
TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



Delphi Developer’s
Guide to XML

Keith Wood

Wordware Publishing, Inc.



Library of Congress Cataloging-in-Publication Data

Wood, Keith, 1961-
Delphi developer’s guide to XML / by Keith Wood.

p. cm.
Includes index.
ISBN 1-55622-812-0 (pbk.)
1. XML (Document markup language). 2. Delphi (Computer file). 3. Computer software--Development. I. Title.

QA76.76.H94 W67 2001
005.7'2--dc21 2001026660

CIP

© 2001, Wordware Publishing, Inc.

All Rights Reserved

2320 Los Rios Boulevard
Plano, Texas 75074

No part of this book may be reproduced in any form or by
any means without permission in writing from

Wordware Publishing, Inc.

Printed in the United States of America

ISBN 1-55622-812-0

10 9 8 7 6 5 4 3 2 1

0107

Delphi is a registered trademark of Borland Software Corporation in the United States and other countries. Other products mentioned are used for
identification purposes only and may be trademarks of their respective companies.

All inquiries for volume purchases of this book should be addressed to Wordware Publishing, Inc., at the above

address. Telephone inquiries may be made by calling:

(972) 423-0090

ii



Contents

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

Part I: Introduction to XML
Chapter 1: History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

XML vs. HTML. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Related Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Extensible Hypertext Markup Language (XHTML) . . . . . . . . . . . . . . 6

Mathematical Markup Language (MathML) . . . . . . . . . . . . . . . . . . 8

Scalable Vector Graphics (SVG) . . . . . . . . . . . . . . . . . . . . . . . 10

Synchronized Multimedia Integration Language (SMIL) . . . . . . . . . . 13

Resource Description Framework (RDF) . . . . . . . . . . . . . . . . . . . 15

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Sample XML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Chapter 2: XML Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Elements and Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Name Tokens and Namespaces . . . . . . . . . . . . . . . . . . . . . . . . 24

Text and White Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Processing Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

CDATA Sections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Prolog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Encoding Schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

XML Processors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Chapter 3: Document Type Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 33

DTD Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Content Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Notations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

iii



Chapter 4: Extensible Stylesheet Language Transformations . . . . . . . . . . . . . . 42

Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Templates and Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Text Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Building Document Structure . . . . . . . . . . . . . . . . . . . . . . . . . 45

Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Conditional Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

XSLT Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Chapter 5: XLink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Link Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Simple Links. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Extended Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Out-of-Line Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Chapter 6: XPath and XPointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

General Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Axes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Locations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Abbreviated Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Chapter 7: XML Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Schema Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Documentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Simple Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Complex Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Attribute Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Element Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Further Abilities of Schemas . . . . . . . . . . . . . . . . . . . . . . . . . 73

Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Part II: The Document Object Model
Chapter 8: The Document Object Model (DOM) . . . . . . . . . . . . . . . . . . . . 77

DOM Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

DOMException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Node Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

NodeList Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

NamedNodeMap Interface . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Element Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Attr Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Contents

iv



CharacterData Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Text Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

CDATASection Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Comment Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

ProcessingInstruction Interface . . . . . . . . . . . . . . . . . . . . . . . . 94

DocumentType Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Entity Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

EntityReference Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Notation Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

DocumentFragment Interface . . . . . . . . . . . . . . . . . . . . . . . . . 98

Document Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

DOMImplementation Interface . . . . . . . . . . . . . . . . . . . . . . . 101

NodeFilter Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

NodeIterator Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

TreeWalker Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

DocumentTraversal Interface . . . . . . . . . . . . . . . . . . . . . . . . 106

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Chapter 9: Microsoft’s Document Object Model . . . . . . . . . . . . . . . . . . . . 108

IXMLDOMParseError Interface . . . . . . . . . . . . . . . . . . . . . . . 110

IXMLDOMNode Interface . . . . . . . . . . . . . . . . . . . . . . . . . . 111

IXMLDOMNodeList Interface. . . . . . . . . . . . . . . . . . . . . . . . 119

IXMLDOMNamedNodeMap Interface . . . . . . . . . . . . . . . . . . . 120

IXMLDOMElement Interface . . . . . . . . . . . . . . . . . . . . . . . . 122

IXMLDOMAttribute Interface. . . . . . . . . . . . . . . . . . . . . . . . 124

IXMLDOMCharacterData Interface . . . . . . . . . . . . . . . . . . . . . 125

IXMLDOMText Interface . . . . . . . . . . . . . . . . . . . . . . . . . . 127

IXMLDOMCDATASection Interface . . . . . . . . . . . . . . . . . . . . 127

IXMLDOMComment Interface . . . . . . . . . . . . . . . . . . . . . . . 128

IXMLDOMProcessingInstruction Interface . . . . . . . . . . . . . . . . . 128

IXMLDOMDocumentType Interface . . . . . . . . . . . . . . . . . . . . 129

IXMLDOMEntity Interface . . . . . . . . . . . . . . . . . . . . . . . . . 130

IXMLDOMEntityReference Interface . . . . . . . . . . . . . . . . . . . . 131

IXMLDOMNotation Interface . . . . . . . . . . . . . . . . . . . . . . . . 132

IXMLDOMDocumentFragment Interface . . . . . . . . . . . . . . . . . . 132

IXMLDOMDocument Interface . . . . . . . . . . . . . . . . . . . . . . . 133

IXMLDOMDocument2 Interface . . . . . . . . . . . . . . . . . . . . . . 139

IXMLDOMSchemaCollection Interface. . . . . . . . . . . . . . . . . . . 140

IXMLDOMSelection Interface . . . . . . . . . . . . . . . . . . . . . . . 141

IXMLDOMImplementation Interface . . . . . . . . . . . . . . . . . . . . 143

Document Traversal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

IXSLTemplate Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

IXSLProcessor Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Loading the DOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Contents

v



The MS DOM XML Viewer . . . . . . . . . . . . . . . . . . . . . . . . . 149

Viewing Node Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Threading the DOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Chapter 10: CUESoft’s Document Object Model . . . . . . . . . . . . . . . . . . . . 157

TDOMException Exception . . . . . . . . . . . . . . . . . . . . . . . . . 158

TXmlParserError Exception . . . . . . . . . . . . . . . . . . . . . . . . . 159

TXmlNode Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

TXmlNodeList Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

TXmlNamedNodeMap Class . . . . . . . . . . . . . . . . . . . . . . . . 167

TXmlElement Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

TXmlAttribute Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

TXmlCharacterData Class . . . . . . . . . . . . . . . . . . . . . . . . . . 172

TXmlText Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

TXmlCDataSection Class . . . . . . . . . . . . . . . . . . . . . . . . . . 174

TXmlComment Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

TXmlProcessingInstruction Class . . . . . . . . . . . . . . . . . . . . . . 175

TXmlDocumentType Class . . . . . . . . . . . . . . . . . . . . . . . . . 175

TXmlEntity Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

TXmlEntityReference Class . . . . . . . . . . . . . . . . . . . . . . . . . 177

TXmlNotation Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

TXmlDocumentFragment Class . . . . . . . . . . . . . . . . . . . . . . . 178

TXmlDocument Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

TXmlDomImplementation Class . . . . . . . . . . . . . . . . . . . . . . 181

TXmlObjModel Component . . . . . . . . . . . . . . . . . . . . . . . . . 182

TXmlParser Component . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

Loading the CUESoft DOM . . . . . . . . . . . . . . . . . . . . . . . . . 189

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

Chapter 11: Open XML’s Document Object Model . . . . . . . . . . . . . . . . . . . 195

EDomException Exception . . . . . . . . . . . . . . . . . . . . . . . . . 195

TdomNode Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

TdomNodeList Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

TdomNamedNodeMap Class . . . . . . . . . . . . . . . . . . . . . . . . 206

TdomElement Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

TdomAttr Class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

TdomCharacterData Class . . . . . . . . . . . . . . . . . . . . . . . . . . 213

TdomText Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

TdomCDATASection Class . . . . . . . . . . . . . . . . . . . . . . . . . 215

TdomComment Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

TdomProcessingInstruction Class . . . . . . . . . . . . . . . . . . . . . . 216

TdomDocumentType Class . . . . . . . . . . . . . . . . . . . . . . . . . 216

TdomInternalSubset Class . . . . . . . . . . . . . . . . . . . . . . . . . . 219

TdomExternalSubset Class. . . . . . . . . . . . . . . . . . . . . . . . . . 219

Contents

vi



TdomConditionalSection Class . . . . . . . . . . . . . . . . . . . . . . . 220

TdomEntity Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

TdomEntityDeclaration Class . . . . . . . . . . . . . . . . . . . . . . . . 223

TdomEntityReference Class . . . . . . . . . . . . . . . . . . . . . . . . . 224

TdomNotation Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

TdomNotationDeclaration Class . . . . . . . . . . . . . . . . . . . . . . . 226

TdomElementTypeDeclaration Class . . . . . . . . . . . . . . . . . . . . 227

Content Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

TdomAttrList Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

TdomAttrDefinition Class . . . . . . . . . . . . . . . . . . . . . . . . . . 231

TdomNametoken Class . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

TdomXmlDeclaration Class . . . . . . . . . . . . . . . . . . . . . . . . . 233

TdomTextDeclaration Class . . . . . . . . . . . . . . . . . . . . . . . . . 234

TdomDocumentFragment Class . . . . . . . . . . . . . . . . . . . . . . . 234

TdomDocument Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

TdomImplementation Class . . . . . . . . . . . . . . . . . . . . . . . . . 244

TdomNodeFilter Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

TdomNodeIterator Class . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

TdomTreeWalker Class . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

TXmlToDomParser Class . . . . . . . . . . . . . . . . . . . . . . . . . . 252

Helper Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

Viewing with the Open XML DOM . . . . . . . . . . . . . . . . . . . . . 261

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

Part III: Simple API for XML
Chapter 12: Simple API for XML (SAX). . . . . . . . . . . . . . . . . . . . . . . . . 271

Working with SAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

SAX Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

SAXException Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

SAXParseException Class . . . . . . . . . . . . . . . . . . . . . . . . . . 276

InputSource Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

Locator Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

Attributes Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

ContentHandler Interface . . . . . . . . . . . . . . . . . . . . . . . . . . 282

DTDHandler Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

EntityResolver Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

ErrorHandler Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

SAX Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

LexicalHandler Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

DeclHandler Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

XMLReader Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

XMLFilter Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

ParserAdapter and XMLReaderAdapter Classes . . . . . . . . . . . . . . 292

Contents

vii



XMLReaderFactory Class . . . . . . . . . . . . . . . . . . . . . . . . . . 293

DefaultHandler Class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

Chapter 13: Microsoft’s SAX Parser . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

IVBSAXLocator Interface . . . . . . . . . . . . . . . . . . . . . . . . . . 295

IVBSAXAttributes Interface . . . . . . . . . . . . . . . . . . . . . . . . . 296

IVBSAXContentHandler Interface . . . . . . . . . . . . . . . . . . . . . 298

IVBSAXDTDHandler Interface . . . . . . . . . . . . . . . . . . . . . . . 301

IVBSAXEntityResolver Interface . . . . . . . . . . . . . . . . . . . . . . 302

IVBSAXErrorHandler Interface . . . . . . . . . . . . . . . . . . . . . . . 302

IVBSAXLexicalHandler Interface . . . . . . . . . . . . . . . . . . . . . . 303

IVBSAXDeclHandler Interface . . . . . . . . . . . . . . . . . . . . . . . 305

IVBSAXXMLReader Interface . . . . . . . . . . . . . . . . . . . . . . . 306

IVBSAXXMLFilter Interface . . . . . . . . . . . . . . . . . . . . . . . . 309

Preparing for SAX Events . . . . . . . . . . . . . . . . . . . . . . . . . . 309

Responding to the Notifications . . . . . . . . . . . . . . . . . . . . . . . 314

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

Chapter 14: SAX in Delphi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

Conversion to Delphi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

ESAXException Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

ESAXParseException Class . . . . . . . . . . . . . . . . . . . . . . . . . 320

TSAXInputSource Class . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

ISAXLocator Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

ISAXAttributes Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . 323

ISAXContentHandler Interface . . . . . . . . . . . . . . . . . . . . . . . 326

ISAXDTDHandler Interface . . . . . . . . . . . . . . . . . . . . . . . . . 328

ISAXEntityResolver Interface . . . . . . . . . . . . . . . . . . . . . . . . 329

ISAXErrorHandler Interface . . . . . . . . . . . . . . . . . . . . . . . . . 330

SAX Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330

ISAXLexicalHandler Interface. . . . . . . . . . . . . . . . . . . . . . . . 331

ISAXDeclHandler Interface . . . . . . . . . . . . . . . . . . . . . . . . . 333

ISAXXMLReader Interface . . . . . . . . . . . . . . . . . . . . . . . . . 334

ISAXXMLFilter Interface . . . . . . . . . . . . . . . . . . . . . . . . . . 336

TSAXParserAdapter and TSAXXMLReaderAdapter Classes . . . . . . . 336

TSAXXMLReaderFactory Class . . . . . . . . . . . . . . . . . . . . . . 338

TSAXDefaultHandler Class . . . . . . . . . . . . . . . . . . . . . . . . . 340

Building a SAX Reader . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

The SAX XML Viewer. . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

Implementing ISAXContentHandler. . . . . . . . . . . . . . . . . . . . . 349

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

Contents

viii



Chapter 15: Wrapping External Parsers. . . . . . . . . . . . . . . . . . . . . . . . . . 354

Adapting Microsoft’s SAX Parser . . . . . . . . . . . . . . . . . . . . . . 354

Using CUESoft’s Parser . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

Using Open XML’s Parser . . . . . . . . . . . . . . . . . . . . . . . . . . 362

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

Part IV: Serving XML
Chapter 16: XML is Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367

Movie-watcher Database . . . . . . . . . . . . . . . . . . . . . . . . . . . 368

Chapter 17: Simple Text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370

From a Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

Chapter 18: Web Modules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376

Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

TRecordPageProducer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385

Chapter 19: Document Object Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 386

Microsoft’s DOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386

CUESoft’s DOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391

Open XML’s DOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396

Chapter 20: SAX Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397

IMXWriter Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397

IMXAttributes Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 399

Creating a Writer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401

Defining the DTD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403

Adding Content. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406

Chapter 21: Applying XSL Transformations . . . . . . . . . . . . . . . . . . . . . . . 407

XSLT Utility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408

Transforming the Document . . . . . . . . . . . . . . . . . . . . . . . . . 410

Monolithic HTML Transformation . . . . . . . . . . . . . . . . . . . . . 411

Template-Based HTML Transformation. . . . . . . . . . . . . . . . . . . 413

Comma-Separated Transformation . . . . . . . . . . . . . . . . . . . . . 416

Rich Text Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 418

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420

Chapter 22: XML Broker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422

The Data Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423

InternetExpress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425

The CGI Web Application . . . . . . . . . . . . . . . . . . . . . . . . . . 426

Using ISAPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430

XML Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434

Contents

ix



Part V: Sample Applications
Chapter 23: Mass Electronic Mail-Outs . . . . . . . . . . . . . . . . . . . . . . . . . 437

Loading the Configuration Properties . . . . . . . . . . . . . . . . . . . . 438

Mail Message Template . . . . . . . . . . . . . . . . . . . . . . . . . . . 440

Database Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443

Drop It in the Post . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445

Logging and Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446

All Together Now . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449

Chapter 24: A Customized Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450

The Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450

Information Hiding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452

Parsing the XML Documents . . . . . . . . . . . . . . . . . . . . . . . . 453

Constructing Model Objects . . . . . . . . . . . . . . . . . . . . . . . . . 455

Accumulating Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457

Saving Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457

Client Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459

Through the Browser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463

Chapter 25: Examination XML — Delphi Client . . . . . . . . . . . . . . . . . . . . 464

Loading an Exam. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465

User Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470

Exam Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477

Chapter 26: Examination XML — Web Client . . . . . . . . . . . . . . . . . . . . . . 478

Exam Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478

Scripting in Transformations . . . . . . . . . . . . . . . . . . . . . . . . . 483

Web Application Initialization . . . . . . . . . . . . . . . . . . . . . . . . 486

Applying the Transformations . . . . . . . . . . . . . . . . . . . . . . . . 488

Finishing Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494

Chapter 27: Simple Object Access Protocol . . . . . . . . . . . . . . . . . . . . . . . 495

SOAP Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495

Processing SOAP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498

SOAP Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505

SOAP Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517

Contents

x

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



Dedication

For Katalin,

who knew I could do it

xi



Preface

This book is designed as an introduction to XML and an examination of how XML can be used in

conjunction with Delphi.

XML is a specification that defines a way to describe and process sets of documents that have

an inherent structure. An XML document’s appearance is similar to HTML (not surprising given

its heritage), but it is targeted at describing the meaning of data within the document, rather than

the data’s presentation as HTML does.

Due to the simple hierarchy of elements within an XML document and the enforcement of cer-

tain structural rules, XML documents are easily processed by a variety of parsers. Processors may

be written in any language and still handle the same documents.

Given the text-based nature of XML, these documents can be created just with a text editor,

through generic XML editors, or automatically from other data sources. Furthermore, the text files

are easily transferred between machines over LANs or across the Internet. The target machines

can use different operating systems and yet accept the same XML documents.

XML lets you create language- and operating system-independent documents that contain

self-describing data. This facilitates the transfer of data and interactions between computers wher-

ever they may be.

Numerous books have been written on XML itself, although these usually deal with Java as the

implementation language for any processors. Much of the ongoing work in XML processing also

seems to be centered on Java. I felt that Delphi developers should not be left out of this important

new standard, and I have written this book to try to fill in some of the gaps in combining the two

technologies.

Who is This Book For?

This book is for developers with a working knowledge of Delphi who are interested in learning

about XML and its related technologies. No knowledge about XML is assumed.

Some of the topics in the book require the advanced features of the Enterprise editions of

Delphi, although basic processing of XML documents can be done with any edition. The code that

demonstrates the concepts presented here runs under Delphi 3 through 6. However, due to version

differences, there is often a separate Delphi 3 version for each project.

xii



What is in the Book?

Part I introduces the reader to XML, tracing its origins and purpose. Several existing XML appli-

cations are presented to show the diversity of uses for XML. The syntax and structure of an XML

document is described, along with the corresponding document type definition (DTD). Accom-

panying standards such as XSLT (XSL Transformations), XLink, XPointer, and XML Schema are

also reviewed. XSLT lets you transform XML documents into other formats, typically into HTML

for display in a browser. XLink defines how documents can be connected in ways beyond the sim-

ple hyperlink of HTML. XPointer describes how to address sections within a document for more

focused links. And XML Schema is an alternative to DTDs in describing the structure of XML

documents.

Part II shows how to work with XML using Delphi. The Document Object Model (DOM)

specification from the World Wide Web Consortium (W3C) is presented, followed by three imple-

mentations of it. The DOM is a series of interfaces that provide access to an in-memory structure

that represents the XML document. First we discuss Microsoft’s DOM as encapsulated in the

MSXML v3 library and available to Delphi as COM objects. Next we look at two packages writ-

ten in Delphi: one from CUESoft and another from the Open XML project.

Part III describes an alternate approach to working with XML: the Simple API for XML

(SAX). SAX uses an event-based mechanism for parsing the contents of an XML document,

meaning that it does not have to hold the entire document in memory as the DOM does. Again, the

basic specification is presented, as developed by David Megginson and the XML-DEV mailing

group. Microsoft also has a SAX offering in the MSXML v3 library, which is described in this sec-

tion. Following that is an implementation of SAX in Delphi and a wrapper around the Microsoft

parser that conforms to the Delphi interfaces.

Part IV looks at how XML documents can be generated using Delphi. Starting out with sim-

ple text output, the chapters also explore using Delphi’s Web modules, the various Document

Object Models, and Microsoft’s IMXWriter objects. Also examined are XSL Transformations for

pre-formatting data and Delphi’s XMLBroker for thin-client database interactions.

Part V delves into applications that use XML as one of their building blocks. It provides

examples of how XML can be used and how Delphi is brought to bear on the problem. A custom-

izable mass mail-out program is presented, using XML for its configuration file and for the

message template. An example of a customized client program for a particular class of XML doc-

uments follows, with a description of how to automatically invoke it for appropriate content

downloaded from the Internet. The next two chapters present another client program, this time for

an examination class of XML documents, and a Web-based application for providing the same

content over the Internet. The Web application uses XSLT to help manipulate the XML. Finally,

there is a discussion about the Simple Object Access Protocol (SOAP), which is a remote proce-

dure invocation protocol using XML.

xiii



Acknowledgments

As is always the case, this book could not have been produced without the support of a team of

people.

Thanks to Jim Hill and Wes Beckwith at Wordware for helping me get this book into your

hands.

Thanks to Mark Edington of Borland for checking the facts and setting me straight.

Thanks to Dieter Köhler for assistance with the XDOM package from Open XML.

Thanks to Michael Holmes, Trevor de Koekkoek, and Thomas Theobald for feedback early on

in the writing process.

Many thanks to my wife, Katalin, for supporting my efforts.

And thanks to the many readers of my Delphi articles who have provided such positive feed-

back and suggestions for improvements.

xiv



P a r t I

Introduction to XMLIntroduction to XML

XML stands for Extensible Markup Language. It is a technology that allows you to

describe data in a way that is both human-readable and yet easily processed by comput-

ers. It is a standard approved by the World Wide Web Consortium (W3C) and has a great

deal of support in the marketplace.

XML documents can be created by simple text editors, through generic XML editors,

via customized GUI front ends, or programmatically. This allows almost anyone to gen-

erate these documents, and, by following a few simple rules, they are usable by anyone

else who knows about XML.

Suites of XML components are available for processing these documents. Generic

parsers, editors, and validators are available in just about every language and on every

platform. XML support is being built into the latest generation of Web browsers, as well

as into databases, application servers, and individual applications.

XML is being used to transfer data from point to point in a platform- and language-

independent manner. It can tie together layers in an n-tier architecture. It can manipulate

its content with stylesheets to generate a variety of display formats for endusers. It facili-

tates communications between businesses.

Overall, XML has a bright future, and Delphi users need to be able to use the capabili-

ties that it provides.

1



Chapter 1: History

Chapter 2: XML Syntax

Chapter 3: Document Type Definitions

Chapter 4: Extensible Stylesheet Language

Transformations

Chapter 5: XLink

Chapter 6: XPath and XPointer

Chapter 7: XML Schema



C h a p t e r 1

History

XML is a subset of the Standard Generalized Markup Language (SGML) that attempts to provide

most of the functionality of the latter, but without all its complexity. As such it is a way of describ-

ing classes of documents and their structure through the use of markup (embedded instructions or

notations within the content). It was developed in 1996 by the XML Working Group under the

aegis of the W3C and the leadership of Jon Bosak. On February 10, 1998, it became a W3C

Recommendation.

The World Wide Web Consortium is a collection of over 500 member organizations from

around the world. Its purpose is “to lead the World Wide Web to its full potential by developing

common protocols that promote its evolution and ensure its interoperability.” Proposed ideas and

technologies go through a rigorous consensus-building process before they can be assigned the

status of “W3C Recommendation.”

A specification starts off as a “Working Draft” that generally represents a work in progress and

a commitment to pursue work in this area by a Working Group. When the spec is considered ready,

it becomes a “Last Call Working Draft,” allowing outside review of the document, both within the

wider W3C community and by the public. Once accepted, the specification becomes a “Candidate

Recommendation”—a published report that invites feedback on implementing the proposal. A

“Proposed Recommendation” is the next step, after showing that the spec is workable and incor-

porating any final changes. The end result of the process is the status of “W3C Recommendation,”

which indicates that the ideas or technology described in the document are appropriate for wide-

spread deployment and promote the W3C’s goals.

SGML has been used for many years to structure documents in a standard way (ISO 8879). It is

well suited to the storage and maintenance of long-lived documents, usually from a publishing

perspective. However, it provides a great deal of functionality and many options that are infre-

quently used. This complicates the construction of tools designed to work with the full range of

SGML documents.

XML is designed as a simplified subset of SGML to describe and manipulate short-lived docu-

ments, and is optimized for the Web environment. Often these documents are dynamically

generated and immediately consumed. The design goals for XML, as set out in the XML specifi-

cation Section 1.1, are as follows:

1. XML shall be straightforwardly usable over the Internet.

3



2. XML shall support a wide variety of applications.

3. XML shall be compatible with SGML.

4. It shall be easy to write programs which process XML documents.

5. The number of optional features in XML is to be kept to the absolute minimum, ideally zero.

6. XML documents should be human-legible and reasonably clear.

7. The XML design should be prepared quickly.

8. The design of XML shall be formal and concise.

9. XML documents shall be easy to create.

10. Terseness in XML markup is of minimal importance.

Its widespread acceptance and growing use confirm that these goals have been met.

XML vs. HTML

XML is often compared to HTML, frequently as a replacement for it. Both use straight text files

for their content. Both include markup in the SGML style using angle brackets ( < > ). However,

whereas HTML has a set of predefined tags that you can use to embellish your content, XML

allows you to define an entirely new set of tags and the relationships between them. This definition

can then be used to construct a whole series of conforming documents specific to your needs.

HTML allows you to describe the appearance of some data in a device-independent manner,

while XML allows you to describe the content of that data in an application- and operating sys-

tem-independent way.

Compare the following HTML fragment:

<h1>Star Wars – The Phantom Menace</h1>
<p>PG, 131 minutes</p>
<p>Directed by George Lucas.</p>
<p>Starring Liam Neeson, Ewan McGregor, Jake Lloyd,
and Natalie Portman</p>

and the corresponding XML document fragment:

<movie>
<name>Star Wars - The Phantom Menace</name>
<rating>PG</rating>
<length>131</length>
<director>George Lucas</director>
<star>Liam Neeson</star>
<star>Ewan McGregor</star>
<star>Jake Lloyd</star>
<star>Natalie Portman</star>

</movie>

Both may appear the same in your browser, but just from reading the XML fragment you can

immediately see what the content means. In the HTML version you could extract the same ele-

ments, but not without an intimate knowledge of the format used. The XML data can be

4 Part I: Introduction to XML



manipulated automatically, such as searching for movies by name or rating, as well as rendering it

for display in one or more output formats (including HTML).

In more technical terms, HTML is an SGML application; that is, it is a predefined set of

markup tags that deal with the presentation of data. XML, on the other hand, is a subset of SGML,

a metalanguage. It allows you to define your own set of tags denoting the meaning of the data and

then create documents using them. One of the main ideas behind XML is to separate the data con-

tent from its presentation.

XML does not replace HTML; it complements it. XML provides a standard means of describ-

ing the meaning of the data, while HTML provides a standard way of presenting that data.

Related Specifications

XML itself is just part of the story—it describes the basic components and structure of a

document. Along with this are a number of related specifications that provide further pieces of the

puzzle.

Document type definitions (DTDs) provide the templates that define a valid XML document.

They detail what elements are allowed and in what context within the document. These are

extremely useful when transferring data between different organizations as they impose the neces-

sary structure and consistency on the communications.

Extensible Stylesheet Language (XSL) is a generic way of describing the formatting of XML

content for display in a particular graphical medium. An XSL stylesheet is an XML document,

allowing it to be created and manipulated in the same way as the actual data that it operates upon.

XSL Transformations (XSLT) is a language for detailing how an XML document should be

manipulated to transform its contents into another format. It can reorganize the XML data, select

from it, and manipulate it, before wrapping it in whatever formatting instructions are appropriate

for the target application. Output can be rendered as HTML, as plain text, as RTF, even as another

XML document.

XML Linking Language (XLink) defines how one document can be linked to another. It goes

further than normal hyperlinks since it can define multiple links, bi-directional links, and even

external links related to a document.

XML Pointer Language (XPointer) extends XLink to allow it to refer to individual parts of a

linked document. This could be a single position, like existing HTML named anchors, or a range

of elements within the resource.

XML Schema is an alternative way of specifying the content of an XML document, replacing

DTDs. It offers the functionality of DTDs while adding data typing for elements and attributes,

exact multiplicity (such as between two and four occurrences), and other features. Its major

advantage is that the schemas are expressed in XML itself, which allows you to use the same tools

on both the data and its description. This specification is still under development.

There are also a number of XML applications already available. The following sections

describe some of them. Even though most are not available for use within Delphi, they are pre-

sented here to give you a feel for the diversity of applications that XML enables. Although some of

Chapter 1: History 5



the terms used may be unfamiliar to you at this stage, you should get the gist of them from the text

while further description is left to the later chapters.

Extensible Hypertext Markup Language (XHTML)

As it states in the specification, this is a reformulation of HTML 4.0 in XML 1.0. The purpose of

the specification is to make HTML documents just another XML application, allowing all the

tools for XML to be used with them. The semantics of the language do not change from the origi-

nal HTML 4.0 specification; however, the syntax is tightened up to comply with XML.

XHTML 1.0 is a W3C Recommendation as of January 26, 2000. It defines a set of three docu-

ment types that cover existing HTML applications. Other guiding principles of the specification

include backward compatibility with existing HTML and its current processors (browsers), which

allows the Document Object Model to be used with these documents, and providing an extendable

framework for future efforts.

The three classes of XHTML documents correspond to the original HTML 4.0 DTDs. These

are for strict HTML 4.0, which excludes certain attributes and elements being phased out due to

stylesheet usage, for transitional HTML 4.0, which includes those attributes and elements, and for

frameset HTML documents, which are identical to the transitional HTML except that the

frameset element replaces the body one.

XML is stricter than HTML in what is permissible. These sorts of anomalies are corrected in

XHTML. All elements must be properly nested, with the html element being the top-level one. So,

you can no longer have sequences such as:

<b>Important news about <i>Delphi</b></i>

All element names must be lowercase—XML is case sensitive, while HTML accepts any case.

End tags are required for all non-empty elements. For example, under HTML the paragraph tag is

optional (and frequently omitted). In XHTML it must always be present.

<p>All paragraphs must have end tags.</p><p>XHTML requires it.</p>

Similarly, all empty tags must be correctly terminated. This can be done either by adding the slash

at the end of the opening tag or by adding the entire closing tag. When using the first technique,

you should place a space before the slash at the end of the tag if there are no attributes. This

ensures that older browsers still recognize the tag.

<img src="bullet.gif"></img><hr />

All attributes must be properly quoted in XHTML. In HTML this is only required when the attrib-

ute value contains white space or other characters with special meaning. Attributes must have a

value specified. Under HTML, some attributes do not have values, such as the checked attribute of

a radio button or check box. In XHTML these values must be supplied.

<input type="checkbox" name="Delphi 5" checked="checked">Delphi

In XHTML, white space in attributes is normalized. This means that leading and trailing white

space is removed, and internal sequences of white space are reduced to a single space. Style and

6 Part I: Introduction to XML

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



script elements can use CDATA sections (special sections that ignore normal markup) to remove

the need to escape certain characters.

Elements are identified through the id attribute in XHTML, which is defined to be of type ID

(a special attribute type used for names that are unique within the document). The name attribute

that appears on some elements in HTML is deprecated (phased out) under XHTML.

So, by following a few simple rules, you can easily convert your HTML documents to

XHTML documents. Then you can manipulate them using any of the tools designed for XML. Do

not forget that XML is extensible, meaning that your XHTML document also gains this ability.

Listing 1-1 shows a sample XHTML page fragment. Note the appearance of closing paragraph

tags, </p>, and that horizontal rules and line breaks are marked as empty, <hr />. Otherwise, it is

standard HTML.

Listing 1-1: Movie data displayed as XHTML

<html>
<head>
<title>Movie Watchers</title>
</head>
<body>
<h1><a name="top">Welcome to Movie Watchers</a></h1>
<p>Your source for local film entertainment.
Have a look at <a href="#movies">what's on</a>,
<a href="#cinemas">where</a> and
<a href="#screenings">when</a>.</p>
<hr />
<h2><a name="movies">Movies</a></h2>
<a name="SW1" href="SW1-site">
<img src="SW1-logo" alt="Star Wars - The Phantom Menace"/>

</a>
<table border="0" width="100%">
<tr>
<th align="left" valign="top" width="15%">Rating:</th>
<td width="15%">PG</td>
<th align="left" valign="top" width="15%">Length:</th>
<td>131 mins</td>

</tr>
<tr>
<th align="left" valign="top">Director:</th>
<td colspan="3">George Lucas</td>

</tr>
<tr>
<th align="left" valign="top">Starring:</th>
<td colspan="3">
Liam Neeson<br />
Ewan McGregor<br />
Jake Lloyd<br />
Natalie Portman<br />

</td>
</tr>
<tr>
<th align="left" valign="top">Synopsis:</th>
<td colspan="3">When the evil Trade Federation plots to take over
the peaceful planet of Naboo, Jedi warrior Qui-Gon Jinn and his
apprentice Obi-Wan Kenobi embark on an amazing adventure to save
the planet. With them on their journey is the young queen
Amidala, Gungan outcast JarJar Binks, and the powerful Captain

Chapter 1: History 7



Panaka, who will all travel to the faraway planets of Tatooine
and Coruscant in a futile attempt to save their world from Darth
Sidious, leader of the Trade Federation, and Darth Maul, the
strongest Dark Lord of the Sith to ever wield a lightsaber.

</td>
</tr>
<tr>
<th align="left" valign="top">Showing at:</th>
<td colspan="3">
<a href="#SW1-MM">
MovieMania

</a><br />
<a href="#SW1-OC">
Oscar's Cinema

</a><br />
</td>

</tr>
</table>
:

<p>Back to <a href="#top">the top</a>.</p>
<hr />
:

<hr />
<p>Movie Watcher data supplied by
<a href="mailto:kbwood@compuserve.com">Keith Wood</a>.</p>
</body>
</html>

Mathematical Markup Language (MathML)

The purpose of MathML is to facilitate the specification and processing of mathematical and sci-

entific content. It encodes mathematical notation in a way that allows you to show it in

high-quality displays, present it via audio methods, and manipulate it symbolically via

applications.

Eventually, with appropriate stylesheet support, MathML elements will be included as part of

a standard XML document and rendered accordingly. Until then, specialized applets and applica-

tions allow MathML to be viewed within a browser.

Up to now, mathematical equations were usually presented as images within an HTML page.

Although this does provide information for human readers, it is of no use to an application that is

interested in the underlying meaning. With the development of MathML, both these purposes can

be achieved.

MathML is a W3C Recommendation, with version 1.01 being released on July 7, 1999. Ver-

sion 2.0 is currently available as a Working Draft. The work with the W3C began in 1994 when a

proposal for HTML Math was included in the HTML 3.0 Working Draft. Following numerous

discussions, an official Working Group devoted to mathematical markup was formed in March

1997.

The limitations of HTML in rendering mathematical equations was recognized early on. Using

images instead was not ideal as these tended to interrupt the flow of the document, and did not

align or resize properly. Also, images tend to be of a lower resolution than normal text when

printed out, resulting in less than acceptable quality.

8 Part I: Introduction to XML



Although improvements in HTML layout could solve some of these problems, it would not

allow the meaning of the equation to be easily relayed to another application. This is where XML

comes in, with its ability to encode the meaning of the data it contains.

The design goals included sufficient richness to encode most equations, recording both nota-

tion and meaning; simple conversion between other formats (such as output formats); human

legible, yet easily processed by machine; extensible; and allowing application-specific informa-

tion to be transferred. XML fulfils most of these goals.

MathML elements fall into one of three categories: presentation elements, content elements,

or interface elements. Presentation elements describe notational structure, such as terms on one

line, and sub- and superscripts. Content elements denote mathematical objects, such as operators,

specific mathematical concepts, or literal values. The one interface element is the math element,

which serves as the top-level tag for a MathML fragment.

For example, the equation:

x2+4x+4=0

can be encoded using presentation elements as shown in Listing 1-2, or with content elements as

seen in Listing 1-3.

Listing 1-2: MathML presentation elements

<math>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>

</msup>
<mo>+</mo>
<mrow>
<mn>4</mn>
<mo>&InvisibleTimes;</mo>
<mi>x</mi>

</mrow>
<mo>+</mo>
<mn>4</mn>

</mrow>
<mo>=</mo>
<mn>0</mn>

</mrow>
</math>

Listing 1-3: MathML content elements

<math>
<reln>
<eq/>
<apply>
<plus/>
<apply>
<power/>
<ci>x</ci>
<cn>2</cn>

</apply>
<apply>

Chapter 1: History 9



<times/>
<cn>4</cn>
<ci>x</ci>

</apply>
<cn>4</cn>

</apply>
<cn>0</cn>

</reln>
</math>

MathML allows these two formats to be combined, either directly or within the semantics ele-

ment. In this latter case, one representation becomes the main format, while the other is included

as an annotation, either hinting at how to render the equation or clarifying the meaning of it.

MathML offers almost 30 presentation elements, about 75 content ones, and an impressive array

of mathematical symbols expressed as entities (named references).

Although MathML is not yet an integrated part of HTML (being rendered in all browsers), it is

well on its way to this goal. Editors, viewers, and processors are already available for working

with this language.

Scalable Vector Graphics (SVG)

Scalable Vector Graphics is an XML application that describes two-dimensional graphics. It pro-

vides three types of graphic objects: vector graphic shapes (such as lines and curves), images, and

text. These objects can be grouped, transformed, and styled through the language. Other features

include nested transformations, clipping, alpha masks (transparency), filter effects, and templates.

As of August 2, 2000, SVG is a Candidate Recommendation of the W3C. It should be a full

recommendation by the time that you read this. It is intended that SVG have its own MIME type,

image/svg-xml, and it is recommended that all SVG files have an .svg extension.

SVG includes its own Document Object Model, allowing the graphics description to be

manipulated through scripting languages. You can embed SVG fragments within an XHTML

page and access both from script. It includes a rich set of event handlers providing for interactive

sessions with the user.

This specification relies on several others, besides the XML specification itself. It incorporates

XLink and XPointer depictions for linking between and within documents. Styling can be

achieved through cascading style sheets (CSS) or XSL. Some of its animation features come from

the Synchronized Multimedia Integration Language (SMIL). SVG also attempts to remain com-

patible with HTML and XHTML implementations.

The word “scalable” in the title of this specification means that the encoded graphics can be

displayed correctly at any resolution, from a low-resolution computer screen to high-resolution

printers. It also means that large numbers of files and large numbers of users can utilize the tech-

nology at once. Vector graphics tend to result in smaller encodings of many images (but not

photograph-like ones). Using vector graphics allows the image to be rendered at the client,

enabling it to make the most of its particular abilities. SVG also includes manipulation of normal

rasterized images, as you would find in GIF or JPEG files. The graphics encoded by SVG provide

10 Part I: Introduction to XML



a capability in between straight textual information and standard images, allowing it to be used

alone or embedded within another XML application.

SVG documents are made up of graphical objects—paths between points. The more common

shapes, such as rectangles and ellipses, are modeled directly, while the generic path element lets

you describe other figures. Common symbols can be described and shared between documents.

These include items like flowchart elements and electrical symbols. Various raster effects, like

blurring and shadowing, can be specified within SVG, while still allowing them to be applied in a

scalable fashion. Font elements combine both textual and graphical descriptions, enabling them to

be processed either way as necessary.

Listing 1-4 shows a simple SVG document that

encodes various basic figures. The output produced

by this document looks like Figure 1-1. Note that it

includes a reference to the SVG DTD, and starts

with the top-level svg element. svg elements can

also appear within the body of the document, repre-

senting a new viewport or altering the meaning of

unit identifiers. When embedded as part of another

document, the namespace (language identifier) for

the svg elements should be http://www.w3.org/
2000/svg.

Listing 1-4: A basic SVG document

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 20000802//EN"
"http://www.w3.org/TR/2000/CR-SVG-20000802/DTD/svg-20000802.dtd">

<svg width="6cm" height="5cm">
<title>SVG Example</title>
<desc>A sampling of SVG elements</desc>
<rect x="0.5cm" y="0.5cm" width="2cm" height="1cm"/>
<circle cx="4.5cm" cy="2cm" r="1cm" style="fill: lightgray"/>
<line x1="2cm" y1="1.5cm" x2="4cm" y2="0.5cm"
style="stroke: red; stroke-width: 2"/>

<text x="1cm" y="2.5cm">SVG Shapes</text>
</svg>

Objects are grouped together with the g element, which surrounds its constituent elements. When

supplied with an id attribute, these groups can be manipulated as if they were basic shapes.

Groupings can be applied to any depth. The defs element is similar to a grouping in that it collects

other elements together, but it is only used for defining these elements and is not rendered in the

final output.

Containers and graphic objects can have textual descriptions applied to them through the desc
and title elements that they encompass. Browsers use these to supply additional information

when necessary, such as in a tool tip or in audio renderings of a document. The outermost svg ele-

ment should always have a title element within it to cater to browsers that cannot deal with the

graphics themselves.

Chapter 1: History 11

Figure 1-1: The rendered SVG document.



The symbol element defines template objects,

allowing for their reuse elsewhere within the current

or in other documents. Like defs they are not ren-

dered through normal processing. Instead, you

utilize the use element to invoke a symbol, a group,

an svg element, or some other graphical element.

Reference to the original element is via an

xlink:href attribute and refers to the former’s id.

See Listing 1-5 for an example of defining a figure

and then reusing it within the image. The corre-

sponding output is shown in Figure 1-2.

Listing 1-5: Reuse within SVG

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 20000802//EN"
"http://www.w3.org/TR/2000/CR-SVG-20000802/DTD/svg-20000802.dtd">

<svg width="10cm" height="10cm">
<title>Olympic Rings</title>
<desc>The Olympic rings</desc>
<defs>
<g id="olympicrings" width="60" height="30"

style="fill: none; stroke-width: 2">
<circle cx="10" cy="10" r="10" style="stroke: blue"/>
<circle cx="30" cy="10" r="10" style="stroke: black"/>
<circle cx="50" cy="10" r="10" style="stroke: red"/>
<circle cx="20" cy="20" r="10" style="stroke: yellow"/>
<circle cx="40" cy="20" r="10" style="stroke: green"/>

</g>
</defs>
<use xlink:href="#olympicrings"
transform="translate(240,20) rotate(90) skewX(30)"/>

<use xlink:href="#olympicrings"
transform="scale(2) translate(20,20)"/>

</svg>

As you can see, elements often have a bounding rectangle defined by their x, y, width, and height
attributes. These are measured in user coordinates (without any units) or in exact distances, such

as pixels, points, inches, and centimeters. You can also apply transformations to elements with the

transform attribute. This takes a list of functions as its value and applies each in turn when render-

ing the element. Available transformations include translation, rotation, scaling, and skewing.

These can be combined to arrive at the desired result.

Elements can have effects such as line thickness and color, and fill colors applied to them. Lin-

ear and radial gradients are also available, as are patterns, masks and filters. Each operates on the

bounding rectangle for an element.

Existing graphics are included with the image element. The referenced document can be in any

recognized format, although conforming viewers are only required to deal with PNG, JPEG, and

SVG formats.

The text element allows for textual display within the rendering. Like other elements, it has a

bounding box and may be transformed. The actual content appears within the element as simple

12 Part I: Introduction to XML

Figure 1-2: Rendering with reuse in SVG.



character data. To delimit sections of text, you use the tspan element, which can have its own set

of attributes. Each character can be positioned exactly, or a simple starting position specified. In

fact, if you use the textPath element, you can have the text wander around curves or shapes. The

normal CSS style designations apply to the rendered text, including font selection, color, weight,

and decoration.

Drawing the actual characters is left to the SVG viewer. While system fonts are most likely to

be used, SVG also provides for the definition of outline fonts for its own use. Descriptions of the

individual characters are based on an abstract square, whose height is the intended distance

between lines in this font. The font element starts a font definition and contains basic measure-

ments within the embedded font-face element. Following this are the outlines for the characters,

each in its own glyph element. SVG fonts are unhinted, and so may not render properly at small

sizes.

SVG offers many other abilities and effects. These include filters such as blurs, lighting,

blending, and turbulence. Similar to HTML, an a element provides for hyperlinking to other

resources (using XLink terminology). Embedded scripts within the document allow actions to be

performed in response to events. Animation is also available through the use of SMIL-compatible

elements.

Around all of these elements resides a Document Object Model (DOM) that provides access to

every section of the document. Through scripting languages you have complete control over the

document and its subsequent rendering. Events allow for interaction with the DOM through regis-

tered listeners.

Overall, SVG provides a great deal of functionality for rendering graphics. Several test imple-

mentations are already available, including the SVG Toolkit from CSIRO in Australia

(http://www.cmis.csiro.au/svg) and Jackaroo from the Koala Project in France (http://www.inria.

fr/koala/jackaroo). Both of these are written in Java. The ability to render SVG will probably

become standard in browsers in the near future.

Synchronized Multimedia Integration
Language (SMIL)

The purpose of SMIL (pronounced “smile”) is to combine independent multimedia objects into a

coordinated presentation. Using this language, you can describe the behavior over time and the

positioning of elements within the display, as well as provide hyperlinks from there to other

resources.

SMIL 1.0 is a W3C Recommendation that was approved on June 15, 1998. It builds upon

XML’s base and inherits its syntax, use of namespaces, and extensibility.

The top-level element is, of course, the smil element, which serves as the container for the

head and body elements. Within the header, you specify information not related to the temporal

nature of the presentation. Included here are any layout specifications for the remaining elements

(held in the layout element) and any metadata about the document (in the meta element). It may

Chapter 1: History 13



also contain a switch element, which allows alternate versions of layouts to be defined. The par-

ticular one used depends on the capabilities of the display device.

Layout can be defined using SMIL elements or with CSS2 syntax. Named regions are

described with their positions, sizes, colors, and depths. Regions may clip or stretch content to

their dimensions. These regions are then referred to by other elements within the body of the

document.

Individual multimedia elements appear within the body element. The par element allows its

children to overlap in time (run in parallel). Each may have delays imposed, either as absolute

times or when a triggering event occurs. Compare this with the seq element, which activates its

children one after the other (sequential), with delays if desired.

As children of these elements you can have images, animations, audio tracks, video, and text

streams. Each of these elements has attributes that define when it starts and ends (begin and end or

dur attributes), where the actual content comes from (src), and its type (type attribute). All body

elements should have a title attribute to allow them to be identified in a device that cannot han-

dle their content.

Once more the switch element allows you to gracefully degrade the abilities of the document.

Each child of the switch is evaluated in turn by testing several of its attributes. When a combina-

tion is found that the display device can handle, that element is rendered and all other children of

the switch are ignored. The types of abilities tested for include bit rates, content language, screen

size, and color depth. Using these attributes outside of a switch element causes that particular ele-

ment to be included or excluded appropriately, without affecting any surrounding elements.

An example of a multimedia presentation defined using SMIL is shown in Listing 1-6. Here

you have a main video component that is always shown. Running alongside that (within the par
element) is the accompanying audio and an optional subtitle track. Which audio is played depends

on the preferred language of the user and whether or not they want dubbed dialog. English, Ger-

man, and Dutch alternatives are included, with a default of French. Similarly, language-specific

subtitles are available if desired.

Listing 1-6: A SMIL movie presentation

<!DOCTYPE smil PUBLIC "-//W3C//DTD SMIL 1.0//EN"
"http://www.w3.org/TR/REC-smil/SMIL10.dtd">

<smil>
<par>
<switch>
<audio src="movie-aud-en.rm" system-language="en"
system-overdub-or-caption="overdub"/>

<audio src="movie-aud-de.rm" system-language="de"
system-overdub-or-caption="overdub"/>

<audio src="movie-aud-nl.rm" system-language="nl"
system-overdub-or-caption="overdub"/>

<!-- French for everyone else -->
<audio src="movie-aud-fr.rm"/>

</switch>
<video src="movie-vid.rm"/>
<switch>
<textstream src="movie-caps-en.rtx" system-language="en"
system-overdub-or-caption="caption"/>

<textstream src="movie-caps-de.rtx" system-language="de"
system-overdub-or-caption="caption"/>

14 Part I: Introduction to XML



<textstream src="movie-caps-nl.rtx" system-language="nl"
system-overdub-or-caption="caption"/>

<!-- French captions for those that really want them -->
<textstream src="movie-caps-fr.rtx" system-captions="on"/>

</switch>
</par>

</smil>

SMIL sets out the interpretations of the various timing and synchronization issues that arise in

attempting to coordinate these different resources. Elements have an implicit begin and end,

defined by their position within the object hierarchy. They may also have either or both an explicit

begin and end.

Hyperlinks specified within the document allow for navigation to other resources. Basic navi-

gation is provided by the a element, similar to the same tag in HTML. An additional attribute,

show, defines how the new resource interacts with the existing one.

However, the a element only attaches a link to an entire media object. For more precise con-

trol, use the anchor element. Anchors may be specified to operate temporally, such as during the

first five seconds of a video, or spatially, such as when clicking only on the left side of an image.

The latter is similar to the image maps used in HTML.

SMIL can be used in standalone documents to orchestrate a presentation, or it can be embed-

ded within another XML document type. In the latter case, the namespace (language identifier) for

the fragment should be: http://www.w3.org/TR/REC-smil.

Resource Description Framework (RDF)

The Resource Description Framework is a basis for manipulating metadata about resources avail-

able on the Web. Although RDF is an XML application, it can capture information about non-

XML documents just as easily. Its purpose is to provide a common way to describe these resources

that facilitates their cataloging, categorizing, searching, and retrieval.

The need for RDF grew out of the desire for a standard way of defining Web resources that

could easily be processed by automated agents such as Web crawlers. Added to this was a wish to

provide additional details about a resource, or indeed an entire site, that did not fit into existing

schemes. These details include content rating (such as the Platform for Internet Content Selection

(PICS)), privacy policies, and data interchange activities. Of course, extensibility was a big influ-

ence on the RDF development, resulting in the abilities to mix and match various RDF

specifications and to extend existing ones in new ways.

RDF consists of two parts. The first is the Model and Syntax Specification, which is a W3C

Recommendation as of February 22, 1999. This outlines the purpose of RDF and describes the

model used to capture the metadata. The second part is the Schema Specification, which is a W3C

Candidate Recommendation as of March 27, 2000. This document lays out a syntax and semantics

for defining metadata structures (i.e., meta-metadata!).

The RDF model is a syntax-neutral way of representing RDF expressions, or statements about

resources. A basic model consists of three parts: the resource that is being described, the property

or aspect of that object being asserted, and the actual value of that property. Together these make

Part I: Introduction to XML Chapter 1: History 15



up an RDF statement. The three parts are given the technical names subject, predicate, and object

respectively.

For example, you can state that the author of a particular page is a given person. In this case the

subject (resource) is the page itself as identified by its URI, the predicate (property) is the author,

and the object (value) is the author’s name (or some other identifying text). The statement “George

Lucas is the director of Star Wars - The Phantom Menace” could be expressed using RDF as

shown in Listing 1-7.

Listing 1-7: An RDF statement

<?xml version="1.0"?>
<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:m="http://movies.org/schema/">

<rdf:Description
about="urn:movies:Star Wars - The Phantom Menace">

<m:Director>George Lucas</m:Director>
</rdf:Description>

</rdf:RDF>

The standard namespace for RDF is shown in this listing, while the m namespace refers to some

definition of movie-related objects including the Director tag. The subject of the statement is

listed in the about attribute of the Description tag, while the contents of that tag identify the pred-

icate (the element name) and the object (the element content).

RDF also offers an alternate syntax that is a little more compact, as shown in Listing 1-8 below.

Here we change sub-elements that only contain text into attributes of the Description element. It

also has the advantage that there is no text content within the main RDF element. This allows you

to embed RDF statements within HTML documents (among others), without affecting the display

of the original document. Normally browsers simply ignore tags that they do not understand, but

display all text.

Listing 1-8: Alternate RDF syntax

<?xml version="1.0"?>
<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:m="http://movies.org/schema/">

<rdf:Description
about="urn:movies:Star Wars - The Phantom Menace"
m:Director="George Lucas"/>

</rdf:RDF>

Frequently, you need to refer to a collection of items within a statement, such as all the documents

in a particular site, or a number of people who co-authored a document. For these purposes RDF

offers three types of container objects: the bag, which is an unordered list of multiple items; the

sequence, which is an ordered list of multiple items; and the alternative, which is a single selection

from the list provided. Alternatives are selected on the basis of some testing attribute, such as

xml:lang for the content language, in the order in which they appear. A final entry with no test

functions as a default selection.

An element that consists of such a collection contains an element of one of these types

(rdf:Bag, rdf:Seq, or rdf:Alt) which itself contains the actual items. Each item is listed within

16 Part I: Introduction to XML

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



an rdf:li element (similar to the HTML li element). For example, the series of Star Wars movies

(in order) could be identified as shown in Listing 1-9.

Listing 1-9: An RDF collection

<?xml version="1.0"?>
<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:m="http://movies.org/schema/">

<rdf:Description about="urn:movies:Star Wars">
<rdf:Seq>
<rdf:li>The Phantom Menace</rdf:li>
<rdf:li>Episode II</rdf:li>
<rdf:li>Episode III</rdf:li>
<rdf:li>A New Hope</rdf:li>
<rdf:li>The Empire Strikes Back</rdf:li>
<rdf:li>Return of the Jedi</rdf:li>

</rdf:Seq>
</rdf:Description>

</rdf:RDF>

You can then make statements about the entire collection. RDF supplies the aboutEach attribute to

indicate that the statement applies to each item within a collection individually, as if a separate

statement had been made for each one. For example, to show that George Lucas produced each of

the Star Wars movies, you could use the document from Listing 1-10.

Listing 1-10: An statement about a collection

<?xml version="1.0"?>
<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:m="http://movies.org/schema/">

<rdf:Seq ID="SW">
<rdf:li>The Phantom Menace</rdf:li>
<rdf:li>Episode II</rdf:li>
<rdf:li>Episode III</rdf:li>
<rdf:li>A New Hope</rdf:li>
<rdf:li>The Empire Strikes Back</rdf:li>
<rdf:li>Return of the Jedi</rdf:li>

</rdf:Seq>
<rdf:Description aboutEach="#SW" m:Producer="George Lucas"/>

</rdf:RDF>

NOTE If you had used about instead of aboutEach in the example in Listing 1-10, you
would be saying that George Lucas produced the collection, not the items listed therein. There
is also an aboutEachPrefix attribute that lets you identify a collection of resources by some
common prefix, and then apply the statement to each item in that set.

RDF also lets you make statements about other statements. To do this you just refer to the original

statement and have an appropriately defined predicate in your new statement. For example, if I

assert that George Lucas directed Freiheit, I could express it as shown in Listing 1-11. This is not

saying that he did direct it (although he did), just that I am saying that he did.

Chapter 1: History 17



Listing 1-11: An RDF statement about a statement

<?xml version="1.0"?>
<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:m="http://movies.org/schema/"
xmlns:a="http://metadata.org/schema/">

<rdf:Description
about="urn:movies:Freiheit">

<m:Director>George Lucas</m:Director>
<a:attributedTo>Keith Wood</a:attributedTo>

</rdf:Description>
</rdf:RDF>

The schema specification part of RDF allows you to define the elements that make up your

metadata. For the previous examples you would create a schema that declared, among others, the

Director and Producer elements, along with their types and meanings. It is important that the

intention of these metadata types be explicit since applications rely on that particular meaning for

their processing. The use of namespaces allows you to easily identify tags with the same name but

with different semantics.

Types within RDF schema are defined as classes, which may then have properties. Following

the object-oriented model, these classes can be inherited from and extended by other schema. Use

the rdfs:subClassOf element within the type definition to identify the parent.

Properties indicate the class that they belong to through the rdfs:domain sub-element, and the

type of content that they allow through the rdfs:range sub-element. Basic types and classes are

defined by the RDF Schema specification itself.

Listing 1-12 shows a sample RDF schema that describes the types that make up metadata

about search services on the Web. It defines three classes, SearchQuery, SearchResult, and

SearchService. SearchService simply refers to a resource available on the Web. SearchQuery
has properties that relate a particular service to a result page, using a query string. SearchResult
holds a reference to the document with the actual information, along with the title of that docu-

ment and a rating of its relevance from zero to one.

Listing 1-12: RDF schema example

<rdf:RDF xml:lang="en"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

<rdfs:Class rdf:ID="SearchQuery">
<rdfs:subClassOf
rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource"/>

</rdfs:Class>

<rdfs:Class rdf:ID="SearchResult">
<rdfs:subClassOf
rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource"/>

</rdfs:Class>

<rdfs:Class rdf:ID="SearchService">
<rdfs:subClassOf rdf:resource=
"http://www.w3.org/2000/03/example/classes#InternetService"/>

</rdfs:Class>

<rdf:Property ID="queryString">

18 Part I: Introduction to XML



<rdfs:domain rdf:resource="#SearchQuery"/>
<rdfs:range
rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal"/>

</rdf:Property>

<rdf:Property ID="queryService">
<rdfs:domain rdf:resource="#SearchQuery"/>
<rdfs:range rdf:resource="#SearchService"/>

</rdf:Property>

<rdf:Property ID="result">
<rdfs:domain rdf:resource="#SearchQuery"/>
<rdfs:range rdf:resource="#SearchResult"/>

</rdf:Property>

<rdf:Property ID="queryResultPage">
<rdfs:domain rdf:resource="#SearchResult"/>
<rdfs:range rdf:resource=
"http://www.w3.org/2000/03/example/classes#WebPage"/>

</rdf:Property>

<rdf:Property ID="queryResultTitle">
<rdfs:domain rdf:resource="#SearchResult"/>
<rdfs:range
rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal"/>

</rdf:Property>

<rdf:Property ID="queryResultRating">
<rdfs:domain rdf:resource="#SearchResult"/>
<rdfs:range rdf:resource=
"http://www.w3.org/2000/03/example/classes#FloatZeroToOne"/>

</rdf:Property>
</rdf:RDF>

RDF offers the promise of providing machine-readable metadata about resources available on the

Web. It should facilitate the searching of the Web for relevant documents and supply greater detail

about those pages once found. As well as authoring and copyright details, it can provide privacy

and content rating information. As with all XML, it can be extended to include whatever addi-

tional details are deemed necessary.

References

Further information on XML, related technologies, and the sample applications described above

are available from the following sources:

XML Specification

http://www.w3.org/TR/REC-xml

XSL Specification

http://www.w3.org/TR/xsl

XSLT Specification

http://www.w3.org/TR/xslt

Chapter 1: History 19



XLink Specification

http://www.w3.org/TR/xlink

XPointer Specification

http://www.w3.org/TR/xptr

XML Schema Specification

http://www.w3.org/TR/xmlschema-0

Document Object Model

http://www.w3.org/DOM

Simple API for XML

http://www.megginson.com/SAX/

XML.com—a clearinghouse for XML-related items

http://www.xml.com

XML Software—another clearinghouse for XML

http://www.xmlsoftware.com

Robin Cover’s XML pages at OASIS

http://www.oasis-open.org/cover/

XHTML Specification

http://www.w3.org/TR/xhtml1

MathML Specification

http://www.w3.org/TR/REC-MathML

Scalable Vector Graphics Specification

http://www.w3.org/TR/SVG

Synchronized Multimedia Integration Language Specification

http://www.w3.org/TR/REC-smil

Resource Description Framework Model and Syntax Specification

http://www.w3.org/TR/REC-rdf-syntax

Resource Description Framework Schema Specification

http://www.w3.org/TR/rdf-schema

20 Part I: Introduction to XML



Sample XML

Throughout this book I’ll be referring to sample XML documents to illustrate various points. Most

of these documents contain information on movies that are showing at local theaters, allowing you

to find a film for a night’s entertainment. Three lists make up each document: one for the movies,

one for the cinemas, and one for the screenings that combine these two.

A movie has details such as its name, rating, and length, the names of the director and principal

stars, and a brief synopsis of the plot. In addition, a movie can be linked to a suitable graphic

and/or Web site for more information.

The name, phone number, and address are the main items for a cinema, with optional direc-

tions on how to get there. Further entries detail the facilities available at the theater and the pricing

schemes that apply at various times.

Screenings combine the above, defining a particular movie showing at one cinema. Associated

with this is an indication of the dates during which the film is running and the actual session times

(with links to the appropriate pricing structure). Features of and restrictions on the showing may

also be included.

All of this is brought together in a single document under the movie-watcher element. Sec-

tions of a movie-watcher document can be seen throughout the book, with its DTD appearing in

Chapter 3.

Chapter 1: History 21



C h a p t e r 2

XML SyntaxXML Syntax

An XML document is simply a text file, using a standard character set, that is marked up, or

encoded, by following certain conventions. If you’ve used HTML at all, you are familiar with the

layout of an XML document, although XML enforces some additional restrictions that HTML

ignores. Have a look at the XML fragment in Listing 2-1.

Listing 2-1: Sample XML fragment

<movie id="SW1" rating="PG" logo-url="SW1-logo" url="SW1-site">
<name>Star Wars - The Phantom Menace</name>
<length>131</length>
<director>George Lucas</director>
<starring>
<star>Liam Neeson</star>
<star>Ewan McGregor</star>
<star>Jake Lloyd</star>
<star>Natalie Portman</star>

</starring>
<synopsis>
When the evil Trade Federation plots to take over the
peaceful planet of Naboo, Jedi warrior Qui-Gon Jinn and his
apprentice Obi-Wan Kenobi embark on an amazing adventure to
save the planet. With them on their journey is the young
queen Amidala, Gungan outcast JarJar Binks, and the powerful
Captain Panaka, who will all travel to the faraway planets of
Tatooine and Coruscant in a futile attempt to save their
world from Darth Sidious, leader of the Trade Federation, and
Darth Maul, the strongest Dark Lord of the Sith to ever wield
a lightsaber.

</synopsis>
</movie>

This defines data about a movie. From the tags you can immediately see the purpose of each sec-

tion of content (although the exact meaning of the length element may not be entirely clear). This

is the intent of XML—human-readable, structured content that is also easily processed by

machines.

22



Elements and Attributes

As in HTML, tags are embedded in the XML document to delineate its contents, breaking it up

into elements. These tags are enclosed in angle brackets ( < > ) and contain the name of the ele-

ment, along with any attributes that it might have. All tags must be terminated with a

corresponding closing tag. This is also enclosed in angle brackets, has the same name as the open-

ing tag, and includes a slash ( / ) immediately before the name.

<name>Star Wars - The Phantom Menace</name>

In XML, all tags must be closed in the reverse of the sequence in which they were opened. Another

way of stating this requirement is that elements must be properly nested within an XML docu-

ment. Whereas in HTML, examples such as the following are tolerated and generally work as

expected, they are not valid in an XML document.

<b>This text is <i>very important</b></i>

Elements that do not have any content, known as empty elements, may be closed in a shortcut fash-

ion by placing the closing slash at the end of the opening tag. Often such elements have attributes

to provide additional information, although they can be used just as flags to indicate an item’s

presence.

<candy-bar/>

Elements may contain text, additional elements, or combinations of the two. Such nested elements

build up a hierarchy within the document. This organization indicates relationships between the

data and provides much of the functionality of XML. An XML document must have only a single

top-level tag (known as the document element), similar to the <html> tag in HTML.

An XML document that has a single top-level element and closes all of its elements in the cor-

rect sequence is termed a well-formed document. This indicates that it follows the basic

conventions of XML and can be successfully processed by standard XML parsers and utilities. If

the document is well-formed, claims to follow the dictates of a particular DTD (see the next chap-

ter), and indeed does so, it is known as a valid document.

Attributes of an element are identified by name within its opening tag and are followed by an

equal sign ( = ) and their value. The closing tag for an element never has attributes specified for it.

All attribute values must be enclosed by either single ( ' ) or double quotes ( " ) in XML, while in

HTML quotes are only required when the value contains certain restricted characters, such as

spaces.

<movie id="SW1" logo-url="SW1-logo" url="SW1-site">
:

</movie>

Attributes may be mandatory or optional, may have a set of valid values, and may have a default

value. They may identify an element or refer to another element. All of this is specified in the DTD

as described in the next chapter.

The decision to make a particular data value an attribute or a sub-element is purely subjective.

In general, sub-elements contain data that are displayed when the document is presented, whereas

Chapter 2: XML Syntax 23



attributes hold supplementary data that is often not shown. Sometimes one way makes more sense

than the other. Feel free to use whichever way works for you.

Name Tokens and Namespaces

Names of elements and attributes within XML must begin with a letter or an underscore ( _ ).

This may be followed by any combination of letters, numbers, underscores, hyphens ( - ), colons

( : ), or periods ( . ). However, names cannot begin with the letters xml (upper- and/or lower-

case) as these are reserved for future use by XML itself.

Colons have a special meaning in names as they are used to delimit namespace references from

their local names. Namespaces allow for differentiation between elements that would otherwise

be identical. In Delphi terms, this is similar to prefixing a procedure or function call with the name

of the unit containing it, separated by a period.

For example, in the movie-watcher documents you have the star element that refers to an

actor within a movie. It is possible that there are other types of documents that also have star ele-

ments, though they may assign a different meaning to them (such as stellar bodies). If you were to

combine these two documents, you might not be able to distinguish between the two based on the

element name alone. Namespaces are used to identify different sources (and meanings) and asso-

ciate a short name with each. This prefix is then combined with the element name to uniquely

identify it.

The declaration of a namespace can occur on any element and applies to that element and to all

of its children. A reserved attribute name is used for the declaration: xmlns. This is followed by a

colon and the prefix used within this document to refer to that namespace. A namespace declara-

tion may specify no prefix, and so defines the default namespace used for all elements that have no

prefix.

The value of the namespace is just something that distinguishes it from any other namespace,

although the use of URIs is encouraged. For several XML technologies, a particular URI is

expected for certain namespaces, and the application will generate an error if it is not exactly as

specified.

As an example, the fragment below declares three namespaces on the combined element. The

first is the default namespace and applies to the combined element itself (since it has no prefix).

The other two help to differentiate the two distinct star elements.

<combined xmlns="http://www.combined.com"
xmlns:mv="http://www.movies.com/"
xmlns:as="http://www.astronomy.com/stellar">

<mv:star>Liam Neeson</mv:star>
<as:star>Alpha Centauri</as:star>

</combined>

In the name mv:star, the mv part is the namespace prefix, the star part is the local name, and the

whole thing is a qualified name.

The names of elements and their attributes are case-sensitive within XML, whereas HTML

happily accepts any combination. Hence, movie, Movie, and MOVIE are all different elements in

24 Part I: Introduction to XML



XML. This can be a source of errors when coming from the Delphi world where case is ignored. I

suggest that you stick to one case when creating your documents to reduce possible problems.

Text and White Space

Anything outside of the markup is text or data—the content of the XML document. Generally an

XML processor does not touch this text, passing it straight through to the calling application.

Exceptions to this are entity references, which are described later.

XML allows most of the characters from the Unicode character set as valid text. Unicode is a

16-bit encoding scheme that covers many of the world’s written scripts. Characters that cannot be

written directly may be encoded using the following format: &#xhhhh;, where hhhh is the hexa-

decimal encoding for the required character.

White space between XML elements is generally not significant, whereas white space within

data may be. In XML, white space is defined as any of the following characters: space

(Unicode/ASCII 32), tab (Unicode/ASCII 9), line feed (Unicode/ASCII 10), and carriage return

(Unicode/ASCII 13). For human readability, the tags are often indented to indicate their position

within the hierarchy.

XML processors must pass all characters that are not markup through to the application. Vali-

dating processors must identify which of these characters appear within element content and

which may be safely ignored as separators between tags.

Breaks between lines within the XML document are normalized during processing. A single

line feed replaces any combination of carriage return and line feed characters.

The xml:space attribute may be added to any element to indicate how white space within it

and its descendants is to be treated. It is set to either default or preserve. The default handling

allows the application to treat white space in whatever way it normally does, while the alternative

asks that all spacing be retained as it appears. The setting may be overridden at a lower level in the

hierarchy through another instance of the attribute. In a valid document, this attribute must be

declared just like any other.

Another special attribute, xml:lang, allows you to identify the natural language of the contents

of an element. The value of this attribute is one of the standard language codes defined by ISO

639, such as en-GB, a language registered with the Internet Assigned Numbers Authority (IANA),

like i-navajo, or a user-defined language name of the format x-mydialect. As before, this attrib-

ute applies to the element where it is specified and all its descendants, unless overridden by

another instance. It must also be declared if documents containing it are to be validated.

Both the xml:space and xml:lang attributes may be defined in the DTD for the documents as

having default values, just like any other attribute. This allows them to be set without requiring

their presence within a particular document itself.

Chapter 2: XML Syntax 25



Comments

As with HTML, comments can be included in an XML document for the enlightenment of pro-

spective readers. These follow the same syntax as HTML as shown below:

<!-- Comment -->

Comments can contain almost anything (except the sequence -- and, of course, the terminating

string -->) and can appear just about anywhere within a document. However, they cannot be

placed within element tags, within declarations, or inside other comments.

Comments are designed for authors to add further explanation to their documents. They

should not contain information concerning the manipulation of the document since parsers may

strip them out and ignore them. For this purpose, use processing instructions instead.

Processing Instructions

To include additional information for automatic handling of the document you may include pro-

cessing instructions within it. These appear enclosed within the strings <? and ?> as shown below:

<?target instructions?>

The first token within the delimiters identifies the target application that this instruction is des-

tined for, followed by the actual command. No structure is implied within the instruction data by

the XML specification, leaving it up to the target program to interpret its meaning. The name of

the target application cannot start with the characters xml, in any combination of upper- or lower-

case, as these are reserved for use by XML itself.

These instructions can be picked up by a target application after parsing the XML, and then be

decoded and applied to the document. They might define specific formatting instructions

(although one of the tenets of XML is to separate content from presentation) or configuration

parameters for the program. Applications can safely ignore processing instructions for other target

programs.

The targets of processing instructions may be formally declared through the notation mecha-

nism described later.

Entities

XML allows for the declaration of entities within a document. These are named strings of charac-

ters for substitution throughout the document. Once defined, through the !ENTITY tag, you can

incorporate their content by using the entity name, preceded by an ampersand ( & ) and followed

by a semicolon ( ; ). This sequence is known as an entity reference. Remember that the names are

case-sensitive. Entity declarations appear within the DOCTYPE specification at the start of an XML

document.

26 Part I: Introduction to XML

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



<!DOCTYPE example [
<!ENTITY xml "Extensible Markup Language">
]>
:

XML stands for &xml;.

In order to include the metacharacters used by XML within a document’s content, you can use one

of the predefined entities shown in Table 2-1. This allows for the placement of these characters in

the body of the document without them being misinterpreted as control characters. Again, these

are the same as in HTML.

XML tags appear between the &lt; and &gt; signs.

Table 2-1: Predefined entities

Entity Reference Value

&amp; &

&lt; <

&gt; >

&apos; '

&quot; "

In addition, any character in the Unicode set can be represented by a character reference. This

consists of the entity delimiters surrounding a hash sign ( # ) and the numeric code for that charac-

ter. The numeric code is decimal by default, but can be hexadecimal if preceded by an x. In this

way, you can easily refer to characters that are outside your document’s encoding scheme, or that

are not easily entered from your keyboard.

This content is copyright &#169;.

would appear as the following:

This content is copyright ©.

XML allows for entities to be defined within the document or external to it. To retrieve the content

of another file as the value of an entity, you must declare the entity and identify its source, as either

a logical (public) or physical (system) location. These external entities are then included in the

original document wherever their entity name is invoked. In this way you can break a large docu-

ment up into separate pieces, such as chapters, and then combine them all into a coherent whole.

Entities that are incorporated into the XML document are known as parsed entities, and may be

internal or external depending on where they reside.

<!DOCTYPE example [
<!ENTITY chap01 SYSTEM "http://www.mysite.com/book1/chap01.xml">
]>
:

&chap01;

Parsed entities must be defined before they are used and, if they contain XML markup, must be

well-formed to be included in the document. They may not contain recursive references to them-

selves, either directly or indirectly. External parsed entities may use different encoding schemes

Chapter 2: XML Syntax 27



than the original document; however, such schemes must be declared at the start of the entity in a

format similar to the normal XML prolog.

Entities are also used to identify other items that are not part of the XML document, such as

images, audio, video, or Web links. Such entities are not retrieved as part of the XML parsing pro-

cess (they are unparsed), but may be manipulated by the application that uses the XML document.

These entities are designated as not being part of the XML document through a type declaration

following the NDATA keyword.

<!DOCTYPE example [
<!ENTITY SW1-site SYSTEM "http://www.starwars.com/episode-i/"
NDATA HTML>

<!ENTITY SW1-logo SYSTEM
"http://www.starwars.com/episode-i/palpatine/img/top_logo.gif"
NDATA GIF>

]>
:

<movie id="SW1" logo-url="SW1-logo" url="SW1-site">
:

</movie>

TIP More information on declaring entities, of all types, is provided in the following chapter
on the document type definition.

CDATA Sections

An alternative to using the predefined entities in your content is to mark sections as only contain-

ing character data, in other words no markup. Therefore, any reserved characters you encounter

should be treated simply as their text equivalents. These sections are denoted by a special syntax:

<![CDATA[...]]>

For example:

<![CDATA[Ignore any markup characters such as < and >.]]>

The body of this tag can contain any text (except for the terminating combination of ]]>). This

makes it very easy to talk about XML within an XML document. Trying to achieve the same thing

in HTML, talking about HTML, involves a great deal of extra work.

CDATA sections only affect the interpretation of the XML source and are generally converted

to the equivalent text within an XML processor. Thus, they can appear simply as textual content to

the final application.

28 Part I: Introduction to XML



Prolog

All XML documents should include an XML identifier at the start of the document to define the

file type. This is enclosed within angle brackets and question marks with a tag name of xml. The

version of XML being used (currently 1.0) must be included as an attribute. Additional attributes

can identify the character encoding in use, and whether or not the document can be used without

reference to anything else. If these attributes are specified they must appear in this order:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

Thus, every XML document should have at least the following at its beginning:

<?xml version="1.0"?>

The current version of XML is 1.0, but this does not imply a commitment to any future versions of

the specification, nor to any particular numbering scheme. However, XML processors should

check the declared version within a document and raise an error if it does not recognize the given

value. This protects against changes in the future that may alter the handling of XML documents.

A standalone document is one that contains no markup declarations that affect the interpreta-

tion of the XML document and that are external to that document. This does not include references

to external entities, provided that they are declared internally. The declaration in the prolog must

specify either yes or no, with the latter applying if no declaration is present.

Documents that have any of the following in external parsed entities must not have a

standalone declaration set to yes:

� Attributes with default values, if elements appear without those attributes specifically set

� Entities other than the standard ones, if references to those entities are used

� Attributes with values subject to normalization, where values are specified that change

because of this

� Element types with element content, if any instance of them contains white space

The syntax for this prolog is the same as that for processing instructions as described earlier. In

fact, the prolog could be seen as an instruction to an XML parser defining how this document is to

be treated.

Encoding Schemes

XML processors need to be able to deal with a variety of encoding schemes for the documents. All

processors must recognize and handle the UTF-8 and UTF-16 encodings. Additional schemes

may also be available through specific processors. Documents that are not in one of the two stan-

dard formats must include an encoding declaration in the XML prolog.

Chapter 2: XML Syntax 29



The common encoding schemes and transformations are described below:

ASCII The standard 7-bit encoding used on many computers.

ISO-8859-1 An 8-bit encoding that extends ASCII to include those accented characters that

make up most of the common Western European languages, including French, Ger-

man, Spanish, and Italian. This is the first of a collection of encodings that enhance

basic ASCII.

ISO-8859-2 Like ISO-8859-1 but for Eastern European languages.

ISO-8859-3 Like ISO-8859-1 but for Southern European languages.

ISO-8859-4 Like ISO-8859-1 but for Northern European languages.

ISO-8859-5 Like ISO-8859-1 but for Cyrillic languages.

ISO-8859-6 Like ISO-8859-1 but for Arabic languages.

ISO-8859-7 Like ISO-8859-1 but for the Greek language.

ISO-8859-8 Like ISO-8859-1 but for Hebrew languages.

ISO-8859-9 Like ISO-8859-1 but for Turkish languages.

ISO-8859-10 Like ISO-8859-1 but for Nordic languages.

UNICODE A 16-bit encoding that provides access to most of the characters from languages

world-wide. The first 128 characters correspond to the ASCII codes. It is defined by

the Unicode Consortium (www.unicode.org) and is becoming a standard in many

computing environments.

UCS-2 The Universal Character Set. Another 16-bit encoding that covers most of the

world’s languages and is effectively equivalent to Unicode.

UCS-4 An extended form of UCS-2 that uses 32-bit encodings. So far, the first (and only)

section defined is equivalent to UCS-2 with additional null bytes to make up the 32

bits.

UTF-8 A Unicode (or UCS) Transformation Format that maps these encodings to a byte

stream. It overcomes the problem of just using the straight 16-bit values whereby

the stream has many embedded null bytes, which are often interpreted in programs

as the end of a string. To achieve this, and to offer the greatest compatibility with

existing systems that use ASCII (remember that the first part of Unicode is ASCII),

it uses a variable number of bytes for each character. Normal ASCII is encoded in a

single byte, characters from x0080 to x07FF are encoded in two bytes, and charac-

ters x0800 to xFFFF are encoded in three bytes. Further encodings are defined for

UCS-4 type characters, but these are not currently used. Hence, any standard ASCII

file is also a valid UTF-8 file, which is very convenient.

30 Part I: Introduction to XML



UTF-16 Another transformation for Unicode (or UCS) that maps the characters to 16-bit

values. It comes in two flavors: UTF-16BE and UTF-16LE. The first is for

big-endian byte order, which means that the most significant byte appears first,

while the other is for little-endian byte order, where the least significant byte comes

first. These types are signaled through the presence of a known byte sequence at the

start of the file. For BE it is xFEFF and for LE it is xFFFE.

Although the document prolog allows you to specify the encoding scheme used for the document,

how do you know which scheme to use to read that declaration? Fortunately, the XML specifica-

tion identifies ways around this problem. It states that any document not using either the UTF-8 or

UTF-16 encoding schemes must have a prolog to indicate the scheme to be used. Furthermore,

this prolog must appear at the start of the document and must only contain ASCII characters. This

allows a processor to read the first few bytes to determine which family of schemes is in use, then

read the rest of the prolog to discover the exact format for the remainder of the document.

For more information on encoding schemes, you can check out these sites:

W3C Internationalization/Localization

http://www.w3.org/International/O-charset.html

Lycos: Computers/Software/Globalization/Character Encoding

http://dir.hotbot.lycos.com/Computers/Software/Globalization/Character_Encoding/

Lycos: Computers/Data Formats/Markup Languages/XML/Encoding

http://dir.hotbot.lycos.com/Computers/Data_Formats/Markup_Languages/XML/

Encoding/

XML Processors

The XML specification also defines the capabilities of software modules that can handle XML

documents. Collectively, these modules are known as XML processors. Typically a processor

reads the document and provides access to its content through some mechanism. Another module,

the application, calls the processor and makes use of its results.

Processors fall into two main groups: validating and non-validating. Both types must report

errors when they encounter constructs that violate the well-formedness constraint of XML. Vali-

dating processors must also report conflicts between the document and its associated document

type definition. To achieve this, these processors must retrieve and decode the entire DTD and any

external parsed entities that are referenced. Non-validating processors need only handle an inter-

nal DTD for well-formedness and for supplying attribute defaults and entity definitions.

The behavior of an XML processor is intended to be highly predictable, allowing you to easily

swap between different versions without requiring major changes to your application.

Chapter 2: XML Syntax 31



Summary

In this chapter you’ve been introduced to the syntax of XML and have been shown its major fea-

tures. This should be enough to construct most documents for normal use. By following the simple

rules presented here you can produce well-formed XML documents that can be happily processed

by an XML parser. To ensure that a particular document meets the guidelines set out for its class of

documents, you need to define a DTD, as described in the next chapter.

32 Part I: Introduction to XML



C h a p t e r 3

Document TypeDocument Type

Definitions

Although XML documents can be used standalone, a great deal of their potential benefit comes

from having standard formats that facilitate the transfer of information from one platform or appli-

cation to another. One way to enforce a particular format is through the use of a document

description in the form of a document type definition (DTD).

A DTD specifies, for a particular type of document, what the layout of valid elements can be.

Listing 3-1 shows the DTD for the movie-watcher documents. The DTD lists what elements are

valid within these documents and what sub-elements or content may appear within each of them.

For each element, there can also appear a list of the attributes applicable to it, along with their

types and whether or not they are required.

Listing 3-1: DTD for movie-watchers

<!-- Data about movies and when and where they are showing
Developed by Keith Wood, 28 May 1999 -->

<!ELEMENT movie-watcher (movies, cinemas, screenings)>

<!ELEMENT movies (movie+)>

<!-- Information about the movies -->
<!ELEMENT movie (name, length?, director?, starring?, synopsis?)>
<!ATTLIST movie id ID #REQUIRED

rating (NR | G | PG | PG-13 | R) #REQUIRED
logo-url ENTITY #IMPLIED
url ENTITY #IMPLIED>

<!ELEMENT name (#PCDATA)>
<!-- Length as minutes -->
<!ELEMENT length (#PCDATA)>
<!ELEMENT director (#PCDATA)>
<!ELEMENT starring (star+)>
<!ELEMENT star (#PCDATA)>
<!ELEMENT synopsis (#PCDATA | emph)*>
<!ELEMENT emph (#PCDATA)>

<!ELEMENT cinemas (cinema+)>

<!-- Details about the cinemas -->
<!ELEMENT cinema
(name, phone, address, directions?, facilities?, pricing)>

33



<!ATTLIST cinema id ID #REQUIRED
logo-url ENTITY #IMPLIED
url ENTITY #IMPLIED>

<!ELEMENT phone (#PCDATA)>
<!ELEMENT address (#PCDATA)>
<!ELEMENT directions (#PCDATA)>

<!ELEMENT facilities (candy-bar?, disabled-access?)>

<!ELEMENT candy-bar EMPTY>
<!ELEMENT disabled-access EMPTY>

<!-- List of pricing schemes -->
<!ELEMENT pricing (prices+)>

<!ELEMENT prices (name, period, adult, child, discount?)>
<!ATTLIST prices id ID #REQUIRED>

<!-- When do these prices apply? -->
<!ELEMENT period (#PCDATA)>
<!-- Actual prices in dollars -->
<!ELEMENT adult (#PCDATA)>
<!ELEMENT child (#PCDATA)>
<!ELEMENT discount (#PCDATA)>

<!ELEMENT screenings (screening+)>

<!-- Where and when is a movie showing? -->
<!ELEMENT screening
(start-date, end-date, features?, restrictions?, sessions)>

<!-- Which movie and cinema? -->
<!ATTLIST screening movie-id IDREF #REQUIRED

cinema-id IDREF #REQUIRED>

<!-- Which dates does this apply to? (format mm/dd/yyyy) -->
<!ELEMENT start-date (#PCDATA)>
<!ELEMENT end-date (#PCDATA)>

<!ELEMENT features (digital-sound?)>

<!ELEMENT digital-sound (#PCDATA)>

<!ELEMENT restrictions (no-passes?)>

<!ELEMENT no-passes EMPTY>

<!ELEMENT sessions (session+)>
<!-- Session value is the start time hh:mmam/pm -->
<!ELEMENT session (#PCDATA)>
<!-- Which price schedule to use? -->
<!ATTLIST session price-id IDREF #REQUIRED>

34 Part I: Introduction to XML



DTD Declarations

The DTD for a document can be included directly within that document, following the XML

prolog. This is called an internal subset. It appears within the DOCTYPE declaration, which specifies

the top-level element for the document, and has the element definitions located between the

symbols [ and ]>. A movie-watcher document with its DTD may appear like the following:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE movie-watcher [
DTD from above

]>
Rest of movie-watcher document

Alternately, the DTD can be stored in a separate document that is referred to by each XML docu-

ment that claims to conform to it. These DTDs are known as external subsets. This allows the

definition to be shared by any number of documents and is the basis of a common communication

language using XML. Again, the DTD entry appears after the XML prolog and includes either a

public or system declaration that lists the (logical or physical) location of the DTD document. The

public identifier is designed to be some generally accepted name for a particular DTD, which is

then mapped onto an actual document.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE movie-watcher SYSTEM "movie-watcher.dtd">
Rest of movie-watcher document

Referring to an external document and then following it with some inline declarations lets you

extend a DTD. Typically the inline section refers to entities that are only relevant to the current

document, as either internal or external abbreviations (parsed entities), or external document ref-

erences (unparsed). This technique is used in the movie-watcher documents to point to Web sites

and graphics, as shown below:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE movie-watcher SYSTEM "movie-watcher.dtd" [
<!ENTITY SW1-site SYSTEM "http://www.starwars.com/episode-i/"
NDATA HTML>

<!ENTITY SW1-logo SYSTEM
"http://www.starwars.com/episode-i/palpatine/img/top_logo.gif"
NDATA GIF>

<!ENTITY PV "Pleasantville">
]>
Rest of movie-watcher document

An XML document that claims to conform to a particular DTD must include a reference to that

DTD within itself. If the document is well-formed and does indeed follow the DTD specification,

it is regarded as a valid document. Documents can quite happily be well-formed without being

valid, and are still usable as such.

Chapter 3: Document Type Definitions 35



Content Model

Individual elements within the definition are declared with the <!ELEMENT string, followed by the

element’s name. Remember that these declaration tags are case-sensitive and must be entered as

shown. However, you are free to use whatever case you wish for your own elements. Just remem-

ber to use the same case when constructing your documents if you want them to be valid.

The final part of the element definition lists the valid content for that element. Items that do not

contain anything are noted as such by having the keyword EMPTY as their only content, such as the

candy-bar and disabled-access elements in the example DTD. Elements that can contain any-

thing use the keyword ANY. This is rarely done since the idea of the DTD is to prescribe the

structure of the document in a meaningful way.

<!ELEMENT disabled-access EMPTY>

Most often the content for an element consists of sub-elements or free text. In both cases the model

is enclosed within parentheses. The first option lists the name(s) of the valid lower-level elements.

Separating options with vertical bars ( | ) specifies alternate content at the same position.

Sequential content is listed separated by commas ( , ). Elements from a sequential list must appear

in the specified order in the XML document for it to be valid. Parentheses may be used at any point

to group items together, and white space can be used to make the text more readable.

For example, the following declaration states that a movie-structure element must contain an

opening-title element, followed by any number of either close-up or wide-angle elements,

followed by a closing-title element.

<!ELEMENT movie-structure
(opening-title, (close-up | wide-angle)*, closing-title)>

Free text content models are also known as mixed content. For free text alone the model consists

solely of the text #PCDATA. Such an element can contain any valid characters, but no other markup.

Characters that have meaning to XML must be replaced by character references, specifically &lt;
for < and &amp; for &.

<!ELEMENT emph (#PCDATA)>

If the element can contain both free text and other elements, then the first entry in the model must

be #PCDATA as above. This may be followed by any number of element names, each separated by a

vertical bar ( | ). An asterisk ( * ) must follow the closing parenthesis. In this combined case you

can constrain which child elements may appear, but have no control over their order or the number

of times that they are used. Each sub-element may only be listed once, but it may be used within a

document many times.

<!ELEMENT synopsis (#PCDATA | emph)*>

For each content item or group, including the entire content list, you can also indicate its occur-

rences using the characters shown in Table 3-1. By default, an element must appear exactly once.

From the following sample you can see that a movie element must contain a single name entry, fol-

lowed optionally by length, director, starring, and synopsis elements in this order. The

synopsis element above can contain zero or more ( * ) occurrences of either ( | ) free text

36 Part I: Introduction to XML

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



(#PCDATA) or an emphasis element (emph). Mixed content must always include the zero or more

indicator. The emph element can only contain free text.

<!ELEMENT movie (name, length?, director?, starring?, synopsis?)>

Table 3-1: Occurrence indicators

Indicator Occurrences

nothing Content must appear once (mandatory)

? Content may appear once (optional)

* Content may appear zero or more times

+ Content must appear one or more times

Content models should be deterministic. This means that there should be only one possible path

through the DTD for each sequence of elements within a document. You should not have to look

ahead within a model to determine which path to follow. XML processors may raise an error if

they cannot decide which element within the content model to match with.

Attributes

Attributes are additional information that can be attached to an element. As noted earlier, the

choice of making this extra data an attribute or a sub-element is largely a matter of personal taste.

Generally, attributes supply details that are not essential to the element under consideration, but

are useful in some circumstances. One exception to this is an ID attribute, which serves to

uniquely identify an element.

To define an attribute for an element you enter a declaration that begins with the <!ATTLIST
string. This is followed by the name of the element to which it applies and a list of the attributes

themselves. Each attribute provides its name, its type, and its default declaration. Although the

attributes for an element can appear anywhere within the DTD, it is usual to place them directly

after the element’s declaration.

Multiple attributes for the same element may be listed separately, each within its own ATTLIST
declaration, or they may be combined into a single declaration by omitting the ATTLIST text and

the element name before the second and subsequent attributes.

If more than one definition for a particular element and attribute combination is encountered,

only the first one is used, with any others being ignored. Note that this is not an error. This ability

does allow you to override an attribute inherited from an external DTD by re-specifying it within

the internal subset in the document itself. An external DTD is read and processed following any

internal definitions.

The type of an attribute is usually free text, denoted by CDATA, or a list of literal values (an enu-

merated type). For example, the rating of a movie is declared as an attribute that must be set to one

of the listed values (and no others) with the following:

<!ATTLIST movie rating (NR | G | PG | PG-13 | R) #REQUIRED>

Chapter 3: Document Type Definitions 37



Listing a value at the end of the declaration sets that as the default value for each attribute. In this

case, if the attribute is not specified within an appropriate element in a document, it automatically

takes the given value. If it does appear in the document, the supplied value is used and the default

is ignored. Alternately, you can nominate the presence or absence of the attribute with the

#REQUIRED (mandatory) or #IMPLIED (optional) keywords.

Another option is to supply a default value and specify the attribute as #FIXED, or unchange-

able. Such attributes automatically take on the given value. You may assign the attribute a value

within the document itself; however, this generates an error if that value does not match the fixed

one.

Fixed attributes can be used to provide common roles across a number of DTDs, allowing such

elements to be processed in a standard way, regardless of where they originate. For example, name
elements could be declared to have a title-element attribute with a fixed value. An automated

search tool could then find these elements, along with title-element attributes from other XML

documents containing book details, and handle them all in the same manner, regardless of the

actual names of those elements. These attributes would be fixed so that a document author could

not change them, nor forget to include them.

<!ATTLIST name title-element CDATA #FIXED "movie">

Other specialized attribute types are available, as shown in Table 3-2. The ID and IDREF types are

very useful in establishing links between different elements within your documents. Each ID

value must be a valid name within XML and no element may have more than one ID type attribute.

The default value for an ID type attribute must be either #IMPLIED or #REQUIRED. For example, in

the movie-watcher documents, movies and cinemas each have ID attributes, while screenings

have two IDREF attributes that link the other elements together. Although it is not necessary to

name an attribute of type ID as ID, it is common to do so, or to at least include this as part of the

name.

Table 3-2: Attribute types

Attribute Type Content

ENTITY An unparsed entity’s name

ENTITIES A list of unparsed entities’ names (separated by white space)

ID A unique identifier within the document

IDREF Another element’s unique identifier

IDREFS A list of other elements’ unique identifiers (separated by white space)

NMTOKEN Free text but restricted to an identifier format

NMTOKENS A list of NMTOKENs (separated by white space)

NOTATION Must be a declared notation

The NOTATION type for an attribute enables us to refer to one or more external type definitions to

further restrict the possible valid values for it. An example of this is a date reference. Each

NOTATION type must be declared elsewhere within the DTD.

38 Part I: Introduction to XML



ENTITY types refer to external documents that XML does not manipulate directly. The entities

must be defined elsewhere in the DTD, or in the XML document itself, as unparsed entities.

Examples of these types of attributes appear in the DTD extract shown below:

<!ATTLIST movie id ID #REQUIRED
rating (NR | G | PG | PG-13 | R) #REQUIRED
logo-url ENTITY #IMPLIED
url ENTITY #IMPLIED>

An XML processor normalizes attribute values before being passed off to the application. Charac-

ter and entity references are resolved as the first step. All white space characters are then replaced

with spaces. Finally, if the attribute type is not CDATA, leading and trailing spaces are removed, and

internal sequences of spaces are replaced by a single space. If the DTD is not available or is not

processed, then all attributes are treated as though they were of type CDATA.

Notations

Notations describe the data content of various other items. Each one needs to be declared within

the DTD or the XML document where it is used. In attribute declarations a notation defines the

range of possible values that can be entered for that attribute. For external entities, a NOTATION dec-

laration indicates a formal specification for a data type or a helper application that can handle that

type.

A typical use for notations in attribute declarations is the specification of date formats. The

NOTATION declarations refer to the appropriate specification resource:

<!NOTATION ISODATE SYSTEM "http://www.iso.ch/date_specification">

These notations could then be used on an attribute as follows:

<!ELEMENT screening (sessions)>
<!ATTLIST screening start-date NOTATION (ISODATE) #REQUIRED

end-date NOTATION (ISODATE) #REQUIRED>

Multiple notations may be specified, separated by vertical bars ( | ), indicating that the attribute

value must conform to one of those formats.

Notations declared for use with external entities define the public (logical) or system (physi-

cal) location of the format’s specification or of a helper program:

<!NOTATION HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

Entities

An entity within XML is a reference to some other content, either simple text or an entire docu-

ment held externally. They appear following the string <!ENTITY.

Several standard entities were described in Chapter 2, covering the metacharacters used by

XML. Character references were also described there, which allow you to include characters that

are outside the current encoding or that cannot be entered directly through the keyboard. Recall

Chapter 3: Document Type Definitions 39



that these have the format &#nnn; or &#xhhhh;, where nnn is the decimal encoding for the required

character and hhhh is its hexadecimal encoding.

For simple substitutions, entities can be defined as abbreviations for the desired text. In

addition to the predefined entities, you can define your own entries. These items are expanded

within your document by denoting them as entity references, i.e., preceding the name with an

ampersand ( & ) and following it with a semicolon ( ; ). Although entities can contain additional

markup, there are several restrictions on their use in this way—specifically that the content must

be properly nested.

<!ENTITY PV "Pleasantville">
:
<address>1234 Main St, &PV;</address>

Larger substitutions can be achieved by linking the entity name to an external document contain-

ing either text or XML. The PUBLIC or SYSTEM keyword is used to indicate that a logical or physical

location follows. As with simple entities, the contents of the referenced object are included in the

current document by entering the appropriate entity reference.

Both of these types of entities are known as parsed entities since their content is incorporated

into the document and processed as XML. The inline specifications are internal entities, while file

references are external entities.

Another class of entity is the unparsed entity. This is an external reference to a document that

should not be included in the current document. Typically, these are used for non-text documents

such as images, audio, and video, but they can also be hyperlinks to information that is additional

to that contained within the current document. These unparsed entities are denoted by the inclu-

sion of the document’s type, in the form of a notation name following the keyword NDATA, within

its declaration:

<!ENTITY SW1-logo SYSTEM
"http://www.starwars.com/episode-i/palpatine/img/top_logo.gif"
NDATA GIF>

One final class of entities exists—parameter entities. Parameter entities can be internal or external

but are always parsed. They are differentiated from normal entity declarations by having a percent

sign ( % ) before the name. To refer to a parameter entity, you prefix the name with a percent sign

and follow it with a semicolon. These entities are only valid within the DTD itself. Often parame-

ter entities are used to include common sequences within the DTD. In this case they must contain

both the opening and closing parentheses of any content model groups that they define.

Parameter entities are also used to control the inclusion or exclusion of parts of a DTD through

the use of conditional sections. A conditional section starts with the text <![xxx[ and continues

until it reaches ]]>. The xxx here is replaced by the keyword INCLUDE to process the section nor-

mally, or IGNORE to bypass it. By using parameter entities, these sections can be turned on and off

just by changing the value of that one parameter. Valid conditional sections may contain any com-

bination of complete declarations, comments, processing instructions, or white space. The

definitions below would add a format attribute to the movie element:

40 Part I: Introduction to XML



<!ENTITY % extended "INCLUDE">
<![%extended;[
<!ATTLIST movie format CDATA #IMPLIED>
]]>

Conditional sections may be nested. However, once a section is bypassed because its keyword is

set to IGNORE, all of its content is also ignored regardless of any embedded conditional sections.

Recall that entity values in an external DTD can be overridden by specifying them in the inter-

nal subset of a document. If the external DTD is set up with appropriate conditional sections, these

can be turned on or off for each document by simply redefining the controlling entity.

Summary

DTDs consist mainly of the list of valid elements that may appear within an XML document that

claims to conform to it. You define what each element may contain—other elements, straight text,

or a combination of the two. Attributes can also be specified for each element, along with their

types and whether or not they are required.

DTDs may also list standard entities, either parsed or unparsed, internal or external. These

may be used in documents referring to the DTD.

XML documents claim conformance with a particular DTD by including the DOCTYPE declara-

tion within their header. This lists the top-level element for the document and where the DTD can

be found. DTDs can be included inline in the XML or can be located in external files for sharing

among a number of documents. Valid documents are those that refer to a DTD and follow its

specification.

This has been a very quick look at XML DTDs, hopefully providing enough information to

enable you to create your own basic definitions. For more information you should refer to one of

the many books on XML itself. An alternative to DTDs as a means of specifying the legal content

of a document is to use an XML Schema, which is covered in Chapter 7.

Chapter 3: Document Type Definitions 41



C h a p t e r 4

Extensible

Stylesheet LanguageStylesheet Language

Transformations

As we have already seen, XML is a technology for encoding the meaning of data within a docu-

ment, as opposed to HTML, which describes the presentation of that data. The Extensible

Stylesheet Language (XSL) is the link between the two. It provides a language to define the trans-

formation of the plain data into an output format suitable for display on some device.

XSL consist of two main parts: the style language that describes how to format different por-

tions of the document (sometimes known as XSL Formatting) and a transformation language

(XSLT) for converting a tree structure.

The style language is an XML format and allows you to define how the various portions of the

document are to be displayed. It includes the usual font specifications, colors, and alignments, as

well as more advanced features such as flow control, numbering, footnotes, and tables. However,

the language is still in its early stages and formatters that know how to deal with such a document

are not readily available. The most current implementation available is known as FOP (For-

matting Objects to PDF). It is a free Java program from James Tauber that takes an XSL document

and generates a PDF file from it. Due to the lack of widespread use of XSL, it is not covered in this

book.

Transformations

The XSL Transformation language (XSLT) allows you to manipulate an XML document, extract

parts, rearrange sections, and format the results for further consumption. Often the output from the

transformation is HTML, allowing the data to be easily accessed over the Internet. However, other

document types can also be produced, such as plain text, rich text, audio input, or even other XML

documents.

A transformation stylesheet is actually an XML document itself. All the processing is encoded

within elements that have a tag starting with xsl: (a de facto standard), while the remaining

42



elements are output to the final document. The document element of the stylesheet is the

xsl:stylesheet element. This requires a version attribute, currently 1.0, and a namespace defini-

tion for the xsl: elements (which should be exactly as shown below).

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="html"/>
:

</xsl:stylesheet>

XSLT is designed to be extensible, allowing for the inclusion of any set of formatting instructions.

Each set must be identified by its own namespace with a reference to its definitions. The

namespaces are specified within the xsl:stylesheet element as additional xmlns: attributes.

Within the stylesheet the namespaces are used with a colon ( : ) to denote their scope.

The xsl:output element identifies the destination format for the results of the transformation.

It should be one of the values html, xml, or text. If no output method is specified it is assumed to

be xml, unless the first tag generated is <html>, in which case the output method becomes html.

Other values are possible, but are not defined by the specification.

Templates and Patterns

The XSLT stylesheet uses a system of templates to match up with portions of the XML document

and to specify how they are manipulated. Once a template is matched to an element, the contents

of that template are applied to it. At least one template is required to initiate the process, matching

with the XML document as a whole.

<xsl:template match="/">
formatting commands for this document as a whole

</xsl:template>

Subsequent templates may be set up to match on only parts of the XML document hierarchy. To

determine which elements a particular template targets, you use the match attribute with a pattern

specification. Elements and attributes are identified by name, with attributes being prefixed by an

at symbol ( @ ). A slash ( / ) separates elements at different levels, while the asterisk ( * ) is a

wildcard, matching with anything. The description of the patterns is itself an XML-related specifi-

cation—XML Path Language (XPath).

Conditions may appear with square brackets ( [ ] ) following the element to which they apply.

Various function-like names identify particular nodes either by their type, by their unique ID

attribute, or as the current node of interest. Unless a pattern starts with a slash, making it an abso-

lute reference, all patterns are within the context of the current node. Some sample patterns are

shown in Table 4-1.

Chapter 4: Extensible Stylesheet Language Transformations 43



Table 4-1: XSLT patterns

Pattern Matches

/ The root node of the XML document

* Any element

. The current node

movie Any movie element

director|star Any director or any star element

movie/name Any name element with a movie element parent

movies//name Any name element with a movies element ancestor

text() Any text node

node() Any node other than the root node or an attribute node

id("SW1") The element with SW1 as its unique ID

context() The current node (that contains the expression)

star[1] Any star element that is the first child of its parent

star[last()=1] Any star element that is the only child of its parent

@url The url attribute within an element

@* Any attribute within an element

movie[@rating="PG"] Any movie element that has a rating attribute of PG

//screening[@movie-id=current()/
@id]/start-date

The start date of the screening element whose movie-id
attribute is equal to the id of the current node (presumably
a movie)

These pattern specifications are used throughout a transformation stylesheet to identify nodes or

attributes for subsequent processing. For example, in the xsl:sort element they determine the

criteria for ordering nodes. In the xsl:for-each element they select the subset of nodes to process

within a loop.

Within the main template you can invoke other templates through the use of the

xsl:apply-templates element. When used without a select attribute, this tag applies to all the

child nodes of the current one. Specifying a pattern within the select attribute causes only the

matching nodes to be processed through their templates. The following line affects all the movie
elements within the movie-watcher/movies hierarchy.

<xsl:apply-templates select="movie-watcher/movies/movie"/>

TIP I suggest that you make use of the template structure of XSLT wherever possible. This
allows you to make the stylesheet more modular, similar to using procedures in Delphi. You
can update each template separately from any other and call it from a number of different
points within the stylesheet. Furthermore, using templates allows you to apply specific trans-
formations to particular nodes within an XML document, without having to process the entire
thing. Chapter 21 shows how to achieve this.

44 Part I: Introduction to XML



XSLT has a number of built-in templates that provide basic functionality. One of these continues

the recursive application of templates when no specific match is found. Another one automatically

copies all text and attribute nodes straight across to the output. One more that matches processing

instructions and comments does nothing with them, effectively removing them from the output.

Generally there is only one template for each node type within the XML document. However,

by using named templates, it is possible to process the same node in different ways at different

times. The name attribute on the template tag identifies the template. Thereafter, the

xsl:call-template element can be used to invoke it by specifying that same name.

An alternative approach is to use modes. A template can have a mode attribute specified as part

of its declaration. If this same mode is supplied in the apply-templates tag, then only the corre-

sponding template is used. The following example displays only the names of each section within

the table of contents:

<xsl:apply-templates select="section" mode="contents"/>

<xsl:template match="section" mode="contents">
<li><xsl:value-of select="name"/></li>

</xsl:template>

Text Content

Text from the stylesheet is generally copied across to the resulting document as is. Nodes that con-

tain only white space are stripped from the document during processing. To ensure that these text

nodes are retained, you can enclose them within an xsl:text element.

This appears in the output,
<xsl:text>as does this.</xsl:text>

To include the content of an element or attribute in the text stream you can use the xsl:value-of
element. This element’s select attribute is a pattern that determines what is written out. Use the

“.” pattern to retrieve the contents of the current node.

<xsl:value-of select="@rating"/>
<xsl:value-of select="length"/> mins

Building Document Structure

Any elements in the template that do not belong to the XSLT namespace, nor to an extension

namespace, are copied directly across to the output document. In this way, it is easy to create

HTML pages using XSLT just by including the HTML tags within a template. However, there are

times when the tags or their attributes need to be more dynamic. XSLT provides the xsl:element
and xsl:attribute elements for just these purposes.

To create an output element with a computed name, use the xsl:element tag and set its name
attribute. Enclose references to elements or attributes in the name calculation within braces ( { } )

to denote it as an expression.

Chapter 4: Extensible Stylesheet Language Transformations 45



<xsl:element name="h{@level}">
Element content

</xsl:element>

Similarly, attributes can have computed names or values through the use of the xsl:attribute
tag. This tag must appear within the bounds of the element to which it refers.

<a>
<xsl:attribute name="name">
<xsl:value-of select="@id"/>

</xsl:attribute>
Anchor contents

</a>

Attribute values may also be created directly within the element using the expression technique

described above.

<a name="{@id}">
Anchor contents

</a>

Processing instructions and comments are created within the output document in a similar manner

with the xsl:processing-instruction and xsl:comment tags. These elements cannot be trans-

ferred directly from the XSL stylesheet since it is an XML document, and so would interpret or

ignore these as part of its own processing.

<xsl:processing-instruction name="xml">
version="1.0" encoding="UTF-8"

</xsl:processing-instruction>
<xsl:comment>Comment within the output document</xsl:comment>

To transfer an existing node from the source XML to the output document you use the xsl:copy
tag. However, this does not transfer the attributes nor the child elements of this node. These must

be copied manually.

Loops

The xsl:for-each tag provides a looping mechanism within XSLT. It applies its contents to each

node selected by the expression in its select attribute.

<xsl:for-each select="starring/star">
<xsl:value-of select="."/><br />

</xsl:for-each>

Ordering of the selected nodes is achieved through the xsl:sort element, which is placed as a

child of the looping element. Its select attribute specifies the values to be used for the ordering.

Multiple sorting tags allow for primary and secondary sort keys to be supplied. Additional attrib-

utes can be used to determine ascending or descending sorts, the language to be used, and the data

type (text, numeric, or other).

<xsl:for-each select="movie">
<xsl:sort select="name"/>
Movie content

</xsl:for-each>

46 Part I: Introduction to XML

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



NOTE Earlier versions of the XSLT engine within Internet Explorer seem to reject these sort-
ing tags, preferring instead an order-by attribute, with the same pattern as for the sorting tag.

<xsl:for-each select="movie" order-by="name"/>
Movie content

</xsl:for-each>

Conditional Processing

XSL also includes two ways of making decisions within the template. The first is the xsl:if tag,

which provides a simple “if” test around its contents. You use the test attribute to supply the

expression to be evaluated. If this expression refers to an element or an attribute, this item’s pres-

ence is being tested and the contents are applied if the item exists. Otherwise, the expression must

evaluate to a true or false value. The following fragment adds an href attribute to the output with

the value of the source node’s url attribute as its target, but only if the latter exists.

<xsl:if test="@url">
<xsl:attribute name="href">
<xsl:value-of select="@url"/>

</xsl:attribute>
</xsl:if>

For an if-then-else or a case statement type of test, you need to use the xsl:choose tag. This tag

has no attributes itself, but contains a number of xsl:when tags and an optional xsl:otherwise
tag. Each when tag acts like the if tag above, specifying an expression to be evaluated in its test
attribute. There may be several when tags within choose, each testing a different condition. The

otherwise tag can be added to process any nodes that did not get caught by one of the when tags

(similar to the else clause in a case statement). The following fragment tests for the existence of a

logo-url attribute on the current node and inserts an img element if it is found. If not, the name is

added within a header element.

<xsl:choose>
<xsl:when test="@logo-url">
<img>
<xsl:attribute name="src">
<xsl:value-of select="@logo-url"/>

</xsl:attribute>
<xsl:attribute name="alt">
<xsl:value-of select="name"/>

</xsl:attribute>
</img>

</xsl:when>
<xsl:otherwise>
<h3><xsl:value-of select="name"/></h3>

</xsl:otherwise>
</xsl:choose>

Chapter 4: Extensible Stylesheet Language Transformations 47



XSLT Sample

To bring all of these pieces together, have a look at the XSLT stylesheet fragment in Listing 4-1.

This fragment transforms the XML data for a movie into HTML suitable for display on the Web.

You can see the HTML tags embedded within the XSL processing. Note that the <img> tag in

HTML does not have a closing tag, nor does it have the XML shorthand for closing (a trailing

slash). However, within this stylesheet document, which is XML, one of these must be present.

Listing 4-1: Transforming a movie-watcher document into HTML

<?xml version="1.0" encoding="UTF-8"?>
<!-- HTML style sheet for movie-watcher XML (monolithic format)

Written by Keith Wood, 4 June 1999 -->
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="html"/>

<!-- Match the entire document -->
<xsl:template match="/">
<html>
<head>
<title>Movie Watchers</title>

</head>
<body>
<h1><a name="top">Welcome to Movie Watchers</a></h1>
<p>Your source for local film entertainment.
Have a look at <a href="#movies">what's on</a>,
<a href="#cinemas">where</a> and
<a href="#screenings">when</a>.</p>

<hr/>
<h2><a name="movies">Movies</a></h2>
<xsl:for-each select="//movie">
<xsl:sort select="name"/>
<!-- Provide link target and optional web link -->
<a name="{@id}">
<xsl:if test="@url">
<xsl:attribute name="href">
<xsl:value-of select="@url"/>

</xsl:attribute>
</xsl:if>
<xsl:choose>
<xsl:when test="@logo-url">
<img src="{@logo-url}" alt="{name}"/>

</xsl:when>
<xsl:otherwise>
<h3><xsl:value-of select="name"/></h3>

</xsl:otherwise>
</xsl:choose>

</a>
<table border="0" width="100%">
<tr>
<th align="left" valign="top" width="15%">Rating:</th>
<td width="15%"><xsl:value-of select="@rating"/></td>
<th align="left" valign="top" width="15%">Length:</th>
<td><xsl:value-of select="length"/> mins</td>

</tr>
<tr>

48 Part I: Introduction to XML



<th align="left" valign="top">Director:</th>
<td colspan="3"><xsl:value-of select="director"/></td>

</tr>
<tr>
<th align="left" valign="top">Starring:</th>
<td colspan="3">
<xsl:for-each select="starring/star">
<xsl:value-of select="."/><br/>

</xsl:for-each>
</td>

</tr>
<tr>
<th align="left" valign="top">Synopsis:</th>
<td colspan="3"><xsl:value-of select="synopsis"/></td>

</tr>
<tr>
<th align="left" valign="top">Showing at:</th>
<td colspan="3">
<xsl:for-each

select="//screening[@movie-id=current()/@id]">
<a href="#{@movie-id}-{@cinema-id}">
<xsl:value-of select="id(@cinema-id)/name"/>

</a><br/>
</xsl:for-each>

</td>
</tr>

</table>
</xsl:for-each>
<p>Back to <a href="#top">the top</a>.</p>
:
:
<hr/>
<p>Movie Watcher data supplied by
<a href="mailto:kbwood@compuserve.com">Keith Wood</a>.</p>

</body>
</html>

</xsl:template>
</xsl:stylesheet>

The stylesheet contains a single template that matches with the root of the XML document. Within

this, it sets up the HTML header block and starts the body of the output HTML. Static links to

other sections within the page appear in the introduction, allowing for easy navigation around it.

The title for the movies section follows, surrounded by a target anchor for one of the earlier links.

Each movie from the XML document is dealt with in turn by using the xsl:for-each loop

construct. The xsl:sort element sorts them alphabetically. A movie is identified by an image, if

one is specified in the XML, or by its name. In either case, this heading is set up as the target for

other links within the document through an encompassing anchor tag. The anchor also provides an

outward link to a related Web site, but only if it is present in the XML. Note the use of the

xsl:attribute elements to supply dynamic content for some of the attributes of the resulting

HTML.

After the movie’s name is a table that allows you to format the remaining details nicely. Values

are inserted with the xsl:value-of elements. Recall that elements and attributes are identified by

their name, with attributes being preceded by an at sign ( @ ). The references are relative to the

current node, the movie element selected in the for loop, since they do not start with a slash.

Chapter 4: Extensible Stylesheet Language Transformations 49



Finally, there is a list of the cinemas that are showing the movie. To create this, you need to find

the screening elements that have this movie’s id value as one of their attributes.

<xsl:for-each select="//screening[@movie-id=current()/@id]">

Looping through these with the <xsl:for-each> tag, you then want to traverse to the cinema node

that corresponds to that screening and retrieve its name for display.

<xsl:value-of select="id(@cinema-id)/name"/>

Further processing (not shown) within the stylesheet transforms the cinema and screening infor-

mation into HTML in a similar manner. At the end of the stylesheet you add any closing comments

and finish up the HTML document. The results of the transformation are shown in Figure 4-1.

50 Part I: Introduction to XML

Figure 4-1: XML transformed to HTML.



Summary

This chapter has introduced you to XSL and XSL Transformations. XSL provides an XML syntax

to describe complex formatting, although its abilities are not in widespread use yet. XSLT is

readily available and allows you to manipulate an XML document tree, extracting, rearranging,

and filtering it into another document tree that can then be displayed or processed further.

Typically it is used to wrap XML data in HTML for presentation on the Web.

XSLT has several additional abilities that are beyond the scope of this book. These include the

following:

� Extension tags, allowing you to creating your own formatting instructions

� Combining and overriding stylesheets

� Variables and parameters for passing values around the stylesheet

� Multiple source documents

� Additional functions

For more information, refer to the XSLT specification at http://www.w3.org/TR/xslt.

Further discussions of XSLT and its use from Delphi appear in Chapter 21—“Applying XSL

Transformations” and Chapter 26—“Examination XML—Web Client.”

Chapter 4: Extensible Stylesheet Language Transformations 51



C h a p t e r 5

XLink

XLink, which is part of the Extensible Linking Language (XLL), describes how documents can be

linked to each other. Each link points to a resource through its URI (currently just a URL). The

related specification, XPointer, defines how to reference parts within a document.

HTML already has linking elements such as the mainstay anchor tags, as well as images and

objects. Why have a new specification that duplicates this? One reason is that the links in HTML

are hard coded. Only an anchor tag provides a hypertext link to another document. You cannot add

a link to another tag, such as a citation. Secondly, the links in HTML are only single links. What if

you want to link to different versions of a document, perhaps in different languages, from the one

reference? You cannot do this in HTML. Also, the links from HTML are one-way only, from your

anchor to the related document. There is no way to create bi-directional links, especially if you do

not control the resource at the other end.

XLL is designed to overcome these problems, and to provide an extensible way of describing

and using links within a variety of documents. This technology is still being developed, and as yet

there are no major implementations of it. Other than this brief introduction to XLink and XPointer,

the topic is not covered further in this book.

XLink is defined in the document at http://www.w3.org/TR/xlink. As yet, the XLink specifi-

cation is not finalized, so the following discussion is based on the Proposed Recommendation of

December 20, 2000. The namespace declaration for XLink should be:

xmlns:xlink="http://www.w3.org/1999/xlink"

Although the defined prefix for XLink could be anything, it is customary to use “xlink.” The

examples throughout the rest of this chapter assume that the above namespace declaration has

been made at an appropriate point earlier in their documents.

Link Definitions

Links are defined in terms of attributes that belong to the XLink namespace. These can then be

added to elements in any XML document, with their meaning carrying over from XLink. Other

attributes can happily co-exist with the XLink ones. However, all attributes must be properly

declared in the DTD for a document to be valid.

52



The type of link is identified by the xlink:type attribute, which is the one XLink attribute that

must be present. It must have one of the values shown in Table 5-1, with the associated meanings.

Note that the DTD in which this attribute is declared need not provide for all of these types, but

those allowed must come from this list. Links are often referred to based on their type, such as sim-

ple links and locator-type links. In each case this means the element to which the appropriate type

attribute belongs.

Table 5-1: XLink link types

Type Purpose

simple An inline unidirectional link

extended A link that includes other data

locator A reference to a remote resource

arc A connection between two resources

resource A reference to a local resource

title A human-readable label for a link

none All XLink attributes are ignored in this element

The actual target of the link is specified in the xlink:href attribute, which must refer to a URI.

To define the purpose of the link, you use the xlink:role attribute. The role must be a quali-

fied name as defined in some namespace that is in scope at the time of the definition. The

xlink:arcrole attribute can be attached to arc-type elements, and is used to connect to an external

repository of links.

A human-readable description of the link can be supplied with the xlink:title attribute. A

link processor may display this value in help text, may create a table of links, or use it in whatever

way seems appropriate.

The behavior of the link is established by the xlink:show and xlink:actuate attributes. show
specifies where the content of the link appears. If it is not one of the values in Table 5-2, and not a

recognized qualified name, then the behavior is treated as undefined.

Table 5-2: XLink show values

Type Purpose

new A new window is used to display the resource

replace The resource replaces the current one

embed The resource appears within the current resource

other No XLink semantics apply, although other attributes should supply clues to
its use

none No XLink semantics apply, and no other attributes are available to assist

actuate defines when the link is activated. As for the previous attribute, it should be one of the

values in Table 5-3 or a qualified name. Otherwise, the value is treated as undefined.

Chapter 5: XLink 53



Table 5-3: XLink actuate values

Type Purpose

onLoad Load the resource immediately

onRequest The resource is loaded in response to some external event, such as a mouse click

other No XLink semantics apply, although other attributes should supply clues to its use

none No XLink semantics apply, and no other attributes are available to assist

The xlink:from attribute is used in arc-type links to specify the starting point for the link. Simi-

larly the xlink:to attribute indicates the resource to be loaded. The xlink:label attribute

identifies the elements involved in the arc-type link.

Attributes from the XLink specification can be combined within an element as shown in Table

5-4.

Table 5-4: XLink attribute usage patterns

Type

Attribute simple extended locator arc resource title

type Required Required Required Required Required Required

href Optional Required

role Optional Optional Optional Optional

arcrole Optional Optional

title Optional Optional Optional Optional Optional

show Optional Optional

actuate Optional Optional

label Optional Optional

from Optional

to Optional

Simple Links

The links built into HTML, such as a and img, are simple links. They provide one-way inline links.

Under XLink an anchor element’s definition might appear like that in Listing 5-1. This encodes

the current behavior of an anchor that specifies a simple unidirectional link that is activated when

the user clicks on it, with the target resource replacing the current page.

Listing 5-1: HTML anchor as an XLink

<!ELEMENT a (...)*>
<!ATTLIST a
xlink:type (simple) #FIXED "simple"
xlink:href CDATA #REQUIRED
xlink:title CDATA #IMPLIED
xlink:show (replace) #FIXED "replace"
xlink:actuate (onRequest) #FIXED "onRequest">

54 Part I: Introduction to XML



An actual anchor would then look like this:

<a xlink:href="http://www.dest.com/newpage.html" xlink:title="A simple link">Link from
here</a>

Similarly, an image element’s definition might be like the one in Listing 5-2. As before, it is a sim-

ple unidirectional link, but it loads immediately and appears within the original document. Note

that you can still have height and width attributes that are unrelated to the XLink mechanism.

Listing 5-2: HTML image as an XLink

<!ELEMENT img EMPTY>
<!ATTLIST img
width CDATA #IMPLIED
height CDATA #IMPLIED
xlink:type (simple) #FIXED "simple"
xlink:href CDATA #REQUIRED
xlink:title CDATA #IMPLIED
xlink:show (embed) #FIXED "embed"
xlink:actuate (onLoad) #FIXED "onLoad">

An image element could then be declared as:

<img xlink:href="http://www.dest.com/picture.jpeg" xlink:title="A lovely picture" width="100"
height="100"/>

These attributes can be applied to any element in any XML document to implement a linking

mechanism with defined semantics. You are not restricted to certain elements as you are with

HTML. Simple-type linking elements have no XLink defined child elements. Everything they

require is specified in the attributes. To take advantage of the main benefits of XLink, you need to

use an extended-type link instead.

Extended Links

Going beyond the simple links that you are used to from HTML, extended links allow you to spec-

ify multidirectional links, multiple titles, and even out-of-line links.

An extended link is really a container element for a number of other XLink enhanced ele-

ments. Within this container can appear locator-type and resource-type elements that identify the

remote or local resources involved in the links. A set of arc-type elements then defines the tra-

versal paths from one resource to another. Note that arcs are one-way only. To allow bi-directional

traversal you need to specify both directions separately.

Multiple titles can also appear within an extended link element. These are useful when differ-

ent versions of the title are supplied, such as in different languages, or when the title itself contains

other markup.

As an example, you could set up links to a series of related films using an extended link, as

shown in Listing 5-3. A browser might, when the user clicks on the linking text, pop up a menu

showing the titles of all the related links, allowing the user to select one to view.

Chapter 5: XLink 55



Listing 5-3: An extended link

The <movie-series>Star Wars series
<movie xlink:href="http://www.starwars.com/episode-i"
xlink:title="The Phantom Menace"/>

<movie xlink:href="http://www.starwars.com/episode-iv"
xlink:title="A New Hope"/>

<movie xlink:href="http://www.starwars.com/episode-v"
xlink:title="The Empire Strikes Back"/>

<movie xlink:href="http://www.starwars.com/episode-vi"
xlink:title="Return of the Jedi"/>

<linkto xlink:from="movie-series" xlink:to="movie"/>
</movie-series> continually expands the possibilities
of special effects.

The DTD for these elements may look like the one in Listing 5-4. Here the movie-series element

is the extended link container (using a fixed attribute). Within it can appear text that is displayed as

part of the normal content of this document.

Listing 5-4: Extended link elements DTD

<!ELEMENT movie-series (#PCDATA | movie | linkto)*>
<!ATTLIST movie-series
xlink:type (extended) #FIXED "extended"
xlink:role CDATA #FIXED "http://www.movies.com/movie-series"
xlink:title CDATA #IMPLIED
xlink:label NMTOKEN #FIXED "movie-series">

<!ELEMENT movie EMPTY>
<!ATTLIST movie
xlink:type (locator) #FIXED locator"
xlink:href CDATA #REQUIRED
xlink:role CDATA #FIXED "http://www.movies.com/movie"
xlink:title CDATA #IMPLIED
xlink:label NMTOKEN #FIXED "movie">

<!ELEMENT linkto EMPTY>
<!ATTLIST linkto
xlink:type (arc) #FIXED "arc"
xlink:from NMTOKEN #IMPLIED
xlink:to NMTOKEN #IMPLIED
xlink:show (new) #FIXED "new"
xlink:actuate (onRequest) #FIXED "onRequest">

The links are identified through the movie elements, each of which points to a remote resource and

has an associated title. Finally, the navigation is specified by the linkto element, which allows

you to nominate the starting and ending points for the links from among the listed resources. The

links are activated only when initiated by the user, and then produce a new window showing the

selected resource. As seen in the XML fragment in Listing 5-3 and the DTD in Listing 5-4, the val-

ues for the from and to attributes are taken from the labels of the other elements. If either or both of

these attributes is omitted, it instead refers to all elements within the extended link.

56 Part I: Introduction to XML

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



Out-of-Line Links

In some cases the resource that serves as the starting point for a link cannot be updated to include

the linking information. This may be because the document is not under your control, because it is

too expensive to modify and maintain such links inline, or because the resource is in another for-

mat altogether.

Even so, you want to be able to provide links to and from such a resource. Out-of-line links are

the answer. Such links exist in a document separate from the resources referred to—all the

resources for the links are remote. Out-of-line links are always extended links, with locator-type

elements to identify the resources and arc-type links to define paths between them.

Additional data can be associated with a set of links, simply by defining appropriate elements

within the external link set.

For example, movie-related resources, typically under someone else’s control, could be linked

with out-of-line links, producing a document similar to that shown in Listing 5-5.

Listing 5-5: Out-of-line links

<movie-links>
<clip xlink:href="http://www.movie-studio.com/blockbuster.avi"
xlink:title="Blockbuster Trailer"/>

<script xlink:href="http://www.movie-studio.com/blockbuster.rtf"
xlink:title="Script for Blockbuster"/>

<review xlink:href="http://www.reviews.net/reviews?film=blockbuster"
xlink:title="Reviews of Blockbuster"/>

<go/>
</movie-links>

Since these links are not directly available within the resources to which they refer, there needs to

be some mechanism for finding them when browsing such resources. The establishment of link

databases is an area of active work in this field and awaits further development.

Summary

XLink is part of the Extensible Linking Language, providing an extensible way to specify links

between two or more resources. It does this through the definition of a number of attributes, and

their associated semantics, which can be attached to any XML element.

As of yet, the XLink specification is not finalized, and no implementations are widely avail-

able to work with these links.

XLink allows you to refer to another resource in a consistent manner. To delve into that

resource and pick out individual parts of it, you can use XPointer as described in the next chapter.

Chapter 5: XLink 57



C h a p t e r 6

XPath and XPointerXPath and XPointer

XPointer is the other part of the Extensible Linking Language (XLL), along with XLink. Whereas

XLink gets you to another document, XPointer allows you to refer to locations, or ranges of items,

within that document.

Again, why duplicate something that already exists in HTML? Currently, you can add an inter-

nal location to a URL following a hash sign ( # ) which typically results in the document being

opened and positioned at this point. But what if the spot you wanted to reference does not have a

named anchor? If you do not control that document, you cannot just go in and add one. Also, these

locations only refer to a single spot within the target document. There is no way of referencing a

range of paragraphs, or an entire table.

XPointer is designed to provide these abilities and more. Its specification is available on the

accompanying CD-ROM or at http://www.w3.org/TR/xptr. Like XLink, the XPointer specifica-

tion is not finalized, so the following discussion is based on the Last Call Working Draft of the

spec (January 8, 2001).

XPointer is built upon the XML Path Language (XPath), which is also used in XSL Transfor-

mations. To this it adds the ability to refer to points (locations between nodes and/or characters)

and ranges of nodes, rather than just a single node. It can also find information through string

matching. It is used with XLink to provide finer granularity in identifying resources of interest. As

such, it only works with XML documents and fragments, not with other types of documents that

may be referenced.

XPath is a W3C Recommendation as of November 16, 1999. This specification is also on the

CD-ROM, while the online version is found at http://www.w3.org/TR/xpath.

General Form

XPointer references select a part or parts of an XML document by operating on the tree structure

that represents it. Selection is done through axes, predicates, and functions. An axis defines a set

of candidates that are found within the tree. Predicates then test those candidates for further pro-

cessing. And finally, functions can operate on the results to transform them or to generate new

candidates. For example, you may look at all the child nodes of a particular node (the axis), using

58



only those that have a particular attribute value (the predicate), and then retrieve their first child

(the function).

XPointer identifiers have a long form spelled out in the specification, as well as a short form.

The two forms are identical as far as their processing is concerned. For example, to find a node

with a particular id value you could use the long form:

#xpointer(id("SW1"))

which can be shortened to:

#SW1

Note that this latter format matches the existing HTML equivalent of internal references. The

intention of the short form is to encourage the use of IDs within documents, as well as to provide

compatibility with HTML sections embedded in XML documents.

The xpointer reference identifies the scheme to be used (similar to a namespace). Currently,

this is the only scheme defined and it is assumed if omitted.

Another shorthand form provides access down through the hierarchy by referring to a node’s

position within its parent. The start of the sequence is a node identified by an ID reference as

shown above, or by the string /1 which refers to the document element. Following this is a list of

integers separated by slashes ( / ) indicating the required child element’s position at each level.

Only elements can be referenced in this manner. For example, the following sequence refers to the

director element for “Star Wars” in the movie-watcher document.

/1/1/2/3

NOTE Using indexes to locate particular elements requires a detailed knowledge of the
document and thus is very fragile. A simple change to the structure can render it useless. For
this reason, the use of IDs is much preferred.

Axes

In general a location reference is made up of an axis, followed by ::, a node name, and any number

of predicates within square brackets ( [ ] ). A string of such references can be concatenated with

slashes ( / ) to further refine or expand the selection. The reference starts from the current context,

either the root of an identified document, or a node selected in some previous manner.

An axis defines the collection of nodes, with respect to the current location, that is considered

in determining the actual selection. As can be seen from the possibilities in Table 6-1, the axes

refer to the hierarchical structure of the tree that represents an XML document. If no axis is speci-

fied, it defaults to child.

