $32, and toggling the $40 bit makes it $72, which is the
ordinal value for 'r'. Delphi applies the same rules to every character, so you can
use the caret before a space, tab, or return, with the result that your code will be
completely unreadable.

Mixing string types

You can freely mix all different kinds of strings, and Delphi does its best to make
sense out of what you are trying to do. You can concatenate different kinds of
strings, and Delphi will narrow a wide string or widen a narrow string as needed.
To pass a string to a function that expects a PChar parameter, just cast a long
string to PChar. A short string does not automatically have a zero byte at the end,
so you need to make a temporary copy, append a #0 byte, and take the address
of the first character to get a PChar value.

Unicode and multibyte strings

Delphi supports Unicode with its WideChar, WideString and PWideChar types.
All the usual string operations work for wide strings and narrow (long or short)
strings. You can assign a narrow string to a WideString vanable, and Delphi
automatically converts the string to Unicode. When you assign a wide string to a
long (narrow) string, Delphi uses the ANSI code page to map Unicode characters
to multibyte characters.

A multibyte string 1s a string where a single character might occupy more than one
byte. (The Windows term for a multibyte character set is double-byte character
set.) Some national languages (e.g., Japanese and Chinese) use character sets that
are much larger than the 256 characters in the ANSI character set. Multibyte char-
acter sets use one or two bytes to represent a character, allowing many more
characters to be represented. In a multibyte string, a byte can be a single char-
acter, a lead byte (that is, the first byte of a multibyte character), or a trailing byte
(the second byte of a multibyte character). Whenever you examine a string one
character at a time, you should make sure that you test for multibyte characters
because the character that looks like, say, the letter “A” mught actually be the
trailing byte of an entirely different character.

Ironically, some of Delphi’s string handling functions do not handle multibyte
strings correctly Instead, the SysUtils unit has numerous string functions that
work correctly with multibyte strings. Handling multibyte strings is especally impor-

16 Chapter 1— Delphi Pascal

tant for filenames, and the SysUtils unit has special functions for working with
multibyte characters 1n filenames. See Appendix B, The SysUtils Unit, for details.

Windows NT and Windows 2000 support narrow and wide versions of most API
functions. Delphi defaults to the narrow versions, but you can call the wide func-
tions just as easily For example, you can call CreateFileW to create a file with a
Unicode filename, or you can call CreateFilea to create a file with an ANSI file-
name. CreateFile 1s the same as CreateFileA. Delphi's VCL uses the narrow
versions of the Windows controls, to maintain compatibility with all versions of
Windows. (Windows 95 and 98 do not support most Unicode controls.)

Boolean Types

Delphi has the usual Pascal Boolean type, but it also has several other types that
make it easier to work with the Windows API. Numerous API and other functions
written 1n C or C++ return values that are Boolean m nature, but are documented
as returning an mteger. In C and C++, any non-zero value is considered True, so
Delph: defines the LongBool, WordBool, and ByteBool values with the same
semantics.

For example, if you must call a function that was written in C, and the function
returns a Boolean result as a short mteger, you can declare the function with the
WordBool return type and call the function as you would any other Boolean-type
function in Pascal:

function SomeCFunc: WordBool; extermal 'TheCD11.dll';

if SomeCFunc then ...

It doesn’t matter what numeric value SomeCFunc actually returns; Delphi will treat
zero as False and any other value as True. You can use any of the C-like logtcal
types the same way you would the native Delphi Boolean type. The semantics are
wdentical. For pure Delphi code, you should always use Boolean.

Variants

Delpht supports OLE varant types, which makes it easy to write an OLE automa-
tion client or server. You can use Variants in any other situation where you want
a variable whose type can change at runtime, A Variant can be an array, a string,
a number, or even an IDispatch interface. You can use the Variant type or the
Olevariant type. The difference s that an OleVariant takes only COM-compat-
ible types, in particular, all strings are converted to wide strings. Unless the
distinction is important, this book uses the term Variant to refer to both types.

A Variant variable 1s always initialized to Unassigned You can assign almost
any kind of value to the variable, and it will keep track of the type and value. To
learn the type of a Variant, call the VarType function. Chapter 6 lists the values
that VarType can return. You can also access Delphi’s low-level implementation
of Variants by casting a Variant to the TVarData record type. Chapter S
describes TVarData n detail.

When you use a Variant i an expression, Delphi automatically converts the
other value in the expression to a Variant and returns a Variant result. You can

Data Types 17

[~
2
S
=
=
)
B
7]
o
8
2

assign that result to a statically typed variable, provided the Variant’s type is
compatible with the destination variable.

The most common use for Variants is to write an OLE automation client. You
can assign an IDispatch interface to a Variant variable, and use that variable to
call functions the mterface declares. The compiler does not know about these
functions, so the function calls are not checked for correctness until runtime. For
example, you can create an OLE client to print the version of Microsoft Word
installed on your system, as shown in the following code. Delphi doesn’t know
anything about the Version property or any other method or property of the
Word OLE client. Instead, Delphi compiles your property and method references
into calls to the IDispatch interface. You lose the benefit of compile-time checks,
but you gain the flexibility of runtime binding. (If you want to keep the benefits of
type safety, you will need a type library from the vendor of the OLE automation
server. Use the IDE’s type library editor to extract the COM interfaces the server's
type library defines. This 1s not part of the Delphi language, so the details are not
covered in this book.)

var
WordApp: Variant;
begin
try
WordApp := CreateOleObject ('Word.Application');
Writeln (WordApp.Version) ;
except
Writeln('Word is not installed');
end;
end;

Pointers

Pomters are not as important in Delphi as they are in C or C++ Delphi has real
arrays, so there is no need to simulate arrays using pomnters. Delphi objects use
their own syntax, so there 1s no need to use pointers to refer to objects. Pascal
also has true pass-by-reference parameters. The most common use for pointers 1s
nterfacing to C and C++ code, including the Windows APL

C and C++ programmers will be glad that Delphi’s rules for using pointers are
more C-like than Pascal-like. In particular, type checking is considerably looser for
pointers than for other types. (But see the $T and $TypedAddress directives, 1n
Chapter 8, which tighten up the loose rules.)

The type Pointer is a generic pomter type, equivalent to void* in C or C++
When you assign a pointer to a variable of type Pointer, or assign a Pointer-
type expression to a ponter variable, you do not need to use a type cast. To take
the address of a variable or routine, use Addr or @ (equivalent to & 1n C or C++),
When using a pointer to access an element of a record or array, you can omit the
dereference operator (*). Delphi can tell that the reference uses a pomter, and
supplies the ~ operator automatically

You can perform arithmetic on pointers in a slightly more restricted manner than
you can in C or C++. Use the Inc or Dec statements to advance or retreat a
pomter value by a certain number of base type elements. The actual pointer value

18 Chapter 1— Delph: Pascal

changes according to the size of the pointer’s base type. For example, incre-

menting a pointer to an Integer advances the pointer by 4 bytes: cg
=)

var =.
IntPtr: ~Integer; N
begin N

=l

Inc(IntPtr); // Make IntPtr point to the next Integer, 4 bytes later
Inc(IntPtr, 3); // Increase IntPtr by 12 bytes = 3 * SizeOf (Integer)

Programs that interface directly with the Windows API often need to work with
pointers explicitly For example, if you need to create a logical palette, the type
definition of TLogPalette requires dynamic memory allocation and pointer
manipulation, using 2 common C hack of declaring an array of one element. In
order to use TLogPalette in Delphi, you have to write your Delphi code using C-
like style, as shown m Example 1-9.

Example 1-9: Using a Pointer to Create a Palette

// Create a gray-scale palette with NumColors entries in it.
type
TNumColors = 1..256;
function MakeGrayPalette (NumColors: TNumColors) : HPalette;
var
Palette: PLogPalette; // pointer to a TLogPalette record
I: TNumColors;
Gray: Byte;
begin
// TLogPalette has a palette array of one element. To allocate
// memory for the entire palette, add the size of NumColors-1
// palette entries.
GetMem(Palette, SizeOf (TLogPalette) +
(NumColors-1) *SizeOf (TPaletteEntry)) ;

try
// In standard Pascal, you must write Palette*.palVersion,
// but Delphi dereferences the pointer automatically.
Palette.palVersion := $300;
Palette.palNumBEntries := NumColors;

for I := 1 to NumColors do
begin
// Use a linear scale for simplicity, even though a logarithmic
// scale gives better results.
Gray := I * 255 div NumColors;
// Turn off range checking to access palette entries past the first.

{$R-}

Palette.palPalEntry[I-1].peRed := Gray;
Palette.palPalEntry[I-1].peGreen := Gray;
Palette.palPalEntry(I-1].peBlue := Gray;
Palette.palPalEntry[I-1].peFlags := 0;
{$R+}
end;

Data Types 19

Example 1-9: Using a Pointer to Create a Palette (continued)

// Delphi does not dereference pointers automatically when used
// alone, as in the following case:
Result := CreatePalette(Palette”);
finally
FreeMem(Palette) ;
end;
end;

Function and Method Pointers

Delphi lets you take the address of a function, procedure, or method, and use that
address to call the routine. For the sake of simplicity, all three kinds of pomters
are called procedure pointers.

A procedure pointer has a type that specifies a function’s return type, the argu-
ments, and whether the pointer is a method pointer or a plain procedure pointer.
Source code 1s easier to read if you declare a procedure type and then declare a
varnable of that type, for example:

type
TProcedureType = procedure(Arg: Integer);
TFunctionType = function(Arg: Integer): string;
var
Proc: TProcedureType;
Func: TFunctionType;
begin
Proc := SomeProcedure;
Proc(42); // Call Proc as though it were an ordinary procedure

Usually, you can assign a procedure to a procedure variable directly. Delphi can
tell from context that you are not calling the procedure, but are assigning its
address. (A strange consequence of this simple rule 1s that a function of no argu-
ments whose return type is a function cannot be called in the usual Pascal
manner. Without any arguments, Delphi thinks you are trying to take the func-
tion’s address. Instead, call the function with empty parentheses—the same way C
calls functions with no arguments.)

You can also use the @ or Addr operators to get the address of a routine. The
explicit use of @ or Addr provides a clue to the person who must read and main-
tain your software.

Use a nil pointer for procedure pointers the same way you would for any other
pointer. A common way to test a procedure variable for a nil ponter 1s with the
Assigned function:

if Assigned(Proc) then
Proc (42);

Type Declarations

Delphi follows the basic rules of type compatibility that ordinary Pascal follows for
arithmetic, parameter passing, and so on. Type declarations have one new trick,
though, to support the IDE. If a type declaration begins with the type keyword,

20 Chapter 1— Delph: Pascal

Delph: creates separate runtime type information for that type, and treats the new
type as a distinct type for var and out parameters. If the type declaration is just a
synonym for another type, Delphi does not ordinarily create separate RTTI for the
type synonym. With the extra type keyword, though, separate RTTI tables let the
IDE distinguish between the two types. You can read more about RTTI in
Chapter 3.

Variables and Constants

Unlike standard Pascal, Delphi lets you declare the type of a constant, and you
can initialize a global variable to a constant value. Delphi also supports multi-
threaded applications by letting you declare varables that have distinct values in
each thread of your application.

Typed Constants

When you declare the type of a constant, Delph: sets aside memory for that
constant and treats it as a variable. You can assign a new value to the “constant,”
and it keeps that value. In C and C++, this entity is called a static variable.

// Return a unigue number each time the function is called.
function Counter: Integer;
const
Count: Integer = 0;
begin
Inc(Count) ;
Result := Count;
end;

At the unit level, a variable retains its value 1n the same way, so you can declare it
as a constant or as a vanable. Another way to write the same function is as
follows:

var
Count: Integer = 0;
function Counter: Integer;
begin
Inc{Count);
Result := Count;
end;
The term “typed constant” is clearly a misnomer, and at the unit level, you should
always use an initialized var declaration instead of a typed constant. You can
force yourself to follow this good habit by disabling the J or $WriteableConst
compiler directive, which tells Delphi to treat all constants as constants. The
default, however, is to maintain backward compatibility and let you change the
value of a typed constant. See Chapter 8 for more information about these
compiler directives.

For local variables in a procedure or function, you cannot mitialize vanables, and
typed constants are the only way to keep values that persist across different calls
to the routine. You need to decide which is worse: using a typed constant or
declaring the persistent variable at the unit level.

Vanriables and Constants 21

1eased 1ydjag

Thread Variables

Delphi has a unique kind of variable, declared with threadvar instead of var.
The difference 1s that a threadvar variable has a separate value in each thread of
a multithreaded application. An ordinary vanable has a single value that 1s shared
among all threads. A threadvar variable must be declared at the unit level.

Delphi implements threadvar variables using thread local storage (TLS) in the
Windows API. The advantage of using threadvar mstead of directly using TLS is
that Windows has a small number of TLS slots available, but you can declare any
number and size of threadvar variables. More important, you can use
threadvar variables the way you would any other variable, which is much easier
than messing around with TLS. You can read more about threadvar and its uses
in Chapter 4, Concurrent Programming.

Exception Handling

Exceptions let you interrupt a program’s normal flow of control. You can raise an
exception in any function, procedure, or method. The exception causes control to
jump to an earlier point 1n the same routine or in a routine farther back 1n the call
stack. Somewhere in the stack must be a routine that uses a try-except-end
statement to catch the exception, or else Delphi calls ExceptProc to handle the
exception.

Delphi has two related statements for dealing with exceptions. The try-except
statement sets up an exception handler that gets control when something goes
wrong. The try-finally statement does not handle exceptions explicitly, but
guarantees that the code in the finally part of the statement always runs, even if
an exception 1s raised. Use try-except to deal with errors. Use try-finally
when you have a resource (such as allocated memory) that must be cleaned up
properly, no matter what happens. The try-except statement 1s similar to try-
catch in C++ or Java. Standard C++ does not have finally, but Java does. Some
C++ compilers, including Borland’s, extend the C++ standard to add the same
functionality, e.g., with the ___finally keyword.

Like C++ and Java, Delphi’s try-except statement can handle all exceptions or
only exceptions of a certain kind. Each try-except statement can declare many
on sections, where each section declares an exception class. Delphi searches the
on sections in order, trying to find an exception class that matches, or 1s a super-
class of, the exception object’s class. Example 1-10 shows an example of how to
use try-except.

Example 1-10: Using try-except to Handle an Exception

function ComputeSomething:
begin
try
PerformSomeDifficultComputation;
except
on Ex: EDivideByZero do
Writeln('Divide by zero error');

22 Chapter 1- Delphi Pascal

Example 1-10: Using try-except to Handle an Exception (continued)

on Ex: EOverflow do
Writeln('Overflow error');
else
raise; // reraise the same exception, to be handled elsewhere

end;
end;

In a multithreaded application, each thread can maintain its own exception infor-
mation and can raise exceptions independently from the other threads. See
Chapter 4 for details.

When your code raises an exception, it must pass an object to the raise state-
ment. Usually, 2 program creates a new exception object as part of the raise
statement, but in rare circumstances, you might want to raise an object that already
exists. Delphi searches the call stack to find try statements. When it finds a try-
finally, it executes the code in the finally part of the statement, then
continues to search the stack for an exception handler. When the stack unwinds to
a try-except block, Delphi searches the on sections to find one that matches the
exception object. If there are no on sections, Delphi runs the code 1n the except
part of the statement. If there are on sections, Delphi tries to find a match, or it
runs the code in the else part of the except block.

The variable that is declared in the on statement contains a reference to the excep-
tion object. Delphi automatically frees the object after the exception handler
finishes. (See Chapter 2 for more information on objects.)

If Delphi reaches the end of the call stack without finding a matching exception
handler, it calls ExceptProc. ExceptProc is actually a pointer variable, pointing
to a procedure of two arguments: the exception object and the address where the
exception occurred. For example, you might want to record unhandled excep-
tions in a special log file, as shown in Example 1-11.

Example 1-11: Logging Unbandled Exceptions to a File

var
LogFileName: string = 'C:\log.txt';

procedure LogExceptProc(ExceptObject: TObject; ErrorAddr: Pointer);
const

Size = 1024;
resourcestring

Title = 'Internal error: Please report to technical support';
var

Buffer: PChar[0..Size-1];

F: TextFile;
begin

ExceptionErrorMessage (ExceptObject, ExceptAddr, Buffer, Size);

AssignFile(F, LogFileName);

if FileExists(LogFileName) then
AppendFile(F)

else
Rewrite(F);

Exception Handling 23

(]
2
3
=
=
)
X
v
]
8
=)

Example 1-11. Logging Unbandled Exceptions to a File (continued)

WriteLn(F, Buffer);
CloseFile(F);

MessageBox (0, Buffer, Title, Mb_IconStop);
end;

// Tell Delphi to use your exception procedure.
ExceptProc := GLogExceptProc;

Delphi also catches runtime errors, such as stack overflow, and calls ErrorProc
for each one. Note that ExrrorProc 1s actually a pointer varable whose value is a
procedure pointer. To set up an error handler, declare a procedure and assign its
address to ErrorProc.

The System unit deals with two kinds of error codes: internal and external. If you
write an ErrorProc procedure, it must deal with internal error codes. These are
small numbers, where each number indicates a kind of error. Chapter 6 lists all the
internal error codes. Delphi’s default ErrorProc maps mternal error codes to
external error codes. External error codes are documented m Delphi’s help files
and are visible to the user. Chapter 6 also lists the external error codes.

When Delpht calls ErrorProc, it passes two arguments: the error code and the
instruction address where the error occurred. Your error handler might look like
the following, for example:
procedure DumbErrorProc (ErrorCode: Integer; ErrorAddr: Pointer);
begin
ShowMessage (Format ('Runtime error %d at %p', [ErrorCode, ErrorAddrl));
end;

ErrorProc := @DumbErrorProc;

The SysUtils unit provides extra help for working with exceptions
and runtime errors. In particular, it defines ErrorProc and
ExceptProc procedures. ExrrorProc turns a runtime error into an
exception, such as EStackOverflow for a stack overflow error, The
ExceptProc routine displays the exception message, then halts the
program. In a console application, the exception message 1s written
to the standard output, and in GUI applications, it 1s displayed in a
dialog box.

The SysUtils unit sets up the ErrorProc and ExceptProc rou-
tines 1n its initialization section. If your application raises an excep-
tion or runtime error before the SysUtils unit is initialized, you
won’t get the benefit of its routines and exception handlers. There-
fore, when your application reports a raw runtime error, not
wrapped as an exception, your problem probably lies 1n an nitializa-
tion or finalization section.

24 Chapter 1— Delphi Pascal

To raise an exception, use the raise statement, followed by an object reference.
Usually, the raise statement creates a brand-new object. You can create an object
of any class to use as the exception object, although most programs use
SysUtils.Exception or one of its dertved classes.

Delph: keeps track of information about an exception, where it was raised, the
program’s context when it was raised, and so on. You can access this information
from various vanables in the System unit. The full details are explamed in
Chapter 5, but Table 1-3 presents an overview of the relevant variables.

Table 1-3: Exception and Error-Related Variables

Declaration Description

AbstractErrorProc Abstract method error handler.
AssertErrorProc Assertion error handler.

ErrorAddr Address of runtime error.

ErrorProc Error handler procedure.

ExceptClsProc Map a Windows exception to a Delphi class.
ExceptionClass Exception base class.

ExceptObjProc Map a Windows exception to a Delphi object.
ExceptProc Unhandled exception handler.
SafeCallErrorProc Safecall error handler.

When an exception unwinds the call stack, Delphi calls the code in the finally
part of each enclosing try-finally block. Delphi also cleans up the memory for
dynamuc arrays, long strings, wide strings, interfaces, and Variants that have gone
out of scope. (Strictly speaking, it decreases the reference counts, so the actual
memory 1s freed only if there are no other references to the string or array.)

If a finally block raises an exception, the old exception object is freed, and
Delphi handles the new exception.

The most common use for a try-finally statement is to free objects and release
other resources. If a routine has multiple objects to free, it’s usually simplest to
initialize all variables to nil, and use a single try-finally block to free all the
objects at once. If an object’s destructor 1s likely to raise an exception, though, you
should use nested try-finally statements, but in most cases the technique
shown n Example 1-12 works well.

Example 1-12: Using try-finally to Free Multiple Objects

// Copy a file. If the source file cannot be opened, or the
// destination file cannot be created, raise EFileCopyError,
// and include the original error message in the new exception
// message. The new message gives a little more information
// than the original message.
type

EFileCopyError = class(EStreamError) ;

procedure CopyFile(const ToFile, FromFile: string);
var

Exception Handling 25

[
L
=)
=
=
Ay
(%]
S
X
o

Example 1-12: Using try-finally to Free Multiple Objects (continued)

FromStream, ToStream: TFileStream;
resourcestring

sCamnotRead = 'Cannot read file: %s';

sCannotCreate = 'Cannot create file: %s';
begin

ToStream := nil;

FromStream := nil;

try
try
FromStream := TFileStream.Create(FromFile, fmOpenRead);
except
// Handle EFopenError exceptions, but no other kind of exception.
on Ex: EFOpenError do
// Raise a new exception.
raise EFileCopyError.CreateFmt (sCannotRead, [EX. Messagel) ;
end;
try
ToStream := TFileStream.Create(ToFile, fmCreate);
except
on Ex: EFCreateError do
raise EFileCopyError.CreateFmt{sCannotCreate, [Ex. Message]) ;
end;

// Now copy the file.
ToStream.CopyFrom(FromStream, 0);

finally
// All done. Close the files, even if an exception was raised.
ToStream.Free;
FromStream.Free;

end;

eng;

File I/O

Traditional Pascal file I/O works in Delphi, but you cannot use the standard Input
and Output files n a GUI application. To assign a filename to a File or
TextFile variable, use AssignFile. Reset and Rewrite work as they do in
standard Pascal, or you can use Append to open a file to append to its end. The
file must already exist. To close the file, use CloseFile. Table 1-4 lists the I/O

procedures Delphi provides.

Table 1-4: File /O Procedures and Functions

Routine Description

Append Open an existing file for appending.

AssignFile or Assign | Assign a filename to a File or TextFile variable.
BlockRead Read data from a file.

BlockWrite Write data to a file.

CloseFile or Close Close an open file.

Eof Returns True for end of file.

Erase Delete a file.

26 Chapter 1~ Delphi Pascal

Table 1-4: File /O Procedures and Functions (continued)

Routine Description

FilePos Return the current file position.

FileSize Return the size of a file, in records.

Read Read formatted data from a file or text file.
Readln Read a line of data from a text file.
Rename Rename a file.

Reset Open a file for reading.

Rewrite Open a file for writing, erasing the previous contents.
Seek Change the file position.

Write Write formatted data.

WriteLn Write a line of text.

When you open a file with Reset, the FileMode variable dictates the mode for
opening the file. By default, FileMode is 2, which allows read and write access. If
you just want to read a file, you should set FileMode to 0 before calling Reset.
(Set FileMode to 1 for write-only access.)

Delphi’s runtime library has a better way to do file /O using streams. Streams are
object oriented and offer much more flexibility and power than traditional Pascal
I/O. The only time not to use streams is when you cannot use the library and must
stick to the Delphi Pascal language only. Chapter 5 presents all the file I/O proce-
dures. Read about TStream and related stream classes in Delphi’s online help
files.

D% Delphi does not support the standard Pascal procedures Get and

Functions and Procedures

Delphi supports several extensions to standard Pascal functions and procedures.
You can overload routines by declaring multiple routines with the same name, but
different numbers or types of parameters. You can declare default values for
parameters, thereby making the parameters optional. Almost everything in this
section applies equally to functions and procedures, so the term routine 1s used
for both.

Overloading

You can overload a routine name by declaring multiple routines with the same
name, but with different arguments. To declare overloaded routines, use the
overload directive, for example:

function AsString(Int: Integer): string; overload;
function AsString(Float: Extended): string; overload;

Functions and Procedures 27

jeased yojaq

function AsString(Float: Extended; MinWidth: Integer):string; overload;
function AsString(Bool: Boolean): string; overload;

When you call an overloaded routine, the compiler must be able to tell which
routine you want to call. Therefore, the overloaded routines must take different
numbers or types of arguments. For example, using the declarations above, you
can tell which function to call just by comparing argument types:

Str := AsString(42); // call AsString(Integer)
Str := AsString(42.0); // call AsString({Extended)
Str := AsString(42.0, 8); // call AsString(Extended, Integer)

Sometimes, unit A will declare a routine, and unit B uses unit A, but also declares
a routine with the same name. The declaration m unit B does not need the
overload directive, but you might need to use unit A’s name to qualify calls to
A’s version of the routine from unit B. A derived class that overloads a method
from an ancestor class should use the overload directive.

Default Parameters

Sometimes, you can use default parameters instead of overloaded routines. For
example, consider the following overloaded routines:

function AsString(Float: Extended): string; overload;
function AsString(Float: Extended; MinWidth: Integer):string; overload;

Most likely, the first overloaded routine converts its floating-point argument to a
string using a predefined mmmmum width, say, 1. In fact, you might even write the
first AsString function so it calls the second one, for example:

function AsString(Float: Extended): string;
begin

Result := AsString(Float, 1)
end;

You can save yourself some headaches and extra code by writing a single routine
that takes an optional parameter. If the caller does not provide an actual argu-
ment, Delphi substitutes a default value:

function AsString(Float: Extended; MinWidth: Integer = 1): string;

Judicious use of default parameters can save you from writing extra overloaded
routines. Be careful when using string-type parameters, though. Delph: must
compile the string everywhere the routine is called with the default parameter.
This isn’t a problem if the string is empty (because Delphi represents an empty
string with a nil pomter), but if the string 15 not empty, you should use an initial-
ized variable (or typed constant). That way, Delphi can store a reference to the
variable when it needs to use the default parameter. The alternative 1s to let Delpln
waste space storing extra copies of the string and waste time creating a new
mnstance of the string for each function call.

Result Variable

Delphi borrows a feature from the Eiffel language, namely the Result variable.
Every function implicitly declares a variable, named Result, whose type 1s the

28 Chapter 1— Delph: Pascal

function’s return type. You can use this variable as an ordinary variable, and when
the function returns, it returns the value of the Result variable. Using Result 1s
more convenient than assigning a value to the function name, which 1s the stan-
dard Pascal way to return a function result. Because Result is a variable, you can
get and use its value repeatedly In standard Pascal, you can do the same by
declaring a result variable explicitly, provided you remember to assign the result to
the function name. It doesn’t make a big difference, but the little niceties can add
up in a large project. Delphi supports the old way of returning a function result, so
you have a choice. Whichever approach you choose, be consistent. Example 1-13
shows two different ways to compute a factorial: the Delpht way and the old-

fashioned way

Example 1-13: Using the Result Variable

// Computing a factorial in Delphi.
function Factorial (Number: Cardinal): Inté4;

var

N: Cardinal;
begin

Result := 1;

for N := 2 to Number do
Result := Result * N;
end;

// Computing a factorial in standard Pascal.
function Factorial (Number: Integer): Integer;
var

N, Result: Integer;
begin

Result := 1;

for N := 2 to Number do

Result := Result * N;

Factorial := Result;

end;

™ Delphi usually mitializes string and dynamic array variables, but
¥/ Result is special. It's not really a local variable, but is more like a
hidden var parameter. In other words, the caller must initialize it.
The problem 1s that Delph: does #not always initialize Result. To be
safe, if your function returns a string, interface, dynamic array, or
Variant type, imitialize the Result variable to an empty string,
array, or Unassigned

Functions and Procedures

29

[eased 1ydag

The Delphi Object Model

Delphi’s support for object-oriented programming s rich and powerful. In addi-
tion to traditional classes and objects, Delphi also has interfaces (similar to those
found in COM and Java), exception handiing, and multithreaded programming.
Thus chapter covers Delphi’s object model in depth. You should already be
familiar with standard Pascal and general principles of object-oriented
programming.

Classes and Objects

Think of a class as a record on steroids. Like a record, a class describes a type that
comprises any number of parts, called fields. Unlike a record, a class can also
contain functions and procedures (called methods), and properties. A class can
nherit from another class, i which case it nherits all the fields, methods, and
properties of the ancestor class.

An object is a dynamic mnstance of a class. An object is always allocated dynam-
cally, on the heap, so an object reference 1s like a pointer (but without the usual
Pascal caret operator). When you assign an object reference to a variable, Delphi
coptes only the pointer, not the entire object. When your program finishes using
an object, it must explicitly free the object. Delphi does not have any automatic
garbage collection (but see the section “Interfaces,” later in this chapter).

For the sake of brevity, the term object reference 1s often shortened to obyect, but
in precise terms, the object is the chunk of memory where Delphi stores the
values for all the object’s fields. An object reference is a pointer to the object. The
only way to use an object in Delphi is through an object reference. An object
reference usually comes in the form of a varable, but it mught also be a function
or property that returns an object reference.

A class, t00, 1s a distinct entity (as in Java, but unlike C++). Delphi’s representa-
tion of a class is a read-only table of pomters to virtual methods and lots of
information about the class. A class reference is a pointer to the table. (Chapter 3,

30

Runtime Type Information, describes in depth the layout of the class tables.) The
most common use for a class reference 1s to create objects or to test the type of an
object reference, but you can use class references in many other situations,
including passing class references as routine parameters or returning a class refer-
ence from a function. The type of a class reference 1s called a metaclass.

Example 2-1 shows several class declarations. A class declaration 1s a type declara-
tion that starts with the keyword class. The class declaration contains field,
method, and property declarations, ending with the end keyword. Each method
declaration 1s like a forward declaration: you must implement the method in the
same unit (except for abstract methods, which are discussed later m this chapter).

=]
=
o
[x]
2
S
2
@
)

ydjag ayy

Example 2-1. Examples of Classes and Objecis

type
TAccount = class
private
fCustomer: string; // name of customer
fNumber: Cardinal; // account number
fBalance: Currency; // current account balance
end;
TSavingsAccount = class(TAccount)
private
fInterestRate: Integer; // annual percentage rate, scaled by 1000
end;
TCheckingAccount = class (TAccount)

private
fReturnChecks: Boolean;
end;
TCertificateOfDeposit = class(TSavingsAccount)
private
fTerm: Cardinal; // CD maturation term, in days
end;
var
CD1, CD2: TAccount;
begin
CD1 := TCertificateOfDeposit.Create;

CD2 := TCertificateOfDeposit.Create;

n

Figure 2-1 depicts the memory layout of the objects and classes from Example 2-1.
The variables and their associated objects reside in read-write memory Classes
reside in read-only memory, along with the program code.

Delphi’s object model is similar to those in other object-ortented languages, such
as C++ and Java. Table 2-1 shows a quick comparison between Delphi and several
other popular programming languages.

The following sections explain each of these language features in more detail.

Classes and Objects 31

Figure 2-1. The memory layout of objects and classes

Table 2-1. Delphi Versus the World

Language Feature Delpbt | Java | C++ | Visual Basic
Inheritance v v
Multiple inheritance
Interfaces

AN

Single root class

NSNS

Metaclasses

Class (static) fields
Virtual methods
Abstract (pure) virtual methods
Class (static) methods
Dynamic methods
Garbage collection
Variant types

OLE automation
Static type-checking
Exception handling

AN NN
AN NI NN

NSNS oSS s
<\
NN @

32 Chapter 2 - The Delphr Object Model

Table 2-1. Delph: Versus the World (continued)

Language Feature Delpht | Java | C++ | Visual Basic
Function overloading v v v

Operator overloading v

Non-class functions v v v
Non-object variables v v v
Properties v v
Runtime type information v v <

Generic types (templates) v

Built-in support for threads v/ 4

Message passing v

Built-in assembler v d

Inline functions v/

4 C++ can emulate interfaces with abstract classes.

b Interfaces use reference counting to manage lifetimes.

¢ RTTI in C++ 1s limited to comparing and casting types.

d A built-in assembler 1s not part of the C++ language standard, but most C++ com-
pilers, including Borland’s, support a built-in assembler as a language extension.

Classes

A class declaration 1s a kind of type declaration. A class declaration describes the
fields, methods, and properties of the class. You can declare a class 1n an nter-
face or implementation section of a unit, but the methods—like any other function
or procedure—are defined in the implementation section. You must implement a
class’s methods 1n the same unit as the class declaration.

A class declaration has one or more sections for different access levels (private,
protected, public, published, or automated). Access levels are discussed later in
thus chapter, You can mux sections in any order and repeat sections with the same
access level.

Within each section, you can have any number of fields, followed by method and
property declarations. Method and property declarations can be mixed together,
but all fields must precede all methods and properties within each section. Unlike
Java and C++, you cannot declare any types nested inside a class declaration.

A class has a single base class, from which it inherits all the fields, properties, and
methods. If you do not list an explicit base class, Delph1 uses TObject. A class
can also implement any number of interfaces. Thus, Delphi’s object model most
closely resembles that of Java, where a class can extend a single class and mmple-
ment many interfaces.

The convention in Delphi is that type names begin with the letter T,
as in TObject. It’s just a convention, not a language rule. The IDE,
on the other hand, always names form classes with an initial T.

Classes and Objects 33

(]
=
o
o
2
=
S
@
=

=
@
[
L
=
=

A class reference is an expression that refers to a specific class. A class reference is
not quite a first class object, as it is in Java or Smalltalk, but is used to create new
objects, call class methods, and test or cast an object’s type. A class reference 1s
implemented as a pointer to a table of information about the class, especially the
class’s virtual method table (VMT). (See Chapter 3 for the complete details of
what's inside a VMT.)

The most common use for a class reference is to create instances of that class by
calling a constructor. You can also use a class reference to test the type of an
object (with the is operator) or to cast an object to a particular type (with the as
operator). Usually, the class reference is a class name, but it can also be a variable
whose type is a metaclass, or a function or property that returns a class reference.
Example 2-2 shows an example of a class declaration.

Example 2-2: Declaring a Class and Metaclass

type

TComplexClass = class of TComplex; // metaclass type

TComplex = class(TPersistent)

private
fReal, fImaginary: Double;

public
constructor Create(Re: Double = 0.0); overload;
constructor Create(Re, Im: Double); overload;
destructor Destroy; override;
procedure Assign(Source: TPersistent); override;
function AsString: string;

published
property Real: Double read fReal write fReal;
property Imaginary: Double read fImaginary write fImaginary;

end;

Objects

An object 15 a dynamic instance of a class. The dynamic mstance contains values
for all the fields declared in the class and all of its ancestor classes. An object also
contains a hidden field that stores a reference to the object’s class.

