WORDWARE DELPHI DEVELOPER’S LIBRARY

Apply the power and
flexibility of Delphi to
the technologies that
make up XML.

Explore the various
implementations of the
Document Object
Model and the Simple
API for XML.

Run the example
programs on the
companion CD using
Delphi versions 3

Keith Wood

Delphi Developer’s
Guide to XML

Keith Wood

Wordware Publishing, Inc.

Library of Congress Cataloging-in-Publication Data

Wood, Keith, 1961-
Delphi developer’s guide to XML / by Keith Wood.
p. cm.
Includes index.
ISBN 1-55622-812-0 (pbk.)
1. XML (Document markup language). 2. Delphi (Computer file). 3. Computer software--Development. |. Title.

QA76.76.H94 W67 2001
005.7'2--dc21 2001026660
CIP

© 2001, Wordware Publishing, Inc.
All Rights Reserved

2320 Los Rios Boulevard
Plano, Texas 75074

No part of this book may be reproduced in any form or by
any means without permission in writing from
Wordware Publishing, Inc.

Printed in the United States of America

ISBN 1-55622-812-0
10987654321
0107

Delphi is aregistered trademark of Borland Software Corporation in the United States and other countries. Other products mentioned are used for
identification purposes only and may be trademarks of their respective companies.

All inquiries for volume purchases of this book should be addressed to Wordware Publishing, Inc., at the above
address. Telephone inquiries may be made by calling:

(972) 423-0090

Contents

Dedication. L e Xi
Preface e xii
Acknowledgmentso Lo Xiv
Part I: Introduction to XML
Chapter 1: History e 3
XML vs. HTML. e 4
Related Specifications 5
Extensible Hypertext Markup Language (XHTML). 6
Mathematical Markup Language (MathML). 8
Scalable Vector Graphics (SVG) 10
Synchronized Multimedia Integration Language (SMIL) 13
Resource Description Framework (RDF) 15
References. 19
Sample XML e 21
Chapter 2: XML Syntax. v vt e e 22
Elements and Attributes 23
Name Tokens and Namespaces 24
Textand White Space 25
Comments L 26
Processing Instructions 26
Entities. 26
CDATA Sections. o v v it e e e e e 28
Prolog 29
Encoding Schemes. 29
XML Processors. o . e 31
Summary. 32
Chapter 3: Document Type Definitions. 33
DTD Declarations 35
ContentModel. 36
Attributes 37
Notations. e 39
Entities. e 39
Summary. e e 41

Contents

Chapter 4:

Chapter 5:

Chapter 6:

Chapter 7:

Chapter 8:

Extensible Stylesheet Language Transformations 42
Transformations 42
Templates and Patterns 43
TextContent. e 45
Building Document Structure 45
Loops o e 46
Conditional Processing 47
XSLT Sample 48
Summary. 51
XLink 52
Link Definitionso 52
Simple Links. 54
Extended Links 55
Out-of-Line Links 57
Summary. 57
XPathand XPointer 58
General Form 58
AXES . . e e e 59
Predicates 60
Locations. e 61
Functions.o 61
Abbreviated Syntax 63
Samples 64
Summary. 65
XML Schema 66
Schema Document. 67
Documentation. e 68
Simple Types e 68
Complex TYpes o o v i i e e 69
Attribute Declarations 71
Element Declarations 72
Further Abilities of Schemas 73
Summary. 74

Part lI: The Document Object Model

The Document Object Model (DOM) 77
DOM Interfaces e 77
DOMExXception 81
Node Interface. 82
NodeList Interface. 87
NamedNodeMap Interface 87
Element Interface 89
AttrInterface. 91

Chapter 9:

Contents

CharacterData Interface 92
TextInterface 93
CDATASection Interface, 94
Comment Interface 94
Processinglnstruction Interface 94
DocumentType Interface 95
Entity Interface 96
EntityReference Interface 97
Notation Interface 97
DocumentFragment Interface 98
Document Interface 98
DOMImplementation Interface 101
NodeFilter Interface 102
Nodelterator Interface 103
TreeWalker Interface. 104
DocumentTraversal Interface 106
Summary e 107
Microsoft’s Document Object Model 108
IXMLDOMParseError Interface. 110
IXMLDOMNode Interface. 111
IXMLDOMNodeList Interface. 119
IXMLDOMNamedNodeMap Interface 120
IXMLDOMElement Interface 122
IXMLDOMAttribute Interface. 124
IXMLDOMCharacterData Interface. 125
IXMLDOMText Interface 127
IXMLDOMCDATASection Interface 127
IXMLDOMComment Interface 128
IXMLDOMProcessinglnstruction Interface 128
IXMLDOMDocumentType Interface 129
IXMLDOMEntity Interface 130
IXMLDOMEntityReference Interface. 131
IXMLDOMNotation Interface. 132
IXMLDOMDocumentFragment Interface. 132
IXMLDOMDocument Interface 133
IXMLDOMDocument2 Interface 139
IXMLDOMSchemaCollection Interface. 140
IXMLDOMSelection Interface 141
IXMLDOMImplementation Interface 143
Document Traversal 143
IXSLTemplate Interface 144
IXSLProcessor Interface 145
Loadingthe DOM 147

Contents

Chapter 10:

Chapter 11:

The MS DOM XML Viewer. v v i it 149
Viewing Node Details 153
Threadingthe DOM 155
Summary 155
CUESoft’s Document Object Model 157
TDOMException Exception 158
TXmlParserError Exception 159
TXmINode Class. 160
TXmINodeList Class. 165
TXmINamedNodeMap Class 167
TXmlElement Class 169
TXmlAttribute Class 172
TXmlCharacterDataClass 172
TXmIText Class e 173
TXmlICDataSection Class 174
TXmlComment Class 174
TXmlProcessinglnstruction Class 175
TXmlDocumentType Class 175
TXmlEntity Class 176
TXmlEntityReference Class 177
TXmINotation Class i 177
TXmlDocumentFragment Class 178
TXmlDocument Class 179
TXmlDomImplementation Class 181
TXmlObjModel Component. 182
TXmlParser Component 185
Loading the CUESoft DOM 189
Summary 194
Open XML’s Document Object Model 195
EDomException Exception 195
TdomNode Class. i 198
TdomNodeList Class. 205
TdomNamedNodeMap Class 206
TdomElementClass 208
TdomAttr Class. 211
TdomCharacterDataClass 213
TdomText Class it 214
TdomCDATASectionClass 215
TdomComment Class 215
TdomProcessinglnstruction Class 216
TdomDocumentType Class 216
TdomlInternalSubset Class 219
TdomExternalSubset Class. 219

Chapter 12:

Contents

TdomConditionalSection Class 220
TdomEntity Class 221
TdomEntityDeclarationClass 223
TdomEntityReference Class 224
TdomNotation Class 225
TdomNotationDeclaration Class. 226
TdomElementTypeDeclaration Class 227
Content Models. 228
TdomAttrList Class 230
TdomAttrDefinition Class 231
TdomNametoken Class 232
TdomXmlDeclarationClass 233
TdomTextDeclarationClass 234
TdomDocumentFragment Class 234
TdomDocument Class 235
TdomImplementation Class 244
TdomNodeFilter Class 247
TdomNodelterator Class 248
TdomTreeWalker Class 250
TXmlToDomParser Class 252
Helper Functions 256
Viewing with the Open XML DOM 261
Summary e 268

Part Ill: Simple API for XML

Simple API for XML (SAX). 271
Working with SAX. 271
SAX Elements 272
SAXExceptionClass. 275
SAXParseExceptionClass 276
InputSource Class 277
Locator Interface 279
Attributes Interface. 280
ContentHandler Interface 282
DTDHandler Interface 284
EntityResolver Interface 285
ErrorHandler Interface 285
SAX EXtENSIONS« v v i e e e 286
LexicalHandler Interface. 287
DeclHandler Interface 289
XMLReader Interface 290
XMLFilter Interface 291
ParserAdapter and XMLReaderAdapter Classes 292

Contents

Chapter 13:

Chapter 14:

XMLReaderFactory Class 293
DefaultHandler Class. 293
Summary e 294
Microsoft’s SAX Parsero 295
IVBSAXLocator Interface 295
IVBSAXAttributes Interface. 296
IVBSAXContentHandler Interface 298
IVBSAXDTDHandler Interface 301
IVBSAXEntityResolver Interface 302
IVBSAXErrorHandler Interface 302
IVBSAXLexicalHandler Interface. 303
IVBSAXDeclHandler Interface 305
IVBSAXXMLReader Interface 306
IVBSAXXMLFilter Interface 309
Preparing for SAX Events 309
Responding to the Notifications 314
Summary 316
SAXinDelphi 317
Conversionto Delphi. 317
ESAXExceptionClass 319
ESAXParseExceptionClass 320
TSAXInputSource Class 321
ISAXLocator Interface. 322
ISAXAttributes Interface. 323
ISAXContentHandler Interface 326
ISAXDTDHandler Interface 328
ISAXEntityResolver Interface 329
ISAXErrorHandler Interface. 330
SAX EXtensions v v v v i e e e 330
ISAXLexicalHandler Interface. 331
ISAXDeclHandler Interface 333
ISAXXMLReader Interface 334
ISAXXMLFilter Interface 336
TSAXParserAdapter and TSAXXMLReaderAdapter Classes 336
TSAXXMLReaderFactory Class 338
TSAXDefaultHandlerClass 340
Buildinga SAX Reader 341
The SAX XML VieWer. o o v it i et i e 345
Implementing ISAXContentHandler. 349
Summary 353

Chapter 15:

Chapter 16:

Chapter 17:

Chapter 18:

Chapter 19:

Chapter 20:

Chapter 21:

Chapter 22:

Wrapping External Parsers
Adapting Microsoft’s SAX Parser
Using CUESoft’s Parser
Using Open XML’s Parser
Summary

Part IV: Serving XML
XML is Data
Movie-watcher Database
Simple Text
From a Database
Summary
Web Modules
Generation
TRecordPageProducer
Summary
Document Object Model
Microsoft’s DOM
CUESoft’s DOM
Open XML’s DOM
Summary
SAX Generation
IMXWriter Interface
IMXAttributes Interface
Creating a Writer
Defining the DTD
Adding Content.
Summary
Applying XSL Transformations
XSLT Utility
Transforming the Document
Monolithic HTML Transformation
Template-Based HTML Transformation
Comma-Separated Transformation
Rich Text Transformation
Summary
XML Broker
The Data Server
InternetExpress
The CGI Web Application
Using ISAPI
XML Usage
Summary

Contents

Contents

Chapter 23:

Chapter 24:

Chapter 25:

Chapter 26:

Chapter 27:

Glossary . .
Index. . . .

Part V: Sample Applications

Mass Electronic Mail-Outs 437
Loading the Configuration Properties 438
Mail Message Template 440
Database ACCeSS v . e e e 443
DropItinthePost 445
Loggingand Testing 446
All Together Now 447
Summary 449
A Customized Client. 450
TheClient 450
Information Hiding. 452
Parsing the XML Documents 453
Constructing Model Objects 455
Accumulating Content 457
Saving Properties. 457
Client Processing. i i 459
Through the Browser. 461
Summary 463
Examination XML — Delphi Client 464
Loadingan Exam. 465
User Tracking e 470
Exam Application o 472
Summary 477
Examination XML — Web Client. 478
Exam Transformations 478
Scripting in Transformations. 483
Web Application Initialization. 486
Applying the Transformations 488
FinishingUp 492
Summary 494
Simple Object Access Protocol 495
SOAP Introduction. 495
Processing SOAP. 498
SOAP Server. 505
SOAPClient 507
Summary 509

................................. 510

................................. 517

Dedication

For Katalin,
who knew I could do it

xXi

Preface

This book is designed as an introduction to XML and an examination of how XML can be used in
conjunction with Delphi.

XML is a specification that defines a way to describe and process sets of documents that have
an inherent structure. An XML document’s appearance is similar to HTML (not surprising given
its heritage), but it is targeted at describing the meaning of data within the document, rather than
the data’s presentation as HTML does.

Due to the simple hierarchy of elements within an XML document and the enforcement of cer-
tain structural rules, XML documents are easily processed by a variety of parsers. Processors may
be written in any language and still handle the same documents.

Given the text-based nature of XML, these documents can be created just with a text editor,
through generic XML editors, or automatically from other data sources. Furthermore, the text files
are easily transferred between machines over LANS or across the Internet. The target machines
can use different operating systems and yet accept the same XML documents.

XML lets you create language- and operating system-independent documents that contain
self-describing data. This facilitates the transfer of data and interactions between computers wher-
ever they may be.

Numerous books have been written on XML itself, although these usually deal with Java as the
implementation language for any processors. Much of the ongoing work in XML processing also
seems to be centered on Java. I felt that Delphi developers should not be left out of this important
new standard, and I have written this book to try to fill in some of the gaps in combining the two
technologies.

Who is This Book For?

This book is for developers with a working knowledge of Delphi who are interested in learning
about XML and its related technologies. No knowledge about XML is assumed.

Some of the topics in the book require the advanced features of the Enterprise editions of
Delphi, although basic processing of XML documents can be done with any edition. The code that
demonstrates the concepts presented here runs under Delphi 3 through 6. However, due to version
differences, there is often a separate Delphi 3 version for each project.

What is in the Book?

Part I introduces the reader to XML, tracing its origins and purpose. Several existing XML appli-
cations are presented to show the diversity of uses for XML. The syntax and structure of an XML
document is described, along with the corresponding document type definition (DTD). Accom-
panying standards such as XSLT (XSL Transformations), XLink, XPointer, and XML Schema are
also reviewed. XSLT lets you transform XML documents into other formats, typically into HTML
for display in a browser. XLink defines how documents can be connected in ways beyond the sim-
ple hyperlink of HTML. XPointer describes how to address sections within a document for more
focused links. And XML Schema is an alternative to DTDs in describing the structure of XML
documents.

Part II shows how to work with XML using Delphi. The Document Object Model (DOM)
specification from the World Wide Web Consortium (W3C) is presented, followed by three imple-
mentations of it. The DOM is a series of interfaces that provide access to an in-memory structure
that represents the XML document. First we discuss Microsoft’s DOM as encapsulated in the
MSXML v3 library and available to Delphi as COM objects. Next we look at two packages writ-
ten in Delphi: one from CUESoft and another from the Open XML project.

Part III describes an alternate approach to working with XML: the Simple API for XML
(SAX). SAX uses an event-based mechanism for parsing the contents of an XML document,
meaning that it does not have to hold the entire document in memory as the DOM does. Again, the
basic specification is presented, as developed by David Megginson and the XML-DEV mailing
group. Microsoft also has a SAX offering in the MSXML v3 library, which is described in this sec-
tion. Following that is an implementation of SAX in Delphi and a wrapper around the Microsoft
parser that conforms to the Delphi interfaces.

Part IV looks at how XML documents can be generated using Delphi. Starting out with sim-
ple text output, the chapters also explore using Delphi’s Web modules, the various Document
Object Models, and Microsoft’s IMX Writer objects. Also examined are XSL Transformations for
pre-formatting data and Delphi’s XMLBroker for thin-client database interactions.

Part V delves into applications that use XML as one of their building blocks. It provides
examples of how XML can be used and how Delphi is brought to bear on the problem. A custom-
izable mass mail-out program is presented, using XML for its configuration file and for the
message template. An example of a customized client program for a particular class of XML doc-
uments follows, with a description of how to automatically invoke it for appropriate content
downloaded from the Internet. The next two chapters present another client program, this time for
an examination class of XML documents, and a Web-based application for providing the same
content over the Internet. The Web application uses XSLT to help manipulate the XML. Finally,
there is a discussion about the Simple Object Access Protocol (SOAP), which is a remote proce-
dure invocation protocol using XML.

Acknowledgments

As is always the case, this book could not have been produced without the support of a team of
people.

Thanks to Jim Hill and Wes Beckwith at Wordware for helping me get this book into your
hands.

Thanks to Mark Edington of Borland for checking the facts and setting me straight.

Thanks to Dieter Kohler for assistance with the XDOM package from Open XML.

Thanks to Michael Holmes, Trevor de Koekkoek, and Thomas Theobald for feedback early on
in the writing process.

Many thanks to my wife, Katalin, for supporting my efforts.

And thanks to the many readers of my Delphi articles who have provided such positive feed-
back and suggestions for improvements.

Part |

Intfroduction to XML

XML stands for Extensible Markup Language. It is a technology that allows you to
describe data in a way that is both human-readable and yet easily processed by comput-
ers. It is a standard approved by the World Wide Web Consortium (W3C) and has a great
deal of support in the marketplace.

XML documents can be created by simple text editors, through generic XML editors,
via customized GUI front ends, or programmatically. This allows almost anyone to gen-
erate these documents, and, by following a few simple rules, they are usable by anyone
else who knows about XML.

Suites of XML components are available for processing these documents. Generic
parsers, editors, and validators are available in just about every language and on every
platform. XML support is being built into the latest generation of Web browsers, as well
as into databases, application servers, and individual applications.

XML is being used to transfer data from point to point in a platform- and language-
independent manner. It can tie together layers in an n-tier architecture. It can manipulate
its content with stylesheets to generate a variety of display formats for endusers. It facili-
tates communications between businesses.

Overall, XML has a bright future, and Delphi users need to be able to use the capabili-
ties that it provides.

Chapter 1:
Chapter 2:
Chapter 3:
Chapter 4:

Chapter 5:
Chapter 6:
Chapter 7:

History
XML Syntax
Document Type Definitions

Extensible Stylesheet Language
Transformations

XLink
XPath and XPointer
XML Schema

Chapter 1

History

XML is a subset of the Standard Generalized Markup Language (SGML) that attempts to provide
most of the functionality of the latter, but without all its complexity. As such it is a way of describ-
ing classes of documents and their structure through the use of markup (embedded instructions or
notations within the content). It was developed in 1996 by the XML Working Group under the
aegis of the W3C and the leadership of Jon Bosak. On February 10, 1998, it became a W3C
Recommendation.

The World Wide Web Consortium is a collection of over 500 member organizations from
around the world. Its purpose is “to lead the World Wide Web to its full potential by developing
common protocols that promote its evolution and ensure its interoperability.” Proposed ideas and
technologies go through a rigorous consensus-building process before they can be assigned the
status of “W3C Recommendation.”

A specification starts off as a “Working Draft” that generally represents a work in progress and
a commitment to pursue work in this area by a Working Group. When the spec is considered ready,
it becomes a “Last Call Working Draft,” allowing outside review of the document, both within the
wider W3C community and by the public. Once accepted, the specification becomes a “Candidate
Recommendation”—a published report that invites feedback on implementing the proposal. A
“Proposed Recommendation” is the next step, after showing that the spec is workable and incor-
porating any final changes. The end result of the process is the status of “W3C Recommendation,”
which indicates that the ideas or technology described in the document are appropriate for wide-
spread deployment and promote the W3C’s goals.

SGML has been used for many years to structure documents in a standard way (ISO 8879). It is
well suited to the storage and maintenance of long-lived documents, usually from a publishing
perspective. However, it provides a great deal of functionality and many options that are infre-
quently used. This complicates the construction of tools designed to work with the full range of
SGML documents.

XML is designed as a simplified subset of SGML to describe and manipulate short-lived docu-
ments, and is optimized for the Web environment. Often these documents are dynamically
generated and immediately consumed. The design goals for XML, as set out in the XML specifi-
cation Section 1.1, are as follows:

1. XML shall be straightforwardly usable over the Internet.

4 ! Part I: Introduction to XML

XML shall support a wide variety of applications.

XML shall be compatible with SGML.

It shall be easy to write programs which process XML documents.

The number of optional features in XML is to be kept to the absolute minimum, ideally zero.
XML documents should be human-legible and reasonably clear.

The XML design should be prepared quickly.

The design of XML shall be formal and concise.

XML documents shall be easy to create.

S B VR

_.
e

Terseness in XML markup is of minimal importance.

Its widespread acceptance and growing use confirm that these goals have been met.

XML vs. HTML

XML is often compared to HTML, frequently as a replacement for it. Both use straight text files
for their content. Both include markup in the SGML style using angle brackets (<>). However,
whereas HTML has a set of predefined tags that you can use to embellish your content, XML
allows you to define an entirely new set of tags and the relationships between them. This definition
can then be used to construct a whole series of conforming documents specific to your needs.

HTML allows you to describe the appearance of some data in a device-independent manner,
while XML allows you to describe the content of that data in an application- and operating sys-
tem-independent way.

Compare the following HTML fragment:

<h1>Star Wars — The Phantom Menace</h1>

<p>PG, 131 minutes</p>

<p>Directed by George Lucas.</p>

<p>Starring Liam Neeson, Ewan McGregor, Jake Lloyd,
and Natalie Portman</p>

and the corresponding XML document fragment:

<movie>
<name>Star Wars - The Phantom Menace</name>
<rating>PG</rating>

<length>131</length>

<director>George Lucas</director>

<star>Liam Neeson</star>

<star>Ewan McGregor</star>

<star>Jake Lloyd</star>

<star>Natalie Portman</star>
</movie>

Both may appear the same in your browser, but just from reading the XML fragment you can
immediately see what the content means. In the HTML version you could extract the same ele-
ments, but not without an intimate knowledge of the format used. The XML data can be

Chapter 1: History

manipulated automatically, such as searching for movies by name or rating, as well as rendering it
for display in one or more output formats (including HTML).

In more technical terms, HTML is an SGML application; that is, it is a predefined set of
markup tags that deal with the presentation of data. XML, on the other hand, is a subset of SGML,
ametalanguage. It allows you to define your own set of tags denoting the meaning of the data and
then create documents using them. One of the main ideas behind XML is to separate the data con-
tent from its presentation.

XML does not replace HTML; it complements it. XML provides a standard means of describ-
ing the meaning of the data, while HTML provides a standard way of presenting that data.

Related Specifications

XML itself is just part of the story—it describes the basic components and structure of a
document. Along with this are a number of related specifications that provide further pieces of the
puzzle.

Document type definitions (DTDs) provide the templates that define a valid XML document.
They detail what elements are allowed and in what context within the document. These are
extremely useful when transferring data between different organizations as they impose the neces-
sary structure and consistency on the communications.

Extensible Stylesheet Language (XSL) is a generic way of describing the formatting of XML
content for display in a particular graphical medium. An XSL stylesheet is an XML document,
allowing it to be created and manipulated in the same way as the actual data that it operates upon.

XSL Transformations (XSLT) is a language for detailing how an XML document should be
manipulated to transform its contents into another format. It can reorganize the XML data, select
from it, and manipulate it, before wrapping it in whatever formatting instructions are appropriate
for the target application. Output can be rendered as HTML, as plain text, as RTF, even as another
XML document.

XML Linking Language (XLink) defines how one document can be linked to another. It goes
further than normal hyperlinks since it can define multiple links, bi-directional links, and even
external links related to a document.

XML Pointer Language (XPointer) extends XLink to allow it to refer to individual parts of a
linked document. This could be a single position, like existing HTML named anchors, or a range
of elements within the resource.

XML Schema is an alternative way of specifying the content of an XML document, replacing
DTDs. It offers the functionality of DTDs while adding data typing for elements and attributes,
exact multiplicity (such as between two and four occurrences), and other features. Its major
advantage is that the schemas are expressed in XML itself, which allows you to use the same tools
on both the data and its description. This specification is still under development.

There are also a number of XML applications already available. The following sections
describe some of them. Even though most are not available for use within Delphi, they are pre-
sented here to give you a feel for the diversity of applications that XML enables. Although some of

6 ! Part I: Introduction to XML

the terms used may be unfamiliar to you at this stage, you should get the gist of them from the text
while further description is left to the later chapters.

Extensible Hypertext Markup Language (XHTML)

As it states in the specification, this is a reformulation of HTML 4.0 in XML 1.0. The purpose of
the specification is to make HTML documents just another XML application, allowing all the
tools for XML to be used with them. The semantics of the language do not change from the origi-
nal HTML 4.0 specification; however, the syntax is tightened up to comply with XML.

XHTML 1.0 is a W3C Recommendation as of January 26, 2000. It defines a set of three docu-
ment types that cover existing HTML applications. Other guiding principles of the specification
include backward compatibility with existing HTML and its current processors (browsers), which
allows the Document Object Model to be used with these documents, and providing an extendable
framework for future efforts.

The three classes of XHTML documents correspond to the original HTML 4.0 DTDs. These
are for strict HTML 4.0, which excludes certain attributes and elements being phased out due to
stylesheet usage, for transitional HTML 4.0, which includes those attributes and elements, and for
frameset HTML documents, which are identical to the transitional HTML except that the
frameset element replaces the body one.

XML is stricter than HTML in what is permissible. These sorts of anomalies are corrected in
XHTML. All elements must be properly nested, with the htm1 element being the top-level one. So,
you can no longer have sequences such as:

Important news about <i>Delphi</i>

All element names must be lowercase—XML is case sensitive, while HTML accepts any case.
End tags are required for all non-empty elements. For example, under HTML the paragraph tag is
optional (and frequently omitted). In XHTML it must always be present.

<p>A11 paragraphs must have end tags.</p><p>XHTML requires it.</p>

Similarly, all empty tags must be correctly terminated. This can be done either by adding the slash
at the end of the opening tag or by adding the entire closing tag. When using the first technique,
you should place a space before the slash at the end of the tag if there are no attributes. This
ensures that older browsers still recognize the tag.

<hr />

All attributes must be properly quoted in XHTML. In HTML this is only required when the attrib-
ute value contains white space or other characters with special meaning. Attributes must have a
value specified. Under HTML, some attributes do not have values, such as the checked attribute of
a radio button or check box. In XHTML these values must be supplied.

<input type="checkbox" name="Delphi 5" checked="checked">Delphi

In XHTML, white space in attributes is normalized. This means that leading and trailing white
space is removed, and internal sequences of white space are reduced to a single space. Style and

Chapter 1: History

script elements can use CDATA sections (special sections that ignore normal markup) to remove
the need to escape certain characters.

Elements are identified through the id attribute in XHTML, which is defined to be of type ID
(a special attribute type used for names that are unique within the document). The name attribute
that appears on some elements in HTML is deprecated (phased out) under XHTML.

So, by following a few simple rules, you can easily convert your HTML documents to
XHTML documents. Then you can manipulate them using any of the tools designed for XML. Do
not forget that XML is extensible, meaning that your XHTML document also gains this ability.
Listing 1-1 shows a sample XHTML page fragment. Note the appearance of closing paragraph
tags, </p>, and that horizontal rules and line breaks are marked as empty, <hr />. Otherwise, it is
standard HTML.

Listing 1-1: Movie data displayed as XHTML

<html>
<head>
<title>Movie Watchers</title>
</head>
<body>
<hl>Welcome to Movie Watchers</hl>
<p>Your source for local film entertainment.
Have a Took at what's on,
where and
when.</p>
<hr />
<h2>Movies</h2>

<table border="0" width="100%">
<tr>

<th align="1eft" valign="top" width="15%">Rating:</th>
<td width="15%">PG</td>
<th align="left" valign="top" width="15%">Length:</th>
<td>131 mins</td>
</tr>
<tr>
<th align="left" valign="top">Director:</th>
<td colspan="3">George Lucas</td>
</tr>
<tr>
<th align="1eft" valign="top">Starring:</th>
<td colspan="3">
Liam Neeson

Ewan McGregor

Jake Lloyd

Natalie Portman

</td>
</tr>
<tr>
<th align="left" valign="top">Synopsis:</th>
<td colspan="3">When the evil Trade Federation plots to take over
the peaceful planet of Naboo, Jedi warrior Qui-Gon Jinn and his
apprentice Obi-Wan Kenobi embark on an amazing adventure to save
the planet. With them on their journey is the young queen
Amidala, Gungan outcast Jardar Binks, and the powerful Captain

8 Part I: Introduction to XML

Panaka, who will all travel to the faraway planets of Tatooine
and Coruscant in a futile attempt to save their world from Darth
Sidious, leader of the Trade Federation, and Darth Maul, the
strongest Dark Lord of the Sith to ever wield a Tightsaber.
</td>
</tr>
<tr>
<th align="1eft" valign="top">Showing at:</th>
<td colspan="3">

MovieMania

Oscar's Cinema

</td>
</tr>
</table>

<p>Back to the top.</p>
<hr />

<hr />

<p>Movie Watcher data supplied by

Keith Wood.</p>
</body>

</html>

Mathematical Markup Language (MathML)

The purpose of MathML is to facilitate the specification and processing of mathematical and sci-
entific content. It encodes mathematical notation in a way that allows you to show it in
high-quality displays, present it via audio methods, and manipulate it symbolically via
applications.

Eventually, with appropriate stylesheet support, MathML elements will be included as part of
a standard XML document and rendered accordingly. Until then, specialized applets and applica-
tions allow MathML to be viewed within a browser.

Up to now, mathematical equations were usually presented as images within an HTML page.
Although this does provide information for human readers, it is of no use to an application that is
interested in the underlying meaning. With the development of MathML, both these purposes can
be achieved.

MathML is a W3C Recommendation, with version 1.01 being released on July 7, 1999. Ver-
sion 2.0 is currently available as a Working Draft. The work with the W3C began in 1994 when a
proposal for HTML Math was included in the HTML 3.0 Working Draft. Following numerous
discussions, an official Working Group devoted to mathematical markup was formed in March
1997.

The limitations of HTML in rendering mathematical equations was recognized early on. Using
images instead was not ideal as these tended to interrupt the flow of the document, and did not
align or resize properly. Also, images tend to be of a lower resolution than normal text when
printed out, resulting in less than acceptable quality.

Chapter 1: History 9

Although improvements in HTML layout could solve some of these problems, it would not
allow the meaning of the equation to be easily relayed to another application. This is where XML
comes in, with its ability to encode the meaning of the data it contains.

The design goals included sufficient richness to encode most equations, recording both nota-
tion and meaning; simple conversion between other formats (such as output formats); human
legible, yet easily processed by machine; extensible; and allowing application-specific informa-
tion to be transferred. XML fulfils most of these goals.

MathML elements fall into one of three categories: presentation elements, content elements,
or interface elements. Presentation elements describe notational structure, such as terms on one
line, and sub- and superscripts. Content elements denote mathematical objects, such as operators,
specific mathematical concepts, or literal values. The one inferface element is the math element,
which serves as the top-level tag for a MathML fragment.

For example, the equation:
X’ +H4x+4=0

can be encoded using presentation elements as shown in Listing 1-2, or with content elements as
seen in Listing 1-3.

Listing 1-2: MathML presentation elements

<math>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
<mo>+</mo>
<mrow>
<mn>4</mn>
<mo>⁢</mo>
<mi>x</mi>
</mrow>
<mo>+</mo>
<mn>4</mn>
</mrow>
<mo>=</mo>
<mn>0</mn>
</mrow>
</math>

Listing 1-3: MathML content elements

<math>
<reln>
<eq/>
<apply>
<plus/>
<apply>
<power/>
<ci>x</ci>
<cn>2</cn>
</apply>
<apply>

10 Part I: Introduction to XML

<times/>

<cn>4</cn>

<ci>x</ci>
</apply>
<cn>4</cn>

</apply>
<cn>0</cn>
</reln>
</math>
MathML allows these two formats to be combined, either directly or within the semantics ele-
ment. In this latter case, one representation becomes the main format, while the other is included
as an annotation, either hinting at how to render the equation or clarifying the meaning of it.
MathML offers almost 30 presentation elements, about 75 content ones, and an impressive array
of mathematical symbols expressed as entities (named references).
Although MathML is not yet an integrated part of HTML (being rendered in all browsers), it is
well on its way to this goal. Editors, viewers, and processors are already available for working
with this language.