Table 6-1: XPointer axes

Name Purpose

child Locates direct children of the current node (includes text, processing
instructions, and comments, but not attributes)

descendant Locates all nodes contained within the current node

Chapter 6: XPath and XPointer 59



Name Purpose

descendant-or-self Like descendant plus the current node itself

parent Locates the node that contains the current one

ancestor Collects all the nodes in the parent chain

ancestor-or-self Like ancestor plus the current node itself

preceding-sibling Locates nodes with the same parent but appearing before the current node
within that parent

following-sibling Locates nodes with the same parent but appearing after the current node
within that parent

preceding Collects all nodes before the current one within the entire document,
including all ancestors

following Collects all nodes after the current one within the entire document,
excluding all ancestors

self The current node

attribute The attributes of the current node

namespace The namespace nodes of the current node (empty if the current node is
not an element)

The node name following the axis specifier serves to identify which types of nodes from it are

selected. As well as a literal element name, such as movie, you can use an asterisk ( * ) for any

node, or a function to identify the type of node, like comment().

Predicates

Once the collection of potential candidate nodes is selected, the use of predicates prunes it further.

A predicate is a simple Boolean test, with the node being retained when it evaluates to true. The

predicate expression is evaluated in the context of each candidate node. These tests appear within

square brackets ( [ ] ) following the axis and node name. Multiple tests can be combined with or or

and to derive the final result.

If the test expression evaluates to a number, it is tested against the candidate node’s position,

returning true if it is equal. Results other than numbers and Boolean values have an implicit call to

the boolean function to convert them into a usable format.

When testing for position, the current node is used as the reference point with candidate nodes

starting at position one. Note that the order of nodes within an axis depends on its type. The ances-
tor, ancestor-or-self, preceding, and preceding-sibling axes are known as reverse axes,

with their nodes placed in the reverse order of their appearance within the document. All other

axes are forward ones, having nodes in the same order as the document.

60 Part I: Introduction to XML



Locations

XPointer extends XPath to provide support for locations that are partial nodes or a range of nodes.

The new locations are defined to be a point, a range, or an XPath node.

Points are positions between characters within the document. A reference to a container node

and a non-negative offset from its beginning identify the point. Since points have no content, they

also have no string value. Points come in two versions: node points in container nodes that have

children (indicating positions between those nodes) and character points in containers without

child nodes (denoting positions between characters).

Ranges are defined by two points and consist of all the content and XML structure between

them. It is possible for nodes to be only partially included in a range. If the starting and ending

points of a range are the same, it is said to be a collapsed range. To describe a range as an XPointer

expression, just identify the two delimiting points and join them with the range-to function.

Functions

Several core functions are defined as part of XPath. Use these and the ones specifically from

XPointer within expressions to find just the right items. The signatures in Table 6-2 show the func-

tion’s return type, followed by its name and the types of any parameters. A trailing question mark

( ? ) denotes an optional argument, while an asterisk ( * ) indicates a repeatable argument. In each

case the context node is the candidate node found by a previous axis and node test.

Table 6-2: XPath functions

Function Purpose

number position() Retrieve the node’s position within the evaluation context
starting at one.

number last() Get the number of items in the evaluation context.

number count(node-set) Returns the number of nodes in the supplied node-set.

node-set id(object) Obtain the node(s) with the specified ID(s).

string name(node-set?) Returns the qualified name of the first node, in document
order, from the supplied set. If no parameter is provided,
it operates on the context node instead.

string namespace-uri(node-set?) Similarly, you can obtain the namespace URI of the first
node in the set, or from the context node.

string local-name(node-set?) Completing the set, retrieve the local name of the context
node or the first node in the supplied set.

string string(object?) Convert the supplied object to a string value. For a
node-set, this returns the string value of its first node in
document order. It operates on the context node if no
parameter is given.

string concat(string, string, string*) Provides the concatenation of all its string arguments.

Chapter 6: XPath and XPointer 61



Function Purpose

boolean starts-with(string, string) Returns true if the first string starts with the second string,
and false otherwise.

boolean contains(string, string) Returns true if the first string contains the second string,
and false otherwise.

string substring-before(string, string) Retrieve the substring of the first argument that precedes
the first occurrence of the second argument, or an empty
string if the second argument does not appear at all.

string substring-after(string, string) Conversely, get the following substring with this function.

string substring(string, number, number?) Extract the substring from the supplied value that extends
from the first numeric argument (starting at one) for the
number of characters equal to the second argument. If the
latter is omitted, it extends through to the end of the
original string.

number string-length(string?) Obtain the length of the supplied string, or the context
node’s string value if no parameter is passed.

string normalize-space(string) Normalizes white space in the given string (or the context
node if none is supplied) and returns the result.

string translate(string, string, string) Returns the first parameter, with occurrences of
characters from the second parameter replaced by the
corresponding characters (by position) from the third
parameter.

boolean boolean(object) Convert the given object to a Boolean value. A number is
true if it is neither positive or negative zero, nor NaN (not
a number). A node-set is true if it is non-empty. A string is
true if its length is greater than zero.

boolean not(boolean) Negates the supplied value.

boolean true() Returns the corresponding Boolean value.

boolean false() Returns the corresponding Boolean value.

boolean lang(string) Test whether the context node’s language (based on the
xml:lang attribute) is the same as or a sub-language of the
supplied value.

number number(object?) Convert the supplied value, or the context node if none
present, to a number. A Boolean true returns 1, while
false returns 0. Node-sets operate on the string value of
the first node.

number sum(node-set) Sum the values from the node-set after converting their
string values to numbers.

number floor(number) Returns the largest integer not greater than the supplied
value.

number ceiling(number) Conversely, this returns the smallest integer not less than
the value.

62 Part I: Introduction to XML



Function Purpose

number round(number) Returns the closest integer to the given value, with halves
rounding up.

The following functions are extensions defined in the XPointer specification.

Table 6-3: XPointer functions

Function Purpose

location-set here() Obtain the element node that directly contains the
XPointer being evaluated.

location-set origin() Used in conjunction with out-of-line links, this returns the
element from which the link traversal began.

location-set range-to(location-set) Returns ranges extending from the start-point of the
current context to the ends of each of the locations in the
supplied set.

location-set range(location-set) Returns ranges covering the locations in the supplied set.

location-set range-inside(location-set) Returns ranges covering the contents of the locations in
the supplied set.

location-set start-point(location-set) Retrieves the starting points of the supplied locations as a
set.

location-set end-point(location-set) Retrieves the ending points of the given locations.

location-set string-range(location-set,
string, number?, number?)

From the supplied location-set, search for occurrences of
the given string and return these as the result. The third
argument specifies the offset from the start of the string
to match to become the first position in any result, while
the last parameter provides the number of characters
from that point to include in the return values.

Abbreviated Syntax

Several forms of abbreviated syntax are defined in the XPath specification. These are shown in

Table 6-4.

Table 6-4: XPath abbreviations

Shorthand Full Version Meaning

xxx child::xxx The child element xxx

// /descendant-or-self::node()/ Any descendant

. self::node() The current node

.. parent::node() The parent node

@ attribute:: An attribute

[n] [position()=n] The nth item

Chapter 6: XPath and XPointer 63



Samples

Example paths from the movie-watcher document are shown in Table 6-5. Recall that all are based

from the current context node, which has been selected in some other manner. These would proba-

bly be used within an XSLT document to select nodes for transformation (see Chapter 4).

Table 6-5: Sample paths

XPath Retrieves (from the context node)

/ The root node of the XML document

* All the element children

. The context node itself

movie All movie element children

director|star All director or star child elements

//movie/name Any name element with a movie element parent

//movies//name Any name element with a movies element ancestor

text() All text node children

node() All child nodes other than attributes

id("SW1") The element with SW1 as its unique ID

star[1] The first star child element

star[last()=1] The star element that is the only child

@url The url attribute

@* All attributes

movie[@rating="PG"] All movie element children that have a rating attribute of
PG

//screening[@movie-id=context()/@id] The screening element whose movie-id attribute is equal
to the current node’s ID

id(@cinema-id)/name The name child of the element with an ID equal to the
cinema-id attribute of the current node (presumably a
screening)

Table 6-6 shows example pointers for the movie-watcher documents. References would likely be

used in conjunction with an XLink to identify a portion of a resource. Thus they would be of the

form:

xlink:href="http://www.movies-online.com/current.xml#xpointer(…)"

where the ellipsis is replaced by one of the terms from the table.

64 Part I: Introduction to XML



Table 6-6: Sample pointers

XPointer Identifies

id("SW1") The element with SW1 as its unique ID

descendant::movie[rating="G"] All movie elements with a rating of G

//cinema[2]/name The name of the second cinema element

//text() All text nodes in the document

id("SW1")//star[1]/range-to
(following-sibling::star[1])

The first two stars for the element with an ID of SW1

id("ENT")/start-point(range-inside
(synopsis))/range-to(string-range
(synopsis, ".")[1])

The first sentence (up to a period) of the synopsis for
the element with the ID ENT

Summary

XPointer is complementary to XLink, providing for the identification of a resource to continue

down into a document to individual nodes or ranges of nodes. It is based on the XPath specifica-

tion that is also used in XSL Transformations for selecting nodes, and is designed to work only

with XML documents.

While XPath is a W3C Recommendation, the XPointer specification is still in draft, and no

commercial products are using it yet. Examples of XPath usage appear in Chapter 21, which looks

at using XSL Transformations for formatting XML documents, and in Chapter 26, which uses

XSLT.

Chapter 6: XPath and XPointer 65



C h a p t e r 7

XML SchemaXML Schema

In Chapter 3 you saw how document type definitions (DTDs) are constructed. These let you spell

out what constitutes a valid document for a particular application. You specify each element that

may appear within the document. A content model in each declaration defines what may be con-

tained within that element—other elements, text, a combination, or nothing. The multiplicity of

each sub-element forms part of that model. Each element also describes the attributes that it may

use. Attributes declare a type and have an indication of whether or not they are required.

Together these declarations define what elements may appear and how they are structured

within a document that claims conformance to the DTD. Some control over their number and con-

tent is provided.

Unfortunately, DTDs fall short in some areas. You have no control over the textual content of

an element—it is just text. If you want to have a field that should contain a numeric value, or one

that holds a date, then the best that you can do is to add some comments to the DTD to state this

intention, and leave it to an application that knows about these documents to enforce those rules.

However, the documents could also be written or updated by hand or through a generic XML edi-

tor that knows nothing about these requirements. The result is that your documents are not as

standard as you would like.

Although DTDs allow you to specify the multiplicity of a sub-element within a content model,

this specification is fairly basic. You either have one or none of an element, or many of them.

There is no (easy) way to indicate exact numbers of occurrences that are required, such as an ele-

ment having two to four repeats of a particular sub-element.

NOTE You can achieve the desired outcome of explicit numbers of sub-elements through
laying out all the possible combinations as separate content models and then stringing them
together as alternatives. However, this can produce a non-deterministic content model—one
that cannot tell which option is being used without looking ahead—that may be rejected by
some XML processors.

Furthermore, the format for DTDs is quite different from the rest of an XML document. This

means that additional complexity and functionality must be built into processors to deal with this

variation. Viewing and editing a DTD may require an alternate package to that for the documents

that conform to it.

66

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



In an effort to overcome these problems, an alternative manner of defining the valid contents

of XML documents was defined. Known as XML Schema, it lets you declare the types for the con-

tent of text nodes. It also enables you to specify the number, or range of numbers, of times that a

sub-element must appear. And lastly, it is itself an XML application, meaning that the same tools

can be used to define a document and then to populate it correctly.

The XML Schema specification comes in two parts: the definition of structures for declaring

content models and the definition of data types for elements and attributes. Both parts are W3C

Recommendations as of May 2, 2001.

NOTE Microsoft has developed and supports a similar standard called XML Data Reduced.
This is a subset of the XML Data proposal that was presented to the W3C, and which contrib-
uted to the development of XML Schema. There are several differences to the W3C
specification. For further information, see http://msdn.microsoft.com/xml.

Schema Document

An XML Schema document is itself an XML document. It must follow the standard for schemas if

it is to be considered valid. Hence, there is an XML Schema that defines the layout for XML

Schemas available at http://www.w3.org/2000/10/XMLSchema.xsd. A second schema defines

the standard data types at http://www.w3.org/2000/10/XMLSchema-datatypes.xsd. (There are

also DTD versions of each of these for those on the fence. They are available at

http://www.w3.org/2000/10/XMLSchema.dtd and http://www.w3.org/2000/10/datatypes.dtd.)

The meta-XML Schema states that a schema contains a schema element at its topmost level.

Attributes of this element declare the version of XML Schema being followed and the namespace

associated with documents that claim conformance to this new schema. An example of a schema

declaration is shown in Listing 7-1. Here you also see the reference to the DTD, so that the schema

can be validated, and the definition of the default namespace for schema elements themselves.

Listing 7-1: An XML Schema skeleton

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE schema PUBLIC "-//W3C//DTD XMLSCHEMA 200010//EN"
"http://www.w3.org/2000/10/XMLSchema.dtd" [

<schema xmlns="http://www.w3.org/2000/10/XMLSchema"
targetNamespace="urn:kbwood/movie-watcher" version="1.0">

:
</schema>

Within the schema element appear further tags that provide documentation on the schema, declara-

tions of types of element content, and the definitions of the elements and attributes themselves.

Schemas usually exist in files of their own to allow them to be shared between conforming

documents. Such files typically have an .xsd suffix. The standard prefix for schema tags is xs and

its corresponding namespace URI is http://www.w3.org/2000/10/XMLSchema. In Listing 7-1 the

default namespace for the document is set to this value, meaning that you do not have to supply a

prefix for each element.

Chapter 7: XML Schema 67



To attach a schema to an XML document so that it can be validated, you add an attribute to its

document element. This attribute comes from another namespace related to XML Schemas

(XMLSchema-instance) which must first be defined within a namespace attribute (xmlns). By con-

vention, the xsi prefix is used for instance declarations, with the attribute name being

schemaLocation if the XML document has a target namespace, or noNamespaceSchemaLocation
if it has no target namespace. For the movie-watcher documents, the schema reference may look

like the following:

<movie-watcher xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="movie-watcher.xsd">

:
</movie-watcher>

Documentation

Although normal XML comments can be used to document the schema, another method is avail-

able that promotes the reuse of the embedded descriptions. The annotation element can appear at

the beginning of most schema elements and anywhere at the top level of the schema. An annota-

tion consists of either or both of the documentation or appinfo elements, each of which contains

text and possibly other tags. The former is intended for human consumption, while the latter is for

automated processing. An example is shown in Listing 7-2. This appears following the opening

schema tag defined above.

Listing 7-2: Embedded documentation

<annotation>
<documentation>
Movie-watcher schema.
Data about movies and when and where they are showing.
Written by Keith Wood, 7 August, 2000.

</documentation>
</annotation>

Simple Types

The definition of the parts of the document starts at the most basic level with simple types. These

are the fundamental types present in most programming languages and database systems. They

include the usual string, boolean, integer, long, short, float (32-bit), double (64-bit), date,

and time formats all expressed as straight text. Variations on these are available, such as

positiveInteger, unsignedLong, month, year, and century. More exotic formats also exist, like

recurringDate, recurringDay, timeDuration, and uriReference.

The standard XML attribute types from the DTD specification can be used as well, including

ID, IDREF, ENTITY, NOTATION, and NMTOKEN. New types are introduced to cover other XML for-

mats, such as Name, QName (a qualified name), NCName (a QName without the prefix or colon), and

language.

68 Part I: Introduction to XML



All these types are built into the schema specification. From them you can derive additional

simple types by applying constraints or facets. For example, the minInclusive and maxInclusive
facets let you restrict valid values to a given range. The pattern facet provides a regular expres-

sion that defines the layout of the expected values, while the enumeration facet lists individual

values that are allowed. A total of 15 facets are defined in the specification, although not all of

these pertain to all base types.

To apply facets to a type you include a simpleType element in your schema, with an embedded

restriction element and its base attribute indicating the fundamental type being constrained. If

you wish to refer to this type from elsewhere in the document, you must set its name attribute. The

alternative is to declare it directly within the item to which it applies using an anonymous

simpleType element. Within the restriction element you list the facets and their values. Listing

7-3 shows an enumerated type to be used for the rating attribute in the movie-watcher

documents.

Listing 7-3: Enumerating a simple type

<simpleType>
<restriction base="string">
<enumeration value="NR"/>
<enumeration value="G"/>
<enumeration value="PG"/>
<enumeration value="PG-13"/>
<enumeration value="R"/>

</restriction>
</simpleType>

Complex Types

More involved types are built from the simple types defined above. As before, these types can be

defined at the top level of the schema and given a name. The declarations that rely on these types

then refer to them by name. In this way, types can be reused within, and even between, documents.

Alternately, anonymous complex types can be declared directly within the elements to which they

apply.

Content models are one of the main uses for complex types, since simple types do not have any

children. An example of this for the content of the movie-watcher element is shown in Listing 7-4,

along with samples for the following descriptions. Elements may be declared inline or may refer-

ence a declaration defined elsewhere as illustrated here.

Listing 7-4: Building more complex types

<complexType>
<sequence>
<element ref="movies"/>
<element ref="cinemas"/>
<element ref="screenings"/>

</sequence>
</complexType>
<complexType mixed="true">
<choice minOccurs="0" maxOccurs="unbounded">
<element name="emph" type="string"/>

Chapter 7: XML Schema 69



</choice>
</complexType>

Various other schema tags let you build more elaborate content models. The choice element sur-

rounds a list of other elements from which you may select only one, whereas the sequence
element specifies that its constituent elements must appear in the listed order. Use the group ele-

ment to collect child elements together for treatment as a single entity.

Alternately, the all element says that its contained elements may appear once or not at all, but

may do so in any order. This can only be applied to the top-level element in the schema and all of

its children must be individual elements. One last option places no restriction on the element types

that can appear. The any element has no children itself, but permits any type of child element

within the document. A namespace can be applied to the any element to limit the valid elements.

Mixed content, a combination of normal text and other elements, is denoted by the presence of

the mixed attribute on the type declaration with a value of True. The order and number of tags

appearing in the document must match what is defined in the type declaration. This is different

from DTDs, which place no restrictions on embedded tags, other than limiting their types.

Each element or model tag may have its cardinality specified through the minOccurs and

maxOccurs attributes. Both are optional and default to one. The minimum must be a non-negative

value, while the maximum must be a greater value or unbounded.

Simple types cannot have attributes. So, whenever an element has an attribute, you must

declare a complex type to define it. Within the type tag you list the allowed attributes, giving their

name, type, and any other characteristics. The example in Listing 7-5 shows the type for the ses-
sion element in a movie-watcher document. Note that the base content of the type for the element

is defined as a time value, which is then extended by adding an attribute that refers back to the ID

of another element.

Listing 7-5: Adding attributes to an element

<complexType>
<simpleContent>
<extension base="time">
<attribute name="price-id" type="IDREF" use="required"/>

</extension>
</simpleContent>

</complexType>

Complex types let you combine element and attribute declarations within the one definition if it is

appropriate. They may be embedded within each other to construct whatever hierarchy is

required. Types can also inherit from other complex types and extend or restrict that previous

definition.

To define an empty type, you basically declare a complex type that only allows elements as its

content and then provide no elements. This works because a complex type without any content

specification automatically derives from anyType, which allows only elements. The following is

shorthand for an empty element without any attributes.

<complexType/>

70 Part I: Introduction to XML



If you want no content but do want attributes, just expand this to encapsulate them.

<complexType>
<attribute name="id" type="ID" use="required"/>

</complexType>

Attribute Declarations

Now that you have the types laid out, you can apply them to elements and attributes within the

schema. To declare an attribute for an element, you need to define a complex type for that element.

At the end of the type definition you use the attribute tag to specify the attribute itself.

Along with the attribute name you supply its type, which is either one of the predefined basic

types or a user-defined extension or restriction of one of them. Optionally, you can also include

usage information (optional (the default), required, prohibited, default, or fixed) and any

default or fixed value. Attribute tags may contain a simpleType element that defines further facets

of the type of data allowed within them.

Listing 7-6 shows two attributes with types corresponding to those available in DTDs. It also

includes the rating attribute, which uses an anonymous enumeration based on string values for its

type.

Listing 7-6: Defining attributes

<attribute name="id" type="ID" use="required"/>
<attribute name="logo-url" type="ENTITY"/>
<attribute name="rating" use="required">
<simpleType>
<restriction base="string">
<enumeration value="NR"/>
<enumeration value="G"/>
<enumeration value="PG"/>
<enumeration value="PG-13"/>
<enumeration value="R"/>

</restriction>
</simpleType>

</attribute>

Attribute groups let you collect attributes together and manage them as one unit. The

attributeGroup tag contains a list of the individual attributes, as they would appear within a nor-

mal type declaration. See Listing 7-7 for an example.

Listing 7-7: Grouping attributes for ease of reuse

<attributeGroup name="commonAttrs">
<annotation>
<documentation>
Attributes common to both movies and cinemas

</documentation>
</annotation>
<attribute name="id" type="ID" use="required"/>
<attribute name="logo-url" type="ENTITY"/>
<attribute name="url" type="ENTITY"/>

</attributeGroup>

Chapter 7: XML Schema 71



A name serves to identify the group and is used to refer to it from the element definitions that actu-

ally have these attributes. In this way, the group can appear in several declarations, providing for

its reuse similar to parameter entities within DTDs. This aids in the maintainability of the schema.

Groups can also be used to improve the readability of the document by extracting the attributes

from the element definitions.

Element Declarations

Whereas in DTDs the textual content of elements cannot be constrained (other than through com-

ments in the DTD itself), in schemas you can apply any of the simple predefined or user-defined

types to an element. Thus, you can state that an element should only contain a number or a date.

Just specify the required format in the type attribute of the element tag. You must supply a name

for each element and may also provide additional facets to control its appearance within a docu-

ment, such as it cannot be longer than 10 characters.

Listing 7-8 shows a selection of simple element declarations. These range from a simple string

element (the only option for a DTD specification), through an optional positive integer, an

optional string, and an optional decimal value, to one that requires a date as its content.

Listing 7-8: Simple element definitions

<element name="name" type="string"/>
<element name="length" type="positiveInteger" minOccurs="0">
<element name="directions" type="string" minOccurs="0"/>
<element name="discount" type="decimal" minOccurs="0"/>
<element name="start-date" type="date"/>

For content other than straight text, you create an element with a complex type. This can be

defined inline as an anonymous type, which is useful for one-off combinations, or as a separate

named type definition that is referred to by the element. The latter option lets you reuse that ele-

ment as part of another’s content throughout the schema.

As described earlier, the element can use the sequence, choice, group, any, and all tags to

define its internal structure. Each child may occur as an inline named element, as an element with

its own embedded structure, or as a reference to an element defined elsewhere. Any attributes,

either as individual entries or as references to previously defined groups, must appear at the end of

the type definition.

Listing 7-9 shows the definition for the movie element from the movie-watcher documents,

along with all of its children. It makes use of an anonymous type definition for the movie itself

since its composition is unique. Within that definition appear both inline child declarations as well

as references to other elements. These are declared externally to promote their reuse or to define

their own internal structure without cluttering up the current definition.

Listing 7-9: Elements with content other than text

<element name="movie">
<annotation>
<documentation>Details about a single movie</documentation>

</annotation>
<complexType>

72 Part I: Introduction to XML



<sequence>
<element ref="name"/>
<element name="length" type="positiveInteger" minOccurs="0">
<annotation>
<documentation>Length of movie in minutes</documentation>

</annotation>
</element>
<element name="director" type="string" minOccurs="0"/>
<element ref="starring" minOccurs="0"/>
<element ref="synopsis" minOccurs="0"/>

</sequence>
<attributeGroup ref="commonAttrs"/>
<attribute name="rating" use="required">
<simpleType>
<restriction base="string">
<enumeration value="NR"/>
<enumeration value="G"/>
<enumeration value="PG"/>
<enumeration value="PG-13"/>
<enumeration value="R"/>

</restriction>
</simpleType>

</attribute>
</complexType>

</element>

<element name="name" type="string"/>
<element name="starring">
<complexType>
<sequence>
<element name="star" type="string"
minOccurs="1" maxOccurs="unbounded"/>

</sequence>
</complexType>

</element>
<element name="synopsis">
<complexType mixed="true">
<choice minOccurs="0" maxOccurs="unbounded">
<element name="emph" type="string"/>

</choice>
</complexType>

</element>

The attributes for the movie element also reuse external items through the commonAttrs group.

Since the rating attribute only appears in this element, it is defined inline.

Further Abilities of Schemas

The schema specification includes much more than is shown in this chapter. It also provides a sec-

tion on how namespaces affect and interact with a schema definition. All schema documents have

a W3C namespace that defines the tags described above, while the document being declared has

its own target namespace.

Type definitions can be constructed in a hierarchical fashion, inheriting content from earlier

types and then extending or restricting it. Mechanisms exist to limit what can be altered in a

Chapter 7: XML Schema 73



derived declaration, along with descriptions of how changes in the new type interact with those of

the parent.

Types can be declared to be equivalent to each other at the top level of the schema via the

substitutionGroup attribute. Referring to the group class in a content model allows any of these

related classes to appear in that position.

Schemas expand on the notion of IDs and IDREFs from the DTD specification by letting you

define unique attributes (and even content or combinations of these) throughout the entire docu-

ment or within given elements. Declaring these items as a key indicates that they must always be

present, non-null, and unique.

Several additional content particles exist to allow for the inclusion of any child element while

restricting it to a particular namespace or to a namespace other than the current one. Attributes can

be similarly constrained.

The datatypes section of the specification goes into great detail about types in general, defin-

ing, among other things, their value spaces (the actual values, such as 100) as opposed to their

lexical spaces (the representation of that value, like 100, 1E2, or 100.00). It describes the generic

facets that can be applied to the types to constrain their sets of valid values. Each basic datatype is

then examined in turn, explaining how these aspects affect them.

Summary

XML Schemas provide an alternative to DTDs for the definition of the valid contents of an XML

document. They provide additional functionality over DTDs including type declarations for text

content and attribute values, and greater specificity for the number of occurrences of a sub-ele-

ment. Moreover, one of their biggest advantages is that XML Schemas are defined as XML

documents, allowing you to use the same tools for defining the schema as you do for populating

documents that conform to it.

The first part of the specification tells you how to define types that can be applied to elements

and attributes within a document. Then you apply those types to individual elements while laying

out the valid content for each one. Simple types include straight text and numbers, while complex

types let you build complicated combinations of sub-elements and attributes.

The second part of the specification details how data types are declared. The basic types are

defined within the spec, and these can be extended, restricted, and combined to create new types.

Unfortunately, XML Schema is still only a Candidate Recommendation from the W3C, and so

is not widely used yet to validate documents. This situation should change as the benefits of XML

Schema over DTDs become more apparent.

74 Part I: Introduction to XML



P a r t I I

The DocumentThe Document

Object ModelObject Model

Parsing a document involves reading it in, interpreting its structure, and then using the

results in an application to provide some useful functionality. XML’s simple hierarchical

structure was designed to facilitate the parsing of documents by such programs, as well as

to ease the processing of the resulting output.

Two main approaches to parsing XML have arisen. The first is the Document Object

Model (DOM), which constructs a series of related objects in memory that corresponds to

the structure and content of the original document. The second is the Simple API for

XML (SAX) that offers an event-based approach, triggering actions as each element or

section of content is encountered.

This section looks in detail at the DOM. Chapter 8 describes the DOM specification

as presented by the W3C, including some of the enhancements appearing in the second

version of this spec. Chapter 9 details Microsoft’s implementation of the DOM as COM

interfaces. Version 3 of their XML DOM package comes as a set of three DLLs, which

can be easily used from Delphi through an imported type library.

Chapter 10 examines a native Delphi implementation of the DOM as produced by

CUESoft.com Inc. This commercial product offers tighter integration with your applica-

tion due to its Delphi source. Chapter 11 describes another native Delphi DOM

implementation, this one an open source offering from the Open XML project called

XDOM. Again, you have a DOM that compiles into your code, but this time you also

have access to the source. XDOM provides extensive support for modeling the DTD sec-

tion of an XML document, something the other DOMs bypass (as does the DOM

specification).

75



Chapter 8: The Document Object Model (DOM)

Chapter 9: Microsoft’s Document Object Model

Chapter 10: CUESoft’s Document Object Model

Chapter 11: Open XML’s Document Object Model

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



C h a p t e r 8

The Document ObjectThe Document Object

Model (DOM)Model (DOM)

The Document Object Model constructs a hierarchy of objects in memory that represents an XML

document. Reasons for developing the DOM include a desire to define a platform- and lan-

guage-neutral interface that allows applications to access and manipulate the content, style, and

structure of a document. It is a recommendation of the W3C, with the latest version being avail-

able at http://www.w3.org/DOM.

Version 1 of the DOM became a W3C Recommendation on October 1, 1998. It defined the

basic requirements for representing the object model, and appears in two parts. The first part is the

core of the DOM and provides sufficient functionality to work with structured documents in gen-

eral and XML documents in particular. Part 2 extends the core to provide additional abilities

suitable for manipulating HTML documents. Version 2 became a Recommendation on November

13, 2000 (except for the HTML section that reverted to being a Working Draft). It primarily adds

support for namespaces, as well as methods for creating documents themselves.

DOM Interfaces

The DOM is specified as a series of interfaces, allowing it to be implemented in various ways in

different languages. The basis upon which the entire DOM is built is the Node interface. This pro-

vides the fundamental abilities of a node within the model structure: a name, a value, attributes, a

parent, and possible child nodes. More specific node types derive from this interface with added

functionality. See Table 8-1 for a list of the items specified by the DOM core, and the new Tra-

versal section. The Level column indicates when the item was introduced.

Table 8-1: Document Object Model specifications

DOM Item Type Level Purpose

Attr Interface 1 An attribute of an element

CDATASection Interface 1 An extended text section that ignores markup
characters

CharacterData Interface 1 Base interface for all text type nodes

77



DOM Item Type Level Purpose

Comment Interface 1 An embedded comment

Document Interface 1 Top level in the model representing the entire
document

DocumentFragment Interface 1 A snippet of a DOM not attached to the main
model

DocumentType Interface 1 Information about the DTD including entities and
notations

DOMException Exception 1 Describes errors encountered during DOM
processing

DOMImplementation Interface 1 Functionality that is independent of an instance of
the DOM

DOMString Type 1 The type for all DOM strings (16-bit UNICODE)

DOMTimeStamp Type 2 A number of milliseconds

Element Interface 1 Standard element—the most common node in a
document

Entity Interface 1 Details about an entity (parsed or unparsed)
declared in the DTD

EntityReference Interface 1 An occurrence of a parsed entity in the body of
the document

NamedNodeMap Interface 1 Handle collections of nodes that can be accessed
by name, such as attributes

Node Interface 1 The basic structural element within the DOM,
most other interfaces derive from this one

NodeFilter Interface 2 Accept or reject nodes for a selection

NodeIterator Interface 2 Handle a collection of selected nodes in
sequential order

NodeList Interface 1 Handle ordered collections of nodes, such as
child nodes

Notation Interface 1 Details about a notation declared in the DTD

ProcessingInstruction Interface 1 An instruction for a target application

Text Interface 1 The textual content of an element or attribute

TreeWalker Interface 2 Handle a collection of selected nodes in a tree
structure

NOTE Although there are eight parts to the DOM Level 2 specification (Core, HTML, Views,
Stylesheets, CSS, Events, Traversal, and Range), only the Core and Traversal sections are cov-
ered here. The remaining sections do not deal with XML or are not widely implemented as yet.

The DOMString type defined by the DOM corresponds to a 16-bit character set, UTF-16. All string

values within the DOM use this format.

78 Part II: The Document Object Model



As an example, the XML document in Listing 8-1 is represented by the DOM shown in Figure

8-1. At the topmost level is the Document node, which provides access to all the other nodes.

Beneath this appear a ProcessingInstruction node for the XML declaration, a DocumentType
node for the DTD declaration, a Comment node, another ProcessingInstruction node for the

stylesheet reference, and an Element node that is the document element.

Listing 8-1: XML fragment

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE movie-watcher SYSTEM "movie-watcher.dtd" [
<!NOTATION HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<!NOTATION GIF SYSTEM "iview.exe">
<!ENTITY SW1-site SYSTEM "http://www.starwars.com/episode-i/" NDATA HTML>
<!ENTITY SW1-logo SYSTEM "http://www.starwars.com/episode-i/palpatine/img/top_logo.gif" NDATA GIF>
<!ENTITY PV "Pleasantville">

]>
<!-- Sample XML document with data about movies

and when and where they are showing
Developed by Keith Wood, 28 May 1999 -->

<?xml:stylesheet type="text/xsl" href="movie-watcher.xsl"?>
<movie-watcher>
<movies>
<movie id="SW1" rating="PG" logo-url="SW1-logo" url="SW1-site">
<name>Star Wars - The Phantom Menace</name>
<length>131</length>
<director>George Lucas</director>
<starring>
<star>Liam Neeson</star>
<star>Ewan McGregor</star>
<star>Jake Lloyd</star>
<star>Natalie Portman</star>

</starring>
<synopsis>When the evil Trade Federation plots to take over the
peaceful planet of Naboo, Jedi warrior Qui-Gon Jinn and his
apprentice Obi-Wan Kenobi embark on an amazing adventure to
save the planet. With them on their journey is the young queen
Amidala, Gungan outcast JarJar Binks, and the powerful Captain
Panaka, who will all travel to the faraway planets of Tatooine
and Coruscant in a futile attempt to save their world from
Darth Sidious, leader of the Trade Federation, and Darth Maul,
the strongest Dark Lord of the Sith to ever wield a lightsaber.

</synopsis>
</movie>

</movies>
</movie-watcher>

Within the DocumentType node are Notation nodes representing the notations declared in the

internal DTD for this document, and Entity nodes for the internal and external entities declared

there. Internal entities have their content in Text nodes as children.

NOTE The DOM specification does not model the DTD itself, i.e., the element and attribute
declarations. However, some implementations of the DOM do provide this extra functionality.
See Chapter 11 for information on the Open XML DOM and its DTD representation.

The document element (movie-watcher) has further Element children for each node in the docu-

ment hierarchy. At the bottom of the tree are more Text nodes that contain the content.

Chapter 8: The Document Object Model (DOM) 79



As you can see, the entire document structure is captured within the model (except for the DTD

information). Each node can be reached by navigating from the document node down through a

series of child nodes, or via one of a number of selection methods from the document or an Ele-
ment node.

The rest of this chapter goes on to describe each interface and exception in greater detail. Defi-

nitions for the interfaces come from the DOM specification and are expressed in Interface

Definition Language (IDL) as described by the Object Management Group (OMG). This format is

language-neutral and can be mapped onto a number of different languages for implementation

purposes.

80 Part II: The Document Object Model

Figure 8-1: DOM representing the document from Listing 8-1.



DOMException

DOMException (see Listing 8-2) is designed to notify you of errors that occur during the processing

of a document. In languages that support exceptions (like Delphi) a new exception type should be

defined and raised when necessary. The specification defines a number of errors and identifying

codes. Occasions when these errors are generated are identified throughout the specification.

Although the code is included in the exception here, this may not be necessary in implementations

where the type can be identified through other means (such as by subclassing the exception).

Listing 8-2: The DOMException exception

exception DOMException {
unsigned short code;

};

// ExceptionCode
const unsigned short INDEX_SIZE_ERR = 1;
const unsigned short DOMSTRING_SIZE_ERR = 2;
const unsigned short HIERARCHY_REQUEST_ERR = 3;
const unsigned short WRONG_DOCUMENT_ERR = 4;
const unsigned short INVALID_CHARACTER_ERR = 5;
const unsigned short NO_DATA_ALLOWED_ERR = 6;
const unsigned short NO_MODIFICATION_ALLOWED_ERR = 7;
const unsigned short NOT_FOUND_ERR = 8;
const unsigned short NOT_SUPPORTED_ERR = 9;
const unsigned short INUSE_ATTRIBUTE_ERR = 10;
// Introduced in DOM Level 2:
const unsigned short INVALID_STATE_ERR = 11;
// Introduced in DOM Level 2:
const unsigned short SYNTAX_ERR = 12;
// Introduced in DOM Level 2:
const unsigned short INVALID_MODIFICATION_ERR = 13;
// Introduced in DOM Level 2:
const unsigned short NAMESPACE_ERR = 14;
// Introduced in DOM Level 2:
const unsigned short INVALID_ACCESS_ERR = 15;

NOTE The conditions that generate these exceptions occur during the manipulations of the
DOM once it is loaded. The specification does not indicate how documents are loaded from
or saved to persistent storage. Any errors that arise from reading, parsing, or writing DOMs
are produced by the implementing application in a manner specific to that product.

Typical causes of these errors are described below:

INDEX_SIZE_ERR

An index or size value is negative or greater than the allowed maximum.

DOMSTRING_SIZE_ERR

A specified range of text does not fit in a DOMString value.

HIERARCHY_REQUEST_ERR

An attempt is made to insert a node somewhere that it does not belong.

WRONG_DOCUMENT_ERR

A node is used within a document that did not create it.

Chapter 8: The Document Object Model (DOM) 81



INVALID_CHARACTER_ERR

An invalid character has been used, for example, within an element name.

NO_DATA_ALLOWED_ERR

A node value is set for a node that does not support values, such as an Element node.

NO_MODIFICATION_ALLOWED_ERR

An attempt is made to modify a read-only node.

NOT_FOUND_ERR

An attempt is made to refer to a node that does not exist, for example, when inserting child

nodes.

NOT_SUPPORTED_ERR

The implementation does not support the type of object requested.

INUSE_ATTRIBUTE_ERR

An attempt is made to add an attribute already in use elsewhere.

INVALID_STATE_ERR

An attempt is made to use an object that is no longer usable.

SYNTAX_ERR

An invalid or illegal string is used.

INVALID_MODIFICATION_ERR

An attempt is made to alter the type of the object.

NAMESPACE_ERR

An attempt is made to alter the object that is incompatible with namespace usage.

INVALID_ACCESS_ERR

The object does not support a parameter or an operation.

Node Interface

As mentioned earlier, the Node interface (shown in Listing 8-3) forms the basic unit of the DOM

structure. Extensions to this interface may add convenience names for the basic properties, or

entirely new abilities, based on their purpose. You do not add a simple node directly to the DOM,

but instead use one of its extensions. However, the properties and methods defined here let all

nodes be treated identically at a basic level.

Listing 8-3: The Node interface

interface Node {
// NodeType
const unsigned short ELEMENT_NODE = 1;
const unsigned short ATTRIBUTE_NODE = 2;
const unsigned short TEXT_NODE = 3;
const unsigned short CDATA_SECTION_NODE = 4;
const unsigned short ENTITY_REFERENCE_NODE = 5;
const unsigned short ENTITY_NODE = 6;
const unsigned short PROCESSING_INSTRUCTION_NODE = 7;
const unsigned short COMMENT_NODE = 8;

82 Part II: The Document Object Model



const unsigned short DOCUMENT_NODE = 9;
const unsigned short DOCUMENT_TYPE_NODE = 10;
const unsigned short DOCUMENT_FRAGMENT_NODE = 11;
const unsigned short NOTATION_NODE = 12;

readonly attribute DOMString nodeName;
attribute DOMString nodeValue;
// raises(DOMException) on setting
// raises(DOMException) on retrieval

readonly attribute unsigned short nodeType;
readonly attribute Node parentNode;
readonly attribute NodeList childNodes;
readonly attribute Node firstChild;
readonly attribute Node lastChild;
readonly attribute Node previousSibling;
readonly attribute Node nextSibling;
readonly attribute NamedNodeMap attributes;
// Modified in DOM Level 2:
readonly attribute Document ownerDocument;
Node insertBefore(in Node newChild,

in Node refChild)
raises(DOMException);

Node replaceChild(in Node newChild,
in Node oldChild)
raises(DOMException);

Node removeChild(in Node oldChild)
raises(DOMException);

Node appendChild(in Node newChild)
raises(DOMException);

boolean hasChildNodes();
Node cloneNode(in boolean deep);
// Modified in DOM Level 2:
void normalize();
// Introduced in DOM Level 2:
boolean isSupported(in DOMString feature,

in DOMString version);
// Introduced in DOM Level 2:
readonly attribute DOMString namespaceURI;
// Introduced in DOM Level 2:

attribute DOMString prefix;
// raises(DOMException) on setting

// Introduced in DOM Level 2:
readonly attribute DOMString localName;
// Introduced in DOM Level 2:
boolean hasAttributes();

};

The properties and methods of a Node are described below:

readonly attribute unsigned short nodeType;
Identifies the specific subclass of Node that this object represents. It must be one of the con-

stants listed in the interface, and these correspond to extended interfaces for each type. The

contents of the nodeName, nodeValue, and attribute properties also depend on the node

type, as shown in Table 8-2.

Chapter 8: The Document Object Model (DOM) 83



Table 8-2: Property meanings by node type

Node Type Node Name Node Value Attributes

Attr attribute name attribute value null

CDATASection #cdata-section content of CDATA section null

Comment #comment content of the comment null

Document #document null null

DocumentFragment #document-fragment null null

DocumentType document type name null null

Element tag name null list of attributes

Entity entity name null null

EntityReference name of referenced
entity

null null

Notation notation name null null

ProcessingInstruction target all content excluding the target null

Text #text content of text node null

readonly attribute DOMString nodeName;
The name for this node. It is either a name specified in the XML document, such as an ele-

ment or attribute name, or is one of a set of predefined literals for nodes that have no real

name, such as text nodes. See Table 8-2 for the meaning based on the node type.

readonly attribute DOMString localName;
Introduced in DOM Level 2, this property returns the local part of the qualified name of the

node, i.e., the part after any namespace prefix. For nodes other than Element and Attr, and

for nodes created with a Level 1 call, it always returns null. A null is also returned if no

namespace applies to this node. For example, given the qualified name math:plus, this

attribute returns plus.

attribute DOMString prefix;
Complementary to localName, this property is also introduced in DOM Level 2 and returns

the prefix part of the qualified name of the node. For nodes other than Element and Attr, and

for nodes created with a Level 1 call, it always returns null. It also returns null if no

namespace applies to this node. Given the qualified name math:plus, this attribute returns

the math part.

readonly attribute DOMString namespaceURI;
Also arriving in DOM Level 2, this is the full namespace associated with the node, based on

the prefix. As before, for nodes other than Element and Attr, and for nodes created with a

Level 1 call, it always returns null. It also returns null if no namespace applies to this node.

For example, given the namespace declaration:

xmlns:math="http://www.w3.org/www.w3.org/TR/REC-MathML"

84 Part II: The Document Object Model



and the qualified name math:plus, this attribute returns the value:

http://www.w3.org/www.w3.org/TR/REC-MathML

attribute DOMString nodeValue;
Many nodes such as the text nodes, have an inherent value. Where appropriate, this property

returns that value. For the remainder it returns a null value. See Table 8-2 for the meaning

of this value based on the node type.

readonly attribute NamedNodeMap attributes;
Only the element nodes have attributes, which are available through this property. Entries

are retrieved through a NamedNodeMap that provides access via their names. All other node

types return a null.

NOTE Only attributes that have values defined in the XML document itself are guaranteed
to appear in this list. If the parser loads any external DTD or schema it can also add those
attributes with default or fixed values.

readonly attribute Document ownerDocument;
This is a reference to the Document that created the node. For a Document node itself, or for a

DocumentType node not yet associated with a Document, this returns null. Nodes may only

be used with the document that created them.

readonly attribute Node parentNode;
Most nodes have a parent, providing navigation up through the document hierarchy. Docu-
ment, DocumentFragment, and Attr nodes do not have parents. Furthermore, other node

types may not have a parent until they are placed into the document structure.

readonly attribute NodeList childNodes;
Many nodes also have children contained within them. These are accessible through this

property, which returns a NodeList as described below. If there are no children, the list still

exists but has no entries. All NodeList objects have an implied ordering of the nodes they

manage. All the nodes returned through this list are “live.” This means that any changes to

them are made to the real node within the hierarchy. Similarly, adding and removing child

nodes immediately affects the contents of the list.

boolean hasChildNodes();
This function returns True if any children exist for the current node, and False otherwise.

Alternately, you can check for the length of the childNodes list being non-zero.

readonly attribute Node firstChild;
A convenience property for accessing the first child node. It returns null if there are no

children.

readonly attribute Node lastChild;
Similar to firstChild but for the last child node. It also returns null if there are no children.

Chapter 8: The Document Object Model (DOM) 85



readonly attribute Node previousSibling;
This property returns the node immediately before the current one in the latter’s parent’s list

of children. It returns null if there is no previous node in the parent.

readonly attribute Node nextSibling;
Same as previousSibling, but it returns the following node in the parent’s list. It returns

null if there is no next node in the parent.

Node insertBefore(in Node newChild, in Node refChild) raises(DOMException);
Use this method to add a new child node to the current node. The new node is placed imme-

diately before the nominated node in the list, unless the reference parameter is null, in

which case the new node is added at the end. A reference to the new node is returned by the

function. An exception is raised if the new node is not an appropriate child of the current

node, if the new node is an ancestor of the current node, if the new node was created by

another document, if the current node is read-only, or if the reference node is not found.

Node replaceChild(in Node newChild, in Node oldChild) raises(DOMException);
Use this method to overwrite a child node. The old node specified is removed and becomes

the return value of the function. The new node is added in its place. An exception is raised if

any of the error conditions for the insertBefore method apply.

Node removeChild(in Node oldChild) raises(DOMException);
Child nodes are deleted from the list with this method. A reference to the node removed is

returned. If the current node is read-only or if the old node cannot be found, an exception is

raised.

Node appendChild(in Node newChild) raises(DOMException);
Adds the supplied node to the end of the list of child nodes. If the node is already in the

DOM tree, it is first removed. The return value of the function is a reference to the new node.

Exceptions occur under the same circumstances as for the insertBefore method.

Node cloneNode(in boolean deep);
This function returns a copy of the current node. Attributes of the node are also copied.

However, child nodes are not duplicated unless the supplied parameter is set to True. In this

case, all descendant nodes are copied. The new node has no parent until it is placed into a

document.

void normalize();
Added in DOM Level 2, this method scans the subtree below this node, removes empty Text
nodes, and combines any adjacent Text nodes. CDATAsections are not combined or other-

wise affected. This processing is useful when dealing with XPointers, and similar

operations, that depend on a standardized tree structure. Following the loading of a new doc-

ument, the DOM is already in a normalized state.

boolean isSupported(in DOMString feature, in DOMString version);
Also introduced in DOM Level 2, this method tests for a particular feature of the DOM and

its version. See the DOMImplementation interface for accepted values.

86 Part II: The Document Object Model

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



boolean hasAttributes();
New in DOM Level 2, you use this method to see if the node has any attributes.

NodeList Interface

A node list provides access to an ordered collection of nodes (see Listing 8-4). It is used for the

children of a node and as the return value from the getElementsByTagName method that retrieves

nodes by name. Nodes returned through the list are “live,” meaning that changes made to them are

made to the actual nodes within the DOM structure. Similarly, adding nodes to or removing nodes

from the list immediately affects the hierarchy.

Listing 8-4: The NodeList interface

interface NodeList {
readonly attribute unsigned long length;
Node item(in unsigned long index);

};

The properties and methods of a NodeList are as follows:

readonly attribute unsigned long length;
The number of items in the list.

Node item(in unsigned long index);
This method retrieves a particular entry from the list, given its position. If the index is out of

range, a null is returned instead. Numbering starts at zero.

NamedNodeMap Interface

Named node maps (see Listing 8-5) are also collections of nodes, however, they have no inherent

order and are primarily accessible by the names of the contained nodes.

Listing 8-5: The NamedNodeMap interface

interface NamedNodeMap {
readonly attribute unsigned long length;
Node getNamedItem(in DOMString name);
Node setNamedItem(in Node arg) raises(DOMException);
Node removeNamedItem(in DOMString name)

raises(DOMException);
Node item(in unsigned long index);
// Introduced in DOM Level 2:
Node getNamedItemNS(in DOMString namespaceURI,

in DOMString localName);
// Introduced in DOM Level 2:
Node setNamedItemNS(in Node arg) raises(DOMException);
// Introduced in DOM Level 2:
Node removeNamedItemNS(in DOMString namespaceURI,

in DOMString localName) raises(DOMException);
};

Chapter 8: The Document Object Model (DOM) 87



A NamedNodeMap’s properties and methods are described below:

readonly attribute unsigned long length;
The number of items in the list.

Node getNamedItem(in DOMString name);
Retrieve a node from the list via its name with this method. If no matching node is found in

the list, a null results.

Node setNamedItem(in Node arg) raises(DOMException);
This method adds a new node to the list, using its name as the key. If the name matches an

existing node in the list, the new node replaces it and the old node becomes the return value

of the method. Otherwise, the method returns a null. An exception is raised if the node was

created by a different document than the list, if the list is read-only, or if the node is an attrib-

ute that already belongs to another element.

Node removeNamedItem(in DOMString name) raises(DOMException);
Delete a node from the list, based on its name, with this method. Attribute nodes deleted

through this method may automatically reappear if they are known to have a default value. If

the list is read-only or if the named node does not appear in the list, an exception is

generated.

Node item(in unsigned long index);
Although the named node map has no inherent order, this method provides sequential access

to all the held nodes through their index. This does not impose any particular ordering on the

nodes, and merely serves to enumerate all the contained nodes. If the index is out of range,

the function returns a null. Numbering starts at zero.

Node getNamedItemNS(in DOMString namespaceURI, in DOMString localName);
Introduced in DOM Level 2, this method functions as does getNamedItem, but allows a fully

qualified name to be used. A null results if no matching node is found.

Node setNamedItemNS(in Node arg) raises(DOMException);
Also in DOM Level 2, this method adds a new node to the list, using its fully qualified name

as the key. Exceptions occur under the same conditions as for the setNamedItem method.

Node removeNamedItemNS(in DOMString namespaceURI, in DOMString localName) raises
(DOMException);
New in Level 2, you can delete a node from the list with this method based on its full name.

See the removeNamedItem method for error conditions.

88 Part II: The Document Object Model



Element Interface

Elements are the primary nodes found in XML documents. Based on the Node interface, the Ele-
ment interface (see Listing 8-6) adds better methods for accessing attributes, and other methods

for searching its descendants for certain nodes.

Listing 8-6: The Element interface

interface Element : Node {
readonly attribute DOMString tagName;
DOMString getAttribute(in DOMString name);
void setAttribute(in DOMString name, in DOMString value)

raises(DOMException);
void removeAttribute(in DOMString name)

raises(DOMException);
Attr getAttributeNode(in DOMString name);
Attr setAttributeNode(in Attr newAttr)

raises(DOMException);
Attr removeAttributeNode(in Attr oldAttr)

raises(DOMException);
NodeList getElementsByTagName(in DOMString name);
// Introduced in DOM Level 2:
DOMString getAttributeNS(in DOMString namespaceURI,

in DOMString localName);
// Introduced in DOM Level 2:
void setAttributeNS(in DOMString namespaceURI,

in DOMString qualifiedName, in DOMString value)
raises(DOMException);

// Introduced in DOM Level 2:
void removeAttributeNS(in DOMString namespaceURI,

in DOMString localName) raises(DOMException);
// Introduced in DOM Level 2:
Attr getAttributeNodeNS(in DOMString namespaceURI,

in DOMString localName);
// Introduced in DOM Level 2:
Attr setAttributeNodeNS(in Attr newAttr)

raises(DOMException);
// Introduced in DOM Level 2:
NodeList getElementsByTagNameNS(in DOMString namespaceURI,

in DOMString localName);
// Introduced in DOM Level 2:
boolean hasAttribute(in DOMString name);
// Introduced in DOM Level 2:
boolean hasAttributeNS(in DOMString namespaceURI,

in DOMString localName);
};

The properties and methods of the Element node are as follows:

readonly attribute DOMString tagName;
Mapping onto the inherited nodeName property, this is merely a convenience.

DOMString getAttribute(in DOMString name);
This method returns the string value of the named attribute, or an empty string if it does not

exist.

Chapter 8: The Document Object Model (DOM) 89



void setAttribute(in DOMString name, in DOMString value) raises(DOMException);
The complement of the previous method, this allows you to set the (string) value of the

named attribute. Any existing attribute with that name is overwritten. The value is not

parsed or interpreted in any way. An exception occurs if the name contains an illegal charac-

ter or if the element is read-only.

void removeAttribute(in DOMString name) raises(DOMException);
Delete an attribute from this node, given its name. If the attribute is known to have a default

value (from the DTD or schema), it is immediately added again with that value. If the ele-

ment is read-only, an exception is raised.

DOMString getAttributeNS(in DOMString namespaceURI, in DOMString localName);
Introduced in DOM Level 2, this method works just like getAttribute, except that it takes a

namespace URI and a local name to identify the attribute.

void setAttributeNS(in DOMString namespaceURI, in DOMString qualifiedName, in
DOMString value) raises(DOMException);
New in DOM Level 2, this method specifies the attribute through its namespace URI and

local name. Otherwise, it functions just like setAttribute. An exception occurs if the name

contains an illegal character, if the element is read-only, or if the qualified name is mal-

formed. A name is malformed if it has a prefix but no namespace, or if the prefix is xml or

xmlns and the namespace is not the corresponding accepted value.

void removeAttributeNS(in DOMString namespaceURI, in DOMString localName)
raises(DOMException);
Also new in DOM Level 2, this method works like removeAttribute, but takes a

namespace URI and a local name to select the attribute. If the element is read-only, an

exception is raised.

Attr getAttributeNode(in DOMString name);
Similar to the getAttribute method, this one allows you to retrieve the entire Attr node

given its name. This is useful when the attribute contains entity references, since these

appear as child nodes of that attribute. A null is returned if the attribute cannot be found.

Attr setAttributeNode(in Attr newAttr) raises(DOMException);
Add a new attribute based on the node passed to this call. This allows for entity references

within an attribute, appearing as children of the attribute node. If an existing attribute is

replaced, a reference to the old attribute is returned. Otherwise, the function returns null.

Exceptions occur if the attribute was created by another document, if the element is

read-only, or if the attribute already belongs to another element.

Attr removeAttributeNode(in Attr oldAttr) raises(DOMException);
Try to match an attribute of the element with the supplied one, and remove it if found,

returning a reference to the deleted node. As before, if the attribute has a default value it

automatically reappears with that value. If the element is read-only or if the supplied attrib-

ute is not found, an exception is raised.

90 Part II: The Document Object Model



Attr getAttributeNodeNS(in DOMString namespaceURI, in DOMString localName);
Introduced in DOM Level 2, this method works just like getAttributeNode, except that it

takes a namespace URI and a local name to identify the attribute.

Attr setAttributeNodeNS(in Attr newAttr) raises(DOMException);
New in DOM Level 2, this method uses the attribute’s namespace URI and local name for

identification. Otherwise, it functions just like setAttributeNode, including raising

exceptions.

NodeList getElementsByTagName(in DOMString name);
Given the name of an element, this method walks the descendants of the current node and

compiles a list of matching elements. The order within the list is that of a pre-order traversal

of the subtree (the same order that elements appear within the text document). As with child

nodes, the nodes returned are “live.” Use a name of * to match with all tag names.

NodeList getElementsByTagNameNS(in DOMString namespaceURI, in DOMString
localName);
Introduced in DOM Level 2, this method works just like getElementsByTagName, except

that it selects elements by their namespace URI and local name.

boolean hasAttribute(in DOMString name);
Introduced in DOM Level 2, this method returns True if the named attribute exists within

this node, due to its value being specified in the XML document or as a default value from

the DTD or schema. Otherwise, it returns False.

boolean hasAttributeNS(in DOMString namespaceURI, in DOMString localName);
New in DOM Level 2, this method uses an attribute’s namespace URI and local name to

determine its presence. Otherwise, it functions just like hasAttribute.

Attr Interface

This interface (shown in Listing 8-7) represents an attribute of an element. The attribute nodes do

not appear within the normal DOM hierarchy, only within the attributes property of an Element
node. For this reason their parentNode, previousSibling, and nextSibling properties all return

null.

Listing 8-7: The Attr interface

interface Attr : Node {
readonly attribute DOMString name;
readonly attribute boolean specified;

attribute DOMString value;
// raises(DOMException) on setting

// Introduced in DOM Level 2:
readonly attribute Element ownerElement;

};

Chapter 8: The Document Object Model (DOM) 91



An attribute’s value may come from the XML document directly, where it appears as part of the

element tag. For documents that have DTDs or schemas, the value may also come from a default

or fixed value specified therein. If neither of these situations applies, the attribute does not appear

at all in the DOM.

NOTE Deleting an attribute that has a default value set in the DTD or schema causes that
attribute to be immediately added again with that default value.

Attributes usually have a single Text node child. However, they may also contain a combination

of Text and EntityReference nodes representing their contents.

An Attribute node’s properties are described below:

readonly attribute DOMString name;
The name of the attribute. This is a synonym for the inherited nodeName property.

attribute DOMString value;
The string value of the attribute. This is a synonym for the inherited nodeValue property. It is

the text value of the entire attribute, with any entity references expanded out. Setting this

attribute creates a single Text node beneath the attribute, replacing any earlier children. The

supplied text is not parsed at all, ignoring anything that otherwise is considered markup. An

exception occurs if the node is read-only.

readonly attribute boolean specified;
This property is True if the attribute’s value was explicitly set in the XML document. It is

False if the value derived from a default or fixed value in the DTD or schema. Setting the

value attribute also sets this attribute to True.

readonly attribute Element ownerElement;
Introduced in DOM Level 2, this property refers back to the Element that owns this node. It

returns null if the attribute is not in use.

CharacterData Interface

The CharacterData interface (see Listing 8-8) extends Node and defines basic functionality for all

nodes that contain text. Nodes of this particular type do not appear within the DOM; subclasses of

this type are used instead. All offsets within the interface start at zero.

Listing 8-8: The CharacterData interface

interface CharacterData : Node {
attribute DOMString data;
// raises(DOMException) on setting
// raises(DOMException) on retrieval

readonly attribute unsigned long length;
DOMString substringData(in unsigned long offset,

in unsigned long count) raises(DOMException);
void appendData(in DOMString arg) raises(DOMException);
void insertData(in unsigned long offset,

in DOMString arg) raises(DOMException);
void deleteData(in unsigned long offset,

92 Part II: The Document Object Model



in unsigned long count) raises(DOMException);
void replaceData(in unsigned long offset,

in unsigned long count, in DOMString arg)
raises(DOMException);

};

The properties and methods of a CharacterData node are as follows:

attribute DOMString data;
The actual content of the node, equivalent to the nodeValue property. An exception occurs if

the value is set when the node is read-only or if the value is read but is too large for a

DOMString. In the latter case, you can use the substringData method to retrieve portions of

the text. Furthermore, being too large is an implementation-specific problem and may not

arise in some processors.

readonly attribute unsigned long length;
The number of characters in the node. This may be zero.

DOMString substringData(in unsigned long offset, in unsigned long count)
raises(DOMException);
Retrieves a range of characters from the node. If the offset is out of range or if the count is

negative, an exception occurs. Reading a section too large for a DOMString also triggers an

exception.

void appendData(in DOMString arg) raises(DOMException);
Adds new text to the end of the existing value. An exception is raised if the node is

read-only.

void insertData(in unsigned long offset, in DOMString arg) raises(DOMException);
Adds new text at the specified position within the existing text. Content after that position is

pushed along. Exceptions occur if the offset is out of range or if the node is read-only.

void deleteData(in unsigned long offset, in unsigned long count)
raises(DOMException);
Remove the nominated characters from the content. Subsequent characters move up to fill

the gap. If the offset is out of range, if the count is negative, or if the node is read-only, an

exception is generated.

void replaceData(in unsigned long offset, in unsigned long count, in DOMString arg)
raises(DOMException);
Combines the previous two operations: removes the specified characters, then adds the new

text in its place. The combined error conditions apply.

Text Interface

Derived from CharacterData, this interface (shown in Listing 8-9) represents the actual textual

content of an XML document. These nodes have no children, with their contents available through

the inherited data property. When first loaded, there is only one Text node for each block of text in

the document. Subsequent operations may add other Text nodes. The normalize method of a

Chapter 8: The Document Object Model (DOM) 93



parent node serves to combine adjacent Text nodes, as if the document had been saved and

reloaded. This may be necessary for some operations that expect a certain structure.

Listing 8-9: The Text interface

interface Text : CharacterData {
Text splitText(in unsigned long offset)

raises(DOMException);
};

A Text node’s methods are described below:

Text splitText(in unsigned long offset) raises(DOMException);
Breaks the current text node into two pieces at the specified offset. The original node retains

all the text up to that point, while the new node, inserted immediately after the original

within its parent, holds the rest. A reference to the new node is returned by the function. If

the offset is out of range or if the node is read-only, an exception occurs.

CDATASection Interface

CDATA sections allow you to place characters that would otherwise have to be escaped into the

document. This interface is part of the extended core specification for the DOM. If you were only

dealing with HTML documents, you would not use the node types in this extension. Since XML is

the focus of this book, they are included here.

This interface (see Listing 8-10) extends Text, but adds nothing new to it. As such, it is simply

a flagging interface, serving to distinguish straight text from these special sections.

Listing 8-10: The CDATASection interface

interface CDATASection : Text {
};

Comment Interface

Like the CDATA section, the Comment interface (see Listing 8-11) is just another flagging inter-

face. It extends CharacterData, but adds nothing new. The text of the comment is available from

the inherited nodeValue attribute.

Listing 8-11: The Comment interface

interface Comment : CharacterData {
};

ProcessingInstruction Interface

ProcessingInstruction (shown in Listing 8-12) is another of the extended interfaces of the core

DOM. They allow additional commands for specific applications to be passed through the XML

in a generalized manner.

94 Part II: The Document Object Model



Listing 8-12: The ProcessingInstruction interface

interface ProcessingInstruction : Node {
readonly attribute DOMString target;

attribute DOMString data;
// raises(DOMException) on setting

};

The properties of a ProcessingInstruction node are as follows:

readonly attribute DOMString target;
This property denotes the audience that will know how to deal with the commands in the rest

of the tag. Often, it identifies a particular program. It consists of all text from the start of the

tag up to the first white space character. The nodeName property holds the same value.

attribute DOMString data;
The remainder of the tag, from the first non-white space character following the target

through to the character immediately before the closing sequence, contains the commands

destined for the target application. This is a synonym for the nodeValue property. No struc-

ture is imposed on the data from XML’s point of view. The target of the command may

expect certain formats, however.

DocumentType Interface

The DTD declaration is encapsulated by the DocumentType interface (see Listing 8-13). This is

another extended code interface, since HTML does not support this functionality. Under DOM

Level 2, DocumentType nodes (and their children) cannot be altered.

Listing 8-13: The DocumentType interface

interface DocumentType : Node {
readonly attribute DOMString name;
readonly attribute NamedNodeMap entities;
readonly attribute NamedNodeMap notations;
// Introduced in DOM Level 2:
readonly attribute DOMString publicId;
// Introduced in DOM Level 2:
readonly attribute DOMString systemId;
// Introduced in DOM Level 2:
readonly attribute DOMString internalSubset;

};

A DocumentType node’s properties are described below:

readonly attribute DOMString name;
This property contains the name of the document element. The nodeName property holds the

same value.

readonly attribute NamedNodeMap entities;
A list of all the entities declared within the document is available through this property.

Parameter entities are not included, but both internal and external entities are. Duplicate

entity definitions are ignored. As it returns a NamedNodeMap, you can retrieve entities by

name. Each item within the list implements the Entity interface shown below.

Chapter 8: The Document Object Model (DOM) 95



readonly attribute NamedNodeMap notations;
Similarly, all notations from the document are available here. Duplicate definitions are

again ignored. As for entities, you can retrieve them by name from the list. The Notation
interface returns further details for each item.

readonly attribute DOMString publicId;
The public (logical) identifier for any external DTD or schema is held in this property. This

is new in DOM Level 2.

readonly attribute DOMString systemId;
This property holds the physical address of the external DTD or schema, usually as a URL.

As for the publicId, this property is new to DOM Level 2.

readonly attribute DOMString internalSubset;
The text value of the internal subset of the DTD is returned by this property. It was intro-

duced as part of DOM Level 2.

Entity Interface

The Entity interface (shown in Listing 8-14) models the entities (parsed and unparsed) in a docu-

ment, and is another extended core interface. Child nodes represent the contents of the entity,

which may include sections of markup. This interface holds details about the entities themselves,

but says nothing about the declarations from which they were extracted. Future versions of the

DOM will address this issue.

Listing 8-14: The Entity interface

interface Entity : Node {
readonly attribute DOMString publicId;
readonly attribute DOMString systemId;
readonly attribute DOMString notationName;

};

Entities from an external DTD may not appear in the DOM if the parser does not resolve external

references, which is often the case for non-validating parsers.

Entity definitions are only available through the DocumentType interface, and do not form part

of the normal tree. Thus, Entity objects have no parent node. Furthermore, these nodes and all

their descendants are read-only.

The properties of an Entity node are as follows:

readonly attribute DOMString nodeName;
This inherited attribute holds the entity’s name.

readonly attribute DOMString publicId;
The public (logical) identifier for the entity is held in this property. It is null if no public

identifier is specified.

96 Part II: The Document Object Model

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



readonly attribute DOMString systemId;
This property holds the physical address of the entity, usually as a URL. Again, it is null if

no system identifier is supplied.

readonly attribute DOMString notationName;
The format of an unparsed entity is provided through this property. It must match up with

one of the notations declared in the document. For parsed entities this value is null.

EntityReference Interface

At the points that entities appear within the body of the document you may find EntityReference
nodes (see Listing 8-15), yet another extended core interface. These references may not appear if

the processor expands them during parsing and replaces them with their contents. When they do

appear, they contain copies of the structure beneath the corresponding entity. As for entities, entity

reference nodes and their descendants are read-only.

Listing 8-15: The EntityReference interface

interface EntityReference : Node {
};

The interface itself adds no new functionality, merely serving to identify the original source of the

content. Read the inherited nodeName attribute to retrieve the name of the entity whose contents

are used.

Notation Interface

Another extended core interface, Notation (see Listing 8-16) provides details about formats for

external entities and about processing instruction targets. They are only accessible from the Nota-
tions property of the DocumentType node, and have no parent. Under DOM Level 2 they are

read-only.

Listing 8-16: The Notation interface

interface Notation : Node {
readonly attribute DOMString publicId;
readonly attribute DOMString systemId;

};

A Notation node’s properties are described below:

readonly attribute DOMString nodeName;
This inherited attribute holds the notation’s name.

readonly attribute DOMString publicId;
The public (logical) identifier for the notation is held in this property. It returns null if no

public identifier is specified.

Chapter 8: The Document Object Model (DOM) 97



readonly attribute DOMString systemId;
This property holds the physical address of the notation, usually as a URL. It may refer to a

specification for that format, or it may be a reference to a program that can manipulate the

format. Again, a null is returned if no system identifier is supplied.

DocumentFragment Interface

A document fragment (shown in Listing 8-17) serves to hold and manage a subtree of nodes

before adding them to a document. When placed into the document hierarchy, the Document-
Fragment node itself is not added. All of its child nodes are instead placed where the fragment

would have gone. These nodes never appear within a DOM document structure.

Listing 8-17: The DocumentFragment interface

interface DocumentFragment : Node {
};

Its interface simply serves as a marker to identify its purpose. All of its abilities are inherited from

the basic Node.

Document Interface

Bringing all the other nodes together is the Document interface (see Listing 8-18). As well as serv-

ing as the manager and container for each document, it provides numerous factory methods to

create the different types of nodes. Nodes should only be generated in this manner, since it guaran-

tees that the document and its child nodes work together properly. All newly instantiated nodes are

not part of the document and have no parent until they are explicitly added to another node.

Listing 8-18: The Document interface

interface Document : Node {
readonly attribute DocumentType doctype;
readonly attribute DOMImplementation implementation;
readonly attribute Element documentElement;
Element createElement(in DOMString tagName)

raises(DOMException);
DocumentFragment createDocumentFragment();
Text createTextNode(in DOMString data);
Comment createComment(in DOMString data);
CDATASection createCDATASection(in DOMString data)

raises(DOMException);
ProcessingInstruction createProcessingInstruction(

in DOMString target,
in DOMString data)
raises(DOMException);

Attr createAttribute(in DOMString name)
raises(DOMException);

EntityReference createEntityReference(in DOMString name)
raises(DOMException);

NodeList getElementsByTagName(
in DOMString tagname);

98 Part II: The Document Object Model



// Introduced in DOM Level 2:
Node importNode(in Node importedNode,

in boolean deep) raises(DOMException);
// Introduced in DOM Level 2:
Element createElementNS(

in DOMString namespaceURI,
in DOMString qualifiedName)
raises(DOMException);

// Introduced in DOM Level 2:
Attr createAttributeNS(

in DOMString namespaceURI,
in DOMString qualifiedName)
raises(DOMException);

// Introduced in DOM Level 2:
NodeList getElementsByTagNameNS(

in DOMString namespaceURI,
in DOMString localName);

// Introduced in DOM Level 2:
Element getElementById(in DOMString elementId);

};

The properties and methods of a Document node are as follows:

readonly attribute DOMImplementation implementation;
A pointer to the DOMImplementation that supports this document. See below for further

details about this interface.

readonly attribute DocumentType doctype;
A reference to the DocumentType node for this document, or null if there is none. The docu-

ment type declaration cannot be changed in any way under DOM Level 2.

readonly attribute Element documentElement;
As a convenience, this property points to the single top-level element of the document. This

element could also be found by stepping through the child nodes of the document.

Element createElement(in DOMString tagName) raises(DOMException);
A factory method for generating Element nodes for use within this document. Nodes cannot

be used in documents other than the one in which they were created. Specify the tag name of

the element when calling it. An exception occurs if the supplied name contains illegal

characters.

DocumentFragment createDocumentFragment();
Produce new DocumentFragment nodes with this method.

Text createTextNode(in DOMString data);
Instantiate new Text nodes for this document. Pass the contents of the node as a parameter.

Comment createComment(in DOMString data);
Generate new Comment nodes. The text of the comment is passed in.

CDATASection createCDATASection(in DOMString data) raises(DOMException);
Produce new CDATASection nodes. Text for the CDATA section is provided, and may con-

tain characters that would normally need to be escaped. An exception is generated if this

method is used within an HTML DOM.

Chapter 8: The Document Object Model (DOM) 99



ProcessingInstruction createProcessingInstruction(in DOMString target, in
DOMString data) raises(DOMException);
Instantiate a new ProcessingInstruction node. Specify the target application and the

command line as you create it. Calling this within an HTML DOM raises an exception, as

does supplying a target value with an illegal character.

Attr createAttribute(in DOMString name) raises(DOMException);
Generate a new Attribute node to add to an element. Although the name of the attribute

may be passed in, you still need to set its value. An exception occurs if the attribute name

contains an illegal character.

EntityReference createEntityReference(in DOMString name) raises(DOMException);
Produce a new EntityReference node to mark the position of an Entity within the docu-

ment. Specify the name of the entity to refer to. Exceptions are raised if the name has an

illegal character or if it is called within an HTML DOM.

NOTE Since the DocumentType node for a document cannot be altered, including the objects
it manages, there are no methods to create Entity and Notation nodes. These must come
from a DTD as it is loaded.

NodeList getElementsByTagName(in DOMString tagname);
Retrieve a list of Element nodes that have the specified name from the document. The

entries appear in the order in which they are encountered during a pre-order traversal of the

tree. Note that the nodes in the list are “live,” meaning that any changes made to them affect

the actual nodes within the hierarchy. Use a name of * to obtain all elements.

Node importNode(in Node importedNode, in boolean deep) raises(DOMException);
Return a copy of a node from another document. Recursively include all of its child nodes if

the deep parameter is set to True. The new node has its parentNode set to null until it is

placed in the new document. Some special cases apply to various node types as listed below:

Document and DocumentType nodes cannot be imported.

Element nodes copy only their specified attributes, although they may acquire new

default ones based on the new DTD. The attributes are copied regardless of the deep value.

Attribute nodes always copy their descendants regardless of the deep setting, and their

specified flag is set to True.

Entity and Notation nodes can be imported, but they cannot currently be added to the

document’s DocumentType node.

EntityReference nodes never copy their descendants, although they do acquire the

descendants of the same named entity in the new document.

Element createElementNS(in DOMString namespaceURI, in DOMString qualifiedName)
raises(DOMException);
Generate a new Element node with the specified namespace URI and qualified name. This

method was added in DOM Level 2. An exception arises if the qualified name contains an

illegal character or if it is malformed (it has a prefix but no namespace is supplied or the pre-

fix is xml or xmlns without the namespace being the correct corresponding value).

100 Part II: The Document Object Model



Attr createAttributeNS(in DOMString namespaceURI, in DOMString qualifiedName)
raises(DOMException);
Produce a new Attribute node with the given namespace URI and qualified name. This

method was added in DOM Level 2. If the qualified name has an illegal character or is mal-

formed, an exception occurs.

NodeList getElementsByTagNameNS(in DOMString namespaceURI, in DOMString
localName);
This functions the same as the getElementsByTagName method, but takes a namespace URI

and a local name as parameters. Either part can be * to match with all values. It was added as

part of DOM Level 2.

Element getElementById(in DOMString elementId);
New in DOM Level 2, this method returns the single Element node with the specified ID

value, or null if none can be found. For this method to function, the document must have

information that defines which attributes contain ID type values (an attached DTD or

schema). If that information is not available, the function returns null.

DOMImplementation Interface

Finally, the DOMImplementation interface (shown in Listing 8-19) defines functionality that exists

outside the scope of any one document.

Listing 8-19: The DOMImplementation interface

interface DOMImplementation {
boolean hasFeature(in DOMString feature,

in DOMString version);
// Introduced in DOM Level 2:
DocumentType createDocumentType(in DOMString qualifiedName,

in DOMString publicId, in DOMString systemId)
raises(DOMException);

// Introduced in DOM Level 2:
Document createDocument(in DOMString namespaceURI,

in DOMString qualifiedName,
in DocumentType doctype) raises(DOMException);

};

A DOMImplementation’s methods are described below:

boolean hasFeature(in DOMString feature, in DOMString version);
To allow for extension to the DOM in a robust way, this function tests whether a particular

feature is supported and at what level. The basic core functionality is always available in any

DOM. For the extended core capabilities, you use the feature name XML. Use HTML for the

additional HTML node types defined in the DOM (but not covered here). Versions may be

tested for explicitly, in which case DOM Level 1 corresponds to version 1.0 and Level 2 is

2.0. If no version is specified, then any supported version returns True.

Chapter 8: The Document Object Model (DOM) 101



DocumentType createDocumentType(in DOMString qualifiedName, in DOMString publicId,
in DOMString systemId) raises(DOMException);
Generate an empty DocumentType node with the specified values. Under DOM Level 2 this

node is read-only, so entities and notations cannot be added to it (which makes it fairly use-

less). Future versions of the DOM will probably allow for modification of the DTD. This

method was added as part of DOM Level 2. If the qualified name has an illegal character or

is malformed, an exception occurs.

Document createDocument(in DOMString namespaceURI, in DOMString qualifiedName, in
DocumentType doctype) raises(DOMException);
Produce a new Document object to work with. Set the document element and document type

with the supplied values. Prior to DOM Level 2, when this method was added, the manner in

which a document was initially obtained was not specified. It was left to the implementa-

tions to provide an appropriate mechanism. Exceptions arise if the names contain an illegal

character, if the qualified name is malformed, or if the document type node is already in use

or was created by another implementation.

NodeFilter Interface

In addition to the enhancements to the DOM Core, DOM Level 2 added specifications for navigat-

ing the model, or a selection of nodes from it. These extra abilities are described below and form

the Traversal section of DOM Level 2. The NodeFilter interface (see in Listing 8-20) defines a

way to decide whether or not a node is chosen. Objects that implement this interface are used

within the NodeIterator and TreeWalker interfaces below to modify the set of nodes extracted

from the DOM.

Listing 8-20: The NodeFilter interface

// Introduced in DOM Level 2:
interface NodeFilter {
// Constants returned by acceptNode
const short FILTER_ACCEPT = 1;
const short FILTER_REJECT = 2;
const short FILTER_SKIP = 3;
// Constants for whatToShow
const unsigned long SHOW_ALL = 0xFFFFFFFF;
const unsigned long SHOW_ELEMENT = 0x00000001;
const unsigned long SHOW_ATTRIBUTE = 0x00000002;
const unsigned long SHOW_TEXT = 0x00000004;
const unsigned long SHOW_CDATA_SECTION = 0x00000008;
const unsigned long SHOW_ENTITY_REFERENCE = 0x00000010;
const unsigned long SHOW_ENTITY = 0x00000020;
const unsigned long SHOW_PROCESSING_INSTRUCTION = 0x00000040;
const unsigned long SHOW_COMMENT = 0x00000080;
const unsigned long SHOW_DOCUMENT = 0x00000100;
const unsigned long SHOW_DOCUMENT_TYPE = 0x00000200;
const unsigned long SHOW_DOCUMENT_FRAGMENT = 0x00000400;
const unsigned long SHOW_NOTATION = 0x00000800;
short acceptNode(in Node n);

};

102 Part II: The Document Object Model



The methods of a NodeFilter are as follows:

short acceptNode(in Node n);
Given a node, this method returns a flag indicating what its fate is to be. The returned value

is one of the FILTER_* constants, which have the following meanings. FILTER_ACCEPT adds

the node to the list being compiled, with processing continuing with its descendants (in the

case of a TreeWalker). FILTER_REJECT discards the node from the list (including all of its

descendants for TreeWalker). FILTER_SKIP does not add the current node to the list, but

does process any descendants to see whether they qualify. Within the implementation of this

method, any possible test can be applied to the node.

The SHOW_* constants combine to allow for simple filtering when selecting nodes. Values are

added or OR’d together before being passed in as the whatToShow parameter during the creation of

an iterator or walker in the DocumentTraversal interface below. The intent of each constant is

obvious from its name. However, attribute, entity, and notation nodes only appear when they are at

the root of the tree being searched, since they are not part of the normal DOM tree structure.

NodeIterator Interface

The NodeIterator interface, introduced in DOM Level 2 Traversal and shown in Listing 8-21,

provides access to a collection of nodes selected from the DOM. Nodes are retrieved in a sequen-

tial manner from the iterator, without regard to their original positions within the hierarchy (other

than their order which reflects a pre-order walk through the tree).

Listing 8-21: The NodeIterator interface

// Introduced in DOM Level 2:
interface NodeIterator {
readonly attribute Node root;
readonly attribute unsigned long whatToShow;
readonly attribute NodeFilter filter;
readonly attribute boolean expandEntityReferences;

Node nextNode() raises(DOMException);
Node previousNode() raises(DOMException);
void detach();

};

The list of nodes accessible through an iterator is “live.” Thus, the methods must take into account

the current state of the specified subtree and respond accordingly as nodes are added or deleted.

The NodeIterator’s properties and methods are described below:

readonly attribute Node root;
The node at the base of the subtree from which the nodes in the list are selected. This is set

when the iterator is created and cannot be changed thereafter.

Chapter 8: The Document Object Model (DOM) 103



readonly attribute unsigned long whatToShow;
For an initial filter you can specify which types of nodes to select. Use the constants from the

NodeFilter interface and add or OR them together. These values take precedence over any

filter that may be supplied. As for root, this set of nodes is specified when the iterator is cre-

ated and is then read-only.

readonly attribute NodeFilter filter;
For more complex selections you supply an instance of the NodeFilter interface that per-

forms whatever testing on individual nodes is required. Once more, the filter is established

on creation and cannot be altered.

readonly attribute boolean expandEntityReferences;
This flag determines whether or not child nodes of any entity references within the subtree

are provided to the iterator. When set to False, the content of these reference nodes is

skipped. To hide the entity reference nodes themselves but retain all their descendants, set

this flag to True and use the whatToShow property to exclude entity reference nodes.

Node nextNode() raises(DOMException);
Retrieve the next node in the list with this method, and move the position pointer forward.

After the iterator is initially created, this call returns the first node in the list. At the end of

the list, the return value is null. An exception occurs if the iterator has been detached.

Node previousNode() raises(DOMException);
Return the previous node in the list with this method, and move the current pointer back-

ward. Stepping back from the beginning of the list returns a value of null. Calling this on a

detached iterator generates an exception.

void detach();
Once the iterator has been used, its resources can be released with this call. Having per-

formed this step, further calls to nextNode or previousNode result in an invalid state

exception being raised.

TreeWalker Interface

The TreeWalker interface, part of DOM Level 2 Traversal and shown in Listing 8-22, also pro-

vides a view onto the nodes in the DOM. It differs from the NodeIterator in that it retains any

applicable tree structure. From any particular node (the current node), you can navigate through

the hierarchy extracted by the walker. Note that the returned tree may be substantially different

from the original DOM. This depends on what selection criteria were applied, which nodes were

found, and their relationships to each other.

Listing 8-22: The TreeWalker interface

// Introduced in DOM Level 2:
interface TreeWalker {
readonly attribute Node root;
readonly attribute unsigned long whatToShow;
readonly attribute NodeFilter filter;
readonly attribute boolean expandEntityReferences;

104 Part II: The Document Object Model



attribute Node currentNode;
// raises(DOMException) on setting

Node parentNode();
Node firstChild();
Node lastChild();
Node previousSibling();
Node nextSibling();
Node previousNode();
Node nextNode();

};

Again, the tree walker acts upon a “live” subtree in the document. As nodes are inserted or

removed, the walker always takes this into consideration when navigating through its selected

nodes. Although the current node may be deleted or set outside the filtered set, the result of a

movement always returns a node from the filtered set, or null if no such movement could be

made.

The properties and methods of a TreeWalker are as follows:

readonly attribute Node root;
readonly attribute unsigned long whatToShow;
readonly attribute NodeFilter filter;
readonly attribute boolean expandEntityReferences;

The above properties all function the same as for the NodeIterator interface.

attribute Node currentNode;
Retrieve the current position within the walker structure with this property. You can also set

the node to be used for future navigation through this property. Note that the node specified

need not be one of those selected by the walker. In fact, it need not even be in the subtree

based at root.

Node parentNode();
Move to the closest ancestor within the selected nodes. If this steps up past the root node,

then it returns null. Make the returned node the current one.

Node firstChild();
Return the first selected child of the current node, or null if there are no children. The child

node becomes the current node for future calls.

Node lastChild();
Same as for firstChild, but returns the last selected child and moves the current node

pointer here.

Node previousSibling();
Retrieve the preceding sibling of the current node, and return it. If there is no previous sib-

ling, return null. Move the current pointer here.

Node nextSibling();
Same as for previousSibling, but returns the following sibling, if there is one.

Chapter 8: The Document Object Model (DOM) 105



Node previousNode();
Move to the preceding selected node in document (pre-order) order. Returns null if there is

no previous node. As always, move the current node to the new node.

Node nextNode();
Same as for previousNode, but returns the following node.

DocumentTraversal Interface

To allow you to use the navigation aids defined in DOM Level 2 Traversal, the Document-
Traversal interface (see Listing 8-23) specifies how they are created. In each case, you define the

selection criteria and the root node to operate from. These values are saved within the resulting

object, but cannot be altered there. The construction of NodeFilter objects is left to the user, since

these are very specific to the application’s requirements.

Listing 8-23: The DocumentTraversal interface

// Introduced in DOM Level 2:
interface DocumentTraversal {
NodeIterator createNodeIterator(in Node root,

in unsigned long whatToShow,
in NodeFilter filter,
in boolean entityReferenceExpansion)
raises(DOMException);

TreeWalker createTreeWalker(in Node root,
in unsigned long whatToShow,
in NodeFilter filter,
in boolean entityReferenceExpansion)
raises(DOMException);

};

The ability of a DOM implementation to support these navigation objects is available through its

hasFeature method. If the Traversal feature returns True from this method, you can expect all

these abilities to be present.

A DocumentTraversal’s methods are described below:

NodeIterator createNodeIterator(in Node root, in unsigned long whatToShow, in Node-
Filter filter, in boolean entityReferenceExpansion) raises(DOMException);
Given the node from which to start, the node type selection criteria, an optional filter, and

the entity reference flag, create an instance of a NodeIterator and return a reference to it.

An exception is raised if the root node is null.

TreeWalker createTreeWalker(in Node root, in unsigned long whatToShow, in Node-
Filter filter, in boolean entityReferenceExpansion) raises(DOMException);
Generate an instance of a TreeWalker, given the node from which to start, the node type

selection criteria, an optional filter, and the entity reference flag, and return a reference to

it. If the root node is null, an exception occurs.

106 Part II: The Document Object Model

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



Summary

The DOM specification defines a standard way of accessing and manipulating structured docu-

ments (particularly XML documents).

The Core specification identifies the functionality necessary for basic document operations, and

provides extended coverage for various XML-specific constructs. The HTML specification builds

on the core to lay out interfaces for working with HTML documents and their specific node types.

DOM Level 2 has added additional functionality in the form of namespace support and docu-

ment creation. An extension feature, document traversal, provides ways of selecting a subset of

the nodes within a DOM and navigating through them. Other extensions are defined, but these do

not yet exist in available DOM implementations and so have not been covered.

In the following chapters you’ll see how various parties implement the DOM in ways that can

be utilized from Delphi. First, we discuss Microsoft’s DOM and parser from their MSXML3.dll

package. Then follow two packages that provide Delphi native components for the DOM: a com-

mercial suite from CUESoft and an open source version from Open XML.

Chapter 8: The Document Object Model (DOM) 107



C h a p t e r 9

Microsoft’s DocumentMicrosoft’s Document

Object ModelObject Model

Microsoft has implemented the DOM specification under Windows in its XML parser package.

Originally this was available as msxml.dll, which came with the latest version of Internet

Explorer, or could be obtained from the Microsoft Web site. In October 2000, Microsoft released a

new version (v3) of its XML DOM package. Three DLLs now make up the package: msxml3.dll,

msxml3a.dll, and msxml3r.dll. As well as enhancements to the original DOM implementation, the

latest version includes a SAX2-compliant parser and definitions for the associated handlers.

You can obtain the latest XML package from the Microsoft Web site at http://msdn.microsoft.

com/xml. Version 3 of the MSXML package is installed alongside any existing MSXML package

and both can coexist on your system. Existing applications that use the package continue to use the

original version, but you can ask for an instance of the newer version in your programs.

Microsoft also provides a utility, xmlinst.exe, that lets you run the newer version in replace

mode. When invoked, this tool modifies entries in the registry to redirect calls for the original ver-

sion to the newer version. Be warned, however, that this may adversely affect some applications

using the older version. Fortunately, the tool also lets you uninstall version 3 as a replacement.

This utility is available from the Microsoft Web site as well.

NOTE The use of MSXML version 3 is assumed throughout the rest of the book. This version
is the one incorporated into all the demonstration projects.

NOTE The Microsoft DOM implementation does not support all of the abilities described in
the DOM Level 2 discussion in the previous chapter. It does support namespace usage, but
not the Traversal extension.

Microsoft’s DOM is implemented as a series of COM objects. To gain access to the DOM in

Delphi, you need to import the type library for it.

1. Choose the Project | Import Type Library menu options.

2. Select Microsoft XML, v3.0 (Version 3.0) from the list of available objects at the top. Note

that there may be multiple versions of the XML package registered. If it does not appear in

the list, press the Add button and locate the appropriate DLL.

108



3. Check the Unit dir name field to see where the wrapper appears.

4. Press the Create Unit button to generate the type library in that directory. It is called

MSXML2_tlb.pas. This is the unit that you include in your uses clause to access the

package.

Looking through the Pascal version of the type library, you see interfaces declared that correspond

with those defined by the DOM specification. In each case the string IXMLDOM prefixes the original

name. See Figure 9-1 for the hierarchy of interfaces defined by Microsoft.

Chapter 9: Microsoft’s Document Object Model 109

Figure 9-1: The Microsoft DOM hierarchy.



NOTE Within Microsoft’s DOM, all string values from the XML document are WideString
types. These are dynamically allocated strings of 16-bit Unicode characters. Since XML is
defined to work with Unicode, this is expected. The Delphi online Help notes that this format is
less efficient than the more usual AnsiString because it does not use reference counting and
copy-on-write semantics.

IXMLDOMParseError Interface

The IXMLDOMParseError interface (as shown in Listing 9-1) is used to report errors during the

loading and parsing of a document into the DOM structures. It is thus outside the coverage of the

DOM specification.

Listing 9-1: The IXMLDOMParseError interface

// ******************************************************************//
// Interface: IXMLDOMParseError
// Flags: (4544) Dual NonExtensible OleAutomation Dispatchable
// GUID: {3EFAA426-272F-11D2-836F-0000F87A7782}
// ******************************************************************//
IXMLDOMParseError = interface(IDispatch)
['{3EFAA426-272F-11D2-836F-0000F87A7782}']
function Get_errorCode: Integer; safecall;
function Get_url: WideString; safecall;
function Get_reason: WideString; safecall;
function Get_srcText: WideString; safecall;
function Get_line: Integer; safecall;
function Get_linepos: Integer; safecall;
function Get_filepos: Integer; safecall;
property errorCode: Integer read Get_errorCode;
property url: WideString read Get_url;
property reason: WideString read Get_reason;
property srcText: WideString read Get_srcText;
property line: Integer read Get_line;
property linepos: Integer read Get_linepos;
property filepos: Integer read Get_filepos;

end;

When an error occurs during the parse process, it returns a False flag from that method call. You

can then examine the document’s parseError property, which returns an object of this type, to

determine the cause of the problem.

An IXMLDOMParseError’s properties are described below. All are read-only.

property errorCode: Integer read Get_errorCode;
This property returns a value indicating the type of error encountered.

property reason: WideString read Get_reason;
A text explanation of the error is returned by this property. This is of much more use to the

user than the errorCode above. Validation errors include in their description the URL of the

schema and the node within it that caused the error.

property line: Integer read Get_line;
The line number (starting from one) in the XML document where the error was detected is

available through this property.

110 Part II: The Document Object Model



property linepos: Integer read Get_linepos;
Complementing the line property, this one provides the column number within that line

(again starting from one) where the error was found.

property filepos: Integer read Get_filepos;
The location of the error as the character position from the start of the file is returned by this

property. Do not forget to take into account the carriage return and line feed characters at the

ends of the lines in locating this position.

property srcText: WideString read Get_srcText;
This property tries to identify the offending section of text by returning the full line where

the error is detected. If the error is due to a violation of the well-formedness constraint and

cannot be assigned to a particular line, then an empty string is returned.

property url: WideString read Get_url;
The document that produced the error is available through this property.

Other errors that occur during manipulations of the DOM structure appear as an EOleException.

These correspond to the error conditions noted in the DOM specification. Although

EOleException has an ErrorCode property, this does not match up with the error codes from the

spec.

IXMLDOMNode Interface

The fundamental building block of the DOM is represented by the Node interface. In Microsoft’s

version this appears as the IXMLDOMNode interface as shown in Listing 9-2. It provides the basic

properties of each node in the structure that is the DOM. Various subclasses extend this base, add-

ing functionality specific to their purpose.

Listing 9-2: The IXMLDOMNode interface

// ******************************************************************//
// Interface: IXMLDOMNode
// Flags: (4544) Dual NonExtensible OleAutomation Dispatchable
// GUID: {2933BF80-7B36-11D2-B20E-00C04F983E60}
// ******************************************************************//
IXMLDOMNode = interface(IDispatch)
['{2933BF80-7B36-11D2-B20E-00C04F983E60}']
function Get_nodeName: WideString; safecall;
function Get_nodeValue: OleVariant; safecall;
procedure Set_nodeValue(value: OleVariant); safecall;
function Get_nodeType: DOMNodeType; safecall;
function Get_parentNode: IXMLDOMNode; safecall;
function Get_childNodes: IXMLDOMNodeList; safecall;
function Get_firstChild: IXMLDOMNode; safecall;
function Get_lastChild: IXMLDOMNode; safecall;
function Get_previousSibling: IXMLDOMNode; safecall;
function Get_nextSibling: IXMLDOMNode; safecall;
function Get_attributes: IXMLDOMNamedNodeMap; safecall;
function insertBefore(const newChild: IXMLDOMNode;
refChild: OleVariant): IXMLDOMNode; safecall;

function replaceChild(const newChild: IXMLDOMNode;

Chapter 9: Microsoft’s Document Object Model 111



const oldChild: IXMLDOMNode): IXMLDOMNode; safecall;
function removeChild(const childNode: IXMLDOMNode): IXMLDOMNode;
safecall;

function appendChild(const newChild: IXMLDOMNode): IXMLDOMNode;
safecall;

function hasChildNodes: WordBool; safecall;
function Get_ownerDocument: IXMLDOMDocument; safecall;
function cloneNode(deep: WordBool): IXMLDOMNode; safecall;
function Get_nodeTypeString: WideString; safecall;
function Get_text: WideString; safecall;
procedure Set_text(const text: WideString); safecall;
function Get_specified: WordBool; safecall;
function Get_definition: IXMLDOMNode; safecall;
function Get_nodeTypedValue: OleVariant; safecall;
procedure Set_nodeTypedValue(typedValue: OleVariant); safecall;
function Get_dataType: OleVariant; safecall;
procedure Set_dataType(const dataTypeName: WideString); safecall;
function Get_xml: WideString; safecall;
function transformNode(const stylesheet: IXMLDOMNode): WideString;
safecall;

function selectNodes(const queryString: WideString): IXMLDOMNodeList;
safecall;

function selectSingleNode(const queryString: WideString):
IXMLDOMNode; safecall;

function Get_parsed: WordBool; safecall;
function Get_namespaceURI: WideString; safecall;
function Get_prefix: WideString; safecall;
function Get_baseName: WideString; safecall;
procedure transformNodeToObject(const stylesheet: IXMLDOMNode;
outputObject: OleVariant); safecall;

property nodeName: WideString read Get_nodeName;
property nodeValue: OleVariant read Get_nodeValue
write Set_nodeValue;

property nodeType: DOMNodeType read Get_nodeType;
property parentNode: IXMLDOMNode read Get_parentNode;
property childNodes: IXMLDOMNodeList read Get_childNodes;
property firstChild: IXMLDOMNode read Get_firstChild;
property lastChild: IXMLDOMNode read Get_lastChild;
property previousSibling: IXMLDOMNode read Get_previousSibling;
property nextSibling: IXMLDOMNode read Get_nextSibling;
property attributes: IXMLDOMNamedNodeMap read Get_attributes;
property ownerDocument: IXMLDOMDocument read Get_ownerDocument;
property nodeTypeString: WideString read Get_nodeTypeString;
property text: WideString read Get_text write Set_text;
property specified: WordBool read Get_specified;
property definition: IXMLDOMNode read Get_definition;
property nodeTypedValue: OleVariant read Get_nodeTypedValue
write Set_nodeTypedValue;

property xml: WideString read Get_xml;
property parsed: WordBool read Get_parsed;
property namespaceURI: WideString read Get_namespaceURI;
property prefix: WideString read Get_prefix;
property baseName: WideString read Get_baseName;

end;

You do not find IXMLDOMNode objects themselves in the hierarchy, just a descendant. However, this

interface allows you to treat them all in a standard manner while obtaining basic information about

them. Although this interface provides properties and methods for working with child nodes, not

112 Part II: The Document Object Model



all node types within the DOM may have children. Similarly, the attributes property of a node

only applies to elements, entities, and notations.

The properties and methods of an IXMLDOMNode are shown below. Most of these follow the

DOM specification, with any differences highlighted.

property nodeType: DOMNodeType read Get_nodeType;
This property identifies what kind of node you are dealing with. It contains one of the values

shown in Listing 9-3. Set during construction of the node, this property cannot be changed at

a later stage. Checking this property allows you to safely cast the node into its correct sub-

class, thus gaining access to its particular abilities. The applicability of certain other

properties and methods also depends on this value. For example, the nodeValue property

does not apply to documents, elements, entities, and notations.

Listing 9-3: Node types in Microsoft’s DOM

const
NODE_INVALID = $00000000;
NODE_ELEMENT = $00000001;
NODE_ATTRIBUTE = $00000002;
NODE_TEXT = $00000003;
NODE_CDATA_SECTION = $00000004;
NODE_ENTITY_REFERENCE = $00000005;
NODE_ENTITY = $00000006;
NODE_PROCESSING_INSTRUCTION = $00000007;
NODE_COMMENT = $00000008;
NODE_DOCUMENT = $00000009;
NODE_DOCUMENT_TYPE = $0000000A;
NODE_DOCUMENT_FRAGMENT = $0000000B;
NODE_NOTATION = $0000000C;

property nodeTypeString: WideString read Get_nodeTypeString;
This property contains the node type as a string value—the name of the node subclass with-

out the leading IXMLDOM, all in lowercase. Again, this value is set during instantiation of the

node and cannot be changed. This is an extension to the original DOM specification.

property nodeName: WideString read Get_nodeName;
Return the name of the node with this read-only property. It always returns some value,

never an empty string. For nodes that do not have a real name in the document, certain stan-

dard names are used. For example, the node for the document as a whole is named

#document, comments are labeled #comment, text nodes are named #text, and CDATA sec-

tions are labeled #cdata-section.

Element, attribute, entity, and notation nodes each return the qualified name (including

any namespace prefix) of their respective entries. Entity reference nodes supply the name of

the entity to which they refer, excluding the leading ampersand ( & ) and trailing semicolon

( ; ). Processing instruction nodes return the target of the instruction, while document type

nodes supply the name of the top-level element in the document.

property namespaceURI: WideString read Get_namespaceURI;
Find the full URI that identifies the namespace for this node through this read-only property.

For example, given the namespace declaration xmlns:math="http://www.w3.org/TR/

Chapter 9: Microsoft’s Document Object Model 113



REC-MathML" and the qualified name math:plus, this property returns http://www.w3.org/
TR/REC-MathML.

property prefix: WideString read Get_prefix;
This read-only property returns the shorthand identifier for the namespace as specified in

the name of this node (up to the colon). An empty string is supplied if no prefix applies to the

current name.

property baseName: WideString read Get_baseName;
The local name of the element is available through this read-only property (after any colon

in the name). It always returns a non-empty string.

NOTE The baseName property is named differently in the DOM specification, which defines it
as localName.

property nodeValue: OleVariant read Get_nodeValue write Set_nodeValue;
Some nodes also have a value associated with them, held in this property. Text,

CDATASection, and Comment nodes store their contents here, while ProcessingInstruction

nodes use it for the instruction data. For Attr nodes, it contains a string corresponding to the

full value of the attribute, including expanding out any entity references held therein. Set-

ting this property on an attribute causes any children it has to be deleted and be replaced by a

single text node with this value. The remaining node types, for which it has no meaning,

return nil.

property text: WideString read Get_text write Set_text;
This property contains the entire textual contents of this node and all of its children, concate-

nated together. In other words, it includes the content of all the Text and CDATASection

nodes, including expanded entity references, that are descendants of this node strung

together. White space from text nodes is normalized before concatenation—converting all

white space characters to spaces, compressing multiple spaces down to one, and removing

leading and trailing spaces—unless overridden with the xml:space attribute and

preserveWhiteSpace switch on the parser. CDATA sections always retain their original

spacing.

For Text, CDATASection, Comment, and ProcessingInstruction nodes themselves, this

property holds the text content, just like the nodeValue property. Entity reference nodes

return the content of the entity referred to. An empty string is returned from DocumentType,

UnparsedEntity, and Notation nodes.

Setting the text property causes all child nodes to be removed and be replaced by a sin-

gle text node with the supplied value.

property xml: WideString read Get_xml;
This read-only property retrieves the node and all its sub-nodes as formatted XML. It

always returns a Unicode string, regardless of the original encoding of the document. Use

the save method to retain the original encoding. Typically, this property is used as the final

step in generating a document using the DOM.

114 Part II: The Document Object Model



Document fragment nodes do not include themselves in the XML returned by this prop-

erty, only their descendants. For DocumentType nodes, you get the <!DOCTYPE...>
declaration, including any internal subset that is specified. EntityReference nodes return the

reference itself, rather than the contents of any children that they may have.

NOTE The text and xml properties of the Microsoft DOM have no counterpart in the official
DOM specification. However, they are quite useful in the real world of XML processing, espe-
cially in generating XML documents or fragments on the fly. See Chapter 19 for further details
on creating documents with the DOM.

The properties dataType, nodeTypedValue, and definition are also extensions to the offi-

cial DOM specification.

function Get_dataType: OleVariant; safecall;
procedure Set_dataType(const dataTypeName: WideString); safecall;

These methods together represent the type of this node, as declared in the schema for this

document. The function returns the value from that schema for attribute, element, and entity

reference nodes, or nil if it is not available. For all other nodes it has the value string. Only

element and attribute nodes may have this value set. All other nodes ignore the

Set_dataType call.

NOTE Although dataType should be a property of an IXMLDOMNode, the differing types in the
getter and setter (OleVariant vs. WideString) cause it not to be recognized as such. You need
to refer to the underlying methods themselves.

property nodeTypedValue: OleVariant read Get_nodeTypedValue write
Set_nodeTypedValue;
Retrieve node data in the dataType format through this property. Attribute nodes return the

data of the appropriate type when it is specified in the schema. If not specified, this property

returns a string value identical to the nodeValue property. When setting this property, an

error occurs if the value cannot be converted into the appropriate type.

Element nodes return the type specified in the schema, or overridden by the dt:dt attrib-

ute in the document itself. Like attributes, they return strings if no type is specified. Text

nodes provide data of the type of their containing element, or a string if that element is not

typed.

Entity reference nodes supply data typed as the entity to which they refer, or a string if

the type is not specified. The remaining node types return a string value the same as the

nodeValue property since they do not have types.

property definition: IXMLDOMNode read Get_definition;
This read-only property refers you back to the declaration for a particular node. For entity

reference nodes it points to the corresponding entity, for unparsed entities it refers to the

notation, and for attributes and elements it contains the schema declaration. All other nodes

return a value of nil, as do attributes and elements if no schema is present.

Chapter 9: Microsoft’s Document Object Model 115



property attributes: IXMLDOMNamedNodeMap read Get_attributes;
The attributes of an element are accessed through this read-only property. It returns a named

node map, which is discussed in more detail below. For element, entity, and notation nodes,

a list is always returned, although it may have no entries in it. Other node types return a null
from this property. Attributes on the entity and notation nodes encode just the public and

system identifiers, and the data type (if applicable).

property specified: WordBool read Get_specified;
If the node represents an attribute, then this read-only property informs you whether or not

the value came from the document itself (True), or was a default value coming from the

DTD or schema (False). All other node types return True.

NOTE In the official DOM specification, specified is a property only of Attr nodes.

property ownerDocument: IXMLDOMDocument read Get_ownerDocument;
All nodes belong to the document that created them. This read-only property provides

access to that document. It is set during the creation of the nodes through the appropriate

factory methods of the document.

property parentNode: IXMLDOMNode read Get_parentNode;
Navigating through the DOM is accomplished via this and the following properties and

methods. This read-only property returns a reference to the parent of the current node.

Attribute, document, and document fragment nodes have no parent, and so always return

nil, as do newly created nodes before they are added to the hierarchy and nodes removed

from the tree. Entity and notation nodes refer back to the document type node that contains

them, while the document type node points back to the document itself.

property childNodes: IXMLDOMNodeList read Get_childNodes;
Child nodes are held in a node list (covered next) that is accessed via this read-only property.

All nodes have a child node list, although that list is empty for any node type that does not

have children.

function hasChildNodes: WordBool; safecall;
Use this function to determine whether or not a node has any children. Alternately, you can

check the number of items in the childNodes list. Obviously, it always returns False for

nodes that cannot have children.

property firstChild: IXMLDOMNode read Get_firstChild;
This read-only property returns the first child node of the current one or nil if there are no

children. This is a convenience property and the same result could be achieved through the

childNodes property.

property lastChild: IXMLDOMNode read Get_lastChild;
Similarly, this read-only property returns the last child node of the current one, or nil if

there are no children. It is a convenience property.

116 Part II: The Document Object Model

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



property previousSibling: IXMLDOMNode read Get_previousSibling;
Retrieve the preceding node in this node’s parent’s list of children with this read-only prop-

erty, or nil if there is none. This is easier than navigating through the hierarchy yourself.

Attribute, document, and document fragment nodes always return nil from this property

since they have no parent.

property nextSibling: IXMLDOMNode read Get_nextSibling;
Conversely, this read-only property retrieves the following node in the node’s parent’s list of

children, or nil if there is none. Similar comments apply as for the previousSibling
property.

function insertBefore(const newChild: IXMLDOMNode; refChild: OleVariant):
IXMLDOMNode; safecall;
Add a new node immediately before the specified one in this node’s list of children. If the

reference node is nil, then the new node is added at the end. A pointer to the new node is

returned. Nodes being inserted are first removed from the tree if they are already present. An

error occurs if the reference child cannot be found.

When a document fragment is inserted into the hierarchy, it is not added itself. Instead,

all of its children are inserted in turn and are removed from the fragment. A pointer to the

document fragment is still returned by the function.

NOTE The DOM specification expects an error to be generated if the node being inserted
comes from a different document. However, Microsoft’s DOM allows the transferring of
nodes between documents. Be aware that the nodes may have an altered meaning within the
new document due to differences in schemas between the two. This may even lead to parsing
failures following the insertion.

function replaceChild(const newChild: IXMLDOMNode; const oldChild: IXMLDOMNode):
IXMLDOMNode; safecall;
Remove an existing child node and replace it with the new one supplied. A reference to the

old node is returned. If the new node is specified as nil, the old node is simply deleted.

Referring to an old node that does not exist as a child causes an error. Attempting to replace a

child with a node of an inappropriate type also generates an error.

function removeChild(const childNode: IXMLDOMNode): IXMLDOMNode; safecall;
Delete the specified node from this node’s list of children. An exception is raised if the node

does not exist. A pointer to the deleted node is returned.

function appendChild(const newChild: IXMLDOMNode): IXMLDOMNode; safecall;
Add a new node at the end of the list of child nodes. Return a reference to that node. This is

the same as calling insertBefore(newChild, nil). The same comments apply as they did

for the insert method.

TIP The use of these methods described above in creating a DOM structure is covered in
greater detail in Chapter 19.

Chapter 9: Microsoft’s Document Object Model 117



function cloneNode(deep: WordBool): IXMLDOMNode; safecall;
To create a copy of a node, use this method. If the parameter passed to this call is True, then a

copy of the entire subtree rooted at the current node is made. Otherwise, just the current

node is duplicated. The following properties are duplicated: nodeType, nodeName,

nodeValue, ownerDocument, parentNode, and attributes. Copying of the childNodes
property depends on the deep setting.

NOTE The remaining methods and properties are extensions to the W3C DOM
specification.

function selectNodes(const queryString: WideString): IXMLDOMNodeList; safecall;
Return a list of those nodes that match the XSL or XPath query provided, based on the

subtree rooted at the current node, through this function. Setting the SelectionLanguage
property of the document (only available in the IXMLDOMDocument2 interface and defaulting

to XSLPattern for backward compatibility) determines which of the query types is used.

Finding no matching nodes returns an empty list. See Chapter 4 for more information on

XSL and XPath queries.

function selectSingleNode(const queryString: WideString): IXMLDOMNode; safecall;
This function acts the same as selectNodes, but only returns the first node in the list. nil is

returned if no nodes match the query.

function transformNode(const stylesheet: IXMLDOMNode): WideString; safecall;
Converting one DOM or document fragment into another can be achieved with this method.

It takes an XSLT stylesheet reference (as another DOM or part thereof) and applies it to the

current node, returning the straight text representation of the resulting tree. Navigation out-

side of the subtree based on the current node is allowed as the stylesheet processes.

procedure transformNodeToObject(const stylesheet: IXMLDOMNode; outputObject:
OleVariant); safecall;
Similar to transformNode, this method performs the transformation and returns the result-

ing DOM. Output arrives as either a new DOM structure, if the outputObject is a

DOMDocument object, or is sent directly to a stream, if outputObject is such a reference.

Getting the result back as another DOM allows for further processing on it.

TIP Using XSL Transformations is covered in greater detail in Chapter 21, which discusses a
utility for examining transformations, and in Chapter 26, which uses XSLT to generate Web
pages.

property parsed: WordBool read Get_parsed;
This read-only property informs you whether or not the current node and all of its descen-

dants have been fully parsed and instantiated yet. Usually this is only an issue when

performing the parse asynchronously. It returns True if the current subtree has been com-

pleted, and False otherwise.

118 Part II: The Document Object Model



NOTE Missing from the DOM Level 2 specification are the normalize, hasAttributes, and
isSupported methods. Under DOM Level 1, normalize was attached to an Element node,
before being moved up the hierarchy in DOM Level 2. Indeed, this is where it is found in
Microsoft’s implementation, in IXMLDOMElement. The functionality of hasAttributes can be
duplicated through checking the attributes property. Use the IXMLDOMImplementation class’s
hasFeature method instead of isSupported.

IXMLDOMNodeList Interface

Providing the links between the various levels within the DOM, the node list interface defines

access to a list of nodes in a particular sequence. Microsoft’s implementation is shown in Listing

9-4 and closely follows the official definition. The list is used when retrieving nodes from the

DOM, either by tag or via a query string, as well as for the children of each node.

Listing 9-4: The IXMLDOMNodeList interface

// ******************************************************************//
// Interface: IXMLDOMNodeList
// Flags: (4544) Dual NonExtensible OleAutomation Dispatchable
// GUID: {2933BF82-7B36-11D2-B20E-00C04F983E60}
// ******************************************************************//
IXMLDOMNodeList = interface(IDispatch)
['{2933BF82-7B36-11D2-B20E-00C04F983E60}']
function Get_item(index: Integer): IXMLDOMNode; safecall;
function Get_length: Integer; safecall;
function nextNode: IXMLDOMNode; safecall;
procedure reset; safecall;
function Get__newEnum: IUnknown; safecall;
property item[index: Integer]: IXMLDOMNode read Get_item; default;
property length: Integer read Get_length;
property _newEnum: IUnknown read Get__newEnum;

end;

Recall that a node list is “live,” i.e., that changes made to the list affect the DOM itself. This

includes adding or removing nodes that are part of the list. Consequently, two references to a node

by the same index may return different objects.

An IXMLDOMNodeList’s properties and methods are described below:

property length: Integer read Get_length;
Retrieve the number of entries in the list with this read-only property. The value may be zero

for lists that do not have any entries.

property item[index: Integer]: IXMLDOMNode read Get_item; default;
Access individual entries via their index (starting from zero) with this read-only property.

You are returned an IXMLDOMNode object to work with as described in the previous section.

After determining its type through the nodeType property, you can cast it to that type for full

access to its abilities. If the supplied index is out of range, a nil is returned.

for index := 0 to NodeList.Length - 1 do
with NodeList.Item[index] do
{ Operate on the node };

Chapter 9: Microsoft’s Document Object Model 119



TIP Item is the default property of a node list, which means that you can omit its name and
just use the square brackets to access the entries. For example:

Node := Node.ChildNodes.Item[0];

can also be expressed as

Node := Node.ChildNodes[0];

function nextNode: IXMLDOMNode; safecall;
Alternately, the nodes can be stepped through with this function, which returns nil when it

reaches the end of the list. Initially, you are before the first node in the list, so a call to this

returns that first entry. If the current node is removed from the list, subsequent calls to this

function return nil.

NodeList.reset;
repeat
Node := NodeList.NextNode;
if Assigned(Node) then
{ Operate on the node }

until not Assigned(Node);

procedure reset; safecall;
This procedure returns you to the start of the list for another enumeration using nextNode.

NOTE These last two methods are not part of the official DOM specification, but provide
another way of accessing the nodes within the list.

IXMLDOMNamedNodeMap Interface

This interface is similar to the node list, but also allows access to the nodes via their names. The

implementation with this DOM is shown in Listing 9-5. It is used for the attributes of a node, as

well as the entities and notations that belong to a document.

Listing 9-5: The IXMLDOMNamedNodeMap interface

// ******************************************************************//
// Interface: IXMLDOMNamedNodeMap
// Flags: (4544) Dual NonExtensible OleAutomation Dispatchable
// GUID: {2933BF83-7B36-11D2-B20E-00C04F983E60}
// ******************************************************************//
IXMLDOMNamedNodeMap = interface(IDispatch)
['{2933BF83-7B36-11D2-B20E-00C04F983E60}']
function getNamedItem(const name: WideString): IXMLDOMNode; safecall;
function setNamedItem(const newItem: IXMLDOMNode): IXMLDOMNode;
safecall;

function removeNamedItem(const name: WideString): IXMLDOMNode;
safecall;

function Get_item(index: Integer): IXMLDOMNode; safecall;
function Get_length: Integer; safecall;
function getQualifiedItem(const baseName: WideString;
const namespaceURI: WideString): IXMLDOMNode; safecall;

function removeQualifiedItem(const baseName: WideString;
const namespaceURI: WideString): IXMLDOMNode; safecall;

function nextNode: IXMLDOMNode; safecall;
procedure reset; safecall;

120 Part II: The Document Object Model



function Get__newEnum: IUnknown; safecall;
property item[index: Integer]: IXMLDOMNode read Get_item; default;
property length: Integer read Get_length;
property _newEnum: IUnknown read Get__newEnum;

end;

The entries in the list are not constrained to any particular order, although access via a sequential

index is supported to allow the entire collection to be easily traversed. Microsoft adds the entries

in the order found in the original document except for attributes that define namespaces. If the ele-

ment uses a namespace that is declared in this tag, that namespace declaration appears as the first

item in the list. Namespace declarations for other attributes appear immediately before the first

use of that namespace qualifier.

As for the normal node list, entries in a named node list are “live,” so adding and removing

entries can alter their count and order. If an attribute is removed from an element’s list, but it has a

default value defined in the DTD or schema, it is immediately added back into the list with that

value.

The properties and methods of IXMLDOMNamedNodeMap are shown below:

function getNamedItem(const name: WideString): IXMLDOMNode; safecall;
Retrieve an entry from the list using its name with this method. A nil is returned if a match-

ing item cannot be found.

function setNamedItem(const newItem: IXMLDOMNode): IXMLDOMNode; safecall;
Add a node into the list using this method. The name of the supplied node is extracted and

used as the index for later retrieval. Items are automatically updated or added as necessary

when calling this routine, overwriting any previous object with the same name. Only lists of

attributes belonging to an element may be modified. Attempts to change the lists of entities

and notations in the document type object result in an error as they are read-only.

function removeNamedItem(const name: WideString): IXMLDOMNode; safecall;
Use this method to delete an entry from the list using its name. A reference to the deleted

node is returned by the function, unless it could not be found, in which case a nil is returned.

Only lists of attributes for elements can be modified. Trying to remove entries from other

lists generates an error.

NOTE The following two methods duplicate functionality from the DOM Level 2 specifica-
tion: getNamedItemNS and removeNamedItemNS. However, the order of parameters to them has
been reversed. Furthermore, there is no equivalent of the setNamedItemNS method in
Microsoft’s implementation since this functionality is available through the setNamedItem
method anyway. If the node has a qualified name it is used, otherwise it is not.

function getQualifiedItem(const baseName: WideString; const namespaceURI:
WideString): IXMLDOMNode; safecall;
This method retrieves a named entry from the list based on its namespace URI and local

name. If a matching node cannot be found, a nil is returned.

Chapter 9: Microsoft’s Document Object Model 121



function removeQualifiedItem(const baseName: WideString; const namespaceURI:
WideString): IXMLDOMNode; safecall;

To delete an entry based on its namespace URI and local name use this method. The function

returns a reference to the deleted node. If no match is found, it returns nil.

property length: Integer read Get_length;
Return the number of entries in the list with this read-only property. The value may be zero if

there are no entries in the list.

property item[index: Integer]: IXMLDOMNode read Get_item; default;
Retrieve entries from the list based on their position (starting from zero). Again, this is the

default property of the interface, and so can be omitted when referring to list entries. A nil is

returned if the index is out of range.

NOTE The following two methods are not part of the DOM Level 2 specification.

function nextNode: IXMLDOMNode; safecall;
Step through the nodes in the list as an enumeration. nil is returned at the end of the list.

Removing the current node from the list causes subsequent calls to this function to return

nil also.

procedure reset; safecall;
Reposition the current pointer to the start of the list for another traversal with the nextNode
method.

IXMLDOMElement Interface

Building on the basic DOM node are many of the remaining interfaces defined in the DOM. The

first of these is for an element, as shown in Listing 9-6, adding only a few extra abilities. These are

mostly involved with manipulating the attributes that belong to the element. Recall that the

attributes property inherited from IXMLDOMNode provides access to the attached attribute nodes.

Listing 9-6: The IXMLDOMElement interface

// ******************************************************************//
// Interface: IXMLDOMElement
// Flags: (4544) Dual NonExtensible OleAutomation Dispatchable
// GUID: {2933BF86-7B36-11D2-B20E-00C04F983E60}
// ******************************************************************//
IXMLDOMElement = interface(IXMLDOMNode)
['{2933BF86-7B36-11D2-B20E-00C04F983E60}']
function Get_tagName: WideString; safecall;
function getAttribute(const name: WideString): OleVariant; safecall;
procedure setAttribute(const name: WideString; value: OleVariant);
safecall;

procedure removeAttribute(const name: WideString); safecall;
function getAttributeNode(const name: WideString): IXMLDOMAttribute;
safecall;

function setAttributeNode(const DOMAttribute: IXMLDOMAttribute):
IXMLDOMAttribute; safecall;

function removeAttributeNode(const DOMAttribute: IXMLDOMAttribute):

122 Part II: The Document Object Model



IXMLDOMAttribute; safecall;
function getElementsByTagName(const tagName: WideString):
IXMLDOMNodeList; safecall;

procedure normalize; safecall;
property tagName: WideString read Get_tagName;

end;

IXMLDOMElement’s properties and methods are described below:

property tagName: WideString read Get_tagName;
The node name can also be retrieved via this property. It is merely a convenience since it

maps directly onto the underlying nodeName.

function getAttribute(const name: WideString): OleVariant; safecall;
Retrieve the string value of a named attribute with this method. All attributes must necessar-

ily appear as string values within the XML document. However, they may be interpreted as

other types within a processor. The function returns an empty string if the attribute’s value

was not specified and did not have a default, or if the attribute does not exist in the first

place.

procedure setAttribute(const name: WideString; value: OleVariant); safecall;
To store an attribute’s value, use this method. It accepts the name of the attribute and its

value. Any existing attribute with the same name is replaced, while a new attribute node is

created if not already present. The supplied string value is not interpreted in any way; it is

simply stored as a text node. For more extensive structure you must create the subtree first

before passing it to the setAttributeNode method.

procedure removeAttribute(const name: WideString); safecall;
Delete an attribute from this element given its name. Recall that if the DTD or schema for

the document is available and specifies a default value for the attribute, then it immediately

reappears with that value.

function getAttributeNode(const name: WideString): IXMLDOMAttribute; safecall;
Similar to getAttribute, this method returns the entire attribute node rather than just the

value. This is useful when the attribute contains entity references, or when using some of

Microsoft’s extensions to the DOM. A nil is returned if a matching attribute cannot be

found.

function setAttributeNode(const DOMAttribute: IXMLDOMAttribute):
IXMLDOMAttribute; safecall;
To store an attribute with other than a simple string value, you can use this method. For

example, an attribute that refers to an entity has an IXMLDOMEntityReference node as one of

its children. Build the required structure before passing it to this method. If the new node

replaces an existing attribute with the same name, a reference to the replaced node is

returned. Otherwise, the method returns nil.

function removeAttributeNode(const DOMAttribute: IXMLDOMAttribute):
IXMLDOMAttribute; safecall;
Finally, you can delete an attribute given a reference to its node with this method. This refer-

ence is returned by the function as well.

Chapter 9: Microsoft’s Document Object Model 123



function getElementsByTagName(const tagName: WideString): IXMLDOMNodeList;
safecall;
Obtain a list of sub-elements with a specified name through this method. Use the string * to

retrieve all descendant elements. The list can then be processed as described earlier under

the IXMLDOMNodeList interface. Elements in the list appear in the order of a pre-order tra-

versal of the current node’s subtree. Although a list is always returned by this method, it may

be empty.

procedure normalize; safecall;
This method tidies up the node tree beneath this element, combining adjacent text nodes

where possible (but excluding CDATA nodes).

NOTES In the DOM Level 2 specification, the normalize method has been moved to the
Node interface, making it more widely available.

Other methods present in the DOM Level 2 specification but missing from Microsoft’s

implementation are the namespace-aware versions of several routines: getAttributeNS,
setAttributeNS, removeAttributeNS, getAttributeNodeNS, setAttributeNodeNS, and

getElementsByTagNameNS. The methods listed that deal with attributes can be duplicated

through processing the attributes property of the element. Also missing altogether are the

hasAttribute and hasAttributeNS methods from the DOM specification. Again, their function-

ality can be achieved in other ways.

IXMLDOMAttribute Interface

The settings for an attribute of an element are described in the IXMLDOMAttribute interface, as

shown in Listing 9-7. It simply adds the name and value properties, which directly mirror the

nodeName and nodeValue properties of its superclass.

Listing 9-7: The IXMLDOMAttribute interface

// ******************************************************************//
// Interface: IXMLDOMAttribute
// Flags: (4544) Dual NonExtensible OleAutomation Dispatchable
// GUID: {2933BF85-7B36-11D2-B20E-00C04F983E60}
// ******************************************************************//
IXMLDOMAttribute = interface(IXMLDOMNode)
['{2933BF85-7B36-11D2-B20E-00C04F983E60}']
function Get_name: WideString; safecall;
function Get_value: OleVariant; safecall;
procedure Set_value(attributeValue: OleVariant); safecall;
property name: WideString read Get_name;
property value: OleVariant read Get_value write Set_value;

end;

Attribute nodes are not really part of the normal DOM structure. They are considered properties of

their owning element, and so only appear under that element’s attributes property. Attributes

have no parent, and so also have no next or previous siblings. Hence, all these inherited properties

return nil.

124 Part II: The Document Object Model



When loading a document, attribute nodes are created for all those attributes explicitly

declared in the document. Additional attribute nodes are appended for attributes that have not

been specified explicitly, but that have default values defined in the DTD or schema for the

document.

Recall that several inherited properties apply to attributes: dataType gives the type of the

value, nodeTypedValue returns the value as that type, and specified tells us where the value came

from (the document or the DTD).

The properties of an IXMLDOMAttribute node are shown below:

property name: WideString read Get_name;
Retrieve the attribute’s name from this read-only property. This is the same as the nodeName
property.

property value: OleVariant read Get_value write Set_value;
Obtain or set the string value of the attribute using this property. For a standard attribute with

a simple string value, the attribute node has a single text node child, and that value is

returned by the property. If an attribute has an entity reference as part of its content, its child

node list contains a mixture of text and entity reference nodes, with this property returning

the concatenated value of them all after expanding entity references.

Setting the attribute value through this property causes any existing children to be

removed and be replaced by a single text node with the supplied value. The content of the

value parameter is not parsed or interpreted in any way.

TIP Under the DOM specification the attribute’s value is always a string. However, with
Microsoft’s implementation it can be of any type. When this ability is combined with an
appropriate schema, the values are available in their native format.

property specified: WordBool read Get_specified;
This inherited read-only property indicates how the attribute’s value was set. When it

returns True, the value appeared directly in the XML document. When it is False, the value

came from the default defined in the DTD or schema for the document.

NOTE Microsoft’s implementation provides no way of retrieving the element that owns an
attribute. In the DOM Level 2 specification this is embodied in the ownerElement property.

IXMLDOMCharacterData Interface

The interfaces for straight text within the XML document are based on IXMLDOMCharacterData
(see Listing 9-8), which provides common functionality between the different types of text. Recall

that this interface is not implemented directly, and only appears within the DOM as one of its

subclasses.

Chapter 9: Microsoft’s Document Object Model 125



Listing 9-8: The IXMLDOMCharacterData interface

// ******************************************************************//
// Interface: IXMLDOMCharacterData
// Flags: (4544) Dual NonExtensible OleAutomation Dispatchable
// GUID: {2933BF84-7B36-11D2-B20E-00C04F983E60}
// ******************************************************************//
IXMLDOMCharacterData = interface(IXMLDOMNode)
['{2933BF84-7B36-11D2-B20E-00C04F983E60}']
function Get_data: WideString; safecall;
procedure Set_data(const data: WideString); safecall;
function Get_length: Integer; safecall;
function substringData(offset: Integer; count: Integer): WideString;
safecall;

procedure appendData(const data: WideString); safecall;
procedure insertData(offset: Integer; const data: WideString);
safecall;

procedure deleteData(offset: Integer; count: Integer); safecall;
procedure replaceData(offset: Integer; count: Integer;
const data: WideString); safecall;

property data: WideString read Get_data write Set_data;
property length: Integer read Get_length;

end;

IXMLDOMCharacterData’s properties and methods are described below. All offsets start at zero.

property data: WideString read Get_data write Set_data;
This property returns the actual text of the node and is simply a renaming of the nodeValue
property.

property length: Integer read Get_length;
Determine the size of the data with this read-only property. It is measured as number of char-

acters (recall that WideString values use 2 bytes per character).

function substringData(offset: Integer; count: Integer): WideString; safecall;
Extract sections of the node’s text contents with this function, as specified by the starting

position (offset) and length (count). If the starting position plus the count of characters

extends past the end of the data, only that portion up to the end is returned. An error is gener-

ated if the offset or length is out of range.

procedure appendData(const data: WideString); safecall;
Add additional text to the node with this method. The new data is placed at the end of any

existing content.

procedure insertData(offset: Integer; const data: WideString); safecall;
Place text at any point in the existing contents through this method. Just specify the offset

for the addition and any existing text past that point is shifted along to make room. Using an

offset or length that is out of range produces an error.

procedure deleteData(offset: Integer; count: Integer); safecall;
Remove sections of text with this method, which takes the starting offset and number of

characters to delete as parameters. If the offset plus the count is more than the length of the

data, all the text through the end of the string is removed. An error occurs if the offset or

length is out of range.

126 Part II: The Document Object Model

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



procedure replaceData(offset: Integer; count: Integer; const data: WideString);
safecall;
This routine combines the previous two methods, deleting text from the offset for a given

number of characters, then inserting the new text in its place. An offset or length that is out

of range causes an error.

IXMLDOMText Interface

From the basic character data interface comes one for real textual nodes, IXMLDOMText, as shown

in Listing 9-9. Within these nodes appear the actual content of the XML document, as opposed to

the surrounding markup. Most of its abilities are inherited from the IXMLDOMCharacterData
interface.

Listing 9-9: The IXMLDOMText interface

// ******************************************************************//
// Interface: IXMLDOMText
// Flags: (4544) Dual NonExtensible OleAutomation Dispatchable
// GUID: {2933BF87-7B36-11D2-B20E-00C04F983E60}
// ******************************************************************//
IXMLDOMText = interface(IXMLDOMCharacterData)
['{2933BF87-7B36-11D2-B20E-00C04F983E60}']
function splitText(offset: Integer): IXMLDOMText; safecall;

end;

TIP When a document is first loaded, all its text nodes are normalized. This means that no
text node is adjacent to another text node. Some type of markup node surrounds each one.
Using the normalize method of the IXMLDOMNode interface restores this format. Certain pro-
cesses, such as using XPath identifiers, assume that the hierarchy is in this state.

Text nodes do not have any children. Using the inherited methods or properties to attempt to

access or alter them results in errors or empty values as appropriate.

The method of an IXMLDOMText node is shown below:

function splitText(offset: Integer): IXMLDOMText; safecall;
This function cuts the current text node into two text nodes at the specified offset (starting at

zero). The original node now contains text up to the offset, while the new node contains the

remainder. A reference to the new node is the return value of the function. Using an offset or

length that is out of range generates an error.

IXMLDOMCDATASection Interface

CDATA sections within an XML document are denoted by their own interface, IXMLDOMCDATA-
Section (as seen in Listing 9-10). It inherits all the abilities of the basic character data and text

data nodes, but adds nothing new. Hence, it serves merely as a flag to indicate the origins of its

contained text within the document. Furthermore, CDATA sections are not affected when normal-

izing the DOM, i.e., when combining adjacent text nodes.