Objects are always allocated dynamucally, on the heap, so an object reference 1s
really a pointer to the object. The programmer is responsible for creating objects
and for freeing them at the appropriate time. To create an object, use a class refer-
ence to call a constructor, for example:

Obj := TSomeClass.Create;

Most constructors are named Create, but that is a convention, not a requirement
of Delphi. You will sometimes find constructors with other names, especially older
classes that were written before Delphi had method overloading. For maximum
compatibility with C++ Builder, which does not let you name constructors, you
should stick with Create for all your overloaded constructors.

To get nd of the object when your program no longer needs tt, call the Free
method. To ensure that the object is properly freed, even if an exception 1s raised,

34 Chapter 2— The Delphi Object Model

use a try-finally exception handler. (See Chapter 1, Delphi Pascal, for more
information about try-finally.) For example:

Obj := TSomeOtherClass.Create;

try
Obj . DoSomethingThatMightRaiseAnException;
Obj .DoSomethingElse;

finally
Obj.Free;

end;

When freeing a global variable or field, always set the variable to nil when
freeing the object so you are not left with a variable that contains an invalid
pointer. You should take care to set the variable to nil before freeing the object.
If the destructor, or a method called from the destructor, refers to that variable,
you usually want the variable to be nil to avoid any potential problems. An easy
way to do this is to call the FreeAndNil procedure (from the SysUtils unit):

1ydjag

)

=
)
[}
2
s
=N
©
2

GlobalVar := TFruitWigglies.Create;
try
GlobalvVar .EatEmUp;
finally
FreeAndNil (GlobalVar) ;
end;

Each object has a separate copy of all of its fields. A field cannot be shared among
multiple objects. If you need to share a variable, declare the variable at the unit
level or use indirection: many objects can hold separate pointers or object refer-
ences that refer to common data.

Inberitance

A class can inherit from another class. The derived class inherits all the fields,
methods, and properties of the base class. Delphi supports only single inherit-
ance, so a class has one base class. That base class can have its own base class,
and so on, so a class inherits the fields, properties, and methods of every ancestor
class. A class can also implement any number of interfaces (which are covered
later in this chapter). As in Java, but not C++, every class inherits from a single
root class, TObject. If you do not specify an explicit base class, Delph1 automati-
cally uses TObject as the base class.

A base class 1s a class’s immediate parent class, which you can see in
the class declaration. An ancestor class is the base class or any other
class 1n the inheritance chain up to TObject. Thus, in Example 2-1,
TCertificateOfDeposit has a base class of TSavingsAccount; its
ancestor classes are TObject, TAccount, and TSavingsAccount.

The TObject class declares several methods and one special, hidden field to store
a reference to the object’s class. This hidden field points to the class’s virtual
method table (VMT). Every class has a unique VMT and all objects of that class

Classes and Objects 35

share the class’s VMT. Chapter 5, Language Reference, covers the other details of
the TObject class and its methods.

You can assign an object reference to a variable whose type is the object’s class or
any of its ancestor classes. In other words, the declared type of an object refer-
ence is not necessarily the same as the actual type of the object. Assignments that
go the other way—assigning a base-class object reference to a derved-class vari-
able—are not allowed because the object might not be of the correct type.

Delphi retains the strong type-checking of Pascal, so the compiler performs
compile-time checks based on the declared type of an object reference. Thus, all
methods must be part of the declared class, and the compiler performs the usual
checking of function and procedure arguments. The compiler does not necessarily
bind the method call to a specific method implementation. If the method is virtual,
Delpht waits until runtime and uses the object’s true type to determme which
method implementation to call. See the section “Methods,” later i this chapter for
details.

Use the is operator to test the object’s true class. It returns True if the class refer-
ence is the object’s class or any of its ancestor classes. It returns False if the object
reference 1s nil or of the wrong type. For example:

if Account is TCheckingAccount then ... // tests the class of Account
if Account is TObject then ... // True when Account is not nil

You can also use a type cast to obtain an object reference with a different type. A
type cast does not change an object; it just gives you a new object reference.
Usually, you should use the as operator for type casts. The as operator automati-
cally checks the object’s type and raises a runtime error if the object’s class 1s not a
descendant of the target class. (The SysUtils unit maps the runtime error to an
EInvalidCast exception.)

Another way to cast an object reference is to use the name of the target class in a
conventional type cast, similar to a function call. This style of type cast does not
check that the cast 1s valid, so use it only if you know it 1s safe, as shown in
Example 2-3.

Example 2-3: Using Static Type Casts

var
Account: TAccount;
Checking: TCheckingAccount;

begin
Account := Checking; // Allowed
Checking := Account; // Compile~time error
Checking := Account as TCheckingAccount; // Okay
Account as TForm; // Raises a runtime error
Checking := TCheckingAccount (Account) ; // Okay, but not recommended
if Account is TCheckingAccount then // Better
Checking := TCheckingAccount (Account)
else

Checking := nil;

36 Chapter 2~ The Delpbr Object Model

Fields

A field is a variable that is part of an object. A class can declare any number of
fields, and each object has its own copy of every field declared 1n its class and in
every ancestor class. In other languages, a field mught be called a data member, an
mnstance variable, or an attribute. Delphi does not have class variables, class
instance vanables, static data members, or the equivalent (that is, variables that are
shared among all objects of the same class). Instead, you can usually use unit-level
vartables for a similar effect.

A field can be of any type unless the field 1s published. In a published section, a
field must have a class type, and the class must have runtime type information
(that 1s, the class or an ancestor class must use the $M+ directive). See Chapter 3
for more information.

When Delphi first creates an object, all of the fields start out empty, that is,
pointers are initialized to nil, strings and dynamic arrays are empty, numbers
have the value zero, Boolean fields are False, and Variants are set to
Unassigned. (See NewInstance and InitTInstance in Chapter 5 for details.)

A derived class can declare a field with the same name as a field in an ancestor
class. The derived class’s field hides the field of the same name in the ancestor
class. Methods in the derived class refer to the derived class’s field, and methods
1n the ancestor class refer to the ancestor’s field.

Methods

Methods are functions and procedures that apply only to objects of a particular
class and its descendants. In C++, methods are called “member functions.”
Methods differ from ordinary procedures and functions in that every method has
an mmplicit parameter called Self, which refers to the object that 1s the subject of
the method call. S8elf is similar to this in C++ and Java. Call a method the same
way you would call a function or procedure, but preface the method name with
an object reference, for example:

Object .Method (Argument) ;

A class method applies to a class and its descendants. In a class method, Self
refers not to an object but to the class. The C++ term for a class method is “static
member function.”

You can call a method that is declared 1n an object’s class or in any of its ancestor
classes. If the same method is declared in an ancestor class and in a derived class,
Delphi calls the most-derived method, as shown in Example 2-4.

Example 2-4: Binding Static Methods

type
TAccount = class
public
procedure Withdraw(Amount: Currency);
end;
TSavingsAccount = class(TAccount)
public

Classes and Objects 37

1ydjag ayy

]
=
3
o
2
=
S
QU
o
)

Example 2-4: Binding Static Methods (continued)

procedure Withdraw(Amount: Currency);
end;
var
Savings: TSavingsAccount;
Account: TAccount;

begin
Savings.Withdraw(1000.00); // Calls TSavingsAccount.Withdraw
Account.Withdraw(1000.00); // Calls TAccount.Withdraw

An ordinary method s called a static method because the compiler binds the
method call directly to a method implementation. In other words, the binding 1s
static. In C++ this is an ordinary member function, and in Java it’s called a “final
method.” Most Delphi programmers refrain from using the term static method,
preferring the simple term, method or even non-virtual method.

A virtual method is a method that is bound at runtime instead of at compile time.
At compile time, Delphi uses the declared type of an object reference to deter-
mine which methods you are allowed to call. Instead of compiling a direct
reference to any specific method, the compiler stores an indirect method refer-
ence that depends on the object’s actual class. At runtime, Delphi looks up the
method in the class’s runtime tables (specifically, the VMT), and calls the method
for the actual class. The object’s true class mght be the compile-time declared
class, or it might be a derived class—it doesn’t matter because the VMT provides
the pointer to the correct method.

To declare a virtual method, use the virtual directive 1n the base class, and use
the override directive to provide a new definition of the method in a derived
class. Unlike 1n Java, methods are static by default, and you must use the virtual
directive to declare a virtual method. Unlike in C++, you must use the override
directive to override a virtual method 1n a derved class.

Example 2-5 uses virtual methods.

Example 2-5: Binding Virtual Methods

type
TAccount = class
public
procedure Withdraw(Amount: Currency); virtual;
end;
TSavingsAccount = class(TAccount)
public
procedure Withdraw(Amount: Currency); override;
end;
var

Savings: TSavingsAccount;
Account: TAccount;
begin

38 Chapter 2— The Delphi Object Model

Example 2-5: Binding Virtual Methods (continued)

Savings .Withdraw(1000.00); // Calls TSavingsAccount.Withdraw
Account := Savings;
Account .Withdraw(1000.00) ; // Calls TSavingsAccount.Withdraw

Instead of using the virtual directive, you can also use the dynamic directive.
The semantics are identical, but the implementation 1s different. Looking up a
virtual method in a VMT is fast because the compiler generates an index directly
into a VMT. Looking up a dynamic method is slower. Calling a dynamic method
requires a linear search of a class’s dynamic method table (DMT). If the class does
not override that method, the search continues with the DMT of the base class.
The search continues with ancestor classes until TObject is reached or the
method is found. The tradeoff is that in a few circumstances, dynamic methods
take up less memory than virtual methods. Unless you are writing a replacement
for the VCL, you should use virtual methods, not dynamic methods. See Chapter 3
for a complete explanation of how dynamic and virtual methods are implemented.

A virtual or dynamic method can be declared with the abstract directive, in
which case the class does not define the method. Instead, derived classes must
override that method. The C++ term for an abstract method 1s a “pure virtual
method.” If you call a constructor for a class that has an abstract method, the
compiler issues a warning, telling you that you probably made a mistake. You
probably wanted to create an instance of a derived class that overnides and imple-
ments the abstract method. A class that declares one or more abstract methods is
often called an abstract class, although some people reserve that term for a class
that declares only abstract methods.

If you write an abstract class that inherits from another abstract class,
you should redeclare all abstract methods with the override and
abstract directives. Delphi does not require this, but common
sense does. The declarations clearly inform the maintainer of the
code that the methods are abstract. Otherwsse, the maintainer must
wonder whether the methods should have been mmplemented or
should have remained abstract. For example:
type
TBaseAbstract = class
procedure Method; virtual; abstract;
end;
TDerivedabstract = class (TBaseAbsract)
procedure Method; override; abstract;
end;
TConcrete = class(TDerivedAbstract)
procedure Method; override;
end;

A class method or constructor can also be virtual. In Delph, class references are
real entities that you can assign to variables, pass as parameters, and use as refer-
ences for calling class methods. If a constructor 1s virtual, a class reference can

Classes and Objects 39

1ydiag ayy

)]
=
1)
b
—~
s
=
]
-

have a static type of the base class, but you can assign to it a class reference for a
derived class. Delpht looks up the virtual constructor n the class's VMT and calls
the constructor for the derived class.

Methods (and other functions and procedures) can be overloaded, that 1s, multiple
routines can have the same name, provided they take different arguments. Declare
ovetloaded methods with the overload directive. A derved class can overload a
method it inherits from a base class. In that case, only the derived class needs the
overload directive. After all, the author of the base class cannot predict the future
and know when other programmers might want to overload an inherited method.
Without the overload directive 1n the derived class, the method 1n the derived class
hides the method in the base class, as shown in Example 2-6.

Example 2-6: Overloading Methods

type
TAuditKind = (aulnternal, auExternal, aulIRS, auNasty) ;
TAccount = class
public
procedure Audit;
end;
TCheckingAccount = class(TAccount)
public
procedure Audit(Kind: TAuditKind); // Hides TAccount.Audit
end;
TSavingsAccount = class (TAccount)
public
// Can call TSavingsAccount.Audit and TAccount.Audit
procedure Audit (Kind: TAuditKind); overload;
end;
var
Checking: TCheckingAccount;
Savings: TSavingsAccount;
begin
Checking := TCheckingAccount.Create;
Savings := TSavingsAccount.Create;

Checking.Audit; // Error because TAccount.Audit is hidden
Savings.Audit; // Okay because Audit is overloaded
Savings.Audit (auNasty) ; // Okay

Checking.Audit (auInternal); // Okay

Constructors

Every class has one or more constructors, possibly inherited from a base class. By
convention, constructors are usually named Create, although you can use any
name you like. Some constructor names start with Create, but convey additional
information, such as CreateFromFile or CreateFromStream Usually, though,
the simple name Create is sufficient, and you can use method overloading to
define multiple constructors with the same name. Another reason to overload the
name Create is for compatibility with C++ Builder. C++ does not permit different
constructor names, so you must use overloading to define multiple constructors.

40 Chapter 2 — The Delphi Object Model

Calling a constructor

A constructor 1s a2 hybnid of object and class methods. You can call it using an
object reference or a class reference. Delphi passes an additional, hidden param-
eter to indicate how it was called. If you call a constructor using a class reference,
Delphi calls the class’s NewInstance method to allocate a new instance of the
class. After calling NewInstance, the constructor continues and initializes the
object. The constructor automatically sets up a try-except block, and if any
exception occurs 1n the constructor, Delphi calls the destructor.

When you call a constructor with an object reference, Delpht does not set up the
try-except block and does not call NewInstance. Instead, it calls the constructor
the same way it calls any ordinary method. This lets you call an inherited
constructor without unnecessary overhead.

A common error 1s to try to create an object by calling a constructor
with an object reference, rather than calling it with a class reference
and assigning it to the object variable:

var
Account: TSavingsAccount;

begin
Account.Create; // wrong
Account := TSavingsAccount.Create; // right

One of Delphi’s features is that you have total control over when, how, and
whether to call the inherited constructor. This lets you write some powerful and
interesting classes, but also introduces an area where it 1s easy to make mistakes.

Delphi1 always constructs the derived class first, and only if the derived class calls
the inherited constructor does Delphi construct the base class. C++ constructs
classes in the opposite direction, starting from the ancestor class and constructing
the derived class last. Thus, if class C inherits from B, which inherits from A,
Delphi constructs C first, then B, and A last. C++ constructs A first, then B, and
finally C.

Virtual metbods and constructors

Another significant difference between C++ and Delphi is that in C++, a
constructor always runs with the virtual method table of the class being
constructed, but in Delphi, the virtual methods are those of the derived class, even
when the base class is being constructed. As a result, you must be careful when
writing any virtual method that might be called from a constructor. Unless you are
careful, the object might not be fully constructed when the method is called. To
avoid any problems, you should override the AfterConstruction method and
use that for any code that needs to wait until the object is fully constructed. If you
override AfterConstruction, be sure to call the inherited method, too.

One constructor can call another constructor. Delphi can tell the call is from an
object reference (namely, Self), so it calls the constructor as an ordinary method.

Classes and Obfects 41

ydrag ayy

S
=
o
o
2
2
S
(=3
@
X

The most common reason to call another constructor is to put all the initialization
code 1n a single constructor. Example 2-7 shows some different ways to define and
call constructors.

Example 2-7- Declaring and Calling Constructors

type
TCustomer = class ... end;
TAccount = class
private

fBalance: Currency;
fNumber: Cardinal;
fCustomer: TCustomer;
public
constructor Create(Customer: TCustomer); virtual;
destructor Destroy; override;

end;
TSavingsAccount = class(TAccount)
private
fInterestRate: Integer; // Scaled by 1000
public

constructor Create(Customer: TCustomer); override; overload;
constructor Create(Customer: TCustomer; InterestRate: Integer);
overload;
// Note that TSavingsAccount does not need a destructor. It simply
// inherits the destructor from TAccount.
end;

var
AccountNumber: Cardinal = 1;

constructor TAccount.Create(Customer: TCustomer) ;

begin
inherited Create; // Call TObject.Create.
fNumber := AccountNumber; // Assign a unique account number.
Inc (AccountNumber) ;
fCustomer := Customer; // Notify customer of new account.
Customer . At tachAccount (Self) ;

end;

destructor TAccount. Destroy;
begin
// If the constructor fails before setting fCustomer, the field
// will be nil. Release the account only if Customer is not nil.
if Customer <> nil then
Customer .ReleaseAccount (Self) ;
// Call TObject.Destroy.
inherited Destroy;
end;

const
DefaultInterestRate = 5000; // 5%, scaled by 1000

42 Chapter 2— The Delph: Object Model

Example 2-7- Declaring and Calling Constructors (continued)

constructor TSavingsAccount.Create(Customer: TCustomer);
begin

// Call a sibling constructor.

Create(Customer, DefaultInterestRate);

end;

constructor TSavingsAccount (Customer: TCustomer; InterestRate:Integer); g 3

begin 2w

~Q

// Call TAccount.Create. =5
inherited Create(Customer); g_'g_
fInterestRate := InterestRate; 2

end;

Destructors

Destructors, like constructors, take an extra hidden parameter. The first call to a
destructor passes True for the extra parameter. This tells Delpht to call
FreeInstance to free the object. If the destructor calls an mherited destructor,
Delphi passes False as the hidden parameter to prevent the inherited destructor
from trying to free the same object.

A class usually has one destructor, called Destroy Delphi lets you
declare additional destructors, but you shouldn’t take advantage of
that feature. Declaring multiple destructors 1s confusing and serves
no useful purpose.

Before Delphi starts the body of the destructor, it calls the virtual method,
BeforeDestruction. You can override BeforeDestruction to assert program
state or take care of other business that must take place before any destructor
starts. Thus lets you write a class safely without worrying about how or whether
any derived classes will call the base class destructor.

When writing a class, you mught need to override the Destroy
destructor, but you must not redeclare the Free method. When free-
ing an obyject, you should call the Free method and not the destruc-
tor. The distinction is important, because Free checks whether the
object reference is nil and calls Destroy only for non-nil refer-
ences. In extraordinary circumstances, a class can redefine the Free
method (such as TInterface in the seldom-used VirtIntf unit),
which makes it that much more important to call Free, not Destroy.

If a constructor or AfterConstruction method raises an exception, Delphi auto-
matically calls the object’s destructor. When you write a destructor, you must
remember that the object being destroyed might not have been completely
constructed. Delphi ensures that all fields start out at zero, but if the exception

Classes and Objects 43

occurs n the middle of your constructor, some fields might be initialized and
some might still be zero. If the destructor just frees objects and pointers, you don’t
need to worry, because the Free method and FreeMem procedure both check for
nil pomnters. If the destructor calls other methods, though, always check first for a
nil pomnter.

Object Life Cycle

For most objects, you call a constructor to create the object, use the object, and
then call Free to free the object. Delphi handles all the other details for you.
Sometimes, though, you need to know a little more about the mner mechanisms
of Delphi’s object model. Example 2-8 shows the methods that Delphi calls or
simulates when it creates and frees an object.

Example 2-8: The Life Cycle of an Object

type

TSomething = class
procedure DoSomething;

end;

var
Ref: TSomething;

begin
Ref := TSomething.Create;
Ref.DoSomething;
Ref .Free;

end;

// The hidden code in the constructor looks something like this:
function TSomething.Create(IsClassRef: Boolean): TSomething;
begin
if IsClassRef then
try
// Allocate the new object.
Self := TSomething.NewInstance;

// Newlnstance initializes the object in the same way that

// InitInstance does. If you override NewlInstance, though,

// and do not call the inherited NewInstance, you must call
// InitInstance. The call is shown below, so you know what

// happens, but remember that ordinarily Delphi does not

// actually call InitInstance.

InitInstance(Self);

// Do the real work of the constructor, but without all the
// class reference overhead. Delphi does not really call the
// comstructor recursively.

Self.Create(False);

Self.AfterConstruction;

except
// If any exception occurs, Delphi automatically calls the
// object’s destructor.

44 Chapter 2— The Delphi Object Model

Example 2-8: The Life Cycle of an Object (continued)

Self.Destroy;
end
else
Self.Create(False);
Result := Self;
end;

// The hidden code in the destructor looks something like this:
procedure TSomething.Destroy(Deallocate: Boolean);
begin
if Deallocate then
Self.BeforeDestruction;

1ydiag ayy

(=)
=
&
o
2
=
S
<3
)
2

// Delphi doesn’t really call the destructor recursively, but
// this is where the destructor’s real work takes place.
Self.Destroy(False) ;

if Deallocate then

begin
// Delphi doesn’t really call CleanupInstance. Instead, the
// Freelnstance method does the cleanup. If you override
// FreeInstance and do not call the inherited Freelnstance,
// you must call CleanupInstance to clean up strings,
// dynamic arrays, and Variant-type fields.
Self.CleanupInstance;
// Call FreeInstance to free the object’s memory.
Self.FreeInstance;

end;

end;

Access Levels

Like C++ and Java, Delphi has different access levels that determine which objects
can access the fields, methods, and properties of another object. The access levels
are as follows:

prwate
Declarations that are declared private can be accessed only by the class’s own
methods or by any method, procedure, or function defined in the same unit’s
implementation section. Delphi does not have C++-style friend declarations or
Java-style package level access. The equivalent in Delphi 1s to declare
package or friend classes in the same unit, which gives them access to the
private and protected parts of every class defined in the same unit.

protected
A protected declaration can be accessed from any method of the class or its
descendants. The descendent classes can reside 1n different units.

public
Public methods have unrestricted access. Any method, function, or procedure
can access a public declaration. Unless you use the $M+ compiler directive
(see Chapter 8, Compiler Directives, for details), the default access level 1s
public.

Classes and Objects 45

published
Published declarations are similar to public declarations, except that Delphi
stores runtime type mnformation for published declarations. Some declarations
cannot be published; see Chapter 3 for details. If a class or a base class uses
the $M+ directive, the default access level 1s published.

Delphi’s IDE declares fields and methods in the initial unnamed sec-
tion of a form declaration. Because TForm inherits from
TPersistent, which uses the $M+ directive, the initial section is
published. In other words, the IDE declares its fields and methods as
published. When Delphi loads a form description (.dfm file), it relies
on the published information to build the form object. The IDE relies
on the initial, unnamed section of the form class. If you modify that
section, you run the risk of disabling the IDE’s form editor.

automated
Automated declarations are similar to public declarations, except that Delphi
stores additional runtime type information to support OLE automation servers.
Automated declarations are obsolete; you should use Delphi’s type library
editor instead, but for now, they remain a part of the language for backward
compatibility A future release of Delphi might eliminate them entirely.
Chapter 3 describes automated declarations in more depth.

A derived class can increase the access level of a property by redeclaring the prop-
erty under the new access level (e.g., change protected to public). You cannot
decrease a property’s access level, and you cannot change the visibility of a field
or method. You can override a virtual method and declare the overridden method
at the same or higher access level, but you cannot decrease the access level.

Properties

A property looks like a field but can act like a method. Properties take the place of
accessor and mutator methods (sometimes called getters and setters), but have
much more flexibility and power. Properties are vital to Delphi’s IDE, and you can
also use properties in many other situations.

A property has a reader and writer to get and set the property’s value. The reader
can be the name of a field, a selector for an aggregate field, or a2 method that
returns the property value. The writer can be a field name, a selector for an aggre-
gate field, or a method that sets the property value. You can omit the writer to
make a read-only property You can also omit the reader to create a write-only
property, but the uses for such a beast are limited. Omitting both the reader and
the writer is pointless, so Delphi does not let you do so.

Most readers and writers are field names or method names, but you can also refer
to part of an aggregate field (record or array). If a reader or writer refers to an
array element, the array index must be a constant, and the field’s type cannot be a
dynamic array Records and arrays can be nested, and you can even use variant

46 Chapter 2— The Delphi Object Model

Hiding a Constructor

Sometimes, a class is not for public use, but is a helper class whose use 1s
entirely subservient to another class. In that case, you probably want to
make the constructors for the helper class private or protected, but this is
tricky TObject declares a public constructor: Create. Even though the
helper class’s constructors are private or protected, you can call the public
Create constructor inherited from TObject.

1ydiag ay1

Although you cannot change the access level of the inherited Create
constructor, you can hide it with another public constructor. Because the
derved constructor should not be called, it can raise an exception. For

example:

=)

=
]
b}
2
2
(=)
2
R
2

type
TPublic = class;
TPrivateHelper = class
private
// TPublic is the only class allowed to
// call the real constructor:
constructor Create(Owner: TPublic);
overload;
public
// Hide TObject.Create, in case someone
// accidentally tries to create a
// TPrivateHelper instance.
constructor Create;
reintroduce; overload;

end;
TPublic = class
private
fHelper: TPrivateHelper;
public

constructor Create;
destructor Destroy;
end;

constructor TPrivateHelper.Create;
begin

raise Exception.Create('Programming error')
end;

constructor TPublic.Create;
begin

// This is the only place where

// TPrivateHelper is created.

fHelper := TPrivateHelper.Create(Self);
end;

Classes and Objects 47

records. Example 2-9 shows an extended rectangle type, similar to the Windows
TRect type, but because it 1s a class, it has properties and methods.

Example 2-9: Properties Readers and Writers

TRectEx = class(TPersistent)

private
R: TRect;
function GetHeight: Integer;
function GetWidth: Integer;
procedure SetHeight (const Value: Integer);
procedure SetWidth(const Value: Integer);

public
constructor Create(const R: TRect); overload;
constructor Create(Left, Top, Right, Bottom: Integer); overload;
constructor Create(const TopLeft, BottomRight: TPoint); overload;

procedure Assign(Source: TPersistent); override;

procedure Inflate(X, Y: Integer);

procedure Intersect(const R: TRectEx);
function IsEmpty: Boolean;

function IsEqual(const R: TRectEx): Boolean;
procedure Offset (X, Y: Integer);

procedure Union(const R: TRectEx);

property TopLeft: TPoint read R.TopLeft write R.TopLeft;
property BottomRight: TPoint read R.BottomRight write R.BottomRight;
property Rect: TRect read R write R;
property Height: Integer read GetHeight write SetHeight;
property Width: Integer read GetWidth write SetWidth;
published
property Left: Integer read R.Left write R.Left default 0;
property Right: Integer read R.Right write R.Right default 0;
property Top: Integer read R.Top write R.Top default 0;
property Bottom: Integer read R.Bottom write R.Bottom default 0 H
end;

Array properties

Properties come in scalar and array flavors. An array property cannot be
published, but they have many other uses. The array index can be any type, and
you can have multidimensional arrays, too. For array-type properties, you must
use read and write methods—you cannot map an array-type property directly to
an array-type field.

You can designate one array property as the default property. You can refer to the
default property by using an object reference and an array subscript without
mentioning the property name, as shown in Example 2-10.

Example 2-10: Using a Default Array Property

type
TExample = class

48 Chapter 2— The Delphi Object Model

Example 2-10: Using a Default Array Property (continued)

property Items[I: Integer]: Integer read GetItem write SetItem;
property Chars[C: Char]: Char read GetChar write SetChar; default;
end;
var
Exanmple: TExample;
I: Integer;
C: Char;
begin
Example := TExample.Create;
I := Example.Items([4]; // Must mention property name explicitly
C := Example('X']; // Array property is default
C := Example.Chars['X']; // Same as previous line

Indexed properties

You can map many properties to a single read or write method by specifying an
index number for each property. The index value 1s passed to the read and write
methods to differentiate one property from another.

You can even mix array indices and an index specifier. The reader and writer
methods take the array indices as the first arguments, followed by the index
specifier.

Default values

A property can also have stored and default directives. This information has no
semantic meaning to the Delphi Pascal language, but Delphi’s IDE uses this infor-
mation when storing form descriptions. The value for the stored directive is a
Boolean constant, a field of Boolean type, or a method that takes no arguments
and returns a Boolean result. The value for the default directive is a constant
value of the same type as the property. Only enumerated, integer, and set-type
properties can have a default value. The stored and default directives have
meaning only for published properties.

To distinguish a default array from a default value, the default array directive
comes after the semicolon that ends the property declaration. The default value
directive appears as part of the property declaration. See the default directive in
Chapter 5 for details.

Using properties

A common approach to writing Delphi classes 1s to make all fields private, and
declare public properties to access the fields. Delphi imposes no performance
penalty for properties that access fields directly By using properties you get the
added benefit of being able to change the implementation at a future date, say to
add validation when a field’s value changes. You can also use properties to
enforce restricted access, such as using a read-only property to access a field
whose value should not be changed. Example 2-11 shows some of the different
ways to declare and use properties.

Classes and Objects 49

ydag ayy

[
=
b
[}
-~
S
)
=3
)
~

Example 2-11. Declaring and Using Properties

type
TCustomer = record
Name: string;
TaxIDNumber: stringl[9];
end;
TAccount = class
private
fCustomer: TCustomer;
fBalance: Currency;
fNumber: Cardinal;
procedure SetBalance (NewBalance: Currency);
published
property Balance: Currency read fBalance write SetBalance;
property Number: Cardinal read fNumber; // Cannot change account #
property CustName: string read fCustomer.Name;

end;
TSavingsAccount = class (TAccount)
private

fInterestRate: Integer;
publighed

property InterestRate: Integer read fInterestRate
write fInterestRate default DefaultInterestRate;
end;
TLinkedAccount = class(TObject)
private
fAccounts: array{0..l] of TAccount;
function GetAccount (Index: Integer): TAccount;
public
// Two ways for properties to access an array: using an index
// or referring to an array element.
property Checking: TAccount index 0 read GetAccount;
property Savings: TAccount read fAccounts[l];
end;
TAccountList = class
private
fList: TList;
function GetAccount (Index: Integer): TAccount;
procedure SetAccount(Index: Integer; Account: TAccount);
function GetCount: Integer;
protected
property List: TList read fList;
public
property Count: Integer read GetCount;
property Accounts([Index: Integer]: TAccount read GetAccount
write SetAccount; default;
end;

procedure TAccount.SetBalance (NewBalance: Currency);
begin
if NewBalance < 0 then
raise EOverdrawnException.Create;
fBalance := NewBalance;

50 Chapter 2— The Delpht Object Model

Example 2-11. Declaring and Using Properties (continued)

end;

function TLinkedAccount.GetAccount (Index: Integer): TAccount;
begin

Result := fAccounts(Index]
end;

function TAccountList.GetCount: Integer;
begin

Result := List.Count
end;

function TAccountList.GetAccount (Index: Integer): TAccount;
begin

Result := List[Index]
end;

procedure TAccountList.SetAccount (Index: Integer; Account: TAccount);

begin

fList [Index] := Account
end;
Class-type properties

Properties of class type need a little extra attention. The best way to work with
class-type properties is to make sure the owner object manages the property
object. In other words, don’t save a reference to other objects, but keep a private
copy of the property object. Use a write method to store an object by copying it.
Delphi’s IDE requires this behavior of published properties, and it makes sense for
unpublished properties, too.

The only exception to the rule for class-type properties is when a
property stores a reference to a component on a form. In that case,
the property must store an object reference and not a copy of the
component.

Delphi’s IDE stores component references in a .dfi file by storing
only the component name. When the .dfm is loaded, Delphi looks
up the component name to restore the object reference. If you must
store an entire component within another component, you must del-
egate all properties of the nner component.

Make sure the property’s class inherits from TPersistent and that the class over-
nides the Assign method. Implement your property’s write method to call Assign.
(TPersistent—in the Classes unit—is not required, but it’s the easiest way to
copy an object. Otherwise, you need to duplicate the Assign method in what-
ever class you use.) The read method can provide direct access to the field. If the
property object has an OnChange event, you might need to set that so your object

Classes and Objects 51

S
=
I
S
2
£
=
)
2

ydiaqg ayy

is notified of any changes. Example 2-12 shows a typical pattern for using a class-
type property The example defines a graphical control that repeatedly displays a
bitmap throughout its extent, tiling the bitmap as necessary The Bitmap property
stores a TBitmap object.

Example 2-12: Declaring and Using a Class-type Property

unit Tile;
interface
uses SysUtils, Classes, Controls, Graphics;

type

// Tile a bitmap

TTile = class(TGraphicControl)

private
fBitmap: TBitmap;
procedure SetBitmap (NewBitmap: TBitmap);
procedure BitmapChanged(Sender: TObject);

protected
procedure Paint; override;

public
constructor Create(Owner: TComponent); override;
destructor Destroy; override; ’

published
property Align;
property Bitmap: TBitmap read fBitmap write SetBitmap;
property OnClick;
property OnDblClick;
// Many other properties are useful, but were omitted to save space.
// See TControl for a full list.

end;

implementation
{ TTile }

// Create the bitmap when creating the control.
constructor TTile.Create(Owner: TComponent);
begin

inherited;

fBitmap := TBitmap.Create;

fBitmap.OnChange := BitmapChanged;
end;

// Free the bitmap when destroying the control.
destructor TTile.Destroy;
begin
FreeAndNil (£Bitmap) ;
inherited;
end;

// When the bitmap changes, redraw the control.

52 Chapter 2~ The Delphi Object Model

Example 2-12: Declaring and Using a Class-type Property (continued)

procedure TTile.BitmapChanged(Sender: TObject);
begin

Invalidate;
end;

// Paint the control by tiling the bitmap. If there is no
// bitmap, don't paint anything.
procedure TTile.Paint;
var
X, Y: Integer;
begin
if (Bitmap.Width = 0) or (Bitmap.Height = 0) then
Exit;

Y :=0;
while Y < ClientHeight do
begin
X :=0;
while X < ClientWidth do
begin
Canvas.Draw(X, Y, Bitmap);
Inc(X, Bitmap.Width):
end;
Inc(Y, Bitmap.Height);
end;
end;

// Set a new bitmap by copying the TBitmap object.
procedure TTile.SetBitmap (NewBitmap: TBitmap);
begin

fBitmap.Assign (NewBitmap) ;
end;

end.

Interfaces

An interface defines a type that comprises abstract virtual methods. Although a
class inherits from a single base class, it can implement any number of interfaces.
An interface is similar to an abstract class (that is, a class that has no fields and all
of whose methods are abstract), but Delphi has extra magic to help you work with
interfaces. Delphi's interfaces sometimes look like COM (Component Object
Model) interfaces, but you don’t need to know COM to use Delphi interfaces, and
you can use interfaces for many other purposes.

You can declare a new interface by inheriting from an existing interface. An inter-
face declaration contains method and property declarations, but no fields. Just as
all classes inherit from TObject, all interfaces inherit from IUnknown. The
IUnknown interface declares three methods: _AddRef, _Release, and
QueryInterface. If you are familiar with COM, you will recognize these
methods. The first two methods manage reference counting for the lifetime of the

Interfaces 53

ydiag ay g

=]
s
©
x]
S
S
S
©
®

object that implements the interface. The third method accesses other interfaces an
object might implement.