Scalable Vector Graphics (SVG)

Scalable Vector Graphics is an XML application that describes two-dimensional graphics. It pro-
vides three types of graphic objects: vector graphic shapes (such as lines and curves), images, and
text. These objects can be grouped, transformed, and styled through the language. Other features
include nested transformations, clipping, alpha masks (transparency), filter effects, and templates.

As of August 2, 2000, SVG is a Candidate Recommendation of the W3C. It should be a full
recommendation by the time that you read this. It is intended that SVG have its own MIME type,
image/svg-xml, and it is recommended that all SVG files have an .svg extension.

SVG includes its own Document Object Model, allowing the graphics description to be
manipulated through scripting languages. You can embed SVG fragments within an XHTML
page and access both from script. It includes a rich set of event handlers providing for interactive
sessions with the user.

This specification relies on several others, besides the XML specification itself. It incorporates
XLink and XPointer depictions for linking between and within documents. Styling can be
achieved through cascading style sheets (CSS) or XSL. Some of its animation features come from
the Synchronized Multimedia Integration Language (SMIL). SVG also attempts to remain com-
patible with HTML and XHTML implementations.

The word “scalable” in the title of this specification means that the encoded graphics can be
displayed correctly at any resolution, from a low-resolution computer screen to high-resolution
printers. It also means that large numbers of files and large numbers of users can utilize the tech-
nology at once. Vector graphics tend to result in smaller encodings of many images (but not
photograph-like ones). Using vector graphics allows the image to be rendered at the client,
enabling it to make the most of its particular abilities. SVG also includes manipulation of normal
rasterized images, as you would find in GIF or JPEG files. The graphics encoded by SVG provide

Chapter 1: History 11

a capability in between straight textual information and standard images, allowing it to be used
alone or embedded within another XML application.

SVG documents are made up of graphical objects—paths between points. The more common
shapes, such as rectangles and ellipses, are modeled directly, while the generic path element lets
you describe other figures. Common symbols can be described and shared between documents.
These include items like flowchart elements and electrical symbols. Various raster effects, like
blurring and shadowing, can be specified within SVG, while still allowing them to be applied in a
scalable fashion. Font elements combine both textual and graphical descriptions, enabling them to
be processed either way as necessary.

Listing 1-4 shows a simple SVG document that [z err— ;
encodes various basic figures. The output produced =1+ 1@y 3| @ [E‘ E‘ %‘Q]Q |E| o
by this document looks like Figure 1-1. Note thatit . "~ e Rl
includes a reference to the SVG DTD, and starts
with the top-level svg element. svg elements can -/
also appear within the body of the document, repre-
senting a new viewport or altering the meaning of
unit identifiers. When embedded as part of another
document, the namespace (language identifier) for
the svg elements should be http://www.w3.org/
2000/svg.

Listing 1-4: A basic SVG document

<?xml version="1.0" standalone="no"?>
<IDOCTYPE svg PUBLIC "-//W3C//DTD SVG 20000802//EN"
"http://www.w3.0org/TR/2000/CR-SVG-20000802/DTD/svg-20000802.dtd">
<svg width="6cm" height="5cm">
<title>SVG Example</title>
<desc>A sampling of SVG elements</desc>
<rect x="0.5cm" y="0.5cm" width="2cm" height="1cm"/>
<circle cx="4.5cm" cy="2cm" r="1cm" style="fill: lightgray"/>
<line x1="2cm" yl1="1.5cm" x2="4cm" y2="0.5cm"
style="stroke: red; stroke-width: 2"/>
<text x="lcm" y="2.5cm">SVG Shapes</text>
</svg>

DASVGexamplel svy Go | Browse

SVG Shapes

Figure 1-1: The rendered SVG document.

Objects are grouped together with the g element, which surrounds its constituent elements. When
supplied with an id attribute, these groups can be manipulated as if they were basic shapes.
Groupings can be applied to any depth. The defs element is similar to a grouping in that it collects
other elements together, but it is only used for defining these elements and is not rendered in the
final output.

Containers and graphic objects can have textual descriptions applied to them through the desc
and title elements that they encompass. Browsers use these to supply additional information
when necessary, such as in a tool tip or in audio renderings of a document. The outermost svg ele-
ment should always have a title element within it to cater to browsers that cannot deal with the
graphics themselves.

12

Part I: Introduction to XML

The symbol element defines template objects, [T IR I
allowing for their reuse elsewhere within the current | « |+ @ [& & @& & & &/ 9
or in other documents. Like defs they are not ren- | pisvow@mples s & || e |
dered through normal processing. Instead, you ”

utilize the use element to invoke a symbol, a group,
an svg element, or some other graphical element. (@
Reference to the original element is via an

xTink:href attribute and refers to the former’s id.
See Listing 1-5 for an example of defining a figure
and then reusing it within the image. The corre- Figure 1-2: Rendering with reuse in SVG.
sponding output is shown in Figure 1-2.

Listing 1-5: Reuse within SVG

<?xml version="1.0" standalone="no"?>
<IDOCTYPE svg PUBLIC "-//W3C//DTD SVG 20000802//EN"
"http://www.w3.0rg/TR/2000/CR-SVG-20000802/DTD/svg-20000802.dtd">
<svg width="10cm" height="10cm">
<title>0Tympic Rings</title>
<desc>The Olympic rings</desc>
<defs>
<g id="olympicrings" width="60" height="30"
style="fill: none; stroke-width: 2">
<circle cx="10" cy="10" r="10" style="stroke: blue"/>
<circle cx="30" cy="10" r="10" style="stroke: black"/>
<circle cx="50" cy="10" r="10" style="stroke: red"/>
<circle cx="20" cy="20" r="10" style="stroke: yellow"/>
<circle cx="40" cy="20" r="10" style="stroke: green"/>
</g>
</defs>
<use xlink:href="#olympicrings"
transform="translate(240,20) rotate(90) skewX(30)"/>
<use xlink:href="#olympicrings"
transform="scale(2) translate(20,20)"/>
</svg>

As you can see, elements often have a bounding rectangle defined by their x, y, width, and height
attributes. These are measured in user coordinates (without any units) or in exact distances, such
as pixels, points, inches, and centimeters. You can also apply transformations to elements with the
transformattribute. This takes a list of functions as its value and applies each in turn when render-
ing the element. Available transformations include translation, rotation, scaling, and skewing.
These can be combined to arrive at the desired result.

Elements can have effects such as line thickness and color, and fill colors applied to them. Lin-
ear and radial gradients are also available, as are patterns, masks and filters. Each operates on the
bounding rectangle for an element.

Existing graphics are included with the image element. The referenced document can be in any
recognized format, although conforming viewers are only required to deal with PNG, JPEG, and
SVG formats.

The text element allows for textual display within the rendering. Like other elements, it has a
bounding box and may be transformed. The actual content appears within the element as simple

Chapter 1: History 13

character data. To delimit sections of text, you use the tspan element, which can have its own set
of attributes. Each character can be positioned exactly, or a simple starting position specified. In
fact, if you use the textPath element, you can have the text wander around curves or shapes. The
normal CSS style designations apply to the rendered text, including font selection, color, weight,
and decoration.

Drawing the actual characters is left to the SVG viewer. While system fonts are most likely to
be used, SVG also provides for the definition of outline fonts for its own use. Descriptions of the
individual characters are based on an abstract square, whose height is the intended distance
between lines in this font. The font element starts a font definition and contains basic measure-
ments within the embedded font-face element. Following this are the outlines for the characters,
each in its own g1yph element. SVG fonts are unhinted, and so may not render properly at small
sizes.

SVG offers many other abilities and effects. These include filters such as blurs, lighting,
blending, and turbulence. Similar to HTML, an a element provides for hyperlinking to other
resources (using XLink terminology). Embedded scripts within the document allow actions to be
performed in response to events. Animation is also available through the use of SMIL-compatible
elements.

Around all of these elements resides a Document Object Model (DOM) that provides access to
every section of the document. Through scripting languages you have complete control over the
document and its subsequent rendering. Events allow for interaction with the DOM through regis-
tered listeners.

Overall, SVG provides a great deal of functionality for rendering graphics. Several test imple-
mentations are already available, including the SVG Toolkit from CSIRO in Australia
(http://www.cmis.csiro.au/svg) and Jackaroo from the Koala Project in France (http://www.inria.
fr/koala/jackaroo). Both of these are written in Java. The ability to render SVG will probably
become standard in browsers in the near future.

Synchronized Multimedia Integration
Language (SMIL)

The purpose of SMIL (pronounced “smile”) is to combine independent multimedia objects into a
coordinated presentation. Using this language, you can describe the behavior over time and the
positioning of elements within the display, as well as provide hyperlinks from there to other
resources.

SMIL 1.0 is a W3C Recommendation that was approved on June 15, 1998. It builds upon
XML’s base and inherits its syntax, use of namespaces, and extensibility.

The top-level element is, of course, the smil element, which serves as the container for the
head and body elements. Within the header, you specify information not related to the temporal
nature of the presentation. Included here are any layout specifications for the remaining elements
(held in the Tayout element) and any metadata about the document (in the meta element). It may

14

Part I: Introduction to XML

also contain a switch element, which allows alternate versions of layouts to be defined. The par-
ticular one used depends on the capabilities of the display device.

Layout can be defined using SMIL elements or with CSS2 syntax. Named regions are
described with their positions, sizes, colors, and depths. Regions may clip or stretch content to
their dimensions. These regions are then referred to by other elements within the body of the
document.

Individual multimedia elements appear within the body element. The par element allows its
children to overlap in time (run in parallel). Each may have delays imposed, either as absolute
times or when a triggering event occurs. Compare this with the seq element, which activates its
children one after the other (sequential), with delays if desired.

As children of these elements you can have images, animations, audio tracks, video, and text
streams. Each of these elements has attributes that define when it starts and ends (begin and end or
dur attributes), where the actual content comes from (src), and its type (type attribute). All body
elements should have a tit1e attribute to allow them to be identified in a device that cannot han-
dle their content.

Once more the switch element allows you to gracefully degrade the abilities of the document.
Each child of the switch is evaluated in turn by testing several of its attributes. When a combina-
tion is found that the display device can handle, that element is rendered and all other children of
the switch are ignored. The types of abilities tested for include bit rates, content language, screen
size, and color depth. Using these attributes outside of a switch element causes that particular ele-
ment to be included or excluded appropriately, without affecting any surrounding elements.

An example of a multimedia presentation defined using SMIL is shown in Listing 1-6. Here
you have a main video component that is always shown. Running alongside that (within the par
element) is the accompanying audio and an optional subtitle track. Which audio is played depends
on the preferred language of the user and whether or not they want dubbed dialog. English, Ger-
man, and Dutch alternatives are included, with a default of French. Similarly, language-specific
subtitles are available if desired.

Listing 1-6: A SMIL movie presentation

<IDOCTYPE smil PUBLIC "-//W3C//DTD SMIL 1.0//EN"
"http://www.w3.0rg/TR/REC-smil/SMIL10.dtd">
<smil>
<par>
<switch>
<audio src="movie-aud-en.rm" system-language="en"
system-overdub-or-caption="overdub" />
<audio src="movie-aud-de.rm" system-language="de"
system-overdub-or-caption="overdub" />
<audio src="movie-aud-nl.rm" system-language="nl"
system-overdub-or-caption="overdub" />
<!-- French for everyone else -->
<audio src="movie-aud-fr.rm"/>
</switch>
<video src="movie-vid.rm"/>
<switch>
<textstream src="movie-caps-en.rtx" system-language="en"
system-overdub-or-caption="caption"/>
<textstream src="movie-caps-de.rtx" system-language="de"
system-overdub-or-caption="caption"/>

Part I: Introduction to XML Chapter 1: History 15

tay Py

<textstream src="movie-caps-nl.rtx" system-language="nl1"
system-overdub-or-caption="caption"/>
<!-- French captions for those that really want them -->
<textstream src="movie-caps-fr.rtx" system-captions="on"/>
</switch>
</par>
</smil>

SMIL sets out the interpretations of the various timing and synchronization issues that arise in
attempting to coordinate these different resources. Elements have an implicit begin and end,
defined by their position within the object hierarchy. They may also have either or both an explicit
begin and end.

Hyperlinks specified within the document allow for navigation to other resources. Basic navi-
gation is provided by the a element, similar to the same tag in HTML. An additional attribute,
show, defines how the new resource interacts with the existing one.

However, the a element only attaches a link to an entire media object. For more precise con-
trol, use the anchor element. Anchors may be specified to operate temporally, such as during the
first five seconds of a video, or spatially, such as when clicking only on the left side of an image.
The latter is similar to the image maps used in HTML.

SMIL can be used in standalone documents to orchestrate a presentation, or it can be embed-
ded within another XML document type. In the latter case, the namespace (language identifier) for
the fragment should be: http://www.w3.0rg/TR/REC-smil.

Resource Description Framework (RDF)

The Resource Description Framework is a basis for manipulating metadata about resources avail-
able on the Web. Although RDF is an XML application, it can capture information about non-
XML documents just as easily. Its purpose is to provide a common way to describe these resources
that facilitates their cataloging, categorizing, searching, and retrieval.

The need for RDF grew out of the desire for a standard way of defining Web resources that
could easily be processed by automated agents such as Web crawlers. Added to this was a wish to
provide additional details about a resource, or indeed an entire site, that did not fit into existing
schemes. These details include content rating (such as the Platform for Internet Content Selection
(PICS)), privacy policies, and data interchange activities. Of course, extensibility was a big influ-
ence on the RDF development, resulting in the abilities to mix and match various RDF
specifications and to extend existing ones in new ways.

RDF consists of two parts. The first is the Model and Syntax Specification, which is a W3C
Recommendation as of February 22, 1999. This outlines the purpose of RDF and describes the
model used to capture the metadata. The second part is the Schema Specification, which is a W3C
Candidate Recommendation as of March 27, 2000. This document lays out a syntax and semantics
for defining metadata structures (i.e., meta-metadata!).

The RDF model is a syntax-neutral way of representing RDF expressions, or statements about
resources. A basic model consists of three parts: the resource that is being described, the property
or aspect of that object being asserted, and the actual value of that property. Together these make

16

Part I: Introduction to XML

up an RDF statement. The three parts are given the technical names subject, predicate, and object
respectively.

For example, you can state that the author of a particular page is a given person. In this case the
subject (resource) is the page itself as identified by its URI, the predicate (property) is the author,
and the object (value) is the author’s name (or some other identifying text). The statement “George
Lucas is the director of Star Wars - The Phantom Menace” could be expressed using RDF as
shown in Listing 1-7.

Listing 1-7: An RDF statement

<?xml version="1.0"?>
<rdf:RDF
xmlins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmins:m="http://movies.org/schema/">
<rdf:Description
about="urn:movies:Star Wars - The Phantom Menace">
<m:Director>George Lucas</m:Director>
</rdf:Description>
</rdf:RDF>
The standard namespace for RDF is shown in this listing, while the m namespace refers to some
definition of movie-related objects including the Director tag. The subject of the statement is
listed in the about attribute of the Description tag, while the contents of that tag identify the pred-
icate (the element name) and the object (the element content).

RDF also offers an alternate syntax that is a little more compact, as shown in Listing 1-8 below.
Here we change sub-elements that only contain text into attributes of the Description element. It
also has the advantage that there is no text content within the main RDF element. This allows you
to embed RDF statements within HTML documents (among others), without affecting the display
of the original document. Normally browsers simply ignore tags that they do not understand, but

display all text.
Listing 1-8: Alternate RDF syntax

<?xml version="1.0"?>
<rdf:RDF
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmins:m="http://movies.org/schema/">
<rdf:Description
about="urn:movies:Star Wars - The Phantom Menace"
m:Director="George Lucas"/>
</rdf:RDF>
Frequently, you need to refer to a collection of items within a statement, such as all the documents
in a particular site, or a number of people who co-authored a document. For these purposes RDF
offers three types of container objects: the bag, which is an unordered list of multiple items; the
sequence, which is an ordered list of multiple items; and the alternative, which is a single selection
from the list provided. Alternatives are selected on the basis of some testing attribute, such as
xm1:1ang for the content language, in the order in which they appear. A final entry with no test
functions as a default selection.
An element that consists of such a collection contains an element of one of these types

(rdf:Bag, rdf:Seq, or rdf:Al1t) which itself contains the actual items. Each item is listed within

Chapter 1: History [17

anrdf:11 element (similar to the HTML 11 element). For example, the series of Star Wars movies
(in order) could be identified as shown in Listing 1-9.

Listing 1-9: An RDF collection

<?xml version="1.0"?>
<rdf:RDF
xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmins:m="http://movies.org/schema/">
<rdf:Description about="urn:movies:Star Wars">
<rdf:Seq>
<rdf:1i>The Phantom Menace</rdf:1i>
<rdf:1i>Episode II</rdf:1i>
<rdf:1i>Episode III</rdf:1i>
<rdf:1i>A New Hope</rdf:1i>
<rdf:1i>The Empire Strikes Back</rdf:1i>
<rdf:1i>Return of the Jedi</rdf:1i>
</rdf:Seq>
</rdf:Description>
</rdf:RDF>

You can then make statements about the entire collection. RDF supplies the aboutEach attribute to
indicate that the statement applies to each item within a collection individually, as if a separate
statement had been made for each one. For example, to show that George Lucas produced each of
the Star Wars movies, you could use the document from Listing 1-10.

Listing 1-10: An statement about a collection

<?xml version="1.0"?>
<rdf:RDF
xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmins:m="http://movies.org/schema/">
<rdf:Seq ID="SW">
<rdf:1i>The Phantom Menace</rdf:1i>
<rdf:1i>Episode II</rdf:1i>
<rdf:1i>Episode III</rdf:1i>
<rdf:1i>A New Hope</rdf:1i>
<rdf:1i>The Empire Strikes Back</rdf:1i>
<rdf:1i>Return of the Jedi</rdf:1i>
</rdf:Seq>
<rdf:Description aboutEach="#SW" m:Producer="George Lucas"/>
</rdf:RDF>

NOTE If you had used about instead of aboutEach in the example in Listing 1-10, you
would be saying that George Lucas produced the collection, not the items listed therein. There
is also an aboutEachPrefix attribute that lets you identify a collection of resources by some
common prefix, and then apply the statement to each item in that set.

RDF also lets you make statements about other statements. To do this you just refer to the original
statement and have an appropriately defined predicate in your new statement. For example, if I
assert that George Lucas directed Freiheit, | could express it as shown in Listing 1-11. This is not
saying that he did direct it (although he did), just that I am saying that he did.

18

Part I: Introduction to XML

Listing 1-11: An RDF statement about a statement

<?xml version="1.0"?>
<rdf:RDF
xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlins:m="http://movies.org/schema/"
xmins:a="http://metadata.org/schema/">
<rdf:Description
about="urn:movies:Freiheit">
<m:Director>George Lucas</m:Director>
<a:attributedTo>Keith Wood</a:attributedTo>
</rdf:Description>
</rdf:RDF>
The schema specification part of RDF allows you to define the elements that make up your
metadata. For the previous examples you would create a schema that declared, among others, the
Director and Producer elements, along with their types and meanings. It is important that the
intention of these metadata types be explicit since applications rely on that particular meaning for
their processing. The use of namespaces allows you to easily identify tags with the same name but
with different semantics.

Types within RDF schema are defined as classes, which may then have properties. Following
the object-oriented model, these classes can be inherited from and extended by other schema. Use
the rdfs:subClassOf element within the type definition to identify the parent.

Properties indicate the class that they belong to through the rdfs :domain sub-element, and the
type of content that they allow through the rdfs:range sub-element. Basic types and classes are
defined by the RDF Schema specification itself.

Listing 1-12 shows a sample RDF schema that describes the types that make up metadata
about search services on the Web. It defines three classes, SearchQuery, SearchResult, and
SearchService. SearchService simply refers to a resource available on the Web. SearchQuery
has properties that relate a particular service to a result page, using a query string. SearchResult
holds a reference to the document with the actual information, along with the title of that docu-
ment and a rating of its relevance from zero to one.

Listing 1-12: RDF schema example

<rdf:RDF xml:lang="en"
xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlins:rdfs="http://www.w3.0rg/2000/01/rdf-schema#">
<rdfs:Class rdf:ID="SearchQuery">
<rdfs:subClassOf
rdf:resource="http://www.w3.0rg/2000/01/rdf-schema#Resource" />
</rdfs:Class>

<rdfs:Class rdf:ID="SearchResult">
<rdfs:subClassOf
rdf:resource="http://www.w3.0rg/2000/01/rdf-schema#Resource" />
</rdfs:Class>

<rdfs:Class rdf:ID="SearchService">
<rdfs:subClassOf rdf:resource=
"http://www.w3.0rg/2000/03/example/classes#InternetService" />
</rdfs:Class>

<rdf:Property ID="queryString">

ChdpmrleBkwyi;fy. 19

<rdfs:domain rdf:resource="#SearchQuery"/>
<rdfs:range
rdf:resource="http://www.w3.0rg/2000/01/rdf-schema#Literal"/>
</rdf:Property>

<rdf:Property ID="queryService">
<rdfs:domain rdf:resource="#SearchQuery"/>
<rdfs:range rdf:resource="#SearchService"/>
</rdf:Property>

<rdf:Property ID="result">
<rdfs:domain rdf:resource="#SearchQuery" />
<rdfs:range rdf:resource="#SearchResult"/>
</rdf:Property>

<rdf:Property ID="queryResultPage">
<rdfs:domain rdf:resource="#SearchResult"/>
<rdfs:range rdf:resource=
"http://www.w3.0rg/2000/03/example/classes#WebPage" />
</rdf:Property>

<rdf:Property ID="queryResultTitle">
<rdfs:domain rdf:resource="#SearchResult"/>
<rdfs:range
rdf:resource="http://www.w3.0rg/2000/01/rdf-schema#Literal" />
</rdf:Property>

<rdf:Property ID="queryResultRating">
<rdfs:domain rdf:resource="#SearchResult" />
<rdfs:range rdf:resource=
"http://www.w3.0rg/2000/03/example/classes#FloatZeroToOne" />
</rdf:Property>
</rdf:RDF>

RDF offers the promise of providing machine-readable metadata about resources available on the
Web. It should facilitate the searching of the Web for relevant documents and supply greater detail
about those pages once found. As well as authoring and copyright details, it can provide privacy
and content rating information. As with all XML, it can be extended to include whatever addi-
tional details are deemed necessary.

References

Further information on XML, related technologies, and the sample applications described above
are available from the following sources:

XML Specification
http://www.w3.org/TR/REC-xml

XSL Specification
http://www.w3.org/TR/xsl

XSLT Specification
http://www.w3.org/TR/xslt

20

Part I: Introduction to XML

XLink Specification
http://www.w3.org/TR/xlink

XPointer Specification
http://www.w3.org/TR/xptr

XML Schema Specification
http://www.w3.org/TR/xmlschema-0

Document Object Model
http://www.w3.org/DOM

Simple API for XML
http://www.megginson.com/SAX/

XML.com—a clearinghouse for XML-related items
http://www.xml.com

XML Software—another clearinghouse for XML
http:// www.xmlsoftware.com

Robin Cover’s XML pages at OASIS
http://www.oasis-open.org/cover/

XHTML Specification
http://www.w3.org/TR/xhtml 1

MathML Specification
http://www.w3.org/TR/REC-MathML

Scalable Vector Graphics Specification
http://www.w3.0rg/TR/SVG

Synchronized Multimedia Integration Language Specification
http://www.w3.org/TR/REC-smil

Resource Description Framework Model and Syntax Specification
http://www.w3.org/TR/REC-rdf-syntax

Resource Description Framework Schema Specification

http://www.w3.org/TR/rdf-schema

Chapter 1: History - 21

y S0y O

Sample XML

Throughout this book I'll be referring to sample XML documents to illustrate various points. Most
of these documents contain information on movies that are showing at local theaters, allowing you
to find a film for a night’s entertainment. Three lists make up each document: one for the movies,
one for the cinemas, and one for the screenings that combine these two.

A movie has details such as its name, rating, and length, the names of the director and principal
stars, and a brief synopsis of the plot. In addition, a movie can be linked to a suitable graphic
and/or Web site for more information.

The name, phone number, and address are the main items for a cinema, with optional direc-
tions on how to get there. Further entries detail the facilities available at the theater and the pricing
schemes that apply at various times.

Screenings combine the above, defining a particular movie showing at one cinema. Associated
with this is an indication of the dates during which the film is running and the actual session times
(with links to the appropriate pricing structure). Features of and restrictions on the showing may
also be included.

All of this is brought together in a single document under the movie-watcher element. Sec-
tions of a movie-watcher document can be seen throughout the book, with its DTD appearing in
Chapter 3.

22

Chapter 2

XML Syntax

An XML document is simply a text file, using a standard character set, that is marked up, or
encoded, by following certain conventions. If you’ve used HTML at all, you are familiar with the
layout of an XML document, although XML enforces some additional restrictions that HTML
ignores. Have a look at the XML fragment in Listing 2-1.

Listing 2-1: Sample XML fragment

<movie id="SW1" rating="PG" logo-url="SW1-Togo" url="SWl-site">

<name>Star Wars - The Phantom Menace</name>

<length>131</length>

<director>George Lucas</director>

<starring>
<star>Liam Neeson</star>
<star>Ewan McGregor</star>
<star>Jake Lloyd</star>
<star>Natalie Portman</star>

</starring>

<synopsis>
When the evil Trade Federation plots to take over the
peaceful planet of Naboo, Jedi warrior Qui-Gon Jinn and his
apprentice Obi-Wan Kenobi embark on an amazing adventure to
save the planet. With them on their journey is the young
queen Amidala, Gungan outcast JarJar Binks, and the powerful
Captain Panaka, who will all travel to the faraway planets of
Tatooine and Coruscant in a futile attempt to save their
world from Darth Sidious, leader of the Trade Federation, and
Darth Maul, the strongest Dark Lord of the Sith to ever wield
a lightsaber.

</synopsis>

</movie>

This defines data about a movie. From the tags you can immediately see the purpose of each sec-
tion of content (although the exact meaning of the Tength element may not be entirely clear). This

is the intent of XML—human-readable, structured content that is also easily processed by
machines.

Chapter 2: XML Syntax

Elements and Attributes

As in HTML, tags are embedded in the XML document to delineate its contents, breaking it up
into elements. These tags are enclosed in angle brackets (<>) and contain the name of the ele-
ment, along with any attributes that it might have. All tags must be terminated with a
corresponding closing tag. This is also enclosed in angle brackets, has the same name as the open-
ing tag, and includes a slash (/) immediately before the name.

<name>Star Wars - The Phantom Menace</name>

In XML, all tags must be closed in the reverse of the sequence in which they were opened. Another
way of stating this requirement is that elements must be properly nested within an XML docu-
ment. Whereas in HTML, examples such as the following are tolerated and generally work as
expected, they are not valid in an XML document.

This text is <i>very important</i>

Elements that do not have any content, known as empty elements, may be closed in a shortcut fash-
ion by placing the closing slash at the end of the opening tag. Often such elements have attributes
to provide additional information, although they can be used just as flags to indicate an item’s
presence.

<candy-bar/>

Elements may contain text, additional elements, or combinations of the two. Such nested elements
build up a hierarchy within the document. This organization indicates relationships between the
data and provides much of the functionality of XML. An XML document must have only a single
top-level tag (known as the document element), similar to the <htm1> tag in HTML.

An XML document that has a single top-level element and closes all of its elements in the cor-
rect sequence is termed a well-formed document. This indicates that it follows the basic
conventions of XML and can be successfully processed by standard XML parsers and utilities. If
the document is well-formed, claims to follow the dictates of a particular DTD (see the next chap-
ter), and indeed does so, it is known as a valid document.

Attributes of an element are identified by name within its opening tag and are followed by an
equal sign (=) and their value. The closing tag for an element never has attributes specified for it.
All attribute values must be enclosed by either single (') or double quotes (") in XML, while in
HTML quotes are only required when the value contains certain restricted characters, such as
spaces.

<movie id="SW1" logo-url="SW1-logo" url="SWl-site">
</movie>

Attributes may be mandatory or optional, may have a set of valid values, and may have a default
value. They may identify an element or refer to another element. All of this is specified in the DTD
as described in the next chapter.

The decision to make a particular data value an attribute or a sub-element is purely subjective.
In general, sub-elements contain data that are displayed when the document is presented, whereas

24 Part I: Introduction to XML

attributes hold supplementary data that is often not shown. Sometimes one way makes more sense
than the other. Feel free to use whichever way works for you.

Name Tokens and Namespaces

Names of elements and attributes within XML must begin with a letter or an underscore ().
This may be followed by any combination of letters, numbers, underscores, hyphens (-), colons
(:), orperiods (.). However, names cannot begin with the letters xm1 (upper- and/or lower-
case) as these are reserved for future use by XML itself.

Colons have a special meaning in names as they are used to delimit namespace references from
their local names. Namespaces allow for differentiation between elements that would otherwise
be identical. In Delphi terms, this is similar to prefixing a procedure or function call with the name
of the unit containing it, separated by a period.

For example, in the movie-watcher documents you have the star element that refers to an
actor within a movie. It is possible that there are other types of documents that also have star ele-
ments, though they may assign a different meaning to them (such as stellar bodies). If you were to
combine these two documents, you might not be able to distinguish between the two based on the
element name alone. Namespaces are used to identify different sources (and meanings) and asso-
ciate a short name with each. This prefix is then combined with the element name to uniquely
identify it.

The declaration of a namespace can occur on any element and applies to that element and to all
of'its children. A reserved attribute name is used for the declaration: xmIns. This is followed by a
colon and the prefix used within this document to refer to that namespace. A namespace declara-
tion may specify no prefix, and so defines the default namespace used for all elements that have no
prefix.

The value of the namespace is just something that distinguishes it from any other namespace,
although the use of URIs is encouraged. For several XML technologies, a particular URI is
expected for certain namespaces, and the application will generate an error if it is not exactly as
specified.

As an example, the fragment below declares three namespaces on the combined element. The
first is the default namespace and applies to the combined element itself (since it has no prefix).
The other two help to differentiate the two distinct star elements.

<combined xmins="http://www.combined.com"
xmins:mv="http://www.movies.com/"
xmins:as="http://www.astronomy.com/stellar">
<mv:star>Liam Neeson</mv:star>
<as:star>Alpha Centauri</as:star>
</combined>

In the name mv: star, the mv part is the namespace prefix, the star part is the local name, and the
whole thing is a qualified name.

The names of elements and their attributes are case-sensitive within XML, whereas HTML
happily accepts any combination. Hence, movie, Movie, and MOVIE are all different elements in

Chapter 2: XML Syntax &

25

XML. This can be a source of errors when coming from the Delphi world where case is ignored. |
suggest that you stick to one case when creating your documents to reduce possible problems.

Text and White Space

Anything outside of the markup is text or data—the content of the XML document. Generally an
XML processor does not touch this text, passing it straight through to the calling application.
Exceptions to this are entity references, which are described later.

XML allows most of the characters from the Unicode character set as valid text. Unicode is a
16-bit encoding scheme that covers many of the world’s written scripts. Characters that cannot be
written directly may be encoded using the following format: &#xhhhh;, where hhhh is the hexa-
decimal encoding for the required character.

White space between XML elements is generally not significant, whereas white space within
data may be. In XML, white space is defined as any of the following characters: space
(Unicode/ASCII 32), tab (Unicode/ASCII 9), line feed (Unicode/ASCII 10), and carriage return
(Unicode/ASCII 13). For human readability, the tags are often indented to indicate their position
within the hierarchy.

XML processors must pass all characters that are not markup through to the application. Vali-
dating processors must identify which of these characters appear within element content and
which may be safely ignored as separators between tags.