Chapter 9: Microsoft’s Document Object Model 127



Listing 9-10: The IXMLDOMCDATASection interface

// ******************************************************************//
// Interface: IXMLDOMCDATASection
// Flags: (4544) Dual NonExtensible OleAutomation Dispatchable
// GUID: {2933BF8A-7B36-11D2-B20E-00C04F983E60}
// ******************************************************************//
IXMLDOMCDATASection = interface(IXMLDOMText)
['{2933BF8A-7B36-11D2-B20E-00C04F983E60}']

end;

Recall that CDATA sections can contain characters that would normally need to be escaped. Also,

CDATA section nodes do not have children, just like text nodes. Inherited properties and methods

that deal with child nodes return appropriate empty values or generate errors if used.

IXMLDOMComment Interface

Comments within the document are encapsulated by the IXMLDOMComment interface (see Listing

9-11) that builds on the character data definition. Note that this interface is just another flagging

interface, adding no new functionality.

Listing 9-11: The IXMLDOMComment interface

// ******************************************************************//
// Interface: IXMLDOMComment
// Flags: (4544) Dual NonExtensible OleAutomation Dispatchable
// GUID: {2933BF88-7B36-11D2-B20E-00C04F983E60}
// ******************************************************************//
IXMLDOMComment = interface(IXMLDOMCharacterData)
['{2933BF88-7B36-11D2-B20E-00C04F983E60}']

end;

All the text between the opening and closing sequences (<!-- and -->) in the XML document

makes up the content of the comment. Use the inherited nodeValue property to retrieve that text.

Comment nodes do not have any children. Trying to refer to them or add new ones returns an

appropriate empty value or an error.

IXMLDOMProcessingInstruction Interface

Embedded commands for processing an XML document appear through the IXMLDOM-
ProcessingInstruction interface (see Listing 9-12). Processing instructions are the way to trans-

mit commands through the XML document for prospective readers. Comments, which may be

stripped from the DOM during processing, should not contain such information.

Listing 9-12: The IXMLDOMProcessingInstruction interface

// ******************************************************************//
// Interface: IXMLDOMProcessingInstruction
// Flags: (4544) Dual NonExtensible OleAutomation Dispatchable
// GUID: {2933BF89-7B36-11D2-B20E-00C04F983E60}
// ******************************************************************//
IXMLDOMProcessingInstruction = interface(IXMLDOMNode)
['{2933BF89-7B36-11D2-B20E-00C04F983E60}']

128 Part II: The Document Object Model



function Get_target: WideString; safecall;
function Get_data: WideString; safecall;
procedure Set_data(const value: WideString); safecall;
property target: WideString read Get_target;
property data: WideString read Get_data write Set_data;

end;

Processing instruction nodes do not have children. Although the properties and methods inherited

from IXMLDOMNode let you interact with or manipulate child nodes, they return nil values or raise

errors if attempts are made to use them.

An IXMLDOMProcessingInstruction’s properties are described below:

property target: WideString read Get_target;
An identifier for the application that knows how to interpret the following command is

available through this read-only property. It consists of the first token within the processing

instruction tag. The same value is returned by the nodeName property.

property data: WideString read Get_data write Set_data;
The actual command is retrieved through this property. Again, it is a simple renaming of an

inherited property, nodeValue. XML imposes no structure on the content of the command,

though the target program is sure to. All the text within the tag, from the first non-white

space character following the target up to the character immediately preceding the terminat-

ing ?>, is returned as its data.

IXMLDOMDocumentType Interface

Some information from the DTD for a document is available through the IXMLDOMDocumentType
interface (see Listing 9-13). Its abilities were intentionally limited since several related issues

were not fully resolved when the DOM was specified. The IXMLDOMDocument object refers to a

node of this type through its DocType property. If no DTD is available, this property returns nil.

Listing 9-13: The IXMLDOMDocumentType interface

// ******************************************************************//
// Interface: IXMLDOMDocumentType
// Flags: (4544) Dual NonExtensible OleAutomation Dispatchable
// GUID: {2933BF8B-7B36-11D2-B20E-00C04F983E60}
// ******************************************************************//
IXMLDOMDocumentType = interface(IXMLDOMNode)
['{2933BF8B-7B36-11D2-B20E-00C04F983E60}']
function Get_name: WideString; safecall;
function Get_entities: IXMLDOMNamedNodeMap; safecall;
function Get_notations: IXMLDOMNamedNodeMap; safecall;
property name: WideString read Get_name;
property entities: IXMLDOMNamedNodeMap read Get_entities;
property notations: IXMLDOMNamedNodeMap read Get_notations;

end;

The properties of an IXMLDOMDocumentType node are shown below:

property name: WideString read Get_name;
Retrieve the name of the document element through this read-only property.

Chapter 9: Microsoft’s Document Object Model 129



property entities: IXMLDOMNamedNodeMap read Get_entities;
Access to a list of the entities (excluding parameter entities) declared in the document is pro-

vided by this read-only property. The list is returned as an IXMLDOMNamedNodeMap, allowing

you to retrieve entries by their names. Items returned from the list are instances of

IXMLDOMEntity, whose abilities are described below.

property notations: IXMLDOMNamedNodeMap read Get_notations;
Similarly, access to the notations declared in the document is gained through this property.

The list is also an IXMLDOMNamedNodeMap, although the underlying entries are instances of

IXMLDOMNotation, also covered below.

NOTES The name, entities, and notations that come from the DTD for a document are not
modifiable under Microsoft’s DOM (nor in the DOM specification). They can only be set when
loading a document. Any attempt to alter them generates an error.

The additional DOM Level 2 properties for a document type node—publicId, systemId, or

internalSubset—are not available through Microsoft’s DOM.

IXMLDOMEntity Interface

The IXMLDOMEntity interface, as shown in Listing 9-14, models entities declared within the XML

document. It does not model the declaration itself, merely the representation of that entity within

the document. They are available through the entities property of the document type node of the

document object. However, all entity nodes and their descendants are read-only, being set up when

the document is loaded.

Listing 9-14: The IXMLDOMEntity interface

// ******************************************************************//
// Interface: IXMLDOMEntity
// Flags: (4544) Dual NonExtensible OleAutomation Dispatchable
// GUID: {2933BF8D-7B36-11D2-B20E-00C04F983E60}
// ******************************************************************//
IXMLDOMEntity = interface(IXMLDOMNode)
['{2933BF8D-7B36-11D2-B20E-00C04F983E60}']
function Get_publicId: OleVariant; safecall;
function Get_systemId: OleVariant; safecall;
function Get_notationName: WideString; safecall;
property publicId: OleVariant read Get_publicId;
property systemId: OleVariant read Get_systemId;
property notationName: WideString read Get_notationName;

end;

When the Microsoft parser is in validation mode, it expands external parsed entities. This means

that their internal structures are present as children of this node. An entity reference has the same

structure beneath it as the entity node with the same name. Although the entity reference node

itself may be inserted and deleted, its children are read-only.

If the Microsoft parser is not validating documents, the external entities are not expanded.

130 Part II: The Document Object Model



An IXMLDOMEntity’s properties are described below:

property nodeName: WideString read Get_nodeName;
The name of the entity appears in this inherited read-only property.

property publicId: OleVariant read Get_publicId;
Retrieve the public (logical) identifier for the DTD or schema attached to the current docu-

ment using this read-only property. For an internal entity, or an external entity without this

value specified, the property returns an empty string.

property systemId: OleVariant read Get_systemId;
Obtain the system (physical) identifier for the DTD or schema through this read-only prop-

erty. Again, internal entities return an empty string.

property notationName: WideString read Get_notationName;
For unparsed entities, this read-only property holds the type of that resource. It should refer

to one of the notations also declared in the DTD. Parsed entities return an empty string for

this property.

IXMLDOMEntityReference Interface

Occurrences of entities within the body of a document are represented by the

IXMLDOMEntityReference interface, as shown in Listing 9-15. Another flagging interface, it

merely indicates where the entity reference was encountered. Any children of this node must

match those of the corresponding IXMLDOMEntity node. Note that an XML parser may expand all

entity references before building the DOM, so that no entity reference nodes appear in the final

model.

Listing 9-15: The IXMLDOMEntityReference interface

// ******************************************************************//
// Interface: IXMLDOMEntityReference
// Flags: (4544) Dual NonExtensible OleAutomation Dispatchable
// GUID: {2933BF8E-7B36-11D2-B20E-00C04F983E60}
// ******************************************************************//
IXMLDOMEntityReference = interface(IXMLDOMNode)
['{2933BF8E-7B36-11D2-B20E-00C04F983E60}']

end;

This interface adds no new functionality, again acting as a flag to indicate the original source of the

contained nodes. The name of the entity being included is available in the inherited nodeName
property.

If the parser is not validating documents, it is not required to expand external entities. In this

case, the contents of the entity reference may not be available. Character entity references are

automatically expanded and appear as parts of text nodes only; they do not have parent entity ref-

erence nodes.

Chapter 9: Microsoft’s Document Object Model 131



IXMLDOMNotation Interface

Declarations of notations within the DTD of the document appear as IXMLDOMNotation interface

objects (see Listing 9-16) and are accessible through the notations property of the document’s

document type node. These nodes represent the types of unparsed entities, attributes, and process-

ing instruction targets.

Listing 9-16: The IXMLDOMNotation interface

// ******************************************************************//
// Interface: IXMLDOMNotation
// Flags: (4544) Dual NonExtensible OleAutomation Dispatchable
// GUID: {2933BF8C-7B36-11D2-B20E-00C04F983E60}
// ******************************************************************//
IXMLDOMNotation = interface(IXMLDOMNode)
['{2933BF8C-7B36-11D2-B20E-00C04F983E60}']
function Get_publicId: OleVariant; safecall;
function Get_systemId: OleVariant; safecall;
property publicId: OleVariant read Get_publicId;
property systemId: OleVariant read Get_systemId;

end;

As with the IXMLDOMEntity objects, these nodes model the notation itself, and not the declaration

of that notation within the DTD. Notation nodes cannot be changed once the document is loaded.

The properties of an IXMLDOMNotation node are shown below:

property nodeName: WideString read Get_nodeName;
The name of the notation appears in this inherited read-only property.

property publicId: OleVariant read Get_publicId;
Retrieve the public (logical) identifier for the notation through this read-only property. If not

specified, this returns an empty string.

property systemId: OleVariant read Get_systemId;
Obtain the system (physical) identifier for the notation from this read-only property. Again,

if not specified, it returns an empty string.

IXMLDOMDocumentFragment Interface

Being able to manipulate fragments of a document, or subtrees within the hierarchy, is a useful

ability, one that is provided through the IXMLDOMDocumentFragment interface as shown in Listing

9-17. Document fragments never form part of the DOM beneath a document node.

Listing 9-17: The IXMLDOMDocumentFragment interface

// ******************************************************************//
// Interface: IXMLDOMDocumentFragment
// Flags: (4544) Dual NonExtensible OleAutomation Dispatchable
// GUID: {3EFAA413-272F-11D2-836F-0000F87A7782}
// ******************************************************************//
IXMLDOMDocumentFragment = interface(IXMLDOMNode)
['{3EFAA413-272F-11D2-836F-0000F87A7782}']

end;

132 Part II: The Document Object Model



This is another flagging interface which adds no new functionality to the basic node definition. Its

use is in building up sub-structures and moving sections of the tree around. When a document

fragment is added to an existing document, the fragment node itself is not added, only its children

and descendants. The contents of a document fragment do not need to be a well-formed XML doc-

ument as a whole. However, each child node should be well-formed on its own (or be a text node).

IXMLDOMDocument Interface

Representing the entire XML document is the IXMLDOMDocument interface as shown in Listing

9-18. This is the primary entry point for creating and navigating the document model. An object of

this type is the only one created directly. Thereafter you should use the factory methods provided

by this class to correctly instantiate any other nodes that build up the document. Each such node

must exist within the context of a document, and so has its ownerDocument property set to the cre-

ating object.

Listing 9-18: The IXMLDOMDocument interface

// ******************************************************************//
// Interface: IXMLDOMDocument
// Flags: (4544) Dual NonExtensible OleAutomation Dispatchable
// GUID: {2933BF81-7B36-11D2-B20E-00C04F983E60}
// ******************************************************************//
IXMLDOMDocument = interface(IXMLDOMNode)
['{2933BF81-7B36-11D2-B20E-00C04F983E60}']
function Get_doctype: IXMLDOMDocumentType; safecall;
function Get_implementation_: IXMLDOMImplementation; safecall;
function Get_documentElement: IXMLDOMElement; safecall;
procedure Set_documentElement(const DOMElement: IXMLDOMElement);
safecall;

function createElement(const tagName: WideString): IXMLDOMElement;
safecall;

function createDocumentFragment: IXMLDOMDocumentFragment; safecall;
function createTextNode(const data: WideString): IXMLDOMText;
safecall;

function createComment(const data: WideString): IXMLDOMComment;
safecall;

function createCDATASection(const data: WideString):
IXMLDOMCDATASection; safecall;

function createProcessingInstruction(const target: WideString;
const data: WideString): IXMLDOMProcessingInstruction; safecall;

function createAttribute(const name: WideString): IXMLDOMAttribute;
safecall;

function createEntityReference(const name: WideString):
IXMLDOMEntityReference; safecall;

function getElementsByTagName(const tagName: WideString):
IXMLDOMNodeList; safecall;

function createNode(type_: OleVariant; const name: WideString;
const namespaceURI: WideString): IXMLDOMNode; safecall;

function nodeFromID(const idString: WideString): IXMLDOMNode;
safecall;

function load(xmlSource: OleVariant): WordBool; safecall;
function Get_readyState: Integer; safecall;
function Get_parseError: IXMLDOMParseError; safecall;
function Get_url: WideString; safecall;

Chapter 9: Microsoft’s Document Object Model 133



function Get_async: WordBool; safecall;
procedure Set_async(isAsync: WordBool); safecall;
procedure abort; safecall;
function loadXML(const bstrXML: WideString): WordBool; safecall;
procedure save(destination: OleVariant); safecall;
function Get_validateOnParse: WordBool; safecall;
procedure Set_validateOnParse(isValidating: WordBool); safecall;
function Get_resolveExternals: WordBool; safecall;
procedure Set_resolveExternals(isResolving: WordBool); safecall;
function Get_preserveWhiteSpace: WordBool; safecall;
procedure Set_preserveWhiteSpace(isPreserving: WordBool); safecall;
procedure Set_onreadystatechange(Param1: OleVariant); safecall;
procedure Set_ondataavailable(Param1: OleVariant); safecall;
procedure Set_ontransformnode(Param1: OleVariant); safecall;
property doctype: IXMLDOMDocumentType read Get_doctype;
property implementation_: IXMLDOMImplementation
read Get_implementation_;

property documentElement: IXMLDOMElement
read Get_documentElement write Set_documentElement;

property readyState: Integer read Get_readyState;
property parseError: IXMLDOMParseError read Get_parseError;
property url: WideString read Get_url;
property async: WordBool read Get_async write Set_async;
property validateOnParse: WordBool read Get_validateOnParse
write Set_validateOnParse;

property resolveExternals: WordBool read Get_resolveExternals
write Set_resolveExternals;

property preserveWhiteSpace: WordBool
read Get_preserveWhiteSpace write Set_preserveWhiteSpace;

property onreadystatechange: OleVariant write Set_onreadystatechange;
property ondataavailable: OleVariant write Set_ondataavailable;
property ontransformnode: OleVariant write Set_ontransformnode;

end;

The IXMLDOMDocument’s properties and methods are described below:

property implementation_: IXMLDOMImplementation read Get_implementation_;
This read-only property leads to an interface that allows you to inspect implementation

details outside the scope of any one document. See the IXMLDOMImplementation interface

section for more details.

NOTE In the Microsoft DOM package the previous property is called implementation, as it
is in the DOM specification. However, since this is a reserved word in Delphi, its name
changes to implementation_ as part of the importing process for the type library.

property doctype: IXMLDOMDocumentType read Get_doctype;
This read-only property returns the node that holds the lists of entities and notations defined

for the document, as a result of parsing the DTD. See the IXMLDOMDocumentType interface

for more details. It returns a nil for XML documents that do not specify a DTD.

property documentElement: IXMLDOMElement read Get_documentElement write
Set_documentElement;
Retrieve a reference to the single top-level element node within the document with this

property. This node could be reached by stepping through the child nodes of the document,

134 Part II: The Document Object Model



but this property makes access much easier. Recall that there can only be one top-level node

in a well-formed XML document. A nil is returned if the document has no root yet.

function createElement(const tagName: WideString): IXMLDOMElement; safecall;
Generate a new IXMLDOMElement node for use within the document. The name of the ele-

ment is passed as a parameter. A namespace-qualified element cannot be created with this

method—the namespaceURI property of the resulting node is always set to an empty string.

You must use the createNode method instead for namespace-qualified nodes.

The newly created node has its ownerDocument property set to this document, but it does

not automatically become part of the document. You must insert or append it as the child of

the document or one of its existing children. The node’s nodeType is set to NODE_ELEMENT.

function createDocumentFragment: IXMLDOMDocumentFragment; safecall;
Produces a new IXMLDOMDocumentFragment node for building up a sub-structure. Its

nodeType is set to NODE_DOCUMENT_FRAGMENT. These nodes are not added to the main DOM

structure.

function createTextNode(const data: WideString): IXMLDOMText; safecall;
Creates a new IXMLDOMText node for use within the document. The content of the node is

passed as a parameter, with its nodeType being set to NODE_TEXT. As with an element, the

newly constructed text node must still be added to the DOM as the child of an existing node.

function createComment(const data: WideString): IXMLDOMComment; safecall;
Generates a new IXMLDOMComment node for adding to the document, setting its nodeType
property to NODE_COMMENT. Text for the comment is passed as a parameter. Following cre-

ation you must add the new node to the DOM before it becomes part of the document.

function createCDATASection(const data: WideString): IXMLDOMCDATASection;
safecall;
Produces a new IXMLDOMCDATASection node for use within the document. The content of the

section is passed as a parameter, with the nodeType property being set to NODE_CDATA_
SECTION. Add the new node to the DOM as the child of an existing node.

function createProcessingInstruction(const target: WideString; const data:
WideString): IXMLDOMProcessingInstruction; safecall;
Generates a new IXMLDOMProcessingInstruction node for adding to the document, setting

its nodeType property to NODE_PROCESSING_INSTRUCTION. The target of and data for the

instruction are passed as parameters. After construction, add the new instruction to the

DOM.

function createAttribute(const name: WideString): IXMLDOMAttribute; safecall;
Create a new IXMLDOMAttribute node for attaching to an element. The name of the attribute

is passed as a parameter, with the nodeType property being set to NODE_ATTRIBUTE. How-

ever, the value of that attribute must be set separately. To be useful, the new attribute must be

added to an element node.

Chapter 9: Microsoft’s Document Object Model 135



You cannot create a namespace-qualified attribute using this method—the

namespaceURI property of the resulting node is always set to an empty string. Use the

createNode method instead for namespace-qualified attributes.

function createEntityReference(const name: WideString): IXMLDOMEntityReference;
safecall;
Produce a new IXMLDOMEntityReference node for use within the document. The name of

the entity to be included is passed as a parameter, while its nodeType is set to NODE_ENTITY_
REFERENCE. Following construction, add the new node to the DOM under an existing node.

Recall, however, that you cannot create new entities for your document as these are

read-only under DOM Level 2.

function getElementsByTagName(const tagName: WideString): IXMLDOMNodeList;
safecall;
As for element nodes, this returns a list of element nodes with a particular name. Use a name

of * to match with all element names. These nodes may come from anywhere within the

entire hierarchy of the document. Their order in the list reflects their order in a pre-order tra-

versal of the original structure. Pre-order means that the node itself is visited first, followed

by each of its children in turn from left to right. The resulting list is “live,” with updates

affecting the DOM directly. For more complex selection criteria, use the selectNodes
method instead.

function nodeFromID(const idString: WideString): IXMLDOMNode; safecall;
Retrieve a particular node based on the value of its ID attribute. The definition of an attribute

as an ID type may not be available if the document’s DTD or schema cannot be loaded. In

this case the function returns nil.

NOTE The nodeFromID method corresponds to the getElementById method defined in the
DOM specification. All the remaining properties and methods are value-added enhance-
ments provided by Microsoft, although some of them would be expected in any
implementation of the DOM. Missing methods from the DOM specification include
createElementNS and createAttributeNS, which can be duplicated by the createNode method
below, and getElementsByTagNameNS.

function createNode(type_: OleVariant; const name: WideString; const namespaceURI:
WideString): IXMLDOMNode; safecall;
Construct a generic node with the given type and names. Note that the other node construc-

tion methods do not allow you to specify a namespace URI for the node. In fact, since the

namespaceURI property of a node is read-only, this is the only way to create a node with an

attached namespace. The type of the node must be one of the enumerated values from List-

ing 9-3 as either its numeric or string value. For node types that do not have names, you

should pass an empty string for the name and namespace parameters. An error is generated

if a qualified name is supplied, but no namespace URI is given.

TIP When you generate a new element through the createNode method and supply a quali-
fied name and a namespace URI, the DOM automatically includes the corresponding
namespace declaration in that element when it is output as XML.

136 Part II: The Document Object Model

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



property validateOnParse: WordBool read Get_validateOnParse write
Set_validateOnParse;
This property enables or disables any validation against the DTD or schema for a document.

When set to True (the default), any specified DTD or schema is loaded and used to validate

the contents of the document. When set to False, the validation is not performed, merely a

check for well-formedness.

property resolveExternals: WordBool read Get_resolveExternals write
Set_resolveExternals;
This flag turns on or off the retrieval of external definitions, which include external DTD

subsets, external parsed entities, and resolvable namespaces. When set to True (the default),

external references are loaded and parsed into the document. When set to False, these enti-

ties are not retrieved, which may produce an incomplete document. The setting of this

property is independent of the value of the validateOnParse property. However, if exter-

nals cannot be resolved when validating a document, an error results. Loading a DTD or

schema allows default values for attributes to be obtained, as well as setting the types of

attributes and elements.

property preserveWhiteSpace: WordBool read Get_preserveWhiteSpace write
Set_preserveWhiteSpace;
This property controls how white space in the document is handled. When set to True, all

white space in the document is retained, regardless of any xml:space attributes that may be

set. When it is False (the default), the xml:space attribute settings determine which space is

retained and which is not.

function load(xmlSource: OleVariant): WordBool; safecall;
Create a DOM with this method that takes a URL (including a filename), an IStream object,

or an IIS Request object (for scripting purposes) as input, and attempts to retrieve the docu-

ment at that location and parse it. A return value of True is provided if it succeeds, False
otherwise. If it fails, check out the parseError property to determine the cause. Any exist-

ing DOM structure in the document is discarded when invoking this method or loadXML.

function loadXML(const bstrXML: WideString): WordBool; safecall;
This method also creates a DOM but operates on an XML document that is already held in

memory as a string, returning the same status values as load. Any existing structure is dis-

carded when called. The supplied string must be in UTF-16 or UCS-2 encodings for this

method to work.

property url: WideString read Get_url;
Which document has been read can be determined by looking at this read-only property. It

returns a value following a successful load. An empty string results when a document is

being built in memory. The value is not updated when the save method is called.

Chapter 9: Microsoft’s Document Object Model 137



property parseError: IXMLDOMParseError read Get_parseError;
If something does go wrong with the parsing, you can find out what by looking at the con-

tents of this read-only property. It refers to an instance of the IXMLDOMParseError interface.

procedure save(destination: OleVariant); safecall;
Document models can be written to persistent storage with this method, which takes a file-

name (not a URL), ASP Response object, IXMLDOMDocument reference, or any IStream
implementation as a parameter. If necessary, a file is created or any existing file is overwrit-

ten when specifying a filename. Using the Response object sends the document back to the

client. Saving to another document is the equivalent of saving to a file and then reparsing it,

allowing you to verify the persistability of the current document.

External entity references in the document type, its entities, or notations, are not altered

during the save process. The encoding scheme used for the save comes from that specified in

the XML declaration in the document. If no scheme is defined, it defaults to UTF-8. No vali-

dation is performed during a save, which could result in an invalid document being written

out.

property async: WordBool read Get_async write Set_async;
Parsing can be performed asynchronously by setting this property to True (its default).

When True, the load method returns immediately, letting you continue with other process-

ing. The progress of the load is monitored through the readyState property or the

onreadystatechange event.

procedure abort; safecall;
An asynchronous load can be halted with this method. Any structure built so far is dis-

carded. The parseError property then indicates that the download was terminated. If the

document is already loaded, this method has no effect.

property readyState: Integer read Get_readyState;
The status of the parse process is available through this read-only property. Its value is 1 for

“Loading,” 2 for “Loaded,” 3 for “Interactive,” or 4 for “Completed.” Loading means that

the document is still being read from its source location. Loaded indicates that it has all

arrived, but has not yet been parsed. Interactive denotes that the parse process is in progress,

while Completed means that the entire DOM has been built and is available for use.

property onreadystatechange: OleVariant write Set_onreadystatechange;
To monitor the progress of an asynchronous operation you can use this write-only property

to receive notification of changes to the readyState property.

property ondataavailable: OleVariant write Set_ondataavailable;
Another event for scripting environments, this write-only property registers an event that

triggers as data is read. You can then start processing these chunks, rather than waiting for

the entire document.

138 Part II: The Document Object Model



property ontransformnode: OleVariant write Set_ontransformnode;
As nodes are processed through an XSL transformation, you can receive events for each

node before it is operated on through this write-only property.

IXMLDOMDocument2 Interface

New in the October 2000 release of Microsoft’s DOM is the IXMLDOMDocument2 interface (shown

in Listing 9-19). This extends the previous IXMLDOMDocument interface and adds new functionality

dealing with validation, and namespaces and their associated schema. The entire class is addi-

tional to the document functionality laid out in the DOM specification.

Listing 9-19: The IXMLDOMDocument2 interface

// ******************************************************************//
// Interface: IXMLDOMDocument2
// Flags: (4544) Dual NonExtensible OleAutomation Dispatchable
// GUID: {2933BF95-7B36-11D2-B20E-00C04F983E60}
// ******************************************************************//
IXMLDOMDocument2 = interface(IXMLDOMDocument)
['{2933BF95-7B36-11D2-B20E-00C04F983E60}']
function Get_namespaces: IXMLDOMSchemaCollection; safecall;
function Get_schemas: OleVariant; safecall;
procedure Set_schemas(otherCollection: OleVariant); safecall;
function validate: IXMLDOMParseError; safecall;
procedure setProperty(const name: WideString; value: OleVariant);
safecall;

function getProperty(const name: WideString): OleVariant; safecall;
property namespaces: IXMLDOMSchemaCollection read Get_namespaces;
property schemas: OleVariant read Get_schemas write Set_schemas;

end;

The properties and methods of the IXMLDOMImplementation object are described below:

property namespaces: IXMLDOMSchemaCollection read Get_namespaces;
This read-only property returns a list of the namespaces used in the document. Each distinct

namespace has one entry in the list, returning the read-only IXMLDOMNode object that is the

top of the corresponding schema structure. The order of the items in the list does not neces-

sarily match their appearance in the document. Loading a new document clears this list. If

there are no namespaces defined in the document, an empty list is returned.

property schemas: OleVariant read Get_schemas write Set_schemas;
This property lets you associate preloaded schemas with particular namespaces. You can

also override the schemas used by the document you are about to load. New schemas read

during a document load are not automatically added to this list. Setting a schema collection

disables any DTD processing since DTDs and schemas cannot be mixed. Restoring this

property to nil enables DTDs again.

function getProperty(const name: WideString): OleVariant; safecall;
Retrieve the current setting for the named document property with this method. See below

for property names.

Chapter 9: Microsoft’s Document Object Model 139



procedure setProperty(const name: WideString; value: OleVariant); safecall;
Set a particular document property with this method. The current properties are listed

below:

SelectionLanguage lets you control the language used in calls to the selectNodes or

selectSingleNode methods. Its value is either XPath or XSLQuery (the default).

ServerHTTPRequest is set to True to use the server-safe ServerXMLHTTP component

when loading documents.

SelectionNamespaces is a list of space-delimited namespace declarations, like

xmlns:math="http://www.w3.org/TR/REC-MathML". Once set, these namespaces can be

used in the context of the selectNodes and selectSingleNode methods.

function validate: IXMLDOMParseError; safecall;
Invoke the validation processing on the current document with this method. It returns a

parse error object that is separate from that found in the parseError property, with only the

errorCode and reason properties filled in. This method requires that a DTD or schema be

present for the document; it cannot just check well-formedness. It does not import new

schemas, but may use those in an existing cache. If a namespace has no schema attached, its

elements are not validated.

function selectNodes(const queryString: WideString): IXMLDOMSelection; safecall;
This method is redefined in IXMLDOMDocument2 to return an IXMLDOMSelection list, rather

than an IXMLDOMNodeList.

IXMLDOMSchemaCollection Interface

Also added to the October 2000 release of Microsoft’s DOM, and not part of the DOM specifica-

tion, is the IXMLDOMSchemaCollection interface (shown in Listing 9-20). Schemas may be cached

through this interface and then made available to documents for their reuse, which results in faster

loading. Instances of this object are created with the CoXMLSchemaCache class.

Listing 9-20: The IXMLDOMSchemaCollection interface

// ******************************************************************//
// Interface: IXMLDOMSchemaCollection
// Flags: (4544) Dual NonExtensible OleAutomation Dispatchable
// GUID: {373984C8-B845-449B-91E7-45AC83036ADE}
// ******************************************************************//
IXMLDOMSchemaCollection = interface(IDispatch)
['{373984C8-B845-449B-91E7-45AC83036ADE}']
procedure add(const namespaceURI: WideString; var_: OleVariant);
safecall;

function get(const namespaceURI: WideString): IXMLDOMNode; safecall;
procedure remove(const namespaceURI: WideString); safecall;
function Get_length: Integer; safecall;
function Get_namespaceURI(index: Integer): WideString; safecall;
procedure addCollection(const otherCollection:
IXMLDOMSchemaCollection); safecall;

function Get__newEnum: IUnknown; safecall;
property length: Integer read Get_length;
property namespaceURI[index: Integer]: WideString

140 Part II: The Document Object Model



read Get_namespaceURI; default;
property _newEnum: IUnknown read Get__newEnum;

end;

NOTE Microsoft supports schemas based on XML Data Reduced, which differs from the
W3C XML Schema specification.

Schema documents must be free-threaded (see the section titled “Threading the DOM” later in this

chapter) to be included in a cache. The cache can be shared between a number of documents, and a

single schema document can belong to many caches. To utilize the cache, set the schemas property

of the document (after its creation, but before loading) to point to the cache.

An IXMLDOMSchemaCollection object’s properties and methods are detailed below:

property length: Integer read Get_length;
The number of schemas in the collection is returned by this read-only property.

property namespaceURI[index: Integer]: WideString read Get_namespaceURI; default;
Step through the schemas and retrieve their associated namespace URIs with this read-only

property. Note that this is the default property of the object, and thus it can be referenced just

with the brackets, omitting the property name.

function get(const namespaceURI: WideString): IXMLDOMNode; safecall;
This function returns a reference to the read-only node that contains the schema element for

the specified namespace URI.

procedure add(const namespaceURI: WideString; var_: OleVariant); safecall;
Add a new schema to the cache with this method, specifying its associated namespace URI.

An empty string as the namespace URI denotes the default namespace. The schema refer-

ence can be its actual URI, in which case it is loaded synchronously with validation and

external resolution turned off, an existing DOM document, or a DOM node representing an

inline schema. Setting the schema reference to nil removes any schema for the supplied

namespace URI.

procedure addCollection(const otherCollection: IXMLDOMSchemaCollection);
safecall;
Add all the schemas from another cache into the current one. Existing schemas with names

matching those being added are overwritten.

procedure remove(const namespaceURI: WideString); safecall;
Delete the schema attached to the given namespace URI from the cache.

IXMLDOMSelection Interface

Another addition in the October 2000 release of Microsoft’s DOM is the IXMLDOMSelection inter-

face (shown in Listing 9-21), also not part of the DOM specification. This list represents the nodes

that match a given XSL query or XPath expression, as returned by the selectNodes method of the

IXMLDOMDocument2 interface.

Chapter 9: Microsoft’s Document Object Model 141



Listing 9-21: The IXMLDOMSelection interface

// ******************************************************************//
// Interface: IXMLDOMSelection
// Flags: (4544) Dual NonExtensible OleAutomation Dispatchable
// GUID: {AA634FC7-5888-44A7-A257-3A47150D3A0E}
// ******************************************************************//
IXMLDOMSelection = interface(IXMLDOMNodeList)
['{AA634FC7-5888-44A7-A257-3A47150D3A0E}']
function Get_expr: WideString; safecall;
procedure Set_expr(const expression: WideString); safecall;
function Get_context: IXMLDOMNode; safecall;
procedure Set_context(const ppNode: IXMLDOMNode); safecall;
function peekNode: IXMLDOMNode; safecall;
function matches(const pNode: IXMLDOMNode): IXMLDOMNode; safecall;
function removeNext: IXMLDOMNode; safecall;
procedure removeAll; safecall;
function clone: IXMLDOMSelection; safecall;
function getProperty(const name: WideString): OleVariant; safecall;
procedure setProperty(const name: WideString; value: OleVariant);
safecall;

property expr: WideString read Get_expr write Set_expr;
property context: IXMLDOMNode read Get_context write Set_context;

end;

The properties and methods of the IXMLDOMSelection object are shown below:

property context: IXMLDOMNode read Get_context write Set_context;
This property returns or establishes the root node for the selection. Setting it resets the state

of the selection so that it can be stepped through again.

property expr: WideString read Get_expr write Set_expr;
Retrieve or set the XPath expression with this property. Setting it executes the query and

resets the selection state to the beginning of the list. If the expression is invalid, an error

results. Use the inherited length and item properties, or the reset and nextNode methods,

to traverse the list sequentially.

function peekNode: IXMLDOMNode; safecall;
Look at the next node without advancing the current position through this function. It

returns nil if there is no next node.

function matches(const pNode: IXMLDOMNode): IXMLDOMNode; safecall;
This function determines whether or not a given node exists in the selection. It returns the

node that, if set as the context of the query, would include the supplied node in its results. If

no such node exists, it returns nil.

function getProperty(const name: WideString): OleVariant; safecall;
procedure setProperty(const name: WideString; value: OleVariant); safecall;

These methods let you set or retrieve the value of the named property. The property name

would be SelectionLanguage to determine whether XSL or XPath syntax is currently in

effect.

function removeNext: IXMLDOMNode; safecall;
Delete the next node in the list with this function. It returns a reference to that node.

142 Part II: The Document Object Model



procedure removeAll; safecall;
Delete all the nodes in the collection through this method.

function clone: IXMLDOMSelection; safecall;
This function returns an exact copy of the collection, including its current position and context.

IXMLDOMImplementation Interface

The IXMLDOMImplementation interface (see Listing 9-22) provides access to features and abilities

outside the scope of a single document.

Listing 9-22: The IXMLDOMImplementation interface

// ******************************************************************//
// Interface: IXMLDOMImplementation
// Flags: (4544) Dual NonExtensible OleAutomation Dispatchable
// GUID: {2933BF8F-7B36-11D2-B20E-00C04F983E60}
// ******************************************************************//
IXMLDOMImplementation = interface(IDispatch)
['{2933BF8F-7B36-11D2-B20E-00C04F983E60}']
function hasFeature(const feature: WideString;
const version: WideString): WordBool; safecall;

end;

The IXMLDOMImplementation object’s methods are described below:

function hasFeature(const feature: WideString; const version: WideString):
WordBool; safecall;
This method lets you determine what abilities this implementation of the DOM has. Given a

feature name and an optional version, it returns a simple flag that indicates whether that fea-

ture can be used. The current implementation only recognizes the following features: XML,

DOM, and MS-DOM—and only version 1.0 for each.

NOTE The createDocument and createDocumentType methods from the DOM Level 2 speci-
fication do not appear in Microsoft’s DOM. The package does provide alternate ways to
generate new documents, as shown later.

Document Traversal

The document traversal interfaces, also part of the DOM Level 2 specification, are not included in

Microsoft’s implementation.

The selectNodesmethod of the IXMLDOMNode interface provides somewhat similar functional-

ity to the NodeIterator from the DOM Level 2. Through the XSL query passed to this method

you can select types of nodes, equivalent to the whatToShow property of a NodeIterator. Some

NodeFilter operations can be duplicated through predicates on the XSL query.

There is no equivalent of the TreeWalker interface within the Microsoft package.

Chapter 9: Microsoft’s Document Object Model 143



IXSLTemplate Interface

Support for XSL Transformations also comes in the Microsoft DOM package (another extension

beyond the DOM specification). In the IXMLDOMNode interface, there are transformNode and

transformNodeToObject methods that apply a given stylesheet to the current node. These take the

stylesheet as a hierarchy of nodes and must step through both that structure and the current node’s

to create the output tree.

The IXSLTemplate interface (shown in Listing 9-23) lets you prepare for transformations by

precompiling the stylesheet and caching the result. Processors for the stylesheet are then applied

to nodes as necessary, resulting in better performance.

Listing 9-23: The IXSLTemplate interface

// ******************************************************************//
// Interface: IXSLTemplate
// Flags: (4544) Dual NonExtensible OleAutomation Dispatchable
// GUID: {2933BF93-7B36-11D2-B20E-00C04F983E60}
// ******************************************************************//
IXSLTemplate = interface(IDispatch)
['{2933BF93-7B36-11D2-B20E-00C04F983E60}']
procedure Set_stylesheet(const stylesheet: IXMLDOMNode); safecall;
function Get_stylesheet: IXMLDOMNode; safecall;
function createProcessor: IXSLProcessor; safecall;
property stylesheet: IXMLDOMNode read Get_stylesheet
write Set_stylesheet;

end;

Use the CoXSLTemplate class (for the latest version, or CoXSLTemplate26 or CoXSLTemplate30 for

specific versions) to create an instance of the template cache. Supply it with the structure for the

stylesheet and construct the required processors later.

The properties and methods of an IXSLTemplate object are shown below:

property stylesheet: IXMLDOMNode read Get_stylesheet write Set_stylesheet;
This property initializes the template object with the stylesheet to be applied later. Set it to

the node that is at the root of the stylesheet document. Thereafter that document is read-only,

until no longer used by the template.

function createProcessor: IXSLProcessor; safecall;
Create an apartment-threading model IXSLProcessor object with this method, based on the

template referenced by the stylesheet property. Multiple processors can be created from

the one template.

Each processor is a snapshot of the stylesheet document at the time it is created. The pro-

cessor can only be updated to reflect changes to a stylesheet by creating a new one.

144 Part II: The Document Object Model



IXSLProcessor Interface

Having cached the compile stylesheet with the IXSLTemplate interface, you create an

IXSLProcessor object (see Listing 9-24) from it for application to a particular node. These proces-

sors are apartment-threaded and store the state for a single transformation call.

Listing 9-24: The IXSLProcessor interface

// ******************************************************************//
// Interface: IXSLProcessor
// Flags: (4544) Dual NonExtensible OleAutomation Dispatchable
// GUID: {2933BF92-7B36-11D2-B20E-00C04F983E60}
// ******************************************************************//
IXSLProcessor = interface(IDispatch)
['{2933BF92-7B36-11D2-B20E-00C04F983E60}']
procedure Set_input(pVar: OleVariant); safecall;
function Get_input: OleVariant; safecall;
function Get_ownerTemplate: IXSLTemplate; safecall;
procedure setStartMode(const mode: WideString;
const namespaceURI: WideString); safecall;

function Get_startMode: WideString; safecall;
function Get_startModeURI: WideString; safecall;
procedure Set_output(pOutput: OleVariant); safecall;
function Get_output: OleVariant; safecall;
function transform: WordBool; safecall;
procedure reset; safecall;
function Get_readyState: Integer; safecall;
procedure addParameter(const baseName: WideString;
parameter: OleVariant; const namespaceURI: WideString); safecall;

procedure addObject(const obj: IDispatch;
const namespaceURI: WideString); safecall;

function Get_stylesheet: IXMLDOMNode; safecall;
property input: OleVariant read Get_input write Set_input;
property ownerTemplate: IXSLTemplate read Get_ownerTemplate;
property startMode: WideString read Get_startMode;
property startModeURI: WideString read Get_startModeURI;
property output: OleVariant read Get_output write Set_output;
property readyState: Integer read Get_readyState;
property stylesheet: IXMLDOMNode read Get_stylesheet;

end;

The IXSLProcessor object’s properties and methods are detailed below:

property stylesheet: IXMLDOMNode read Get_stylesheet;
Gain access to the node hierarchy for the stylesheet through this read-only property. This is

the same structure that the IXSLTemplate object returns through its stylesheet property at

the time the processor is created, although the template may have been subsequently

changed.

property ownerTemplate: IXSLTemplate read Get_ownerTemplate;
This read-only property gets you back to the template that created this processor.

property input: OleVariant read Get_input write Set_input;
The nodes to be transformed are set through this property, passing a reference to an

IXMLDOMNode.

Chapter 9: Microsoft’s Document Object Model 145



property output: OleVariant read Get_output write Set_output;
The results of the transformation are sent to the destination designated by this property. It

may be an IXMLDOMDocument node, an ASP Response object, or any object that implements

the IStream interface. Setting it to one of these objects causes the transformed tree to be

written out to it in an appropriate format. The document’s encoding is determined by the

corresponding attribute on the xsl:output element in the stylesheet.

Alternately, the property can be left unspecified prior to the transformation. Thereafter,

reading this property value returns a string representing the output of the process. In an asyn-

chronous transformation, only the next chunk of the output is returned each time it is

referenced. String output is always created with the Unicode encoding, regardless of the

xsl:output setting.

procedure setStartMode(const mode: WideString; const namespaceURI: WideString);
safecall;
Use this method to set the starting mode for the transformation. Modes in stylesheets allow

different types of transformations to be applied to the same set of nodes—for example, one

mode for a table of contents, another for the body of the document. See http://www.w3.org/

TR/WD-xslt#modes for more information.

property startMode: WideString read Get_startMode;
This read-only property returns the base name part of the start mode set above, with a default

of an empty string.

property startModeURI: WideString read Get_startModeURI;
Retrieve the namespace URI part of the start mode set above through this read-only prop-

erty, again defaulting to an empty string.

property readyState: Integer read Get_readyState;
During processing, this read-only property returns the current state of the transformation.

The value is one of READYSTATE_UNINITIALIZED (0), which indicates that some required

parameters still need to be set, READYSTATE_LOADING (1), not currently used, READYSTATE_
LOADED (2), where all required properties are set and the transformation can begin,

READYSTATE_INTERACTIVE (3), when the transformation is proceeding, or READYSTATE_
COMPLETE (4), when it is all over. You can monitor this value during an asynchronous

transformation.

procedure addParameter(const baseName: WideString; parameter: OleVariant; const
namespaceURI: WideString); safecall;
Parameter values for use within the transformation (through xsl:param elements) are set

with this method. Supply the base name of the parameter, its value (as a simple value or as an

IXMLDOMNodeList or IXMLDOMNode, with the latter being converted into a node list with a sin-

gle entry), and an optional namespace URI. In the stylesheet these parameter values can

affect the way the transformation progresses. For asynchronous processing, a parameter

value may be updated in callbacks, with the new value taking immediate effect.

146 Part II: The Document Object Model

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



procedure addObject(const obj: IDispatch; const namespaceURI: WideString);
safecall;
Entire objects are passed to the stylesheet with this method. The object itself is supplied

along with its full namespace URI. Within the stylesheet you refer to this namespace when

invoking methods on the object.

function transform: WordBool; safecall;
The heart of the entire transformation, this method starts or resumes the process, returning

True if successful and False otherwise. Certain properties must be set before the transfor-

mation can be started, specifically input.

procedure reset; safecall;
Calling this method restores the processor to the state it was in just before invoking trans-
form. Property values set previously are not affected by this call.

TIP Chapter 26 “Examination XML—Web Client” demonstrates the use of these transfor-
mation interfaces. The application described there delivers content from XML documents as
HTML over the Web. XSLT provides the formatting capabilities.

Loading the DOM

Before you can access any of the abilities of the DOM, you need to create an instance of the COM

object that implements it. Although the DOM Level 2 specification describes how to create

instances of a document, Microsoft does not follow this level of the DOM. Instead, you have sev-

eral other options with Microsoft’s version. Since it is a COM interface you can use

CreateOleObject from the ComObj unit:

var
XMLDoc: OleVariant

XMLDoc := CreateOleObject('MSXML');
if Assigned(XMLDoc) then
:

or you can use CoCreateInstance from the ActiveX unit:

var
XMLDoc: IXMLDOMDocument;
hRes: HResult;

hRes := CoCreateInstance(CLASS_DOMDocument, nil,
CLSCTX_INPROC_SERVER, IID_IXMLDOMDocument, XMLDoc);

if hRes = S_OK then
:

or (probably the easiest) use the CoDOMDocument class generated within the MSXML type library:

var
XMLDoc: IXMLDOMDocument;

XMLDoc := CoDOMDocument.Create;
:

The first version creates a late-bound object, and so provides no checking of method names, etc.,

at compile time. Since the other versions declare the document as type IXMLDOMDocument, they can

Chapter 9: Microsoft’s Document Object Model 147



verify all interactions with the object during compilation. In each case you should free up the asso-

ciated resources when you have finished with them by setting your reference to VarNull (for the

first version) or nil (although they are also freed automatically when the variable goes out of

scope).

In this example, a generic viewer of XML documents, the last option is used. For this you must

include the ActiveX and MSXML2_tlb units (for version 3 of Microsoft’s DOM) in the uses clause

of your project to import the appropriate definitions. The DOM is created to read in an XML docu-

ment and to display its contents in a viewer that strives to exercise most of the node types.

When you are ready to use the DOM, declare a variable of type IXMLDOMDocument, and

instantiate it with a call to CoDOMDocument.Create (supplied by the type library conversion) as

shown in Listing 9-25. The various flags controlling the operation of the parser are set up as menu

items within the viewer. Each is a check menu item whose state is transferred directly to the corre-

sponding properties of the parser.

Listing 9-25: Using the Microsoft DOM

{ Load an XML document }
procedure TfrmXMLViewer.LoadDoc(Filename: string);
var
XMLDoc: IXMLDOMDocument;

begin
pgcDetails.ActivePage := tshDocument;
{ Initialize document-wide details for display }
InitDocumentDetails;
{ Load the source document }
memSource.Lines.LoadFromFile(Filename);
dlgOpen.Filename := Filename;
{ Instantiate the DOM }
XMLDoc := CoDOMDocument.Create;
trvXML.Items.BeginUpdate;
try
{ Parse the document }
XMLDoc.PreserveWhitespace := mniPreserveWhitespace.Checked;
XMLDoc.ResolveExternals := mniResolveExternals.Checked;
XMLDoc.ValidateOnParse := mniValidateOnParse.Checked;
if not XMLDoc.Load(Filename) then
raise Exception.Create(Format(NoLoadError,
[XMLDoc.ParseError.Line, XMLDoc.ParseError.LinePos,
XMLDoc.ParseError.Reason]));

edtSystemId.Text := XMLDoc.URL;
{ Add the structure to the tree view }
AddElementToTree(XMLDoc, nil);
trvXML.Items[0].Expand(False);

finally
trvXML.Items.EndUpdate;
{ Release the DOM }
XMLDoc := nil;

end;
end;

TIP If you use the CoDOMDocument class to instantiate your document, you always get an
object that reflects the latest version of the IXMLDOMDocument interface. If you need to tie your
application to a particular version, you can use the CoDOMDocument26 or CoDOMDocument30
classes to create specific implementations.

148 Part II: The Document Object Model



Once you have a reference to the DOM object, you ask it to parse a document by invoking its Load
method. As noted earlier, the DOM specification does not describe how a document model is cre-

ated from an existing document. In fact, until DOM Level 2, the specification did not even define

how to create a new document object, although once you have a document instance you can gener-

ate other nodes from it.

Another extension to the DOM specification is the ParseError property of the document

object. If something goes wrong during the parse process, this property provides useful informa-

tion in identifying the problem. The main details you want are the explanation of the problem,

Reason, and the line and column number of the offending characters within the document, Line
and LinePos. Microsoft’s implementation does not define a DOM exception, so you can raise a

standard one or define your own DOM-specific version.

Now that the document has been successfully parsed, you may access its contents through the

properties of the document object. The items encountered within the document are available

through its ChildNodes property, although you can go directly to the top-level element via the

DocumentElement property.

The MS DOM XML Viewer

As an example of using the Microsoft DOM to parse a document you can build an XML viewer

application to show the contents of any XML document. The viewer’s form contains a tree view to

show the structure of the entire document, with details about each item in the tree appearing on the

right-hand side as they are selected (see Figure 9-2).

The document to parse can be specified through the command line, or by selecting the File | Open

menu items.

To build up the structure in the tree view, you work your way through the DOM in memory. At

each level, starting with the document itself, you add a tree node for the current DOM node and

Chapter 9: Microsoft’s Document Object Model 149

Figure 9-2: The XML viewer showing document details.



then call the routine recursively to process each of that node’s children (see Listing 9-26). The cur-

rent DOM node and the parent tree node are passed as parameters to each call.

Listing 9-26: Filling a tree view from the DOM

{ Add a TXMLElement to the tree view }
function AddElement(Parent: TTreeNode; Name: string;
Element: TXMLElement): TTreeNode;

begin
FList.Add(Element);
Result := trvXML.Items.AddChildObject(Parent, Name, Element);
with Result do
begin
ImageIndex := Ord(Element.ElementType);
SelectedIndex := ImageIndex;

end;
end;
{ Add current element to the treeview and
then recurse through children }

procedure AddElementToTree(Node: IXMLDOMNode;
TreeParent: TTreeNode);

var
Index: Integer;
DisplayName: string;
NewNode: TTreeNode;
Attribs: TStringList;
Attrib: IXMLDOMAttribute;

begin
{ Generate name for display in the tree }
if Node.NodeType in
[NODE_TEXT, NODE_COMMENT, NODE_CDATA_SECTION] then

begin
if Length(Node.NodeValue) > 20 then
DisplayName := Copy(Node.NodeValue, 1, 17) + '...'

else
DisplayName := Node.NodeValue;

end
else
DisplayName := Node.NodeName;

{ Create storage for later display of node values }
case Node.NodeType of
NODE_ELEMENT:
begin
Attribs := TStringList.Create;
try
for Index := 0 to Node.Attributes.Length - 1 do
with Node.Attributes.Item[Index] do
Attribs.Values[NodeName] := NodeValue;

NewNode := AddElement(TreeParent, DisplayName,
TXMLElement.Create(xtElement, Node.NodeName,
Node.NamespaceURI, Node.BaseName, '', Attribs));

finally
Attribs.Free;

end;
end;

NODE_TEXT:
with Node as IXMLDOMText do
NewNode := AddElement(TreeParent, DisplayName,
TXMLElement.Create(xtText, '', '', '', Data, nil));

NODE_CDATA_SECTION:

150 Part II: The Document Object Model



with Node as IXMLDOMCDATASection do
NewNode := AddElement(TreeParent, DisplayName,
TXMLElement.Create(xtCData, '', '', '', Data, nil));

NODE_ENTITY_REFERENCE:
NewNode := AddElement(TreeParent, DisplayName,
TXMLElement.Create(xtEntityRef, Node.NodeName, '', '',
'', nil));

NODE_PROCESSING_INSTRUCTION:
with Node as IXMLDOMProcessingInstruction do
begin
NewNode := AddElement(TreeParent, DisplayName,
TXMLElement.Create(xtInstruction, Target, '', '',
Data, nil));

if UpperCase(Target) = XMLValue then
begin
{ Special handling for the XML declaration }
edtVersion.Text :=
Node.Attributes.GetNamedItem(VersionAttr).NodeValue;

Attrib := Node.Attributes.GetNamedItem(EncodingAttr) as
IXMLDOMAttribute;

if Assigned(Attrib) then
edtEncoding.Text := Attrib.NodeValue;

Attrib := Node.Attributes.GetNamedItem(StandAloneAttr) as
IXMLDOMAttribute;

if Assigned(Attrib) then
cbxStandAlone.Checked :=
(UpperCase(Attrib.NodeValue) = YesValue);

Attrib := nil;
end;

end;
NODE_COMMENT:
with Node as IXMLDOMComment do
NewNode := AddElement(TreeParent, DisplayName,
TXMLElement.Create(xtComment, '', '', '', Data, nil));

NODE_DOCUMENT:
NewNode := AddElement(TreeParent, XMLDocDesc,
TXMLElement.Create(xtDocument, XMLDocDesc, '', '',
'', nil));

NODE_DOCUMENT_TYPE:
with Node as IXMLDOMDocumentType do
begin
edtDocType.Text := Name;
NewNode := AddElement(TreeParent, DTDDesc,
TXMLElement.Create(xtvEntityRef, DTDDesc, '', '',
'', nil));

end;
NODE_ENTITY:
with (Node as IXMLDOMEntity), stgEntities do
if NotationName <> '' then
begin
{ Unparsed entity }
if Cells[0, RowCount - 1] <> '' then
RowCount := RowCount + 1;

Cells[0, RowCount - 1] := NodeName;
Cells[1, RowCount - 1] := PublicId;
Cells[2, RowCount - 1] := SystemId;
Cells[3, RowCount - 1] := NotationName;

end
else
{ Parsed entity }

Chapter 9: Microsoft’s Document Object Model 151



NewNode := AddElement(TreeParent, DisplayName,
TXMLElement.Create(xtEntityRef, NodeName,
'', '', '', nil));

NODE_NOTATION:
with (Node as IXMLDOMNotation), stgNotations do
begin
if Cells[0, RowCount - 1] <> '' then
RowCount := RowCount + 1;

Cells[0, RowCount - 1] := NodeName;
Cells[1, RowCount - 1] := PublicId;
Cells[2, RowCount - 1] := SystemId;

end;
end;
{ And recurse through any children }
if Node.HasChildNodes then
for Index := 0 to Node.ChildNodes.Length - 1 do
AddElementToTree(Node.ChildNodes[Index], NewNode);

end;

Since all the nodes in the DOM ultimately derive from IXMLDOMNode, you can treat them generi-

cally at this level. The nodeType property indicates what sort of node you are dealing with, and

dictates how it is processed (through a case statement). The nodeName and nodeValue properties

provide basic details about each node, with further information depending on its type.

In constructing the tree view, you need to save additional data about each node so that it can be

retrieved for later display on the right-hand side of the form. Although you could save references

to the objects within the DOM itself, simpler TXMLElement objects hold the basic details. This

class provides storage for a node’s type, name(s), value, and attributes. The DOM and associated

resources can then be discarded after it has been loaded.

The text displayed in the tree view generally comes from the name of each node. For

non-text-type nodes this contains a meaningful value such as the element name or processing

instruction target application. However, for text type nodes the DOM supplies standard names

such as #text or #comment. To make the tree view more useful, you can extract the first 20 charac-

ters for these types of nodes and display them instead. This is what happens at the start of the

AddElementToTree method

with the DisplayName
variable.

Then you look at the node

type to determine how the

node is to be interpreted.

Generally, you add a node to

the tree with the name

selected above, and attach a

newly created TXMLElement
object with its values set

appropriately. For Element-

Type nodes this means

extracting the attribute values

from the DOM and

152 Part II: The Document Object Model

Figure 9-3: Element details displayed within the viewer.



transferring them to a string list for their later display. Figure 9-3 shows the viewer displaying an

element’s details.

Attribute nodes are handled as part of the processing for an element, and are thus not encoun-

tered while traversing the normal DOM hierarchy.

Text type nodes show up with truncated text in the tree view, while their full content appears on

the right. See Figure 9-4 for an example.

The processing instruction that contains the XML prolog is singled out to extract further details

about the document itself. Otherwise, these appear like text nodes with their target showing in the

tree view and their command in the text pane.

Nodes containing DTD information—document type, entity, and notation nodes—are not

added to the growing tree view, but are added to controls found on the page for the document as a

whole. Only external unparsed entities are treated this way. Parsed entities are treated normally,

being added directly beneath the document node in the tree. Their content also appears in the body

of the document where they have been referred to.

Finally, in all cases, each child node is processed in the same way through a recursive call.

Thus, you work your way down through the document hierarchy, handling each node as it is

encountered.

Viewing Node Details

Once the DOM has been processed into the tree view and other controls, the program expands the

topmost node in the tree—the document node—and displays the associated document information

(see Figure 9-2). As each node is selected within the tree view, its corresponding details are dis-

played in the right panel.

Chapter 9: Microsoft’s Document Object Model 153

Figure 9-4: Contents of a text node within the viewer.



The code for this is shown in Listing 9-27. Each selection retrieves the TXMLElement object for

that node and examines it. Its type determines which detail page is shown and what values are used

to fill the controls upon it.

Listing 9-27: Showing details of a selected node

{ Display details for the selected XML element }
procedure TfrmXMLViewer.trvXMLChange(Sender: TObject;
Node: TTreeNode);

var
Index: Integer;

begin
with TXMLElement(trvXML.Selected.Data) do
case ElementType of
xtDocument:
{ Show document details, including entities
and notations }

pgcDetails.ActivePage := tshDocument;
xtElement:
begin
{ Show element details, including attributes }
pgcDetails.ActivePage := tshElement;
edtURI.Text := NamespaceURI;
edtLocalName.Text := LocalName;
with stgAttributes do
begin
if Attributes.Count = 0 then
RowCount := 2

else
RowCount := Attributes.Count + 1;

Rows[1].Clear;
for Index := 0 to Attributes.Count - 1 do
begin
Cells[0, Index + 1] := Attributes.Names[Index];
Cells[1, Index + 1] :=
Attributes.Values[Attributes.Names[Index]];

end;
end;

end;
else
begin
{ Show details for other nodes - text type }
pgcDetails.ActivePage := tshText;
memText.Lines.Text := Value;
case ElementType of
xtComment: lblNodeType.Caption := CommentDesc;
xtInstruction: lblNodeType.Caption :=

InstructionDesc;
xtEntityRef: lblNodeType.Caption := EntityRefDesc;
else lblNodeType.Caption := TextDesc;

end;
end;

end;
end;

Selecting the View | View source menu options allows you to see the underlying XML document

for comparison with the extracted structure. Figure 9-5 shows its contents.

154 Part II: The Document Object Model



Threading the DOM

The Microsoft implementation of the DOM provides different versions to deal with different

threading models. By default (using the CoDOMDocument and related classes), an apart-

ment-threaded DOM is created. Although the behavior of the two versions is identical,

apartment-threaded documents show better performance since the parser does not have to worry

about concurrent access.

If you want a free-threaded document instead, you can use the CoFreeThreadedDOMDocument
class to create it. As before, this constructs a latest-version object, with CoFreeThreadedDOM-
Document26 and CoFreeThreadedDOMDocument30 providing the specific versions. Free-threaded

documents are required for use with the schema cache.

Documents or nodes created with one threading model cannot be combined with those created

under the other model.

Summary

This chapter has examined the Document Object Model as implemented by Microsoft in its

MSXML.dll or MSXML3.dll. These versions follow the DOM Level 1 specification fairly

closely, providing added functionality where necessary (notably in the IXMLDOMDocument inter-

face). Unfortunately, Microsoft does not yet support the full DOM Level 2 functionality. Some

aspects appear already, often with different names, but others do not.

Microsoft has added additional abilities in the areas of working with schemas and XSL trans-

formations. You can cache both of these to increase performance. Unfortunately, both support the

Microsoft versions of these standards, which have some differences from the W3C version.

Following a look at each of the interfaces that make up Microsoft’s offering, you saw how they

are used in creating an application that displays the contents and structure of any XML document.

Chapter 9: Microsoft’s Document Object Model 155

Figure 9-5: Compare with the original XML document.



Further abilities of the Microsoft DOM are described in Chapter 19, which takes a look at

using the DOM to generate XML; in Chapter 21, where XML documents are transformed using

XSL Transformations; and in some of the application examples in Part V, notably Chapter 26 on

using XSLT.

156 Part II: The Document Object Model

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



C h a p t e r 1 0

CUESoft’s DocumentCUESoft’s Document

Object ModelObject Model

CUESoft.com has also implemented the DOM specification under Windows, this time as a set of

native Delphi objects. The advantage of having native objects is that the parser and DOM can be

compiled directly into your program, with no need to worry about mismatched DLLs.

The W3C DOM interfaces are implemented as classes in the CUEXml Delphi package, with

the class hierarchy shown in Figure 10-1. CUESoft.com follows the DOM Level 1 specification

very closely, although they also have several extensions for increased functionality and usability.

They do have some support for namespaces, but handle only string values, not the expected

WideStrings.

The CUESoft DOM is a commercial product. You can obtain the source for an additional fee.

If you have the source you can compile it into any 32-bit version of Delphi. Otherwise, there are

prepackaged libraries available for Delphi versions 3 through 5. In general, all you have to do to

install the package is as follows:

1. Unpack the files from CUESoft into an appropriate directory.

2. Select Component | Install Packages… from the Delphi menu.

3. Click the Add button.

4. Change the file type to Package collection (*.dpc), and browse to the directory where you

unpacked the files.

5. Select cuexml2_X.dpc (where X is your version of Delphi) and click OK.

6. Click Finish on the package installation dialog and OK on the package dialog. The two

components in the package appear on the CUESoft tab in the component palette.

Each of the classes is described in further detail below. Differences from the DOM specification

are noted as they are encountered. Unless otherwise noted, all these classes appear in the

XmlObjModel unit.

157



TDOMException Exception

General errors that occur during DOM processing within the CUESoft package are notified as

TDOMExceptions (see Listing 10-1). Following the DOM specification, it adds only a single

numeric code to denote which type of problem arose.

158 Part II: The Document Object Model

Figure 10-1: The CUESoft DOM class hierarchy.



Listing 10-1: The TDOMException exception

TDOMException = class(Exception)
public
constructor CreateCode(oCode: EExceptionCode);
property Code: EExceptionCode read FCode;

end;

The properties and methods of a TDOMException object are described below:

constructor CreateCode(oCode: EExceptionCode);
This constructor generates a new exception passing in the type of error encountered.

Typically you would not create these exceptions yourself, but would react to those raised by

the DOM during its processing.

property Code: EExceptionCode read FCode;
This read-only property indicates what type of problem arose. Its value is one of those

shown in Table 10-1. As you can see, these follow the DOM specification.

Table 10-1: CUESoft error codes

Error Code Meaning

ecNone No error

ecIndexSizeErr An index or size is negative or greater than allowed.

ecWStringSizeErr The text does not fit into a WideString.

ecHierarchyRequestErr A node is inserted somewhere it does not belong.

ecWrongDocumentErr A node from another document is used.

ecInvalidNameErr An invalid name is used (usually containing an illegal character).

ecNoDataAllowedErr Data is specified for a node that does not support data.

ecNoModificationAllowedErr Attempting to modify a read-only node.

ecNotFoundErr The specified node cannot be found in this context.

ecNotSupportedErr The action specified for the object is not supported under this
implementation.

ecInuseAttributeErr An attribute already belonging to one element is being added to
another.

ecInvalidParamErr An invalid parameter is passed to a method.

TXmlParserError Exception

Errors arising from the parsing of a document are indicated through a TXmlParserError exception

(see Listing 10-2). These include further details about the reason for and position of the error. This

class appears in the XmlParser unit.

Chapter 10: CUESoft’s Document Object Model 159



Listing 10-2: The TXmlParserError exception

TXmlParserError = class(Exception)
public
constructor CreateParseError(oFilePos, oLine, oLinePos: Integer;
oUrl, oReason: string);

property Reason: string read FReason;
property Line: Integer read FLine;
property LinePos: Integer read FLinePos;
property FilePos: Integer read FFilePos;
property Url: string read FUrl;

end;

A TXmlParserError object’s properties and methods are listed below:

constructor CreateParseError(oFilePos, oLine, oLinePos: Integer; oUrl,
oReason: string);
Build a new exception during the parse process with this constructor. The parameters set all

the properties for this exception. Generally the parser itself raises these errors, and you only

need to respond to them.

property Reason: string read FReason;
Retrieve a text description of the problem through this read-only property.

property Line: Integer read FLine;
This read-only property returns the line number in the XML document where the error was

detected.

property LinePos: Integer read FLinePos;
The character position within that line is given by this read-only property.

property FilePos: Integer read FFilePos;
Find the offset into the XML document as a whole with this read-only property.

property Url: string read FUrl;
This read-only property returns the source name of the XML document in error.

TXmlNode Class

All nodes within the DOM structure derive from a common class that provides the basic function-

ality used by most of them. The TXmlNode class (shown in Listing 10-3) embodies this in the

CUESoft package.

Listing 10-3: The TXmlNode declaration

TXmlNode = class
protected
FNodeId: Integer;
FNodeName: string;
FNodeType: Integer;
FNodeValue: string;
function GetNodeStringType: string;

public
constructor Create;
destructor Destroy; override;

160 Part II: The Document Object Model



property Attributes: TXmlNamedNodeMap read FAttributes;
property BaseName: string read GetBaseName;
property ChildNodes: TXmlNodeList read FChildNodes;
property FirstChild: TXmlNode read GetFirstChild;
property LastChild: TXmlNode read GetLastChild;
property LevelCode: string read GetLevelCode;
property Namespace: string read GetNamespace;
property NextSibling: TXmlNode read GetNextSibling;
property NodeId: Integer read FNodeId write FNodeId;
property NodeName: string read FNodeName write FNodeName;
property NodeStringType: string read GetNodeStringType;
property NodeType: Integer read FNodeType;
property NodeValue: string read FNodeValue write FNodeValue;
property OwnerDocument: TXmlDocument read GetOwnerDocument;
property ParentNode: TXmlNode read FParentNode;
property Prefix: string read GetPrefix;
property PreviousSibling: TXmlNode read GetPreviousSibling;
property Text: string read GetText;
property XmlDocument: string read GetXmlDocument;
procedure AddRef;
procedure AppendChild(oNewChild: TXmlNode);
function CloneNode(bDeep: Boolean = True): TXmlNode;
procedure ForceOwnerDocument(oNode: TXmlNode);
function GetChildNodesByNodeType(wType: Integer): TXmlNodeList;
function GetNodesByNodeType(wType: Integer): TXmlNodeList;
function HasAttributes: Boolean;
function HasChildNodes: Boolean;
procedure InsertBefore(oNewChild, oRefChild: TXmlNode);
function IsAfter(oNode: TXmlNode): Boolean;
procedure Release;
procedure RemoveAll;
function RemoveChild(oRefChild: TXmlNode): TXmlNode;
function ReplaceChild(oNewChild, oRefChild: TXmlNode): TXmlNode;

end;

Using functionality from the basic node when it is not applicable results in an exception being

thrown—for example, attempting to add child nodes to a text node. Simple properties return an

empty string or nil if they do not apply to the current node type.

The properties and methods of a TXmlNode object are detailed below:

constructor Create;
Do not create TXmlNodes directly. They are only used within the DOM hierarchy as one of

TXmlNodes’ subclasses.

property NodeType: Integer read FNodeType;
This read-only property identifies the type of node represented by this object, allowing it to

be safely cast to that type to access its additional abilities. The value is one of those shown in

Table 10-2.

Table 10-2: Node types

Node Type Implementing Class

ELEMENT_NODE TXmlElement

ATTRIBUTE_NODE TXmlAttribute

TEXT_NODE TXmlText

Chapter 10: CUESoft’s Document Object Model 161



Node Type Implementing Class

CDATA_SECTION_NODE TXmlCDataSection

ENTITY_REFERENCE_NODE TXmlEntityReference

ENTITY_NODE TXmlEntity

PROCESSING_INSTRUCTION_NODE TXmlProcessingInstruction

COMMENT_NODE TXmlComment

DOCUMENT_NODE TXmlDocument

DOCUMENT_TYPE_NODE TXmlDocumentType

DOCUMENT_FRAGMENT_NODE TXmlDocumentFragment

NOTATION_NODE TXmlNotation

property NodeStringType: string read GetNodeStringType;
This read-only property retrieves the node’s type as a string value. It returns the node types

from Table 10-2 as text.

NOTE The NodeStringType property is an extension to the W3C DOM specification.

property NodeName: string read FNodeName write FNodeName;
The name of the node is given by this property. For some nodes this is a predefined value.

See Table 10-3 for the meaning of this property based on the node’s type.

Table 10-3: Node name and value by node type

Node Type Node Name Node Value

ELEMENT_NODE Name of element '' (Empty string)

ATTRIBUTE_NODE Name of attribute Attribute value

TEXT_NODE #text Content of text

CDATA_SECTION_NODE #cdata-section Content of CDATA section

ENTITY_REFERENCE_NODE Name of entity ''

ENTITY_NODE Name of entity ''

PROCESSING_INSTRUCTION_NODE Target of instruction Content excluding target

COMMENT_NODE #comment Content of comment

DOCUMENT_NODE #document ''

DOCUMENT_TYPE_NODE Name of document type ''

DOCUMENT_FRAGMENT_NODE #document-fragment ''

NOTATION_NODE Name of notation ''

property BaseName: string read GetBaseName;
Retrieve the local part of the node’s name—the part after any namespace prefix—through

this read-only property.

NOTE In the W3C DOM Specification, the local part of the node’s name is given by the
localName attribute.

162 Part II: The Document Object Model



property Prefix: string read GetPrefix;
This read-only property returns the namespace prefix—the part up to the colon ( : )—from

the node’s name, or an empty string if there is no prefix.

property Namespace: string read GetNamespace;
The namespace descriptor for the node comes from this read-only property. It is blank if no

namespace applies to the node. Namespaces are declared through xmlns prefixed attributes.

NOTE In the W3C DOM Specification, the namespace for the node is given by the
namespaceURI attribute.

property NodeValue: string read FNodeValue write FNodeValue;
Retrieve or set the text value of the node through this property. Many node types do not use

this property, as shown in Table 10-3.

property Attributes: TXmlNamedNodeMap read FAttributes;
Access the attributes of a node with this read-only property. It returns a named node map

containing TXmlAttribute objects. Although it is defined on all nodes, only element nodes

use attributes. All other types return nil.

property OwnerDocument: TXmlDocument read GetOwnerDocument;
All nodes contain a reference to the document that created them, which is available through

this read-only property. For document nodes this returns nil.

property ParentNode: TXmlNode read FParentNode;
Once placed into a DOM structure, this read-only property lets you reach the parent of the

node. The parent is nil for attribute, document, and document fragment nodes, as well as for

other nodes that have not yet been added to the tree.

property ChildNodes: TXmlNodeList read FChildNodes;
Moving the other way through the tree uses this read-only property. It returns a “live” list of

ordered nodes, meaning that any changes to the nodes in the list immediately update the

main structure, and vice versa. If a node has no children, this property still returns a valid

list, but that list has no entries in it.

property FirstChild: TXmlNode read GetFirstChild;
This convenience property returns the first entry in the ChildNodes list or nil if there are no

children.

property LastChild: TXmlNode read GetLastChild;
Similarly, this property returns the last entry in the ChildNodes list, or nil if none.

property NextSibling: TXmlNode read GetNextSibling;
Another convenience property, this one retrieves the node after the current one in its parent’s

list of children. Again, a nil is returned if there is no following node.

property PreviousSibling: TXmlNode read GetPreviousSibling;
Conversely, this property retrieves the node before this one in its parent’s list. nil is returned

if there is no previous node.

Chapter 10: CUESoft’s Document Object Model 163



procedure AppendChild(oNewChild: TXmlNode);
Adds the specified node to the end of this node’s list of children. If the supplied node is

already in the structure, it is first removed. Adding a document fragment node adds all of its

children instead.

procedure InsertBefore(oNewChild, oRefChild: TXmlNode);
Place the new node immediately before the specified reference node within this node’s list

of children. If the reference node is nil, the new node is placed at the end of the list. A new

node already in the tree is first removed. Inserting a document fragment node adds all of its

children instead.

function RemoveChild(oRefChild: TXmlNode): TXmlNode;
Removes the specified node from this node’s list of children. A reference to that node is

returned. The old node should be released once the method is finished.

function ReplaceChild(oNewChild, oRefChild: TXmlNode): TXmlNode;
Remove the specified reference node and insert the new node in its place. The function

returns a pointer to the node that is removed.

function CloneNode(bDeep: Boolean = True): TXmlNode;
Create a copy of the node through this method, including any attributes and their values.

Attributes resulting from default values in the DTD are also duplicated. If the bDeep parame-

ter is False, the process stops there. If it is True, all the descendants of this node are also

cloned under the copy. The new duplicate has no parent until it is placed back into the DOM

hierarchy.

function HasChildNodes: Boolean;
A convenience function, this returns True when there are child nodes in the list and False
when it is empty.

function HasAttributes: Boolean;
This method returns True when there are entries in the attributes list and False when there

are none.

NOTE Although the CUESoft package does not explicitly support DOM Level 2, it does
include several properties dealing with namespaces. Missing from the DOM Level 2 spec are
the normalize and isSupported methods. normalize does appear in the TXmlElement class in
CUESoft’s package, while isSupported is duplicated by the HasFeature method of the
TXmlDomImplementation class. The following properties and methods are extensions to the
DOM specification.

property NodeId: Integer read FNodeId write FNodeId;
Use this property to define your own ID for each node, separate from any that may be

defined in the document itself.

property LevelCode: string read GetLevelCode;
This read-only property returns the node’s location within the DOM hierarchy as a sequence

of numbers separated by periods. Each number represents the position of the node’s ances-

tors within their parent’s list of children (although counting here starts at one). For example,

164 Part II: The Document Object Model



4.1.2 is the node at the second position in the node at the first position in the node at the

fourth position in the document.

property Text: string read GetText;
Retrieve all the text from this node and its descendants concatenated together via this

read-only property.

property XmlDocument: string read GetXmlDocument;
Extract the XML fragment that corresponds to this node and all of its descendants from this

read-only property.

procedure RemoveAll;
Delete all child nodes from the list and destroy the node objects.

function IsAfter(oNode: TXmlNode): Boolean;
This function returns True if the current node appears after the given node in a pre-order tra-

versal of the hierarchy, and False if it does not. For example, a node is after its parent and

any previous sibling, but it is not after any next sibling, nor any child nodes.

function GetChildNodesByNodeType(wType: Integer): TXmlNodeList;
Retrieve a node list containing all the immediate child nodes of a given type. The types are

specified using the values shown in Table 10-2.

function GetNodesByNodeType(wType: Integer): TXmlNodeList;
Similarly, this method returns a list of all descendants of the specified type.

procedure ForceOwnerDocument(oNode: TXmlNode);
Set the OwnerDocument property for the supplied node and all its descendants to be the same

as the current node. This lets you transfer nodes from one document to another.

procedure AddRef;
Add a reference count to this node. Use Release to decrement the count. This method is

automatically called when the node is created, and again when it is added to the tree.

procedure Release;
Decrement the reference count for this node. When the count reaches zero, the object is

destroyed. Be sure to call this method once you are finished with the node after adding it to

the tree.

TXmlNodeList Class

The TXmlNodeList class (see Listing 10-4) encapsulates an ordered collection of nodes. It is the

object returned by the ChildNodes property of a node, as well as by the various GetNode methods.

Items within the list are accessed sequentially by their position.

Listing 10-4: The TXmlNodeList declaration

TXmlNodeList = class
public
constructor Create;
destructor Destroy; override;

Chapter 10: CUESoft’s Document Object Model 165



property Length: Integer read GetLength;
property XmlDocument: string read GetXmlDocument;
procedure Add(oNode: TXmlNode);
procedure Delete(wIndex: Integer);
procedure Empty;
function Exchange(wSrc, wDest: Integer): Boolean;
function IndexOf(oNode: TXmlNode): Integer;
procedure Insert(wIndex: Integer; oNode: TXmlNode);
function Item(wIndex: Integer): TXmlNode;
function Move(wSrc, wDest: Integer): Boolean;
procedure Replace(wIndex: Integer; oNode: TXmlNode);
procedure Sort(sAttribute: string = ''; wOrder: Integer = 0);

end;

The TXmlNodeList object’s properties and methods are shown below:

constructor Create;
Lists are automatically created for you as the result of a query, or through a node’s

ChildNodes property.

property Length: Integer read GetLength;
Find the number of entries in the list through this read-only property. Access the individual

items with indexes in the range zero to Length –1.

function Item(wIndex: Integer): TXmlNode;
Access each entry in the list with this function, giving the item’s position within the list. If

the index value is out of range, the function returns nil.

NOTE All the remaining properties and methods are extensions to the DOM Level 2 specifi-
cation. The spec intentionally left out methods for manipulating the node list, other than
reading items out.

property XmlDocument: string read GetXmlDocument;
This read-only property returns all the items in the list as a formatted XML fragment. It is

not well-formed XML unless there is a single element type node in the list.

procedure Add(oNode: TXmlNode);
Add the given node to the end of the list.

procedure Insert(wIndex: Integer; oNode: TXmlNode);
Places the specified node at the given position in the list.

procedure Replace(wIndex: Integer; oNode: TXmlNode);
Removes the item currently at the nominated index and put the new node in its place.

function Move(wSrc, wDest: Integer): Boolean;
Moves an item in the list from its source position to its new destination location. The func-

tion returns True if the move succeeds, and False otherwise.

function Exchange(wSrc, wDest: Integer): Boolean;
Swaps the positions of two entries in the list, given their locations. A True value returns if

the exchange succeeds, and a False returns otherwise.

166 Part II: The Document Object Model

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



function IndexOf(oNode: TXmlNode): Integer;
Finds the position of the specified node within the list. A –1 value is returned if the node can-

not be found.

procedure Sort(sAttribute: string = ''; wOrder: Integer = 0);
Order the nodes in the list with this method. If an attribute name is supplied, the nodes sort

by the value of that attribute. If the attribute name is left blank, the nodes appear in order of

their text content. Use the last parameter to sort in ascending (0, the default) or descending

(1) order.

If the node list is the ChildNodes of an element, then sorting physically reorders the

actual nodes within the DOM. For other lists, only that list is sorted, without affecting the

DOM hierarchy.

procedure Delete(wIndex: Integer);
Removes the indicated node from the list.

procedure Empty;
Deletes all the nodes from the list.

TXmlNamedNodeMap Class

The TXmlNamedNodeMap class (see Listing 10-5) also manages a list of nodes, but provides primary

access to them via their names. Although you can also retrieve items by their position, this is

merely a convenience and does not imply any particular ordering of the nodes.

Listing 10-5: The TXmlNamedNodeMap declaration

TXmlNamedNodeMap = class
public
constructor Create;
destructor Destroy; override;
property Length: Integer read GetLength;
procedure Add(oNode: TXmlNode);
procedure Delete(wIndex: Integer);
procedure Empty;
function GetNamedItem(sName: string): TXmlNode;
function IndexOf(oNode: TXmlNode): Integer;
procedure Insert(wIndex: Integer; oNode: TXmlNode);
function Item(wIndex: Integer): TXmlNode;
function RemoveNamedNode(sName: string): TXmlNode;
procedure Replace(wIndex: Integer; oNode: TXmlNode);
function SetNamedItem(oNode: TXmlNode): TXmlNode;

end;

The properties and methods of the TXmlNamedNodeMap object are described below:

constructor Create;
As for node lists, these node maps are automatically created for you. The Attributes prop-

erty of the TXmlNode class and the Entities and Notations properties of the

TXmlDocumentType class all return node maps containing their respective node types.

Chapter 10: CUESoft’s Document Object Model 167



function GetNamedItem(sName: string): TXmlNode;
Retrieves the node from the mapping that has the given name. A nil is returned if no node

matches this name. The resulting node can be cast to its appropriate subclass to access its

specific abilities.

function SetNamedItem(oNode: TXmlNode): TXmlNode;
Adds the given node to the mapping, using its NodeName as the index. If an entry already

exists with that name, the new node replaces it and a reference to the deleted node is

returned. Otherwise, the return value is nil.

function RemoveNamedNode(sName: string): TXmlNode;
Find the node in the mapping with the given name and remove it from the list. A reference to

that node is returned. If no matching node is found, return a nil instead.

property Length: Integer read GetLength;
Return the number of entries in the map through this read-only property.

function Item(wIndex: Integer): TXmlNode;
Access the entries in the list via their position. If the supplied index is out of range, a nil is

returned.

NOTE The remaining methods are all extensions to the DOM Level 2 specification. The
spec does not define how node maps are maintained, so as not to restrict how they are imple-
mented. Missing from that spec are the namespace-aware versions of the
Get/Set/RemoveNamedItem methods above.

procedure Add(oNode: TXmlNode);
Add the specified node to the list.

procedure Insert(wIndex: Integer; oNode: TXmlNode);
Place the new node at a particular position within the list. If the index is out of range, an error

occurs.

procedure Replace(wIndex: Integer; oNode: TXmlNode);
Delete the node currently in the specified position and insert the new node in its place. An

error is raised if the index is out of range.

procedure Delete(wIndex: Integer);
Remove the node at the given position from the list. An out of range index is ignored.

procedure Empty;
Remove all the nodes from the list.

function IndexOf(oNode: TXmlNode): Integer;
Return the position of the given node in the list. If the node is not found, the function returns

–1.

168 Part II: The Document Object Model



TXmlElement Class

Most of the nodes in the DOM will be TXmlElement objects (as shown in Listing 10-6). These rep-

resent the elements from the XML document, and typically have attributes and child nodes

attached to them.

Listing 10-6: The TXmlElement declaration

TXmlElement = class(TXmlNode)
public
constructor Create;
destructor Destroy; override;
property ElementText: string read GetElementText;
property FullEndTag: Boolean read FFullEndTag write FFullEndTag;
property IgnoreEndTag: Boolean read FIgnoreEndTag
write FIgnoreEndTag;

property TagName: string read FNodeName write FNodeName;
function CreateChildCDataSection(sText: string): TXmlCDataSection;
function CreateChildElement(sElem: string): TXmlElement;
function CreateChildText(sText: string): TXmlText;
function FindElement(sName: string): TXmlElement;
function GetAttribute(sName: string): string;
function GetAttributeNode(sName: string): TXmlAttribute;
function GetChildElementsByTagName(sName: string): TXmlNodeList;
function GetElementsByTagName(sName: string): TXmlNodeList;
function GetElementsByTagNameWithAttribute(
sName, sAttr, sValue: string): TXmlNodeList;

function MatchExpression(sTerm: string): TXmlNodeList;
procedure Normalize(bAddSpace: Boolean = False);
procedure RemoveAttribute(sName: string);
function RemoveAttributeNode(oOldAttr: TXmlAttribute): TXmlAttribute;
function SelectNodes(sQuery: string): TXmlNodeList;
function SelectSingleNode(sQuery: string): TXmlElement;
procedure SetAttribute(sName, sValue: string);
function SetAttributeNode(oNewAttr: TXmlAttribute): TXmlAttribute;

end;

The TXmlElement object’s properties and methods are listed below:

constructor Create;
Element nodes should not be created directly. Instead, use the CreateElementmethod on the

document object or the CreateChildElement method described later.

property TagName: string read FNodeName write FNodeName;
Set or retrieve the name of the element through this property. It maps directly onto the inher-

ited NodeName property.

function GetAttribute(sName: string): string;
Although you could use the Attributes property to deal with an element’s attributes, there

are several convenience methods to assist you. This one returns the string value of the

named attribute, or an empty string if it cannot be found.

procedure SetAttribute(sName, sValue: string);
Set the value of an attribute with this method. Any existing attribute with the same name has

its contents overwritten by the new value. The value supplied is not parsed at all.

Chapter 10: CUESoft’s Document Object Model 169



procedure RemoveAttribute(sName: string);
Remove the attribute with the given name using this method. Nothing happens if a matching

node is not found.

function GetAttributeNode(sName: string): TXmlAttribute;
Access the entire attribute node by name with this method. If the attribute cannot be found, it

returns nil.

function SetAttributeNode(oNewAttr: TXmlAttribute): TXmlAttribute;
Use this method to add attributes that have internal structure beyond a simple string value.

Build your attribute node and attach its children before calling this method. The new one

replaces any existing attribute with the same name. In this case, a reference to the deleted

node is returned. Otherwise, it returns nil.

function RemoveAttributeNode(oOldAttr: TXmlAttribute): TXmlAttribute;
Remove the specified attribute from the element’s list through this method. A reference to

that node is returned. If the given node is not an attribute of the element, nothing happens.

function GetElementsByTagName(sName: string): TXmlNodeList;
Obtain a list of all the elements with a given name that are descendants of this node with this

function. Use a name of * to get all elements in the subtree. The entries in the list appear in

the same order as a pre-order traversal of the subtree.

NOTE The following properties and methods are not part of the DOM Level 2 specification
for elements. Missing abilities include the namespace-aware versions of the methods above.
Also, the hasAttribute and hasAttributeNS methods are not implemented, although the
IndexOf method of the Attributes node map provides similar information.

property ElementText: string read GetElementText;
This read-only property returns the value of the single text node child of this element. If

there is no single text child, it returns an empty string.

property FullEndTag: Boolean read FFullEndTag write FFullEndTag;
Set this property to True to force the output of a full closing tag when generating XML.

When False (the default), an element that has no children uses the shorthand syntax avail-

able in XML (placing a slash at the end of the opening tag). This property can be used to

maintain compatibility with some existing applications (specifically HTML).

property IgnoreEndTag: Boolean read FIgnoreEndTag write FIgnoreEndTag;
Setting this property to True causes the end tag to be omitted entirely if the element has no

children. By default, it is False, which always generates an end tag. Again, this is intended

for use with generating HTML, but should not be used in any true XML document.

function CreateChildCDataSection(sText: string): TXmlCDataSection;
This function creates a new CDATASection node and appends it to the element, returning a

reference to the new node. You can achieve the same thing through the CreateCDATA-
Section method on the document object, followed by an AppendChild call on this node.

170 Part II: The Document Object Model



function CreateChildElement(sElem: string): TXmlElement;
Similarly, this function adds a newly created element node to the current element, and

returns a pointer to it.

function CreateChildText(sText: string): TXmlText;
Lastly, you can easily create and add a child text node with this method. Again, you receive a

reference to the new node as the return value.

function FindElement(sName: string): TXmlElement;
Find the first descendant element node with the given tag name through this method. The

subtree is searched in a pre-order traversal. If no matching node is found, a nil is returned.

function GetChildElementsByTagName(sName: string): TXmlNodeList;
Similar to the GetElementsByTagName method, this one only searches the immediate chil-

dren of the element.

function GetElementsByTagNameWithAttribute(sName, sAttr, sValue: string):
TXmlNodeList;
Another variation on the GetElementsByTagName method, this one looks through all descen-

dants, returning those elements that have the given name and also an attribute with the

specified name and value.

function MatchExpression(sTerm: string): TXmlNodeList;
This method searches the descendants of the element for nodes that match the given expres-

sion, and returns those found as a list. Their order in the list matches their order in a

pre-order traversal of the hierarchy.

procedure Normalize(bAddSpace: Boolean = False);
Combine adjacent text nodes in the entire subtree beneath this element. Setting the bAdd-
Space parameter to True causes an extra space character to be placed between the contents

of text nodes that are concatenated. Doing this is not standard DOM functionality. However,

the parameter has a default value of False and can safely be omitted.

NOTE In the DOM Level 2 specification, the Normalize functionality is moved to the Node
interface.

function SelectNodes(sQuery: string): TXmlNodeList;
Retrieves a list of all the nodes that match the given XPath expression. The current node acts

as the starting point for relative references. An empty list is returned if no matching nodes

are found.

function SelectSingleNode(sQuery: string): TXmlElement;
This method acts like the previous one, but returns only the first element found, or nil if

there are none.

Chapter 10: CUESoft’s Document Object Model 171



TXmlAttribute Class

Attributes are attached to elements and are available through the Attributes property on the

TXmlElement nodes. Other than appearing in these lists, they do not form a part of the normal

DOM hierarchy. They have no parent and no siblings, so the corresponding properties return nil.

Their CUESoft definition is shown in Listing 10-7.

Listing 10-7: The TXmlAttribute declaration

TXmlAttribute = class(TXmlNode)
public
constructor Create; override;
destructor Destroy; override;
property Name: string read FNodeName write FNodeName;
property Specified: Boolean read FSpecified write FSpecified;
property Value: string read GetNodeValue write SetNodeValue;
function CloneNode(bDeep: Boolean = True): TXmlNode; override;

end;

The properties and methods of the TXmlAttribute object are discussed below:

constructor Create;
As for elements, use the CreateAttribute factory method on the document object instead of

creating attributes yourself. You can also instantiate them through the SetAttribute
method of an element object.

property Name: string read FNodeName write FNodeName;
Retrieve or set the name of the attribute through this property. It maps directly onto the

inherited NodeName property.

property Value: string read GetNodeValue write SetNodeValue;
Read or write the string value of the attribute with this property. The inherited NodeValue
property has the same effect. Setting this value causes any children of the attribute to be dis-

carded and to be replaced with just the supplied text. The value is not parsed at all, so any

embedded entity references are ignored.

property Specified: Boolean read FSpecified write FSpecified;
This property returns True if the value for the attribute came from the body of the XML doc-

ument itself or was set through the Value property, and False if the value derives from a

default specified for this attribute in the DTD.

TXmlCharacterData Class

The TXmlCharacterData class (see Listing 10-8) is the basis of all textual nodes within the DOM.

It supplies common functionality for the various subclasses. The base class itself does not appear

in the hierarchy.

Listing 10-8: The TXmlCharacterData declaration

TXmlCharacterData = class(TXmlNode)
public

172 Part II: The Document Object Model



property Data: string read FNodeValue write FNodeValue;
property Length: Integer read GetLength;
procedure AppendData(sData: string);
procedure DeleteData(wOffset, wCount: Integer);
procedure InsertData(wOffset: Integer; sData: string);
procedure ReplaceData(wOffset, wCount: Integer; sData: string);
function SubStringData(wOffset, wCount: Integer): string;

end;

The TXmlCharacterData object’s properties and methods are listed below. As for the other imple-

mentations, all offsets start at zero.

property Data: string read FNodeValue write FNodeValue;
Retrieve or set the text content of the node through this property.

property Length: Integer read GetLength;
Find the number of characters in the Data property, which may be zero.

procedure AppendData(sData: string);
Add the supplied text to the end of the existing value. Retrieve the combined text from the

Data property.

procedure DeleteData(wOffset, wCount: Integer);
Remove the text starting from the given offset, for the given number of characters.

procedure InsertData(wOffset: Integer; sData: string);
Insert the supplied text into any existing value at the specified offset.

procedure ReplaceData(wOffset, wCount: Integer; sData: string);
Delete the substring starting at the nominated offset and extending for the given number of

characters, then replace it with the supplied text.

function SubStringData(wOffset, wCount: Integer): string;
Extract the section of text from the specified offset, for the given number of characters.

TXmlText Class

Inheriting from the base character data node, the TXmlText class (as shown in Listing 10-9) holds

the actual content of the XML document within the DOM. When a document is first loaded, some

other node type separates all text nodes from each other; contiguous sections of text in the docu-

ment are placed into a single text node. This state is restored by the Normalize method of the

element object.

Listing 10-9: The TXmlText declaration

TXmlText = class(TXmlCharacterData)
public
constructor Create;
function SplitText(wOffset: Integer): TXmlText;
function CloneNode(bDeep: Boolean = True): TXmlNode; override;

end;

Chapter 10: CUESoft’s Document Object Model 173



The properties and methods of the TXmlText object are described below:

constructor Create;
Generate text nodes through the CreateTextNode method on the document object, or the

CreateChildText method on an element. Do not construct text nodes directly.

function SplitText(wOffset: Integer): TXmlText;
Create a new text node containing all the text from the current node past the specified offset,

and return a reference to that node. The current text node has that text deleted. The new node

becomes the immediately following sibling of the original node.

TXmlCDataSection Class

Textual content containing characters that would normally be treated as markup can be flagged as

just straight text through CDATA sections. Within the DOM these appear as TXmlCDataSection
objects (as shown in Listing 10-10). This class inherits all the abilities of a normal text node and

simply serves as an indicator of its data’s origin.

Listing 10-10: The TXmlCDataSection declaration

TXmlCDataSection = class(TXmlText)
public
constructor Create; override;
function CloneNode(bDeep: Boolean = True): TXmlNode; override;

end;

The TXmlCDataSection object’s methods are shown below:

constructor Create;
Do not construct CDATA section nodes directly. Use the CreateCDataSection method on

the document object or the CreateChildCDataSection method of an element instead.

TXmlComment Class

Comments usually contain additional, non-essential information about a document. Within the

DOM they appear as TXmlComment objects (see Listing 10-11). Another text-based node type, all

of its abilities are inherited.

Listing 10-11: The TXmlComment declaration

TXmlComment = class(TXmlCharacterData)
public
constructor Create; override;
function CloneNode(bDeep: Boolean = True): TXmlNode; override;

end;

The methods of the TXmlComment object are discussed below:

constructor Create;
Build comments with the CreateComment method of the document object. Do not create

them directly with this constructor.

174 Part II: The Document Object Model



TXmlProcessingInstruction Class

Processing instructions are designed to carry information through the document for use by appli-

cations using those documents. The TXmlProcessingInstruction class (shown in Listing 10-12)

lets you access their contents.

Listing 10-12: The TXmlProcessingInstruction declaration

TXmlProcessingInstruction = class(TXmlNode)
public
constructor Create; override;
property Data: string read FNodeValue write FNodeValue;
property Target: string read FNodeName write FNodeName;
function CloneNode(bDeep: Boolean = True): TXmlNode; override;

end;

A TXmlProcessingInstruction object’s properties and methods are listed below:

constructor Create;
Use the document object’s CreateProcessingInstruction method to instantiate these

nodes, rather than this constructor.

property Target: string read FNodeName write FNodeName;
Retrieve or set the target application for the instruction with this property.

property Data: string read FNodeValue write FNodeValue;
The remainder of the tag’s content appears in this property, from the first non-white space

character following the target through to the character immediately before the closing ?>.

TXmlDocumentType Class

The TXmlDocumentType class (see Listing 10-13) encapsulates the declaration of the document

type for a document. It appears as the DocType property of the document, although this may be

nil. Within it are references to the entities and notations defined within the document.

Listing 10-13: The TXmlDocumentType declaration

TXmlDocumentType = class(TXmlNode)
public
constructor Create; override;
destructor Destroy; override;
property Entities: TXmlNamedNodeMap read FEntities;
property Name: string read FNodeName write FNodeName;
property Notations: TXmlNamedNodeMap read FNotations;
function CloneNode(bDeep: Boolean = True): TXmlNode; override;

end;

The properties and methods of the TXmlDocumentType object are shown below:

constructor Create;
Normally, a document type node is automatically created as a document is loaded. Even if

you did create one of these nodes, you cannot attach it to a document since the DocType
property is read-only.

Chapter 10: CUESoft’s Document Object Model 175



property Name: string read FNodeName write FNodeName;
Retrieve the name of the document type from this property. This corresponds to the name of

the single top-level element in the document.

property Entities: TXmlNamedNodeMap read FEntities;
Obtain access to a list of the external entities defined within the document through this

read-only property. This does not include internal entities, which are automatically

expanded, nor parameter entities. Each item in the list is a TXmlEntity object.

property Notations: TXmlNamedNodeMap read FNotations;
Access the notations defined in the document’s DTD with this read-only property. Items in

the list are all TXmlNotation objects.

TXmlEntity Class

The TXmlEntity class (see Listing 10-14) supplies the definitions of external entities read from the

document’s DTD. Access them via the Entities property of the document type node. No parame-

ter or internal entities appear in this list since these are automatically expanded and their value

included in the DOM. Only the definition of the entity is modeled, not the declaration itself.

Listing 10-14: The TXmlEntity declaration

TXmlEntity = class(TXmlNode)
public
constructor Create; override;
property NotationName: string read FNodeName write FNodeName;
property PublicId: string read FPublicId write FPublicId;
property SystemId: string read FSystemId write FSystemId;
function CloneNode(bDeep: Boolean = True): TXmlNode; override;

end;

The TXmlEntity object’s properties and methods are discussed below:

constructor Create;
Entity nodes are automatically created when a document is first loaded. They cannot be

added to a document type node thereafter.

property NodeName: string read FNodeName write FNodeName;
This inherited property provides the name of the entity.

NOTE Unfortunately, the current version of CUESoft’s DOM returns the name of the entity’s
notation through the NodeName property, rather than the name of the entity itself. There is no
way to retrieve the entity’s name unless you go to the underlying parser and its OnEntityDecl
event.

property PublicId: string read FPublicId write FPublicId;
Retrieve or set the public identifier for the entity from this property. If no public identifier is

specified, an empty string results.

176 Part II: The Document Object Model

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



property SystemId: string read FSystemId write FSystemId;
This property reads or writes the system identifier for the entity. Again, it returns an empty

string if no system identifier is available.

property NotationName: string read FNodeName write FNodeName;
Unparsed entities return the name of their notation type through this property. For parsed

entities, it returns an empty string.

NOTE Although the NotationName property is mapped onto the node name field, it does
return the correct value. However, the node name field should hold the name of the entity
itself.

TXmlEntityReference Class

References to parsed entities are placed into the DOM with the TXmlEntityReference class (as

shown in Listing 10-15). The children of this reference duplicate those of the named entity node (if

available).

Listing 10-15: The TXmlEntityReference declaration

TXmlEntityReference = class(TXmlNode)
public
constructor Create; override;
function CloneNode(bDeep: Boolean = True): TXmlNode; override;

end;

NOTE The CUESoft parser always expands entity references within the body of the docu-
ment. So, when you load in a document, no entity reference nodes appear within the DOM,
only their corresponding entity’s subtree. Also, the contents of entities declared in external
subsets may not be available.

The properties and methods of the TXmlEntityReference object are described below:

constructor Create;
As before, do not build these objects directly. Instead, use the CreateEntityReference
method of the document object.

property NodeName: string read FNodeName write FNodeName;
This inherited property provides the name of the referenced entity.

TXmlNotation Class

Notations can describe the format of unparsed entities, of attributes, and of target applications for

processing instructions. They are represented by the TXmlNotation class (see Listing 10-16) and

are retrieved from the Notations property of the document type node.

Listing 10-16: The TXmlNotation declaration

TXmlNotation = class(TXmlNode)
public

Chapter 10: CUESoft’s Document Object Model 177



constructor Create; override;
property PublicId: string read FPublicId write FPublicId;
property SystemId: string read FSystemId write FSystemId;
function CloneNode(bDeep: Boolean = True): TXmlNode; override;

end;

The TXmlNotation object’s properties and methods are listed below:

constructor Create;
Use the document object’s CreateNotation method to build new notation nodes.

property NodeName: string read FNodeName write FNodeName;
The name of the notation is found in this inherited property.

property PublicId: string read FPublicId write FPublicId;
Retrieve the public identifier for this notation from this property, or an empty string if none

is specified.

property SystemId: string read FSystemId write FSystemId;
This property provides the system identifier for the notation, or an empty string if none is

supplied.

TXmlDocumentFragment Class

A document fragment never appears in the main DOM structure. Its purpose is to manage subtrees

of nodes outside of the document itself, allowing them to be constructed or extracted before add-

ing them back into the hierarchy. The TXmlDocumentFragment class (see Listing 10-17) provides

this functionality. It derives from the basic node without adding any new abilities.

Listing 10-17: The TXmlDocumentFragment declaration

TXmlDocumentFragment = class(TXmlNode)
public
constructor Create; override;
function CloneNode(bDeep: Boolean = True): TXmlNode; override;

end;

When a document fragment is added to the main DOM, it is not inserted itself. Instead, all of its

child nodes are placed into the hierarchy in its place.

The methods of a TXmlDocumentFragment object are shown below:

constructor Create;
Build document fragment nodes with the CreateDocumentFragment method of the docu-

ment object.

178 Part II: The Document Object Model



TXmlDocument Class

The primary access to the DOM is via the document object, as represented by the TXmlDocument
class (shown in Listing 10-18). Another important function of this class is to create new nodes to

add to the DOM. Using the factory methods provided here ensures that the nodes are compatible

with the document and each other.

Listing 10-18: The TXmlDocument declaration

TXmlDocument = class (TXmlNode)
public
constructor Create; override;
destructor Destroy; override;
property ActualCDATA: Boolean read FActualCDATA write FActualCDATA;
property DocType: TXmlDocumentType read FDocType;
property DocumentElement: TXmlElement read GetDocumentElement;
property DomImplementation: TXmlDomImplementation
read FDomImplementation;

property FormattedOutput: Boolean read FFormattedOutput
write FFormattedOutput;

property IdAttribute: string read FIdAttribute write FIdAttribute;
property IgnoreCase: Boolean read FIgnoreCase write FIgnoreCase;
function CloneNode(bDeep: Boolean = True): TXmlNode; override;
function CreateAttribute(sName: string): TXmlAttribute;
function CreateComment(sData: string = ''): TXmlComment;
function CreateCDataSection(sData: string = ''): TXmlCDataSection;
function CreateDocumentFragment: TXmlDocumentFragment;
function CreateElement(sTagName: string): TXmlElement;
function CreateEntityReference(sName: string): TXmlEntityReference;
function CreateProcessingInstruction(sTarget: string;
sData: string = ''): TXmlProcessingInstruction;

function CreateTextNode(sData: string = ''): TXmlText;
function GetElementsByTagName(sName: string): TXmlNodeList;
procedure RemoveAll;

end;

The TXmlDocument object’s properties and methods are discussed below:

constructor Create;
Documents are created as the result of loading an XML document through the

LoadDataSource or LoadMemory methods of the TXmlObjModel class. An empty document

node exists initially in the object model class that can be used to generate a new document.

All access should be through the Document property of the object model class.

property DomImplementation: TxmlDomImplementation read FDomImplementation;
Access the DOM implementation for this document through this read-only property.

NOTE Since implementation is a reserved word in Delphi, this W3C DOM attribute is
renamed DomImplementation in the CUESoft package.

property DocType: TXmlDocumentType read FDocType;
If a DTD exists for a loaded XML document, this read-only property returns the correspond-

ing TXmlDocumentType node. If no DTD is specified, and for HTML documents, it returns

nil.

Chapter 10: CUESoft’s Document Object Model 179



TIP You cannot create a document type declaration for a new document in memory since
this field property is read-only.

property DocumentElement: TXmlElement read GetDocumentElement;
Retrieve the single, top-level element in the document with this read-only property. You can

also reach it via the ChildNodes property of the document, but this property is more

convenient.

function CreateAttribute(sName: string): TXmlAttribute;
Build a new TXmlAttribute node using this method, by passing in the name of the new

attribute. The resulting node still needs to be added to an element to become part of the

DOM. Use the element’s SetAttributeNode method.

function CreateComment(sData: string = ''): TXmlComment;
Generate a new TXmlComment node with the supplied text through this method. Add the new

node to an existing one as one of its children.

function CreateCDataSection(sData: string = ''): TXmlCDataSection;
This method produces a new TXmlCDataSection node for adding to the DOM. Specify the

text content of the node when it is called. You can also use the CreateChildCDataSection
method of an element.

function CreateDocumentFragment: TXmlDocumentFragment;
Obtain a new TXmlDocumentFragment node with this method. Document fragments are not

added to the main DOM hierarchy, but are used instead to manage nodes outside of that

structure.

function CreateElement(sTagName: string): TXmlElement;
A new TXmlElement node is created by this method, passing in the element’s name. Add it to

the DOM as a child of another node. If placed as the child of the document node itself, it also

becomes the value of the DocumentElement property. A new child element is automatically

added with the CreateChildElement method of an element node.

function CreateEntityReference(sName: string): TXmlEntityReference;
Build a new TXmlEntityReference node using this method. Specify the name of the entity

to be inserted, and add the new node to the DOM at the required position.

function CreateProcessingInstruction(sTarget: string; sData: string = ''):
XmlProcessingInstruction;
Generate a new TXmlProcessingInstruction node via this method, passing in the name of

the target application and its command. Again, add the new node to the DOM structure as

the child of an existing node.

function CreateTextNode(sData: string = ''): TXmlText;
This method produces a new TXmlText node, with the specified content, for adding to the

DOM. Alternately, you can use the CreateChildText method of an element to quickly add

text to an element.

180 Part II: The Document Object Model



function GetElementsByTagName(sName: string): TXmlNodeList;
Find all the elements that are descendants of the document and that have the given name.

Use a name of * to retrieve all nodes. The nodes appear in the order of a pre-order traversal

through the document tree. If no matching nodes are found, an empty list is returned.

function CloneNode(bDeep: Boolean = True): TXmlNode; override;
Copy the document node and, if bDeep is True, all of its children to create a new document.

NOTE Missing from the W3C DOM Level 2 specification are the importNode method (whose
functionality can be duplicated through the ForceOwnerDocument method of the TXmlNode
class), the getElementById method, and the namespace-aware versions of the CreateElement,
CreateAttribute, and GetElementsByTagName methods. The following properties and methods
are extensions of the W3C specification.

property ActualCDATA: Boolean read FActualCDATA write FActualCDATA;
Set this property to True to output CDATA sections within the DOM as plain text instead of

surrounding them with the normal CDATA tags. Leave it as False (the default) to use the

CDATA syntax.

property FormattedOutput: Boolean read FFormattedOutput write FFormattedOutput;
When True, this property causes the XML generated by the DOM to be formatted for read-

ability. This involves adding line feeds and indentation surrounding the elements and text.

When False (the default), the output appears as a single string with no breaks.

property IdAttribute: string read FIdAttribute write FIdAttribute;
Specify a default attribute to be used as the elements’ IDs when querying with XSL and

XQL (XML Query Language) expressions.

property IgnoreCase: Boolean read FIgnoreCase write FIgnoreCase;
This property controls matching through the GetElementsByTagName and SelectNodes
methods. If set to True, matches are case-insensitive, whereas setting it to False (the

default) enforces matching on case.

procedure RemoveAll;
Completely empty the document of all its children with this method.

TXmlDomImplementation Class

The TXmlDomImplementation class (see Listing 10-19) provides functions outside of any docu-

ment. You access its abilities through the DOMImplementation property of a document.

Listing 10-19: The TXmlDomImplementation declaration

TXmlDomImplementation = class
public
function HasFeature(sFeature, sVersion: string): Boolean;

end;

Chapter 10: CUESoft’s Document Object Model 181



The methods of the TXmlDomImplementation object are listed below:

function HasFeature(sFeature, sVersion: string): Boolean;
Determine whether this DOM implementation supports certain features with this method.

Given a particular feature name and required version, it returns True if that functionality is

available and False otherwise. The version parameter may be left blank to match on any

supported version. This implementation currently recognizes the features XML and HTML
(case-insensitive), and version 1.0 of each.

TXmlObjModel Component

Since the DOM Level 1 specification, which is the level supported by this implementation, defines

no way of creating a document, it is left to the designers to provide this functionality. In the

CUESoft package, the TXmlObjModel component (shown in Listing 10-20) performs this neces-

sary task. Consequently, this entire class is an extension to the W3C DOM specification (at least at

Level 1).

Listing 10-20: The TXmlObjModel declaration

TPreserveSpaceEvent = procedure(oOwner: TObject;
sElementName: string; var bPreserve: Boolean) of object;

TResolveEntityEvent = function (oOwner: TObject;
sName, sPublicId, sSystemId: string): string of object;

TXmlObjModel = class(TComponent)
protected
function GetErrorCount: Integer;
function GetOnPreserveSpace: TPreserveSpaceEvent;
procedure SetOnPreserveSpace(PreserveSpace: TPreserveSpaceEvent);

public
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;
property Document: read FDocument;
property ErrorCount: Integer read GetErrorCount;
property Errors: TStringList read FErrors;
property XmlDocument: string read GetXmlDocument;
procedure ClearDocument;
function GetErrorMsg(wIdx: Integer): String;
function LoadDataSource(sSource: String): Boolean;
function LoadMemory(cpMem: PChar): Boolean;
function SaveToFile(sFile: string): Boolean;

published
property FormattedOutput: Boolean read GetFormattedOutput
write SetFormattedOutput;

property IdAttribute: string read GetIdAttribute
write SetIdAttribute;

property IgnoreCase: Boolean read GetIgnoreCase write SetIgnoreCase;
property NormalizeData: Boolean read FNormalizeData
write FNormalizeData

property OnPreserveSpace: TPreserveSpaceEvent read GetOnPreserveSpace
write SetOnPreserveSpace;

property OnResolveEntity: TResolveEntityEvent read FOnResolveEntity
write SetOnResolveEntity;

property Password: string read GetPassword write SetPassword;

182 Part II: The Document Object Model



property RaiseErrors: Boolean read FRaiseErrors write FRaiseErrors;
property UserName: string read GetUserName write SetUserName;

end;

Since this class derives from TComponent, it can appear on the component palette and be dropped

onto a form when required. Then set its properties and load the required document in code. Alter-

nately, you can instantiate a copy entirely in code.

A TXmlObjModel component’s properties and methods are listed below:

constructor Create(AOwner: TComponent); override;
If you drag the component from the palette, you do not have to create an instance yourself.

Otherwise, use this constructor to generate an object model for your use.

destructor Destroy; override;
If you create the object model yourself, remember to free it up when you are finished.

Objects are automatically destroyed when you drop the component onto the form from the

component palette.

property Document: read FDocument;
This read-only property provides access to the document in memory and all its abilities. You

should only use the document through this mechanism.

property ErrorCount: Integer read GetErrorCount;
Find the number of errors that occurred during a parse through this read-only property.

property Errors: TStringList read FErrors;
Retrieve each error from the parse in turn with this read-only property.

property FormattedOutput: Boolean read GetFormattedOutput write
SetFormattedOutput;
Duplicating the same property on the document object, this property controls the formatting

of any XML generated from the DOM. When True, indentation and line breaks are added to

make the text more legible. When False (the default), the text is just one long string.

property IdAttribute: string read GetIdAttribute write SetIdAttribute;
Also replicating a property on the document object, this one determines what attribute is

treated as the ID attribute for searches within the hierarchy.

property IgnoreCase: Boolean read GetIgnoreCase write SetIgnoreCase;
Another property copied from the document object. When True, this property causes case to

be ignored in matches using XSL and XQL queries. When False (the default), case is used

in determining a match.

property NormalizeData: Boolean read FNormalizeData write FNormalizeData
Setting this property to True results in extra white space being stripped from character data

in the parse process. Otherwise, all text data is sent through as is (the default).

property OnPreserveSpace: TPreserveSpaceEvent read GetOnPreserveSpace write
SetOnPreserveSpace;
This event triggers once for each element encountered in the parse process. It supplies the

name of that element and the current space preservation setting, based on the Normalize-

Chapter 10: CUESoft’s Document Object Model 183



Data property and any xml:space attributes. An attached event handler may alter the preser-

vation flag.

property OnResolveEntity: TResolveEntityEvent read FOnResolveEntity write
SetOnResolveEntity;
External references can be resolved through this event. It passes across the name of the

entity, along with its public and system identifiers. Using these you can adjust the actual

path to the resource and send it back to the parser as the result of the handler function.

property Password: string read GetPassword write SetPassword;
When reading an XML file from an FTP site, this property establishes the password used to

gain access to that site.

property RaiseErrors: Boolean read FRaiseErrors write FRaiseErrors;
Set this property to True to have the parser pass TXmlParserError exceptions through to the

application. Otherwise, they are trapped by this component (the default).

property UserName: string read GetUserName write SetUserName;
Complementing the Password property, this one sets the user ID for retrieving documents

from FTP sites. If not set, anonymous is used.

property XmlDocument: string read GetXmlDocument;
Generate an XML document from the DOM in memory with this read-only property.

procedure ClearDocument;
Delete the entire DOM with this method. A new document can then be constructed.

function GetErrorMsg(wIdx: Integer): String;
Retrieve individual error messages from the parse process with this method. Duplicating the

abilities of the Error property, the index ranges from zero to ErrorCount –1.

function LoadDataSource(sSource: String): Boolean;
The heart of the process, this method invokes the parser on the specified document. Files are

identified either as local filenames, or as HTTP or FTP URLs. A return value of True results

if the document is successfully loaded and False is returned if problems are encountered. In

the latter case, check the Errors property for the reason(s).

function LoadMemory(cpMem: PChar): Boolean;
Similar to the previous method, this one parses a document held in memory at the supplied

location. Again, it returns True if successful and False if not.

function SaveToFile(sFile: string): Boolean;
Having created your DOM in memory, use this method to write it to a file. The document

type declaration is not included in the document, although the remainder is well-formed

XML. You can specify either a local filename or an FTP site to write to. The function returns

True if it succeeded and False if a problem arose.

184 Part II: The Document Object Model



TXmlParser Component

The CUESoft.com package relies on a built-in parser to process XML documents into the DOM

structure. CUESoft.com’s parser is non-validating, although it does check for well-formed docu-

ments. You can access the parser yourself and use it to do your own processing by registering

event handlers with it. The TXmlParser component (see Listing 10-21) can also dwell on the com-

ponent palette, making it easy to incorporate into your project. This class appears in the XmlParser
unit.

Listing 10-21: The TXmlParser declaration

TAttributeEvent = procedure (oOwner: TObject;
sName, sValue: string; bSpecified: Boolean) of object;

TDocTypeDeclEvent = procedure (oOwner: TObject;
sDecl, sId0, sId1: string) of object;

TEntityDeclEvent = procedure (oOwner: TObject;
sEntityName, sPublicId, sSystemId, sNotationName: string) of object;

TNonXMLEntityEvent = procedure (oOwner: TObject;
sEntityName, sPublicId, sSystemId, sNotationName: string) of object;

TNotationDeclEvent = procedure (oOwner: TObject;
sNotationName, sPublicId, sSystemId: string) of object;

TPreserveSpaceEvent = procedure (oOwner: TObject;
sElementName: string; var bPreserve: Boolean) of object;

TProcessInstrEvent = procedure (oOwner: TObject;
sName, sValue: string) of object;

TResolveEntityEvent = function (oOwner: TObject;
sName, sPublicId, sSystemId: string): string of object;

TValueEvent = procedure (oOwner: TObject; sValue: string) of object;

TXmlParser = class(TComponent)
protected
property OnIgnorableWhitespace: TValueEvent
read FOnIgnorableWhitespace write FOnIgnorableWhitespace;

public
constructor Create(oOwner: TComponent);
destructor Destroy; override;
property ErrorCount: Integer read GetErrorCount;
property Errors: TStringList read FErrors;
function GetErrorMsg(wIdx: Integer): string;
function ParseDataSource(sSource: string): Boolean;
function ParseMemory(cpMem: PChar): Boolean;

published
property NormalizeData: Boolean read FNormalizeData
write FNormalizeData;

property OnAttribute: TAttributeEvent read FOnAttribute
write FOnAttribute;

property OnCDATASection: TValueEvent read FOnCDATASection
write FOnCDATASection;

property OnCharData: TValueEvent read FOnCharData write FOnCharData;
property OnComment: TValueEvent read FOnComment write FOnComment;
property OnDocTypeDecl: TDocTypeDeclEvent read FOnDocTypeDecl
write FOnDocTypeDecl;

property OnEndDocument: TNotifyEvent read FOnEndDocument
write FOnEndDocument;

property OnEndElement: TValueEvent read FOnEndElement
write FOnEndElement;

property OnEntityDecl: TEntityDeclEvent read FOnEntityDecl

Chapter 10: CUESoft’s Document Object Model 185



write FOnEntityDecl;
property OnNonXMLEntity: TNonXMLEntityEvent read FOnNonXMLEntity
write FOnNonXMLEntity;

property OnNotationDecl: TNotationDeclEvent read FOnNotationDecl
write FOnNotationDecl;

property OnPreserveSpace: TPreserveSpaceEvent read FOnPreserveSpace
write FOnPreserveSpace;

property OnProcessingInstruction: TProcessInstrEvent
read FOnProcessingInstruction write FOnProcessingInstruction;

property OnResolveEntity: TResolveEntityEvent read FOnResolveEntity
write FOnResolveEntity;

property OnStartDocument: TNotifyEvent read FOnStartDocument
write FOnStartDocument;

property OnStartElement: TValueEvent read FOnStartElement
write FOnStartElement;

property Password: string read FPassword write FPassword;
property RaiseErrors: Boolean read FRaiseErrors write FRaiseErrors;
property UserName: string read FUserName write FUserName;

end;

TIP To see CUESoft’s parser in action, look at the SAX1 demonstration in Chapter 15. The
project contains a SAX1-compatible parser using the CUESoft offering.

The properties and methods of a TXmlParser component are shown below (most of which corre-

spond directly with those in the TXmlObjModel class):

constructor Create(oOwner: TComponent);
For easiest use, drag-and-drop one of these components from the palette, then set its proper-

ties at design time. Otherwise, use this constructor to build a parser in code for your use.

destructor Destroy; override;
If you create the parser yourself, do not forget to release its resources when finished.

property ErrorCount: Integer read GetErrorCount;
Find the number of errors from the parse process with this read-only property.

property Errors: TStringList read FErrors;
Retrieve all the reasons for errors during the parse through this read-only property.

property NormalizeData: Boolean read FNormalizeData write FNormalizeData;
Strip out extra white space from the document when this property is set to True. Otherwise,

all text is passed through unchanged to the OnCharData event (the default). CDATA sections

are not affected by this property.

property OnAttribute: TAttributeEvent read FOnAttribute write FOnAttribute;
Respond to attributes encountered in the document through this event, which fires before the

OnStartElement event for their containing element. The attribute name and value, and a

flag indicating the origin of that value, are passed to the event handler.

property OnCDATASection: TValueEvent read FOnCDATASection write FOnCDATASection;
CDATA sections from the document trigger this event, which receives the entire contents of

that section.

186 Part II: The Document Object Model

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



property OnCharData: TValueEvent read FOnCharData write FOnCharData;
Normal textual content causes this event to fire. Each contiguous section of text appears in

one event through the supplied parameter.

property OnComment: TValueEvent read FOnComment write FOnComment;
The entire content of a comment from the document is available within a handler attached to

this event.

property OnDocTypeDecl: TDocTypeDeclEvent read FOnDocTypeDecl write
FOnDocTypeDecl;
Encountering the document type declaration in the document causes this event to trigger.

The name of the document type, and its public and system identifiers are passed across to the

event handler. Note that unparsed entities and notations declared in the DTD are notified in

events that occur before this one.

property OnEndDocument: TNotifyEvent read FOnEndDocument write FOnEndDocument;
Once the entire document has been processed, this event fires. Use this to complete your

processing and to release any resources no longer required.

property OnEndElement: TValueEvent read FOnEndElement write FOnEndElement;
Receive notification of the end tag for an element through this event. The name of the ele-

ment is supplied. All the content of that element appears as events between this one and its

corresponding OnStartElement.

property OnEntityDecl: TEntityDeclEvent read FOnEntityDecl write FOnEntityDecl;
Unparsed entity declarations within the document type declaration trigger this event. Save

the entity’s name, public and system identifiers, and notation name from the parameters

passed in. These events occur before the OnDocTypeDecl event to which they apply.

property OnIgnorableWhitespace: TValueEvent read FOnIgnorableWhitespace write
FOnIgnorableWhitespace;
White space outside of normal text content is notified through this event. However, the fact

that it can be ignored is only available if the document is validated against a DTD. Hence,

this event is not currently available and appears as a protected property on the parser.

property OnNonXMLEntity: TNonXMLEntityEvent read FOnNonXMLEntity write
FOnNonXMLEntity;
This event is triggered when a non-XML entity is encountered in the document. The call-

back lets you respond to this and perhaps provide some level of support for the entity within

your application.

property OnNotationDecl: TNotationDeclEvent read FOnNotationDecl write
FOnNotationDecl;
The notations used by entities and processing instructions trigger this event. Save the name,

public, and system identifiers for later use. These events arrive before the event for the docu-

ment type declaration to which they belong.

Chapter 10: CUESoft’s Document Object Model 187



property OnPreserveSpace: TPreserveSpaceEvent read FOnPreserveSpace write
FOnPreserveSpace;
Fired for each element encountered, this event lets you override the preservation flag set-

ting. Check the element name and current setting, and update the flag if required.

property OnProcessingInstruction: TProcessInstrEvent read FOnProcessing-
Instruction write FOnProcessingInstruction;
Each processing instruction found in the document triggers this event. The target applica-

tion and the actual command are supplied as parameters.

property OnResolveEntity: TResolveEntityEvent read FOnResolveEntity write
FOnResolveEntity;
You can perform resolution for external entities through this event. Given the entity’s name

and its public and system identifiers, you should return the name of the actual resource to

reference.

property OnStartDocument: TNotifyEvent read FOnStartDocument write
FOnStartDocument;
Fired once at the start of the parse process, use this event to initialize your application in

preparation for a new document.

property OnStartElement: TValueEvent read FOnStartElement write FOnStartElement;
The opening tag for each element triggers this event, supplying the name of the element

encountered. Recall that the attributes for that element have already appeared in OnAttri-
bute events prior to their containing element.

property Password: string read FPassword write FPassword;
Set this property to supply a password when accessing documents at FTP sites.

property RaiseErrors: Boolean read FRaiseErrors write FRaiseErrors;
When set to True, this property causes parse errors (TXmlParserError exceptions) to be sent

directly to the application. Otherwise, they are trapped internally and end the parse process

in error (the default).

property UserName: string read FUserName write FUserName;
For accessing FTP sites, specify a user ID to give with this property. If not set, it defaults to

anonymous.

function GetErrorMsg(wIdx: Integer): string;
Retrieve individual error messages through this function. The index ranges from zero to

ErrorCount –1.

function ParseDataSource(sSource: string): Boolean;
Retrieve the document specified and parse its contents, invoking the appropriate events as

necessary. The source specification may be either a local filename, or an HTTP or FTP

URL. A True results if the parse succeeds and a False if it fails. Check the Errors property

in the latter case for the reason(s) it failed.

188 Part II: The Document Object Model



function ParseMemory(cpMem: PChar): Boolean;
Similarly, this method parses a document in memory, returning True on success and False
on failure.

Loading the CUESoft DOM

For comparison purposes, you can build the same XML viewer from Chapter 9, but using the

CUESoft DOM. The TXmlObjModel class is the main entry point into the package. Since this is a

Delphi component you can drag it from the component palette, or create it in code, as shown in

Listing 10-22. Do not forget to free it after use.

Listing 10-22: Loading the document

{ Load an XML document }
procedure TfrmXMLViewer.LoadDoc(Filename: string);
var
XMLDOM: TXmlObjModel;

begin
pgcDetails.ActivePage := tshDocument;
{ Initialize document-wide details for display }
InitDocumentDetails;
{ Load the source document }
memSource.Lines.LoadFromFile(Filename);
dlgOpen.Filename := Filename;
{ Instantiate the DOM }
XMLDOM := TXmlObjModel.Create(nil);
trvXML.Items.BeginUpdate;
try
{ Suppress white space? }
XMLDOM.NormalizeData := mniSuppressWhitespace.Checked;
{ Parse the document }
if not XMLDOM.LoadDataSource(Filename) then
raise Exception.Create(
Format(NoLoadError, [XMLDOM.Errors.Text]));

edtSystemId.Text := Filename;
{ Add the structure to the tree view }
AddElementToTree(XMLDOM.Document, nil);
trvXML.Items[0].Expand(False);

finally
trvXML.Items.EndUpdate;
{ Release the DOM }
XMLDOM.Free;

end;
end;

An item on the menu in the viewer lets you suppress text nodes that contain only white space. This

value is transferred directly to the NormalizeData property of the DOM. Calling the

LoadDataSource method on the object model class then loads and parses the specified document,

returning a False value if it fails. In that case you can raise an exception with the list of problems

from the Errors property. Otherwise, pass the newly created document, accessed through the Doc-
ument property, to the routine that builds up the tree view on the page.

Chapter 10: CUESoft’s Document Object Model 189



Like the previous example, the construction of the tree view relies on recursive calls to the

AddElementToTree routine (see Listing 10-23). Initially the nodes can be treated in a generic man-

ner to extract a meaningful display value for them. Thereafter, the node type determines what

additional information is required and how to retrieve it. Each type is cast to its appropriate sub-

class before accessing its attributes.

Listing 10-23: Reading the nodes

{ Add a TXMLElement to the tree view }
function AddElement(Parent: TTreeNode; Name: string;
Element: TXMLElement): TTreeNode;

begin
FList.Add(Element);
Result := trvXML.Items.AddChildObject(Parent, Name, Element);
with Result do
begin
ImageIndex := Ord(Element.ElementType);
SelectedIndex := ImageIndex;

end;
end;

{ Add current element to the treeview and
then recurse through children }

procedure AddElementToTree(Node: TXmlNode; TreeParent: TTreeNode);
var
Index: Integer;
DisplayName: string;
NewNode: TTreeNode;
Attribs: TStringList;

{ Extract an attribute value from a string }
function GetPseudoAttr(const Name, Data: string): string;
var
PosStart, PosEnd: Integer;

begin
Result := '';
PosStart := Pos(Name, Data);
if PosStart = 0 then
Exit;

PosStart := PosStart + Length(Name) + 1;
PosEnd := Pos(Data[PosStart],
Copy(Data, PosStart + 1, Length(Data)));

if PosEnd = 0 then
Result := ''

else
Result := Copy(Data, PosStart + 1, PosEnd – 1);

end;

begin
{ Generate name for display in the tree }
if Node.NodeType in
[TEXT_NODE, COMMENT_NODE, CDATA_SECTION_NODE] then

begin
if Length(Node.NodeValue) > 20 then
DisplayName := Copy(Node.NodeValue, 1, 17) + '...'

else
DisplayName := Node.NodeValue;

end

190 Part II: The Document Object Model



else
DisplayName := Node.NodeName;

{ Create storage for later display of node values }
case Node.NodeType of
ELEMENT_NODE:
with Node as XmlObjModel.TXmlElement do
begin
Attribs := TStringList.Create;
try
if HasAttributes then
for Index := 0 to Attributes.Length – 1 do
with Attributes.Item(Index) do
Attribs.Values[NodeName] := NodeValue;

NewNode := AddElement(TreeParent, DisplayName,
TXMLElement.Create(xtElement, NodeName,
Namespace, BaseName, '', Attribs));

finally
Attribs.Free;

end;
end;

TEXT_NODE:
with Node as TXmlText do
NewNode := AddElement(TreeParent, DisplayName,
TXMLElement.Create(xtText, '', '', '', Data, nil));

CDATA_SECTION_NODE:
with Node as TXmlCDATASection do
NewNode := AddElement(TreeParent, DisplayName,
TXMLElement.Create(xtCData, '', '', '', Data, nil));

ENTITY_REFERENCE_NODE:
NewNode := AddElement(TreeParent, DisplayName,
TXMLElement.Create(xtEntityRef, Node.NodeName,
'', '', '', nil));

PROCESSING_INSTRUCTION_NODE:
with Node as TXmlProcessingInstruction do
begin
NewNode := AddElement(TreeParent, DisplayName,
TXMLElement.Create(xtInstruction, Target,
'', '', Data, nil));

if UpperCase(Target) = XMLValue then
begin
{ Special handling for the XML declaration }
edtVersion.Text := GetPseudoAttr(VersionAttr, Data);
edtEncoding.Text := GetPseudoAttr(EncodingAttr, Data);
cbxStandAlone.Checked := (UpperCase(GetPseudoAttr(
StandAloneAttr, Data)) = YesValue);

end;
end;

COMMENT_NODE:
with Node as TXmlComment do
NewNode := AddElement(TreeParent, DisplayName,
TXMLElement.Create(xtComment, '', '', '', Data, nil));

DOCUMENT_NODE:
with Node as TXmlDocument do
begin
NewNode := AddElement(TreeParent, XMLDocDesc,
TXMLElement.Create(xtDocument, XMLDocDesc, '', '', '', nil));

AddElementToTree(DocType, NewNode);
end;

DOCUMENT_TYPE_NODE:
with Node as TXmlDocumentType do

Chapter 10: CUESoft’s Document Object Model 191



begin
edtDocType.Text := Name;
NewNode := AddElement(TreeParent, DTDDesc,
TXMLElement.Create(xtEntityRef, DTDDesc, '', '', '', nil));

for Index := 0 to Entities.Length – 1 do
AddElementToTree(Entities.Item(Index), NewNode);

for Index := 0 to Notations.Length – 1 do
AddElementToTree(Notations.Item(Index), NewNode);

end;
ENTITY_NODE:
with (Node as TXmlEntity), stgEntities do
if NotationName <> '' then
begin
{ Unparsed entity }
if Cells[0, RowCount – 1] <> '' then
RowCount := RowCount + 1;

Cells[0, RowCount – 1] := NodeName;
Cells[1, RowCount – 1] := PublicId;
Cells[2, RowCount – 1] := SystemId;
Cells[3, RowCount – 1] := NotationName;

end
else
{ Parsed entity }
NewNode := AddElement(TreeParent, DisplayName,
TXMLElement.Create(xtEntityRef, NodeName,
'', '', '', nil));

NOTATION_NODE:
with (Node as TXmlNotation), stgNotations do
begin
if Cells[0, RowCount – 1] <> '' then
RowCount := RowCount + 1;

Cells[0, RowCount – 1] := NodeName;
Cells[1, RowCount – 1] := PublicId;
Cells[2, RowCount – 1] := SystemId;

end;
end;
{ And recurse through any children }
if Node.HasChildNodes then
for Index := 0 to Node.ChildNodes.Length – 1 do
AddElementToTree(Node.ChildNodes.Item(Index), NewNode);

end;

Elements have their attributes

converted into a string list

before saving all the details in

a TXmlElement object. Note

that this is a local class defined

in the viewer unit, and does not

refer to the TXmlElement class

of the CUESoft package. The

local definition replaces the

external one, so all references

to this class use the internal

one. To access the original

class, you must prefix it with

192 Part II: The Document Object Model

Figure 10-2: Displaying an element.



the name of its unit, XmlObjModel.TXmlElement. The results of processing an element are seen in

Figure 10-2.