When you declare a class that implements one or more interfaces, you must
provide an implementation of all the methods declared in all the interfaces. The
class can implement an interface’s methods, or it can delegate the implementation
to a property, whose value is an interface. The simplest way to implement the
_Addref, _Release, and QueryInterface methods is to imherit them from
TInterfacedObject or one of its derived classes, but you are free to inherit from
any other class if you wish to define the methods yourself.

A class implements each of an mterface’s methods by declaring 2 method with the
same name, arguments, and calling convention. Delphi automatically matches the
class’s methods with the interface’s methods. If you want to use a different method
name, you can redirect an interface method to a method with a different name.
The redirected method must have the same arguments and calling convention as
the interface method. This feature is especially important when a class imple-
ments multiple interfaces with identical method names. See the class keyword in
Chapter 5 for more information about redirecting methods.

A class can delegate the implementation of an interface to a property that uses the
implements directive. The property’s value must be the interface that the class
wants to implement. When the object 15 cast to that interface type, Delph1 automat-
ically fetches the property’s value and returns that interface. See the implements
directive in Chapter 5 for details.

For each non-delegated interface, the compiler creates a hidden field to store a
pormnter to the interface’s VMT. The interface field or fields follow immediately after
the object’s hidden VMT field. Just as an object reference 1s really a pomter to the
object’s hidden VMT field, an interface reference is a pointer to the interface’s
hidden VMT field. Delphi automatically initializes the hidden fields when the
object 1s constructed. See Chapter 3 to learn how the compiler uses RTTI to keep
track of the VMT and the hidden field.

Reference counting

The compiler generates calls to _AddRef and _Release to manage the lifetime of
nterfaced objects. To use Delphi’s automatic reference counting, declare a vari-
able with an interface type. When you assign an interface reference to an mterface
variable, Delphi automatically calls _AddRef. When the variable goes out of scope,
Delphi automatically calls _Release.

The behavior of _AddRef and _Release is entirely up to you. If you mnherit from
TInterfacedObject, these methods implement reference counting. The _AddRef
method increments the reference count, and _Release decrements it. When the
reference count goes to zero, _Release frees the object. If you inherit from a
different class, you can define these methods to do anything you want. You
should implement QueryInterface correctly, though, because Delphi relies on it
to implement the as operator.

54 Chapter 2— The Delpbi Object Model

Typecasting

Delphi calls QueryInterface as part of its implementation of the as operator for
nterfaces. You can use the as operator to cast an nterface to any other interface
type. Delphi calls QueryInterface to obtain the new interface reference. If
QueryInterface returns an error, the as operator raises a runtime error. (The
SysUtils unit maps the runtime error to an EIntfCastError exception.)

You can implement QueryInterface any way you want, but you probably want
to use the same approach taken by TInterfacedObject. Example 2-13 shows a
class that implements QueryInterface normally, but uses stubs for _AddRef and
_Release. Later in this section, you'll see how useful this class can be.

Example 2-13: Interface Base Class Without Reference Counting

type
TNoRefCount = clags(TObject, IUnknown)
protected
function QueryInterface(const IID:TGUID; out Obj) :HResult; stdcall;
function _AddRef: Integer; stdcall;
function _Release: Integer; stdcall;
end;

function TNoRefCount.QueryInterface(const IID:TGUID; out Obj): HResult;

begin
if GetInterface(IID, Obj) then
Result := 0
else
Result := Windows.E NoInterface;
end;

function TNoRefCount._ AddRef: Integer;
begin

Result := -1
end;

function TNoRefCount. Release: Integer;
begin

Result := -1
end;

Interfaces and object-oriented programming

The most important use of interfaces 1s to separate type mheritance from class
mheritance. Class mheritance is an effective tool for code reuse. A derived class
easily inherits the fields, methods, and properties of a base class, and thereby
avoids reimplementing common methods. In a strongly typed language, such as
Delphi, the compiler treats a class as a type, and therefore class inheritance
becomes synonymous with type inheritance. In the best of all possible worlds,
though, types and classes are entirely separate.

Textbooks on object-oriented programming often describe an inheritance relation-
ship as an “is-a” relationship, for example, a TSavingsaccount “is-a” TAccount.

Interfaces 55

ydiag ayy

(=]
=
®
S
2
S
=5
&
]

You can see the same idea in Delphi’s is operator, where you test whether an
Account vanable is TSavingsAccount.

Outside of textbook examples, though, simple 1s-a relationships break down. A
square is a rectangle, but that doesn’t mean you want to derive TSquare from
TRectangle. A rectangle 1s a polygon, but you probably don’t want to derive
TRectangle from TPolygon. Class mnheritance forces a derived class to store all
the fields that are declared in the base class, but in this case, the derved class
doesn’t need that information. A TSquare object can get away with storing a
single length for all of its sides. A TRectangle object, however, must store two
lengths. A TPolygon object needs to store many sides and vertices.

The solution 1s to separate the type inheritance (a square 1s a rectangle 1s a
polygon) from class mheritance (class C inherits the fields and methods of class B,
which inherits the fields and methods of class A). Use interfaces for type inherit-
ance, so you can leave class inheritance to do what it does best: inheriting fields
and methods.

In other words, ISquare inherits from IRectangle, which nherits from
IPolygon. The interfaces follow the “is-a” relationship. Entirely separate from the
interfaces, the class TSquare implements ISquare, IRectangle, and IPolygon.
TRectangle implements IRectangle and IPolygon.

The convention 1n COM programming 1s to name nterfaces with an
initial 1. Delphi follows this convention for all interfaces. Note that it
is a useful convention, but not a language requirement.

On the implementation side, you can declare additional classes to implement code
reuse. For example, TBaseShape implements the common methods and fields for
all shapes. TRectangle inherits from TBaseShape and implements the methods in
a way that make sense for rectangles. TPolygon also mnherits from TBaseShape
and implements the methods in a way that make sense for other kinds of
polygons.

A drawing program can use the shapes by manipulating TPolygon mterfaces.
Example 2-14 shows simplified classes and interfaces for this scheme. Notice how
each interface has a GUID (Globally Unique Identifier) m its declaration. The
GUID is necessary for using QueryInterface. If you need the GUID of an inter-
face (in an explicit call to QueryInterface, for example), you can use the
interface name. Delphi automatically converts an interface name to its GUID.

Example 2-14: Separating Type and Class Hierarchies

type
IShape = interface
[* {50F6D851-FAEB-11D2~88AC-00104BCAC44B} ']
procedure Draw(Canvas: TCanvas);
function GetPosition: TPoint;
procedure SetPosition(Value: TPoint);
property Position: TPoint read GetPosition write SetPosition;
end;

56 Chapter 2— The Delphi Object Model

Example 2-14: Separating Type and Class Hierarchies (continued)

IPolygon = interface(IShape)

[' {50F6D852-F4EB-11D2-88AC-00104BCAC44B} ')
function NumVertices: Integer;
function NumSides: Integer;
function SideLength(Index: Integer): Integer;
function Vertex(Index: Integer): TPoint;

end;

IRectangle = interface(IPolygon)

[* {50F6D853~FAEB-11D2-88AC-00104BCAC44B)} ']

end;

ISquare = interface(IRectangle)

[' {50F6D854-F4EB-11D2-88AC-00104BCAC44B)} ']
function Side: Integer;

end;

TBaseShape = class(TNoRefCount, IShape)
private
fPosition: TPoint;
function GetPosition: TPoint;
procedure SetPosition(Value: TPoint);
public
constructor Create; virtual;
procedure Draw(Canvas: TCanvas); virtual; abstract;
property Position: TPoint read fPosition write SetPosition;
end;
TPolygon = class(TBaseShape, IPolygon)
private
fvertices: array of TPoint;
public
procedure Draw(Canvas: TCanvas); override;
function NumVertices: Integer;
function NumSides: Integer;
function SideLength(Index: Integer): Integer;
function Vertex(Index: Integer): TPoint;

end;
TRectangle = class(TBaseShape, IPolygon, IRectangle)
private
fRect: TRect;
public

procedure Draw(Canvas: TCanvas); override;
function NumVertices: Integer;

function NumSides: Integer;

function Sidelength(Index: Integer): Integer;
function Vertex(Index: Integer): TPoint;

end;
TSquare = class(TBaseShape, IPolygon, IRectangle, ISquare)
private
fSide: Integer;
public

procedure Draw(Canvas: TCanvas); override;
function Side: Integer;

Interfaces

57

S
=
D
o
2
£
S
Q
®
2

iydiag ayy

Example 2-14: Separating Type and Class Hierarchies (continued)

function NumVertices: Integer;
function NumSides: Integer;
function SideLength(Index: Integer): Integer;
function Vertex(Index: Integer): TPoint;
end;

A dernved class inherits the interfaces implemented by the ancestors’ classes. Thus,
TRectangle mherits from TBaseShape, and TBaseShape implements IShape so
TRectangle implements IShape. Inheritance of mterfaces works a little differ-
ently Interface inheritance is merely a typmng convenience, so you don’t have to
retype a lot of method declarations. When a class implements an interface, that
does not automatically mean the class implements the ancestor interfaces. A class
implements only those interfaces that are listed in its class declaration (and 1n the
declaration for ancestor classes). Thus, even though IRectangle inherits from
IPolygon, the TRectangle class must list IRectangle and IPolygon explicitly

To implement a type hierarchy, you might not want to use reference counting.
Instead, you will rely on explicit memory management, the way you do for normal
Delphi objects. In this case, it's best to implement the _AddRef and _Release
methods as stubs, such as those in the TNoRefCount class mn Example 2-13. Just
be careful not to have any variables that hold stale references. A variable that
refers to an object that has been freed can cause problems if you use the variable.
An interface vanable that refers to an object that has been freed will certainly
cause problems, because Delptu will automatically call its _Release method. In
other words, you never want to have variables that contain mnvalid pointers, and
working with interfaces that do not use reference counting forces you to behave.

COM and Corba

Delphi mterfaces are also useful for implementing and using COM and Corba
objects. You can define 2 COM server that implements many interfaces, and
Delphi automatically manages the COM aggregation for you. The runtime library
contamns many classes that make it easier to define COM servers, class factores,
and so on. Because these classes are not part of the Delphi Pascal language, they
are not covered 1n this book. Consult the product documentation to learn more.

Reference Counting

The previous section discusses how Delphi uses reference counting to manage the
lifetime of interfaces. Strings and dynamic arrays also use reference counting to
manage their lifetimes. The compiler generates appropriate code to keep track of
when interface references, strings, and dynamic arrays are created and when the
variables go out of scope and the objects, strings, and arrays must be destroyed.

Usually, the compiler can handle the reference counting automatically, and every-
thing works the way the you expect it to. Sometimes, though, you need to give a
hint to the compiler. For example, if you declare a record that contains a refer-
ence counted field, and you use GetMem to allocate a new instance of the record,
you must call Initialize, passing the record as an argument. Before calling
FreeMem, you must call Finalize.

58 Chapter 2— The Delphi Object Model

Sometimes, you want to keep a reference to a string or interface after the variable
goes out of scope, that is, at the end of the block where the variable 1s declared.
For example, maybe you want to associate an interface with each item in a
TListView. You can do this by explicitly managing the reference count. When
storing the interface, be sure to cast it to IUnknown, call _AddRef, and cast the
IUnknown reference to a raw pointer. When extracting the data, type cast the
pointer to IUnknown. You can then use the as operator to cast the interface to any
desired type, or just let Delphi release the interface. For convenience, declare a
couple of subroutines to do the dirty work for you, and you can reuse these
subroutines any time you need to retain an interface reference. Example 2-15
shows an example of how you can store an interface reference as the data associ-
ated with a list view item.

Example 2-15: Storing Interfaces in a List View

// Cast an interface to a Pointer such that the reference
// count is incremented and the interface will not be freed
// until you call ReleaseIUnknown.

function RefIUnknown(const Intf: IUnknown): Pointer;

begin
Intf._AddRef; // Increment the reference count.
Result := Pointer(Intf); // Save the interface pointer.
end;

// Release the interface whose value ig stored in the pointer P.
procedure ReleaseIUnknown(P: Pointer);
var

Intf: IUnknown;
begin

Pointer(Intf) := P;

// Delphi releases the interface when Intf goes out of scope.
end;

// When the user clicks the button, add an interface to the list.
procedure TForml.ButtonlClick(Sender: TObject);

var
Item: TListItem;
begin
Item := ListViewl.Items.Add;
Item.Caption := 'Stuff';
Item.Data := RefIUnknown(GetIntf as IUnknown);
end;

// When the list view is destroyed or the list item is destroyed
// for any other reason, release the interface, too.
procedure TForml.ListViewlDeletion(Sender: TObject; Item: TListItem);
begin
ReleaseIUnknown (Item.Data);
end;

// When the user selects the list view item, do something with the
// associated interface.
procedure TForml.ListViewlClick(Sender: TObject);

Reference Counting 59

(=]
=
)
S
2
=
S
=3
>
)

mdiaq ayy

Example 2-15: Storing Interfaces in a List View (continued)

var
Intf: IMyInterface;

begin
Intf := IUnknown(ListViewl.Selected.Data) as IMyInterface;
Intf.DoSomethingUseful ;

end;

You can also store strings as data. Instead of using _AddRef, cast the string to a
Pointer to store the reference to the string, then force the vanable to forget about
the string. When the variable goes out of scope, Delphi will not free the string,
because the variable has forgotten all about it. After retrieving the pointer, assign it
to a string varsable that is cast to a pomnter. When the subroutine returns, Delphi
automatically frees the string’s memory Be sure your program does not retam any
pointers to memory that 1s about to be freed. Agamn, convenience subroutines
simplify the task. Example 2-16 shows one way to store strings.

Example 2-16: Storing Strings in a List View

// Save a reference to a string and return a raw pointer
// to the string.
function RefString(const S: string): Pointer;
var
Local: string:;
begin
Local := S; // Increment the reference count.
Result := Pointer(Local); // Save the string pointer.
Pointer (Local) := nil; // Prevent decrementing the ref count.
end;

// Release a string that was referenced with RefString.
procedure ReleaseString(P: Pointer);

var
Local: string;
begin
Pointer (Local) := P;
// Delphi frees the string when Local goes out of scope.
end;

// When the user clicks the button, add an item to the list view
// and save an additional, hidden string.
procedure TForml.ButtonlClick(Sender: TObject);
var
Ttem: TListItem;
begin
Item := ListViewl.Items.Add;
Item.Caption := Editl.Text;
Item.Data := RefString(Edit2.Text);
end;

// Release the string when the list view item is destroyed
// for any reason.
procedure TForml.ListViewlDeletion(Sender: TObject; Item: TListItem);

60 Chapter 2— The Delphi Object Model

Example 2-16: Storing Strings in a List View (continued)
begin

ReleaseString(Item.Data);
end;

// Retrieve the string when the user selects the list view item.
procedure TForml.ListViewlClick(Sender: TObject);
var
Str: string;
begin
if ListViewl.Selected <> nil then
begin
Str := string(ListViewl.Selected.Data);
ShowMessage (Str) ;
end;
end;

Messages

You should be familiar with Windows messages: user interactions and other events
generate messages, which Windows sends to an application. An application
processes messages one at a time to respond to the user and other events. Each
kind of message has a unique number and two integer parameters. Sometimes a
parameter is actually a pointer to a string or structure that contains more complex
information. Messages form the heart of Windows event-driven architecture, and
Delphi has a unique way of supporting Windows messages.

In Delphi, every object—not only window controls—can respond to messages. A
message has an integer identifier and can contain any amount of additional infor-
mation. In the VCL, the Application object receives Windows messages and
maps them to equivalent Delph: messages. In other words, Windows messages are
a special case of more general Delpht messages.

A Delphi message is a record where the first two bytes contain an integer message
identifier, and the remainder of the record is programmer-defined. Delphi's
message dispatcher never refers to any part of the message record past the
message number, so you are free to store any amount or kind of information in a
message record. By convention, the VCL always uses Windows-style message
records (TMessage), but if you find other uses for Delphi messages, you don't
need to feel so constramned.

To send a message to an object, fill in the message identifier and the rest of the
message record and call the object’s Dispatch method. Delphi looks up the
message number in the object’s message table. The message table contains
pointers to all the message handlers that the class defines. If the class does not
define a message handler for the message number, Delphi searches the parent
class’'s message table. The search continues until Delphi finds a message handler
or it reaches the TObject class. If the class and its ancestor classes do not define a
message handler for the message number, Delphi calls the object’s
DefaultHandler method. Window controls m the VCL override Default-
Handler to pass the message to the window procedure; other classes usually

Messages 61

o
=
@ @
Ry

1)
S
oL
o =
—

ignore unknown messages. You can override DefaultHandler to do anything
you want, perhaps raise an exception.

Use the message directive to declare a message handler for any message. See
Chapter 5 for details about the message directive.

Message handlers use the same message table and dispatcher as dynamic methods.
Each method that you declare with the dynamic directive 1s assigned a 16-bit
negative number, which is really a message number. A call to a dynamic method
uses the same dispatch code to look up the dynamic method, but if the method is
not found, that means the dynamic method is abstract, so Delphi calls
AbstractErrorProc to report a call to an abstract method,

Because dynamic methods use negative numbers, you cannot write a message
handler for negative message numbers, that 1s, message numbers with the most-
significant bit set to one. This limitation should not cause any problems for normal
applications. If you need to define custom messages, you have the entire space
above WM_USER ($0F00) available, up to $7FFF Delphi looks up dynamic methods
and messages mn the same table using a linear search, so with large message
tables, your application will waste time performing method lookups.

Delphi’s message system 1s entirely general purpose, so you mught find a creative
use for it. Usually, interfaces provide the same capability, but with better perfor-
mance and increased type-safety

Memory Management

Delphi manages the memory and lifetime of strings, Variants, dynamic arrays,
and interfaces automatically For all other dynamically allocated memory, you—the
programmer—are in charge. It's easy to be confused because it seems as though
Delphi automatically manages the memory of components, too, but that's just a
trick of the VCL.

Memory management 1s thread-safe, provided you use Delphi’s classes or func-
tions to create the threads. If you go straight to the Windows API and the
CreateThread function, you must set the IsMultiThread variable to True. For
more information, see Chapter 4, Concurrent Programming.

Ordinarily, when you construct an object, Delph: calls NewInstance to allocate
and initialize the object. You can override NewInstance to change the way Delphi
allocates memory for the object. For example, suppose you have an application
that frequently uses doubly linked lists. Instead of using the general-purpose
memory allocator for every node, it's much faster to keep a chain of available
nodes for reuse. Use Delphi’s memory manager only when the node list is empty. If
your application frequently allocates and frees nodes, this special-purpose allocator
can be faster than the general-purpose allocator. Example 2-17 shows a simple
implementation of this scheme. (See Chapter 4 for a thread-safe version of this
class.)

62 Chapter 2— The Delphi Object Model

Components Versus Objects

The VCL’s TComponent class has two fancy mechanisms for managing object
lifetimes, and they often confuse new Delphi programmers, tricking them
into thinking that Delphi always manages object lifetimes. It’s important that
you understand exactly how components work, so you won’t be fooled.

Every component has an owner. When the owner is freed, it automatically
frees the components that it owns. A form owns the components you drop
on it, so when the form 1s freed, it automatically frees all the components on
the form. Thus, you don't usually need to be concerned with managing the
lifetime of forms and components.

When a form or component frees a component it owns, the owner also
checks whether 1t has a published field of the same name as the compo-
nent. If so, the owner sets that field to nil. Thus, if your form dynamically
adds or removes components, the form’s fields always contain valid object
references or are nil. Don't be fooled mnto thinking that Delphit does this for
any other field or object reference. The trick works only for published fields
(such as those automatically created when you drop a component on a form
in the IDE’s form editor), and only when the field name matches the compo-
nent name.

Example 2-17: Custom Memory Management for Linked Lists

type

TNode = class

private
fNext, fPrevious: TNode;

protected
// Nodes are under control of TLinkedList.
procedure Relink (NewNext, NewPrevious: TNode);
constructor Create(Next: TNode = nil; Previous: TNode = nil);
procedure RealFree;

public
destructor Destroy; override;
class function NewInstance: TObject; override;
procedure FreelInstance; override;
property Next: TNode read fNext;
property Previous: TNode read fPrevious;
end;

// Singly linked list of nodes that are free for reuse.
// Only the Next fields are used to maintain this list.
var

NodeList: TNode;

// Allocate a new node by getting the head of the NodeList.
// Remember to call InitInstance to initialize the node that was
// taken from NodeList.

Memory Management 63

=]
=
o
©
-~
=
(=)
=8
©
-

djag ayy

Example 2-17- Custom Memory Management for Linked Lists (¢ continued)

// If the NodeList is empty, allocate a node normally.
class function TNode.NewInstance: TObject;
begin
if NodeList = nil then
Result := inherited NewInstance
else
begin
Result := NodeList;
NodeList := NodeList.Next;
InitInstance(Result);
end;
end;

// Because the NodeList uses only the Next field, set the Previous
// tield to a special value. If a program erroneously refers to the
// Previous field of a free node, you can see the special value
// and know the cause of the error.
const

BadPointerValueToFlagErrors = Pointer ($FOEEOBAD) ;

// Free a node by adding it to the head of the NodeList. This is MUCH
// faster than using the general-purpose memory manager.
procedure TNode.Freelnstance;
begin
fPrevious := BadPointerValueToFlagErrors;
fNext := NodeList;
NodeList := Self;
end;

// If you want to clean up the list properly when the application
// finishes, call RealFree for each node in the list. The inherited
// FreeInstance method frees and cleans up the node for real.
procedure TNode.RealFree;
begin

inherited Freelnstance;
end;

You can also replace the entire memory management system that Delphi uses.
Install a new memory manager by calling SetMemoryManager. For example, you
mght want to replace Delphi’s suballocator with an allocator that performs addi-
tional error checking. Example 2-18 shows a custom memory manager that keeps
a list of pointers the program has allocated and explicitly checks each attempt to
free a pointer against the list. Any attempt to free an invalid pointer is refused, and
Delphi will report a runtime error (which SysUtils changes to an exception). As
a bonus, the memory manager checks that the list is empty when the application

ends. If the list is not empty, you have a memory leak.

Example 2-18: Installing a Custom Memory Manager
unit CheckMemMgr;

interface

64 Chapter 2—- The Delphi Object Model

Example 2-18: Installing a Custom Memory Manager (continued)
uses Windows;
function CheckGet(Size: Integer): Pointer;

function CheckFree(Mem: Pointer): Integer;
function CheckRealloc(Mem: Pointer; Size: Integer): Pointer;

var is =
HeapFlags: DWord; // In a single-threaded application, you might g' ©
// want to set this to Heap No_Serialize. § g
implementation g.g-
& =
o
const
MaxSize = MaxInt div 4;
type

TPointerArray = arrayl[l..MaxSize] of Pointer;
PPointerArray = ~TPointerArray;

var
Heap: THandle; // Windows heap for the pointer list
List: PPointerArray; // List of allocated pointers
ListSize: Integer; // Number of pointers in the list
ListAlloc: Integer; // Capacity of the pointer list

// 1f the list of allocated pointers is not empty when the program

// finishes, that means you have a memory leak. Handling the memory

// leak is left as an exercise for the reader.

procedure MemoryLeak;

begin
// Report the leak to the user, but remember that the program is
// shutting down, so you should probably stick to the Windows API
// and not use the VCL.

end;

// Add a pointer to the list.
procedure AddMem(Mem: Pointer);
begin
if List = nil then
begin
// New list of pointers.
Listalloc := 8;
List := HeapAlloc(Heap, HeapFlags, ListAlloc * SizeOf (Pointer));
end
else if ListSize >= ListAlloc then
begin
// Make the list bigger. Try to do it somewhat intelligently.
if Listalloc < 256 then
ListAlloc := ListAlloc * 2
else
ListAlloc := ListAlloc + 256;
List := HeapRealloc(Heap, HeapFlags, List,
ListAlloc * SizeOf (Pointer));
end;
// Add a pointer to the list.

Memory Management G5

Example 2-18: Installing a Custom Memory Manager (continued)

Inc(ListSize);
List[ListSize] := Mem;
end;

// Look for a pointer in the list, and remove it. Return True for
// success, and False if the pointer is not in the list.
function RemoveMem(Mem: Pointer): Boolean;
var
I: Integer;
begin
for I := 1 to ListSize do
if List[I] = Mem then
begin
MoveMemory (@List[I], @List[I+1], (ListSize-I) * SizeOf (Pointer)) ;
Dec(ListSize);
Result := True;
Exit;
end;

Result := False;
end;

// Replacement memory allocator.
function CheckGet (Size: Integer): Pointer;

begin
Result := SysGetMem(Size);
AddMem(Result) ;

end;

// If the pointer isn’t in the list, don’t call the real
// Free function. Return 0 for success, and non-zero for an error.
function CheckFree(Mem: Pointer): Integer;

begin
if not RemoveMem(Mem) then
Result := 1
else

Result := SysFreeMem(Mem) ;
end;

// Remove the old pointer and add the new one, which might be the
// same as the old one, or it might be different. Return nil for
// an error, and Delphi will raise an exception.
function CheckRealloc (Mem: Pointer; Size: Integer): Pointer;
begin
if not RemoveMem(Mem) then
Result := nil
else
begin
Result :=SysReallocMem(Mem, Size);
AddMem (Result) ;
end;
end;

66 Chapter 2~ The Delphi Object Model

Example 2-18: Installing a Custom Memory Manager (continued)

procedure SetNewManager;

var
Mgr: TMemoryManager;

begin
Mgr.GetMem := CheckGet;
Mgr.FreeMem := CheckFree;
Mgr.ReallocMem := CheckRealloc;

SetMemoryManager (Mgr) ;
end;

initialization
Heap := HeapCreate(0, HeapFlags, 0);
SetNewManager;
finalization
if ListSize <> 0 then
MemoryLeak;
HeapDestroy (Heap) ;
end.

If you define a custom memory manager, you must ensure that your memory
manager 15 used for all memory allocation. The easiest way to do this is to set the
memory manager 1 a unit’s mitialization section, as shown m Example 2-18. The
memory management unit must be the first unit listed in the project’s uses
declaration.

Ordinarily, if a unit makes global changes in its initialization section, it should
clean up those changes in its finalization section. A unit 1 a package mught be
loaded and unloaded many times in a single application, so cleaning up is impor-
tant. A memory manager is different, though. Memory allocated by one manager
cannot be freed by another manager, so you must ensure that only one manager is
active in an application, and that the manager 1s active for the entire duration of
the application. This means you must not put your memory manager in a package,
although you can use a DLL, as explained in the next section.

Memory and DLLs

If you use DLLs and try to pass objects between DLLs or between the application
and a DLL, you run into a number of problems. First of all, each DLL and EXE
keeps its own copy of its class tables. The is and as operators do not work
correctly for objects passed between DLLs and EXEs. Use packages (described in
Chapter 1) to solve this problem. Another problem is that any memory allocated in
a DLL 1s owned by that DLL. When Windows unloads the DLL, all memory allo-
cated by the DLL is freed, even if the EXE or another DLL holds a pointer to that
memory This can be a major problem when using strings, dynamic arrays, and
Variants because you never know when Delphi will allocate memory
automatically

The solution is to use the ShareMem unit as the first unit of your project and every
DLL. The ShareMem unit installs a custom memory manager that redirects all
memory allocation requests to a special DLL, BorlndMM.dll. The application
doesn’t unload BorindMM until the application exits. The DLL magic takes place

Memory Management G7

1ydjag ayy

o
=
b}
b}
~
=
=)
=
)
-

transparently, so you don’t need to worry about the details. Just make sure you
use the ShareMem unit, and make sure it is the first unit used by your program
and libraries. When you release your application to your clients or customers, you
will need to include BorindMM.dll.

If you define your own memory manager, and you need to use DLLs, you must
duplicate the magic performed by the ShareMem unit. You can replace ShareMem
with your own unit that forwards memory requests to your DLL, which uses your
custom memory manager. Example 2-19 shows one way to define your own
replacement for the ShareMem unit.

Example 2-19: Defining a Shared Memory Manager
unit CheckShareMem;

// Use this unit first so all memory allocations use the shared

// memory manager. The application and all DLLs must use this unit.
// You camnot use packages because those DLLs use the default Borland
// shared memory manager.

interface

function CheckGet(Size: Integer): Pointer;
function CheckFree(Mem: Pointer): Integer;
function CheckRealloc(Mem: Pointer; Size: Integer): Pointer;

implementation

const
DLL = 'CheckMM.dll’;

function CheckGet (Size: Integer): Pointer; externmal DLL;

function CheckFree(Mem: Pointer): Integer; external DLL;

function CheckRealloc(Mem: Pointer; Size: Integer): Pointer;
external DLL;

procedure SetNewManager;

var
Mgr: TMemoryManager;

begin
Mgr.GetMem := CheckGet;
Mgr.FreeMem := CheckFree;
Mgr.ReallocMem := CheckRealloc;
SetMemoryManager (Mgr) ;

end;

initialization
SetNewManager;
end.

The CheckMM DLL uses your custom memory manager and exports its functions so
they can be used by the CheckShareMem unit. Example 2-20 shows the source
code for the CheckMM library.

68 Chapter 2— The Delphi Object Model

Example 2-20: Defining the Shared Memory Manager DLL
library CheckMM;

// Replacement for BorlndMM.dll to use a custom memory manager.

uses
CheckMemMgr ;

exports
CheckGet, CheckFree, CheckRealloc;

begin
end.

Your program and library projects use the CheckShareMem unit first, and all
memory requests go to CheckMM.dll, which uses the error-checking memory
manager. You don’t often need to replace Delphi’s memory manager, but as you
can see, it isn’t difficult to do.

The memory manager that comes with Delphi works well for most
applications, but it does not perform well in some cases. The aver-
age application allocates and frees memory mn chunks of varying
sizes. If your application is different and allocates memory in ever-
increasing sizes (say, because you have a dynamuc array that grows
in small steps to a very large size), performance will suffer. Delphi’s
memory manager will allocate more memory than your application
needs. One solution is to redesign your program so it uses memory
in a different pattern (say, by preallocating a large dynamuc array).
Another solution 1s to write a memory manager that better meets the
specialized needs of your application. For example, the new mem-
ory manager might use the Windows API (HeapAllocate, etc.).

Old-Style Object Types

In addition to class types, Delpht supports an obsolete type that uses the object
keyword. Old-style objects exist for backward compatibility with Turbo Pascal, but
they might be dropped entirely from future versions of Delphu.

Old-style object types are more like records than new-style objects. Fields in an
old-style object are laid out in the same manner as in records. If the object type
does not have any virtual methods, there 1s no hidden field for the VMT pointer,
for example. Unlike records, object types can use inheritance. Dernved fields
appear after inherited fields. If a class declares a virtual method, its first field is the
VMT pointer, which appears after all the inherited fields. (Unlike a new-style
object, where the VMT pointer is always first because TObject declares virtual
methods.)

Old-Style Object Types 69

o
=
@
S
2
=2
S
QU
@
=

wydaqg ayl

An old-style object type can have private, protected, and public sections, but not
published or automated sections. Because it cannot have a published section, an
old object type cannot have any runtime type information. An old object type
cannot implement interfaces.

Constructors and destructors work differently in old-style object types than in
new-style class types. To create an instance of an old object type, call the New
procedure. The newly allocated object is initialized to all zero. If you declare a
constructor, you can call it as part of the call to New. Pass the constructor name
and arguments as the second argument to New. Similarly, you can call a destructor
when you call Dispose to free the object instance. The destructor name and argu-
ments are the second argument to Dispose.

You don’t have to allocate an old-style object instance dynamically You can
treat the object type as a record type and declare ob ect-type varnables as unit-
level or local variables. Delphi automatically initializes string, dynamic array, and
Variant fields, but does not iitialize other fields 1 the object instance.

Unlike new-style class types, exceptions in old-style constructors do not automat-
ically cause Delphi to free a dynamically created object or call the destructor.

70 Chapter 2— The Delphi Object Model

|

CHAPTER 3

Runtime Type Information

Delphi’s Integrated Development Environment (IDE) depends on information
provided by the compiler. This information, called Runtime Type Information
(RTTD), describes some aspects of classes and other types. It's not a full reflection
system such as you find in Java, but it's more complete than type identifiers 1n
C++ For ordinary, everyday use of Delphi, you can ignore the details of RTTI and
just let Delpht do its thing. Sometimes, though, you need to look under the hood
and understand exactly how RTTI works.

The only difference between a published declaration and a public declaration is
RTTI. Delphi stores RTTI for published fields, methods, and properties, but not for
public, protected, or private declarations. Although the primary purpose of RTTI 1s
to publish declarations for the IDE and for saving and loading .dfm files, the RTTI
tables include other kinds of information. For example, virtual and dynamic
methods, interfaces, and automated declarations are part of a class’s RTTL. Most
types also have RTTI called type information. This chapter explains all the details
of RTTL.

Virtual Method Table

The Virtual Method Table (VMT) stores pointers to all the virtual methods declared
for a class and its base classes. The layout of the VMT 1s the same as 1n most C++
implementations (including Borland C++ and C++ Builder) and 1s the same format
required for COM, namely a list of pomters to methods. Each virtual method of a
class or its ancestor classes has an entry in the VMT.

Each class has a unique VMT. Even if a class does not define any of its own virtual
methods, but only mherits methods from its base class, it has its own VMT that
lists all the virtual methods it inherits. Because each VMT lists every virtual
method, Delphi can compile calls to virtual methods as quick lookups in the VMT.
Because each class has its own VMT, Delphi uses the VMT to identify a class. In

71

N~
i
3
3
1Y
=
(=]
=

adfy awnuny

fact, a class reference 1s really a pointer to a class’s VMT, and the ClassType
method returns a pomter to the VMT.

In addition to a table of virtual methods, the VMT includes other information
about a class, such as the class name, a pointer to the VMT for the base class, and
pointers to many other RTTI tables. The other RTTI pointers appear before the first
virtual method in the VMT. Example 3-1 shows a record layout that 1s equivalent
to the VMT. The actual list of virtual methods begins after the end of the Tvmt
record. In other words, you can convert a TClass class reference to a pointer to a
TVmt record by subtracting the size of the record, as shown in Example 3-1.

Example 3-1. Structure of a VMT

type
PVmt = “TVmt;
TVt = record
SelfPtr: TClass; // Points forward to the start

// of the vMT
// The following pointers point to other RTTI tables. If a class
// does not have a table, the pointer is nil. Thus, most classes
// have a nil IntfTable and AutoTable, for example.