Breaks between lines within the XML document are normalized during processing. A single
line feed replaces any combination of carriage return and line feed characters.

The xml:space attribute may be added to any element to indicate how white space within it
and its descendants is to be treated. It is set to either default or preserve. The default handling
allows the application to treat white space in whatever way it normally does, while the alternative
asks that all spacing be retained as it appears. The setting may be overridden at a lower level in the
hierarchy through another instance of the attribute. In a valid document, this attribute must be
declared just like any other.

Another special attribute, xm1 : 1ang, allows you to identify the natural language of the contents
of an element. The value of this attribute is one of the standard language codes defined by ISO
639, such as en-GB, a language registered with the Internet Assigned Numbers Authority (IANA),
like i-navajo, or a user-defined language name of the format x-mydialect. As before, this attrib-
ute applies to the element where it is specified and all its descendants, unless overridden by
another instance. It must also be declared if documents containing it are to be validated.

Both the xm1:space and xm1: Tang attributes may be defined in the DTD for the documents as
having default values, just like any other attribute. This allows them to be set without requiring
their presence within a particular document itself.

26

Part I: Introduction to XML

Comments

As with HTML, comments can be included in an XML document for the enlightenment of pro-
spective readers. These follow the same syntax as HTML as shown below:

<!-- Comment -->

Comments can contain almost anything (except the sequence -- and, of course, the terminating
string -->) and can appear just about anywhere within a document. However, they cannot be
placed within element tags, within declarations, or inside other comments.

Comments are designed for authors to add further explanation to their documents. They
should not contain information concerning the manipulation of the document since parsers may
strip them out and ignore them. For this purpose, use processing instructions instead.

Processing Instructions

To include additional information for automatic handling of the document you may include pro-
cessing instructions within it. These appear enclosed within the strings <? and ?> as shown below:

<?target instructions?>

The first token within the delimiters identifies the target application that this instruction is des-
tined for, followed by the actual command. No structure is implied within the instruction data by
the XML specification, leaving it up to the target program to interpret its meaning. The name of
the target application cannot start with the characters xm1, in any combination of upper- or lower-
case, as these are reserved for use by XML itself.

These instructions can be picked up by a target application after parsing the XML, and then be
decoded and applied to the document. They might define specific formatting instructions
(although one of the tenets of XML is to separate content from presentation) or configuration
parameters for the program. Applications can safely ignore processing instructions for other target
programs.

The targets of processing instructions may be formally declared through the notation mecha-
nism described later.

Entities

XML allows for the declaration of entities within a document. These are named strings of charac-
ters for substitution throughout the document. Once defined, through the !'ENTITY tag, you can
incorporate their content by using the entity name, preceded by an ampersand (&) and followed
by a semicolon (;). This sequence is known as an entity reference. Remember that the names are
case-sensitive. Entity declarations appear within the DOCTYPE specification at the start of an XML
document.

Chapkr?:XMLSyMaxT.-i 27

[Yocs Tl

<IDOCTYPE example [
<IENTITY xml "Extensible Markup Language">
1>

XML stands for &xml;.
In order to include the metacharacters used by XML within a document’s content, you can use one
of the predefined entities shown in Table 2-1. This allows for the placement of these characters in
the body of the document without them being misinterpreted as control characters. Again, these

are the same as in HTML.
XML tags appear between the < and > signs.

Table 2-1: Predefined entities

Entity Reference Value
& &
&1t; <
> >
' '
" !

In addition, any character in the Unicode set can be represented by a character reference. This
consists of the entity delimiters surrounding a hash sign (#) and the numeric code for that charac-
ter. The numeric code is decimal by default, but can be hexadecimal if preceded by an x. In this
way, you can easily refer to characters that are outside your document’s encoding scheme, or that
are not easily entered from your keyboard.

This content is copyright ©.

would appear as the following:

This content is copyright ©.

XML allows for entities to be defined within the document or external to it. To retrieve the content
of another file as the value of an entity, you must declare the entity and identify its source, as either
a logical (public) or physical (system) location. These external entities are then included in the
original document wherever their entity name is invoked. In this way you can break a large docu-
ment up into separate pieces, such as chapters, and then combine them all into a coherent whole.
Entities that are incorporated into the XML document are known as parsed entities, and may be
internal or external depending on where they reside.

<IDOCTYPE example [
<IENTITY chapOl SYSTEM "http://www.mysite.com/bookl/chap0l.xml">
1>

&chap01;

Parsed entities must be defined before they are used and, if they contain XML markup, must be
well-formed to be included in the document. They may not contain recursive references to them-
selves, either directly or indirectly. External parsed entities may use different encoding schemes

28

Part I: Introduction to XML

than the original document; however, such schemes must be declared at the start of the entity in a
format similar to the normal XML prolog.

Entities are also used to identify other items that are not part of the XML document, such as
images, audio, video, or Web links. Such entities are not retrieved as part of the XML parsing pro-
cess (they are unparsed), but may be manipulated by the application that uses the XML document.
These entities are designated as not being part of the XML document through a type declaration
following the NDATA keyword.

<IDOCTYPE example [

<IENTITY SW1-site SYSTEM "http://www.starwars.com/episode-i/"
NDATA HTML>

<IENTITY SW1-Togo SYSTEM
"http://www.starwars.com/episode-i/palpatine/img/top_logo.gif"
NDATA GIF>

1>

<movie id="SW1" logo-url="SW1-logo" url="SWl-site">

</movie>

TIP More information on declaring entities, of all types, is provided in the following chapter
on the document type definition.

CDATA Sections

An alternative to using the predefined entities in your content is to mark sections as only contain-

ing character data, in other words no markup. Therefore, any reserved characters you encounter

should be treated simply as their text equivalents. These sections are denoted by a special syntax:
<![CDATA[...]]>

For example:

<! [CDATA[Ignore any markup characters such as < and >.]]>

The body of this tag can contain any text (except for the terminating combination of]]>). This
makes it very easy to talk about XML within an XML document. Trying to achieve the same thing
in HTML, talking about HTML, involves a great deal of extra work.

CDATA sections only affect the interpretation of the XML source and are generally converted
to the equivalent text within an XML processor. Thus, they can appear simply as textual content to
the final application.

Chapter 2: XML Syntax 29

Prolog

All XML documents should include an XML identifier at the start of the document to define the
file type. This is enclosed within angle brackets and question marks with a tag name of xm1. The
version of XML being used (currently 1.0) must be included as an attribute. Additional attributes
can identify the character encoding in use, and whether or not the document can be used without
reference to anything else. If these attributes are specified they must appear in this order:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

Thus, every XML document should have at least the following at its beginning:

<?xml version="1.0"?>

The current version of XML is 1.0, but this does not imply a commitment to any future versions of
the specification, nor to any particular numbering scheme. However, XML processors should
check the declared version within a document and raise an error if it does not recognize the given
value. This protects against changes in the future that may alter the handling of XML documents.

A standalone document is one that contains no markup declarations that affect the interpreta-
tion of the XML document and that are external to that document. This does not include references
to external entities, provided that they are declared internally. The declaration in the prolog must
specify either yes or no, with the latter applying if no declaration is present.

Documents that have any of the following in external parsed entities must not have a
standalone declaration set to yes:

Attributes with default values, if elements appear without those attributes specifically set
Entities other than the standard ones, if references to those entities are used

Attributes with values subject to normalization, where values are specified that change
because of this

Element types with element content, if any instance of them contains white space

The syntax for this prolog is the same as that for processing instructions as described earlier. In
fact, the prolog could be seen as an instruction to an XML parser defining how this document is to
be treated.

Encoding Schemes

XML processors need to be able to deal with a variety of encoding schemes for the documents. All
processors must recognize and handle the UTF-8 and UTF-16 encodings. Additional schemes
may also be available through specific processors. Documents that are not in one of the two stan-
dard formats must include an encoding declaration in the XML prolog.

30

Part I: Introduction to XML

The common encoding schemes and transformations are described below:

ASCII
ISO-8859-1

ISO-8859-2
ISO-8859-3
ISO-8859-4
ISO-8859-5
ISO-8859-6
ISO-8859-7
ISO-8859-8
ISO-8859-9
ISO-8859-10
UNICODE

UCS-2

UCS-4

UTF-8

The standard 7-bit encoding used on many computers.

An 8-bit encoding that extends ASCII to include those accented characters that
make up most of the common Western European languages, including French, Ger-
man, Spanish, and Italian. This is the first of a collection of encodings that enhance
basic ASCII.

Like ISO-8859-1 but for Eastern European languages.
Like ISO-8859-1 but for Southern European languages.
Like ISO-8859-1 but for Northern European languages.
Like ISO-8859-1 but for Cyrillic languages.

Like ISO-8859-1 but for Arabic languages.

Like ISO-8859-1 but for the Greek language.

Like ISO-8859-1 but for Hebrew languages.

Like ISO-8859-1 but for Turkish languages.

Like ISO-8859-1 but for Nordic languages.

A 16-bit encoding that provides access to most of the characters from languages
world-wide. The first 128 characters correspond to the ASCII codes. It is defined by
the Unicode Consortium (www.unicode.org) and is becoming a standard in many
computing environments.

The Universal Character Set. Another 16-bit encoding that covers most of the
world’s languages and is effectively equivalent to Unicode.

An extended form of UCS-2 that uses 32-bit encodings. So far, the first (and only)
section defined is equivalent to UCS-2 with additional null bytes to make up the 32
bits.

A Unicode (or UCS) Transformation Format that maps these encodings to a byte
stream. It overcomes the problem of just using the straight 16-bit values whereby
the stream has many embedded null bytes, which are often interpreted in programs
as the end of a string. To achieve this, and to offer the greatest compatibility with
existing systems that use ASCII (remember that the first part of Unicode is ASCII),
it uses a variable number of bytes for each character. Normal ASCII is encoded in a
single byte, characters from x0080 to xO7FF are encoded in two bytes, and charac-
ters x0800 to XFFFF are encoded in three bytes. Further encodings are defined for
UCS-4 type characters, but these are not currently used. Hence, any standard ASCII
file is also a valid UTF-8 file, which is very convenient.

Chapter 2: XML Syntax &

31

UTF-16 Another transformation for Unicode (or UCS) that maps the characters to 16-bit
values. It comes in two flavors: UTF-16BE and UTF-16LE. The first is for
big-endian byte order, which means that the most significant byte appears first,
while the other is for little-endian byte order, where the least significant byte comes
first. These types are signaled through the presence of a known byte sequence at the
start of the file. For BE it is XFEFF and for LE it is xFFFE.

Although the document prolog allows you to specify the encoding scheme used for the document,
how do you know which scheme to use to read that declaration? Fortunately, the XML specifica-
tion identifies ways around this problem. It states that any document not using either the UTF-8 or
UTF-16 encoding schemes must have a prolog to indicate the scheme to be used. Furthermore,
this prolog must appear at the start of the document and must only contain ASCII characters. This
allows a processor to read the first few bytes to determine which family of schemes is in use, then
read the rest of the prolog to discover the exact format for the remainder of the document.
For more information on encoding schemes, you can check out these sites:

W3C Internationalization/Localization

http:// www.w3.org/International/O-charset.html

Lycos: Computers/Software/Globalization/Character Encoding

http://dir.hotbot.lycos.com/Computers/Software/Globalization/Character Encoding/

Lycos: Computers/Data Formats/Markup Languages/XML/Encoding

http://dir.hotbot.lycos.com/Computers/Data_Formats/Markup Languages/XML/
Encoding/

XML Processors

The XML specification also defines the capabilities of software modules that can handle XML
documents. Collectively, these modules are known as XML processors. Typically a processor
reads the document and provides access to its content through some mechanism. Another module,
the application, calls the processor and makes use of its results.

Processors fall into two main groups: validating and non-validating. Both types must report
errors when they encounter constructs that violate the well-formedness constraint of XML. Vali-
dating processors must also report conflicts between the document and its associated document
type definition. To achieve this, these processors must retrieve and decode the entire DTD and any
external parsed entities that are referenced. Non-validating processors need only handle an inter-
nal DTD for well-formedness and for supplying attribute defaults and entity definitions.

The behavior of an XML processor is intended to be highly predictable, allowing you to easily
swap between different versions without requiring major changes to your application.

3294 Part I: Introduction to XML

Summary

In this chapter you’ve been introduced to the syntax of XML and have been shown its major fea-
tures. This should be enough to construct most documents for normal use. By following the simple
rules presented here you can produce well-formed XML documents that can be happily processed
by an XML parser. To ensure that a particular document meets the guidelines set out for its class of
documents, you need to define a DTD, as described in the next chapter.

Chapter 3

Document Type
Definitions

Although XML documents can be used standalone, a great deal of their potential benefit comes
from having standard formats that facilitate the transfer of information from one platform or appli-
cation to another. One way to enforce a particular format is through the use of a document
description in the form of a document type definition (DTD).

A DTD specifies, for a particular type of document, what the layout of valid elements can be.
Listing 3-1 shows the DTD for the movie-watcher documents. The DTD lists what elements are
valid within these documents and what sub-elements or content may appear within each of them.
For each element, there can also appear a list of the attributes applicable to it, along with their
types and whether or not they are required.

Listing 3-1: DTD for movie-watchers

<l-- Data about movies and when and where they are showing
Developed by Keith Wood, 28 May 1999 -->
<!ELEMENT movie-watcher (movies, cinemas, screenings)>

<!ELEMENT movies (movie+)>

<!-- Information about the movies -->
<!ELEMENT movie (name, length?, director?, starring?, synopsis?)>
<IATTLIST movie id ID #REQUIRED
rating (NR | G | PG | PG-13 | R) #REQUIRED
logo-url ENTITY #IMPLIED
url ENTITY #IMPLIED>

<!ELEMENT name (#PCDATA)>

<l-- Length as minutes -->

<IELEMENT length (#PCDATA)>
<!ELEMENT director (#PCDATA)>
<IELEMENT starring (star+)>

<IELEMENT star (#PCDATA)>

<IELEMENT synopsis (#PCDATA | emph)*>
<!ELEMENT emph (#PCDATA)>

<!ELEMENT cinemas (cinema+)>
<!-- Details about the cinemas -->

<!ELEMENT cinema
(name, phone, address, directions?, facilities?, pricing)>

33

34 Part I: Introduction to XML

<!ATTLIST cinema id ID #REQUIRED
logo-url ENTITY #IMPLIED
url ENTITY #IMPLIED>

<IELEMENT phone (#PCDATA)>
<IELEMENT address (#PCDATA)>
<!ELEMENT directions (#PCDATA)>

<IELEMENT facilities (candy-bar?, disabled-access?)>

<!ELEMENT candy-bar EMPTY>
<!ELEMENT disabled-access EMPTY>

<l-- List of pricing schemes -->
<!ELEMENT pricing (prices+)>

<!ELEMENT prices (name, period, adult, child, discount?)>
<IATTLIST prices id ID #REQUIRED>

<!-- When do these prices apply? -->
<!ELEMENT period (#PCDATA)>

<!-- Actual prices in dollars -->
<IELEMENT adult (#PCDATA)>

<IELEMENT child (#PCDATA)>

<!ELEMENT discount (#PCDATA)>

<!ELEMENT screenings (screening+)>

<!-- Where and when is a movie showing? -->
<IELEMENT screening
(start-date, end-date, features?, restrictions?, sessions)>
<!-- Which movie and cinema? -->
<!ATTLIST screening movie-id IDREF #REQUIRED
cinema-id IDREF #REQUIRED>

<!-- Which dates does this apply to? (format mm/dd/yyyy) -->
<IELEMENT start-date (#PCDATA)>

<!ELEMENT end-date (#PCDATA)>

<!ELEMENT features (digital-sound?)>

<!ELEMENT digital-sound (#PCDATA)>

<!ELEMENT restrictions (no-passes?)>

<!ELEMENT no-passes EMPTY>

<IELEMENT sessions (session+)>

<!-- Session value is the start time hh:mmam/pm -->
<!ELEMENT session (#PCDATA)>

<!-- Which price schedule to use? -->
<IATTLIST session price-id IDREF #REQUIRED>

Chapter 3: Document Type Definitions - 35

[Yocs Tl

DTD Declarations

The DTD for a document can be included directly within that document, following the XML
prolog. This is called an internal subset. It appears within the DOCTYPE declaration, which specifies
the top-level element for the document, and has the element definitions located between the
symbols [and]>. A movie-watcher document with its DTD may appear like the following:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<IDOCTYPE movie-watcher [
DTD from above

%est of movie-watcher document

Alternately, the DTD can be stored in a separate document that is referred to by each XML docu-
ment that claims to conform to it. These DTDs are known as external subsets. This allows the
definition to be shared by any number of documents and is the basis of a common communication
language using XML. Again, the DTD entry appears after the XML prolog and includes either a
public or system declaration that lists the (logical or physical) location of the DTD document. The
public identifier is designed to be some generally accepted name for a particular DTD, which is
then mapped onto an actual document.

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE movie-watcher SYSTEM "movie-watcher.dtd">
Rest of movie-watcher document

Referring to an external document and then following it with some inline declarations lets you
extend a DTD. Typically the inline section refers to entities that are only relevant to the current
document, as either internal or external abbreviations (parsed entities), or external document ref-
erences (unparsed). This technique is used in the movie-watcher documents to point to Web sites
and graphics, as shown below:
<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE movie-watcher SYSTEM "movie-watcher.dtd" [
<IENTITY SWl-site SYSTEM "http://www.starwars.com/episode-i/"
NDATA HTML>
<IENTITY SWl-Togo SYSTEM
"http://www.starwars.com/episode-i/palpatine/img/top logo.gif"
NDATA GIF>
<!ENTITY PV "Pleasantville">
1>
Rest of movie-watcher document
An XML document that claims to conform to a particular DTD must include a reference to that
DTD within itself. If the document is well-formed and does indeed follow the DTD specification,
it is regarded as a valid document. Documents can quite happily be well-formed without being
valid, and are still usable as such.

36

Part I: Introduction to XML

Content Model

Individual elements within the definition are declared with the <! ELEMENT string, followed by the
element’s name. Remember that these declaration tags are case-sensitive and must be entered as
shown. However, you are free to use whatever case you wish for your own elements. Just remem-
ber to use the same case when constructing your documents if you want them to be valid.

The final part of the element definition lists the valid content for that element. Items that do not
contain anything are noted as such by having the keyword EMPTY as their only content, such as the
candy-bar and disabled-access elements in the example DTD. Elements that can contain any-
thing use the keyword ANY. This is rarely done since the idea of the DTD is to prescribe the
structure of the document in a meaningful way.

<!ELEMENT disabled-access EMPTY>

Most often the content for an element consists of sub-elements or free text. In both cases the model
is enclosed within parentheses. The first option lists the name(s) of the valid lower-level elements.

Separating options with vertical bars (|) specifies alternate content at the same position.
Sequential content is listed separated by commas (,). Elements from a sequential list must appear
in the specified order in the XML document for it to be valid. Parentheses may be used at any point
to group items together, and white space can be used to make the text more readable.

For example, the following declaration states that amovie-structure element must contain an
opening-title element, followed by any number of either close-up or wide-angle elements,
followed by a closing-title element.

<!ELEMENT movie-structure
(opening-title, (close-up | wide-angle)*, closing-title)>
Free text content models are also known as mixed content. For free text alone the model consists
solely of the text #PCDATA. Such an element can contain any valid characters, but no other markup.
Characters that have meaning to XML must be replaced by character references, specifically &1t
for < and & for &.
<IELEMENT emph (#PCDATA)>

If the element can contain both free text and other elements, then the first entry in the model must
be #PCDATA as above. This may be followed by any number of element names, each separated by a
vertical bar (|). An asterisk (*) must follow the closing parenthesis. In this combined case you
can constrain which child elements may appear, but have no control over their order or the number
of times that they are used. Each sub-element may only be listed once, but it may be used within a
document many times.

<IELEMENT synopsis (#PCDATA | emph)*>

For each content item or group, including the entire content list, you can also indicate its occur-
rences using the characters shown in Table 3-1. By default, an element must appear exactly once.
From the following sample you can see that amovie element must contain a single name entry, fol-
lowed optionally by Tength, director, starring, and synopsis elements in this order. The
synopsis element above can contain zero or more (*) occurrences of either (|) free text

Chapter 3: Document Type Definitions - o 37

[Yocs Tl

(#PCDATA) or an emphasis element (emph). Mixed content must always include the zero or more
indicator. The emph element can only contain free text.

<!ELEMENT movie (name, length?, director?, starring?, synopsis?)>

Table 3-1: Occurrence indicators

Indicator | Occurrences

nothing Content must appear once (mandatory)
? Content may appear once (optional)

* Content may appear zero or more times
+ Content must appear one or more times

Content models should be deterministic. This means that there should be only one possible path
through the DTD for each sequence of elements within a document. You should not have to look
ahead within a model to determine which path to follow. XML processors may raise an error if
they cannot decide which element within the content model to match with.

Attributes

Attributes are additional information that can be attached to an element. As noted earlier, the
choice of making this extra data an attribute or a sub-element is largely a matter of personal taste.
Generally, attributes supply details that are not essential to the element under consideration, but
are useful in some circumstances. One exception to this is an ID attribute, which serves to
uniquely identify an element.

To define an attribute for an element you enter a declaration that begins with the <!ATTLIST
string. This is followed by the name of the element to which it applies and a list of the attributes
themselves. Each attribute provides its name, its type, and its default declaration. Although the
attributes for an element can appear anywhere within the DTD, it is usual to place them directly
after the element’s declaration.

Multiple attributes for the same element may be listed separately, each within its own ATTLIST
declaration, or they may be combined into a single declaration by omitting the ATTLIST text and
the element name before the second and subsequent attributes.

If more than one definition for a particular element and attribute combination is encountered,
only the first one is used, with any others being ignored. Note that this is not an error. This ability
does allow you to override an attribute inherited from an external DTD by re-specifying it within
the internal subset in the document itself. An external DTD is read and processed following any
internal definitions.

The type of an attribute is usually free text, denoted by CDATA, or a list of literal values (an enu-
merated type). For example, the rating of a movie is declared as an attribute that must be set to one
of the listed values (and no others) with the following:

<IATTLIST movie rating (NR | G | PG | PG-13 | R) #REQUIRED>

38

Part I: Introduction to XML

Listing a value at the end of the declaration sets that as the default value for each attribute. In this
case, if the attribute is not specified within an appropriate element in a document, it automatically
takes the given value. If it does appear in the document, the supplied value is used and the default
is ignored. Alternately, you can nominate the presence or absence of the attribute with the
#REQUIRED (mandatory) or #IMPLIED (optional) keywords.

Another option is to supply a default value and specify the attribute as #FIXED, or unchange-
able. Such attributes automatically take on the given value. You may assign the attribute a value
within the document itself; however, this generates an error if that value does not match the fixed
one.

Fixed attributes can be used to provide common roles across a number of DTDs, allowing such
elements to be processed in a standard way, regardless of where they originate. For example, name
elements could be declared to have a title-element attribute with a fixed value. An automated
search tool could then find these elements, along with title-element attributes from other XML
documents containing book details, and handle them all in the same manner, regardless of the
actual names of those elements. These attributes would be fixed so that a document author could
not change them, nor forget to include them.

<!ATTLIST name title-element CDATA #FIXED "movie">

Other specialized attribute types are available, as shown in Table 3-2. The ID and IDREF types are
very useful in establishing links between different elements within your documents. Each ID
value must be a valid name within XML and no element may have more than one ID type attribute.
The default value for an ID type attribute must be either #IMPLIED or #REQUIRED. For example, in
the movie-watcher documents, movies and cinemas each have ID attributes, while screenings
have two IDREF attributes that link the other elements together. Although it is not necessary to
name an attribute of type ID as ID, it is common to do so, or to at least include this as part of the
name.

Table 3-2: Attribute types

Attribute Type Content

ENTITY An unparsed entity’s name

ENTITIES A list of unparsed entities’ names (separated by white space)

ID A unique identifier within the document

IDREF Another element’s unique identifier

IDREFS A list of other elements’ unique identifiers (separated by white space)
NMTOKEN Free text but restricted to an identifier format

NMTOKENS A list of NMTOKENSs (separated by white space)

NOTATION Must be a declared notation

The NOTATION type for an attribute enables us to refer to one or more external type definitions to
further restrict the possible valid values for it. An example of this is a date reference. Each
NOTATION type must be declared elsewhere within the DTD.

Chapter 3: Document Type Definitions - - 39

[Yocs Tl

ENTITY types refer to external documents that XML does not manipulate directly. The entities
must be defined elsewhere in the DTD, or in the XML document itself, as unparsed entities.
Examples of these types of attributes appear in the DTD extract shown below:

<IATTLIST movie id ID #REQUIRED
rating (NN | G | PG | PG-13 | R) #REQUIRED
Togo-url ENTITY #IMPLIED
url ENTITY #IMPLIED>

An XML processor normalizes attribute values before being passed off to the application. Charac-
ter and entity references are resolved as the first step. All white space characters are then replaced
with spaces. Finally, if the attribute type is not CDATA, leading and trailing spaces are removed, and
internal sequences of spaces are replaced by a single space. If the DTD is not available or is not
processed, then all attributes are treated as though they were of type CDATA.

Notations

Notations describe the data content of various other items. Each one needs to be declared within
the DTD or the XML document where it is used. In attribute declarations a notation defines the
range of possible values that can be entered for that attribute. For external entities, a NOTATION dec-
laration indicates a formal specification for a data type or a helper application that can handle that
type.
A typical use for notations in attribute declarations is the specification of date formats. The
NOTATION declarations refer to the appropriate specification resource:
<INOTATION ISODATE SYSTEM "http://www.iso.ch/date_specification">

These notations could then be used on an attribute as follows:

<!ELEMENT screening (sessions)>
<IATTLIST screening start-date NOTATION (ISODATE) #REQUIRED
end-date NOTATION (ISODATE) #REQUIRED>

Multiple notations may be specified, separated by vertical bars (|), indicating that the attribute
value must conform to one of those formats.
Notations declared for use with external entities define the public (logical) or system (physi-
cal) location of the format’s specification or of a helper program:
<INOTATION HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

Entities

An entity within XML is a reference to some other content, either simple text or an entire docu-
ment held externally. They appear following the string <!ENTITY.

Several standard entities were described in Chapter 2, covering the metacharacters used by
XML. Character references were also described there, which allow you to include characters that
are outside the current encoding or that cannot be entered directly through the keyboard. Recall

40

Part I: Introduction to XML

that these have the format &#nnn; or &#xhhhh;, where nnn is the decimal encoding for the required
character and hhhh is its hexadecimal encoding.

For simple substitutions, entities can be defined as abbreviations for the desired text. In
addition to the predefined entities, you can define your own entries. These items are expanded
within your document by denoting them as entity references, i.e., preceding the name with an
ampersand (&) and following it with a semicolon (;). Although entities can contain additional
markup, there are several restrictions on their use in this way—specifically that the content must
be properly nested.

<IENTITY PV "Pleasantville">

<address>1234 Main St, &PV;</address>

Larger substitutions can be achieved by linking the entity name to an external document contain-
ing either text or XML. The PUBLIC or SYSTEM keyword is used to indicate that a logical or physical
location follows. As with simple entities, the contents of the referenced object are included in the
current document by entering the appropriate entity reference.

Both of these types of entities are known as parsed entities since their content is incorporated
into the document and processed as XML. The inline specifications are internal entities, while file
references are external entities.

Another class of entity is the unparsed entity. This is an external reference to a document that
should not be included in the current document. Typically, these are used for non-text documents
such as images, audio, and video, but they can also be hyperlinks to information that is additional
to that contained within the current document. These unparsed entities are denoted by the inclu-
sion of the document’s type, in the form of a notation name following the keyword NDATA, within
its declaration:

<IENTITY SWl-Togo SYSTEM

"http://www.starwars.com/episode-i/palpatine/img/top_logo.gif"

NDATA GIF>
One final class of entities exists—parameter entities. Parameter entities can be internal or external
but are always parsed. They are differentiated from normal entity declarations by having a percent
sign (%) before the name. To refer to a parameter entity, you prefix the name with a percent sign
and follow it with a semicolon. These entities are only valid within the DTD itself. Often parame-
ter entities are used to include common sequences within the DTD. In this case they must contain
both the opening and closing parentheses of any content model groups that they define.

Parameter entities are also used to control the inclusion or exclusion of parts of a DTD through
the use of conditional sections. A conditional section starts with the text <! [xxx[and continues
until it reaches]]>. The xxx here is replaced by the keyword INCLUDE to process the section nor-
mally, or IGNORE to bypass it. By using parameter entities, these sections can be turned on and off
just by changing the value of that one parameter. Valid conditional sections may contain any com-
bination of complete declarations, comments, processing instructions, or white space. The
definitions below would add a format attribute to the movie element:

Chapter 3: Document Type Definitions

<!ENTITY % extended "INCLUDE">

<! [%extended; [

<IATTLIST movie format CDATA #IMPLIED>

11>
Conditional sections may be nested. However, once a section is bypassed because its keyword is
set to IGNORE, all of its content is also ignored regardless of any embedded conditional sections.

Recall that entity values in an external DTD can be overridden by specifying them in the inter-

nal subset of a document. If the external DTD is set up with appropriate conditional sections, these
can be turned on or off for each document by simply redefining the controlling entity.

Summary

DTDs consist mainly of the list of valid elements that may appear within an XML document that
claims to conform to it. You define what each element may contain—other elements, straight text,
or a combination of the two. Attributes can also be specified for each element, along with their
types and whether or not they are required.

DTDs may also list standard entities, either parsed or unparsed, internal or external. These
may be used in documents referring to the DTD.

XML documents claim conformance with a particular DTD by including the DOCTYPE declara-
tion within their header. This lists the top-level element for the document and where the DTD can
be found. DTDs can be included inline in the XML or can be located in external files for sharing
among a number of documents. Valid documents are those that refer to a DTD and follow its
specification.

This has been a very quick look at XML DTDs, hopefully providing enough information to
enable you to create your own basic definitions. For more information you should refer to one of
the many books on XML itself. An alternative to DTDs as a means of specifying the legal content
of'a document is to use an XML Schema, which is covered in Chapter 7.

Chapter 4

Extensible
Stylesheet Language
Transformations

As we have already seen, XML is a technology for encoding the meaning of data within a docu-
ment, as opposed to HTML, which describes the presentation of that data. The Extensible
Stylesheet Language (XSL) is the link between the two. It provides a language to define the trans-
formation of the plain data into an output format suitable for display on some device.

XSL consist of two main parts: the style language that describes how to format different por-
tions of the document (sometimes known as XSL Formatting) and a transformation language
(XSLT) for converting a tree structure.

The style language is an XML format and allows you to define how the various portions of the
document are to be displayed. It includes the usual font specifications, colors, and alignments, as
well as more advanced features such as flow control, numbering, footnotes, and tables. However,
the language is still in its early stages and formatters that know how to deal with such a document
are not readily available. The most current implementation available is known as FOP (For-
matting Objects to PDF). It is a free Java program from James Tauber that takes an XSL document
and generates a PDF file from it. Due to the lack of widespread use of XSL, it is not covered in this
book.

Transformations

The XSL Transformation language (XSLT) allows you to manipulate an XML document, extract
parts, rearrange sections, and format the results for further consumption. Often the output from the
transformation is HTML, allowing the data to be easily accessed over the Internet. However, other
document types can also be produced, such as plain text, rich text, audio input, or even other XML
documents.