Text type nodes, including

CDATA sections and com-

ments, simply copy their

content into the corresponding

field in the TXmlElement for

later use. An example of these

is shown in Figure 10-3. Pro-

cessing instructions follow a

similar path, placing their

command content in the data

field of the storage object. A

special case exists for the

XML declaration whereby its

pseudo-properties are extract-

ed and transferred to particular

fields on the document page of

the viewer.

The rest of the information

for the document page comes

from the document type node,

and its entity and notation

properties. The latter are not

actually children of the docu-

ment type node in the

CUESoft DOM, so you must

step through them within their

lists and manually invoke the

next level of node processing.

Thereafter, the notation and

unparsed entity nodes get

added to the grids on the document page. The document type node also supplies the name of the

top-level element for the document. Figure 10-4 shows all this information on the document page

in the viewer.

Entity references do not appear within the CUESoft DOM since it expands all such references

during the parse process. Only the results of the expansion are passed along. Similarly, parsed

entities do not appear within the document type node’s list of entities.

Finally, each child of the current node is processed in turn through a recursive call. The newly

created TTreeNode is passed along to provide the context for any additions to the view.

Chapter 10: CUESoft’s Document Object Model 193

Figure 10-3: Text content within the viewer.

Figure 10-4: The document page in the viewer



Summary

The CUESoft DOM implements the W3C DOM Level 1 specification very closely, and includes a

few elements of the Level 2 spec. However, it does not provide full support for namespaces, which

limits its usefulness in some situations.

Having the DOM available as Delphi components and classes makes it very simple to use

within your application. The initial steps can be performed without any coding by dragging the

TXmlObjModel component from the palette onto your form, then setting its properties in the

inspector. Once compiled, the parser and DOM become part of your executable, making it easier

to distribute.

The parser in this package can be used on its own without building the associated DOM.

Include the XmlParser unit in your project and create an instance of the TXmlParser component,

or drag one from the component palette and drop it on your form. By registering event handlers

with the parser, you can respond to the items within the XML document as they are encountered.

See the SAX demonstration project in Chapter 15 for an example of its use.

NOTE Soon after writing this, CUESoft.com sold its XML technologies to TurboPower. A
re-worked version of the package should be available from them by the time you read this.

194 Part II: The Document Object Model



C h a p t e r 1 1

Open XML’s DocumentOpen XML’s Document

Object ModelObject Model

The Open XML project includes another implementation of the DOM specification under Win-

dows, also as a set of native Delphi objects. The XDOM package was written by Dieter Köhler and

is available from http://www.philo.de/xml/ and on the CD-ROM accompanying this book. It is

freely available, including the full source code.

The package conforms very closely to the Document Object Model (Core) Level 1 specifica-

tion from the W3C. Modifications and enhancements as described in the DOM Level 2

specification (the Candidate Recommendation as of March 7, 2000) have also been implemented.

Although the code was designed for Delphi 3, it runs just as well with later versions. The version

of XDOM discussed here is 2.2.12a.

Along with the standard DOM implementation, XDOM provides many extensions, especially

in the area of modeling DTDs. Many additional classes let you step through all the declarations in

the DTD (elements and attributes included), or create your own DTD within the document in

memory.

XDOM follows the same pattern as the other DOM packages, with classes corresponding to

the items in the DOM specification. The class hierarchy of the XDOM package is contained in the

XDOM.pas unit and is shown in Figure 11-1. Like CUESoft’s implementation, it is made up of

classes rather than interfaces. All string values within XDOM are WideStrings, and all string

comparisons are case-sensitive.

EDomException Exception

Errors within the XDOM package show up as exceptions, all of which derive from

EDomException. This class adds nothing to the basic Exception, but simply serves as a marker for

all errors related to the XML operations. Whereas the DOM specification uses an integer flag

within its exception to indicate the cause of the problem, XDOM defines each error type as a dif-

ferent subclass of EDomException. Listing 11-1 contains the full range of declared exceptions. As

usual, you can handle all DOM errors by trapping at the topmost level or by drilling down to a sub-

class for increased precision.

195



196 Part II: The Document Object Model

Figure 11-1: Class hierarchy for Open XML’s DOM.

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



Listing 11-1: The XDOM exceptions

EDomException = class(Exception);

EIndex_Size_Err = class(EdomException);
EDomstring_Size_Err = class(EdomException);
EHierarchy_Request_Err = class(EdomException);
EWrong_Document_Err = class(EdomException);
EInvalid_Character_Err = class(EdomException);
ENo_Data_Allowed_Err = class(EdomException);
ENo_Modification_Allowed_Err = class(EdomException);
ENot_Found_Err = class(EdomException);
ENot_Supported_Err = class(EdomException);
EInuse_Attribute_Err = class(EdomException);
EInvalid_State_Err = class(EdomException);
ESyntax_Err = class(EdomException);
EInvalid_Modification_Err = class(EdomException);
ENamespace_Err = class(EdomException);
EInvalid_Access_Err = class(EdomException);
EInuse_Node_Err = class(EdomException);
EInuse_AttributeDefinition_Err = class(EdomException);
ENo_External_Entity_Allowed_Err = class(EdomException);
EInvalid_Entity_Reference_Err = class(EdomException);
EUnknown_Document_Format_Err = class(EdomException);

EParserException = class(Exception);

EInternalParserException = class(EParserException);

EParserFatalError = class(EParserException);
EParserError = class(EParserException);
EParserWarning = class(EParserException);

EParserMissingWhiteSpace_Err = class(EParserFatalError);
EParserMissingQuotationMark_Err = class(EParserFatalError);
EParserMissingEqualitySign_Err = class(EParserFatalError);
EParserDoubleEqualitySign_Err = class(EParserFatalError);
EParserInvalidElementName_Err = class(EParserFatalError);
EParserInvalidAttributeName_Err = class(EParserFatalError);
EParserInvalidAttributeValue_Err = class(EParserFatalError);
EParserDoubleAttributeName_Err = class(EParserFatalError);
EParserInvalidEntityName_Err = class(EParserFatalError);
EParserInvalidProcessingInstruction_Err = class(EParserFatalError);
EParserInvalidXmlDeclaration_Err = class(EParserFatalError);
EParserInvalidCharRef_Err = class(EParserFatalError);
EParserMissingStartTag_Err = class(EParserFatalError);
EParserMissingEndTag_Err = class(EParserFatalError);
EParserInvalidEndTag_Err = class(EParserFatalError);
EParserInvalidCharacter_Err = class(EParserFatalError);
EParserNotInRoot_Err = class(EParserFatalError);
EParserDoubleRootElement_Err = class(EParserFatalError);
EParserRootNotFound_Err = class(EParserFatalError);
EParserWrongOrder_Err = class(EParserFatalError);
EParserInvalidDoctype_Err = class(EParserFatalError);
EParserInvalidTextDeclaration_Err = class(EParserFatalError);

EParserDoubleDoctype_Err = class(EParserInvalidDoctype_Err);
EParserUnknownDeclarationType_Err = class(EParserInvalidDoctype_Err);
EParserInvalidEntityDeclaration_Err = class(EParserInvalidDoctype_Err);
EParserInvalidElementDeclaration_Err =
class(EParserInvalidDoctype_Err);

Chapter 11: Open XML’s Document Object Model 197



EParserInvalidAttributeDeclaration_Err =
class(EParserInvalidDoctype_Err);

EParserInvalidNotationDeclaration_Err =
class(EParserInvalidDoctype_Err);

EParserInvalidConditionalSection_Err =
class(EParserInvalidDoctype_Err);

EParserDouble_Entity_Decl_Warning = class(EParserWarning);
EParserDouble_Parameter_Entity_Decl_Warning = class(EParserWarning);
EParserDouble_Notation_Decl_Warning = class(EParserWarning);
EParserUnusable_Entity_Decl_Warning = class(EParserWarning);

TdomNode Class

As in the previous DOM implementations, TdomNode is the base for all the nodes that appear

within the object model. This class allows nodes to be treated in a generic way, without having to

cast them to their appropriate subclasses. However, not all of the properties and methods apply to

all of the possible descendants. For example, although TdomNode has methods for accessing child

nodes, attempting to add one to a TdomText node results in an exception since Text nodes do not

have children.

The public interface of the TdomNode class is shown in Listing 11-2. Note that many of the

properties are read-only, their values being initialized upon creation of the node.

Listing 11-2: The TdomNode declaration

TdomNode = class
public
constructor Create(const AOwner: TdomDocument);
destructor Destroy; override;
procedure Clear; virtual;
function InsertBefore(const newChild, refChild: TdomNode):
TdomNode; virtual;

function ReplaceChild(const newChild, oldChild: TdomNode):
TdomNode; virtual;

function RemoveChild(const oldChild: TdomNode): TdomNode;
virtual;

function AppendChild(const newChild: TdomNode): TdomNode;
virtual;

function HasChildNodes: boolean; virtual;
function CloneNode(const deep: boolean): TdomNode; virtual;
function IsAncestor(const AncestorNode: TdomNode): boolean;
virtual;

procedure GetLiteralAsNodes(const RefNode: TdomNode); virtual;
procedure normalize; virtual;
function supports(const feature, version: WideString): boolean;
virtual;

published
property Attributes: TdomNamedNodeMap read GetAttributes;
property ChildNodes: TdomNodeList read GetChildNodes;
property Code: WideString read GetCode;
property FirstChild: TdomNode read GetFirstChild;
property LastChild: TdomNode read GetLastChild;
property LocalName: WideString read GetLocalName;
property NamespaceURI: WideString read GetNamespaceURI;
property NextSibling: TdomNode read GetNextSibling;

198 Part II: The Document Object Model



property NodeName: WideString read GetNodeName;
property NodeType: TdomNodeType read GetNodeType;
property NodeValue: WideString read GetNodeValue
write SetNodeValue;
property OwnerDocument: TdomDocument read GetDocument;
property ParentNode: TdomNode read GetParentNode;
property PreviousSibling: TdomNode read GetPreviousSibling;
property Prefix: WideString read GetPrefix
write SetPrefix;

end;

The TdomNode’s properties and methods are described below:

constructor Create(const AOwner: TdomDocument);
You should not call this constructor directly. Instead use the appropriate method provided by

the TdomDocument class. The owning document of the node is passed in as a parameter.

property NodeType: TdomNodeType read GetNodeType;
The particular type of subclass derived from TdomNode is identified by this read-only prop-

erty. Its value is one of the constants listed in the TDomNodeType type. See Table 11-1 for the

correspondence between the node types and the implementing classes.

Table 11-1: XDOM node types

Node Type Subclass

ntUnknown -

ntElement_Node TdomElement

ntAttribute_Node TdomAttr

ntText_Node TdomText

ntCDATA_Section_Node TdomCDATASection

ntEntity_Reference_Node TdomEntityReference

ntEntity_Node TdomEntity

ntProcessing_Instruction_Node TdomProcessingInstruction

ntComment_Node TdomComment

ntDocument_Node TdomDocument

ntDocument_Type_Node TdomDocumentType

ntDocument_Fragment_Node TdomDocumentFragment

ntNotation_Node TdomNotation

ntXml_Declaration_Node TdomXmlDeclaration

ntConditional_Section_Node TdomConditionalSection

ntParameter_Entity_Reference_Node TdomParameterEntityReference

ntParameter_Entity_Node TdomParameterEntity

ntEntity_Declaration_Node TdomEntityDeclaration

ntParameter_Entity_Declaration_Node TdomParameterEntityDeclaration

ntElement_Type_Declaration_Node TdomElementTypeDeclaration

ntSequence_Particle_Node TdomSequenceParticle

Chapter 11: Open XML’s Document Object Model 199



Node Type Subclass

ntChoice_Particle_Node TdomChoiceParticle

ntPcdata_Choice_Particle_Node TdomPcdataChoiceParticle

ntElement_Particle_Node TdomElementParticle

ntAttribute_List_Node TdomAttrList

ntAttribute_Definition_Node TdomAttrDefinition

ntNametoken_Node TdomNametoken

ntText_Declaration_Node TdomTextDeclaration

ntNotation_Declaration_Node TdomNotationDeclaration

ntExternal_Parsed_Entity_Node TdomExternalParsedEntity

ntExternal_Parameter_Entity_Node TdomExternalParameterEntity

ntExternal_Subset_Node TdomExternalSubset

ntInternal_Subset_Node TdomInternalSubset

Once the type of node is determined, the node can be cast to the correct subclass to gain access to

its unique abilities. The meaning of the NodeName and NodeValue properties depends on the node

type as shown in Table 11-2.

Table 11-2: NodeName and NodeValue meanings based on node type

Node Type NodeName NodeValue

ntAttribute_Definition_Node Name of attribute Default value of attribute

ntAttribute_List_Node Name of element '' (Empty string)

ntAttribute_Node Name of attribute Value of attribute

ntCDATA_Section_Node #cdata-section Content of the CDATA section

ntChoice_Particle_Node #choice-particle ''

ntComment_Node #comment Content of the comment

ntConditional_Section_Node #conditional-section ''

ntDocument_Fragment_Node #document-fragment ''

ntDocument_Node #document ''

ntDocument_Type_Node Document type name Entire content excluding name
and external ID

ntElement_Node Name of element ''

ntElement_Particle_Node Name of element ''

ntElement_Type_Declaration_Node Name of element Value of declaration

ntEntity_Declaration_Node Name of entity Value of entity

ntEntity_Node Name of entity Value of entity

ntEntity_Reference_Node Name of entity ''

ntExternal_Parameter_Entity_Node #external-parameter-
entity

''

200 Part II: The Document Object Model



Node Type NodeName NodeValue

ntExternal_Parsed_Entity_Node #external-parsed-
entity

''

ntExternal_Subset_Node #external-subset ''

ntInternal_Subset_Node #internal-subset ''

ntNametoken_Node Name of name token ''

ntNotation_Declaration_Node Name of notation ''

ntNotation_Node Name of notation ''

ntParameter_Entity_Declaration_Node Name of parameter
entity

Value of parameter entity

ntParameter_Entity_Node Name of parameter
entity

Value of parameter entity

ntParameter_Entity_Reference_Node Name of parameter
entity

''

ntPcdata_Choice_Particle_Node #pcdata-choice-
particle

''

ntProcessing_Instruction_Node Name of target Entire content excluding the
target

ntSequence_Particle_Node #sequence-particle ''

ntText_Declaration_Node #text-declaration ''

ntText_Node #text Content of the text

ntUnknown – –

ntXml_Declaration_Node #xml-declaration ''

property NodeName: WideString read GetNodeName;
This read-only property returns the name of the node. The actual value depends on the type

of the node, as shown in Table 11-2. For nodes within a namespace, this value includes the

associated prefix.

property NamespaceURI: WideString read GetNamespaceURI;
This read-only property finds the full URI that identifies the namespace for this node. If no

namespace applies to the node, an empty string is returned.

property Prefix: WideString read GetPrefix write SetPrefix;
The shorthand identifier for the above namespace (up to the colon) is returned by this prop-

erty. An empty string results if no namespace is applicable. Setting this value also updates

the NodeName property, as well as the TagName property of element nodes, and the Name prop-

erty of attribute nodes. An exception arises if the new value contains illegal characters, the

prefix is malformed, the NamespaceURI property is an empty string, or the prefix is a

reserved XML one without the corresponding namespace being specified.

property LocalName: WideString read GetLocalName;
The rest of the node’s name (after the colon) is retrieved through this read-only property. For

a node that does not belong to a namespace, this is the same as the NodeName property.

Chapter 11: Open XML’s Document Object Model 201



property NodeValue: WideString read GetNodeValue write SetNodeValue;
This property contains the text value of the node, if applicable. For a text node, this is the

actual text, while a processing instruction node places its command data here. The value is

an empty string for those nodes that do not have a value. See Table 11-2 for the exact mean-

ing based on the node type. Attempting to alter this value on a read-only node results in an

exception being raised.

property Code: WideString read GetCode;
Use this read-only property to retrieve the XML text that corresponds to this node and all of

its children. When generating a document or document fragment with the DOM, you extract

the resulting XML from here before saving it to a file or sending it on to another process.

NOTE As with the previous DOMs, the Code property is an extension to the DOM specifica-
tion, but a necessary one for creating XML documents on the fly.

property Attributes: TdomNamedNodeMap read GetAttributes;
Access the attributes of an element node through this read-only property. For all other node

types the property returns nil. As in the specification, the result is a named node map, which

is covered in a later section.

property OwnerDocument: TdomDocument read GetDocument;
Traverse to the document that created the node via this read-only property. Nodes belong to

their creating document and cannot be moved between documents. For document nodes and

for document type nodes when not yet attached to a document, this property returns nil.

property ParentNode: TdomNode read GetParentNode;
The next node up in the DOM hierarchy is available via this read-only property. From the

root of the structure, a document or document fragment node, this returns nil. Attribute,

attribute definition, entity, and notation nodes also do not have a parent, nor does a newly

created node before it is added to a tree.

property ChildNodes: TdomNodeList read GetChildNodes;
Use this read-only property to move down through the DOM hierarchy. It returns a node list,

which is described in more detail below. If there are no children, this property still returns a

node list but it has no entries in it.

function HasChildNodes: boolean; virtual;
As a convenience, this function returns a flag indicating the presence or absence of children

on this node. You can also check the length of the ChildNodes list property.

property FirstChild: TdomNode read GetFirstChild;
This convenience property (read-only) returns the first child node of the current node, or nil
if there are no children. You could achieve the same result through the ChildNodes property.

202 Part II: The Document Object Model



property LastChild: TdomNode read GetLastChild;
Similarly, this read-only property provides access to the last child in the current node’s list,

or nil if there are no children.

property PreviousSibling: TdomNode read GetPreviousSibling;
This read-only property returns the preceding node in this node’s parent’s list of children,

the current node’s sibling. If there is no node before this one at that level, a nil is returned.

property NextSibling: TdomNode read GetNextSibling;
Conversely, this read-only property provides access to the next node in the parent’s child

list. Again, nil is returned if there is no following node at that level.

function InsertBefore(const newChild, refChild: TdomNode): TdomNode; virtual;
Add children to a node using this method. The new node passed in as a parameter is placed

immediately before the supplied reference node. If the latter is nil, the new node is placed at

the end of the list of children. A pointer to the new node is returned by the function. If the

new node is already present in the tree, it is first removed. An exception occurs if the node

does not allow children of the new node’s type, if the new node is already an ancestor of the

current node, if the new node was created by another document, if the current or new node’s

parent is read-only, or if the reference node is not a child of the current node.

function ReplaceChild(const newChild, oldChild: TdomNode): TdomNode; virtual;
Insert a new node in place of an existing one with this method. This time a reference to the

node being replaced is returned by the function. Exceptions arise if the existing node cannot

be found as a child, if the current node is read-only, if the new node was created by another

document, if the new node is an ancestor of the current node, or if the new node type is not

allowed as a child of the current node. If the new node was already present in the DOM, it is

removed from that point before being inserted in its new spot.

function RemoveChild(const oldChild: TdomNode): TdomNode; virtual;
Delete a particular child node with this method. A reference to the deleted node is returned

by the function. An exception occurs if the node to be deleted cannot be found as a child or if

the current node is read-only.

function AppendChild(const newChild: TdomNode): TdomNode; virtual;
Add a new node at the end of this node’s child list using this method. A pointer to the new

node is returned by the function. The node is removed from the DOM if it is already present.

Exceptions are raised for the same reasons as the InsertChild method. In fact,

InsertChild can provide the same functionality as this method when its reference node is

set to nil.

TIP When adding a document fragment to a DOM, that node is not inserted directly.
Instead, all the children of that fragment are inserted in turn. This allows you to transfer nodes
or subtrees between sections of the document easily.

Chapter 11: Open XML’s Document Object Model 203



function CloneNode(const deep: boolean): TdomNode; virtual;
Create a copy of the current node using this method and return a reference to it. This new

node has no parent until it is placed into the main DOM or a document fragment. If the deep
parameter is set to True, then all the nodes below the current one are also copied and placed

below its duplicate. Otherwise, only the single current node is replicated.

An element node always has its attributes copied, regardless of the deep setting, but any

text within it is only reproduced on a deep copy. Cloning a document type node also dupli-

cates its entity and notation nodes automatically. When a read-only node is copied, the

resulting node can be altered. This does not apply to entity and entity reference nodes whose

contents remain read-only.

procedure normalize; virtual;
Normalizing a node causes any adjacent text nodes within the subtree below it to be com-

bined. Thus there are only markup nodes (elements, comments, CDATA sections, entity

references, and processing instructions) surrounding text nodes. Note that CDATA sections

are not combined with text nodes. Performing this operation ensures that the DOM is in a

consistent state for either saving or for working with other technologies such as XPointer.

function supports(const feature, version: WideString): boolean; virtual;
Test whether or not a particular ability is supported by this DOM implementation through

this method. Given a feature name and required version, it returns True if those capabilities

are present and False otherwise.

NOTE In the DOM specification, the supports method is named isSupported. Missing from
the DOM spec is the hasAttributes method; however, looking at the Attributes property can
duplicate its functionality. The remaining methods are not part of the standard DOM.

procedure Clear; virtual;
Remove all children from this node using this method, except for those that are read-only.

An exception arises if the node itself is read-only. You can use this to prepare a node for a

new set of children.

function IsAncestor(const AncestorNode: TdomNode): boolean; virtual;
This convenience method returns True if the supplied node is an ancestor of the current

node, and False if it is not.

procedure GetLiteralAsNodes(const RefNode: TdomNode); virtual;
The functionality for this method has not yet been fully implemented.

204 Part II: The Document Object Model



TdomNodeList Class

Node lists provide the structure within the DOM. Each node has a ChildNodes property that

returns an object of this type. Using this you can traverse down through the hierarchy and process

the entire XML document.

Listing 11-3 shows the public and protected declarations for TdomNodeList. These follow the

DOM specification very closely.

Listing 11-3: The TdomNodeList declaration

TdomNodeList = class
protected
function IndexOf(const Node: TdomNode): integer; virtual;

public
constructor Create(const NodeList: TList);
property Length: integer read GetLength;
function Item(const index: integer): TdomNode; virtual;

end;

The properties and methods of TdomNodeList are detailed below:

constructor Create(const NodeList: TList);
Generate a new node list object, passing in the TList of nodes to be managed. Usually these

node lists are created automatically for you.

property Length: integer read GetLength;
Retrieve the number of entries in the list with this read-only property.

function Item(const index: integer): TdomNode; virtual;
Access each entry in the list via its index (starting from zero) using this function. If the index

is not valid, a nil is returned.

function IndexOf(const Node: TdomNode): integer; virtual;
This protected function returns the index of a given node within its list. If the specified node

is not in the list, a value of –1 is returned. Note that this method is only available when sub-

classing the TdomNodeList class.

Various specialized node lists are also defined within the XDOM package, all deriving from the

basic node list. The TdomElementsNodeList provides an ordered collection of nodes from the doc-

ument based on a tag name passed into its constructor. TdomElementsNodeListNS is a

namespace-aware version of the previous class. Similarly, the TdomSpecialNodeList gives access

to an ordered collection of nodes of one or more specified node types, selecting from a list of nodes

passed in as a parameter. These classes are used internally and you see them only as a normal

TdomNodeList outside the XDOM package.

Chapter 11: Open XML’s Document Object Model 205



TdomNamedNodeMap Class

The named node map provides access to a list of nodes, just like the node list above, but primarily

does so through the nodes’ names, rather than their location within the list. Listing 11-4 shows the

declaration for the TdomNamedNodeMap class. It inherits the abilities of the normal node list, before

adding its own functionality. Although the parent class provides sequential access to the list

entries, this does not imply any particular order in their retrieval within this subclass.

Listing 11-4: The TdomNamedNodeMap declaration

TdomNamedNodeMap = class(TdomNodeList)
protected
function RemoveItem(const Arg: TdomNode): TdomNode; virtual;
function GetNamedIndex(const Name: WideString): integer;
virtual;

public
constructor Create(const AOwner, AOwnerNode: TdomNode;
const NodeList: TList; const AllowedNTs: TDomNodeTypeSet);
virtual;

function GetNamedItem(const Name: WideString): TdomNode;
virtual;

function SetNamedItem(const Arg: TdomNode): TdomNode; virtual;
function RemoveNamedItem(const Name: WideString): TdomNode;
virtual;

function GetNamedItemNS(const namespaceURI, LocalName:
WideString): TdomNode; virtual;

function SetNamedItemNS(const Arg: TdomNode): TdomNode;
virtual;

function RemoveNamedItemNS(const namespaceURI, LocalName:
WideString): TdomNode; virtual;

published
property ownerNode: TdomNode read GetOwnerNode;
property namespaceAware: boolean read GetNamespaceAware
write SetNamespaceAware;

end;

TdomNamedNodeMap’s properties and methods are detailed below:

constructor Create(const AOwner, AOwnerNode: TdomNode; const NodeList: TList;
const AllowedNTs: TDomNodeTypeSet); virtual;
Build a new named node map for your use. The node that creates the map and the one that

uses the map (or nil if not used by a node) are passed in as parameters. Also supplied is a

TList of nodes to be managed by the map. Normally these lists are created for you

automatically.

property ownerNode: TdomNode read GetOwnerNode;
Find the node to which this map is attached with this read-only property, or return nil if

there is no such node.

property namespaceAware: boolean read GetNamespaceAware write SetNamespaceAware;
By default this property is set to False, indicating that the non-namespace versions of the

following methods should be used. When set to True, the namespace version must be used

(those with NS in their names). The value may be altered so long as there are no entries in the

206 Part II: The Document Object Model

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



list. If you attempt to access the wrong version of the remaining methods, an exception is

raised.

function GetNamedItem(const Name: WideString): TdomNode; virtual;
This function retrieves a node from the list, given its name. If the node cannot be found, a

nil is returned instead. If the namespaceAware property is set to True, an exception occurs

when calling this method.

function SetNamedItem(const Arg: TdomNode): TdomNode; virtual;
This property adds a new node to the list using its name as the key. An exception is raised if

the new node was created by another document, if this list is read-only, if a node is supplied

that already exists within the document, or if the namespaceAware property is set to True
when calling this method.

function RemoveNamedItem(const Name: WideString): TdomNode; virtual;
Delete the specified node from the list based on its name. An exception occurs if the node

cannot be found, if this list is read-only, or if the namespaceAware property is set to True
when calling this method.

NOTE If an attribute is removed from an element’s list, but that attribute has a default value
specified in the DTD, it should immediately reappear with that default value. This functionality
is not yet implemented in the XDOM package.

function GetNamedItemNS(const namespaceURI, LocalName: WideString): TdomNode;
virtual;
This method is the namespace-aware version of GetNamedItem. It works just like the origi-

nal except that it raises an exception if the namespaceAware property is set to False when it

is invoked.

function SetNamedItemNS(const Arg: TdomNode): TdomNode; virtual;
Similarly, this method is the namespace-aware version of SetNamedItem, with the opposite

behavior of the namespaceAware property.

function RemoveNamedItemNS(const namespaceURI, LocalName: WideString):
TdomNode; virtual;
Another namespace-aware method, this time for removeNamedItem. As above, it only works

when the namespaceAware property is set to True.

function RemoveItem(const Arg: TdomNode): TdomNode; virtual;
This protected method deletes an entry from the list.

NOTE The replacement of deleted attribute nodes which have default values is not yet
implemented.

function GetNamedIndex(const Name: WideString): integer; virtual;
Given the name of a node, this method returns its index within the list, or -1 if it does not

appear at all. An exception is raised if the namespaceAware property is True. This method is

also protected.

Chapter 11: Open XML’s Document Object Model 207



Internally the list of entities for a document is held (in the document type object) in a customized

subclass of TdomNamedNodeMap. However, the additional functionality is not used outside of the

XDOM package and the list can be treated just like an ordinary node map.

TdomElement Class

Most of the nodes within a DOM are of this type which represents an Element node. The declara-

tion for TdomElement is shown in Listing 11-5.

Listing 11-5: The TdomElement declaration

TdomElement = class (TdomNode)
public
constructor Create(const AOwner: TdomDocument;
const NamespaceURI, TagName: WideString); virtual;

destructor Destroy; override;
function GetTagName: WideString; virtual;
function GetAttributes: TdomNamedNodeMap; override;
function GetAttribute(const Name: WideString): WideString;
virtual;

function SetAttribute(const Name, Value: WideString): TdomAttr;
virtual;

function RemoveAttribute(const Name: WideString): TdomAttr;
virtual;

function GetAttributeNode(const Name: WideString): TdomAttr;
virtual;

function SetAttributeNode(const NewAttr: TdomAttr): TdomAttr;
virtual;

function RemoveAttributeNode(const OldAttr: TdomAttr):
TdomAttr; virtual;

function GetElementsByTagName(const Name: WideString):
TdomNodeList; virtual;

function GetAttributeNS(const namespaceURI, localName:
WideString): WideString; virtual;

function SetAttributeNS(const namespaceURI, qualifiedName,
value: WideString): TdomAttr; virtual;

function RemoveAttributeNS(const namespaceURI, localName:
WideString): TdomAttr; virtual;

function GetAttributeNodeNS(const namespaceURI, localName:
WideString): TdomAttr; virtual;

function SetAttributeNodeNS(const NewAttr: TdomAttr): TdomAttr;
virtual;

function GetElementsByTagNameNS(const namespaceURI, localName:
WideString): TdomNodeList; virtual;

function hasAttribute(const name: WideString): boolean;
virtual;

function hasAttributeNS(const namespaceURI, localName:
WideString): boolean; virtual;

procedure normalize; override;
published
property TagName: WideString read GetTagName;

end;

208 Part II: The Document Object Model



The properties and methods of TdomElement are detailed below:

constructor Create(const AOwner: TdomDocument; const NamespaceURI, TagName:
WideString); virtual;
As for TdomNode, this constructor should not be directly invoked. Ask a TdomDocument
object for a new element instead with its CreateElement or CreateElementNS methods.

This ensures that the new node is correctly set up.

property TagName: WideString read GetTagName;
Retrieve the name of the element through this property. This is the same value as returned by

the NodeName property. The name is read-only, having been set during the construction of the

element node.

function GetAttributes: TdomNamedNodeMap; override;
This function is overridden here to return a reference to the TdomNamedNodeMap object that

manages the attributes of this element. Although you could access the attributes in this man-

ner, there are numerous convenience methods defined on the element class to manipulate

them. See their definitions below.

function hasAttribute(const name: WideString): boolean; virtual;
Determine whether or not an attribute exists using this function. It returns True if the named

attribute is present and False otherwise. If the attribute list’s namespaceAware property is set

to True, this method raises an exception. Use the hasAttributeNS method in this case.

function GetAttribute(const Name: WideString): WideString; virtual;
Find the text value of a named attribute with this function. If the attribute does not exist on

this element, an empty string is returned. An exception occurs if the namespaceAware prop-

erty of the attributes is set to True when this method is invoked. In this case you should use

the GetAttributeNS method instead.

function SetAttribute(const Name, Value: WideString): TdomAttr; virtual;
Add an attribute with a particular value using this method. The name of the attribute and its

value are passed in, and a reference to the newly created TdomAttr object is returned. If an

attribute by the given name is already present, its value is changed to be the new one. An

exception occurs if an invalid character is specified as part of the name, or if the attribute

list’s namespaceAware property is set to True. In the latter case you should use the

SetAttributeNS method instead.

This method only allows you to set a straight textual value for an attribute. If you need

one that contains entity references you must build it up yourself before attaching it to the ele-

ment with the SetAttributeNode method.

function RemoveAttribute(const Name: WideString): TdomAttr; virtual;
Deletes an attribute with a given name. The function returns a reference to the deleted node.

Not finding the attribute or having the namespaceAware property of the attributes set to True
raises an exception. For namespace-defined attributes you should use the

RemoveAttributeNS method.

Chapter 11: Open XML’s Document Object Model 209



NOTE If the attribute is deleted but has a default value specified in the DTD, it should imme-
diately reappear on the element with that default value. However, this behavior is not yet
implemented in the XDOM package.

function GetAttributeNode(const Name: WideString): TdomAttr; virtual;
Instead of retrieving the text value of an attribute given its name, you can obtain a reference

to the entire node with this method. This allows you to examine other properties of the

attribute node, and to manipulate any child nodes it has. A nil is returned if the attribute

cannot be found. Using this method when the namespaceAware property of the attribute list

is True raises an exception. In this case you should use the GetAttributeNodeNS method

instead.

function SetAttributeNode(const NewAttr: TdomAttr): TdomAttr; virtual;
Use this function to add a new attribute to the element, having previously constructed it

yourself. If an attribute with that name already exists, the new one replaces it. When this

happens, a reference to the replaced attribute is returned by the function. Otherwise it

returns nil. An exception occurs if the attribute was created by another document, if the

attribute already belongs to another element, or if the attribute list is namespace aware. In

the latter case you can use the SetAttributeNodeNS method.

function RemoveAttributeNode(const OldAttr: TdomAttr): TdomAttr; virtual;
Deletes an attribute when given a reference to it. A reference to the removed node is

returned. An exception is raised if the attribute is not found within this element.

NOTE As for RemoveAttribute, the attribute should immediately reappear on the element
with a default value if one is specified. However, this behavior is not yet implemented in the
XDOM package.

function GetAttributeNS(const namespaceURI, localName: WideString): WideString;
virtual;

function SetAttributeNS(const namespaceURI, qualifiedName, value: WideString):
TdomAttr; virtual;

function RemoveAttributeNS(const namespaceURI, localName: WideString): TdomAttr;
virtual;

function GetAttributeNodeNS(const namespaceURI, localName: WideString): TdomAttr;
virtual;

function SetAttributeNodeNS(const NewAttr: TdomAttr): TdomAttr; virtual;
function hasAttributeNS(const namespaceURI, localName: WideString): boolean;

virtual;
All of these methods function the same as their counterparts without the NS suffix. However,

they only work with namespace-defined attributes. The namespaceAware property of the

attribute list needs to be set to True for them to function. If set to False, calling any of these

methods generates an exception.

210 Part II: The Document Object Model



function GetElementsByTagName(const Name: WideString): TdomNodeList; virtual;
Given the name of an element, this method retrieves a list (TdomNodeList) of such elements

from within the subtree beneath this node. The nodes appear in the list in the order that they

are encountered during a pre-order traversal of the tree (the same order as you would read

them within the XML document). Nodes within the list are “live”—any changes to them

also affect the original nodes within the subtree. You can access all the elements in the cur-

rent element’s subtree by passing the name *.

TIP The TdomNodeList created by the GetElementsByTagName method is only freed when the
element itself is released. Calling the function many times for different tag names results in
increasing memory usage. A better strategy is to use a node iterator or a tree walker instead
(see the corresponding sections below).

Furthermore, the requirement for “live” nodes means that the list must be traversed from

the beginning each time an item is referenced. This imposes a performance hit on the applica-

tion. Again, using a node iterator or a tree walker should be faster.

The same considerations apply to the namespace-aware version, GetElementsByTag-
NameNS.

function GetElementsByTagNameNS(const namespaceURI, localName: WideString):
TdomNodeList; virtual;
This method works like the GetElementsByTagName function but searches for namespace

defined elements. Pass in the full namespace URI and the local name to find the required

elements. As before, use * to match with all possible values.

procedure normalize; override;
As for the TdomNode class, this method combines adjacent text nodes within the element’s

subtree. This produces a standard tree for saving or other processing.

TdomAttr Class

Attributes are a special type of node. They do not sit within the normal DOM hierarchy, but are

instead managed by a named node map belonging to an element. Due to this, their ParentNode,

PreviousSibling, and NextSibling properties all return nil. Attribute nodes are accessible via

the Attributes property of an element, which returns the node map itself, or through one of the

numerous convenience methods in the element class that deal with attributes.

Attributes do derive from the standard TdomNode class, and thus possess the same basic proper-

ties and abilities as other nodes. The definition of XDOM’s attribute class is shown in Listing

11-6.

Listing 11-6: The TdomAttr declaration

TdomAttr = class (TdomNode)
public
constructor Create(const AOwner: TdomDocument;
const NamespaceURI, Name: WideString; const Spcfd: boolean);
virtual;

procedure normalize; override;

Chapter 11: Open XML’s Document Object Model 211



published
property Name: WideString read GetName;
property Specified: boolean read GetSpecified default false;
property Value: WideString read GetValue write SetValue;
property OwnerElement: TdomElement read GetOwnerElement;

end;

Most attributes have a simple text string as their value. For these, a single text node is sufficient to

hold that value. However, for attributes that contain entity references, their content must be speci-

fied through a combination of text nodes and entity reference nodes that make up the attribute’s

value as children.

TdomAttr’s properties and methods are detailed below:

constructor Create(const AOwner: TdomDocument; const NamespaceURI, Name:
WideString; const Spcfd: boolean); virtual;
Use the CreateAttribute or CreateAttributeNS methods of the TdomDocument class to

construct a new attribute node, rather than calling this constructor directly. The parameters

set the document that created the node, the namespace URI for the attribute along with its

local name, and a flag indicating where the attribute’s value came from. Alternately, have an

element create one automatically by calling the SetAttribute or SetAttributeNS methods

and supplying the attribute’s name and value.

property Name: WideString read GetName;
A renaming of the inherited NodeName property, this read-only property returns the attrib-

ute’s qualified name.

property Value: WideString read GetValue write SetValue;
This property retrieves the text equivalent of the attribute’s value. Any character and entity

references are replaced with their values and are combined with any text before being

returned. Setting this property removes all child nodes from the attribute and replaces them

with a single child text node containing the supplied value. Attempting to modify a

read-only attribute raises an exception, as does reading one that contains an unknown entity

reference.

property Specified: boolean read GetSpecified default false;
This read-only flag indicates the source of the attribute’s value. When True, the value comes

directly from the XML document as a listed attribute on that element. When False, the

value derives from a default or fixed value specified in the DTD for the document. If the

attribute is not listed in the document and does not have a default value specified, then no

attribute node for it appears within the DOM. This value is set when processing the docu-

ment and cannot be changed directly. However, setting the Value property of the attribute

does change this flag to True.

property OwnerElement: TdomElement read GetOwnerElement;
This property returns a reference to the element node that owns the attribute. It is set when

the attribute is added to an element and cannot be altered directly.

212 Part II: The Document Object Model



procedure normalize; override;
As before, this method combines adjacent text nodes within the element’s subtree, creating a

standardized hierarchy.

TdomCharacterData Class

All textual data within the DOM have certain common abilities. These are encapsulated in the

TdomCharacterData class, which is then subclassed for the actual node types in the document.

Instances of this class itself do not appear in the DOM. The declaration for the class is shown in

Listing 11-7.

Listing 11-7: The TdomCharacterData declaration

TdomCharacterData = class (TdomNode)
public
constructor Create(const AOwner: TdomDocument); virtual;
function SubstringData(const offset, count: integer):
WideString; virtual;

procedure AppendData(const arg: WideString); virtual;
procedure InsertData(const offset: integer;
const arg: WideString); virtual;

procedure DeleteData(const offset, count: integer); virtual;
procedure ReplaceData(const offset, count: integer;
const arg: WideString); virtual;

published
property Data: WideString read GetData write SetData;
property length: integer read GetLength;

end;

The properties and methods of the TdomCharacterData object are detailed below. Remember that

all offset values start from zero at the beginning of the text.

constructor Create(const AOwner: TdomDocument); virtual;
As this class is a base class for all text type nodes, it should never be instantiated on its own.

Subclasses call this constructor as necessary as part of their own initialization.

property Data: WideString read GetData write SetData;
This property returns the actual textual content of the node. It is a read-only property since

the initial value is set on creation, and other methods provide for manipulating the text. The

inherited NodeValue property holds the same value.

property length: integer read GetLength;
Find the length of the contained text (in characters) with this read-only property. The

returned value may be zero, indicating an empty node.

function SubstringData(const offset, count: integer): WideString; virtual;
Extract a portion of the text using this function, specifying the starting offset and the number

of characters desired. If the total of the offset and count are greater than the length of the text,

then all the text up to the end is returned. If the offset is negative or greater than the length of

the string, or if the count is negative, an exception occurs.

Chapter 11: Open XML’s Document Object Model 213



procedure AppendData(const arg: WideString); virtual;
Add the specified text to the end of the current data value. Retrieve the concatenated value

with the Data property.

procedure InsertData(const offset: integer; const arg: WideString); virtual;
Add new text within the body of the current data value. The offset parameter indicates the

starting point, and text beyond that is shifted along to make room. An offset that is negative

or greater than the length of the current text produces an exception.

procedure DeleteData(const offset, count: integer); virtual;
Remove a portion of the current text using this method. Specify the characters to delete with

the offset and count parameters. A count extending past the end of the current text removes

all text up to the end. As before, invalid offset or count values raise an exception.

procedure ReplaceData(const offset, count: integer; const arg: WideString);
virtual;
Combine the functionality of the previous two methods to remove text and then insert new

data in its place. As before, an exception occurs for invalid offset or count values.

TdomText Class

Text nodes contain the actual content of the document. When initially loaded, a single text node

encapsulates each contiguous section of text. You may then add other text nodes, or split the exist-

ing ones. Adjacent text nodes do not persist between instances of the DOM and may be

automatically combined through the normalize method of the TdomNode class.

Text nodes inherit all the abilities of the TdomCharacterData class, adding only one new

method. The declaration for a text node is shown in Listing 11-8.

Listing 11-8: The TdomText declaration

TdomText = class (TdomCharacterData)
public
constructor Create(const AOwner: TdomDocument); override;
function SplitText(const offset: integer): TdomText; virtual;

end;

The TdomText object’s methods are detailed below:

constructor Create(const AOwner: TdomDocument); override;
As before, you should not instantiate a text node directly. Instead, use the CreateTextNode
method on the TdomDocument class.

function SplitText(const offset: integer): TdomText; virtual;
This method breaks a text node into two parts at the specified offset (starting from zero). The

two nodes then exist as siblings beneath the parent of the original text node. Characters up to

the offset remain in the original node, while those after the offset are transferred to the new

node. The method returns a reference to the newly created node. If the offset is out of range,

an exception occurs.

214 Part II: The Document Object Model



TdomCDATASection Class

CDATA sections are just like text nodes except that any metacharacters are ignored. This means

that what would normally be regarded as markup (tags and entity references) is left as normal text.

A TdomCDATASection node inherits all of its functionality from the normal text node and adds

nothing. Thus, it simply serves as a marker to indicate the different treatment of the contained

characters.

The declaration for a CDATA section node is shown in Listing 11-9.

Listing 11-9: The TdomCDATASection declaration

TdomCDATASection = class (TdomText)
public
constructor Create(const AOwner: TdomDocument); override;

end;

The methods of a TdomCDATASection object are shown below:

constructor Create(const AOwner: TdomDocument); override;
Do not instantiate these nodes directly. Instead use the TdomDocument class’s CreateCDATA-
Section method.

TdomComment Class

The TdomComment class (shown in Listing 11-10) represents comments within the DOM. Similar

to the CDATA section nodes, this class simply flags that the encapsulated text is treated differently

while inheriting all its abilities from the base character data class.

Listing 11-10: The TdomComment declaration

TdomComment = class (TdomCharacterData)
public
constructor Create(const AOwner: TdomDocument); override;

end;

The methods of a TdomComment object are detailed below:

constructor Create(const AOwner: TdomDocument); override;
Generate comment nodes with the TdomDocument class’s CreateComment method rather than

using this constructor directly.

Chapter 11: Open XML’s Document Object Model 215



TdomProcessingInstruction Class

Instructions for applications handling the document can be passed through processing instruction

nodes. Recall that XML imposes no structure on the data part of the instruction, assuming that the

target program understands it all. See Listing 11-11 for the declaration of the processing instruc-

tion node.

Listing 11-11: The TdomProcessingInstruction declaration

TdomProcessingInstruction = class (TdomNode)
public
constructor Create(const AOwner: TdomDocument;
const Targ: WideString); virtual;

published
property Target: WideString read GetTarget;
property Data: WideString read GetData write SetData;

end;

The TdomProcessingInstruction object’s properties and methods are described below:

constructor Create(const AOwner: TdomDocument; const Targ: WideString); virtual;
Use the CreateProcessingInstruction method of the TdomDocument class to generate

these nodes, rather than calling this constructor directly.

property Target: WideString read GetTarget;
Retrieve the identifier for the application that knows how to use the following instruction.

This value cannot be altered once set during creation. The returned value corresponds to the

inherited NodeName property.

property Data: WideString read GetData write SetData;
Read or update the actual command for the target application through this property. When

an instruction is parsed out of a document, this property contains all the text from the first

non-white space character following the target, up to the character immediately before the

closing ?>. Validating any syntax requirements for the data when setting its value is the

responsibility of the calling program. The inherited NodeValue property contains the same

value as this property.

TdomDocumentType Class

This node type represents the document type declaration within an XML document (the one that

starts with <!DOCTYPE). Such nodes are read-only, having their main properties set at the time of

creation. They have only two child nodes: one each of an internal (TdomInternalSubset) and an

external subset (TdomExternalSubset). These children are not read-only and contain the declara-

tions for the owning document.

216 Part II: The Document Object Model

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



NOTE XDOM’s document type node differs quite a bit from the DOM specification. This is
due to the former’s extensive support for DTDs within the DOM. According to the spec, docu-
ment type nodes may be created during parsing of a document, but cannot be altered during
normal processing of the hierarchy.

Document type nodes are created through the TdomImplementation or TdomDocument classes and

their CreateDocumentType or CreateDocumentTypeNS methods. They derive from the Tdom-
CustomDocumentType class (see Listing 11-12), which provides some common functionality

among different document types. The declaration for the TdomDocumentType class itself is shown

in Listing 11-13.

NOTE The DOM specification only provides for the creation of document type nodes
through the Implementation class.

Listing 11-12: The TdomCustomDocumentType declaration

TdomCustomDocumentType = class (TdomNode)
public
constructor Create(const AOwner: TdomDocument);
destructor Destroy; override;

published
property AttributeLists: TdomNamedNodeMap read GetAttributeLists;
property ParameterEntities: TdomNamedNodeMap
read GetParameterEntities;

end;

Listing 11-13: The TdomDocumentType declaration

TdomDocumentType = class (TdomCustomDocumentType)
protected
procedure detectUnusableEntities; virtual;

public
constructor Create(const AOwner: TdomDocument; const Name,
PubId, SysId: WideString); virtual;

destructor destroy; override;
published
property Entities: TdomEntitiesNamedNodeMap read GetEntities;
property ExternalSubsetNode: TdomExternalSubset
read GetExternalSubsetNode;

property InternalSubset: WideString read GetInternalSubset;
property InternalSubsetNode: TdomInternalSubset
read GetInternalSubsetNode;

property Name: WideString read GetName;
property Notations: TdomNamedNodeMap read GetNotations;
property PublicId: WideString read GetPublicId;
property SystemId: WideString read GetSystemId;

end;

The TdomDocumentType object’s properties and methods (including those of TdomCustom-
DocumentType) are described below:

constructor Create(const AOwner: TdomDocument; const Name, PubId, SysId:
WideString); virtual;
Specify the top-level element name and optional references to an external DTD when con-

structing a document type node. These values cannot be altered later. As with other nodes,

Chapter 11: Open XML’s Document Object Model 217



you should use the factory methods of the TdomImplementation or TdomDocument classes

instead of creating these directly.

property Name: WideString read GetName;
Retrieve the name of the top-level element for this DTD through this read-only property. It

cannot be changed after creation.

property PublicId: WideString read GetPublicId;
This property returns the public identifier for an external DTD. A public identifier is a

well-known name for a resource, which can then be mapped to an actual instance of the doc-

ument. Once set during instantiation, this value cannot be altered. It returns an empty string

if no public identifier is specified.

property SystemId: WideString read GetSystemId;
Retrieve the system identifier for an external DTD with this property. A system identifier is

the actual URI that locates the resource to be used. The value cannot be changed after cre-

ation of the node. Again, an empty string results if no system identifier is supplied.

property Entities: TdomEntitiesNamedNodeMap read GetEntities;
This read-only node list property (TdomNamedNodeMap) provides access to the general enti-

ties (not parameter entities) declared within the DTD, returning each as a TdomEntity. Each

new document type object automatically has five nodes in this list. These correspond to the

five default XML entities: lt, gt, amp, quot, and apos.

property Notations: TdomNamedNodeMap read GetNotations;
Another node list (TdomNamedNodeMap), this read-only property returns the notations

declared in the DTD as TdomNotation objects.

property InternalSubset: WideString read GetInternalSubset;
Obtain the entire subset of the DTD specified within the XML document as a wide string

value using this read-only property. The internal subset cannot be updated via this property.

NOTE The remaining properties are extensions within XDOM and are not part of the DOM
specification.

property ExternalSubsetNode: TdomExternalSubset read GetExternalSubsetNode;
Get a reference to the child node that contains the external declarations from this read-only

property. This is a convenience property since you could find the node among the children

of the document type node.

property InternalSubsetNode: TdomInternalSubset read GetInternalSubsetNode;
Another convenience property, this read-only property returns a reference to the child node

that holds the internal declarations.

property ParameterEntities: TdomNamedNodeMap read GetParameterEntities;
All the parameter entities from the document reside in this read-only node list. They are

returned as TdomParameterEntity objects.

218 Part II: The Document Object Model



property AttributeLists: TdomNamedNodeMap read GetAttributeLists;
Lists of attributes declared in the DTD are found in this read-only node list property. It is

indexed by the element name, and each entry is a TdomAttrList object.

TdomInternalSubset Class

The part of the document type declaration within the XML document itself is called the internal

subset. Modeling this in the XDOM package is the TdomInternalSubset class (see Listing 11-14).

It is a child of the document type node and cannot be removed. All the type declarations within the

document appear as children of this node.

Listing 11-14: The TdomInternalSubset declaration

TdomInternalSubset = class (TdomCustomDocumentType)
public
constructor Create(const AOwner: TdomDocument); virtual;

end;

NOTE This class has no equivalent within the DOM specification.

This class derives from the TdomCustomDocumentType class (see Listing 11-12) which also forms

the basis for the normal document type node. No new functionality is added in this class, although

it does make use of some inherited abilities. It mainly serves to delineate the origin of the declara-

tions that it contains.

The properties and methods of the TdomInternalSubset object are detailed below:

constructor Create(const AOwner: TdomDocument); virtual;
A node of this type is created automatically when the document type node is constructed.

You should never create one yourself.

property AttributeLists: TdomNamedNodeMap read GetAttributeLists;
Lists of attributes declared in the internal subset are found in this read-only node list prop-

erty. It is indexed by the element name, and each entry is a TdomAttrList object.

property ParameterEntities: TdomNamedNodeMap read GetParameterEntities;
All the parameter entities from the internal subset reside in this read-only node list. They are

returned as TdomParameterEntity objects.

TdomExternalSubset Class

Complementing the internal subset above, any type declarations loaded from an external DTD

appear beneath a TdomExternalSubset node (see Listing 11-15), which is the other child of the

document type node.

Listing 11-15: The TdomExternalSubset declaration

TdomExternalSubset = class (TdomCustomDocumentType)
public
constructor Create(const AOwner: TdomDocument); virtual;

Chapter 11: Open XML’s Document Object Model 219



function CloneNode(const deep: boolean): TdomNode; override;
end;

NOTE This class has no equivalent within the DOM specification.

This class derives from the TdomCustomDocumentType class (see Listing 11-12), inheriting most

abilities and overriding one. Its main purpose, though, is to manage the nodes resulting from the

type declarations in the external DTD.

The TdomExternalSubset object’s properties and methods are described below:

constructor Create(const AOwner: TdomDocument); virtual;
When the document type node is created, a node of this type is automatically constructed as

one of its children. You should never create these nodes directly.

property AttributeLists: TdomNamedNodeMap read GetAttributeLists;
This read-only node list property holds the lists of attributes declared in the external subset.

They are indexed by the element name, and each entry is a TdomAttrList object.

property ParameterEntities: TdomNamedNodeMap read GetParameterEntities;
This read-only node list contains all the parameter entities from the external subset. They

are returned as TdomParameterEntity objects.

function CloneNode(const deep: boolean): TdomNode; override;
The external subset node overrides this method to ensure that all its children are set to be

read-only.

TdomConditionalSection Class

The TdomConditionalSection class (shown in Listing 11-16) represents a conditional section in

an external subset. It also derives from TdomCustomDocumentType, which can be found in Listing

11-12. Its children are only used if the value of its Included property is equal to INCLUDE.

Listing 11-16: The TdomConditionalSection declaration

TdomConditionalSection = class(TdomCustomDocumentType)
protected
function SetIncluded(const node: TdomNode): TdomNode; virtual;

public
constructor Create(const AOwner: TdomDocument;
const IncludeStmt: WideString); virtual;

published
property Included: TdomNode read GetIncluded;

end;

NOTE This class has no equivalent within the DOM specification.

220 Part II: The Document Object Model



The properties and methods of the TdomConditionalSection object are listed below:

constructor Create(const AOwner: TdomDocument; const IncludeStmt: WideString);
virtual;
Build a conditional section in a DTD subset with this constructor. The second parameter

must be either the text INCLUDE or IGNORE, or the name of a parameter entity that evaluates to

one of these. An exception occurs if the IncludeStmt value does not match the expected

text. As usual, these nodes should not be created directly. Use the CreateConditional-
Section method on the TdomDocument class instead.

property Included: TdomNode read GetIncluded;
Having been set during construction of this node, this read-only property refers to either a

text node with the value INCLUDE or IGNORE, or a parameter entity node containing such a

text node.

function SetIncluded(const node: TdomNode): TdomNode; virtual;
You can set the value of the Included property through this protected method, but only

within a subclass.

property AttributeLists: TdomNamedNodeMap read GetAttributeLists;
Lists of attributes declared in the conditional section are found in this read-only node list

property. It is indexed by the element name, and each entry is a TdomAttrList object.

property ParameterEntities: TdomNamedNodeMap read GetParameterEntities;
All the parameter entities from the conditional section reside in this read-only node list.

They are returned as TdomParameterEntity objects.

TdomEntity Class

Entities refer to sections of the document that may appear in several places or that are held exter-

nally. TdomEntity nodes represent these entities within the document type node, and are retrieved

through the Entities property of the document type node. The TdomEntityDeclaration class

maintains the declaration of the entity separately.

TdomEntity derives from the TdomCustomDeclaration (see Listing 11-17) and TdomCustom-
Entity (see Listing 11-18) classes, gaining functionality as it goes. Its own declaration is shown in

Listing 11-19.

Listing 11-17: The TdomCustomDeclaration declaration

TdomCustomDeclaration = class (TdomNode)
public
constructor Create(const AOwner: TdomDocument;
const Name: WideString);

published
property Value: WideString read GetValue write SetValue;

end;

Chapter 11: Open XML’s Document Object Model 221



Listing 11-18: The TdomCustomEntity declaration

TdomCustomEntity = class (TdomCustomDeclaration)
public
constructor Create(const AOwner: TdomDocument;
const Name, PubId, SysId: WideString);

function InsertBefore(const newChild, refChild: TdomNode): TdomNode;
override;

function ReplaceChild(const newChild, oldChild: TdomNode): TdomNode;
override;

function AppendChild(const newChild: TdomNode): TdomNode; override;
published
property PublicId: WideString read GetPublicId;
property SystemId: WideString read GetSystemId;
property IsInternalEntity: boolean read GetIsInternalEntity;

end;

Listing 11-19: The TdomEntity declaration

TdomEntity = class (TdomCustomEntity)
public
constructor create(const AOwner: TdomDocument;
const Name, PubId, SysId, NotaName: WideString); virtual;

function cloneNode(const deep: boolean): TdomNode; override;
property isUnusable: boolean read getIsUnusable write SetIsUnusable
default false;

property NotationName: WideString read GetNotationName;
end;

The TdomEntity object’s properties and methods (including those of its custom ancestors) are

detailed below:

constructor create(const AOwner: TdomDocument; const Name, PubId, SysId, NotaName:
WideString); virtual;
Construct a new entity node with this method. You should use the CreateEntity method of

the TdomDocument class instead to ensure the nodes are initialized properly.

property NodeName: WideString read GetNodeName;
This inherited read-only property contains the name of the entity.

property PublicId: WideString read GetPublicId;
External entities return their public identifier through this read-only property. It may be an

empty string if no public identifier is defined, or if the entity is internal.

property SystemId: WideString read GetSystemId;
Retrieve the system identifier for the entity via this read-only property. For internal entities

it returns an empty string, as do entities without a system identifier specified.

property NotationName: WideString read GetNotationName;
For unparsed entities (non-XML external resources), this read-only property holds the name

of the format for that data. It is an empty string for all parsed entities.

NOTE The remaining properties are not part of the DOM specification.

222 Part II: The Document Object Model



property Value: WideString read GetValue write SetValue;
For an internal entity, this property contains the actual text value of the entity. It is an empty

string for external entities.

property IsInternalEntity: boolean read GetIsInternalEntity;
This read-only property returns True if the entity is declared internally, and False other-

wise. An internal entity has no public or system identifier, but does have a value.

property isUnusable: boolean read getIsUnusable write SetIsUnusable default false;
Monitor this property to determine whether or not the entity has been fully loaded and can be

used. It returns True if the other properties are valid, and False if they are not. An entity may

not be usable if it is declared externally but the document is not validated, in which case

external references are not followed.

function cloneNode(const deep: boolean): TdomNode; override;
Entities override this method to make sure that all their children are set to be read-only.

TdomEntityDeclaration Class

Whereas the previous class modeled the value of an entity, this one models the type declaration for

that entity. Objects of the TdomEntityDeclaration class (see Listing 11-20) appear within an

internal or external subset. They are derived from the TdomCustomEntity class (shown in Listing

11-18).

Listing 11-20: The TdomEntityDeclaration declaration

TdomEntityDeclaration = class (TdomCustomEntity)
public
constructor Create(const AOwner: TdomDocument;
const Name, EntityValue, PubId, SysId, NotaName: WideString);
virtual;

property ExtParsedEnt: TdomExternalParsedEntity read GetExtParsedEnt
write SetExtParsedEnt;

property NotationName: WideString read GetNotationName;
end;

NOTE This class has no equivalent within the DOM specification.

The properties and methods of the TdomEntityDeclaration object are shown below:

constructor Create(const AOwner: TdomDocument; const Name, EntityValue, PubId,
SysId, NotaName: WideString); virtual;
Entity declaration nodes should be created through the CreateEntityDeclaration method

of the document object, rather than with this constructor.

property NodeName: WideString read GetNodeName;
This inherited read-only property returns the name of the entity.

Chapter 11: Open XML’s Document Object Model 223



property Value: WideString read GetValue write SetValue;
For an internal entity, this property contains the actual text value of the entity. It is an empty

string for external entities. Setting this property discards any existing children and replaces

them with a single text node that has the value given. The contents of this value are not

parsed.

property PublicId: WideString read GetPublicId;
This read-only property returns the public identifier for external entities. An empty string

results if no public identifier is defined, or if the entity is internal.

property SystemId: WideString read GetSystemId;
For external entities this read-only property retrieves the system identifier for the entity. For

internal entities it returns an empty string, as do entities without a system identifier

specified.

property NotationName: WideString read GetNotationName;
This read-only property holds the name of the format for the data for unparsed entities

(non-XML external resources). It is an empty string for all parsed entities.

property IsInternalEntity: boolean read GetIsInternalEntity;
This read-only property returns True if the entity is declared internally, and False other-

wise. An internal entity has no public or system identifier, but does have a value.

property ExtParsedEnt: TdomExternalParsedEntity read GetExtParsedEnt write
SetExtParsedEnt;
Access the external parsed entity node corresponding to this declaration through this prop-

erty. For internal entities it is nil. Attempting to set this property for an internal entity

generates an error.

TdomEntityReference Class

Placing entities within the body of the document uses the TdomEntityReference class. A node of

this type is positioned where the replacement text should appear. The class itself derives from

TdomReference (see Listing 11-21), which provides common base functionality for references. Its

declarations are shown in Listing 11-22.

Listing 11-21: The TdomReference declaration

TdomReference = class (TdomNode)
public
constructor Create(const AOwner: TdomDocument; const Name:
WideString); virtual;

published
property Declaration: TdomCustomEntity read GetDeclaration;

end;

224 Part II: The Document Object Model



Listing 11-22: The TdomEntityReference declaration

TdomEntityReference = class (TdomReference)
public
constructor Create(const AOwner: TdomDocument;
const Name: WideString); override;

function CloneNode(const deep: boolean): TdomNode; override;
end;

The properties and methods of a TdomEntityReference object (including those of its ancestors)

are described below:

constructor Create(const AOwner: TdomDocument; const Name: WideString); virtual;
Use the CreateEntityReference method of the TdomDocument class rather than this con-

structor to generate a new entity reference node.

NOTE The remaining properties and methods are not part of the DOM specification.

property Declaration: TdomCustomEntity read GetDeclaration;
This read-only property contains a reference to the TdomEntity node that defines the entity

and its contents.

function CloneNode(const deep: boolean): TdomNode; override;
Entity reference nodes override this method to ensure that all its children are made

read-only.

TdomNotation Class

The formats for external resources must be declared through notation entries in the DTD. See List-

ing 11-23 for the definition of the TdomNotation class. This class only represents the content of the

notation node. Notation declarations are modeled separately through the TdomNotation-
Declaration class.

Listing 11-23: The TdomNotation declaration

TdomNotation = class (TdomNode)
public
constructor Create(const AOwner: TdomDocument; const Name,
PubId, SysId: WideString); virtual;

published
property PublicId: WideString read GetPublicId;
property SystemId: WideString read GetSystemId;

end;

The TdomNotation object’s properties and methods are shown below:

constructor Create(const AOwner: TdomDocument; const Name, PubId, SysId:
WideString); virtual;
Build new notations with the CreateNotation method of the TdomDocument class rather

than this constructor.

property NodeName: WideString read GetNodeName;
Retrieve the name of the notation through this inherited read-only property.

Chapter 11: Open XML’s Document Object Model 225



property PublicId: WideString read GetPublicId;
Retrieve the public identifier for this notation through this property. Once the identifier is set

during construction of the notation, it cannot be altered. The public identifier is a well-

known name for the resource. If no public identifier is specified, an empty string is returned.

property SystemId: WideString read GetSystemId;
This property provides the system identifier for the notation. Again, it is read-only after

being set during construction. The system identifier is an actual location (URI) for the nota-

tion, although the resource at that location may be anything (or may not exist at all). An

empty string results if the system identifier is not supplied.

TdomNotationDeclaration Class

Modeling the declaration of a notation within the internal or external subset is the purpose of the

TdomNotationDeclaration class (see Listing 11-24).

Listing 11-24: The TdomNotationDeclaration declaration

TdomNotationDeclaration = class (TdomNode)
public
constructor Create(const AOwner: TdomDocument;
const Name, PubId, SysId: WideString); virtual;

published
property PublicId: WideString read GetPublicId;
property SystemId: WideString read GetSystemId;

end;

NOTE This class has no equivalent within the DOM specification.

The properties and methods of a TdomNotationDeclaration object are described below:

constructor Create(const AOwner: TdomDocument; const Name, PubId, SysId:
WideString); virtual;
Use the CreateNotationDeclarationmethod of the document object to build these objects.

Do not instantiate them directly.

property NodeName: WideString read GetNodeName;
This inherited read-only property returns the name of the notation.

property PublicId: WideString read GetPublicId;
Retrieve the public identifier for this notation through this read-only property. Its value is

established at the time of creation and cannot be changed thereafter. An empty string returns

if the value is not set.

property SystemId: WideString read GetSystemId;
Similarly, the system identifier for the notation is set during construction and is unalterable

later. Obtain its value from this read-only property. An empty string returns if it is not set.

226 Part II: The Document Object Model

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



TdomElementTypeDeclaration Class

The main part of the DTD is the definition of the elements that make up a valid document. The

TdomElementTypeDeclaration class in the XDOM package (shown in Listing 11-25) models

these.

Listing 11-25: The TdomElementTypeDeclaration declaration

TdomElementTypeDeclaration = class (TdomCustomDeclaration)
public
constructor Create(const AOwner: TdomDocument;
const Name: WideString; const Contspec: TdomContentspecType);
virtual;

function AppendChild(const newChild: TdomNode): TdomNode; override;
function InsertBefore(const newChild, refChild: TdomNode): TdomNode;
override;

published
property Contentspec: TdomContentspecType read GetContentspec;

end;

NOTE This class has no equivalent within the DOM specification.

A TdomElementTypeDeclaration object’s properties and methods are detailed below:

constructor Create(const AOwner: TdomDocument; const Name: WideString; const
Contspec: TdomContentspecType); virtual
As usual, you should not call this constructor directly, but should use the CreateElement-
TypeDeclaration method of the document object.

property NodeName: WideString read GetNodeName;
This inherited read-only property returns the name of the element.

property Contentspec: TdomContentspecType read GetContentspec;
This read-only property returns the type of content allowed in this element. Once set during

construction it cannot be altered. Its value is one of those shown in Table 11-3. The child of

this node (and there can be only one) defines the actual content model, if applicable.

Table 11-3: Element content types

Content Specification Meaning

ctEmpty The element cannot have any content. In the DTD the EMPTY keyword
denotes this model.

ctAny Any element may be a child of this one. In the DTD the ANY keyword
indicates this model.

ctMixed The content of the element consists of free text, optionally mixed with
other elements. In the DTD this model starts with #PCDATA.

ctChildren Only the nominated elements may appear within this element, and only in
the order and number defined. In the DTD this appears as a list of the
specified sub-elements.

Chapter 11: Open XML’s Document Object Model 227



function AppendChild(const newChild: TdomNode): TdomNode; override;
The class overrides this method to add a check regarding the content specification. If you

attempt to add a child to a node marked as empty or accepting any content an error is gener-

ated. An error also occurs if you try to add more than one child.

function InsertBefore(const newChild, refChild: TdomNode): TdomNode; override;
Similarly, this method is overridden to apply the same tests as above.

Content Models

An element uses the classes described in this section, collectively known as particles, to define its

valid content. One of these nodes becomes the child of the element type declaration (unless its

content specification is for an empty node or for any content). All except the element particle can

then have further children to build up the model hierarchy.

NOTE None of these classes has an equivalent within the DOM specification.

Basic functionality for a particle comes from the TdomParticle class shown in Listing 11-26.

Objects of this type are not created directly; one of its subclasses is used instead.

Listing 11-26: The TdomParticle declaration

TdomParticle = class (TdomNode)
public
constructor Create(const AOwner: TdomDocument;
const Freq: WideString);

published
property Frequency: WideString read GetFrequency;

end;

The properties and methods of the TdomParticle object are shown below:

constructor Create(const AOwner: TdomDocument; const Freq: WideString);
Do not create particle objects themselves. Build one of the subclasses instead.

property Frequency: WideString read GetFrequency;
Retrieve the occurrences applicable to this particle within the content model through this

read-only property. Its value is set at creation time, and must be one of those listed in Table

11-4. An error occurs if it is not one of these values.

Table 11-4: Particle frequencies

Frequency Meaning

‘’ (an empty string) This particle must appear once and once only.

? This particle may appear once or not at all.

+ This particle must appear at least once, but may appear multiple times.

* This particle may appear multiple times or not at all.

228 Part II: The Document Object Model



The TdomSequenceParticle class (see Listing 11-27) defines a sequence of items within a content

specification. In the DTD these items appear separated by a comma ( , ). The children of this node,

themselves other particles, list the set of nodes that must appear in this order.

Listing 11-27: The TdomSequenceParticle declaration

TdomSequenceParticle = class (TdomParticle)
public
constructor Create(const AOwner: TdomDocument;
const Freq: WideString); virtual;

end;

The TdomSequenceParticle object’s methods are listed below:

constructor Create(const AOwner: TdomDocument; const Freq: WideString); virtual;
Create sequence particles with the CreateSequenceParticle method of the document

object, rather than through this constructor.

Alternate items in the content specification use the TdomChoiceParticle class (shown in Listing

11-28) to define those options. Vertical bars ( | ) separate these choices in the DTD. The children of

this node (more particles) specify the options.

Listing 11-28: The TdomChoiceParticle declaration

TdomChoiceParticle = class (TdomParticle)
public
constructor create(const AOwner: TdomDocument;
const Freq: WideString); virtual;

end;

The methods of a TdomChoiceParticle object are detailed below:

constructor create(const AOwner: TdomDocument; const Freq: WideString); virtual;
Do not use this constructor directly. Instead use the CreateChoiceParticle method on the

document object.

The TdomPcdataChoiceParticle class (see Listing 11-29) represents mixed content in the content

specification. Use this when the element type node’s content is set to ctMixed. The children of this

node should all be unique element particles. In the DTD they appear separated by vertical bars ( | )

following an initial #PCDATA.

Listing 11-29: The TdomPcdataChoiceParticle declaration

TdomPcdataChoiceParticle = class (TdomParticle)
public
constructor create(const AOwner: TdomDocument;
const Freq: WideString); virtual;

end;

The TdomPcdataChoiceParticle object’s methods are described below:

constructor create(const AOwner: TdomDocument; const Freq: WideString); virtual;
Use the CreatePcdataChoiceParticle method of the document object to instantiate these

objects, not this constructor. Note that the frequency for these nodes must be set to *, with an

error occurring if any other value is used.

Chapter 11: Open XML’s Document Object Model 229



Finally, individual elements within the content specification appear as TdomElementParticle
objects (see Listing 11-30). In the DTD they appear as the element name.

Listing 11-30: The TdomElementParticle declaration

TdomElementParticle = class (TdomParticle)
public
constructor Create(const AOwner: TdomDocument;
const Name, Freq: WideString); virtual;

end;

The methods of the TdomElementParticle object are listed below:

constructor Create(const AOwner: TdomDocument; const Name, Freq: WideString);
virtual;
Instead of using this constructor, use the CreateElementParticle method on the document

object. Specify the name of the element appearing at this location.

property NodeName: WideString read GetNodeName;
Retrieve the name of the element with this inherited read-only property.

TdomAttrList Class

Definitions for valid attributes also appear in the DTD. In the XDOM package the TdomAttrList
class (shown in Listing 11-31) represents these, managing the set of attributes for a single element.

Listing 11-31: The TdomAttrList declaration

TdomAttrList = class(TdomCustomDeclaration)
public
constructor Create(const AOwner: TdomDocument;
const Name: WideString); virtual;

destructor Destroy; override;
function RemoveAttributeDefinition(const Name: WideString):
TdomAttrDefinition; virtual;

function GetAttributeDefinitionNode(const Name: WideString):
TdomAttrDefinition; virtual;

function SetAttributeDefinitionNode(
const NewAttDef: TdomAttrDefinition): boolean; virtual;

function RemoveAttributeDefinitionNode(
const OldAttDef: TdomAttrDefinition): TdomAttrDefinition; virtual;

published
property AttributeDefinitions: TdomNamedNodeMap
read GetAttributeDefinitions;

end;

NOTE This class has no equivalent within the DOM specification.

The TdomAttrList object’s properties and methods are shown below:

constructor Create(const AOwner: TdomDocument; const Name: WideString); virtual;
Again, use the CreateAttributeList method on the document object instead of this con-

structor. The name supplied is that of the element to which the contained attributes belong.

230 Part II: The Document Object Model



property NodeName: WideString read GetNodeName;
This inherited read-only property returns the name of the element.

property AttributeDefinitions: TdomNamedNodeMap read GetAttributeDefinitions;
Access the list of attribute definitions for this element through this read-only property. Each

item in the list is a TdomAttrDefinition object.

function GetAttributeDefinitionNode(const Name: WideString): TdomAttrDefinition;
virtual;
Retrieve a single attribute definition, given its name, with this method. If a matching attrib-

ute cannot be found, nil is returned.

function SetAttributeDefinitionNode(const NewAttDef: TdomAttrDefinition):
boolean; virtual;
Add a new attribute definition with this method. It returns True if the definition is added,

and False if an existing attribute already exists under the same name. In the latter case, the

new definition is ignored. Attribute definitions cannot be shared between elements.

function RemoveAttributeDefinition(const Name: WideString): TdomAttrDefinition;
virtual;
Delete the named attribute definition from the list through this method. An error occurs if

the definition cannot be found.

function RemoveAttributeDefinitionNode(const OldAttDef: TdomAttrDefinition):
TdomAttrDefinition; virtual;
This method duplicates the previous one, but takes a reference to the entire node as its

parameter rather than just the attribute’s name. Again, an error occurs if the attribute is not

found.

TdomAttrDefinition Class

Individual attributes for an element appear as TdomAttrDefinition objects (see Listing 11-32)

within the AttributeDefinitions property of the element’s attribute list.

Listing 11-32: The TdomAttrDefinition declaration

TdomAttrDefinition = class(TdomNode)
public
constructor Create(const AOwner: TdomDocument;
const Name, AttType, DefaultDecl, AttValue: WideString); virtual;

published
property AttributeType: WideString read GetAttributeType;
property DefaultDeclaration: WideString read GetDefaultDeclaration;
property Name: WideString read GetName;
property ParentAttributeList: TdomAttrList
read GetParentAttributeList;

end;

NOTE This class has no equivalent within the DOM specification.

Chapter 11: Open XML’s Document Object Model 231



The properties and methods of the TdomAttrDefinition object are detailed below:

constructor Create(const AOwner: TdomDocument; const Name, AttType, DefaultDecl,
AttValue: WideString); virtual;
Do not use this constructor. Instead, use the CreateAttributeDefinition method of the

document object. An error occurs if the attribute type or default declaration is invalid, if a

default value is defined when the default declaration is #REQUIRED or #IMPLIED, or the

default is missing when the default declaration is #FIXED or blank.

property Name: WideString read GetName;
Retrieve the name of the attribute through this read-only property. Set during construction, it

cannot be changed later.

property AttributeType: WideString read GetAttributeType;
This read-only property, set during creation, returns the attribute’s type. It should be one of

the standard XML types, such as ID, IDREF, ENTITY, etc., or CDATA for a list of valid enumer-

ated values. These values then appear as TdomNametoken children of the definition node.

property DefaultDeclaration: WideString read GetDefaultDeclaration;
Obtain the attribute’s default setting with this read-only property. It may be #REQUIRED,

#IMPLIED, #FIXED, or blank.

property NodeValue: WideString read GetNodeValue write SetNodeValue;
This inherited property returns the default value for the attribute, or an empty string if no

default is specified.

property ParentAttributeList: TdomAttrList read GetParentAttributeList;
Access the owning attribute list through this read-only property.

TdomNametoken Class

The TdomNametoken class (see Listing 11-33) holds individual enumerated values for use in attrib-

ute definitions for the DTD. These nodes are set as children of a TdomAttrDefinition node that

has its AttributeType set to CDATA.

Listing 11-33: The TdomNametoken declaration

TdomNametoken = class (TdomNode)
public
constructor Create(const AOwner: TdomDocument;
const Name: WideString); virtual;

procedure SetNodeValue(const Value: WideString); override;
end;

NOTE This class has no equivalent within the DOM specification.

232 Part II: The Document Object Model



The TdomNametoken object’s methods are shown below:

constructor Create(const AOwner: TdomDocument; const Name: WideString); virtual;
Use the CreateNametoken method of the document object instead of this constructor.

property NodeName: WideString read GetNodeName;
Retrieve the name of the token with this inherited read-only property.

procedure SetNodeValue(const Value: WideString); override;
This method is overridden to force an error if you try to change the node value.

TdomXmlDeclaration Class

The TdomXmlDeclaration class (see Listing 11-34) represents the XML declaration at the start of

a document. It must appear as the first child of the document object.

Listing 11-34: The TdomXmlDeclaration declaration

TdomXmlDeclaration = class (TdomNode)
public
constructor Create(const AOwner: TdomDocument;
const Version, EncDl, SdDl: WideString); virtual;

published
property VersionNumber: WideString read GetVersionNumber;
property EncodingDecl: WideString read GetEncodingDecl
write SetEncodingDecl;

property SDDecl: WideString read GetStandalone write SetStandalone;
end;

NOTE This class has no equivalent within the DOM specification.

The TdomXmlDeclaration object’s properties and methods are described below:

constructor Create(const AOwner: TdomDocument; const Version, EncDl, SdDl:
WideString); virtual;
Do not use this constructor; rather use the CreateXmlDeclaration method on the document

object. An error occurs if any of the version number, encoding scheme, or standalone decla-

ration is invalid.

property VersionNumber: WideString read GetVersionNumber;
Retrieve the XML version number through this read-only property, which is set during con-

struction. It should always be 1.0.

property EncodingDecl: WideString read GetEncodingDecl write SetEncodingDecl;
This property retrieves or updates the encoding scheme used by the document. An error

occurs if the encoding is invalid.

property SDDecl: WideString read GetStandalone write SetStandalone;
Get or set the standalone declaration with this property. If the value is not yes, no, or an

empty string, an error is generated.

Chapter 11: Open XML’s Document Object Model 233



TdomTextDeclaration Class

Similar to the XML declaration described above, a text declaration may appear at the start of an

external entity to define its type and encoding. The TdomTextDeclaration class (shown in Listing

11-35) represents this in the XDOM package.

Listing 11-35: The TdomTextDeclaration declaration

TdomTextDeclaration = class (TdomNode)
public
constructor Create(const AOwner: TdomDocument;
const Version, EncDl: WideString); virtual;

published
property VersionNumber: WideString read GetVersionNumber;
property EncodingDecl: WideString read GetEncodingDecl
write SetEncodingDecl;

end;

NOTE This class has no equivalent within the DOM specification.

The properties and methods of the TdomTextDeclaration object are shown below:

constructor Create(const AOwner: TdomDocument; const Version, EncDl: WideString);
virtual;
Call the CreateTextDeclaration method on the document object rather than this construc-

tor. Errors are generated if the version or encoding is invalid.

property VersionNumber: WideString read GetVersionNumber;
Retrieve the XML version through this read-only property. Again, it should always be 1.0.

property EncodingDecl: WideString read GetEncodingDecl write SetEncodingDecl;
Obtain or update the encoding scheme with this property. Supplying an invalid encoding

generates an error.

TdomDocumentFragment Class

Nodes of this type do not appear within the normal DOM structure. They are intended for use in

constructing and transferring subtrees within the normal hierarchy.

The definition of the TdomDocumentFragment class (shown in Listing 11-36) adds no new

functionality. It simply serves as a marker to restrict the child nodes that may be added to it and to

invoke special processing when it is added to a document or one of its nodes. In the latter case, the

fragment itself is not added; all of its child nodes are added in its place.

Listing 11-36: The TdomDocumentFragment declaration

TdomDocumentFragment = class (TdomNode)
public
constructor Create(const AOwner: TdomDocument); virtual;

end;

234 Part II: The Document Object Model



A fragment may contain any number of child nodes, including elements, compared to a document,

which may only have one element node as a child. Thus, fragments might not be well-formed

XML. This is acceptable, and indeed useful, while manipulating the DOM. In the end though,

fragments are discarded and it is the document node that ends up being used.

The methods of the TdomDocumentFragment object are shown below:

constructor Create(const AOwner: TdomDocument); virtual;
Use the factory method of the TdomDocument object to build new document fragments rather

than this constructor directly.

TdomDocument Class

Managing all the node type objects is the domain of the TdomDocument class (shown in Listing

11-37). It provides a number of factory methods that let you create the other nodes as you need

them. This ensures that the nodes are correctly registered with their owning document.

Listing 11-37: The TdomDocument declaration

TdomDocument = class (TdomNode)
protected
function DuplicateNode(Node: TdomNode): TdomNode; virtual;
procedure InitDoc(const TagName: wideString); virtual;
procedure InitDocNS(const NamespaceURI, QualifiedName: WideString);
virtual;

public
constructor Create(const AOwner: TDomImplementation); virtual;
destructor Destroy; override;
procedure Clear; override;
procedure ClearInvalidNodeIterators; virtual;
function CreateElement(const TagName: WideString): TdomElement;
virtual;

function CreateElementNS(const NamespaceURI, QualifiedName:
WideString): TdomElement; virtual;

function CreateDocumentFragment: TdomDocumentFragment; virtual;
function CreateTextNode(const Data: WideString): TdomText; virtual;
function CreateComment(const Data: WideString): TdomComment; virtual;
function CreateConditionalSection(const IncludeStmt: WideString):
TdomConditionalSection; virtual;

function CreateCDATASection(const Data: WideString):
TdomCDATASection; virtual;

function CreateProcessingInstruction(const Targ, Data : WideString):
TdomProcessingInstruction; virtual;

function CreateXmlDeclaration(const Version, EncDl, SdDl:
WideString): TdomXmlDeclaration; virtual;

function CreateAttribute(const Name: WideString): TdomAttr; virtual;
function CreateAttributeNS(const NamespaceURI, QualifiedName:
WideString): TdomAttr; virtual;

function CreateEntityReference(const Name: WideString):
TdomEntityReference; virtual;

function CreateParameterEntityReference(const Name: WideString):
TdomParameterEntityReference; virtual;

function CreateDocumentType(const Name, PubId, SysId: WideString):
TdomDocumentType; virtual;

function CreateNotation(const Name, PubId, SysId: WideString):
TdomNotation; virtual;

Chapter 11: Open XML’s Document Object Model 235



function CreateNotationDeclaration(const Name, PubId, SysId:
WideString): TdomNotationDeclaration; virtual;

function CreateEntity(const Name, PubId, SysId, NotaName:
WideString): TdomEntity; virtual;

function CreateParameterEntity(const Name, PubId, SysId: WideString):
TdomParameterEntity; virtual;

function CreateEntityDeclaration(const Name, EntityValue, PubId,
SysId, NotaName: WideString): TdomEntityDeclaration; virtual;

function CreateParameterEntityDeclaration(const Name, EntityValue,
PubId, SysId: WideString): TdomParameterEntityDeclaration; virtual;

function CreateElementTypeDeclaration(const Name: WideString;
const Contspec: TdomContentspecType): TdomElementTypeDeclaration;
virtual;

function CreateSequenceParticle(const Freq: WideString):
TdomSequenceParticle; virtual;

function CreateChoiceParticle(const Freq: WideString):
TdomChoiceParticle; virtual;

function CreatePcdataChoiceParticle: TdomPcdataChoiceParticle;
virtual;

function CreateElementParticle(const Name, Freq: WideString):
TdomElementParticle; virtual;

function CreateAttributeList(const Name: WideString): TdomAttrList;
virtual;

function CreateAttributeDefinition(const Name, AttType, DefaultDecl,
AttValue: WideString) : TdomAttrDefinition; virtual;

function CreateNametoken(const Name: WideString): TdomNametoken;
virtual;

function CreateTextDeclaration(const Version, EncDl: WideString):
TdomTextDeclaration; virtual;

function CreateExternalParsedEntity: TdomExternalParsedEntity;
virtual;

function CreateExternalParameterEntity: TdomExternalParameterEntity;
virtual;

function CreateExternalSubset: TdomExternalSubset; virtual;
function CreateInternalSubset: TdomInternalSubset; virtual;
procedure FreeAllNodes(const Node: TdomNode); virtual;
procedure FreeTreeWalker(const TreeWalker: TdomTreeWalker); virtual;
function GetElementById(const elementId: WideString): TdomElement;
virtual;

function GetElementsByTagName(const TagName: WideString):
TdomNodeList; virtual;

function GetElementsByTagNameNS(const namespaceURI, localName:
WideString): TdomNodeList; virtual;

function ImportNode(const importedNode: TdomNode;
const deep: boolean): TdomNode; virtual;

function InsertBefore(const newChild, refChild: TdomNode): TdomNode;
override;

function ReplaceChild(const newChild, oldChild: TdomNode): TdomNode;
override;

function AppendChild(const newChild: TdomNode): TdomNode; override;
function CreateNodeIterator(const root: TdomNode;
whatToShow: TdomWhatToShow; nodeFilter: TdomNodeFilter;
entityReferenceExpansion: boolean): TdomNodeIterator; virtual;

function CreateTreeWalker(const root: TdomNode;
whatToShow: TdomWhatToShow; nodeFilter: TdomNodeFilter;
entityReferenceExpansion: boolean): TdomTreeWalker; virtual;

property codeAsString: string read GetCodeAsString;
property codeAsWideString: WideString read GetCodeAsWideString;
property defaultView: TdomAbstractView read FDefaultView;
property doctype: TdomDocumentType read GetDoctype;

236 Part II: The Document Object Model

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



property documentElement: TdomElement read GetDocumentElement;
property domImplementation: TDomImplementation read FDomImpl;
property filename: TFilename read GetFilename write SetFilename;
property xmlDeclaration: TdomXmlDeclaration read GetXmlDeclaration;

end;

A document is itself a node, although it is one of the few node types that have no parent. Thus, it

has a node name and children as usual. Special properties provide access to particular nodes that

only apply to a document, such as the single top-level element and the document type node.

The TdomDocument object’s properties and methods are described below:

constructor Create(const AOwner: TDomImplementation); virtual;
The document itself should be initially generated using the CreateDocument or Create-
DocumentNSmethods of the TdomImplementation class, rather than through this constructor.

Again, this ensures that the document is properly managed by the XDOM package. It also

allows for custom documents to be produced based on types registered with the implemen-

tation object.

property codeAsString: string read GetCodeAsString;
Use this read-only property to retrieve a string version of the DOM for this document. The

contents are encoded using UTF-8, and this is reflected in any XML declaration for the doc-

ument. Single line feed characters within the text are replaced by a carriage return/line feed

combination.

property codeAsWideString: WideString read GetCodeAsWideString;
Similar to the previous property, this one (also read-only) returns the entire DOM as a for-

matted wide string. The encoding is set to UTF-16BE and the text starts with the $FEFF
sequence.

property doctype: TdomDocumentType read GetDoctype;
Gain access to the document type node (TdomDocumentType) for the document through this

read-only property. If the document has no type specified it returns nil.

property documentElement: TdomElement read GetDocumentElement;
Quickly locate the top-level element node with this read-only property. It returns a Tdom-
Element node. You could find the node by stepping through the child nodes of the document,

but this property makes it much easier.

property domImplementation: TDomImplementation read FDomImpl;
Retrieve the DOM implementation that created this document through this read-only

property.

NOTE Since implementation is a reserved word in Delphi, the previous property is named
domImplementation instead. The following properties, filename and xmlDeclaration, are
extensions to the DOM specification.

property filename: TFilename read GetFilename write SetFilename;
Documents loaded from the local file system set this property to the full name of that file.

Otherwise, it returns an empty string.

Chapter 11: Open XML’s Document Object Model 237



property xmlDeclaration: TdomXmlDeclaration read GetXmlDeclaration;
Access the XML declaration node for this document through this property. It returns nil if

there is no declaration associated with the document. Again, you could search through the

child nodes for this one if you wanted to.

function CreateElement(const TagName: WideString): TdomElement; virtual;
Construct a new element node (TdomElement) for this document with the specified name.

Until the element is added to a document or document fragment it has no parent. Providing

an invalid name raises an exception.

function CreateElementNS(const NamespaceURI, QualifiedName: WideString):
TdomElement; virtual;
The same as the previous method except that it takes a namespace qualified name for the ele-

ment. Using a malformed name, such as one of the reserved prefixes (xml*) without the

corresponding namespace or a prefixed name with no namespace, generates an exception.

function CreateAttribute(const Name: WideString): TdomAttr; virtual;
Build a new attribute node (TdomAttr) with the specified name. After setting the attribute’s

value and other properties, add it to the appropriate element with its SetAttributeNode
method. Supplying an invalid name raises an exception.

function CreateAttributeNS(const NamespaceURI, QualifiedName: WideString):
TdomAttr; virtual;
Create a namespace-aware attribute, then treat it like a normal attribute from above. As for a

namespace-aware element, an exception occurs if the name is malformed.

function CreateDocumentFragment: TdomDocumentFragment; virtual;
Produce a document fragment (TdomDocumentFragment) node. These nodes can hold struc-

tures as they are being worked on, separate from the document. Usually they are inserted

into that document at some stage, at which time all the children of the fragment are inserted

in turn, but not the fragment itself.

function CreateText(const Data: WideString): TdomText; virtual;
Generate a new text node (TdomText), containing the supplied text, to hold the actual content

of the document. Text nodes have no children and appear only at the bottommost levels in

the DOM hierarchy. The node has no parent until it is added to the document or a fragment.

function CreateCDATASection(const Data: WideString): TdomCDATASection; virtual;
Produce a new CDATA section node (TdomCDATASection), containing the supplied text.

Characters that would normally denote markup within the text are ignored as such. Like text

nodes, these have no children. The node has no parent until it is added to the document or a

fragment.

function CreateComment(const Data: WideString): TdomComment; virtual;
Construct a new comment node (TdomComment), containing the supplied text. Comments

add explanation to the document, but should not be relied upon to carry processing informa-

tion, as they may be stripped from the document upon loading. Comments have no children.

238 Part II: The Document Object Model



function CreateProcessingInstruction(const Targ, Data : WideString):
TdomProcessingInstruction; virtual;
Build a new processing instruction node (TdomProcessingInstruction) for the specified

target application and command sequence. Use these nodes to pass processing details

through to a client application. Processing instructions have no children.

function CreateEntityReference(const Name: WideString): TdomEntityReference;
virtual;
Generate a new entity reference node (TdomEntityReference) given the entity’s name.

function CreateDocumentType(const Name, PubId, SysId: WideString):
TdomDocumentType; virtual;
Construct a new document type node (TdomDocumentType) given the name of the top-level

element, and the public and/or system identifier for an external DTD.

NOTE The DOM specification creates document type nodes from the Implementation
object. However, the XDOM package provides this functionality at the document level instead.

function CreateNotation(const Name, PubId, SysId: WideString): TdomNotation;
virtual;
Produce a new notation node (TdomNotation) given its name, and the public and/or system

identifier that corresponds to it. Use empty strings for the latter two if the values are not

known. These notations are placed within the Notations property of a document type node.

They represent the result of parsing the document containing a notation declaration. To gen-

erate the declaration itself, you need to use the CreateNotationDeclaration method

described below.

function CreateEntity(const Name, PubId, SysId, NotaName: WideString): TdomEntity;
virtual;
Build a new entity node (TdomEntity) given its name, the public and/or system identifier

that references an external document, and the notation name that specifies its type. For

external entities, either or both of the external identifiers must be given (use empty strings

for the unknown ones). For unparsed entities, you must supply the notation name. As for

notations above, these nodes represent the entities defined in the document, but not the dec-

larations themselves. As such, only unparsed entities appear in the Entities property of the

document type node. Use the CreateEntityDeclaration method below to define an entity

within the document.

function GetElementById(const elementId: WideString): TdomElement; virtual;
Return a reference to the node that has the supplied ID value, or nil if none can be found.

Results are unpredictable if more than one node has the specified ID value. The DOM must

know (through a DTD) which attributes contain ID values before it can match on them,

returning nil from this function if that information is unknown.

Chapter 11: Open XML’s Document Object Model 239



function GetElementsByTagName(const TagName: WideString): TdomNodeList; virtual;
Find all the elements with the given tag name and return them in a node list in the order that

they appear in the document text. Use a name of * to retrieve all the elements in the docu-

ment in a flat list.

TIP The GetElementsByTagName method creates a new node list for each name given. These
lists are not released until the document is destroyed or its Clear method is called. This can
increase memory usage with many calls to the function with different names. A better method
is to create a node iterator or tree walker with a filter instead.

Furthermore, the DOM requirement for a live result set means that the list must be tra-

versed from the beginning for each reference to an indexed item. This is much slower than

using an equivalent node iterator or tree walker.

function GetElementsByTagNameNS(const namespaceURI, localName: WideString):
TdomNodeList; virtual;
This is the namespace-aware version of the above method. It has the same abilities and

limitations.

function ImportNode(const importedNode: TdomNode; const deep: boolean): TdomNode;
virtual;
The functionality is identical to the CloneNode method, creating a copy of a node, except for

the fact that the original node may belong to another document. Attempting to import a doc-

ument or document type node raises an exception.

NOTE The following two methods appear in the DOM specification under the
DocumentTraversal interface. In the XDOM package this interface is wrapped into the docu-
ment, which is the appropriate place for it.

function CreateNodeIterator(const root: TdomNode; whatToShow: TdomWhatToShow;
nodeFilter: TdomNodeFilter; entityReferenceExpansion: boolean):
TdomNodeIterator; virtual;
Construct a new node iterator (TdomNodeIterator) over the subtree beneath the specified

node. That root node may be included in the selection depending on the filter settings. You

can specify what types of nodes are considered, and can apply a filter to them (use nil if no

filter is used). Setting the appropriate parameter expands entity references. An exception

occurs if the root is nil.

function CreateTreeWalker(const root: TdomNode; whatToShow: TdomWhatToShow;
nodeFilter: TdomNodeFilter; entityReferenceExpansion: boolean):
TdomTreeWalker; virtual;
Similar to the above method, this one creates a new tree walker (TdomTreeWalker) for the

specified nodes. Although the parameters are the same, the result of CreateNodeIterator is

a sequential list of the nodes found, while this method returns the nodes still in a tree

structure.

240 Part II: The Document Object Model



NOTE The following methods are not part of the DOM specification. The Create methods
construct the remaining nodes introduced in the XDOM package, mainly to support the defi-
nition of a DTD.

function CreateXmlDeclaration(const Version, EncDl, SdDl: WideString):
TdomXmlDeclaration; virtual;
Produce a new XML prolog node (TdomXmlDeclaration) to appear at the start of the docu-

ment. The parameters determine the contents of that node, indicating the version of XML in

use (currently 1.0), the encoding scheme used for the document, and whether or not the doc-

ument can be used standalone (yes, no, or ‘’). An exception occurs if any supplied value is

invalid. Add the new node to the document as the first child.

function CreateTextDeclaration(const Version, EncDl: WideString):
TdomTextDeclaration; virtual;
Generate a new text prolog node (TdomTextDeclaration) for an external entity. It accepts

the same version and encoding parameters as the XML prolog above.

function CreateExternalSubset: TdomExternalSubset; virtual;
Construct a new external subset node (TdomExternalSubset) for the document’s DTD. You

should not have to call this method since an external subset is automatically created as a

child of a document type node.

function CreateInternalSubset: TdomInternalSubset; virtual;
Create a new internal subset node (TdomInternalSubset) for the document’s DTD. Like the

external subset, a node of this type is automatically created in the document type node, so

you should not have to call this method yourself.

function CreateNotationDeclaration(const Name, PubId, SysId: WideString):
TdomNotationDeclaration; virtual;
Generate a new notation declaration node (TdomNotationDeclaration) for the document’s

DTD.

function CreateParameterEntity(const Name, PubId, SysId: WideString):
TdomParameterEntity; virtual;
This method builds a new parameter entity node (TdomParameterEntity) given its name,

and the public and/or system identifier that references an external document (or empty

strings if internally defined).

function CreateParameterEntityReference(const Name: WideString):
TdomParameterEntityReference; virtual;
Constructs a new parameter entity reference node (TdomParameterEntityReference) given

the entity’s name. Use it within the DTD section as shorthand for other content or markup.

function CreateEntityDeclaration(const Name, EntityValue, PubId, SysId, NotaName:
WideString): TdomEntityDeclaration; virtual;
Builds a new entity declaration node (TdomEntityDeclaration) given its name, and value

or public and/or system identifier. Internal entities have a value only (the external identifiers

are empty strings). External entities have no value, but either or both of the identifiers.

Chapter 11: Open XML’s Document Object Model 241



Unparsed entities also have their notation specified. These entities appear within the context

of the DTD within the document, and produce appropriate declarations when the DOM is

output.

function CreateParameterEntityDeclaration(const Name, EntityValue, PubId, SysId:
WideString): TdomParameterEntityDeclaration; virtual;
Similar to the above method, this one instead creates a new parameter entity declaration

node (TdomParameterEntityDeclaration). As before, internal entities have a value only

(the external identifiers are empty strings), while external entities have no value, but either

or both of the identifiers. Again, these entities belong within an internal subset within the

document, and generate declarations when output.

function CreateConditionalSection(const IncludeStmt: WideString):
TdomConditionalSection; virtual;
Generates a new conditional section node (TdomConditionalSection) for use in the DTD

section of the document. The supplied text must be INCLUDE, IGNORE, or the name of a

parameter entity reference that refers to one of these strings.

function CreateElementTypeDeclaration(const Name: WideString; const Contspec:
TdomContentspecType): TdomElementTypeDeclaration; virtual;
Builds an element definition node (TdomElementTypeDeclaration) for the document’s

DTD. The method takes the element’s name and an indication of its content: ctEmpty,

ctAny, ctMixed, or ctChildren. Add the new node to the DTD of the document.

function CreateSequenceParticle(const Freq: WideString): TdomSequenceParticle;
virtual;
Constructs a particle definition node (TdomSequenceParticle) for an element’s content

model. Elements of type ctMixed or ctChildren may use these particles to build up their

model hierarchy. Children of this particle must appear as the element’s children in the same

order for the element to be valid. Specify the occurrences of the sequence with the required

parameter: ‘’ for once only, ? for zero or once, + for once or more, or * for zero or more. An

exception occurs if it is not one of these values.

function CreateChoiceParticle(const Freq: WideString): TdomChoiceParticle;
virtual;
Produces a particle definition node (TdomChoiceParticle) for an element’s content model.

Any of this particle’s children can match with an element’s next child for the document to be

valid. Only elements of type ctMixed or ctChildren may use these particles. Supply the

occurrences as for the sequence particle above. Again, an invalid value raises an exception.

function CreatePcdataChoiceParticle: TdomPcdataChoiceParticle; virtual;
Generates a particle definition node (TdomPcdataChoiceParticle) that represents mixed

content (type ctMixed). The occurrences value is automatically set to * (for zero or more

entries). Straight text or one of the children of this node must match the element’s children to

be valid.

242 Part II: The Document Object Model



function CreateElementParticle(const Name, Freq: WideString): TdomElement-
Particle; virtual;
Builds a particle definition node (TdomElementParticle) that represents a single element.

Generally these are placed as children of one of the other particle node types. An exact

match between this node and the element’s next child makes it valid. Specify occurrences as

described above.

function CreateAttributeList(const Name: WideString): TdomAttrList; virtual;
Constructs a new list for attributes declarations (TdomAttrList) of a specified element.

Attach the actual declarations to the list within the DOM.

function CreateAttributeDefinition(const Name, AttType, DefaultDecl, AttValue:
WideString): TdomAttrDefinition; virtual;
Produces a new attribute declaration (TdomAttrDefinition) for the document’s DTD.

Specify its name, its type (as text, like (yes | no) or ID), its default declaration (#REQUIRED,

#IMPLIED, #FIXED, or ‘’), and its default value. Place this definition within the correspond-

ing attribute list.

function CreateNametoken(const Name: WideString): TdomNametoken; virtual;
Generates a new nametoken node (TdomNametoken) for use as an attribute’s value when it

has an enumerated type. Add it to the appropriate attribute definition.

function CreateExternalParsedEntity: TdomExternalParsedEntity; virtual;
Builds a new external parsed entity node (TdomExternalParsedEntity), which is referred

to by an entity declaration object.

function CreateExternalParameterEntity: TdomExternalParameterEntity; virtual;
Constructs a new external parameter entity node (TdomExternalParameterEntity), which

is referenced by a parameter entity declaration object.

procedure Clear; override;
Releases all nodes, node lists, node iterators, and tree walkers belonging to this document.

You can then start building a new document.

procedure FreeAllNodes(const Node: TdomNode); virtual;
Releases the specified node (created by this document) and all of its children. The target

node must be removed from any document or fragment in which it appears before it can be

freed. Exceptions appear if the node belongs to another document, if the node is the docu-

ment itself, or if the node is still attached to the DOM.

procedure ClearInvalidNodeIterators; virtual;
Frees all node iterators that have a state of invalid (those that have been detached).

procedure FreeTreeWalker(const TreeWalker: TdomTreeWalker); virtual;
Releases the supplied tree walker. If the tree walker was created by another document, an

exception occurs.

function DuplicateNode(Node: TdomNode): TdomNode; virtual;
Create a copy of a node internally with this protected method. All the attributes of an

Chapter 11: Open XML’s Document Object Model 243



element are copied during this process, as are any entities and notations attached to a docu-

ment type node. Other node types just return a straight copy of that one node.

procedure InitDoc(const TagName: wideString); virtual;
Given a tag name, this method initializes the document by creating the top-level element

node for the hierarchy. The CreateDocument methods of the TdomImplementation class call

this method as part of that process. Subclasses of TdomDocument may override this protected

method to perform their own initialization. Calling this procedure on a document that

already has a document element results in an exception, as does calling it with an invalid tag

name.

procedure InitDocNS(const NamespaceURI, QualifiedName: WideString); virtual;
Similar to the previous method, this one creates a document element node that belongs to a

specified namespace. Otherwise, it functions just like the normal version. An exception

occurs if this procedure is called with a malformed name, such as using a reserved prefix

without the corresponding namespace or specifying a prefixed name but no namespace.

TdomImplementation Class

To access functionality that is outside of any one document you use the TdomImplementation class

(whose declaration appears in Listing 11-38). It allows you to create documents to fill with content

nodes, and to determine what abilities are available within this implementation of the DOM.

Listing 11-38: The TdomImplementation declaration

TdomImplementation = class (TComponent)
public
constructor Create(aOwner: TComponent); override;
destructor Destroy; override;
procedure Clear; virtual;
procedure FreeDocument(const doc: TdomDocument); virtual;
procedure FreeDocumentType(const docType: TdomDocumentType); virtual;
function hasFeature(const feature, version: WideString): boolean;
virtual;

function createDocument(const name: WideString;
doctype: TdomDocumentType): TdomDocument; virtual;

function createDocumentNS(const namespaceURI, qualifiedName:
WideString; doctype: TdomDocumentType): TdomDocument; virtual;

{
The following two methods have been removed from this version of
the XDOM, but will be reintroduced in a further release.

function createDocumentType(const name, publicId, systemId:
WideString): TdomDocumentType; virtual;

function createDocumentTypeNS(const qualifiedName, publicId,
systemId: WideString): TdomDocumentType; virtual;

}

function GetDocumentClass(const aNamespaceUri, aQualifiedName:
wideString): TdomDocumentClass; virtual;

class procedure RegisterDocumentFormat(const aNamespaceUri,
aQualifiedName: wideString; aDocumentClass: TdomDocumentClass);

244 Part II: The Document Object Model



virtual;
function SupportsDocumentFormat(const aNamespaceUri, aQualifiedName:
wideString): boolean; virtual;

class procedure UnregisterDocumentClass(const aDocumentClass:
TdomDocumentClass); virtual;

property documents: TdomNodeList read getDocuments;
property documentTypes: TdomNodeList read getDocumentTypes;

end;

The properties and methods of the TdomImplementation object are described below:

constructor Create(aOwner: TComponent); override;
As you can see, this class derives from TComponent, allowing you to select the Tdom-
Implementation component from the component palette and drop it onto a form. Alter-

nately, you can call this constructor directly to gain access to the DOM implementation

through code.

function hasFeature(const feature, version: WideString): boolean; virtual;
You can determine which parts of the DOM specification are supported using this function.

If you pass in the feature name, such as XML or HTML, and the desired version, only 1.0 or 2.0
so far, you will receive a Boolean flag indicating its presence (True) or absence (False).

function createDocument(const name: WideString; doctype: TdomDocumentType):
TdomDocument; virtual;
Generate a new document and its top-level element, using the name specified, with this

method. You may also pass in a reference to a document type node, created elsewhere. Use

nil if no document type applies to the document. Passing an invalid element name, or a doc-

ument type node that was created by another implementation or is already in use in another

document raises an exception.

The new document is by default a TdomDocument object. However, by registering a sub-

class of this as a new format and referring to it with the qualified element name, you can

obtain an instance of that subclass instead.

function createDocumentNS(const namespaceURI, qualifiedName: WideString; doctype:
TdomDocumentType): TdomDocument; virtual;
This method is a namespace-aware version of the previous one. It functions as its counter-

part, with the addition that a malformed namespace produces an exception. Namespaces are

malformed if a prefix is specified but no namespace is provided, or if a reserved XML

namespace is used without the corresponding namespace.

NOTE The following two methods to create document type nodes have been removed from
the TdomImplementation object in version 2.2.12a of the XDOM package. You can use the
same methods on the document object itself. They are intended for replacement in a later
version.

Chapter 11: Open XML’s Document Object Model 245



function createDocumentType(const name, publicId, systemId: WideString):
TdomDocumentType; virtual;
Build a new document type node with this method. The name of the top-level element, and

public and system identifiers for an external DTD are provided as parameters. Leave the lat-

ter two as empty strings if there is no external DTD. The new node is added to the

documentTypes list until such time as it is associated with a document.

function createDocumentTypeNS(const qualifiedName, publicId, systemId:
WideString): TdomDocumentType; virtual;
For namespace-aware document types, use this method rather than createDocumentType. It

functions just like the latter, with the addition that a malformed namespace produces an

exception. Namespaces are malformed if a prefix is specified but no namespace is provided,

or if a reserved namespace is used without the corresponding namespace.

NOTE The remaining properties and methods do not form part of the DOM specification,
but are extensions in the XDOM package.

property documents: TdomNodeList read getDocuments;
Retrieves a list of all the documents created by this object. The returned value is a Tdom-
NodeList, with each entry being a TdomDocument object.

property documentTypes: TdomNodeList read getDocumentTypes;
Similarly, you obtain a list through this property of all the document type nodes generated

by this object. Only those nodes not yet attached to a document appear in the list. As above,

you get a TdomNodeList returned, but the entries this time are all TdomDocumentType objects.

class procedure RegisterDocumentFormat(const aNamespaceUri, aQualifiedName:
wideString; DocumentClass: TdomDocumentClass); virtual;
For added functionality, you can create your own subclasses of TdomDocument, adding what-

ever behavior you require, then register them with the XDOM package using this method.

The namespace and qualified name passed to this call serve to identify the associated sub-

class. Thereafter, creating a document with an element that matches one of these formats

results in the creation of an instance of that subclass.

A match occurs if the namespace and qualified name for the top-level element in the

CreateDocumentNS call match exactly with the corresponding registered values. For

non-namespace-aware documents, the element’s name must match with the registered entry,

while namespace-aware documents namespaces must be blank.

For example, you could create a movie-watcher subclass that provided factory methods

for movie and cinema elements.

The list of registered formats is global. This means that all TdomImplementation objects

in the application share it.

246 Part II: The Document Object Model

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



class procedure UnregisterDocumentClass(const aDocumentClass: TdomDocumentClass);
virtual;
Conversely, this method removes the specified document class from the list of those

registered.

function SupportsDocumentFormat(const aNamespaceUri, aQualifiedName: wideString):
boolean; virtual;
Determine whether or not a document format is supported with this function. Given a

namespace URI and a qualified element name, it searches the list of registered formats and

returns True if a match is found. Otherwise, it returns False.

function GetDocumentClass(const aNamespaceUri, aQualifiedName: wideString):
TdomDocumentClass; virtual;
Retrieves a reference to the last document class registered under the given namespace URI

and qualified name. These classes must be registered with the implementation prior to this

call. Finding no match results in an exception.

procedure Clear; virtual;
Frees all the documents and document type nodes created by this object (accessible through

its documents and documentTypes properties). Any objects owned by these items are also

released.

procedure FreeDocument(const doc: TdomDocument); virtual;
Use this method to free the specified document and remove it from the document list. Nodes,

node iterators, and tree walkers that it owns are also released. An exception occurs if the

document cannot be found in the implementation’s list.

procedure FreeDocumentType(const docType: TdomDocumentType); virtual;
Similarly, free an unattached document type and delete it from the documentTypes list with

this method. If the node cannot be found, an exception occurs.

TdomNodeFilter Class

A filter is part of the DOM Level 2 Traversal specification, and it allows you to select which nodes

presented to it are accepted and which are rejected. Filters work in conjunction with the node

iterator and tree walker objects, providing greater specificity in returning nodes. The definition for

the TdomNodeFilter class is shown in Listing 11-39. This class is abstract, as the XDOM package

knows nothing about how you want to select your nodes. You must derive a new class from this

one, overriding the acceptNodemethod to perform your particular selection. This is one of the few

classes in this package that you do create yourself.

Listing 11-39: The TdomNodeFilter declaration

TdomNodeFilter = class
public
function acceptNode(const node: TdomNode): TdomFilterResult; virtual;
abstract;

end;

Chapter 11: Open XML’s Document Object Model 247



The TdomNodeFilter object’s methods are listed below:

function acceptNode(const node: TdomNode): TdomFilterResult; virtual; abstract;
Given a single node from either a node iterator or a tree walker, you can perform whatever

operations on it that you wish to determine whether or not to accept it for further processing.

You do not have to worry about where the node comes from nor how it is stored, just check it

for inclusion. The return value must be one of the values shown in Table 11-5.

Table 11-5: Node filter return values

Frequency Meaning

filter_accept Accept the node. It is included in those returned through the node iterator or
tree walker objects.

filter_reject Reject the node. It is not included in those returned through the node iterator or
tree walker objects. Furthermore, in the tree walker, none of this node’s children
are returned either.

filter_skip Skip the node. It is not included in those returned by the node iterator or tree
walker objects. However, the tree walker continues to process any children of
this node, which may in turn be accepted, rejected, or skipped.

TdomNodeIterator Class

Another part of the DOM Level 2 Traversal specification, node iterators let you step through a

sequential list of nodes in an implementation-independent manner. These nodes appear in the list

in the same order that they appear in the document. The definition of the TdomNodeIterator class

is shown in Listing 11-40.

Listing 11-40: The TdomNodeIterator declaration

TdomNodeIterator = class
public
constructor create(const Root: TdomNode;
const WhatToShow: TdomWhatToShow; const NodeFilter: TdomNodeFilter;
const EntityReferenceExpansion: boolean); virtual;

procedure detach; virtual;
function NextNode: TdomNode; virtual;
function PreviousNode: TdomNode; virtual;
property expandEntityReferences: boolean
read GetExpandEntityReferences;

property filter: TdomNodeFilter read GetFilter;
property root: TdomNode read GetRoot;
property whatToShow: TdomWhatToShow read GetWhatToShow;

end;

Node iterators are live objects. They continue to return sensible results even when the structure on

which they are based is altered. All movements are based on the current position within the list,

generally before a particular node. If that node is removed from the subtree altogether, the current

position moves back to the first node that remains.

248 Part II: The Document Object Model



The properties and methods of the TdomNodeIterator object are detailed below:

constructor create(const Root: TdomNode; const WhatToShow: TdomWhatToShow; const
NodeFilter: TdomNodeFilter; const EntityReferenceExpansion: boolean);
virtual;
Obtain node iterators through the CreateNodeIterator method of the document object

instead of using this constructor. On creation, you specify the root node from which to

select, the set of node types to select, any node filter to apply, and a flag indicating whether

or not entity references are expanded and included in the search. The entire subtree based at

the specified root is scanned in order, matched by type, filtered out, and then included in the

iterator if they remain.

property root: TdomNode read GetRoot;
This read-only property returns a reference to the root node of the subtree scanned by the

iterator.

property whatToShow: TdomWhatToShow read GetWhatToShow;
Retrieve the set of node types initially selected through this read-only property.

property filter: TdomNodeFilter read GetFilter;
The filter used to screen nodes is returned by this read-only property. It returns nil if no fil-

ter is used.

property expandEntityReferences: boolean read GetExpandEntityReferences;
This read-only property returns the flag indicating whether or not the iterator returns

descendants of entity reference nodes. When set to True (during creation of the iterator), the

child nodes are processed. When set to False, they are totally ignored. This setting overrides

any node types given in the whatToShow property.

function NextNode: TdomNode; virtual;
Returns a reference to the next node in the list and advances the current position. After an

iterator is created, this method returns the first node in the list. It returns nil if at the end of

the list.

function PreviousNode: TdomNode; virtual;
Similarly, this method returns a reference to the previous node in the list and moves the posi-

tion backwards. A nil is returned if at the start of the list.

procedure detach; virtual;
When you finish with a node iterator, you should call this method to notify the DOM, allow-

ing its resources to be reclaimed. The iterator is placed into an invalid state. Calling the

NextNode or PreviousNode methods at this time generates an error. Use the Clear-
InvalidNodeIterators method of the document object to totally dispose of iterators in this

state.

Chapter 11: Open XML’s Document Object Model 249



TdomTreeWalker Class

More of the DOM Level 2 Traversal specification, tree walkers are similar to node iterators in that

they manage collections of nodes. However, tree walkers maintain the original tree structure, as

much as possible, of the subtree that they are based upon. See Listing 11-41 for the definition of

the TdomTreeWalker class.

Listing 11-41: The TdomTreeWalker declaration

TdomTreeWalker = class
public
constructor create(const Root: TdomNode;
const WhatToShow: TdomWhatToShow; const NodeFilter: TdomNodeFilter;
const EntityReferenceExpansion: boolean); virtual;

function parentNode: TdomNode; virtual;
function firstChild: TdomNode; virtual;
function lastChild: TdomNode; virtual;
function previousSibling: TdomNode; virtual;
function nextSibling: TdomNode; virtual;
function NextNode: TdomNode; virtual;
function PreviousNode: TdomNode; virtual;
property currentNode: TdomNode read GetCurrentNode
write SetCurrentNode;

property expandEntityReferences: boolean
read GetExpandEntityReferences;

property filter: TdomNodeFilter read GetFilter;
property root: TdomNode read GetRoot;
property whatToShow: TdomWhatToShow read GetWhatToShow;

end;

Tree walkers are also live structures—they reflect any changes made to the DOM on the fly. A

sensible approach to insertions and deletions is taken, with any movements through the tree

walker returning to a valid selected node based on its current position.

A TdomTreeWalker object’s properties and methods are described below:

constructor create(const Root: TdomNode; const WhatToShow: TdomWhatToShow; const
NodeFilter: TdomNodeFilter; const EntityReferenceExpansion: boolean);
virtual;
Do not use this constructor to build tree walkers. Instead, use the CreateTreeWalkermethod

of the document object. The parameters are the same as for a node iterator: the root of the

subtree, the set of node types to select initially, any filter to apply to those nodes, and a flag

denoting the expansion of entity reference nodes.

property root: TdomNode read GetRoot;
Retrieve the node at the root of the subtree scanned by the tree walker through this read-only

property.

property whatToShow: TdomWhatToShow read GetWhatToShow;
This read-only property returns the set of node types included in the initial selection.

Omitting particular node types can drastically alter the shape of the subtree as seen through

the tree walker. For example, only selecting text nodes causes them all to appear as direct

children of the root node, regardless of their original depths.

250 Part II: The Document Object Model



property filter: TdomNodeFilter read GetFilter;
Obtain a reference to any filter applied to the selected node through this read-only property.

A nil results if no filter is used.

property expandEntityReferences: boolean read GetExpandEntityReferences;
As for the node iterator, this read-only property determines whether or not the descendants

of entity reference nodes are included in those returned by the tree walker. If True, these

child nodes are processed, but when False, they are all ignored. This setting overrides any

node types specified in the whatToShow property.

property currentNode: TdomNode read GetCurrentNode write SetCurrentNode;
Retrieve or set the current node within the tree walker’s structure through this property. It is

possible to set the current node to any node at all, even outside of the subtree being scanned,

or to a node rejected because of the whatToShow or filter properties. In these cases, further

movements within the tree walker start from that node and return the appropriate node from

within the selected set. An error occurs if an attempt is made to set this value to nil.

function parentNode: TdomNode; virtual;
This method returns the closest visible ancestor of the current node, the first one that is

accepted by the node type setting and any filter. Move the current node pointer to the node

found. A nil is returned if attempting to move upward from the root node. In this case, the

current node pointer remains where it was.

function firstChild: TdomNode; virtual;
Returns the first visible child of the current node, and resets the current node to refer to it. If

no such node exists, the current node remains where it is, and the function returns nil.

function lastChild: TdomNode; virtual;
Similarly, this method returns the last visible child of the current node and moves the current

pointer here. Again, it returns nil if no such node exists.

function previousSibling: TdomNode; virtual;
Obtains the node immediately before the current one in its parent’s list of children. Move the

current pointer here if found, and return a nil if not found.

function nextSibling: TdomNode; virtual;
Conversely, finds the node immediately following this one at the same level. It returns nil if

no such node exists.

function NextNode: TdomNode; virtual;
Retrieve the next node in document order relative to the current one though this method.

This may traverse up or down the hierarchy. Move the current node pointer if found. If there

is no next node, it returns a nil.

function PreviousNode: TdomNode; virtual;
Similarly, this method finds the previous node in document order, returning nil if there is

none.

Chapter 11: Open XML’s Document Object Model 251



TXmlToDomParser Class

The actual loading of a document is performed by the XDOM parser as encapsulated in the

TXmlToDomParser class (see Listing 11-43), which derives from the TdomCustomParser class (see

Listing 11-42). This class ultimately derives from TComponent, allowing it to be dropped onto a

form from the component palette. You can then attach it to a DOM implementation object and cre-

ate an external subset handler if desired. Alternately, you can create a parser in code—just

remember to free it when you are finished.

Listing 11-42: The TdomCustomParser declaration

TdomCustomParser = class (TComponent)
protected
procedure parseDtd(const locator: TdomStandardLocator;
const name, pubId, sysId, data: WideString); virtual; abstract;

end;

Listing 11-43: The TXmlToDomParser declaration

TParserEvent = procedure(Sender: TObject; const PublicId,
SystemId: WideString; var extSubset: WideString) of object;

TXmlToDomParser = class (TdomCustomParser)
protected
FDocBuilder: TdomStandardDocBuilder; FDocXMLReader: TdomStandardDocXMLReader; FErrorHandler:

TdomStandardErrorHandler;
FExtDtdBuilder: TdomStandardExtSubsetBuilder;
FExtDtdReader: TdomStandardExtSubsetXMLReader;
FIntDtdBuilder: TdomStandardIntSubsetBuilder;
FIntDtdReader: TdomStandardIntSubsetXMLReader;
procedure Notification(AComponent: TComponent;
Operation: TOperation); override;

procedure parseDtd(const locator: TdomStandardLocator;
const name, pubId, sysId, data: WideString); override;

public
constructor Create(aOwner: TComponent); override;
destructor destroy; override;
procedure DocMemoryToDom(const Ptr: Pointer; const Size: Longint;
const pubId, sysId: wideString; const RefNode: TdomNode); virtual;

procedure DocSourceCodeToDom(const DocSourceCode: TXmlSourceCode;
const pubId, sysId: wideString; const RefNode: TdomNode); virtual;

procedure DocStreamToDom(const Stream: TStream;
const pubId, sysId: wideString; const RefNode: TdomNode); virtual;

procedure DocStringToDom(const Str: string;
const pubId, sysId: wideString; const RefNode: TdomNode); virtual;

procedure DocWideStringToDom(Str: WideString;
const pubId, sysId: wideString; const RefNode: TdomNode); virtual;

procedure ExtDtdMemoryToDom(const Ptr: Pointer; const Size: Longint;
const pubId, sysId: wideString; const RefNode: TdomNode); virtual;

procedure ExtDtdSourceCodeToDom(
const ExtDtdSourceCode: TXmlSourceCode;
const pubId, sysId: wideString; const RefNode: TdomNode); virtual;

procedure ExtDtdStreamToDom(const Stream: TStream;
const pubId, sysId: wideString; const RefNode: TdomNode); virtual;

procedure ExtDtdStringToDom(const Str: string;
const pubId, sysId: wideString; const RefNode: TdomNode); virtual;

procedure ExtDtdWideStringToDom(Str: WideString;

252 Part II: The Document Object Model



const pubId, sysId: wideString; const RefNode: TdomNode); virtual;
procedure IntDtdMemoryToDom(const Ptr: Pointer; const Size: Longint;
const pubId, sysId: wideString; const RefNode: TdomNode); virtual;

procedure IntDtdSourceCodeToDom(
const IntDtdSourceCode: TXmlSourceCode;
const pubId, sysId: wideString; const RefNode: TdomNode); virtual;

procedure IntDtdStreamToDom(const Stream: TStream;
const pubId, sysId: wideString; const RefNode: TdomNode); virtual;

procedure IntDtdStringToDom(const Str: string;
const pubId, sysId: wideString; const RefNode: TdomNode); virtual;

procedure IntDtdWideStringToDom(Str: WideString;
const pubId, sysId: wideString; const RefNode: TdomNode); virtual;

function fileToDom(const filename: TFileName): TdomDocument; virtual;
function memoryToDom(const Ptr: Pointer; const Size: Longint): TdomDocument; virtual;
function sourceCodeToDom(const IntDtdSourceCode: TXmlSourceCode): TdomDocument; virtual;
function streamToDom(const Stream: TStream): TdomDocument; virtual;
function stringToDom(const Str: String): TdomDocument; virtual;
function wideStringToDom(Str: WideString): TdomDocument; virtual;
property DocBuilder: TdomStandardDocBuilder read FDocBuilder;
property DocXMLReader: TdomStandardDocXMLReader read FDocXMLReader;
property ErrorHandler: TdomStandardErrorHandler read FErrorHandler;
property ExtDtdBuilder: TdomStandardExtSubsetBuilder
read FExtDtdBuilder;

property ExtDtdReader: TdomStandardExtSubsetXMLReader
read FExtDtdReader;

property IntDtdBuilder: TdomStandardIntSubsetBuilder
read FIntDtdBuilder;

property IntDtdReader: TdomStandardIntSubsetXMLReader
read FIntDtdReader;

published
property DOMImpl: TDomImplementation read GetDomImpl
write SetDomImpl;

property OnExternalSubset: TParserEvent read FOnExternalSubset
write FOnExternalSubset;

end;

Once a parse is finished it returns a document object that contains the new DOM. The parser cur-

rently supports the following encoding schemes: UTF-8, UTF-16BE, UTF-16LE, ISO-8859-1

through ISO-8859-10, ISO-8859-13 through ISO-8859-15, KOI8-R, cp10000_MacRoman, and

cp1251.

The properties and methods of a TXmlToDomParser object are listed below:

constructor Create(aOwner: TComponent); override;
Use this method to instantiate a parser object, supplying an owning component if desired. If

you drop the parser onto your form from the palette, it is automatically created for you.

destructor destroy; override;
If you created the parser yourself, do not forget to free it when you are finished.

property DOMImpl: TDomImplementation read GetDomImpl write SetDomImpl;
Use this method to retrieve or set the implementation object used during construction of a

DOM during parsing with the fileToDom method.

Chapter 11: Open XML’s Document Object Model 253



property OnExternalSubset: TParserEvent read FOnExternalSubset write
FOnExternalSubset;
Attach a handler to this event to supply an external DTD subset to the document during pars-

ing. The signature for the event is shown above. It passes across the public and system

identifiers for the external DTD, and expects back a WideString value, encoded as

UTF-16BE, representing the contents of that reference. Any nodes resulting from the pars-

ing of this string are placed under the external subset node of the document type, and are all

made read-only.

property DocBuilder: TdomStandardDocBuilder read FDocBuilder;
Access the internal TdomStandardDocBuilder object used to build the DOM structure

through this read-only property.

property DocXMLReader: TdomStandardDocXMLReader read FDocXMLReader;
Retrieve the internal TdomStandardDocXmlReader used to parse the XML document through

this read-only property.

property ErrorHandler: TdomStandardErrorHandler read FErrorHandler;
This read-only property lets you reference the internal TdomStandardErrorHandler that

deals with parsing errors.

property ExtDtdBuilder: TdomStandardExtSubsetBuilder read FExtDtdBuilder;
The internal TdomStandardExtSubsetBuilder object that constructs the external subset is

available through this read-only property.

property ExtDtdReader: TdomStandardExtSubsetXMLReader read FExtDtdReader;
Access the internal TdomStandardExtSubsetXMLReader object used to parse the external

subset through this read-only property.

property IntDtdBuilder: TdomStandardIntSubsetBuilder read FIntDtdBuilder;
This read-only property returns a reference to the internal TdomStandardIntSubsetBuilder
object that generates the internal subset.

property IntDtdReader: TdomStandardIntSubsetXMLReader read FIntDtdReader;
Retrieve the internal TdomStandardIntSubsetXMLReader object used to process the internal

subset through this read-only property.

function fileToDom(const filename: TFileName): TdomDocument; virtual;
This method is the heart of the parse process. It loads the specified XML document from a

file and parses its contents into a DOM structure. The OnExternalSubset event is triggered

if an external DTD reference is encountered, and any text returned from that call is incorpo-

rated into the document as read-only nodes. The return value of the function is a reference to

the new DOM hierarchy.

Errors occur if the DOMImpl property is nil or if an invalid filename is supplied. Other

errors are generated by documents that are not well-formed. Check the contents of the

ErrorHandler’s errorList property to determine the cause of the problem.

NOTE The XDOM parser is a non-validating parser, although it does read and process the
external subset of the DTD if this is provided through the OnExternalSubset event.