IntfTable: PInterfaceTable; // Interface table

AutoTable: PAutoTable; // Automation table

InitTable: PInitTable; // Fields needing finalization
TypeInfo: PTypelnfo; // Properties & other info
FieldTable: PFieldTable; // Published fields
MethodTable: PMethodTable; // Published methods
DynMethodTable: PDynMethodTable; // List of dynamic methods
ClassName: PshortString; // Points to the class name
InstanceSize: LongInt; // Size of each object, in bytes
ClassParent: ~TClass; // Immediate base class

// The following fields point to special virtual methods that
// are inherited from TObject.

SafeCallException: Pointer;

AfterConstruction: Pointer;

BeforeDestruction: Pointer;

Dispatch: Pointer;
DefaultHandler: Pointer;
NewInstance: Pointer;
FreeInstance: Pointer;
Destroy: Pointer;

// Here begin the virtual method pointers.
// Bach virtual method is stored as a code pointer, e.g.,
// VirtualMethodTable: array[l..Count] of Pointer;
// But the compiler does not store the count of the number of
// method pointers in the table.
end;
var
Vimt: PVmt;
begin
// To get a PVmt pointer from a class reference, cast the class

72 Chapter 3 — Runtime Type Information

Example 3-1. Structure of a VMT (continued)

// reference to the PVmt type and subtract the size of the TVmt
// record. This is easily done with the Dec procedure:

Vmt := PVmt (SomeObject.ClassType);

Dec (Vmt) ;

As you can see, the VMT includes pointers to many other tables. The following
sections describe these tables in more detail.

Publisbed Declarations

The only difference between a published declaration and a public one 1s that a
published declaration tells the compiler to store information in the VMT. Only
certain kinds of information can be stored, so published declarations face a
number of restrictions:

¢ In order to declare any published fields, methods, or properties, a class must
have RTTI enabled by using the $M+ directive or by inheriting from a class
that has RTTL (See Chapter 8, Compiler Directives, for details.)

* Fields must be of class type (no other types are allowed). The class type must
have RTTI enabled.

* Array properties cannot be published. The type of a published property can-
not be a pointer, record, or array If it is a set type, it must be small enough to
be stored 1n an integer. In the current release of Delphi, that means the set
can have no more than 32 members.

¢ The published section cannot contain more than one overloaded method with
each name. You can overload methods, but only one of the overloaded meth-
ods can be published.

The Classes unit declares TPersistent with the $M+ directive. TPersistent is
usually used as a base class for all Delphi classes that need published declara-
tions. Note that TComponent inherits from TPersistent.

Published Methods

Delphi stores the names and addresses of published methods in a class’s RTTI.
The IDE uses this information to store the values of event properties in a .dfm file.
In the IDE, each event property is either nil or contains a method reference. The
method reference includes a pointer to the method’s entry point. (At design time,
the IDE has no true entry point, so it makes one up. At runtime, your application
uses the method’s real entry point) To store the value of an event property,
Delphi looks up the method address in the class’s RTTI, finds the corresponding
method name, and stores the name in the .dfm file. To load a .dfm file, Delphi
reads the method name and looks up the corresponding method address from the
class’s RTTL

A class’s RTTI stores only the published methods for that class, and not for any
ancestor classes. Thus, to look up a method name or address, the lookup might
fail for a derived class, in which case, the lookup continues with the base class.
The MethodName and MethodAddress methods of TObject do the work of

Published Declarations 73

=}
D
]
3
Q
=
=]
3

adfy awnuny

searching a class’s RTTI, then searching the base class’s RTTI, and so on, up the
mnheritance chain. (See the TObject type in Chapter 5, Language Reference, for
details about these methods) The published method table contans only the
method name and address.

You can declare any method in the published section of a class declaration.
Usually, though, Delphi’s IDE creates the methods for you. When you double-click
an event property, for example, the IDE creates a method m the initial, unnamed
section of the form class. Because a form class has RTTI enabled, the initial,
unnamed section is published. (Form classes have RTTI because TPersistent is
an ancestor class.)

The method table starts with a 2-byte count of the number of published methods,
followed by a record for each method. Each method record starts with a 2-byte
size of the method record, followed by the method address (4 bytes), and then
followed by the method name as a short string, that is, as a 1-byte string length
followed by the text of the string.

More Method RITI

The record size for a method is usually 2 + 4 + 1 + Length(Name), but some
method records have additional information. The additional information 1s
not part of the official RTTI for the class. Future versions of the compiler
might not generate this information, so you should not write any code that
relies on it. The information 1s wteresting, though, so take a look at what
Delphi hides 1n its method records.

Delphi stores additional information for methods that use the stdcall
calling convention and that have parameter and return types for which
Delphu ordinarily stores type mnformation. The extra information 1s stored
after the method name and includes the names and types of the parameters.
You can tell this extra information 1s present when the size of the method
record is larger than it needs to be to store the record size, method address,
and method name. If the size 1s 4 bytes larger than it needs to be, that
means the method takes no parameters. The extra 4 bytes are always zero.

If the size is more than 6 bytes larger than it needs to be, the information for
the method’s parameters 1s stored following the sxth byte. (The extra 2
bytes do not seem to serve any useful purpose, but they are not always
zero.) Each parameter has a pomter to a TTypeInfo record for the param-
eter’s type, followed by the parameter name (as a short string), followed by
a trailing #0 byte. (See “The TypInfo Unit,” later m this chapter, to learn
about the TTypeInfo record.)

Example 3-2 depicts the logical structure of the method table. Note that Delpht
cannot use these declarations verbatim because the record size varies to fit the size
of the strings.

74 Chapter 3~ Runtime Type Information

Example 3-2: The Layout of the Published Method Table

type
TMethodParam = packed record
TypeInfo: PPTypeInfo;
Name: ShortString;
// The name is followed by a trailing #0 byte.

end;

TMethod = packed record
Size: Word; // Size of the TVmtMethod record.
Address: Pointer; // Pointer to the method entry point.

Name: packed ShortString; // Name of the published method.
// Some methods have an additional 4 zero bytes, which means the
// method takes no parameters.
// Some methods have an additional 6 bytes, followed by a series of
// TMethodParam records, for each parameter.
// It seems that only stdcall methods have this extra information.
// You can identify the extra info by the TMethod.Size value being
// too big for just the Size, Address, and Name members. The only
// way to know how many parameters are stored here is to check
// each parameter until you reach the record size.
ExtraStuff: array({l..FourOrSix] of Byte;
Params: array[l..ParamCount] of TMethodParam;

end;

{ Published method table }

TMethodTable = packed record

Count: Word;
Methods: array[l..Count] of TMethod;
end;

Publisbed Fields and Field Types

Each published field has a name, a type, and an offset. The type is a class refer-
ence for the field’s type. (Published fields must be of class type.) The offset is an
offset (in bytes) into the object’s storage, where the field 1s stored.

The published field table starts with a 2-byte count of the number of fields,
followed by a 4-byte pointer to a class table, followed by the field definitions.
Each field definition is a record containing a 4-byte offset, and a 2-byte index into
the class table, followed by the field name as a short string.

The class table lists all the classes used by the published fields. Each field contains
an index into this table. The class table starts with a 2-byte count, followed by a
list of class references where each class reference is 4 bytes. A class reference is a
pointer to the class’s VMT.

Example 3-3 shows the logical layout of the field table. Because the records are
variable length, you cannot use these declarations in a Delphi program.

Example 3-3: Layout of the Published Field Table

type
{ Field class table }
PFieldClassTable = ~TFieldClassTable;
TFieldClassTable = packed record

Published Declarations 75

o
E‘
S
3
1Y
=
(=]
=

adfj swnuny

Example 3-3: Layout of the Published Field Table (continued)

Count: Word;
Classes: packed array[l..Count] of “TClass;
end;

{ Published field record }
TField = packed record
Offset: LongWord; // Byte offset of field in the object. }
ClassIndex: Word; // Index in the FieldClassTable of the
// field's type.
Name: packed ShortString; // Name of the published field. }
end;

{ Published field table }
TFieldTable = packed record

Count: Word;

FieldClassTable: PFieldClassTable;

Fields: packed array [1..Count] of TField;
end;

Publisbed Properties

Published properties have lots of information stored about them: name, type,
reader, writer, default value, index, and stored flag. The type is a pointer to a
TTypeInfo record (discussed in the next section). The reader and writer can be
fields, methods, or nothing. The default value 1s an ordinal value; non-ordinal
properties don't have default values. The stored flag can be a constant, a field, or a
method reference. The Object Inspector in Delphi’s IDE relies on published prop-
erties, and Delpht uses the default and stored information when saving and
loading .dfin files.

The reader, writer, and stored fields can be pointers to static methods, byte offsets
of virtual methods, or byte offsets of fields. Dynamic methods are not allowed, and
static or virtual methods must use the register calling convention (which 1s the
default). Additionally, the stored value can be a constant True or False. Delphi
stores these different kinds of values as follows:

® A constant True or False is stored as a literal zero or 1. Only the stored
directive can have a constant True or False. If a reader or writer is zero, that
means the property does not have that particular directive, that 1s, the prop-
erty 1s write-only or read-only, respectively

* A field offset 1s stored with $FF 1n the most significant byte. For example, a
field stored at offset 42 ($24) would have the value $FFO0002A. Note that
published fields are rarely used to store property values, so it 1s unlikely that
you could look up the name of the field in the published field table.

* A virtual method is stored with $FE in the most significant byte and the byte
offset of the method as a SmallInt in the low order 2 bytes. For example,
the third virtual method 1s stored as $FE000008. (The first virtual method has
offset 0.)

76 Chapter 3— Runtime Type Information

Publisbed Fields and Components

When you drop a component on a form in Delphi’s IDE, the IDE creates a
published field declaration for that component. Delphi takes advantage of
published fields 1n the form class when saving and loading .dfm files, but
the mechanisms Delphi uses are common to any component because they
are implemented as methods of the TComponent class. These tricks are not
part of the Delphi language, but they affect most Delphi programs.

When a component (call it Owner) becomes the owner of another compo-
nent (call it Child), the child looks up its name (that 1s, the value of the
Name property) in the owner. If Owner has a published field with the same
name as Child, the owner sets the value of its field to be a reference to the
child object. When Child is destroyed, Owner checks again for a published
field of the same name, and if it finds a match, it sets the field to nil.

s
S
3
2
=
(=]
=

adAy awnuny

Usually, the only time a Delphi programmer encounters this behavior 1s for
the published fields of a form. When Delphi loads a .dfim, it creates the child
components. The form class (which 1s the owner) notices that a compo-
nent'’s name matches that of a published field and automatically sets the
field to refer to the newly created component.

In other words, the Delphi language does not treat components or forms
specially Instead, the TComponent class knows about published fields and
uses that information to manage the components it owns. Don’t be fooled
mnto thinking that Delph:t automatically manages the lifetime of all compo-
nents just because it manages some components.

The published field table is especially important when loading a .dfin. When
Delph: loads a component from a .dfin, it reads the name of the compo-
nent’s type as a string. Delphi needs a class reference for the class name,
which it can look up 1n the field class table. If you write a component that
stores a subcomponent and that subcomponent is not declared m a
published field, you will need to register its class explicitly by calling
RegisterClass or RegisterClasses (both in the Classes unit). Regis-
tering classes is not a feature of the Delphi language.

¢ A static method is stored as an address, e.g., $00401E42. The memory architec-
ture of Windows prevents any method from having an address with $FF or $FE
in the most significant byte, so there is no danger of conflicts or ambiguities.

The default value can be stored only for integer, character, enumeration, or set
types. If the programmer declares a property with the nodefault directive (which
is the same as omitting the default directive), Delphi stores the most negative
integer ($80000000 or ~2,147,483,648) as the default value. In other words, you
cannot have an mnteger property whose default value is —2,147,483,648 because
Delphi would interpret that as being the same as nodefault.

Published Declarations 77

Strng, floating-point, Int64, Variant, and class-type properties
cannot have default values, and the nodefault directive has no
effect. (Delphi always uses an empty string, zero, Unassigned, or
nil as the default value for these types when reading and writing
.dfm files) If you want the effect of defining a default value for
these kinds of properties, you can play a trick in the class’s construc-
tor: set the property’s value when the user drops the component on
a form, and not when Delphi loads the component from the .dfm
file. What makes this tricky 1s that the ComponentState property is
not set until after the constructor returns. (Read about
ComponentState mn Delphi’s help files.) Thus, you need to test the
owner’s ComponentState, as follows:
constructor TStringDefault.Create (Owner:
TComponent) ;
begin
inherited;
if (Owner = nil) or
(([csReading, csDesigning] *
Owner.ComponentState) = [csDesigning])
then
StringProperty := 'Default value';
end;
This trick does not save any space in the .dfm file, but it achieves
the goal of setting a default value for a property that does not ordi-
narily take a default value.

The primary purpose of a default value s to save space in a .dfm file. If a prop-
erty’s value is the same as the default value, Delphi doesn't store that value 1n the
.dfm. If a property does not have a default value, Delphi always stores the value n
the .dfm. Note that mherited forms get their default values from the ancestor form,
which gets it from the default directive. It 15 the programmer’s responsibility to
initialize a property to its default value in the class’s constructor—Delph: doesn’t
do that automatically (See Example 3-5, later in this chapter, for help setting
default property values.)

The index directive stores the index value for an indexed property If the prop-
erty 1s not indexed, Delphi stores the most negative integer as the index value,

The published property information also stores the name index, that 1s, the ordinal
position of the property 1n the class declaration. The Object Inspector can sort
properties into alphabetical order, which scrambles the declared order of a class’s
properties. The name index value gives you the original order.

Delphi makes it easy to access a class’s published property information using the
TypInfo unit, which is the subject of the next section.

78 Chapter 3~ Runtime Type Information

The Typlnfo Unit

The TypInfo unit declares several types and functions that give you easy access
to the published properties of an object and other mnformation. The Object
Inspector relies on this information to perform its magic. You can obtain a list of
the published properties of a class and get the name and type for each property
Given an object reference, you can get or set the value of any published property

The TypeInfo function returns a pomter to a type information record, but if you
don’t use the TypInfo unit, you cannot access anything in that record and must
instead treat the result as an untyped Pointer. The TypInfo unit defines the real
type, which 1s PTypeInfo, that 1s, a poimnter to a TTypeInfo record. The type
information record contains a type kind and the name of the type. The type kind
18 an enumerated value that tells you what kind of type it 1s: integer, floating pount,
string, etc.

Type Data

Some types have additional type data, as returned by the GetTypeData function,
which returns a PTypeData pointer. You can use the type data to get the names
of an enumerated literal, the limits of an ordinal subrange, and more. Table 3-1
describes the data for each type kind.

Table 3-1. Type Kinds and Thew Data
ThpeKind Literal | Associated Data

tkArray No associated data.

tkChar Limits of character subrange.

tkClass Class reference, parent class, unit where class 1s declared,
and published properties.

tkDynArray No associated data for dynamic arrays.

tkEnumeration If the type is a subrange of another type, the data includes
a pomnter to the base type and the limits of the subrange;
otherwise, the data includes the limits of the subrange and
a packed list of counted strings for the names of the
enumerated literals.

tkFloat Floating-point type: currency, comp, single, double, or
extended (but not Real48).

tkInt64 Limits of integer subrange.

tkInteger Limits of integer subrange.

tkInterface Base interface, unit where the interface 1s declared, and the
GUID.

tkLString No associated data for a long string (AnsiString).

tkMethod Return type, kind of method, and parameter names and
type names.

tkRecord No associated data.

tkSet Pomter to the enumerated type of the set elements.

tkString Maximum length of a short string.

The TypInfo Unit 79

=)
=)
3
S
2
[~
=

atfy swnuny

Table 3-1. Type Kinds and Their Data (continued)

TTipeKind Literal | Associated Data

tkUnknown No associated data.

tkvariant No associated data.

tkiWChar Limits of wide character subrange.
tkWString No associated data for a WideString.

Note that the primary purpose of type information is to support Delphi’s IDE and
for reading and writing .dfm files. A secondary purpose is for initialization and
finalization of managed types. It is not a general-purpose reflection system, as you
find n Java, so information about records and arrays, for example, is limited.

Publisbed Properties

Many of the functions in the TypInfo unit make it easy for you to access the
published properties of an object. Instead of accessing the type information
directly, you can call some functions to get or set a property value, determine
whether the property should be stored, get the property type and name, and so on.

To get or set a property value, you need to know what kind of property type you
are dealing with: ordinal, floating point, string, Variant, method, or Int64. Each
kind of type has a pair of subroutines to get and set a property value. If the prop-
erty has methods for the reader or writer, the TypInfo routines call those methods,
just as though you were getting or setting the property in the usual manner.

Integer-, character-, enumeration-, set-, and class-type properties are ordinal. They
store their property values in an integer, so you must use an integer to get or set
the property value. When you get the property value, cast it to the desired type.
To set the property value, cast the value to an integer. Example 3-4 shows a
procedure that takes any component as an argument and tests whether that
component publishes a property called Font whose type is a class type. If so, the
procedure sets the component’s font to Arial, 10 pt.

Example 3-4: Setting an Ordinal Property

procedure SetFontToAriallOpt (Component: TComponent) ;
var

Font: TFont;

PropInfo: PPropInfo;
begin

// First find out if the component has a Font property.

PropInfo := GetPropInfo(Component, 'Font');

if PropInfo = nil then

Exit;
// Next see if the property has class type.
if PropInfo.PropType”.Kind <> tkClass then

Exit;
Font := TFont.Create;
try
Font.Name := 'Arial’;
Font.Size := 10;

80 Chapter 3— Runtime Type Information

Example 3-4: Setting an Ordinal Property (continued)

// Now set the component’s Font property.
SetOrdProp (Component, PropInfo, Integer(Font));
// SetOrdProp is just like Component.Font := Font except that
// the compiler doesn’t need to know about the Font property.
// The component’s writer copies the TFont object, so this
// procedure must free its Font to avoid a memory leak.
finally
Font .Free;
end;
end;

You can get a list of PPropInfo pointers if you need to learn about all of an
object’s properties, or you can call GetPropInfo to learn about a single property
The GetPropList function gets only properties whose type kind matches a set of
type kinds that you specify You can use this to learn about events (tkMethod),
string-valued properties only (tkString, tkLString, tkWString), and so on.
Example 3-5 shows a procedure that takes an object as an argument and looks up
all the ordinal-type properties, then gets the default values of those properties and
sets the property values to the defaults. You can call this function from a
constructor to guarantee that the properties are properly initialized, thereby
avoiding a possible error where the property declaration has one default value,
but the constructor has a different one.

-
i
S
3
QU
=
o
=1

adAy awnuny

Example 3-5: Setting Default Property Values

// Set the default value for all published properties.
procedure SetDefaultValues(Obj: TObject);
const
tkOrdinal [tkEnumeration, tkInteger, tkChar, tkSet, tkWChar];
NoDefault = Low(Integer);
var
PropList: PPropList;
Count, I: Integer;
Value: Integer;
begin
// Count the number of ordinal properties that can have
// default values.
Count := GetPropList(Obj, tkOrdinal, nil);
// Allocate memory to store the prop info & get the real prop list.
GetMem(PropList, Count * SizeOf (PPropInfo));
try
GetPropList (Obj, tkOrdinal, PropList);
// Loop through all the ordinal properties.
for I := 0 to Count-1 do
// If the property has a default value, set the property value
// to that default.
if PropList[I].Default <> NoDefault then
SetOrdProp (Obj, PropList([I], PropList[I].Default)
finally
FreeMem(PropList) ;
end;
end;

The TypInfo Unit 81

The routines i the TypInfo unit, while not documented, are straightforward and
easy to use. The following list describes all the subroutines in the TypInfo unit,
for your convenience. Consult the TypInfo.pas source file for further details
(provided you have at least the Professional edition of Delphi or C++ Builder).
Note that these functions perform little or no error checking. It is your responst-
bility to ensure that you are calling the correct function for the property and its
type. Changing the value of a read-only property or getting the value of a write-
only property, for example, results in an access violation.

GetEnumName function
function GetEnumName (TypeInfo: PTypeInfo; Value: Integer): string;

Returns the name of an enumerated literal or an empty string if Value is out
of range.

GetEnumProp function
function GetEnumProp (Instance: TObject; PropInfo: PPropInfo):
string; overload;
function GetEnumProp (Instance: TObject; const PropName: string):
string; overload;

Returns the name of the enumerated literal that 1s the property’s value.

GetEnumValue function
function GetEnumValue(TypeInfo: PTypelnfo; const Name: string):Integer;

Returns the ordinal value of an enumerated literal or 1 if the type has no
literal with the given name.

GetFloatProp function
function GetFloatProp(Instance: TObject; PropInfo: PPropInfo):
Extended; overload;
function GetFloatProp(Instance: TObject; const PropName: string):
Extended; overload;

Gets the value of a property with a floating-point type.

GetIntG4Prop function
function GetInt64Prop(Instance: TObject; PropInfo: PPropInfo):
Int64; overload;
function GetInt64Prop(Instance: TObject; const PropName: string):
Int64; overload;

Gets the value of a property of type Int64 or any subrange that requires
more than 32 bits to represent.

GetMethodProp function
function GetMethodProp(Instance: TObject; PropInfo: PPropInfo):
TMethod; overload;
function GetMethodProp(Instance: TObject; const PropName: string):
TMethod; overload;

Gets the value of an event property

GetObjectProp function
function GetObjectProp(Instance: TObject; PropInfo: PPropInfo;
MinClass: TClass = nil): TObject; overload;
function GetObjectProp(Instance: TObject; const PropName: string;
MinClass: TClass = nil): TObject; overload;

82 Chapter 3 — Runtime Type Information

Gets the value of a class-type property MinClass 1s the base class that you
require for the property value; if the result is not of type MinClass or a
descendant, GetObjectProp returns nil. The default is to allow an object of
any class.

GetObjectPropClass function
function GetObjectPropClass(Instance: TObject; PropInfo: PPropInfo):
TClass; overload;
function GetObjectPropClass (Instance: TObject; const PropName: string):
TClass; overload;

Gets the class type from the property’s type data. Instance is used only to
look up the property information, so the first version of this function (which
already has the property information i the PropInfo parameter) does not
refer to Instance.

GetOrdProp function
function GetOrdProp(Instance: TObject; PropInfo: PPropInfo):
Longint; overload;
function GetOrdProp(Instance: TObject; const PropName: string):
Longint; overload;

Gets the value of any ordinal type property, or any property whose value fits
i a 32-bit integer, e.g., object, set, character, enumerated, or integer

subrange.

GetPropInfo function
function GetPropInfo(TypeInfo: PTypeInfo; const PropName: string):
PPropInfo; overload;
function GetPropInfo(TypeInfo: PTypeInfo; const PropName: string;
AKinds: TTypeKinds): PPropInfo; overload;
function GetPropInfo(Instance: TObject; const PropName: string;
AKinds: TTypeKinds = []): PPropInfo; overload;
function GetPropInfo(AClass: TClass; const PropName: string;
AKinds: TTypeKinds = []): PPropInfo; overload;
Returns the PPropInfo pointer for a published property or nil if the class
does not have any such published property or if the named property does not
have the correct type. The first argument can be an object reference, a class
reference, or a class’s type mformation (from the TypeInfo function or
ClassInfo method).

-
=)
g
3
2N
=
LY
=

aufy swnuny

GetProplnfos procedure
procedure GetPropInfos(TypeInfo: PTypeInfo; PropList: PPropList);
Gets a list of all the PPropInfo pointers for an object, in declaration order.
Use the class’s type data to learn how many published properties the class
has, so you can allocate the PropList array

GetProplist function
function GetPropList(TypeInfo: PTypeInfo; TypeKinds: TTypeKinds;
PropList: PPropList): Integer;
Gets an alphabetized list of PPropInfo pointers for the matching properties
of an object and returns a count of the number of properties stored in
PropList. Pass nil for the PropList parameter to get a count of the
number of matching properties.

The TypInfo Unit 83

GetPropValue function
function GetPropValue(Instance: TObject; const PropName: string;
PreferStrings: Boolean = True): Variant;

Gets the value of a published property as a Variant. GetPropValue mncurs
more overhead than the other Get... functions, but is easier to use. If
PreferStrings 1s True, GetPropValue will store the property value as a
string, if this is possible.

GetSetProp function
function GetSetProp(Instance: TObject; PropInfo: PPropInfo;
Brackets: Boolean = False): string; overload;
function GetSetProp(Instance: TObject; const PropName: string;
Brackets: Boolean = False): string; overload;

Gets the value of a set-type property and returns the value as a string. The
format of the string is a list of enumerated literals, separated by commas and
spaces. You can optionally include square brackets. The format 1s the same as
that used in the Object Inspector.

GetStrProp function
function GetStrProp(Instance: TObject; PropInfo: PPropInfo): string;
overload;
function GetStrProp(Instance: TObject; const PropName: string): string;
overload;

Gets the value of a stning-type property The property type can be tkString,
tkLString, or tkWString. In all cases, the property value 1s automatically
converted to string.

GetTypeData function
function GetTypeData(TypeInfo: PTypelnfo): PTypeData;

Returns a pointer to a type’s TTypeData record, given its PTypeInfo pointer.

GetVariantProp function
function GetVariantProp(Instance: TObject; PropInfo: PPropInfo):
Variant; overload;
function GetVariantProp(Instance: TObject; const PropName: string):
Variant; overload;

Gets the value of a Variant-type property

IsPublisbedProp function
function IsPublishedProp(Instance: TObject; const PropName: string):
Boolean; overload;
function IsPublishedProp(AClass: TClass; const PropName: string):
Boolean; overload;

Returns True if the class has a published property of the given name.

IsStoredProp function
function IsStoredProp(Instance: TObject; PropInfo: PPropInfo):
Boolean; overload;
function IsStoredProp(Instance: TObject; const PropName: string):
Boolean; overload;

Returns the value of the stored directive. If the stored directive 15 a
method, IsStoredProp calls the method; if it is a field, the field’s value is
returned.

84 Chapter 3 - Runtime Type Information

PropIsType function
function PropIsType(Instance: TObject; const PropName: string;

TypeKind: TTypeKind): Boolean; overload;
function PropIsType(AClass: TClass; const PropName: string;

TypeKind: TTypeKind): Boolean; overload;
Returns True if the named property exists and has the given type.

PropType function
function PropType(Instance: TObject; const PropName: string):

TTypeKind; overload;
function PropType(AClass: TClass; const PropName: string):

TTypeKind; overload;
Returns the type kind of a published property or raises an EPropertyError
exception if the class does not have a property with the given name.

SetEnumProp procedure
procedure SetEnumProp(Instance: TObject; PropInfo: PPropInfo;

const Value: string); overload;
procedure SetEnumProp(Instance: TObject; const PropName: string;

const Value: string); overload;
Sets the value of an enumerated-type property, given the name of an enumer-
ated literal. If the Value is not the name of an enumerated literal,
SetEnumProp raises the EPropertyConvertError exception. If you have the
ordinal value instead of the literal name, call SetOrdProp.

-
=3
S
3
1Y
3
=
o
=

aofy awnuny

SetFloatProp procedure
procedure SetFloatProp(Instance: TObject; PropInfo: PPropInfo;

Value: Extended); overload;
procedure SetFloatProp(Instance: TObject; const PropName: string;

Value: Extended); overload;
Sets the value of a property with a floating-point type.

SetInt64Prop procedure
procedure SetInt64Prop(Instance: TObject; PropInfo: PPropInfo;

const Value: Int64); overload;
procedure SetInt64Prop(Instance: TObject; const PropName: string;

const Value: Int64); overload;
Sets the value of a property whose type is Int64 or a subrange that is larger
than 32 bits.
SetMetbodProp procedure
procedure SetMethodProp (Instance: TObject; PropInfo: PPropInfo;

const Value: TMethod); overload;
procedure SetMethodProp(Instance: TObject; const PropName: string;

const Value: TMethod); overload;
Sets the value of an event property.
SetObjectProp procedure

procedure SetObjectProp (Instance: TObject; PropInfo: PPropInfo;

Value: TObject); overload;
procedure SetObjectProp(Instance: TObject; const PropName: string;

Value: TObject); overload;

The TypInfo Unit 85

Sets the value of a class-type property. If Value is not of the correct type for
the property, SetObjectProp silently ignores the attempt to set the property
value.

SetOrdProp procedure
procedure SetOrdProp (Instance: TObject; PropInfo: PPropInfo;
Value: Longint); overload;
procedure SetOrdProp(Instance: TObject; const PropName: string;
Value: Longint); overload;

Sets the value of any ordinal-type property, including sets, objects, characters,
and enumerated or integer properties.

SetPropValue procedure
procedure SetPropValue(Instance: TObject; const PropName: string;
const Value: Variant);

Sets the value of a property from a Variant. SetPropValue must be able to
convert the Variant value to the appropriate type for the property, or else it
raises an EPropertyConvertError exception.

SetSetProp procedure '
procedure SetSetProp(Instance: TObject; PropInfo: PPropInfo;
const Value: string); overload;
procedure SetSetProp(Instance: TObject; const PropName: string;
const Value: string); overload;

Sets the value of a set-type property by interpreting a string as a list of
enumerated literals. SetSetProp recognizes the format that GetSetProp
returns. If the format of Value is not valid, SetSetProp raises an
EPropertyConvertError exception.

SetStrProp procedure
procedure SetStrProp (Instance: TObject; PropInfo: PPropInfo;
const Value: string); overload;
procedure SetStrProp(Instance: TObject; const PropName: string;
const Value: string); overload;

Sets the value of a string-type property The property type can be tkString,
tkLString, or tkWString.

SetVariantProp procedure
procedure SetVariantProp(Instance: TObject; PropInfo: PPropInfo;
const Value: Variant); overload;
procedure SetVariantProp(Instance: TObject; const PropName: string;
const Value: Variant); overload;

Sets the value of a Variant-type property.

Virtual and Dynamic Methods

The VMT stores a list of pointers for virtual methods and another table i the VMT,
which this section refers to as the dynamic method table, lists both dynamic
methods and message handlers.

The compiler generates a small negative number for each dynamic method. This
negative number is just like a message number for a message handler. To avoid

86 Chapter 3— Runtime Type Information

conflicts with message handlers, the compiler does not let you compile a message
handler whose message number falls into the range of dynamic method numbers.
Once the compiler has done its work, though, any distinction between dynamic
methods and message handlers is lost. They both sit in the same table and nothing
indicates whether one entry is for a dynamic method and another 1s for a message
handler.

The dynamic method table lists only the dynamic methods and message handlers
that a class declares; it does not include any methods inherited from ancestor
classes. The dynamic method table starts with a 2-byte count of the number of
dynamic methods and message handlers, followed by a list of 2-byte method
numbers, followed by a list of 4-byte method pointers. The dynamic method table
is organized 1n this fashion (instead of having a list of records, where each record
has a method number and pomter) to speed up searching for a method number.
Example 3-6 shows the logical layout of a dynamic method table. As with the
other tables, you cannot compile this record, because it 1s not real Pascal, just a
description of what a dynamic method table looks like.

Example 3-6: The Layout of a Dynamic Method Table

type
TDynMethodTable = packed record
Count: Word;
Indexes: packed array[l..Count] of SmallInt;
Addresses: packed array[l..Count] of Pointer;
end;

Dispatching a message or calling a dynamic method requires a lookup of the
method or message number in the Indexes array The table is not sorted and the
lookup is linear. Once a match 1s found, the method at the corresponding address
is mnvoked. If the method number is not found, the search continues with the
immediate base class.

The only time you should even consider using dynamic methods is
when all of the following conditions apply:

— You are creating a large framework of hundreds of classes.

— You need to declare many virtual methods in the classes near
the root of the inheritance tree.

— Those methods will rarely be overridden in derived classes.

— Those methods never need to be called when speed is
important.

The tradeoff between virtual and dynamic methods is that virtual method tables
include all inherited virtual methods, so they are potentially large. Dynamic
method tables do not list inherited methods, so they can be smaller. On the other
hand, calling a virtual method is a fast index into a table, but calling a dynamic
method requires a search through one or more tables.

Virtual and Dynamic Methods 87

s
3
3
Q
=
(=]
1

adAj swnuny

In the VCL, dynamic methods are used only for methods that are called in
response to user interactions. Thus, the slower lookup for dynamic methods will
not impact overall performance. Also, the dynamic methods are usually declared in
the root classes, such as TControl.

If you do not have a large class hierarchy, you will usually get smaller and faster
code by using virtual methods mnstead of dynamic methods. After all, dynamic
methods must store the method number in addition to the method address. Unless
you have enough derived classes that do not override the dynamic method, the
dynamic method table will end up requiring more memory than the virtual method
table.

Initialization and Finalization

When Delphi constructs an object, it automatically mnitializes strings, dynamic
arrays, interfaces, and Variants. When the object 1s destroyed, Delphi must decre-
ment the reference counts for strings, interfaces, dynamic arrays, and free
Variants and wide strings. To keep track of this information, Delphi uses initial-
ization records as part of a class’s RTTI. In fact, every record and array that
requires finalization has an associated 1nitialization record, but the compiler hides
these records. The only ones you have access to are those assocrated with an
object’s fields.

A VMT pomnts to an iitialization table. The table contains a list of initialization
records. Because arrays and records can be nested, each initialization record
contains a pointer to another 1nitialization table, which can contain initialization
records, and so on. An nitialization table uses a TTypeKind field to keep track of
whether it 1s mitializing a string, a record, an array, etc.

An initialization table begins with the type kind (1 byte), followed by the type
name as a short string, a 4-byte size of the data being initialized, a 4-byte count for
initialization records, and then an array of zero or more itialization records. An
initialization record 1s just a pointer to a nested 1nitialization table, followed by a
4-byte offset for the field that must be initialized. Example 3-7 shows the logical
layout of the initialization table and record, but the declarations depict the logical
layout without being true Pascal code.

Example 3-7: The Layout of the nitialization Table and Record

type
{ Initialization/finalization record }
PInitTable = *TInitTable;
TInitRecord = packed record
InitTable: ~PInitTable;
Offset: LongWord; // Offset of field in object
end;
{ Initialization/finalization table }
TInitTable = packed record
{$MinEnumSize 1} // Ensure that TypeKind takes up 1 byte.
TypeKind: TTypeKind;
TypeName: packed ShortString;
DataSize: LongWord;

88 Chapter 3 — Runtime Type Information

Example 3-7- The Layout of the Initialization Table and Record (continued)

Count: LongWord;
// If TypeKind=tkArray, Count is the array size, but InitRecords
// has only one element; if the type kind is tkRecord, Count is the
// number of record members, and InitRecords(] has a
// record for each member. For all other types, Count=0.
InitRecords: arrayl[l..Count] of TInitRecord;

end;

The master TInitRecord for the class has an empty type name and zero data
size. The type kind is always tkRecord The Count is the number of fields that
need initialization, and the InitRecords array contains a TInitRecord for each
such member. Each initialization record points to an initialization table that
contains the type kind and type name for the associated member. This organiza-
tion seems a little strange, but you can soon grow accustomed to it.