A transformation stylesheet is actually an XML document itself. All the processing is encoded
within elements that have a tag starting with xs1: (a de facto standard), while the remaining

42

Chapter 4: Extensible Stylesheet Language Transformations a 43

[Yocs Tl

elements are output to the final document. The document element of the stylesheet is the
xs1:stylesheet element. This requires a version attribute, currently 1.0, and a namespace defini-
tion for the xs1: elements (which should be exactly as shown below).

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
xmins:xs1="http://www.w3.0rg/1999/XSL/Transform">
<xs1:output method="htm1"/>

</xsl:stylesheet>

XSLT is designed to be extensible, allowing for the inclusion of any set of formatting instructions.
Each set must be identified by its own namespace with a reference to its definitions. The
namespaces are specified within the xs1:stylesheet element as additional xmIns: attributes.
Within the stylesheet the namespaces are used with a colon (:) to denote their scope.

The xs1:output element identifies the destination format for the results of the transformation.
It should be one of the values htm1, xm1, or text. If no output method is specified it is assumed to
be xm1, unless the first tag generated is <htm1>, in which case the output method becomes htm1.
Other values are possible, but are not defined by the specification.

Templates and Patterns

The XSLT stylesheet uses a system of templates to match up with portions of the XML document
and to specify how they are manipulated. Once a template is matched to an element, the contents
of that template are applied to it. At least one template is required to initiate the process, matching
with the XML document as a whole.

<xs1:template match="/">
formatting commands for this document as a whole
</xs1:template>

Subsequent templates may be set up to match on only parts of the XML document hierarchy. To
determine which elements a particular template targets, you use the match attribute with a pattern
specification. Elements and attributes are identified by name, with attributes being prefixed by an
at symbol (@). A slash (/) separates elements at different levels, while the asterisk (*)isa
wildcard, matching with anything. The description of the patterns is itself an XML-related specifi-
cation—XML Path Language (XPath).

Conditions may appear with square brackets ([|) following the element to which they apply.
Various function-like names identify particular nodes either by their type, by their unique 1D
attribute, or as the current node of interest. Unless a pattern starts with a slash, making it an abso-
lute reference, all patterns are within the context of the current node. Some sample patterns are
shown in Table 4-1.

44 Part I: Introduction to XML

Table 4-1: XSLT patterns

Pattern

/

*

movie
director | star
movie/name
movies//name
text()

node()
id("SWI")
context()
star[l]
star[last()=1]
@url

@*
movie[@rating="PG"]

//screening[@movie-id=current()/
(@id]/start-date

Matches

The root node of the XML document

Any element

The current node

Any movie element

Any director or any star element

Any name element with a movie element parent
Any name element with a movies element ancestor
Any text node

Any node other than the root node or an attribute node
The element with SW1 as its unique 1D

The current node (that contains the expression)
Any star element that is the first child of its parent
Any star element that is the only child of its parent
The url attribute within an element

Any attribute within an element

Any movie element that has a rating attribute of PG

The start date of the screening element whose movie-id
attribute is equal to the id of the current node (presumably
a movie)

These pattern specifications are used throughout a transformation stylesheet to identify nodes or
attributes for subsequent processing. For example, in the xs1:sort element they determine the
criteria for ordering nodes. In the xs1: for-each element they select the subset of nodes to process

within a loop.

Within the main template you can invoke other templates through the use of the
xs1:apply-templates element. When used without a select attribute, this tag applies to all the
child nodes of the current one. Specifying a pattern within the select attribute causes only the
matching nodes to be processed through their templates. The following line affects all the movie
elements within the movie-watcher/movies hierarchy.

<xsl:apply-templates select="movie-watcher/movies/movie"/>

TIP | suggest that you make use of the template structure of XSLT wherever possible. This
allows you to make the stylesheet more modular, similar to using procedures in Delphi. You
can update each template separately from any other and call it from a number of different
points within the stylesheet. Furthermore, using templates allows you to apply specific trans-
formations to particular nodes within an XML document, without having to process the entire
thing. Chapter 21 shows how to achieve this.

Chapter 4: Extensible Stylesheet Language Transformations 45

XSLT has a number of built-in templates that provide basic functionality. One of these continues
the recursive application of templates when no specific match is found. Another one automatically
copies all text and attribute nodes straight across to the output. One more that matches processing
instructions and comments does nothing with them, effectively removing them from the output.

Generally there is only one template for each node type within the XML document. However,
by using named templates, it is possible to process the same node in different ways at different
times. The name attribute on the template tag identifies the template. Thereafter, the
xs1:call-template element can be used to invoke it by specifying that same name.

An alternative approach is to use modes. A template can have a mode attribute specified as part
of its declaration. If this same mode is supplied in the apply-templates tag, then only the corre-
sponding template is used. The following example displays only the names of each section within
the table of contents:

<xsl:apply-templates select="section" mode="contents"/>

<xsl:template match="section" mode="contents">
<xsl:value-of select="name"/></1i>
</xs1:template>

Text Content

Text from the stylesheet is generally copied across to the resulting document as is. Nodes that con-
tain only white space are stripped from the document during processing. To ensure that these text
nodes are retained, you can enclose them within an xs1:text element.

This appears in the output,

<xsl:text>as does this.</xsl:text>
To include the content of an element or attribute in the text stream you can use the xs1:value-of
element. This element’s select attribute is a pattern that determines what is written out. Use the

.” pattern to retrieve the contents of the current node.

<xsl:value-of select="@rating"/>
<xsl:value-of select="Tength"/> mins

Building Document Structure

Any elements in the template that do not belong to the XSLT namespace, nor to an extension
namespace, are copied directly across to the output document. In this way, it is easy to create
HTML pages using XSLT just by including the HTML tags within a template. However, there are
times when the tags or their attributes need to be more dynamic. XSLT provides the xs1:element
and xs1:attribute elements for just these purposes.

To create an output element with a computed name, use the xs1:element tag and set its name
attribute. Enclose references to elements or attributes in the name calculation within braces ({ })
to denote it as an expression.

46

Part I: Introduction to XML

<xsl:element name="h{@level}">
ETlement content
</xs1:element>

Similarly, attributes can have computed names or values through the use of the xs1:attribute
tag. This tag must appear within the bounds of the element to which it refers.
<a>
<xsl:attribute name="name">
<xsl:value-of select="@id"/>
</xsl:attribute>
Anchor contents

Attribute values may also be created directly within the element using the expression technique
described above.

Anchor contents

Processing instructions and comments are created within the output document in a similar manner
with the xs1:processing-instruction and xs1:comment tags. These elements cannot be trans-
ferred directly from the XSL stylesheet since it is an XML document, and so would interpret or
ignore these as part of its own processing.

<xsl:processing-instruction name="xml">

version="1.0" encoding="UTF-8"
</xs1:processing-instruction>
<xs1:comment>Comment within the output document</xs1:comment>

To transfer an existing node from the source XML to the output document you use the xs1:copy
tag. However, this does not transfer the attributes nor the child elements of this node. These must
be copied manually.

Loops

The xs1:for-each tag provides a looping mechanism within XSLT. It applies its contents to each
node selected by the expression in its select attribute.

<xsl:for-each select="starring/star">
<xsl:value-of select="."/>

</xs1:for-each>

Ordering of the selected nodes is achieved through the xs1:sort element, which is placed as a
child of the looping element. Its select attribute specifies the values to be used for the ordering.
Multiple sorting tags allow for primary and secondary sort keys to be supplied. Additional attrib-
utes can be used to determine ascending or descending sorts, the language to be used, and the data
type (text, numeric, or other).

<xs1:for-each select="movie">
<xsl:sort select="name"/>
Movie content

</xs1:for-each>

a7

St

Chapter 4: Extensible Stylesheet Language Transformations -

1

NOTE Earlier versions of the XSLT engine within Internet Explorer seem to reject these sort-
ing tags, preferring instead an order-by attribute, with the same pattern as for the sorting tag.

<xs1:for-each select="movie" order-by="name"/>
Movie content
</xs1:for-each>

Conditional Processing

XSL also includes two ways of making decisions within the template. The first is the xs1:1if tag,
which provides a simple “if” test around its contents. You use the test attribute to supply the
expression to be evaluated. If this expression refers to an element or an attribute, this item’s pres-
ence is being tested and the contents are applied if the item exists. Otherwise, the expression must
evaluate to a true or false value. The following fragment adds an href attribute to the output with
the value of the source node’s url attribute as its target, but only if the latter exists.

<xsl:if test="Gurl">
<xsl:attribute name="href">
<xsl:value-of select="@url"/>
</xsl:attribute>
</xsl:if>

For an if-then-else or a case statement type of test, you need to use the xs1:choose tag. This tag
has no attributes itself, but contains a number of xs1:when tags and an optional xs1:otherwise
tag. Each when tag acts like the i f tag above, specifying an expression to be evaluated in its test
attribute. There may be several when tags within choose, each testing a different condition. The
otherwise tag can be added to process any nodes that did not get caught by one of the when tags
(similar to the else clause in a case statement). The following fragment tests for the existence of a
logo-url attribute on the current node and inserts an img element if it is found. If not, the name is
added within a header element.

<xs1:choose>
<xs1:when test="@logo-url">

<xsl:attribute name="src">
<xsl:value-of select="@logo-url"/>
</xsl:attribute>
<xsl:attribute name="alt">
<xsl:value-of select="name"/>
</xsl:attribute>

</xs1:when>
<xsl:otherwise>
<h3><xs1:value-of select="name"/></h3>
</xs1:otherwise>
</xs1:choose>

48 Part I: Introduction to XML

XSLT Sample

To bring all of these pieces together, have a look at the XSLT stylesheet fragment in Listing 4-1.
This fragment transforms the XML data for a movie into HTML suitable for display on the Web.
You can see the HTML tags embedded within the XSL processing. Note that the tag in
HTML does not have a closing tag, nor does it have the XML shorthand for closing (a trailing
slash). However, within this stylesheet document, which is XML, one of these must be present.

Listing 4-1: Transforming a movie-watcher document into HTML

<?xml version="1.0" encoding="UTF-8"?7>
<l-- HTML style sheet for movie-watcher XML (monolithic format)
Written by Keith Wood, 4 June 1999 -->
<xsl:stylesheet version="1.0"
xmins:xs1="http://www.w3.0rg/1999/XSL/Transform">
<xs1:output method="htm1"/>

<l-- Match the entire document -->
<xsl:template match="/">
<html>
<head>
<title>Movie Watchers</title>
</head>
<body>
<hl>Welcome to Movie Watchers</hl>
<p>Your source for local film entertainment.
Have a Took at what's on,
where and
when.</p>
<hr/>
<h2>Movies</h2>
<xsl:for-each select="//movie">
<xsl:sort select="name"/>
<!-- Provide link target and optional web Tink -->

<xsl:if test="@url">
<xsl:attribute name="href">
<xsl:value-of select="Gurl"/>
</xsl:attribute>
</xsl:if>
<xs1:choose>
<xs1:when test="@logo-url">

</xs1:when>
<xs1:otherwise>
<h3><xsl:value-of select="name"/></h3>
</xs1:otherwise>
</xs1:choose>

<table border="0" width="100%">
<tr>

<th align="1eft" valign="top" width="15%">Rating:</th>
<td width="15%"><xs1:value-of select="@rating"/></td>
<th align="left" valign="top" width="15%">Length:</th>
<td><xsl:value-of select="length"/> mins</td>

</tr>

<tr>

Chapter 4: Extensible Stylesheet Language Transformations 49

<th align="1eft" valign="top">Director:</th>
<td colspan="3"><xsl:value-of select="director"/></td>
</tr>
<tr>
<th align="left" valign="top">Starring:</th>
<td colspan="3">
<xsl:for-each select="starring/star">
<xsl:value-of select="."/>

</xs1:for-each>
</td>
</tr>
<tr>
<th align="left" valign="top">Synopsis:</th>
<td colspan="3"><xsl:value-of select="synopsis"/></td>
</tr>
<tr>
<th align="left" valign="top">Showing at:</th>
<td colspan="3">
<xs1:for-each
select="//screening[@movie-id=current()/@id]">

<xsl:value-of select="id(@cinema-id)/name"/>

</xs1:for-each>
</td>
</tr>
</table>
</xs1:for-each>
<p>Back to the top.</p>

;hr/>
<p>Movie Watcher data supplied by
Keith Wood.</p>
</body>
</html>
</xsl:template>
</xsl:stylesheet>
The stylesheet contains a single template that matches with the root of the XML document. Within
this, it sets up the HTML header block and starts the body of the output HTML. Static links to
other sections within the page appear in the introduction, allowing for easy navigation around it.
The title for the movies section follows, surrounded by a target anchor for one of the earlier links.

Each movie from the XML document is dealt with in turn by using the xs1:for-each loop
construct. The xs1:sort element sorts them alphabetically. A movie is identified by an image, if
one is specified in the XML, or by its name. In either case, this heading is set up as the target for
other links within the document through an encompassing anchor tag. The anchor also provides an
outward link to a related Web site, but only if it is present in the XML. Note the use of the
xsT:attribute elements to supply dynamic content for some of the attributes of the resulting
HTML.

After the movie’s name is a table that allows you to format the remaining details nicely. Values
are inserted with the xs1:value-of elements. Recall that elements and attributes are identified by
their name, with attributes being preceded by an at sign (@). The references are relative to the
current node, the movie element selected in the for loop, since they do not start with a slash.

50

Part I: Introduction to XML

Finally, there is a list of the cinemas that are showing the movie. To create this, you need to find
the screening elements that have this movie’s id value as one of their attributes.

<xs1:for-each select="//screening[@movie-id=current()/@id]">

Looping through these with the <xs1: for-each> tag, you then want to traverse to the cinema node

that corresponds to that screening and retrieve its name for display.

<xsl:value-of select="id(@cinema-id)/name" />

Further processing (not shown) within the stylesheet transforms the cinema and screening infor-
mation into HTML in a similar manner. At the end of the stylesheet you add any closing comments
and finish up the HTML document. The results of the transformation are shown in Figure 4-1.

/] movie-watcher xml - Microsoft Internet Explorer

| Ele Edt View Favortes Iooks Help [|

|A,ddrsss| D:\Moviesimovie-watcher xml j o Go . | Links >

Welcome to Movie Watchers

Tour source for local film entertamnment. Have a look at what's on, where and when

Movies
Doug's First Movie

Rating: G Length: 77 mins

Director: Maurice Joyce

Starring: Thomas McHugh
Fred Newman

Synopsis: Doug and his fiiends find a "monster” bving in the woods outside their
town, but when they find the monster 15 actually kind of nice, they find
themselves hunted by "bad guys" who want the monster. In addition, Doug
has to compete for the attention of Path Mayonnaise with a snobby 8th

grader, Guy Graham Will Doug get to take Path to the Valentine's Day
dance?

Showing at: hoviellana
Oszcar's Cinema

-

|@ _’_ by Computer
Figure 4-1: XML transformed to HTML.

S 51

Chapter 4: Extensible Stylesheet Language Transformations : ‘_

Summary

This chapter has introduced you to XSL and XSL Transformations. XSL provides an XML syntax
to describe complex formatting, although its abilities are not in widespread use yet. XSLT is
readily available and allows you to manipulate an XML document tree, extracting, rearranging,
and filtering it into another document tree that can then be displayed or processed further.
Typically it is used to wrap XML data in HTML for presentation on the Web.

XSLT has several additional abilities that are beyond the scope of this book. These include the
following:

Extension tags, allowing you to creating your own formatting instructions
Combining and overriding stylesheets

Variables and parameters for passing values around the stylesheet
Multiple source documents

Additional functions

For more information, refer to the XSLT specification at http://www.w3.org/TR/xslt.
Further discussions of XSLT and its use from Delphi appear in Chapter 21—“Applying XSL
Transformations” and Chapter 26— “Examination XML—Web Client.”

Chapter 5

XLink

XLink, which is part of the Extensible Linking Language (XLL), describes how documents can be
linked to each other. Each link points to a resource through its URI (currently just a URL). The
related specification, XPointer, defines how to reference parts within a document.

HTML already has linking elements such as the mainstay anchor tags, as well as images and
objects. Why have a new specification that duplicates this? One reason is that the links in HTML
are hard coded. Only an anchor tag provides a hypertext link to another document. You cannot add
a link to another tag, such as a citation. Secondly, the links in HTML are only single links. What if
you want to link to different versions of a document, perhaps in different languages, from the one
reference? You cannot do this in HTML. Also, the links from HTML are one-way only, from your
anchor to the related document. There is no way to create bi-directional links, especially if you do
not control the resource at the other end.

XLL is designed to overcome these problems, and to provide an extensible way of describing
and using links within a variety of documents. This technology is still being developed, and as yet
there are no major implementations of it. Other than this brief introduction to XLink and XPointer,
the topic is not covered further in this book.

XLink is defined in the document at http://www.w3.org/TR/xlink. As yet, the XLink specifi-
cation is not finalized, so the following discussion is based on the Proposed Recommendation of
December 20, 2000. The namespace declaration for XLink should be:

xmins:x1ink="http://www.w3.0rg/1999/x1ink"

Although the defined prefix for XLink could be anything, it is customary to use “xlink.” The
examples throughout the rest of this chapter assume that the above namespace declaration has
been made at an appropriate point earlier in their documents.

Link Definitions

52

Links are defined in terms of attributes that belong to the XLink namespace. These can then be
added to elements in any XML document, with their meaning carrying over from XLink. Other
attributes can happily co-exist with the XLink ones. However, all attributes must be properly
declared in the DTD for a document to be valid.

Chapter 5: XLink [

The type of link is identified by the x1ink: type attribute, which is the one XLink attribute that
must be present. It must have one of the values shown in Table 5-1, with the associated meanings.
Note that the DTD in which this attribute is declared need not provide for all of these types, but
those allowed must come from this list. Links are often referred to based on their type, such as sim-
ple links and locator-type links. In each case this means the element to which the appropriate type
attribute belongs.

Table 5-1: XLink link types

Type Purpose

simple An inline unidirectional link

extended A link that includes other data

locator A reference to a remote resource

arc A connection between two resources
resource A reference to a local resource

title A human-readable label for a link

none All XLink attributes are ignored in this element

The actual target of the link is specified in the x1ink:href attribute, which must refer to a URI.

To define the purpose of the link, you use the x11ink:role attribute. The role must be a quali-
fied name as defined in some namespace that is in scope at the time of the definition. The
xTink:arcrole attribute can be attached to arc-type elements, and is used to connect to an external
repository of links.

A human-readable description of the link can be supplied with the x1ink:title attribute. A
link processor may display this value in help text, may create a table of links, or use it in whatever
way seems appropriate.

The behavior of the link is established by the xTink:show and x1ink:actuate attributes. show
specifies where the content of the link appears. If it is not one of the values in Table 5-2, and not a
recognized qualified name, then the behavior is treated as undefined.

Table 5-2: XLink show values

Type Purpose

new A new window is used to display the resource

replace The resource replaces the current one

embed The resource appears within the current resource

other No XLink semantics apply, although other attributes should supply clues to
its use

none No XLink semantics apply, and no other attributes are available to assist

actuate defines when the link is activated. As for the previous attribute, it should be one of the
values in Table 5-3 or a qualified name. Otherwise, the value is treated as undefined.

54 Part I: Introduction to XML

Table 5-3: XLink actuate values

Type
onlLoad
onRequ
other
none

est

Purpose

Load the resource immediately

The resource is loaded in response to some external event, such as a mouse click

No XLink semantics apply, although other attributes should supply clues to its use

No XLink semantics apply, and no other attributes are available to assist

The x1ink: from attribute is used in arc-type links to specify the starting point for the link. Simi-
larly the x1ink:to attribute indicates the resource to be loaded. The x1ink:1abel attribute
identifies the elements involved in the arc-type link.

Attributes from the XLink specification can be combined within an element as shown in Table

5-4.
Table 5-4: XLink attribute usage patterns
Type
Attribute simple extended locator arc resource title

type Required Required Required Required Required Required
href Optional Required
role Optional Optional Optional Optional

arcrole Optional Optional
title Optional Optional Optional Optional Optional
show Optional Optional

actuate Optional Optional
label Optional Optional
from Optional

to Optional

Simple Links

The links built into HTML, such as a and img, are simple links. They provide one-way inline links.
Under XLink an anchor element’s definition might appear like that in Listing 5-1. This encodes
the current behavior of an anchor that specifies a simple unidirectional link that is activated when
the user clicks on it, with the target resource replacing the current page.

Listing 5-1: HTML anchor as an XLink

<IELEMENT a (...)*>
<IATTLIST a

xlink:type (simple) #FIXED "simple"

x1link:href CDATA #REQUIRED
xlink:title CDATA #IMPLIED
xlink:show (replace) #FIXED "replace"

xlink:actuate (onRequest) #FIXED "onRequest">

Chapter 5: XLink [~ 55

An actual anchor would then look like this:
<a xlink:href="http://www.dest.com/newpage.html" xlink:title="A simple Tink">Link from
here
Similarly, an image element’s definition might be like the one in Listing 5-2. As before, itis a sim-
ple unidirectional link, but it loads immediately and appears within the original document. Note
that you can still have height and width attributes that are unrelated to the XLink mechanism.

Listing 5-2: HTML image as an XLink
<IELEMENT img EMPTY>
<IATTLIST img
width CDATA #IMPLIED
height CDATA #IMPLIED
xlink:type (simple) #FIXED "simple"
xlink:href CDATA #REQUIRED
xlink:title CDATA #IMPLIED
xTink:show (embed) #FIXED "embed"
xTink:actuate (onLoad) #FIXED "onLoad">
An image element could then be declared as:
<img xlink:href="http://www.dest.com/picture.jpeg" xlink:title="A Tovely picture" width="100"
height="100"/>
These attributes can be applied to any element in any XML document to implement a linking
mechanism with defined semantics. You are not restricted to certain elements as you are with
HTML. Simple-type linking elements have no XLink defined child elements. Everything they
require is specified in the attributes. To take advantage of the main benefits of XLink, you need to

use an extended-type link instead.

Extended Links

Going beyond the simple links that you are used to from HTML, extended links allow you to spec-
ify multidirectional links, multiple titles, and even out-of-line links.

An extended link is really a container element for a number of other XLink enhanced ele-
ments. Within this container can appear locator-type and resource-type elements that identify the
remote or local resources involved in the links. A set of arc-type elements then defines the tra-
versal paths from one resource to another. Note that arcs are one-way only. To allow bi-directional
traversal you need to specify both directions separately.

Multiple titles can also appear within an extended link element. These are useful when differ-
ent versions of the title are supplied, such as in different languages, or when the title itself contains
other markup.

As an example, you could set up links to a series of related films using an extended link, as
shown in Listing 5-3. A browser might, when the user clicks on the linking text, pop up a menu
showing the titles of all the related links, allowing the user to select one to view.

56 Part I: Introduction to XML

Listing 5-3: An extended link

The <movie-series>Star Wars series

<movie xlink:href="http://www.starwars.com/episode-i"
x1ink:title="The Phantom Menace"/>

<movie xlink:href="http://www.starwars.com/episode-iv
xlink:title="A New Hope"/>

<movie xlink:href="http://www.starwars.com/episode-v"
xlink:title="The Empire Strikes Back"/>

<movie xlink:href="http://www.starwars.com/episode-vi
xlink:title="Return of the Jedi"/>

<linkto x1ink:from="movie-series" xlink:to="movie"/>

</movie-series> continually expands the possibilities

of special effects.

The DTD for these elements may look like the one in Listing 5-4. Here the movie-series element
is the extended link container (using a fixed attribute). Within it can appear text that is displayed as
part of the normal content of this document.

Listing 5-4: Extended link elements DTD

<IELEMENT movie-series (#PCDATA | movie | Tinkto)*>
<!IATTLIST movie-series
xlink:type (extended) #FIXED "extended"
xlink:role CDATA #FIXED "http://www.movies.com/movie-series"
x1link:title CDATA #IMPLIED
xTink:Tabel NMTOKEN #FIXED "movie-series">
<!ELEMENT movie EMPTY>
<IATTLIST movie
xlink:type (Tocator) #FIXED locator"
x1link:href CDATA #REQUIRED
xlink:role CDATA #FIXED "http://www.movies.com/movie"
xlink:title CDATA #IMPLIED
x1ink:Tabel NMTOKEN #FIXED "movie">
<!ELEMENT Tlinkto EMPTY>
<IATTLIST Tlinkto
xlink:type (arc) #FIXED "arc"
xTink:from NMTOKEN #IMPLIED
x1ink:to NMTOKEN #IMPLIED
xTink:show (new) #FIXED "new"
xlink:actuate (onRequest) #FIXED "onRequest">

The links are identified through the movie elements, each of which points to a remote resource and
has an associated title. Finally, the navigation is specified by the 1inkto element, which allows
you to nominate the starting and ending points for the links from among the listed resources. The
links are activated only when initiated by the user, and then produce a new window showing the
selected resource. As seen in the XML fragment in Listing 5-3 and the DTD in Listing 5-4, the val-
ues for the fromand to attributes are taken from the labels of the other elements. If either or both of
these attributes is omitted, it instead refers to all elements within the extended link.

Chapter 5: XLink [57

Ouvut-of-Line Links

In some cases the resource that serves as the starting point for a link cannot be updated to include
the linking information. This may be because the document is not under your control, because it is
too expensive to modify and maintain such links inline, or because the resource is in another for-
mat altogether.

Even so, you want to be able to provide links to and from such a resource. Out-of-line links are
the answer. Such links exist in a document separate from the resources referred to—all the
resources for the links are remote. Out-of-line links are always extended links, with locator-type
elements to identify the resources and arc-type links to define paths between them.

Additional data can be associated with a set of links, simply by defining appropriate elements
within the external link set.

For example, movie-related resources, typically under someone else’s control, could be linked
with out-of-line links, producing a document similar to that shown in Listing 5-5.

Listing 5-5: Out-of-line links
<movie-1inks>
<clip xlink:href="http://www.movie-studio.com/blockbuster.avi"
xlink:title="Blockbuster Trailer"/>
<script xlink:href="http://www.movie-studio.com/blockbuster.rtf"
xlink:title="Script for Blockbuster"/>
<review xlink:href="http://www.reviews.net/reviews?film=blockbuster"
xlink:title="Reviews of Blockbuster"/>
<go/>
</movie-Tinks>
Since these links are not directly available within the resources to which they refer, there needs to
be some mechanism for finding them when browsing such resources. The establishment of link

databases is an area of active work in this field and awaits further development.

Summary

XLink is part of the Extensible Linking Language, providing an extensible way to specify links
between two or more resources. It does this through the definition of a number of attributes, and
their associated semantics, which can be attached to any XML element.

As of yet, the XLink specification is not finalized, and no implementations are widely avail-
able to work with these links.

XLink allows you to refer to another resource in a consistent manner. To delve into that
resource and pick out individual parts of it, you can use XPointer as described in the next chapter.

Chapter 6

XPath and XPointer

XPointer is the other part of the Extensible Linking Language (XLL), along with XLink. Whereas
XLink gets you to another document, XPointer allows you to refer to locations, or ranges of items,
within that document.

Again, why duplicate something that already exists in HTML? Currently, you can add an inter-
nal location to a URL following a hash sign (#) which typically results in the document being
opened and positioned at this point. But what if the spot you wanted to reference does not have a
named anchor? If you do not control that document, you cannot just go in and add one. Also, these
locations only refer to a single spot within the target document. There is no way of referencing a
range of paragraphs, or an entire table.

XPointer is designed to provide these abilities and more. Its specification is available on the
accompanying CD-ROM or at http://www.w3.org/TR/xptr. Like XLink, the XPointer specifica-
tion is not finalized, so the following discussion is based on the Last Call Working Draft of the
spec (January 8, 2001).

XPointer is built upon the XML Path Language (XPath), which is also used in XSL Transfor-
mations. To this it adds the ability to refer to points (locations between nodes and/or characters)
and ranges of nodes, rather than just a single node. It can also find information through string
matching. It is used with XLink to provide finer granularity in identifying resources of interest. As
such, it only works with XML documents and fragments, not with other types of documents that
may be referenced.

XPath is a W3C Recommendation as of November 16, 1999. This specification is also on the
CD-ROM, while the online version is found at http://www.w3.org/TR/xpath.

General Form

58

XPointer references select a part or parts of an XML document by operating on the tree structure
that represents it. Selection is done through axes, predicates, and functions. An axis defines a set
of candidates that are found within the tree. Predicates then test those candidates for further pro-
cessing. And finally, functions can operate on the results to transform them or to generate new
candidates. For example, you may look at all the child nodes of a particular node (the axis), using

Axes

Chapter 6: XPath and XPointer s 59

[Yocs Tl

only those that have a particular attribute value (the predicate), and then retrieve their first child
(the function).

XPointer identifiers have a long form spelled out in the specification, as well as a short form.
The two forms are identical as far as their processing is concerned. For example, to find a node
with a particular id value you could use the long form:

#xpointer(id("SW1"))

which can be shortened to:
#SW1

Note that this latter format matches the existing HTML equivalent of internal references. The
intention of the short form is to encourage the use of IDs within documents, as well as to provide
compatibility with HTML sections embedded in XML documents.

The xpointer reference identifies the scheme to be used (similar to a namespace). Currently,
this is the only scheme defined and it is assumed if omitted.

Another shorthand form provides access down through the hierarchy by referring to a node’s
position within its parent. The start of the sequence is a node identified by an ID reference as
shown above, or by the string /1 which refers to the document element. Following this is a list of
integers separated by slashes (/) indicating the required child element’s position at each level.
Only elements can be referenced in this manner. For example, the following sequence refers to the
director element for “Star Wars” in the movie-watcher document.

/1/1/2/3

NOTE Using indexes to locate particular elements requires a detailed knowledge of the
document and thus is very fragile. A simple change to the structure can render it useless. For
this reason, the use of IDs is much preferred.

In general a location reference is made up of an axis, followed by ::, a node name, and any number
of predicates within square brackets ([]). A string of such references can be concatenated with
slashes (/) to further refine or expand the selection. The reference starts from the current context,
either the root of an identified document, or a node selected in some previous manner.

An axis defines the collection of nodes, with respect to the current location, that is considered
in determining the actual selection. As can be seen from the possibilities in Table 6-1, the axes
refer to the hierarchical structure of the tree that represents an XML document. If no axis is speci-
fied, it defaults to child.

Table 6-1: XPointer axes

Name Purpose

child Locates direct children of the current node (includes text, processing
instructions, and comments, but not attributes)

descendant Locates all nodes contained within the current node

60

Part I: Introduction to XML

Name Purpose

descendant-or-self Like descendant plus the current node itself

parent Locates the node that contains the current one

ancestor Collects all the nodes in the parent chain

ancestor-or-self Like ancestor plus the current node itself

preceding-sibling Locates nodes with the same parent but appearing before the current node
within that parent

following-sibling Locates nodes with the same parent but appearing after the current node
within that parent

preceding Collects all nodes before the current one within the entire document,
including all ancestors

following Collects all nodes after the current one within the entire document,
excluding all ancestors

self The current node

attribute The attributes of the current node

namespace The namespace nodes of the current node (empty if the current node is

not an element)

The node name following the axis specifier serves to identify which types of nodes from it are
selected. As well as a literal element name, such as movie, you can use an asterisk (*) for any
node, or a function to identify the type of node, like comment ().

Predicates

Once the collection of potential candidate nodes is selected, the use of predicates prunes it further.
A predicate is a simple Boolean test, with the node being retained when it evaluates to true. The
predicate expression is evaluated in the context of each candidate node. These tests appear within
square brackets ([]) following the axis and node name. Multiple tests can be combined with or or
and to derive the final result.

If the test expression evaluates to a number, it is tested against the candidate node’s position,
returning true if it is equal. Results other than numbers and Boolean values have an implicit call to
the boolean function to convert them into a usable format.