254 Part II: The Document Object Model



function memoryToDom(const Ptr: Pointer; const Size: Longint): TdomDocument;
virtual;

procedure DocMemoryToDom(const Ptr: Pointer; const Size: Longint; const pubId,
sysId: wideString; const RefNode: TdomNode); virtual;
If you already have the XML document in memory, you can use these methods to create the

corresponding DOM structure. Supply a pointer to the start of the document, which is

assumed to be in UTF-16BE encoding if it starts with $FEFF, in UTF-16LE if it starts with

$FFFE, and in UTF-8 encoding otherwise, and the length of the document in bytes. The func-

tion version returns a reference to the DOM, while the procedure (also accepting the public

and system identifiers if available) takes a reference to a node where the resulting subtree is

inserted. An error occurs if the document is not well-formed.

function sourceCodeToDom(const IntDtdSourceCode: TXmlSourceCode): TdomDocument;
virtual;

procedure DocSourceCodeToDom(const DocSourceCode: TXmlSourceCode; const pubId,
sysId: wideString; const RefNode: TdomNode); virtual;
Similar to the previous methods, these two work from a sequence of TXmlSourceCode-
Piece objects to construct the DOM. As before, the function returns the DOM itself, while

the procedure inserts the DOM under the supplied node.

function streamToDom(const Stream: TStream): TdomDocument; virtual;
procedure DocStreamToDom(const Stream: TStream; const pubId, sysId: wideString;

const RefNode: TdomNode); virtual;
These methods are just like the memoryToDom and DocMemoryToDom ones, except that they

read from a stream rather than memory. The same encodings are assumed. Once more, the

function returns a reference to the DOM, whereas the procedure inserts the new hierarchy

beneath the specified node.

function stringToDom(const Str: String): TdomDocument; virtual;
procedure DocStringToDom(const Str: string; const pubId, sysId: wideString; const

RefNode: TdomNode); virtual;
Further methods like memoryToDom and DomMemoryToDom, however these start with a string

value, which only contains valid ASCII XML characters. Get the complete DOM from the

function version, or have it inserted beneath the given node with the procedure.

function wideStringToDom(Str: WideString): TdomDocument; virtual;
procedure DocWideStringToDom(Str: WideString; const pubId, sysId: wideString;

const RefNode: TdomNode); virtual;
The last in the series, these methods read from a WideString value encoded with UTF-16BE

to produce the DOM. The function returns the DOM itself, while the procedure inserts the

new nodes beneath the specified one.

procedure ExtDtdMemoryToDom(const Ptr: Pointer; const Size: Longint; const pubId,
sysId: wideString; const RefNode: TdomNode); virtual;
Parse the contents of an external DTD subset through this method, reading the document

from memory. The resulting DOM structure is inserted into the supplied node. The XDOM

Chapter 11: Open XML’s Document Object Model 255



package does not follow the XML specification exactly here, only resolving parameter enti-

ties in places where they might appear in an internal subset.

procedure ExtDtdSourceCodeToDom(const ExtDtdSourceCode: TXmlSourceCode; const
pubId, sysId: wideString; const RefNode: TdomNode); virtual;
Similar to ExtDtdMemoryToDom except that the document comes from a sequence of

TXmlSourceCodePiece objects.

procedure ExtDtdStreamToDom(const Stream: TStream; const pubId, sysId: wideString;
const RefNode: TdomNode); virtual;
Another version, reading from a stream to create the external subset.

procedure ExtDtdStringToDom(const Str: string; const pubId, sysId: wideString;
const RefNode: TdomNode); virtual;
Process the supplied string value to extract the external subset.

procedure ExtDtdWideStringToDom(Str: WideString; const pubId, sysId: wideString;
const RefNode: TdomNode); virtual;
Generate the external subset from the supplied WideString value.

procedure IntDtdMemoryToDom(const Ptr: Pointer; const Size: Longint; const pubId,
sysId: wideString; const RefNode: TdomNode); virtual;
This method processes the indicated memory to derive an internal DTD subset and inserts it

into the specified node.

procedure IntDtdSourceCodeToDom(const IntDtdSourceCode: TXmlSourceCode; const
pubId, sysId: wideString; const RefNode: TdomNode); virtual;
Build the internal subset from the sequence of TXmlSourceCodePiece objects supplied.

procedure IntDtdStreamToDom(const Stream: TStream; const pubId, sysId: wideString;
const RefNode: TdomNode); virtual;
Read the stream specified and generate the internal subset from it.

procedure IntDtdStringToDom(const Str: string; const pubId, sysId: wideString;
const RefNode: TdomNode); virtual;
Use the supplied string value to construct the internal subset.

procedure IntDtdWideStringToDom(Str: WideString; const pubId, sysId: wideString;
const RefNode: TdomNode); virtual;
This method builds the internal subset from the contents of the given WideString.

Helper Functions

A large number of helper functions are defined in the XDOM package that you can use in your

own code.

function XMLExtractPrefix(const qualifiedName: wideString): wideString;
Extract the prefix from a qualified name with this function. For example, it returns the math
part of the name math:plus. An exception occurs if the supplied name is malformed.

256 Part II: The Document Object Model

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



function XMLExtractLocalName(const qualifiedName: wideString): wideString;
Conversely, retrieve the local part of a qualified name with this function. For example, it

returns the plus part of the name math:plus. An exception occurs if the supplied name is

malformed.

The following functions test whether or not the given character is of a particular type as defined by

the XML specification. Each returns True if the character is in the appropriate set, and False
otherwise.

function IsXmlChar(const S: WideChar): boolean;
function IsXmlWhiteSpace(const S: WideChar): boolean;
function IsXmlLetter(const S: WideChar): boolean;
function IsXmlBaseChar(const S: WideChar): boolean;
function IsXmlIdeographic(const S: WideChar): boolean;
function IsXmlCombiningChar(const S: WideChar): boolean;
function IsXmlDigit(const S: WideChar): boolean;
function IsXmlExtender(const S: WideChar): boolean;
function IsXmlNameChar(const S: WideChar): boolean;
function IsXmlPubidChar(const S: WideChar): boolean;

The next set of functions check whether a particular string conforms to the various formats defined

in the XML specification. Each returns True if the string matches the appropriate definition, and

False otherwise.

function IsXmlS(const S: WideString): boolean;
function IsXmlName(const S: WideString): boolean;
function IsXmlNames(const S: WideString): boolean;
function IsXmlNmtoken(const S: WideString): boolean;
function IsXmlNmtokens(const S: WideString): boolean;
function IsXmlCharRef(const S: WideString): boolean;
function IsXmlEntityRef(const S: WideString): boolean;
function IsXmlPEReference(const S: WideString): boolean;
function IsXmlReference(const S: WideString): boolean;
function IsXmlEntityValue(const S: WideString): boolean;
function IsXmlAttValue(const S: WideString): boolean;
function IsXmlSystemLiteral(const S: WideString): boolean;
function IsXmlPubidLiteral(const S: WideString): boolean;
function IsXmlCData(const S: WideString): boolean;
function IsXmlCharData(const S: WideString): boolean;
function IsXmlPITarget(const S: WideString): boolean;
function IsXmlVersionNum(const S: WideString): boolean;
function IsXmlEncName(const S: WideString): boolean;
function IsXmlStringType(const S: WideString): boolean;
function IsXmlTokenizedType(const S: WideString): boolean;

Similar to the previous functions, this set tests a string’s conformance to the named

XML-namespace types, as defined in the XML specification. Each returns True if the string

matches the specification, and False otherwise.

function IsXmlNCNameChar(const s: WideChar): boolean;
function IsXmlNCName(const S: WideString): boolean;
function IsXmlDefaultAttName(const S: WideString): boolean;
function IsXmlPrefixedAttName(const S: WideString): boolean;
function IsXmlNSAttName(const S: WideString): boolean;
function IsXmlLocalPart(const S: WideString): boolean;
function IsXmlPrefix(const S: WideString): boolean;
function IsXmlQName(const S: WideString): boolean;

Chapter 11: Open XML’s Document Object Model 257



The following functions provide conversion abilities.

function ResolveCharRefs(const S: WideString): wideString;
Given a string containing character entity references, the returned string has these replaced

by their actual characters. An error occurs if the string contains a malformed reference or an

invalid character.

function XmlIntToCharRef(const value: integer): wideString;
Convert an integer value into the corresponding character reference.

function XmlCharRefToInt(const S: WideString): integer;
Extract the equivalent integer value from a character reference, &#n; or &#xhh;. If the char-

acter reference is invalid, an error occurs.

function XmlCharRefToStr(const S: WideString): WideString;
Convert the given character reference to its corresponding string value. An error occurs if

the character reference is invalid.

function XmlStrToCharRef(const S: WideString): WideString;
Return the sequence of character references that equate to the supplied string value. If an

invalid character is encountered, an error occurs.

The following functions convert from the named character set to UTF-16 encoding. Either a single

character or an entire string is transformed. Errors occur if invalid sequences in the original encod-

ing are encountered.
function Iso8859_1ToUTF16Char(const P: Char):WideChar;
function Iso8859_2ToUTF16Char(const P: Char):WideChar;
function Iso8859_3ToUTF16Char(const P: Char):WideChar;
function Iso8859_4ToUTF16Char(const P: Char):WideChar;
function Iso8859_5ToUTF16Char(const P: Char):WideChar;
function Iso8859_6ToUTF16Char(const P: Char):WideChar;
function Iso8859_7ToUTF16Char(const P: Char):WideChar;
function Iso8859_8ToUTF16Char(const P: Char):WideChar;
function Iso8859_9ToUTF16Char(const P: Char):WideChar;
function Iso8859_10ToUTF16Char(const P: Char):WideChar;
function Iso8859_13ToUTF16Char(const P: Char):WideChar;
function Iso8859_14ToUTF16Char(const P: Char):WideChar;
function Iso8859_15ToUTF16Char(const P: Char):WideChar;
function KOI8_RToUTF16Char(const P: Char):WideChar;
function cp10000_MacRomanToUTF16Char(const P: Char):WideChar;
function cp1251ToUTF16Char(const P: Char):WideChar;
function Iso8859_1ToUTF16Str(const s: string):WideString;
function Iso8859_2ToUTF16Str(const s: string):WideString;
function Iso8859_3ToUTF16Str(const s: string):WideString;
function Iso8859_4ToUTF16Str(const s: string):WideString;
function Iso8859_5ToUTF16Str(const s: string):WideString;
function Iso8859_6ToUTF16Str(const s: string):WideString;
function Iso8859_7ToUTF16Str(const s: string):WideString;
function Iso8859_8ToUTF16Str(const s: string):WideString;
function Iso8859_9ToUTF16Str(const s: string):WideString;
function Iso8859_10ToUTF16Str(const s: string):WideString;
function Iso8859_13ToUTF16Str(const s: string):WideString;
function Iso8859_14ToUTF16Str(const s: string):WideString;
function Iso8859_15ToUTF16Str(const s: string):WideString;
function KOI8_RToUTF16Str(const s: string):WideString;
function cp10000_MacRomanToUTF16Str(const s: string):WideString;

258 Part II: The Document Object Model



function UTF8ToUTF16BEStr(const s: string): WideString;
Convert from a UTF-8 encoded string to UTF-16BE encoding. An error occurs if an invalid

UTF-8 sequence is found.

function UTF16BEToUTF8Str(const ws: WideString; const expandLF: boolean): string;
Going the opposite way, return the UTF-8 equivalent to the supplied UTF-16BE string,

expanding line feeds to the combination of carriage returns and line feeds if the expandLF
parameter is True. If the original string contains an invalid UTF-16BE sequence, an error

occurs.

function Utf16HighSurrogate(const value: integer): WideChar;
Retrieve the high surrogate character for the given code (in the range $10000 to $10FFFF).

This allows for the encoding of characters in this range in UTF-16BE. An error occurs if the

value is outside the nominated range.

function Utf16LowSurrogate(const value: integer): WideChar;
Similar to the above function, this returns the low surrogate character. It has the same

restrictions as above.

function Utf16SurrogateToInt(const highSurrogate, lowSurrogate: WideChar):
integer;
Going back the other way, this function converts from the high and low surrogate characters

to the original code value. If the surrogates are not in their respective ranges ($D800 to $DBFF
for the high one, $DC00 to $DFFF for the low), an error occurs.

function IsUtf16HighSurrogate(const S: WideChar): boolean;
Test whether a character is a high surrogate with this function. It returns True if the character

is in the appropriate range, and False otherwise.

function IsUtf16LowSurrogate(const S: WideChar): boolean;
Similarly, this function tests for the low surrogate range.

function XMLNormalizeLineBreaks(const source :WideString): WideString;
Convert carriage returns, or carriage returns and line feeds, into single line feeds with this

function.

procedure XMLAnalyzePCDATA(Source: widestring; var Lines: TStringList);
This procedure parses the supplied string and returns a string list where each entry contains

either all white space characters, or all non-white space characters.

procedure XMLAnalyzeTag(const Source: WideString; var TagName, AttribSequence:
WideString);
This procedure retrieves the tag name and set of attributes from the supplied string. The tag

name is all the text from the start of the string to the first white space character (or the end of

the string). The attributes comprise the remainder of the string (if any), stripped of leading

and trailing white space.

Chapter 11: Open XML’s Document Object Model 259



procedure XMLAnalyseEntityDef(Source: WideString; var EntityValue, SystemLiteral,
PubidLiteral, NDataName: WideString; var Error: boolean);
Parse out the contents of an entity definition, returning the entity value, or its system and

public identifiers, and optional data type. The Error parameter returns True if the definition

is malformed, and False if everything is OK.

procedure XMLAnalyseNotationDecl(const Decl: WideString; var SystemLiteral,
PubidLiteral: WideString; var Error: boolean);
This procedure parses out a notation definition, returning the system and public identifiers,

and a flag indicating any errors.

procedure XMLIsolateQuote(Source: WideString; var content, rest: WideString; var
QuoteType: WideChar; var Error: boolean);
After stripping off leading white space, this procedure expects to see a single ( ' ) or double

quote ( " ), returning this as QuoteType. It then searches for the corresponding closing quote,

and returns the intervening characters as content. Any remaining characters in the string

appear in rest. An error is signaled if no quote is found at the beginning, if there is no

matching end quote, or if the end quote is followed by a non-white space character.

function XMLTrunc(const Source: WideString): WideString;
This function removes leading and trailing white space.

procedure XMLTruncAngularBrackets(const Source: WideString; var content:
WideString; var Error: boolean);
After removing leading or trailing white space, this procedure then strips off a set of leading

and trailing square brackets ( [ ] ). An error is signaled if both brackets are not found.

procedure XMLTruncRoundBrackets(const Source: WideString; var content: WideString;
var Error: boolean);
Similar to the previous procedure, this one expects parentheses. Again, an error is flagged if

they are not present.

function XMLAnalysePubSysId(const PublicId, SystemId, NotaName: WideString):
WideString;
This function validates the formats of the supplied identifiers and notation name, before

returning the formatted definition using these values, such as SYSTEM "http://www.
starwars.com/episode-i/" NDATA HTML. Errors occur if the values are invalid.

260 Part II: The Document Object Model



Viewing with the Open XML DOM

For a comparison with the other DOM implementations, you can write the same XML document

viewer that you saw earlier using the XDOM package. Since this package is written in Delphi,

obtaining and using the necessary objects is very straightforward. The steps to take are:

1. Create an instance of the parser TXmlToDomParser.

2. Create an instance of the DOM implementation TDomImplementation.

3. Attach the implementation object to the parser so that the latter can construct an appropriate

document, followed by the necessary node types.

4. Parse the XML document by using the FileToDOM method, supplying the filename to be

loaded.

5. Work with the resulting DOM returned by the parse process. From here you can navigate

down through the hierarchy to reach all the nodes generated from the text document.

6. When you have finished, free up the implementation and parser.

All of this is shown in the LoadDoc method from the viewer (see Listing 11-44). The remainder of

the code here initializes the viewer GUI and loads the DOM structure into a tree view for you.

Listing 11-44: Loading a document with the Open XML DOM

{ Load an XML document }
procedure TfrmXMLViewer.LoadDoc(Filename: string);
var
XMLParser: TXmlToDomParser;
XMLImpl: TDomImplementation;

begin
pgcDetails.ActivePage := tshDocument;
{ Initialise document-wide details for display }
InitDocumentDetails;
{ Load the source document }
memSource.Lines.LoadFromFile(Filename);
dlgOpen.Filename := Filename;
{ Instantiate the DOM }
XMLParser := TXmlToDomParser.Create(Self);
XMLImpl := TDomImplementation.Create(Self);
trvXML.Items.BeginUpdate;
try
XMLParser.DomImpl := XMLImpl;
XMLParser.OnExternalSubset := ExternalSubset;
{ Parse the document and add the structure to the tree view }
AddElementToTree(XMLParser.FileToDOM(Filename), nil);
trvXML.Items[0].Expand(False);

finally
trvXML.Items.EndUpdate;
XMLParser.Free;
XMLImpl.Free;

end;
end;

Chapter 11: Open XML’s Document Object Model 261



You will notice that a handler is attached to the parser’s OnExternalSubset event. This lets you

retrieve an external DTD and return it to the parser. The parser then incorporates its contents into

the DOM under the ExternalSubset node of the document type node. See Listing 11-45 for the

implementation of this handler. It receives the system identifier for the DTD (a filename) and uses

this to read the contents of that file into the extSubset parameter, which returns to the caller.

Listing 11-45: Retrieving an external DTD

{ Supply the external DTD }
procedure TfrmXMLViewer.ExternalSubset(Sender: TObject;
const PublicId, SystemId: WideString; var extSubset: WideString);

var
stmDTD: TFileStream;
stmString: TStringStream;

begin
stmDTD := TFileStream.Create(SystemId, fmOpenRead);
stmString := TStringStream.Create('');
try
stmString.CopyFrom(stmDTD, 0);
extSubset := stmString.DataString;

finally
stmString.Free;
stmDTD.Free;

end;
end;

NOTE Even though the XDOM parser loads the external DTD, it does not validate XML doc-
uments. It simply tests them for being well-formed.

The main part of the viewer is the AddElementToTree procedure that recursively steps down

through the DOM hierarchy and adds the nodes it encounters to a tree view component, matching

the original structure. It is first invoked with the document node and a nil representing the root of

the tree view. This routine and its supporting ones are shown in Listing 11-46.

Listing 11-46: Processing the Open XML DOM

{ Add a TXMLElement to the tree view }
function AddElement(Parent: TTreeNode; Name: string;
Element: TXMLElement): TTreeNode;

begin
FList.Add(Element);
Result := trvXML.Items.AddChildObject(Parent, Name, Element);
with Result do
begin
ImageIndex := Ord(Element.ElementType);
SelectedIndex := ImageIndex;

end;
end;
{ Return true if text is all whitespace, false otherwise }
function SkipWhiteSpace(Text: string): Boolean;
var
Index: Integer;

begin
Result := mniSuppressWhitespace.Checked;
if not Result then
Exit;

262 Part II: The Document Object Model



for Index := 1 to Length(Text) do
if not (Text[Index] in [#0..#32]) then
begin
Result := False;
Exit;

end;
end;

{ Add current element to the treeview and
then recurse through children }

procedure AddElementToTree(Node: TdomNode; TreeParent: TTreeNode);
var
Index, Index2: Integer;
DisplayName, DisplayValue: string;
NewNode: TTreeNode;
Attribs: TStringList;

begin
{ Generate name for display in the tree }
if Node.NodeType in
[ntText_Node, ntComment_Node, ntCDATA_Section_Node] then

begin
if Length(Node.NodeValue) > 20 then
DisplayName := Copy(Node.NodeValue, 1, 17) + '...'

else
DisplayName := Node.NodeValue;

end
else
DisplayName := Node.NodeName;

{ Create storage for later display of node values }
case Node.NodeType of
ntElement_Node:
with Node as TdomElement do
begin
Attribs := TStringList.Create;
try
for Index := 0 to Node.Attributes.Length - 1 do
with Node.Attributes.Item(Index) do
Attribs.Values[NodeName] := NodeValue;

NewNode := AddElement(TreeParent, DisplayName,
TXMLElement.Create(xtElement, TagName, NamespaceURI,
LocalName, '', Attribs));

finally
Attribs.Free;

end;
end;

ntText_Node:
with Node as TdomText do
if not SkipWhiteSpace(Data) then
NewNode := AddElement(TreeParent, DisplayName,
TXMLElement.Create(xtText, '', '', '', Data, nil));

ntCDATA_Section_Node:
with Node as TdomCDATASection do
if not SkipWhiteSpace(Data) then
NewNode := AddElement(TreeParent, DisplayName,
TXMLElement.Create(xtCData, '', '', '', Data, nil));

ntEntity_Reference_Node:
with Node as TdomEntityReference do
begin
if Assigned(Declaration) then
begin

Chapter 11: Open XML’s Document Object Model 263



if Declaration.IsInternalEntity then
DisplayValue := Declaration.NodeValue

else
DisplayValue := Declaration.Value;

end
else
DisplayValue := '';

NewNode := AddElement(TreeParent, DisplayName,
TXMLElement.Create(xtEntityRef, NodeName, '', '',
DisplayValue, nil));

end;
ntProcessing_Instruction_Node:
with Node as TdomProcessingInstruction do
NewNode := AddElement(TreeParent, DisplayName,
TXMLElement.Create(xtInstruction, Target, '', '',
Data, nil));

ntComment_Node:
with Node as TdomComment do
NewNode := AddElement(TreeParent, DisplayName,
TXMLElement.Create(xtComment, '', '', '', Data, nil));

ntDocument_Node:
with Node as TdomDocument do
begin
edtSystemId.Text := FileName;
NewNode := AddElement(TreeParent, XMLDocDesc,
TXMLElement.Create(xtDocument, XMLDocDesc, '', '',
'', nil));

end;
ntXML_Declaration_Node:
with Node as TdomXmlDeclaration do
begin
edtVersion.Text := VersionNumber;
edtEncoding.Text := EncodingDecl;
cbxStandAlone.Checked := (UpperCase(SDDecl) = YesValue);
DisplayValue := 'version="' + VersionNumber + '"';
if EncodingDecl <> '' then
DisplayValue := DisplayValue + ' encoding="' +
EncodingDecl + '"';

if UpperCase(SDDecl) = YesValue then
DisplayValue := DisplayValue + ' standalone="' +
SDDecl + '"';

NewNode := AddElement(TreeParent, 'xml', TXMLElement.Create(
xtInstruction, 'xml', '', '', DisplayValue, nil));

end;
ntDocument_Type_Node:
with Node as TdomDocumentType do
begin
edtDocType.Text := Name;
NewNode := AddElement(TreeParent, DTDDesc,
TXMLElement.Create(xtDTD, DTDDesc, '', '', Name, nil));

end;
ntInternal_Subset_Node, ntExternal_Subset_Node:
NewNode := AddElement(TreeParent, Node.NodeName,
TXMLElement.Create(xtEntityRef, Node.NodeName, '', '',
'', nil));

ntEntity_Declaration_Node:
with Node as TdomEntityDeclaration, stgEntities do
if NotationName <> '' then
begin
if Cells[0, RowCount - 1] <> '' then

264 Part II: The Document Object Model



RowCount := RowCount + 1;
Cells[0, RowCount - 1] := NodeName;
Cells[1, RowCount - 1] := PublicId;
Cells[2, RowCount - 1] := SystemId;
Cells[3, RowCount - 1] := NotationName;

end
else
begin
if IsInternalEntity then
DisplayValue := NodeValue

else
DisplayValue := Value;

NewNode := AddElement(TreeParent, DisplayName,
TXMLElement.Create(xtEntityRef, NodeName, '', '',
DisplayValue, nil));

end;
ntNotation_Declaration_Node:
with Node as TdomNotationDeclaration, stgNotations do
begin
if Cells[0, RowCount - 1] <> '' then
RowCount := RowCount + 1;

Cells[0, RowCount - 1] := NodeName;
Cells[1, RowCount - 1] := PublicId;
Cells[2, RowCount - 1] := SystemId;

end;
ntElement_Type_Declaration_Node:
with Node as TdomElementTypeDeclaration do
NewNode := AddElement(TreeParent, DisplayName,
TXMLElement.Create(xtElementDecl, NodeName, '', '',
Value, nil));

ntAttribute_List_Node:
with Node as TdomAttrList do
begin
Attribs := TStringList.Create;
try
for Index := 0 to AttributeDefinitions.Length - 1 do
with AttributeDefinitions.Item(Index) as
TdomAttrDefinition do

begin
if HasChildNodes then
begin
DisplayValue := '';
for Index2 := 0 to ChildNodes.Length - 1 do
DisplayValue := DisplayValue + '|' +
ChildNodes.Item(Index2).Code;

DisplayValue := '(' + Copy(DisplayValue, 2,
Length(DisplayValue) - 1) + ')';

end
else
DisplayValue := AttributeType;

Attribs.Values[Name] := DisplayValue + ' ' +
DefaultDeclaration;

end;
NewNode := AddElement(TreeParent, DisplayName,
TXMLElement.Create(xtAttributeDecl, NodeName, '', '',
'', Attribs));

finally
Attribs.Free;

end;
end;

Chapter 11: Open XML’s Document Object Model 265



else
begin
NewNode := TreeParent;
OutputDebugString(PChar(DisplayName + ' ' +
IntToStr(Ord(Node.NodeType)) + ' ' +
IntToStr(Node.ChildNodes.Length)));

end;
end;
{ And recurse through children }
if Node.HasChildNodes then
for Index := 0 to Node.ChildNodes.Length - 1 do
AddElementToTree(Node.ChildNodes.Item(Index), NewNode);

end;

As with the previous viewers, the first step is to build a displayable name for the node being pro-

cessed. For text type nodes, up to 20 characters from the text itself are used, whereas for the other

nodes you retrieve the full node name. Then you use the node type to determine what other pro-

cessing needs to be performed

on it.

Elements have their attrib-

utes extracted and placed into a

string list, indexed by their

names. This list is added to a

TXMLElement object along with

the original element’s name (in

all forms) and a flag denoting it

as an element node. The

TXMLElement object is used

internally in the viewer to hold

details about nodes for later

viewing when selected from

the tree view (see Figure 11-2).

Text, CDATA section, and

comment nodes carry only

their text content over to the

TXMLElement object, plus a

flag indicating their node type.

See Figure 11-3 for an exam-

ple of a text node following

loading. Processing instruction

nodes supply these values and

add the target of the command.

Entity reference nodes retrieve

the value of that entity through

their Declaration properties,

before adding it to the tree with

266 Part II: The Document Object Model

Figure 11-2: An element’s details in the viewer.

Figure 11-3: The contents of a text node.

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



the entity name. Note how each node is cast to its actual type, allowing you access to its specific

properties.

The document node itself

creates a tree node with a pre-

defined name, XML Document.

Various details about the docu-

ment overall appear on the

information page displayed

when the document node is

selected in the tree view (see

Figure 11-4). Similarly, the

document type node also has a

preset name, DTD, while its

internal and external subset

nodes use the names given by

the DOM. The XML declara-

tion node supplies values to

various fields on the document details page of the viewer, as well as becoming an “instruction”

entry in the tree.

The content of the DTD comes from the following nodes:

� Entity declarations are checked to determine whether or not they are unparsed entities. If

unparsed, their details are directed to the grid on the document page of the viewer. Parsed enti-

ties appear in the body of the tree, with their value set as the text to be displayed.

� Notation declarations are also sent to the grid on the document page.

� Element declarations appear beneath the internal or external subset nodes with their name and

their content model as data, the latter coming from the Value property. Attribute declarations

arrive within an attribute

list node, from which you

retrieve the element name.

You then step through all

of the node’s children to

retrieve the attributes

themselves. The attribute

type comes from the

AttributeType property,

or from children of the

attribute itself if an enu-

merated value is specified.

Each attribute’s details are

accumulated into a string

list, indexed by the

Chapter 11: Open XML’s Document Object Model 267

Figure 11-4: The document details in the viewer.

Figure 11-5: Attribute declarations in the DTD.



attribute name. This list then is attached to the TXMLElement node for the entire attribute list

for that element (as shown in Figure 11-5).

Any remaining node types are ignored for this application, but are noted in the debugging output

log by their name, node type, and number of children.

Finally, all the child nodes of the current one are processed in turn, handing them off to this

same routine. Note that the tree node passed to this recursive call is the one just created for the par-

ent node, thus maintaining the DOM structure within the tree view.

Summary

The XDOM package is an open source, native Delphi implementation of the DOM specification.

It follows the DOM Level 2 spec very closely with additions where necessary to make the suite

more usable.

Its biggest difference from the other DOMs described previously is its extensive support for

the document type node and its internal and external subsets. With this package you can retrieve or

create the entire document, including the DTD sections omitted from the other DOMs, and the

XML specification itself.

Being written in Delphi means that you can compile it directly into your program without hav-

ing to worry about the availability of external DLLs. Having the source with the package lets you

trace through it, if necessary, to follow the processing of your documents.

The underlying parser for the XDOM package is SAX-like and can be used on its own or

wrapped in the SAX interfaces. (This is left as an exercise for the reader.)

Future developments for XDOM include support for document validation and separating the

DTD content models from the rest of the tree. Quite possibly these will have been implemented by

the time you read this. Check it out at the Open XML Web site.

268 Part II: The Document Object Model



P a r t I I I

Simple API for XMLSimple API for XML

The Document Object Model discussed in Part II presents the XML document as a hierar-

chy of nodes in memory. You can instantly navigate to any node within the tree and work

with it. The model can be updated by adding new nodes or deleting existing ones. New

documents can be built from scratch. All this requires is the DOM to load in the entire

document and have it available on request.

To reduce memory usage, you can use the Simple API for XML instead. It presents

the XML document as a series of events to which you can respond. Thus, it only needs

resources for a single node at a time. For large documents this can be a great saving. It is

also useful if you are only interested in a small portion of the document, such as one

subtree or only one type of element. SAX lets you easily focus on just these parts and

work with them.

The DOM lets you alter the document structure in memory and most implementations

let you write out the new document. SAX, however, creates no such structure and only

lets you read the document (or parts thereof), though you could create handlers to do

these things.

Chapter 12 looks at the SAX specification itself. It describes each of the interfaces

and classes that make up the functionality. By defining SAX as interfaces only, their

implementation is left open. Although the reference version of SAX is written in Java,

other languages can also be used, such as Delphi.

Chapter 13 examines Microsoft’s SAX offering. As part of the latest MSXML pack-

age you get a SAX2-compliant parser. You can then write whatever handlers you desire to

interact with it.

Chapter 14 presents a native Delphi implementation of SAX. As well as translating

the interfaces into Delphi, you can build a simple parser and an application that uses it.

Chapter 15 combines these two versions by wrapping the Microsoft SAX parser in the

Delphi interfaces. This lets you easily swap between the two implementations with a sin-

gle line of code, demonstrating one of the tenets of SAX in that you do not have to rewrite

your application to take advantage of different versions.

269



Chapter 12: Simple API for XML (SAX)

Chapter 13: Microsoft’s SAX Parser

Chapter 14: SAX in Delphi

Chapter 15: Wrapping External Parsers



C h a p t e r 1 2

Simple API for XMLSimple API for XML

(SAX)

An alternate method of processing XML documents was developed by the XML-DEV mailing list

under the leadership of David Megginson. Instead of constructing an object model that corre-

sponds to the entire structure within a document, they proposed an event-based approach that

triggered certain actions whenever a new element or piece of content was encountered in parsing

the document. Details of the standard and a Java implementation are available at http://www.

megginson.com/SAX/ and are included on the CD-ROM that accompanies this book.

One of the main benefits of this approach is that you do not have to build the entire object

model in memory. This can be very important for large documents, especially when only a small

portion of the document is actually required for processing.

Since the original release of SAX in May 1998, the specification has been revised and

enhanced, with version 2 being released in May 2000. Several of the original interfaces have been

discontinued (deprecated) in favor of newer offerings with more functionality. The main additions

to the design have been support for namespaces within the document, and extra events for lexical

elements such as the DTD, comments, and CDATA sections.

Working with SAX

When working with SAX, you typically already have a compliant parser (called a reader in SAX2

since it implements the XMLReader interface) supplied by a third party, along with implementa-

tions of the basic helper classes defined in SAX. Given an XML document, the reader scans it to

extract the various text tokens that make it up, such as entity declarations, element tags, text, and

comments. As it does this, it makes callbacks to a number of registered handlers, similar to the

way event handlers work in Delphi. In fact, each callback is known as an event.

The abilities of these handlers are defined by a number of interfaces. To react to the events that

the reader produces, you would usually write your own class that implements the ContentHandler
interface (which deals with basic elements and text). After registering this with the reader, you

would parse the document and receive event notifications through method calls to your class. For

example, for each block of text encountered, the characters method is invoked.

271



In many circumstances you would also write a class that implements the ErrorHandler inter-

face to deal with any problems that arise during the parse process. To receive more details about

the document, you could create and register classes that implement the DTDHandler, DeclHandler,

and/or LexicalHandler interfaces. Since these are all interfaces, you could write just the one class

that implements them all, and register it with the reader under each category.

SAX Elements

SAX defines several interfaces to encapsulate its functionality, along with a few classes and

exceptions. Specifying only an interface makes it much easier to provide alternate implementa-

tions of the API. This is important since you usually implement at least one of the interfaces that

responds to the SAX events for each application.

Furthermore, restricting the interactions to an interface allows the different parts of the imple-

mentation to be decoupled; each part’s knowledge of the other parts is limited so that each can

evolve independently. This allows you to create a handler that works with one compliant parser,

and expect to have it work, without any changes, with another compliant parser. As new technolo-

gies appear you can replace the appropriate pieces without breaking the rest of the application.

Once you have a suitable parser, you can easily write any number of handlers to respond to it. You

may even be able to reuse handlers across a number of projects.

All the definitions that make up SAX are shown in Table 12-1, along with the version in which

they are defined (version 1, version 2, or extensions to version 2).

Table 12-1: SAX definitions

SAX Item Type Vers. Purpose

AttributeList Interface 1 Provide access to a list of attribute details
(deprecated in favor of Attributes)

Attributes Interface 2 Provide access to a list of attribute details,
including support for namespaces

ContentHandler Interface 2 Process elements and content from the
document as they are encountered

DeclHandler Interface 2x Provide notification of additional declarations
within the document’s DTD (a SAX2
extension)

DefaultHandler Class 2 Provide a default implementation of the
handler interfaces

DocumentHandler Interface 1 Process elements and content from the
document as they are encountered
(deprecated in favor of ContentHandler)

DTDHandler Interface 1 Deal with unparsed entities and notations from
the DTD

EntityResolver Interface 1 Resolve references to external entities

272 Part III: Simple API for XML



SAX Item Type Vers. Purpose

ErrorHandler Interface 1 Deal with errors that may arise during
processing

HandlerBase Class 1 Provide a default implementation of the
handler interfaces (deprecated in favor of
DefaultHandler)

InputSource Class 1 Encapsulate the retrieval and supply of a
resource

LexicalHandler Interface 2x Provide notification of additional lexical
constructions within the document (a SAX2
extension)

Locator Interface 1 Provide details on the current position within
the document while parsing

Parser Interface 1 Perform the parsing process and interact with
the handler interfaces as necessary
(deprecated in favor of XMLReader)

ParserAdapter Class 2 Wrap a SAX1 Parser to make it act like a SAX2
XMLReader

ParserFactory Class 1 Create instances of a default or named parser

SAXException Exception 1 A general exception to flag all problems during
SAX operations

SAXNotRecognizedException Exception 2 Flag an unknown feature or property of the
XML reader

SAXNotSupportedException Exception 2 Flag a known feature or property that is not
supported

SAXParseException Exception 1 Flag an error during the parse process that
includes location information

XMLFilter Interface 2 Filter events from an XMLReader before
passing them on to a handler

XMLReader Interface 2 Perform the parsing process and interact with
the handler interfaces as necessary

XMLReaderAdapter Class 2 Wrap a SAX2 XMLReader to make it act like a
SAX1 Parser

As an example, processing of the document shown in Listing 12-1 through a SAX reader may

result in the stream of events shown in Listing 12-2. Having each handler method respond to the

event by writing out the method name and its parameters could produce this output.

Listing 12-1: A sample XML document

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE movie-watcher SYSTEM "movie-watcher.dtd" [
<!NOTATION HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<!NOTATION GIF SYSTEM "iview.exe">
<!ENTITY SW1-site SYSTEM "http://www.starwars.com/episode-i/"
NDATA HTML>

Chapter 12: Simple API for XML (SAX) 273



<!ENTITY SW1-logo SYSTEM
"http://www.starwars.com/episode-i/palpatine/img/top_logo.gif"
NDATA GIF>

<!ENTITY PV "Pleasantville">
]>
<!-- Sample XML document with data about movies

and when and where they are showing
Developed by Keith Wood, 28 May 1999 -->

<?xml:stylesheet type="text/xsl" href="movie-watcher.xsl"?>
<movie-watcher>
<movies>
<movie id="SW1" rating="PG" logo-url="SW1-logo" url="SW1-site">
<name>Star Wars—The Phantom Menace</name>
<length>131</length>
<director>George Lucas</director>
<starring>
<star>Liam Neeson</star>
<star>Ewan McGregor</star>
<star>Jake Lloyd</star>
<star>Natalie Portman</star>

</starring>
<synopsis>When the evil Trade Federation plots to take over the
peaceful planet of Naboo, Jedi warrior Qui-Gon Jinn and his
apprentice Obi-Wan Kenobi embark on an amazing adventure to
save the planet. With them on their journey is the young queen
Amidala, Gungan outcast JarJar Binks, and the powerful Captain
Panaka, who will all travel to the faraway planets of Tatooine
and Coruscant in a futile attempt to save their world from
Darth Sidious, leader of the Trade Federation, and Darth Maul,
the strongest Dark Lord of the Sith to ever wield a lightsaber.

</synopsis>
</movie>

</movies>
</movie-watcher>

Listing 12-2: SAX events from parsing the XML document

Start document
Start DTD
Notation declaration - HTML
Notation declaration - GIF
Unparsed entity - SW1-site
Unparsed entity - SW1-logo
Internal entity - PV
End DTD
Comment
Processing instruction - xml:stylesheet
Start element - movie-watcher
Characters - white space
Start element - movies
Characters - white space
Start element - movie
Characters - white space
Start element - name
Characters - Star Wars...
End element - name
Characters - white space
Start element - length
Characters - 131
End element - length
Characters - white space

274 Part III: Simple API for XML



Start element - director
Characters - George Lucas
End element - director
Characters - white space
Start element - starring
Characters - white space
Start element - star
Characters - Liam Neeson
End element - star
Characters - white space
Start element - star
Characters - Ewan McGregor
End element - star
Characters - white space
Start element - star
Characters - Jake Lloyd
End element - star
Characters - white space
Start element - star
Characters - Natalie Portman
End element - star
Characters - white space
End element - starring
Characters - white space
Start element - synopsis
Characters - When the evil Trade Federation...
End element - synopsis
Characters - white space
End element - movie
Characters - white space
End element - movies
Characters - white space
End element - movie-watcher
End document

Further discussions of these interfaces, classes, and exceptions follow. Items that are defined in

SAX1 but that have been replaced in SAX2 are not described. The remaining items from SAX1

are discussed as they are still used under the newer version. The reference SAX implementation is

written in Java and the declarations shown below come from that package.

SAXException Class

The SAXException class enables you to easily identify all those errors arising from processing

with SAX. Error handlers can look for this type of error and process them accordingly.

This exception extends the base Exception class and adds the ability to wrap a “normal”

exception, one that is not derived from SAXException. Doing this allows you to identify these

errors as having been generated by the parsing activity, while retaining the details of the underly-

ing problem.

The definition of this class appears in Listing 12-3. It provides the abilities described above, as

well as several overloaded constructors that accept the various error components.

Chapter 12: Simple API for XML (SAX) 275



Listing 12-3: The SAXException class

public class SAXException extends Exception {
public SAXException (String message);
public SAXException (Exception e);
public SAXException (String message, Exception e);
public String getMessage ();
public Exception getException ();
public String toString ();

}

A description of the SAXException class’s methods follows:

public SAXException (String message);
public SAXException (Exception e);
public SAXException (String message, Exception e);

The constructors for this class allow you to create an exception with only a message, one

wrapping another exception, or one that wraps an exception but supplies a different

message.

public String getMessage ();
This method retrieves the text description of the exception. It returns the specific message

for this exception, if one was supplied, or the message from an embedded exception

otherwise.

public Exception getException ();
If this exception wraps another one, this method returns that embedded exception. Other-

wise it returns null.

public String toString ();
The standard Java method that returns some description of the class.

SAX2 introduces two new defined exceptions: SAXNotRecognizedException and SAXNot-
SupportedException. Both are used when dealing with features and properties of XML readers.

If the reader does not know about a feature or property, the first exception is raised. If the feature or

property is known but cannot be handled by the reader, it raises the second exception. Both of

these are derived directly from SAXException and add no other functionality.

SAXParseException Class

The SAXParseException class extends the basic SAX exception to provide location information

within the document. The definition of this class appears in Listing 12-4. It provides the abilities

described above, as well as numerous overloaded constructors that accept the various error

components.

Listing 12-4: The SAXParseException class

public class SAXParseException extends SAXException {
public SAXParseException (String message, Locator locator);
public SAXParseException (String message, Locator locator,
Exception e);

public SAXParseException (String message, String publicId,

276 Part III: Simple API for XML

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



String systemId, int lineNumber, int columnNumber);
public SAXParseException (String message, String publicId,
String systemId, int lineNumber, int columnNumber, Exception e);

public String getPublicId ();
public String getSystemId ();
public int getLineNumber ();
public int getColumnNumber ();

}

The methods of the SAXParseException class are described below:

public SAXParseException (String message, Locator locator);
public SAXParseException (String message, Locator locator, Exception e);
public SAXParseException (String message, String publicId, String systemId, int

lineNumber, int columnNumber);
public SAXParseException (String message, String publicId, String systemId, int

lineNumber, int columnNumber, Exception e);
The constructors for the class let you specify the message and/or wrapped exception (just

like SAXException), along with positional information in the form of a Locator or the docu-

ment identifiers and line and column numbers.

public String getPublicId ();
Returns the public identifier for the document in which the error occurred. If no identifier is

available it returns null.

public String getSystemId ();
Finds the system identifier for the document in which the error occurred. A null is returned

if no identifier is available.

public int getLineNumber ();
Retrieves the number of the line on which the error occurred or –1 if it is unknown.

public int getColumnNumber ();
Returns the column number within that line at which the error occurred or –1 if unknown.

Exceptions of this type appear in calls to the various ErrorHandler methods (see below). Hope-

fully, this allows you to identify the problem in the original XML document and correct it.

InputSource Class

The InputSource class (see its Java definition in Listing 12-5) is a helper class within SAX. Its

purpose is to do the actual locating and loading of an external entity and to present it as a stream.

This class knows how to deal with the Internet (at least using HTTP) to allow for the loading of

remote documents. Input sources are used as the result of the EntityResolver.resolveEntity
method and as the input for the XMLReader.parse method.

Listing 12-5: The InputSource class declaration

public class InputSource {
public InputSource ();
public InputSource (String systemId);
public InputSource (InputStream byteStream);

Chapter 12: Simple API for XML (SAX) 277



public InputSource (Reader characterStream);
public void setPublicId (String publicId);
public String getPublicId ();
public void setSystemId (String systemId);
public String getSystemId ();
public void setByteStream (InputStream byteStream);
public InputStream getByteStream ();
public void setEncoding (String encoding);
public String getEncoding ();
public void setCharacterStream (Reader characterStream);
public Reader getCharacterStream ();

}

The SAX readers use an InputSource object to determine how to read XML input. If there is a

stream available, the reader reads that stream directly; if not, it attempts to open a URL connection

to the resource identified by the system identifier. The reader should never modify an

InputSource object since it belongs to the application.

A description of the InputSource class’s methods follows:

public InputSource ();
public InputSource (String systemId);
public InputSource (InputStream byteStream);
public InputSource (Reader characterStream);

The constructors for this class allow you to create an empty source, or one that takes its input

from a named resource or a stream.

public void setPublicId (String publicId);
public String getPublicId ();

These methods store and retrieve the public (logical) identifier for the document encapsu-

lated by the source object. This value should be set manually after creating the object.

public void setSystemId (String systemId);
public String getSystemId ();

The system (physical) identifier for the wrapped document is saved or read by these meth-

ods. Again, this should be set manually after construction.

public void setByteStream (InputStream byteStream);
public InputStream getByteStream ();

These methods let you store and retrieve the contents of the source as a stream.

public void setEncoding (String encoding);
public String getEncoding ();

The encoding, or format, of the embedded stream is available through these methods.

public void setCharacterStream (Reader characterStream);
public Reader getCharacterStream ();

An alternative to the byte stream, these methods provide access to the content as an encoded

stream.

278 Part III: Simple API for XML



Locator Interface

The Locator interface, shown in Listing 12-6, defines how to determine the current character

position when parsing an XML document. A locator object is passed to a content handler at the

start of the parse process. The handler may then refer back to that locator whenever it needs to find

the current character position.

Listing 12-6: The Locator interface

public interface Locator {
public abstract String getPublicId ();
public abstract String getSystemId ();
public abstract int getLineNumber ();
public abstract int getColumnNumber ();

}

NOTE The results returned by the Locator object are only valid during the scope of each
content handler method; the application receives unpredictable results if it attempts to use the
locator at any other time.

SAX readers are not required to supply a locator, but they are very strongly encouraged to do so. If

the reader supplies a locator, it must do so before reporting any other document events. If no loca-

tor has been set by the time the StartDocument event occurs, the application should assume that a

locator is not available.

Most often the reader and content handler use the locator object to assist in reporting errors.

For example, the content handler may impose further type restrictions on the incoming data than

can be specified in XML alone. If the text does not conform, the handler could raise a parse excep-

tion and provide to it the location within the document that produced the error. This helps the

problem to be traced and resolved by the user.

Frequently, the reader itself implements the Locator interface. Since it already has intimate

knowledge of the document under consideration, this is a natural place for it to appear.

The methods of the Locator interface are described below:

public abstract String getPublicId ();
This method returns the public (logical) identifier for the current document. If the location is

not available, it returns a null.

public abstract String getSystemId ();
The system (physical) identifier for the current document is returned by this method. A null
is returned if the location is not available.

public abstract int getLineNumber ();
Find the current line position within the document with this method. If the information is not

available it returns –1.

public abstract int getColumnNumber ();
Complementing the previous method, this one returns the character position within the line,

or –1 if the position is unknown.

Chapter 12: Simple API for XML (SAX) 279



Attributes Interface

The Attributes interface provides access to a list of the attributes for an element. It is used to pass

attribute information to a content handler through the startElement event. Details are provided

only for attributes that have been set or that have default values (for a validating reader). Attributes

that are implied but not specified do not appear.

This interface is defined in SAX2 and replaces the AttributeList one from the SAX1 specifi-

cation. It adds support for namespaces within attributes, as well as retrieving properties by name in

addition to using an index. The SAX specification defines two features that control the function-

ing of namespace values. The first is denoted by the following name:

http://xml.org/sax/features/namespaces

If this feature is False (it defaults to True), then access by namespace-qualified names may not

be available. The second feature is denoted by the name:

http://xml.org/sax/features/namespace-prefixes

If this feature is False (its default value), then namespace declarations within an element are

not passed back as attributes.

TIP See the section titled “SAX Extensions” later in this chapter for more information about
querying and setting features in SAX.

The interface serves to hide the implementation details of the list from the rest of the application.

Its definition is shown in Listing 12-7.

Listing 12-7: The Attributes interface

public interface Attributes {
public abstract int getLength ();
public abstract String getURI (int index);
public abstract String getLocalName (int index);
public abstract String getQName (int index);
public abstract String getType (int index);
public abstract String getValue (int index);
public int getIndex (String uri, String localPart);
public int getIndex (String qName);
public abstract String getType (String uri, String localName);
public abstract String getType (String qName);
public abstract String getValue (String uri, String localName);
public abstract String getValue (String qName);

}

A description of the Attributes interface’s methods follows:

public abstract int getLength ();
The number of attributes in the list is returned by this method.

public abstract String getURI (int index);
Retrieve the full namespace URI of the attribute via this method, using its position in the list.

An empty string is returned if the attribute has no namespace, while a null is returned if the

index is out of range.

280 Part III: Simple API for XML



public abstract String getLocalName (int index);
Find the local name of the attribute (the part following any colon) with this method. The

attribute’s position in the list is passed in. As for the namespace URI, an empty string or a

null may be returned.

public abstract String getQName (int index);
The qualified name of the attribute is found using this method. A qualified name includes

any prefix (shorthand for the namespace URI), a colon, and the local name. If namespaces

are not used, just the local name appears here. The index position of the attribute identifies

the required one. Also, an empty string or a null is returned when the name is not available

or the index is out of range.

public abstract String getType (int index);
public abstract String getType (String uri, String localName);
public abstract String getType (String qName);

Retrieve the type of the attribute with these methods. The value returned is one of those

defined by the XML specification, such as ID, NMTOKEN, or ENTITY. Enumerations appear as

NMTOKEN or NOTATION, depending on their purpose. If the type is unknown (the DTD was not

read) then the type must be returned as CDATA. To get an attribute’s type you can supply

either its position within the list, its qualified name, or its namespace URI and local name. A

null is returned for an unknown index, or missing name.

public abstract String getValue (int index);
public abstract String getValue (String uri, String localName);
public abstract String getValue (String qName);

Find the string value of the attribute through these methods. Again, you can identify the

attribute via its position in the list, its qualified name, or its namespace URI and local name.

You get a null back if the index is out of range or if the name does not exist.

public int getIndex (String uri, String localPart);
public int getIndex (String qName);

An attribute’s position in the list is returned by this method. Specify either the qualified

name of the attribute, or its namespace URI and local name. If the name is not found, the

method returns –1.

A standard implementation of this interface is usually provided with a SAX package. This default

class is due to the simple nature of the list. Its abilities are not likely to change greatly from one

project to the next, unlike some of the other interfaces. Thus, a basic but functional implementa-

tion is available for use whenever it is required. Developers are able, indeed encouraged, to create

more efficient implementations as necessary.

Chapter 12: Simple API for XML (SAX) 281



ContentHandler Interface

The ContentHandler interface is the one most users of XML documents are interested in, because

it allows you to respond to the sections of the document as they are encountered. It is this interface

that is usually implemented by each application so that it can deal with a particular document type.

An object expressing this interface is supplied to the reader, which then invokes the appropriate

methods within it as it steps through the document.

ContentHandler is defined as part of SAX2 and replaces the DocumentHandler interface of

SAX1. It adds support for namespaces on elements and notifies the handler of entities that are

skipped (in a non-validating reader). The definition of this interface is shown in Listing 12-8.

Listing 12-8: The ContentHandler interface

public interface ContentHandler {
public void setDocumentLocator (Locator locator);
public void startDocument () throws SAXException;
public void endDocument() throws SAXException;
public void startPrefixMapping (String prefix, String uri)
throws SAXException;

public void endPrefixMapping (String prefix)
throws SAXException;

public void startElement (String namespaceURI, String localName,
String qName, Attributes atts) throws SAXException;

public void endElement (String namespaceURI, String localName,
String qName) throws SAXException;

public void characters (char ch[], int start, int length)
throws SAXException;

public void ignorableWhitespace (char ch[], int start, int length)
throws SAXException;

public void processingInstruction (String target, String data)
throws SAXException;

public void skippedEntity (String name) throws SAXException;
}

The methods of the ContentHandler interface are described below:

public void setDocumentLocator (Locator locator);
This method allows the content handler to tie into the parse process and to find out where in

the source document you are. It means that the content handler can perform further valida-

tions on the data, such as verifying date or numeric formats, etc., and report any violations

while indicating the characters in error. If the reader supplies a locator, this method is called

by it before any others during the parse process.

public void startDocument () throws SAXException;
public void endDocument() throws SAXException;

When the reader calls the startDocument method, it signifies the beginning of a new XML

document which allows the handler to perform any necessary initializations, such as empty-

ing a DOM structure or creating a new output file.

The endDocument method is called by the reader to terminate the document and to

release any held resources. Here the DOM structure can be normalized or an output file

closed. These methods are the first and last events triggered during a normal parse process.

282 Part III: Simple API for XML



public void startPrefixMapping (String prefix, String uri) throws SAXException;
public void endPrefixMapping (String prefix) throws SAXException;

To deal with namespace declarations within elements, the startPrefixMapping method

informs you that a new mapping has been encountered, supplying the shorthand prefix and

the full namespace URI. The mapping applies until the corresponding endPrefixMapping
method is called. These two calls always envelop the element notifications to which they

refer.

public void startElement (String namespaceURI, String localName, String qName,
Attributes atts) throws SAXException;

public void endElement (String namespaceURI, String localName, String qName) throws
SAXException;
As elements are read from the XML document, the startElement method notifies you of

their presence, passing their name(s) and list of attributes. All the content of each tag is then

processed through further calls before the corresponding endElement method is invoked.

Even for an empty tag, both of these routines are called.

public void characters (char ch[], int start, int length) throws SAXException;
This method denotes text data from the document. It is called between the start and end calls

for its owning element.

TIP Text from CDATA sections also appears through the characters call. You can tell which
is which through the LexicalHandler extension described later.

public void ignorableWhitespace (char ch[], int start, int length) throws
SAXException;
All white space between tags that is insignificant (according to the XML specification) is

sent through this method. However, this only happens in validating readers that can deter-

mine which elements contain significant text. Otherwise, all these separators appear

through the characters method.

public void processingInstruction (String target, String data) throws
SAXException;
Obviously, embedded instructions are identified by this method. Although the XML decla-

ration at the start of each document appears as a processing instruction, it is not reported to

the handler.

public void skippedEntity (String name) throws SAXException;
This method informs you that an entity reference was ignored. This happens in a non-vali-

dating reader that does not load any external DTD or entities. It can also happen when the

reader is configured through various features.

The actions taken by each of these methods depend entirely on your application. You could write

details about each event to a file. You could also count the number of each type of element and dis-

play the results at the end. Or you could create your own document model based on the items

encountered by the reader.

Chapter 12: Simple API for XML (SAX) 283



Additional parts of the XML document are available as extensions to the SAX specification.

These include comments and CDATA sections, which are discussed in the LexicalHandler and

DeclHandler sections below.

DTDHandler Interface

The DTDHandler interface provides information on the notations and unparsed entities declared

within an XML document. An object expressing this interface can be passed to a reader, which

then calls its methods at the appropriate times as the document is processed.

Calls are made as the reader encounters notation declarations and unparsed external entities.

Note that parsed entities should be handled by the reader and incorporated into the current docu-

ment. The calls to these methods may appear in any order, not necessarily that of the document,

but all such calls must arrive after the content handler’s startDocument call and before the first

startElement call.

By saving these details, you can possibly provide some level of support for these items within

your application.

Listing 12-9 displays the definition for this interface.

Listing 12-9: The DTDHandler interface

public interface DTDHandler {
public abstract void notationDecl (String name, String publicId,
String systemId) throws SAXException;

public abstract void unparsedEntityDecl (String name,
String publicId, String systemId, String notationName)
throws SAXException;

}

A description of the DTDHandler interface’s methods follows:

public abstract void notationDecl (String name, String publicId, String systemId)
throws SAXException;
This method informs you of a notation name defined in the DTD.

public abstract void unparsedEntityDecl (String name, String publicId, String
systemId, String notationName) throws SAXException;
Unparsed entities defined in the DTD trigger this method. Parsed entities are incorporated

into the body of the document, or are skipped (see the ContentHandler.skippedEntity
method).

Recall that some XML documents may be usable without reference to their DTDs, whereas others

may require the DTD to supply default attribute values or standard entity and notation references.

Therefore, you may not be informed of all the notations and unparsed entities for a document,

especially in a non-validating reader.

TIP Additional parts of the DTD are available as extensions to the SAX specification, includ-
ing the DTD declaration itself, and element and attribute declarations. These are discussed in
the LexicalHandler and DeclHandler sections below.

284 Part III: Simple API for XML



EntityResolver Interface

The EntityResolver interface allows you to redirect searches for entities. A single method com-

prises the interface, accepting the public and system identifiers for an entity and returning an

InputSource that provides its content. If the entities are not being redirected, the method returns a

null value and the reader uses its normal methods for obtaining them.

An object expressing this interface can be supplied to the reader for its use. Then, whenever it

needs to access an external document, the reader passes the appropriate identifiers to the

resolveEntity method and expects the contents at that location to be returned as a stream, encap-

sulated by the InputSource class.

Implementing this interface enables you to translate a public or system identifier for an entity

into an actual location. For example, you could retrieve the entity from a database rather than

across the Internet, or you could supply a new version of an entity during testing. Readers know

how to obtain documents from HTTP URLs, through the InputSource class, but may require a

custom resolver if an alternate protocol is used.

The definition of the interface is shown in Listing 12-10.

Listing 12-10: The EntityResolver interface

public interface EntityResolver
{public abstract InputSource resolveEntity (String publicId,

String systemId) throws SAXException, IOException;
}

The methods of the EntityResolver interface are described below:

public abstract InputSource resolveEntity (String publicId, String systemId)
throws SAXException, IOException;
This method allows you to trap and redirect references to entities from within an XML docu-

ment. If you wish to supply content for the specified entity, you must compile that document

from whatever source, before wrapping it in an InputSource object. To retain the standard

handling of external entities, just return a null.

The default implementation of this interface, as supplied by the DefaultHandler class, simply

returns null, causing the reader to obtain any entities through the normal channels based on their

public and/or system identifiers.

ErrorHandler Interface

The ErrorHandler interface provides notification of errors that occur during the SAX parsing pro-

cess. Errors in SAX come in three levels of severity: warnings that you should be aware of but that

do not compromise the accuracy of the document, errors that are more severe but still do not

destroy the usefulness of the document, and fatal errors that invalidate the current document but

may allow continued processing to reveal further errors.

These are represented by the three methods in this interface (see the definition in Listing

12-11). Each is passed a SAXParseException that encapsulates the error condition and its location.

Chapter 12: Simple API for XML (SAX) 285



Listing 12-11: The ErrorHandler interface

public interface ErrorHandler {
public abstract void warning (SAXParseException exception)
throws SAXException;

public abstract void error (SAXParseException exception)
throws SAXException;

public abstract void fatalError (SAXParseException exception)
throws SAXException;

}

A description of the ErrorHandler interface’s methods follows:

public abstract void warning (SAXParseException exception) throws SAXException;
Minor violations of the parsing process are denoted by this method. Processing of the docu-

ment continues and should still be usable following this call.

public abstract void error (SAXParseException exception) throws SAXException;
A recoverable error during the parsing process causes this method to trigger. For example,

violating a validity constraint may invoke this action. Processing of the document continues

and should still be usable following this call.

public abstract void fatalError (SAXParseException exception) throws SAXException;
Major errors are identified by this method, such as violating the well-formedness constraint.

The document being parsed is no longer usable by the application, but the reader may con-

tinue if it wants to report any further errors.

The default implementation of this interface, from the DefaultHandler class, does nothing for

warnings and errors, but raises fatal errors as an exception to be processed elsewhere in the appli-

cation. You can use this class as a base from which to derive your own error handler, letting you

only override those methods that you wish to respond to.

SAX Extensions

There were several areas lacking in the original SAX1 specification, primarily of interest to appli-

cation writers that were developing tools for creating XML documents, rather than

end-consumers of those documents. With SAX2 there is a specification for how SAX can be

extended beyond its core abilities in a generic fashion.

XML readers now expose setFeature and setProperty methods that allow you to enhance or

customize their behavior. Each feature or property is identified by a name based on a particular

URI. Features are simple flags that are read to determine whether an ability is currently in force,

and are set to enable or disable that ability.

Properties let you supply any object as a named value. Using this you can attach additional

handlers to the reader. As long as the reader knows how to deal with that object it accepts it and

makes use of it.

For both these attributes, if the reader does not understand the name supplied, it raises a

SAXNotRecognizedException to alert you to this fact. If it knows the name but cannot make use of

it, it raises SAXNotSupportedException.

286 Part III: Simple API for XML

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



Several standard features are defined, of which the first two must be recognized by every SAX

reader.

http://xml.org/sax/features/namespaces
Determines whether or not namespace URIs replace defined prefixes on elements and

attributes. It defaults to True, and performs the replacement.

http://xml.org/sax/features/namespace-prefixes
Determines whether or not qualified names are returned for elements and attributes. This

feature also controls the passing back of namespace declaration attributes (with names like

xmlns:xxx). It defaults to False, which makes the supply of qualified names optional and

suppresses namespace declarations from attribute lists.

http://xml.org/sax/features/validation
Controls whether the reader performs validations on the documents processed. Set it to True
to validate against a DTD.

http://xml.org/sax/features/external-general-entities
Determines whether or not external general entities may be skipped.

http://xml.org/sax/features/external-parameter-entities
Determines whether or not external parameter entities may be skipped.

LexicalHandler Interface

The LexicalHandler interface provides additional notifications of lexical items within the XML

document. It is one of the standard extensions defined in SAX2 and informs you about comments,

and the start and end of the DTD declaration, CDATA sections, and entity references. The defini-

tion is shown in Listing 12-12.

Listing 12-12: The LexicalHandler interface

public interface LexicalHandler {
public abstract void startDTD (String name, String publicId,
String systemId) throws SAXException;

public abstract void endDTD () throws SAXException;
public abstract void startEntity (String name) throws SAXException;
public abstract void endEntity (String name) throws SAXException;
public abstract void startCDATA () throws SAXException;
public abstract void endCDATA () throws SAXException;
public abstract void comment (char ch[], int start, int length)
throws SAXException;

}

The methods of the LexicalHandler interface are described below:

public abstract void startDTD (String name, String publicId, String systemId)
throws SAXException;

public abstract void endDTD () throws SAXException;
The DTD declaration, if one appears, is passed to the handler as a matched set of startDTD
and endDTD calls. Between these two are notifications of all the references within that DTD.

Notations and unparsed entities are supplied through the appropriate methods of the

Chapter 12: Simple API for XML (SAX) 287



DTDHandler interface. Element and attribute declarations and parsed entities are notified

through the methods of the DeclHandler interface defined below. The latter is another

extension to SAX, and so cannot be relied upon from any given reader. Any comments or

processing instructions encountered within the DTD declaration are passed on through the

usual methods.

public abstract void startEntity (String name) throws SAXException;
public abstract void endEntity (String name) throws SAXException;

Entity references found in the DTD of the document were quietly resolved and processed

under SAX1. With the startEntity and endEntity methods you can be informed of their

presence (possibly including parameter entities). All events arising from the contents of an

entity must appear between these two calls. An external DTD also appears as an entity under

this scheme, and has the name [dtd] assigned to it. Reporting of an external DTD and

parameter entities by the reader is optional.

NOTE Parameter entities are denoted by their names beginning with a percent sign ( % ).
Whether or not they are reported depends on the setting of the following feature (a setting of
true informs you):

http://xml.org/sax/features/lexical-handler/parameter-entities

Any entities that are subsequently skipped are notified to you through the skippedEntity
method of the content handler.

public abstract void startCDATA () throws SAXException;
public abstract void endCDATA () throws SAXException;

Although the text content of a CDATA section was passed on in the original SAX1 specifi-

cation, the fact that it came from such a section was not. In this extension, the actual text is

still supplied via the characters method of the ContentHandler interface, but this call is

now wrapped in a startCDATA and endCDATA pair.

public abstract void comment (char ch[], int start, int length) throws
SAXException;
Comments are identified by this method. These entries are generally only of interest to

applications that are constructing or reviewing entire XML documents, rather than manipu-

lating the content of those documents. Comments should not be relied upon to contain

useful information, and may not be supplied at all by some readers. If this information is

necessary, then using a processing instruction would be a better option.

If you are interested in receiving notification of the events encapsulated by this interface, you need

to implement it within a class and register that class with the XML reader. A lexical handler is reg-

istered with the reader using its Properties property with the following name:

http://xml.org/sax/properties/lexical-handler

288 Part III: Simple API for XML



DeclHandler Interface

The DeclHandler interface is the second standard extension to SAX and provides additional noti-

fications on declarations within the DTD part of the document. It informs you about element and

attribute declarations, along with declarations for parsed entities. All the calls from this extension

occur between the startDTD and endDTD notifications of the LexicalHandler interface (if this is in

use). See Listing 12-13 for its declaration.

Listing 12-13: The DeclHandler interface

public interface DeclHandler {
public abstract void elementDecl (String name, String model)
throws SAXException;

public abstract void attributeDecl (String eName, String aName,
String type, String valueDefault, String value)
throws SAXException;

public abstract void internalEntityDecl (String name, String value)
throws SAXException;

public abstract void externalEntityDecl (String name,
String publicId, String systemId) throws SAXException;

}

A description of the DeclHandler interface’s methods follows:

public abstract void elementDecl (String name, String model) throws SAXException;
Each element declaration is identified by this method, passing the element’s name and its

content model (as a string value).

public abstract void attributeDecl (String eName, String aName, String type, String
valueDefault, String value) throws SAXException;
Similarly, the appearance of each attribute declaration produces a call to this method. Along

with the element and attribute names come the value default (#IMPLIED, #REQUIRED, #FIXED,

or null), any default value, and the attribute’s type, such as ID, IDREF, ENTITY, or CDATA. The

type consists of the full token list for enumerated and notation types, separated by vertical

bars ( | ) and with all white space removed.

public abstract void internalEntityDecl (String name, String value) throws
SAXException;
This method informs you of an internal parsed entity declaration. It supplies the name of that

entity and its replacement value.

public abstract void externalEntityDecl (String name, String publicId, String
systemId) throws SAXException;
External parsed entity declarations also trigger a notification. Along with the name of the

entity you receive its public and system identifiers.

Like the LexicalHandler, a declaration handler is also registered with the reader using its Prop-
erties property, but with the following name:

http://xml.org/sax/properties/declaration-handler

Chapter 12: Simple API for XML (SAX) 289



XMLReader Interface

The XMLReader interface defines how an XML parser communicates with the various handlers.

All SAX readers must implement this basic interface, which replaces the SAX1 Parser one and

provides support for the new ContentHandler.

SAX readers are reusable but not re-entrant; the application may reuse a reader object (possi-

bly with a different input source) once the first parse has completed successfully, but it may not

invoke the parse methods recursively within a parse.

The reader provides for the registering of a content handler, a DTD handler, an entity resolver,

and/or an error handler. Additional functionality is requested or provided through the features and

properties methods of the reader. When the parse method is invoked, it calls routines in the regis-

tered handlers at appropriate times as it parses the document.

See Listing 12-14 for the definition of this interface. Implementations of XMLReader can be

parsers, validating or not, written from scratch. Or they can be wrappers around existing parsers.

Listing 12-14: The XMLReader interface

public interface XMLReader {
public boolean getFeature (String name)
throws SAXNotRecognizedException, SAXNotSupportedException;

public void setFeature (String name, boolean value)
throws SAXNotRecognizedException, SAXNotSupportedException;

public Object getProperty (String name)
throws SAXNotRecognizedException, SAXNotSupportedException;

public void setProperty (String name, Object value)
throws SAXNotRecognizedException, SAXNotSupportedException;

public void setEntityResolver (EntityResolver resolver);
public EntityResolver getEntityResolver ();
public void setDTDHandler (DTDHandler handler);
public DTDHandler getDTDHandler ();
public void setContentHandler (ContentHandler handler);
public ContentHandler getContentHandler ();
public void setErrorHandler (ErrorHandler handler);
public ErrorHandler getErrorHandler ();
public void parse (InputSource input)
throws IOException, SAXException;

public void parse (String systemId)
throws IOException, SAXException;

}

The methods of the XMLReader interface are described below:

public boolean getFeature (String name) throws SAXNotRecognizedException,
SAXNotSupportedException;

public void setFeature (String name, boolean value) throws SAXNotRecognized-
Exception, SAXNotSupportedException;
Allowing SAX functionality to be extended and controlled, these methods let you discover

which abilities are available and allow you to control their application. Feature names are

based on URIs, and can be defined by anyone. Several standard features are defined (two of

which are required). Unknown and unimplemented features raise exceptions.

290 Part III: Simple API for XML (SAX)



public Object getProperty (String name) throws SAXNotRecognizedException,
SAXNotSupportedException;

public void setProperty (String name, Object value) throws
SAXNotRecognizedException, SAXNotSupportedException;
Also extending SAX functionality, these methods let you supply and read extension objects

from the reader. Property names are also based on URIs. Two standard extensions are

defined. Unknown and unimplemented properties raise exceptions.

public void setEntityResolver (EntityResolver resolver);
public EntityResolver getEntityResolver ();

To redirect external entity references you need to use these methods. As external objects are

required, your EntityResolver is invoked to determine where to find their content.

public void setDTDHandler (DTDHandler handler);
public DTDHandler getDTDHandler ();

Registering or retrieving a DTDHandler with the reader is done through these methods.

Methods in the handler are called in response to tokens found in the XML document.

public void setContentHandler (ContentHandler handler);
public ContentHandler getContentHandler ();

These methods let you register or retrieve a ContentHandler with the reader. As the reader

works through the document, it calls the appropriate methods from the handler. Setting a

content handler for a parse is most likely done in every application using SAX.

public void setErrorHandler (ErrorHandler handler);
public ErrorHandler getErrorHandler ();

Although you do not want to have any errors occur, these methods let you find out about the

ones that do. Errors in the parse process trigger the methods in an ErrorHandler registered

in this way.

public void parse (InputSource input) throws IOException, SAXException;
public void parse (String systemId) throws IOException, SAXException;

The heart of the process, these methods start the parsing of the named or supplied XML doc-

ument. As the tokens are encountered, they trigger methods in the various handlers that are

registered with the reader. Once the parse process has begun, it must complete before

another one can be invoked.

XMLFilter Interface

Occasionally it is useful to be able to modify the results of a parse operation before the final pro-

cessing of the results. The XMLFilter interface (shown in Listing 12-15) defines this ability. It

appears like an XMLReader, since it extends that interface, but itself responds to events from

another reader.

Chapter 12: Simple API for XML (SAX) 291



Listing 12-15: The XMLFilter interface

public interface XMLFilter extends XMLReader {
public abstract void setParent (XMLReader parent);
public abstract XMLReader getParent ();

}

A description of the XMLFilter interface’s methods follows:

public abstract void setParent (XMLReader parent);
public abstract XMLReader getParent ();

These methods let you store and read the XMLReader on which this filter relies for its parsing.

Events from that source (which may be another filter) can be intercepted by the filter and

altered as it sees fit. Generally, it would pass the events on to the consumers registered with

it for final processing.

To use a filter you implement the XMLFilter interface and one or more of the handler interfaces,

such as ContentHandler. You then register the filter with the specified parent reader as the handler

for those interfaces. The filter may manipulate any events received from the parent before calling

the corresponding event on any handlers registered with it.

A default implementation of the filter interface is usually available (the XMLFilterImpl class).

All it does is pass parse requests up to its parent reader, and events back down to its registered han-

dlers. Using this as a base, you can quickly implement a real filter by overriding only those

requests or events of interest.

ParserAdapter and XMLReaderAdapter Classes

To facilitate the uptake of SAX2 and assist in porting legacy SAX1 code, two classes are defined

in SAX to allow interoperation between SAX1 and SAX2 parsers/readers and handlers.

The ParserAdapter class wraps a SAX1 Parser to make it appear like a SAX2 XMLReader. It

implements the reader interface, passing DTD, entity, and error handler events directly through

from the parser. It also implements the SAX1 DocumentHandler interface, which it converts into

ContentHandler events for the final consumer. Obviously, some events and abilities of SAX2

cannot be reproduced from a SAX1 parser; however, the basic functionality is immediately

available.

Conversely, XMLReaderAdapter wraps a SAX2 XMLReader to make it act like a SAX1 Parser.

Similar to the parser adapter, this one passes through whatever events it can, while converting con-

tent handler events into document handler events. The extra functionality of SAX2 is basically

ignored and discarded.

292 Part III: Simple API for XML



XMLReaderFactory Class

To make it easier to create readers for use in parsing documents, SAX includes factory classes.

These let you identify a reader by name and have it instantiated within the program. In this way the

actual reader can be determined at run time, possibly from an initialization file or a command line

parameter.

The declaration of the XMLReaderFactory is shown in Listing 12-16. It replaces the Parser-
Factory class of SAX1.

Listing 12-16: The XMLReaderFactory class

final public class XMLReaderFactory {
public static XMLReader createXMLReader ()
throws SAXException

public static XMLReader createXMLReader (String className)
throws SAXException

}

A description of the XMLReaderFactory class’s methods follows:

public static XMLReader createXMLReader () throws SAXException
public static XMLReader createXMLReader (String className) throws SAXException

The factory provides two methods for obtaining a reader: one that returns a default imple-

mentation and one that returns a reader by name. The default reader is identified through

some parameter to the application’s environment. In Java this is done through system

properties.

DefaultHandler Class

The DefaultHandler class provides a default implementation of the various handler interfaces.

This class serves two purposes: as a base class for customized handlers and as a possible default

for a SAX reader when no other handler is specified. Defined in SAX2, this class replaces the

HandlerBase class of SAX1.

In most cases this class does nothing as a result of the calls made to it. The one exception is the

fatalError method of the error handler, which raises the exception to the application.

Since this class already provides do-nothing implementations of all the methods for each han-

dler interface, you only need to override those methods that you are interested in when deriving a

custom handler. The remaining methods inherit the abilities of the base class and happily ignore

any other calls.

Chapter 12: Simple API for XML (SAX) 293



Summary

This chapter has introduced you to the Simple API for XML (SAX). You have seen that it is an

event-based API, as opposed to the structure-based API inherent in the DOM. This has advantages

in that you do not need to have the entire document in memory at any one time. Instead you can

read through the elements, processing the ones of interest as they are encountered. This is espe-

cially useful for large documents, and also where only a small fraction of the nodes are required

for the processing.

However, SAX only lets you process a document sequentially, and does not inherently provide

for the manipulation of that document and its subsequent output. The filter mechanism lets you

write code that alters the events as they come in before passing them along to another handler, giv-

ing some opportunity for modification. Also, Microsoft has included a SAX writer in its MSXML

v3 package, which outputs a document in response to SAX events sent to it. See Chapter 20 for

further discussion on this topic.

The original SAX specification was updated in May 2000 to provide additional support for

namespaces within XML documents, as well as to add missing functionality from the earlier ver-

sion. Also included is a way to extend the abilities of SAX readers in a consistent manner. Two

extensions are already available as add-ons to the basic specification.

In the following chapters you see how this specification is implemented: first by Microsoft in

its MSXML package, and then in Delphi as native interfaces and classes, and finally by wrapping

the MSXML package in the Delphi interfaces.

294 Part III: Simple API for XML



C h a p t e r 1 3

Microsoft’s SAX ParserMicrosoft’s SAX Parser

With version 3.0 of Microsoft’s XML offering comes a built in SAX2-compliant reader. Also

included are definitions for the various interfaces that interact with the reader.

When you import the MSXML type library from the MSXML3.dll, as described in Chapter 9

on Microsoft’s DOM, you also get the SAX interfaces. These come in two versions: one for use

with C/C++ (prefixed by ISAX) and one for use with Visual Basic (prefixed by IVBSAX). The VB

versions are easier to work with from Delphi since they use the WideString type for their

string-type parameters, rather than the pointer references of the C versions.

Microsoft only supports version 2 of the SAX specification. Deprecated interfaces, such as

DocumentHandler, are not defined.

Several aspects of the SAX specification are not present in the Microsoft implementation.

There are no SAX exceptions defined. Instead, the information usually carried by those objects is

passed across as separate fields to the error handler. Other processing errors are raised as

EOleExceptions.

Also, there is no equivalent of the InputSource class. In its place, the reader accepts a wide

variety of sources, as described in the IVBSAXXMLReader section, and handles all processing itself

through these sources.

All string parameters for the handler methods are WideStrings and are passed by reference.

The latter is for performance reasons since the contents then do not have to be copied locally.

However, you should not alter their values.

IVBSAXLocator Interface

The IVBSAXLocator interface (see Listing 13-1) provides information on the current position

within the document during the parse process. You obtain a reference to the locator for a document

through the documentLocator property of the IVBSAXContentHandler interface. When available,

this property is set by the reader before any calls are made to the other content handler methods. If

a locator is not supplied by the time the startDocument method fires, no position information is

provided.

295



Listing 13-1: The IVBSAXLocator interface

// ******************************************************************//
// Interface: IVBSAXLocator
// Flags: (4544) Dual NonExtensible OleAutomation Dispatchable
// GUID: {796E7AC5-5AA2-4EFF-ACAD-3FAAF01A3288}
// ******************************************************************//
IVBSAXLocator = interface(IDispatch)
['{796E7AC5-5AA2-4EFF-ACAD-3FAAF01A3288}']
function Get_columnNumber: SYSINT; safecall;
function Get_lineNumber: SYSINT; safecall;
function Get_publicId: WideString; safecall;
function Get_systemId: WideString; safecall;
property columnNumber: SYSINT read Get_columnNumber;
property lineNumber: SYSINT read Get_lineNumber;
property publicId: WideString read Get_publicId;
property systemId: WideString read Get_systemId;

end;

Information from the locator is only valid during one of the handler callbacks. Using a supplied

locator at other times gives unpredictable results.

The properties of the IVBSAXLocator interface are listed below:

property publicId: WideString read Get_publicId;
property systemId: WideString read Get_systemId;

Retrieve the public and system identifiers for the document through these read-only proper-

ties. An empty string is returned if the value is unknown.

property lineNumber: SYSINT read Get_lineNumber;
property columnNumber: SYSINT read Get_columnNumber;

These read-only properties return the current position within the document. Generally, this

is at the first location following the text that was just parsed. If the location is unknown, –1 is

returned.

IVBSAXAttributes Interface

The attributes attached to an element are made available through the IVBSAXAttributes interface

(shown in Listing 13-2). An object expressing this interface is supplied in the startElement
method of the IVBSAXContentHandler interface.

Listing 13-2: The IVBSAXAttributes interface

// ******************************************************************//
// Interface: IVBSAXAttributes
// Flags: (4544) Dual NonExtensible OleAutomation Dispatchable
// GUID: {10DC0586-132B-4CAC-8BB3-DB00AC8B7EE0}
// ******************************************************************//
IVBSAXAttributes = interface(IDispatch)
['{10DC0586-132B-4CAC-8BB3-DB00AC8B7EE0}']
function Get_length: SYSINT; safecall;
function getURI(nIndex: SYSINT): WideString; safecall;
function getLocalName(nIndex: SYSINT): WideString; safecall;
function getQName(nIndex: SYSINT): WideString; safecall;
function getIndexFromName(const strURI: WideString;
const strLocalName: WideString): SYSINT; safecall;

296 Part III: Simple API for XML

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



function getIndexFromQName(const strQName: WideString): SYSINT;
safecall;

function getType(nIndex: SYSINT): WideString; safecall;
function getTypeFromName(const strURI: WideString;
const strLocalName: WideString): WideString; safecall;

function getTypeFromQName(const strQName: WideString): WideString;
safecall;

function getValue(nIndex: SYSINT): WideString; safecall;
function getValueFromName(const strURI: WideString;
const strLocalName: WideString): WideString; safecall;

function getValueFromQName(const strQName: WideString): WideString;
safecall;

property length: SYSINT read Get_length;
end;

Attributes only appear if they are explicitly assigned values in the XML document, or have a

default value set through the DTD. Namespace declarations that appear as attributes (those start-

ing with xmlns:) are not included unless the http://xml.org/sax/features/namespace-
prefixes property is set to True. If this feature is False (its default value), access by qualified

name may not be possible. Similarly, if the http://xml.org/sax/features/namespaces feature

is False, access by qualified name may not be available.

A description of the properties and methods of the IVBSAXAttributes interface follows:

property length: SYSINT read Get_length;
This read-only property supplies the number of attributes in the collection. They are indexed

from zero to length –1.

function getURI(nIndex: SYSINT): WideString; safecall;
Retrieve the namespace URI for an attribute, given its position in the list, with this method.

If the attribute has no namespace, this returns an empty string. If the index is out of range, an

error occurs.

function getLocalName(nIndex: SYSINT): WideString; safecall;
Given an attribute’s position in the list, this method returns its local name. Like the previous

method, an index out of range generates an error.

function getQName(nIndex: SYSINT): WideString; safecall;
This method returns the qualified name of the specified attribute or an error if the index is

out of range.

function getIndexFromName(const strURI: WideString; const strLocalName:
WideString): SYSINT; safecall;

function getIndexFromQName(const strQName: WideString): SYSINT; safecall;
Use these methods to find the position of an attribute in the list given its namespace URI and

local name or its qualified name. For ambiguous names, it returns the lowest index that

matches. An error occurs if the attribute cannot be found.

Chapter 13: Microsoft’s SAX Parser 297



function getType(nIndex: SYSINT): WideString; safecall;
function getTypeFromName(const strURI: WideString; const strLocalName:

WideString): WideString; safecall;
function getTypeFromQName(const strQName: WideString): WideString; safecall;

Retrieve the type of an attribute (ID, ENTITY, etc.) from the DTD or schema through these

methods. The attribute is identified by its position in the list or by its name(s). If there is no

DTD or schema information available, these functions return CDATA. For ambiguous names,

the type of the first one found is returned. An error occurs if the attribute cannot be found.

function getValue(nIndex: SYSINT): WideString; safecall;
function getValueFromName(const strURI: WideString; const strLocalName:

WideString): WideString; safecall;
function getValueFromQName(const strQName: WideString): WideString; safecall;

These methods return the text value of the specified attribute, given its position in the list or

its name(s). Supplying an ambiguous name results in the value of the first match found. If

the attribute cannot be located, an error occurs.

IVBSAXContentHandler Interface

The IVBSAXContentHandler interface (shown in Listing 13-3) is the one most commonly used in

applications since it responds to the basic items within the XML document: elements and text con-

tent. You implement it in whichever class is most appropriate and then register it with the XML

reader. During the parse process, the methods in this interface are called at the appropriate times as

items are encountered.

Listing 13-3: The IVBSAXContentHandler interface

// ******************************************************************//
// Interface: IVBSAXContentHandler
// Flags: (4544) Dual NonExtensible OleAutomation Dispatchable
// GUID: {2ED7290A-4DD5-4B46-BB26-4E4155E77FAA}
// ******************************************************************//
IVBSAXContentHandler = interface(IDispatch)
['{2ED7290A-4DD5-4B46-BB26-4E4155E77FAA}']
procedure Set_documentLocator(const Param1: IVBSAXLocator); safecall;
procedure startDocument; safecall;
procedure endDocument; safecall;
procedure startPrefixMapping(var strPrefix: WideString;
var strURI: WideString); safecall;

procedure endPrefixMapping(var strPrefix: WideString); safecall;
procedure startElement(var strNamespaceURI: WideString;
var strLocalName: WideString; var strQName: WideString;
const oAttributes: IVBSAXAttributes); safecall;

procedure endElement(var strNamespaceURI: WideString;
var strLocalName: WideString; var strQName: WideString); safecall;

procedure characters(var strChars: WideString); safecall;
procedure ignorableWhitespace(var strChars: WideString); safecall;
procedure processingInstruction(var strTarget: WideString;
var strData: WideString); safecall;

procedure skippedEntity(var strName: WideString); safecall;
property documentLocator: IVBSAXLocator write Set_documentLocator;

end;

298 Part III: Simple API for XML



The IVBSAXLocator interface’s properties and methods are shown below:

procedure Set_documentLocator(const Param1: IVBSAXLocator); safecall;
If the reader supports a locator, it uses this method to provide the content handler with a ref-

erence to it. You can then obtain the current position (the end of the text generating a call)

within the XML document through this interface during any of the other handler callbacks.

Do not access this interface at any other time, as its values are undefined. If no locator has

been supplied before the startDocument call, then none is available.

procedure startDocument; safecall;
Use this method to initialize your application in preparation for a new XML document. This

call is only made once before any other handler calls (except for the setting of the locator).

procedure endDocument; safecall;
This method lets you tidy up at the end of a document, by running any final processing and

releasing any resources used. It is called once after all the other events have fired.

procedure startPrefixMapping(var strPrefix: WideString; var strURI: WideString);
safecall;
Receive notification about the start of a namespace declaration through this method, supply-

ing the prefix and full namespace URI. This call comes before the startElement event in

which it appeared. It remains in effect until the corresponding end method.

The reader automatically performs namespace processing for elements and attributes

when the http://xml.org/sax/features/namespaces feature is True, which is the default

setting. This call lets you obtain the prefixes and their mappings for other uses.

procedure endPrefixMapping(var strPrefix: WideString); safecall;
The end of a namespace’s scope occurs with this call. It happens after the endElement call to

which it is attached. Note that prefix mapping calls may not nest properly (the end calls may

not necessarily appear in the reverse order of the start calls), but they will all occur.

procedure startElement(var strNamespaceURI: WideString; var strLocalName:
WideString; var strQName: WideString; const oAttributes: IVBSAXAttributes);
safecall;
This method informs you of the opening tag for an element in the document. You receive its

name parts and any attributes it has. All the content of the element appears through other

calls before the corresponding endElement event.

Two features control the appearance of the name parts for an element: When

http://xml.org/sax/features/namespaces is True (the default), both the namespace URI

and local name are required; otherwise they are optional. When http://xml.org/sax/fea-
tures/namespace-prefixes is True, the qualified name is required; otherwise it is optional

(the default). This latter feature also determines the presence of namespace declarations

(those starting with xmlns) within the attributes list. When True, these declarations appear as

attributes, and they are not present when it is False.

Chapter 13: Microsoft’s SAX Parser 299



procedure endElement(var strNamespaceURI: WideString; var strLocalName:
WideString; var strQName: WideString); safecall;
Once the element’s contents have been provided, this method signifies its end. Note that this

event occurs for all elements, even those without any content. The same rules apply to the

names here as for the startElement method.

procedure characters(var strChars: WideString); safecall;
Normal text appears via this method, including that from CDATA sections. Any entity refer-

ences are expanded out and arrive via other calls, although their text content comes through

this one. Contiguous strings of text from the document may appear in a single call, or may be

split across several calls. However, each invocation contains text from a single entity so that

the locator object provides meaningful information.

procedure ignorableWhitespace(var strChars: WideString); safecall;
This method notifies you of insignificant white space between tags, which can only be iden-

tified if the DTD or schema is loaded and processed. Otherwise, all text content must come

through the characters method.

NOTE Since the current SAX reader is non-validating, the ignorableWhitespace method is
never called.

procedure processingInstruction(var strTarget: WideString; var strData:
WideString); safecall;
Handle processing instructions through this method, receiving its target and command. The

XML declaration, although it looks like a processing instruction, is not supplied via any

SAX interface.

procedure skippedEntity(var strName: WideString); safecall;
Entities that are skipped over are notified via this call. These cannot be expanded when their

definitions, contained in an external document, are not loaded. Otherwise, you receive

startEntity and endEntity events from the IVBSAXLexicalHandler interface that sur-

round the entity’s content. This method may also be called for an external DTD reference.

Two features control the loading of external entities: http://xml.org/sax/features/
external-general-entities for normal entities and http://xml.org/sax/features/
external-parameter-entities for parameter entities. Set these to True to load the respec-

tive entity types. Both default to False. A leading percent sign ( % ) identifies parameter

entities.

300 Part III: Simple API for XML



IVBSAXDTDHandler Interface

For information on some items from the DTD in an XML document, implement the

IVBSAXDTDHandler interface (see Listing 13-4) in your application. Register this object with the

XML reader and wait for the corresponding notifications. The calls in this interface do not neces-

sarily arrive in the same order that the declarations are found in the XML document. However,

they all appear after the startDocument call and before the first startElement call. If the

IVBSAXLexicalHandler interface is also used, these events occur between the startDTD and

endDTD methods.

Listing 13-4: The IVBSAXDTDHandler interface

// ******************************************************************//
// Interface: IVBSAXDTDHandler
// Flags: (4544) Dual NonExtensible OleAutomation Dispatchable
// GUID: {24FB3297-302D-4620-BA39-3A732D850558}
// ******************************************************************//
IVBSAXDTDHandler = interface(IDispatch)
['{24FB3297-302D-4620-BA39-3A732D850558}']
procedure notationDecl(var strName: WideString;
var strPublicId: WideString; var strSystemId: WideString);
safecall;

procedure unparsedEntityDecl(var strName: WideString;
var strPublicId: WideString; var strSystemId: WideString;
var strNotationName: WideString); safecall;

end;

The methods of the IVBSAXDTDHandler interface are detailed below:

procedure notationDecl(var strName: WideString; var strPublicId: WideString;
var strSystemId: WideString); safecall;
This method informs you of notation declarations found in the DTD, providing the nota-

tion’s name and whatever public and system identifiers are available. If the latter are URLs,

these are fully resolved by the reader before appearing in this call.

procedure unparsedEntityDecl(var strName: WideString; var strPublicId: WideString;
var strSystemId: WideString; var strNotationName: WideString); safecall;
Unparsed entities, those that do not consist of XML or straight text, appear through this

method. You receive the entity’s name, its public and system identifiers, and the name of the

notation describing its contents. The latter should correspond to one of the notations from

the previous method. As before, URLs are fully resolved before being passed in.

Chapter 13: Microsoft’s SAX Parser 301



IVBSAXEntityResolver Interface

External entities defined in the XML document may appear with either or both a public and sys-

tem identifier. These serve to locate the resource that holds the contents of the entity. System

identifiers are actual locations: filenames or URLs. Public identifiers are well-known names that

are mapped onto physical resources. The IVBSAXEntityResolver interface (shown in Listing

13-5) lets you perform this mapping, or even redirect system identifiers to alternate locations.

Listing 13-5: The IVBSAXEntityResolver interface

// ******************************************************************//
// Interface: IVBSAXEntityResolver
// Flags: (4544) Dual NonExtensible OleAutomation Dispatchable
// GUID: {0C05D096-F45B-4ACA-AD1A-AA0BC25518DC}
// ******************************************************************//
IVBSAXEntityResolver = interface(IDispatch)
['{0C05D096-F45B-4ACA-AD1A-AA0BC25518DC}']
function resolveEntity(var strPublicId: WideString;
var strSystemId: WideString): OleVariant; safecall;

end;

NOTE Currently, an entity resolver cannot be registered with the XML reader since it does
not resolve external entities.

A description of the method from the IVBSAXEntityResolver interface follows:

function resolveEntity(var strPublicId: WideString; var strSystemId: WideString):
OleVariant; safecall;
Given the public and system identifier for the entity, you can retrieve the corresponding con-

tents and supply them back to the reader. This method returns a null to use the normal entity

resolution processing.

IVBSAXErrorHandler Interface

When errors occur during a document parse, they appear through the XML reader as method calls

into the IVBSAXErrorHandler interface (see Listing 13-6). Errors come in three levels of severity,

from minor warnings to show-stopping fatal errors, corresponding to the three methods available.

Listing 13-6: The IVBSAXErrorHandler interface

// ******************************************************************//
// Interface: IVBSAXErrorHandler
// Flags: (4544) Dual NonExtensible OleAutomation Dispatchable
// GUID: {D963D3FE-173C-4862-9095-B92F66995F52}
// ******************************************************************//
IVBSAXErrorHandler = interface(IDispatch)
['{D963D3FE-173C-4862-9095-B92F66995F52}']
procedure error(const oLocator: IVBSAXLocator;
var strErrorMessage: WideString; nErrorCode: Integer); safecall;

procedure fatalError(const oLocator: IVBSAXLocator;
var strErrorMessage: WideString; nErrorCode: Integer); safecall;

procedure ignorableWarning(const oLocator: IVBSAXLocator;

302 Part III: Simple API for XML (SAX)



var strErrorMessage: WideString; nErrorCode: Integer); safecall;
end;

NOTE Currently all errors from the parse process are fatal. Thus, the warning and normal
error methods are never called.

The IVBSAXErrorHandler interface’s methods are described below:

procedure error(const oLocator: IVBSAXLocator; var strErrorMessage: WideString;
nErrorCode: Integer); safecall;
These errors are serious, but not enough to halt the parse process. Check the error code and

message for the cause of the problem, and use the locator to determine its position within the

document.

procedure fatalError(const oLocator: IVBSAXLocator; var strErrorMessage:
WideString; nErrorCode: Integer); safecall;
Problems that prohibit parsing the remainder of the document, such as violating the

well-formedness constraint of XML, appear through this call. The parameters are as for a

normal error.

procedure ignorableWarning(const oLocator: IVBSAXLocator; var strErrorMessage:
WideString; nErrorCode: Integer); safecall;
This method informs you of minor problems. Again, the parameters are as for a normal

error.

NOTE The SAX specification passes details to these methods encapsulated in a
SAXParseException, whereas Microsoft’s implementation supplies the individual fields due to
differences in the COM implementation of exceptions. Also, under SAX the last method is just
called warning rather than ignorableWarning.

IVBSAXLexicalHandler Interface

One of the standard extensions defined under SAX, the IVBSAXLexicalHandler interface (shown

in Listing 13-7) provides additional information about the source of certain items from the XML

document. Generally, its methods are called before and after the events that make up the content of

that particular node type.

Listing 13-7: The IVBSAXLexicalHandler interface

// ******************************************************************//
// Interface: IVBSAXLexicalHandler
// Flags: (4544) Dual NonExtensible OleAutomation Dispatchable
// GUID: {032AAC35-8C0E-4D9D-979F-E3B702935576}
// ******************************************************************//
IVBSAXLexicalHandler = interface(IDispatch)
['{032AAC35-8C0E-4D9D-979F-E3B702935576}']
procedure startDTD(var strName: WideString;
var strPublicId: WideString; var strSystemId: WideString);
safecall;

procedure endDTD; safecall;
procedure startEntity(var strName: WideString); safecall;

Chapter 13: Microsoft’s SAX Parser 303



procedure endEntity(var strName: WideString); safecall;
procedure startCDATA; safecall;
procedure endCDATA; safecall;
procedure comment(var strChars: WideString); safecall;

end;

An implementer of this interface cannot be directly registered with an XML reader. Instead, you

must use the property mechanism of SAX to attach it, as shown below:

MySAXReader.putProperty(
'http://xml.org/sax/properties/lexical-handler', MyLexicalHandler);

The methods of the IVBSAXLexicalHandler interface are listed below:

procedure startDTD(var strName: WideString; var strPublicId: WideString; var
strSystemId: WideString); safecall;

procedure endDTD; safecall;
These two methods mark the beginning and ending of the DTD declaration within an XML

document. They occur after the startDocument call but before the first startElement one.

All notation and entity declaration events appear between them, as do those for any element

and attribute declarations. The starting call provides the name of the document (its top-level

element) and the public and system identifiers for an external DTD if defined. If there is no

DTD defined for the document these methods are not invoked.

procedure startEntity(var strName: WideString); safecall;
procedure endEntity(var strName: WideString); safecall;

Entity references within the document are delimited by these two methods, each of which

identifies the entity in question. Between them appear calls for the content of that entity. If

external entities have not been loaded, then references to them appear as skippedEntity
calls within the content handler interface.

The report of parameter entities is optional, depending on the setting of the

http://xml.org/sax/features/lexical-handler/parameter-entities feature. A lead-

ing percent sign ( % ) identifies parameter entities as such. An external DTD is also reported

as an entity with the name [dtd]. Character references are not reported, but are quietly

expanded.

procedure startCDATA; safecall;
procedure endCDATA; safecall;

While the text content of CDATA sections is always passed on, under SAX1 you could not

tell that it originated there. With this extension you receive callbacks at the start and end of

the section, while the content still shows up through the characters method of the content

handler.

procedure comment(var strChars: WideString); safecall;
This method informs you of comments encountered within the XML document, passing

along their text. Comments may appear at any level within the document, including outside

of the document element.

304 Part III: Simple API for XML



IVBSAXDeclHandler Interface

The second standard SAX extension, the IVBSAXDeclHandler interface (see Listing 13-8) notifies

you of additional items from the DTD of a document beyond those provided by the

IVBSAXDTDHandler interface. When used at the same time as the IVBSAXLexicalHandler inter-

face, all the events defined here occur between the startDTD and endDTD calls.

Listing 13-8: The IVBSAXDeclHandler interface

// ******************************************************************//
// Interface: IVBSAXDeclHandler
// Flags: (4544) Dual NonExtensible OleAutomation Dispatchable
// GUID: {E8917260-7579-4BE1-B5DD-7AFBFA6F077B}
// ******************************************************************//
IVBSAXDeclHandler = interface(IDispatch)
['{E8917260-7579-4BE1-B5DD-7AFBFA6F077B}']
procedure elementDecl(var strName: WideString;
var strModel: WideString); safecall;

procedure attributeDecl(var strElementName: WideString;
var strAttributeName: WideString; var strType: WideString;
var strValueDefault: WideString; var strValue: WideString);
safecall;

procedure internalEntityDecl(var strName: WideString;
var strValue: WideString); safecall;

procedure externalEntityDecl(var strName: WideString;
var strPublicId: WideString; var strSystemId: WideString);
safecall;

end;

Like the lexical handler, implementations of this interface must register themselves with the XML

reader through the SAX property mechanism, as shown below:

MySAXReader.putProperty(
"http://xml.org/sax/properties/declaration-handler", MyDeclHandler);

A description of the methods of the IVBSAXDeclHandler interface follows:

procedure elementDecl(var strName: WideString; var strModel: WideString);
safecall;
The declaration of an element within the DTD appears through this method, supplying its

name and content model (as a string). Content models consist of the values EMPTY or ANY, or

a group of allowable values enclosed in parentheses and followed by an optional occur-

rences character. Models are normalized before being passed over. This involves expanding

out any parameter entities and removing any white space.

procedure attributeDecl(var strElementName: WideString; var strAttributeName:
WideString; var strType: WideString; var strValueDefault: WideString; var
strValue: WideString); safecall;
An attribute’s declaration arrives through this method. Along with the element and attribute

names come the type of the attribute (as a string), its default setting (#REQUIRED, #IMPLIED,

#FIXED, or ‘’), and any default value. The type may be one of the standard types (ID, IDREF,

ENTITY, etc.) or it may be a list of valid values separated by vertical bars ( | ) and surrounded

Chapter 13: Microsoft’s SAX Parser 305



by parentheses. Notation types follow the latter pattern but are prefixed with the text

NOTATION. All white space is removed from these lists.

Although attributes for one element may be declared in a single list, separate calls result

for each one. Only the first definition for each attribute is returned, as required by the XML

specification.

procedure internalEntityDecl(var strName: WideString; var strValue:
WideString); safecall;

procedure externalEntityDecl(var strName: WideString; var strPublicId:
WideString; var strSystemId: WideString); safecall;
These two methods notify you of parsed entity declarations from the DTD. Both pass along

the entity’s name and its value (for internal entities), or its public and system identifiers (for

external ones). Parameter entities within an internal entity’s value are automatically

expanded, but general entity references are not. The declarations for parameter entities

themselves have a leading percent sign ( % ) in their names. Only the first declaration for

each entity is reported. Unparsed entities appear via the unparsedEntityDecl method of the

DTD handler interface.

IVBSAXXMLReader Interface

The IVBSAXXMLReader interface (shown in Listing 13-9) provides the parsing engine of the

Microsoft SAX offering. You do not implement this interface in your own application, but create a

built-in object that expresses it. After registering your handlers with the reader, you start the parse

process and wait for the appropriate events to fire.

Listing 13-9: The IVBSAXXMLReader interface

// ******************************************************************//
// Interface: IVBSAXXMLReader
// Flags: (4544) Dual NonExtensible OleAutomation Dispatchable
// GUID: {8C033CAA-6CD6-4F73-B728-4531AF74945F}
// ******************************************************************//
IVBSAXXMLReader = interface(IDispatch)
['{8C033CAA-6CD6-4F73-B728-4531AF74945F}']
function getFeature(const strName: WideString): WordBool; safecall;
procedure putFeature(const strName: WideString; fValue: WordBool);
safecall;

function getProperty(const strName: WideString): OleVariant;
safecall;

procedure putProperty(const strName: WideString;
varValue: OleVariant); safecall;

function Get_entityResolver: IVBSAXEntityResolver; safecall;
procedure Set_entityResolver(const oResolver: IVBSAXEntityResolver);
safecall;

function Get_contentHandler: IVBSAXContentHandler; safecall;
procedure Set_contentHandler(const oHandler: IVBSAXContentHandler);
safecall;

function Get_dtdHandler: IVBSAXDTDHandler; safecall;
procedure Set_dtdHandler(const oHandler: IVBSAXDTDHandler); safecall;
function Get_errorHandler: IVBSAXErrorHandler; safecall;
procedure Set_errorHandler(const oHandler: IVBSAXErrorHandler);

306 Part III: Simple API for XML

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



safecall;
function Get_baseURL: WideString; safecall;
procedure Set_baseURL(const strBaseURL: WideString); safecall;
function Get_secureBaseURL: WideString; safecall;
procedure Set_secureBaseURL(const strSecureBaseURL: WideString);
safecall;

procedure parse(varInput: OleVariant); safecall;
procedure parseURL(const strURL: WideString); safecall;
property entityResolver: IVBSAXEntityResolver read Get_entityResolver
write Set_entityResolver;

property contentHandler: IVBSAXContentHandler read Get_contentHandler
write Set_contentHandler;

property dtdHandler: IVBSAXDTDHandler read Get_dtdHandler
write Set_dtdHandler;

property errorHandler: IVBSAXErrorHandler read Get_errorHandler
write Set_errorHandler;

property baseURL: WideString read Get_baseURL write Set_baseURL;
property secureBaseURL: WideString read Get_secureBaseURL
write Set_secureBaseURL;

end;

You obtain an object implementing this interface from the CoClass defined in the imported type

library as shown in the following code. CoSAXMLReader always returns an instance of the latest

reader, while CoSAXXMLReader30 always returns a version 3.0 reader. At this time they are

synonymous.

MySAXReader := CoSAXXMLReader.Create;

The IVBSAXXMLReader interface’s properties and methods are listed below:

property entityResolver: IVBSAXEntityResolver read Get_entityResolver write
Set_entityResolver;

property contentHandler: IVBSAXContentHandler read Get_contentHandler write
Set_contentHandler;

property dtdHandler: IVBSAXDTDHandler read Get_dtdHandler write Set_dtdHandler;
property errorHandler: IVBSAXErrorHandler read Get_errorHandler write
Set_errorHandler;
Register your handler(s) with the XML reader through these properties.

NOTE The entityResolver property is not currently supported since the reader does not
resolve external entities. Using it generates a run-time error.

function getFeature(const strName: WideString): WordBool; safecall;
procedure putFeature(const strName: WideString; fValue: WordBool); safecall;

Read or set features of the reader through these methods, which let you control some of its

processing. Features are identified by standard names that appear as URIs and exist as sim-

ple Boolean flags. See the section on SAX extensions in Chapter 12 for a list of the common

feature names. If a feature is not known or is not supported, an error occurs.

Chapter 13: Microsoft’s SAX Parser 307



New features supported by the Microsoft reader include:

normalize-line-breaks
Set to True (its default value) CR-LF sequences in text are replaced by a single LF, as

required by the XML specification. When False, they are not altered.

server-http-request
If True, the reader uses the server-safe ServerXMLHTTP object for the parseURLmethod. Oth-

erwise, the WinInet component is used (the default).

NOTE Although the standard http://xml.org/sax/features/validation and http://xml.
org/sax/features/string-interning features are recognized by the reader, they cannot be
set under the current implementation.

function getProperty(const strName: WideString): OleVariant; safecall;
procedure putProperty(const strName: WideString; varValue: OleVariant); safecall;

Similarly, properties of a reader let you expand its abilities by supplying additional inter-

faces for its use. The names of the two standard extensions are shown in their respective

sections above. Again, an error occurs if the property is unknown or not supported.

Besides the extensions noted above, the reader also recognizes the following properties. They are

only available after the XML header has been parsed and are empty if there is no XML declaration

or if the property is not found.

xmldecl-version
Retrieve the version value from the XML declaration through this property.

xmldecl-encoding
This property returns the encoding value from the XML declaration.

xmldecl-standalone
Determine whether the document is standalone through this property. It returns either yes or

no if the declaration exists.

NOTE Because of the naming used for these methods (put instead of set), properties were
not automatically generated during the importation of the type library into Delphi.

procedure parse(varInput: OleVariant); safecall;
procedure parseURL(const strURL: WideString); safecall;

Having attached your handlers to the reader, you are ready to start the parse process itself.

Call one of these methods supplying the document as either a string containing its contents,

an implementation of IStream, or its (fully resolved) URL. The parse process is reusable but

not re-entrant; you cannot start a second parse while the first is running, but you can once it

has finished.

NOTE The following properties are not part of the SAX specification.

property baseURL: WideString read Get_baseURL write Set_baseURL;
Set or retrieve the base URL for the reader through this property.

308 Part III: Simple API for XML



property secureBaseURL: WideString read Get_secureBaseURL write Set_secureBaseURL;
This property controls security enforcement for retrieving documents. If not set, full access

is allowed. When set, the applicable IE security settings come into effect.

IVBSAXXMLFilter Interface

A mechanism for intercepting SAX events comes from the IVBSAXXMLFilter interface (see List-

ing 13-10). Also implementing the basic reader interface, it mediates between your normal

handlers and an actual reader. It may trap some events and not pass them on at all, or it may alter

the contents of those events before their eventual use.

Listing 13-10: The IVBSAXXMLFilter interface

// ******************************************************************//
// Interface: IVBSAXXMLFilter
// Flags: (4544) Dual NonExtensible OleAutomation Dispatchable
// GUID: {1299EB1B-5B88-433E-82DE-82CA75AD4E04}
// ******************************************************************//
IVBSAXXMLFilter = interface(IDispatch)
['{1299EB1B-5B88-433E-82DE-82CA75AD4E04}']
function Get_parent: IVBSAXXMLReader; safecall;
procedure Set_parent(const oReader: IVBSAXXMLReader); safecall;
property parent: IVBSAXXMLReader read Get_parent write Set_parent;

end;

The property of the IVBSAXXMLFilter interface is shown below:

property parent: IVBSAXXMLReader read Get_parent write Set_parent;
Set or retrieve the XML reader that this filter relies upon through this property. Requests for

parsing flow up to this reader, while its events pass back down through the filter. Note that

the parent may itself be another filter, allowing for chains of processing.

Preparing for SAX Events

To demonstrate how the SAX interfaces function, you can build a document viewer that operates

from them, as opposed to the various DOMs used in the previous part of the book. Once more, the

viewer has a tree view on the left that shows the structure of the document, with details of selected

nodes appearing on the right. Figure 13-1 (on the following page) shows the viewer with the docu-

ment node selected and the notations and external entities listed on the right.

The first step is to declare the handler interfaces that respond to the SAX events. Being inter-

faces, you can apply them directly to the viewer form. Listing 13-11 shows the form’s type

declaration, which is modified to implement the various handlers. The corresponding methods

must then be declared within the public section of the form.

Chapter 13: Microsoft’s SAX Parser 309



Listing 13-11: Declaring the SAX interfaces

TfrmSAX2Viewer = class(TForm, IVBSAXEntityResolver, IVBSAXDTDHandler,
IVBSAXContentHandler, IVBSAXErrorHandler,
IVBSAXLexicalHandler, IVBSAXDeclHandler)

pgcMain: TPageControl;
tshStructure: TTabSheet;
trvXML: TTreeView;
pgcDetails: TPageControl;
tshDocument: TTabSheet;
Label1: TLabel;
edtDocType: TEdit;
Label2: TLabel;
edtPublicId: TEdit;
Label3: TLabel;
edtSystemId: TEdit;
Label6: TLabel;
stgEntities: TStringGrid;
Label7: TLabel;
stgNotations: TStringGrid;

tshElement: TTabSheet;
pnlNames: TPanel;
Label4: TLabel;
edtURI: TEdit;
Label5: TLabel;
edtLocalName: TEdit;

stgAttributes: TStringGrid;
stgPrefixes: TStringGrid;

tshText: TTabSheet;
lblNodeType: TLabel;
memText: TMemo;

tshSource: TTabSheet;
memSource: TRichEdit;

mnuMain: TMainMenu;
mniFile: TMenuItem;
mniOpen: TMenuItem;
mniSep1: TMenuItem;
mniParserOptions: TMenuItem;
mniValidation: TMenuItem;

310 Part III: Simple API for XML

Figure 13-1: Document details via SAX.



mniNamespaces: TMenuItem;
mniNamespacePrefixes: TMenuItem;

mniSep2: TMenuItem;
mniExit: TMenuItem;

mniView: TMenuItem;
mniExpandAll: TMenuItem;
mniCollapseAll: TMenuItem;
mniSep3: TMenuItem;
mniViewSource: TMenuItem;

imlXML: TImageList;
dlgOpen: TOpenDialog;
procedure FormCreate(Sender: TObject);
procedure FormDestroy(Sender: TObject);
procedure mniOpenClick(Sender: TObject);
procedure mniExitClick(Sender: TObject);
procedure mniExpandAllClick(Sender: TObject);
procedure mniCollapseAllClick(Sender: TObject);
procedure mniViewSourceClick(Sender: TObject);
procedure trvXMLChange(Sender: TObject; Node: TTreeNode);

private
FCharIcon: Integer;
FCurrent: TTreeNode;
FLocator: IVBSAXLocator;
FPrefixes: TStringList;
FSAXReader: IVBSAXXMLReader;
procedure ClearTree;
procedure LoadDoc(Filename: string);
procedure ShowError(Level: TMsgDlgType;
const oLocator: IVBSAXLocator;
const strError: WideString; nErrorCode: Integer);

function TruncateText(Text: string): string;
public
{ IVBSAXEntityResolver }
function resolveEntity(var strPublicId: WideString;
var strSystemId: WideString): OleVariant; safecall;

{ IVBSAXDTDHandler }
procedure notationDecl(var strName: WideString;
var strPublicId: WideString; var strSystemId: WideString);
safecall;

procedure unparsedEntityDecl(var strName: WideString;
var strPublicId: WideString; var strSystemId: WideString;
var strNotationName: WideString); safecall;

{ IVBSAXContentHandler }
procedure Set_documentLocator(const Param1: IVBSAXLocator); safecall;
procedure startDocument; safecall;
procedure endDocument; safecall;
procedure startPrefixMapping(var strPrefix: WideString;
var strURI: WideString); safecall;

procedure endPrefixMapping(var strPrefix: WideString); safecall;
procedure startElement(var strNamespaceURI: WideString;
var strLocalName: WideString; var strQName: WideString;
const oAttributes: IVBSAXAttributes); safecall;

procedure endElement(var strNamespaceURI: WideString;
var strLocalName: WideString; var strQName: WideString); safecall;

procedure characters(var strChars: WideString); safecall;
procedure ignorableWhitespace(var strChars: WideString); safecall;
procedure processingInstruction(var strTarget: WideString;
var strData: WideString); safecall;

procedure skippedEntity(var strName: WideString); safecall;
property documentLocator: IVBSAXLocator write Set_documentLocator;

Chapter 13: Microsoft’s SAX Parser 311



{ IVBSAXLexicalHandler }
procedure startDTD(var strName: WideString;
var strPublicId: WideString; var strSystemId: WideString);
safecall;

procedure endDTD; safecall;
procedure startEntity(var strName: WideString); safecall;
procedure endEntity(var strName: WideString); safecall;
procedure startCDATA; safecall;
procedure endCDATA; safecall;
procedure comment(var strChars: WideString); safecall;
{ IVBSAXDeclHandler }
procedure elementDecl(var strName: WideString;
var strModel: WideString); safecall;

procedure attributeDecl(var strElementName: WideString;
var strAttributeName: WideString; var strType: WideString;
var strValueDefault: WideString; var strValue: WideString);
safecall;

procedure internalEntityDecl(var strName: WideString;
var strValue: WideString); safecall;

procedure externalEntityDecl(var strName: WideString;
var strPublicId: WideString; var strSystemId: WideString);
safecall;

{ IVBSAXErrorHandler }
procedure error(const oLocator: IVBSAXLocator;
var strError: WideString; nErrorCode: Integer); safecall;

procedure fatalError(const oLocator: IVBSAXLocator;
var strError: WideString; nErrorCode: Integer); safecall;

procedure ignorableWarning(const oLocator: IVBSAXLocator;
var strError: WideString; nErrorCode: Integer); safecall;

end;

The actual implementation of these methods appears later. Before they are called, though, an

XML reader must be created and the handlers registered with it. You can do this in the FormCreate
event since the reader can be reused. Listing 13-12 shows the necessary processing. Currently,

attempting to set an entity resolver generates an error from the XML reader. The setting of the

extension interfaces is wrapped in an exception handler to allow for the possibility that they are

not supported. In that case, you simply ignore the error and process the remainder of the SAX

events.

Listing 13-12: Registering the handlers

{ Initialization—load the XML document on start up }
procedure TfrmSAX2Viewer.FormCreate(Sender: TObject);
begin
:
{ Other initializations }
:
{ Load XML reader }
FSAXReader := CoSAXXMLReader.Create;
{ Set standard handlers }
FSAXReader.ContentHandler := Self;
FSAXReader.DTDHandler := Self;
FSAXReader.ErrorHandler := Self;
{ Currently not implemented }

// FSAXReader.EntityResolver := Self;
{ Set extension handlers }
try
FSAXReader.putProperty(LexicalHandlerProperty,

312 Part III: Simple API for XML (SAX)



IVBSAXLexicalHandler(Self));
except
{ Ignore }

end;
try
FSAXReader.putProperty(DeclHandlerProperty,
IVBSAXDeclHandler(Self));

except
{ Ignore }

end;
end;

Finally, you can start the parse process. In the viewer you indicate the document to read by passing

its filename to the ParseURL method of the reader (as shown in Listing 13-13). As it steps through

the document it triggers the appropriate events through the attached handlers. Prior to starting the

parse, an attempt is made to set several features on the reader. These correspond to checked menu

options in the viewer. The call for each one is wrapped in an exception handler in case the reader

cannot deal with it. If an error occurs, the related menu item is disabled to show that it does not

apply.

Listing 13-13: Starting the parse process

{ Load an XML document }
procedure TfrmSAX2Viewer.LoadDoc(Filename: string);
begin
try
Screen.Cursor := crHourGlass;
pgcDetails.ActivePage := tshDocument;
trvXML.Items.BeginUpdate;
{ Load the source document }
memSource.Lines.LoadFromFile(Filename);
dlgOpen.Filename := Filename;
{ Attempt to set standard features from menu items }
try
FSAXReader.PutFeature(ValidationFeature, mniValidation.Checked);

except
mniValidation.Enabled := False;

end;
try
FSAXReader.PutFeature(NamespacesFeature, mniNamespaces.Checked);

except
mniNamespaces.Enabled := False;

end;
try
FSAXReader.PutFeature(NamespacePrefixesFeature,
mniNamespacePrefixes.Checked);

except
mniNamespacePrefixes.Enabled := False;

end;
{ Parse the document—form already registered
with parser as handlers }

FSAXReader.ParseURL(Filename);
finally
trvXML.Items.EndUpdate;
Screen.Cursor := crDefault;

end;
end;

Chapter 13: Microsoft’s SAX Parser 313



Responding to the Notifications

The XML reader makes calls back to its attached handlers as it encounters the various parts of the

XML document. Notifications about elements arrive through the content handler interface and its

startElement and endElement methods (shown in Listing 13-14).

Listing 13-14: Element notifications

{ Note this element as the current node and save its attributes }
procedure TfrmSAX2Viewer.startElement(
var strNamespaceURI, strLocalName, strQName: WideString;
const oAttributes: IVBSAXAttributes);

var
Element: TElement;
Index: Integer;

begin
Element := TElement.Create(strNamespaceUri, strLocalName);
for Index := 0 to oAttributes.Length –1 do
Element.Attributes.Values[oAttributes.getQName(Index)] :=
oAttributes.getValue(Index);

Element.Prefixes.Assign(FPrefixes);
FPrefixes.Clear;
FCurrent :=
trvXML.Items.AddChildObject(FCurrent, strQName, Element);

FCurrent.ImageIndex := ElementIcon;
FCurrent.SelectedIndex := ElementIcon;
if edtDocType.Text = '' then
edtDocType.Text := strQName;

end;

{ Move the current context up the hierarchy when an element ends }
procedure TfrmSAX2Viewer.endElement(
var strNamespaceURI, strLocalName, strQName: WideString);

begin
FCurrent := FCurrent.Parent;

end;

For the viewer, you first create a TElement object to hold the node’s details for later display. Then

transfer the list of attributes supplied by the call into a normal string list on that object followed by

any namespace declarations accumulated from the startPrefixMapping events that preceded this

call. Lastly, add a new node to the tree view, using the element’s qualified name as its display

value, and attach the TElement to it as data. This new tree node becomes the current one for subse-

quent additions.

Conversely, when the end of the element arrives, you need to step back up the tree view hierar-

chy, setting the current node to its parent. Figure 13-2 shows the details for an element within the

viewer.

Normal textual content arrives via the charactersmethod (see Listing 13-15). Text consisting

of all white space is discarded, with the remaining calls creating a new tree node and correspond-

ing TString object. The latter simply wraps a single string property, which is needed since strings

are not objects themselves. Text nodes do not alter the position of the current node within the tree

view since they cannot have children. Figure 13-3 shows textual content in the viewer. Note that

this XML reader treats each line of text as a separate item.

314 Part III: Simple API for XML



Listing 13-15: Processing textual content

{ Add a text node to the tree }
procedure TfrmSAX2Viewer.characters(var strChars: WideString);
var
Index: Integer;
Text: string;

begin
{ Ignore all white space }
Text := strChars;
for Index := 1 to Length(Text) do
if Text[Index] > ' ' then
Break;

if Index > Length(Text) then
Exit;

with trvXML.Items.AddChildObject(FCurrent, TruncateText(strChars),
TString.Create(strChars)) do

Chapter 13: Microsoft’s SAX Parser 315

Figure 13-2: The viewer shows element information.

Figure 13-3: Textual content in the viewer.



begin
ImageIndex := FCharIcon;
SelectedIndex := FCharIcon;

end;
end;

CDATA sections also send their content through the characters method. The difference is that

startCDATA and endCDATA events surround the call. In this viewer, starting a CDATA section

merely alters the value of FCharIcon, while ending it restores the original value. This variable

controls the icon attached to the text in the tree view.

The remaining events generally just add a new tree node representing their content. An exam-

ple is the processingInstruction method in Listing 13-16.

Listing 13-16: Handling a processing instruction

{ Add a processing instruction to the tree }
procedure TfrmSAX2Viewer.processingInstruction(
var strTarget, strData: WideString);

begin
with trvXML.Items.AddChildObject(
FCurrent, strTarget, TString.Create(strData)) do

begin
ImageIndex := ProcInstrIcon;
SelectedIndex := ProcInstrIcon;

end;
end;

By implementing the SAX handler interfaces, the form directly interacts with the XML reader.

Once the parse process completes, you can select nodes from the tree view and see their content on

the right of the form. The type of data attached to the tree node and the icon that represents that

node control this display.

Summary

The SAX functionality provided by version 3.0 of Microsoft’s XML package lets you process an

XML document by responding to events generated by its various components. This lets you mini-

mize the resources required for large documents compared to the DOM approach.

Once the MSXML type library is imported into Delphi, it is very easy to create your own han-

dlers and hook them up to Microsoft’s reader. The viewer described here shows how this is done.

Another feature of Microsoft’s offering is the IMXWriter interface. Objects obtained through

its CoClass implement the various handler interfaces and respond to them by generating an XML

document on the fly. Chapter 20 describes this in greater detail.

The next chapter looks at implementing SAX in Delphi as native interfaces and classes. Then,

Chapter 15 shows how you can wrap the Microsoft SAX reader in these Delphi interfaces, letting

you easily swap between the two by changing only a single line of code.

316 Part III: Simple API for XML

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



C h a p t e r 1 4

SAX in DelphiSAX in Delphi

The SAX specification defines a number of interfaces and classes that provide the functionality

necessary to parse an XML document and work with its contents. Since they are interfaces, it is

relatively easy to translate them into Delphi and implement them there. Delphi provides all the

required language constructs: interfaces, inheritance, method overloading, and exceptions.

Conversion to Delphi

Converting the interfaces, originally expressed as Java, into Delphi is fairly straightforward.

Starting with Delphi 3, the interface construct allows you to directly copy most of the API’s dec-

larations. Of course, there are some minor changes in keeping with Delphi’s naming standards:

interfaces start with I, classes with T, and exceptions with E, as well as prefixing each name with

SAX as a way of producing unique names within the wider Delphi world. Also, properties were

added as appropriate where get and/or set methods were defined, again maintaining the feel of

Delphi.

Each interface is assigned a GUID to allow for its presence to be determined at some later

stage. The methods are basically copied from the specification and some types are altered to

reflect Delphi’s capabilities, such as an enumerated type for the attribute types. A TSAXString
type is declared as being equivalent to the WideString type. Subsequently, using this to define all

string variables within the SAX implementation ensures that they are all the correct type.

The Delphi definitions for the basic SAX interfaces and classes are placed into several units, as

shown in Table 14-1. These are then imported into the units that implement the various interfaces.

Although the SAX1 interfaces and classes are available in these units, those that have been

superceded are not described below.

317



Table 14-1: Delphi units for SAX

Unit Purpose Contents

SAX Basic SAX1 specification ISAXAttributeList,
ISAXDocumentHandler,
ISAXDTDHandler,
ISAXEntityResolver,
ISAXErrorHandler, ISAXLocator,
ISAXParser, TSAXInputSource,
ESAXException,
ESAXParseException

SAXHelper Common SAX1 implementations TSAXAttribute,
TSAXAttributeList,
TSAXCustomParser,
TSAXHandlerBase, TSAXLocator,
TSAXParserFactory

SAXCue ISAXParser wrapper (SAX1) for native Delphi
XML parser provided by CUESoft

TSAXCuesoftParser

SAXDelphi Native Delphi XML parser that implements
ISAXParser (SAX1)

TSAXDelphiParser

SAXMS Wrapper (SAX1) for MS XML v3 DOM that
implements ISAXParser

TSAXMSParser

SAX2 Basic SAX2 specification ISAXAttributes,
ISAXContentHandler,
ISAXXMLFilter, ISAXXMLReader,
ESAXNotRecognizedException,
ESAXNotSupportedException

SAX2Helper Common SAX2 implementations TSAXAttributes,
TSAXCustomXMLFilter,
TSAXCustomXMLReader,
TSAXDefaultHandler,
TSAXNamespaceSupport,
TSAXParserAdapter,
TSAXXMLReaderAdapter,
TSAXXMLReaderFactory

SAX2Ext SAX2 extension specification ISAXDeclHandler,
ISAXLexicalHandler

SAX2Delphi Native Delphi XML reader that implements
ISAXXMLReader (SAX2)

TSAX2DelphiReader

SAX2MS Wrapper for MS XML 3 SAX2 parser that
implements ISAXXMLReader

TSAX2MSReader

ParserXML The native Delphi XML parser used by the
native SAX1 parser and SAX2 reader

TXMLParser

318 Part III: Simple API for XML



ESAXException Class

The ESAXException class enables you to easily identify all those errors arising from processing

with SAX. Error handlers can trap this type of error and process them accordingly.

This exception extends the base Exception class and adds the ability to wrap a “normal”

exception, one that is not derived from ESAXException. Thus you can identify these errors as hav-

ing been generated by the parsing activity, while retaining the details of the underlying problem.

The Delphi version of this class appears in Listing 14-1. It provides the abilities described

above, as well as several overloaded constructors that accept the various error components.

Listing 14-1: The ESAXException class

ESAXException = class(Exception)
public
{ Create a new SAXException. }
constructor Create(Message: string); overload;
constructor Create(WrappedException: Exception); overload;
constructor Create(Message: string; WrappedException:
Exception); overload;

property Message: string read GetMessage;
property WrappedException: Exception read FException
write FException;

end;

A description of the ESAXException class’s properties and methods follows:

constructor Create(Message: string); overload;
constructor Create(WrappedException: Exception); overload;
constructor Create(Message: string; WrappedException: Exception); overload;

Generate new SAX exceptions with these constructors. The different versions let you sup-

ply whatever details you have about the error—from a simple message to a previous

exception (optionally overriding its message). Normally only the SAX classes themselves

would raise these errors, leaving you to react to them.

property Message: string read GetMessage;
Retrieve the description of the problem from this read-only property. The message of the

embedded exception is returned if there is one and it has not been overridden by the normal

message of the ESAXException.

property WrappedException: Exception read FException write FException;
Access any embedded exception through this property. It returns nil if there is no such

exception.

SAX2 introduced two new defined exceptions: ESAXNotRecognizedException and ESAXNot-
SupportedException. Both are used when dealing with features and properties of readers. If the

reader does not know about a feature or property, the first exception is raised. If the feature or

property is known but cannot be handled by the reader, it raises the second exception. Both of

these are derived directly from ESAXException and add no other functionality.

Chapter 14: SAX in Delphi 319



ESAXParseException Class

The ESAXParseException class extends the basic SAX exception to provide location information

within the document. The Delphi version of this class appears in Listing 14-2. It provides the abili-

ties described above, as well as numerous overloaded constructors that accept the various error

components.

Listing 14-2: The ESAXParseException class

ESAXParseException = class(ESAXException)
public
constructor Create(Message: string; PublicId, SystemId: TSAXString;
LineNumber, ColumnNumber: Integer); overload;

constructor Create(Message: string; PublicId, SystemId: TSAXString;
LineNumber, ColumnNumber: Integer; WrappedException:
Exception); overload;

constructor Create(Message: string; Locator: ISAXLocator);
overload;

constructor Create(Message: string; Locator: ISAXLocator;
WrappedException: Exception); overload;

property ColumnNumber: Integer read FColumnNumber
write FColumnNumber;

property LineNumber: Integer read FLineNumber
write FLineNumber;

property PublicId: TSAXString read FPublicId write FPublicId;
property SystemId: TSAXString read FSystemId write FSystemId;

end;

The properties and methods of the ESAXParseException class are listed below:

constructor Create(Message: string; PublicId, SystemId: TSAXString;
LineNumber, ColumnNumber: Integer); overload;

constructor Create(Message: string; PublicId, SystemId: TSAXString;
LineNumber, ColumnNumber: Integer; WrappedException: Exception); overload;

constructor Create(Message: string; Locator: ISAXLocator); overload;
constructor Create(Message: string; Locator: ISAXLocator; WrappedException:

Exception); overload;
These constructors let you produce new parse exceptions while supplying whatever details

are available. Information can include the error message, an embedded exception, and posi-

tional details in the form of a locator object or the actual line and column numbers. Normally

these exceptions are only created by the reader and appear through the ISAXErrorHandler
interface for you to deal with.

property LineNumber: Integer read FLineNumber write FLineNumber;
property ColumnNumber: Integer read FColumnNumber write FColumnNumber;

Retrieve or set the line or column within the line where the error is detected through these

properties. They return –1 if the position is unknown.

property PublicId: TSAXString read FPublicId write FPublicId;
Find the public identifier for the document in error through this property. It returns an empty

string if unknown.

320 Part III: Simple API for XML



property SystemId: TSAXString read FSystemId write FSystemId;
This property retrieves the system identifier for the document that is in error. When

unknown, it returns an empty string.

TSAXInputSource Class

The TSAXInputSource class (see Listing 14-3) is a helper class within SAX. Its purpose is to do the

actual locating and loading of an external entity and to present it as a stream. This class knows how

to deal with the Internet (at least using HTTP) to allow for the loading of remote documents. Input

sources are used as the result of the ISAXEntityResolver.ResolveEntity method and as the

input for the ISAXXMLReader.Parse method.

Listing 14-3: The TSAXInputSource class declaration

TSAXInputSource = class(TMemoryStream)
public
constructor Create(Stream: TStream); overload;
constructor Create(SystemId: TSAXString); overload;
property Encoding: TSAXString read FEncoding write FEncoding;
property PublicId: TSAXString read FPublicId write FPublicId;
property SystemId: TSAXString read FSystemId write FSystemId;

end;

SAX readers use a TSAXInputSource object to retrieve the XML input. The Delphi implementa-

tion of this class extends TMemoryStream to provide the basic streaming abilities.

The TSAXInputSource class’s properties and methods are shown below:

constructor Create(Stream: TStream); overload;
constructor Create(SystemId: TSAXString); overload;

Generate a new input source from either an existing stream or from its system identifier. For

the former, the stream is simply copied into the internal stream.

Otherwise, the reader attempts to open a connection to the resource identified by the sys-

tem identifier. An initial attempt is made to read the document from local storage and, if that

fails, a further attempt is made to find it on the Internet, using the TNMHTTP component.

A TSAXInputSource object belongs to the application; the SAX reader should never

modify it in any way.

property Encoding: TSAXString read FEncoding write FEncoding;
Set or read the encoding for the encapsulated stream with this property. If available, this is

set manually following creation of the input source. It returns an empty string if unknown.

property PublicId: TSAXString read FPublicId write FPublicId;
Specify the public identifier for the input through this property. Again, it should be set once

the object is created. Otherwise, it returns an empty string.