Most types do not need initialization or finalization, but the following types do:

-
3
=)
3
&
=
S
3

adfy sununy

tkArray
DataSize is the size of each array element, and the Count is the number
of elements in the array Every array element is the same, so the
InitRecords array contamns one TInitRecord that represents all the
array elements. The Offset in the TInitRecord has no meaningful
value.

tkDynArray
DataSize and Count are not meaningful. Delphi decreases the refer-
ence count of the array and frees the array’s memory if the reference
count becomes zero.

tkInterface
DataSize and Count are not meaningful. Delphi calls the _Release
method, which frees the interface object if the reference count becomes
Zero.

tkLString
DataSize and Count are not meaningful. Delphi decreases the refer-
ence count of the string and frees the string’s memory if the reference
count becomes zero.

tkRecord
DataSize is the size of the record, and the Count is the number of
members that need initialization. The InitRecords array contains a
TInitRecord for each member that needs initialization.

tkvariant
DataSize and Count are not meaningful. Delphi frees any memory asso-
ciated with the Variant data.

tkwString
DataSize and Count are not meaningful. Delphi frees the string.

Initialization and Finalization 89

Automated Methods

The automated section of a class declaration is now obsolete because it is easier to
create 2 COM automation server with Delphi’s type library editor, using interfaces.
Nonetheless, the compiler currently supports automated declarations for back-
ward compatibility A future version of the compiler might drop support for
automated declarations.

The OleAuto unit tells you the details of the automated method table: The table
starts with a 2-byte count, followed by a list of automation records. Each record
has a 4-byte dispid (dispatch identifier), a pointer to a short string method name,
4-bytes of flags, a pointer to a list of parameters, and a code pointer. The param-
eter list starts with a 1-byte return type, followed by a 1-byte count of parameters,
and ends with a list of 1-byte parameter types. The parameter names are not
stored. Example 3-8 shows the declarations for the automated method table.

Example 3-8: The Layout of the Automated Method Table

const
{ Parameter type masks }
atTypeMask = $7F;
varStrArg = $48;
atByRef = $80;

MaxAutoEntries = 4095;
MaxAutoParams = 255;

type
TVmtAutoType = Byte;
{ Automation entry parameter list }
PAutoParamList = ~TAutoParamList;
TAutoParamList = packed record
ReturnType: TVmtAutoType;
Count: Byte;
Types: array([l..Count] of TVimtAutoType;
end;
{ Automation table entry }
PAutoEntry = ~TAutoEntry;
TAutoEntry = packed record
DispID: LongInt;
Name: PShortString;
Flags: LongInt; { Lower byte contains flags }
Params: PAutoParamList;
Address: Pointer;
end;

{ Automation table layout }
PAutoTable = ~TAutoTable;
TAutoTable = packed record
Count: LongInt;
Entries: array[l..Count] of TAutoEntry;
end;

90 Chapter 3 — Runtime Type Information

Interfaces

Any class can implement any number of interfaces. The compiler stores a table of
interfaces as part of the class’s RTTI. The VMT points to the table of interfaces,
which starts with a 4-byte count, followed by a list of interface records. Each inter-
face record contains the GUID, a pointer to the interface’s VMT, the offset to the
mterface’s hidden field, and a pomter to a property that implements the interface
with the implements directive. If the offset is zero, the interface property (called
ImplGetter) must be non-nil, and if the offset 1s not zero, ImplGetter must be
nil. The interface property can be a reference to a field, a virtual method, or a
static method, following the conventions of a property reader (which is described
earlier in this chapter, under “Published Properties”). When an object is
constructed, Delphi automatically checks all the interfaces, and for each interface
with a non-zero TOffset, the field at that offset 15 set to the interface’s VTable (a
pointer to its VMT). Delphi defines the types for the interface table, unlike the
other RTTI tables, in the System unit. These types are shown in Example 3-9.

Example 3-9: Type Declarations for the Interface Table

type
PInterfaceEntry = "“TInterfaceEntry;
TInterfaceEntry = record
IID: TGUID;
VTable: Pointer;
IOffset: Integer;
ImplGetter: Integer;
end;

PInterfaceTable = “TInterfaceTable;
TInterfaceTable = record
EntryCount: Integer:;
// Declare the type with the largest possible size,
// but the true size of the array is EntryCount elements.
Entries: array([0..9999] of TInterfaceEntry;
end;

TObject implements several methods for accessing the interface table. See
Chapter 5 for the details of the GetInterface, GetInterfaceEntry, and
GetInterfaceTable methods.

Exploring RTTI

This chapter ntroduces you to a class’s virtual method table and runtime type
information. To better understand how Delphi stores and uses RTTI, you should
explore the tables on your own. The code that accompanies this book on the
O'Reilly web site includes the Vmt.exe program. The VmtInfo unit defines a
collection of interfaces that exposes the structure of all the RTTI tables. The
VmtInpl unit defines classes that implement these interfaces. You can read the
source code for the VmtImpl unit or just explore the Vmt program. See the
VmtForm unit to add types that you want to explore, or to change the type
declarations.

Exploring RTTI 91

-
3
=)
3
&
=
S
3

adfy awnuny

You can also use the VintInfo interfaces in your own programs when you need
access to the RTTI tables. For example, you might write your own object persis-
tence library where you need access to a field class table to map class names to
class references.

The interfaces are self-explanatory. Because they use Delphi’s automatic reference
counting, you don’t need to worry about memory management, either. To create
an interface, call one of the following functions:

function GetVmtInfo(ClassRef: TClass): IVimtInfo; overload;
function GetVmmtInfo(ObjectRef: TObject) : IVimtInfo; overload;
function GetTypeInfo(TypeInfo: PTypeInfo): ITypeInfo;

Use the IvmtInfo interface and its related interfaces to examine and explore the
rich world of Delphi’s runtime type information. For example, take a look at the
TFont class, shown in Example 3-10.

Example 3-10: Declaration of the TFont Class

type
TFont = class(TGraphicsObject)
private
FColor: TColor;
FPixelsPerInch: Integer;
FNotify: IChangeNotifier;
procedure GetData(var FontData: TFontData) ;
procedure SetData(const FontData: TFontData) ;
protected
procedure Changed; override;
function GetHandle: HFont;
function GetHeight: Integer;
function GetName: TFontName;
function GetPitch: TFontPitch;
function GetSize: Integer;
function GetStyle: TFontStyles;
function GetCharset: TFontCharset;
procedure SetColor (Value: TColor);
procedure SetHandle(Value: HFont);
procedure SetHeight (Value: Integer);
procedure SetName (const Value: TFontName) ;
procedure SetPitch(Value: TFontPitch);
procedure SetSize(Value: Integer);
procedure SetStyle(Value: TFontStyles);
brocedure SetCharset (Value: TFontCharset) ;
public
constructor Create;
destructor Destroy; override;
procedure Assign(Source: TPersistent); override;
property FontAdapter: IChangeNotifier read FNotify write FNotify;
property Handle: HFont read GetHandle write SetHandle;
property PixelsPerInch: Integer read FPixelsPerInch
write FPixelsPerInch;
published
property Charset: TFontCharset read GetCharset write SetCharset ;
property Color: TColor read FColor write SetColor;

92 Chapter 3 - Runtime Type Information

Example 3-10: Declaration of the TFont Class (continued)

property Height: Integer read GetHeight write SetHeight;
property Name: TFontName read GetlName write SetName;
property Pitch: TFontPitch read GetPitch write SetPitch
default fpDefault;
property Size: Integer read GetSize write SetSize stored False;
property Style: TFontStyles read GetStyle write SetStyle;
end;

Notice that one field is of type IChangeNotifier. The Changed method is
declared as dynamic in the base class, TGraphicsObject. TFont has no
published fields or methods, but has several published properties. Example 3-11
shows the VMT and type information for the TFont class. You can see that the
dynamic method table has one entry for Changed The Size property is not
stored, but the other published properties are. The Vmt.exe program can show
you the same kind of information for almost any class or type.

Example 3-11. Runtime Type Information

Vmt: 40030E78
Destroy: 4003282C
FreeInstance: 400039D8
NewInstance: 400039C4
DefaultHandler: 40003CAC
Dispatch: 40003CB8
BeforeDestruction: 40003CB4
AfterConstruction: 40003CBO
SafeCallException: 40003CA4
Parent: 40030DA4 (TGraphicsObject)
InstanceSize: 32
ClagsName: 'TFont'
Dynamic Method Table: 40030EE2
Count: 1
40032854 (-3)
Method Table: 00000000
Field Table: 00000000
TypeInfo: 40030EF4
InitTable: 40030EDO
TypeName :
TypeKind: tkRecord
DataOffset: 0
Count: 1
RecordSize: 0
[1]
InitTable: 40030E44
TypeName: IChangeNotifier
TypeKind: tkInterface
DataOffset: 28
AutoTable: 00000000
IntfTable: 00000000

type TFontCharset = 0..255; // otUByte
type TColor = -2147483648..2147483647; // otSLong

Exploring RTTI 93

—
3
)
=
3
2
=
=)
=

adAy awnuny

Example 3-11. Runtime Type Information (continued)

type Integer = -2147483648..2147483647; // otSLong
type TFontName; // tkLString
type TFontPitch = (fpDefault, fpvariable, fpFixed); // otUByte
type TFontStyle = (fsBold, fsItalic, fsUnderline, fsStrikeOut) ;
type TFontStyles = set of TFontStyle; // otUByte
type TObject = class // unit 'System'
end;
type TPersistent = class(TObject) // unit 'Classes’
end;
type TGraphicsObject = class(TPersistent) // unit 'Graphics’
end;
type TFont = class(TGraphicsObject) // unit 'Graphics’
published
property Charset: TFontCharset read (static method 40032CD4)
write (static method 40032CDC) nodefault stored True; // index 0
property Color: TColor read (field 20) write (static method 400329AC)
nodefault stored True; // index 1
property Height: Integer read (static method 40032B8C)
write (static method 40032B94) nodefault stored True; // index 2
property Name: TFontName read (static method 40032BEC)
write (static method 40032BD4) nodefault stored True; // index 3
property Pitch: TFontPitch read (static method 40032Ca4)
write (static method 40032CAC) default 0 stored True; // index 4
property Size: Integer read (static method 40032C30)
write (static method 40032C4C) nodefault stored False; // index 5
property Style: TFontStyles read (static method 40032C6C)
write (static method 40032C78) nodefault stored True; // index 6
end;

94 Chapter 3— Runtime Type Information

CHAPTER 4

Concurrent Programming

The future of programming is concurrent programming. Not too long ago, sequen-
tial, command-line programming gave way to graphical, event-driven programming,
and now single-threaded programming 1s yielding to multithreaded programming.

Whether you are writing a web server that must handle many clients simulta-
neously or writing an end-user application such as a word processor, concurrent
programming is for you. Perhaps the word processor checks for spelling errors
while the user types. Maybe it can print a file in the background while the user
continues to edit. Users expect more today from their applications, and only
concutrent programming can deliver the necessary power and flexibility

Delphi Pascal includes features to support concurrent programming—not as much
support as you find in languages such as Ada, but more than in most traditional
programming languages. In addition to the language features, you can use the
Windows API and its semaphores, threads, processes, pipes, shared memory, and
so on. This chapter describes the features that are unique to Delphi Pascal and
explains how to use Delphi effectively to write concurrent programs. If you want
more information about the Windows API and the details of how Windows
handles threads, processes, semaphores, and so on, consult a book on Windows
programming, such as Inside Windows NT, second edition, by David Solomon
(Microsoft Press, 1998).

Threads and Processes

This section provides an overview of multithreaded programming in Windows. If
you are already familiar with threads and processes in Windows, you can skip this
section and continue with the next section, “The TThread Class.”

A thread is a flow of control in a program. A program can have many threads,
each with its own stack, its own copy of the processor’s registers, and related
information. On a multiprocessor system, each processor can run a separate

95

-l
S
2
S
3
S
=
S

aianauoy

thread. On a uniprocessor system, Windows creates the illusion that threads are
funning concurrently, though only one thread at a time gets to run.

A process is a collection of threads all running 1n a single address space. Every
process has at least one thread, called the main thread. Threads in the same
process can share resources such as open files and can access any valid memory
address 1n the process’s address space. You can think of a process as an instance
of an application (plus any DLLs that the application loads).

Threads 1n a process can communicate easily because they can share variables.
Critical sections protect threads from stepping on each others’ toes when they
access shared variables. (Read the section “Synchronizing Threads” later in this
chapter, for details about critical sections.)

You can send a Windows message to a particular thread, in which case the
recewving thread must have a message loop to handle the message. In most cases,
you will find it simpler to let the mamn thread handle all Windows messages, but
feel free to write your own message loop for any thread that needs it.

Separate processes can communicate in a variety of ways, such as messages,
mutexes (short for mutual exclusions), semaphores, events, memory-mapped files,
sockets, pipes, DCOM, CORBA, and so on. Most likely, you will use a combina-
tion of methods. Separate processes do not share ordinary memory, and you
cannot call a function or procedure from one process to another, although several
remote procedure call mechanisms exist, such as DCOM and CORBA. Read more
about processes and how they communicate in the section “Processes” later 1n this
chapter.

Delphi has built-n support for multithreaded programming—writing applications
and DLLs that work with multiple threads in a process. Whether you work with
threads or processes, you have the full Windows API at your disposal.

In a multithreaded application or library, you must be sure that the global variable
IsMultiThread 1s True. Most applications do this automatically by calling
BeginThread or using the TThread class. If you write a DLL that might be called
from a multithreaded application, though, you might need to set IsMultiThread
to True manually

Scheduling and States

Windows schedules threads according to their priorities. Higher priority threads
run before lower priority threads. At the same priority, Windows schedules threads
so that each thread gets a fair chance to run. Windows can stop a running thread
(called preempting the thread) to give another thread a chance to run. Windows
defines several different states for threads, but they fall into one of three
categories:

Running
A thread 15 running when it is active on a processor. A system can have as
many running threads as it has processors—one thread per processor. A
thread remains in the running state until it blocks because it must wait for
some operation (such as the completion of I/0). Windows then preempts the
thread to allow another thread to run, or the thread suspends itself.

96 Chapter 4— Concurrent Programming

Ready
A thread 1s ready to run if it is not running and is not blocked. A thread that 1s
ready can preempt a running thread at the same priority, but not a thread at a
higher priority

Blocked
A thread is blocked if it 15 waiting for something: an I/O or similar operation
to complete, access to a shared resource, and so on. You can explicitly block
a thread by suspending it. A suspended thread will wait forever until you
resume it.

The essence of writing multithreaded programming is knowing when to block a
thread and when to unblock it, and how to write your program so its threads
spend as little time as possible in the blocked state and as much time as possible
in the running state.

If you have many threads that are ready (but not running), that means you might
have a performance problem. The processor 1s not able to keep up with the
threads that are ready to run. Perhaps your application is creating too many active
threads, or the problem might simply be one of resources: the processor 1s too
slow or you need to switch to a multiprocessor system. Resolving resource prob-
lems 1s beyond the scope of this book—read almost any book on Windows NT
administration to learn more about analyzing and handling performance issues.

Syncbronizing Threads

The biggest concern in multithreaded programming is preserving data integrity
Threads that access a common variable can step on each others’ toes. Example 4-1
shows a simple class that maintains a global counter. If two threads try to incre-
ment the counter at the same time, it's possible for the counter to get the wrong
value. Figure 4-1 illustrates this problem: Counter starts at 0 and should become 3
after creating three TCounter objects. The three threads compete for the shared
variable, and as a result, Counter ends up with the incorrect value of 1. This is
known as a race condition because each thread races to finish its job before a
different thread steps 1n and bungles things.

Example 4-1. Simple Counter Class

var
Counter: Integer;
type
TCounter = class
public

constructor Create;
function GetCounter: Integer;
end;

constructor TCounter.Create;
begin

inherited;

Counter := Counter + 1;
end;

Threads and Processes 97

Y
S
@
N
3
g
=3
L=

juaiiniuog

Example 4-1. Simple Counter Class (continued)

function TCounter.GetCounter: Integer;
begin

Result := Counter;
end;

Thread A

Thread B

Get Counter (0)

. Counter +1 (1)

Counter + \1 (1)

S

Set Counter (1)

Figure 4-1: A race condition results in the wrong value of Counter

This example uses an integer counter because integers are simple. Reading an
integer value 1s an atomic operation, that 1s, the operation cannot be interrupted
by another thread. If the counter were, say, a Variant, reading its value involves
multiple instructions, and another thread can interrupt at any time, so even reading
the Variant counter is not safe in a multithreaded program without some way to
limit access to one thread at a time

Critical sections

To presetve the integrity of the Counter variable, every thread must cooperate
and agree that only one thread at a time should change the vanable’s value. Other
threads can look at the variable and get its value, but when a thread wants to
change the value, it must prevent all other threads from also trying to change the
variable’s value. The standard technique for ensuring single-thread access 1s a crit-
wal section.

A critical section 1s a region of code that is reserved for single-thread access. When
one thread enters a critical section, all other threads are kept out until the first
thread leaves the critical section. While the first thread is in the critical section, all
other threads can continue to run normally unless they also want to enter the crit-
1cal section. Any other thread that tries to enter the critical section blocks and
waits until the first thread is done and leaves the critical section. Then the next
thread gets to enter the critical section. The Windows API defines several func-
tions to create and use a critical section, as shown 1n Example 4-2.

The new TCounter class is thread-safe, that 1s, you can safely share an object of
that type in multiple threads. Most Delphi classes are not thread-safe, so you

98 Chapter 4— Concurrent Programming

Example 4-2: Counter Using a Critical Section

var
Counter: Integer;
CriticalSection: TRtlCriticalSection;

type
TCounter = class
public
constructor Create;
function GetCounter: Integer;
end;

constructor TCounter.Create;

begin
inherited;
EnterCriticalSection(CriticalSection);
try .

Counter := Counter + 1;
finally

LeaveCriticalSection(CriticalSection);

end;

end;

JUaLInau0g

function TCounter.GetCounter: Integer;

begin
// Does not need a critical section because integers
// are atomic.
Result := Counter;

end;

)
3
S

Q

3

5

)
LS

initialization
InitializeCriticalSection(CriticalSection);
finalization
DeleteCriticalSection(CriticalSection);
end.

cannot shate a single object in multiple threads, at least, not without using critical
sections to protect the object’s internal state.

One advantage of object-oniented programming is that you often don’t need a
thread-safe class. If each thread creates and uses its own instance of the class, the
threads avoid stepping on each others’ data. Thus, for example, you can create
and use TList and other objects within a thread. The only time you need to be
careful 1s when you share a single TList object among multiple threads.

Because threads wait for a critical section to be released, you should keep the
work done in a critical section to a minimum. Otherwise, threads are waiting
needlessly for the critical section to be released.

Multiple simultaneous readers

In the TCounter class, any thread can safely examine the counter at any time
because the Counter variable is atomic. The critical section affects only threads

Threads and Processes 99

that try to change the counter. If the variable you want to access is not atomic,
you must protect reads and writes, but a critical section is not the proper tool.
Instead, use the TMultiReadExclusiveWriteSynchronizer class, which is
declared in the SysUtils unit. The unwieldy name is descriptive: it 1s like a crit-
ical section, but it allows many threads to have read-only access to the critical
region. If any thread wants write access, it must wait until all other threads are
done reading the data. Complete details on this class are in Appendix B, The
SysUtils Unit.

Exceptions

Exceptions in a thread cause the application to terminate, so you should catch
exceptions in the thread and find another way to inform the application’s main
thread about the exception. If you just want the exception message, you can catch
the exception, get the message, and pass the message string to the main thread so
it can display the message in a dialog box, for example,

If you want the main thread to receive the actual exception object, you need to do
a little more work. The problem is that when a try-except block finishes
handling an exception, Delphi automatically frees the exception object. You need
to write your exception handler so it intercepts the exception object, hands it off
to the main thread, and prevents Delphi from freeing the object prematurely
Modify the exception frame on the runtime stack to trick Delphi and prevent it
from freeing the exception obyect. Example 4-3 shows one approach, where a
thread procedure wraps a try-except block around the thread’s main code block.
The parameter passed to the thread function is a pointer to an object reference
where the function can store an exception object or nil if the thread function
completes successfully

Example 4-3: Catching an Exception in a Thread

type

PObject = *TObject;

PRaiseFrame = ~TRaiseFrame;

TRaiseFrame = record
NextFrame: PRaiseFrame;
ExceptAddr: Pointer;
ExceptObject: TObject;
ExceptionRecord: PExceptionRecord;

end;

// ThreadFunc catches exceptions and stores them in Param”, or nil
// if the thread does not raise any exceptions.
function ThreadFunc (Param: Pointer): Integer;
var

RaiseFrame: PRaiseFrame;
begin

Result := 0;

PObject (Param)* := nil;

try

DoTheThreadsRealWorkHere;
except

100 Chapter 4— Concurrent Programming

Example 4-3: Catching an Exception 1 a Thread (continued)

// Raiselist is nil if there is no exception; otherwise, it

// points to a TExceptionFrame record.

RaiseFrame := Raiselist;

if RaiseFrame <> nil then

begin
// When the thread raises an exception, store the exception
// object in the parameter's object reference. Then set the
// object reference to nil in the exception frame, so Delphi
// does not free the exception object prematurely.
PObject (Param)” := RaiseFrame.ExceptObject;
RaiseFrame.ExceptObject := nil;

end;

end;
end;

Deadlock

Deadlock occurs when threads wait endlessly for each other. Thread A waits for
thread B, and thread B waits for thread A, and neither thread accomplishes
anything. Whenever you have multiple threads, you have the possibility of
creating a deadlock situation. In a complex program, it can be difficult to detect a
potential deadlock 1n your code, and testing is an unreliable techmque for discov-
enng deadlock. Your best option is to prevent deadlock from ever occurring by
taking preventive measures when you design and implement the program.

A common source of deadlock 1s when a thread must wait for multiple resources.
For example, an application might have two global variables, and each one has its
own critical section. A thread mught need to change both variables and so it tries
to enter both critical sections. This can cause deadlock if another thread also wants
to enter both critical sections, as depicted 1n Figure 4-2.

Thread A Thread B
i TIME

Enter Critical Section 2

i : Wait for Critical Section 1

Figure 4-2: Deadlock prevents either thread from continuing

You can easily avoid deadlock in this situation by ensuring that both threads wait
for the critical sections in the same order. When thread A enters critical section 1,
it prevents thread B from entering the critical section, so thread A can proceed to
enter critical section 2. Once thread A 1s finished with both critical sections, thread

Threads and Processes 101

)
S
2
S
3
3
S
S

Juainauoy

B can enter critical section 1 and then critical section 2. Figure 4-3 illustrates how
the two threads can cooperate to avoid deadlock.

Thread A Thread B

Enter Critical Section 1

Wait for Critical Section 1
Enter Critical Section 2

Leave Critical Section 2

Leave Critical Section 1

Enter Critical Section 1

Enter Critical Section 2

Leave Critical Section 2

Leave Critical Section 1

Figure 4-3: Avoiding deadlock by reordering critical sections

Another way to prevent deadlock when dealing with multiple resources 1s to make
sure a thread gets all its required resources or none of them. If a thread needs
exclusive access to two files, for example, it must be able to open both files. If
thread A opens file 1, but cannot open file 2 because thread B owns file 2, then
thread A closes file 1 and waits until both files are free.

Deadlock—causes and prevention—is a standard topic in computer science
curricula. Many computer science textbooks cover the classic strategies for
handling deadlock. Delphi does not have any special deadlock detection or
prevention features, so you have only your wits to protect you.

Multitbreaded Programming

The key to effective multithreaded programming is to know when you must use
critical sections, and when you should not. Any variable that can be changed by
multiple threads must be protected, but you don’t always know when a global
variable can be changed. Any composite data must be protected for read and write
access. Something as simple as reading a property value might result in changes to
global variables in another unit, for example. Windows itself mght store data that
must be protected. Following is a list of areas of concern:

* Any call to the Windows GDI (graphics device interface) must be protected.
Usually, you will use Delphi’s VCL mstead of calling the Windows API
directly.

* Some references to a VCL component or control must be protected. Each
release of Delphi increases the thread safety of the VCL, and in Delph: 5, most
of the VCL is thread-safe. Of course, you cannot modify a VCL object from

102 Chapter 4 Concurrent Programming

multiple threads, and any VCL property or method that maps to the Windows
GDI is not thread-safe. As a rule, anything visual is not thread-safe, but
behind-the-scenes work is usually safe. If you aren’t sure whether a property
or method 1s safe, assume it isn’t.

e Reading long strings and dynamic arrays 1s thread-safe, but writing is not.
Referring to a string or dynamic array might change the reference count, but
Delphi protects the reference count to ensure thread safety When changing a
string or dynamuc array, though, you should use a critical section, just as you
would when changing any other variable. (Note that Delphi 4 and earlier did
not protected strings and dynamic arrays this way.)

e Allocating memory (with GetMem or New) and freeing memory (with FreeMem
and Dispose) is thread-safe. Delphi automatically protects its memory alloca-
tor for use in multiple threads (if IsMultiThread is True, which 1s one rea-
son to stick with Delphi's BeginThread function instead of using the
Windows API CreateThread function).

e Creating or freeing an object is thread-safe only if the constructor and destruc-
tor are thread-safe. The memory-management aspect of creating and destroy-
ing objects is thread-safe, but the rest of the work in a constructor or
destructor is up to the programmer. Unless you know that a class is thread-
safe, assume it isn’t. Creating a VCL control, for example, is not thread-safe.
Creating a TList or TStringList object is thread-safe.

When you need to call a Windows GDI function or access the VCL, instead of
using a critical section, Delphi provides another mechanism that works better: the
TThread class and its Synchronize method, which you can read about i the
next section.

The TThread Class

The easiest way to create a multithreaded application 1n Delphi 1s to write a thread
class that inherits from TThread The TThread class 1s not part of the Delph
language, but is declared in the Classes unit. This section describes the class
because it 1s so important in Delph1 programming.

Override the Execute method to perform the thread’s work. When Execute
finishes, the thread finishes. Any thread can create any other thread simply by
creating an instance of the custom thread class. Each instance of the class runs as a
separate thread, with its own stack.

When you need to protect a VCL access or call to the Windows GDI, you can use
the Synchronize method. This method takes a procedure as an argument and
calls that procedure in a thread-safe manner. The procedure takes no arguments.
Synchronize suspends the current thread and has the main thread call the proce-
dure. When the procedure finishes, control returns to the current thread. Because
all calls to Synchronize are handled by the main thread, they are protected
agaimnst race conditions. If multiple threads call Synchronize at the same time,
they must wait in line, and one thread at a time gets access to the main thread.
This process is often called seralizing because parallel method calls are changed
to serial method calls.

The TThread Class 103

>
S
L=
S
3
3
=3
L=

Juaiinauog

When writing the synchronized procedure, remember that it is called from the
main thread, so if you need to know the true thread ID, read the ThreadID prop-
erty instead of calling the Windows API GetCurrentThreadID function.

For example, suppose you want to write a text editor that can prnt in the back-
ground. That 1s, the user asks to print a file, and the program copies the file’s
contents (to avoid race conditions when the user edits the file while the print
operation 1s still active) and starts a background thread that formats the file and
queues it to the printer.

Printing a file mvolves the VCL, so you must take care to synchronize every VCL
access. At first this seems problematic, because almost everything the thread does
accesses the VCL’s Printer object. Upon closer mspection, you can see that you
have several ways to reduce the interaction with the VCL.

The first step 1s to copy some information from the Printer object to the thread’s
local fields. For example, the thread keeps a copy of the printer’s resolution, so
the thread does not have to ask the Printer object for that information. The next
step is to break down the task of printing a file into basic steps, and to isolate the
steps that involve the VCL. Printing a file involves the following steps:

1. Start the print job.
2. Initialize the margins, page number, and page position.
3. If this 1s a new page, print the page header and footer.
4. Print a line of text and increment the page position.
5. If the page position 1s past the end of the page, start a new page.
6. If there is no more text, end the print job; otherwise go back to step 2.
The basic operations that must be synchronized with the VCL are:
e Start the print job.
e Print a header.
e Print a footer.
¢ Print a line of text.
¢ Start 2 new page.
¢ End the prnt job.

Each synchronized operation needs a parameterless procedure, so any informa-
tion these procedures need must be stored as fields in the thread class. The
resulting class is shown in Example 4-4.

Example 4-4: Declaration of the TPrintThread Class

type
TPrintThread = class(TThread)
private
fText: TStrings; // fields to support properties

fHeader: string;
fExceptionMessage: string;
fPrinter: TPrinter;

104 Chapter 4— Concurrent Programmung

Example 4-4: Declaration of the TPrintThread Class (continued)

PixelsPerInch: Integer; // local storage for synchronized thunks
LineHeight: Integer;
YPos: Integer;
Line: string;
LeftMargin, TopMargin: Integer;
PageNumber: Integer;
protected
procedure Execute; override;
procedure PrintText;

procedure EndPrinting; // procedures for Synchronize
procedure PrintLine;

procedure PrintHeader;

procedure PrintFooter;

procedure StartPrinting;

procedure StartNewPage;

property Header: string read fHeader;

property Printer: TPrinter read fPrinter;

property Text: TStrings read fText;
public

constructor Create(const Text, Header: string;

OnTerminate: TNotifyEvent);

destructor Destroy; override;

property ExceptionMessage: string read fExceptionMessage;
end;

Juaiinauoy

R
[~
S
[s%)
3
3
3
[~

If the print job raises an exception, the exception message is stored as the
ExceptionMessage property. The main thread can test this property when the
thread finishes.

The TThread.Create constructor takes a Boolean argument: if it is True, the
thread 1s 1nitially suspended until you explicitly resume it. If the argument is False,
the thread starts immediately Whenever you override the constructor, you usually
want to pass True to the inherited constructor. Complete the initialization your
constructor requires, and as the last step, call Resume. By starting the thread in a
suspended state, you avoid race conditions where the thread might start working
before your constructor is finished initializing the thread’s necessary fields.
Example 4-5 shows the TPrintThread.Create constructor.

Example 4-5: Constructing a TPrintThread Object

constructor TPrintThread.Create(const Text, Header: string;
OnTerminate: TNotifyEvent);
begin
inherited Create(True);
fHeader := Header;

// Save the text as lines, so they are easier to print.
fText := TStringList.Create;
fText.Text := Text;

The TThread Class 105

Example 4-5: Constructing a TPrintThread Object (continued)

// Save a reference to the current printer in case
// the user prints a different file to a different printer.
fPrinter := Printers.Printer;

// Save the termination event handler.
Self.OnTerminate := OnTerminate;

// The thread will free itself when it terminates.
FreeOnTerminate := True;

// Start the thread.
Resume;
end;

The overridden Execute method calls PrintText to do the real work, but it
wraps the call to PrintText in an exception handler. If printing raises an excep-
tion, the exception message is saved for use by the main thread. The Execute
method is shown in Example 4-6.

Example 4-6: The Thread’s Execute Method

// Run the thread.
procedure TPrintThread.Execute;
begin
try
PrintText;
except
on Ex: Exception do
fExceptionMessage := Ex.Message;
end;
end;

The PrintText method manages the main print loop, calling the synchronized
pnnt procedures as needed. The thread manages the bookkeeping details, which
do not need to be synchrontzed, as you can see 1n Example 4-7.

Example 4-7- The Main Print Loop in PrintText

// Print all the text, using the default printer font.
procedure TPrintThread.PrintText;
const
Leading = 120; // 120% of the nominal font height
var
I: Integer;
NewPage: Boolean;
begin
Synchronize (StartPrinting) ;
try
LeftMargin PixelsPerInch;
TopMargin := PixelsPerInch;
YPos := TopMargin;
NewPage := True;

106 Chapter 4— Concurrent Programming

Example 4-7: The Main Print Loop in PrintText (continued)
PageNumber := 1;

for I := 0 to Text.Count-1 do
begin
if NewPage then
begin
Synchronize (PrintHeader) ;
Synchronize (PrintFooter) ;
NewPage := False;
end;

// Print the current line.

Line := Text[I];

Synchronize (PrintLine) ;

YPos := YPos + LineHeight * Leading div 100;

// Has the printer reached the end of the page?
if YPos > Printer.PageHeight - TopMargin then
begin
if Terminated then
Printer.Abort;
if Printer.Aborted then
Break;
Synchronize (StartNewPage) ;
YPos := TopMargin;
NewPage := True;
PageNumber := PageNumber + 1;
end;
end;
finally
Synchronize (EndPrinting) ;
end;
end;

adinauoy

3
S
k)
3
2
S
L~

PrintText seems to spend a lot of time in synchronized methods, and it does,
but it also spends time in its own thread, letting Windows schedule the main
thread and the print thread optimally Each synchronized print method 1s as small
and simple as possible to minimize the amount of time spent in the main thread.
Example 4-8 gives examples of these methods, with PrintLine, StartNewPage,
and StartPrinting. The remaining methods are similar.

Example 4-8: Synchronized Printing Procedures

// Save the printer resolution so the print thread can use that
// information without needing to access the Printer object.
procedure TPrintThread.StartPrinting;
begin

Printer.BeginDoc;

PixelsPerInch := Printer.Canvas.Font.PixelsPerInch;
end;

The TThread Class 107

Example 4-8: Synchronized Printing Procedures (continued)

// Print the current line of text and save the height of the line so
// the work thread can advance the Y position on the page.
procedure TPrintThread.PrintLine;
begin
Printer.Canvas.TextOut (LeftMargin, YPos, Line);
LineHeight := Printer.Canvas. TextHeight (Line) ;
end;

// Start a new page. The caller resets the Y position.
procedure TPrintThread.StartNewPage;
begin
Printer.NewPage;
end;

To start a print process, just create an instance of TPrintThread As the last argu-
ment, pass an event handler, which the thread calls when it is fimished. A typical
application mught display some information in a status bar, or prevent the user
from exiting the application until the print operation is complete. One possible
approach 1s shown in Example 4-9

Example 4-9: Using the Print Thread Class

// The user chose the File>Print menu item, so print the file.
procedure TMDIChild.Print;
begin
if PrintThread <> nil then
MessageDlg('File is already being printed.’, mtWarning, [mbOK], 0)
else

begin
PrintThread := TPrintThread.Create(Editor.Text, FileName,
DonePrinting);
MainForm.SetPrinting (True) ;
end;
end;

// When the file is done printing, check for an exception,
// and clear the printing status.
procedure TMDIChild.DonePrinting(Sender: TObject) ;
begin
if PrintThread.ExceptionMessage <> '' then
MessageDlg (PrintThread. ExceptionMessage, mtError, [mbOK], 0);
PrintThread := nil;
MainForm.SetPrinting(False) ;
end;

The BeginThread and EndThread Functions

If you don’t want to write a class, you can use BeginThread and EndThread
They are wrappers for the Win32 API calls CreateThread and ExitThread func-
tions, but you must use Delphi’s functions instead of the Win32 API directly.
Delphi keeps a global flag, IsMultiThread, which is True if your program calls

108 Chapter 4~ Concurrent Programming

BeginThread or starts a thread using TThread. Delphi checks this flag to ensure
thread safety when allocating memory If you call the CreateThread function
directly, be sure to set IsMultiThread to True.