When testing for position, the current node is used as the reference point with candidate nodes
starting at position one. Note that the order of nodes within an axis depends on its type. The ances-
tor, ancestor-or-self, preceding, and preceding-sibling axes are known as reverse axes,
with their nodes placed in the reverse order of their appearance within the document. All other
axes are forward ones, having nodes in the same order as the document.

Chapter 6: XPath and XPointer 61

Locations

XPointer extends XPath to provide support for locations that are partial nodes or a range of nodes.
The new locations are defined to be a point, a range, or an XPath node.

Points are positions between characters within the document. A reference to a container node
and a non-negative offset from its beginning identify the point. Since points have no content, they
also have no string value. Points come in two versions: node points in container nodes that have
children (indicating positions between those nodes) and character points in containers without
child nodes (denoting positions between characters).

Ranges are defined by two points and consist of all the content and XML structure between
them. It is possible for nodes to be only partially included in a range. If the starting and ending
points of a range are the same, it is said to be a collapsed range. To describe a range as an XPointer
expression, just identify the two delimiting points and join them with the range-to function.

Functions

Several core functions are defined as part of XPath. Use these and the ones specifically from
XPointer within expressions to find just the right items. The signatures in Table 6-2 show the func-
tion’s return type, followed by its name and the types of any parameters. A trailing question mark
(?) denotes an optional argument, while an asterisk (*) indicates a repeatable argument. In each
case the context node is the candidate node found by a previous axis and node test.

Table 6-2: XPath functions

Function Purpose

number position() Retrieve the node’s position within the evaluation context
starting at one.

number last() Get the number of items in the evaluation context.

number count(node-set) Returns the number of nodes in the supplied node-set.

node-set id(object) Obtain the node(s) with the specified ID(s).

string name(node-set?) Returns the qualified name of the first node, in document

order, from the supplied set. If no parameter is provided,
it operates on the context node instead.

string namespace-uri(node-set?) Similarly, you can obtain the namespace URI of the first
node in the set, or from the context node.

string local-name(node-set?) Completing the set, retrieve the local name of the context
node or the first node in the supplied set.

string string(object?) Convert the supplied object to a string value. For a
node-set, this returns the string value of its first node in
document order. It operates on the context node if no
parameter is given.

string concat(string, string, string*) Provides the concatenation of all its string arguments.

62

Part I: Introduction to XML

Function

boolean starts-with(string, string)
boolean contains(string, string)

string substring-before(string, string)

string substring-after(string, string)

string substring(string, number, number?)

number string-length(string?)
string normalize-space(string)

string translate(string, string, string)

boolean boolean(object)

boolean not(boolean)
boolean true()
boolean false()

boolean lang(string)

number number(object?)

number sum(node-set)

number floor(number)

number ceiling(number)

Purpose

Returns true if the first string starts with the second string,
and false otherwise.

Returns true if the first string contains the second string,
and false otherwise.

Retrieve the substring of the first argument that precedes
the first occurrence of the second argument, or an empty
string if the second argument does not appear at all.

Conversely, get the following substring with this function.

Extract the substring from the supplied value that extends
from the first numeric argument (starting at one) for the
number of characters equal to the second argument. If the
latter is omitted, it extends through to the end of the
original string.

Obtain the length of the supplied string, or the context
node’s string value if no parameter is passed.

Normalizes white space in the given string (or the context
node if none is supplied) and returns the result.

Returns the first parameter, with occurrences of
characters from the second parameter replaced by the
corresponding characters (by position) from the third
parameter.

Convert the given object to a Boolean value. A number is

true if it is neither positive or negative zero, nor NaN (not
a number). A node-set is true if it is non-empty. A string is
true if its length is greater than zero.

Negates the supplied value.
Returns the corresponding Boolean value.
Returns the corresponding Boolean value.

Test whether the context node’s language (based on the
xml:lang attribute) is the same as or a sub-language of the
supplied value.

Convert the supplied value, or the context node if none
present, to a number. A Boolean true returns |, while
false returns 0. Node-sets operate on the string value of
the first node.

Sum the values from the node-set after converting their
string values to numbers.

Returns the largest integer not greater than the supplied
value.

Conversely, this returns the smallest integer not less than
the value.

Chapter 6: XPath and XPointer 63

Function

number round(number)

Purpose

Returns the closest integer to the given value, with halves
rounding up.

The following functions are extensions defined in the XPointer specification.

Table 6-3: XPointer functions

Function

location-set here()

location-set origin()

location-set range-to(location-set)
location-set range(location-set)
location-set range-inside(location-set)
location-set start-point(location-set)
location-set end-point(location-set)

location-set string-range(location-set,
string, number?, number?)

Purpose

Obtain the element node that directly contains the
XPointer being evaluated.

Used in conjunction with out-of-line links, this returns the
element from which the link traversal began.

Returns ranges extending from the start-point of the
current context to the ends of each of the locations in the
supplied set.

Returns ranges covering the locations in the supplied set.

Returns ranges covering the contents of the locations in
the supplied set.

Retrieves the starting points of the supplied locations as a
set.

Retrieves the ending points of the given locations.

From the supplied location-set, search for occurrences of
the given string and return these as the result. The third
argument specifies the offset from the start of the string
to match to become the first position in any result, while
the last parameter provides the number of characters
from that point to include in the return values.

Abbreviated Syntax

Several forms of abbreviated syntax are defined in the XPath specification. These are shown in

Table 6-4.

Table 6-4: XPath abbreviations

Shorthand Full Version Meaning

XXX child: :xxx The child element xxx
// /descendant-or-self::node()/ |Any descendant

self::node()
parent::node()
@ attribute::
[n] [position()=n]

The current node
The parent node
An attribute

The nth item

64 Part I: Introduction to XML

Samples

Example paths from the movie-watcher document are shown in Table 6-5. Recall that all are based
from the current context node, which has been selected in some other manner. These would proba-
bly be used within an XSLT document to select nodes for transformation (see Chapter 4).

Table 6-5: Sample paths

XPath
/

*

movie
director|star
//movie/name
//movies//name
text ()

node ()
id("sW1")
star[1]
star[last()=1]
@url

o*
movie[@rating="PG"]

//screening[@movie-id=context()/@id]

id(@cinema-id)/name

Retrieves (from the context node)

The root node of the XML document

All the element children

The context node itself

All movie element children

All director or star child elements

Any name element with a movie element parent
Any name element with a movies element ancestor
All text node children

All child nodes other than attributes

The element with SW1 as its unique 1D

The first star child element

The star element that is the only child

The url attribute

All attributes

All movie element children that have a rating attribute of
PG

The screening element whose movie-id attribute is equal
to the current node’s ID

The name child of the element with an ID equal to the
cinema-id attribute of the current node (presumably a
screening)

Table 6-6 shows example pointers for the movie-watcher documents. References would likely be
used in conjunction with an XLink to identify a portion of a resource. Thus they would be of the

form:

x1ink:href="http://www.movies-online.com/current.xml#xpointer(..)"

where the ellipsis is replaced by one of the terms from the table.

Table 6-6: Sample pointers

Chapter 6: XPath and XPointer

XPointer

id("SW1")
descendant::movie[rating="G"]
//cinema[2] /name

//text()

id("SW1")//star[1]/range-to
(following-sibling::star[1])
id("ENT")/start-point(range-inside
(synopsis))/range-to(string-range
(synopsis, ".")[1])

Identifies

The element with SW1 as its unique ID
All movie elements with a rating of G
The name of the second cinema element
All text nodes in the document

The first two stars for the element with an ID of SW|

The first sentence (up to a period) of the synopsis for
the element with the ID ENT

Summary

XPointer is complementary to XLink, providing for the identification of a resource to continue
down into a document to individual nodes or ranges of nodes. It is based on the XPath specifica-
tion that is also used in XSL Transformations for selecting nodes, and is designed to work only

with XML documents.

While XPath is a W3C Recommendation, the XPointer specification is still in draft, and no
commercial products are using it yet. Examples of XPath usage appear in Chapter 21, which looks
at using XSL Transformations for formatting XML documents, and in Chapter 26, which uses

XSLT.

66

Chapter 7

XML Schema

In Chapter 3 you saw how document type definitions (DTDs) are constructed. These let you spell
out what constitutes a valid document for a particular application. You specify each element that
may appear within the document. A content model in each declaration defines what may be con-
tained within that element—other elements, text, a combination, or nothing. The multiplicity of
each sub-element forms part of that model. Each element also describes the attributes that it may
use. Attributes declare a type and have an indication of whether or not they are required.

Together these declarations define what elements may appear and how they are structured
within a document that claims conformance to the DTD. Some control over their number and con-
tent is provided.

Unfortunately, DTDs fall short in some areas. You have no control over the textual content of
an element—it is just text. If you want to have a field that should contain a numeric value, or one
that holds a date, then the best that you can do is to add some comments to the DTD to state this
intention, and leave it to an application that knows about these documents to enforce those rules.
However, the documents could also be written or updated by hand or through a generic XML edi-
tor that knows nothing about these requirements. The result is that your documents are not as
standard as you would like.

Although DTDs allow you to specify the multiplicity of a sub-element within a content model,
this specification is fairly basic. You either have one or none of an element, or many of them.
There is no (easy) way to indicate exact numbers of occurrences that are required, such as an ele-
ment having two to four repeats of a particular sub-element.

NOTE You can achieve the desired outcome of explicit numbers of sub-elements through
laying out all the possible combinations as separate content models and then stringing them
together as alternatives. However, this can produce a non-deterministic content model—one
that cannot tell which option is being used without looking ahead—that may be rejected by
some XML processors.

Furthermore, the format for DTDs is quite different from the rest of an XML document. This
means that additional complexity and functionality must be built into processors to deal with this
variation. Viewing and editing a DTD may require an alternate package to that for the documents
that conform to it.

Chapter 7: XML Schema 67

In an effort to overcome these problems, an alternative manner of defining the valid contents
of XML documents was defined. Known as XML Schema, it lets you declare the types for the con-
tent of text nodes. It also enables you to specify the number, or range of numbers, of times that a
sub-element must appear. And lastly, it is itself an XML application, meaning that the same tools
can be used to define a document and then to populate it correctly.

The XML Schema specification comes in two parts: the definition of structures for declaring
content models and the definition of data types for elements and attributes. Both parts are W3C
Recommendations as of May 2, 2001.

NOTE Microsoft has developed and supports a similar standard called XML Data Reduced.
This is a subset of the XML Data proposal that was presented to the W3C, and which contrib-
uted to the development of XML Schema. There are several differences to the W3C
specification. For further information, see http://msdn.microsoft.com/xml.

Schema Document

An XML Schema document is itself an XML document. It must follow the standard for schemas if
it is to be considered valid. Hence, there is an XML Schema that defines the layout for XML
Schemas available at http://www.w3.0rg/2000/10/XMLSchema.xsd. A second schema defines
the standard data types at http://www.w3.0rg/2000/10/XMLSchema-datatypes.xsd. (There are
also DTD versions of each of these for those on the fence. They are available at
http://www.w3.0rg/2000/10/XMLSchema.dtd and http://www.w3.0rg/2000/10/datatypes.dtd.)
The meta-XML Schema states that a schema contains a schema element at its topmost level.
Attributes of this element declare the version of XML Schema being followed and the namespace
associated with documents that claim conformance to this new schema. An example of a schema
declaration is shown in Listing 7-1. Here you also see the reference to the DTD, so that the schema
can be validated, and the definition of the default namespace for schema elements themselves.

Listing 7-1: An XML Schema skeleton

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE schema PUBLIC "-//W3C//DTD XMLSCHEMA 200010//EN"
"http://www.w3.0rg/2000/10/XMLSchema.dtd" [
<schema xmlns="http://www.w3.0rg/2000/10/XMLSchema"
targetNamespace="urn:kbwood/movie-watcher" version="1.0">

</schema>

Within the schema element appear further tags that provide documentation on the schema, declara-
tions of types of element content, and the definitions of the elements and attributes themselves.

Schemas usually exist in files of their own to allow them to be shared between conforming
documents. Such files typically have an . xsd suffix. The standard prefix for schema tags is xs and
its corresponding namespace URT is http://www.w3.0rg/2000/10/XMLSchema. In Listing 7-1 the
default namespace for the document is set to this value, meaning that you do not have to supply a
prefix for each element.

68 Part I: Introduction to XML

To attach a schema to an XML document so that it can be validated, you add an attribute to its
document element. This attribute comes from another namespace related to XML Schemas
(XMLSchema-instance) which must first be defined within a namespace attribute (xmIns). By con-
vention, the xsi prefix is used for instance declarations, with the attribute name being
schemaLocation if the XML document has a target namespace, or noNamespaceSchemalLocation
if it has no target namespace. For the movie-watcher documents, the schema reference may look
like the following:

<movie-watcher xmlns:xsi="http://www.w3.0rg/2000/10/XMLSchema-instance"
xsi:noNamespaceSchemalLocation="movie-watcher.xsd">

</movie-watcher>

Documentation

Although normal XML comments can be used to document the schema, another method is avail-
able that promotes the reuse of the embedded descriptions. The annotation element can appear at
the beginning of most schema elements and anywhere at the top level of the schema. An annota-
tion consists of either or both of the documentation or appinfo elements, each of which contains
text and possibly other tags. The former is intended for human consumption, while the latter is for
automated processing. An example is shown in Listing 7-2. This appears following the opening
schema tag defined above.

Listing 7-2: Embedded documentation

<annotation>
<documentation>
Movie-watcher schema.
Data about movies and when and where they are showing.
Written by Keith Wood, 7 August, 2000.
</documentation>
</annotation>

Simple Types

The definition of the parts of the document starts at the most basic level with simple types. These
are the fundamental types present in most programming languages and database systems. They
include the usual string, boolean, integer, long, short, float (32-bit), double (64-bit), date,
and time formats all expressed as straight text. Variations on these are available, such as
positivelnteger, unsignedlLong, month, year, and century. More exotic formats also exist, like
recurringDate, recurringDay, timeDuration, and uriReference.

The standard XML attribute types from the DTD specification can be used as well, including
ID, IDREF, ENTITY, NOTATION, and NMTOKEN. New types are introduced to cover other XML for-
mats, such as Name, QName (a qualified name), NCName (a QName without the prefix or colon), and
language.

Chapter 7: XML Schema 69

All these types are built into the schema specification. From them you can derive additional
simple types by applying constraints or facets. For example, theminInclusive and maxInclusive
facets let you restrict valid values to a given range. The pattern facet provides a regular expres-
sion that defines the layout of the expected values, while the enumeration facet lists individual
values that are allowed. A total of 15 facets are defined in the specification, although not all of
these pertain to all base types.

To apply facets to a type you include a simpTeType element in your schema, with an embedded
restriction element and its base attribute indicating the fundamental type being constrained. If
you wish to refer to this type from elsewhere in the document, you must set its name attribute. The
alternative is to declare it directly within the item to which it applies using an anonymous
simpleType element. Within the restriction element you list the facets and their values. Listing
7-3 shows an enumerated type to be used for the rating attribute in the movie-watcher
documents.

Listing 7-3: Enumerating a simple type

<simpleType>
<restriction base="string">
<enumeration value="NR"/>
<enumeration value="G"/>
<enumeration value="PG"/>
<enumeration value="PG-13"/>
<enumeration value="R"/>
</restriction>
</simpleType>

Complex Types

More involved types are built from the simple types defined above. As before, these types can be
defined at the top level of the schema and given a name. The declarations that rely on these types
then refer to them by name. In this way, types can be reused within, and even between, documents.
Alternately, anonymous complex types can be declared directly within the elements to which they
apply.

Content models are one of the main uses for complex types, since simple types do not have any
children. An example of this for the content of the movie-watcher element is shown in Listing 7-4,
along with samples for the following descriptions. Elements may be declared inline or may refer-
ence a declaration defined elsewhere as illustrated here.

Listing 7-4: Building more complex types

<complexType>
<sequence>
<element ref="movies"/>
<element ref="cinemas"/>
<element ref="screenings"/>
</sequence>
</complexType>
<complexType mixed="true">
<choice minOccurs="0" maxOccurs="unbounded">
<element name="emph" type="string"/>

70

Part I: Introduction to XML

</choice>
</complexType>
Various other schema tags let you build more elaborate content models. The choice element sur-
rounds a list of other elements from which you may select only one, whereas the sequence
element specifies that its constituent elements must appear in the listed order. Use the group ele-
ment to collect child elements together for treatment as a single entity.

Alternately, the al1 element says that its contained elements may appear once or not at all, but
may do so in any order. This can only be applied to the top-level element in the schema and all of
its children must be individual elements. One last option places no restriction on the element types
that can appear. The any element has no children itself, but permits any type of child element
within the document. A namespace can be applied to the any element to limit the valid elements.

Mixed content, a combination of normal text and other elements, is denoted by the presence of
the mixed attribute on the type declaration with a value of True. The order and number of tags
appearing in the document must match what is defined in the type declaration. This is different
from DTDs, which place no restrictions on embedded tags, other than limiting their types.

Each element or model tag may have its cardinality specified through the minOccurs and
maxOccurs attributes. Both are optional and default to one. The minimum must be a non-negative
value, while the maximum must be a greater value or unbounded.

Simple types cannot have attributes. So, whenever an element has an attribute, you must
declare a complex type to define it. Within the type tag you list the allowed attributes, giving their
name, type, and any other characteristics. The example in Listing 7-5 shows the type for the ses-
sion element in a movie-watcher document. Note that the base content of the type for the element
is defined as a time value, which is then extended by adding an attribute that refers back to the ID
of another element.

Listing 7-5: Adding attributes to an element
<complexType>
<simpleContent>
<extension base="time">
<attribute name="price-id" type="IDREF" use="required"/>
</extension>
</simpleContent>
</complexType>
Complex types let you combine element and attribute declarations within the one definition if it is
appropriate. They may be embedded within each other to construct whatever hierarchy is
required. Types can also inherit from other complex types and extend or restrict that previous
definition.

To define an empty type, you basically declare a complex type that only allows elements as its
content and then provide no elements. This works because a complex type without any content
specification automatically derives from anyType, which allows only elements. The following is
shorthand for an empty element without any attributes.

<complexType/>

Chapter 7: XML Schema 71

If you want no content but do want attributes, just expand this to encapsulate them.

<complexType>
<attribute name="id" type="ID" use="required"/>
</complexType>

Atiribute Declarations

Now that you have the types laid out, you can apply them to elements and attributes within the
schema. To declare an attribute for an element, you need to define a complex type for that element.
At the end of the type definition you use the attribute tag to specify the attribute itself.

Along with the attribute name you supply its type, which is either one of the predefined basic
types or a user-defined extension or restriction of one of them. Optionally, you can also include
usage information (optional (the default), required, prohibited, default, or fixed) and any
default or fixed value. Attribute tags may contain a simp1eType element that defines further facets
of the type of data allowed within them.

Listing 7-6 shows two attributes with types corresponding to those available in DTDs. It also
includes the rating attribute, which uses an anonymous enumeration based on string values for its

t}qpe.
Listing 7-6: Defining attributes

<attribute name="id" type="ID" use="required"/>
<attribute name="logo-url" type="ENTITY"/>
<attribute name="rating" use="required">
<simpleType>
<restriction base="string">
<enumeration value="NR"/>
<enumeration value="G"/>
<enumeration value="PG"/>
<enumeration value="PG-13"/>
<enumeration value="R"/>
</restriction>
</simpleType>
</attribute>

Attribute groups let you collect attributes together and manage them as one unit. The
attributeGroup tag contains a list of the individual attributes, as they would appear within a nor-
mal type declaration. See Listing 7-7 for an example.

Listing 7-7: Grouping attributes for ease of reuse

<attributeGroup name="commonAttrs">
<annotation>
<documentation>
Attributes common to both movies and cinemas
</documentation>
</annotation>
<attribute name="id" type="ID" use="required"/>
<attribute name="logo-url" type="ENTITY"/>
<attribute name="url" type="ENTITY"/>
</attributeGroup>

72

Part I: Introduction to XML

A name serves to identify the group and is used to refer to it from the element definitions that actu-
ally have these attributes. In this way, the group can appear in several declarations, providing for
its reuse similar to parameter entities within DTDs. This aids in the maintainability of the schema.
Groups can also be used to improve the readability of the document by extracting the attributes
from the element definitions.

Element Declarations

Whereas in DTDs the textual content of elements cannot be constrained (other than through com-
ments in the DTD itself), in schemas you can apply any of the simple predefined or user-defined
types to an element. Thus, you can state that an element should only contain a number or a date.
Just specify the required format in the type attribute of the element tag. You must supply a name
for each element and may also provide additional facets to control its appearance within a docu-
ment, such as it cannot be longer than 10 characters.

Listing 7-8 shows a selection of simple element declarations. These range from a simple string
element (the only option for a DTD specification), through an optional positive integer, an
optional string, and an optional decimal value, to one that requires a date as its content.

Listing 7-8: Simple element definitions

<element name="name" type="string"/>

<element name="length" type="positivelnteger" minOccurs="0">

<element name="directions" type="string" minOccurs="0"/>

<element name="discount" type="decimal" minOccurs="0"/>

<element name="start-date" type="date"/>
For content other than straight text, you create an element with a complex type. This can be
defined inline as an anonymous type, which is useful for one-off combinations, or as a separate
named type definition that is referred to by the element. The latter option lets you reuse that ele-
ment as part of another’s content throughout the schema.

As described earlier, the element can use the sequence, choice, group, any, and all tags to
define its internal structure. Each child may occur as an inline named element, as an element with
its own embedded structure, or as a reference to an element defined elsewhere. Any attributes,
either as individual entries or as references to previously defined groups, must appear at the end of
the type definition.

Listing 7-9 shows the definition for the movie element from the movie-watcher documents,
along with all of its children. It makes use of an anonymous type definition for the movie itself
since its composition is unique. Within that definition appear both inline child declarations as well
as references to other elements. These are declared externally to promote their reuse or to define
their own internal structure without cluttering up the current definition.

Listing 7-9: Elements with content other than text

<element name="movie">
<annotation>
<documentation>Details about a single movie</documentation>
</annotation>
<complexType>

Chapter 7: XML Schema T

<sequence>
<element ref="name"/>
<element name="length" type="positivelnteger" minOccurs="0">
<annotation>
<documentation>Length of movie in minutes</documentation>
</annotation>
</element>
<element name="director" type="string" minOccurs="0"/>
<element ref="starring" minOccurs="0"/>
<element ref="synopsis" minOccurs="0"/>
</sequence>
<attributeGroup ref="commonAttrs"/>
<attribute name="rating" use="required">
<simpleType>
<restriction base="string">
<enumeration value="NR"/>
<enumeration value="G"/>
<enumeration value="PG"/>
<enumeration value="PG-13"/>
<enumeration value="R"/>
</restriction>
</simpleType>
</attribute>
</complexType>
</element>

<element name="name" type="string"/>
<element name="starring">
<complexType>
<sequence>
<element name="star" type="string"
minOccurs="1" maxOccurs="unbounded" />
</sequence>
</complexType>
</element>
<element name="synopsis">
<complexType mixed="true">
<choice minOccurs="0" maxOccurs="unbounded">
<element name="emph" type="string"/>
</choice>
</complexType>
</element>

The attributes for the movie element also reuse external items through the commonAttrs group.
Since the rating attribute only appears in this element, it is defined inline.

Further Abilities of Schemas

The schema specification includes much more than is shown in this chapter. It also provides a sec-
tion on how namespaces affect and interact with a schema definition. All schema documents have
a W3C namespace that defines the tags described above, while the document being declared has
its own target namespace.

Type definitions can be constructed in a hierarchical fashion, inheriting content from earlier
types and then extending or restricting it. Mechanisms exist to limit what can be altered in a

- 74

Part I: Introduction to XML

derived declaration, along with descriptions of how changes in the new type interact with those of
the parent.

Types can be declared to be equivalent to each other at the top level of the schema via the
substitutionGroup attribute. Referring to the group class in a content model allows any of these
related classes to appear in that position.

Schemas expand on the notion of IDs and IDREFs from the DTD specification by letting you
define unique attributes (and even content or combinations of these) throughout the entire docu-
ment or within given elements. Declaring these items as a key indicates that they must always be
present, non-null, and unique.

Several additional content particles exist to allow for the inclusion of any child element while
restricting it to a particular namespace or to a namespace other than the current one. Attributes can
be similarly constrained.

The datatypes section of the specification goes into great detail about types in general, defin-
ing, among other things, their value spaces (the actual values, such as 100) as opposed to their
lexical spaces (the representation of that value, like 100, 1E2, or 100.00). It describes the generic
facets that can be applied to the types to constrain their sets of valid values. Each basic datatype is
then examined in turn, explaining how these aspects affect them.

Summary

XML Schemas provide an alternative to DTDs for the definition of the valid contents of an XML
document. They provide additional functionality over DTDs including type declarations for text
content and attribute values, and greater specificity for the number of occurrences of a sub-ele-
ment. Moreover, one of their biggest advantages is that XML Schemas are defined as XML
documents, allowing you to use the same tools for defining the schema as you do for populating
documents that conform to it.

The first part of the specification tells you how to define types that can be applied to elements
and attributes within a document. Then you apply those types to individual elements while laying
out the valid content for each one. Simple types include straight text and numbers, while complex
types let you build complicated combinations of sub-elements and attributes.

The second part of the specification details how data types are declared. The basic types are
defined within the spec, and these can be extended, restricted, and combined to create new types.

Unfortunately, XML Schema is still only a Candidate Recommendation from the W3C, and so
is not widely used yet to validate documents. This situation should change as the benefits of XML
Schema over DTDs become more apparent.

Part |1

The Document
Object Model

Parsing a document involves reading it in, interpreting its structure, and then using the
results in an application to provide some useful functionality. XML’s simple hierarchical
structure was designed to facilitate the parsing of documents by such programs, as well as
to ease the processing of the resulting output.

Two main approaches to parsing XML have arisen. The first is the Document Object
Model (DOM), which constructs a series of related objects in memory that corresponds to
the structure and content of the original document. The second is the Simple API for
XML (SAX) that offers an event-based approach, triggering actions as each element or
section of content is encountered.

This section looks in detail at the DOM. Chapter 8 describes the DOM specification
as presented by the W3C, including some of the enhancements appearing in the second
version of this spec. Chapter 9 details Microsoft’s implementation of the DOM as COM
interfaces. Version 3 of their XML DOM package comes as a set of three DLLs, which
can be easily used from Delphi through an imported type library.

Chapter 10 examines a native Delphi implementation of the DOM as produced by
CUESoft.com Inc. This commercial product offers tighter integration with your applica-
tion due to its Delphi source. Chapter 11 describes another native Delphi DOM
implementation, this one an open source offering from the Open XML project called
XDOM. Again, you have a DOM that compiles into your code, but this time you also
have access to the source. XDOM provides extensive support for modeling the DTD sec-
tion of an XML document, something the other DOMs bypass (as does the DOM
specification).

Chapter 8: The Document Object Model (DOM)
Chapter 9: Microsoft’'s Document Object Model
Chapter 10: CUESoft's Document Object Model
Chapter 11: Open XML's Document Object Model

Chapter 8

The Document Object
Model (DOM)

The Document Object Model constructs a hierarchy of objects in memory that represents an XML
document. Reasons for developing the DOM include a desire to define a platform- and lan-
guage-neutral interface that allows applications to access and manipulate the content, style, and
structure of a document. It is a recommendation of the W3C, with the latest version being avail-
able at http://www.w3.org/DOM.

Version 1 of the DOM became a W3C Recommendation on October 1, 1998. It defined the
basic requirements for representing the object model, and appears in two parts. The first part is the
core of the DOM and provides sufficient functionality to work with structured documents in gen-
eral and XML documents in particular. Part 2 extends the core to provide additional abilities
suitable for manipulating HTML documents. Version 2 became a Recommendation on November
13, 2000 (except for the HTML section that reverted to being a Working Draft). It primarily adds
support for namespaces, as well as methods for creating documents themselves.

DOM Interfaces

The DOM is specified as a series of interfaces, allowing it to be implemented in various ways in
different languages. The basis upon which the entire DOM is built is the Node interface. This pro-
vides the fundamental abilities of a node within the model structure: a name, a value, attributes, a
parent, and possible child nodes. More specific node types derive from this interface with added
functionality. See Table 8-1 for a list of the items specified by the DOM core, and the new Tra-
versal section. The Level column indicates when the item was introduced.

Table 8-1: Document Object Model specifications

DOM Item Type Level |Purpose

Attr Interface | An attribute of an element

CDATASection Interface | An extended text section that ignores markup
characters

CharacterData Interface I Base interface for all text type nodes

77

78 Part Il: The Document Object Model

DOM Item Type Level |Purpose

Comment Interface | An embedded comment

Document Interface | Top level in the model representing the entire
document

DocumentFragment Interface | A snippet of a DOM not attached to the main
model

DocumentType Interface | Information about the DTD including entities and
notations

DOMException Exception | Describes errors encountered during DOM
processing

DOMImplementation Interface | Functionality that is independent of an instance of
the DOM

DOMString Type | The type for all DOM strings (16-bit UNICODE)

DOMTimeStamp Type 2 A number of milliseconds

Element Interface I Standard element—the most common node in a
document

Entity Interface | Details about an entity (parsed or unparsed)
declared in the DTD

EntityReference Interface I An occurrence of a parsed entity in the body of

the document

NamedNodeMap Interface | Handle collections of nodes that can be accessed
by name, such as attributes

Node Interface | The basic structural element within the DOM,
most other interfaces derive from this one

NodeFilter Interface 2 Accept or reject nodes for a selection

NodeIterator Interface 2 Handle a collection of selected nodes in
sequential order

NodelList Interface | Handle ordered collections of nodes, such as
child nodes

Notation Interface | Details about a notation declared in the DTD

ProcessingInstruction Interface | An instruction for a target application

Text Interface | The textual content of an element or attribute

TreeWalker Interface 2 Handle a collection of selected nodes in a tree
structure

NOTE Although there are eight parts to the DOM Level 2 specification (Core, HTML, Views,
Stylesheets, CSS, Events, Traversal, and Range), only the Core and Traversal sections are cov-
ered here. The remaining sections do not deal with XML or are not widely implemented as yet.

The DOMString type defined by the DOM corresponds to a 16-bit character set, UTF-16. All string
values within the DOM use this format.

Chapter 8: The Document Object Model (DOM)

As an example, the XML document in Listing 8-1 is represented by the DOM shown in Figure
8-1. At the topmost level is the Document node, which provides access to all the other nodes.
Beneath this appear a ProcessingInstruction node for the XML declaration, a DocumentType
node for the DTD declaration, a Comment node, another ProcessingInstruction node for the
stylesheet reference, and an ETement node that is the document element.