Chapter 14: SAX in Delphi 321



property SystemId: TSAXString read FSystemId write FSystemId;
This property reads or writes the system identifier for the input. When the input is generated

based on its system identifier, the value is automatically set. Otherwise, you should initialize

it manually if known. It returns an empty string if never set.

ISAXLocator Interface

The ISAXLocator interface defines how to determine the current character position when parsing

an XML document. A locator object is passed to a content handler at the start of the parse process.

The handler may then refer back to that locator whenever it needs to find the current character

position.

Note that the results returned by the object are only valid during the scope of each content han-

dler method; the application receives unpredictable results if it attempts to use the locator at any

other time.

SAX readers are not required to supply a locator, but they are very strongly encouraged to do

so. If the reader does supply a locator, it must do so before reporting any other document events. If

no locator has been set by the time the StartDocument event occurs, the application should

assume that a locator is not available. Often the locator interface is implemented by the reader

itself, as is the case for the base implementation in TSAXCustomXMLReader. Since it already has

intimate knowledge of the document under consideration, this is a natural place for it to appear.

Most often the reader and content handler use the locator object to assist in reporting errors.

For example, the content handler may impose further type restrictions on the incoming data than

can be specified in XML alone. If the text does not conform, the handler could raise a parse excep-

tion and provide to it the location within the document that produced the error. This helps the

problem to be traced and resolved by the user.

The Delphi definition of the interface is shown in Listing 14-4.

Listing 14-4: The ISAXLocator interface

ISAXLocator = interface(IUnknown)
['{669D9AA2-3D80-11D4-9ABD-B87D0AF18D62}']
function GetPublicId: TSAXString;
function GetSystemId: TSAXString;
function GetLineNumber: Integer;
function GetColumnNumber: Integer;
property PublicId: TSAXString read GetPublicId;
property SystemId: TSAXString read GetSystemId;
property LineNumber: Integer read GetLineNumber;
property ColumnNumber: Integer read GetColumnNumber;

end;

322 Part III: Simple API for XML



A description of the ISAXLocator interface’s properties follows:

property PublicId: TSAXString read GetPublicId;
Retrieve the public identifier for the document from this read-only property. It returns an

empty string if unknown.

property SystemId: TSAXString read GetSystemId;
This read-only property returns the system identifier for the document, or an empty string if

not known.

property LineNumber: Integer read GetLineNumber;
property ColumnNumber: Integer read GetColumnNumber;

Find the current line and column within the document through these read-only properties. A

–1 is returned if the actual location is not known.

The TSAXLocator class in the SAXHelper unit provides a default implementation of the

ISAXLocator interface. Normally, only application (handler) writers that want to take a snapshot

of the location at a particular point would use this class. Its overloaded constructor allows you to

easily copy an existing locator. For parser writers, it is probably more efficient to provide the loca-

tion information only when requested, rather than constantly updating an instance of this class.

ISAXAttributes Interface

The ISAXAttributes interface provides access to a list of the attributes for an element. It passes

attribute information to a content handler in the StartElement call. Details are provided only for

attributes that have been set or that have default values (for a validating reader). Attributes that are

implied but not specified do not appear.

The interface serves to hide the implementation details of the list from the rest of the applica-

tion. Its Delphi definition is shown in Listing 14-5.

Listing 14-5: The ISAXAttributes interface

ISAXAttributes = interface
['{F430E0E0-3B30-11D4-9ABD-98F2DF77D546}']
function AttrType(Index: Integer): TSAXAttributeType; overload;
function AttrType(QName: TSAXString): TSAXAttributeType;
overload;

function AttrType(URI, LocalName: TSAXString):
TSAXAttributeType; overload;

function Index(QName: TSAXString): Integer; overload;
function Index(URI, LocalName: TSAXString): Integer; overload;
function Length: Integer;
function LocalName(Index: Integer): TSAXString;
function QName(Index: Integer): TSAXString;
function URI(Index: Integer): TSAXString;
function Value(Index: Integer): TSAXString; overload;
function Value(QName: TSAXString): TSAXString; overload;
function Value(URI, LocalName: TSAXString): TSAXString; overload;

end;

Chapter 14: SAX in Delphi 323



The methods of the ISAXAttributes interface are listed below:

function AttrType(Index: Integer): TSAXAttributeType; overload;
function AttrType(QName: TSAXString): TSAXAttributeType; overload;
function AttrType(URI, LocalName: TSAXString): TSAXAttributeType; overload;

Get the attribute type from these methods. The attribute is identified by either its position in

the collection (from zero to Length –1), its qualified name, or its namespace URI and local

name. One of the values from the enumerated type below is returned:

TSAXAttributeType = (atCData, atId, atIdref, atIdrefs, atNMToken, atNMTokens, atEntity,
atEntities, atNotation);

If the type is unknown (such as when the DTD has not been loaded) it always comes back

as atCData. You can obtain the corresponding text name for these types from the

AttributeTypeNames array, which is indexed by the values above. Both of these are

declared in the SAX unit.

function Index(QName: TSAXString): Integer; overload;
function Index(URI, LocalName: TSAXString): Integer; overload;

Given the name of an attribute, either as its qualified name or its namespace URI and local

name, these methods return its location within the attribute collection. A –1 comes back if no

match is found with the supplied name.

function Length: Integer;
Retrieve the number of entries in the collection from this method. Individual items are

indexed from zero to this value –1.

function LocalName(Index: Integer): TSAXString;
Get the local name for an attribute given its location from this method. If the index is out of

bounds, an empty string is returned.

function QName(Index: Integer): TSAXString;
Similarly, this method returns the qualified name for the attribute at the specified position,

or an empty string if the index is out of bounds.

function URI(Index: Integer): TSAXString;
Completing the set, this method retrieves the namespace URI for the attribute given its loca-

tion. Again, an empty string results if the index is invalid.

function Value(Index: Integer): TSAXString; overload;
function Value(QName: TSAXString): TSAXString; overload;
function Value(URI, LocalName: TSAXString): TSAXString; overload;

Use one of these methods to find the text value of an attribute. You can identify the attribute

by its position, its qualified name, or its namespace URI and local name. An empty string is

returned if the attribute cannot be found.

A standard implementation of this interface is defined in the SAX2Helper unit as the

TSAXAttributes class. This default definition is due to the simple nature of the list. Its abilities are

not likely to change greatly from one project to the next, unlike some of the other interfaces. Thus,

a basic but functional implementation is available for use whenever it is required. Developers are

able, indeed encouraged, to create more efficient implementations as necessary.

324 Part III: Simple API for XML



The attribute list is implemented as a string list within the TSAXAttributes class, which allows

you to easily refer to the individual attributes either by position or by (qualified) name. Each entry

in the string list contains a reference to a TSAX2Attribute object, which holds all the name parts,

the type, and value of that attribute.

In addition to the functionality required by the interface, the attribute list provides methods to

add new attributes, or alter or remove existing ones. These functions are not defined in the SAX

specification to allow implementers to provide access in an efficient manner. The declaration for

the TSAXAttributes class is shown in Listing 14-6.

Listing 14-6: The TSAXAttributes class

TSAXAttributes = class(TInterfacedObject, ISAXAttributes)
public
constructor Create; overload;
constructor Create(Attributes: ISAXAttributes); overload;
destructor Destroy; override;
procedure AddAttribute(URI, LocalName, QName, Value: TSAXString;
AttrType: TSAXAttributeType = atCData);

procedure Clear;
procedure RemoveAttribute(Index: Integer);
procedure SetAttribute(Index: Integer; URI, LocalName, QName, Value:
TSAXString; AttrType: TSAXAttributeType = atCData);

procedure SetAttributes(Attributes: ISAXAttributes);
procedure SetAttrType(Index: Integer; AttrType: TSAXAttributeType);
procedure SetLocalName(Index: Integer; LocalName: TSAXString);
procedure SetQName(Index: Integer; QName: TSAXString);
procedure SetURI(Index: Integer; URI: TSAXString);
procedure SetValue(Index: Integer; Value: TSAXString);
{ ISAXAttributes }
function AttrType(Index: Integer): TSAXAttributeType; overload;
function AttrType(QName: TSAXString): TSAXAttributeType; overload;
function AttrType(URI, LocalName: TSAXString): TSAXAttributeType;
overload;

function Index(QName: TSAXString): Integer; overload;
function Index(URI, LocalName: TSAXString): Integer; overload;
function Length: Integer;
function LocalName(Index: Integer): TSAXString;
function QName(Index: Integer): TSAXString;
function URI(Index: Integer): TSAXString;
function Value(Index: Integer): TSAXString; overload;
function Value(QName: TSAXString): TSAXString; overload;
function Value(URI, LocalName: TSAXString): TSAXString; overload;

end;

The TSAXAttributes class’s properties and methods (beyond those for the ISAXAttributes inter-

face) are shown below:

constructor Create; overload;
constructor Create(Attributes: ISAXAttributes); overload;

Produces a new attribute list, which is initially empty or a copy of another list.

procedure AddAttribute(URI, LocalName, QName, Value: TSAXString; AttrType:
TSAXAttributeType = atCData);
Add a new attribute to the list, setting its properties to the given values. Attribute type

defaults to atCData, which is the correct value if the DTD is not available and the actual type

Chapter 14: SAX in Delphi 325



is unknown. The list does not check whether an attribute under the given qualified name

already exists; it just adds a new entry to the end of the list. The calling program should do

any necessary checking.

procedure Clear;
Removes all the entries from the list.

procedure RemoveAttribute(Index: Integer);
Deletes the specified attribute from the list.

procedure SetAttribute(Index: Integer; URI, LocalName, QName, Value: TSAXString;
AttrType: TSAXAttributeType = atCData);
Overwrite the properties of the attribute at the specified position with the values supplied

here. Again, the attribute type defaults to the correct value if the actual type is unknown.

procedure SetAttributes(Attributes: ISAXAttributes);
Replace any existing contents with a copy of those in the given list.

procedure SetAttrType(Index: Integer; AttrType: TSAXAttributeType);
procedure SetLocalName(Index: Integer; LocalName: TSAXString);
procedure SetQName(Index: Integer; QName: TSAXString);
procedure SetURI(Index: Integer; URI: TSAXString);
procedure SetValue(Index: Integer; Value: TSAXString);

Use these methods to set individual properties on a specified attribute within the list.

ISAXContentHandler Interface

The ISAXContentHandler interface is the one most users of XML documents are interested in,

allowing you to respond to the main sections of the document as they are encountered. An object

expressing this interface is supplied to the reader, which then invokes the appropriate methods

within it as it steps through the document.

ISAXContentHandler is defined as part of SAX2 and replaces the ISAXDocumentHandler
interface of SAX1. It adds support for namespaces on elements and notifies the handler of entities

that are skipped (in a non-validating reader). The Delphi definition of this interface is shown in

Listing 14-7.

Listing 14-7: The ISAXContentHandler interface

ISAXContentHandler = interface
['{F430E0E1-3B30-11D4-9ABD-98F2DF77D546}']
procedure SetDocumentLocator(Locator: ISAXLocator);
procedure StartDocument;
procedure EndDocument;
procedure StartPrefixMapping(Prefix, URI: TSAXString);
procedure EndPrefixMapping(Prefix: TSAXString);
procedure StartElement(NamespaceURI, LocalName, QName:
TSAXString; Attributes: ISAXAttributes);

procedure EndElement(NamespaceURI, LocalName, QName:
TSAXString);

procedure Characters(Text: TSAXString);
procedure IgnorableWhitespace(Text: TSAXString);

326 Part III: Simple API for XML

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



procedure ProcessingInstruction(Target, Data: TSAXString);
procedure SkippedEntity(Name: TSAXString);

end;

A description of the ISAXContentHandler interface’s methods follows:

procedure SetDocumentLocator(Locator: ISAXLocator);
This method lets the content handler tie into the parse process and find out where in the

source document you are. Hence the content handler can perform further validations on the

data, such as verifying date or numeric formats, etc., and report any violations while indicat-

ing the characters in error. If the reader supplies a locator, this method is called before any

others during the parse process.

procedure StartDocument;
This method signifies the beginning of a new XML document, allowing the handler to per-

form any necessary initializations, such as emptying a DOM structure or creating a new

output file.

procedure EndDocument;
Similarly, the reader calling this method terminates the document and lets you release any

held resources. Here, the DOM structure could be normalized or the output file closed.

procedure StartPrefixMapping(Prefix, URI: TSAXString);
To deal with namespace declarations within elements, this method informs you that a new

mapping has been encountered. The mapping applies until the corresponding EndPrefix-
Mapping method is called. These two calls always envelop the element notifications to

which they refer.

procedure EndPrefixMapping(Prefix: TSAXString);
Receive notification of the end of a namespace mapping through this method.

procedure StartElement(NamespaceURI, LocalName, QName: TSAXString; Attributes:
ISAXAttributes);
As elements are read from the XML document, this method notifies you of their presence.

All the content of each tag is then processed through further calls before the corresponding

EndElement method is invoked. Even for an empty tag, both of these routines are called.

procedure EndElement(NamespaceURI, LocalName, QName: TSAXString);
Notification for the end of an element lets you finish up its processing. If you create a DOM

from the SAX events you would step back up one level of the hierarchy at this point.

procedure Characters(Text: TSAXString);
Basic textual content arrives via this method, including that derived from CDATA sections.

In the latter case StartCData and EndCData calls (via the ISAXLexicalHandler interface)

surround this call.

procedure IgnorableWhitespace(Text: TSAXString);
White space between and within tags that is not significant is returned through this method.

Knowing that white space is not necessary requires reading and processing a DTD for the

document, so non-validating readers do not use this method. Instead, all white space comes

through the Characters method.

Chapter 14: SAX in Delphi 327



procedure ProcessingInstruction(Target, Data: TSAXString);
Embedded instructions appear via this method. Although the XML declaration at the start of

each document appears like a processing instruction, it is not reported to the handler.

procedure SkippedEntity(Name: TSAXString);
This method informs you that an entity reference was ignored. This happens in a non-vali-

dating reader that does not load external DTDs or entities. It can also happen when the

reader is configured through various features.

The default implementation of this interface, as provided by the TSAXDefaultHandler class in the

SAX2Helper unit, does nothing with the information provided. You can use this class as a base

from which to derive your own content handler, allowing you to only override those methods that

you wish to respond to.

Additional parts of the XML document are available as extensions to the SAX specification.

These include comments and CDATA sections, which are discussed in the ISAXLexicalHandler
and ISAXDeclHandler sections below.

ISAXDTDHandler Interface

The ISAXDTDHandler interface provides information on the notations and unparsed entities

declared within an XML document. An object expressing this interface can be passed to a reader,

which then calls its methods at the appropriate times as the document is processed.

Calls to these methods may appear in any order, not necessarily that of the document, but all

such calls must arrive after the content handler’s StartDocument call and before the first

StartElement call. By saving these details, you can provide some level of support for these items

within your application.

Listing 14-8 displays the Delphi definition for this interface.

Listing 14-8: The ISAXDTDHandler interface

ISAXDTDHandler = interface(IUnknown)
['{669D9AA1-3D80-11D4-9ABD-B87D0AF18D62}']
procedure NotationDecl(Name, PublicId, SystemId: TSAXString);
procedure UnparsedEntityDecl(
Name, PublicId, SystemId, NotationName: TSAXString);

end;

The methods of the ISAXDTDHandler interface are listed below:

procedure NotationDecl(Name, PublicId, SystemId: TSAXString);
The definition for a notation from the DTD appears through this method.

procedure UnparsedEntityDecl(Name, PublicId, SystemId, NotationName: TSAXString);
This method informs you of unparsed entity declarations from the DTD. Note that parsed

entities should be handled by the reader and incorporated into the current document. With

the SAX extensions you can also receive notification of parsed entities through the

ISAXDeclHandler interface.

328 Part III: Simple API for XML



The default implementation of this interface, as provided by the TSAXDefaultHandler class in the

SAXHelper unit, does nothing with the information provided. You can use this class as a base from

which to derive your own DTD handler, only allowing you to override those methods that you

wish to respond to.

Recall that some XML documents may be usable without reference to their DTDs, whereas

others may require the DTD to supply default attribute values or standard entity and notation refer-

ences. Therefore, you may not be informed of all the notations and entities for a document,

especially in a non-validating reader.

Additional parts of the DTD are available as extensions to the SAX specification. These

include the DTD declaration itself, and element and attribute declarations. These are discussed in

the ISAXDeclHandler section below.

ISAXEntityResolver Interface

The ISAXEntityResolver interface allows you to redirect searches for entities. An object express-

ing this interface can be supplied to the reader for its use. Then, whenever it needs to access a

document, the reader passes the appropriate identifiers to the ResolveEntity method and expects

the contents at that location to be returned as a stream, encapsulated by the TSAXInputSource
class.

Implementing this interface enables you to translate a public or system identifier for an entity

into an actual location. For example, you could retrieve the entity from a database rather than

across the Internet, or you could supply a new version of an entity during testing. Readers know

how to obtain documents from HTTP URLs, through the TSAXInputSource class, but may require

a custom resolver if an alternate protocol is used.

The Delphi definition of the interface is shown in Listing 14-9.

Listing 14-9: The ISAXEntityResolver interface

ISAXEntityResolver = interface(IUnknown)
['{669D9AA0-3D80-11D4-9ABD-B87D0AF18D62}']
function ResolveEntity(PublicId, SystemId: TSAXString):
TSAXInputSource;

end;

The ISAXEntityResolver interface’s method is described below:

function ResolveEntity(PublicId, SystemId: TSAXString): TSAXInputSource;
This method accepts the public and system identifiers for an entity, and returns an input

source that provides its content. If the entity is not being redirected, the method returns a nil
value and the reader uses its normal methods for obtaining the content.

The default implementation of this interface, as supplied by the TSAXDefaultHandler class, sim-

ply returns nil, causing the reader to obtain any entities through the normal channels based on

their public and/or system identifiers.

Chapter 14: SAX in Delphi 329



ISAXErrorHandler Interface

The ISAXErrorHandler interface provides notification of errors that occur during the SAX pars-

ing process. Errors in SAX come in three levels of severity: warnings that you should be aware of

but that do not compromise the accuracy of the document, errors that are more severe but still do

not destroy the usefulness of the document, and fatal errors that invalidate the current document

but may allow continued processing to reveal further errors.

These are represented by the three methods in this interface (see the Delphi definition in List-

ing 14-10). Each is passed an ESAXParseException that encapsulates the error condition and its

location.

Listing 14-10: The ISAXErrorHandler interface

ISAXErrorHandler = interface(IUnknown)
['{669D9AA5-3D80-11D4-9ABD-B87D0AF18D62}']
procedure Error(ParseError: ESAXParseException);
procedure FatalError(ParseError: ESAXParseException);
procedure Warning(ParseError: ESAXParseException);

end;

A list of the ISAXErrorHandler interface’s methods follows:

procedure Error(ParseError: ESAXParseException);
An error has occurred in parsing the document, as described in the exception supplied.

procedure FatalError(ParseError: ESAXParseException);
A major error has occurred during parsing that may terminate the entire process. The docu-

ment is no longer usable.

procedure Warning(ParseError: ESAXParseException);
A warning about a problem in the parse process is notified through this method.

The default implementation of this interface, from the TSAXDefaultHandler class, does nothing

for warnings and errors, but raises fatal errors as an exception to be processed elsewhere in the

application. You can use this class as a base from which to derive you own error handler, allowing

you to only override those methods that you wish to respond to.

SAX Extensions

Under SAX2, extensions to the basic SAX abilities are available in a standardized manner. The

new XMLReaders provide a Features and a Properties attribute that lets you enhance or custom-

ize their behavior. Each extension is identified by a name based on a particular URI.

For both these attributes, if the reader does not understand the name supplied, it raises an

ESAXNotRecognizedException to alert you to this fact. If it knows the name but cannot make use

of it, it raises an ESAXNotSupportedException.

Several standard features are defined and are available as constant values in the SAX2 unit. The

first two features are required to be recognized by all SAX-compliant XML readers.

330 Part III: Simple API for XML



NamespacesFeature = 'http://xml.org/sax/features/namespaces';
This feature determines whether or not namespace URIs replace defined prefixes on ele-

ments and attributes. It defaults to True, which performs the replacement.

NamespacePrefixesFeature = 'http://xml.org/sax/features/namespace-prefixes';
Determine whether or not qualified names are returned for elements and attributes through

this feature. This feature also controls the passing back of namespace declaration attributes

(with names like xmlns:xxx). It defaults to False, which makes the supply of qualified

names optional and suppresses namespace declarations from attribute lists.

ValidationFeature = 'http://xml.org/sax/features/validation';
This feature controls whether the reader performs validations on the documents processed.

Set it to True to validate against a DTD.

ExternalGeneralFeature = 'http://xml.org/sax/features/external-general-entities';
Determine whether or not external general entities may be skipped with this feature.

ExternalParameterFeature = 'http://xml.org/sax/features/external-parameter-
entities';
Similarly, this feature determines whether or not external parameter entities may be

skipped.

ISAXLexicalHandler Interface

Additional notifications of lexical items within the XML document come through the

ISAXLexicalHandler interface, a SAX extension. It informs you about comments, and the start

and end of the DTD declaration, CDATA sections, and entity references. The Delphi definition is

shown in Listing 14-11.

Listing 14-11: The ISAXLexicalHandler interface

ISAXLexicalHandler = interface
['{F430E0E5-3B30-11D4-9ABD-98F2DF77D546}']
procedure Comment(Text: TSAXString);
procedure StartCData;
procedure EndCData;
procedure StartDTD(Name, PublicId, SystemId: TSAXString);
procedure EndDTD;
procedure StartEntity(Name: TSAXString);
procedure EndEntity(Name: TSAXString);

end;

The methods of the ISAXLexicalHandler interface are shown below:

procedure Comment(Text: TSAXString);
Comments are identified by this method. These entries are generally only of interest to

applications that are constructing or reviewing entire XML documents, rather than manipu-

lating the content of those documents. Comments should not be relied upon to contain

useful information, and may not be supplied at all by some readers. If this information is

necessary, then using a processing instruction would be a better option.

Chapter 14: SAX in Delphi 331



procedure StartCData;
procedure EndCData;

Although the text content of a CDATA section is passed on under the original SAX specifi-

cation, the fact that it came from such a section is not. In this extension, the actual text is still

supplied via the Characters method of the ISAXContentHandler interface, but this call is

wrapped in a StartCData and EndCData pair to denote its source.

procedure StartDTD(Name, PublicId, SystemId: TSAXString);
procedure EndDTD;

The DTD declaration, if one appears, is passed to the handler as a matched set of StartDTD
and EndDTD calls. Between these two are notifications of all the references within that DTD.

Notations and unparsed entities are supplied through the appropriate methods of the

ISAXDTDHandler interface. Element and attribute declarations and parsed entities are noti-

fied through the methods of the ISAXDeclHandler interface defined below. The latter is

another extension to SAX, and so cannot be relied upon from any given reader. Any com-

ments or processing instructions encountered within the DTD declaration are passed on

through the usual methods.

procedure StartEntity(Name: TSAXString);
procedure EndEntity(Name: TSAXString);

Entity references found in the DTD of the document were quietly resolved and processed

under SAX1. With the StartEntity and EndEntity methods you can be informed of their

presence. All events arising from the contents of an entity must appear between these two

calls. An external DTD also appears as an entity under this scheme, and has the name [dtd]
assigned to it.

Parameter entities can also be reported and are denoted by their names beginning with a percent

sign ( % ). Whether or not they are reported depends on the setting of the following feature (named

in the SAX2Ext unit), where a value of True informs you:

ParameterEntitiesFeature = 'http://xml.org/sax/features/lexical-handler/
parameter-entities';
Any entities that are skipped are notified to you through the SkippedEntity method of the

content handler.

A lexical handler is registered with the reader using its Properties property with the following

name (defined in the SAX2Ext unit):

LexicalHandlerProperty =
'http://xml.org/sax/properties/lexical-handler';

Thus the registration may appear like the example below:

MyXMLReader.Properties[LexicalHandlerProperty] :=
MyLexicalHandler.Create;

332 Part III: Simple API for XML



ISAXDeclHandler Interface

Further information from the DTD comes from the ISAXDeclHandler interface, which is the sec-

ond standard extension to SAX. It notifies you about element and attribute declarations, along

with declarations for parsed entities. All the calls from this extension occur between the StartDTD
and EndDTD notifications of the ISAXLexicalHandler interface (if this is in use). See Listing 14-12

for the Delphi declaration.

Listing 14-12: The ISAXDeclHandler interface

ISAXDeclHandler = interface
['{F430E0E4-3B30-11D4-9ABD-98F2DF77D546}']
procedure AttributeDecl(
EName, AName, AttrType, ValueDefault, Value: TSAXString);

procedure ElementDecl(Name, Model: TSAXString);
procedure ExternalEntityDecl(Name, PublicId, SystemId: TSAXString);
procedure InternalEntityDecl(Name, Value: TSAXString);

end;

The ISAXDeclHandler interface’s methods are detailed below:

procedure ElementDecl(Name, Model: TSAXString);
Each element declaration is identified by this method, passing the element’s name and its

content model (as a string).

procedure AttributeDecl(EName, AName, AttrType, ValueDefault, Value: TSAXString);
Similarly, the appearance of each attribute produces a call to this method. Along with the

element and attribute names come the default declaration (#IMPLIED, #REQUIRED, #FIXED, or

blank), any default value, and the attribute’s type (as a string). The type includes the full

token list for enumerated and notation types, after removing all white space.

procedure ExternalEntityDecl(Name, PublicId, SystemId: TSAXString);
procedure InternalEntityDecl(Name, Value: TSAXString);

Parsed entities, as well as being used for internal replacement, are also defined to the han-

dler. These methods are invoked depending on the type of entity encountered.

A declaration handler is also registered with the reader using its Properties property, but with the

following name (also defined in the SAX2Ext unit):

DeclHandlerProperty = 'http://xml.org/sax/properties/declaration-handler';

It is then registered like the example below:

MyXMLReader.Properties[DeclHandlerProperty] := MyDeclHandler.Create;

Chapter 14: SAX in Delphi 333



ISAXXMLReader Interface

The ISAXXMLReader interface defines how an XML reader communicates with the various han-

dlers. All SAX2 readers must implement this basic interface, which replaces the SAX1

ISAXParser one, providing support for the new ISAXContentHandler.

SAX readers are reusable but not re-entrant: the application may reuse a reader object (possi-

bly with a different input source) once the first parse has completed successfully, but it may not

invoke the Parse methods recursively within a parse.

The reader provides for the registering of a content handler, a DTD handler, an entity resolver,

and/or an error handler. Additional functionality is requested or provided through the Features
and Properties of the reader. When the Parsemethod is invoked, it calls routines in the registered

handlers at appropriate times as it parses the document.

See Listing 14-13 for the Delphi definition of this interface. Implementations of

ISAXXMLReader can be parsers, validating or not, written entirely in Delphi, or they can be wrap-

pers around existing parsers.

Listing 14-13: The ISAXXMLReader interface

ISAXXMLReader = interface
['{F430E0E2-3B30-11D4-9ABD-98F2DF77D546}']
function GetContentHandler: ISAXContentHandler;
function GetDTDHandler: ISAXDTDHandler;
function GetEntityResolver: ISAXEntityResolver;
function GetErrorHandler: ISAXErrorHandler;
function GetFeature(Name: TSAXString): Boolean;
function GetProperty(Name: TSAXString): TObject;
procedure Parse(Input: TSAXInputSource); overload;
procedure Parse(SystemId: TSAXString); overload;
procedure SetContentHandler(
ContentHandler: ISAXContentHandler);

procedure SetDTDHandler(DTDHandler: ISAXDTDHandler);
procedure SetEntityResolver(
EntityResolver: ISAXEntityResolver);

procedure SetErrorHandler(ErrorHandler: ISAXErrorHandler);
procedure SetFeature(Name: TSAXString; Value: Boolean);
procedure SetProperty(Name: TSAXString; Value: TObject);
property ContentHandler: ISAXContentHandler
read GetContentHandler write SetContentHandler;

property DTDHandler: ISAXDTDHandler
read GetDTDHandler write SetDTDHandler;

property EntityResolver: ISAXEntityResolver
read GetEntityResolver write SetEntityResolver;

property ErrorHandler: ISAXErrorHandler
read GetErrorHandler write SetErrorHandler;

property Features[Name: TSAXString]: Boolean
read GetFeature write SetFeature;

property Properties[Name: TSAXString]: TObject
read GetProperty write SetProperty;

end;

334 Part III: Simple API for XML



A description of the ISAXXMLReader interface’s properties and methods follows:

property ContentHandler: ISAXContentHandler read GetContentHandler write
SetContentHandler;

property DTDHandler: ISAXDTDHandler read GetDTDHandler write SetDTDHandler;
property EntityResolver: ISAXEntityResolver read GetEntityResolver write

SetEntityResolver;
property ErrorHandler: ISAXErrorHandler read GetErrorHandler write

SetErrorHandler;
Use these properties to set or retrieve the handlers to be invoked by the reader.

property Features[Name: TSAXString]: Boolean read GetFeature write SetFeature;
This property reads or writes the setting for a named feature within the reader. Use the con-

stants from the SAX2 and SAX2Ext units when accessing the standard features.

property Properties[Name: TSAXString]: TObject read GetProperty write SetProperty;
Set or retrieve objects on the reader through this property. Again, you should use the con-

stants from the SAX2Ext unit for the standard property names.

procedure Parse(Input: TSAXInputSource); overload;
procedure Parse(SystemId: TSAXString); overload;

The heart of the SAX framework, these methods start the parse process. As items are

encountered within the document, the corresponding methods on the various handlers regis-

tered with it are called. Input for the parsing comes from either an existing input source or

from an identified resource (subsequently loaded through an input source object).

An abstract base for an ISAXXMLReader is defined as the TSAXCustomXMLReader class in the

SAX2Helper unit. It handles the bookkeeping tasks of registering handlers and noting basic fea-

tures, along with directing both versions of the parse method to a single routine. This protected

ParseInput method is abstract, requiring the subclass to fill in how the parse is actually done.

The class also implements the ISAXLocator interface, providing positional feedback to the

handlers. Since the reader is the object processing the document, it is in the best position to supply

the locator details. The implementation in this class returns the default values, blank strings or –1,

but can be easily overridden in subclasses.

Deriving a concrete reader from this base really only requires overriding the ParseInput
method. Other enhancements could include returning actual location information, convenience

constructors, and implementing additional features or properties.

Chapter 14: SAX in Delphi 335



ISAXXMLFilter Interface

Occasionally, it is useful to be able to modify the results of a parse operation before the final pro-

cessing of the results. The ISAXXMLFilter interface (shown in Listing 14-14) defines this ability.

It appears like an ISAXXMLReader, since it extends that interface, but responds to events from

another source.

Listing 14-14: The ISAXXMLFilter interface

ISAXXMLFilter = interface(ISAXXMLReader)
['{F430E0E3-3B30-11D4-9ABD-98F2DF77D546}']
function GetParent: ISAXXMLReader;
procedure SetParent(Parent: ISAXXMLReader);
property Parent: ISAXXMLReader read GetParent write SetParent;

end;

The one property of the ISAXXMLFilter interface is listed below:

property Parent: ISAXXMLReader read GetParent write SetParent;
This property refers to the ISAXXMLReader that does the real processing (although this could

be another filter in turn).

A default implementation of the filter is available in the TSAXCustomXMLFilter class in the

SAX2Helper unit. All it does is pass parse requests up to its parent reader, and events back down to

its registered handlers. Using this as a base, you can quickly implement a real filter by overriding

only those requests or events of interest.

TSAXParserAdapter and TSAXXMLReaderAdapter
Classes

To facilitate the uptake of SAX2 and to deal with legacy code, two classes are provided in the

SAX2Helper unit to allow interoperation between SAX1 and SAX2 parsers and handlers.

The TSAXParserAdapter class (see Listing 14-15) wraps a SAX1 ISAXParser to make it

appear like a SAX2 ISAXXMLReader. It implements the reader interface, passing DTD, entity, and

error handler events directly through from the parser. It also implements the SAX1

ISAXDocumentHandler interface, which it converts into ISAXContentHandler events for the final

consumer. Obviously, some events and abilities of a SAX2 reader cannot be reproduced from a

SAX1 parser; however, the basic functionality is immediately available.

Listing 14-15: The TSAXParserAdapter class

TSAXParserAdapter = class(TInterfacedObject,
ISAXXMLReader, ISAXDocumentHandler)

public
constructor Create; overload;
constructor Create(Parser: ISAXParser); overload;
{ ISAXXMLReader }
procedure Parse(Input: TSAXInputSource); overload;
procedure Parse(SystemId: TSAXString); overload;
property ContentHandler: ISAXContentHandler

336 Part III: Simple API for XML

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



read GetContentHandler write SetContentHandler;
property DTDHandler: ISAXDTDHandler
read GetDTDHandler write SetDTDHandler;

property EntityResolver: ISAXEntityResolver
read GetEntityResolver write SetEntityResolver;

property ErrorHandler: ISAXErrorHandler
read GetErrorHandler write SetErrorHandler;

{ ISAXDocumentHandler }
procedure Characters(Text: TSAXString);
procedure EndDocument;
procedure EndElement(QName: TSAXString);
procedure IgnorableWhitespace(Text: TSAXString);
procedure ProcessingInstruction(Target, Data: TSAXString);
procedure SetDocumentLocator(Locator: ISAXLocator);
procedure StartDocument;
procedure StartElement(QName: TSAXString; Attributes: ISAXAttributeList);

end;

The TSAXParserAdapter class’s methods are shown below:

constructor Create; overload;
constructor Create(Parser: ISAXParser); overload;

Produce a new adapter with these constructors. If you specify a parser, it is used to process

the documents. Otherwise, a default parser is created through the TSAXParserFactory class.

The adapter’s remaining properties and methods duplicate those described in the ISAXXMLReader
and ISAXDocumentHandler interfaces.

Conversely, TSAXXMLReaderAdapterwraps a SAX2 ISAXXMLReader to make it act like a SAX1

ISAXParser (see Listing 14-16). Similarly to the parser adapter, this one passes through whatever

events it can, while converting content handler events into document handler ones. The extra func-

tionality of SAX2 is basically ignored and discarded.

Listing 14-16: The TSAXXMLReaderAdapter class

TSAXXMLReaderAdapter = class(TInterfacedObject,
ISAXParser, ISAXContentHandler)

public
constructor Create; overload;
constructor Create(XMLReader: ISAXXMLReader); overload;
destructor Destroy; override;
{ ISAXParser }
procedure Parse(Input: TSAXInputSource); overload;
procedure Parse(SystemId: TSAXString); overload;
property DocumentHandler: ISAXDocumentHandler
read GetDocumentHandler write SetDocumentHandler;

property DTDHandler: ISAXDTDHandler
read GetDTDHandler write SetDTDHandler;

property EntityResolver: ISAXEntityResolver
read GetEntityResolver write SetEntityResolver;

property ErrorHandler: ISAXErrorHandler
read GetErrorHandler write SetErrorHandler;

{ ISAXContentHandler }
procedure Characters(Text: TSAXString);
procedure EndDocument;
procedure EndElement(NamespaceURI, LocalName, QName: TSAXString);
procedure EndPrefixMapping(Prefix: TSAXString);
procedure IgnorableWhitespace(Text: TSAXString);
procedure ProcessingInstruction(Target, Data: TSAXString);

Chapter 14: SAX in Delphi 337



procedure SetDocumentLocator(Locator: ISAXLocator);
procedure SkippedEntity(Name: TSAXString);
procedure StartDocument;
procedure StartElement(NamespaceURI, LocalName, QName: TSAXString;
Attributes: ISAXAttributes);

procedure StartPrefixMapping(Prefix, URI: TSAXString);
end;

A listing of the TSAXXMLReaderAdapter class’s methods follows:

constructor Create; overload;
constructor Create(XMLReader: ISAXXMLReader); overload;

Build a new adapter with these constructors. If you do not specify a reader to use, the

TSAXXMLReaderFactory class creates a default one.

Again, the adapter’s other properties and methods duplicate those discussed elsewhere in the

ISAXParser and ISAXContentHandler interfaces.

TSAXXMLReaderFactory Class

To make it easier to create readers for use in parsing documents, SAX includes factory classes.

These allow you to identify a reader by name and have it instantiated within the program. In this

way, the actual reader can be determined at run time, possibly from an initialization file or the

registry.

In Delphi you can make use of one of the abilities of TPersistent to achieve this. Descendants

of this class can be registered with the application to allow them to be used with the streaming

functionality. Thus, instances of classes can be created, based on their names, as they are encoun-

tered within a .dfm file being read in.

The FindClass routine takes a class name as a parameter and returns a reference to the class

that it corresponds to. From this class reference you can call Create to build an instance of it.

Finally, the resulting class is cast as the required interface and returned for your use.

Since only classes descended from TPersistent can be constructed using this technique, and

given that the reader implements one or more interfaces, an appropriate base class is defined in the

SAXHelper unit as TInterfacedPersistent. This class is derived from TPersistent and only

adds the basic reference counting and interface querying of IUnknown. This class is then used as a

base for all the readers in SAX.

Before a class can be found in this manner, it must be registered with the application. The

RegisterClass routine does just this, taking the class as its parameter. By making this call in the

initialization section of the unit containing the reader, you ensure that it is available whenever

the program needs it. The class is unregistered in the finalization section.

initialization
RegisterClass(TSAX2DelphiReader);

finalization
UnRegisterClass(TSAX2DelphiReader);

end.

338 Part III: Simple API for XML



TSAXXMLReaderFactory (see Listing 14-17) is defined as a static class. All its methods are

declared as class methods, meaning that they can be invoked from the class itself, without creating

an actual object.

Listing 14-17: The TSAXXMLReaderFactory class

TSAXXMLReaderFactory = class(TObject)
public
constructor Create;
class function CreateXMLReader: ISAXXMLReader; overload;
class function CreateXMLReader(Name: TSAXString): ISAXXMLReader;
overload;

end;

The methods of the TSAXXMLReaderFactory class are described below:

constructor Create;
The constructor raises an exception since you do not instantiate this class.

class function CreateXMLReader(Name: TSAXString): ISAXXMLReader; overload;
Given the name of a class that implements the ISAXXMLReader interface (and that has regis-

tered itself with the system), this method generates an instance of that class (using

FindClass) and returns it as a reader. If the specified class cannot be found, an exception

occurs.

class function CreateXMLReader: ISAXXMLReader; overload;
Similarly, this method creates and returns an instance of a default class that implements the

reader interface. But how can we identify the default reader? Rather than hard-code a partic-

ular class or rely on a command line parameter, you can get the name from an environment

variable. For SAX2, this variable is called SAX2RDR, which is set to the name of the appropri-

ate class. A line like the following placed in your autoexec.bat establishes the setting:

SET SAX2RDR=TSAX2DelphiReader

For the TSAXParserFactory class, the default SAX1 parser is obtained from the SAXPSR environ-

ment variable. These values can be set up at boot time, or could be added by .bat files or even

programmatically.

The implementation of the TSAXXMLReaderFactory is shown in Listing 14-18.

Listing 14-18: Implementing the factory

{ Attempt to create an XML reader from an environment variable.
This method uses the value of the environment variable SAX2RDR
as the full name of a Delphi class and tries to instantiate
that class as a SAX2 ISAXXMLReader. This class must have been
registered with a call to RegisterClass.

}
class function TSAXXMLReaderFactory.CreateXMLReader:
ISAXXMLReader;

var
Buffer: array [0..255] of Char;

begin
GetEnvironmentVariable(EnvReader, Buffer, 255);
Result := CreateXMLReader(Buffer);

end;
{ Attempt to create an XML reader from a class name.

Chapter 14: SAX in Delphi 339



Given a class name, this method attempts to load
and instantiate the class as an XML reader. This class must
have been registered with a call to RegisterClass.

}
class function TSAXXMLReaderFactory.CreateXMLReader(
Name: TSAXString): ISAXXMLReader;

var
ReaderClass: TInterfacedPersistentClass;
Reader: TInterfacedPersistent;

begin
try
ReaderClass := TInterfacedPersistentClass(FindClass(Name));
Reader := ReaderClass.Create;
Result := Reader as ISAXXMLReader;

except on Exc: Exception do
raise ESAXException.Create(Format(NoParser, [Name]), Exc);

end;
end;

TSAXDefaultHandler Class

The TSAXDefaultHandler class provides a default implementation of the various basic handler

interfaces. This class serves two purposes: firstly as a base class for customized handlers, and sec-

ondly as a possible default for a SAX reader when no other handler is specified. Defined in SAX2,

this class replaces the TSAXHandlerBase class of SAX1.

In most cases this class does nothing as a result of the calls made to it. The one exception is the

FatalError method of the error handler, which raises the exception to the application.

Since this class already provides do-nothing implementations of all the methods for each han-

dler interface, you only need to override those methods that you are interested in when deriving a

custom handler. The remaining methods inherit the abilities of the base class and happily ignore

any other calls. All methods are declared as virtual to allow for this overriding.

The Delphi declaration of this class is shown in Listing 14-19. It just provides implementa-

tions for the four standard handlers defined in SAX.

Listing 14-19: The TSAXDefaultHandler class

TSAXDefaultHandler = class(TInterfacedObject, ISAXEntityResolver,
ISAXDTDHandler, ISAXContentHandler, ISAXErrorHandler)

public
{ ISAXEntityResolver }
function ResolveEntity(PublicId, SystemId: TSAXString):
TSAXInputSource; virtual;

{ ISAXDTDHandler }
procedure NotationDeclaration(
Name, PublicId, SystemId: TSAXString); virtual;

procedure UnparsedEntityDeclaration(
Name, PublicId, SystemId, NotationName: TSAXString); virtual;

{ ISAXContentHandler }
procedure Characters(Text: TSAXString); virtual;
procedure EndDocument; virtual;
procedure EndElement(NamespaceURI, LocalName, QName:
TSAXString); virtual;

procedure EndPrefixMapping(Prefix: TSAXString); virtual;
procedure IgnorableWhitespace(Text: TSAXString); virtual;

340 Part III: Simple API for XML



procedure ProcessingInstruction(Target, Data: TSAXString);
virtual;

procedure SetDocumentLocator(Locator: ISAXLocator); virtual;
procedure SkippedEntity(Name: TSAXString); virtual;
procedure StartDocument; virtual;
procedure StartElement(NamespaceURI, LocalName, QName:
TSAXString; Attributes: ISAXAttributes); virtual;

procedure StartPrefixMapping(Prefix, URI: TSAXString); virtual;
{ ISAXErrorHandler }
procedure Error(Exception: ESAXParseException); virtual;
procedure FatalError(Exception: ESAXParseException); virtual;
procedure Warning(Exception: ESAXParseException); virtual;

end;

Building a SAX Reader

Now that the basic components of SAX have been defined in Delphi, you can construct an actual

reader that implements this functionality.

The SAX reader loads a document, interprets its contents, and makes calls to its registered han-

dlers to enable them to process the resulting information. In general, you would write a new

content handler for each document type, dealing with the specific tags present therein.

Although this may seem like more work than having a consistent object model to deal with,

you would still have to write customized code for each application to extract the information from

that model. The big advantage with using SAX is that your handlers can interact with any reader

that implements the SAX ISAXXMLReader interface. This allows you to swap readers as new tech-

nologies appear without affecting the remainder of the application. Similarly, one reader can be

used to supply any number of handlers in a consistent manner.

Both a native Delphi SAX1 parser and a SAX2 reader are implemented in the accompanying

package. They each rely on the TXMLParser class (see Listing 14-21) defined in the ParserXML
unit, which extends the basic abilities of the TCustomParser class (see Listing 14-20) from the

ParserBase unit. The custom parser provides functionality common to many parsers (reading a

stream, handling character encodings, and counting lines and columns), while the XML reader

knows about XML and returns XML-specific tokens to the caller.

Listing 14-20: The TCustomParser class

TCustomParser = class(TObject)
protected
FStream: TStream;
property Column: Integer read FColumn write FColumn;
property CurChar: WideChar read FCurChar write FCurChar;
property Encoding: TEncoding read FEncoding write FEncoding;
property Line: Integer read FLine write FLine;
property Token: TCustomToken read FToken write FToken;
property TokenString: WideString read FTokenString
write FTokenString;

procedure Error(const Message: string); virtual;
function ExtractTo(CharSet: WideString; EOFError: string):
WideString; virtual;

function NextChar: WideChar; virtual;
function NextToken: TCustomToken; virtual;
function PeekChar: WideChar; virtual;

Chapter 14: SAX in Delphi 341



function PeekString(Text: WideString): Boolean; virtual;
procedure SkipBlanks; virtual;

public
constructor Create(Stream: TStream); virtual;

end;

The TCustomParser class’s properties and methods are discussed below:

constructor Create(Stream: TStream); virtual;
Produce a new basic parser that operates on the supplied stream. The parser immediately

moves to the first token.

property Encoding: TEncoding read FEncoding write FEncoding;
This property sets or retrieves the encoding scheme used in the stream. Its value must be one

of those in Table 14-2. Initially it is set to enUnknown and it is up to the user of the parser to

set it correctly.

Table 14-2: Encoding types

Encoding Description

enUnknown The scheme is unknown and is treated as straight ASCII (single byte characters).

enUTF8 The scheme is UTF-8, a multi-byte encoding for Unicode that is optimized for ASCII
characters.

enUTF16BE The scheme is UTF-16BE, a 16-bit encoding for Unicode in big-endian ordering.

enUTF16LE The scheme is UTF-16LE, a 16-bit encoding for Unicode in little-endian ordering.

property Line: Integer read FLine write FLine;
property Column: Integer read FColumn write FColumn;

Obtain the current line and column number through these properties. Line counts are based

on the presence of line feed characters. Both counts start at one.

property CurChar: WideChar read FCurChar write FCurChar;
This property returns the character most recently read from the stream. Note that this may

correspond to one or more bytes based on the encoding used. A null character (EOF) is

returned once the end of the stream is reached.

property Token: TCustomToken read FToken write FToken;
Retrieve the token type just read from this property. At this level it is either toCharacter for

a normal character or toEOF at the end of the stream.

property TokenString: WideString read FTokenString write FTokenString;
At this level, this property simply returns the current character.

function NextChar: WideChar; virtual;
Extract the next character from the input stream through this method, setting the CurChar
property in the process. Based on the current encoding this may consist of more than one

byte. It returns EOF if the end of the stream is reached.

function PeekChar: WideChar; virtual;
This method returns the next character from the stream without actually reading it, giving

you a one-character look ahead.

342 Part III: Simple API for XML



function PeekString(Text: WideString): Boolean; virtual;
Check for the presence of an entire string with this method. It returns True if the string is

next in the input stream and advances the stream position to just after that value. Otherwise,

it returns False without changing the stream position.

function NextToken: TCustomToken; virtual;
Retrieve the next token from the input stream through this method. It returns toEOF at the

end of the stream. Normally, this method controls the loop that steps through the contents of

the file.

function ExtractTo(CharSet: WideString; EOFError: string): WideString; virtual;
Given a set of characters to match on, this method compiles and returns characters from the

stream up to but not including the delimiter. Each character in the first parameter is looked

for individually. If the end of the stream is found before any of the terminating characters, an

error is generated using the supplied text.

procedure SkipBlanks; virtual;
Skip over white space characters with this method. The stream is left just before the first

non-white space character found.

procedure Error(const Message: string); virtual;
Raise an exception from the parser with this method. It attaches the current line and column

numbers to the supplied message before signaling the error.

Listing 14-21: The TXMLParser class

TXMLParser = class(TCustomParser)
protected
procedure Error(const Message: string); override;
function ExtractTo(CharSet: WideString; EOFError: string):
TSAXString; override;

public
constructor Create(Stream: TStream); override;
destructor Destroy; override;
property Line;
property Column;
property Token: TXMLToken read FToken write FToken;
property TagType: TXMLTagType read FTagType write FTagType;
property TokenString;
property Attributes: TStringList read FAttributes;
function NextToken: TXMLToken;

end;

A listing of the TXMLParser class’s properties and methods follows. Those not discussed match the

corresponding ones from the basic parser.

constructor Create(Stream: TStream); override;
This constructor determines the encoding for the stream (as described in the XML specifica-

tion) before proceeding with the rest of the processing.

property Token: TXMLToken read FToken write FToken;
Replacing the inherited property, this one returns an indication of the type of XML token

encountered. See Table 14-3 for a list of valid values.

Chapter 14: SAX in Delphi 343



Table 14-3: XML token types

Token Description TokenString

toEOF End of stream reached

toElement An element The element name

toComment A comment The comment text

toInstruction A processing instruction The target

toText A text node The text

toCData A CDATA section The text

toEntityRef An entity reference The entity name

toDTD The DTD declaration The DTD name

toEntity An entity declaration The entity name

toNotation A notation declaration The notation name

toElementDecl An element declaration The element name

toAttrDecl An attribute declaration The element name

property TokenString;
The meaning of this property depends on the token type as shown in Table 14-3.

property TagType: TXMLTagType read FTagType write FTagType;
Applicable to element and DTD declaration nodes, this property defines whether it is the

start or end of that node. The valid values are shown in Table 14-4.

Table 14-4: XML tag types

Tag Type Description

ttOpening This is the start of the node.

ttClosing This is the end of the node.

ttEmpty For an element only, this node is empty.

property Attributes: TStringList read FAttributes;
This property is overloaded in meaning depending on the token type. See Table 14-5 for a

description of its contents.

Table 14-5: Attributes meanings

Token Attributes

toEOF Empty

toElement On the opening tag, contains attribute values accessed through the Values
property by name

toComment Empty

toInstruction First entry is the data portion of the processing instruction

toText Empty

toCData Empty

344 Part III: Simple API for XML



Token Attributes

toEntityRef Empty

toDTD On the opening tag, contains settings from the DTD declaration accessed
through the Values property by the following name constants: PublicAttr and
SystemAttr

toEntity Contains settings from the entity declaration accessed through the Values
property by the following name constants: PublicAttr, SystemAttr, NDataAttr,
and ValueAttr.

toNotation Contains settings from the notation declaration accessed through the Values
property by the following name constants: PublicAttr and SystemAttr.

toElementDecl The first entry is the content model for the element.

toAttrDecl Entries are the (white space delimited) tokens that make up the attribute
declaration list for this tag, which may include several attributes.

function NextToken: TXMLToken;
This method reads the next token from the input stream and returns its type. In the process it

establishes the values of the remaining properties.

The SAX XML Viewer

Putting it all together you can build another version of the XML viewer from the DOM section

(see Figure 14-1). This time, a SAX reader instead of the DOM does the processing of the docu-

ment, with the results being shown in the same tree structure.

Since the viewer form is the object interested in the contents of the XML document, it can imple-

ment the various SAX handler interfaces directly. This is one of the main benefits of using

interfaces—any object, regardless of its position in the object hierarchy, can express the necessary

functionality. The declaration for the form needs to be altered to reflect these extra abilities. In its

Chapter 14: SAX in Delphi 345

Figure 14-1: The SAX document viewer.



type definition, add the SAX handler references as shown in Listing 14-22. Then add all the meth-

ods from these interfaces to its public section.

Listing 14-22: XML viewer form implementing SAX handler interfaces

type
TfrmSAX2Viewer = class(TForm, ISAXDTDHandler,

ISAXContentHandler, ISAXErrorHandler,
ISAXLexicalHandler, ISAXDeclHandler)

pgcMain: TPageControl;
tshStructure: TTabSheet;
trvXML: TTreeView;
pgcDetails: TPageControl;
tshDocument: TTabSheet;
Label1: TLabel;
edtDocType: TEdit;
Label2: TLabel;
edtPublicId: TEdit;
Label3: TLabel;
edtSystemId: TEdit;
Label6: TLabel;
stgEntities: TStringGrid;
Label7: TLabel;
stgNotations: TStringGrid;

tshElement: TTabSheet;
pnlNames: TPanel;
Label4: TLabel;
edtURI: TEdit;
Label5: TLabel;
edtLocalName: TEdit;

stgAttributes: TStringGrid;
stgPrefixes: TStringGrid;

tshText: TTabSheet;
lblNodeType: TLabel;
memText: TMemo;

tshSource: TTabSheet;
memSource: TRichEdit;

mnuMain: TMainMenu;
mniFile: TMenuItem;
mniOpen: TMenuItem;
mniSep1: TMenuItem;
mniParser: TMenuItem;
mniDelphi2: TMenuItem;
mniDelphi1: TMenuItem;
mniMicrosoft2: TMenuItem;
mniMicrosoft1: TMenuItem;

mniParserOptions: TMenuItem;
mniValidation: TMenuItem;
mniNamespaces: TMenuItem;
mniNamespacePrefixes: TMenuItem;

mniSep2: TMenuItem;
mniExit: TMenuItem;

mniView: TMenuItem;
mniExpandAll: TMenuItem;
mniCollapseAll: TMenuItem;
mniSep3: TMenuItem;
mniViewSource: TMenuItem;

imlXML: TImageList;
dlgOpen: TOpenDialog;
procedure FormCreate(Sender: TObject);

346 Part III: Simple API for XML

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



procedure FormDestroy(Sender: TObject);
procedure mniOpenClick(Sender: TObject);
procedure mniParserClick(Sender: TObject);
procedure mniExitClick(Sender: TObject);
procedure mniExpandAllClick(Sender: TObject);
procedure mniCollapseAllClick(Sender: TObject);
procedure mniViewSourceClick(Sender: TObject);
procedure trvXMLChange(Sender: TObject; Node: TTreeNode);

private
FSAXReader: ISAXXMLReader;
FLocator: ISAXLocator;
FCurrent: TTreeNode;
FCaption: string;
FCharIcon: Integer;
FPrefixes: TStringList;
procedure ClearTree;
procedure LoadDoc(sFilename: string);
procedure ShowError(mtLevel: TMsgDlgType; ParseError:
ESAXParseException);

function TruncateText(Text: string): string;
public
{ ISAXDTDHandler }
procedure NotationDecl(Name, PublicId, SystemId: TSAXString);
procedure UnparsedEntityDecl(
Name, PublicId, SystemId, NotationName: TSAXString);

{ ISAXContentHandler }
procedure Characters(Text: TSAXString);
procedure EndDocument;
procedure EndElement(NamespaceURI, LocalName, QName: TSAXString);
procedure EndPrefixMapping(Prefix: TSAXString);
procedure IgnorableWhitespace(Text: TSAXString);
procedure ProcessingInstruction(Target, Data: TSAXString);
procedure SetDocumentLocator(Locator: ISAXLocator);
procedure SkippedEntity(Name: TSAXString);
procedure StartDocument;
procedure StartElement(NamespaceURI, LocalName, QName:
TSAXString; Attributes: ISAXAttributes);

procedure StartPrefixMapping(Prefix, URI: TSAXString);
{ ISAXErrorHandler }
procedure Error(ParseError: ESAXParseException);
procedure FatalError(ParseError: ESAXParseException);
procedure Warning(ParseError: ESAXParseException);
{ ISAXDeclHandler }
procedure AttributeDecl(
EName, AName, AttrType, ValueDefault, Value: TSAXString);

procedure ElementDecl(Name, Model: TSAXString);
procedure ExternalEntityDecl(Name, PublicId, SystemId:
TSAXString);

procedure InternalEntityDecl(Name, Value: TSAXString);
{ ISAXLexicalHandler }
procedure Comment(Text: TSAXString);
procedure EndCData;
procedure EndDTD;
procedure EndEntity(Name: TSAXString);
procedure StartCData;
procedure StartDTD(Name, PublicId, SystemId: TSAXString);
procedure StartEntity(Name: TSAXString);

end;

Chapter 14: SAX in Delphi 347



Registering the form with the reader lets it respond to the events defined by the handler interfaces.

The basic SAX handlers are set directly into the reader through the correspondingly named prop-

erties. Extended handlers must be registered through the Properties property. In these cases, you

need to trap exceptions that may arise due to that property not being recognized or supported. List-

ing 14-23 shows the necessary code.

Listing 14-23: Registering handlers with the XML reader

FSAXReader.ContentHandler := Self;
FSAXReader.DTDHandler := Self;
FSAXReader.ErrorHandler := Self;
try
FSAXReader.Properties[DeclHandlerProperty] := Self;

except
{ Ignore }

end;
try
FSAXReader.Properties[LexicalHandlerProperty] := Self;

except
{ Ignore }

end;

Various menu items within the viewer let you control some of the standard features of a SAX

reader. Within the code these are set immediately before starting the parse process (see Listing

14-24) since they may be updated by the user at any time. As with the properties above, setting a

feature may result in an exception if it is unknown or not supported. In that case, the corresponding

menu item is disabled indicating that this feature cannot be used on this reader.

Listing 14-24: Setting reader properties and starting the parse process

{ Attempt to set various feature }
try
FSAXReader.Features[ValidationFeature] := mniValidation.Checked;

except on ESAXException do
mniValidation.Enabled := False;

end;
try
FSAXReader.Features[NamespacesFeature] := mniNamespaces.Checked;

except on ESAXException do
mniNamespaces.Enabled := False;

end;
try
FSAXReader.Features[NamespacePrefixesFeature] :=
mniNamespacePrefixes.Checked;

except on ESAXException do
mniNamespacePrefixes.Enabled := False;

end;
{ Parse the document—form already registered
with parser as handlers }

FSAXReader.Parse(Filename);

348 Part III: Simple API for XML



Implementing ISAXContentHandler

Each of these methods must now be implemented for the viewer to function. The StartDocument
method initializes all the display parts of the form in preparation for the parsing of the new docu-

ment. The tree view is cleared of its current contents, and the root node (for the document as a

whole) is added and made current in FCurrent. At the end of the process the EndDocument method

opens up the root node in the tree to expose the top-level structure of the document. These routines

are shown in Listing 14-25.

Listing 14-25: Starting and ending the document

{ Initialization for a new document display }
procedure TfrmSAX2Viewer.StartDocument;
begin
ClearTree;
FCurrent := trvXML.Items.AddChild(nil, dlgOpen.FileName);
FCurrent.ImageIndex := iDocumentIcon;
FCurrent.SelectedIndex := iDocumentIcon;
edtDocType.Text := '';
edtPublicId.Text := '';
edtSystemId.Text := dlgOpen.FileName;
stgEntities.RowCount := 2;
stgEntities.Rows[1].Clear;
stgNotations.RowCount := 2;
stgNotations.Rows[1].Clear;

end;
{ Tidy up and expand the top level of the tree }
procedure TfrmSAX2Viewer.EndDocument;
begin
trvXML.Items[0].Expand(False);

end;

As elements are encountered, they are added to the tree view on the form (see the code in Listing

14-26). The StartElement routine collects all the supplied information about the node and places

it in a specialized class, TElement. This class is added to the tree view when the node for this ele-

ment is established, allowing the associated data to be displayed when that element is later

selected within the tree. The new node is added as the child of the current node, and is then set as

the current node itself. In this way the hierarchy within the document is easily reflected within the

tree view. Conversely, the EndDocument method moves the current node pointer back up one level

within the tree. The result of saving this information is seen in Figure 14-2.

Listing 14-26: Adding an element to the tree

{ Note this element as the current node and save its attributes }
procedure TfrmSAX2Viewer.StartElement(NamespaceURI, LocalName,
QName: TSAXString; Attributes: ISAXAttributes);

var
Element: TElement;
Index: Integer;

begin
Element := TElement.Create(NamespaceURI, LocalName);
for Index := 0 to Attributes.Length –1 do
Element.Attributes.Values[Attributes.QName(Index)] :=
Attributes.Value(Index);

Element.Prefixes.Assign(FPrefixes);

Chapter 14: SAX in Delphi 349



FPrefixes.Clear;
FCurrent:= trvXML.Items.AddChildObject(FCurrent, QName, Element);
FCurrent.ImageIndex := ElementIcon;
FCurrent.SelectedIndex := ElementIcon;
if edtDocType.Text = '' then
edtDocType.Text := QName;

end;
{ Move the current context up the hierarchy
when an element ends }

procedure TfrmSAX2Viewer.EndElement(
NamespaceURI, LocalName, QName: TSAXString);

begin
FCurrent := FCurrent.Parent;

end;

Text is added in a similar manner. When the Characters method is called, you add a new node to

the tree view, with associated data that is the text itself (see Listing 14-27). A check is made here to

discard text that consists solely of white space. Some readers return everything from the XML

document, including all the formatting. Next the text is trimmed to provide a shorter name for dis-

play in the tree view itself. Finally, the full text is wrapped in an object so that it can be included in

the node as associated data. The TString class used is merely a class that has a single string prop-

erty. Figure 14-3 shows a text node in the viewer.

Listing 14-27: Add text to the tree

{ Add a text node to the tree }
procedure TfrmSAX2Viewer.Characters(Text: TSAXString);
var
Index: Integer;

begin
{ Ignore all white space }
for Index := 1 to Length(Text) do
if Text[Index] > '' then
Break;

if Index > Length(Text) then
Exit;

with trvXML.Items.AddChildObject(FCurrent, TruncateText(Text),

350 Part III: Simple API for XML

Figure 14-2: Element details displayed in the viewer.



TString.Create(Text)) do
begin
ImageIndex := FCharIcon;
SelectedIndex := FCharIcon;

end;
end;

CDATA sections are also presented to the program as text. However, with SAX and its extensions,

you can register an ISAXLexicalHandler to be notified of their presence. In this case, all you do is

set a variable to refer to the CDATA icon when informed of the start of a CDATA section, and reset

it to the normal text icon when the section ends (see Listing 14-28). This variable is the one used in

the Characters method in Listing 14-27 to control which icon appears for that node in the tree

view.

Listing 14-28: Marking CDATA sections

{ Note start of CData section }
procedure TfrmSAX2Viewer.StartCData;
begin
FCharIcon := CDataIcon;

end;
{ Note end of CData section }
procedure TfrmSAX2Viewer.EndCData;
begin
FCharIcon := TextIcon;

end;

Under SAX, you can also receive notification of element and attribute declarations from the DTD.

These arrive through the ISAXDeclHandler interface. Similar to the text processing above, the

calls generate a new node in the tree and store details other than the name as the data. Listing 14-29

shows the handler code, while Figures 14-4 and 14-5 display the result of viewing these nodes

once they are loaded.

Chapter 14: SAX in Delphi 351

Figure 14-3: The viewer showing a text node.



Listing 14-29: Processing attribute and element declarations

{ Add an attribute declaration to the tree }
procedure TfrmSAX2Viewer.AttributeDecl(
EName, AName, AttrType, ValueDefault, Value: TSAXString);

begin
with trvXML.Items.AddChildObject(FCurrent, EName + '.' + AName,
TString.Create(Value + ': ' + AttrType + ' (' + ValueDefault +
')')) do

begin
ImageIndex := AttrDeclIcon;
SelectedIndex := AttrDeclIcon;

end;
end;
{ Add an element declaration to the tree }
procedure TfrmSAX2Viewer.ElementDecl(Name, Model: TSAXString);
begin
with trvXML.Items.AddChildObject(FCurrent, Name,
TString.Create(Model)) do

begin
ImageIndex := ElemDeclIcon;
SelectedIndex := ElemDeclIcon;

end;
end;

The remaining handler methods follow the patterns described here, building up the tree view with

the contents of the document. Once it is completed, you can select any of the nodes from the tree

and have its details displayed on the panel to the right.

352 Part III: Simple API for XML

Figure 14-4: SAX2 includes element declarations.

Figure 14-5: Attribute declarations are also provided.



Summary

Since the SAX definitions appear mainly as interfaces, it is relatively simple to implement them in

various languages. This chapter describes how they are translated into Delphi and shows the cor-

responding declarations. Basic classes from SAX are also implemented in Delphi, including the

input source and attribute list classes.

Having defined the SAX functionality in Delphi you saw how to build a native XML parser

that supplies tokens to either a SAX1 parser or a SAX2 reader, all written in Delphi. An XML

viewer then invokes these objects after registering itself as the destination for each of the SAX

handlers. As the events are notified to the viewer, it builds up a tree view corresponding to the doc-

ument structure.

In the next chapter you look at how to wrap Microsoft’s SAX reader in these Delphi interfaces,

providing plug-and-play opportunities between the two versions.

Chapter 14: SAX in Delphi 353



C h a p t e r 1 5

Wrapping ExternalWrapping External

Parsers

One of the main principles behind the design of SAX is to allow different parsers to provide the

actual processing, while presenting the results in a standardized manner. The previous chapters

show how this is achieved by SAX implementations from Microsoft and in pure Delphi. However,

an application written against one version still requires several changes before it can be used with

the other. This chapter describes how external readers are wrapped in the Delphi SAX interfaces,

allowing you to swap from one reader to the other in a single line of code.

Adapting Microsoft’s SAX Parser

Since Microsoft has defined their own version of the SAX specification under Windows, it obvi-

ously differs somewhat from the Delphi version of SAX developed in Chapter 14. To be able to

use the new reader with the existing framework, you need to employ the Adapter design pattern,

interposing a class between Delphi SAX and Microsoft’s SAX that knows how to convert between

the two. To Delphi it appears as an ISAXXMLReader, while to the actual reader it appears as a collec-

tion of Microsoft-compatible handlers.

NOTE There are some name conflicts between the Delphi SAX interfaces and those pro-
vided by Microsoft. Although the latter’s IVBSAX* interfaces are the easiest to use from
Delphi’s point of view, they are basically wrappers around equivalent C++ interfaces with
names that start with ISAX. This is where the problems arise since these same names are used
in the Delphi implementation. The solution is simple—just prefix the affected names with the
unit in which they originate, like SAX2.ISAXContentHandler. The compiler should let you
know if you miss any.

Listing 15-1 shows the declaration for the adapter class. It inherits from TSAXCustomXMLReader,

which provides the basic bookkeeping abilities for registering handlers, as well as funneling the

two versions of Parse into a single abstract method. On top of this it implements the Microsoft

versions of the SAX handler interfaces. It must also implement the IDispatch interface for com-

patibility with the external reader (although the actual methods do nothing).

354



Listing 15-1: Declaring the Microsoft SAX adapter

{ Adapter for Microsoft's SAX 2 reader as found in MSXML3.dll.
Since it uses a different set of SAX definitions (that provide
the same functionality) we need to adapt these to fit with the
Delphi version of SAX.
Thus, this class acts as handlers for Microsoft's SAX2 reader,
while acting as a Delphi SAX2 reader to other parties. Care must
be taken to reference the correct version of each interface.

}
TSAX2MSReader = class(TSAXCustomXMLReader, IVBSAXContentHandler,
IVBSAXDTDHandler, IVBSAXEntityResolver, IVBSAXErrorHandler)

private
FAttributes: SAX2Helper.TSAXAttributes;
FDeclHandler: TObject;
FIAttributes: SAX2.ISAXAttributes;
FLexicalHandler: TObject;
FLocator: IVBSAXLocator;
FXMLReader: IVBSAXXMLReader;

protected
function GetColumnNumber: Integer; override;
function GetFeature(Name: TSAXString): Boolean; override;
function GetLineNumber: Integer; override;
function GetProperty(Name: TSAXString): TObject; override;
function GetPublicId: TSAXString; override;
function GetSystemId: TSAXString; override;
procedure ParseInput(Input: TSAXInputSource); override;
procedure SetFeature(Name: TSAXString; Value: Boolean); override;
procedure SetProperty(Name: TSAXString; Value: TObject); override;

public
constructor Create; overload; override;
constructor Create(ContentHandler: SAX2.ISAXContentHandler;
DTDHandler: SAX.ISAXDTDHandler = nil;
EntityResolver: SAX.ISAXEntityResolver = nil;
ErrorHandler: SAX.ISAXErrorHandler = nil); overload;

destructor Destroy; override;
{ IVBSAXContentHandler }
procedure Set_documentLocator(const Param1: IVBSAXLocator); safecall;
procedure startDocument; safecall;
procedure endDocument; safecall;
procedure startPrefixMapping(var strPrefix: WideString;
var strURI: WideString); safecall;

procedure endPrefixMapping(var strPrefix: WideString); safecall;
procedure startElement(var strNamespaceURI: WideString;
var strLocalName: WideString; var strQName: WideString;
const oAttributes: IVBSAXAttributes); safecall;

procedure endElement(var strNamespaceURI: WideString;
var strLocalName: WideString; var strQName: WideString); safecall;

procedure characters(var strChars: WideString); safecall;
procedure ignorableWhitespace(var strChars: WideString); safecall;
procedure processingInstruction(var strTarget: WideString;
var strData: WideString); safecall;

procedure skippedEntity(var strName: WideString); safecall;
property documentLocator: IVBSAXLocator write Set_documentLocator;
{ IVBSAXDTDHandler }
procedure notationDecl(var strName: WideString;
var strPublicId: WideString; var strSystemId: WideString);
safecall;

procedure unparsedEntityDecl(var strName: WideString;
var strPublicId: WideString; var strSystemId: WideString;
var strNotationName: WideString); safecall;

Chapter 15: Wrapping External Parsers 355



{ IVBSAXEntityResolver }
function resolveEntity(var strPublicId: WideString;
var strSystemId: WideString): OleVariant; safecall;

{ IVBSAXErrorHandler }
procedure error(const oLocator: IVBSAXLocator;
var strError: WideString; nErrorCode: Integer); safecall;

procedure fatalError(const oLocator: IVBSAXLocator;
var strError: WideString; nErrorCode: Integer); safecall;

procedure ignorableWarning(const oLocator: IVBSAXLocator;
var strError: WideString; nErrorCode: Integer); safecall;

{ IDispatch }
function GetTypeInfoCount(out Count: Integer): HResult; stdcall;
function GetTypeInfo(Index, LocaleID: Integer; out TypeInfo):
HResult; stdcall;

function GetIDsOfNames(const IID: TGUID; Names: Pointer;
NameCount, LocaleID: Integer; DispIDs: Pointer): HResult; stdcall;

function Invoke(DispID: Integer; const IID: TGUID; LocaleID: Integer;
Flags: Word; var Params; VarResult, ExcepInfo, ArgErr: Pointer):
HResult; stdcall;

end;

Creating a new adapter automatically creates a new Microsoft reader as well, holding it in the

FXMLReader variable for later use. The current class immediately registers itself with the reader as

the handler for all of its events (see Listing 15-2). At present, attempting to register an entity

resolver generates an error.

Listing 15-2: Creating a new adapter

{ Initialize }
constructor TSAX2MSReader.Create;
begin
inherited Create;
FAttributes := SAX2Helper.TSAXAttributes.Create;
FIAttributes := FAttributes as SAX2.ISAXAttributes; { AddRef }
FLocator := nil;
{ Instantiate MS SAX reader and register self as handlers }
FXMLReader := CoSAXXMLReader.Create;
FXMLReader.contentHandler := Self;
FXMLReader.dtdHandler := Self;

// FXMLReader.entityResolver := Self;
FXMLReader.errorHandler := Self;

end;

{ Initialise and use specified XML handlers }
constructor TSAX2MSReader.Create(
ContentHandler: SAX2.ISAXContentHandler;
DTDHandler: SAX.ISAXDTDHandler = nil;
EntityResolver: SAX.ISAXEntityResolver = nil;
ErrorHandler: SAX.ISAXErrorHandler = nil);

begin
Create;
Self.ContentHandler := ContentHandler;
Self.DTDHandler := DTDHandler;
Self.EntityResolver := EntityResolver;
Self.ErrorHandler := ErrorHandler;

end;

356 Part III: Simple API for XML

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



Requests to parse a document get passed from the adapter up to the embedded parser (see Listing

15-3). You need to override the ParseInput method to achieve this. Since the document arrives as

a TSAXInputSource, which ultimately is a TStream, and the parser knows how to deal with

IStreams, the simplest way to send the document is via the TStreamAdapter class. As its name

suggests, this class wraps a normal stream to make it look like an IStream.

Listing 15-3: Passing along a parse request

{ Adapt Delphi SAX parse invocation to MS SAX parse invocation }
procedure TSAX2MSReader.ParseInput(Input: TSAXInputSource);
var
Stream: IStream;

begin
Stream := TStreamAdapter.Create(Input);
try
FXMLReader.parse(Stream);

finally
Stream := nil;

end;
end;

Once the parse process begins, events from it trigger the methods in the adapter class. Generally,

all these handlers need to do is send the values received directly along to the corresponding event

in the adapter’s registered handlers. Listing 15-4 shows a sample of methods from the different

handlers that do just this. In the error handling method you must collect all the problem details and

wrap them in an ESAXParseException before sending them on.

Listing 15-4: Sample adapter methods

{ Adapt MS SAX characters event to Delphi SAX characters event }
procedure TSAX2MSReader.characters(var strChars: WideString);
begin
ContentHandler.Characters(strChars);

end;

{ Adapt MS SAX notation declaration event to Delphi
SAX notation declaration event }

procedure TSAX2MSReader.notationDecl(var strName: WideString;
var strPublicId: WideString; var strSystemId: WideString);

begin
DTDHandler.NotationDecl(strName, strPublicId, strSystemId);

end;

{ Adapt MS SAX fatal error event to Delphi SAX fatal error event }
procedure TSAX2MSReader.fatalError(const oLocator: IVBSAXLocator;
var strError: WideString; nErrorCode: Integer);

begin
ErrorHandler.FatalError(ESAXParseException.Create(
Format(ErrorMsg, [nErrorCode, strError]), oLocator.publicId,
oLocator.systemId, oLocator.lineNumber, oLocator.columnNumber));

end;

The process is a little more complicated when at the start of a new element (see Listing 15-5).

Along with the element’s name comes a list of its attributes. Although you could write an adapter

for the attribute list itself, the approach taken here is to transfer the details into a Delphi attribute

list to send on. Instead of creating a new list for each call, a previously defined one is reused.

Chapter 15: Wrapping External Parsers 357



Listing 15-5: Translating attributes for an element

{ Adapt MS SAX start element event to Delphi SAX start element event }
procedure TSAX2MSReader.startElement(var strNamespaceURI: WideString;
var strLocalName: WideString; var strQName: WideString;
const oAttributes: IVBSAXAttributes);

var
Index: Integer;
AttrType: TSAXAttributeType;

begin
{ Transfer attributes to Delphi interface }
FAttributes.Clear;
for Index := 0 to oAttributes.Length –1 do
begin
for AttrType := High(TSAXAttributeType) downto

Succ(Low(TSAXAttributeType)) do
if AttributeTypeNames[AttrType] = oAttributes.getType(Index) then
break;

FAttributes.AddAttribute(oAttributes.getUri(Index),
oAttributes.getLocalName(Index), oAttributes.getQName(Index),
oAttributes.getValue(Index), AttrType);

end;
ContentHandler.StartElement(
strNamespaceUri, strLocalName, strQName, FAttributes);

end;

Microsoft’s reader also supports the two standard SAX extensions. Since these appear separately

from the main handlers, they are each provided with their own adapters, which follow the pattern

above of simply passing along any events they receive. When an application sets one of these

properties, it is wrapped and set on the actual reader (as shown in Listing 15-6). A reference is kept

in the adapter so that it can be returned if the property is subsequently read. Unrecognized features

generate an error.

Listing 15-6: Handling SAX extensions

{ Adapt Delphi SAX property query to MS SAX property query }
function TSAX2MSReader.GetProperty(Name: TSAXString): TObject;
begin
if Name = LexicalHandlerProperty then
Result := FLexicalHandler

else if Name = DeclHandlerProperty then
Result := FDeclHandler

else
raise ESAXNotRecognizedException.Create(Name);

end;

{ Adapt Delphi SAX property setting to MS SAX property setting }
procedure TSAX2MSReader.SetProperty(Name: TSAXString; Value: TObject);
var
LexicalIntf: SAX2Ext.ISAXLexicalHandler;
DeclIntf: SAX2Ext.ISAXDeclHandler;

begin
if Name = LexicalHandlerProperty then
begin
FLexicalHandler := Value;
Value.GetInterface(SAX2Ext.ISAXLexicalHandler, LexicalIntf);
FXMLReader.putProperty(Name,
IVBSAXLexicalHandler(TSAX2MSLexicalAdapter.Create(LexicalIntf)));

end

358 Part III: Simple API for XML



else if Name = DeclHandlerProperty then
begin
FDeclHandler := Value;
Value.GetInterface(SAX2Ext.ISAXDeclHandler, DeclIntf);
FXMLReader.putProperty(Name,
IVBSAXDeclHandler(TSAX2MSDeclAdapter.Create(DeclIntf)));

end
else
raise ESAXNotRecognizedException.Create(Name);

end;

To work with the reader factory defined in the Delphi SAX package, the new adapter class must be

registered with the system. As before, this is done in the initialization section for the unit,

ensuring that the reader can always be found when needed. The class is unregistered in the final-
ization section.

initialization
Classes.RegisterClass(TSAX2MSReader);

finalization
Classes.UnRegisterClass(TSAX2MSReader);

end.

Now the Microsoft SAX reader is available through the Delphi interfaces and can be used in place

of the native reader with no change to the rest of the application. Just replace the line to generate

the Delphi implementation:

MySAXReader := TSAX2DelphiReader.Create;

with the one for the Microsoft adapter

MySAXReader := TSAX2MSReader.Create;

Using CUESoft’s Parser

Just as you can wrap Microsoft’s reader in the Delphi SAX interfaces, you can do the same for

CUESoft’s offering. Since CUESoft does not support namespaces nor the extensions defined for

SAX2, it is best to provide it as just a SAX1 parser.

The TXmlParser class (from the XmlParser unit) is the heart of CUESoft’s parser. It is set up as

a component, letting you drop it onto your form at design time. Because of this, you interact with it

by setting event handlers corresponding to the tokens from an XML document.

The adapter declaration (shown in Listing 15-7) contains an internal field for the parser and

defines methods to use as event handlers with it. Derived from TSAXCustomParser, it needs to

override the ParseInput method to do the actual parsing.

Listing 15-7: CUESoft adapter declaration

{ Adapter for CUESoft's SAX parser as found in
their TXmlParser component.
Thus, this class acts as handlers for CUESoft's XML parser,
while acting as a Delphi SAX parser to other parties.

}
TSAXCuesoftParser = class(TSAXCustomParser)
private
FAttributes: TSAXAttributeList;

Chapter 15: Wrapping External Parsers 359



FIAttributes: ISAXAttributeList;
FXMLParser: TXmlParser;

protected
procedure ParseInput(Input: TSAXInputSource); override;

public
constructor Create; overload; override;
constructor Create(DocumentHandler: ISAXDocumentHandler;
DTDHandler: ISAXDTDHandler = nil;
EntityResolver: ISAXEntityResolver = nil;
ErrorHandler: ISAXErrorHandler = nil); overload;

destructor Destroy; override;
procedure DoAttribute(oOwner: TObject; sName, sValue: string;
bSpecified: Boolean);

procedure DoCDATASection(oOwner: TObject; sValue: string);
procedure DoCharData(oOwner: TObject; sValue: string);
procedure DoComment(oOwner: TObject; sValue: string);
procedure DoDocTypeDecl(oOwner: TObject; sDecl, sId0, sId1: string);
procedure DoEndDocument(oOwner: TObject);
procedure DoEndElement(oOwner: TObject; sValue: string);
procedure DoEntityDecl(oOwner: TObject;
sEntityName, sPublicId, sSystemId, sNotationName: string);

procedure DoIgnorableWhitespace(oOwner: TObject; sValue: string);
procedure DoNonXMLEntity(oOwner: TObject;
sEntityName, sPublicId, sSystemId, sNotationName: string);

procedure DoNotationDecl(oOwner: TObject;
sNotationName, sPublicId, sSystemId: string);

procedure DoProcessingInstruction(oOwner: TObject;
sName, sValue: string);

function DoResolveEntity(oOwner: TObject;
sName, sPublicId, sSystemId: string): string;

procedure DoStartDocument(oOwner: TObject);
procedure DoStartElement(oOwner: TObject; sValue: string);

end;

As with the Microsoft adapter, creating a CUESoft one also creates a corresponding parser object

and establishes handlers for all its events (see Listing 15-8). The OnIgnorableWhitespace prop-

erty is protected and cannot be assigned a handler. Since CUESoft does not validate documents,

this omission is not surprising.

Listing 15-8: Creating the adapter

{ Initialize }
constructor TSAXCuesoftParser.Create;
begin
inherited Create;
FAttributes := TSAXAttributeList.Create;
FIAttributes := FAttributes as ISAXAttributeList; { AddRef }
{ Instantiate Cuesoft parser and register self as event handlers }
FXMLParser := TXmlParser.Create(nil);
FXMLParser.OnAttribute := DoAttribute;
FXMLParser.OnCDATASection := DoCDATASection;
FXMLParser.OnCharData := DoCharData;
FXMLParser.OnComment := DoComment;
FXMLParser.OnDocTypeDecl := DoDocTypeDecl;
FXMLParser.OnEndDocument := DoEndDocument;
FXMLParser.OnEndElement := DoEndElement;
FXMLParser.OnEntityDecl := DoEntityDecl;
{ Currently not available }
{ FXMLParser.OnIgnorableWhitespace := DoIgnorableWhitespace; }
FXMLParser.OnNonXMLEntity := DoNonXMLEntity;

360 Part III: Simple API for XML



FXMLParser.OnNotationDecl := DoNotationDecl;
FXMLParser.OnProcessingInstruction := DoProcessingInstruction;
FXMLParser.OnResolveEntity := DoResolveEntity;
FXMLParser.OnStartDocument := DoStartDocument;
FXMLParser.OnStartElement := DoStartElement;

end;

{ Initialize and use specified XML handlers }
constructor TSAXCuesoftParser.Create(
DocumentHandler: ISAXDocumentHandler;
DTDHandler: ISAXDTDHandler = nil;
EntityResolver: ISAXEntityResolver = nil;
ErrorHandler: ISAXErrorHandler = nil);

begin
Create;
Self.DocumentHandler := DocumentHandler;
Self.DTDHandler := DTDHandler;
Self.EntityResolver := EntityResolver;
Self.ErrorHandler := ErrorHandler;

end;

When a parse request arrives at the adapter, it is passed on to the embedded parser as shown in

Listing 15-9. If the input source specifies a system identifier, this is handed off to the ParseData-
Sourcemethod. Otherwise, the contents of the document are sent to the ParseMemorymethod after

being converted to a PChar. Any errors encountered are transformed into ESAXParseExceptions.

Listing 15-9: Starting a parse

{ Adapt Delphi SAX parse invocation to Cuesoft parse invocation }
procedure TSAXCuesoftParser.ParseInput(Input: TSAXInputSource);
var
OK: Boolean;
Stream: TStringStream;
Text: string;

begin
try
if Input.SystemId <> '' then
OK := FXMLParser.ParseDataSource(Input.SystemId)

else
begin
Stream := TStringStream.Create('');
try
Stream.CopyFrom(Input, 0);
Text := Stream.DataString;
OK := FXMLParser.ParseMemory(PChar(Text));

finally
Stream.Free;

end;
end;
if not OK then
raise ESAXParseException.Create(FXMLParser.Errors.Text);

except on E: TXmlParserError do
raise ESAXParseException.Create(
E.Reason, '', E.Url, E.Line, E.LinePos);

end;
end;

Similar to the Microsoft adapter, most events from the parser are simply passed along to the corre-

sponding SAX handler method. Elements are handled slightly differently since their attributes

Chapter 15: Wrapping External Parsers 361



appear in separate events prior to the element itself. Thus, the attributes are collected into a SAX

attribute list and are added to the element details when they arrive (see Listing 15-10).

Listing 15-10: Handling an element notification

{ Save Cuesoft attributes for later use with the element }
procedure TSAXCuesoftParser.DoAttribute(oOwner: TObject; sName,
sValue: string; bSpecified: Boolean);

begin
FAttributes.AddAttribute(sName, sValue, atCData);

end;

{ Pass on start of element notification }
procedure TSAXCuesoftParser.DoStartElement(oOwner: TObject; sValue: string);
begin
{ Use attributes accumulated previously }
DocumentHandler.StartElement(sValue, FAttributes);
FAttributes.Clear;

end;

The CUESoft parser can now be accessed through the SAX1 interfaces defined in Delphi. Other

than the initial call to create an instance of the parser through its adapter, the application doesn’t

need to know that it is not using the native Delphi version.

MySAXParser := TSAXCuesoftParser.Create;

Using Open XML’s Parser

Open XML’s parser can also be wrapped as a SAX reader. Internally, the TXMLToDomParser class

creates a TdomStandardDocXMLReader to do the actual parsing. This functions like a SAX parser,

passing events to its registered ContentHandler, DtdHandler, and ErrorHandler. By deriving

your own handlers from the appropriate custom parent classes and registering them with the

parser’s DocXMLReader property, you can respond to the parser events and present them as Delphi

SAX events instead. This is left to the reader as an exercise.

Summary

The XML viewer developed in Chapter 14 is extended to incorporate the new adapters and their

underlying parsers. An initial form selects either SAX1 or SAX2 implementations. From the sub-

sequent viewer forms you can select which parser to use from the File | Parser menu options (see

Figure 15-1).

362 Part III: Simple API for XML



Under SAX1 you can use the native Delphi implementation, CUESoft’s parser through the

adapter described above, or Microsoft’s DOM also wrapped in an adapter (however, using the

DOM defeats the SAX advantage of not having to load the entire document at once). Under SAX2

you have the option of using the native Delphi version, Microsoft’s SAX reader, or the corre-

sponding SAX1 implementations through a TSAXParserAdapter.

Although there are slight differences between the results of parsing the same document with

each of these SAX versions, in general, each is interchangeable with the others.

Chapter 15: Wrapping External Parsers 363

Figure 15-1: Selecting a SAX reader.





P a r t I V

Serving XMLServing XML

In the previous chapters you saw how to read in an XML document using different tech-

nologies and manipulate its contents. But where do these XML documents come from?

Although you can handcraft each one, it is more likely that you want to generate them

automatically on demand. Chapter 16 points out that XML is really data, formatted to be

both human- and machine-readable. The source of this data is often a database.

This section describes various ways in which XML can be generated programmati-

cally. You can write it directly as text as shown in Chapter 17 and display or store the

document locally. Chapter 18 shows how the documents can be generated from a data-

base, and then be delivered across the Internet with Delphi’s Web modules. In Chapter 19

you see how to create documents from within a DOM, while Chapter 20 describes a

SAX-based approach using Microsoft’s IMXWriter interface.

In addition to serving XML directly, you can manipulate the documents and present

them in some other format. Chapter 21 demonstrates how an XSLT stylesheet is applied

to an XML document to produce formatted output for further distribution.

Finally, Chapter 22 describes how Delphi uses XML to deliver MIDAS data to a

Web-based client, and how it is processed within the browser through JavaScript

functions.

365



Chapter 16: XML is Data

Chapter 17: Simple Text

Chapter 18: Web Modules

Chapter 19: Document Object Model

Chapter 20: SAX Generation

Chapter 21: Applying XSL Transformations

Chapter 22: XML Broker

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



C h a p t e r 1 6

XML is DataXML is Data

XML is a way of describing the meaning of data within the data stream itself. When you are deal-

ing with large amounts of data it is often maintained within a database. Extracting that data and

presenting it as XML provides a standardized way in which to transfer information between appli-

cations, whether they are on your own computer or across the Internet. Since XML is text-based, it

can easily cross platform and operating system boundaries without losing its usefulness.

Mapping a single table from a relational database into XML can be very straightforward. The

hierarchy inherent in XML matches the table/record/field structure within the database. Thus, for

a given database table, you create an XML document with the upper level tag corresponding to

that table. Within this you define an element that delimits each record and place further elements

in here representing each field. As a naming convention I suggest you use a plural form of the table

name for the outermost element since it is a collection of records. Then, individual records can use

the singular form of the table name as their element name. Elements coming from fields can use

the field names (allowing for any restrictions imposed on names by XML).

For a more complex situation where you are dealing with multiple tables, you simply extend

the XML structure to include an all-encompassing element that parallels the database itself—a

collection of tables. Below this you have the table elements as before. Use the database name as

the outermost element name in this case.

To allow you to refer to individual records from the original database you should include an ID

attribute at the record level and construct its value from the primary key field(s) of that table. Rela-

tionships between records, represented by foreign keys within the database, are translated into

IDREF attributes in XML. These can then be used to reconstruct the original links. In fact, the

transformation power of XSLT can follow these links and retrieve any and all related details, eas-

ily combining data from multiple records into a coherent display.

367



Movie-watcher Database

For demonstration purposes, the data for creating the movie-watcher XML documents is placed

into a Paradox database consisting of six tables (see the table definitions in Table 16-1 and the data

model in Figure 16-1). You can see how the tables and fields correspond to the elements defined in

the DTD for these documents (Listing 3-1).

Table 16-1: Paradox table structures for sample database
P = primary key field, F = foreign key field

Table Field Type Key

Movie.db Movie_id Long P

Name Alpha(30)

Rating Alpha(5)

Length Long

Director Alpha(30)

Synopsis Memo(5)

URL Alpha(70)

Logo_URL Alpha(70)

Stars.db Star_id Long P

Movie_id Long F

Star Alpha(30)

Cinema.db Cinema_id Long P

Name Alpha(30)

Phone Alpha(15)

Address Alpha(50)

Directions Memo(1)

Candy_bar Logical

Disabled_access Logical

Pricing.db Pricing_id Long P

Cinema_id Long F

Name Alpha(20)

Period Alpha(30)

Adult Number

Child Number

Discount Number

Screening.db Movie_id Long P,F

Cinema_id Long P,F

Start_date Date

End_date Date

368 Part IV: Serving XML



Table Field Type Key

Digital_sound Alpha(5)

No_passes Logical

Sessions.db Movie_id Long P,F

Cinema_id Long P,F

Time Time P

Pricing_id Long F

To access the data, you need to set up a database alias for it in the BDE. The following steps show

you how:

1. Call up the BDE Administrator program from the Delphi folder under the Start menu.

2. Select Object | New from the menu.

3. Leave the database driver name at STANDARD.

4. Enter the new alias’s name: movie-watcher.

5. Browse to the directory holding the tables in the Path field.

6. Save the changes by pressing the Apply button and pressing OK in the confirmation dialog.

All the demonstration programs in this part of the book that access information from the database

expect this alias. The following chapters use these tables to provide the content for XML docu-

ments. Various methods of generating XML are shown: from straight text, through a Web module,

to the different DOMs, and a SAX-based approach. Maintaining the database can also involve

XML as used by the XMLBroker technology of Delphi.

Chapter 16: XML is Data 369

Figure 16-1: Data model for movie-watcher database.



C h a p t e r 1 7

Simple TextSimple Text

An XML document is just a text file—its format and structure are what make it different and use-

ful. As such, it is very easy to create one programmatically.

All you need to do is to write the expected format for the document and its encapsulated data to

that file. For very static documents, you could encode them directly into a string within the pro-

gram and write that out to the appropriate file.

const
XMLDoc = '<?xml version="1.0"?><response>OK</response>';

begin
writeln(XMLFile, XMLDoc);

end;

For a little more variability you could define the string as a format, noting where the variable sec-

tions should go. These are then replaced on the fly using the Format function. Again, the resulting

string is written to the output file.

const
XMLDoc = '<?xml version="1.0"?><response>%s</response>';

begin
writeln(XMLFile, Format(XMLDoc, [Outcome]));

end;

In some cases the XML document does not have to be written out to a file. Once created as a string,

you can pass this directly to another routine or application that knows how to deal with it.

From a Database

To demonstrate how you can generate an XML document from the database, construct the follow-

ing program:

1. Open a new project and place a memo field and two buttons on the main form. The memo

contains the results of the generation process, allowing you to review the output. One button

will enable you to initiate the document creation into the memo, while the other will let you

save that text out to a file.

370



2. Add a series of query components and related datasources for interacting with the database.

One query is required for each table (six in all) and they all reference the movie-watcher
alias (see Chapter 16). Each query selects all the fields from its table, with the three subordi-

nate tables being linked back to their respective parents (through the datasources) in a

master-child relationship. For example, the SQL for the query attached to the movie table is:

select * from movie

whereas the corresponding query for its star performers is:

select * from stars
where movie_id = :movie_id

3. Define XML snippets for each table, containing embedded fields for use with the Format
function to include variable content The actual generation process combines snippets of

XML for each table into a coherent whole. Each record in the query uses these snippets in

turn. Field values are simply retrieved from the records and inserted into the layouts. Listing

17-1 shows XML templates for the document header and the list of movies.

Listing 17-1: XML snippets for generating a document

resourcestring
{ XML document fragments }
DocumentOpening = '<movie-watcher>'#13;
DocumentClosing = '</movie-watcher>'#13;
MovieIdFormat = 'M%d';
MoviesClosing = '</movies>'#13;
MoviesOpening = '<movies>'#13;
MovieTag = ' <movie id="M%d" rating="%s"%s%s>'#13 +

' <name>%s</name>'#13 +
' <length>%d</length>'#13 +
' <director>%s</director>'#13 +
' <starring>%s</starring>'#13 +
' <synopsis>%s</synopsis>'#13 +
' </movie>'#13;

StarTag = '<star>%s</star>';
XMLProlog = '<?xml %s?>'#13 +

'<!DOCTYPE %s SYSTEM "%s" ['#13 +
'<!NOTATION HTML PUBLIC "-//W3C//DTD ' +
'HTML 4.0 Transitional//EN">'#13 +
'<!NOTATION GIF SYSTEM "iview.exe">'#13 +
'%s]>'#13 +
'<!-- %s -->'#13 +
'<?%s %s?>'#13;

4. Add code to generate each section of the document in response to activating the Generate

button. Listing 17-2 shows the header and movies generation code that uses the snippets

above. Code for the cinemas and screenings portions of the resulting document is just like

that for the movies and is not shown here.

Listing 17-2: Generating XML as text

{ Generate the XML document as text }
procedure TfrmTextXML.btnGenerateClick(Sender: TObject);

{ Compile entities for the movie }
function GenerateEntities: string;
begin

Chapter 17: Simple Text 371



Result := '';
with qryMovie do
begin
First;
while not EOF do
begin
if FieldByName(LogoURLField).AsString <> '' then
Result := Result + Format(EntityDecl, [Format(MovieIdFormat,
[FieldByName(MovieIdField).AsInteger]) + 'Logo',
FieldByName(LogoURLField).AsString, GIFType]);

if FieldByName(URLField).AsString <> '' then
Result := Result + Format(EntityDecl, [Format(MovieIdFormat,
[FieldByName(MovieIdField).AsInteger]) + 'Url',
FieldByName(URLField).AsString, HTMLType]);

Next;
end;

end;
end;

{ Compile elements for the stars of the movie }
function GenerateStars: string;
begin
Result := '';
with qryStars do
begin
First;
while not EOF do
begin
Result := Result +
Format(StarTag, [FieldByName(StarField).AsString]);

Next;
end;

end;
end;

{ Generate elements for each movie }
function GenerateMovies: string;
var
MovieId: Integer;

begin
Result := MoviesOpening;
with qryMovie do
begin
First;
while not EOF do
begin
MovieId := FieldByName(MovieIdField).AsInteger;
Result := Result + Format(MovieTag, [MovieId,
FieldByName(RatingField).AsString,
GetOptEntityAttr(FieldByName(LogoURLField),
Format(MovieIdFormat, [MovieId]) + 'Logo'),

GetOptEntityAttr(FieldByName(URLField),
Format(MovieIdFormat, [MovieId]) + 'Url'),

FieldByName(NameField).AsString,
FieldByName(LengthField).AsInteger,
FieldByName(DirectorField).AsString,
GenerateStars, FieldByName(SynopsisField).AsString]);

Next;
end;

end;

372 Part IV: Serving XML



Result := Result + MoviesClosing;
end;

{ Code for cinemas and screenings not shown }

begin
memXML.Lines.Text := Format(XMLProlog,
[XMLPrologAttrs, MovieWatcherTag, XMLDTDFile,
GenerateEntities, XMLComment, XMLStyleTag, XMLStyleAttrs]) +
DocumentOpening + GenerateMovies + GenerateCinemas +
GenerateScreenings + DocumentClosing;

end;

Within the database, movies may have a URL and an image associated with them. These appear in

the movie-watcher documents as attributes on the movie tag that reference external entities. To

provide the actual locations, entity declarations occur in the document type declaration. The

GenerateEntities function searches for these references in the movies table and generates appro-

priate entries from their content. Its result is included in the XMLProlog string through the Format
function. Corresponding notations are predefined in this string since they do not change from doc-

ument to document. Calculated names based on the ID of the record supply the entity names.

For the movie content, the movies table is traversed again in the GenerateMoviesmethod. This

time each record’s details merge into the MovieTag format string. ID values for the movie elements

in the XML document come from the primary key in the database table, ensuring that they are

unique. Each one is prefixed with an M to prevent conflicts with IDs for cinemas and pricing

schemes.

Since the url and logo_url attributes of a movie are optional, a helper routine only includes

references to the appropriate entities declared previously when they are present. A separate rou-

tine compiles the list of stars for each movie, as there are an unknown number of these.

The GenerateStars function steps through each star for the current movie and combines their

names into the StarTag format string. Automatic selection of the appropriate stars for each movie

comes from the query component setup, whereby the stars table is connected to the movies table

via a parameterized query.

5. Ensure that fields are formatted as required. Specifiers within the format strings handle most

formatting requirements. Text fields return their value through the AsString method. %d or

%f format specifiers match up with numeric fields that are retrieved via their AsInteger or

AsFloat methods. However, the Time field in the sessions query must use the

FormatDateTime function since dates and times are not dealt with by the normal Format
routine.

Several helper functions are used for content that is optional and may not appear in the final output

at all. GetOptEntityAttr creates an attribute entry if the supplied field is not empty, giving it the

supplied value. The entity attributes in the movie element use this to refer to the previously defined

external entities. GetOptElement produces an empty tag for logical field types that evaluate to

True and an empty string if False. In each case, the attribute or element name is generated from

the field name with the ModifyName function. This allows for differences between database and

XML naming conventions. Listing 17-3 shows these three functions.

Chapter 17: Simple Text 373



Listing 17-3: Helper functions for text XML generation

{ Convert field names to XML names }
function ModifyName(Name: string): string;
begin
Result :=
LowerCase(StringReplace(Name, '_', '-', [rfReplaceAll]));

end;

{ Include attribute entity reference only if present }
function GetOptEntityAttr(Sender: TField; Reference: string): string;
begin
if Sender.AsString <> '' then
Result := ' ' + ModifyName(Sender.FieldName) +
'="' + Reference + '"'

else
Result := '';

end;

{ Include empty field tag only if flag in DB set }
function GetOptElement(Sender: TField): string;
begin
if Sender.AsBoolean then
Result := '<' + ModifyName(Sender.FieldName) + '/>'

else
Result := '';

end;

6. Add code to save the XML document from the memo to a file (see Listing 17-4). You need to

add a TSaveDialog component to the form to prompt the user for the filename to use.

Listing 17-4: Save the new XML document

{ Save the generated XML }
procedure TfrmTextXML.btnSaveClick(Sender: TObject);
begin
with dlgSave do
if Execute then
memXML.Lines.SaveToFile(Filename);

end;

7. Save the program, compile, and run it. Figure 17-1 shows the generated XML document in

the memo field.

Once the XML has been generated you can peruse it on screen, before saving the text to a file on

disk with the second button. Then, use an appropriate browser or application to view the result.

374 Part IV: Serving XML



Summary

This technique is the simplest way to generate XML documents. Its advantages are that it is very

easy to implement and that it has almost no overhead in terms of additional code necessary to pro-

duce it. However, it is probably only appropriate for smaller documents and those that can be

created sequentially.

Generating text from a database can be used for XML documents that are derived from data

held in a database but that do not change often. For a more dynamic approach, consider the follow-

ing chapter on delivering XML across the Internet.

Chapter 17: Simple Text 375

Figure 17-1: XML generated as text.



C h a p t e r 1 8

Web ModulesWeb Modules

XML can be delivered across the Internet just as easily as HTML, either as a standalone document

or embedded within an HTML page. An XML-aware browser knows how to handle the data and

can render the contents in a basic but meaningful way. Furthermore, when the XML is associated

with an XSL stylesheet, it can be automatically transformed into beautifully formatted HTML,

including such things as a table of contents, hypertext links, and images.

To facilitate the delivery of content across the Internet, Delphi provides a Web Server Applica-

tion wizard and its key component, the TWebModule. This is a specialized data module that allows

non-visual components to be easily managed and manipulated at design time. In conjunction with

a protocol-specific wrapper, it automatically forwards HTTP requests from a Web server to an

appropriate action within the application.

Each Web action is passed references to the user input, encapsulated in a TWebRequest, and the

output, in a TWebResponse, allowing the program to generate its content and pass it back to the cli-

ent browser easily. Normally you use the TPageProducer component to provide an HTML

template, either embedded as text or from an external file, that is output on request. Within that

template, special tags are intercepted by the component and presented to the application for

replacement. These tags appear in angle brackets ( < > ) as usual, and start with a pound sign fol-

lowed by the name of the tag:

<#movies>

They may optionally have attributes specified in the usual HTML style. Each such tag that is

found triggers the OnHTMLTag event on the page producer, providing you with the type of the tag,

its name, and any attributes. You respond by using this information to supply the text that replaces

the tag in the output document.

Enhancements to the basic page producer provide for the generation of HTML tables directly

from a query or other data set.

This process can just as easily be used to generate XML instead of HTML. You simply replace

the HTML snippets in the page producers with XML snippets, using the replacement tag mecha-

nism to substitute the values from the database, as in the straight text generation.

376

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



Generation

To create the XML dynamically from the database tables described earlier, you follow these steps:

1. Start a new application using the Web Server Application wizard from the New Items dialog

box (File | New on the menu).

2. Select the CGI option for this example, although there is no reason not to use one of the other

types if your Web server supports them.

3. Place table and data source components into the resulting Web module corresponding to the

movie-watcher database described above (see Chapter 16). Link them appropriately (with

the movie-watcher alias) and activate them.

4. Add several TPageProducer components: one for the overall document and one for each of

the tables. Your Web module should now look like the one in Figure 18-1.

5. Enter the XML prolog and the highest level tags—those corresponding to the database and

main tables (see Listing 18-1)—into the HTMLDoc property of the main page producer

component.

Listing 18-1: Main document outline for XML

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE movie-watcher SYSTEM "/movie-watcher.dtd">
<?xml:stylesheet type="text/xsl" href="/movie-watcher.xsl"?>
<movie-watcher>
<movies>
<#movies></movies>
<cinemas>
<#cinemas></cinemas>

Chapter 18: Web Modules 377

Figure 18-1: Designing the Web module.



<screenings>
<#screenings></screenings>
</movie-watcher>

6. Enter an XML document fragment describing the record structure for each table within their

corresponding page producers. The entire snippet is enclosed in a tag indicating the type of

record. Following this are the individual fields and an enclosing tag for any dependent

tables. Using the field names as the substitution tag names makes the processing simpler

during replacement. See the fragment for the movie element in Listing 18-2.

Listing 18-2: Document fragment for the movie element

<movie id="<#movie_id>" rating="<#rating>"<#logo_url><#url>>
<name><#name></name>
<length><#length></length>
<director><#director></director>
<starring>

<#stars> </starring>
<synopsis><#synopsis></synopsis>

</movie>

7. Create an event handler for the main page producer’s OnHTMLTag event that replaces the con-

tents of the table tags with XML representing the records. For each one it must step through

all the records in that table and apply the appropriate template, from another page producer,

over and over. The GetRecords method performs this task within the application, taking the

table and page producer as parameters. See the code in Listing 18-3.

Listing 18-3: Handling tags for the main document

{ Cycle through all the records in the table
and generate the XML snippet }

function TwmdXML.GetRecords(tbl: TTable; pgp: TPageProducer):
string;

begin
Result := '';
with tbl do
begin
First;
while not EOF do
begin
Result := Result + pgp.Content;
Next;

end;
end;

end;
{ Generate movie-watcher XML document }
procedure TwmdXML.pgpMovieWatcherHTMLTag(Sender: TObject;
Tag: TTag; const TagString: string; TagParams: TStrings;
var ReplaceText: string);

begin
if TagString = 'movies' then
ReplaceText := GetRecords(tblMovie, pgpMovie)

else if TagString = 'cinemas' then
ReplaceText := GetRecords(tblCinema, pgpCinema)

else if TagString = 'screenings' then
ReplaceText := GetRecords(tblScreening, pgpScreening);

end;

378 Part IV: Serving XML



8. Generate OnHTMLTag event handlers for the page producers associated with each table using

the tag name to find a field value from the table, or invoke the GetRecords method for

dependent tables. Listing 18-4 show the code for the movie page producer.

Listing 18-4: Substituting fields in the movie element

{ Add details for a movie }
procedure TwmdXML.pgpMovieHTMLTag(Sender: TObject; Tag: TTag;
const TagString: string; TagParams: TStrings;
var ReplaceText: string);

begin
if TagString = 'stars' then
ReplaceText := GetRecords(tblStars, pgpStars)

else
ReplaceText := tblMovie.FieldByName(TagString).DisplayText;

end;

9. Provide additional formatting for individual fields through the normal Delphi mechanisms:

the DisplayFormat property or the OnGetText event on the field itself. The primary key

identifiers for each table are made unique by prefixing them with a character corresponding

to the table name (document-wide uniqueness is required of XML IDs) through their

DisplayFormat properties.

The OnGetText event supplies the text for the display version of each field. Various specialized

handlers provide necessary functionality as follows (see Listing 18-5). Some fields are presented

as attributes and are not included in the document at all if their values are blank. The

AttributeGetTextmethod provides this functionality. Several Boolean fields are indicated by the

presence or absence of an empty tag in the final document, which comes from invoking the

EmptyFieldGetText method. And finally, the memo fields must provide their actual value, rather

than their type, as obtained through the MemoGetText method.

Listing 18-5: Specialized formatting for various fields

{ Include attributes only if present }
procedure TwmdXML.AttributeGetText(Sender: TField;
var Text: string; DisplayText: Boolean);

begin
if Sender.AsString <> '' then
Text := ' ' + ModifyName(Sender.FieldName) + '="' +
Sender.AsString + '"';

end;

{ Include empty field tag only if flag in DB set }
procedure TwmdXML.EmptyFieldGetText(Sender: TField;
var Text: string; DisplayText: Boolean);

begin
if Sender.AsBoolean then
Text := '<' + ModifyName(Sender.FieldName) + '/>';

end;

{ Display longer text }
procedure TwmdXML.MemoGetText(Sender: TField; var Text: string;
DisplayText: Boolean);

begin
Text := Sender.AsString;

end;

Chapter 18: Web Modules 379



10. Generate the entire XML document by creating a default Web action for the module through

the editor for the Actions property of the module. Within the action’s handler you set the

content type to text/xml and invoke the main page producer to create the actual content (as

shown in Listing 18-6). Finally, you indicate that you have supplied the Web response by

setting the Handled parameter to True.

Listing 18-6: Generating the entire document as an action

{ Main response }
procedure TwmdXML.wmdXMLwacXMLAction(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

begin
Response.ContentType := 'text/xml';
Response.Content := pgpMovieWatcher.Content;
Handled := True;

end;

11. Save your Web module and project (available as CGIXML.dpr on the CD-ROM) and com-

pile it to create the CGI executable.

Once the application is compiled and placed in your Web server’s CGI directory you can call it up

and view the results (see Figure 18-2). To do this, you need to have a browser that supports XML

and XSL, such as IE 5.

380 Part IV: Serving XML

Figure 18-2: The formatted document in the browser.



NOTE To run your new application from a Web server, you need to deploy it in a location
known to that server. For a CGI program (as developed above) and Personal Web Server
(PWS) or Internet Information Server (IIS), you can use the default scripts directory and place
the executable there. Then, reference the application (assuming it is running on the same
machine) as http://localhost/scripts/cgixml.exe.

The stylesheet and DTD for the generated XML document also need to go into the scripts
directory. You need to configure the Web server to allow these files to be read from this loca-

tion as well.

TRecordPageProducer

In the previous example you manually cycled through all the records in a table in order to generate

the section of the XML document that is derived from it. As you have seen, this process is repeated

several times on the different tables, all of which are doing basically the same thing. In true Delphi

tradition you can capture that process within a component, making it available for future use with

minimal effort.

The TPageProducer component on Delphi’s Internet tab allows you to generate a section of a

document from a template. The TQueryTableProducer and TDataSetTableProducer components

transform the contents of a query or any data set respectively into an HTML table for inclusion in a

document. What you want is somewhere in between: being able to process each record in a data

set, but without the hard-coded HTML table output.

To achieve this you create your own component, TRecordPageProducer, which generates its

section of the document for each record in the attached data set. It builds on the abilities of

TPageProducer in that the document fragment can be specified as either embedded text or a file

reference, as well as inheriting the substitution operations on fields within the snippet.

1. Create the new component by selecting the Component | New Component menu options.

Derive it from TPageProducer (its ancestor) and name it TRecordPageProducer. You can

place it on the Internet tab in the Component Palette along with the other page producer

components.

2. Add the new properties (see Listing 18-7). Obviously, you add one to refer to the attached

data set, DataSet, as well as others to allow for the reporting of a lack of data, NoRecsFile
and NoRecsDoc.

Listing 18-7: Adding properties to the component

type
TRecordPageProducer = class(TPageProducer)
private
FDataSet: TDataSet;
FNoRecsDoc: TStrings;
FNoRecsFile: TFileName;
procedure SetDataSet(DataSet: TDataSet);
procedure SetNoRecsDoc(Value: TStrings);
procedure SetNoRecsFile(const Value: TFileName);

protected
procedure DoTagEvent(Tag: TTag; const TagString: String;
TagParams: TStrings; var ReplaceText: String); override;

Chapter 18: Web Modules 381



procedure Notification(AComponent: TComponent;
Operation: TOperation); override;

public
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;
function ContentFromStream(Stream: TStream): String; override;

published
property DataSet: TDataSet read FDataSet write SetDataSet;
property NoRecsDoc: TStrings read FNoRecsDoc write SetNoRecsDoc;
property NoRecsFile: TFileName read FNoRecsFile
write SetNoRecsFile;

end;

3. Override the constructor and destructor to allocate and release the string list used by the

NoRecsDoc property, and the Notificationmethod to clear your reference to the data set if it

is deleted (see Listing 18-8).

Listing 18-8: Overriding inherited methods

{ Initialization }
constructor TRecordPageProducer.Create(AOwner: TComponent);
begin
inherited Create(AOwner);
FNoRecsDoc := TStringList.Create;

end;

{ Release resources }
destructor TRecordPageProducer.Destroy;
begin
FNoRecsDoc.Free;
inherited Destroy;

end;

{ Clear our reference to the data set if it is deleted }
procedure TRecordPageProducer.Notification(AComponent: TComponent;
Operation: TOperation);

begin
inherited Notification(AComponent, Operation);
if (Operation = opRemove) and Assigned(DataSet) and

(DataSet = AComponent) then
DataSet := nil;

end;

NOTE When referring to one component from another you should always override the
Notification method to clear your pointer to it if it is deleted from the form. Always call the
inherited method to invoke any in-built functionality, then match the notifying component to
your property and erase it if appropriate.

4. Add the new functionality: cycling through all records and automatically substituting for

field references. Browsing through the code for TPageProducer you find that all content

requests end up going through the ContentFromStream method. This means that if you over-

ride this one method to cycle through each record it works no matter how the content is

requested.

In your version of the method you first check to see that the DataSet exists, is open, and actually

contains some data. If so, you reposition the data set to the beginning before stepping through each

382 Part IV: Serving XML



record and applying the template to it (see Listing 18-9). Here you make use of the functionality of

the ancestor to perform the processing of the template through the call to the inherited

ContentFromStream. Note that you must reset the template stream to the beginning each time

around the loop as it is processed within the inherited method.

Listing 18-9: Generating a document snippet for each record

{ Iterate through the records in the dataset }
function TRecordPageProducer.ContentFromStream(Stream: TStream):
string;

var
stmNoRecs: TStream;

begin
Result := '';
if Assigned(FDataSet) then
if FDataSet.Active then
if FDataSet.RecordCount > 0 then
{ Cycle through all the records }
with FDataSet do
begin
First;
while not EOF do
begin
Stream.Position := 0;
Result := Result +
inherited ContentFromStream(Stream);

Next;
end;
Exit;

end;

{ No data found }
if FNoRecsFile <> '' then
stmNoRecs := TFileStream.Create(
FNoRecsFile, fmOpenRead + fmShareDenyWrite)

else
stmNoRecs := TStringStream.Create(FNoRecsDoc.Text);

if Assigned(stmNoRecs) then
try
Result := inherited ContentFromStream(stmNoRecs);

finally
stmNoRecs.Free;

end;
end;

If no data exists in the data set, or it is not assigned or not open, then output the contents of the

NoRecsDoc or NoRecsFile properties instead.

5. Automatically substitute field values for tags with their names by overriding another inher-

ited method. Some examination reveals that the DoTagEvent routine is the one you want. In

TPageProducer it simply calls the OnHTMLTag event handler if it exists. Instead, you want it

to try to match the tag name with a field name, and only call the event handler if that fails

(see Listing 18-10). An exception occurs if the data set is not active or if the field does not

exist. You trap this and redirect processing to the user event instead.

Chapter 18: Web Modules 383



Listing 18-10: Automatically replacing field references

{ Replace field references automatically }
procedure TRecordPageProducer.DoTagEvent(Tag: TTag;
const TagString: string; TagParams: TStrings;
var ReplaceText: string);

begin
try
ReplaceText := FDataSet.FieldByName(TagString).DisplayText;

except
inherited DoTagEvent(Tag, TagString, TagParams, ReplaceText);

end;
end;

6. Add the new component to the Component Palette by selecting Component | Install Com-

ponent. Place it in an existing package (such as the default user one) or create your own new

package.

Using this new component instead of the basic page producer makes your program code that much

simpler. The application presented at the start of this chapter is updated in CGIXML2.dpr to dem-

onstrate the new abilities. Drop TRecordPageProducer components onto the Web module instead

of the normal page producers used for each table (six in all) and attach them to the corresponding

table components. The content of their HTMLDoc properties remains the same as before.

Code for the action and main page producer does not change. However, the OnHTMLTag event

handlers for the new page producers does change. Those for stars, pricing schemes, and sessions

disappear altogether since their functionality is subsumed into the new component. The movie,

cinema, and screening handlers now only need to deal with the embedded tables (as shown in List-

ing 18-11); the other fields get substituted automatically (based on their names within the tags).

Listing 18-11: Handling movie tags

{ Add details for a movie }
procedure TwmdXML.pgrMovieHTMLTag(Sender: TObject; Tag: TTag;
const TagString: String; TagParams: TStrings;
var ReplaceText: String);

begin
if TagString = 'stars' then
ReplaceText := pgrStars.Content;

end;

NOTE Deploy the new CGI program to your scripts directory on the Web server. The other
required files should already be there from the first version. Access it with:
http://localhost/scripts/cgixml2.exe.

384 Part IV: Serving XML



Summary

The applications presented here demonstrate how to produce an XML document from an existing

database on demand. But recall that the Web modules are able to accept additional parameters

from the user. These can be used to further customize the output: either by providing a subset of

the data in the first place, or by referring to a different stylesheet from within the document. The

latter allows for presenting the same XML document in different ways and can include its own

selection criteria. In fact, you could generate a customized stylesheet as well as the original XML.

The Internet technologies built into Delphi enable you to quickly generate server-side applica-

tions for processing and delivering data. You can use these abilities to produce XML documents,

as well as the more usual HTML ones. The full functionality of Delphi can take on the problem,

allowing you to access databases and to customize the documents that are produced.

To make the processing of information from data sources easier, you can use the

TRecordPageProducer component that cycles through each record in its attached data set and

applies its HTML/XML template to each one.

Chapter 18: Web Modules 385



C h a p t e r 1 9

Document ObjectDocument Object

Model

In addition to its use in parsing an existing document, the DOM can also create and manipulate

documents. One of the aims in specifying the DOM is the ability to parse, deconstruct, and recon-

struct a document any number of times with no loss of structure or content.

The DOM specification defines a number of factory methods on the Document interface, such

as createElement and createTextNode. These let you create all the necessary nodes to place in

your new document while ensuring that they are compatible with the rest of the implementation

and are linked to their owning document.

However, DOM Level 1 did not specify how the document object is created in the first place.

DOM Level 2 filled in this gap by including the createDocument and createDocumentType
methods on the DOMImplementation interface. This still leaves the generation of an implementa-

tion reference to the specific packages (you have to start somewhere), but once you have this you

can produce everything else.

NOTE One major area that is missing in the DOM specification as it stands is the ability to
generate the contents of the document type declaration for a document. Although you can
specify the document type itself during creation of the document object, you cannot add or
alter any entities or notations within that section.

Microsoft’s DOM

You can use the Microsoft DOM as implemented in the MSXML v3 library to generate new XML

documents. The creation of the type library for this package is described in Chapter 9. Thereafter,

you follow these steps to build a new document based on the movie-watcher database.

1. Add the generated type library to your uses clause. Also add the ActiveX unit to allow for

initialization of the COM system.

uses ..., ActiveX, MSXML2_tlb;

2. Initialize COM in the initialization section, and free it up in the finalization section.

initialization
CoInitialize(nil);

386

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



finalization
CoUninitialize;

end.

3. Create a document object. This package does not have a DOM implementation object as

such, and lets you create document objects directly through the CoDOMDocument class.

var
XMLDoc: IXMLDOMDocument;

{ Instantiate the DOM }
XMLDoc := CoDOMDocument.Create;

NOTE Unfortunately, there is no way of attaching a document type object to this document.
Thus, you cannot produce a valid document in this manner since it does not refer to its appro-
priate DTD.

4. Add the document’s top-level children using its AppendChild method and its factory meth-

ods. In the case of a movie-watcher document these may be a comment, a stylesheet

reference (as a processing instruction), and the document element itself (which also sets the

DocumentElement property of the document). You can include an XML prolog by adding

another processing instruction as the first child. The GenerateHeaders method in Listing

19-1 shows the generation of the top-level children.

Listing 19-1: Generating XML via the DOM

{ Generate the XML document as text }
procedure TfrmDOMXML.btnGenerateClick(Sender: TObject);
var
XMLDoc: IXMLDOMDocument;

{ Generate XML prolog, style sheet reference,
and document element }

procedure GenerateHeaders;
begin
with XMLDoc do
begin
AppendChild(CreateProcessingInstruction(
XMLTag, XMLPrologAttrs));

AppendChild(CreateComment(XMLComment));
AppendChild(CreateProcessingInstruction(
XMLStyleTag, XMLStyleAttrs));

AppendChild(CreateElement(MovieWatcherTag));
end;

end;

{ Compile elements for the stars of the movie }
procedure GenerateStars(Starring: IXMLDOMElement);
begin
with qryStars do
begin
First;
while not EOF do
begin
AddSimpleElement(Starring, FieldByName(StarField));
Next;

end;
end;

Chapter 19: Document Object Model 387



end;

{ Generate elements for each movie }
procedure GenerateMovies;
var
Movies, Movie: IXMLDOMElement;

begin
Movies := IXMLDOMElement(XMLDoc.DocumentElement.AppendChild(
XMLDoc.CreateElement(MoviesTag)));

with qryMovie do
begin
First;
while not EOF do
begin
Movie := IXMLDOMElement(Movies.AppendChild(
XMLDoc.CreateElement(MovieTag)));

Movie.SetAttribute(Id,
FieldByName(MovieIdField).DisplayText);

Movie.SetAttribute(Rating,
FieldByName(RatingField).DisplayText);

AddOptAttribute(Movie, FieldByName(LogoURLField));
AddOptAttribute(Movie, FieldByName(URLField));
AddSimpleElement(Movie, FieldByName(NameField));
AddSimpleElement(Movie, FieldByName(LengthField));
AddSimpleElement(Movie, FieldByName(DirectorField));
GenerateStars(IXMLDOMElement(Movie.AppendChild(
XMLDoc.CreateElement(StarringTag))));

AddSimpleElement(Movie, FieldByName(SynopsisField),
True);

Next;
end;

end;
end;

{ GenerateCinemas and GenerateScreenings are similar
to the above and are not shown here }

begin
try
Screen.Cursor := crHourglass;
{ Instantiate the DOM }
XMLDoc := CoDOMDocument.Create;
{ Generate the structure }
GenerateHeaders;
GenerateMovies;
GenerateCinemas;
GenerateScreenings;
{ And convert to XML }
memXML.Lines.Text := XMLDoc.XML;

finally
{ Release the DOM }
XMLDoc := nil;
Screen.Cursor := crDefault;

end;
end;

5. Include the list of movies in the document by adding the movies element as a child of the

document element. (See the GenerateMovies method in Listing 19-1). You use the

DocumentElement property of the document to refer to the top-level element added in Step

388 Part IV: Serving XML



4. Retain a reference to the movies element since you need to add several children to it. The

AppendChild method returns a pointer to the node it just added, which should be cast as an

element for later use.

6. Cycle through all the movie records from the associated query and create a child element for

each one (see the GenerateMovies method in Listing 19-1). Again, a reference to the new

node is kept for further processing. On that node you set the values of a couple of attributes

with the SetAttribute method. Then add the fields from the record as sub-elements with

text nodes as children. Values for the ID attribute of each movie are set from the primary key

field in the database, which is prefixed by a different character for each table to ensure that

IDs are unique across the entire document.

Helper functions handle the details of adding these basic child nodes (AddSimpleElement) as well

as the situation where you want to add an attribute only if it has an actual value

(AddOptAttribute) as shown in Listing 19-2. Element and attribute names come from the name

of the field being worked upon (after allowing for differences in naming conventions). The former

routine also has a flag (defaulting to False) that indicates whether or not the text should be

wrapped in a CDATA section. In this example, the synopsis field from the database is automati-

cally generated as CDATA to show the use of such sections and their resulting output.

Listing 19-2: Helper functions for DOM XML generation

{ Add a simple element that only contains text }
procedure AddSimpleElement(Parent: IXMLDOMElement;
Field: TField; AsCDATA: Boolean = False);

var
Internal: IXMLDOMElement;

begin
Internal := IXMLDOMElement(Parent.AppendChild(
XMLDoc.CreateElement(ModifyName(Field.FieldName))));

if AsCDATA then
Internal.AppendChild(
XMLDoc.CreateCDATASection(Field.DisplayText))

else
Internal.AppendChild(
XMLDoc.CreateTextNode(Field.DisplayText));

end;

{ Include attributes only if present }
procedure AddOptAttribute(Element: IXMLDOMElement;
Field: TField);

begin
if Field.AsString <> '' then
Element.SetAttribute(ModifyName(Field.FieldName),
Field.DisplayText);

end;

NOTE Since you cannot manipulate the document type node for a generated document,
you cannot declare entities and notations within it. This means that the references to the exter-
nal HTML and GIF resources encoded in the movies table appear as direct URLs rather than
as external entity references as required by the DTD. However, as you cannot specify the DTD
either, perhaps this does not matter.

Chapter 19: Document Object Model 389



7. Generate the embedded star elements. Since the stars data comes from another table and

has an unknown number of occurrences, a separate routine provides its content

(GenerateStars in Listing 19-1). Called from the generation of the movie elements, it is

provided a reference to the surrounding starring element, and steps through each stars

record, adding it as a simple, text-filled child.

8. Repeat the process for the cinemas and screenings elements and tables, with their embedded

pricing schemes and sessions respectively. Another helper function includes empty tags for

Boolean fields only when their value is True (see Listing 19-3). An empty tag is simply one

that has no children.

Listing 19-3: Creating optional empty elements

{ Include empty field tag only if flag in DB set }
procedure AddOptElement(Parent: IXMLDOMElement; Field: TField);
begin
if Field.AsBoolean then
Parent.AppendChild(Parent.OwnerDocument.CreateElement(
ModifyName(Field.FieldName)));

end;

9. Convert the document in memory into an XML document through the XML property of the

document object. This is not part of the XML specification as defined by the W3C, but is

provided by Microsoft’s implementation for your benefit. Don’t forget to release the DOM

object by setting its reference back to nil (although Delphi will do this for you when the

variable goes out of scope).

As with the text generation example in Chapter 17, the completed document is written into a

memo control on the form and can be saved to the disk by pressing the Save button. Figure 19-1

shows the start of the movie-watcher document generated with Microsoft’s DOM.

390 Part IV: Serving XML

Figure 19-1: Generating with Microsoft’s DOM.



CUESoft’s DOM

CUESoft’s DOM can also produce documents on the fly. It offers basically the same functionality

and restrictions as Microsoft’s implementation. In fact, the code is almost identical.

Obvious changes are the different names of the DOM objects: Microsoft’s start with IXMLDOM
while CUESoft’s start with TXml. The manner of creating the blank document and extracting the

resulting XML also differ. CUESoft’s version is shown in Listing 19-4. An object model is ini-

tially constructed from which you get the document itself. Upon completion of the generation

process you access the XMLDocument property to retrieve the XML output. Setting the

FormattedOutput property of the model affects the document’s appearance, in this case by add-

ing line feeds at the ends of tags and appropriate indentation.

Listing 19-4: Initializing a CUESoft document object

{ Generate the XML document as text }
procedure TfrmDOMXML.btnGenerateClick(Sender: TObject);
var
XMLModel: TXmlObjModel;
XMLDoc: TXmlDocument;

begin
try
Screen.Cursor := crHourglass;
{ Instantiate the DOM }
XMLModel := TXmlObjModel.Create(nil);
XMLDoc := XMLModel.Document;
{ Generate the structure }
GenerateHeaders;
GenerateMovies;
GenerateCinemas;
GenerateScreenings;
{ And convert to XML }
XMLModel.FormattedOutput := True;
memXML.Lines.Text := XMLModel.XMLDocument;

finally
{ Release the DOM }
XMLModel.Free;
Screen.Cursor := crDefault;

end;
end;

Another subtle difference is that the AppendChild method in CUESoft’s implementation does not

return a reference to the new node. Thus, the creation of a new element, assigning it to a variable,

and adding it to the DOM cannot be achieved in a single statement as you can do with Microsoft’s

version. So, instead of the previous:

Movie := IXMLDOMElement(Movies.AppendChild(
XMLDoc.CreateElement(MovieTag)));

you must now use:

Movie := XMLDoc.CreateElement(MovieTag);
Movies.AppendChild(Movie);

Chapter 19: Document Object Model 391



As before, a memo field receives the resulting XML for display on the screen. You can copy it to

disk with the Save button. Figure 19-2 shows the output from the CUESoft generation process.

Like Microsoft’s implementation, you cannot add a document type declaration to the document.

Open XML’s DOM

Using Open XML’s DOM to produce XML documents is quite similar to the previous two. Minor

variations occur in naming the classes (Tdom prefix compared to Microsoft’s IXMLDOM) and in

starting the process by instantiating an implementation object and asking it to generate the actual

document (see Listing 19-5). The creation method needs the name of the document element and

may take a document type reference. However, in this release, you cannot create a document type

object until you have created the document.

Listing 19-5: Creating documents with Open XML

{ Generate the XML document as text }
procedure TfrmDOMXML.btnGenerateClick(Sender: TObject);
var
XMLImpl: TdomImplementation;
XMLDoc: TdomDocument;

begin
Screen.Cursor := crHourglass;
{ Instantiate the DOM }
XMLImpl := TDomImplementation.Create(nil);

392 Part IV: Serving XML

Figure 19-2: Generating with CUESoft’s DOM.



try
XMLDoc := XMLImpl.CreateDocument(MovieWatcherTag, nil);
{ Generate the structure }
GenerateHeaders;
GenerateMovies;
GenerateCinemas;
GenerateScreenings;
{ And convert to XML }
memXML.Lines.Text := XMLDoc.codeAsString;

finally
{ Release the DOM }
XMLImpl.FreeDocument(XMLDoc);
XMLImpl.Free;
Screen.Cursor := crDefault;

end;
end;

The name of the document element prompts a search through the list of document classes regis-

tered with the XDOM package. This lets you create specialized documents with added abilities

and have them automatically invoked when creating a document of that type. For example, you

could write an HTML document class that provided factory methods for all the HTML tags. Once

registered with the RegisterDocumentFormat method in the TDomImplementation class, it is

available whenever a document with an html document element is requested.