Note that using the BeginThread and EndThread functions does not give you the
conventence of the Synchronize method. If you want to use these functions, you
must arrange for your own serialized access to the VCL.

The BeginThread function is almost exactly the same as CreateThread, but the
parameters use Delphi types. The thread function takes a Pointer parameter and
returns an Integer result, which is the exit code for the thread. The EndThread
function is just like the Windows ExitThread function: it terminates the current
thread. See Chapter 5, Language Reference, for details about these functions. For
an example of using BeginThread, see the section “Futures” at the end of this
chapter.

Thread Local Storage

Windows has a feature where each thread can store limited information that is
private to the thread. Delphi makes it easy to use this feature, called thread local
storage, without worrying about the limitations imposed by Windows. Just declare
a vanable using threadvar mstead of var. Ordinarily, Delphi creates a single
wnstance of a unit-level vanable and shares that instance among all threads. If you
use threadvar, however, Delph: creates a unique, separate mnstance of the vari-
able i each thread.

You must declare threadvar variables at the unit level, not local to a function or
procedure. Each thread has its own stack, so local vaniables are local to a thread
anyway Because threadvar variables are local to the thread and that thread is
the only thread that can access the vanables, you don't need to use critical
sections to protect them.

If you use the TThread class, you should use fields in the class for thread local
variables because they incur less overhead than using threadvar variables. If you
need thread local storage outside the thread object, or if you are using the
BeginThread function, use threadvar.

Be careful when using the threadvar variables in a DLL. When the DLL is
unloaded, Delph: frees all threadvar storage before it calls the D11Proc or the
finalization sections in the DLL.

Processes

Delphi has some support for multithreaded applications, but if you want to write a
system of cooperating programs, you must resort to the Windows APL Each
process runs in its own address space, but you have several choices for how
processes can communicate with each other:

Messages
Any thread can send a message to any other thread in the same process or in
a different process. A typical use for interprocess messages is when one appli-
cation 1s trying to control the user interface of another application.

Processes 109

R
f]
S
N
3
3
3
(=1

uannauoy)

Events
An event is a trigger that one thread can send to another. The threads can be
in the same or different processes. One thread waits on the event, and
another thread sers the event, which wakes up the waiting thread. Multiple
threads can wait for the same event, and you can decide whether setting the
event wakes up all waiting threads or only one thread.

Mutexes
A mutex (short for mutual exclusion) is a critical section that can be shared
among multiple processes.

Semaphores

A semaphore shares a count among multiple processes. A thread in a process
waits for the semaphore, and when the semaphore is available, the thread
decrements the count. When the count reaches zero, threads must wait until
the count is greater than zero. A thread can release a semaphore to mncre-
ment the count. Where a mutex lets one thread at a time gain access to a
shared resource, a semaphore gives access to multiple threads, where you
control the number of threads by setting the semaphore’s maximum count.

Pipes
A pipe is a special kind of file, where the file contents are treated as a queue.
One process writes to one end of the queue, and another process reads from
the other end. Pipes are a powerful and simple way to send a stream of infor-
mation from one process to another—on one system or in a network.

Memory-mapped files

The most common way to share data between processes is to use memory-
mapped files. A memory-mapped file, as the name implies, is a file whose
contents are mapped into a process’s virtual address space. Once a file 1s
mapped, the memory region is just like normal memory, except that any
changes are stored in the file, and any changes in the file are seen mn the
process’s memory Multiple processes can map the same file and thereby
share data. Note that each process maps the file to a different location 1n its
individual address space, so you can store data n the shared memory, but not
pointers.

Many books on advanced Windows programming cover these topics, but you have
to map the C and C++ code examples given 1n these books to Delpht. To help
you, this section presents an example that uses many of these features.

Suppose you are writing a text editor and you want a single process that can edit
many files. When the user runs your program or text editor, it first checks whether
a process 1s already running that program, and if so, forwards the request to the
existing process. The forwarded request must include the command-line argu-
ments so the existing process can open the requested files. If, for any reason, the
existing process 1s slow to respond, the user mught be able to run the program
many times, each time adding an additional request to the existing process. This
problem clearly calls for a robust system for communicating between processes.

The single application functions as client and server. The first time the program
runs, it becomes the server. Once a server exists, subsequent invocations of the

110 Chapter 4~ Concurrent Programming

program become clients. If multiple processes start at once, there is a race condi-
tion to see who becomes the server, so the architecture must have a clean and
simple way to decide who gets to be server. To do this, the program uses a mutex.

A mutex (short for mutual exclusion) is a critical section that works across
processes. The program always tries to create a mutex with a specific name. The
first process to succeed becomes the server. If the mutex already exists, the
process becomes a client. If any error occurs, the program raises an exception, as
you can see in Example 4-10.

Example 4-10: Create a Mutex to See Who Gels to Play Server

const
MutexName = 'Tempest Software.Threaditor mutex';
var
SharedMutex: THandle;

// Create the mutex that all processes share. The first process
// to create the mutex is the server. Return True if the process is
// the server, False if it is the client. The server starts out
// owning the mutex, so you must release it before any client
// can grab it.
function CreateSharedMutex: Boolean;
begin

SharedMutex := CreateMutex(nil, True, MutexName);

Win32Check (SharedMutex <> 0);

Result := GetlastError <> Error_Already Exists;
end;

The mutex also protects the memory-mapped file the clients use to send a list of
filenames to the server. Using a memory-mapped file requires two steps:

1. Create a mapped file. The mapped file can be a file on disk or it can reside in
the system page file.

2. Map a view of the file into the process’s address space. The view can be the
entire file or a contiguous region of the file.

After mapping the view of the memory-mapped file, the process has a pointer to a
shared memory region. Every process that maps the same file shares a single
memory block, and changes one process makes are immediately visible to other
processes. The shared file might have a different starting location in each process,
so you should not store pointers (including long strings, wide strings, dynamic
arrays, and complex Variants) in the shared file.

The program uses the TSharedData record for storing and retrieving the data.
Note that TSharedData uses short strings to avoid the problem of storing pointers
in the shared file. Example 4-11 shows how to create and map the shared file.

Example 4-11. Creating a Memory-Mapped File

const
MaxFileSize = 32768; // 32K should be more than enough.
MaxFileCount = MaxFileSize div SizeOf (ShortString);
SharedFileName = 'Tempest Software.Threaditor shared file';

Processes 111

3
S
S
3
3
=
S

JuaiInaung

Example 4-11. Creating a Memory-Mapped File (continued)

type
PSharedData = “TSharedData;
TSharedbata = record
Count: Word;
FileNames: array([l..MaxFileCount] of ShortString;
end;
var
IsServer: Boolean;
SharedFile: THandle;
SharedData: PSharedData;

// Create the shared, memory-mapped file and map its entire contents
// into the process's address space. Save the pointer in SharedData.
procedure CreateSharedFile;
begin
SharedFile := CreateFileMapping($FFFFFFFF, nil, Page_ReadWrite,
0, SizeOf(TSharedData), SharedFileName);
Win32Check (SharedFile <> 0);

// Map the entire file into the process address space.
SharedData := MapViewOfFile(SharedFile, File Map All Access, 0, 0, 0);
Win32Check (SharedData <> nil);

// The server created the shared data, so make sure it is
// initialized properly. You don't need to clear everything,
// but make sure the count is zero.
if IsServer then
SharedData.Count := 0;
end;

The client writes its command-line arguments to the memory-mapped file and
notifies the server that it should read the filenames from the shared data m the
memory-mapped file. Multiple clients might try to write to the memory-mapped
file at the same time, or a client might want to write when the server wants to
read. The mutex protects the integrity of the shared data.

The client calls EnterMutex, which waits until the mutex is available, then grabs
it. Once a client owns the mutex, no other thread in any process can grab the
mutex. The client is free to write to the shared memory without fear of data
corruption. The client copies its command-line arguments to the shared data, then
releases the mutex by calling LeaveMutex. Example 4-12 shows these two
functions.

Example 4-12: Entering and Leaving a Mutex

// Enter the critical section by grabbing the mutex.

// This procedure waits until it gets the mutex or it

// raises an exception.

procedure EnterMutex;

resourcestring
sNotResponding = 'Threaditor server process is not responding';
sNoServer = 'Threaditor server process has apparently died';

112 Chapter 4 - Concurrent Programming

Example 4-12: Entering and Leaving a Mutex (continued)

const
TimeOut = 10000; // 10 seconds
begin
case WaitForSingleObject (SharedMutex, TimeOut) of
Wait_Timeout:
raise Exception.Create (sNotResponding);
Wait_Abandoned:
raise Exception.Create(sNoServer);
Wait_Failed:
RaiseLastWin32Error;
end;
end;

// Leave the critical section by releasing the mutex so another
// process can grab it.
procedure LeaveMutex;
begin
Win32Check (ReleaseMutex {SharedMutex)) ;
end;

The client wakes up the server by setting an event. An event 1s a way for one
process to notify another without passing any additional information. The server
waits for the event to be triggered, and after a client copies a list of filenames into
the shared file, the client sets the event, which wakes up the server. Example 4-13
shows the code for creating the event.

Example 4-13: Creating the Shared Event

const

EventName = 'Tempest Software.Threaditor event';
var

SharedEvent: THandle;

// Create the event that clients use to signal the server.
procedure CreateSharedEvent;
begin
SharedEvent := CreateEvent(nil, False, False, EventName);
Win32Check (SharedEvent <> 0);
end;

The server grabs the mutex so it can copy the filenames from the shared file. To
avoid holding the mutex too long, the server copies the filenames into a string list
and immediately releases the mutex. Then the server opens each file listed in the
string list. Network latency or other problems might slow down the server when
opening a file, which is why the server copies the names and releases the mutex
as quickly as it can.

Processes 113

juannauog)

3
S
n
3
3
s
v

Everyone has run into the infinite wait problem at some time. You
click the button and wait, but the hourglass cursor never disap-
pears. Something inside the program is waiting for an event that will
never occur. So what do you do? Do you press Cirl-Alt-Del and try
to kill the program? But the program might not have saved your data
yet. It could be waiting for a response from the server. If you kill the
program now, you mught lose all your work so far. It’s so frustrating
to be faced with the hourglass and have no way to recover.

Such scenarios should never happen, and it's up to us—the pro-
grammers—to make sure they don’t.

Windows will let your thread wait forever if you use Infinite as
the time out argument to the wait functions, such as
WaitForSingleObject. The only time you should use an
Infinite time out, though, is when a server thread is waiting for a
client connection. In that case, it is appropriate for the server to wait
an indeterminate amount of time. In almost every other case, you
should specify an explicit time out. Determine how long a user
should wait before the program reports that something has gone
wrong. If your thread 1s deadlocked, for example, the user has no
way of knowing or stopping the thread, short of killing the process
in the Task Manager. By setting an explicit time out, as shown mn
Example 4-12, the program can report a coherent message instead of
leaving the bewildered user wondering what 1s happening.

The server opens each of these files as though the user had chosen File —+ Open
in the text editor. Because opening a file involves the VCL, the server uses
Synchronize to open each file. After opening the files, the server waits on the
event again. The server spends most of its time waiting to hear from a client, so it
must not let the waiting interfere with its normal work. The server does its work n
a separate thread that loops forever: waiting for an event from a client, getting the
filenames from the shared file, opening the files, then waiting again. Example 4-14
shows the code for the server thread.

Example 4-14: The TServerThread Class

type

TServerThread = class (TThread)

private
fFrileName: string;
fFileNames: TStringList;

public
constructor Create;
destructor Destroy; override;
procedure OpenFile;
procedure RestoreWindow;
procedure Execute; override;
property FileName: string read fFileName;
property FileNames: TStringList read fFileNames;

114 Chapter 4— Concurrent Programming

Example 4-14: The TServerThread Class (continued)

end;

var
ServerThread: TServerThread;

{ TServerThread }

constructor TServerThread.Create;
begin
inherited Create(True);
fFileNames := TStringList.Create;
FreeOnTerminate := True;
Resume;
end;

destructor TServerThread.Destroy;
begin
FreeAndNil (fFileNames) ;
inherited;
end;

procedure TServerThread.Execute;
var
I: Integer;
begin
while not Terminated do
begin
// Wait for a client to wake up the server. This is one of the few
// times where a wait with an INFINITE time out is appropriate.
WaitForSingleObject (SharedEvent, INFINITE);

EnterMutex;

try
for T := 1 to SharedData.Count do

FileNames.Add(SharedData.FileNames[I]);

Sharedbata.Count := 0;

finally
LeaveMutex;

end;

for T := 0 to FileNames.Count-1 do

begin
fFileName := FileNames[I];
Synchronize (OpenFile) ;

end;

Synchronize (RestoreWindow) ;

FileNames.Clear;

end;
end;

procedure TServerThread.OpenFile;
begin

Processes

115

3
b
N
3
S
=
S

J3LN3U07Y

Example 4-14: The TServerThread Class (continued)

// Create a new MDI child window
TMDIChild.Create (Application) .OpenFile (FileName) ;
end;

// Bring the main form forward, and restore it from a minimized state.
procedure TServerThread.RestoreWindow;
begin
if FileNames.Count > 0 then
begin
Application.Restore;
Application.BringToFront;
end;
end;

The client is quite simple. It grabs the mutex, then copies its command-line argu-
ments into the shared file. If multiple clients try to run at the same time, the first
one to grab the mutex gets to run, while the others must wait. Multiple clients
might run before the server gets to open the files, so each client appends its file-
names to the list, as you can see in Example 4-15.

Example 4-15: The Threaditor Client

// A client grabs the mutex and appends the files named on the command
// line to the filenames listed in the shared file. Then it notifies
// the server that the files are ready.
procedure SendFilesToServer;
var
I: Integer;
begin
if ParamCount > 0 then
begin
EnterMutex;
try
for I := 1 to ParamCount do
SharedData.FileNames [SharedData.Count + I] := ParamStr(I);
SharedData.Count := SharedData.Count + ParamCount;
finally
LeaveMutex;
end;
// Wake up the server
Win32Check (SetEvent (SharedEvent)) ;
end;
end;

When it starts, the application calls the StartServerOrClient procedure. This
procedure creates or opens the mutex and so learns whether the program is the
server or a client. If it is the server, it starts the server thread and sets IsServer to
True. The server initially owns the shared mutex, so it can safely create and
initialize the shared file. Then it must release the mutex. If the program is a client,
it sends the command-line arguments to the server, and sets IsServer to False.

116 Chapter 4— Concurrent Programnung

The client doesnt own the mutex initially, so it has nothing to release.
Example 4-16 shows the StartServerOrClient procedure.

Example 4-16: Start the Application as the Server or a Client

procedure StartServerOrClient;
begin
IsServer := CreateSharedMutex;
try
CreateSharedFile;
CreateSharedEvent ;
finally
if IsServer then
LeaveMutex;
end;

if IsServer then
StartServer
else
SendFilesToServer;
end;

To start the server, simply create an instance of TServerThread. To stop the
server, set the thread’s Terminated flag to True, and signal the event to wake up
the thread. The thread wakes up, goes through its main loop, and exits because
the Terminated flag is True. To make sure the thread is cleaned up properly, the
main thread waits for the server thread to exit, but it doesn’t wait long. If some-
thing goes wrong, the main thread simply abandons the server thread so the
application can close. Windows will clean up the thread when the application
terminates. Example 4-17 shows the StartServer and StopServer procedures.

Example 4-17: Starting and Stopping the Server Thread

// Create the server thread, which will wait for clients
// to connect.
procedure StartServer;
begin
ServerThread := TServerThread.Create;
end;

procedure StopServer;

begin
ServerThread.Terminate;
// Wake up the server so it can die cleanly.
Win32Check (SetEvent (SharedEvent)) ;
// Wait for the server thread to die, but if it doesn't die soon
// don't worry about it, and let Windows clean up after it.
WaitForSingleObject (ServerThread.Handle, 1000);

end;

To clean up, the program must unmap the shared file, close the mutex, and close
the event. Windows keeps the shared handles open as long as one thread keeps
them open. When the last thread closes a handle, Windows gets rid of the mutex,

Processes 117

R
<
)
S
3
2
=
S

JuaLNINgY

event, or whatever. When an application terminates, Windows closes all open
handles, but it's always a good idea to close everything explicitly. It helps the
person who must read and maintain your code to know explicitly which handles
should be open when the program ends. Example 4-18 lists the unit’s
finalization section, where all the handles are closed. If a serious Windows
error were to occur, the application might terminate before all the shared items
have been properly created, so the finalization code checks for a valid handle
before closing each one.

Example 4-18: Close All Shared Handles When Finalizing the Unit

finalization
if SharedMutex <> 0 then
CloseHandle (SharedMutex) ;
if SharedBvent <> 0 then
CloseHandle(SharedEvent) ;
if SharedData <> nil then
UnmapViewOfFile (SharedData) ;
if SharedFile <> 0 then
CloseHandle(SharedFile);
end.

The final step is to edit the project’s source file. The first thing the application does
is call startServerOrClient. If the program is a client, it exits without starting
the normal Delphi application. If it 1s the server, the application runs normally
(with the server thread running in the background). Example 4-19 lists the new
project source file.

Example 4-19: Project Source File to Run the Server or Client

program Threaditor;

uses
Forms,
Main in 'Main.pas' (MainForm),
Childwin in 'ChildWin.pas' {MDIChild},
About in 'About.pas' {AboutBox},
Process in 'Process.pas';

{$R *.RES}

begin
StartServerOrClient;
if IsServer then
begin
Application.Initialize;
Application.Title := ‘'Threaditor';
Application.CreateForm(TMainForm, MainForm);
Application.Run;
end;
end.

118 Chapter 4— Concurrent Programming

The remainder of the application is the standard MDI project from Delphi’s object
repository, with only a few modifications. Simply adding the Process unit and
making one small change to the project source file 1s all you need to do. Different
applications might need to take different actions when the clients run, but this
example gives you a good framework for enhancements.

Futures

Writing a concurrent program can be more difficult than writing a sequential
program. You need to think about race conditions, synchronization, shared vari-
ables, and more. Futures help reduce the intellectual clutter of using threads. A
future 1s an object that promises to deliver a value sometime in the future. The
application does its work in the main thread and calls upon futures to fetch or
compute information concurrently. The future does its work in a separate thread,
and when the main thread needs the information, it gets it from the future object.
If the information isn’t ready yet, the main thread waits until the future is done.
Programming with futures hides much of the complexity of multithreaded
programming.

Define a future class by inheriting from TFuture and overriding the Compute
method. The Compute method does whatever work is necessary and returns its
result as a Variant. Try to avoid synchronization and accessing shared variables
during the computation. Instead, let the main thread handle communication with
other threads or other futures. Example 4-20 shows the declaration for the
TFuture class.

Example 4-20: Declaration of the TFuture Class

type

TFuture = class

private
fExceptObject: TObject;
fExceptAddr: Pointer;
fHandle: THandle;
fTerminated: Boolean;
fThreadID: LongWord;
fTimeOut: DWORD;
fValue: Variant;
function GetIsReady: Boolean;
function GetValue: Variant;

protected
procedure RaiseException;

public
constructor Create;
destructor Destroy; override;
procedure AfterConstruction; override;

function Compute: Variant; virtual; abstract;
function HasException: Boolean;
procedure Terminate;

property Handle: THandle read fHandle;

Futures 119

)
S
w
3
3
=
8

Jaunucy

Example 4-20: Declaration of the TFuture Class (continued)

property IsReady: Boolean read GetIsReady;
property Terminated: Boolean read fTerminated write fTerminated;
property ThreadID: LongWord read fThreadID;
property TimeOut: DWORD read FTimeOut write fTimeOut;
property Value: Variant read GetValue;
end;

The constructor initializes the future object, but refrains from starting the thread.
Instead, TFuture overnides AfterConstruction and starts the thread after all the
constructors have run. That lets a derived class initialize its own fields before
starting the thread.

When the application needs the future value, it reads the Value property The
GetValue method waits until the thread is finished. If the thread 1s already done,
Windows returns immediately If the thread raised an exception, the future object
rerases the same exception object at the original exception address. This lets the
calling thread handle the exception just as though the future was computed 1n the
calling thread rather than in a separate thread. If everything goes as planned, the
future value is returned as a Variant. Example 4-21 lists the implementation of
the TFuture class.

Example 4-21. The TFuture Class

// Each Future computes its value in ThreadFunc. Any number of
// ThreadFunc instances can be active at a time. Windows requires a
// thread to catch exceptions, or else Windows shuts down the
// application. ThreadFunc catches exceptions and stores them in the
// Future object.
function ThreadFunc(Param: Pointer): Integer;
var
Future: TFuture;
RaiseFrame: PRaiseFrame;
begin
Result := 0;
Future := TFuture(Param);
// The thread must catch all exceptions within the thread.
// Store the exception object and address in the Future object,
// to be raised when the value is needed.
try
Future. fValue :
Future. fValue
except
RaiseFrame := RaiselList;
if RaiseFrame <> nil then

Null;
Future.Compute;

begin
Future. fExceptObject := RaiseFrame.ExceptObject;
Future. fExceptAddr := RaiseFrame.ExceptaAddr;
RaiseFrame.ExceptObject := nil;
end;
end;

end;

120 Chapter 4— Concurrent Programming

Example 4-21. The TFuture Class (continued)

{ TFuture }

// Create the Future and start its computation.

constructor TFuture.Create;

begin
inherited;
// The default time out is Infinite because a general-purpose
// future cannot know how long any concrete future should take
// to finish its task. Derived classes should set a different
// value that is appropriate to the situation.
fTimeOut := Infinite;

end;

// The thread is started in AfterConstruction to let the derived class
// finish its constructor in the main thread and initialize the TFuture
// object completely before the thread starts running. This avoids
// any race conditions when initializing the TFuture-derived object.
procedure TFuture.AfterConstruction;
begin
inherited;
// Start the Future thread.
fHandle := BeginThread(nil, 0, ThreadFunc, Self, 0, fThreadID);
Win32Check (Handle <> 0);
end;

// If the caller destroys the Future object before the thread

// is finished, there is no nice way to clean up. TerminateThread

// leaves the stack allocated and might introduce all kinds of nasty
// problems, especially if the thread is in the middle of a kernel

// system call. A less violent solution is just to let the thread

// finish its job and go away naturally. The Compute function should
// check the Terminated flag periodically and return immediately when
// it is true.

destructor TFuture.Destroy;

begin
if Handle <> 0 then
begin
if not IsReady then
begin
Terminate; // Tell the thread to stop.
try
GetValue; // Wait for it to stop.
except
// Discard any exceptions that are raised now that the
// computation is logically terminated and the future object
// is being destroyed. The caller is freeing the TFuture
// object, and does not expect any exceptions from the value
// computation.
end;
end;
Win32Check(CloseHandle (Handle)) ;
end;
inherited;

Futures

121

ENIL N

)
3
<
3
3
3
=
S

Example 4-21: The TFuture Class (continued)

end;

// Return true if the thread is finished.
function TFuture.GetIsReady: Boolean;
begin
Result := WaitForSingleObject (Handle, 0) = Wait_Object_0;
end;

// Wait for the thread to finish, and return its value.

// If the thread raised an exception, reraise the same exception,
// but now in the context of the calling thread.

function TFuture.GetValue: Variant;

resourcestring

sAbandoned = 'Future thread terminated unexpectedly';

sTimeOut = 'Future thread did not finish before timeout expired';
begin

case WaitForSingleObject (Handle, TimeOut) of
Wait_Abandoned: raise Exception.Create (sAbandoned);
Wait_TimeOut: raise Exception.Create(sTimeOut);
else
if HasException then
RaiseException;
end;
Result := fValue;
end;

function TFuture.HasException: Boolean;
begin

Result := fExceptObject <> nil;
end;

procedure TFuture.RaiseException;
begin

raise fExceptObject at fExceptaddr;
end;

// Set the terminate flag, so the Compute function knows to stop.
procedure TFuture.Terminate;
begin
Terminated := True;
end;

To use a future, derive a class from TFuture and override the Compute method.
Create an instance of the derived future class and read its Value property when

you need to access the future’s value.

Suppose you want to add a feature to the threaded text editor: when the user 1s
searching for text, you want the editor to search ahead for the next match. For
example, the user opens the Find dialog box, enters a search string, and clicks the
Find button. The editor finds the text and highlights it. While the user checks the

result, the editor searches for the next match in the background.

122 Chapter 4— Concurrent Programming

This is a perfect job for a future. The future searches for the next match and
returns the starting position of the match. The next time the user clicks the Find
button, the editor gets the result from the future. If the future is not yet finished
searching, the editor waits. If the future is done, it returns immediately, and the
user is impressed by the speedy result, even when searching a large file.

The future keeps a copy of the file’s contents, so you don’t have to worry about
multiple threads accessing the same file. This is not the best architecture for a text
editor, but 1s demonstrates how a future can be used effectively Example 4-22 lists
the TSearchFuture class, which does the searching.

Example 4-22: Searching for Text

type
TSearchFuture = class(TFuture)
private
fEditorText: string;
fFindPos: LongInt;
fFPindText: string;
fOptions: TFindOptions;
procedure FindDown(out Result: Variant);
procedure FindUp(out Result: Variant);
public
constructor Create(Editor: TRichEdit; Options: TFindOptions;
const Text: string);
function Compute: Variant; override;

Juainauey

)
S
2
S
3
3
=
S

property EditorText: string read fEditorText;
property FindPos: LongInt read FFindPos write fFindPos;
property FindText: string read fFindText;
property Options: TFindOptions read fOptions;
end;

{ TSearchFuture }

constructor TSearchFuture.Create (Editor: TRichEdit;
Options: TFindOptions; const Text: string);

begin
inherited Create;
TimeOut := 30000; // Expect the future to do its work in < 30 sec.
// Save the basic search parameters.
fEditorText := Editor.Text;
fOptions := Options;
fFindText := Text;
// Start searching at the end of the current selection,
// to avoid finding the same text over and over again.
fFindPos := Editor.SelStart + Editor.SelLength;

end;

// Simple-minded search.
function TSearchFuture.Compute: Variant;
begin
if not (frMatchCase in Options) then
begin

Futures 123

Example 4-22: Searching for Text (continued)

fFindText := AnsilowerCase(FindText);
fEditorText := AnsilowerCase (EditorText);
end;

if frDown in Options then
FindDown (Result)
else
FindUp (Result) ;
end;

procedure TSearchFuture.FindDown(out Result: Variant);
var
Next: PChar;
begin
// Find the next match.
Next := AnsiStrPos(PChar (EditorText) + FindPos, PChar (FindText));
if Next = nil then

// Not found.
Result := -1
else
begin

// Found: return the position of the start of the match.
FindPos := Next - PChar (EditorText);
Result := FindPos;
end;
end;

If the user edits the file, changes the selection, or otherwise invalidates the search,
the editor frees the future because it is no longer valid. The next time the user
starts a search, the editor must start up a brand-new future. Example 4-23 shows
the relevant method for the ™DIChild form.

Example 4-23: Managing the Editor’s Future

// If the user changes the selection, restart the background search.
procedure TMDIChild.EditorSelectionChange(Sender: TObject);
begin
if Future <> nil then
RestartSearch;
end;

// When the user closes the Find dialog, stop the background
// thread because it probably isn't needed any more.
procedure TMDIChild.FindDialogClose(Sender: TObject);
begin

FreeAndNil (fFuture) ;
end;

// Restart the search thread after a search parameter changes.
procedure TMDIChild.RestartSearch;
begin

FreeAndNil (fFuture) ;

124 Chapter 4— Concurrent Programming

Example 4-23: Managing the Editor’s Future (continued)

fFuture := TSearchFuture.Create(Editor, FindDialog.Options,
FindbDialog.FindText) ;
end;

When the user clicks the Find button, the TFindDialog object fires its OnFind
event. The event handler first checks whether it has a valid future, and if not, it
starts a new future. Thus, all searching takes place in a background thread. The
TSearchFuture object returns the position of the next match or -1 if the text
cannot be found. Most of the work of the event handler is scrolling the editor to
make sure the selected text is visible—managing the search future is trivial in
comparison, as you can see in Example 4-24.

Example 4-24: Performing a Text Search

// The user clicked the Find button in the Find dialog.
// Get the next match, which might already have been found
// by a search future.
procedure TMDIChild.FindDialogFind(Sender: TObject);
var
FindPos: LongInt;
SaveEvent: TNotifyEvent;
TopLeft, BottomRight: LongWord;
Top, Left, Bottom, Right: LongInt;
Pos: TPoint;
SelLine, SelChar: LongInt;
ScrollLine, ScrollChar: LongInt;
begin
// If the search has not yet started, or if the user changed
// the search parameters, restart the search. Otherwise, the
// future has probably already found the next match. In either
// case the reference to Future.Value will wait until the search
// is finished.
if (Future = nil) or
(Future.FindText <> FindDialog.FindText) or
(Future.Options <> FindDialog.Options)
then
RestartSearch;

FindPos := Future.Value;

if FindPos < 0 then
MessageBeep (Mb_IconWarming)
else
begin
// Bring the focus back to the editor, from the Find dialog.
Application.MainForm.SetFocus;
// Temporarily disable the selection change event
// to prevent the future from being restarted until after
// the selection start and length have both been set.
SaveEvent := Editor.OnSelectionChange;
try
Editor.OnSelectionChange := nil;

Futures 125

X
S
S
2
N
3
3
s
S

Jalnaueg

Example 4-24: Performing a Text Search (continued)

Editor.SelStart := FindPos;

Editor.SelLength := Length(FindDialog.FindText) ;
finally

Editor.OnSelectionChange := SaveEvent;
end;

// Start looking for the next match.
RestartSearch;

// Scroll the editor to bring the selection in view.

// Start by getting the character and line index of the top-left
// corner of the rich edit control.

Pos.X := 0;
Pos.Y := 0;
Topleft := Editor.Perform(Em CharFromPos, 0, LParam(@Pos)) ;
Top := Editor.Perform(Em LineFromChar, Word(TopLeft), 0);
Left := Word(TopLeft) - Editor.Perform(Em LineIndex, Top, 0);

// Then get the line & column of the bottom-right corner.
Pos.X := Editor.ClientWidth;
Pos.Y := Editor.ClientHeight;
BottomRight := Editor.Perform(Em CharFromPos, 0, LParam(@Pos)) ;
Bottom := Editor.Perform(Em_LineFromChar, Word (BottomRight), 0);
Right := Word(BottomRight) -

Editor.Perform(Em_LineIndex, Bottom, 0) ;

// Is the start of the selection in view?
// If the line is not in view, scroll vertically.
Selline := Editor.Perform(Em_ExLineFromChar, 0, FindPos) ;
if (Selline < Top) or (SelLine > Bottom) then
Scrollline := Selline - Top
else
ScrollLine := 0;
// If the colum is not visible, scroll horizontally.
SelChar := FindPos - Editor.Perform(Em_LineIndex, SelLine, 0);
if (SelChar < Left) or (SelChar > Right) then
ScrollChar := SelChar - Left
else
ScrollChar := 0;
Editor.Perform(Em LineScroll, ScrollChar, Scrollline);
end;
end;

The major advantage to using futures is their simplicity You can often implement
the TFuture-derived class as a simple, linear subroutine (albeit one that checks
Terminated periodically). Using a future is as simple as accessing a property. All
the synchronization is handled automatically by TFuture.

Concurrent programming can be tricky, but with care and caution, you can write
applications that use threads and processes correctly, efficiently, and effectively

126 Chapter 4— Concurrent Programming

CHAPTER 5

Language Reference

This is the big chapter—the language reference. Here you can find every keyword,
directive, function, procedure, variable, class, method, and property that is part of
Delphi Pascal. Most of these items are declared in the System unit, but some are
declared in SysInit. Both units are automatically included in every Delphi unit.
Remember that Delphi Pascal is not case sensitive, with the sole exception of the
Register procedure (to ensure compatibility with C++ Builden).

For your convenience, runtime error numbers in this chapter are followed by
exception class names. The SysUtils unit maps the errors to exceptions. The
exceptions are not part of the Delphi language proper, but the SysUtils unit is
used 1n almost every Delphi project, so the exceptions are more familiar to Delphi
programmers than the error numbers.

Each item falls into one of a number of categories, which are described 1n the
following list:

Directive

A directive 1s an identifier that has special meaning to the compiler, but only
mn a specific context. Outside of that context, you are free to use directive
names as ordinary identifiers. Delphi’s source editor tries to help you by
showing directives in boldface when they are used in context and in plain
text when used as ordinary identifiers. The editor is not always correct,
though, because some of the language rules for directives are more complex
than the simple editor can handle.

Function
Not all functions are really functions; some are built into the compiler. The
difference is not usually important because the built-in functions look and act
like normal functions, but you cannot take the address of a built-in function.
The descriptions 1n this chapter tell you which functions are built-in and
which are ordinary

127

X
2
o
®
<D
3
bx]
)

abenfiuey

Interface
A declaration of a standard interface.

Keyword
A keyword is a reserved identifier whose meaning 1s determmed by the
Delphi compiler. You cannot use the keyword as a variable, method, or type
name.

Procedure
As with functions, some procedures are built into the compiler and are not
ordinary procedures, so you cannot take their addresses. Some procedures
(such as Exit) behave as though they were statements in the language, but
they are not reserved keywords, and you use them the same way you would
use any other procedure.

Tyvpe
You know what a type is. Some types are built into the compiler, but many
are defined explicitly 1n the System unit.

Variable

Most of the variables defined in the Delphi language are ordinary varnables in
the System or SysInit units. The difference between these units is that the
vaniables in the System unit are shared by all packages loaded into an appli-
cation, but each package has its own copy of the SysInit unit. If you know
what you are doing, you can change therr values. If you arent careful,
though, you can wreak havoc with Delphi. Other variables (Self and
Result) are built into the compiler, and have special uses.