Listing 8-1: XML fragment

<?xml version="1.0" encoding="UTF-8"7>
<IDOCTYPE movie-watcher SYSTEM "movie-watcher.dtd" [
<INOTATION HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<INOTATION GIF SYSTEM "iview.exe">
<IENTITY SW1-site SYSTEM "http://www.starwars.com/episode-i/" NDATA HTML>
<IENTITY SW1-Togo SYSTEM "http://www.starwars.com/episode-i/palpatine/img/top_logo.gif" NDATA GIF>
<IENTITY PV "Pleasantville">
1>
<l-- Sample XML document with data about movies
and when and where they are showing
Developed by Keith Wood, 28 May 1999 -->
<?xml:stylesheet type="text/xs1" href="movie-watcher.xs1"?>
<movie-watcher>
<movies>
<movie id="SW1" rating="PG" Togo-url="SWl-logo" url="SWl-site">
<name>Star Wars - The Phantom Menace</name>
<length>131</length>
<director>George Lucas</director>
<starring>
<star>Liam Neeson</star>
<star>Ewan McGregor</star>
<star>Jake Lloyd</star>
<star>Natalie Portman</star>
</starring>
<synopsis>When the evil Trade Federation plots to take over the
peaceful planet of Naboo, Jedi warrior Qui-Gon Jinn and his
apprentice Obi-Wan Kenobi embark on an amazing adventure to
save the planet. With them on their journey is the young queen
Amidala, Gungan outcast JarJdar Binks, and the powerful Captain
Panaka, who will all travel to the faraway planets of Tatooine
and Coruscant in a futile attempt to save their world from
Darth Sidious, Teader of the Trade Federation, and Darth Maul,
the strongest Dark Lord of the Sith to ever wield a lightsaber.
</synopsis>
</movie>
</movies>
</movie-watcher>

Within the DocumentType node are Notation nodes representing the notations declared in the

internal DTD for this document, and Entity nodes for the internal and external entities declared
there. Internal entities have their content in Text nodes as children.

NOTE The DOM specification does not model the DTD itself, i.e., the element and attribute
declarations. However, some implementations of the DOM do provide this extra functionality.
See Chapter 11 for information on the Open XML DOM and its DTD representation.

The document element (movie-watcher) has further Element children for each node in the docu-
ment hierarchy. At the bottom of the tree are more Text nodes that contain the content.

- 80

Part Il: The Document Object Model

Figure 8-1: DOM representing the document from Listing 8-1.

Processing I DocumentType | | Comment | Processing Element
Instruction Instruction -
xml xml:stylesheet moWie-walches
Notation Entity Entity Element
HTML SW1-site PV movies
[I =
Text Element
Pleasantville movie
Element Element Element Element Element
name length director starring synopsis
Text Text Text Element Text
Star Wars ... 131 George Lucas star When the ...
1
Text
Liam Neeson
| I

As you can see, the entire document structure is captured within the model (except for the DTD
information). Each node can be reached by navigating from the document node down through a
series of child nodes, or via one of a number of selection methods from the document or an ETe-

ment node.

The rest of this chapter goes on to describe each interface and exception in greater detail. Defi-
nitions for the interfaces come from the DOM specification and are expressed in Interface
Definition Language (IDL) as described by the Object Management Group (OMG). This format is
language-neutral and can be mapped onto a number of different languages for implementation

purposes.

Chapter 8: The Document Object Model (DOM) B 81

DOMException

DOMException (see Listing 8-2) is designed to notify you of errors that occur during the processing
of a document. In languages that support exceptions (like Delphi) a new exception type should be
defined and raised when necessary. The specification defines a number of errors and identifying
codes. Occasions when these errors are generated are identified throughout the specification.
Although the code is included in the exception here, this may not be necessary in implementations
where the type can be identified through other means (such as by subclassing the exception).

Listing 8-2: The DOMException exception

exception DOMException {
unsigned short code;

g

// ExceptionCode

const unsigned short INDEX SIZE ERR =
const unsigned short DOMSTRING_SIZE_ERR =
const unsigned short HIERARCHY_REQUEST_ERR =
const unsigned short WRONG_DOCUMENT ERR =
const unsigned short INVALID CHARACTER ERR =
const unsigned short NO_DATA ALLOWED_ ERR =
const unsigned short NO_MODIFICATION ALLOWED ERR =
const unsigned short NOT_FOUND ERR =
const unsigned short NOT_SUPPORTED_ERR =
const unsigned short INUSE_ATTRIBUTE_ ERR =
// Introduced in DOM Level 2:

const unsigned short INVALID STATE ERR = 11;
// Introduced in DOM Level 2:

const unsigned short SYNTAX ERR = 12;
// Introduced in DOM Level 2:

const unsigned short INVALID MODIFICATION_ERR = 1133
// Introduced in DOM Level 2:

const unsigned short NAMESPACE ERR = 14,
// Introduced in DOM Level 2:

const unsigned short INVALID ACCESS_ERR = 15;

= O 00 N OB WMN -

O -

NOTE The conditions that generate these exceptions occur during the manipulations of the
DOM once it is loaded. The specification does not indicate how documents are loaded from
or saved to persistent storage. Any errors that arise from reading, parsing, or writing DOMs
are produced by the implementing application in a manner specific to that product.

Typical causes of these errors are described below:
INDEX_SIZE ERR

An index or size value is negative or greater than the allowed maximum.
DOMSTRING_ SIZE ERR

A specified range of text does not fit in a DOMString value.
HIERARCHY REQUEST ERR

An attempt is made to insert a node somewhere that it does not belong.

WRONG DOCUMENT ERR
A node is used within a document that did not create it.

82

Part Il: The Document Object Model

INVALID CHARACTER_ERR
An invalid character has been used, for example, within an element name.

NO_DATA ALLOWED ERR
A node value is set for a node that does not support values, such as an ETement node.

NO MODIFICATION ALLOWED ERR
An attempt is made to modify a read-only node.

NOT FOUND_ERR
An attempt is made to refer to a node that does not exist, for example, when inserting child
nodes.
NOT_SUPPORTED ERR
The implementation does not support the type of object requested.
INUSE_ATTRIBUTE ERR
An attempt is made to add an attribute already in use elsewhere.
INVALID STATE ERR
An attempt is made to use an object that is no longer usable.
SYNTAX ERR
An invalid or illegal string is used.
INVALID_MODIFICATION_ERR
An attempt is made to alter the type of the object.
NAMESPACE ERR
An attempt is made to alter the object that is incompatible with namespace usage.

INVALID ACCESS _ERR
The object does not support a parameter or an operation.

Node Interface

As mentioned earlier, the Node interface (shown in Listing 8-3) forms the basic unit of the DOM
structure. Extensions to this interface may add convenience names for the basic properties, or
entirely new abilities, based on their purpose. You do not add a simple node directly to the DOM,
but instead use one of its extensions. However, the properties and methods defined here let all
nodes be treated identically at a basic level.

Listing 8-3: The Node interface

interface Node {
// NodeType
const unsigned short ELEMENT_NODE
const unsigned short ATTRIBUTE_NODE
const unsigned short TEXT_NODE
const unsigned short CDATA SECTION_NODE
const unsigned short ENTITY REFERENCE_NODE
const unsigned short ENTITY_NODE
const unsigned short PROCESSING_INSTRUCTION_NODE
const unsigned short COMMENT_NODE

0O N OB WN

Chapter 8: The Document Object Model (DOM) T

const unsigned short DOCUMENT NODE =9;
const unsigned short DOCUMENT_TYPE_NODE = 10;
const unsigned short DOCUMENT_FRAGMENT_NODE = dlilg
const unsigned short NOTATION_NODE =12
readonly attribute DOMString nodeName;

attribute DOMString nodeValue;

// raises(DOMException) on setting
// raises(DOMException) on retrieval
readonly attribute unsigned short nodeType;

readonly attribute Node parentNode;
readonly attribute NodeList childNodes;
readonly attribute Node firstChild;
readonly attribute Node lastChild;
readonly attribute Node previousSibling;
readonly attribute Node nextSibling;

readonly attribute NamedNodeMap attributes;
// Modified in DOM Level 2:
readonly attribute Document ownerDocument ;
Node insertBefore(in Node newChild,
in Node refChild)
raises (DOMException);
Node replaceChild(in Node newChild,
in Node ol1dChild)
raises (DOMException);

Node removeChild(in Node oldChild)
raises (DOMException);

Node appendChild(in Node newChild)
raises (DOMException);

boolean hasChildNodes();

Node cloneNode(in boolean deep);

// Modified in DOM Level 2:

void normalize();

// Introduced in DOM Level 2:

boolean isSupported(in DOMString feature,

in DOMString version);
// Introduced in DOM Level 2:

readonly attribute DOMString namespaceURI;
// Introduced in DOM Level 2:
attribute DOMString prefix;

// raises(DOMException) on setting

// Introduced in DOM Level 2:
readonly attribute DOMString localName;
// Introduced in DOM Level 2:
boolean hasAttributes();
IE

The properties and methods of a Node are described below:

readonly attribute unsigned short nodeType;
Identifies the specific subclass of Node that this object represents. It must be one of the con-
stants listed in the interface, and these correspond to extended interfaces for each type. The
contents of the nodeName, nodeValue, and attribute properties also depend on the node
type, as shown in Table 8-2.

Part Il: The Document Object Model

Table 8-2: Property meanings by node type

Node Type Node Name Node Value Attributes
Attr attribute name attribute value null
CDATASection #cdata-section content of CDATA section null
Comment #comment content of the comment null
Document #document null null
DocumentFragment #document-fragment |[null null
DocumentType document type name | null null
Element tag name null list of attributes
Entity entity name null null
EntityReference name of referenced null null
entity

Notation notation name null null
ProcessingInstruction |target all content excluding the target [null

Text #text content of text node null

readonly attribute DOMString nodeName;
The name for this node. It is either a name specified in the XML document, such as an ele-
ment or attribute name, or is one of a set of predefined literals for nodes that have no real
name, such as text nodes. See Table 8-2 for the meaning based on the node type.

readonly attribute DOMString TocalName;
Introduced in DOM Level 2, this property returns the local part of the qualified name of the
node, i.e., the part after any namespace prefix. For nodes other than ETement and Attr, and
for nodes created with a Level 1 call, it always returns nul1. A null is also returned if no
namespace applies to this node. For example, given the qualified name math:plus, this
attribute returns plus.

attribute DOMString prefix;
Complementary to 1ocalName, this property is also introduced in DOM Level 2 and returns
the prefix part of the qualified name of the node. For nodes other than ETement and Attr, and
for nodes created with a Level 1 call, it always returns null. It also returns null if no
namespace applies to this node. Given the qualified name math:plus, this attribute returns
the math part.

readonly attribute DOMString namespaceURI;
Also arriving in DOM Level 2, this is the full namespace associated with the node, based on
the prefix. As before, for nodes other than Element and Attr, and for nodes created with a
Level 1 call, italways returns nu11. It also returns nul11 if no namespace applies to this node.
For example, given the namespace declaration:
xmins:math="http://www.w3.org/www.w3.org/TR/REC-MathML"

Chapter 8: The Document Object Model (DOM)

and the qualified name math:plus, this attribute returns the value:
http://www.w3.org/www.w3.org/TR/REC-MathML

attribute DOMString nodeValue;
Many nodes such as the text nodes, have an inherent value. Where appropriate, this property
returns that value. For the remainder it returns a nu11 value. See Table 8-2 for the meaning
of this value based on the node type.

readonly attribute NamedNodeMap attributes;
Only the element nodes have attributes, which are available through this property. Entries
are retrieved through a NamedNodeMap that provides access via their names. All other node
types return a null.

NOTE Only attributes that have values defined in the XML document itself are guaranteed
to appear in this list. If the parser loads any external DTD or schema it can also add those
attributes with default or fixed values.

readonly attribute Document ownerDocument;
This is a reference to the Document that created the node. For a Document node itself, or for a
DocumentType node not yet associated with a Document, this returns nul1. Nodes may only
be used with the document that created them.

readonly attribute Node parentNode;
Most nodes have a parent, providing navigation up through the document hierarchy. Docu-
ment, DocumentFragment, and Attr nodes do not have parents. Furthermore, other node
types may not have a parent until they are placed into the document structure.

readonly attribute NodelList childNodes;
Many nodes also have children contained within them. These are accessible through this
property, which returns a NodeList as described below. If there are no children, the list still
exists but has no entries. All NodeList objects have an implied ordering of the nodes they
manage. All the nodes returned through this list are “live.” This means that any changes to
them are made to the real node within the hierarchy. Similarly, adding and removing child
nodes immediately affects the contents of the list.

boolean hasChildNodes();
This function returns True if any children exist for the current node, and False otherwise.
Alternately, you can check for the length of the childNodes list being non-zero.

readonly attribute Node firstChild;
A convenience property for accessing the first child node. It returns null if there are no
children.

readonly attribute Node lastChild;
Similar to firstChild but for the last child node. It also returns nul1 if there are no children.

- 86

Part Il: The Document Object Model

readonly attribute Node previousSibling;

This property returns the node immediately before the current one in the latter’s parent’s list
of children. It returns nulT if there is no previous node in the parent.

readonly attribute Node nextSibling;

Node

Node

Node

Node

Node

void

Same as previousSibling, but it returns the following node in the parent’s list. It returns
null if there is no next node in the parent.

insertBefore(in Node newChild, in Node refChild) raises(DOMException);

Use this method to add a new child node to the current node. The new node is placed imme-
diately before the nominated node in the list, unless the reference parameter is null, in
which case the new node is added at the end. A reference to the new node is returned by the
function. An exception is raised if the new node is not an appropriate child of the current
node, if the new node is an ancestor of the current node, if the new node was created by
another document, if the current node is read-only, or if the reference node is not found.

replaceChild(in Node newChild, in Node 01dChild) raises(DOMException);

Use this method to overwrite a child node. The old node specified is removed and becomes
the return value of the function. The new node is added in its place. An exception is raised if
any of the error conditions for the insertBefore method apply.

removeChild(in Node oldChild) raises(DOMException);

Child nodes are deleted from the list with this method. A reference to the node removed is
returned. If the current node is read-only or if the old node cannot be found, an exception is
raised.

appendChild(in Node newChild) raises(DOMException);

Adds the supplied node to the end of the list of child nodes. If the node is already in the
DOM tree, it is first removed. The return value of the function is a reference to the new node.
Exceptions occur under the same circumstances as for the insertBefore method.

cloneNode(in boolean deep);

This function returns a copy of the current node. Attributes of the node are also copied.
However, child nodes are not duplicated unless the supplied parameter is set to True. In this
case, all descendant nodes are copied. The new node has no parent until it is placed into a
document.

normalize();

Added in DOM Level 2, this method scans the subtree below this node, removes empty Text
nodes, and combines any adjacent Text nodes. CDATAsections are not combined or other-
wise affected. This processing is useful when dealing with XPointers, and similar
operations, that depend on a standardized tree structure. Following the loading of a new doc-
ument, the DOM is already in a normalized state.

boolean isSupported(in DOMString feature, in DOMString version);

Also introduced in DOM Level 2, this method tests for a particular feature of the DOM and
its version. See the DOMImplementation interface for accepted values.

Chapter 8: The Document Object Model (DOM) 87

boolean hasAttributes();
New in DOM Level 2, you use this method to see if the node has any attributes.

Nodelist Interface

A node list provides access to an ordered collection of nodes (see Listing 8-4). It is used for the
children of a node and as the return value from the getElementsByTagName method that retrieves
nodes by name. Nodes returned through the list are “live,” meaning that changes made to them are
made to the actual nodes within the DOM structure. Similarly, adding nodes to or removing nodes
from the list immediately affects the hierarchy.

Listing 8-4: The NodelList interface

interface NodelList {
readonly attribute unsigned long length;
Node item(in unsigned Tong index);

b
The properties and methods of a NodeList are as follows:

readonly attribute unsigned long length;
The number of items in the list.

Node item(in unsigned Tong index);
This method retrieves a particular entry from the list, given its position. If the index is out of
range, a null is returned instead. Numbering starts at zero.

NamedNodeMap Interface

Named node maps (see Listing 8-5) are also collections of nodes, however, they have no inherent
order and are primarily accessible by the names of the contained nodes.

Listing 8-5: The NamedNodeMap interface

interface NamedNodeMap {
readonly attribute unsigned lTong 1length;

Node getNamedItem(in DOMString name);
Node setNamedItem(in Node arg) raises(DOMException);
Node removeNamedItem(in DOMString name)
raises (DOMException);
Node item(in unsigned long index);
// Introduced in DOM Level 2:
Node getNamedItemNS(in DOMString namespaceURI,

in DOMString localName);
// Introduced in DOM Level 2:

Node setNamedItemNS(in Node arg) raises(DOMException);
// Introduced in DOM Level 2:
Node removeNamedItemNS (in DOMString namespaceURI,

in DOMString TocalName) raises(DOMException);

- 88

Part Il: The Document Object Model

A NamedNodeMap’s properties and methods are described below:

readonly attribute unsigned Tong length;

Node

Node

Node

Node

Node

Node

Node

The number of items in the list.

getNamedItem(in DOMString name);
Retrieve a node from the list via its name with this method. If no matching node is found in
the list, a nu11 results.

setNamedItem(in Node arg) raises(DOMException);

This method adds a new node to the list, using its name as the key. If the name matches an
existing node in the list, the new node replaces it and the old node becomes the return value
of the method. Otherwise, the method returns a nul1. An exception is raised if the node was
created by a different document than the list, if the list is read-only, or if the node is an attrib-
ute that already belongs to another element.

removeNamedItem(in DOMString name) raises(DOMException);

Delete a node from the list, based on its name, with this method. Attribute nodes deleted
through this method may automatically reappear if they are known to have a default value. If
the list is read-only or if the named node does not appear in the list, an exception is
generated.

item(in unsigned Tong index);

Although the named node map has no inherent order, this method provides sequential access
to all the held nodes through their index. This does not impose any particular ordering on the
nodes, and merely serves to enumerate all the contained nodes. If the index is out of range,
the function returns a nul1. Numbering starts at zero.

getNamedItemNS(in DOMString namespaceURI, in DOMString TocalName);
Introduced in DOM Level 2, this method functions as does getNamedItem, but allows a fully
qualified name to be used. A nul1 results if no matching node is found.

setNamedItemNS(in Node arg) raises(DOMException);
Also in DOM Level 2, this method adds a new node to the list, using its fully qualified name
as the key. Exceptions occur under the same conditions as for the setNamedItem method.

removeNamedItemNS(in DOMString namespaceURI, in DOMString localName) raises
(DOMException);

New in Level 2, you can delete a node from the list with this method based on its full name.
See the removeNamedItem method for error conditions.

Chapter 8: The Document Object Model (DOM)

Element Interface

Elements are the primary nodes found in XML documents. Based on the Node interface, the Ele-
ment interface (see Listing 8-6) adds better methods for accessing attributes, and other methods
for searching its descendants for certain nodes.

Listing 8-6: The Element interface

interface Element : Node {
readonly attribute DOMString tagName;
DOMString getAttribute(in DOMString name);

void setAttribute(in DOMString name, in DOMString value)
raises (DOMException);

void removeAttribute(in DOMString name)
raises (DOMException);

Attr getAttributeNode(in DOMString name);

Attr setAttributeNode(in Attr newAttr)
raises (DOMException);

Attr removeAttributeNode(in Attr oldAttr)

raises (DOMException);

NodeList getElementsByTagName(in DOMString name);

// Introduced in DOM Level 2:

DOMString getAttributeNS(in DOMString namespaceURI,
in DOMString localName);

// Introduced in DOM Level 2:

void setAttributeNS(in DOMString namespaceURI,
in DOMString qualifiedName, in DOMString value)
raises (DOMException);

// Introduced in DOM Level 2:

void removeAttributeNS(in DOMString namespaceURI,
in DOMString TocalName) raises(DOMException);

// Introduced in DOM Level 2:

Attr getAttributeNodeNS(in DOMString namespaceURI,
in DOMString localName);

// Introduced in DOM Level 2:

Attr setAttributeNodeNS(in Attr newAttr)
raises (DOMException);

// Introduced in DOM Level 2:

NodeList getElementsByTagNameNS (in DOMString namespaceURI,
in DOMString localName);

// Introduced in DOM Level 2:

boolean hasAttribute(in DOMString name);

// Introduced in DOM Level 2:

boolean hasAttributeNS(in DOMString namespaceURI,
in DOMString TocalName);

g

The properties and methods of the Element node are as follows:

readonly attribute DOMString tagName;
Mapping onto the inherited nodeName property, this is merely a convenience.

DOMString getAttribute(in DOMString name);
This method returns the string value of the named attribute, or an empty string if it does not
exist.

90

Part Il: The Document Object Model

void setAttribute(in DOMString name, in DOMString value) raises(DOMException);
The complement of the previous method, this allows you to set the (string) value of the
named attribute. Any existing attribute with that name is overwritten. The value is not
parsed or interpreted in any way. An exception occurs if the name contains an illegal charac-
ter or if the element is read-only.

void removeAttribute(in DOMString name) raises(DOMException);
Delete an attribute from this node, given its name. If the attribute is known to have a default
value (from the DTD or schema), it is immediately added again with that value. If the ele-
ment is read-only, an exception is raised.

DOMString getAttributeNS(in DOMString namespaceURI, in DOMString TocalName);
Introduced in DOM Level 2, this method works just like getAttribute, except that it takes a
namespace URI and a local name to identify the attribute.

void setAttributeNS(in DOMString namespaceURI, in DOMString qualifiedName, in
DOMString value) raises(DOMException);
New in DOM Level 2, this method specifies the attribute through its namespace URI and
local name. Otherwise, it functions just like setAttribute. An exception occurs if the name
contains an illegal character, if the element is read-only, or if the qualified name is mal-
formed. A name is malformed if it has a prefix but no namespace, or if the prefix is xm1 or
xmIns and the namespace is not the corresponding accepted value.

void removeAttributeNS(in DOMString namespaceURI, in DOMString localName)
raises (DOMException);
Also new in DOM Level 2, this method works like removeAttribute, but takes a
namespace URI and a local name to select the attribute. If the element is read-only, an
exception is raised.

Attr getAttributeNode(in DOMString name);
Similar to the getAttribute method, this one allows you to retrieve the entire Attr node
given its name. This is useful when the attribute contains entity references, since these
appear as child nodes of that attribute. A nul1 is returned if the attribute cannot be found.

Attr setAttributeNode(in Attr newAttr) raises(DOMException);
Add a new attribute based on the node passed to this call. This allows for entity references
within an attribute, appearing as children of the attribute node. If an existing attribute is
replaced, a reference to the old attribute is returned. Otherwise, the function returns null.
Exceptions occur if the attribute was created by another document, if the element is
read-only, or if the attribute already belongs to another element.

Attr removeAttributeNode(in Attr oldAttr) raises(DOMException);
Try to match an attribute of the element with the supplied one, and remove it if found,
returning a reference to the deleted node. As before, if the attribute has a default value it
automatically reappears with that value. If the element is read-only or if the supplied attrib-
ute is not found, an exception is raised.

Chapter 8: The Document Object Model (DOM) 91

Attr getAttributeNodeNS(in DOMString namespaceURI, in DOMString localName);
Introduced in DOM Level 2, this method works just like getAttributeNode, except that it
takes a namespace URI and a local name to identify the attribute.

Attr setAttributeNodeNS(in Attr newAttr) raises(DOMException);
New in DOM Level 2, this method uses the attribute’s namespace URI and local name for
identification. Otherwise, it functions just like setAttributeNode, including raising
exceptions.

NodeList getElementsByTagName(in DOMString name);
Given the name of an element, this method walks the descendants of the current node and
compiles a list of matching elements. The order within the list is that of a pre-order traversal
of the subtree (the same order that elements appear within the text document). As with child
nodes, the nodes returned are “live.” Use a name of * to match with all tag names.

NodeList getElementsByTagNameNS(in DOMString namespaceURI, in DOMString
TocalName) ;
Introduced in DOM Level 2, this method works just like getETementsByTagName, except
that it selects elements by their namespace URI and local name.

boolean hasAttribute(in DOMString name);
Introduced in DOM Level 2, this method returns True if the named attribute exists within
this node, due to its value being specified in the XML document or as a default value from
the DTD or schema. Otherwise, it returns False.

boolean hasAttributeNS(in DOMString namespaceURI, in DOMString localName);
New in DOM Level 2, this method uses an attribute’s namespace URI and local name to
determine its presence. Otherwise, it functions just like hasAttribute.

Attr Interface

This interface (shown in Listing 8-7) represents an attribute of an element. The attribute nodes do
not appear within the normal DOM hierarchy, only within the attributes property of an Element
node. For this reason their parentNode, previousSibTing, and nextSib1ing properties all return
null.

Listing 8-7: The Attr interface

interface Attr : Node {
readonly attribute DOMString name;
readonly attribute boolean specified;
attribute DOMString value;
// raises(DOMException) on setting
// Introduced in DOM Level 2:
readonly attribute Element ownerElement;

g

92 Part Il: The Document Object Model

An attribute’s value may come from the XML document directly, where it appears as part of the
element tag. For documents that have DTDs or schemas, the value may also come from a default
or fixed value specified therein. If neither of these situations applies, the attribute does not appear
at all in the DOM.

NOTE Deleting an attribute that has a default value set in the DTD or schema causes that
attribute to be immediately added again with that default value.

Attributes usually have a single Text node child. However, they may also contain a combination
of Text and EntityReference nodes representing their contents.
An Attribute node’s properties are described below:

readonly attribute DOMString name;
The name of the attribute. This is a synonym for the inherited nodeName property.

attribute DOMString value;
The string value of the attribute. This is a synonym for the inherited nodeValue property. It is
the text value of the entire attribute, with any entity references expanded out. Setting this
attribute creates a single Text node beneath the attribute, replacing any earlier children. The
supplied text is not parsed at all, ignoring anything that otherwise is considered markup. An
exception occurs if the node is read-only.

readonly attribute boolean specified;
This property is True if the attribute’s value was explicitly set in the XML document. It is
False if the value derived from a default or fixed value in the DTD or schema. Setting the
value attribute also sets this attribute to True.

readonly attribute ETement ownerElement;
Introduced in DOM Level 2, this property refers back to the Element that owns this node. It
returns null if the attribute is not in use.

CharacterData Interface

The CharacterData interface (see Listing 8-8) extends Node and defines basic functionality for all
nodes that contain text. Nodes of this particular type do not appear within the DOM; subclasses of
this type are used instead. All offsets within the interface start at zero.

Listing 8-8: The CharacterData interface

interface CharacterData : Node {
attribute DOMString data;
// raises(DOMException) on setting
// raises(DOMException) on retrieval
readonly attribute unsigned long length;
DOMString substringData(in unsigned long offset,
in unsigned Tong count) raises(DOMException);
void appendData(in DOMString arg) raises(DOMException);
void insertData(in unsigned long offset,
in DOMString arg) raises(DOMException);
void deleteData(in unsigned long offset,

Chapter 8: The Document Object Model (DOM) 93

in unsigned Tong count) raises(DOMException);
void replaceData(in unsigned Tong offset,

in unsigned long count, in DOMString arg)

raises (DOMException);

}s
The properties and methods of a CharacterData node are as follows:

attribute DOMString data;
The actual content of the node, equivalent to the nodeValue property. An exception occurs if
the value is set when the node is read-only or if the value is read but is too large for a
DOMString. In the latter case, you can use the substringData method to retrieve portions of
the text. Furthermore, being too large is an implementation-specific problem and may not
arise in some processors.

readonly attribute unsigned long length;
The number of characters in the node. This may be zero.

DOMString substringData(in unsigned long offset, in unsigned long count)
raises (DOMException);
Retrieves a range of characters from the node. If the of fset is out of range or if the count is
negative, an exception occurs. Reading a section too large for a DOMString also triggers an
exception.

void appendData(in DOMString arg) raises(DOMException);
Adds new text to the end of the existing value. An exception is raised if the node is
read-only.

void insertData(in unsigned Tong offset, in DOMString arg) raises(DOMException);
Adds new text at the specified position within the existing text. Content after that position is
pushed along. Exceptions occur if the offset is out of range or if the node is read-only.

void deleteData(in unsigned long offset, in unsigned long count)
raises(DOMException);
Remove the nominated characters from the content. Subsequent characters move up to fill
the gap. If the offset is out of range, if the count is negative, or if the node is read-only, an
exception is generated.

void replaceData(in unsigned Tong offset, in unsigned long count, in DOMString arg)
raises (DOMException);
Combines the previous two operations: removes the specified characters, then adds the new
text in its place. The combined error conditions apply.

Text Interface

Derived from CharacterData, this interface (shown in Listing 8-9) represents the actual textual
content of an XML document. These nodes have no children, with their contents available through
the inherited data property. When first loaded, there is only one Text node for each block of text in
the document. Subsequent operations may add other Text nodes. The normalize method of a

94

Part Il: The Document Object Model

parent node serves to combine adjacent Text nodes, as if the document had been saved and
reloaded. This may be necessary for some operations that expect a certain structure.

Listing 8-9: The Text interface

interface Text : CharacterData {
Text splitText(in unsigned long offset)
raises (DOMException);

g
A Text node’s methods are described below:

Text splitText(in unsigned lTong offset) raises(DOMException);
Breaks the current text node into two pieces at the specified offset. The original node retains
all the text up to that point, while the new node, inserted immediately after the original
within its parent, holds the rest. A reference to the new node is returned by the function. If
the offset is out of range or if the node is read-only, an exception occurs.

CDATASection Interface

CDATA sections allow you to place characters that would otherwise have to be escaped into the
document. This interface is part of the extended core specification for the DOM. If you were only
dealing with HTML documents, you would not use the node types in this extension. Since XML is
the focus of this book, they are included here.

This interface (see Listing 8-10) extends Text, but adds nothing new to it. As such, it is simply
a flagging interface, serving to distinguish straight text from these special sections.

Listing 8-10: The CDATASection interface

interface CDATASection : Text {
L

Comment Interface

Like the CDATA section, the Comment interface (see Listing 8-11) is just another flagging inter-
face. It extends CharacterData, but adds nothing new. The text of the comment is available from
the inherited nodeValue attribute.

Listing 8-11: The Comment interface

interface Comment : CharacterData {

J)o

Processinglnstruction Interface

ProcessingInstruction (shown in Listing 8-12) is another of the extended interfaces of the core
DOM. They allow additional commands for specific applications to be passed through the XML
in a generalized manner.

Chapter 8: The Document Object Model (DOM) 95

tay Py

Listing 8-12: The ProcessingInstruction interface

interface ProcessingInstruction : Node {
readonly attribute DOMString target;
attribute DOMString data;
// raises(DOMException) on setting
IE

The properties of a ProcessingInstruction node are as follows:

readonly attribute DOMString target;
This property denotes the audience that will know how to deal with the commands in the rest
of the tag. Often, it identifies a particular program. It consists of all text from the start of the
tag up to the first white space character. The nodeName property holds the same value.

attribute DOMString data;
The remainder of the tag, from the first non-white space character following the target
through to the character immediately before the closing sequence, contains the commands
destined for the target application. This is a synonym for the nodeValue property. No struc-
ture is imposed on the data from XML’s point of view. The target of the command may
expect certain formats, however.

DocumentType Interface

The DTD declaration is encapsulated by the DocumentType interface (see Listing 8-13). This is
another extended code interface, since HTML does not support this functionality. Under DOM
Level 2, DocumentType nodes (and their children) cannot be altered.

Listing 8-13: The DocumentType interface

interface DocumentType : Node {
readonly attribute DOMString name;
readonly attribute NamedNodeMap entities;
readonly attribute NamedNodeMap notations;
// Introduced in DOM Level 2:
readonly attribute DOMString publicld;
// Introduced in DOM Level 2:
readonly attribute DOMString systemld;
// Introduced in DOM Level 2:
readonly attribute DOMString internalSubset;
ha

A DocumentType node’s properties are described below:

readonly attribute DOMString name;
This property contains the name of the document element. The nodeName property holds the
same value.

readonly attribute NamedNodeMap entities;
A list of all the entities declared within the document is available through this property.
Parameter entities are not included, but both internal and external entities are. Duplicate
entity definitions are ignored. As it returns a NamedNodeMap, you can retrieve entities by
name. Each item within the list implements the Entity interface shown below.