A major difference between Open XML’s DOM and the previous versions is its support for the

DTD within a document. It lets you completely describe the contents of the DTD, from an external

subset to internal entities and notations. Listing 19-6 shows how to generate a header for the

movie-watcher document. First up you should add an XML prolog. However, this cannot be done

if the document has any children, which it already does due to its creation based on an element

name. The workaround is to delete the document element, add the XML prolog, and then replace

that element.

Listing 19-6: Generating the document headers

{ Generate XML prolog, style sheet reference, and document element }
procedure GenerateHeaders;
var
BaseId: string;

begin
with XMLDoc do
begin
RemoveChild(DocumentElement);
AppendChild(CreateXmlDeclaration('1.0', 'UTF-8', 'no'));
AppendChild(CreateElement(MovieWatcherTag));
InsertBefore(CreateDocumentType(
MovieWatcherTag, '', XMLDTDFile), DocumentElement);

DocType.InternalSubsetNode.AppendChild(
CreateNotationDeclaration(GIFType, GIFPubId, GIFSysId));

DocType.InternalSubsetNode.AppendChild(
CreateNotationDeclaration(HTMLType, HTMLPubId, HTMLSysId));

with qryMovie do
begin
First;
while not EOF do
begin
BaseId := FieldByName(MovieIdField).DisplayText;
if FieldByName(LogoURLField).AsString <> '' then

Chapter 19: Document Object Model 393



begin
DocType.Entities.SetNamedItem(CreateEntity(BaseId + 'Logo',
'', FieldByName(LogoURLField).DisplayText, GIFType));

DocType.InternalSubsetNode.AppendChild(
CreateEntityDeclaration(BaseId + 'Logo', '',
'', FieldByName(LogoURLField).DisplayText, GIFType));

end;
if FieldByName(URLField).AsString <> '' then
begin
DocType.Entities.SetNamedItem(CreateEntity(BaseId + 'Url',
'', FieldByName(URLField).DisplayText, HTMLType));

DocType.InternalSubsetNode.AppendChild(
CreateEntityDeclaration(BaseId + 'Url', '',
'', FieldByName(URLField).DisplayText, HTMLType));

end;
Next;

end;
end;
InsertBefore(CreateComment(XMLComment), DocumentElement);
InsertBefore(CreateProcessingInstruction(
XMLStyleTag, XMLStyleAttrs), DocumentElement);

end;
end;

The DTD section of the document starts with a document type object added before the document

element via the InsertBefore method, with a reference to the external DTD being passed along.

This automatically creates internal and external subset nodes as children of the document type. To

the internal subset you add declarations for the two standard notations for movie-watcher docu-

ments. Stepping through the movies database, you add entity declarations for any external

references found (again to the internal subset of the DTD). Lastly, the usual comment and

stylesheet reference are also added to the document itself.

Content for the document comes from processing each appropriate database record in turn and

adding element and text nodes as with the previous DOMs. Listing 19-7 show the code for

appending movie information. Note that now the URL and logo attributes of a movie refer to the

entities rather than the actual URIs. Cinemas and screenings use a similar approach. As before, the

AddSimpleElement routine adds a sub-element with a name based on the supplied field and with a

single text child holding its data. The synopsis field is saved as a CDATA section just to show how

these appear.

Listing 19-7: Adding movies

{ Add a simple element that only contains text }
procedure AddSimpleElement(Parent: TdomElement; Field: TField;
AsCDATA: Boolean = False);

var
Internal: TdomNode;

begin
Internal := Parent.AppendChild(
XMLDoc.CreateElement(ModifyName(Field.FieldName)));

if AsCDATA then
Internal.AppendChild(
XMLDoc.CreateCDATASection(Field.DisplayText))

else
Internal.AppendChild(XMLDoc.CreateTextNode(Field.DisplayText));

end;

394 Part IV: Serving XML



{ Compile elements for the stars of the movie }
procedure GenerateStars(Starring: TdomElement);
begin
with qryStars do
begin
First;
while not EOF do
begin
AddSimpleElement(Starring, FieldByName(StarField));
Next;

end;
end;

end;

{ Generate elements for each movie }
procedure GenerateMovies;
var
Movies, Movie: TdomElement;
BaseId: string;

begin
Movies := TdomElement(XMLDoc.DocumentElement.AppendChild(
XMLDoc.CreateElement(MoviesTag)));

with qryMovie do
begin
First;
while not EOF do
begin
Movie := TdomElement(Movies.AppendChild(
XMLDoc.CreateElement(MovieTag)));

BaseId := FieldByName(MovieIdField).DisplayText;
Movie.SetAttribute(Id, BaseId);
Movie.SetAttribute(Rating,
FieldByName(RatingField).DisplayText);

if FieldByName(LogoURLField).AsString <> '' then
Movie.SetAttribute(ModifyName(
FieldByName(LogoURLField).FieldName), BaseId + 'Logo');

if FieldByName(URLField).AsString <> '' then
Movie.SetAttribute(ModifyName(
FieldByName(URLField).FieldName), BaseId + 'Url');

AddSimpleElement(Movie, FieldByName(NameField));
AddSimpleElement(Movie, FieldByName(LengthField));
AddSimpleElement(Movie, FieldByName(DirectorField));
GenerateStars(TdomElement(Movie.AppendChild(
XMLDoc.CreateElement(StarringTag))));

AddSimpleElement(Movie, FieldByName(SynopsisField), True);
Next;

end;
end;

end;

Generating XML with this DOM produces a document that matches exactly the DTD defined ear-

lier, including unparsed entity references. The result is shown in Figure 19-3. Save the output as

before and view it in your browser.

Chapter 19: Document Object Model 395



Summary

Producing documents in this manner is more work than using the straight text version. However, it

does create the DOM directly in memory, allowing it to be further manipulated by the program.

For example, you could create a document, or fragment, and then apply a style sheet to it to trans-

form it into an alternate output. In this way you could use a single transfer medium between

various sources and destinations. All you need is a routine to convert the originator into XML, and

an appropriate driver to transform the XML into the desired output.

Even though there is a standard DOM specification, the various DOM implementations have

different abilities when it comes to supporting the document type part of the model. Open XML

provides full support, while Microsoft and CUESoft provide none (which conforms to the current

specification). The latter DOMs cannot, therefore, use external entity references and should

design DTDs that do not rely on these. But then again, they cannot include references to a DTD

anyway. Hopefully, the next version of the DOM addresses this issue, and the various implemen-

tations support the changes.

396 Part IV: Serving XML

Figure 19-3: Open XML’s DOM includes a document
type section.

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



C h a p t e r 2 0

SAX GenerationSAX Generation

A SAX parser breaks the input XML document up into tokens and triggers events on attached han-

dlers for each one. These handlers may process the events in whatever manner they choose, such

as looking for particular elements and their contents or building a DOM.

One of the extra abilities included in the Microsoft XML support for SAX is its IMXWriter
interface. An object created through this interface also expresses each of the other handler inter-

faces. Invoking handler methods on such an object causes it to generate an XML document that

reproduces those events. The result is available through the Output property, which may be refer-

enced as a WideString value, or may be sent directly to an IStream object.

So, instead of instantiating a SAX parser and supplying your own handlers, you generate a docu-

ment by creating an IMXWriter object and calling its handler methods as if you are the parser. An

alternative use is to transform an existing XML document by having a SAX parser read it, pass the

events through a SAX filter (which does the actual transformation), and direct its output to a writer.

IMXWriter Interface

Objects created through the CoClass for the IMXWriter interface also implement the

IVBSAXContentHandler, IVBSAXDTDHandler, IVBSAXErrorHandler, IVBSAXLexicalHandler, and

IVBSAXDeclHandler interfaces. You invoke these to generate an XML document. In principle,

piping the events from a SAX parser directly to a writer produces exactly the same document on

output as on input. However, certain input deemed insignificant by the XML specification may be

skipped or generated differently. Also the output encoding may be different to that on input.

The properties specific to the IMXWriter interface let you control the appearance of the result-

ing document. See Listing 20-1 for the interface’s declaration.

Listing 20-1: The IMXWriter interface

// ******************************************************************//
// Interface: IMXWriter
// Flags: (4544) Dual NonExtensible OleAutomation Dispatchable
// GUID: {4D7FF4BA-1565-4EA8-94E1-6E724A46F98D}
// ******************************************************************//
IMXWriter = interface(IDispatch)
['{4D7FF4BA-1565-4EA8-94E1-6E724A46F98D}']

397



procedure Set_output(varDestination: OleVariant); safecall;
function Get_output: OleVariant; safecall;
procedure Set_encoding(const strEncoding: WideString); safecall;
function Get_encoding: WideString; safecall;
procedure Set_byteOrderMark(fWriteByteOrderMark: WordBool); safecall;
function Get_byteOrderMark: WordBool; safecall;
procedure Set_indent(fIndentMode: WordBool); safecall;
function Get_indent: WordBool; safecall;
procedure Set_standalone(fValue: WordBool); safecall;
function Get_standalone: WordBool; safecall;
procedure Set_omitXMLDeclaration(fValue: WordBool); safecall;
function Get_omitXMLDeclaration: WordBool; safecall;
procedure Set_version(const strVersion: WideString); safecall;
function Get_version: WideString; safecall;
procedure Set_disableOutputEscaping(fValue: WordBool); safecall;
function Get_disableOutputEscaping: WordBool; safecall;
procedure flush; safecall;
property output: OleVariant read Get_output write Set_output;
property encoding: WideString read Get_encoding write Set_encoding;
property byteOrderMark: WordBool read Get_byteOrderMark
write Set_byteOrderMark;

property indent: WordBool read Get_indent write Set_indent;
property standalone: WordBool read Get_standalone
write Set_standalone;

property omitXMLDeclaration: WordBool read Get_omitXMLDeclaration
write Set_omitXMLDeclaration;

property version: WideString read Get_version write Set_version;
property disableOutputEscaping: WordBool
read Get_disableOutputEscaping write Set_disableOutputEscaping;

end;

The IMXWriter’s properties and methods are described below:

property output: OleVariant read Get_output write Set_output;
Retrieve or redirect the XML document generated by the writer through this property. If

assigned an object that implements IStream, the output is sent directly to that stream. If not

assigned a value, or if it is assigned an empty string, the output appears as a string value

when this property is read. Assigning an empty string also clears the internal buffer in prepa-

ration for generating the next section of the document. In this way, the memory

requirements of the writer are reduced. The output is also reset whenever a startDocument
event occurs.

property encoding: WideString read Get_encoding write Set_encoding;
This property sets or returns the encoding scheme used by the writer. If you are retrieving

the output as a string value, this setting is ignored since all strings are UTF-16 encoded.

property byteOrderMark: WordBool read Get_byteOrderMark write Set_byteOrderMark;
Set this property to True to have the writer generate a byte order mark for appropriate

encodings. When False, no byte order mark is included. A byte order mark is never pro-

duced when output is retrieved as a string.

property indent: WordBool read Get_indent write Set_indent;
When set to True the output document is formatted for improved readability. Each level of

elements is indented by one tab and opening tags appear on a new line. If set to False, the

XML appears without any breaks.

398 Part IV: Serving XML



property standalone: WordBool read Get_standalone write Set_standalone;
This property controls the appearance of the standalone declaration in the XML prolog. The

default is to omit it (a setting of False).

property omitXMLDeclaration: WordBool read Get_omitXMLDeclaration write
Set_omitXMLDeclaration;
The entire XML prolog can be excluded by setting this property to True. By default it is set

to False, which includes the prolog.

property version: WideString read Get_version write Set_version;
Set or retrieve the XML version declaration from the prolog through this property. It

defaults to 1.0.

property disableOutputEscaping: WordBool read Get_disableOutputEscaping
write Set_disableOutputEscaping;
This property determines whether or not text is escaped before being written out. When

True, text is not escaped, which may result in a malformed document, and when False, (the

default) the text is escaped, meaning that the standard metacharacters (like <) are replaced

by their corresponding entity references (like &lt;).

procedure flush; safecall;
Flush the internal buffer to its output stream or string. This happens automatically when the

output property is accessed or when the endDocument event occurs.

IMXAttributes Interface

Generating an element requires its attributes (if any) be specified. The IVBSAXAttributes inter-

face from SAX defines how to extract information about a set of attributes, but says nothing about

how to set up those details in the first place. The IMXAttributes interface (see Listing 20-2) pro-

vides the necessary functionality. An object that expresses this interface also implements the

IVBSAXAttributes one, allowing it to be passed directly to the startElement call.

Listing 20-2: The IMXAttributes interface

// ******************************************************************//
// Interface: IMXAttributes
// Flags: (4544) Dual NonExtensible OleAutomation Dispatchable
// GUID: {F10D27CC-3EC0-415C-8ED8-77AB1C5E7262}
// ******************************************************************//
IMXAttributes = interface(IDispatch)
['{F10D27CC-3EC0-415C-8ED8-77AB1C5E7262}']
procedure addAttribute(const strURI: WideString;
const strLocalName: WideString; const strQName: WideString;
const strType: WideString; const strValue: WideString); safecall;

procedure addAttributeFromIndex(varAtts: OleVariant; nIndex: SYSINT);
safecall;

procedure clear; safecall;
procedure removeAttribute(nIndex: SYSINT); safecall;
procedure setAttribute(nIndex: SYSINT; const strURI: WideString;
const strLocalName: WideString; const strQName: WideString;
const strType: WideString; const strValue: WideString); safecall;

Chapter 20: SAX Generation 399



procedure setAttributes(varAtts: OleVariant); safecall;
procedure setLocalName(nIndex: SYSINT;
const strLocalName: WideString); safecall;

procedure setQName(nIndex: SYSINT; const strQName: WideString);
safecall;

procedure setType(nIndex: SYSINT; const strType: WideString);
safecall;

procedure setURI(nIndex: SYSINT; const strURI: WideString); safecall;
procedure setValue(nIndex: SYSINT; const strValue: WideString);
safecall;

end;

Create an object of this type through the CoSAXAttributes class’s Create method. Using the

CoSAXAttributes30 class instead ties the object to this version of the XML package.

The methods of an IMXAttributes object are shown below:

procedure addAttribute(const strURI: WideString; const strLocalName: WideString;
const strQName: WideString; const strType: WideString; const strValue:
WideString); safecall;
Add an attribute to the end of the list with this method, which takes the name of the attribute,

as well as its type and string value. Send a single space if a parameter is not known. No

check is made for a pre-existing attribute with the same name. For performance reasons, this

is left to the user to implement if necessary.

procedure addAttributeFromIndex(varAtts: OleVariant; nIndex: SYSINT); safecall;
Adds an attribute, whose value is equal to the specified entry from the input object, to the

end of the list.

procedure clear; safecall;
This method empties the attribute list, readying it for reuse. It does not free up the associated

memory.

procedure removeAttribute(nIndex: SYSINT); safecall;
Delete the specified attribute by index, starting at zero, with this method.

procedure setAttribute(nIndex: SYSINT; const strURI: WideString; const
strLocalName: WideString; const strQName: WideString; const strType:
WideString; const strValue: WideString); safecall;
Given an attribute’s position (starting from zero), set its name and value to the specified

arguments through this method.

procedure setAttributes(varAtts: OleVariant); safecall;
Use this method to copy the contents of another attribute collection. It is probably more effi-

cient to reuse an existing object than to generate a copy.

procedure setLocalName(nIndex: SYSINT; const strLocalName: WideString); safecall;
Update the local name for the specified attribute with this method.

procedure setQName(nIndex: SYSINT; const strQName: WideString); safecall;
Similarly, alter the qualified name of the nominated attribute through this method.

procedure setType(nIndex: SYSINT; const strType: WideString); safecall;
Use this method to change the type for the specified attribute.

400 Part IV: Serving XML



procedure setURI(nIndex: SYSINT; const strURI: WideString); safecall;
Modify the nominated attribute’s namespace URI with this method.

procedure setValue(nIndex: SYSINT; const strValue: WideString); safecall;
And, finally, overwrite the specified attribute’s value via this method.

Creating a Writer

Obtaining a SAX writer object is easy with the CoMXXMLWriter CoClass. Once the MSXML2_tlb
unit is included in your uses clause, you call on this class to generate a new writer via its Create
method. Use CoMXXMLWriter30 instead to always produce an object from this version of the XML

package, rather than the latest version returned by the previous CoClass. Although the IMXWriter
interface derives directly from IDispatch and makes no mention of the handler interfaces, the

resulting object implements them. The easiest way to refer to them from Delphi is to declare vari-

ables for each desired interface and use the as operator to cast the writer accordingly. See Listing

20-3 for the creation code.

Listing 20-3: Creating a SAX writer

{ Generate the XML document as text }
procedure TfrmWriterXML.btnGenerateClick(Sender: TObject);
const
Empty: WideString = '';
NoValue: WideString = ' ';

var
XMLDoc: IMXWriter;
ContentHandler: IVBSAXContentHandler;
DTDHandler: IVBSAXDTDHandler;
LexicalHandler: IVBSAXLexicalHandler;
Attributes: IMXAttributes;
{ Add the document generated so far to the output }
procedure UpdateOutput;
begin
memXML.Lines.Text := memXML.Lines.Text + XMLDoc.Output;
XMLDoc.Output := Empty;

end;
{ Generate XML prolog, style sheet reference, and document element }
procedure GenerateDocument;
var
Wide1, Wide2: WideString;

begin
ContentHandler.StartDocument;
GenerateDTD;
Wide1 := XMLComment;
LexicalHandler.Comment(Wide1);
Wide1 := XMLStyleTag;
Wide2 := XMLStyleAttrs;
ContentHandler.ProcessingInstruction(Wide1, Wide2);
UpdateOutput;
StartElement(MovieWatcherTag);
GenerateMovies;
UpdateOutput;
GenerateCinemas;
UpdateOutput;

Chapter 20: SAX Generation 401



GenerateScreenings;
EndElement(MovieWatcherTag);
ContentHandler.EndDocument;
UpdateOutput;

end;
begin
Screen.Cursor := crHourglass;
memXML.Lines.Clear;
{ Instantiate the XML writer }
XMLDoc := CoMXXMLWriter.Create;
try
ContentHandler := XMLDoc as IVBSAXContentHandler;
DTDHandler := XMLDoc as IVBSAXDTDHandler;
LexicalHandler := XMLDoc as IVBSAXLexicalHandler;
Attributes := CoSAXAttributes.Create;
XMLDoc.Indent := True;
{ Generate the structure }
GenerateDocument;

finally
{ Release the XML writer }
Attributes := nil;
XMLDoc := nil;
Screen.Cursor := crDefault;

end;
end;

Also necessary is an instance of the IMXAttributes interface, which provides for the writing of

attribute values into a storage area. Such objects also implement the IVBSAXAttributes interface

that lets you retrieve that information. Use this to accumulate attributes for an element that can

then be passed into the corresponding StartElement call of the content handler.

Generation continues with calls to the appropriate handler methods, beginning with the con-

tent handler’s StartDocument call and finishing with its EndDocument. Between these appear other

calls to include the DTD, a top-level comment, a stylesheet reference, and the actual content of the

document. The latter occurs within the bounds of a StartElement and EndElement call for the

main document element.

NOTE Since the handler methods take WideStrings as arguments, all internal values are
converted to this format through assignments before being passed across.

To demonstrate the chunking ability of the writer, the UpdateOutput method is called after each

major section of the document is completed. This routine adds the generated XML to the memo on

the screen via the Output property and then resets that property ready for the next section. Setting

the Indent property to True prior to any handler calls causes the document to be formatted for

improved readability.

402 Part IV: Serving XML



Defining the DTD

Since the writer is based on the SAX2 specification, it implements the two standard extensions:

IVBSAXLexicalHandler and IVBSAXDeclHandler. The first of these lets you add the DTD declara-

tion itself through its StartDTD method, specifying the document type and its public and system

identifiers (see Listing 20-4). Following this call, and before the EndDTD call, you use the DTD

handler interface to add any notations and unparsed entities.

Listing 20-4: Generating the DTD

{ Generate DTD and contents }
procedure GenerateDTD;
var
Wide1, Wide2, Wide3: WideString;
BaseId: string;

begin
Wide1 := MovieWatcherTag;
Wide2 := XMLDTDFile;
LexicalHandler.StartDTD(Wide1, Empty, Wide2);
Wide1 := GIFType;
Wide2 := GIFPubId;
Wide3 := GIFSysId;
DTDHandler.NotationDecl(Wide1, Wide2, Wide3);
Wide1 := HTMLType;
Wide2 := HTMLPubId;
Wide3 := HTMLSysId;
DTDHandler.NotationDecl(Wide1, Wide2, Wide3);
with qryMovie do
begin
First;
while not EOF do
begin
BaseId := FieldByName(MovieIdField).DisplayText;
if FieldByName(LogoURLField).AsString <> '' then
begin
Wide1 := BaseId + 'Logo';
Wide2 := FieldByName(LogoURLField).DisplayText;
Wide3 := GIFType;
DTDHandler.UnparsedEntityDecl(Wide1, Empty, Wide2, Wide3);

end;
if FieldByName(URLField).AsString <> '' then
begin
Wide1 := BaseId + 'URL';
Wide2 := FieldByName(URLField).DisplayText;
Wide3 := HTMLType;
DTDHandler.UnparsedEntityDecl(Wide1, Empty, Wide2, Wide3);

end;
Next;

end;
end;
LexicalHandler.EndDTD;

end;

You could define the entire DTD internally, including element and attribute declarations, by

invoking methods on the IVBSAXDeclHandler interface. Such calls must appear between the start

and end DTD calls.

Chapter 20: SAX Generation 403



Adding Content

The main information in the generated document comes from calls to the content handler’s meth-

ods, especially StartElement/EndElement and Characters. Data for movies in the sample

document appears within the confines of the document element. A movies element is started prior

to stepping through each database record and producing its output. Upon completion, the corre-

sponding closing tag is written. See Listing 20-5 for the generation code.

Listing 20-5: Adding movie content

{ Start a new element tag }
procedure StartElement(Name: WideString);
begin
ContentHandler.StartElement(
NoValue, NoValue, Name, Attributes as IVBSAXAttributes);

Attributes.Clear;
end;
{ End an element tag }
procedure EndElement(Name: WideString);
begin
ContentHandler.EndElement(NoValue, NoValue, Name);

end;
{ Save an attribute for adding to an element }
procedure AddAttribute(Name, Value: WideString);
begin
Attributes.AddAttribute(NoValue, NoValue, Name, NoValue, Value);

end;
{ Add a simple element that only contains text }
procedure AddSimpleElement(Field: TField; AsCDATA: Boolean = False);
var
Value: WideString;

begin
StartElement(ModifyName(Field.FieldName));
if AsCDATA then
LexicalHandler.StartCDATA;

Value := Field.DisplayText;
if Value = '' then
Value := NoValue;

ContentHandler.Characters(Value);
if AsCDATA then
LexicalHandler.EndCDATA;

EndElement(ModifyName(Field.FieldName));
end;
{ Compile elements for the stars of the movie }
procedure GenerateStars;
begin
with qryStars do
begin
StartElement(StarringTag);
First;
while not EOF do
begin
AddSimpleElement(FieldByName(StarField));
Next;

end;
EndElement(StarringTag);

end;

404 Part IV: Serving XML



end;
{ Generate elements for each movie }
procedure GenerateMovies;
var
BaseId: string;

begin
StartElement(MoviesTag);
with qryMovie do
begin
First;
while not EOF do
begin
BaseId := FieldByName(MovieIdField).DisplayText;
AddAttribute(Id, BaseId);
AddAttribute(Rating, FieldByName(RatingField).DisplayText);
if FieldByName(LogoURLField).AsString <> '' then
AddAttribute(ModifyName(FieldByName(LogoURLField).FieldName),
BaseId + 'Logo');

if FieldByName(URLField).AsString <> '' then
AddAttribute(ModifyName(FieldByName(URLField).FieldName),
BaseId + 'URL');

StartElement(MovieTag);
AddSimpleElement(FieldByName(NameField));
AddSimpleElement(FieldByName(LengthField));
AddSimpleElement(FieldByName(DirectorField));
GenerateStars;
AddSimpleElement(FieldByName(SynopsisField), True);
EndElement(MovieTag);
Next;

end;
end;
EndElement(MoviesTag);

end;

Attributes for an element are sent as part of the opening element call. Therefore, they must be

accumulated and prepared before that time. The helper routine, AddAttribute, places the speci-

fied attribute into the IMXAttributes object created during initialization of the document. The

StartElement call then uses this to supply the information to the writer and subsequently clears

the list ready for the next element.

TIP Since no namespaces appear in the movie-watcher document, the corresponding
parameters in the attribute and element calls should be empty strings. However, sending such
value results in an error—The parameter is incorrect. Instead, you must send a string with a
single space. This is encapsulated by the NoValue constant within the sample application.

Another helper routine, AddSimpleElement, adds a child element with a single text node body. As

in previous chapters, the element name derives from the database field name and the field’s value

provides the content. A flag indicates whether the text should be treated as a CDATA section, as is

the case for the synopsis data (just because you can). The text is always sent via the Characters
method, but in the case of a CDATA section, this call appears between the lexical handler’s

StartCDATA and EndCDATA calls.

Invoke the generation process with the Generate button and the output appears on the screen

(see Figure 20-1). To view it within your browser, use the Save button and open the resulting file.

Chapter 20: SAX Generation 405



Summary

Similar in structure to generating a document through one of the DOM offerings, the SAX writer

approach offers the usual SAX advantage of reducing memory requirements. Only a single ele-

ment or text node appears at any one time. Furthermore, this technique lets you create the entire

document, including any internal DTD—something that most DOMs do not allow.

Of course, you are generating the output into memory as text. This resource can be reduced

through multiple calls to the Output property of the writer. Each time the document is returned, it

is cleared for the next section. Thus, you can chunk the document and write out smaller pieces at a

time. Alternately, you can set the Output property to an IStream, which then accepts each part as it

is created.

The SAX writer is another option to consider when creating XML documents on the fly. It can

be used to advantage when the resulting document is too large to comfortably fit in memory and

when there is no need to randomly access the nodes within the document.

If you want to use XSLT to alter the appearance of the new document, you need to stay with the

DOM approach. The following chapter explores this in greater detail.

406 Part IV: Serving XML

Figure 20-1: SAX document generation.TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



C h a p t e r 2 1

Applying XSLApplying XSL

Transformations

Not only can you generate and deliver XML documents directly, you can also preprocess those

documents and generate formatted output for further distribution. XSL Transformations, as

described in Chapter 4, provide a way of describing the conversion process. The Microsoft XML

DOM supplies the means to apply those changes.

Recall that an XSL Transformation is also an XML document, which can be loaded into a

DOM in exactly the same way. Once you have both the XML data and the transformation in mem-

ory, you can apply the latter to the former with the TransformNode method of a Microsoft DOM

node. This produces a string value that contains the results of the modifications, which can then be

saved to a file, displayed on the screen, or sent across the Internet. The basic code for this process

is shown in Listing 21-1.

Listing 21-1: Applying a transformation

var
XMLDoc: IXMLDOMDocument;
XSLTDoc: IXMLDOMDocument;
Output: string;

begin
{ Instantiate the DOMs }
XMLDoc := CoDOMDocument.Create;
XSLTDoc := CoDOMDocument.Create;
try
{ Load the XML data }
XMLDoc.Load(edtXML.Text);
{ Load the XSLT stylesheet }
XSLTDoc.Load(edtXSLT.Text);
{ Combine the two and display the results }
Output := XMLDoc.TransformNode(XSLTDoc);

finally
{ Release the DOMs }
XMLDoc := nil;
XSLTDoc := nil;

end;
end;

The transformation does not have to occur for the entire document, nor for the entire stylesheet.

Since the TransformNode method operates on any node, and takes a node as its parameter, you can

pick out a particular node of interest from the XML DOM and apply the corresponding node from

407



the stylesheet. This only works if you have followed the template model for the stylesheet, such

that you have defined a template to match with the node being used as the base. Often you want to

pass the entire stylesheet into this routine, since you have templates that rely on other templates

that are not within the same subtree in the XSLT DOM.

Remember that the transformation process does not have to produce HTML as the output,

though this is probably the most common use. You can also have stylesheets that generate straight

text (including comma-separated values files), rich text, or even another XML document.

If you would prefer the results of the transformation as another DOM object, you can use the

TransformNodeToObject method of the node instead. This allows you to manipulate the output

further, before creating a formatted file, but is really only applicable if you are producing XML or

HTML.

XSLT Utility

To demonstrate how the transformation process can be applied to particular nodes within the

DOM, and how different stylesheets can produce alternate output from the same source XML, you

can create a utility to do the work.

This utility asks for the name of the XML source and XSLT stylesheet documents, loads them

into DOMs and displays the contents of each within memo fields. For the XML document, it also

parses the DOM to create a corresponding tree view of the contents. From this you can select a

particular node to which to apply the transformation. Selecting the root node affects the entire

document.

Pressing the Transform button then works the magic of XSLT and displays the resulting output

in an appropriate viewer. If the stylesheet generates HTML, a browser control is loaded with the

result. Otherwise, it is directed to a rich text edit control. To determine which is used, the utility

searches for the text <html> (upper- or lowercase) in the stylesheet, classing it as HTML if found.

The first step in the process is selecting the XML file. This only occurs through the associated

Browse button, ensuring that you can load the DOM and parse it as part of the process. The

selected file is loaded into the XML memo field, as well as into the DOM. From the latter you

recursively step through all the elements in the document and place them into the tree view. Once

this is completed, you can expand out the tree and select its root node, corresponding to the docu-

ment as a whole. See Listing 21-2 for the code that performs this step.

Listing 21-2: Loading and parsing the XML document

{ Find an XML source file }
procedure TfrmStylesheets.btnXMLClick(Sender: TObject);
{ Load the DOM elements into a tree view recursively }
procedure LoadElements(Node: IXMLDOMNode; Parent: TTreeNode);
var
Index: Integer;
Current: TTreeNode;

begin
if (Node.NodeType = NODE_ELEMENT) or
(Node.NodeType = NODE_DOCUMENT) then

begin
Current := trvDOM.Items.AddChildObject(Parent,

408 Part IV: Serving XML



NodeDisplay(Node), TXMLNode.Create(Node));
for Index := 0 to Node.ChildNodes.Length –1 do
LoadElements(Node.ChildNodes[Index], Current);

end;
end;

begin
with dlgOpen do
begin
Filename := edtXML.Text;
Filter := XMLFilter;
Title := XMLOpen;
if Execute then
begin
edtXML.Text := Filename;
memXML.Lines.Clear;
trvDOM.Items.BeginUpdate;
try
ClearTreeView;
{ Load the XML data }
memXML.Lines.LoadFromFile(edtXML.Text);
if not XMLDoc.Load(edtXML.Text) then
with XMLDoc.ParseError do
begin
MessageDlg(Reason + ' at ' + IntToStr(Line) + ',' +
IntToStr(LinePos), mtError, [mbOK], 0);

Exit;
end;

{ Load the DOM tree view }
LoadElements(XMLDoc, nil);
trvDOM.Items[0].Expand(True);
trvDOM.TopItem := trvDOM.Items[0];
trvDOMChange(trvDOM, trvDOM.Items[0]);

finally
trvDOM.Items.EndUpdate;
pgcStylesheets.ActivePage := tabDOM;

end;
end;

end;
end;

Although a tree view can hold additional data (a pointer) with each node, using this directly on the

DOM nodes causes problems due to the reference counting of the interfaces. Instead, the strategy

adopted here is to wrap that reference in a simple object, TXMLNode, and store this with the tree

node.

Then, when a node is chosen from the tree view, you can retrieve the associated node as shown

in Listing 21-3. You save this element into a variable for later use during the transformation phase.

The node’s description is displayed on the top of the form for verification.

Listing 21-3: Selecting the current node

{ Select the node to operate on }
procedure TfrmStylesheets.trvDOMChange(Sender: TObject; Node: TTreeNode);
begin
XMLNode := TXMLNode(Node.Data).Node;
edtElement.Text := NodeDisplay(XMLNode);

end;

Chapter 21: Applying XSL Transformations 409



Loading the XSLT document is very similar, but without the complexity of parsing the DOM. The

stylesheet is checked, however, to try to determine whether or not it produces HTML output, as

described earlier.

Transforming the Document

Finally, the stylesheet is applied to the selected node as shown in Listing 21-4. The results of the

transformation are first inspected to see that the process worked. If the value is blank, then either

there was some error or the templates did not match the input elements. In either case, a message is

displayed. For HTML output, a blank document is created, since the browser objects to loading

completely empty files.

Listing 21-4: Transforming the selected element

{ Apply the stylesheet to the data and see the results }
procedure TfrmStylesheets.btnTransformClick(Sender: TObject);
var
Output: string;
FileOut: TFileStream;
StrOut: TStringStream;
Filename: string;

begin
Filename := ExtractFilePath(Application.ExeName) + XSLTOutput;
{ Combine the two and display the results }
Output := XMLNode.TransformNode(XSLTDoc);
if Output = '' then
begin
MessageDlg(NoOutput, mtError, [mbOK], 0);
if HTMLOutput then
Output := '<html><body></body></html>';

end;
{ Save to a temporary file }
FileOut := TFileStream.Create(Filename, fmCreate);
StrOut := TStringStream.Create(Output);
try
FileOut.CopyFrom(StrOut, 0);

finally
FileOut.Free;
StrOut.Free;

end;
tabHTML.TabVisible := False;
tabRTF.TabVisible := False;
if HTMLOutput then
begin
{ Load into browser }
brsOutput.Navigate(Filename);
tabHTML.TabVisible := True;
pgcStylesheets.ActivePage := tabHTML;

end
else
begin
{ Load into rich text memo }
memOutput.Lines.LoadFromFile(Filename);
tabRTF.TabVisible := True;
pgcStylesheets.ActivePage := tabRTF;

410 Part IV: Serving XML



end;
btnSave.Enabled := True;

end;

The output string is saved to a temporary file to facilitate its display within the browser. For

HTML, the browser is directed to this file, while other output is sent to the rich text control. The

tab corresponding to the display component is made visible and is brought to the front. Also, the

Save button is enabled to allow you to save the results to a more permanent location.

Included with the utility are several sample XSLT documents as shown in Table 21-1.

Table 21-1: Sample XSLT documents

Document Purpose

movie-watcher.xsl An HTML stylesheet (monolithic)

movie-watcher-tmplt.xsl An HTML stylesheet (template-based)

movie-watcher-csv.xsl A comma-separated values (CSV) stylesheet

movie-watcher-rtf.xsl A rich text stylesheet

Monolithic HTML Transformation

The monolithic HTML stylesheet appears in Listing 21-5. It has a single template that matches the

document root and for-each loops that iterate over the child nodes at each level. Note the use of

the ID and IDREF attributes within the document to create links between the different sections.

Also, note the shorthand syntax (enclosed in braces) used for references that form attribute values

in the final output.

Listing 21-5: A monolithic transformation to HTML

<?xml version="1.0" encoding="UTF-8"?>
<!-- HTML style sheet for movie-watcher XML (monolithic format)

Written by Keith Wood, 4 June 1999 -->
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="html"/>
<!-- Match the entire document -->
<xsl:template match="/">
<html>
<head>
<title>Movie Watchers</title>

</head>
<body>
<h1><a name="top">Welcome to Movie Watchers</a></h1>
<p>Your source for local film entertainment.
Have a look at <a href="#movies">what's on</a>,
<a href="#cinemas">where</a> and
<a href="#screenings">when</a>.</p>

<hr/>
<h2><a name="movies">Movies</a></h2>
<xsl:for-each select="//movie">
<xsl:sort select="name"/>
<!-- Provide link target and optional web link -->
<a name="{@id}">

Chapter 21: Applying XSL Transformations 411



<xsl:if test="@url">
<xsl:attribute name="href">
<xsl:value-of select="@url"/></xsl:attribute>

</xsl:if>
<xsl:choose>
<xsl:when test="@logo-url">
<img src="{@logo-url}" alt="{name}"/>

</xsl:when>
<xsl:otherwise>
<h3><xsl:value-of select="name"/></h3>

</xsl:otherwise>
</xsl:choose>

</a>
<table border="0" width="100%">
<tr>
<th align="left" valign="top" width="15%">Rating:</th>
<td width="15%"><xsl:value-of select="@rating"/></td>
<th align="left" valign="top" width="15%">Length:</th>
<td><xsl:value-of select="length"/> mins</td>

</tr>
<tr>
<th align="left" valign="top">Director:</th>
<td colspan="3"><xsl:value-of select="director"/></td>

</tr>
<tr>
<th align="left" valign="top">Starring:</th>
<td colspan="3">
<xsl:for-each select="starring/star">
<xsl:value-of select="."/><br/>

</xsl:for-each>
</td>

</tr>
<tr>
<th align="left" valign="top">Synopsis:</th>
<td colspan="3"><xsl:value-of select="synopsis"/></td>

</tr>
<tr>
<th align="left" valign="top">Showing at:</th>
<td colspan="3">
<xsl:for-each

select="//screening[@movie-id=current()/@id]">
<a href="#{@movie-id}-{@cinema-id}">
<xsl:value-of select="id(@cinema-id)/name"/>

</a><br/>
</xsl:for-each>

</td>
</tr>

</table>
</xsl:for-each>
<p>Back to <a href="#top">the top</a>.</p>
<hr/>
: Cinemas and screenings removed

<hr/>
<p>Movie Watcher data supplied by
<a href="mailto:kbwood@compuserve.com">Keith Wood</a>.</p>

</body>
</html>

</xsl:template>
</xsl:stylesheet>

412 Part IV: Serving XML



Applying the monolithic stylesheet to a node other than the root results in just the plain text from

that node and its descendants concatenated together, since its one template does not match with

any other element. The result of transforming the entire document is shown in Figure 21-1.

Template-Based HTML Transformation

The template version is very similar to the monolithic version above, but it breaks each major ele-

ment out into its own template. Apply-template calls replace the for-each loops of the earlier

version. This stylesheet can be successfully applied to individual movies, cinemas, and screen-

ings, or to the collections of each of these.

Listing 21-6 shows the template-based transformation for the movie element and its descen-

dants. Note the use of a mode on the list of screenings shown at the end of each movie. This lets the

same nodes be processed in different ways depending on their location.

Listing 21-6: A template-based transformation to HTML

<?xml version="1.0" encoding="UTF-8"?>
<!-- HTML style sheet for movie-watcher XML (template format)

Written by Keith Wood, 4 June 1999 -->
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="html"/>
<!-- Main document template -->
<xsl:template match="/">

Chapter 21: Applying XSL Transformations 413

Figure 21-1: HTML output from the movie-watcher document.



<html>
<head>
<title>Movie Watchers</title>

</head>
<body>
<h1><a name="top">Welcome to Movie Watchers</a></h1>
<p>Your source for local film entertainment.
Have a look at <a href="#movies">what's on</a>,
<a href="#cinemas">where</a> and
<a href="#screenings">when</a>.</p>

<hr/>
<h2><a name="movies">Movies</a></h2>
<xsl:apply-templates select="//movie">
<xsl:sort select="name"/>

</xsl:apply-templates>
<p>Back to <a href="#top">the top</a>.</p>
<hr/>
<h2><a name="cinemas">Cinemas</a></h2>
<xsl:apply-templates select="//cinema">
<xsl:sort select="name"/>

</xsl:apply-templates>
<p>Back to <a href="#top">the top</a>.</p>
<hr/>
<h2><a name="screenings">Screenings</a></h2>
<xsl:apply-templates select="//screening">
<xsl:sort select="id(@movie-id)/name"/>
<xsl:sort select="id(@cinema-id)/name"/>

</xsl:apply-templates>
<p>Back to <a href="#top">the top</a>.</p>
<hr/>
<p>Movie Watcher data supplied by
<a href="mailto:kbwood@compuserve.com">Keith Wood</a>.</p>

</body>
</html>

</xsl:template>
<!-- Details for one movie -->
<xsl:template match="movie">
<!-- Provide link target and optional web link -->
<a name="{@id}">
<xsl:if test="@url">
<xsl:attribute name="href">
<xsl:value-of select="@url"/></xsl:attribute>

</xsl:if>
<xsl:choose>
<xsl:when test="@logo-url">
<img src="{@logo-url}" alt="{name}"/>

</xsl:when>
<xsl:otherwise>
<h3><xsl:value-of select="name"/></h3>

</xsl:otherwise>
</xsl:choose>

</a>
<table border="0" width="100%">
<tr>
<th align="left" valign="top" width="15%">Rating:</th>
<td width="15%"><xsl:value-of select="@rating"/></td>
<th align="left" valign="top" width="15%">Length:</th>
<td><xsl:value-of select="length"/> mins</td>

</tr>
<tr>

414 Part IV: Serving XML



<th align="left" valign="top">Director:</th>
<td colspan="3"><xsl:value-of select="director"/></td>

</tr>
<tr>
<th align="left" valign="top">Starring:</th>
<td colspan="3">
<xsl:apply-templates select="starring/star"/></td>

</tr>
<tr>
<th align="left" valign="top">Synopsis:</th>
<td colspan="3"><xsl:value-of select="synopsis"/></td>

</tr>
<tr>
<th align="left" valign="top">Showing at:</th>
<td colspan="3">
<xsl:apply-templates
select="//screening[@movie-id=current()/@id]"
mode="movie"/>

</td>
</tr>

</table>
</xsl:template>
<!-- List each star -->
<xsl:template match="star">
<xsl:value-of select="."/><br/>

</xsl:template>
: Cinema templates removed
<!-- List a screening from the point of view of a movie -->
<xsl:template match="screening" mode="movie">
<a href="#{@movie-id}-{@cinema-id}">
<xsl:value-of select="id(@cinema-id)/name"/>

</a><br/>
</xsl:template>
<!-- List a screening from the point of view of a cinema -->
<xsl:template match="screening" mode="cinema">
<a href="#{@movie-id}-{@cinema-id}">
<xsl:value-of select="id(@movie-id)/name"/>

</a><br/>
</xsl:template>
<!-- Details for one screening -->
<xsl:template match="screening">
: Main screening template removed

</xsl:template>
</xsl:stylesheet>

Although the appearance of the final output is exactly the same as the monolithic version when

operating on the entire document, differences become apparent when working with other nodes.

This version successfully converts individual movies and cinemas, whereas the previous version

did not. Figure 21-2 shows the result of transforming a single cinema node.

Chapter 21: Applying XSL Transformations 415



Comma-Separated Transformation

The CSV stylesheet (see Listing 21-7) generates a multi-part CSV file, with one section for each

of the movies, cinemas, and screenings. Each section generates a header line before applying a

template for the data values. Individual items appear on their own line with each field surrounded

by quotes ( " ) and separated by commas ( , ). Care must be taken with spacing if proper formatting

of the output is required.

Listing 21-7: Producing a comma-separated value file

<?xml version="1.0" encoding="UTF-8"?>
<!-- Straight text style sheet for movie-watcher XML

Multiple comma-separated value lists
Written by Keith Wood, 30 May 2000 -->

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="text"/>
<!-- Main document template -->
<xsl:template
match="/">"Name","Rating","Length","Director","Stars","Synopsis"

<xsl:apply-templates select="//movie">
<xsl:sort select="name"/>

</xsl:apply-templates>
-----------------------------------------------------------------------
"Name","Phone","Address","Directions","Facilities"
<xsl:apply-templates select="//cinema">
<xsl:sort select="name"/>

416 Part IV: Serving XML

Figure 21-2: Template-based HTML output.TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



</xsl:apply-templates>
-----------------------------------------------------------------------
"Movie","Cinema","Dates","Features","Restrictions","Sessions"
<xsl:apply-templates select="//screening">
<xsl:sort select="id(@movie-id)/name"/>
<xsl:sort select="id(@cinema-id)/name"/>

</xsl:apply-templates>
</xsl:template>
<!-- Details for one movie -->
<xsl:template match="movie">"<xsl:value-of
select="name"/>","<xsl:value-of select="@rating"/>","<xsl:value-of
select="length"/>","<xsl:value-of
select="director"/>","<xsl:apply-templates
select="starring/star"/>","<xsl:value-of
select="translate(synopsis,'&quot;',&quot;'&quot;)"/>"

</xsl:template>
<!-- Details for each star -->
<xsl:template match="star"><xsl:value-of select="."/>
<xsl:if test="position()!=last()">,</xsl:if></xsl:template>

<!-- Details for one cinema -->
<xsl:template match="cinema">"<xsl:value-of
select="name"/>","<xsl:value-of select="phone"/>","<xsl:value-of
select="address"/>","<xsl:value-of select="directions"/>","<xsl:if
test="facilities/candy-bar">Candy bar,</xsl:if><xsl:if
test="facilities/disabled-access">Disabled access</xsl:if>"

</xsl:template>
<!-- Table of pricing schemes -->
<xsl:template match="prices">"<xsl:value-of
select="name"/>","<xsl:value-of select="period"/>","<xsl:value-of
select="adult"/>","<xsl:value-of select="child"/>","<xsl:value-of
select="discount"/>"

</xsl:template>
<!-- Details for one screening -->
<xsl:template match="screening">"<xsl:value-of
select="id(@movie-id)/name"/>","<xsl:value-of
select="id(@cinema-id)/name"/>","<xsl:value-of
select="start-date"/>-<xsl:value-of select="end-date"/>","<xsl:if
test="features/digital-sound">Digital sound: <xsl:value-of
select="features/digital-sound"/></xsl:if>","<xsl:if
test="restrictions/no-passes">No passes</xsl:if>","
<xsl:apply-templates select="sessions/session"/>"

</xsl:template>
<!-- Table of session details -->
<xsl:template match="session"><xsl:value-of select="."/><xsl:if
test="position()!=last()">,</xsl:if></xsl:template>

</xsl:stylesheet>

Note the use of a positional test when compiling a list of sub-items, such as the stars in a movie, to

include commas between entries but not at the end of the list.

<xsl:if test="position()!=last()">,</xsl:if>

To handle embedded quotes within the text fields you can use the translate function, which oper-

ates on its first parameter, replacing characters from the second parameter with characters in the

corresponding positions in the third parameter. With this you can change any double quotes to sin-

gle quotes. Due to the XSLT selection already being quoted, you must escape all the matching

quotes within the translation.

<xsl:value-of select="translate(synopsis,'&quot;',&quot;'&quot;)"/>

Chapter 21: Applying XSL Transformations 417



After applying the transformation, the result is shown in a memo field (see Figure 21-3). Since this

stylesheet is based on templates you can select individual nodes for separate processing.

Rich Text Transformation

Lastly, the rich text template produces a word-processing document equivalent of the HTML ver-

sion (without the hyperlinks). The display looks reasonable within the rich edit control, but

appears much better within Word. Rich text is fairly easy to generate since it is text based and does

not have character counts like PDF requires. Furthermore, it does not use the XML markup char-

acters for its own markup.

To create the rich text template, you can format the final output within Word to appear as you

want. Once this is saved as RTF, you can open it in Notepad, which does not interpret the RTF, to

see the underlying structure. Cut and paste from this into the XSL stylesheet, adding references to

element values as you go. A basic knowledge of RTF certainly helps! You need to be careful about

where you place any carriage returns to preserve the required output. It is messy, but it does work.

Listing 21-8 shows the document header and the repeated section for each movie element and

its descendants. Basically, RTF commands are grouped by braces ( { } ) and delimited by a back-

slash ( \ ). The par or pard commands denote paragraphs. A document starts with the string {\rtf1
to indicate its format.

418 Part IV: Serving XML

Figure 21-3: Converting to comma-separated values.



Listing 21-8: Generating a rich text document

<?xml version="1.0" encoding="UTF-8"?>
<!-- RTF style sheet for movie-watcher XML

Written by Keith Wood, 20 May 2000 -->
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="text"/>
<!-- Match the entire document -->
<xsl:template match="/">{\rtf1\ansi\ansicpg1252\uc1

\deff0\deflang1033\deflangfe1033
{\fonttbl{\f0\froman\fcharset0\fprq2{\*\panose 02020603050405020304}Times New
Roman;}{\f1\fswiss\fcharset0\fprq2{\*\panose 020b0604020202020204}Arial;}}
{\colortbl;\red0\green0\blue0;\red0\green0\blue255;\red0\green255\blue255;\red0\green255\blue0;
\red255\green0\blue255;\red255\green0\blue0;\red255\green255\blue0;\red255\green255\blue255;\red0\green
0\blue128;\red0\green128\blue128;\red0\green128\blue0;\red128\green0\blue128;\red128\green0\blue0;\red1
28\green128\blue0;\red128\green128\blue128;
\red192\green192\blue192;}
{\stylesheet{\sb100\sa100\nowidctlpar\adjustright \snext0 Normal;}{\*\cs10 \additive Default Paragraph
Font;}{\s18\sb100\sa100\keepn\nowidctlpar\outlinelevel1\adjustright \b\fs48\kerning36 \sbasedon0
\snext0 H1;}{\s19\sb100\sa100\keepn\nowidctlpar\outlinelevel2\adjustright \b\fs36
\sbasedon0 \snext0 H2;}{\s20\sb100\sa100\keepn\nowidctlpar\outlinelevel3\adjustright \b\fs28 \sbasedon0
\snext0 H3;}}
{\info{\title Movie Watchers}{\author movie-watcher-rtf.xsl}}
\pard\plain \s18\sb100\sa100\keepn\nowidctlpar\outlinelevel0\adjustright \b\fs48\kerning36
{Welcome to Movie Watchers\par}
\pard\plain \sb100\sa100\nowidctlpar\outlinelevel0\adjustright
{Your source for local film entertainment.\par}
\pard\plain \s19\sb100\sa100\keepn\nowidctlpar\outlinelevel0\adjustright \b\fs36 {Movies\par}
<!-- Display each movie's details -->
<xsl:for-each select="//movie">
<xsl:sort select="name"/>

\pard\plain \s20\sb100\sa100\keepn\nowidctlpar\outlinelevel0\adjustright \b\fs28
{<xsl:value-of select="name"/>\par}
\trowd \clvertalt\cltxlrtb \cellx1520\clvertalc\cltxlrtb \cellx4485\clvertalt\cltxlrtb
\cellx7450\clvertalc\cltxlrtb \cellx9359\pard\plain \qc\sb100\sa100\nowidctlpar\intbl\adjustright {\b
Rating:\cell}
\pard\plain \sb100\sa100\nowidctlpar\intbl\adjustright {<xsl:value-of select="@rating"/>\cell}
\pard \qc\sb100\sa100\nowidctlpar\intbl\adjustright {\b Length:\cell }
\pard\plain \sb100\sa100\nowidctlpar\intbl\adjustright {<xsl:value-of select="length"/> mins\cell}
\pard \nowidctlpar\widctlpar\intbl\adjustright {\row}
\trowd \clvertalt\cltxlrtb \cellx1520\clmgf\clvertalc\cltxlrtb \cellx4485\clmrg\clvertalc\cltxlrtb
\cellx7450 \clmrg\clvertalc\cltxlrtb \cellx9359\pard \qc\sb100\sa100\nowidctlpar\intbl\adjustright {\b
Director:\cell }
\pard \sb100\sa100\nowidctlpar\intbl\adjustright {<xsl:value-of select="director"/>\cell \cell \cell}
\pard \nowidctlpar\widctlpar\intbl\adjustright {\row}\pard
\qc\sb100\sa100\nowidctlpar\intbl\adjustright {\b Starring:\cell}
\pard \sb100\sa100\nowidctlpar\intbl\adjustright {
<xsl:for-each select="starring/star">
<xsl:value-of select="."/><xsl:if test="position()!=last()">,</xsl:if>
</xsl:for-each>
\cell \cell \cell}
\pard \nowidctlpar\widctlpar\intbl\adjustright {\row}
\pard \qc\sb100\sa100\nowidctlpar\intbl\adjustright {\b Synopsis:\cell}
\pard \sb100\sa100\nowidctlpar\intbl\adjustright {<xsl:value-of select="synopsis"/>\cell \cell \cell}
\pard \nowidctlpar\widctlpar\intbl\adjustright {\row}
\trowd \clvertalt\cltxlrtb \cellx1520\clmgf\clvertalc\cltxlrtb \cellx4485\clmrg\clvertalc\cltxlrtb
\cellx7450\clmrg\clvertalc\cltxlrtb \cellx9359
\pard \qc\sb100\sa100\nowidctlpar\intbl\adjustright {\b Showing at:\cell}
\pard \sb100\sa100\nowidctlpar\intbl\adjustright {
<xsl:for-each select="//screening[@movie-id=current()/@id]">

Chapter 21: Applying XSL Transformations 419



<xsl:value-of select="id(@cinema-id)/name"/><xsl:if test="position()!=last()">,</xsl:if>
</xsl:for-each>
\cell \cell \cell}
\pard \nowidctlpar\widctlpar\intbl\adjustright {\row}
</xsl:for-each>
\pard\plain \s19\sb100\sa100\keepn\nowidctlpar\outlinelevel0\adjustright \b\fs36 {Cinemas\par}
: Cinema and screening transformations removed

\pard\plain \sb100\sa100\nowidctlpar\outlinelevel0\adjustright
{Movie Watcher data supplied by Keith Wood (kbwood@compuserve.com)\par}}
</xsl:template>
</xsl:stylesheet>

The resulting output is shown in Figure 21-4 after being loaded into Word (much nicer looking

than the application version).

Summary

XSLT lets you reformat an XML document. The transformation description is itself an XML doc-

ument, letting you edit and process it with the same tools as the original document. A rich query

language and template-based matching lets you easily manipulate sections of the document. Out-

put can be in a variety of formats, from HTML to comma-separated text, rich text, or another XML

type.

Microsoft’s DOM allows you to apply a transformation to an entire document or to a single

node. Load both the original XML document and the XSLT stylesheet into memory as DOMs.

Then use the TransformNode or TransformNodeToObject methods on a node in the former to

apply the transformation.

420 Part IV: Serving XML

Figure 21-4: Writing a rich text document.



The process described in this chapter basically loads the XSLT stylesheet for every transfor-

mation. Often a single stylesheet is applied repeatedly to many different documents of the same

type. For better performance in this case, Microsoft provides the IXSLTemplate and

IXSLProcessor interfaces. The former lets you load a stylesheet into it, which is then compiled

and cached for later use. When the transformation is required, you ask the template to create an

IXSLProcessor. Set the input and outputs for the processor and start the process to generate the

transformation. Because a compiled version of the stylesheet is used, the process is much faster.

See Chapter 26 for a demonstration of these interfaces in the delivery of examinations over the

Web.

Chapter 21: Applying XSL Transformations 421



C h a p t e r 2 2

XML BrokerXML Broker

Starting with Delphi 5, MIDAS clients can receive data packets in XML format from the server,

rather than the OleVariants used previously. Combining the XML data with JavaScript functions

and Delphi’s Web server application support, you can easily build browser-based clients to access

back-end databases. Together this forms the InternetExpress framework in Delphi.

The flow through the application starts with a request from the browser that goes through the

Web server to a Web application based on MIDAS technology. This client program then makes

requests to a server, which actually retrieves the data from the database.

The response is formatted as XML and returned to the Web application. It is then added to an

HTML page as embedded XML. This page also references several standard JavaScript libraries

that manipulate the data on the client, providing navigation through the data and keeping track of

any changes to it. When requested, these changes are sent back to the Web application (again, as

XML) to be applied to the database itself. Figure 22-1 shows this flow.

422

Figure 22-1: A multi-tiered Web-based application using MIDAS.



JavaScript is the key to manipulating the XML on the client side. Several libraries of functions are

available for use with the HTML generated during design and are automatically included as

needed. They appear in the Source\Webmidas directory under your Delphi installation. Table 22-1

lists these libraries and describes their functionality.

Table 22-1: JavaScript libraries

Library Purpose

xmldb.js This library manages the XML data and delta packets used during data access.

xmldisp.js Functions for linking the data access classes above with the HTML controls
representing them appear in this library.

xmldom.js A DOM-compatible XML parser used to process the embedded XML. It is not
required in IE5 as this recognizes XML islands and processes them itself.

xmlerrdisp.js Classes that process reconciliation errors appear in this library.

xmlshow.js This library contains functions to display the XML data and delta packets.

This architecture lets you deploy a thin client on the browser that requires only HTML and

JavaScript support. All database access occurs in the server application, with the Web application

acting as mediator. XML travels between the server and the Web application, then on to the

browser as part of an HTML page. Changes to the data arrive back as XML to be passed on to the

server for updating the database.

The Data Server

First, you need to build the MIDAS server program that extracts the information from the database

and makes it available to other applications that are interested in it.

1. Start a plain new application.

2. Set the caption for your server form and resize it as necessary. If you want to, you may add

additional controls to the form to monitor the server’s workings. For example, you could add

labels to display how many connections exist.

3. Add a Remote Data Module to your program from the Multitier tab on the New Items dialog

(select File | New). Name it MovieData and leave the instancing and threading model

options at their defaults.

4. Drop the following components on the data module: a TSession, two TQuerys, a

TDataSource, and a TDataSetProvider. The first three appear on the Data Access tab on the

component palette, while the last one appears on the Midas tab.

5. Set the component properties as shown in Table 22-2. This links the two queries together—

one showing movie data and the other showing only those stars for the current movie. When

the session’s AutoSessionName property is True, a new session name is generated for each

instance of the data module. This is necessary to avoid conflicts between multiple instances

Chapter 22: XML Broker 423



created by the various clients. Each request gets its own data module running in a separate

thread. The resulting data module should look like the one shown in Figure 22-2.

Table 22-2: Server component properties

Component Property Value

TSession Name sesMovies

AutoSessionName True

TQuery (1) Name qryMovies

DatabaseName Movie-watcher

RequestLive True

SQL SELECT * FROM movie

TDataSource Name dsrMovies

DataSet qryMovies

TQuery (2) Name qryStars

DatabaseName Movie-watcher

DataSource dsrMovies

RequestLive True

SQL SELECT * FROM starsWHERE movie_id = :movie_id

TDataSetProvider Name dspMovies

DataSet qryMovies

6. Add extra functionality to the data module if desired. For example, you could update con-

nection counts on the main server form when the data module is created and destroyed.

Pre-generated code takes care of registering the server and its provider, and of creating

instances of the module.

7. Compile and run the server. The first time it is run, the server registers itself with COM so

that clients may find it. You can then close it down and it restarts automatically when

needed.

424 Part IV: Serving XML

Figure 22-2: The server data module.



The server designed here provides access to data from the movie and stars tables in the database.

Due to the master/detail relationship between these two query components, the corresponding

data from the stars table is encapsulated in a nested table that is returned with each movie record.

InternetExpress

In Delphi 5, InternetExpress is basically the collection of components that appear on the compo-

nent palette tab of the same name. The two standard components are TXMLBroker and

TMidasPageProducer.

TXMLBroker serves as the client-side interface to the server program. It sends and receives data

and updates as XML documents. Placed on a Web module, the broker automatically registers itself

to receive notification of any incoming HTTP requests. If these contain XML-encoded updates,

the broker deals with them directly.

TMidasPageProducer derives from TPageProducer (through several intermediates) and pro-

vides a means of generating a document built around XML for sending back to a client browser.

Internally, this component manages a number of sub-components that interact with the

XMLBroker to generate HTML for the data coming from the server.

Double-click on the page producer to invoke its Web page editor (or right-click and select Web

Page Editor). Here you can add and customize components that encapsulate forms for data entry,

grids for rows of data, and navigators for moving through and updating the data. Behind the

scenes, the page producer also generates supporting HTML to include JavaScript libraries and

embedded XML to contain the actual information from the server.

Before creating the Web server application there are a few InternetExpress add-ons available

that enhance its abilities. In the Demos\Midas\InternetExpress\InetXCustom directory under

your Delphi 5 installation directory, you can find several sample InternetExpress components,

including TReconcilePageProducer, TShowXMLButton, and TShowDeltaButton. To add these, do

the following:

1. Open the inetxcustom.dpk package project in that location and compile it. This run-time

package contains the actual component code.

2. Open the dclinetxcustom.dpk package project, compile, and install it. This design-time

package registers the new components with the IDE. TReconcilePageProducer appears on

the InternetExpress tab on the palette, whereas the remainder are available within the page

producer editor.

TReconcilePageProducer provides a reconciliation page for handling errors that may occur when

a set of changes is applied to the database. It has a pre-generated HTML document embedded in it

that displays the record(s) that caused the problem and lets you select what action to take to correct

it. Link it into the generation process through the ReconcileProducer property on the TXMLBroker
object.

The two buttons appear as possible children of a data navigator component within a

TMidasPageProducer. TShowXMLButton displays the XML data packet sent with the HTML page,

while TShowDeltaButton shows the XML delta packet (the set of changes to the information) that

Chapter 22: XML Broker 425



gets returned to the Web application. Although you probably do not want these to appear on a fin-

ished page, they are very valuable during development to see what is being sent back and forth.

Other components in the package include TImgDataNavigator, a navigator that uses graphic

buttons instead of real ones, TQueryHiddenField and TQueryPasswordField, for hidden and pass-

word form fields, TFieldLink and TLinkColumn, for creating URL links, and TSortTextColumn,

which lets you sort on a column’s values in an HTML table.

The CGI Web Application

Now you can develop the Web server application that acts as the go-between for the browser and

the server. It accesses the server using DCOM, passing XML back and forth, while providing

HTML, JavaScript, and embedded XML to the browser.

1. Start a new application by selecting the Web Server Application icon in the New Items dia-

log (select File | New).

2. Select CGI from the next dialog and press OK to create the basic application, including its

Web module. You could choose any of the Web application types, depending on your Web

server’s abilities and your performance requirements. CGI is picked here, but later you see

how this can easily be altered to an ISAPI extension.

3. Add the following components to the Web module: a TDCOMConnection, a TXMLBroker, a

TMidasPageProducer, and a TReconcilePageProducer. The first component appears on the

Midas tab in the palette, while the remainder come from the InternetExpress tab.

4. Set the component’s properties as shown in Table 22-3. These attach the connection with the

server created earlier (it should start up automatically if not already running), then tie the

XML broker to the server’s provider through that connection. The broker is also linked to

the reconciliation page for error handling purposes. Both of the page producers need to set

the location of the JavaScript libraries that support their functionality. Enter the name of the

directory on the Web server where they are held. Figure 22-3 shows the Web module during

design, including the page producer components added below.

Table 22-3: Web application component properties

Component Property Value

TDCOMConnection Name conMovies

ServerName MovieServer.MovieData

Connected True

TXMLBroker Name xbrMovies

RemoteServer conMovies

ProviderName dspMovies

ReconcileProducer rppMovies

426 Part IV: Serving XML

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



Component Property Value

TMidasPageProducer Name mppMovies

IncludePathURL /webmidas/

TReconcilePageProducer Name rppMovies

IncludePathURL /webmidas/

5. Double-click on the TMidasPageProducer component to open up its Web Page Editor (or

right-click on it and select from the menu).

6. Add a DataForm to the page by pressing the New Item button or by right-clicking on the

mppMovies node at the top-right and selecting New Component. To the data form add a

FieldGroup (using the same technique as above) and set its XMLBroker property to

xbrMovies. This automatically populates the Web page with the fields from the movies

query returned from the server.

7. Customize the movie fields by right-clicking on the FieldGroup and selecting Add All

Fields from the menu. This creates persistent field objects (similar to persistent fields for

DataSets) that correspond to the fields already showing on the Web page. Alter their proper-

ties as necessary, such as adjusting their Captions to remove underscores. All fields default

to FieldText types. You can replace the Rating field with a FieldSelectOptions object, set

its FieldName, and enter its possible values in the Items property. The Synopsis field can be

exchanged for a FieldTextArea object, setting its FieldName, DisplayRows, and

DisplayWidth properties.

Chapter 22: XML Broker 427

Figure 22-3: The Web module.



8. Append a data navigator to the form by selecting the DataForm node and adding a

DataNavigator object as described above. If you installed the InternetExpress add-ons, you

could select an ImgDataNavigator instead. Set the navigator’s XMLComponent property to the

FieldGroup. A default set of buttons appears beneath the fields already created.

9. Customize the buttons by adding components to the navigator. Select all the buttons down to

ApplyUpdatesButton, except for PriorPageButton and NextPageButton. Add the

ShowXMLButton and ShowDeltaButton (part of the InternetExpress add-ons).

10. Add a DataGrid component to the DataForm, setting its XMLBroker property to xbrMovies.

Initially, this shows the movie fields in the grid. To display the list of stars for a particular

movie, you set the grid’s XMLDataSetField property to qryStars. Customize the data grid

fields by selecting Add All Fields from the pop-up menu on the grid and then updating the

fields’ properties.

11. Attach a second data navigator to the DataForm and set its XMLComponent property to the

DataGrid. Customize its buttons by adding fields for them. This time you do not need the

ApplyUpdatesButton nor the Show buttons. Figure 22-4 shows part of the generated Web

page in the editor.

12. Put the finishing touches on the HTML page through the HTMLDoc property of the

TMidasPageProducer. You can add a page title and a heading and footer. Be careful not to

disturb the substitution tags (those starting with #) created by the Web page designer.

428 Part IV: Serving XML

Figure 22-4: Designing the HTML page.



13. Customize the HTMLDoc property of the TReconcilePageProducer for this application, per-

haps adding a title. Again, be careful not to alter the existing document in its treatment of the

reconciliation errors.

14. Right-click on the Web module and select Action Editor from the pop-up menu. Add a new

action, make it the default, and set its Producer property to mppMovies.

15. Save and compile the Web application.

16. Deploy the executable to your CGI program directory on the Web server (usually \inetpub\
scripts under PWS and IIS). Also set up the directory that holds the JavaScript libraries

used by the resulting HTML pages (/webmidas in this example, which corresponds to

\inetpub\wwwroot\webmidas under PWS and IIS) and copy the JavaScript files there. The

original libraries are found in the Source\Webmidas directory under your Delphi 5

installation.

Now you can access the applica-

tion through your JavaScript-

enabled browser and view the

information from the database.

Use the navigation buttons to

step through the records. Make

changes to the fields as desired

and send the new values back to

the server with the Apply

Updates button. Figure 22-5

shows the application running in

the browser. Its URL may look

like the following if you are run-

ning a local Web server:

http://localhost/scripts/
movieweb.exe.

Chapter 22: XML Broker 429

Figure 22-5: The completed application.



Using ISAPI

Providing access through an ISAPI server extension, rather than a CGI application, is extremely

easy with Delphi’s Web server application support. You can reuse the Web module developed for

the CGI version.

1. Start a new application and select Web Server Application from the New Items dialog.

2. Select ISAPI/NSAPI from the following dialog and press OK to generate the project file

and Web module unit.

3. Delete the new Web module unit entirely and replace all references to it in the project file

with corresponding ones for the existing Web module.

4. Compile and deploy the ISAPI DLL to the scripts directory on the Web server. It is that

simple!

Listing 22-1 shows the project file for the ISAPI version of the movie-watcher application. Its

functionality is exactly the same as the CGI version, demonstrating the power of the Delphi Web

application framework and encapsulation.

Listing 22-1: An ISAPI version of the Web application

library MovieWebI;
uses
WebBroker,
ISAPIApp,
MovieWeb1 in 'MovieWeb1.pas' {wmdMovies: TWebModule};

{$R *.RES}
exports
GetExtensionVersion,
HttpExtensionProc,
TerminateExtension;

begin
Application.Initialize;
Application.CreateForm(TwmdMovies, wmdMovies);
Application.Run;

end.

XML Usage

As stated earlier, XML documents are passed back and forth between the browser, Web applica-

tion, and server to control the workings of the program. The Show XML button on the HTML

page displays in a separate window the XML embedded in the page (see Listing 22-2).

Listing 22-2: The XML data packet sent to the browser

<DATAPACKET Version="2.0" >
<METADATA>
<FIELDS>
<FIELD attrname="Movie_id" fieldtype="i4" required="true" />
<FIELD attrname="Name" fieldtype="string" required="true"
WIDTH="30" />

430 Part IV: Serving XML



<FIELD attrname="Rating" fieldtype="string" required="true"
WIDTH="5" />

<FIELD attrname="Length" fieldtype="i4" />
<FIELD attrname="Director" fieldtype="string" WIDTH="30" />
<FIELD attrname="Synopsis" fieldtype="bin.hex" WIDTH="5"
SUBTYPE="Text" />

<FIELD attrname="URL" fieldtype="string" WIDTH="70" />
<FIELD attrname="Logo_URL" fieldtype="string" WIDTH="70" />
<FIELD attrname="qryStars" fieldtype="nested" >
<FIELDS>
<FIELD attrname="Star_id" fieldtype="i4" />
<FIELD attrname="Movie_id" fieldtype="i4" />
<FIELD attrname="Star" fieldtype="string" WIDTH="30" />

</FIELDS>
<PARAMS LCID="1033" />

</FIELD>
</FIELDS>
<PARAMS MD_FIELDLINKS="9 1 2" LCID="1033" />

</METADATA>
<ROWDATA>
<ROW Movie_id="1" Name="Entrapment" Rating="PG-13" Length="112"
Director="Jon Amiel" Synopsis="Following the theft of a
highly-secured piece of artwork, an agent convinces her
insurance agency employers to allow her to wriggle into the
company of an aging but active master thief. Connery&apos;s
burglar takes her on suspiciously and demands rigorous training
before their first job together--stealing a highly-valued mask
from a shi-shi party. Their deepening attraction and distrust
could tear apart their partnership but the promise of a bigger
prize (some eight billion odd dollars) by Zeta-Jones keeps the
game interesting. Only, who&apos;s playing with whom?" >
<qryStars>
<ROWqryStars Star_id="1" Movie_id="1" Star="Sean Connery" />
<ROWqryStars Star_id="2" Movie_id="1" Star="Catherine
Zeta-Jones" />

</qryStars>
</ROW>
<ROW Movie_id="2" Name="Star Wars—The Phantom Menace" Rating="PG"
Length="131" Director="George Lucas" Synopsis="When the evil
Trade Federation plots to take over the peaceful planet of Naboo,
Jedi warrior Qui-Gon Jinn and his apprentice Obi-Wan Kenobi
embark on an amazing adventure to save the planet. With them on
their journey is the young queen Amidala, Gungan outcast JarJar
Binks, and the powerful Captain Panaka, who will all travel to
the faraway planets of Tatooine and Coruscant in a futile attempt
to save their world from Darth Sidious, leader of the Trade
Federation, and Darth Maul, the strongest Dark Lord of the Sith
to ever wield a lightsaber. "
URL="http://www.starwars.com/episode-i/" Logo_URL=
"http://www.starwars.com/episode-i/palpatine/img/top_logo.gif" >
<qryStars>
<ROWqryStars Star_id="3" Movie_id="2" Star="Liam Neeson" />
<ROWqryStars Star_id="4" Movie_id="2" Star="Ewan McGregor" />
<ROWqryStars Star_id="5" Movie_id="2" Star="Jake Lloyd" />
<ROWqryStars Star_id="6" Movie_id="2" Star="Natalie Portman" />

</qryStars>
</ROW>
:

Chapter 22: XML Broker 431



Other ROW elements removed
:

</ROWDATA>
</DATAPACKET>

You can see that it starts with a description of the fields present in the rest of the document in the

FIELDS element within the METADATA element. Each field has its name and type specified (includ-

ing length where appropriate), along with whether or not it is required to be entered. The stars data

for each movie appears as a nested set of fields representing the master/detail relationship between

the tables. The final PARAMS element holds details about how to link movies and stars—field 9

(qryStars) is linked via its parent’s field 1 (Movie_id) and its own field 2 (Movie_id).

Following these definitions are the data themselves. Each record appears in a ROW element with

its fields showing up as attributes. The nested star details occur within the qryStars element as

ROWqryStars elements with their information stored as attributes.

As changes are made to the data, they are stored internally through JavaScript functions in a

collection known as the delta. The Status fields on the Web page indicate how records have

changed: I for inserted, M for modified. Deleted records disappear entirely. The Show Delta button

on the page displays these changes, again in a separate window. Listing 22-3 shows the delta after

adding a URL, a Logo URL, and a new star to one of the movies.

Listing 22-3: An XML document for updates

<DATAPACKET Version="2.0" >
<METADATA>
<FIELDS>
<FIELD attrname="Movie_id" fieldtype="i4" required="true" />
<FIELD attrname="Name" fieldtype="string" required="true"
WIDTH="30" />

<FIELD attrname="Rating" fieldtype="string" required="true"
WIDTH="5" />

<FIELD attrname="Length" fieldtype="i4" />
<FIELD attrname="Director" fieldtype="string" WIDTH="30" />
<FIELD attrname="Synopsis" fieldtype="bin.hex" WIDTH="5"
SUBTYPE="Text" />

<FIELD attrname="URL" fieldtype="string" WIDTH="70" />
<FIELD attrname="Logo_URL" fieldtype="string" WIDTH="70" />
<FIELD attrname="qryStars" fieldtype="nested" >
<FIELDS>
<FIELD attrname="Star_id" fieldtype="i4" />
<FIELD attrname="Movie_id" fieldtype="i4" />
<FIELD attrname="Star" fieldtype="string" WIDTH="30" />

</FIELDS>
<PARAMS LCID="1033" />

</FIELD>
</FIELDS>
<PARAMS MD_FIELDLINKS="9 1 2" LCID="1033" DATASET_DELTA="1" />

</METADATA>
<ROWDATA>
<ROW Movie_id="1" Name="Entrapment" Rating="PG-13" Length="112"
Director="Jon Amiel" Synopsis="Following the theft of a
highly-secured piece of artwork, an agent convinces her
insurance agency employers to allow her to wriggle into the
company of an aging but active master thief. Connery&apos;s
burglar takes her on suspiciously and demands rigorous training
before their first job together—stealing a highly-valued mask

432 Part IV: Serving XML



from a shi-shi party. Their deepening attraction and distrust
could tear apart their partnership but the promise of a bigger
prize (some eight billion odd dollars) by Zeta-Jones keeps the
game interesting. Only, who&apos;s playing with whom?"
RowState="1" >
<qryStars/>

</ROW>
<ROW RowState="8" URL="http://us.imdb.com/Title?0137494"
Logo_URL="http://posters.imdb.com/Covers/13/74/94.jpg" >
<qryStars/>

</ROW>
<ROW Movie_id="1" Name="Entrapment" Rating="PG-13" Length="112"
Director="Jon Amiel" Synopsis="Following the theft of a
highly-secured piece of artwork, an agent convinces her
insurance agency employers to allow her to wriggle into the
company of an aging but active master thief. Connery&apos;s
burglar takes her on suspiciously and demands rigorous training
before their first job together--stealing a highly-valued mask
from a shi-shi party. Their deepening attraction and distrust
could tear apart their partnership but the promise of a bigger
prize (some eight billion odd dollars) by Zeta-Jones keeps the
game interesting. Only, who&apos;s playing with whom?"
RowState="64" URL="http://us.imdb.com/Title?0137494"
Logo_URL="http://posters.imdb.com/Covers/13/74/94.jpg" >
<qryStars>
<ROWqryStars RowState="4" Star_id="16" Movie_id="1"
Star="Ving Rhames" />

</qryStars>
</ROW>

</ROWDATA>
</DATAPACKET>

The delta still starts with the metadata definition of the contents. However, an additional attribute

of the final PARAMS element identifies it as the delta:

DATASET_DELTA="1"

Instead of a complete list of the records, the delta only contains details about those records that

have changed. Before and after snapshots of the data appear since the original values may be

needed when locating the old record for an update (its UpdateMode is set to upWhereAll). The

RowState attribute on each element indicates what it contains. The meaning of its values is shown

in Table 22-4.

Table 22-4: RowState values

RowState Meaning

1 Original record

2 Deleted record

4 Inserted record

8 Updated record

64 Detail updates

If an error occurs during the updating of the database, it is propagated back to the XML broker,

which then invokes its ReconcileProducer component to deal with the problem. Figure 22-6

shows the page returned when a star is added to a movie that does not exist.

Chapter 22: XML Broker 433



Summary

Delphi 5 makes use of XML to deliver database functionality to a thin client in a Web browser.

XML data packets arrive from a back-end server into a Web application. The Web application then

embeds the XML in an HTML page and adds JavaScript to support navigation and updating of the

data. When changes are submitted back to the server, another XML document is sent with the

updates, via the Web application.

The InternetExpress components let you easily design HTML pages that interact with the data

from the XML. You can build lists of fields and grids of data, and add navigation buttons to them.

Further components from the demonstration projects supplied with Delphi add a page producer

that deals with reconciliation errors, buttons for displaying the XML data or delta packets, and

assorted additional fields for use elsewhere in your page.

434 Part IV: Serving XML

Figure 22-6: Reconciling an error



P a r t V

Sample

Applications
This section explores the development of some applications that make use of XML.

Chapter 23 presents a program that performs mass electronic mail-outs by merging

database information with a message template and sending these out using SMTP. XML

is used to specify the configuration file as well as the message template, which allows for

the embedding of values from database fields within the text. The template also includes

the actual SQL query used to obtain the information in the first place. For processing the

XML, Microsoft’s XML parser is used.

Chapter 24 demonstrates how to process XML documents into a customized client

written in Delphi. The movie-watcher documents are used as the example, and are shown

in a custom GUI with appropriate navigation links between the sections. A native Delphi

SAX1-compliant parser is used to process the XML, demonstrating an implementation of

the ISAXDocumentHandler interface. As a bonus you see how to set up your browser to

automatically open the movie-watcher documents in the new client when they are

downloaded.

Chapter 25 contains another customized client in Delphi. This time it is for an exami-

nation style of XML document. Questions, possible answers, solutions, and explanations

are included in the XML, allowing the client to load and administer the exam. Microsoft’s

XML package supplies the parsing abilities.

Chapter 26 highlights one of the main principles of XML, the separation of content

from presentation, by producing an HTML front-end for the examination documents

used in Chapter 25. The generation of these pages is handled by Delphi (of course)

through a Web server application. It uses XSLT to generate the required pages and

requires the holding of state information on the server. Microsoft again supplies the

underlying processing power with its XSLT engine.

Chapter 27 describes an implementation of the Simple Object Access Protocol

(SOAP). This protocol specifies how XML can be used to invoke methods on remote

objects. In this case, the objects reside in a Web server application and are accessed

through HTTP. Open XML’s DOM provides the decoding functionality on the server. A

specialized Delphi client talks to the SOAP server and interprets the responses.

435



Chapter 23: Mass Electronic Mail-Outs

Chapter 24: A Customized Client

Chapter 25: Examination XML—Delphi Client

Chapter 26: Examination XML—Web Client

Chapter 27: Simple Object Access Protocol

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



C h a p t e r 2 3

Mass ElectronicMass Electronic

Mail-Outs

The purpose of the mass-mailer program described in this chapter is to perform mass electronic

mail-outs based on a document template. Fields within the template are merged with recipient data

(extracted from a datasource) to customize the mailings. An additional objective is to make the

application as modular as possible, allowing you to easily maintain different parts independently.

To protect the program against future technology changes, it relies on several standards, each

of which is encapsulated in a class:

� XML is used for the configuration properties, as well as for the template containing the mes-

sage to be sent out. The text-based format of XML allows these files to be easily maintained

through normal text editors, as well as specialized XML editors. Changes to the message tem-

plate can be made without affecting the rest of the program, nor requiring a recompile.

� SQL is used to retrieve data from a datasource. Information from here determines where the

e-mails are sent and the field values that can be included in the message. Access to the

datasource uses a BDE alias. Together, this means that your data can reside in almost any for-

mat, since Delphi provides access to several databases natively and many others through

ODBC and OLE DB. Using SQL gives you a common method for retrieving the data, freeing

you from worrying about how it is actually held. If the data needs to be moved (to a different

server and/or to a more powerful database), then all you need to do is update the BDE alias

and the program still runs as before.

� The Simple Mail Transfer Protocol (SMTP) is used to communicate with the e-mail server for

the dispatch of the messages.

437



The program works as follows:

1. You read in an XML configuration document that contains the various settings to use in the

current run. This file details the SMTP attributes, the database connection, and the name of

the file containing the message template to be used.

2. The actual query and the message template are read in from another XML document (as

identified in the configuration parameters above).

3. You retrieve your list of recipients from the database, which you access using the BDE alias

from the configuration file and the SQL query from the template.

4. For each record retrieved, merge the requested fields from the database into the message

template.

5. The merged messages are sent out using SMTP, allowing you to talk to any number of mail

servers. For testing purposes the messages are redirected to a log file where they can be

reviewed.

Loading the Configuration Properties

The loading of the program properties is accomplished in a generic manner, retrieving them from

an XML document. The hierarchy within the XML file determines the names of the properties,

compiled from the full element path to the value (separated by periods ( . ) and ignoring the

top-level element), with the property value coming from the actual text content. For example, the

XML configuration file in Listing 23-1 results in the accumulation of these properties and values:

438 Part V: Sample Applications

Figure 23-1: Data flow through the program.



smtp.host=mail.thingies.com
smtp.user=keith
smtp.from=kbwood@thingies.com
database.alias=mailtemp
settings.pauseTime=2000
settings.template=MailMessage.xml
settings.testing=Y

Listing 23-1: Sample XML configuration file

<?xml version="1.0"?>
<mailTemplate>
<smtp>
<host>mail.thingies.com</host>
<port/>
<user>keith</user>
<from>kbwood@thingies.com</from>

</smtp>
<database>
<alias>mailtemp</alias>
<user/>
<password/>

</database>
<settings>
<pauseTime>2000</pauseTime>
<template>MailMessage.xml</template>
<testing>Y</testing>

</settings>
</mailTemplate>

This layout takes advantage of the structure inherent in XML to group related property values. It

also builds on the ability of XML documents to be processed when they are merely well-formed,

without requiring conformance to a DTD. In this way, the technique is general enough that it could

be reused elsewhere.

NOTE Recall that a well-formed document simply follows the conventions of XML—only
one top-level element, all elements have matching end tags in order, etc. If the document
claims to follow a DTD and, in fact, does, then it is deemed to be valid. The DTD prescribes
which elements and attributes may appear where within the document. In many cases,
well-formed documents are sufficient for useful work.

To aid in its reuse, the functionality of the property loading is placed into its own unit, XMLConfig.

Property names and values are placed into a string list using its Values property, providing a sim-

ple way to retrieve them by name later on. The LoadPropertiesFromXML procedure (see Listing

23-2) takes the name of the file to load and a reference to a string list and fills the latter with the

properties found. Just add this unit to another project to reuse its abilities.

Listing 23-2: Configuration properties from XML

{ Open the configuration file and then load the properties }
procedure LoadPropertiesFromXML(Filename: string; Props: TStrings);
var
XMLDoc: IXMLDOMDocument;
Index: Integer;
{ Recursively read XML document until text leaves are reached.
Property name is the accumulated tags to this point

Chapter 23: Mass Electronic Mail-Outs 439



(separated by periods).
Property value is the actual text.
Add these into a string list using its Values property. }

procedure LoadSubProperties(Element: IXMLDOMNode;
PropPrefix: string);

var
Index: Integer;

begin
with Element do
if (NodeType = NODE_TEXT) or (NodeType = NODE_CDATA_SECTION) then
Props.Values[Copy(PropPrefix, 2, Length(PropPrefix) –1)] :=
NodeValue

else
for Index := 0 to ChildNodes.Length –1 do
LoadSubProperties(ChildNodes[Index],
PropPrefix + '.' + NodeName);

end;
begin
XMLDoc := CoDOMDocument.Create;
Props.Clear;
try
XMLDoc.Load(Filename);
{ Read through each second level element and process them }
with XMLDoc.DocumentElement do
for Index := 0 to ChildNodes.Length –1 do
LoadSubProperties(ChildNodes[Index], '');

finally
XMLDoc := nil;

end;
end;

The routine itself creates an instance of the Microsoft XML parser, IXMLDOMDocument, and asks it

to parse the specified document. It then steps through all the child nodes of the main document ele-

ment and calls the internal procedure, LoadSubProperties, on each. This latter routine tests for

text-type nodes and creates an entry in the properties list when one is found. The name for the

property is built up from the names of the elements leading to the text node, which is achieved

through recursive calls to this same routine for embedded child nodes.

TIP Freeing up the DOM in the finally clause is not strictly necessary. Delphi automatically
decrements the reference count for an interface when its variable goes out of scope.

Mail Message Template

Once the configuration properties have been loaded, you can extract the name of the message tem-

plate file and load that, too. This file is another XML document that holds the text of the message

to be sent, along with the query used to retrieve the recipients and their details. A sample template

is shown in Listing 23-3.

Listing 23-3: XML mail-out template

<?xml version="1.0"?>
<template>
<query emailfield="EmailAddress">select * from customer</query>
<subject>Come visit your new Web site</subject>

440 Part V: Sample Applications



<message>Dear <field>FirstName</field>,
Our new Web site is up and running at http://www.thingies.com.
As <field>Position</field> of <field>Company</field> we think you
would find something of interest here.
Yours sincerely,
Keith Wood
</message>

</template>

First, the SQL query is specified. The only database field that needs to be specifically identified

for the application’s use is the recipient’s e-mail address, which is done through the emailfield
attribute of the query element. Otherwise, the query can be as complex or as simple as necessary

and can retrieve whatever fields it requires for use in the message itself. Recipients can easily be

filtered out of the database as a whole for targeted mailings—just include an appropriate where
clause in the query.

The subject of the e-mail appears in the subject element, with the body of the message being

specified in the message element. Within the latter you can insert values from fields in the database

by positioning field elements, containing the name of the field to display, at the appropriate

points in the text. Any formatting of the field values can be done within the SQL query, so no addi-

tional processing should be necessary here.

Using XML means that the templates can be maintained by anyone with a text or XML editor.

A minimal knowledge of SQL is required. To hide a complex query, a view could be constructed

presenting the necessary values in a simple-to-use format. Having the database query in the docu-

ment along with the message text ensures that the two remain synchronized. As a security

measure, the logon details for the database are not included in the XML message template.

The XML document is loaded and accessed through the TMailTemplateMessage class, which

resides in its own unit, MailTemplateMessage. In its constructor the class creates an instance of the

Microsoft XML parser, and requests this to load the specified XML file. Thereafter, you have

access to the complete contents of the document. Setting the PreserveWhiteSpace property to

True ensures that your message appears in the e-mail the same way it does in the template. If this

property was left at False, white space next to the field elements is lost.

{ Initialization }
constructor TMailTemplateMessage.Create(Filename: string);
begin
inherited Create;
FXMLDoc := CoDOMDocument.Create;
FXMLDoc.PreserveWhiteSpace := True;
FXMLDoc.Load(Filename);

end;

Two methods provide easy access to the elements and attributes within the document (see Listing

23-4). NodeValue returns the text contained within the specified element, or an empty string if the

element cannot be found. The routine assumes that there is only one of each type of element in the

document, and that it contains only a single text node. AttributeValue returns the value of the

named attribute of a given element. Again, a single occurrence of the element is assumed, and an

empty string is returned if the attribute or node does not exist.

Chapter 23: Mass Electronic Mail-Outs 441



Listing 23-4: Retrieving element and attribute values

{ Return the value of the named attribute -
assumes only one such node }

function TMailTemplateMessage.AttributeValue(
NodeName, AttrName: string): string;

var
Elements: IXMLDOMNodeList;

begin
Elements := FXMLDoc.GetElementsByTagName(NodeName);
if Elements.Length = 0 then
Result := ''

else
Result :=
Elements.Item[0].Attributes.GetNamedItem(AttrName).Text;

end;
{ Return the value of the named node -
assumes only one such node and no children }

function TMailTemplateMessage.NodeValue(NodeName: string):
string;

var
Elements: IXMLDOMNodeList;

begin
Elements := FXMLDoc.GetElementsByTagName(NodeName);
if Elements.Length = 0 then
Result := ''

else
Result := Elements.Item[0].Text;

end;

In both routines you use the GetElementsByTagName method of the document to locate and return

the required node. Actually, this routine returns a list of nodes, but you only expect a single result.

This saves you the process of searching through all the nodes yourself. From the list, it is easy to

retrieve the node of interest and then its value or attribute.

The main activity involving the XML document is the processing of the message template and

the substitution of field values in marked positions. The ParseMessage method provides this func-

tionality (see Listing 23-5), accepting a string list that contains the field mappings for the current

record. The mappings are established and accessed using the Values property of a string list,

which associates a text value with an identifying key.

Listing 23-5: Performing the mail merge

{ Parse the message tag and return its value }
function TMailTemplateMessage.ParseMessage(Fields: TStrings):
string;

var
Elements: IXMLDOMNodeList;
FieldValue: string;
Index: Integer;

begin
Elements := FXMLDoc.GetElementsByTagName(MessageTag);
if Elements.Length = 0 then
raise EMailException.Create(NoMessage)

Result := '';
with Elements[0] do
for Index := 0 to ChildNodes.Length –1 do
{ Add text elements directly }
if (ChildNodes[Index].NodeType = NODE_TEXT) or

442 Part V: Sample Applications



(ChildNodes[Index].NodeType = NODE_CDATA_SECTION)
then

Result := Result + ChildNodes[Index].Text
{ For 'field' elements get the field value }
else if (ChildNodes[Index].NodeType = NODE_ELEMENT) and

(ChildNodes[Index].NodeName = FieldTag) then
begin
FieldValue := Fields.Values[ChildNodes[Index].Text];
if FieldValue = '' then
{ Error if no such field }
raise EMailException.Create(
Format(MissingField, [ChildNodes[Index].Text]));

if FieldValue = Empty then
{ Replace empty field notation with empty string }
FieldValue := '';

Result := Result + FieldValue;
end;

end;

You locate the message element in the document (again using the GetElementsByTagName
method) and then step through each of its child elements, constructing the message text as you go.

The children should only consist of text nodes, which are appended directly to the message, or

field elements, for which you extract the field name and then append the value of that field from

the mapping. Note that the Textmethod of a node returns all the text contained within that node (at

any level), so you do not have to traverse down to the actual text node and retrieve its value. An

exception occurs if the field does not exist in the record (denoted by an empty string being

returned from the mapping).

TIP One special case exists when the field has an empty string value. If you were to try to
place this directly in the field list, it would not save the entry (the list automatically returns an
empty string for any key that does not have a value set). To let you recognize the difference
between a field that does not exist at all, as opposed to one that has an empty value, you must
substitute a flagging value for the missing one. This flag, the constant Empty, is checked for
when the value is retrieved and is then reset to its empty value.

Database Access

In keeping with the modular approach, all the database access is contained within one unit,

MailTemplateQuery, and managed through the TMailTemplateQuery class. An instance of the

class is created and initialized by passing to it the configuration properties and the query to be exe-

cuted (from the message template XML document).

From the configuration details it extracts the BDE alias and logon parameters. It then creates

internal instances of a TDatabase and a TQuery, which are initialized from the passed-in values,

before opening the query (see the code in Listing 23-6).

Listing 23-6: Initializing the query and extracting its field values

{ Initialization—connect to database and open query }
constructor TMailTemplateQuery.Create(Props: TStrings;
QuerySQL: string);

begin

Chapter 23: Mass Electronic Mail-Outs 443



inherited Create;
FFields := TStringList.Create;
FDatabase := TDatabase.Create(nil);
with FDatabase do
begin
AliasName := Props.Values[QueryAliasProp];
DatabaseName := 'MailOut';
LoginPrompt := False;
if Props.Values[QueryUserProp] <> '' then
Params.Add('username=' + Props.Values[QueryUserProp]);

if Props.Values[QueryPasswordProp] <> '' then
Params.Add('password=' + Props.Values[QueryPasswordProp]);

Connected := True;
end;
FQuery := TQuery.Create(nil);
with FQuery do
begin
DatabaseName := FDatabase.DatabaseName;
SQL.Text := QuerySQL;
AfterScroll := QueryAfterScroll;
Active := True;

end;
end;
{ Set up the list of fields and values }
procedure TMailTemplateQuery.QueryAfterScroll(DataSet: TDataSet);
var
Index: Integer;

begin
with FQuery do
for Index := 0 to FieldCount –1 do
if Fields[Index].DisplayText = '' then
{ If string value is empty then entry doesn't appear
in the list, so replace it }

FFields.Values[Fields[Index].FieldName] := Empty
else
FFields.Values[Fields[Index].FieldName] :=
Fields[Index].DisplayText;

end;

Thereafter, the program interacts with the resulting data through the following attributes: the

NextRecord method to step through each record in turn, the EOF property to determine when it has

reached the end, and the Fields property to access the values from the current record. The field

values are held in an associative format in a string list for use by the message substitution routine.

This is achieved through the Values property of the string list.

To place the field values into the list, you attach an event handler to the AfterScroll event of

the query (see the code in Listing 23-6). This is called whenever the current record changes, which

is ideal for your purposes. You can cycle through each field returned by the query and place its

name and value into the list. As mentioned earlier, special processing is required for fields with

empty string values.

444 Part V: Sample Applications



Drop It in the Post

Once you have constructed the mail message and merged in the fields from the database, you are

ready to send it off. Again, make use of open standards by using an SMTP server to post the mail.

Wrap a TNMSMTP component in another object to provide a simple interface for the rest of the

program (a Façade design pattern). One advantage of doing this is that you could come back later

and replace the underlying mail implementation without affecting the rest of the program. All you

must do is retain the existing interface.

NOTE As mentioned before, feel free to replace the TNMSMTP component with your favorite
e-mail component. In Delphi 3, you can use the TSMTP component since the TNMSMTP one is not
available.

The mailing object, TMailTemplateSender (from the MailTemplateSender unit), is passed the list

of configuration properties upon its creation (see Listing 23-7). From this it extracts the ones it

requires (the name and port of the SMTP host, and the user account to use) and initializes the

SMTP component with them.

Listing 23-7: Interfacing with the SMTP component

{ Initialization }
constructor TMailTemplateSender.Create(Props: TStrings);
begin
inherited Create;
FSender := TNMSMTP.Create(nil);
with FSender do
begin
Host := Props.Values[MailHostProp];
try
Port := StrToInt(Props.Values[MailPortProp]);

except { Ignore }
end;
UserId := Props.Values[MailUserProp];
Connect;

end;
end;
{ Send an e-mail }
procedure TMailTemplateSender.Send(
FromEmail, ToEmail, Subject, Message: string);

begin
with FSender.PostMessage do
begin
FromAddress := FromEmail;
ToAddress.Text := ToEmail;
Subject := Subject;
Body.Text := Message;

end;
FSender.SendMail;

end;

Thereafter, the only interaction with the mailer is to request that a completed message be sent. The

Send method (also in Listing 23-7) takes the sender’s name and the recipient’s e-mail addresses,

along with the subject and body of the message as parameters. These are parceled up and sent out.

Chapter 23: Mass Electronic Mail-Outs 445



Logging and Testing

To keep an eye on what is happening within your application, generate a log file for each run. This

displays the parameters passed to the program and the recipients of the completed messages.

For testing purposes, the log file also captures the entire text of the message, as it would have

been sent. This allows you to verify that the merge process is working as expected before sending

out your message. A flag in the configuration file determines whether or not you are in test mode.

To continue your goal of modularizing the program, you put the logging functionality into its

own object in a separate unit, MailTemplateLog. The TMailTemplateLog object (see Listing 23-8)

automatically creates a timestamped log file based on the name of the application when it is itself

created. Including the current time within the filename ensures that previous logs are not overwrit-

ten (although you must remember to purge the old log files at some stage). The log file is

automatically closed when the wrapper object is destroyed. This is another example of the Façade

design pattern, hiding several more complex functions behind a simplified interface.

Listing 23-8: Logging your actions

{ Open the log file }
constructor TMailTemplateLog.Create;
var
Filename: string;

begin
inherited Create;
Filename := ChangeFileExt(ExtractFileName(ParamStr(0)),
FormatDateTime(LogFormat, Now) + LogExt);

AssignFile(FLogFile, Filename);
Rewrite(FLogFile);

end;
{ Close the log file }
destructor TMailTemplateLog.Destroy;
begin
CloseFile(FLogFile);
inherited Destroy;

end;
{ Write an error message }
procedure TMailTemplateLog.Error(Error: Exception);
begin
Log(Error.Message);

end;
{ Write a log message }
procedure TMailTemplateLog.Log(Message: string);
begin
Writeln(FLogFile, TimeStamp + Message);
Flush(FLogFile);

end;
{ Write a testing message }
procedure TMailTemplateLog.LogTest(
FromEmail, ToEmail, Subject, Message: string);

begin
Writeln(FLogFile, TestOnly);
Writeln(FLogFile, LogFrom + FromEmail);
Writeln(FLogFile, LogTo + ToEmail);
Writeln(FLogFile, LogSubject + Subject);
Writeln(FLogFile, LogMessage + Message);

446 Part V: Sample Applications

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



{ Ensure it gets written out }
Flush(FLogFile);

end;
{ Return the current time }
function TMailTemplateLog.TimeStamp: string;
begin
Result := FormatDateTime(TimeFormat, Now);

end;

You then have three methods for interacting with the log file: Log, LogTest, and Error. Log adds a

simple timestamped message to the file. LogTest is a convenience method that records all the

details for a message sent while in test mode. Finally, Error records any exceptions that are passed

to it. All these methods flush the file buffer before they complete, ensuring that you are able to see

all the relevant log messages.

All Together Now

Now that you have a set of objects, each performing its own specialized task with minimal interac-

tions between them, you can pull them all together into a coherent whole.

The application has no user interface, so all of the main code appears in the .dpr unit (see List-

ing 23-9), and is marked as being a console application with the {$APPTYPE CONSOLE} directive.

Listing 23-9: The completed mail-out processing
var
FromEmail, ToEmail, Subject, Message: string;
QuerySQL, EmailField: string;
Count: Integer;
LogFile: TMailTemplateLog;
Template: TMailTemplateMessage;
Query: TMailTemplateQuery;
Sender: TMailTemplateSender;

Begin
Props := TStringList.Create;
LogFile := nil;
Template := nil;
Query := nil;
Sender := nil;
Count := 0;
try
try
{ Load the program properties }
LoadMailProperties(Props);
{ Create and open the log file }
LogFile := TMailTemplateLog.Create;
{ Open the XML template document }
Template :=
TMailTemplateMessage.Create(Props.Values[TemplateProp]);

{ Extract various parameters }
FromEmail := Props.Values[MailFromProp];
QuerySQL := Template.NodeValue(QueryTag);
Subject := Template.NodeValue(SubjectTag);
EmailField := Template.AttributeValue(QueryTag, EmailAttr);
{ Query the database }
Query := TMailTemplateQuery.Create(Props, QuerySQL);
{ Create an interface to the e-mail system }

Chapter 23: Mass Electronic Mail-Outs 447



if not Testing then
Sender := TMailTemplateSender.Create(Props);

{ Log parameters }
LogFile.Log(Started);
LogFile.Log(LogFrom + FromEmail);
LogFile.Log(LogTemplate + Props.Values[TemplateProp]);
LogFile.Log(LogSubject + Subject);
LogFile.Log(LogDatabase + Props.Values[QueryAliasProp]);
LogFile.Log(LogQuery + QuerySQL);
{ Process each record from the query }
while not Query.EOF do
begin
{ Get the recipient }
ToEmail := Query.Fields.Values[EmailField];
{ Perform the mail merge -
XML document with query fields }

Message := Template.ParseMessage(Query.Fields);
{ And output the results }
if Testing then
logFile.LogTest(FromEmail, ToEmail, Subject, Message)

else
begin
Sender.Send(FromEmail, ToEmail, Subject, Message);
LogFile.Log(Format(EmailSent, [ToEmail]));
{ Pause so as not to overwhelm the e-mail server }
Sleep(PauseTime);

end;
Inc(Count);
Query.NextRecord;

end;
except on Error: Exception do
{ Catch any errors and report them }
LogFile.Error(Error);

end;
finally
LogFile.Log(Format(Finished, [Count]));
{ Tidy up }
Props.Free;
LogFile.Free;
Template.Free;
Query.Free;
Sender.Free;

end;
end.

The steps in generating and sending the e-mail messages are as follows:

1. Check for any command-line parameters in LoadMailProperties, as these can be used to

pass in the name of a configuration file to read instead of the default one. If no file is speci-

fied, the program looks for one with the same name as itself but with an .xml extension.

From the selected file, the program properties are retrieved into a string list using the

LoadPropertiesFromXML routine from the XMLConfig unit. This list is passed to the other

objects for them to extract their necessary values.

2. Create a TMailTemplateLog object to record your current session and write initial settings to

it.

448 Part V: Sample Applications



3. Load the XML template file. Its name is retrieved from the configuration parameters and is

passed to a TMailTemplateMessage object.

4. Extract the query to be executed from the template file and pass it, along with the configura-

tion parameters, to a TMailTemplateQuery object.

5. Iterate through all the records returned from the query, performing the mail merge as you go.

6. Send each completed message to a TMailTemplateSender object to mail out, or write it to

the log file if only testing. A pause is taken after each message is sent. This reduces the load

on the mail server, and is configurable through the properties file.

7. Finalize the log file entries and free up all the objects. Your mail-out is complete. To run the

example project, you need to set up the mailtemp database alias with the BDE to point to the

supplied customer table.

NOTE The code for this application appears within the .dpr file but not within a procedure
or class method. All Pascal programs have their main code in the body of the main unit,
between a begin and the final end. In a more typical Delphi program for Windows, you find
that the .dpr contains code to initialize the application, create the opening forms, and then set
it all going. You are free to add or alter the code that appears there, although most often the
standard code is sufficient.

You can use the application as it stands for generating mass mailings from your database of con-

tacts (but only with their permission of course). Just alter the configuration file for your database

and server situation, then create the mail template with its embedded query, and away you go.

Enhancements to the program could include an attachment element in the template XML docu-

ment that causes the named file(s) to be sent out with each message. The rest is up to you.

Summary

Using open standards helps to protect your coding investment from future technology changes.

This program works with any SQL database and with any SMTP server. Similarly, partitioning the

application into several modules/objects, each of which has a well-defined and simple interface,

allows you to more easily modify parts of the program with minimal effects on the remainder.

The application described here performs customized electronic mass mail-outs. It retrieves

configuration information from an XML document, selects records from a database using SQL,

merges fields from these records into a message format held in another XML document, and sends

the completed message out into the world using a SMTP server.

Due to the use of XML for the configuration file and message template, these can be easily

altered without a detailed knowledge of the program mechanics, and without requiring a

recompilation.

Chapter 23: Mass Electronic Mail-Outs 449



C h a p t e r 2 4

A Customized ClientA Customized Client

Since all XML documents follow the rules described in Chapter 2 and have a simple tree structure,

it is easy to process them in a generic manner. Applications can display the tree, create new docu-

ments based on the DTD, or search through the data for specific values in particular fields.

However, generic applications are not always the most user-friendly. You are forced to use the tree

structure that XML defines, whereas related data may be better presented in some other format.

Hence there is a need for a customized client program, designed specifically to handle a particular

document type (those based on one DTD). XML still provides an application-independent transfer

mode, allowing the client to easily interoperate with a database serving up the data, or with

another application that also knows about this XML type.

To illustrate how to load and process an XML document on the client side, you can use the

movie-watcher format described previously. Using Delphi you can produce a program that reads

the document, transforms it into domain-specific objects, and then presents a UI to browse

through them. Recall that the elements in this document are related to each other through ID and

IDREF type attributes, which form the basis of the navigation you provide within the application.

The Client

Your client application extracts all the relevant details from the XML document and places them

into three lists: movies, cinemas, and screenings. The main form then displays the details to the

user and lets them browse the information. A tab control provides the main access to each of the

three lists. As an item is selected from a list, its details are displayed on the right side of the form

(see Figures 24-1 through 24-3).

450



Chapter 24: A Customized Client 451

Figure 24-1:
Select a movie
that is showing.

Figure 24-2:
Find a time
when it is
showing.

Figure 24-3:
See what the
cinema has to
offer.



Secondary navigation is provided by double-clicking on linking fields, such as on the list of cine-

mas on the movie page, or on the movie name on the screening page. In this way you can easily

find a movie, select a session, and find out where the cinema is.

The XML document to load is specified as a command-line parameter to the application (this

is necessary for later on). To access the file’s name, use the ParamStr function:

LoadDocument(ParamStr(1), FMovies, FCinemas, FScreenings);
You make use of the string list’s ability to associate an object with each string throughout the

program. Each list returned from the load procedure contains the object’s display name as the

string value, and adds a reference to an appropriate object in the corresponding Objects property.

As the user selects different lists, copy their contents into the list box on the form (which sorts

them automatically) along with the object references. Then, when more details are requested, you

have immediate access to the necessary object and its attributes.

TIP String lists are very useful in Delphi programming. They do much more than just man-
age a list of strings. Setting the Sorted property to True automatically orders the contents. Use
the Duplicates property to control the handling of duplicate values in sorted lists. The Values
property allows you to map from one string value to another, especially useful when dealing
with .ini file style values. And finally, the Objects property lets you associate any object with a
particular string value.

Information Hiding

To insulate the user interface from the source XML document, introduce a separate unit, MWObjs,

which defines the classes corresponding to the objects extracted from the XML. Here you flatten

out the XML tree structure, providing properties for sub-elements and attributes, and direct point-

ers to other objects rather than indirect ones through ID references. Compare the movie object in

Listing 24-1 with the XML structure shown in Listing 2-1.

Listing 24-1: A movie object

{ Details about a movie }
TMovie = class(TObject)
private
FId: string;
FName: string;
FRating: TMovieRating;
FLength: TDateTime;
FDirector: string;
FStars: TStringList;
FSynopsis: string;
function GetRatingText: string;
procedure SetRatingText(RatingText: string);

public
constructor Create(Id: string);
destructor Destroy; override;
property Id: string read FId write FId;
property Name: string read FName write FName;
property Rating: TMovieRating read FRating write FRating;
property RatingText: string read GetRatingText
write SetRatingText;

452 Part V: Sample Applications



property Length: TDateTime read FLength write FLength;
property Director: string read FDirector write FDirector;
property Stars: TStringList read FStars write FStars;
property Synopsis: string read FSynopsis write FSynopsis;

end;

Although you could navigate through the XML tree itself and extract all the necessary details

yourself, this approach makes it much easier for the application to deal with the information. You

do not have to know about the structure of XML documents and what internal objects are used to

represent them. Instead, you have real-world objects with familiar patterns of properties. Further-

more, having this extra layer means that you could, at some time in the future, load the data from

another source or in some other way without having to change the user interface.

NOTE This hiding of implementation details is one of the mainstays of object-oriented pro-
gramming, known as encapsulation. By reducing the knowledge of one object or module
required by another, you reduce their reliance on one another. This decoupling of the objects
makes it easier to make changes in one place without adversely affecting another area. Using
interfaces is another important way to enforce decoupling.

The LoadDocument procedure declared in this unit handles all the translation for you. Just pass it

the name of the XML document and three lists to use in returning the data.

To create these movie-watcher objects, parse the source XML document to generate them.

Using a SAX-compliant parser makes this an easy and maintainable task.

Parsing the XML Documents

As is usually the case in using SAX for XML processing, you need to write a content handler that

knows about the expected document format. Since you are not interested in any of the extra abili-

ties provided by SAX2, you can use a SAX1 parser, which means implementing the

ISAXDocumentHandler interface. Passing an instance of the handler to the SAX-compliant parser

and supplying a document identifier causes the parser to invoke the events in the handler as it

reads the various parts of the document.

The simplest way to define a class that implements the document handler interface is to make

use of the default handler supplied by SAX. The TSAXHandlerBase class implements all of the

standard SAX1 handler interfaces, supplying default behaviors for each method that generally do

nothing. All these routines are declared as virtual, allowing you to easily replace them in a sub-

class through overriding.

This is exactly what you do with the movie-watcher document handler, as shown in Listing

24-2. To generate the movie-watcher objects, only a few of the SAX events need to be dealt with.

Here you see the benefit of using the default handler as a base. All the other SAX routines, which

must be implemented to satisfy the requirements of the interface, are already defined, and do not

interfere with your specific processing of the document.

Chapter 24: A Customized Client 453



Listing 24-2: Declaring a movie-watcher document handler

{ A SAX document handler that knows about
movie-watcher documents }

TMWDocumentHandler = class(TSAXHandlerBase)
private
FCinema: TCinema;
FCinemas: TList;
FMovie: TMovie;
FMovies: TList;
FPrice: TPrice;
FScreening: TScreening;
FScreenings: TList;
FText: string;

public
constructor Create;
destructor Destroy; override;
property Cinemas: TList read FCinemas;
property Movies: TList read FMovies;
property Screenings: TList read FScreenings;
{ ISAXDocumentHandler }
procedure Characters(Text: TSAXString); override;
procedure EndElement(Name: TSAXString); override;
procedure StartElement(Name: TSAXString;
Attributes: ISAXAttributeList); override;

end;

As can be seen in the LoadDocument routine (see Listing 24-3), an instance of the customized con-

tent handler is created, along with an instance of a SAX1-compliant parser (in this case the native

Delphi one). The TMWDocumentHandler class constructs three lists, corresponding to the string lists

used in the client program, and fills them with the domain-specific objects it extracts from the

document.

Listing 24-3: Loading the movie-watcher document

{ Load XML document and process into string lists
with references to the appropriate objects }

procedure LoadDocument(URI: string;
MoviesList, CinemasList, ScreeningsList: TStringList);

var
Index: Integer;
SAXParser: TSAXDelphiParser;
Handler: TMWDocumentHandler;

begin
{ Create the XML parser }
Handler := TMWDocumentHandler.Create;
SAXParser := TSAXDelphiParser.Create;
SAXParser.DocumentHandler := Handler;
try
{ And parse the document }
SAXParser.Parse(URI);
with Handler do
begin
{ Are they all here? }
if (Movies.Count = 0) or (Cinemas.Count = 0) or

(Screenings.Count = 0) then
raise Exception.Create(InvalidDocument + URI);

{ Step through the handler's lists and
convert to output format }

for Index := 0 to Movies.Count –1 do

454 Part V: Sample Applications



MoviesList.AddObject(
TMovie(Movies[Index]).Name, Movies[Index]);

for Index := 0 to Cinemas.Count –1 do
CinemasList.AddObject(
TCinema(Cinemas[Index]).Name, Cinemas[Index]);

for Index := 0 to Screenings.Count –1 do
ScreeningsList.AddObject(Format(ScreeningDesc,
[TScreening(Screenings[Index]).Movie.Name,
TScreening(Screenings[Index]).Cinema.Name]),
Screenings[Index]);

end;
finally
SAXParser.Free;

end;
end;

Once the parse process has completed, these lists are transferred to the ones supplied by the calling

program. For each of the internal lists, you step through all the items and set the identifying string

to an appropriate value. Movies and cinemas have their names entered, while screenings combine

the names of their associated movie and cinema.

Constructing Model Objects

The first step in building the movie-watcher object model is performed by the document handler’s

constructor. Since the class is intended for a single use, the constructor creates the necessary lists.

Then, as each element is encountered and the handler is notified through the StartElement
method, you prepare the model environment for later processing in the other event routines. For

elements that correspond to objects within the internal model, create a new instance of them and

add it to their appropriate list (see Listing 24-4). References to the most recently constructed

objects are held within the object for them to be accessed later.

Listing 24-4: Preparing a new real-world object

{ Create objects as necessary for document elements }
procedure TMWDocumentHandler.StartElement(Name: TSAXString;
Attributes: ISAXAttributeList);
{ Locate the movie with the given identifier }
function FindMovie(Id: string): TMovie;
var
Index: Integer;

begin
Result := nil;
for Index := 0 to FMovies.Count –1 do
if TMovie(FMovies[Index]).Id = Id then
begin
Result := TMovie(FMovies[Index]);
Exit;

end;
end;
{ Locate the cinema with the given identifier }
function FindCinema(Id: string): TCinema;
var
Index: Integer;

begin
Result := nil;

Chapter 24: A Customized Client 455



for Index := 0 to FCinemas.Count –1 do
if TCinema(FCinemas[Index]).Id = Id then
begin
Result := TCinema(FCinemas[Index]);
Exit;

end;
end;
{ Locate the pricing scheme with the given identifier }
function FindPrice(PriceId: string): TPrice;
var
Index, Index2: Integer;

begin
Result := nil;
for Index := 0 to FCinemas.Count –1 do
with TCinema(FCinemas[Index]) do
begin
Index2 := Pricing.IndexOf(PriceId);
if Index2 > -1 then
begin
Result := TPrice(Pricing.Objects[Index2]);
Exit;

end;
end;

end;
begin
if Name = MWMovie then
begin
FMovie := TMovie.Create(Attributes.Value(MWId));
FMovie.RatingText := Attributes.Value(MWRating);
FMovies.Add(FMovie);

end
else if Name = MWCinema then
begin
FCinema := TCinema.Create(Attributes.Value(MWId));
FCinemas.Add(FCinema);

end
else if Name = MWPrices then
begin
FPrice := TPrice.Create(Attributes.Value(MWId));
FCinema.Pricing.AddObject(Attributes.Value(MWId), FPrice);

end
else if Name = MWScreening then
begin
FScreening :=
TScreening.Create(FindMovie(Attributes.Value(MWMovieId)),
FindCinema(Attributes.Value(MWCinemaId)));

FScreenings.Add(FScreening);
end
else if Name = MWSession then
FPrice := FindPrice(Attributes.Value(MWPriceId));

end;

Movie objects are created with their ID and rating, as extracted from the attributes of the element,

before being added to the list of movies. Similarly, cinema instances are constructed and added to

the cinemas list. Pricing details belong to a particular cinema, so price elements cause a new price

object to be added to the current cinema’s (FCinema) own list.

Screenings contain references to the movie and cinema linked together through IDREF attrib-

utes. These objects are located from their respective lists before being passed to the screening

456 Part V: Sample Applications

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



object’s constructor. As before, the resulting object is added to its list. Individual sessions within a

screening refer to their pricing structure via an attribute. The associated price object is located and

saved for later.

Accumulating Content

Other elements appear as properties of the model objects, rather than as objects in their own right.

Their content appears as text that is returned to the handler through the Characters event. How-

ever, this method is only invoked as the content is parsed, following the StartElement. Hence,

these elements are dealt with in the EndElement event, once their content has been identified.

Within the text content event (shown in Listing 24-5), you add the new text to any existing

value and save it for later. It is possible for an element’s content to be made up of several text

nodes, perhaps coming from different embedded elements (such as the emph element in the synop-
sis), or through the use of entity references or CDATA sections.

Listing 24-5: Accumulating text

{ Accumulate text content }
procedure TMWDocumentHandler.Characters(Text: TSAXString);
begin
FText := FText + Text;

end;

TIP Some XML parsers automatically normalize text as they read it. In others, this behavior
can be controlled through a property. The parser used here is fairly basic and simply returns
all the text it finds, requiring the handler to do the operation itself.

Saving Properties

As described earlier, elements from the XML document that are present in the movie-watcher

model as properties have their content built up within the Characters event. Once the end tag for

those elements is encountered, you can transfer that accumulated text into the corresponding

model object.

The EndElement routine (see Listing 24-6) uses the element name to determine which object

and property to set from the text. In the case of the name element, the element name is insufficient

identification since it appears in the movie, cinema, and prices elements. For this reason, you need

to check which object is currently being constructed (the non-nil one).

Listing 24-6: Saving object model property values

{ Save text content to appropriate property }
procedure TMWDocumentHandler.EndElement(Name: TSAXString);
{ Replace consecutive white space with one space }
function Normalize(Text: string): string;
const
Blanks = [#1..#32];

var
Index: Integer;

Chapter 24: A Customized Client 457



begin
Result := Text;
if Length(Text) < 2 then
Exit;

for Index := Length(Result) downto 2 do
if (Result[Index] in Blanks) and

(Result[Index –1] in Blanks) then
begin
Result[Index –1] := ' ';
Delete(Result, Index, 1);

end;
end;
{ Return the accumulated text and clear for next time }
function ReadAndClearText: string;
begin
Result := Trim(Normalize(FText));
FText := '';

end;
begin
if Name = MWMovie then
FMovie := nil

else if Name = MWMovie then
FCinema := nil

else if Name = MWPrices then
FPrice := nil

else if Name = MWScreening then
FScreening := nil

else if Name = MWName then
begin
if Assigned(FMovie) then
FMovie.Name := ReadAndClearText

else if Assigned(FPrice) then
FPrice.Name := ReadAndClearText

else if Assigned(FCinema) then
FCinema.Name := ReadAndClearText;

end
else if Name = MWLength then
FMovie.Length := StrToInt(ReadAndClearText) / 24 / 60

else if Name = MWDirector then
FMovie.Director := ReadAndClearText

else if Name = MWStar then
FMovie.Stars.Add(ReadAndClearText)

else if Name = MWSynopsis then
FMovie.Synopsis := ReadAndClearText

else if Name = MWPhone then
FCinema.Phone := ReadAndClearText

else if Name = MWAddress then
FCinema.Address := ReadAndClearText

else if Name = MWDirections then
FCinema.Directions := ReadAndClearText

else if Name = MWCandyBar then
FCinema.CandyBar := True

else if Name = MWDisabledAccess then
FCinema.DisabledAccess := True

else if Name = MWPeriod then
FPrice.Period := ReadAndClearText

else if Name = MWAdult then
FPrice.Adult := StrToFloat(ReadAndClearText)

else if Name = MWChild then
FPrice.Child := StrToFloat(ReadAndClearText)

458 Part V: Sample Applications



else if Name = MWDiscount then
FPrice.Discount := StrToFloat(ReadAndClearText)

else if Name = MWStartDate then
FScreening.StartDate := StrToDateTime(ReadAndClearText)

else if Name = MWEndDate then
FScreening.EndDate := StrToDateTime(ReadAndClearText)

else if Name = MWNoPasses then
FScreening.NoPasses := True

else if Name = MWDigitalSound then
FScreening.DigitalSound := ReadAndClearText

else if Name = MWSession then
FScreening.Showing.AddObject(ReadAndClearText, FPrice);

end;

The supplied text must be normalized before being used. This replaces consecutive occurrences of

white space characters with a single space and trims white space from the start and end of the text.

The ReadAndClearText function performs this activity, as well as clearing out the FText field so it

is ready for accumulating text for the next node.

Properties that are not text values are converted as necessary, such as the ticket prices and the

screening dates. Some elements provide information simply through their presence, like the dis-

abled access and candy bar settings for a cinema. Here you set the corresponding Boolean

property to True when they are encountered.

The objects that are being operated on were created in the appropriate StartElement method,

and the saved references are used here.

NOTE Elements that do not contribute to the object model structure, and do not have any
text content can be ignored in the event handlers. Examples from the current documents
include the starring element from the movies, and the facilities element from the cinemas.
Although they are not used here, they are necessary when generating an HTML representa-
tion since they serve to group their sub-elements.

Client Processing

The returned lists are used within the client application for display and navigation purposes. Since

they are string lists they can be assigned directly to the Items property of the list box on the left of

the form. Setting the Sorted property of that list box automatically reorders the entries for display,

retaining the association with the attached objects. The tabNavigationChangemethod of the form

(see Listing 24-7) is invoked when the user selects one of the tabs on the screen (and during the ini-

tial load). It performs the necessary assignment.

Listing 24-7: Display movie items

{ Show selected details in listbox }
procedure TfrmMovieWatchers.tabNavigationChange(Sender: TObject);
begin
with lbxNavigation do
begin
Items.BeginUpdate;
Items.Clear;
if tabNavigation.TabIndex = MoviesTab then
Items := FMovies

Chapter 24: A Customized Client 459



else if tabNavigation.TabIndex = CinemasTab then
Items := FCinemas

else if tabNavigation.TabIndex = ScreeningsTab then
Items := FScreenings;

Items.EndUpdate;
end;
lbxNavigation.ItemIndex := 0;
lbxNavigationClick(lbxNavigation);
ActiveControl := lbxNavigation;

end;
{ Select an item to display its details }
procedure TfrmMovieWatchers.lbxNavigationClick(Sender: TObject);
begin
with lbxNavigation do
begin
if ItemIndex < 0 then
ItemIndex := 0;

if tabNavigation.TabIndex = MoviesTab then
ShowMovie(TMovie(Items.Objects[ItemIndex]))

else if tabNavigation.TabIndex = CinemasTab then
ShowCinema(TCinema(Items.Objects[ItemIndex]))

else if tabNavigation.TabIndex = ScreeningsTab then
ShowScreening(TScreening(Items.Objects[ItemIndex]));

end;
end;
{ Display details for a movie }
procedure TfrmMovieWatchers.ShowMovie(Movie: TMovie);
var
Index: Integer;

begin
with Movie do
begin
edtTitle.Text := Name;
edtRating.Text := MovieRatingText[Rating];
edtLength.Text := FormatDateTime(TimeFormat, Length);
edtDirector.Text := Director;
lbxStars.Items := Stars;
memSynopsis.Lines.Text := Synopsis;
{ Show which cinemas it is playing at }
with lbxCinemas.Items do
begin
BeginUpdate;
Clear;
for Index := 0 to FScreenings.Count –1 do
if TScreening(FScreenings.Objects[Index]).Movie = Movie
then
AddObject(TScreening(
FScreenings.Objects[Index]).Cinema.Name,
FScreenings.Objects[Index]);

if Count > 0 then
lbxCinemas.ItemIndex := 0;

EndUpdate;
end;

end;
pgcDetails.ActivePage := tshMovie;

end;

460 Part V: Sample Applications



As items in the list are selected, it is easy to retrieve all the information to be displayed through the

corresponding Objects entry. This is shown in the lbxNavigationClick routine (see Listing

24-7).

From that object, you extract the details appropriate to its type and set them into the controls on

the screen. The ShowMovie routine is shown in Listing 24-7 as an example of the required process-

ing. Using the power of string lists, combined with the domain-specific objects, makes displaying

the details of the movies and their screenings fairly simple.

Other navigation comes from responding to user interactions with the client program. For

example, double-clicking an entry in the list of cinemas showing a particular movie invokes the

event handler shown in Listing 24-8, which moves to the Screening page and locates the corre-

sponding combination. For keyboard users, another event handler reacts to pressing the Enter key

while on an entry in this list (reusing the functionality of the double-click routine).

Listing 24-8: Additional navigation

{ Go to the screening details for a movie }
procedure TfrmMovieWatchers.lbxCinemasDblClick(Sender: TObject);
begin
ShowList(ScreeningsTab, Format(ScreeningDesc,
[edtTitle.Text, lbxCinemas.Items[lbxCinemas.ItemIndex]]));

end;
{ Enter acts like a double-click }
procedure TfrmMovieWatchers.lbxCinemasKeyDown(Sender: TObject;
var Key: Word; Shift: TShiftState);

begin
if Key = VK_RETURN then
lbxCinemasDblClick(lbxCinemas);

end;

To run the program, you must supply the name of the target XML document as a command line

parameter. Running from within Delphi you specify this value through the Run | Parameters menu

option.

Through the Browser

So far the application has been standalone. You supply it with the name of the file to load as a com-

mand-line parameter and it opens and displays that file. But one of the advantages of XML is its

delivery across the Internet. To enable a downloaded file to trigger your client automatically, all

you do is define a new file type for this class of documents.

To define this type in Windows you do the following:

1. Open Windows Explorer, select View | Options, and select the File Types tab.

2. Examine the list of the registered file types and the associated programs that deal with them.

Note that each has a list of file extensions that identify the type, the corresponding MIME

type, and the name of the program that knows how to deal with them.

3. Add a new file type for the movie-watcher XML documents by pressing New Type.

Chapter 24: A Customized Client 461



4. Enter a description, Movie-Watcher, the content (MIME) type, application/x-movie-
watcher, and the extension, .mwx. The MIME type, application/x-???, indicates that the

file is application specific.

5. Press New for a default action.

6. Enter its name, open, and press Browse to

search for your application. Follow the path

and filename with the text "%1" to indicate

that the name of the file being opened is

passed to the program (hence the need for

the processing of the command-line param-

eter earlier). Press OK to save the action

(see Figure 24-4).

7. Change the associated icon if you wish. Set

the other check box options if desired.

8. Save the results (see Figure 24-5) by pressing the Close button.

462 Part V: Sample Applications

Figure 24-4: The open action for movie-
watcher documents.

Figure 24-5: A new file type for movie-watcher
documents.



Having defined the new type, you must rename the movie-watcher XML document to have an

.mwx extension. Now whenever this file type is opened up within your browser, it loads directly

into your application. A temporary file is created to hold the downloaded text, with the name of

that file being passed to your client program as a command-line parameter.

TIP You may need to set up your Web server to supply the correct MIME type for these docu-
ments. This process is dependent on the server that you are using, however, you need to
associate the application/x-movie-watcher MIME type with the .mwx extension.

Summary

Although generic processors can handle XML in many useful ways, one of the advantages of

using XML is that the information held within can also be sent to specialized applications and eas-

ily accessed. This allows for more user-friendly processing, as well as increased integrity and

validations, without losing the benefits of XML in data interchange and legibility.

The application described here shows how you can write a client application in Delphi that

receives and processes a particular class of XML documents. By defining a new file type in the

registry specific to this type of XML document, you can have your Web browser automatically

kick off the program whenever such a file is downloaded. Delivering data was never so easy.

Chapter 24: A Customized Client 463



C h a p t e r 2 5

Examination XML —Examination XML —

Delphi ClientDelphi Client

Applications that administer exams allow you to verify that certain knowledge has been retained.

Presented here is an XML scheme that allows the exam content to be created separately from any

implementation of the testing environment. From this you generate objects to model the examina-

tion and a Delphi application that runs it.

The examination definitions are based on XML, allowing easy manipulation of the content of

the exams without worrying about its presentation. Obviously, the document element in each doc-

ument is exam (see the sample document in Listing 25-1). As attributes of this element, you have

the mark (expressed as a percentage) that is required to pass the test, pass_mark, and a flag to indi-

cate whether or not the questions must be presented in the order given, strict_order.

Listing 25-1: XML examination document

<?xml version="1.0" encoding="UTF-8"?>
<?xml:stylesheet type="text/xsl" href="ExamReview.xsl"?>
<!DOCTYPE exam SYSTEM "exam.dtd">
<exam pass_mark="66" strict_order="false">
<title>Delphi Exam</title>
<description>These questions test your knowledge of Delphi.
</description>
<instructions>Please answer every question.
</instructions>
<question id="Q1">
<query>What is the value of i at the end of this code?

for i := 1 to 5 do
if i = 2 then
Continue

else if i = 4 then
Break;

</query>
<answers type="radio">
<answer>2</answer>
<answer>3</answer>
<answer correct="true">4</answer>
<answer>5</answer>
<answer>Undefined</answer>

</answers>
<explanation>The Continue causes the loop to return to the

beginning, whereas the Break causes the loop to exit.
</explanation>

464



</question>
<question id="Q2">
<query>Which of the following are components?
</query>
<answers type="checkbox">
<answer>TBitmap</answer>
<answer>TCanvas</answer>
<answer correct="true">TImage</answer>
<answer correct="true">TImageList</answer>
<answer>TPicture</answer>

</answers>
<explanation>TImage and TImageList descend from TComponent. The

remainder are classes used internally to handle images.
</explanation>

</question>
<question id="Q3">
<query>From which class is every other class derived?
</query>
<answers type="text">
<answer correct="true">TObject</answer>
<answer correct="true">tobject</answer>
<answer correct="true">TOBJECT</answer>

</answers>
<explanation>TObject is at the root of the Delphi class hierarchy.
</explanation>

</question>
</exam>

As top-level elements within the main one you have the name of the exam, title, a description of

it, description, any special instructions to be followed, instructions, and the questions them-

selves. Except for the questions, these details are usually presented in an introduction to the exam.

Each question element has an id attribute to enable it to be referred to later. Within the ques-
tion element you have the text of the question, query, a list of possible responses, answers, and an

explanation for the correct answer(s), explanation.