Abs Function

Syntax
function Abs(Number: Numeric type): Numeric type;

Description

The Abs function computes and returns an absolute value. The function s built
mto the compiler.

Return Value

* If the number has an integer type, Abs checks whether the value 1s negative
and if so, negates it. The return type is Integer or Int64, depending on the
type of the argument.

® For a floating-point number, abs clears the sign bit without altering any other
bit. In other words, negative zero and negative infinity become positive zero
and positive infinity Even if the value 1s NaN, the result is the original num-
ber with a zero for the sign bit.

Argument l Return
—nfinity +infinity
<0 —number

128 Chapter 5~ Language Reference

Argument Return

~-0.0 +0.0

+0.0 +0.0

>0.0 number

+infinity +infinity

quiet NaN original value with sign bit set to zero
signaling NaN | original value with sign bit set to zero

e If the argument 1s a Variant, Delpht converts it to a floating-point number
and then takes the absolute value, returning a floating-point result (even if the
Variant value is an integer).

See Also
Double Type, Extended Type, Int64 Type, Integer Type, Single Type

Absolute Directive

Syntax

var Declaration absolute Constant expression;
var Declaration absolute Variable;

Description

The absolute directive tells Delphi to store a variable at a particular memory
address. The address can be a numerical address or it can be the name of a vari-
able, in which case the memory location is the same as that used for the
Variable. You can use the absolute directive with local or global variables.

o~
am
S
RS
3o
2 @

Tips and Tricks

e Don'’t use the absolute directive unless you absolutely have to. Instead, you
should usually use variant records, which are less error-prone and easier to
read and understand.

e Use absolute instead of variant records when you cannot reasonably change
the variable’s type. For example, a subroutine that must reinterpret its argu-
ment might use absolute.

¢ Using absolute with a numerical memory address 1s a holdover from Delph 1
and has no real use in the newer 32-bit Windows operating systems.

Example
See the Extended type for an example of using absolute.

See Also
Record Keyword, Var Keyword

Absolute Directive 129

Abstract Directive

Syntax

Virtual method declaration; abstract;:

Description

The abstract directive applies to a virtual or dynamic method and means the
method has no implementation. The compiler reserves a place in the virtual
method table or assigns a dynamic method number. A derived class must provide
an implementation for the abstract method. The abstract directive must follow
the virtual, dynamic, or override directive.

Tips and Tricks

If a derived class does not override an abstract method, you can omit the
method from the class declaration or declare the method with the override
and abstract directives (in that order). The latter is preferable because it
clearly documents the programmer’s intention not to implement the method,
and does not leave the reader wondering whether the omission was deliber-
ate or an oversight.

If you try to construct an object, and the compiler can tell that the class has
abstract methods, the compiler issues a warning. Usually such a warning indi-
cates one of two possible errors: (1) the programmer forgot to mmplement an
abstract method in a derived class, or (2) you are trying to create an instance
of a base class when you should be creating an instance of a derived class.

If you create an instance of the base class and call one of its abstract meth-
ods, Delphi calls the AbstractErrorProc procedure or generates runtime
error 210 (EAbstractError).

See Also

AbstractErrorProc Variable, Class Keyword, Dynamic Directive, Override
Directive, Virtual Directive

AbstractErrorProc Variable

Syntax

var AbstractErrorProc: Pointer;

procedure YourProcedure;
begin ... end;
AbstractErrorProc := @YourProcedure;

Description

When an abstract method is called and the object reference 1s that of the base
class so the class does not implement the method, Delphi calls the procedure that
AbstractErrorProc pomts to. If AbstractErrorProc is nil, Delphi raises
runtime error 210 (EAbstractError). If the pointer 1s not nil, the pointer value

130 Chapter 5~ Language Reference

must be the entry point of a procedure that takes no arguments. Delphi calls the
procedure, which must handle the error.

Tips and Tricks

The SysUtils unit sets AbstractErrorProc to a procedure that raises an
EAbstractError exception, so most applications will never need to set
AbstractErrorProc. If you define your own handler for abstract errors,
remember to raise an exception; if the procedure returns normally, Delph:t halts
the program.

See Also

Abstract Directive, AssertErrorProc Variable, ErrorProc Variable, ExceptProc
Variable, Halt Procedure

AddModuleUnloadProc Procedure

Syntax
procedure AddModuleUnloadProc(Proc: TModuleUnloadProc) ;

procedure YourProcedure(HInstance: THandle);
begin ... end;
AddModuleUnloadProc (YourProcedure) ;

Description

Delphi keeps a list of packages that comprise an application. When Delphi
unloads a package, it calls a series of unload procedures, passing the package
DLL’s instance handle to each one. You can add your own unload procedure to
the head of the list by passing its address to AddModuleUnloadProc. When the
application exits, Delphi-calls the module unload procedures for the application,
t0o.

AddModuleUnloadProc is a real procedure.

Example

// The graphics server manages graphical resources.

// When the application loads a graphical resource, the server

// checks the color depth of the resource and if it is higher

// than the color depth of the display, it makes a new copy of

// the graphical object at the display's color depth, and returns
// the new graphical object. Using a high-quality renderer

// gives better results than letting Windows do the color matching.
//

// When a module is unloaded, free all of its resources.

type
PResource = ~TResource;
TResource = record
Module: THandle;
Resource: TGraphicsObject;
case Boolean of
True: (Name: PChar;);

AddModuleUnloadProc Procedure 131

—
TS
T
@ =
Sa
2 ®

False: (ID: LongInt;);
end;
var
List: TList;

procedure ByeBye(HInstance: THandle);
var
I: Integer;
Resource: PResource;
begin
for I := List.Count-1 downto 0 do
begin
Resource := List[I];
if Resource.Module = HInstance then
begin
List.Delete(I);
Resource.Resource.Free;
Dispose (Resource) ;
end;
end;
end;

initialization
List := TList.Create;
AddModuleUnloadProc (ByeBye) ;

finalization
RemoveModuleUnloadProc (ByeBye) ;
FreeAndNil (List);

end.

See Also

ModuleUnloadList Variable, PModuleUnloadRec Type,
RemoveModuleUnloadProc Procedure, TModuleUnloadRec Type,
UnregisterModule Procedure

Addr Function
Synitax

function Addr(var X): Pointer;

Addr (Variable)
Addr (Subroutine)

Description

The Addr function returns the address of a variable or subroutine. The return type
is Pointer, that is, an untyped pointer. Even if you use the $T or $Typedaddress
compiler directive, Addr always returns an untyped pointer.

The @ operator is similar to the Addr function, but the @ operator can return a
typed pointer if you use the $T or $Typedaddress directive.

The Addr function is built into the compiler.

132 Chapter 5 Language Reference

See Also
Pointer Type, $T Compiler Directive, $TypedAddress Compiler Directive

AllocMemCount Variable

Syntax
var AllocMemCount: Integer;

Description

AllocMemCount stores the number of blocks allocated by Delphi’s memory
manager.

Tips and Tricks

e Delphi doesn’t use the AllocMemCount variable for anything—it 1s purely for
informational purposes. Changing its value, although pointless, is also
harmless.

e If you write your own memory manager, check AllocMemCount before call-
ing SetMemoryManager. AllocMemCount should be zero. If it is not, the
default memory manager has allocated at least one block. The problem 1s that
Delphi might try to free that block by calling your custom memory manager.
Unless your memory manager can handle this situation, it 1s safest to halt the
program.

e If you write your own memory manager, you can set AllocMemCount to
reflect the number of blocks allocated by your memory manager.

s If you use DLLs, AllocMemCount might not reflect the blocks allocated in
other modules. If you use the ShareMem unit, call its GetAllocMemCount
function to count the number of blocks it has allocated for all the modules
that use ShareMem

See Also

AllocMemSize Variable, Dispose Procedure, FreeMem Procedure,
GetHeapStatus Procedure, GetMem Procedure, GetMemoryManager
Procedure, New Procedure, ReallocMem Procedure, SetMemoryManager
Procedure

AllocMemSize Variable
Syntax

var AllocMemSize: Integer;
Description

AllocMemSize stores the total size in bytes of all the memory blocks allocated by
Delphi’s memory manager; that 1s, it represents the amount of dynamic memory mn
use by your application.

AllocMemSize Variable 133

X~
m
TS
~

o =
=
o
a ©

Tips and Tricks

* Delphi doesn't use the AllocMemSize variable for anything. Changing its
value, although pointless, is also harmless.

¢ If you write your own memory manager, you can set AllocMemSize to reflect
the amount of memory allocated by your memory manager.

* If you use DLLs, AllocMemSize might not reflect the blocks allocated in
other modules. If you use the ShareMem unit, call its GetAllocMemSize func-
tion to find the size of the blocks it has allocated for all the modules that use
ShareMem

See Also
AllocMemCount Variable, Dispose Procedure, FreeMem Procedure,
GetHeapStatus Procedure, GetMem Procedure, GetMemoryManager
Procedure, New Procedure, ReallocMem Procedure, SetMemoryManager
Procedure

And Keyword

Syntax

Boolean expression and Boolean expression
Integer expression and Integer expression

Description

The and operator performs a logical and if the operators are of Boolean type or a
bitwise and if the operators are integers. Integer operands can be of any integer
type, including Int64. A logical and is False if either operand is False and is True
if both operands are True.

Tips and Tricks

® Unlike standard Pascal, if the left-hand operand is False, Delphi does not eval-
uate the right-hand operand because the result must be False. You can avoid
this shortcut operation and return to standard Pascal with the $BoolEval or
$B compiler directives.

* An integer and operates on each bit of its operands, setting the resuit bit to
zero if either operand has a zero bit, and sets a bit to one if both operands
have 1 bits. If one operand is smaller than the other, Delphi extends the
smaller operand with zero in the leftmost bits. The result is the size of the
largest operand.

Examples
var
I, J: Integer;
S: string;
begin
I := $F0;
J := $8F;

Writeln(I and J); // Writes 128 (which is $80)

134 Chapter 5- Language Reference

// The short-circuit behavior of AND in the next example prevents
// Delphi from referring to the nonexistent string element, S[1].
S := I';
if (Length(S) > 0) and (S[1] = 'X') then

Delete(S, 1, 1);

See Also

Boolean Type, ByteBoo! Type, LongBool Type, Not Keyword, Or Keyword,
Shl Keyword, Shr Keyword, WordBool Type,
Xor Keyword, $B Compiler Directive, $BoolEval Compiler Directive

AnsiChar Type
Syntax

type AnsiChar = #0..#255;
Description

The AnsiChar type represents an 8-bit extended ANSI character. In the current
release of Delphi, the generic Char type is the same as AnsicChar, but future
releases might redefine the Char type. AnsiChar will be an 8-bit type regardless
of the definition of Char.

See Also
AnsiString Type, Char Type, WideChar Type

)

. r3 = :

AnsiString Type g%
=

<

Syntax 8 @

type AnsiString;
Description

The AnsiString type is a long, reference-counted string containing AnsiChar
characters. By default, Delphi treats the generic string type as synonymous with
AnsiString. If you use the $H- or $LongStrings compiler directives, though,
string becomes the same as ShortString.

Delphi stores an AnsiString as a pointer to a record, but instead of pointing to
the start of the record, the AnsiString pointer points to the start of the Data
member. The Length and RefCount members precede the string contents.

type
// This is the logical structure of an AnsiString, but the
// declaration below is descriptive and cannot be compiled.
TAnsiString = record
RefCount: LongWord;
Length: LongWord;
Data: array[l..Length+l] of AnsiChar;
end;

AnsiString Type 135

Tips and Tricks

® Delphi manages the lifetime of AnsiString strings using reference counting.
You can manipulate the reference count with the Initialize and Finalize
procedures, should the need arse.

* Assigning a string to an AnsiString-type vanable copies a pomter to the
string and increments the reference count. You can still think of the new vari-
able as having its own copy because Delphi uses copy-on-write semantics. If
you change the contents of a string whose reference count is greater than
one, Delphi automatically creates a unique copy of the string and modifies the
copy

* Each string also maintains its length as a separate integer. You can set the
length of a string by calling SetLength. Delphi automatically keeps a #0
character at the end of the string (but does not include the #0 in the string’s
length), so you can easily cast the strng to the PChar type, as needed by the
Windows API and other C-style functions.

See Also
AnsiChar Type, Finalize Procedure, Initialize Procedure, Length Function,
PChar Type, SetLength Procedure, SetString Procedure, ShortString Type,
String Keyword, WideString Type, $H Compiler Directive, $LongStrings
Compiler Directive

Append Procedure
Syntax

procedure Append(var F: TextFile);
Description

The Append procedure opens an existing text file for writing. The initial file posi-
tion 1s the end of the file, so future writes append to the end of the file.

The Append procedure 1s built mto the compiler. For an example, see the
AssignFile Procedure.

Errors

¢ If you have not called AssignFile before Append, Delphi reports I/O error
102.

* If the file cannot be opened for any reason, Append reports the Windows
error code as an I/O error.

Tips and Tricks

Note that you cannot open a typed or untyped binary file for appending—only
text files. To append to a binary file, call Reset and seek to the end of the file.

136 Chapter 5- Language Reference

See Also

AssignFile Procedure, CloseFile Procedure, Eof Function, IOResult Function,
Reset Procedure, Rewrite Procedure, TextFile Type, $1 Compiler Directive,
$I0Checks Compiler Directive

ArcTan Function

Syntax

function ArcTan(Number: Floating-point type): Extended;

Description

The ArcTan function returns the arctangent in radians of Number. The ArcTan
function 1s built-in.

Tips and Tricks

Delphi automatically converts Integer and Variant arguments to floating-
pomnt. To convert an Int64 argument to floating-point, add 0.0.

If Number is positive infinity, the result is ©/2 (or more accurately, Delphi’s
best approximation of m/2); if Number 1s negative infinity, the result is an
approximation of —/2.

If Number is a quiet NaN, the result 1s Number.
If Number is a signaling NaN, Arctan reports runtime error 6 (EInvalidOp).

See Also

Cos Function, Sin Function

Array Keyword

Syntax
type Name = array[Index type] of Base type; // static array type
type Name = array[Index type, ...] of Base type; // static array type
type Name = array of Base type; // dynamic array type
Name: array of Base type // open array as a subroutine parameter
Name: array of const // open variant array as a subroutine parameter

Description

Delphi has several different kinds of arrays: static arrays, dynamic arrays, and open
arrays:

A static array is a traditional Pascal array You can use any ordinal type as an
index, and an array can have multiple indices. The size of a static array can-
not change at runtime.

A dynamic array is an array whose index type is Integer and whose size can
change while the program runs. The lower bound of the index 1s always zero,
and the upper bound is set with the SetLength procedure. To copy a
dynamic array, call the Copy procedure. Assigning a dynamic array assigns a

Array Keyword 137

X~
D N
TS
2
o =
S
I

reference to the array without assigning the array’s contents. Delphi uses ref-
erence counting to manage the lifetime of dynamic arrays. Unlike strings, Del-
phi does not use copy-on-write for dynamic arrays.

A subroutine parameter can be an open array You can pass any static or
dynamic array to the subroutine. Delph: passes an additional, hidden parame-
ter that gives the upper bound of the array. The subroutine cannot change the
size of a dynamic array that is passed as an open array Regardless of the
index type of the actual array, the open array parameter uses an Integer
mndex type, with zero as the lower bound.

A special kind of open array is a vanant open array, which is declared as
array of const. Each element of the array 1s converted to a TVarRec record.
The most common use for a variant open array is to write a subroutine that
takes a variable number of arguments (such as the Format function in the
SysUtils unit).

An array of AnsiChar, Char, or WideChar is special when the index is an
integer range starting from zero. Delphi treats such an array as a string or
wide string (unless you disable the $ExtendedSyntax or $X compiler direc-
tives), except that you cannot pass a character array to a subroutine that has a
var string parameter. You can also pass an array reference as an argument to
a subroutine that takes a parameter of type PChar or PWideChar. Delphi
automatically passes the address of the first character in the array.

Arrays are stored in column-major order, that s, the rightmost subscript var-
ies fastest.

Examples

// Append a message to a log file.
// See the example with AssignFile for the other overloaded
// version of the Log procedure.
procedure Log(const Fmt: string; const Args: array of const);
overload;
begin
Log (Format (Fmt, Args));
end;

// Append a random number to a dynamic array of integers.
// Because dynamic arrays and open arrays use the same syntax,
// you must use a named type for the dynamic array parameter.
type

TIntArray = array of integer;

procedure AppendRandomInt (var Ints: TIntArray);
begin
SetLength(Ints, Length(Ints) + 1);
Ints[High(Ints)] := Random (MaxInt) ;
end;

var
Counter: Integer;
TestInfo: string;
Ints: TIntArray;

138 Chapter 5— Language Reference

I: Integer;
begin

Log('This is test #3%d: %s', [Counter, TestInfo]);
for I :=1 to 10 do
AppendRandomInt (Ints) ;
end.

See Also

Copy Procedure, High Function, Length Function, Low Function, PAnsiChar
Type, PChar Type, PWideChar Type, SetLength Procedure, Slice Function,
Type Keyword, TVarRec Type, $ExtendedSyntax Compiler Directive, $X
Compiler Directive

As Keyword

Syntax

Object reference as Class type
Object or interface reference as Interface type

Description

The as operator converts an object reference to a different class type or converts
an interface reference to a different interface type. The type of the expression is
the class or interface type on the right-hand side of the as operator.

Tips and Tricks

If the object or interface reference is nil, the result is nil.

The object’s declared class must be a descendant or ancestor of the class type.
If the object reference is not of a compatible type, the compiler issues an
error. If the declared type is compatible, but the object’s true type at runtime
is not the class type or a descendant type, Delphi raises runtime error 10
(EInvalidCast).

You should use the as operator instead of a type cast when typecasting an
object reference. The only exception is when you know the type from an ear-
lier use of the is operator.

If the desired type is an interface, Delphu calls the QueryInterface method,
passing the interface type’s GUID as the first argument. If the object does not
implement the interface, Delphi raises runtime error 23 (EIntfCastError).

Example

// When any check box is checked, enable the OK button.
// This event handler can be used for multiple check boxes.
procedure TForml.CheckBoxl1Click(Sender: TObject);
begin
if (Sender as TCheckBox).Checked then
OkButton.Enabled := True;
end;

As Keyword 139

—~
35
TS
> =
Sa
B

See Also

Interface Keyword, Is Keyword, TObject Type

Asm Keyword

Syntax

asm
assembler instructions
end;

Description

The asm keyword starts a block of assembler instructions.

Tips and Tricks

An asm block 1s a statement, and you can use it anywhere that calls for a Pas-
cal statement or block, such as the body of a subroutine.

You can refer to variable names within the assembly block and jump to labels
declared elsewhere in the procedure. Do not jump 1nto a loop unless you
know what you are doing. A label that starts with an @ sign is local to the
subroutine and does not need to be declared.

Delphi’s built-in assembler tends to lag behind the technology, so you cannot
usually rely on having the latest and greatest nstruction set. Instead, you can
use DB, DWW, or DD directives to compile the opcodes manually

An asm block can change the FAX, ECX, and EDX regsters, but must preserve
the values of EBX, EST, EDT, EBP, and ESP. As a rule, you should not assume
that any registers contain special values, but if you are careful, you can access
a subroutine’s parameters in their registers. See the calling convention direc-
tives (cdecl, pascal, register, safecall, and stdcall) to learn how
arguments are passed to a subroutine.

Writing assembly code by hand rarely gives you better performance. The most
common reason to use an asm block 1s to use instructions that are not avail-
able in Delphy, such as the CPUID instruction shown in the example.

Example

unit cpuid;

// CPU identification.

// This unit defines the GetCpuID function, which uses the CPUID

// instruction to get the processor type. GetCpulID returns True if the
// processor supports the CPUID instruction and False if it does not.
// Older 486 and earlier processors do not support CPUID.

interface

const
VendorIntel = 'GenuinelIntel’;
VendorAMD = 'AuthenticAMD’;

VendorCyrix = 'CyrixInstead’';

140 Chapter 5— Language Reference

type

TCpuType = (cpuOriginalOEM, cpuOverdrive, cpuDual, cpuReserved);

TCpuFeature = (cfFPU, cfVME, cfDE, cfPDE, cfTSC, cfMSR, cfMCE, cfCx8,
cfAPIC, cfReservedl0O, cfReservedll, cfMTRR, cfPGE, cfMCA,
cfCMOV, cfPAT, cfReservedl7, cfReservedl8, cfReservedl9,
cfReserved20, cfReserved2l, cfReserved22, cfReserved23,
cfMMX, cfFastFPU, cfReserved26, cfReserved27,
cfReserved28, cfReserved29, cfReserved30, cfReserved3l
)i

TCpuFeatureSet = set of TCpuFeature;

UIntd = 0..15;

TCpuId = packed record
CpuType: TCpuType;
Family: UIntd;
Model: UlInt4;
Stepping: UInt4;
Features: TCpuFeatureSet;
Vendor: string[12];

end;

// Get the CPU information and store it in Cpuid.
function GetCpuid(var Cpuid: TCpuid): Boolean; register;

implementation

function GetCpuid(var Cpuid: TCpuid): Boolean;
asm
// GetCpuid uses the register calling convention, so
// the Cpuid parameter is in EAX. Because it is a VAR parameter,
// ERX contains a pointer to the record.
// Test whether the processor supports the CPUID instruction.
// The test changes ECX and EDX.

=
2
I
[1:)
[
o
-]

abenfuey

pushfd

pop ecx // Get the EFLAGS into ECX.

mov edx, ecx // Save a copy of EFLAGS in EDX.

Xor ecx, $200000 // Toggle the ID flag.

push ecx // Try to set EFLAGS.

popfd

pushfd // Now test whether the change sticks.
pPop ecx // Get the new EFLAGS into ECX.

Xor ecx, edx // Compare with EDX.

je @NoCpuld // If the bits are equal, the processor

// doesn't support the CPUID instruction.

// Okay to use CPUID instruction. Restore original EFLAGS.
push edx
popfd

// The CPUID instruction will trample EAX, so save the Cpuid argument
// in ESI. Delphi requires ESI be preserved when the ASM block ends,
// so save its previous value. Also save EBX, which CPUID will

// trample, and which must be preserved.

push esi

Asm Keyword 141

push ebx
mov esi, eax

// Get the vendor name, which is the concatenation of the contents
// of the EBX, EDX, and EAX registers, treated as three 4-byte
// character arrays.

XOr eax, eax // EAX = 0 means get vendor name
dw $a20f // CPUID instruction

mov BYTE(TCpuid{esi).Vendor), 12 // string length

mov DWORD(TCpuid(esi) .Vendor+l), ebx // string content

mov [OFFSET(TCpuid(esi).Vendor)+5], edx
mov [OFFSET (TCpuid(esi).Vendor)+9], ecx

// Get the processor information.

// Now EAX is not zero, so CPUID gets the processor info.
dw $a20f // CPUID instruction

mov TCpuid(esi).Features, edx

// The signature comes in parts, most of which are 4 bits long.

// Delphi doesn't support bit fields, so the TCpuid record uses

// bytes to store these fields. That means unpacking the nibbles
// into bytes.

mov edx, eax

and al, SF

mov TCpuid(esi).Stepping, al

shr edx, 4

mov eax, edx

and al, $F

mov TCpuid(esi) .Model, al

shr edx, 4

mov eax, edx

and al, SF

mov TCpuid(esi).Family, al

shr edx, 4

mov eax, edx

and al, $3

mov TCpuid(esi) .CpuType, al

pop ebx // Restore the EBX and ESI registers.

pop esi
mov al, 1 // Return True for success.
ret

@NoCpuld:
XOor eax, eax // Return False for no CPUID instruction.

end;

end.

142 Chapter 5- Language Reference

See Also

CDecl Directive, Pascal Directive, Register Directive, SafeCall Directive, StdCall
Directive

Assembler Directive

Syntax
Subroutine header; assembler;
Description

The assembler directive has no meaning. It exists for backward compatibility
with Delphi 1.

See Also
Asm Keyword

Assert Procedure

Syntax

procedure Assert(Test: Boolean);
procedure Assert (Test: Boolean; const Message: string);

Description

Use the Assert procedure to document and enforce the assumptions you must
make when writing code. Assert is not a real procedure. The compiler handles
Assert specially and compiles the filename and line number of the assertion to
help you locate the problem should the assertion fail.

If the Test condition 1s False, Delphi calls the procedure pointed to by the
AssertErrorProc variable. The SysUtils unit sets this variable to a procedure
that raises the EAssertionFailed exception. If AssertErrorProc is nil, Delphi
raises runtime error 21 (EAssertError).

You can include an optional message that Delphi passes to the AssertErrorProc
procedure. If you do not include the message, Delphi uses a default message, i.e.,
“Assertion failed.”

Tips and Tricks

e The proper way to use Assert is to specify conditions that must be true in
order for your code to work correctly. All programmers make assumptions—
about the internal state of an object, the value or validity of a subroutine’s
arguments, or the value returned from a function. A good way to think about
assertions is that they check for programmer errors, not user errors.

* Although you can turn off assertions with the $Assertions or $C compiler
directives, you will rarely have any reason to do so. Receiving an “assertion
failed” error is disconcerting to a user, but much less disconcerting than the
user’s data being corrupted.

Assert Procedure 143

o~
)
TS
=
3
S e

Example

This chapter contains several examples of using Assert: see the Move procedure,
TypeInfo function, VarArrayLock function, and VarIsArray function.

See Also

AssertErrorProc Variable, $Assertions Compiler Directive, $C Compiler
Directive

AssertErrorProc Variable

Syntax
var AssertErrorProc: Pointer;

procedure ErrorProc(const Message, FileName: string;
LineNumber: Integer; ErrorAddress: Pointer);
AssertErrorProc := @ErrorProc

Description

When an assertion fails, Delphi calls the procedure whose address is stored i the
AssertErrorProc variable. The compiler passes the assertion message and the
location of the Assert statement to the procedure.

Tips and Tricks

* You can implement this procedure to take any action, such as logging the fail-
ure, sending email to your QA staff, etc. Unlike the other error-handling pro-
cedures, the AssertErrorProc procedure can return, in which case the
program continues with the statement following the Assert procedure call.

* If AssertErrorProc is nil, Delphi raises runtime error 21 (EAssertError).

e The SysUtils unit sets this variable to a procedure that raises an
EAssertError exception.

See Also

AbstractErrorProc Variable, Assert Procedure, ErrorProc Variable, ExceptProc
Variable

Assign Procedure

Syntax
procedure Assign(var F: File; const FileName: string);
procedure Assign(var F: TextFile; const FileName: string);

Description

The Assign procedure does the same thing as AssignFile, but you should use
AssignFile in new code. Assign is a method name that is often used in Delphi,
and the two names can result in confusion. Assign is not a real procedure.

144 Chapter 5 - Language Reference

See Also
AssignFile Procedure

Assigned Function

Syntax

function Assigned(P: Pointer): Boolean;
function Assigned(Obj: TObject): Boolean;
function Assigned(Method: TMethod): Boolean;

Description

The Assigned function returns True if the argument is not nil, it returns False if
the argument 1s nil. Assigned is not a real function.

Tips and Tricks

* The argument can be a pointer, an object reference, or a method.

* Calling Assigned mnstead of comparing a pointer with nil incurs no perfor-
mance penalty

* If the pointer is a function pointer, using Assigned makes it clear that you do

not mtend to call the function and compare its result to nil. Thus, Assigned
1s often used to test function and method pointers.

* A method pomnter has two parts: a code pointer and a data pointer. Assigned
checks only the most significant word of the code reference: if the high-order
word 1s zero, the method reference 1s nil. Assigned ignores the data
pointer.

See Also
Nil Keyword

AssignFile Procedure

Syntax
procedure AssignFile(var F: File; const FileName: string);
procedure AssignFile(var F: TextFile; const FileName: string);
Description

Call AssignFile to assign a filename to a typed file, an untyped file, or a text file
prior to opening the file. AssignFile is not a real procedure.

Tips and Tricks

* A subsequent call to Append, Reset, or Rewrite will open the file. If you do
not call AssignFile first, a call to Append, Reset, or Rewrite causes Del-
phi to report I/O error 102.

* Delphi interprets an empty string as the console. In a console application, the
Input and Output files are automatically assigned to the console. Trying to
use a console file in a GUI application results in I/O error 105.

AssignFile Procedure 145

I~
28
)
@
2 Q
@ e

Example

var
LogFile: string = ‘c:\log.txt';

// Append a message to a log file. See the example with the Array
// Keyword for the other overloaded Log procedure.
procedure Log(const Msg: string); overload;
var
F: TextFile;
begin
AssignFile(F, LogFile);
// Try to append to the file, which succeeds only if the file exists.
{$IoChecks Off}
2Append (F) ;
{$IoChecks On}
if IOResult <> 0 then
// The file does not exist, so create it.
Rewrite (F);
Writeln(F, Msg);
CloseFile(F);
end;

See Also

Append Procedure, CloseFile Procedure, Eof Function, File Type, IOResult
Function, Reset Procedure, Rewrite Procedure, TextFile Type, $I Compiler
Directive, $IOChecks Compiler Directive

At Directive

Syntax
raise Exception at Address;

Description

Use the at directive to raise an exception with a specific address as the origin of
the exception. The Address can be any integer expression.

Tips and Tricks

The at directive is not used in most applications, but it can be helpful when
writing certain libraries or generic error-handling packages.

Example

The following example is a subroutine that raises an exception that uses the
caller’s address as the exception address. Thus, you can call the example proce-
dure anywhere in your application, and when the debugger stops the application,
the position is not where the exception is truly raised, but where the
RaiseExceptionInCaller procedure is called, which is much more useful and
informative.

procedure RaiseExceptionInCaller;
// Get the return address from the stack and save it in EAX,

146 Chapter 5- Language Reference

// which is the function's result. The value at [ESP] is the

// address of RaiseExceptionInCaller; go back one more frame

// to [ESP+4] to get the caller of RaiseExceptionInCaller.

// If you need to add local variables to RaiseExceptionInCaller,
// you might want to get an offset from EBP instead.

function CallerAddress: Pointer;

asm
mov eax, [esp+4]
end;
begin
raise Exception.Create('Example') at CallerAddress;
end;

procedure Demo;
begin

RaiseExceptionInCaller; // Debugger shows exception here.
end;

See Also
Raise Keyword

Automated Directive

Syntax
type Class declaration
automated
Method and property declarations...
end;

]
2
m
=
o
=
S
©

afienbuey

Description

The automated directive denotes a section of a class declaration where subse-
quent method and property declarations are stored for use in COM automation
servers. An automated method declaration is like a public declaration, but the
compiler stores additional RTTI for the methods, namely, the type of each param-
eter and the return type if the method is a function. Chapter 3, Runtime Type
Information, describes in detail the format of the RTTI tables that store the method
signatures.

Automated declarations are obsolete. You should use type libraries and interfaces
instead, which give you much more power and flexibility.

See Also
Class Keyword, Dispinterface Keyword, Interface Keyword, Public Directive

Begin Keyword

Syntax
begin
Statement. ..
end

Begin Keyword 147

Description

The begin keyword starts a block. A block 1s the main body of a program, library,
procedure, function, or unit. A block can enclose any number of statements and
can be used anywhere a single statement is required, such as the body of a condi-
tional or loop statement.

The begin keyword works the same way 1n Delphi as it does in standard Pascal.
You can also write a block in assembly language, using the asm keyword instead

of begin.

See Also

Asm Keyword, End Keyword, Initialization Keyword, Library Keyword,
Program Keyword, Unit Keyword

BeginThread Function

Syntax
function BeginThread(SecurityAttributes: Pointer; StackSize: LongWord;
ThreadFunc: TThreadFunc; Parameter: Pointer; CreationFlags: LongWord;
var ThreadId: LongWord): Integer;

Description

Call BeginThread to start a thread in a multithreaded program. BeginThread
calls the Windows API function CreateThread, which starts a new thread and
calls the thread function (ThreadFunc) in the context of the new thread. When
the thread function returns, the thread terminates. For more mformation about the
security attributes or creation flags, see the Windows API documentation for the
CreateThread function.

BeginThread returns the handle of the new thread or zero if Windows cannot
create the thread. BeginThread is a real function.

Tips and Tricks

* You should use BeginThread instead of the Windows API function
CreateThread because BeginThread sets the global variable IsMulti-
Thread to True. BeginThread also defines the ThreadFunc and ThreadID
parameters in Pascal style rather than C style.

* The thread function should catch and handle all exceptions. If the thread
function raises an exception that it does not handle, BeginThread catches the
exception and terminates the application.

* Refer to Chapter 4, Concurrent Programming, for more information about
programming with threads.

* Like any Windows resource, you must call CloseHandle after the thread ter-
minates to make sure Windows releases all the resources associated with the
thread. Delphi has a small memory leak if you start a thread in the sus-
pended state, then close it without ever resuming the thread. To avoid the
leak, always resume the thread before closing it.

148 Chapter 5 Language Reference

Example

The following example shows how a background thread can compute a Mandel-
brot set and draw a depiction of the set on a bitmap. The thread notifies the
foreground thread when the bitmap is complete, and the foreground thread can
display the bitmap. The background thread uses the Scanline property because it
provides fast, convenient access to the bitmap data without involving the Windows
APL If a thread needs to use any Windows GDI function, it should use the
TThread.Synchronize method (in the Classes unit).

const
// Background thread sends this message to the main thread.
Wm_Finished = Wm User;

type
TThreadInfo = class;
TWiFinished = packed record

Msg: Cardinal;
Aborted: Boolean;
Bitmap: TBitmap;
Result: LongInt;
end;
// Pass a ThreadInfo object to each thread. The object
// contains the bitmap where the thread draws the Mandelbrot set
// and a flag that the thread checks periodically to see if it
// should terminate early.
TThreadInfo = class
private
fBitmap: TBitmap;
fAborted: Boolean;
public
constructor Create(Width, Height: Integer);
destructor Destroy; override; -
procedure Abort;

property Bitmap: TBitmap read fBitmap;
property Aborted: Boolean read fAborted;
end;

// Use up to 360 iterations so it is easy to map iterations to a Hue
// in an HSV color scheme.
const

MaxIterations = 360;

// See the example for the Exit Procedure to see the
// Computelterations functions.