96

Part Il: The Document Object Model

readonly attribute NamedNodeMap notations;
Similarly, all notations from the document are available here. Duplicate definitions are
again ignored. As for entities, you can retrieve them by name from the list. The Notation
interface returns further details for each item.

readonly attribute DOMString publicld;
The public (logical) identifier for any external DTD or schema is held in this property. This
is new in DOM Level 2.

readonly attribute DOMString systemld;
This property holds the physical address of the external DTD or schema, usually as a URL.
As for the pubTicld, this property is new to DOM Level 2.

readonly attribute DOMString internalSubset;
The text value of the internal subset of the DTD is returned by this property. It was intro-
duced as part of DOM Level 2.

Entity Interface

The Entity interface (shown in Listing 8-14) models the entities (parsed and unparsed) in a docu-
ment, and is another extended core interface. Child nodes represent the contents of the entity,
which may include sections of markup. This interface holds details about the entities themselves,
but says nothing about the declarations from which they were extracted. Future versions of the
DOM will address this issue.

Listing 8-14: The Entity interface
interface Entity : Node {
readonly attribute DOMString publicld;
readonly attribute DOMString systemld;
readonly attribute DOMString notationName;
b
Entities from an external DTD may not appear in the DOM if the parser does not resolve external
references, which is often the case for non-validating parsers.

Entity definitions are only available through the DocumentType interface, and do not form part
of the normal tree. Thus, Entity objects have no parent node. Furthermore, these nodes and all
their descendants are read-only.

The properties of an Entity node are as follows:

readonly attribute DOMString nodeName;
This inherited attribute holds the entity’s name.

readonly attribute DOMString publicld;
The public (logical) identifier for the entity is held in this property. It is nu11 if no public
identifier is specified.

Chapter 8: The Document Object Model (DOM) 97

readonly attribute DOMString systemld;
This property holds the physical address of the entity, usually as a URL. Again, it is nu11 if
no system identifier is supplied.

readonly attribute DOMString notationName;
The format of an unparsed entity is provided through this property. It must match up with
one of the notations declared in the document. For parsed entities this value is null.

EntityReference Interface

At the points that entities appear within the body of the document you may find EntityReference
nodes (see Listing 8-15), yet another extended core interface. These references may not appear if
the processor expands them during parsing and replaces them with their contents. When they do
appear, they contain copies of the structure beneath the corresponding entity. As for entities, entity
reference nodes and their descendants are read-only.

Listing 8-15: The EntityReference interface

interface EntityReference : Node {

b
The interface itself adds no new functionality, merely serving to identify the original source of the
content. Read the inherited nodeName attribute to retrieve the name of the entity whose contents
are used.

Notation Interface

Another extended core interface, Notation (see Listing 8-16) provides details about formats for
external entities and about processing instruction targets. They are only accessible from the Nota-
tions property of the DocumentType node, and have no parent. Under DOM Level 2 they are
read-only.

Listing 8-16: The Notation interface

interface Notation : Node {

readonly attribute DOMString publicld;
readonly attribute DOMString systemld;
hs

A Notation node’s properties are described below:

readonly attribute DOMString nodeName;
This inherited attribute holds the notation’s name.

readonly attribute DOMString publicld;
The public (logical) identifier for the notation is held in this property. It returns nul1 if no
public identifier is specified.

98

Part Il: The Document Object Model

readonly attribute DOMString systemld;
This property holds the physical address of the notation, usually as a URL. It may refer to a
specification for that format, or it may be a reference to a program that can manipulate the
format. Again, a null is returned if no system identifier is supplied.

DocumentFragment Interface

A document fragment (shown in Listing 8-17) serves to hold and manage a subtree of nodes
before adding them to a document. When placed into the document hierarchy, the Document-
Fragment node itself is not added. All of its child nodes are instead placed where the fragment
would have gone. These nodes never appear within a DOM document structure.

Listing 8-17: The DocumentFragment interface

interface DocumentFragment : Node {

b
Its interface simply serves as a marker to identify its purpose. All of its abilities are inherited from
the basic Node.

Document Interface

Bringing all the other nodes together is the Document interface (see Listing 8-18). As well as serv-
ing as the manager and container for each document, it provides numerous factory methods to
create the different types of nodes. Nodes should only be generated in this manner, since it guaran-
tees that the document and its child nodes work together properly. All newly instantiated nodes are
not part of the document and have no parent until they are explicitly added to another node.

Listing 8-18: The Document interface

interface Document : Node {

readonly attribute DocumentType doctype;

readonly attribute DOMImplementation implementation;

readonly attribute Element documentElement;

Element createElement (in DOMString tagName)
raises (DOMException);

DocumentFragment createDocumentFragment () ;

Text createTextNode(in DOMString data);

Comment createComment (in DOMString data);

CDATASection createCDATASection(in DOMString data)

raises (DOMException);
ProcessingInstruction createProcessingInstruction(

in DOMString target,

in DOMString data)

raises (DOMException);

Attr createAttribute(in DOMString name)
raises (DOMException);

EntityReference createEntityReference(in DOMString name)
raises (DOMException);

NodeList getElementsByTagName (

in DOMString tagname);

Chapter 8: The Document Object Model (DOM) 99

// Introduced in DOM Level 2:
Node importNode(in Node importedNode,
in boolean deep) raises(DOMException);
// Introduced in DOM Level 2:
Element createETementNS (
in DOMString namespaceURI,
in DOMString qualifiedName)

raises (DOMException);
// Introduced in DOM Level 2:
Attr createAttributeNsS(

in DOMString namespaceURI,
in DOMString qualifiedName)

raises (DOMException);
// Introduced in DOM Level 2:
NodeList getElementsByTagNameNS (

in DOMString namespaceURI,
in DOMString TocalName);
// Introduced in DOM Level 2:
Element getElementById(in DOMString elementId);
13

The properties and methods of a Document node are as follows:

readonly attribute DOMImplementation implementation;
A pointer to the DOMImpTementation that supports this document. See below for further
details about this interface.

readonly attribute DocumentType doctype;
A reference to the DocumentType node for this document, or nul1 if there is none. The docu-
ment type declaration cannot be changed in any way under DOM Level 2.

readonly attribute Element documentElement;
As a convenience, this property points to the single top-level element of the document. This
element could also be found by stepping through the child nodes of the document.

Element createElement(in DOMString tagName) raises(DOMException);
A factory method for generating E1ement nodes for use within this document. Nodes cannot
be used in documents other than the one in which they were created. Specify the tag name of
the element when calling it. An exception occurs if the supplied name contains illegal
characters.

DocumentFragment createDocumentFragment();
Produce new DocumentFragment nodes with this method.
Text createTextNode(in DOMString data);
Instantiate new Text nodes for this document. Pass the contents of the node as a parameter.
Comment createComment(in DOMString data);
Generate new Comment nodes. The text of the comment is passed in.
CDATASection createCDATASection(in DOMString data) raises(DOMException);
Produce new CDATASection nodes. Text for the CDATA section is provided, and may con-

tain characters that would normally need to be escaped. An exception is generated if this
method is used within an HTML DOM.

100

Part Il: The Document Object Model

ProcessingInstruction createProcessingInstruction(in DOMString target, 1in
DOMString data) raises(DOMException);
Instantiate a new ProcessingInstruction node. Specify the target application and the
command line as you create it. Calling this within an HTML DOM raises an exception, as
does supplying a target value with an illegal character.

Attr createAttribute(in DOMString name) raises(DOMException);
Generate a new Attribute node to add to an element. Although the name of the attribute
may be passed in, you still need to set its value. An exception occurs if the attribute name
contains an illegal character.

EntityReference createEntityReference(in DOMString name) raises(DOMException);
Produce a new EntityReference node to mark the position of an Entity within the docu-
ment. Specify the name of the entity to refer to. Exceptions are raised if the name has an
illegal character or if it is called within an HTML DOM.

NOTE Since the DocumentType node for a document cannot be altered, including the objects
it manages, there are no methods to create Entity and Notation nodes. These must come
from a DTD as it is loaded.

NodeList getElementsByTagName(in DOMString tagname);
Retrieve a list of Element nodes that have the specified name from the document. The
entries appear in the order in which they are encountered during a pre-order traversal of the
tree. Note that the nodes in the list are “live,” meaning that any changes made to them affect
the actual nodes within the hierarchy. Use a name of * to obtain all elements.

Node importNode(in Node importedNode, in boolean deep) raises(DOMException);
Return a copy of a node from another document. Recursively include all of'its child nodes if
the deep parameter is set to True. The new node has its parentNode set to null until it is
placed in the new document. Some special cases apply to various node types as listed below:

Document and DocumentType nodes cannot be imported.

Element nodes copy only their specified attributes, although they may acquire new
default ones based on the new DTD. The attributes are copied regardless of the deep value.

Attribute nodes always copy their descendants regardless of the deep setting, and their
specified flag is set to True.

Entity and Notation nodes can be imported, but they cannot currently be added to the
document’s DocumentType node.

EntityReference nodes never copy their descendants, although they do acquire the
descendants of the same named entity in the new document.

Element createElementNS(in DOMString namespaceURI, in DOMString qualifiedName)
raises (DOMException);
Generate a new Element node with the specified namespace URI and qualified name. This
method was added in DOM Level 2. An exception arises if the qualified name contains an
illegal character or if it is malformed (it has a prefix but no namespace is supplied or the pre-
fix is xm1 or xm1ns without the namespace being the correct corresponding value).

Chapter 8: The Document Object Model (DOM) 101

Attr createAttributeNS(in DOMString namespaceURI, in DOMString qualifiedName)
raises (DOMException);
Produce a new Attribute node with the given namespace URI and qualified name. This
method was added in DOM Level 2. If the qualified name has an illegal character or is mal-
formed, an exception occurs.

NodeList getElementsByTagNameNS(in DOMString namespaceURI, in DOMString
TocalName);
This functions the same as the getETementsByTagName method, but takes a namespace URI
and a local name as parameters. Either part can be * to match with all values. It was added as
part of DOM Level 2.

Element getElementById(in DOMString elementlId);
New in DOM Level 2, this method returns the single E1ement node with the specified ID
value, or nul1 if none can be found. For this method to function, the document must have
information that defines which attributes contain ID type values (an attached DTD or
schema). If that information is not available, the function returns nul1.

DOMImplementation Interface

Finally, the DOMImplementation interface (shown in Listing 8-19) defines functionality that exists
outside the scope of any one document.

Listing 8-19: The DOMImplementation interface

interface DOMImplementation {

boolean hasFeature(in DOMString feature,
in DOMString version);

// Introduced in DOM Level 2:

DocumentType createDocumentType(in DOMString qualifiedName,
in DOMString publicId, in DOMString systemId)
raises (DOMException);

// Introduced in DOM Level 2:

Document createDocument (in DOMString namespaceURI,
in DOMString qualifiedName,
in DocumentType doctype) raises(DOMException);

s
A DOMImplementation’s methods are described below:

boolean hasFeature(in DOMString feature, in DOMString version);
To allow for extension to the DOM in a robust way, this function tests whether a particular
feature is supported and at what level. The basic core functionality is always available in any
DOM. For the extended core capabilities, you use the feature name XML. Use HTML for the
additional HTML node types defined in the DOM (but not covered here). Versions may be
tested for explicitly, in which case DOM Level 1 corresponds to version 1.0 and Level 2 is
2.0. If no version is specified, then any supported version returns True.

102

Part Il: The Document Object Model

DocumentType createDocumentType(in DOMString qualifiedName, in DOMString publicld,

in DOMString systemId) raises(DOMException);

Generate an empty DocumentType node with the specified values. Under DOM Level 2 this
node is read-only, so entities and notations cannot be added to it (which makes it fairly use-
less). Future versions of the DOM will probably allow for modification of the DTD. This
method was added as part of DOM Level 2. If the qualified name has an illegal character or
is malformed, an exception occurs.

Document createDocument (in DOMString namespaceURI, in DOMString qualifiedName, in

DocumentType doctype) raises(DOMException);

Produce a new Document object to work with. Set the document element and document type
with the supplied values. Prior to DOM Level 2, when this method was added, the manner in
which a document was initially obtained was not specified. It was left to the implementa-
tions to provide an appropriate mechanism. Exceptions arise if the names contain an illegal
character, if the qualified name is malformed, or if the document type node is already in use
or was created by another implementation.

NodeFilter Interface

In addition to the enhancements to the DOM Core, DOM Level 2 added specifications for navigat-
ing the model, or a selection of nodes from it. These extra abilities are described below and form
the Traversal section of DOM Level 2. The NodeFi1ter interface (see in Listing 8-20) defines a
way to decide whether or not a node is chosen. Objects that implement this interface are used
within the NodeIterator and TreeWalker interfaces below to modify the set of nodes extracted
from the DOM.

Listing 8-20: The NodeFilter interface

// Introduced in DOM Level 2:
interface NodeFilter {
// Constants returned by acceptNode

const short FILTER ACCEPT = 1;
const short FILTER REJECT = 2;
const short FILTER SKIP = 3;

// Constants for whatToShow

const unsigned Tong SHOW_ALL = OxFFFFFFFF;
const unsigned Tong SHOW_ELEMENT = 0x00000001;
const unsigned Tong SHOW_ATTRIBUTE = 0x00000002;
const unsigned Tong SHOW_TEXT = 0x00000004;
const unsigned Tong SHOW_CDATA SECTION = 0x00000008;
const unsigned Tong SHOW_ENTITY REFERENCE = 0x00000010;
const unsigned Tong SHOW_ENTITY = 0x00000020;
const unsigned Tong SHOW_PROCESSING_INSTRUCTION = 0x00000040;
const unsigned Tong SHOW_COMMENT = 0x00000080;
const unsigned Tong SHOW DOCUMENT = 0x00000100;
const unsigned Tong SHOW_DOCUMENT TYPE = 0x00000200;
const unsigned Tong SHOW_DOCUMENT_FRAGMENT = 0x00000400;
const unsigned Tong SHOW_NOTATION = 0x00000800;

short acceptNode(in Node n);

Chapter 8: The Document Object Model (DOM) 103

The methods of a NodeFilter are as follows:

short acceptNode(in Node n);

Given a node, this method returns a flag indicating what its fate is to be. The returned value
is one of the FILTER * constants, which have the following meanings. FILTER_ACCEPT adds
the node to the list being compiled, with processing continuing with its descendants (in the
case of a TreeWalker). FILTER REJECT discards the node from the list (including all of its
descendants for TreeWalker). FILTER SKIP does not add the current node to the list, but
does process any descendants to see whether they qualify. Within the implementation of this
method, any possible test can be applied to the node.

The SHOW_* constants combine to allow for simple filtering when selecting nodes. Values are
added or OR’d together before being passed in as the what ToShow parameter during the creation of
an iterator or walker in the DocumentTraversal interface below. The intent of each constant is
obvious from its name. However, attribute, entity, and notation nodes only appear when they are at
the root of the tree being searched, since they are not part of the normal DOM tree structure.

Nodelterator Interface

The NodelIterator interface, introduced in DOM Level 2 Traversal and shown in Listing 8-21,
provides access to a collection of nodes selected from the DOM. Nodes are retrieved in a sequen-
tial manner from the iterator, without regard to their original positions within the hierarchy (other
than their order which reflects a pre-order walk through the tree).

Listing 8-21: The NodeIterator interface

// Introduced in DOM Level 2:

interface Nodelterator {
readonly attribute Node root;
readonly attribute unsigned long whatToShow;
readonly attribute NodeFilter filter;

readonly attribute boolean expandEntityReferences;
Node nextNode() raises(DOMException);

Node previousNode() raises(DOMException);

void detach();

IE
The list of nodes accessible through an iterator is “live.” Thus, the methods must take into account

the current state of the specified subtree and respond accordingly as nodes are added or deleted.
The NodeIterator’s properties and methods are described below:

readonly attribute Node root;
The node at the base of the subtree from which the nodes in the list are selected. This is set
when the iterator is created and cannot be changed thereafter.

104 Part II: The Document Object Model

readonly attribute unsigned long whatToShow;
For an initial filter you can specify which types of nodes to select. Use the constants from the
NodeFilter interface and add or OR them together. These values take precedence over any
filter that may be supplied. As for root, this set of nodes is specified when the iterator is cre-
ated and is then read-only.

readonly attribute NodeFilter filter;
For more complex selections you supply an instance of the NodeFi1ter interface that per-
forms whatever testing on individual nodes is required. Once more, the filter is established
on creation and cannot be altered.

readonly attribute boolean expandEntityReferences;
This flag determines whether or not child nodes of any entity references within the subtree
are provided to the iterator. When set to False, the content of these reference nodes is
skipped. To hide the entity reference nodes themselves but retain all their descendants, set
this flag to True and use the whatToShow property to exclude entity reference nodes.

Node nextNode() raises(DOMException);
Retrieve the next node in the list with this method, and move the position pointer forward.
After the iterator is initially created, this call returns the first node in the list. At the end of
the list, the return value is nul1. An exception occurs if the iterator has been detached.

Node previousNode() raises(DOMException);
Return the previous node in the list with this method, and move the current pointer back-
ward. Stepping back from the beginning of the list returns a value of nu11. Calling this on a
detached iterator generates an exception.

void detach();
Once the iterator has been used, its resources can be released with this call. Having per-
formed this step, further calls to nextNode or previousNode result in an invalid state
exception being raised.

TreeWalker Interface

The TreeWalker interface, part of DOM Level 2 Traversal and shown in Listing 8-22, also pro-
vides a view onto the nodes in the DOM. It differs from the NodeIterator in that it retains any
applicable tree structure. From any particular node (the current node), you can navigate through
the hierarchy extracted by the walker. Note that the returned tree may be substantially different
from the original DOM. This depends on what selection criteria were applied, which nodes were
found, and their relationships to each other.

Listing 8-22: The TreeWalker interface

// Introduced in DOM Level 2:
interface TreeWalker

readonly attribute Node root;
readonly attribute unsigned long whatToShow;
readonly attribute NodeFilter filter;

readonly attribute boolean expandEntityReferences;

Chapter 8: The Document Object Model (DOM) 1 05

attribute Node currentNode;
// raises(DOMException) on setting

Node parentNode() ;

Node firstChild();

Node lastChild();

Node previousSibling();

Node nextSibling();

Node previousNode();

Node nextNode() ;

b
Again, the tree walker acts upon a “live” subtree in the document. As nodes are inserted or
removed, the walker always takes this into consideration when navigating through its selected
nodes. Although the current node may be deleted or set outside the filtered set, the result of a
movement always returns a node from the filtered set, or null if no such movement could be
made.

The properties and methods of a TreeWalker are as follows:

readonly attribute Node root;
readonly attribute unsigned long whatToShow;
readonly attribute NodeFilter filter;
readonly attribute boolean expandEntityReferences;
The above properties all function the same as for the NodeIterator interface.

attribute Node currentNode;
Retrieve the current position within the walker structure with this property. You can also set
the node to be used for future navigation through this property. Note that the node specified
need not be one of those selected by the walker. In fact, it need not even be in the subtree
based at root.

Node parentNode();
Move to the closest ancestor within the selected nodes. If this steps up past the root node,
then it returns nul1. Make the returned node the current one.

Node firstChild();
Return the first selected child of the current node, or nu11 if there are no children. The child
node becomes the current node for future calls.

Node lastChild();
Same as for firstChild, but returns the last selected child and moves the current node
pointer here.

Node previousSibling();
Retrieve the preceding sibling of the current node, and return it. If there is no previous sib-
ling, return nul1. Move the current pointer here.

Node nextSibling();
Same as for previousSib1ing, but returns the following sibling, if there is one.

106

Part Il: The Document Object Model

Node previousNode();
Move to the preceding selected node in document (pre-order) order. Returns nul1 if there is
no previous node. As always, move the current node to the new node.

Node nextNode();
Same as for previousNode, but returns the following node.

DocumentTraversal Interface

To allow you to use the navigation aids defined in DOM Level 2 Traversal, the Document-
Traversal interface (see Listing 8-23) specifies how they are created. In each case, you define the
selection criteria and the root node to operate from. These values are saved within the resulting
object, but cannot be altered there. The construction of NodeFi1ter objects is left to the user, since
these are very specific to the application’s requirements.

Listing 8-23: The DocumentTraversal interface

// Introduced in DOM Level 2:
interface DocumentTraversal {
NodeIterator createNodeIterator{in Node root,
in unsigned long whatToShow,
in NodeFilter filter,
in boolean entityReferenceExpansion)
raises (DOMException);
TreeWalker createTreeWalker(in Node root,
in unsigned long whatToShow,
in NodeFilter filter,
in boolean entityReferenceExpansion)
raises (DOMException);
b3
The ability of a DOM implementation to support these navigation objects is available through its
hasFeature method. If the Traversal feature returns True from this method, you can expect all
these abilities to be present.

A DocumentTraversal’s methods are described below:

NodeIterator createNodeIterator(in Node root, in unsigned long whatToShow, in Node-
Filter filter, in boolean entityReferenceExpansion) raises(DOMException);
Given the node from which to start, the node type selection criteria, an optional filter, and
the entity reference flag, create an instance of a NodeIterator and return a reference to it.
An exception is raised if the root node is nu11.

TreeWalker createTreeWalker(in Node root, in unsigned long whatToShow, in Node-
Filter filter, in boolean entityReferenceExpansion) raises(DOMException);
Generate an instance of a TreeWalker, given the node from which to start, the node type
selection criteria, an optional filter, and the entity reference flag, and return a reference to
it. If the root node is nul11, an exception occurs.

Chapter 8: The Document Object Model (DOM) |

107

Summary

The DOM specification defines a standard way of accessing and manipulating structured docu-
ments (particularly XML documents).

The Core specification identifies the functionality necessary for basic document operations, and
provides extended coverage for various XML-specific constructs. The HTML specification builds
on the core to lay out interfaces for working with HTML documents and their specific node types.

DOM Level 2 has added additional functionality in the form of namespace support and docu-
ment creation. An extension feature, document traversal, provides ways of selecting a subset of
the nodes within a DOM and navigating through them. Other extensions are defined, but these do
not yet exist in available DOM implementations and so have not been covered.

In the following chapters you’ll see how various parties implement the DOM in ways that can
be utilized from Delphi. First, we discuss Microsoft’s DOM and parser from their MSXML3.dll
package. Then follow two packages that provide Delphi native components for the DOM: a com-
mercial suite from CUESoft and an open source version from Open XML.

108

Chapter 9

Microsoft’s Document
Object Model

Microsoft has implemented the DOM specification under Windows in its XML parser package.
Originally this was available as msxml.dll, which came with the latest version of Internet
Explorer, or could be obtained from the Microsoft Web site. In October 2000, Microsoft released a
new version (v3) of its XML DOM package. Three DLLs now make up the package: msxml3.dll,
msxml3a.dll, and msxml3r.dll. As well as enhancements to the original DOM implementation, the
latest version includes a SAX2-compliant parser and definitions for the associated handlers.

You can obtain the latest XML package from the Microsoft Web site at http://msdn.microsoft.
com/xml. Version 3 of the MSXML package is installed alongside any existing MSXML package
and both can coexist on your system. Existing applications that use the package continue to use the
original version, but you can ask for an instance of the newer version in your programs.

Microsoft also provides a utility, xmlinst.exe, that lets you run the newer version in replace
mode. When invoked, this tool modifies entries in the registry to redirect calls for the original ver-
sion to the newer version. Be warned, however, that this may adversely affect some applications
using the older version. Fortunately, the tool also lets you uninstall version 3 as a replacement.
This utility is available from the Microsoft Web site as well.

NOTE The use of MSXML version 3 is assumed throughout the rest of the book. This version
is the one incorporated into all the demonstration projects.

NOTE The Microsoft DOM implementation does not support all of the abilities described in
the DOM Level 2 discussion in the previous chapter. It does support namespace usage, but
not the Traversal extension.

Microsoft’s DOM is implemented as a series of COM objects. To gain access to the DOM in
Delphi, you need to import the type library for it.

1. Choose the Project | Import Type Library menu options.

2. Select Microsoft XML, v3.0 (Version 3.0) from the list of available objects at the top. Note
that there may be multiple versions of the XML package registered. If it does not appear in
the list, press the Add button and locate the appropriate DLL.

s,

Chapter 9: Microsoft’'s Document Object Model B

Check the Unit dir name field to see where the wrapper appears.

4. Press the Create Unit button to generate the type library in that directory. It is called
MSXML2 tlb.pas. This is the unit that you include in your uses clause to access the
package.

Looking through the Pascal version of the type library, you see interfaces declared that correspond
with those defined by the DOM specification. In each case the string IXMLDOM prefixes the original
name. See Figure 9-1 for the hierarchy of interfaces defined by Microsoft.

Figure 9-1: The Microsoft DOM hierarchy.
—| IXMLDOMImplementation |

—| IXMLDOMNamedNodeMap |

—{ povooMNode]

_| IXMLDOM Attribute |

| IXMLDOMCharacterData |
—| IXMLDOMComment [

IXMLDOMText
IXMLDOMCDATAScction |

—| IXMLDOMDocument l
—{ IXMLDOMDocumen2 |
_| IXMLDOMDocumentFragment I

_| IXMLDOMDocumentType |
IXMLDOMElement |

| IXMLDOMEntity

_| IXMLDOMEntityReference |
_| IXMLDOMNotation |

—| IXMLDOM Processinglnstruction l
— IXMLDOMNodeList |
IXMLDOMSelection [

—i IXMLDOMParseError I

_| IXMLDOMSchemaCollection l

| IXSLProcessor |
IXSLTemplate

110

Part Il: The Document Object Model

NOTE Within Microsoft’'s DOM, all string values from the XML document are WideString
types. These are dynamically allocated strings of 16-bit Unicode characters. Since XML is
defined to work with Unicode, this is expected. The Delphi online Help notes that this format is
less efficient than the more usual AnsiString because it does not use reference counting and
copy-on-write semantics.

IXMLDOMParseError Interface

The IXMLDOMParseError interface (as shown in Listing 9-1) is used to report errors during the
loading and parsing of a document into the DOM structures. It is thus outside the coverage of the
DOM specification.

Listing 9-1: The IXMLDOMParseError interface

// //
// Interface: IXMLDOMParseError

// Flags: (4544) Dual NonExtensible OleAutomation Dispatchable

// GUID: {3EFAA426-272F-11D2-836F-0000F87A7782}

// //

IXMLDOMParseError = interface(IDispatch)
['{3EFAA426-272F-11D2-836F-0000F87A7782} ']
function Get_errorCode: Integer; safecall;
function Get url: WideString; safecall;
function Get_reason: WideString; safecall;
function Get_srcText: WideString; safecall;
function Get line: Integer; safecall;
function Get linepos: Integer; safecall;
function Get_filepos: Integer; safecall;
property errorCode: Integer read Get errorCode;
property url: WideString read Get url;
property reason: WideString read Get_reason;
property srcText: WideString read Get srcText;
property line: Integer read Get line;
property linepos: Integer read Get Tinepos;
property filepos: Integer read Get_ filepos;

end;

When an error occurs during the parse process, it returns a False flag from that method call. You
can then examine the document’s parseError property, which returns an object of this type, to
determine the cause of the problem.

An IXMLDOMParseError’s properties are described below. All are read-only.

property errorCode: Integer read Get errorCode;
This property returns a value indicating the type of error encountered.

property reason: WideString read Get reason;
A text explanation of the error is returned by this property. This is of much more use to the
user than the errorCode above. Validation errors include in their description the URL of the
schema and the node within it that caused the error.

property line: Integer read Get line;

The line number (starting from one) in the XML document where the error was detected is
available through this property.

Chapter 9: Microsoft’s Document Object Model 1 11

property linepos: Integer read Get_Tinepos;
Complementing the 1ine property, this one provides the column number within that line
(again starting from one) where the error was found.

property filepos: Integer read Get filepos;
The location of the error as the character position from the start of the file is returned by this
property. Do not forget to take into account the carriage return and line feed characters at the
ends of the lines in locating this position.

property srcText: WideString read Get srcText;
This property tries to identify the offending section of text by returning the full line where
the error is detected. If the error is due to a violation of the well-formedness constraint and
cannot be assigned to a particular line, then an empty string is returned.

property url: WideString read Get url;
The document that produced the error is available through this property.

Other errors that occur during manipulations of the DOM structure appear as an EOTeException.
These correspond to the error conditions noted in the DOM specification. Although
EOTeException has an ErrorCode property, this does not match up with the error codes from the
spec.

IXMLDOMNOode Interface

The fundamental building block of the DOM is represented by the Node interface. In Microsoft’s
version this appears as the IXMLDOMNode interface as shown in Listing 9-2. It provides the basic
properties of each node in the structure that is the DOM. Various subclasses extend this base, add-
ing functionality specific to their purpose.

Listing 9-2: The IXMLDOMNode interface

// //
// Interface: IXMLDOMNode

// Flags: (4544) Dual NonExtensible OleAutomation Dispatchable

// GUID: {2933BF80-7B36-11D2-B20E-00C04F983E60}

// //

IXMLDOMNode = interface(IDispatch)
['{2933BF80-7B36-11D2-B20E-00C04F983E60} ']
function Get_nodeName: WideString; safecall;
function Get nodeValue: OleVariant; safecall;
procedure Set nodeValue(value: OleVariant); safecall;
function Get_nodeType: DOMNodeType; safecall;
function Get_parentNode: IXMLDOMNode; safecall;
function Get childNodes: IXMLDOMNodelist; safecall;
function Get firstChild: IXMLDOMNode; safecall;
function Get_lastChild: IXMLDOMNode; safecall;
function Get previousSibling: IXMLDOMNode; safecall;
function Get nextSibling: IXMLDOMNode; safecall;
function Get attributes: IXMLDOMNamedNodeMap; safecall;
function insertBefore(const newChild: IXMLDOMNode;
refChild: OleVariant): IXMLDOMNode; safecall;
function replaceChild(const newChild: IXMLDOMNode;

112 Part Il: The Document Object Model

const 01dChild: IXMLDOMNode): IXMLDOMNode; safecall;

function removeChild(const childNode: IXMLDOMNode): IXMLDOMNode;
safecall;

function appendChild(const newChild: IXMLDOMNode): IXMLDOMNode;
safecall;

function hasChildNodes: WordBool; safecall;

function Get_ownerDocument: IXMLDOMDocument; safecall;

function cloneNode(deep: WordBool): IXMLDOMNode; safecall;

function Get nodeTypeString: WideString; safecall;

function Get text: WideString; safecall;

procedure Set_text(const text: WideString); safecall;

function Get_specified: WordBool; safecall;

function Get definition: IXMLDOMNode; safecall;

function Get nodeTypedValue: OleVariant; safecall;

procedure Set nodeTypedValue(typedValue: OleVariant); safecall;

function Get dataType: OleVariant; safecall;

procedure Set dataType(const dataTypeName: WideString); safecall;

function Get_xml: WideString; safecall;

function transformNode(const stylesheet: IXMLDOMNode): WideString;
safecall;

function selectNodes(const queryString: WideString): IXMLDOMNodelist;
safecall;

function selectSingleNode(const queryString: WideString):
IXMLDOMNode; safecall;

function Get parsed: WordBool; safecall;

function Get namespaceURI: WideString; safecall;

function Get prefix: WideString; safecall;

function Get baseName: WideString; safecall;

procedure transformNodeToObject(const stylesheet: IXMLDOMNode;
outputObject: OleVariant); safecall;

property nodeName: WideString read Get nodeName;

property nodeValue: OleVariant read Get nodeValue
write Set nodeValue;

property nodeType: DOMNodeType read Get nodeType;

property parentNode: IXMLDOMNode read Get parentNode;

property childNodes: IXMLDOMNodelist read Get_childNodes;

property firstChild: IXMLDOMNode read Get firstChild;

property lastChild: IXMLDOMNode read Get lastChild;

property previousSibling: IXMLDOMNode read Get previousSibling;

property nextSibling: IXMLDOMNode read Get nextSibling;

property attributes: IXMLDOMNamedNodeMap read Get attributes;

property ownerDocument: IXMLDOMDocument read Get ownerDocument;

property nodeTypeString: WideString read Get_nodeTypeString;

property text: WideString read Get text write Set text;

property specified: WordBool read Get specified;

property definition: IXMLDOMNode read Get definition;

property nodeTypedValue: OleVariant read Get_nodeTypedValue
write Set nodeTypedValue;

property xml: WideString read Get xml;

property parsed: WordBool read Get parsed;

property namespaceURI: WideString read Get namespaceURI;

property prefix: WideString read Get prefix;

property baseName: WideString read Get baseName;

end;

You do not find IXMLDOMNode objects themselves in the hierarchy, just a descendant. However, this
interface allows you to treat them all in a standard manner while obtaining basic information about
them. Although this interface provides properties and methods for working with child nodes, not

Chapter 9: Microsoft's Document Object Model 113

all node types within the DOM may have children. Similarly, the attributes property of a node
only applies to elements, entities, and notations.