Answers are identified by type with the type attribute of the answers element. This can be set

to checkbox for multiple independent options, to radio for mutually exclusive options, or to text
for text entry. Each possible answer then follows, along with an optional attribute, correct, to

denote its validity. Note that for a text-type answer, only the valid answers should appear.

Loading an Exam

To make it easier to manipulate an exam within an application, you load the XML document and

create a set of integrated classes that represents it (see Listing 25-2). For reusability reasons, you

place these objects in their own unit, Exams.

Listing 25-2: Examination classes

{ A possible answer }
TAnswer = class(TObject)
private
FCorrect: Boolean;
FValue: string;

public
constructor Create(Value: string; Correct: Boolean);

Chapter 25: Examination XML — Delphi Client 465



property Correct: Boolean read FCorrect write FCorrect;
property Value: string read FValue write FValue;

end;
{ A single question }
TQuestion = class(TObject)
private
FAnswers: TList;
FAnswerType: TAnswerType;
FExplanation: string;
FId: string;
FQuery: string;
FValidAnswers: TStringList;
procedure Add(Answer: TAnswer);
function GetAnswer(Index: Integer): TAnswer;
function GetAnswerCount: Byte;
function GetValidAnswers: TStringList;

public
constructor Create(Id: string);
destructor Destroy; override;
property AnswerCount: Byte read GetAnswerCount;
property Answers[Index: Integer]: TAnswer read GetAnswer;
property AnswerType: TAnswerType read FAnswerType write FAnswerType;
property Explanation: string read FExplanation write FExplanation;
property Id: string read FId write FId;
property Query: string read FQuery write FQuery;
property ValidAnswers: TStringList read GetValidAnswers;
function IsValid(Response: string): Boolean;

end;
{ The entire exam }
TExam = class(TObject)
private
FDescription: string;
FInstructions: string;
FPassMark: Byte;
FQuestions: TList;
FStrictOrder: Boolean;
FTitle: string;
procedure Add(Question: TQuestion);
function GetQuestion(Index: Integer): TQuestion;
function GetQuestionById(Id: string): TQuestion;
function GetQuestionCount: Byte;

public
constructor Create;
destructor Destroy; override;
property Description: string read FDescription write FDescription;
property Instructions: string read FInstructions write FInstructions;
property PassMark: Byte read FPassMark write FPassMark;
property QuestionCount: Byte read GetQuestionCount;
property QuestionById[Id: string]: TQuestion read GetQuestionById;
property Questions[Index: Integer]: TQuestion read GetQuestion;
property StrictOrder: Boolean read FStrictOrder write FStrictOrder;
property Title: string read FTitle write FTitle;

end;

The primary class is TExam, which embodies the entire exam. It has properties for the title, descrip-

tion, and instruction elements from the XML document, as well as the pass mark and strict order

attributes. It also maintains a list of questions as separate objects, with access by their numeric

order and by their ID attribute.

466 Part V: Sample Applications

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



The TQuestion class encapsulates a question. Here you have the identifier for the question, the

query itself, the explanation of the correct answer, and a list of possible answers and their type.

Another property, ValidAnswers, returns a list of correct answers for further use. A helper

method, IsValid, compares a supplied response with the values above and returns a flag indicat-

ing its correctness.

Given that you have different answer formats, you need some common way to work with

them. For a radio-type answer the correct response is a single selection, which can be represented

by its index (starting from zero). With a check box-type answer, you may have several selections.

For consistency, this is presented as a list of the indexes of the correct responses separated by com-

mas. In this way, the radio result is merely a simpler form of the check box one, having only one

value. With both of these as a single text value, you can now prepare a similar value based on the

user’s selections and compare the two in a consistent manner.

Text-type questions may have multiple correct values, representing equivalent terminologies

or different capitalization. Given that some answers may be case-sensitive, no manipulation of the

values is performed. The multiple values can be loaded into a string list to allow for simple valida-

tion of a response. Again, you can map the other two answer types into this format, just by having

a list with a single item. Thus, you can represent correct responses for all the answer types as a

string list and provide the same functionality for each (see Listing 25-3).

Listing 25-3: Listing valid answers

{ Return the valid answer(s) in string format }
function TQuestion.GetValidAnswers: TStringList;
var
Index: Integer;
ValidAnswers: string;

begin
if FValidAnswers.Count = 0 then
begin
ValidAnswers := '';
for Index := 0 to AnswerCount –1 do
{ For each correct answer}
if Answers[Index].Correct then
{ Add complete answer if text type }
if AnswerType = atText then
FValidAnswers.Add(Answers[Index].Value)

{ Otherwise string together numeric positions }
else
ValidAnswers := ValidAnswers + ',' + IntToStr(Index);

if ValidAnswers <> '' then
FValidAnswers.Add(Copy(ValidAnswers, 2, Length(ValidAnswers)));

end;
Result := FValidAnswers;

end;

Finally, you have the TAnswer class. This just holds the text for each possible answer and a flag

denoting whether or not it is a correct one.

A hierarchy of these objects is created with the LoadExam function (see Listing 25-4), which

returns a reference to the new TExam. This function takes the name of the XML document to read

as a parameter and passes it along to an instance of the Microsoft XML Document Object Model.

Chapter 25: Examination XML — Delphi Client 467



From this model you can step through each of the internal elements and process them appropri-

ately. Properties of the TExam object are set from the top-level attributes and elements.

Listing 25-4: Loading an XML exam

{ Read an XML file containing the exam specification
and convert it into the above objects }

function LoadExam(FileName: string): TExam;
var
XMLDoc: IXMLDOMDocument;
Exam: TExam;
ExamNode: Integer;
{ Retrieve the attribute value from the element }
function Attribute(Node: IXMLDOMNode; Attribute: string): string;
var
AttrNode: IXMLDOMNode;

begin
AttrNode := Node.Attributes.GetNamedItem(Attribute);
if Assigned(AttrNode) then
Result := AttrNode.Text

else
Result := '';

end;
{ Extract the details for a question }
procedure GetQuestion(QuestionNode: IXMLDOMElement);
var
Question: TQuestion;
QstNode: Integer;
AnsType: string;
AnswerType: TAnswerType;
{ Extract the details for a series of answers }
procedure GetAnswers(Answers: IXMLDOMElement);
var
AnsNode: Integer;
Answer: TAnswer;

begin
if Answers.HasChildNodes then
with Answers.ChildNodes do
{ Get each possible answer }
for AnsNode := 0 to Length –1 do
begin
if Item[AnsNode].NodeName = AnswerTag then
begin
Answer :=
TAnswer.Create(Item[AnsNode].FirstChild.NodeValue,
(Attribute(Item[AnsNode], CorrectAttr) = TrueValue));

try
{ And add it to the question }
Question.Add(Answer);

except
Answer.Free;
raise;

end;
end;

end;
end;

begin
{ Create the question }
Question := TQuestion.Create(Attribute(QuestionNode, IdAttr));
try

468 Part V: Sample Applications



if QuestionNode.HasChildNodes then
with QuestionNode.ChildNodes do
for QstNode := 0 to Length –1 do
{ Get question values from child nodes }
if Item[QstNode].NodeName = QueryTag then
Question.Query := Item[QstNode].FirstChild.NodeValue

else if Item[QstNode].NodeName = ExplanationTag then
Question.Explanation :=
Item[QstNode].FirstChild.NodeValue

else if Item[QstNode].NodeName = AnswersTag then
begin
{ Get type of answers }
Question.AnswerType := atText;
AnsType := Attribute(Item[QstNode], TypeAttr);
for AnswerType := Low(TAnswerType) to

High(TAnswerType) do
if AnswerTypes[AnswerType] = AnsType then
begin
Question.AnswerType := AnswerType;
Break;

end;
{ Then load the actual values }
GetAnswers(IXMLDOMElement(Item[QstNode]));

end;
{ Validations }
if Question.Query = '' then
raise EExamException.Create(
Format(MissingQuery, [Question.Id]));

if Question.AnswerCount = 0 then
raise EExamException.Create(
Format(MissingAnswers, [Question.Id]));

{ And add the question to the exam }
Exam.Add(Question);

except
Question.Free;
raise;

end;
end;

begin
{ Create the exam }
Exam := TExam.Create;
try
{ Create the XML parser }
XMLDoc := CoDOMDocument.Create;
try
try
{ And parse the XML document }
if not XMLDoc.Load(FileName) then
Abort;

except
raise EExamException.Create(
Format(CannotParse, [Filename, XMLDoc.ParseError.Reason]));

end;
if XMLDoc.DocumentElement.NodeName <> ExamTag then
raise EExamException.Create(Format(NotAnExam, [Filename]));

{ Get the exam attributes }
try
Exam.PassMark :=
StrToInt(Attribute(XMLDoc.DocumentElement, PassMarkAttr));

except

Chapter 25: Examination XML — Delphi Client 469



Exam.PassMark := 100; { % }
end;
Exam.StrictOrder := (Attribute(XMLDoc.DocumentElement,
StrictOrderAttr) = TrueValue);

{ Load child elements }
if XMLDoc.DocumentElement.HasChildNodes then
with XMLDoc.DocumentElement.ChildNodes do
for ExamNode := 0 to Length –1 do
{ Get exam values from child nodes }
if Item[ExamNode].NodeName = TitleTag then
Exam.Title := Item[ExamNode].FirstChild.NodeValue

else if Item[ExamNode].NodeName = DescriptionTag then
Exam.Description := Item[ExamNode].FirstChild.NodeValue

else if Item[ExamNode].NodeName = InstructionsTag then
Exam.Instructions := Item[ExamNode].FirstChild.NodeValue

{ Process each question }
else if Item[ExamNode].NodeName = QuestionTag then
GetQuestion(IXMLDOMElement(Item[ExamNode]))

else if (Item[ExamNode].NodeType = NODE_ENTITY_REFERENCE)
and (Item[ExamNode].FirstChild.NodeName = QuestionTag)
then

GetQuestion(IXMLDOMElement(Item[ExamNode].FirstChild));
{ Validations }
if Exam.QuestionCount = 0 then
raise EExamException.Create(MissingQuestions);

finally
XMLDoc := nil;

end;
except
Exam.Free;
raise;

end;
Result := Exam;

end;

When a question is encountered, you branch to another routine that creates a new TQuestion
object, fills its properties and attaches it to the exam. Similarly, multiple answers are handled in

another routine. Custom exceptions are raised if structural anomalies are found, such as an exami-

nation with no questions or a question with no answers.

User Tracking

The classes established earlier provide a static view of a test, as extracted from an appropriate

XML document. In conjunction with these, you need some way of tracking a user’s interactions

with that exam. So you create the TUserSession class (see Listing 25-5).

Listing 25-5: Tracking a user’s progress

{ The user's answers to the questions }
TUserSession = class(TPersistent)
private
FAnswers: TStringList;
FExam: TExam;
function GetAnswer(QuestionId: string): string;
function GetAnswered: Integer;
function GetCorrect: Integer;

470 Part V: Sample Applications



function GetIsAnswered(QuestionId: string): Boolean;
function GetQuestionId(Index: Integer): string;
function GetQuestionCount: Integer;
function GetScore: Integer;
procedure SetAnswer(QuestionId, UserAnswer: string);

public
constructor Create(Exam: TExam);
destructor Destroy; override;
property Answer[QuestionId: string]: string read GetAnswer
write SetAnswer;

property Answered: Integer read GetAnswered;
property Correct: Integer read GetCorrect;
property Exam: TExam read FExam;
property IsAnswered[QuestionId: string]: Boolean read GetIsAnswered;
property QuestionId[Index: Integer]: string read GetQuestionId;
property QuestionCount: Integer read GetQuestionCount;
property Score: Integer read GetScore;
procedure InitialiseQuestions;

end;

On creation, a user session is associated with a single test (and this cannot be changed). Then you

need to add properties that record the user’s responses to each question, Answer, and can provide

statistics on their progress, Answered, Correct, and Score.

Although the questions that make up an exam are the same for every user, their order may be

different. Once a user session is created and attached to an exam, a method is called to establish the

specific order for this session, InitializeQuestions (see Listing 25-6). First, this routine clears

out any existing responses and lists the questions in order. A string list keeps track of the responses

(and also the order of the questions). Using the Values property of the string list allows you to

associate an answer with each question ID. Since at the start there are no answers, and given that

the Values property does not store anything (not even the key value) when the associated value is

blank, you must introduce a special value to denote this—Unanswered.

Listing 25-6: Initializing a user session

{ Randomize the order of the questions (if appropriate) }
procedure TUserSession.InitializeQuestions;
var
Index: Integer;

begin
{ Load the question ids as unanswered }
FAnswers.Clear;
for Index := 0 to Exam.QuestionCount –1 do
FAnswers.Values[Exam.Questions[Index].Id] := Unanswered;

{ If cannot reorder or nothing to reorder then finished }
if Exam.StrictOrder or (Exam.QuestionCount < 2) then
Exit;

{ Shuffle the questions }
Randomize;
for Index := FAnswers.Count –1 downto 1 do
FAnswers.Exchange(Random(Index + 1), Index);

end;

Next the routine checks the exam to see whether the questions can appear in any order, and exits if

they must appear as given. Otherwise, you shuffle the entries in the string list to vary the question

order. The Randomize procedure ensures that a new seed is chosen for the random number

Chapter 25: Examination XML — Delphi Client 471



generator. Then you step through the list, selecting one entry at random from the remainder to

swap with the current entry.

Now when you iterate through the list in index order, you find questions in a random order. The

QuestionId property returns this information, and can then be used to access the corresponding

question object from the exam itself.

Exam Application

Now that you have your XML document loaded into objects, you can wrap a Delphi application

around them to administer the examination. Note that the objects described above only model the

examination and a user taking it; they do not assume any kind of presentation, making their reuse

possible in different front ends.

Your main form contains a TPageControl that

shows one of three pages: an introduction, a single

question, or a progress and score page. The applica-

tion accepts the name of the XML document to read

as a command-line parameter. It passes this to the

LoadExam method and gets back the corresponding

TExam object. A new user session is then created

and the introductory page is populated and dis-

played (see Figure 25-1).

Buttons along the bottom of the screen provide nav-

igation, with the current question being tracked by

the FCurQuestion variable. For generic navigation

processing you have all the buttons call a common

routine, btnNextPreviousClick (see Listing 25-7),

and encode the direction of movement in each one’s

Tag property by setting it to either –1 or +1. The

Start button on the introductory page also uses this

technique, functioning as a Next button.

Listing 25-7: Navigating the questions

{ Go to the next/previous question }
procedure TfrmExam.btnNextPreviousClick(Sender: TObject);
begin
ProcessCurQuestion;
FCurQuestion := FCurQuestion + TBitBtn(Sender).Tag;
if FCurQuestion > FExam.QuestionCount –1 then
ShowScore

else
ShowCurQuestion;

end;

As each question is accessed, you must first process any answer(s) to the previous question (as

shown in Listing 25-8). Depending on the answer type, you construct a response by concatenating

472 Part V: Sample Applications

Figure 25-1: Introduction to the exam.



selected index values (radio or check box types) or by taking the entered text. This is given to the

user session object to store against the current question ID. Of course, if the question has already

been answered, no changes are allowed.

Listing 25-8: Saving an answer

{ Process the answers provided for the current question }
procedure TfrmExam.ProcessCurQuestion;
var
QuestionId: string;

begin
if FCurQuestion = -1 then
Exit;

QuestionId := FSession.QuestionId[FCurQuestion];
{ A question can only be answered once }
if not FSession.IsAnswered[QuestionId] then
ProcessQuestion(FExam.QuestionById[QuestionId]);

end;
{ Process the answers provided for the specified question }
procedure TfrmExam.ProcessQuestion(Question: TQuestion);
var
Index: Integer;
Answer: string;

begin
Answer := '';
case Question.AnswerType of
atCheckbox:
{ Find index(es) of selected checkbox(es) }
for Index := 0 to Question.AnswerCount –1 do
with TCheckBox(FindComponent('cbxAnswer' +

IntToStr(Index + 1))) do
if Checked then
Answer := Answer + ',' + IntToStr(Index);

atRadio:
{ Find index of selected radio button }
for Index := 0 to Question.AnswerCount –1 do
with TRadioButton(FindComponent('rabAnswer' +

IntToStr(Index + 1))) do
if Checked then
Answer := Answer + ',' + IntToStr(Index);

atText:
Answer := ',' + edtAnswer.Text;

end;
if Answer <> '' then
FSession.Answer[Question.Id] :=
Copy(Answer, 2, Length(Answer) –1);

end;

Using the updated value in FCurQuestion, you ask the session object to identify which question

you are currently on. Then, you extract its details from the exam object (as shown in Listing 25-9).

The question number and query text are copied directly to their corresponding fields. Display of

the answers depends on their type.

Listing 25-9: Displaying a question

{ Present the specified question }
procedure TfrmExam.ShowQuestion(Question: TQuestion;
CurQuestion: Integer; Response: string);

var

Chapter 25: Examination XML — Delphi Client 473



Index: Integer;
Answered, Selected: Boolean;
Answers: string;
{ Has the user selected this checkbox/radio button? }
function UserSelected(Index: Integer): Boolean;
begin
Result := (Pos(',' + IntToStr(Index) + ',', ',' +
Response + ',') > 0);

end;
begin
pgcExam.ActivePage := tshQuestion;
{ Has the user answered this question? }
Answered := (Response <> '');
{ Set page header }
lblQuestion.Caption := IntToStr(FCurQuestion + 1);
memQuestion.Lines.Text := Question.Query;
btnNext.SetFocus;
{ Set answer fields }
case Question.AnswerType of
atCheckbox:
begin
pgcAnswers.ActivePage := tshCheckBox;
tshCheckBox.Enabled := not Answered;
for Index := 0 to Question.AnswerCount –1 do
begin
Selected := Answered and UserSelected(Index);
{ Set checkbox }
with TCheckBox(FindComponent(
'cbxAnswer' + IntToStr(Index + 1))) do

begin
Caption := Question.Answers[Index].Value;
Checked := Selected;
Visible := True;

end;
{ If already answered show correctness }
with TImage(FindComponent(
'imgCheckbox' + IntToStr(Index + 1))) do

begin
Visible := Answered and Question.Answers[Index].Correct;
Picture.Assign(
FCorrect[Question.Answers[Index].Correct and Selected]);

end;
end;
{ Set focus }
if tshCheckBox.Enabled then
cbxAnswer1.SetFocus;

{ Hide extranous answers }
for Index := Question.AnswerCount to FmaxAnswers –1 do
begin
TCheckBox(FindComponent('cbxAnswer' + IntToStr(Index + 1))).
Visible := False;

TImage(FindComponent('imgCheckbox' + IntToStr(Index + 1))).
Visible := False;

end;
end;

atRadio:
begin
pgcAnswers.ActivePage := tshRadio;
tshRadio.Enabled := not Answered;
for Index := 0 to Question.AnswerCount –1 do

474 Part V: Sample Applications



begin
Selected := Answered and UserSelected(Index);
{ Set radio button }
with TRadioButton(FindComponent(
'rabAnswer' + IntToStr(Index + 1))) do

begin
Caption := Question.Answers[Index].Value;
Checked := Selected;
Visible := True;

end;
{ If already answered show correctness }
with TImage(FindComponent(
'imgRadio' + IntToStr(Index + 1))) do

begin
Visible := Answered and Question.Answers[Index].Correct;
Picture.Assign(
FCorrect[Question.Answers[Index].Correct and Selected]);

end;
end;
{ Set focus }
if tshRadio.Enabled then
begin
rabAnswer1.SetFocus;
rabAnswer1.Checked := False;

end;
{ Hide extranous answers }
for Index := Question.AnswerCount to FmaxAnswers –1 do
begin
TRadioButton(FindComponent(
'rabAnswer' + IntToStr(Index + 1))).Visible := False;

TImage(FindComponent('imgRadio' + IntToStr(Index + 1))).
Visible := False;

end;
end;

atText:
begin
pgcAnswers.ActivePage := tshText;
tshText.Enabled := not Answered;
{ Set text }
edtAnswer.Text := Response;
{ If already answered show correctness }
imgText.Visible := Answered;
imgText.Picture.Assign(FCorrect[Question.IsValid(Response)]);
{ Set focus }
if tshText.Enabled then
edtAnswer.SetFocus;

end;
end;
{ Show the explanation if already answered }
pnlExplanation.Visible := Answered;
if Answered then
begin
Answers := '';
if Question.AnswerType = atText then
begin
{ List valid text answers }
for Index := 0 to Question.ValidAnswers.Count –1 do
Answers := Answers + ', ' + Question.ValidAnswers[Index];

Answers := Accepted + ' ' +
Copy(Answers, 3, Length(Answers)) + #13#10;

Chapter 25: Examination XML — Delphi Client 475



end;
memExplanation.Lines.Text := Answers + Question.Explanation;

end;
{ Dis/enable navigation buttons }
btnPrevious.Enabled := (FCurQuestion > 0);

end;

Each answer type has a corresponding tab on a sec-

ond TPageControl embedded in the question page.

They contain appropriate controls for the different

answer styles. You may have up to five answers for

radio and check box types, or a single edit control

for text ones. The FindComponent method lets you

locate individual controls as you process answers

other than text types. Given a known base name,

you just append the index for each answer and

retrieve the matching component. When reviewing

responses, the entire tab is disabled, preventing any

further updates. See Figure 25-2 for an example

question that uses radio buttons.

Alongside each answer is an image control,

which indicates the correctness of the answer. The

image is only visible once the question has been

answered and the user is reviewing their responses

(see Figure 25-3). To manage the icons that appear

here you use two invisible image controls on the

form itself that are loaded at design time. These can

then be assigned to the other images as required.

Icons are used so that their background easily

blends in with the current color scheme.

The explanation for each question is also only

shown once the question has been answered. Its

presence is simply set by adjusting the visibility of

an underlying panel that contains all the necessary

controls. For text-type answers you include a list of

the valid responses at the start of the explanation,

since they would otherwise never be visible.

Finally, the score page is available on request

(see Figure 25-4), allowing the user to follow their

progress through the test. On the left it shows a list of all the questions in the exam and indicates

their current status with an image (unanswered ones are blank). A question can be reviewed by

double-clicking its entry in the list. On the right are the statistics for the exam, including the

all-important measure—did I pass?

476 Part V: Sample Applications

Figure 25-2: Asking the question.

Figure 25-3: Reviewing an answer.

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



In a stricter examination, you may not allow access

to previous questions nor the score page until the

end of the exam. Once all the questions were

answered you could show the results and allow the

user to go back through the questions to review

their responses. This can be easily done through

setting the navigation buttons’ Visible properties

at appropriate times.

NOTE The sample project described here takes
the name of the exam to administer as a command-
line parameter. Several exams accompany the pro-
gram: DelphiExam.xml tests your knowledge of
Delphi, DelphiExam2.xml has the same content but
places each question in a separate XML document
(DelphiQx.xml) that are recombined using entities,
and PythonExam.xml is a very silly exam on Monty
Python and the Holy Grail. Have fun!

Summary

Separating the examination content from its presentation allows you to offer different access

methods to the same test. With XML it is possible to have the individual questions in separate doc-

uments, and then combine these into an integrated test using external entities. This would allow

the questions to be developed separately from the test as a whole, and possibly be reused in other

tests.

The Delphi application presented here demonstrates a Windows program interface to the

exam. However, the underlying classes could be easily reused in a different environment, such as

presenting the test over the Internet as discussed in the next chapter.

Chapter 25: Examination XML — Delphi Client 477

Figure 25-4: Have I passed?



C h a p t e r 2 6

Examination XML —Examination XML —

Web ClientWeb Client

As mentioned in the previous chapter, XML lets you separate the content from its presentation.

The examination document discussed in that chapter is read and administered by a customized

Delphi client. To show how XML is reused in other situations, this chapter describes a Web-based

front end to the same document (or any other exam for that matter).

Since the exam appears in a browser under this application, you can use XSL Transformations

to convert the XML content directly into HTML. This simplifies the generation process as you do

not have to write code to perform the substitutions necessary with Delphi’s page producer compo-

nents. Furthermore, you can adjust the look of the site through modifications to the stylesheets

without a recompilation of the application.

The Microsoft XML package provides methods to apply XSLT stylesheets to documents (or

even individual nodes), so the Web application is based around its abilities. Microsoft has also

introduced additional interfaces and objects to improve the performance of the transformation

process.

Exam Transformations

You need three different transformations to administer an exam: one for the introduction, one for

an individual question, and one for the results. This parallels the three tabs used in the standalone

Delphi version.

XSLT is a powerful language for specifying the conversion, letting you locate any section of

an XML document and reformat its contents with relative ease. Recall that any content and any

tags in the stylesheet that do not belong to the XSLT namespace are passed along to the output.

Thus it is simple to embed the HTML tags within the transformation.

NOTE HTML tags within an XSLT document must be well-formed since they are part of an
XML document. So, all tags must be closed (including ones like img and hr), and all attributes
must be properly quoted.

478



Listing 26-1 shows the XSLT stylesheet for displaying and processing a single question from the

exam. It starts with an xsl:stylesheet element that has a namespace declaration for the transfor-

mation tags. This namespace must appear like this (although you could alter the prefix) for the

transformation engine to function correctly. After setting up the basic HTML page in the

whole-document template, it selects a single question node and formats its contents into a form so

that any response can be dealt with.

Listing 26-1: Transformation for a question

<?xml version="1.0" encoding="UTF-8"?>
<!-- Examination Question Stylesheet

Show a single question with possible answers
Written by Keith Wood, 16 June, 2000 -->

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<!-- The answer(s) selected by the examinee -->
<xsl:param name="answer">tobject</xsl:param>
<!-- The name of the script processing this page -->
<xsl:param name="engine">webexam.dll</xsl:param>
<!-- The id of the question to display -->
<xsl:param name="qid">Q3</xsl:param>
<!-- The question's ordinal position in the exam -->
<xsl:param name="qno">2</xsl:param>
<!-- Set to 'true' to show results,

'false' for initial questioning -->
<xsl:param name="results">true</xsl:param>
<!-- The user's id -->
<xsl:param name="ses">123</xsl:param>
<!-- The overall document -->
<xsl:template match="/">
<html>
<head>
<title><xsl:value-of select="exam/title"/>—Question
<xsl:value-of select="$qno"/></title>

</head>
<body>
<xsl:apply-templates select="id($qid)"/>
<hr/>
<p>Written by <a href="mailto:kbwood@compuserve.com">
Keith Wood</a>.</p>

</body>
</html>

</xsl:template>
<!-- Display text for a single question -->
<xsl:template match="question">
<form method="post" action="{$engine}">
<table border="0" width="100%">
<tr><td colspan="2"><h2>Question
<xsl:value-of select="$qno"/></h2></td>

</tr>
<tr><th align="right" valign="top">Query:</th>
<td><pre><xsl:value-of select="query"/></pre></td>

</tr>
<tr><th align="right" valign="top">Answer:</th>
<td>
<table border="0">
<xsl:apply-templates select="answers"/>

</table>

Chapter 26: Examination XML — Web Client 479



</td>
</tr>
<xsl:if test="$results='true'">
<tr><th align="right" valign="top">Explanation:</th>
<td><p><xsl:value-of select="explanation"/></p></td>

</tr>
</xsl:if>

</table>
<div align="center" xml:space="preserve">
<input type="hidden" name="ses" value="{$ses}"/>
<input type="hidden" name="qno" value="{$qno}"/>
<input type="submit" name="act" value="Previous"/>
<input type="submit" name="act" value="Next"/>
<xsl:if test="$results='true'">
<input type="submit" name="act" value="Results"/>

</xsl:if>
</div>

</form>
</xsl:template>
<!-- Format answers for radio button/checkbox type responses -->
<xsl:template match="answers[@type!='text']/answer">
<tr>
<td>
<xsl:choose>
<xsl:when test="$results='true' and @correct='true'">
<xsl:choose>
<xsl:when

test="contains($answer,string(position() –1))">
<img src="images/correct.gif" alt="Correct"
height="16" width="16"/>

</xsl:when>
<xsl:otherwise>
<img src="images/incorrect.gif" alt="Incorrect"
height="16" width="16"/>

</xsl:otherwise>
</xsl:choose>

</xsl:when>
<xsl:otherwise>
<img src="images/blank.gif" height="16" width="16"/>

</xsl:otherwise>
</xsl:choose>

</td>
<td><input name="answer" type="{../@type}"

value="{position() –1}">
<xsl:if test="contains($answer,string(position() –1))">
<xsl:attribute name="checked"/></xsl:if>

</input><xsl:value-of select="."/></td>
</tr>

</xsl:template>
<!-- Format answers for text type responses -->
<xsl:template match="answers[@type='text']">
<tr>
<td>
<xsl:choose>
<xsl:when test="$results='true'">
<xsl:choose>
<xsl:when test="answer=$answer">
<img src="images/correct.gif" alt="Correct"
height="16" width="16"/>

</xsl:when>

480 Part V: Sample Applications



<xsl:otherwise>
<img src="images/incorrect.gif" alt="Incorrect"
height="16" width="16"/>

</xsl:otherwise>
</xsl:choose>

</xsl:when>
<xsl:otherwise>
<img src="images/blank.gif" height="16" width="16"/>

</xsl:otherwise>
</xsl:choose>

</td>
<td><input name="answer" type="text" value="{$answer}"/></td>

</tr>
<xsl:if test="$results='true'">
<tr>
<td colspan="2">Valid answers:
<xsl:apply-templates select="answer"/></td>

</tr>
</xsl:if>

</xsl:template>
<!-- Format correct answers for text type responses -->
<xsl:template match="answers[@type='text']/answer">
<xsl:value-of select="."/>
<xsl:if test="position()!=last()">,</xsl:if>

</xsl:template>
</xsl:stylesheet>

Obviously, the template cannot know ahead of time what question is to be transformed for a partic-

ular call. Similarly, there are several other values that change from one question to the next of

which the template has no knowledge since they cannot be placed in the XML document itself.

The XSLT specification provides a way to overcome these difficulties and supply the stylesheet

with additional information. Through the xsl:param element you can pass values into the tem-

plate. You retrieve these values through the $param-name notation within the rest of the document.

Default values appear in Listing 26-1 for testing purposes (although the declarations themselves

must be present), and are overwritten by the real values at run time.

The display of possible answers for a question differs significantly if the response is text-based

rather than using radio buttons or check boxes. To handle this, two templates are defined with the

selection pattern controlling which one appears. All answers and answer tags are processed

through the following call in the question template:

<xsl:apply-templates select="answers"/>

Non-text answers then match with the template headed:

<xsl:template match="answers[@type!='text']/answer">

which means to find any answers element (within the current question) that has a type attribute

not equal to text and return its answer element children. The alternative is to locate a text-type

answers element with the other template, which returns that element itself:

<xsl:template match="answers[@type='text']">

Thereafter, you generate each individual answer as a radio button or check box (in the first case),

or as a single text entry. Any existing response appears in another of the document’s parameters,

Chapter 26: Examination XML — Web Client 481



allowing you to indicate its current

value. Figure 26-1 shows the result of

applying this transformation to a

question.

Another parameter determines

whether or not to show the outcome of

the user’s response. The results
parameter is set to True or False. Ini-

tially it is False, causing the

suppression of any scoring markers

and of any explanation for the correct

answer. When set to True, images

appear next to each correct answer

showing whether or not the user got it

right, and any necessary explanation

appears. The parameter appears in

several xsl:if and xsl:when tags that

test its value. Figure 26-2 illustrates

the view when this parameter is set to

True.

Control over the exam progress

comes from the HTML form that sur-

rounds the question content, and a

number of buttons placed at its bot-

tom. These let you move to the next or

previous question, or, once all ques-

tions are answered, directly to the

results page. Hidden fields in the form

pass vital details back to the Web

application, including a session num-

ber to identify each user and the

number of the current question within

the exam.

482 Part V: Sample Applications

Figure 26-1: Asking the question.

Figure 26-2: Checking your answer.



Scripting in Transformations

Since you are using the Microsoft XML package and its transformation engine, you can take

advantage of some unique abilities that it provides. The engine lets you embed script within your

stylesheet and invoke it in the rest of the document. Thus you can add functionality beyond the

capabilities of straight XSLT. The transformation for the exam results makes use of this in scoring

and presenting the list of questions for review.

To invoke the script processing you first need to declare appropriate namespaces within the

xsl:stylesheet element. Following the standard XSLT namespace, you must add one for

Microsoft’s scripting extensions:

xmlns:msxsl="urn:schemas-microsoft-com:xslt"

then one for use with your new scripted functions:

xmlns:exam="urn:keith/exams"

These say that the msxsl prefix identifies script declarations, while the exam prefix indicates calls

to those functions from the stylesheet body. Listing 26-2 shows these declarations and their use in

the stylesheet.

Listing 26-2: Using scripting in the transformation

<?xml version="1.0" encoding="UTF-8"?>
<!-- Examination Results Stylesheet

Show the outcome of the examination,
with links back to the questions
Written by Keith Wood, 16 June, 2000 -->

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:msxsl="urn:schemas-microsoft-com:xslt"
xmlns:exam="urn:keith/exams">

<!-- Are the questions answered correctly -->
<xsl:param name="answers">Y N</xsl:param>
<!-- The name of the script processing this page -->
<xsl:param name="engine">webexam.dll</xsl:param>
<!-- The user's id -->
<xsl:param name="ses">123</xsl:param>
<!-- Functions to count answers -->
<msxsl:script language="JScript" implements-prefix="exam">
<![CDATA[
// How many answered?
function getCount(answers) {
var count = 0;
for (index = 0; index < answers.length; index++)
if (answers.charAt(index) != ' ')
count++;

return count;
}
// How many correct?
function getScore(answers) {
var score = 0;
for (index = 0; index < answers.length; index++)
if (answers.charAt(index) == 'Y')
score++;

return score;

Chapter 26: Examination XML — Web Client 483



}
]]>

</msxsl:script>
<!-- The overall document -->
<xsl:template match="/">
<html>
<head>
<title><xsl:value-of select="exam/title"/> Results</title>
<style>
.passed { color=green; font-weight=bold; }
.failed { color=red; font-weight=bold; }

</style>
</head>
<body>
<xsl:apply-templates select="exam"/>
<hr/>
<p>Written by <a href="mailto:kbwood@compuserve.com">
Keith Wood</a>.</p>

</body>
</html>

</xsl:template>
<!-- Display outcome of examination -->
<xsl:template match="exam">
<h1><xsl:value-of select="title"/> Results</h1>
<p><xsl:value-of select="description"/></p>
<table border="0" width="100%">
<tr>
<td width="50%" valign="top">
<p>This test has a pass mark of
<strong><xsl:value-of select="@pass_mark"/>%</strong>.</p>
<p>You have answered <strong>
<xsl:value-of select="exam:getCount(string($answers))"/>
</strong> out of <strong>
<xsl:value-of select="count(question)"/></strong>
questions.</p>

<p>Your score is <strong>
<xsl:value-of select="exam:getScore(string($answers))"/>
</strong>.</p>

<xsl:choose>
<xsl:when test="(exam:getScore(string($answers))*100 div

count(question))>=number(@pass_mark)">
<p>You have <span class="passed">passed</span>.</p>

</xsl:when>
<xsl:otherwise>
<p>You have <span class="failed">failed</span>.</p>

</xsl:otherwise>
</xsl:choose>

</td>
<td width="50%" valign="top">
<xsl:apply-templates select="question"/>

</td>
</tr>

</table>
</xsl:template>
<!-- Provide a link back to the question -->
<xsl:template match="question">
<xsl:choose>
<xsl:when test="substring($answers, position(), 1)='Y'">
<img src="images/correct.gif" alt="Correct"
height="16" width="16"/>

484 Part V: Sample Applications



</xsl:when>
<xsl:when test="substring($answers, position(), 1)='N'">
<img src="images/incorrect.gif" alt="Incorrect"
height="16" width="16"/>

</xsl:when>
<xsl:otherwise>
<img src="images/blank.gif" height="16" width="16"/>

</xsl:otherwise>
</xsl:choose>
<a href="{$engine}?ses={$ses}&amp;act=Goto&amp;qno={position()}">
Question <xsl:value-of select="position()"/>

</a><br/>
</xsl:template>

</xsl:stylesheet>

The actual script appears within the msxsl:script element, which takes attributes denoting what

language is being used and the namespace prefix to match up with. In this example, one function

counts the total number of questions that have been answered, while another counts the number of

correct answers. Both operate on a string passed to the stylesheet as a parameter (answers). It con-

tains one character for each question in the exam in order. A Y indicates that the question at that

position was answered correctly, an N shows an incorrect answer, and an empty string means that

this question has not been answered at all.

TIP Embed all your script within a CDATA section in the msxsl:script element. This means
that you do not have to worry about escaping any metacharacters that appear in the script
itself.

To obtain the result of one of these functions you refer to it with the declared namespace prefix,

generally within an xsl:value-of element:

<p>Your score is <strong><xsl:value-of
select="exam:getScore(string($answers))"/></strong>.</p>

The answers parameter value is also tested to determine which image to display next to each ques-

tion reference. Use the standard substring function from XSLT to test the individual character

corresponding to that question and include an appropriate image.

<xsl:when test="substring($answers, position(), 1)='Y'">
<img src="images/correct.gif" alt="Correct" height="16" width="16"/>

</xsl:when>

Following the image is a link back to that question so that you can easily review your answer and

any explanation. Several other parameter values for the stylesheet are included in the link. The

final result is shown in Figure 26-3.

<a href="{$engine}?ses={$ses}&amp;act=Goto&amp;qno={position()}">
Question <xsl:value-of select="position()"/>

</a>

NOTE You do not need to use the scripting available through Microsoft’s XSLT engine, since
doing so restricts you to using only this implementation. Instead, you can perform all the nec-
essary calculations in Delphi and pass just the results over as further xsl:param fields.
Scripting is shown here simply to demonstrate its use.

Chapter 26: Examination XML — Web Client 485



Web Application Initialization

To create the Web application that administers the examinations online, you generate a new

ISAPI-based Web Server Application. This provides the necessary functionality to accept HTTP

requests from the Web server and present them for processing within the program.

As part of the discussion of Microsoft’s XML DOM package in Chapter 9, you saw the

IXSLTemplate and IXSLProcessor interfaces. These provide the performance benefits mentioned

earlier. Normally, when applying a transformation you load in the original XML document as a

DOM structure, then load the XSLT stylesheet as another DOM, and call the TransformNode
method to process the conversion. However, this involves the compilation of the stylesheet defini-

tions before they can be used in the process.

Since the stylesheets remain fairly static, pre-compiling them and keeping the resulting object

around produces a performance boost. It can then be applied to numerous XML documents with-

out further preparation. The IXSLTemplate interface describes an object that does just that. A

stylesheet is loaded into a DOM and passed to the template object, whereupon it is compiled.

When you want to apply a transformation, you ask the template for an IXSLProcessor object that

you supply with an XML document and from which you retrieve the formatted output.

There are three stylesheets used for the online examination application and these are applied

over and over as exams are requested. So it would be useful to have these loaded and prepared

when the program starts, ready for them to be called upon as needed. The best place for this type of

setup is the initialization section of the Web module unit. Code in this section executes before

anything else in the unit, letting you establish the environment for the main code. Listing 26-3

shows the initialization and finalization sections that load in the XSLT stylesheets.

486 Part V: Sample Applications

Figure 26-3: The outcome of the examination.

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



Listing 26-3: Initialization for the transformations

initialization
BaseDir := 'c:\inetpub\scripts\';
{ Create lists for exams and user sessions }
ExamList := TStringList.Create;
Sessions := TStringList.Create;
XMLDocs := TInterfaceList.Create;
{ Create template for introduction stylesheet }
XSLIntro := CoFreeThreadedDOMDocument.Create;
if not XSLIntro.Load(BaseDir + ExamIntro) then
MessageDlg('Couldn''t load exam intro'#13 +
XSLIntro.ParseError.Reason, mtError, [mbOK], 0);

XSLIntroTemplate := CoXSLTemplate.Create;
XSLIntroTemplate.Stylesheet := XSLIntro;
{ Create template for individual question stylesheet }
XSLQuestion := CoFreeThreadedDOMDocument.Create;
if not XSLQuestion.Load(BaseDir + ExamQuestion) then
MessageDlg('Couldn''t load exam question'#13 +
XSLQuestion.ParseError.Reason, mtError, [mbOK], 0);

XSLQuestionTemplate := CoXSLTemplate.Create;
XSLQuestionTemplate.Stylesheet := XSLQuestion;
{ Create template for results stylesheet }
XSLResults := CoFreeThreadedDOMDocument.Create;
if not XSLResults.Load(BaseDir + ExamResults) then
MessageDlg('Couldn''t load exam results'#13 +
XSLResults.ParseError.Reason, mtError, [mbOK], 0);

XSLResultsTemplate := CoXSLTemplate.Create;
XSLResultsTemplate.Stylesheet := XSLResults;

finalization
{ Release resources }
for Index := 0 to ExamList.Count –1 do
ExamList.Objects[Index].Free;

ExamList.Free;
for Index := 0 to Sessions.Count –1 do
Sessions.Objects[Index].Free;

Sessions.Free;
XMLDocs.Free;
XSLIntroTemplate := nil;
XSLIntro := nil;
XSLQuestionTemplate := nil;
XSLQuestion := nil;
XSLResultsTemplate := nil;
XSLResults := nil;

end.

A template object is created for each stylesheet through the CoXSLTemplate CoClass. You can use

CoXSLTemplate30 instead to tie the implementation to this version of the XML package. The

stylesheet documents themselves are loaded into DOMs that are then passed to the templates

through their Stylesheet property. Since templates are designed to share a stylesheet between

many different requests, you must use a free-threading model DOM for the stylesheet document.

The CoFreeThreadedDOMDocument CoClass creates just what you need. During the finalization

processing these global objects are released by setting their references to nil (as mentioned

before, this is not strictly necessary since Delphi will release them once their variables go out of

scope anyway).

Chapter 26: Examination XML — Web Client 487



Also created in the start-up code are three lists. The first, ExamList, is a string list that links

names of exams to TExam objects. This lets you cache exam definitions (from the XML docu-

ments) on their first request and reuse them subsequently. Similarly, the XMLDocs list contains a set

of matched references to the DOMs for those exams. These are used when applying the various

transformations. Finally, there is another string list, Sessions, which links session IDs to

TUserSession objects. This list keeps track of what users have requested exams and where in that

exam they are.

Applying the Transformations

The Web module used in this application needs no page producer or any other components on it.

You perform all the output generation in code through the XSLT templates loaded above. All that

is required is a single action to receive the users’ requests.

1. Right-click on the Web module and select Action Editor.

2. Add a new action and set it to be the default.

3. Create an OnAction handler for the action and enter the code shown in Listing 26-4.

Listing 26-4: Transforming the exam document

{ Generate the appropriate HTML page from the exam and user responses }
procedure TwmdExam.wmbExamwacExamAction(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

var
CurQuestion: Integer;
Exam: TExam;
Fields: TStrings;
QuestionId: string;
ScriptName: string;
Session: TUserSession;
SessionId: string;
UserAction: string;
XMLDoc: IXMLDOMDocument;
XSLProcessor: IXSLProcessor;
{ Save any answers from the current page }
procedure ProcessAnswers(QuestionId: string);
var
Answer: string;
Index: Integer;
Question: TQuestion;

begin
{ If already answered then can't change it }
if Session.IsAnswered[QuestionId] then
Exit;

{ Retrieve answer(s) based on type }
Question := Session.Exam.QuestionById[QuestionId];
if Question.AnswerType = atCheckbox then
begin
Answer := '';
{ Could be multiple selections }
for Index := 0 to Fields.Count –1 do
if Fields.Names[Index] = AnswerField then
Answer := Answer + ',' +

488 Part V: Sample Applications



Copy(Fields[Index], Length(AnswerField) + 2, 255);
if Answer <> '' then
Delete(Answer, 1, 1);

end
else
Answer := Fields.Values[AnswerField];

Session.Answer[QuestionId] := Answer;
end;
{ Initialization—extract common fields and save any answer }
procedure Initialize;
var
ExamName: string;
Index: Integer;

begin
{ Extract the script location }
ScriptName := Request.ScriptName;
{ Set up a pointer to the request fields }
if Request.Method = GetMethod then
Fields := Request.QueryFields

else
Fields := Request.ContentFields;

{ Retrieve the current session details }
SessionId := Fields.Values[SessionField];
Index := Sessions.IndexOf(SessionId);
if Index > -1 then
begin
{ Retrieve previous session details }
Session := TUserSession(Sessions.Objects[Index]);
Exam := Session.Exam;
XMLDoc := XMLDocs[ExamList.IndexOfObject(Exam)] as
IXMLDOMDocument;

end
else
begin
ExamName := Fields.Values[ExamField];
Index := ExamList.IndexOf(ExamName);
if Index > -1 then
begin
{ Retrieve existing exam }
Exam := TExam(ExamList.Objects[Index]);
XMLDoc := XMLDocs[Index] as IXMLDOMDocument;

end
else
begin
{ Load new exam }
Exam := LoadExam(BaseDir + ExamName);
{ Create XML object model for exam }
XMLDoc := CoDOMDocument.Create;
if not XMLDoc.Load(BaseDir + ExamName) then
raise Exception.Create('Couldn''t load exam doc'#13 +
XMLDoc.ParseError.Reason);

{ Cache for future reference }
ExamList.AddObject(ExamName, Exam);
XMLDocs.Add(XMLDoc);

end;
{ Create a new user session }
Session := TUserSession.Create(Exam);
repeat
SessionId := IntToStr(Random(SessionRange));

until Sessions.IndexOf(SessionId) = -1;

Chapter 26: Examination XML — Web Client 489



Sessions.AddObject(SessionId, Session);
end;
{ Extract the user requested action }
UserAction := Fields.Values[ActionField];
try
{ Get the current question number }
CurQuestion := StrToInt(Fields.Values[QuestionField]);
QuestionId := Session.QuestionId[CurQuestion –1];
{ Do we need to save any current answers? }
if UserAction <> GotoAction then
ProcessAnswers(QuestionId);

except
{ Ignore }

end;
end;
{ Has the exam been completed? }
function Completed: Boolean;
begin
Result := (Session.Answered = Session.QuestionCount);

end;
{ Compile a string representing the results of
answering the questions—'Y' for correct,
'N' for incorrect, ' ' for unanswered }

function CompileAnswers: string;
const
Correct: array [Boolean] of string = ('N', 'Y');

var
Index: Integer;
QuestionId: string;

begin
for Index := 0 to Session.QuestionCount –1 do
begin
QuestionId := Session.QuestionId[Index];
if Session.IsAnswered[QuestionId] then
Result := Result + Correct[Exam.QuestionById[QuestionId].
IsValid(Session.Answer[QuestionId])]

else
Result := Result + ' ';

end;
end;
{ Create an XSL processor and set common properties }
function PrepareProcessor(XSLTemplate: IXSLTemplate): IXSLProcessor;
begin
Result := XSLTemplate.CreateProcessor;
Result.AddParameter(EngineParam, ScriptName, '');
Result.AddParameter(SessionParam, SessionId, '');
Result.Input := XMLDoc;

end;
begin
try
{ Extract common fields and save any answer }
Initialize;
{ Move to a new question }
if UserAction = NextAction then
Inc(CurQuestion)

else if UserAction = PreviousAction then
begin
Dec(CurQuestion);
if CurQuestion < 1 then
CurQuestion := 1;

490 Part V: Sample Applications



end;
{ Perform the requested action }
if (UserAction = ResultsAction) or
(CurQuestion > Session.QuestionCount) then

begin
{ Show the scoring page }
XSLProcessor := PrepareProcessor(XSLResultsTemplate);
XSLProcessor.AddParameter(AnswersParam, CompileAnswers, '');
XSLProcessor.Transform;
Response.Content := XSLProcessor.Output;

end
else if (UserAction = NextAction) or
(UserAction = PreviousAction) or
(UserAction = GotoAction) then

begin
{ Show a question page }
QuestionId := Session.QuestionId[CurQuestion –1];
XSLProcessor := PrepareProcessor(XSLQuestionTemplate);
XSLProcessor.AddParameter(AnswerParam,
Session.Answer[QuestionId], '');

XSLProcessor.AddParameter(QuestionIdParam, QuestionId, '');
XSLProcessor.AddParameter(QuestionParam, CurQuestion, '');
XSLProcessor.AddParameter(ResultsParam, Completed, '');
XSLProcessor.Transform;
Response.Content := XSLProcessor.Output;

end
else
begin
{ Default—show the introduction }
XSLProcessor := PrepareProcessor(XSLIntroTemplate);
XSLProcessor.Transform;
Response.Content := XSLProcessor.Output;

end;
finally
Response.ContentType := 'text/html';
Handled := True;
XMLDoc := nil;
XSLProcessor := nil;

end;
end;

Each request first goes to an initialization procedure that establishes the environment for that par-

ticular user. It extracts the session ID from the request parameters and retrieves the corresponding

TUserSession object from the Sessions list. A new session is generated and added to the list if

one does not currently exist. Session IDs are randomly generated numbers in a specified range to

limit cross-talk between users.

If the session exists, then it has a reference to the associated exam object. From the latter you

also retrieve the corresponding DOM. If there was no session, then you check the cache for the

specified exam, loading it if it is not there and retrieving it otherwise.

TIP There are problems with storing DOM references (IXMLDOMDocument) directly in a normal
list since this does not handle the reference counting properly. However, starting with Delphi
4, you can use the TInterfaceList class for just this purpose.

Chapter 26: Examination XML — Web Client 491



Once the necessary objects are found, processing can begin. From the request parameters you

extract the current question number and any action specified by the user. If there is a current ques-

tion, you also need to save away any answer from that page.

The ProcessAnswers procedure first checks whether or not the specified question has already

been answered, since you cannot change your answer once entered. In the case of a question that

has multiple possible answers (presented as check boxes), you must compile the list of choices

selected to be the final answer (there may be multiple answer fields in the request parameters).

Otherwise, just use the value of the single answer field. The answer value is saved to the user ses-

sion object against the current question.

The user action field is then checked for a navigation request, either incrementing or decre-

menting the current question number. Now you must decide which transformation to apply

depending on the current state of the examination. If the user asked to see the results page, or they

have moved on from the last question, you generate the final page showing the exam outcome.

Otherwise, if an action was supplied, you display the page for the current question. If none of these

situations applies, you present the introduction page.

A transformation is initiated by creating an IXSLProcessor object from the appropriate tem-

plate. This is a single-use object for the encapsulated transformation. Its Input property is set to

the XML DOM that represents the exam. Pass parameters to the processor through its

AddParameter method, supplying its base name, new value, and any namespace URI. The Trans-
form method of the processor initiates the actual transformation, with the result available from the

Output property as a string. Return this value to the browser through the Response object.

Finishing Up

An HTML page provides the initial access to the online examination program (see Figure 26-4). It

lists each exam by a descriptive name and links that to the Web application, passing along the

name of the XML document that defines the exam content. Since no other parameters appear, the

program defaults to the introduction page for that exam, as shown in Figure 26-5.

<a href="/scripts/webexam.dll?exam=DelphiExam.xml">Delphi</a>

To deploy the application, you need to copy the ISAPI DLL to the scripts directory on the Web

server. In that same location you also need to place the examination XML documents

(DelphiExam.xml, PythonExam.xml), their DTD (Exam.dtd), and all the XSLT stylesheets

(Exam*.xsl). To initiate the exam sessions, you copy the Exams.html page to the normal Web root

(wwwroot) and invoke it with http://localhost/Exams.html.

492 Part V: Sample Applications



Chapter 26: Examination XML — Web Client 493

Figure 26-4: Selecting an examination.

Figure 26-5: The exam introduction.



Summary

One of the prime objectives in the XML specification is to separate content from presentation. The

previous chapter and this one demonstrate this ideal in action. From a single XML document that

describes the content on an examination, you can build a customized Delphi application that

administers it locally or a Web-based application that presents it within a browser. Both make use

of a basic set of objects that encapsulate the information held in the XML document, but make it

easier to work with within Delphi.

XSL Transformations provides a convenient and standardized way of converting the XML

content into HTML for presentation purposes. This language has sufficient power to select any

part of the original document and reformat it into a different structure. The three stylesheets used

in this example each operate on the one exam definition but produce quite different results. Pass-

ing parameters to the stylesheet for each transformation lets you customize the output even

further.

The Microsoft XML package supplies the means to apply these transformations, with

enhancements such as IXSLTemplate to improve the efficiency with which it operates. Although

the scripting abilities of this transformation engine are non-standard, they provide valuable extra

functionality in particular situations.

494 Part V: Sample Applications



C h a p t e r 2 7

Simple Object AccessSimple Object Access

Protocol

The Simple Object Access Protocol (SOAP) is a “lightweight protocol for exchange of informa-

tion in a decentralized, distributed environment” (www.w3.org/TR/2000/NOTE-SOAP-

20000508/). Based on XML, it defines a messaging framework for use in a distributed system.

The SOAP specification is currently a W3C Note as of May 8, 2000. As such, it is intended for

discussion only, although several organizations are promoting its use. It details the contents of the

messages that are sent between distributed objects, describes an encoding scheme for representing

data within those messages, and sets out a convention for using these to facilitate remote proce-

dure calls and responses.

SOAP may be used with a variety of underlying transport mechanisms; however, only HTTP

is discussed in the specification. Using HTTP lets you establish a SOAP server as a Web applica-

tion and communicate with it through the standard port. This overcomes problems in opening up

other ports for a more specialized connection.

SOAP Introduction

Messages under SOAP are simple XML documents with some defined structure and some content

that depends entirely on the application. Although they are basically a one-way transmission from

one object to another, SOAP messages can be combined to provide a request/response pattern.

The basic structure of a SOAP message is shown in Listing 27-1. An Envelope document ele-

ment contains the message. Its namespace must be as shown since this value defines the version of

SOAP in use and a SOAP server must reject messages for versions it does not recognize. Another

optional attribute of the Envelope may define the encoding scheme used for data within the

request. It should appear like the following, which denotes the standard SOAP encoding based on

the XML Schema specification:

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

Listing 27-1: A SOAP message

<?xml version="1.0"?>
<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

495



<SOAP-ENV:Body>
<findMovies>
<rating>PG-13</rating>

</findMovies>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

An optional Header element may appear as the first child of the Envelope (and nowhere else). It

surrounds any number of elements that contain items of global interest to the main request. For

example, it may define a transaction to use in database accesses. Each element in the header may

have a SOAP-ENV:mustUnderstand attribute that is set to 0 (False, the default) or 1 (True). When

True, the server must acknowledge and process this header element since it is assumed to affect

the request in some fundamental way. If it cannot be actioned, an error must be generated.

SOAP also has the notion of an actor, which is the application that is destined to process the

message. Each message may pass through a number of intermediaries before arriving at its final

destination. A header targeted at a particular application must include a reference to it (as a URI)

in the SOAP-ENV:actor attribute. The special URI http://schemas.xmlsoap.org/soap/
actor/next indicates the receiving application (as does no actor specification). An application

must remove and process all headers noted for it before passing the request on to another server. It

is free, however, to add duplicate header elements for the next processor.

The Body element contains the actual requests, formatted as child elements. Parameters for

each request appear as children of that element. Such elements may have arbitrary types (defined

through an attribute) that conform to the encoding scheme established in the envelope. Additional

elements may appear following the Body.

Once a SOAP application processes a request, it sends a response in the form of another SOAP

message. Again, you have the SOAP Envelope and Body tags with appropriate namespace decla-

rations. Within the body you have an element that contains the result of the request. By

convention, this element is named the same as the request element with the string Response
appended. It surrounds the elements that provide the actual reply. Listing 27-2 shows a possible

response to the message above.

Listing 27-2: The SOAP response

<?xml version="1.0"?>
<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<findMoviesResponse>
<movie>Entrapment</movie>
<movie>Life is Beautiful</movie>

</findMoviesResponse>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

If some error condition arises, a response is still sent, but it contains a SOAP-ENV:Fault element in

the body instead. Within this appear a number of predefined elements that describe the problem.

The faultcode element is intended for automated use and consists of one of a small number of

generic types. The SOAP specification defines those shown in Table 27-1. You may define other

types as necessary.

496 Part V: Sample Applications

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



Table 27-1: SOAP fault codes

Code Meaning

VersionMismatch The namespace on the SOAP Envelope is unrecognized.

MustUnderstand A header element with the mustUnderstand attribute set to 1 is not
understood or cannot be processed.

Client The message body is badly formed or does not contain enough information
to process it. Some change is required to the body before the message can
be re-sent.

Server The request could not be processed due to problems in the server. The
message itself is fine and may succeed if re-sent at a later time.

In the faultstring element you find a human-readable description of the problem. Both of these

two elements must always be present. The faultactor element identifies the actor that generated

the error and is only required when multiple actors are used. Finally, the detail element must

appear whenever the error results from processing the body of the request, and must not be present

otherwise. It contains further details on the problem, such as internal error codes, a stack trace, etc.

See Listing 27-3 for an example of an error response.

Listing 27-3: Returning a SOAP error

<?xml version="1.0"?>
<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<SOAP-ENV:Fault>
<faultcode>SOAP-ENV:Client</faultcode>
<faultstring>No movies found</faultstring>
<detail>No movies found for rating 'NR'</detail>

</SOAP-ENV:Fault>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

When transmitted via HTTP, any error response must be sent back with an HTTP status code of

500—Internal server error. For valid responses the return code is the usual 200—OK. Incoming

SOAP requests over HTTP must also include a header field that indicates the purpose of the mes-

sage. This allows firewalls to easily filter requests. The header looks like the following, with the

supplied URI identifying the request. Specifying an empty string means that the HTTP URL itself

denotes the call.

SOAPAction: "http://www.movies.com/findMovies.dll"

NOTE A SOAP document does not have a DTD associated with it. This is primarily due to
the flexibility of the header and body content. A generic SOAP processor does not have to
know about each request element, only how to extract the relevant parts of the document and
invoke an action based on their content. In fact, the specification states that it is invalid for a
SOAP document to contain a DOCTYPE declaration.

Chapter 27: Simple Object Access Protocol 497



Processing SOAP

Using SOAP over HTTP is the only combination described in the specification, although other

transport mechanisms could be used. HTTP requests let you easily add SOAP functionality by

extending your Web server, and overcomes security problems in opening up alternate ports.

Under this scheme, you write a Web application that gets called for specific SOAP requests.

The program knows how to extract the message and to direct it to an appropriate processor for

evaluation. It then packages up the response (or error) and sends it back to the client. In true Delphi

fashion, you can create components that encapsulate this functionality and reduce writing a SOAP

processor to dropping a couple of components on a form and coding an event handler.

In normal Web applications, the request comes into a Web module that encapsulates a dis-

patcher for the query to one of a number of actions. When you create a Web application through

the wizard you have a Web module automatically generated for you. An alternative is to replace

that Web module with a standard data module and drop a TWebDispatcher component on it to han-

dle the forwarding. Since SOAP fundamentally alters the normal dispatch of requests, the easiest

way to implement it is to build a replacement for the TWebDispatcher.

This new component, the TSOAPDispatcher, derives from TCustomWebDispatcher to pick up

the basic request handling mechanisms. However, it does not expose the Actions property since

all queries are processed in the same manner. Internally it registers a single action, setting it to deal

with any incoming request, and ties it to a customized handler. A SOAPParser property is added to

connect with an XML parser that unpacks the message, while the OnHeader property lets you

attach an event handler to respond to header elements. Listing 27-4 shows the declaration for the

new dispatcher. This component and supporting code appear in the SOAPDispatcher unit.

Listing 27-4: A SOAP dispatcher

{ Event signature for SOAP headers }
TSOAPHeaderEvent = procedure(Sender: TSOAPDispatcher;
Name, Value: string; Attrs: TStrings; MustUnderstand: Boolean;
var Understood: Boolean) of object;

{ The customized Web dispatcher for SOAP requests }
TSOAPDispatcher = class(TCustomWebDispatcher)
private
FName: string;
FOnHeader: TSOAPHeaderEvent;
FResponses: TList;
FSOAPFault: ESOAPFault;
FSOAPActions: TSOAPActions;
FSOAPParser: TCustomSOAPParser;
procedure ClearResponses;

protected
function GetContent: string; virtual;
procedure Notification(AComponent: TComponent;
Operation: TOperation); override;

procedure SetSOAPFault(Fault: ESOAPFault);
procedure SetSOAPParser(Parser: TCustomSOAPParser);
procedure SOAPAction(Sender: TObject; Request: TWebRequest;
Response: TWebResponse; var Handled: Boolean); virtual;

public
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;

498 Part V: Sample Applications



property Content: string read GetContent;
property SOAPFault: ESOAPFault read FSOAPFault write SetSOAPFault;
procedure DoHeader(Name, Value: string; Attrs: TStrings;
MustUnderstand: Boolean; var Understood: Boolean);

procedure SetResponse(Name: string; Responses: TList);
published
property AfterDispatch;
property BeforeDispatch;
property OnHeader: TSOAPHeaderEvent read FOnHeader write FOnHeader;
property SOAPActions: TSOAPActions read FSOAPActions
write FSOAPActions;

property SOAPParser: TCustomSOAPParser read FSOAPParser
write SetSOAPParser;

end;

Instead of the Web actions of a standard dispatcher, the SOAP one provides the SOAPActions
property. This is a collection of TSOAPAction objects, each of which matches a name with an event

handler that knows how to deal with requests of that type. When an incoming message matches

with one of these names, the corresponding event is triggered, passing across the action object,

any parameters extracted from the message, references to the HTTP request and response, and a

flag to indicate that processing was completed. See Listing 27-5 for the declarations of the collec-

tion and its event handler.

Listing 27-5: SOAP actions defined

{ Event signature for SOAP requests }
TSOAPInvokeEvent = procedure(Sender: TSOAPAction; Params: TStrings;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean)
of object;

{ A single SOAP action }
TSOAPAction = class(TCollectionItem)
private
FName: string;
FOnInvoke: TSOAPInvokeEvent;

protected
function GetDispatcher: TSOAPDispatcher;
function GetDisplayName: string; override;

public
procedure AssignTo(Dest: TPersistent); override;
procedure DoInvoke(Params: TStrings; Request: TWebRequest;
Response: TWebResponse; var Handled: Boolean);

procedure SetResponse(Name: string; Responses: TList);
published
property Name: string read FName write FName;
property OnInvoke: TSOAPInvokeEvent read FOnInvoke write FOnInvoke;

end;
{ The list of SOAP actions handled by a dispatcher }
TSOAPActions = class(TCollection)
private
FOwner: TSOAPDispatcher;
function GetItem(Index: Integer): TSOAPAction;
procedure SetItem(Index: Integer; const Value: TSOAPAction);

protected
function GetOwner: TPersistent; override;

public
constructor Create(Owner: TSOAPDispatcher);
property Items[Index: Integer]: TSOAPAction read GetItem
write SetItem; default;

Chapter 27: Simple Object Access Protocol 499



function Add: TSOAPAction;
end;

Within those event handlers you should retrieve any required parameters and process the request

appropriately. A SOAP response should be generated through the SetReponse method on the

action, passing in the name of the response element (usually the action name with Response
appended) and a list of TSOAPResponse objects, each of which has a name and associated value.

These are used to produce the elements and content of the returned SOAP body.

Processing the request to invoke an appropriate action is shown in Listing 27-6. The entire

incoming message is retrieved based on the request method, before being passed off to the XML

parser connected to the dispatcher. It returns a TSOAPRequest object that contains the request name

and a list of parameters stored as name/value pairs in a string list. You then iterate through the list

of defined SOAP actions to find a match and call its event handler. An error arises if no match is

found. The HTTP response is formatted from the content established by the action handler (or an

exception) and returned to the client.

Listing 27-6: Handling a SOAP request

{ Process a SOAP request }
procedure TSOAPDispatcher.SOAPAction(Sender: TObject; Request: TWebRequest;
Response: TWebResponse; var Handled: Boolean);

var
Index: Integer;
SOAP: TSOAPRequest;
SOAPQuery: string;

begin
SOAP := nil;
try
try
if not Assigned(FSOAPParser) then
raise ESOAPFault.Create(SOAPFaultServer, NoParser);

if Request.Method = 'GET' then
SOAPQuery := Request.Query

else
SOAPQuery := Request.Content;

{ Parse the incoming request }
SOAP := FSOAPParser.ParseSOAP(Self, HTTPDecode(SOAPQuery));
Handled := False;
{ Find a registered handler for it }
for Index := 0 to FSOAPActions.Count –1 do
if FSOAPActions[Index].Name = SOAP.Name then
begin
{ And call it }
FSOAPActions[Index].DoInvoke(SOAP.Params,
Request, Response, Handled);

Break;
end;

if not Handled then
raise ESOAPFault.Create(SOAPFaultClient,
Format(UnknownRequest, [SOAP.Name]));

except on Error: Exception do
begin
{ Trap errors and return to the caller }
if Error is ESOAPFault then
with ESOAPFault(Error) do
SOAPFault :=

500 Part V: Sample Applications



ESOAPFault.Create(FaultCode, FaultString,
FaultActor, Detail)

else
SOAPFault := ESOAPFault.Create(SOAPFaultServer,
Error.Message);

Response.StatusCode := 500; // Internal server error
end;

end;
finally
if Assigned(SOAP) then
SOAP.Free;

end;
{ Format the response }
Response.Content := Content;
Response.ContentType := 'text/xml';
Handled := True;

end;

If an error occurs, you raise an ESOAPFault exception (as shown in Listing 27-7). This has proper-

ties that map to those defined in the SOAP specification, letting you set their values during

construction. The XML function formats the values as a SOAP Fault element ready for returning to

the client.

Listing 27-7: The SOAP fault class

{ A SOAP exception }
ESOAPFault = class(Exception)
private
FDetail: string;
FFaultActor: string;
FFaultCode: string;
function GetFaultString: string;
procedure SetFaultString(FaultString: string);

public
constructor Create(FaultCode, FaultString: string;
Detail: string = ''; FaultActor: string = ''); virtual;

property Detail: string read FDetail write FDetail;
property FaultActor: string read FFaultActor write FFaultActor;
property FaultCode: string read FFaultCode write FFaultCode;
property FaultString: string read GetFaultString
write SetFaultString;

function XML: WideString; virtual;
end;
Parsing a Request

To avoid restricting SOAP processing through the TSOAPDispatcher to a single XML parser, the

abstract TCustomSOAPParser class is defined (see Listing 27-8). It establishes the functionality

required of a parser, namely, to take a request as an XML string and to return a TSOAPRequest
object that embodies that content. The assumption is that each call contains only a single request,

and that its parameters are simple string values. A subclass of this one must implement the

ParseSOAP method using the abilities of a particular parser.

Listing 27-8: Abstract SOAP parser

{ Abstract base class for SOAP parsers }
TCustomSOAPParser = class(TComponent)
public
constructor Create(AOwner: TComponent); override;

Chapter 27: Simple Object Access Protocol 501



function ParseSOAP(SOAPDispatcher: TSOAPDispatcher;
SOAPRequest: string): TSOAPRequest; virtual; abstract;

end;

NOTE Ideally the definition of TCustomSOAPParser would be an interface that lets you add its
functionality to any object. However, during design, Delphi does not match interfaces with
other components through the Object Inspector. Thus, you cannot select a parser from the
drop-down list. Making TCustomSOAPParser a component instead makes it behave as
expected during the design process.

As an added convenience, the constructor for the custom parser component automatically

searches for a dispatcher and links itself to it (as shown in Listing 27-9). Since the dispatcher

always requires the services of some parser, this should make it easier to use the combination.

Merely dropping the dispatcher and parser components on the data module ties them together. To

achieve this, the parser checks that it is during design time, then searches through all the compo-

nents belonging to its parent (the data module) seeking a dispatcher. Once found, its SOAPParser
property is assigned to the new parser (unless it had already been set). The dispatcher has similar

code in its constructor to look for and connect to a parser.

Listing 27-9: Automatic linking to the dispatcher

{ Initialization }
constructor TCustomSOAPParser.Create(AOwner: TComponent);
var
Index: Integer;

begin
inherited Create(AOwner);
{ If there is a TSOAPDispatcher in the data module, attach to it }
if csDesigning in ComponentState then
for Index := 0 to AOwner.ComponentCount –1 do
if AOwner.Components[Index] is TSOAPDispatcher then
with TSOAPDispatcher(AOwner.Components[Index]) do
{ But only if not already attached }
if not Assigned(SOAPParser) then
SOAPParser := Self;

end;

In a separate unit, SOAPOXParser, you write a concrete implementation of the SOAP parser, allow-

ing you to only include the parser you want. In this case, the Open XML parser is used. Its

processing for the parse call appears in Listing 27-10. After creating the XML parser itself, the

DOM is built from the incoming string. Thereafter the structure is traversed to extract the various

elements.

Listing 27-10: Implementing the parser with Open XML

{ Actually parse the SOAP request }
function TSOAPOpenXMLParser.ParseSOAP(SOAPDispatcher: TSOAPDispatcher;
SOAPQuery: string): TSOAPRequest;

var
Element: TdomElement;
Envelope: TdomElement;
SOAPRequest: TSOAPRequest;
XMLDoc: TdomDocument;
{ Return the next element sibling }
function NextElement(Node: TdomNode): TdomElement;

502 Part V: Sample Applications



begin
while Assigned(Node) do
begin
case Node.NodeType of
ntProcessing_Instruction_Node:
{ SOAP document cannot have processing instructions }
raise ESOAPFault.Create(SOAPFaultClient, NoInstructions);

ntElement_Node:
begin
Result := TdomElement(Node);
Exit;

end;
end;
Node := Node.NextSibling;

end;
Result := nil;

end;
{ Concatenate text content from this node and all its children }
function GetText(Node: TdomNode): string;
var
Index: Integer;

begin
Result := '';
for Index := 0 to Node.ChildNodes.Length –1 do
Result := Result + Node.ChildNodes.Item(Index).NodeValue +
GetText(Node.ChildNodes.Item(Index));

end;
{ Process the headers for the request }
procedure ExtractHeader(Header: TdomElement);
var
Attrs: TStringList;
Element: TdomElement;
Index: Integer;
MustUnderstand: Boolean;
Understood: Boolean;

begin
Attrs := TStringList.Create;
try
Element := NextElement(Header.FirstChild);
while Assigned(Element) do
begin
{ Compile attributes }
MustUnderstand := False;
Understood := False;
Attrs.Clear;
for Index := 0 to Element.Attributes.Length –1 do
with Element.Attributes.Item(Index) do
if NodeName = SOAPEnvPrefix + ':' + SOAPMustUnderstand then
MustUnderstand := (NodeValue = '1')

else
Attrs.Values[NodeName] := NodeValue;

{ Invoke header handler }
SOAPDispatcher.DoHeader(Element.NodeName, GetText(Element),
Attrs, MustUnderstand, Understood);

{ Check that it was processed }
if MustUnderstand and not Understood then
raise ESOAPFault.Create(SOAPFaultUnderstand,
Format(NotUnderstood, [Element.NodeName]));

Element := NextElement(Element.NextSibling);
end;

Chapter 27: Simple Object Access Protocol 503



finally
Attrs.Free;

end;
end;
{ Compile the parameters for the request
into the SOAPRequest object }

procedure ExtractBody(Body: TdomElement);
var
Element: TdomElement;
Index: Integer;

begin
if (Body.ChildNodes.Length <> 1) or

(Body.FirstChild.NodeType <> ntElement_Node) then
raise ESOAPFault.Create(SOAPFaultClient, BodyChildUnique);

Element := TdomElement(Body.FirstChild);
SOAPRequest.Name := Element.NodeName;
for Index := 0 to Element.ChildNodes.Length –1 do
with Element.ChildNodes.Item(Index) do
if NodeType = ntElement_Node then
SOAPRequest.Params.Values[NodeName] :=
GetText(Element.ChildNodes.Item(Index));

end;
begin
SOAPRequest := TSOAPRequest.Create;
try
XMLDoc := FXMLParser.StringToDOM(SOAPQuery);
Envelope := XMLDoc.DocumentElement;
{ SOAP document cannot have a DOCTYPE declaration }
if Assigned(XMLDoc.DocType) then
raise ESOAPFault.Create(SOAPFaultClient, NoDocType);

{ SOAP document element must be Envelope }
if Envelope.NodeName <> SOAPEnvPrefix + ':' + SOAPEnvelopeTag then
raise ESOAPFault.Create(SOAPFaultClient, Format(
InvalidMainElement, [SOAPEnvPrefix + ':' + SOAPEnvelopeTag]));

{ SOAP version must be correct (= namespace) }
if Envelope.GetAttribute(NamespaceAttr + ':' + SOAPEnvPrefix) <>

SOAPEnvNamespace then
raise ESOAPFault.Create(SOAPFaultVersion, Format(UnknownVersion,
[Envelope.GetAttribute(NamespaceAttr + ':' + SOAPEnvPrefix)]));

Element := NextElement(Envelope.FirstChild);
if Assigned(Element) and
(Element.NodeName = SOAPEnvPrefix + ':' + SOAPHeaderTag) then

begin
{ Optional header element }
ExtractHeader(Element);
Element := NextElement(Element.NextSibling);

end;
{ SOAP document must have a body element }
if not Assigned(Element) or

(Element.NodeName <> SOAPEnvPrefix + ':' + SOAPBodyTag) then
raise ESOAPFault.Create(SOAPFaultClient,
Format(MissingElement, [SOAPEnvPrefix + ':' + SOAPBodyTag]));

ExtractBody(Element);
Result := SOAPRequest;

except
SOAPRequest.Free;
raise;

end;
end;

504 Part V: Sample Applications



Numerous checks are made in accordance with the SOAP specification: No DOCTYPE declaration

or processing instruction nodes may appear, the required Envelope and Body elements must

appear in the correct positions, the SOAP namespace (version) must be correct, and headers that

must be understood are indeed understood. Any violation generates an ESOAPFault exception that

is trapped by the dispatcher.

As header elements appear in the hierarchy, a call is made back to the dispatcher in case an

OnHeader event handler is available. Upon return, the MustUnderstand and Understood flags are

compared, producing an error if they are not compatible.

The contents of the Body element are compiled into the TSOAPRequest object constructed by

this function. Each parameter is set as a simple string value against its element’s name in a string

list. The action handler then retrieves these by name from the Values property.

These components are compiled and made available to Delphi by including them in a package.

A new unit, SOAPReg.pas, contains the registration calls for them, while an associated resource

file, SOAPReg.dcr, supplies the icons for the component palette.

SOAP Server

To demonstrate these components in action, you can build a Web server application that responds

to a findMovies request. It takes one optional parameter, the rating, and returns a list of matching

movies from those in the database table. Typical request and response documents appear in List-

ings 27-1 and 27-2.

Create the server by following these steps:

1. Start a new Web server application based on ISAPI by selecting the Web Server Application

icon in the New Items dialog (select File | New…).

2. Remove the generated Web module from the project without saving its contents.

3. Add a data module to the project by selecting the Data Module icon in the New Items

dialog.

4. Place a TSOAPDispatcher and a TSOAPOpenXMLParser component on the data module. They

are automatically linked together.

5. Drop a TSession and a TQuery component on the data module. Set the session’s

AutoSessionName property to True. Point the query at the movie-watchers database (see

Chapter 16) and enter its SQL:

SELECT *
FROM movie
WHERE rating = '?'

The query must be entered on different lines as shown so that the where clause can easily be

replaced later on.

6. Press the ellipsis button next to the SOAPActions property of the dispatcher in the Object

Inspector.

Chapter 27: Simple Object Access Protocol 505



7. Add a new SOAP action and name it findMovies. Create an OnInvoke event handler for it

and enter the code shown in Listing 27-11. This procedure retrieves the rating value sent by

the client (if there is one) and queries the database for matching movies. Those found are

placed into TSOAPResponse objects for use in the response document. Your data module

should look like the one shown in Figure 27-1.

Listing 27-11: The action handler in the SOAP server

{ Handle the 'findMovies' SOAP request }
procedure TdmdSOAP.SOAPFindMoviesInvoke(
Sender: TSOAPAction; Params: TStrings; Request: TWebRequest;
Response: TWebResponse; var Handled: Boolean);

var
Movies: TList;
Rating: string;

begin
Movies := TList.Create;
try
Rating := Params.Values['rating'];
with qryMovies do
begin
if Rating <> '' then
SQL[2] := 'WHERE rating = ''' + Rating + ''''

else
SQL[2] := '';

Open;
while not EOF do
begin
Movies.Add(TSOAPResponse.Create('movie',
FieldByName('name').DisplayText));

Next;
end;
Close;
if Movies.Count = 0 then
raise ESOAPFault.Create(SOAPFaultClient, 'No movies found',
'No movies found for rating ''' + Rating + '''');

Sender.SetResponse(Sender.Name, Movies);
end;

finally
Movies.Free;

end;
Handled := True;

end;

506 Part V: Sample Applications

Figure 27-1:
The SOAP server data
module.

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



8. Compile and deploy your application to the Web server. Copy the resulting DLL to your exe-

cutable directory on the Web server. Under PWS or IIS this is usually \inetpub\scripts.

The movie-watcher alias should already have been established for use by the application.

SOAP Client

Next you need to create a client to talk to the server. Although you could use a simple HTML page

and have the returned XML show up in the browser, a standalone client lets you more easily sup-

ply the variable rating parameter, and display the outgoing request and incoming response.

Furthermore, with IE you cannot see any error response since the HTTP status of 500 overrides

this and displays its own message.

The client application is very simple (see Figure 27-2). It contains a page control to allow for

entry of the request, and then the display of both the SOAP request and its response. A combo box

provides a selection of the standard movie ratings. Most of the processing occurs behind the Find

button, whose event handler is shown in Listing 27-12.

Listing 27-12: Sending a SOAP request

{ Compile the SOAP request and parse the results }
procedure TfrmMovies.btnFindClick(Sender: TObject);
var
Element: IXMLDOMNode;
Request: string;
{ Extract the list of matching movies }
procedure ListMovies(Node: IXMLDOMNode);
var
Index: Integer;

begin
for Index := 0 to Node.ChildNodes.Length –1 do
with Node.ChildNodes.Item[Index] do
lbxMovies.Items.Add(Text);

end;
begin
Screen.Cursor := crHourglass;
try

Chapter 27: Simple Object Access Protocol 507

Figure 27-2: A client using SOAP.



pgcSOAP.ActivePage := tshMovies;
lbxMovies.Items.Clear;
memRequest.Lines.Clear;
memResponse.Lines.Clear;
Request := '<?xml version="1.0"?>' +
'<' + SOAPEnvPrefix + ':' + SOAPEnvelopeTag + ' ' +
NamespaceAttr + ':' + SOAPEnvPrefix + '="' +
SOAPEnvNamespace + '">' + '<' + SOAPEnvPrefix + ':' +
SOAPBodyTag + '>' + '<findMovies>';

if cbxRating.Text <> '' then
Request := Request + '<rating>' + cbxRating.Text + '</rating>';

Request := Request + '</findMovies>' +
'</' + SOAPEnvPrefix + ':' + SOAPBodyTag + '>' +
'</' + SOAPEnvPrefix + ':' + SOAPEnvelopeTag + '>';

memRequest.Lines.Text := Request;
htpSOAP.Header := SOAPActionHeader + ': findMovies';
htpSOAP.Post(FApplication, Request);
memResponse.Lines.Text := htpSOAP.Body;
if ((htpSOAP.ReplyNumber <> 200) and
(htpSOAP.ReplyNumber <> 500)) or
(Pos('<HTML', UpperCase(htpSOAP.Body)) > 0) then

begin
MessageDlg('HTTP error: ' + IntToStr(htpSOAP.ReplyNumber),
mtError, [mbOK], 0);

Exit;
end;
if not FXMLDoc.LoadXML(htpSOAP.Body) then
begin
MessageDlg(FXMLDoc.ParseError.Reason, mtError, [mbOK], 0);
Exit;

end;
Element := FXMLDoc.DocumentElement.FirstChild.FirstChild;
if Element.NodeName = SOAPEnvPrefix + ':' + SOAPFaultTag then
MessageDlg('Error in request'#13 +
Element.ChildNodes.Item[1].Text, mtError, [mbOK], 0)

else
ListMovies(Element);

finally
Screen.Cursor := crDefault;

end;
end;

First, the list box, request, and response memo controls are cleared, followed by the construction

of the SOAP XML as a string value and its copying to the first memo field. A TNMHTTP component

supplies the connectivity to the Web application. After setting the required SOAP header, its Post
method is called to send the SOAP request out. Any response appears in its Body property, which is

copied into a memo field and loaded into a DOM for interpretation. Microsoft’s DOM is used in

this case.

If an error response is found, it produces a dialog box showing the reason. Otherwise, each

entry in the response (a movie title) is added to the main list box. To generate a SOAP error, just

pick a rating that has no matching movies, such as NR.

By default the client looks for your local Web server and an application named

scripts/SOAPServer.dll. The two menu options on the form let you change these settings.

508 Part V: Sample Applications



Summary

The Simple Object Access Protocol, being based on XML, provides a platform- and operating

system-independent way of communicating between distributed objects. Part of its design goals

are simplicity and extensibility. It does not take the place of more robust schemes such as CORBA

as it provides no additional services. There is no distributed garbage collection and no passing of

objects by reference.

The development of the SOAP components in this chapter let you easily create a Web applica-

tion that offers SOAP functionality. Just drop the TSOAPDispatcher onto a data module, connect a

SOAP parser, hook up the actions, and compile.

SOAP can provide a simple entry point into using remote procedure calls, letting you decouple

the client and server, which may be using different environments and programming languages.

Instead of the Delphi client shown here, you could just as easily use Java, C++, or JavaScript.

Watch for more development in this arena.

Chapter 27: Simple Object Access Protocol 509



Glossary

ASCII The American Standard Code for Information Interchange. A 7-bit

encoding of the standard English letters, numbers, punctuation, and

assorted control characters.

Attribute Additional information attached to an element in XML. These are

declared as name=value pairings within an element’s opening tag.

Attribute values must appear within quotes in XML.

Byte order mark A series of bytes at the start of a document that indicate which encod-

ing scheme is used in the document. Typically it is only used to

distinguish between UTF-16BE and UTF-16LE.

CDATA Character Data. Used in DTDs, this denotes an attribute that can have

a textual value.

CDATA section A special section of character data in an XML document in which the

XML processor does not interpret any markup. Thus, it can contain

XML metacharacters (<, &, etc.) without them being escaped.

CGI Common Gateway Interface. An early specification for the way that

an external program can be invoked in response to a request to a Web

server. A newer alternative, ISAPI, offers better performance.

Character encoding See Encoding scheme.

Complex type In an XML Schema, these are built up from simple types by defining

structures and/or adding attributes.

CORBA Common Object Request Broker Architecture. A distributed object

computing infrastructure being standardized by the OMG.

CSS Cascading Style Sheets. A language for describing the formatting of

HTML/XML elements. The “cascading” part comes from the fact

that multiple styles may apply and are combined.

CSS2 A later version of CSS.

Decoupling The limiting of knowledge of one class by another. The fewer interac-

tions between them, the more stable the application.

Document fragment A portion of a DOM hierarchy that is separate from the main struc-

ture. It is used to construct parts before being added to the main tree, or

to transfer sections between positions within the hierarchy.

510



DOM Document Object Model. An object-oriented model of the structure

and contents of an XML (or other structured) document.

DTD Document type definition. The definition of the allowable structure of

a particular class of documents. DTDs may appear as an integral part

of an XML document or externally to be shared among many

documents.

Element A structural piece within an XML document. As content, an element

may contain simple text, other elements, or combinations of the two.

Elements may have additional values associated with them through

attributes.

Empty tag A tag that has no content, neither text nor other tags, although it may

have attributes.

Encapsulation An object-oriented term denoting the hiding of the way an object

works. All you need to interact with it are the definitions of its

interfaces.

Encoding scheme The way that characters are mapped to a byte stream. Common

encodings include ASCII, ISO-8859-1, UTF-8, UTF-16, and

Unicode.

Entity An entity is a reference to further content, either as inline text or as an

external URI, within a DTD. Include the entity’s contents with an

entity reference.

Entity reference A reference to an entity within the body of an XML document. The

name of the entity is prefixed by & and followed by ;. It is effectively

replaced by the content indicated by the entity declaration.

External entity An entity whose content resides outside the current document.

FOP Formatting Objects to PDF. A free Java program that converts docu-

ments marked up with XSL formatting objects into PDF documents.

GIF Graphics Interchange Format. A bitmapped graphics format widely

recognized by browsers.

HTML Hypertext Markup Language. The standard markup language for dis-

playing information on the Web.

HTTP Hypertext Transfer Protocol. The standard protocol used on the

Internet to deliver Web pages.

IDL Interface Definition Language. A programming language-neutral way

of describing interfaces developed by the OMG. These can then be

implemented by specific languages.

Glossary

511



IIS Internet Information Server. A Windows-based Web server package

from Microsoft.

Interface In programming terms, this is a definition of the interactions sup-

ported by a class that implements the interface.

Internal entity An entity whose content is specified within the current document.

ISAPI Internet Server Application Programming Interface. An alternative to

CGI that provides better performance since the requested applications

run within the Web server process itself.

ISO-8859-1 One of a group of related 8-bit encoding schemes. This corresponds to

standard ASCII and the accented Latin characters that are used in

many Western European languages.

JavaScript A scripting language based on Java which is often used within Web

pages to orchestrate activities therein.

JPEG Joint Photographic Experts Group. This group defined a graphics for-

mat that encodes photographic-like images. It allows the images to be

compressed, based on perceptual research, in a way that loses detail

but that is generally not noticeable.

Local name The portion of an element or attribute name that does not include any

prefix for a namespace. For example, the template in xsl:template.

MathML Mathematical Markup Language. An XML application that describes

the presentation and content of mathematical equations.

MIDAS Multi-tier Distributed Application Services. A framework developed

by Borland for multi-tier applications that communicate database

information.

Namespace A notional domain that serves to distinguish element and attribute

names that would otherwise be identical. Namespaces associate a pre-

fix with an identifier (usually a URI), and that prefix appears with the

element or attribute name, such as xsl:template.

Normalization In XML terms, this has two meanings. The first is the process of stan-

dardizing spacing within text fields (changing all white space to

spaces, combining multiple spaces, trimming the text). The second is

the process of combining adjacent text nodes within a DOM.

Notation A notation defines the data content of an attribute, entity, or process-

ing instruction within an XML document.

OASIS Organization for the Advancement of Structured Information Stan-

dards. A non-profit, international consortium that creates

Glossary

512



interoperable industry specifications based on public standards such

as XML and SGML.

OMG Object Management Group. An organization that develops specifica-

tions for object-oriented usage, including CORBA and IDL.

Parameter entity An entity that is only used within a DTD. References to them use a %
as the prefix instead of the usual &.

Parsed entity An entity that refers to XML content (either externally or internally).

Its content is included in the document and is parsed along with its sur-

rounding nodes (usually text or elements).

PCDATA Parsed Character Data. Used in DTDs, this identifies an element that

may contain textual content.

PDF Portable Document Format. A document format produced by Adobe

Systems that describes layout in a transportable manner.

PICS Platform for Internet Content Selection. A W3C Recommendation

for exchanging descriptions of the content of Web pages and other

material.

PNG Portable Network Graphics. A graphics format similar to GIF. It was

designed as a replacement for GIF since the latter contains patented

algorithms.

Prefix A mnemonic associated with a namespace that precedes an element

or attribute name to uniquely identify it. For example, the xsl in

xsl:template.

Pre-order traversal Stepping through the nodes in a DOM in the same order that they

appear in the text version of the XML document.

Processing instruction A command embedded within an XML document. It is targeted at a

particular application.

Prolog The declaration at the start of an XML document or external entity

that defines the contents as XML and may specify the encoding

scheme used and whether or not the document can be used

standalone.

PWS Personal Web Server. A simplified version of IIS for personal use.

Qualified name An element or attribute name that includes a namespace prefix,

such as xsl:template.

RDF Resource Description Framework. An XML application that lets you

describe the resources available at a Web site.

Glossary

513



SAX Simple API for XML. An event-based API for parsing XML

documents.

Schema See XML Schema.

SGML Standard Generalized Markup Language—ISO 8879. A specification

for describing documents and their contents. The foundation for

XML.

Simple type In an XML Schema, these are the fundamental data types (strings,

numbers, etc.), or straightforward restrictions of these. They can form

the basis for complex types.

SMIL Synchronized Multimedia Integration Language. An XML applica-

tion that lets you define how various multimedia resources interact to

create a presentation.

SMTP Simple Mail Transfer Protocol. A standard for sending e-mail

messages.

SOAP Simple Object Access Protocol. An XML application that encodes

remote procedure calls.

Standalone A document is standalone if it does not refer to any external entities.

A declaration to this effect can appear in the prolog to the XML

document.

SVG Scalable Vector Graphics. An XML application that describes 2D

graphics constructs.

Tag The markup denoting a particular element within a document.

UCS-2 A 16-bit character encoding, equivalent to Unicode.

UCS-4 A 32-bit character encoding that extends UCS-2. Currently only the

UCS-2 part is defined.

Unicode A 16-bit character encoding that encompasses most of the world’s

major written languages. The first 128 characters correspond to the

more common ASCII encoding.

Unparsed entity An entity that refers to resources that are not included in the current

document. These entities are always external and may include

non-XML resources such as HTML pages, images, etc.

URI Uniform Resource Identifier. A reference to an external document or

document fragment, often on the Internet.

URL Uniform Resource Locator. A reference to an external document,

often on the Internet.

Glossary

514



UTF-8 A multi-byte character encoding scheme for Unicode or UCS. It uses

a single byte for standard ASCII characters, and two or three bytes for

other Unicode characters. Thus, any ASCII file is also a UTF-8 file.

UTF-16 A 16-bit character encoding scheme for Unicode or UCS. It comes in

two flavors: UTF-16BE and UTF-16LE.

UTF-16BE UTF-16 with big-endian byte order where the most significant byte

appears first.

UTF-16LE UTF-16 with little-endian byte order where the least significant byte

appears first.

Valid A valid XML document is one that is both well-formed and conforms

to its DTD or schema.

W3C World Wide Web Consortium. A vendor-neutral organization dedi-

cated to the definition of standards for use on the World Wide Web.

W3C Candidate

Recommendation

This stage in the W3C process is a published report that invites feed-

back on implementing the proposal, and follows any W3C Working

Drafts.

W3C Last Call

Working Draft

The stage following W3C Working Draft, indicating that the specifi-

cation is considered ready and is available for review both within the

wider W3C community and by the outside public.

W3C Proposed

Recommendation

Following W3C Candidate Recommendation status, this stage

demonstrates that the specification is workable and incorporates any

final changes.

W3C Recommendation The end result of the W3C specification process, this stage indicates

that the ideas or technology described therein are appropriate for

widespread deployment.

W3C Working Draft A work in progress at the W3C that represents a commitment to pur-

sue developments in this area by a Working Group. This is the first

stage towards a new W3C specification.

Well-formed An XML document that adheres to the basic rules of XML: must have

a single top-level element, and all elements must be closed and in the

reverse order to that in which they were opened.

XDR See XML Data Reduced.

XHTML Extensible Hypertext Markup Language. A reformulation of HTML

as an XML application.

XLink XML Linking Language. A specification for defining links between

resources (URIs).

Glossary

515



XLL Extensible Linking Language. An overall term for linking in XML. It

includes XLink and XPointer.

XML Extensible Markup Language. A subset of SGML that is easier to use

and allows for the definition of markup languages for use in specific

projects.

XML Data An early proposal for defining XML content that fed into the XML

Schema specification.

XML Data Reduced A subset of XML Data that is supported by Microsoft in its XML

package.

XML processor A software module that can handle an XML document. They come in

two basic types: validating (those that check that the document con-

forms to its DTD or schema) and non-validating (those that check

only for well-formedness).

XML Schema An alternative to DTDs for specifying the valid content of an XML

document. Schemas are XML documents themselves.

XPath XML Path Language. A specification for identifying individual parts

of an XML document. It is used in XSLT to identify nodes to be

selected.

XPointer XML Pointer Language. A specification for identifying individual

parts or ranges within an XML resource (URI). It extends XPath and

is intended for use with XLink.

XQL XML Query Language. A work in progress for specifying a query

against an XML document.

XSL Extensible Stylesheet Language. A formatting language for present-

ing XML documents.

XSLT Extensible Stylesheet Language Transformations. A language for

transforming XML documents into other formats.

Glossary

516

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



Index
A
Adapter pattern, 354
ASCII encoding, 30
ATTLIST, 37
Attr interface, 91-92

in CUESoft DOM, 172
in Microsoft DOM, 124-125
in Open XML DOM, 211-213

attributes, 23
declarations, 37, 71
under DOM, 91
under SAX, 280, 289

Attributes interface, 280-281
in Delphi SAX, 323-324
in Microsoft SAX, 296-298

C
CDATASection interface, 94

in CUESoft DOM, 174
in Microsoft DOM, 127-128
in Open XML DOM, 215

CDATA sections, 28
under DOM, 94
under SAX, 288

CGI,
converting to ISAPI, 430
with Web modules, 377
with XMLBroker, 426

character reference, 27
CharacterData interface, 92-93

in CUESoft DOM, 172-173
in Microsoft DOM, 125-127
in Open XML DOM, 213-214

comma-separated values, see CSV
Comment interface, 94

in CUESoft DOM, 174
in Microsoft DOM, 128
in Open XML DOM, 215

comments, 26
under DOM, 94
under SAX, 288

Common Gateway Interface, see CGI
complex types, 69
components

TCustomSOAPParser, 501-502
TDCOMConnection, 426

TdomImplementation, 244-247, 261, 392
TMidasPageProducer, 425
TNMHTTP, 321, 508
TNMSMTP, 445

TPageProducer, 376, 381
TReconcilePageProducer, 425
TRecordPageProducer, 381
TShowDeltaButton, 425
TShowXMLButton, 425
TSOAPDispatcher, 498
TSOAPOpenXMLParser, 502
TWebModule, 376
TXMLBroker, 425
TXmlDomImplementation, 181-182
TXmlObjModel, 182-184, 189, 391
TXmlParser, 185-189
TXmlToDomParser, 252, 261

conditional sections, 40
under Open XML DOM, 220

content models
in DTDs, 36
in XML Schemas, 69
under Open XML DOM, 228

ContentHandler interface, 282-283
in Delphi SAX, 326-328
in Microsoft SAX, 298-300, 314

CSV, 416
CUESoft DOM, 157

creation, 189
example, 189
generating XML, 391
parsing a document, 184, 189
TDomException, 158-159
TXmlAttribute, 172
TXmlCDataSection, 174, 191
TXmlCharacterData, 172-173
TXmlComment, 174, 191
TXmlDocument, 179-181, 191, 391
TXmlDocumentFragment, 178
TXmlDocumentType, 175-176, 191
TXmlDomImplementation, 181-182
TXmlElement, 169-171, 191, 391
TXmlEntity, 176-177, 192
TXmlEntityReference, 177
TXmlNamedNodeMap, 167-168
TXmlNode, 160-165, 190
TXmlNodeList, 165-167
TXmlNotation, 177-178, 192
TXmlObjModel, 182-184, 189, 391
TXmlParser, 185-189, 359
TXmlParserError, 159-160
TXmlProcessingInstruction, 175, 191
TXmlText, 173-174, 191
wrapped in SAX, 359

517



D
database,

generating XML, 377, 386, 403
mapping to XML, 367
movie-watcher, 368-369
updating with MIDAS, 422

declaration-handler property, 289, 305, 333, 348
DeclHandler interface, 289

in Delphi SAX, 333
in Microsoft SAX, 305-306, 313

DefaultHandler class, 293
in Delphi SAX, 340-341

Delphi SAX, 317
ESAXException, 319
ESAXNotRecognizedException, 319
ESAXNotSupportedException, 319
ESAXParseException, 320-321
examples, 345, 354, 359, 453
ISAXAttributes, 323-324
ISAXContentHandler, 326-328, 349
ISAXDeclHandler, 333
ISAXDocumentHandler, 453
ISAXDTDHandler, 328-329
ISAXEntityResolver, 329
ISAXErrorHandler, 330
ISAXLexicalHandler, 331-332
ISAXLocator, 322-323
ISAXXMLFilter, 336
ISAXXMLReader, 334-335
parsing a document, 334, 335, 348
SAX2RDR, 339
SAXPSR, 339
TCustomParser, 341-343
TSAX2DelphiReader, 341
TSAX2MSReader, 355
TSAXAttributes, 324-326
TSAXCuesoftParser, 360
TSAXCustomParser, 359
TSAXCustomXMLFilter, 336
TSAXCustomXMLReader, 335, 354
TSAXDefaultHandler, 340-341
TSAXHandlerBase, 453
TSAXInputSource, 321-322
TSAXLocator, 323
TSAXParserAdapter, 336-337, 363
TSAXXMLReaderAdapter, 336-338
TSAXXMLReaderFactory, 338-340
TXMLParser, 341-345
wrapper for CUESoft DOM, 359
wrapper for Microsoft SAX, 354

delta, 432
DOCTYPE, 35
Document interface, 98-101

in CUESoft DOM, 179-181
in Microsoft DOM, 133-139
in Open XML DOM, 235-244

Document Object Model, see DOM
Document Type Definition, see DTD
DocumentFragment interface, 98

in CUESoft DOM, 178
in Microsoft DOM, 132-133
in Open XML DOM, 234-225

DocumentHandler interface, 282, 453
documents

under DOM, 98
under SAX, 282

DocumentTraversal interface, 106
in Microsoft DOM, 143
in Open XML DOM, 247

DocumentType interface, 95-96
in CUESoft DOM, 175-176
in Microsoft DOM, 129-130
in Open XML DOM, 216-219

DOM, 75
Attr, 91-92, 124-125, 172, 211-212
CDATASection, 94, 127-128, 174, 215
CharacterData, 92-93, 125-127, 172-173, 213-214
Comment, 94, 128, 174, 215
comparison to SAX, 269
CUESoft’s DOM, 157, 189, 391
Document, 98-101, 133-139, 179-181, 235-244
DocumentFragment, 98, 132-133, 178, 234-235
DocumentTraversal, 106, 143, 247
DocumentType, 95-96, 129-130, 175-176, 216-219
DOMException, 81-82, 158-159, 195, 197-198
DOMImplementation, 101-102, 143, 181-183, 244-247
DOMString, 78
Element, 89-91, 122-124, 169-171, 208-211
Entity, 96-97, 130-131, 176-177, 221-223
EntityReference, 97, 131, 177, 224-225
examples, 149, 189, 261, 440, 467, 502, 508
features, 101
generating XML, 386
Microsoft’s DOM, 108, 149, 386, 440, 467, 508
NamedNodeMap, 87-88, 120, 167, 206
Node, 82-87, 111, 160, 198
NodeFilter, 102-103, 247
NodeIterator, 103-104, 248
NodeList, 87, 119, 165, 205
Notation, 97-98, 132, 177, 225
Open XML’s DOM, 195, 261, 392, 502
ProcessingInstruction, 94-95, 128, 175, 216
Text, 93-94, 127, 173, 214
TreeWalker, 104-106, 250
XSL Transformation, 407

DOMException exception, 81-82
in CUESoft DOM, 158-159
in Open XML DOM, 195, 197-198

DOMImplementation interface, 101-102
in CUESoft DOM, 181-182
in Microsoft DOM, 143
in Open XML DOM, 244-247

Index

518



DTD, 33
attributes, 37
ATTLIST, 37
CDATA, 37
comparison with XML Schema, 66
conditional sections, 40
content models, 36
CUESoft DOM, 175
declarations, 35, 95
DOCTYPE, 35
DocumentType interface, 95
ELEMENT, 36
elements, 36
entities, 38, 39
ENTITY, 39
example, 33
external subset, 35
FIXED, 38
generating XML, 393, 403
ID, IDREF, 38
internal subset, 35
links, 54, 56
Microsoft DOM, 129
Microsoft SAX, 403
mixed content, 36
NOTATION, 39
notations, 38, 39
Open XML DOM, 216
PCDATA, 36
under DOM, 95
under SAX, 287

DTDHandler interface, 284
in Delphi SAX, 328-329
in Microsoft SAX, 301

E
e-mail, 437
EDomException exception, 195, 197-198
ELEMENT, 36
Element interface, 89-91

in CUESoft DOM, 169-171
in Microsoft DOM, 122-124
in Open XML DOM, 208-211

elements, 23
declarations, 36, 72
document element, 23
empty, 23, 36, 70
under DOM, 89
under SAX, 283, 289

encoding schemes, 29-31
entities, 26, 39

as attribute values, 38
character references, 27
declarations, 39
Entity interface, 96-97, 130
EntityReference interface, 97, 131

EntityResolver interface, 285
external, 27, 40, 477
internal, 27, 40
parameter, 40
parsed, 27, 40
under DOM, 96, 97
under SAX, 283, 284, 285, 288, 289
unparsed, 28, 40

ENTITY, 39
Entity interface, 96-97

in CUESoft DOM, 176-177
in Microsoft DOM, 130-131
in Open XML DOM, 221-223

EntityReference interface, 97
in CUESoft DOM, 177
in Microsoft DOM, 131
in Open XML DOM, 224-225

EntityResolver interface, 285
in Delphi SAX, 329
in Microsoft SAX, 302

ErrorHandler interface, 285-286
in Delphi SAX, 330
in Microsoft SAX, 302-303

ESAXException exception, 319
ESAXNotRecognizedException exception, 319
ESAXNotSupportedException exception, 319
ESAXParseException exception, 320-321
examinations

Delphi client, 464
example XML, 464-465
Web client, 478

Extensible HTML, see XHTML
Extensible Linking Language, see XLL
Extensible Markup Language, see XML
Extensible Stylesheet Language, see XSL
Extensible Stylesheet Language Transformations, see XSLT
extensions to SAX, 286, 330
external entities, 27, 40, 477
external-general-entities feature, 287, 300, 331
external-parameter-entities feature, 287, 300, 331
external subset, 35

F
Façade pattern, 445, 446
facets, 69
features, 101, 286, 290

exceptions, 319
external-general-entities, 287, 300, 331
external-parameter-entities, 287, 300, 331
in Delphi SAX, 331, 335, 348
in Microsoft SAX, 307, 313
namespace-prefixes, 287, 299, 331, 348
namespaces, 287, 299, 331, 348
normalize-line-breaks, 308
parameter-entities, 288, 304, 332
server-http-request, 308

Index

519



setting, 290, 307, 313, 335, 348
validation, 287, 308, 331, 348

FindComponent, 473

G
generating XML

as text, 370
using DOM, 386
using SAX, 397
using Web module, 376
using XSLT, 407

H
HandlerBase class, 293

in Delphi SAX, 453
hasFeature, 101, 106

in CUESoft DOM, 182
in Microsoft DOM, 143
in Open XML DOM, 245

HTML
as Extensible HTML, 6
comparison with XML, 4
comparison with XLink, 54
from XSLT, 42, 48, 408, 411, 413, 478
with InternetExpress, 422

HTTP, 376, 497
using TNMHTTP, 321, 508

HyperText Markup Language, see HTML
HyperText Transfer Protocol, see HTTP

I
IMXAttributes interface, 399-401
IMXWriter interface, 397-399

XML generation, 401
InputSource class, 277-278

in Delphi SAX, 321-322
in Microsoft SAX, 295

internal entities, 27, 40
internal subset, 35
Internet Server API, see ISAPI
Internet transmission, 376
InternetExpress, 422, 425

TMidasPageProducer, 425
TReconcilePageProducer, 425
TShowDeltaButton, 425
TShowXMLButton, 425
TXMLBroker, 425

ISAPI,
converting from CGI, 430
examination example, 486
SOAP example, 505
with XMLBroker, 430

ISAXAttributes interface, 323-324
ISAXContentHandler interface, 326-328, 349
ISAXDeclHandler interface, 333
ISAXDocumentHandler, 453
ISAXDTDHandler interface, 328-329

ISAXEntityResolver interface, 329
ISAXErrorHandler interface, 330
ISAXLexicalHandler interface, 331-332
ISAXLocator interface, 322-323
ISAXXMLFilter interface, 336
ISAXXMLReader interface, 334-335
ISO-8859-1 encoding, 30
IVBSAXAttributes interface, 296-299, 399
IVBSAXContentHandler interface, 298-300, 314, 355, 404
IVBSAXDeclHandler interface, 305-306, 313, 358
IVBSAXDTDHandler interface, 301, 355, 403
IVBSAXEntityResolver interface, 302, 355
IVBSAXErrorHandler interface, 302-303, 355
IVBSAXLexicalHandler interface, 303-304, 312, 358, 403
IVBSAXLocator interface, 295-296
IVBSAXXMLFilter interface, 309
IVBSAXXMLReader interface, 306-309
IXMLDOMAttribute interface, 124-125, 151
IXMLDOMCDATASection interface, 127-128, 151, 389
IXMLDOMCharacterData interface, 125-127
IXMLDOMComment interface, 128, 151, 387
IXMLDOMDocument interface, 133-139, 147, 387
IXMLDOMDocument2 interface, 139-140
IXMLDOMDocumentFragment interface, 132-133
IXMLDOMDocumentType interface, 129-130, 151
IXMLDOMElement interface, 122-124, 150, 388
IXMLDOMEntity interface, 130-131, 151
IXMLDOMEntityReference interface, 131
IXMLDOMImplementation interface, 143
IXMLDOMNamedNodeMap interface, 120-122
IXMLDOMNode interface, 111-119, 150, 152
IXMLDOMNodeList interface, 119-120
IXMLDOMNotation interface, 132, 152
IXMLDOMParseError interface, 110-111, 149
IXMLDOMProcessingInstruction interface, 128-129, 151,

387
IXMLDOMSchemaCollection interface, 140-141
IXMLDOMSelection interface, 141-143
IXMLDOMText interface, 127, 150, 389
IXSLProcessor interface, 145-147, 486
IXSLTemplate interface, 144, 486

J
JavaScript, 422

L
language, see xml:lang
lexical-handler property, 288, 304, 332, 348
LexicalHandler interface, 287-288

in Delphi SAX, 331-332
in Microsoft SAX, 303-304, 312

links, see XLink
Locator interface, 279

in Delphi SAX, 322-323
in Microsoft SAX, 295-296

Index

520



M
Mathematical Markup Language, see MathML
MathML, 8-10
Microsoft DOM, 108

creation, 147
examples, 149, 440, 467, 508
generating XML, 386
installation, 108
IXMLDOMAttribute, 124-125, 151
IXMLDOMCDATASection, 127-128, 151, 389
IXMLDOMCharacterData, 125-127
IXMLDOMComment, 128, 151, 387
IXMLDOMDocument, 133-139, 147, 387
IXMLDOMDocument2, 139-140
IXMLDOMDocumentFragment, 132-133
IXMLDOMDocumentType, 129-130, 151
IXMLDOMElement, 122-124, 150, 388
IXMLDOMEntity, 130-131, 151
IXMLDOMEntityReference, 131
IXMLDOMImplementation, 143
IXMLDOMNamedNodeMap, 120-122
IXMLDOMNode, 111-119, 150, 152
IXMLDOMNodeList, 119-120
IXMLDOMNotation, 132, 152
IXMLDOMParseError, 110-111, 149
IXMLDOMProcessingInstruction, 128-129, 151, 387
IXMLDOMSchemaCollection, 140-141
IXMLDOMSelection, 141-143
IXMLDOMText, 127, 150, 389
IXSLProcessor, 145-147, 486
IXSLTemplate, 144, 486
parsing a document, 137, 148
schemas, 140
threading, 155
transformations, 407, 478

Microsoft SAX, 295
creation,
example, 309
exceptions, 295
features, 307, 313
generating XML, 397
IMXAttributes, 399-401
IMXWriter, 397-399
IVBSAXAttributes, 296-298, 399
IVBSAXContentHandler, 298-300, 314, 355, 404
IVBSAXDeclHandler, 305-306, 313, 358
IVBSAXDTDHandler, 301, 355, 403
IVBSAXEntityResolver, 302, 355
IVBSAXErrorHandler, 302-303, 355
IVBSAXLexicalHandler, 303-304, 312, 358, 403
IVBSAXLocator, 295-296
IVBSAXXMLFilter, 309
IVBSAXXMLReader, 306-309
normalize-line-breaks, 308
parsing a document, 306, 308, 313

properties, 308, 312
server-http-request, 308
wrapped in Delphi SAX, 354
xmldecl-encoding, 308
xmldecl-standalone, 308
xmldecl-version, 308

MIDAS, 422
mixed content, 36
movie-watcher, 21

customized client, 450
database, 368-369
DTD, 33
SOAP example, 505
XML fragment, 22, 79
XML generation, as text, 370
XML generation, using DOM, 386
XML generation, using SAX, 397
XML generation, using Web module, 377
XML Schema fragment, 72

MSXML, see Microsoft DOM and Microsoft SAX
msxml:script, 483
Multi-tier Distributed Application Services, see MIDAS

N
name tokens, 24
NamedNodeMap interface, 87-88

in CUESoft DOM, 167-168
in Microsoft DOM, 120-122
in Open XML DOM, 206-208

namespace-prefixes feature, 287, 299, 331, 348
namespaces, 24

examples, 11, 15, 16, 43, 52, 67
namespaces feature, 287, 299, 331, 348
Node interface, 82-87

in CUESoft DOM, 160-165
in Microsoft DOM, 111-119
in Open XML DOM, 198-204

NodeFilter interface, 102-103
in Open XML DOM, 247-248

NodeIterator interface, 103-104
in Open XML DOM, 248-249

NodeList interface, 87
in CUESoft DOM, 165-167
in Microsoft DOM, 119-120
in Open XML DOM, 205

normalization
of DOM, 86, 124, 171, 204
of text, 25

normalize-line-breaks feature, 308
NOTATION, 39
Notation interface, 97-98

in CUESoft DOM, 177-178
in Microsoft DOM, 132
in Open XML DOM, 225-226

notations, 39
as attribute values, 38

Index

521



under DOM, 97
under SAX, 284

O
Open XML DOM, 195

character functions, 257
conversion functions, 258
creation, 261
examples, 261, 502
generating XML, 392
EDomException, 195, 197-198
namespace functions, 256
OnExternalSubset, 254, 261
parsing a document, 254, 261
TdomAttr, 211-213
TdomAttrDefinition, 231-232, 265
TdomAttrList, 230-231, 265
TdomCDATASection, 215, 263, 394
TdomCharacterData, 213-214
TdomChoiceParticle, 229
TdomComment, 215, 264, 394
TdomConditionalSection, 220-221
TdomDocument, 235-244, 264, 392
TdomDocumentFragment, 234-235
TdomDocumentType, 216-219, 264, 393
TdomElement, 208-211, 263, 393
TdomElementParticle, 230
TdomElementTypeDeclaration, 227-228, 265
TdomEntity, 221-223, 394
TdomEntityDeclaration, 223-224, 264, 394
TdomEntityReference, 224-225, 263
TdomExternalSubset, 219-220
TdomImplementation, 244-247, 261, 392
TdomInternalSubset, 219, 393
TdomNamedNodeMap, 206-208
TdomNametoken, 232-233
TdomNode, 198-204, 263
TdomNodeFilter, 247-248
TdomNodeIterator, 248-249
TdomNodeList, 205
TdomNotation, 225-226
TdomNotationDeclaration, 226, 265, 393
TdomParticle, 228
TdomPcdataChoiceParticle, 229
TdomProcessingInstruction, 216, 264, 394
TdomSequenceParticle, 229
TdomText, 214, 263, 394
TdomTextDeclaration, 234
TdomTreeWalker, 250-251
TdomXmlDeclaration, 233, 264, 393
token functions, 257
tokenizing functions, 259
TXmlToDomParser, 252-256, 261

P
parameter entities, 40
parameter-entities feature, 288, 304, 332

parsed entity, 27, 40
ParserAdapter class, 292

in Delphi SAX, 336-337
parsing

under DOM, 137, 184, 254
under SAX, 290, 291

processing instructions, 26
under DOM, 94
under SAX, 283

ProcessingInstruction interface, 94-95
in CUESoft DOM, 175
in Microsoft DOM, 128-129
in Open XML DOM, 216

prolog, 29
properties, 286, 291

declaration-handler, 289, 305, 333, 348
in Delphi SAX, 335, 348
in Microsoft SAX, 308, 312
lexical-handler, 288, 304, 332, 348
setting, 291, 308, 312, 335, 348
xmldecl-encoding, 308
xmldecl-standalone, 308
xmldecl-version, 308

R
randomize, 471
RDF, 15-19
Resource Description Framework, see RDF
Rich Text Format, see RTF
RTF, 418

S
SAX, 269

Attributes, 280-281, 296, 323
comparison to DOM, 269
ContentHandler, 282-283, 298, 326
CUESoft’s parser, 359
DeclHandler, 289, 305, 333
DefaultHandler, 293, 340
Delphi SAX, 317
DocumentHandler, 282, 453
DTDHandler, 284, 301, 328
EntityResolver, 285, 302, 329
ErrorHandler, 285-286, 302, 330
examples, 309, 345, 354, 359, 453
extensions, 286-287, 330
features, 286, 288, 290, 307, 331
generation, 397
HandlerBase, 293, 453
InputSource, 277-278, 295, 320
LexicalHandler, 287-288, 303, 331
Locator, 279, 295, 322
Microsoft’s SAX, 295
ParserAdapter, 292, 336
properties, 286, 288, 289, 291, 308, 335
SAXException, 275-276, 295, 319
SAXNotRecognizedException, 276, 286, 319, 330

Index

522



SAXNotSupportedException, 276, 286, 319, 330
SAXParseException, 276-277, 320
XMLFilter, 291-292, 309, 336
XMLReader, 290-291, 306, 334
XMLReaderAdapter, 292, 336
XMLReaderFactory, 293, 338

SAX2RDR variable, 339
SAXException exception, 275-276

in Delphi SAX, 319
SAXNotRecognizedException exception, 276

in Delphi SAX, 319
SAXNotSupportedException exception, 276

in Delphi SAX, 319
SAXParseException exception, 276-277

in Delphi SAX, 320
SAXPSR variable, 339
Scalable Vector Graphics, see SVG
Schema, see XML Schema
scripting XSLT, 483
server-http-request feature, 308
SGML, 3
Simple API for XML, see SAX
Simple Mail Transfer Protocol, see SMTP
Simple Object Access Protocol, see SOAP
simple types, 68
SMIL, 13-15
SMTP, 437, 445
SOAP, 495

client, 507
example XML, 495
faults, 496
server, 505
TCustomSOAPParser, 501-502
TSOAPDispatcher, 498
TSOAPOpenXMLParser, 502

standalone, 29
Standard Generalized Markup Language, see SGML
SVG, 10-13
Synchronized Multimedia Integration Language, see SMIL

T
tags, 23
TCustomParser class, 341-343
TCustomSOAPParser component, 501-502
TDCOMConnection component, 426
TdomAttr class, 211-213
TdomAttrDefinition class, 231-232, 265
TdomAttrList class, 230-231, 265
TdomCDATASection class, 215, 263, 394
TdomCharacterData class, 213-214
TdomChoiceParticle class, 229
TdomComment class, 215, 264, 394
TdomConditionalSection class, 220-221
TdomDocument class, 235-244, 264, 392
TdomDocumentFragment class, 234-235
TdomDocumentType class, 216-219, 264, 393

TdomElement class, 208-211, 263, 393
TdomElementParticle class, 230
TdomElementTypeDeclaration class, 227-228, 265
TdomEntity class, 221-223, 394
TdomEntityDeclaration class, 223-224, 264, 394
TdomEntityReference class, 224-225, 263
TDomException exception, 158-159
TdomExternalSubset class, 219-220
TdomImplementation component, 244-247, 261, 392
TdomInternalSubset class, 219, 393
TdomNamedNodeMap class, 206-208
TdomNametoken class, 232-233
TdomNode class, 198-204, 263
TdomNodeFilter class, 247-248
TdomNodeIterator class, 248-249
TdomNodeList class, 205
TdomNotation class, 225-226
TdomNotationDeclaration class, 226, 265, 393
TdomParticle class, 228
TdomPcdataChoiceParticle class, 229
TdomProcessingInstruction class, 216, 263, 394
TdomSequenceParticle class, 229
TdomText class, 214, 263, 394
TdomTextDeclaration class, 234
TdomTreeWalker class, 250-251
TdomXmlDeclaration class, 233, 264, 393
templates, 43
text content, 25

CDATA sections, 28
in XSLT, 45
under DOM, 93
under SAX, 283

Text interface, 93-94
in CUESoft DOM, 173-174
in Microsoft DOM, 127
in Open XML DOM, 214

TMidasPageProducer component, 425
TNMHTTP component, 321, 508
TNMSMTP component, 445
TPageProducer component, 376, 381
transformations, see XSLT
traversal, 106

in Microsoft DOM, 143
in Open XML DOM, 247
NodeFilter, 102-103, 247-248
NodeIterator, 103-104, 248-249
TreeWalker, 104-106, 250-251

TReconcilePageProducer component, 425
TRecordPageProducer component, 381
TreeWalker interface, 104-106

in Open XML DOM, 250-251
TSAX2DelphiReader class, 341
TSAX2MSReader class, 355
TSAXAttributes class, 324-326
TSAXCuesoftParser class, 360
TSAXCustomParser class, 359

Index

523



TSAXCustomXMLFilter class, 336
TSAXCustomXMLReader class, 335, 354
TSAXDefaultHandler class, 340-341
TSAXHandlerBase, 453
TSAXInputSource class, 321-322
TSAXLocator class, 323
TSAXParserAdapter class, 336-337, 363
TSAXXMLReaderAdapter class, 336-338
TSAXXMLReaderFactory class, 338-340
TShowDeltaButton component, 425
TShowXMLButton component, 425
TSOAPDispatcher component, 498
TSOAPOpenXMLParser component, 502
TWebModule component, 376
TXmlAttribute class, 172
TXMLBroker component, 425
TXmlCDataSection class, 174, 191
TXmlCharacterData class, 172-173
TXmlComment class, 174, 191
TXmlDocument class, 179-181, 191, 391
TXmlDocumentFragment class, 178
TXmlDocumentType class, 175-176, 191
TXmlDomImplementation component, 181-182
TXmlElement class, 169-171, 191, 391
TXmlEntity class, 176-177, 192
TXmlEntityReference class, 177
TXmlNamedNodeMap class, 167-168
TXmlNode class, 160-165, 190
TXmlNodeList class, 165-167
TXmlNotation class, 177-178, 192
TXmlObjModel component, 182-184, 189, 391
TXmlParser component, 185-189, 359
TXMLParser class, 341-345
TXmlParserError class, 159-160
TXmlProcessingInstruction class, 175, 191
TXmlText class, 173-174, 191
TXmlToDomParser component, 252, 261

U
Unicode encoding, 25, 30
unparsed entities, 28, 40
UTF-8 encoding, 30
UTF-16 encoding, 31

V
valid, 23, 35
validation feature, 287, 308, 331, 348
version, 29

W
W3C, 3

Recommendation process, 3
Web module, 376
Web server application

CGI with Web modules, 377
CGI with XMLBroker, 426
ISAPI with examination XML, 486

ISAPI with SOAP, 505
ISAPI with XMLBroker, 430

well-formed, 23
white space, 25, 114, 137, 183

under SAX, 283
World Wide Web Consortium, see W3C

X
XDOM, see Open XML DOM
XHTML, 6-8
XLink, 52

extended links, 55
out-of-line links, 57
simple links, 54
xlink:actuate, 53
xlink:arcrole, 53
xlink:from, 54
xlink:href, 53
xlink:label, 54
xlink:role, 53
xlink:show, 53
xlink:title, 53
xlink:to, 54
xlink:type, 53

xlink:actuate, 53
xlink:arcrole, 53
xlink:from, 54
xlink:href, 53
xlink:label, 54
xlink:role, 53
xlink:show, 53
xlink:title, 53
xlink:to, 54
xlink:type, 53
XLL,

XLink, 52
XPointer, 58

XML
attributes, 23, 37, 91, 280, 289
CDATA sections, 28, 94, 288
character reference, 27
comments, 26, 94, 288
configuration file example, 439
customized client, 450
datapacket example, 430
document element, 23, 99
documents, 98, 282
DTD, 33, 95, 287
elements, 23, 36, 89, 283, 289
empty elements, 23, 36, 70
encoding schemes, 29
entities, 26, 39, 96, 283, 284, 285, 288, 289, 477
examination example, 464
generation, as text, 370
generation, using DOM, 386
generation, using SAX, 397

Index

524



generation, using Web module, 376
goals, 3-4
history, 3-4
Internet transmission, 376
mapping from database, 367
MathML, 8
mail-out template example, 440
movie-watcher client, 450
movie-watcher example, 22
name tokens, 24
namespaces, 24, 283
notations, 39, 97, 284
parameter entities, 40
processing instructions, 26, 94, 283
processors, 31
prolog, 29
RDF, 15
SMIL, 13
SOAP, 495
standalone, 29
SVG, 10
syntax, 22
tags, 23
text content, 25, 93, 283
valid, 23, 35
well-formed, 23
white space, 25, 283
XHTML, 6
XML Schema, 66
xml:lang, 25, 62
xml:space, 25, 114, 137, 183

XML Linking Language, see XLink
XML Path Language, see XPath
XML Pointer Language, see XPointer
XML processors, 31
XML Schema, 66

attributes, 70, 71
comparison with DTDs, 66
complex types, 69
elements, 69, 72
examples, 72
facets, 69
in Microsoft DOM, 139, 140
linking to documents, 68
simple types, 68
xs:all, 70
xs:annotation, 68
xs:any, 70
xs:attribute, 71
xs:attributeGroup, 71
xs:choice, 70
xs:complexType, 69
xs:element, 72
xs:enumeration, 69
xs:extension, 70
xs:group, 70

xs:restriction, 69
xs:sequence, 70
xs:simpleType, 68

xml:lang, 25, 62
xml:space, 25, 114, 137, 183
XMLBroker, 422

delta, 432
reconciliation, 432

xmldecl-encoding property, 308
xmldecl-standalone property, 308
xmldecl-version property, 308
XMLFilter interface, 291-292

in Delphi SAX, 336
in Microsoft SAX, 309

XMLReader interface, 290-291
in Delphi SAX, 334-335
in Microsoft SAX, 306-309

XMLReaderAdapter class, 292
in Delphi SAX, 336-338

XMLReaderFactory class, 293
in Delphi SAX, 338-340

XPath, 58
in XSLT, 43

XPointer, 58
axis, 59
examples, 64
functions, 61
locations, 61
points, 61
predicates, 60
ranges, 61
shorthand form, 59, 63

xs:all, 70
xs:annotation, 68
xs:any, 70
xs:attribute, 71
xs:attributeGroup, 71
xs:choice, 70
xs:complexType, 69
xs:element, 72
xs:enumeration, 69
xs:extension, 70
xs:group, 70
xs:restriction, 69
xs:sequence, 70
xs:simpleType, 68
XSL, 42
xsl:apply-templates, 44, 413
xsl:attribute, 45, 412
xsl:call-template, 45
xsl:choose, 47, 412
xsl:comment, 46
xsl:copy, 46
xsl:element, 45
xsl:for-each, 46, 411, 419
xsl:if, 47, 412

Index

525



xsl:otherwise, 47, 412
xsl:output, 43, 411, 416, 419
xsl:param, 146, 479
xsl:processing-instruction, 46
xsl:sort, 46, 411, 414
xsl:stylesheet, 43, 411
xsl:template, 43, 413
xsl:text, 45
xsl:value-of, 45, 412
xsl:when, 47, 412
XSLT, 42, 407

comma-separated values example, 416
conditional processing, 47
functions, 417
HTML examples, 48, 411, 413, 479, 483
IXSLProcessor interface, 145-147, 486
IXSLTemplate interface, 144, 486
loops, 46, 411
Microsoft DOM, 118, 407
modes, 45, 413
named templates, 45
parameters, 146, 479, 492
patterns, 43
rich text format example, 418
scripting, 483

templates, 43, 413
text content, 45
transform, 146
transformNode, 118, 407
transformNodeToObject, 118, 408
xsl:apply-templates, 44, 413
xsl:attribute, 45, 412
xsl:call-template, 45
xsl:choose, 47, 412
xsl:comment, 46
xsl:copy, 46
xsl:element, 45
xsl:for-each, 46, 411, 419
xsl:if, 47, 412
xsl:otherwise, 47, 412
xsl:output, 43, 411, 416, 419
xsl:param, 146, 479
xsl:processing-instruction, 46
xsl:sort, 46, 411, 414
xsl:stylesheet, 43, 411
xsl:template, 43, 413
xsl:text, 45
xsl:value-of, 45, 412
xsl:when, 47, 412

Index

526

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 







About the CD

The companion CD-ROM contains the code listings from the book, XML and related specifica-

tions, third-party software, and links to relevant Internet sites.

The files are arranged in three folders: BookCode, Software, and Specifications. These folders

are accessible through the links in the Index.html document on the root or by using Windows

Explorer. Each of the three main folders contains an additional Index.html file that serves as a link

to the contents within that folder and to other resources.

WARNING: Opening the CD package makes this book non-returnable.

529



CD/Source Code Usage License Agreement

Please read the following CD/Source Code usage license agreement before opening the CD and using the contents

therein:

1. By opening the accompanying software package, you are indicating that you have read and agree to be bound

by all terms and conditions of this CD/Source Code usage license agreement.

2. The compilation of code and utilities contained on the CD and in the book are copyrighted and protected by

both U.S. copyright law and international copyright treaties, and is owned by Wordware Publishing, Inc. Indi-

vidual source code, example programs, help files, freeware, shareware, utilities, and evaluation packages,

including their copyrights, are owned by the respective authors.

3. No part of the enclosed CD or this book, including all source code, help files, shareware, freeware, utilities,

example programs, or evaluation programs, may be made available on a public forum (such as a World Wide

Web page, FTP site, bulletin board, or Internet news group) without the express written permission of

Wordware Publishing, Inc. or the author of the respective source code, help files, shareware, freeware, utilities,

example programs, or evaluation programs.

4. You may not decompile, reverse engineer, disassemble, create a derivative work, or otherwise use the enclosed

programs, help files, freeware, shareware, utilities, or evaluation programs except as stated in this agreement.

5. The software, contained on the CD and/or as source code in this book, is sold without warranty of any kind.

Wordware Publishing, Inc. and the authors specifically disclaim all other warranties, express or implied,

including but not limited to implied warranties of merchantability and fitness for a particular purpose with

respect to defects in the disk, the program, source code, sample files, help files, freeware, shareware, utilities,

and evaluation programs contained therein, and/or the techniques described in the book and implemented in

the example programs. In no event shall Wordware Publishing, Inc., its dealers, its distributors, or the authors

be liable or held responsible for any loss of profit or any other alleged or actual private or commercial damage,

including but not limited to special, incidental, consequential, or other damages.

6. One (1) copy of the CD or any source code therein may be created for backup purposes. The CD and all accom-

panying source code, sample files, help files, freeware, shareware, utilities, and evaluation programs may be

copied to your hard drive. With the exception of freeware and shareware programs, at no time can any part of

the contents of this CD reside on more than one computer at one time. The contents of the CD can be copied to

another computer, as long as the contents of the CD contained on the original computer are deleted.

7. You may not include any part of the CD contents, including all source code, example programs, shareware,

freeware, help files, utilities, or evaluation programs in any compilation of source code, utilities, help files,

example programs, freeware, shareware, or evaluation programs on any media, including but not limited to

CD, disk, or Internet distribution, without the express written permission of Wordware Publishing, Inc. or the

owner of the individual source code, utilities, help files, example programs, freeware, shareware, or evaluation

programs.

8. You may use the source code, techniques, and example programs in your own commercial or private applica-
tions unless otherwise noted by additional usage agreements as found on the CD.

530


	sample.pdf
	sterling.com
	Welcome to Sterling Software