// These starting points look nice. Feel free to change them
// to something different if you wish.
const

XOffset = -0.03;

YOffset = 0.78;

Zoom = 450000.0;

Background = clBlack;

BeginThread Function 149

X
=
©
=~
©
=
o
©

abenfuey

// The bitmap uses a 24-bit pixel format, so each pixel
// occupies three bytes. The TRgb array makes it easier to access
// the red, green, and blue components of a color in a scanline.

type
TRgb = array[0..2] of Byte;
PRgb = ~TRgb;

function MandelbrotThread(Param: Pointer): Integer;

var
Info: TThreadInfo;
R, C: Integer; // Position on the bitmap.
Color: TColor; // Color to paint a pixel.
Count: Integer; // Number of iterations.
X, Y: Double; // Position in the imaginary plane.
XIncrement, YIncrement: Double; // Increment X, Y for each pixel.
Scanline: PRgb; // Access the bitmap one scanline

// at a time.

begin

Result := 0Q;

Info := TThreadInfo({Param);

XIncrement := Info.Bitmap.Width / Zoom;
YIncrement := Info.Bitmap.Height / Zoom;

Y := YOffset;
for R := 0 to Info.Bitmap.Height-1 do
begin

X := XOffset;

Scanline := Info.Bitmap.ScanLine[R];

for C := 0 to Info.Bitmap.Width-1 do

begin
Count := ComputeIterations(X, Y); // See the Exit procedure.
X := X + XIncrement;
// Map the maximum number of iterations to a background color,
// and turn the other iterations into a variety of colors
// by using the count as the hue in a saturated color scheme.
if Count = MaxIterations then

Color := Background
else
Color := HSV(Count, 255, 255); // See the Case keyword for

Scanline[0] := GetBValue(Color); // the definition of the
Scanline[l] := GetGValue(Color); // HSV function.
Scanline([2] GetRvalue(Color) ;
Inc(Scanline) ;

end;

Y := Y + YIncrement;

if Info.Aborted then

begin
PostMessage (Forml .Handle, Wm_Finished, 1, LParam(Param));
BExit;

end;

end;
// Tell the main thread that the background thread is finished.
// Pass the thread info object as a message parameter.

150 Chapter 5— Language Reference

PostMessage (Forml.Handle, Wm Finished, 0, LParam(Param));
end;

// When the background thread finishes, draw the bitmap and free
// the thread info object.
procedure TForml.WnFinished(var Msg: TWmFinished);
begin
if not Msg.Info.Aborted then
Imagel.Picture.Bitmap := Msg.Info.Bitmap;
FreeAndNil (Msg.Info);

CloseHandle(Thread) ;
Thread := 0;
end;

// Start a new thread to compute and draw a Mandelbrot set.
// Info is a TThreadInfo record, which is a private field of TForml.
// Thread is a THandle, also a private field.
procedure TForml.StartThread;
var
I1d: Cardinal;
begin
Info := TThreadInfo.Create(Imagel.Width, Imagel.Height);
Thread := BeginThread(nil, 0, @MandelbrotThread, Info, 0, Id);
end;

// When the form closes, it aborts the thread. It is possible that
// the Wm_Finished message will arrive after the form is destroyed,
// but that should not be a major problem. Windows will clean up the
// thread when the application terminates.
procedure TForml.FormClosed(Sender: TObject);
begin

if Info <> nil then

Info.Abort;

end;

See Also
IsMultiThread Variable, ThreadVar Keyword, TThreadFunc Type

BlockRead Procedure

Syntax
procedure BlockRead(var F: File; var Buffer; Count: Integer);
procedure BlockRead(var F: File; var Buffer; Count: Integer;
var RecordCount: Integer);

Description

Call BlockRead to read Count records from a bmary file into Buffer. If F 1s an
untyped file, BlockRead uses the record size that you specified when opening the
file with Reset. If you supply the RecordCount variable, BlockRead stores in it
the number of records actually read. In the case of an error or end of file,
RecordCount might be less than Count. BlockRead is not a real procedure.

BlockRead Procedure 151

—~
35
TS
o=
Sa
P

Errors

¢ If you do not supply the RecordCount argument, and BlockRead encoun-
ters an error or end of file, it reports I/O error 100.

* If the file 1s not open, BlockRead reports I/Q error 103,
Tips and Tricks

¢ The Buffer argument is not a ponter, but an untyped var parameter. Pass
the actual variable, not its address. If you have a pointer to a dynamically allo-
cated buffer, dereference the pointer when calling BLockRead.

* The two most common uses for BlockRead are to read many records at once
and to read complex data structures that do not fit neatly into a simple typed
file. For example, suppose a file contains a four-byte string length, followed
by the string’s contents, and you want to read the data into a long string. In
that case, you need to read the length and the string contents separately, as
shown in the example.

Example
// Read a string from a binary file.
// The string begins with a four-byte length.
function ReadString(var F: File): string;
var
Len: LongInt;
begin
BlockRead(F, Len, SizeOf(Len));
SetLength(Result, Len);
if Len > 0 then
BlockRead(F, Result[l], Len);
end;

See Also

AssignFile Procedure, BlockWrite Procedure, CloseFile Procedure, IOResult
Function, Reset Procedure, Rewrite Procedure, $1 Compiler Directive,
$10Checks Compiler Directive

BlockWrite Procedure

Syntax
procedure BlockWrite(var F: File; const Buffer; Count: Integer);
procedure BlockiWrite(var F: File; const Buffer; Count: Integer;
var RecordCount: Integer);

Description

The BlockWrite procedure writes Count records from Buffer to a binary file. If
you supply the RecordCount variable, BlockiWrite stores in it the number of
records actually written to the file. In the case of a disk-full or other error,
RecordCount might be less than Count. BlockWrite is not a real procedure.

152 Chapter 5— Language Reference

Errors

If you do not supply the RecordCount argument, and BlockWrite encoun-
ters an error, it reposts I/O error 101 or the Windows error code as an I/O
error.

If the file is not open, BlockWrite reports I/O error 103.

Tips and Tricks

The Buffer argument is not a pointer, but an untyped var parameter. Pass
the actual variable, not its address. If you have a pointer to a dynamcally allo-
cated buffer, dereference the pointer when calling BlockWrite.

The two most common uses for BlockWrite are to write many records at
once and to store complex data structures that do not fit neatly into a simple
typed file. For example, to store a long string, you might want to write the
string’s length as a four-byte binary number, followed by the string’s contents.

Example

// Write a string to a binary file. Preface the string with
// the string length, as a four-byte integer.
procedure WriteString(var F: File; const Str: string);
var

Len: LongInt;
begin

Len := Length(Str);

BlockWrite(F, Len, SizeOf(lLen));

if Len > 0 then

BlockwWrite(F, Strll], Len);

end;

See Also

Append Procedure, AssignFile Procedure, BlockRead Procedure, CloseFile
Procedure, IOResult Function, Reset Procedure, Rewrite Procedure,
$1 Compiler Directive, $IOChecks Compiler Directive

Boolean Type

Syntax

type Boolean = (False, True);

Description

The Boolean type is an enumerated type with two values. All comparison and
logical operators produce a Boolean result. Conditions for if, while, and
repeat-until statements must be of type Boolean or one of the other logical
types (ByteBool, WordBool, or LongBool).

Tips and Tricks

Do not cast an integer value to Boolean. If you want compatibility with' C and
C++, where any non-zero integer is considered True, use the ByteBool,
WordBool, or LongBool type instead of Boolean. The three other types have the

Boolean Type 153

X~
QN
TS
2

o =
:g
R B

same semantics, but different sizes. Unlike Boolean, the other three types inter-
pret any non-zero ordinal value as True.

See Also

And Keyword, ByteBool Type, LongBool Type, Not Keyword, Or Keyword,
WordBool Type, Xor Keyword

Break Procedure

Syntax
Break;

Description
Break jumps out of a loop, similar to the following goto statement:

label BreakOut;
begin
while Condition do
begin
DoSomething;
if AnotherCondition then
goto BreakOut; // like Break;
end;
BreakOut :
// Controls transfer to the statement after the loop

If you call Break from within nested loop statements, control transfers out of the
innermost loop only. To break out of multiple loops at one time, you must use a
goto statement.

Break is not a real procedure, but is handled specially by the compiler. If you try
to use Break outside of a loop statement, the compiler issues an error message.

See Also

Continue Procedure, Exit Procedure, For Keyword, Repeat Keyword, While
Keyword

Byte Type
Syntax

type Byte = 0..255;
Description

The Byte type is an integer subrange. In an array or packed record, Byte values
occupy one byte (8 bits) of memory See the Integer type for information about
other integer types.
See Also

Integer Type, ShortInt Type

154 Chapter 5- Language Reference

ByteBool Type
Syntax

type ByteBool;
Description

The ByteBool type is a logical type whose size 1s the same as the size of a Byte.
A ByteBool value is False when its ordinal value is zero, and it is True when its
ordinal value is any non-zero value. ByteBool uses —1 as the ordinal value for
True constants, e.g., ByteBool (True)

Tips and Tricks

* You can use a ByteBool value anywhere you can use a Boolean. It is most
useful when interfacing with C and C++, where any non-zero integer is con-

sidered True.

¢ WordBool and LongBool are similar to ByteBool, but they have different
sizes.

See Also

And Keyword, Boolean Type, LongBool Type, Not Keyword, Or Keyword,
WordBool Type, Xor Keyword

Cardinal Type

Syntax
type Cardinal = 0..4294967295;

Description

The Cardinal type is an unsigned integer subrange whose size is the natural size
of an integer. In Delphi 5, the size 1s 32 bits, but in future versions of Delphi, it
might be larger. Use LongWord for an unsigned integer type that must be 32 bits,
regardless of the natural size of an integer. See the Integer type for information
about other integer types.

Tips and Tricks

e The most common use for Cardinal 1s calling Windows API or other exter-
nal functions that take parameters of type DWORD (unsigned long in C or C++).

e If you need an integer type for natural or whole numbers, you should usually
define your own subranges, as shown here:

// Better than Cardinal for use in computation
type

Whole = 1..MaxInt;

Natural = 0..MaxInt;

e Using Cardinal as an ordinary integer type often gives results different from
what you expect because the result might be any Integer or Cardinal
value. The range of values covered by each individual type 1s 32 bits, but the

Cardinal Type 155

x
S
©
3
@
=
S
@

afienfuey

combination requires 33 bits. Thus, any arithmetic operation that combines
Integer and Cardinal values forces the compiler to expand the operands to
at least 33 bits—so Delph: converts the operands to the Int64 type:

type
I: Integer;
C: Cardinal;
begin
ReadLn(I, C);
// Result of I+C can be Low(Integer). .High(Cardinal), which
// requires 33 bits, so Delphi must use Int64 for the result type.
WriteLn(I + C);

// Comparing Integer and Cardinal requires changing I and C to
// Int64 in order to compare the numbers correctly. For example,
// consider what happens when I=Low(Integer) and C=High(Cardinal),
// and you try to compare the values as 32-bit integers.
if I < C then
Writeln('I < C');
end;

See Also
Int64 Type, Integer Type, LongWord Type

Case Keyword

Syntax
case Ordinal expression of
Ordinal range: Statement;
Ordinal range, Ordinal range, ...: Statement
else Statements...;
end;

type Name = record

Declarations. ..
case Ordinal type of

Ordinal range: (Declaratioms...);

Ordinal range, Ordinal range, ...: (Declaratioms...) ;
end;

type Name = record

Declarations...
case MemberName: Ordinal type of

Ordinal range: (Declaratioms...);

Ordinal range, Ordinal range, ...: (Declarations..)i
end;

Description

The case statement selects one branch out of many possible branches, depending
on the value of an ordinal-type expression. Delphi’s case statement extends that
of standard Pascal by including the optional else condition. If no other case

156 Chapter 5— Language Reference

matches the expression, Delphi executes the else statements. The else clause 1s
similar to the otherwise clause found in other Pascal extensions.

The case keyword can also be used in a record type declaration, to declare a
varant record. See the record keyword for details.

The type of the case expression must be an ordinal type, that is, integer, char-
acter, or enumeration. Each case selector must be a constant expression of the
appropriate type or a constant range (constant. . constant). The cases can be in
any order, but the else clause must be last. Case selectors must be unique. Each
case must have a single statement, except that you can have many statements after
the else.

Tips and Tricks

If the case expression is an enumerated type, and the cases cover all possible
values of the type, you should still have an else clause to raise an exception. The
catch-all exception notifies you immediately if something is wrong with the
program, and protects you in case a future version of the program extends the
type without also extending the case statement.

Example

The following function maps a hue, saturation, and value to a red, green, and blue
color. The Hue 1s interpreted as a position on a color wheel, so it is mapped to the
range 0..359. The division of Hue by 60 must always result in a number in the
range 0..5. Nonetheless, the case statement has an else clause that raises an
exception to report the error. This defensive programming has no runtime cost,
but helps identify errors. (If you cannot see the error in this function, consider
what happens if Hue < 0. In that case, Hue div 60 will be in the range -5..0, and
the HSV function will raise an exception.)

// Map Hue, Saturation, and Value to a TColor, that is, RGB color.
function HSV(Hue: Integer; Saturation, Value: Byte): TColor;
var
P, Q, R, S: Byte;
begin
if Saturation = 0 then
Result := RGB(Value, Value, Value)
else
begin
Hue := Hue mod 360;

S := Round(Saturation * Frac(Hue / 60));

P := MulDiv(Value, 255 - Saturation, 255);

Q := Mulbiv(Value, 255 - S, 255);

R := MulDiv(Value, 255 - (Saturation-S), 255);

case Hue div 60 of

0: Result := RGB(Value, R, P);
1: Result := RGB(Q, Value, P);
2: Result := RGB(P, Value, R);
3: Result := RGB(P, Q, Value);
4: Result := RGB(R, P, Value);
5: Result := RGB(Value, P, Q);
else

Case Keyword 157

x
2
©
@
@
=
S
Y+

afienfuey

raise Exception.CreateFmt ('Cannot happen: Invalid Hue = %d',
[Huel);
end;
end;
end;

See Also
If Keyword, Record Keyword

CDecl Directive

Syntax
Subroutine declaration; cdecl;

Description

The cdecl directive tells the compiler to use C-style calling conventions for the
function or procedure. The caller of the subroutine pushes arguments onto the
stack, starting with the rightmost argument. After the subroutine returns, the caller
pops the arguments from the stack.

Functions return ordinal values, pointers, and small records or sets in EAX and
floating-point values on the FPU stack. Strings, dynamic arrays, Variants, and
large records and sets are passed as a hidden var parameter. This hidden param-
eter is the first parameter, so it is pushed last onto the stack. If the subroutine is a
method, Self is pushed just before the function’s var result Gif one is needed).

See Also

Function Keyword, Pascal Directive, Procedure Keyword, Register Directive,
SafeCall Directive, StdCall Directive

ChangeAnyProc Variable

Syntax
var ChangeaAnyProc: Pointer;

procedure ChangeAny(var V: Variant);
ChangeAnyProc := @Changeany;

Description

The ChangeAnyProc procedure changes a varaAny Variant value to a Variant
type that Delphi can use. A varany value represents an opaque type Delphi
cannot work with other than to assign and pass to subroutines.

The default value of ChangeanyProc is a procedure that raises runtime error 15
(EVariantError).

158 Chapter 5— Language Reference

Tips and Tricks

The CorbaObj unit sets this variable to point to a procedure that supports
CORBA'’s Any type. If you are not using CORBA, you can use varAny values for
your own purposes.

Example

Suppose you want to use Variants in an application, but you need to store
Int64 values. Delphi's Variant does not support the Int64 type, but you can
use varAny to store Int64 values. When Delphi needs a concrete value, the
ChangeAnyProc procedure converts the Int64 to a string, which Delphi under-
stands how to use. The VAny field is a pointer, so the SetVarInt64 procedure
allocates dynamic memory to store the Int64 value, and saves the pointer in the
Variant. The ClearAnyProc procedure frees the memory when Delphi is done
using the Variant value.

// Change a varAny Int64 value to a known Variant type, specifically
// a string.
procedure ChangeVarInt64(var V: Variant);
var
Value: Int64;
begin
if TvVarData(V).VType = varAny then
begin
Value := PInt64(TVarData(V).VAny)*;
V := IntToStr(Value);
end;
end;

ChangeAnyProc := @ChangeVarInté6d;

See Also
ClearAnyProc Varable, RefAnyProc Variable, TVarData Type, Variant Type

Char Type
Description

The Char type represents a single character, just as it does in standard Pascal. You
can cast any integer type to a character by using the Char type name in a type
cast. Unlike some other type casts, the size of the integer value does not have to
match the size of a Char.

You can write a character constant in several different ways:
e Asastnng of length 1, e.g., 'A* (best for printable characters)

e As a caret control character, e.g., “A (good for ANSI control characters, but
you should probably give the character a meaningful name, as shown here):

const
TAB = ~I;
CRLF = "M"J;

Char Type 159

—~
35
TS
2
@ =
= 2
o @
@

* As # followed by an integer constant, e.g., #65 or #$41 (good for control
characters, e.g., #0 or #255)

® By calling the Chr function, e.g., Chr(65) (best for converting mnteger vari-
ables to characters)

* By typecasting an integer, e.g., Char (65) (same as Chr)
Tips and Tricks

In the current release of Delphi, Char 1s the same as AnsiChar, but in future
versions, the meaning of Char mught change. For example, it might become
synonymous with WideChar. Char is suitable for most uses, but do not assume
that a Char and a Byte occupy the same amount of memory

See Also
AnsiChar Type, Chr Function, PChar Type, String Keyword, WideChar Type

CbDir Procedure

Syntax
procedure ChDir(const Directory: string);

Description

The ChDir procedure changes the working directory and drive to the path speci-
fied in the Directory argument. If ChDir cannot set the directory for any reason,
it reports an I/O error, using the error code returned by Windows. ChDir is not a
real procedure.

See Also

GetDir Function, IOResult Function, MkDir Procedure, RmDir Procedure, $I
Compiler Directive, $I0Checks Compiler Directive

Chr Function

Syntax
function Chr (IntValue: Integer): AnsiChar;
function Chr(IntValue: Integer): WideChar;

Description

The Chr function converts an integer to its equivalent character, either AnsiChar
or WideChar, whichever is called for. Chr is not a real function, and calling Chr
has no runtime impact. Delphi automatically maps IntValue into the range
needed for the character type (#0..#255 for AnsiChar or #0.#65535 for
WideChar).

Tips and Tricks

* The compiler treats the character expressions Chr(27), #27, and ~[identi-
cally, so choose the style you find most readable. For control characters, the
caret notation is often best, e.g, "M for a carriage return. For special

160 Chapter 5- Language Reference

characters, a character constant usually works best, e.g., #0 to mark the end
of a PChar string. Use Chr to convert variables.

e Calling Chr 1s identical to using a type cast, but Chr 1s more familiar to expe-
rienced Pascal programmers.

See Also
AnsiChar Type, Char Type, Ord Function, WideChar Type

Class Keyword

Syntax

type Name = class
Declarations...
class function ...;
class procedure...;
end;

type Name = class(BaseClass)

end;

type Name = class(BaseClass);

type ForwardDeclaredName = class;

type Name = class(BaseClass, Interface name...)
Declarations...
end;

type Name = packed class...

type MetaClass = class of Class type;
Description

The class keyword introduces a class declaration, and it starts the declaration of
a class method. If a semicolon appears immediately after the class keyword, the
declaration is a forward declaration: it tells the compiler that the type name is a
class type, but provides no other information about the class. You must have a
complete class declaration later in the same type declaration block.

The last example above shows the declaration of a metaclass type. A variable of
metaclass type can store a class reference. You can use this variable in any expres-
ston that calls for a class reference, such as calling a constructor or class method,
or as the right-hand argument to an is operator. (The as operator, on the other
hand, requires a static class name, not a variable class reference because it
performs a type cast, and the compiler must know the target type.)

A class declaration must have a single base class and can have any number of
interfaces. If you omit the base class, Delphi uses TObject. If you want to list any
interfaces, you must supply the name of a base class, even if that name is
TObject.

Class Keyword 161

x
I
3
<
3
3
L]
©

afienbuey

A class declaration contains zero or more sections, where each section has a
particular access level. The default access level is public unless a class has RTTI
(by using the $M or $TypeInfo compiler directives or mbheriting from a class that
has RTTI), in which case the default is published.

Each section starts with zero or more field declarations. After all the field declara-
tions come method and property declarations. You can have any number of
sections, and you can repeat sections with the same access level. Sections can
appear in any order.

If you supply a base class, and a semicolon appears immediately after the closing
parenthesis, you can omit the end keyword.

By default, each field is aligned, but you can use the packed directive so fields
start on byte boundaries. See the packed keyword for details. If you want every
class and record to be packed, use the $A or $Align compiler directive.

Class Methods
A class method is similar to an ordinary method with the following differences:

® A class method declaration begins with the class keyword. You must use the
class keyword 1n the class declaration and in the method’s definition.

* You must call an ordinary method by invoking it from an object reference.
You can call a class method by invoking it from an object reference or a class
reference.

* Inside a class method, Self refers to the class and does not refer to an object.
This means the method cannot use any fields because there is no object to
store those fields.

Tips and Tricks

A class can implement any number of interfaces. Delphi matches interface method
names with method names in the class. You can redirect interface methods to
different methods m the class declaration with a method resolution clause, which
has the following form:

procedure Interface.InterfaceMethod = MethodName;
function Interface.InterfaceMethod = MethodName;

The MethodName is the name of a method in the containing class declaration.
Redirection 1s especially important when a class implements multiple interfaces,
and two or more interfaces have methods with the same name and arguments.

Examples
type

TSimpleStream = class;

TSimpleClass = class // Implicitly inherits from TObject.

private // Sections can be in any order. A
fStream: TSimpleStream; // common convention is to list sections

public // in increasing order by access level.
constructor Create(const FileName: string = '');

destructor Destroy; override;
property Stream: TSimpleStream read fStream;
end;

162 Chapter 5— Language Reference

TSimpleStream = class(TPersistent, ISequentialStream)
private
fHandle: THandle;
fReadOnly: Boolean;
protected
// method of ISequentialStream
function Read(Data: Pointer; Count: LongInt; BytesRead: PLongInt):
HResult; stdcall;
function Write(Data: Pointer; Count: LongInt;
BytesWritten: PLongint): HResult; stdcall;
public
constructor Create(const FileName: string); overload;
constructor Create(Handle: THandle); overload;
destructor Destroy; override;
procedure Assign(Source: TPersistent); override;
published
property ReadOnly: Boolean read fReadOnly write fReadOnly;
end;

// In Delphi's Open Tools API, the IOTAWizard and IOTAFileSystem
// interfaces both have a method named GetIDString. The TVfsWizard
// class implements both interfaces, and uses method resolution
// clauses to select which method implements the interface methods.
TVEsWizard = class(TInterfacedObject, IOTAWizard, IOTAFileSystem)
private
// methods of IOTAFileSystem
function DeleteFile(const FileName: string): Boolean;
function FileAge(const FileName: string): LongInt;
function FileExists(const FileName: string): Boolean;
function GetBackupFileName(const FileName: string): string;
function GetFileStream(const FileName: string; Mode: Integer):
IStream;
function GetFileSystemIDString: string;
function IOTAFileSystem.GetIDString = GetFileSystemIDString;
function GetTempFileName({const FileName: string): string;
function IsFileBased: Boolean;
function IsReadonly(const FileName: string): Boolean;
function RenameFile(const OldName, NewName: string): Boolean;

// methods of IOTAWizard
function GetWizardIDString: string;
function IOTAWizard.GetIDString = GetWizardIDString:
function GetName: string;
function GetState: TWizardState;
procedure Execute;

// The following function is a convenience function that anyone

// can call to get a reference to the global IOTAServices interface.
class function Services: IOTAServices;

end;

See Also

Automated Directive, Constructor Keyword, Destructor Keyword, Function
Keyword, Interface Keyword, Is Keyword, Packed Keyword, Private Directive,

Class Keyword 163

)
il
)
=
©
=
S
©

afenfueq

Procedure Keyword, Property Keyword, Protected Directive, Public Directive,
Published Directive, Self Varable, Type Keyword, $A Compiler Directive,
$Align Compiler Directive, $M Compiler Directive, $Typelnfo Compiler
Directive

ClearAnyProc Variable

Syntax
var ClearAnyProc: Pointer;

procedure ClearAny(var V: Variant);
ClearAnyProc := @ClearAny;

Description

When Delphi is finished using a varany Variant value, it calls ClearAnyProc to
free all memory associated with the opaque varany value. The default value is a
procedure that raises runtime error 16 (EVariantError).

Tips and Tricks

The CorbaObj unit sets this variable to point to a procedure that supports
CORBA’s Any type. If you are not using CORBA, you can use varAny values for
your own purposes.

Example
See the ChangeAnyProc variable for an explanation of this example.

// Clear a varAny Variant that is holding a pointer to an Int64 value.
procedure ClearVarInt64(var V: Variant);
var
Ptr: Pointer;
begin
if TvarData(V).VIype = varAny then
begin
Ptr := TVarData(V).Vany;
TvarData (V) .VType := varBmpty;
FreeMem(Ptr) ;
end;
end;

ClearAnyProc := @ClearVarInt6d;

See Also
ChangeAnyProc Variable, RefAnyProc Variable, TVarData Type, Vanant Type

Close Procedure

Syntax

procedure Close(var F: File);
procedure Close(var F: TextFile);

164 Chapter 5~ Language Reference

Description

Close exists for backward compatibility with Turbo Pascal and standard Pascal.
New Delphi programs should call CloseFile to avoid conflicts with methods
named Close. Close is not a real procedure.
See Also

CloseFile Procedure

CloseFile Procedure

Syntax
procedure CloseFile(var F: File);
procedure CloseFile(var F: TextFile);

Description

Call CloseFile to close a file that was opened with Append, Reset, or Rewrite.
CloseFile is not a real procedure.

For an example, see the AssignFile procedure.

Errors

* If you call CloseFile for a file that 1s already closed, Delphi reports I/O error
103.

e If you try to close a file but have not yet called AssignFile, the results are
unpredictable.
See Also

Append Procedure, AssignFile Procedure, IOResult Function, Reset Procedure,
Rewrite Procedure

X~
23
D
o =
3a
2w

CmdLine Variable

Syntax
var CmdLine: PChar;

Description

The CmdLine variable stores the command line that was used to invoke the
program. It is an empty string for libraries. The ParamCount and ParamStr func-
tions parse the command line into separate arguments; it is usually more
convenient to use these than to parse the entire command line yourself.

To check for switches on the command line, call the FindCmdLineSwitch func-
tion 1n the SysUtils unit.

See Also
CmdShow Variable, ParamCount Function, ParamStr Function

CmdlLine Variable 165

CmdShow Variable

Syntax
var CmdsShow: Integer;

Description

The CmdShow variable determines how to show a program’s initial window For
details, see the Windows API documentation for the ShowWindow function. If your
application has a main form, Delphi automatically uses the CmdShow variable to
start the application in a normal, minimized, or maximized state.

See Also
CmdLine Vanable

Comp Type

Syntax
type Comp;

Description

The Comp type is a 64-bit signed integer type that uses the floating-point
processor. The Comp type exists only for backward compatibility. New programs
should use Int64 instead. The Inté4 type is a true integer type and allows
bitwise and shift operations, supports the full range of the 64-bit type, and is not
dependent on the floating-point control word,

Tips and Tricks

* To use the full 64-bit precision of the Comp type, the floating-point control
word must be set to extended precision. Some Microsoft and other DLLs
change the floating-pont control word to double or single precision, thereby
reducing the Comp type to 53 or fewer bits.

* Delphi’s I/O and the formatting routines in the SysUtils unit do not sup-
port the full range of the Comp type. Values near the limits of the Comp type
are printed with less precision than is actually stored in the Comp variable.
Most applications will not encounter this limitation.

See Also

CompToCurrency Function, CompToDouble Function, CurrencyToComp
Procedure, DoubleToComp Procedure, Extended Type, Int64 Type

CompToCurrency Function

Syntax
function CompToCurrency (Value: Comp) : Currency; cdecl;

166 Chapter 5— Language Reference

Description

CompToCurrency converts a Comp value to Currency. It is a real function.

Tips and Tricks

* You can call CompToCurrency in a C++ Builder program. Delphi automati-
cally converts Comp to Currency when it needs to, so you don't need to call
this function 1n a Delphi program.

e Comp can represent numbers outside the range of Currency, so converting
Comp to Currency can result in runtime error 6 (EInvalidOp).
See Also

Comp Type, CompToDouble Function, Currency Type, CurrencyToComp
Procedure

CompToDouble Function
Syntax

function CompToDouble(Value: Comp): Double; cdecl;
Description
CompToDouble converts a2 Comp value to Double. It 1s a real function.
Tips and Tricks

* You can call CompToDouble in a C++ Builder program. Delphi automatically
converts Comp to Double when it needs to, so you don’t need to call this
function in a Delphi program.

X~
3
=
1)
S 2
m =
= R
S @
o D

e Converting Comp to Double can lose precision.

See Also

Comp Type, CompToCurrency Function, Double Type, DoubleToComp
Procedure

Concat Function
Syntax

function Concat(const S1, S2,: string): string;
Description

The Concat function concatenates all the strings given as arguments into a single
string. It is the same as using the ‘+’ operator: S1 + S2 + The Concat func-
tion is built mto the compiler and 1s not a real function.

There is no performance difference between using the + operator and calling
Concat.

Concat Function 167

See Also

Copy Function, Delete Function, Insert Procedure, SetLength Procedure,
SetString Procedure

Const Keyword

Syntax
const
Name = Expression;
Name: Type = Expression;

Subroutine header(...; const Name: Type; const Name: array of const);
Description

Delphi extends the const keyword of standard Pascal by allowing you to specify
any constant-valued expression as the value of a constant and by allowmng you to
give a specific type for a constant.

If you supply a type, you are creating a typed constant, which isn’t really a
constant, but rather 1s an initialized vanable. The lifetime of a typed constant is
that of the program or library, even if the typed constant is declared locally to a
subroutine.

You can also declare a subroutine parameter as const or as an open array of
const. A subroutine cannot modify a const parameter. This has several benefits:

* A const parameter clearly tells the reader that the subroutine does not
change the parameter’s value. This improves the readability and clarity of the
code.

* The compiler enforces the restriction. If you accidentally try to assign a new
value to a const parameter, the compiler 1ssues an error message. Note that a
const object reference means you cannot change the reference. The object
itself is not const.

* Passing const strings, dynamic arrays, and interfaces 1s slightly more efficient
because Delphi can avoid incrementing the reference count when it knows
the subroutine will not modify the parameter.

Tips and Tricks

® One of the common uses for so-called typed constants is to declare a vari-
able whose lexical scope is restricted to a subroutine, but whose value per-
sists across subroutine calls.

* By default, typed constants can be modified. Some uses of typed constants
are truly constant, so you can use the $J or $WriteableConst compiler
directive to ensure that a typed constant is truly constant.

Example

// Silly example where the NextFruitName function returns the
// name of a different fruit each time it is called. The TFruit
// enumeration lists the available fruits. The example shows

168 Chapter 5 Language Reference

// several ways of using constants. The first is an ordinary
// constant. The second is a typed constant where the values
// are truly constant. The third is a typed constant whose
// value changes, but the value persists across calls to
// the NextFruitName function.
type

TFruit = (fKumquat, fMango, fStar, fStrawberry, fMarionberry);
function NextFruitName: string;
const

Initialvalue = fStar;
{$WriteableConst Off}

FruitNames: array[TFruit] of string =

('Rumquat', 'Mango', 'Star Fruit', 'Strawberry', 'Marionberry’);

{$WriteableConst On}

Fruit: TFruit = Initialvalue;

begin
if Fruit = High(Fruit) then
Fruit := Low(Fruit)
else
Inc(Fruit);
Result := FruitNames[Fruit];
end;
See Also

AnsiString Type, Array Keyword, Interface Keyword, Out Directive, String
Keyword, Var Keyword, $j Compiler Directive, §WriteableConst Compiler

Directive
)
T3
=
Constructor Keyword S8
m D
Syntax

type Class declaration

constructor Name;
constructor Name(Arguments...);
end;

Description

A constructor is a special kind of method. If you call a constructor using a class
reference, Delphi creates a new instance of that class, initializes the instance, and
then calls the constructor proper. If you call a constructor using an object refer-
ence, Delphi calls the constructor as an ordinary method.

A natural consequence of Delphi’s rules is that a constructor can call another
constructor of the same class or call an inherited constructor. The call uses an
object reference (namely, Self) so the constructor is called as an ordinary
method.

When called using a class reference, Delphi calls the NewInstance method to
create the instance. TObject .NewInstance allocates memory for the new object
and fills that memory with all zeros, but you can override NewInstance to create
the object in a different manner.

Constructor Keyword 169

Tips and Tricks

* A common error for new Delphi programmers is to call a constructor using an
object-type varable. Rather than creating the object, such a call invariably
results in access violations because the object reference is most likely invalid.
The compiler can warn you about such errors if you enable compiler warn-
ings in the project options. For example:

var
ObjRef: TSomething;

begin
ObjRef .Create; // wrong
ObjRef := TSomething.Create; // right

¢ If you are writing an abstract base class, and the constructor is virtual so you
can write a class factory, do not make the constructor abstract. Derved classes
should always call an inherited constructor, but if the constructor is abstract,
that isn’t possible. If the abstract base class has nothing to do in its construc-
tor, you should supply a constructor that does nothing except call an inher-
ited constructor. For example,

constructor TAbstractBaseClass.Create;
begin

inherited Create;
end;

* Always call an inherited constructor. Even if you know that the inherited con-
structor does nothing (such as TObject.Create), you should call it. The
overhead of calling the inherited constructor 1s small, but the potential pay-
back is enormous. Imagine, for example, that a future revision to the class
changes its base class. The new base class constructor mught do something
important. Even if the base class remains the same, the base class constructor
might change from doing nothing to doing something. Changing a base class
during code maintenance should be easy, and should not require a laborious
search through all derived class constructors, checking to see whether they
call an inherited constructor.

See Also
Class Keyword, Destructor Keyword, Inherited Keyword, TObject Type

Contains Directive

Syntax
package Name;
contains Unit, Unit in FileName;

Description

The contains directive heads a list of unit names that make up a package. The
unit names are separated by commas, and each unit name can appear as just the
name or the name followed by the name of the unit’s file as a string.

170 Chapter 5— Language Reference

Tips and Tricks

All the units that are used by the units contained m a package must reside in
the package itself or in one of the required packages. Delphi must know
where to find every referenced unit so it can compile the package.

You cannot list the same unit more than once, and all the units that a pack-
age contains must not be in any of the required packages. This rule prevents
a unit from being included more than once in a project.

Usually, you will use Delphi’s package editor to add units to a package or
remove units from a package. You can edit the pack