The properties and methods of an IXMLDOMNode are shown below. Most of these follow the
DOM specification, with any differences highlighted.

property nodeType: DOMNodeType read Get nodeType;
This property identifies what kind of node you are dealing with. It contains one of the values
shown in Listing 9-3. Set during construction of the node, this property cannot be changed at
a later stage. Checking this property allows you to safely cast the node into its correct sub-
class, thus gaining access to its particular abilities. The applicability of certain other
properties and methods also depends on this value. For example, the nodeValue property
does not apply to documents, elements, entities, and notations.

Listing 9-3: Node types in Microsoft's DOM

const

NODE_INVALID = $00000000;
NODE_ELEMENT = $00000001;
NODE_ATTRIBUTE = $00000002;
NODE_TEXT = $00000003;
NODE_CDATA_SECTION = $00000004;
NODE_ENTITY_REFERENCE = $00000005;
NODE_ENTITY = $00000006;
NODE_PROCESSING_INSTRUCTION = $00000007;
NODE_COMMENT = $00000008;
NODE_DOCUMENT = $00000009;
NODE_DOCUMENT_TYPE = $0000000A;
NODE_DOCUMENT_FRAGMENT = $0000000B;
NODE_NOTATION = $0000000C;

property nodeTypeString: WideString read Get nodeTypeString;
This property contains the node type as a string value—the name of the node subclass with-
out the leading IXMLDOM, all in lowercase. Again, this value is set during instantiation of the
node and cannot be changed. This is an extension to the original DOM specification.

property nodeName: WideString read Get _nodeName;
Return the name of the node with this read-only property. It always returns some value,
never an empty string. For nodes that do not have a real name in the document, certain stan-
dard names are used. For example, the node for the document as a whole is named
#document, comments are labeled #comment, text nodes are named #text, and CDATA sec-
tions are labeled #cdata-section.

Element, attribute, entity, and notation nodes each return the qualified name (including
any namespace prefix) of their respective entries. Entity reference nodes supply the name of
the entity to which they refer, excluding the leading ampersand (&) and trailing semicolon
(';). Processing instruction nodes return the target of the instruction, while document type
nodes supply the name of the top-level element in the document.

property namespaceURI: WideString read Get namespaceURI;
Find the full URI that identifies the namespace for this node through this read-only property.
For example, given the namespace declaration xmIns:math="http://www.w3.org/TR/

114

Part Il: The Document Object Model

REC-MathML" and the qualified name math:plus, this property returns http://www.w3.org/
TR/REC-MathML.

property prefix: WideString read Get prefix;
This read-only property returns the shorthand identifier for the namespace as specified in
the name of this node (up to the colon). An empty string is supplied if no prefix applies to the
current name.

property baseName: WideString read Get baseName;
The local name of the element is available through this read-only property (after any colon
in the name). It always returns a non-empty string.

NOTE The baseName property is named differently in the DOM specification, which defines it
as localName.

property nodeValue: OleVariant read Get nodeValue write Set nodeValue;

Some nodes also have a value associated with them, held in this property. Text,
CDATASection, and Comment nodes store their contents here, while Processinglnstruction
nodes use it for the instruction data. For Attr nodes, it contains a string corresponding to the
full value of the attribute, including expanding out any entity references held therein. Set-
ting this property on an attribute causes any children it has to be deleted and be replaced by a
single text node with this value. The remaining node types, for which it has no meaning,
return nil.

property text: WideString read Get text write Set text;

This property contains the entire textual contents of this node and all of'its children, concate-
nated together. In other words, it includes the content of all the Text and CDATASection
nodes, including expanded entity references, that are descendants of this node strung
together. White space from text nodes is normalized before concatenation—converting all
white space characters to spaces, compressing multiple spaces down to one, and removing
leading and trailing spaces—unless overridden with the xml:space attribute and
preserveWhiteSpace switch on the parser. CDATA sections always retain their original
spacing.

For Text, CDATASection, Comment, and ProcessingInstruction nodes themselves, this
property holds the text content, just like the nodeValue property. Entity reference nodes
return the content of the entity referred to. An empty string is returned from DocumentType,
UnparsedEntity, and Notation nodes.

Setting the text property causes all child nodes to be removed and be replaced by a sin-
gle text node with the supplied value.

property xml: WideString read Get xml;
This read-only property retrieves the node and all its sub-nodes as formatted XML. It
always returns a Unicode string, regardless of the original encoding of the document. Use
the save method to retain the original encoding. Typically, this property is used as the final
step in generating a document using the DOM.

Chapter 9: Microsoft’'s Document Object Model <

"‘_1_15

Document fragment nodes do not include themselves in the XML returned by this prop-
erty, only their descendants. For DocumentType nodes, you get the <!DOCTYPE...>
declaration, including any internal subset that is specified. EntityReference nodes return the

reference itself, rather than the contents of any children that they may have.

NOTE The text and xml properties of the Microsoft DOM have no counterpart in the official
DOM specification. However, they are quite useful in the real world of XML processing, espe-
cially in generating XML documents or fragments on the fly. See Chapter 19 for further details
on creating documents with the DOM.

The properties dataType, nodeTypedValue, and definition are also extensions to the offi-
cial DOM specification.

function Get dataType: OleVariant; safecall;
procedure Set dataType(const dataTypeName: WideString); safecall;

These methods together represent the type of this node, as declared in the schema for this
document. The function returns the value from that schema for attribute, element, and entity
reference nodes, or ni1 if it is not available. For all other nodes it has the value string. Only
element and attribute nodes may have this value set. All other nodes ignore the
Set_dataType call.

NOTE Although dataType should be a property of an IXMLDOMNode, the differing types in the
getter and setter (OleVariant vs. WideString) cause it not to be recognized as such. You need
to refer to the underlying methods themselves.

property nodeTypedValue: OleVariant read Get nodeTypedValue write

Set nodeTypedValue;

Retrieve node data in the dataType format through this property. Attribute nodes return the
data of the appropriate type when it is specified in the schema. If not specified, this property
returns a string value identical to the nodeValue property. When setting this property, an
error occurs if the value cannot be converted into the appropriate type.

Element nodes return the type specified in the schema, or overridden by the dt : dt attrib-
ute in the document itself. Like attributes, they return strings if no type is specified. Text
nodes provide data of the type of their containing element, or a string if that element is not
typed.

Entity reference nodes supply data typed as the entity to which they refer, or a string if
the type is not specified. The remaining node types return a string value the same as the
nodeValue property since they do not have types.

property definition: IXMLDOMNode read Get definition;

This read-only property refers you back to the declaration for a particular node. For entity
reference nodes it points to the corresponding entity, for unparsed entities it refers to the
notation, and for attributes and elements it contains the schema declaration. All other nodes
return a value of nil, as do attributes and elements if no schema is present.

116

Part Il: The Document Object Model

property attributes: IXMLDOMNamedNodeMap read Get attributes;
The attributes of an element are accessed through this read-only property. It returns a named
node map, which is discussed in more detail below. For element, entity, and notation nodes,
a list is always returned, although it may have no entries in it. Other node types return a nul1l
from this property. Attributes on the entity and notation nodes encode just the public and
system identifiers, and the data type (if applicable).

property specified: WordBool read Get specified;
If the node represents an attribute, then this read-only property informs you whether or not
the value came from the document itself (True), or was a default value coming from the
DTD or schema (False). All other node types return True.

NOTE In the official DOM specification, specified is a property only of Attr nodes.

property ownerDocument: IXMLDOMDocument read Get ownerDocument;
All nodes belong to the document that created them. This read-only property provides
access to that document. It is set during the creation of the nodes through the appropriate
factory methods of the document.

property parentNode: IXMLDOMNcde read Get parentNode;
Navigating through the DOM is accomplished via this and the following properties and
methods. This read-only property returns a reference to the parent of the current node.
Attribute, document, and document fragment nodes have no parent, and so always return
nil, as do newly created nodes before they are added to the hierarchy and nodes removed
from the tree. Entity and notation nodes refer back to the document type node that contains
them, while the document type node points back to the document itself.

property childNodes: IXMLDOMNodelList read Get childNodes;
Child nodes are held in a node list (covered next) that is accessed via this read-only property.
All nodes have a child node list, although that list is empty for any node type that does not
have children.

function hasChildNodes: WordBool; safecall;
Use this function to determine whether or not a node has any children. Alternately, you can
check the number of items in the childNodes list. Obviously, it always returns False for
nodes that cannot have children.

property firstChild: IXMLDOMNode read Get firstChild;
This read-only property returns the first child node of the current one or ni1 if there are no
children. This is a convenience property and the same result could be achieved through the
childNodes property.

property lastChild: IXMLDOMNode read Get TastChild;
Similarly, this read-only property returns the last child node of the current one, or nil if
there are no children. It is a convenience property.

Chapter 9: Microsoft’s Document Object Model g 117

property previousSibling: IXMLDOMNode read Get previousSibling;

Retrieve the preceding node in this node’s parent’s list of children with this read-only prop-
erty, or nil if there is none. This is easier than navigating through the hierarchy yourself.
Attribute, document, and document fragment nodes always return nil from this property
since they have no parent.

property nextSibling: IXMLDOMNode read Get nextSibling;

Conversely, this read-only property retrieves the following node in the node’s parent’s list of
children, or nil if there is none. Similar comments apply as for the previousSibling

property.

function insertBefore(const newChild: IXMLDOMNode; refChild: OleVariant):

IXMLDOMNode; safecall;
Add a new node immediately before the specified one in this node’s list of children. If the
reference node is nil, then the new node is added at the end. A pointer to the new node is
returned. Nodes being inserted are first removed from the tree if they are already present. An
error occurs if the reference child cannot be found.

When a document fragment is inserted into the hierarchy, it is not added itself. Instead,
all of its children are inserted in turn and are removed from the fragment. A pointer to the
document fragment is still returned by the function.

NOTE The DOM specification expects an error to be generated if the node being inserted
comes from a different document. However, Microsoft’'s DOM allows the transferring of
nodes between documents. Be aware that the nodes may have an altered meaning within the
new document due to differences in schemas between the two. This may even lead to parsing
failures following the insertion.

function replaceChild(const newChild: IXMLDOMNode; const oldChild: IXMLDOMNode):

IXMLDOMNode; safecall;

Remove an existing child node and replace it with the new one supplied. A reference to the
old node is returned. If the new node is specified as nil, the old node is simply deleted.
Referring to an old node that does not exist as a child causes an error. Attempting to replace a
child with a node of an inappropriate type also generates an error.

function removeChild(const childNode: IXMLDOMNode): IXMLDOMNode; safecall;

Delete the specified node from this node’s list of children. An exception is raised if the node
does not exist. A pointer to the deleted node is returned.

function appendChild(const newChild: IXMLDOMNode): IXMLDOMNode; safecall;

Add a new node at the end of the list of child nodes. Return a reference to that node. This is
the same as calling insertBefore(newChild, nil). The same comments apply as they did
for the insert method.

TIP The use of these methods described above in creating a DOM structure is covered in
greater detail in Chapter 19.

118

Part Il: The Document Object Model

function cloneNode(deep: WordBool): IXMLDOMNode; safecall;
To create a copy of a node, use this method. If the parameter passed to this call is True, then a
copy of the entire subtree rooted at the current node is made. Otherwise, just the current
node is duplicated. The following properties are duplicated: nodeType, nodeName,
nodeValue, ownerDocument, parentNode, and attributes. Copying of the childNodes
property depends on the deep setting.

NOTE The remaining methods and properties are extensions to the W3C DOM
specification.

function selectNodes(const queryString: WideString): IXMLDOMNodelList; safecall;
Return a list of those nodes that match the XSL or XPath query provided, based on the
subtree rooted at the current node, through this function. Setting the SelectionlLanguage
property of the document (only available in the IXMLDOMDocument2 interface and defaulting
to XSLPattern for backward compatibility) determines which of the query types is used.
Finding no matching nodes returns an empty list. See Chapter 4 for more information on
XSL and XPath queries.

function selectSingleNode(const queryString: WideString): IXMLDOMNode; safecall;
This function acts the same as selectNodes, but only returns the first node in the list. ni1 is
returned if no nodes match the query.

function transformNode(const stylesheet: IXMLDOMNode): WideString; safecall;
Converting one DOM or document fragment into another can be achieved with this method.
It takes an XSLT stylesheet reference (as another DOM or part thereof) and applies it to the
current node, returning the straight text representation of the resulting tree. Navigation out-
side of the subtree based on the current node is allowed as the stylesheet processes.

procedure transformNodeToObject(const stylesheet: IXMLDOMNode; outputObject:
OleVariant); safecall;
Similar to transformNode, this method performs the transformation and returns the result-
ing DOM. Output arrives as either a new DOM structure, if the outputObject is a
DOMDocument object, or is sent directly to a stream, if outputObject is such a reference.
Getting the result back as another DOM allows for further processing on it.

TIP Using XSL Transformations is covered in greater detail in Chapter 21, which discusses a
utility for examining transformations, and in Chapter 26, which uses XSLT to generate Web
pages.

property parsed: WordBool read Get parsed;
This read-only property informs you whether or not the current node and all of its descen-
dants have been fully parsed and instantiated yet. Usually this is only an issue when
performing the parse asynchronously. It returns True if the current subtree has been com-
pleted, and False otherwise.

Chapter 9: Microsoft’s Document Object Model 1 19

NOTE Missing from the DOM Level 2 specification are the normalize, hasAttributes, and
isSupported methods. Under DOM Level 1, normalize was attached to an Element node,
before being moved up the hierarchy in DOM Level 2. Indeed, this is where it is found in
Microsoft’s implementation, in IXMLDOMETlement. The functionality of hasAttributes can be
duplicated through checking the attributes property. Use the IXMLDOMImplementation class’s
hasFeature method instead of isSupported.

IXMLDOMNOodelist Interface

Providing the links between the various levels within the DOM, the node list interface defines
access to a list of nodes in a particular sequence. Microsoft’s implementation is shown in Listing
9-4 and closely follows the official definition. The list is used when retrieving nodes from the
DOM, either by tag or via a query string, as well as for the children of each node.

Listing 9-4: The IXMLDOMNodelList interface

// //
// Interface: IXMLDOMNodelist

// Flags: (4544) Dual NonExtensible OleAutomation Dispatchable

// GUID: {2933BF82-7B36-11D2-B20E-00C04F983E60}

// //

IXMLDOMNodeList = interface(IDispatch)
['{2933BF82-7B36-11D2-B20E-00C04F983E60} ']
function Get_item(index: Integer): IXMLDOMNode; safecall;
function Get length: Integer; safecall;
function nextNode: IXMLDOMNode; safecall;
procedure reset; safecall;
function Get_newEnum: IUnknown; safecall;
property item[index: Integer]: IXMLDOMNode read Get item; default;
property length: Integer read Get_length;
property newEnum: IUnknown read Get_ newEnum;
end;
Recall that a node list is “live,” i.e., that changes made to the list affect the DOM itself. This
includes adding or removing nodes that are part of the list. Consequently, two references to a node
by the same index may return different objects.

An IXMLDOMNodeList’s properties and methods are described below:

property length: Integer read Get_length;
Retrieve the number of entries in the list with this read-only property. The value may be zero
for lists that do not have any entries.

property item[index: Integer]: IXMLDOMNode read Get_item; default;
Access individual entries via their index (starting from zero) with this read-only property.
You are returned an IXMLDOMNode object to work with as described in the previous section.
After determining its type through the nodeType property, you can cast it to that type for full
access to its abilities. If the supplied index is out of range, a nil is returned.

for index := 0 to Nodelist.Length - 1 do
with NodeList.Item[index] do
{ Operate on the node };

120

Part Il: The Document Object Model

TIP Itemisthe default property of a node list, which means that you can omit its name and
just use the square brackets to access the entries. For example:

Node := Node.ChildNodes.Item[0];
can also be expressed as

Node := Node.ChildNodes[0];

function nextNode: IXMLDOMNode; safecall;
Alternately, the nodes can be stepped through with this function, which returns ni1 when it
reaches the end of the list. Initially, you are before the first node in the list, so a call to this
returns that first entry. If the current node is removed from the list, subsequent calls to this
function return nil.

NodelList.reset;
repeat
Node := NodelList.NextNode;
if Assigned(Node) then
{ Operate on the node }
until not Assigned(Node);

procedure reset; safecall;
This procedure returns you to the start of the list for another enumeration using nextNode.

NOTE These last two methods are not part of the official DOM specification, but provide
another way of accessing the nodes within the list.

IXMLDOMNamedNodeMap Interface

This interface is similar to the node list, but also allows access to the nodes via their names. The
implementation with this DOM is shown in Listing 9-5. It is used for the attributes of a node, as
well as the entities and notations that belong to a document.

Listing 9-5: The IXMLDOMNamedNodeMap interface

// //
// Interface: IXMLDOMNamedNodeMap

// Flags: (4544) Dual NonExtensible OleAutomation Dispatchable

// GUID: {2933BF83-7B36-11D2-B20E-00C04F983E60}

// //

IXMLDOMNamedNodeMap = interface(IDispatch)
['{2933BF83-7B36-11D2-B20E-00C04F983E60} ']
function getNamedItem(const name: WideString): IXMLDOMNode; safecall;
function setNamedItem(const newItem: IXMLDOMNode): IXMLDOMNode;
safecall;
function removeNamedItem(const name: WideString): IXMLDOMNode;
safecall;
function Get_item(index: Integer): IXMLDOMNode; safecall;
function Get length: Integer; safecall;
function getQualifiedItem(const baseName: WideString;
const namespaceURI: WideString): IXMLDOMNode; safecall;
function removeQualifiedItem(const baseName: WideString;
const namespaceURI: WideString): IXMLDOMNode; safecall;
function nextNode: IXMLDOMNode; safecall;
procedure reset; safecall;

Chapter 9: Microsoft’'s Document Object Model a 121

y S0y O

function Get_ newEnum: IUnknown; safecall;

property item[index: Integer]: IXMLDOMNode read Get item; default;

property length: Integer read Get length;

property _newEnum: IUnknown read Get_ newEnum;

end;

The entries in the list are not constrained to any particular order, although access via a sequential
index is supported to allow the entire collection to be easily traversed. Microsoft adds the entries
in the order found in the original document except for attributes that define namespaces. If the ele-
ment uses a namespace that is declared in this tag, that namespace declaration appears as the first
item in the list. Namespace declarations for other attributes appear immediately before the first
use of that namespace qualifier.

As for the normal node list, entries in a named node list are “live,” so adding and removing
entries can alter their count and order. If an attribute is removed from an element’s list, but it has a
default value defined in the DTD or schema, it is immediately added back into the list with that
value.

The properties and methods of IXMLDOMNamedNodeMap are shown below:

function getNamedItem(const name: WideString): IXMLDOMNode; safecall;
Retrieve an entry from the list using its name with this method. A ni1 is returned if a match-
ing item cannot be found.

function setNamedItem(const newItem: IXMLDOMNode): IXMLDOMNode; safecall;
Add a node into the list using this method. The name of the supplied node is extracted and
used as the index for later retrieval. Items are automatically updated or added as necessary
when calling this routine, overwriting any previous object with the same name. Only lists of
attributes belonging to an element may be modified. Attempts to change the lists of entities
and notations in the document type object result in an error as they are read-only.

function removeNamedItem(const name: WideString): IXMLDOMNode; safecall;
Use this method to delete an entry from the list using its name. A reference to the deleted
node is returned by the function, unless it could not be found, in which case ani1 is returned.
Only lists of attributes for elements can be modified. Trying to remove entries from other
lists generates an error.

NOTE The following two methods duplicate functionality from the DOM Level 2 specifica-
tion: getNamedItemNS and removeNamedItemNS. However, the order of parameters to them has
been reversed. Furthermore, there is no equivalent of the setNamedItemNS method in
Microsoft’s implementation since this functionality is available through the setNamedltem
method anyway. If the node has a qualified name it is used, otherwise it is not.

function getQualifiedItem(const baseName: WideString; const namespaceURI:
WideString): IXMLDOMNode; safecall;
This method retrieves a named entry from the list based on its namespace URI and local
name. If a matching node cannot be found, a ni1 is returned.

122

Part Il: The Document Object Model

function removeQualifiedItem(const baseName: WideString; const namespaceURI:
WideString): IXMLDOMNode; safecall;
To delete an entry based on its namespace URI and local name use this method. The function
returns a reference to the deleted node. If no match is found, it returns nil.

property length: Integer read Get length;
Return the number of entries in the list with this read-only property. The value may be zero if
there are no entries in the list.

property item[index: Integer]: IXMLDOMNode read Get item; default;
Retrieve entries from the list based on their position (starting from zero). Again, this is the
default property of the interface, and so can be omitted when referring to list entries. A nil is
returned if the index is out of range.

NOTE The following two methods are not part of the DOM Level 2 specification.

function nextNode: IXMLDOMNode; safecall;
Step through the nodes in the list as an enumeration. nil is returned at the end of the list.
Removing the current node from the list causes subsequent calls to this function to return
nil also.

procedure reset; safecall;
Reposition the current pointer to the start of the list for another traversal with the nextNode
method.

IXMLDOMElement Interface

Building on the basic DOM node are many of the remaining interfaces defined in the DOM. The
first of these is for an element, as shown in Listing 9-6, adding only a few extra abilities. These are
mostly involved with manipulating the attributes that belong to the element. Recall that the
attributes property inherited from IXMLDOMNode provides access to the attached attribute nodes.

Listing 9-6: The IXMLDOMElement interface

// //
// Interface: IXMLDOMElement

// Flags: (4544) Dual NonExtensible OleAutomation Dispatchable

// GUID: {2933BF86-7B36-11D2-B20E-00C04F983E60}

// //

IXMLDOMETement = interface(IXMLDOMNode)

['{2933BF86-7B36-11D2-B20E-00C04F983E60} ']

function Get tagName: WideString; safecall;

function getAttribute(const name: WideString): OleVariant; safecall;

procedure setAttribute(const name: WideString; value: OleVariant);
safecall;

procedure removeAttribute(const name: WideString); safecall;

function getAttributeNode(const name: WideString): IXMLDOMAttribute;
safecall;

function setAttributeNode(const DOMAttribute: IXMLDOMAttribute):
IXMLDOMAttribute; safecall;

function removeAttributeNode(const DOMAttribute: IXMLDOMAttribute):

Chapter 9: Microsoft's Document Object Model 1 23

IXMLDOMAttribute; safecall;
function getElementsByTagName(const tagName: WideString):
IXMLDOMNodeList; safecall;
procedure normalize; safecall;
property tagName: WideString read Get tagName;
end;

IXMLDOMETement’s properties and methods are described below:

property tagName: WideString read Get_ tagName;
The node name can also be retrieved via this property. It is merely a convenience since it
maps directly onto the underlying nodeName.

function getAttribute(const name: WideString): OleVariant; safecall;
Retrieve the string value of a named attribute with this method. All attributes must necessar-
ily appear as string values within the XML document. However, they may be interpreted as
other types within a processor. The function returns an empty string if the attribute’s value
was not specified and did not have a default, or if the attribute does not exist in the first
place.

procedure setAttribute(const name: WideString; value: OleVariant); safecall;
To store an attribute’s value, use this method. It accepts the name of the attribute and its
value. Any existing attribute with the same name is replaced, while a new attribute node is
created if not already present. The supplied string value is not interpreted in any way; it is
simply stored as a text node. For more extensive structure you must create the subtree first
before passing it to the setAttributeNode method.

procedure removeAttribute(const name: WideString); safecall;
Delete an attribute from this element given its name. Recall that if the DTD or schema for
the document is available and specifies a default value for the attribute, then it immediately
reappears with that value.

function getAttributeNode(const name: WideString): IXMLDOMAttribute; safecall;
Similar to getAttribute, this method returns the entire attribute node rather than just the
value. This is useful when the attribute contains entity references, or when using some of
Microsoft’s extensions to the DOM. A nil is returned if a matching attribute cannot be
found.

function setAttributeNode(const DOMAttribute: IXMLDOMAttribute):
IXMLDOMAttribute; safecall;
To store an attribute with other than a simple string value, you can use this method. For
example, an attribute that refers to an entity has an IXMLDOMEntityReference node as one of
its children. Build the required structure before passing it to this method. If the new node
replaces an existing attribute with the same name, a reference to the replaced node is
returned. Otherwise, the method returns nil.

function removeAttributeNode(const DOMAttribute: IXMLDOMAttribute):
IXMLDOMAttribute; safecall;
Finally, you can delete an attribute given a reference to its node with this method. This refer-
ence is returned by the function as well.

124

Part Il: The Document Object Model

function getElementsByTagName(const tagName: WideString): IXMLDOMNodelList;
safecall;
Obtain a list of sub-elements with a specified name through this method. Use the string * to
retrieve all descendant elements. The list can then be processed as described earlier under
the IXMLDOMNodeList interface. Elements in the list appear in the order of a pre-order tra-
versal of the current node’s subtree. Although a list is always returned by this method, it may
be empty.

procedure normalize; safecall;
This method tidies up the node tree beneath this element, combining adjacent text nodes
where possible (but excluding CDATA nodes).

NOTES In the DOM Level 2 specification, the normalize method has been moved to the
Node interface, making it more widely available.

Other methods present in the DOM Level 2 specification but missing from Microsoft’s
implementation are the namespace-aware versions of several routines: getAttributeNs,
setAttributeNS, removeAttributeNS, getAttributeNodeNS, setAttributeNodeNS, and
getElementsByTagNameNS. The methods listed that deal with aftributes can be duplicated
through processing the attributes property of the element. Also missing altogether are the
hasAttribute and hasAttributeNS methods from the DOM specification. Again, their function-
ality can be achieved in other ways.

IXMLDOMAtribute Interface

The settings for an attribute of an element are described in the IXMLDOMAttribute interface, as
shown in Listing 9-7. It simply adds the name and value properties, which directly mirror the
nodeName and nodeValue properties of its superclass.

Listing 9-7: The IXMLDOMAttribute interface

// //
// Interface: IXMLDOMAttribute
// Flags: (4544) Dual NonExtensible OleAutomation Dispatchable
// GUID: {2933BF85-7B36-11D2-B20E-00C04F983E60}
//

IXMLDOMAttribute = interface(IXMLDOMNode)
['{2933BF85-7B36-11D2-B20E-00C04F983E60} ']
function Get name: WideString; safecall;
function Get_value: OleVariant; safecall;
procedure Set value(attributeValue: OleVariant); safecall;
property name: WideString read Get name;
property value: OleVariant read Get_value write Set_value;
end;

Attribute nodes are not really part of the normal DOM structure. They are considered properties of
their owning element, and so only appear under that element’s attributes property. Attributes
have no parent, and so also have no next or previous siblings. Hence, all these inherited properties
return nil.

Chapter 9: Microsoft's Document Object Model 125

When loading a document, attribute nodes are created for all those attributes explicitly
declared in the document. Additional attribute nodes are appended for attributes that have not
been specified explicitly, but that have default values defined in the DTD or schema for the
document.

Recall that several inherited properties apply to attributes: dataType gives the type of the
value, nodeTypedValue returns the value as that type, and speci fied tells us where the value came
from (the document or the DTD).

The properties of an IXMLDOM Attribute node are shown below:

property name: WideString read Get name;
Retrieve the attribute’s name from this read-only property. This is the same as the nodeName
property.

property value: OleVariant read Get value write Set value;
Obtain or set the string value of the attribute using this property. For a standard attribute with
a simple string value, the attribute node has a single text node child, and that value is
returned by the property. If an attribute has an entity reference as part of its content, its child
node list contains a mixture of text and entity reference nodes, with this property returning
the concatenated value of them all after expanding entity references.

Setting the attribute value through this property causes any existing children to be

removed and be replaced by a single text node with the supplied value. The content of the
value parameter is not parsed or interpreted in any way.

TIP Under the DOM specification the atiribute’s value is always a string. However, with
Microsoft’s implementation it can be of any type. When this ability is combined with an
appropriate schema, the values are available in their native format.

property specified: WordBool read Get specified;
This inherited read-only property indicates how the attribute’s value was set. When it
returns True, the value appeared directly in the XML document. When it is False, the value
came from the default defined in the DTD or schema for the document.

NOTE Microsoft’s implementation provides no way of retrieving the element that owns an
attribute. In the DOM Level 2 specification this is embodied in the ownerElement property.

IXMLDOMCharacterData Interface

The interfaces for straight text within the XML document are based on IXMLDOMCharacterData
(see Listing 9-8), which provides common functionality between the different types of text. Recall
that this interface is not implemented directly, and only appears within the DOM as one of its
subclasses.

126 Part Il: The Document Object Model

Listing 9-8: The IXMLDOMCharacterData interface

// //
// Interface: IXMLDOMCharacterData

// Flags: (4544) Dual NonExtensible OleAutomation Dispatchable

// GUID: {2933BF84-7B36-11D2-B20E-00C04F983E60}

// //

IXMLDOMCharacterData = interface(IXMLDOMNode)
['{2933BF84-7B36-11D2-B20E-00C04F983E60} ']
function Get data: WideString; safecall;
procedure Set data(const data: WideString); safecall;
function Get length: Integer; safecall;
function substringData(offset: Integer; count: Integer): WideString;
safecall;
procedure appendData(const data: WideString); safecall;
procedure insertData(offset: Integer; const data: WideString);
safecall;
procedure deleteData(offset: Integer; count: Integer); safecall;
procedure replaceData(offset: Integer; count: Integer;
const data: WideString); safecall;
property data: WideString read Get data write Set data;
property length: Integer read Get length;
end;

IXMLDOMCharacterData’s properties and methods are described below. All offsets start at zero.

property data: WideString read Get data write Set data;
This property returns the actual text of the node and is simply a renaming of the nodeValue
property.

property length: Integer read Get length;
Determine the size of the data with this read-only property. It is measured as number of char-
acters (recall that WideString values use 2 bytes per character).

function substringData(offset: Integer; count: Integer): WideString; safecall;
Extract sections of the node’s text contents with this function, as specified by the starting
position (offset) and length (count). If the starting position plus the count of characters
extends past the end of the data, only that portion up to the end is returned. An error is gener-
ated if the offset or length is out of range.

procedure appendData(const data: WideString); safecall;
Add additional text to the node with this method. The new data is placed at the end of any
existing content.

procedure insertData(offset: Integer; const data: WideString); safecall;
Place text at any point in the existing contents through this method. Just specify the offset
for the addition and any existing text past that point is shifted along to make room. Using an
offset or length that is out of range produces an error.

procedure deleteData(offset: Integer; count: Integer); safecall;
Remove sections of text with this method, which takes the starting offset and number of
characters to delete as parameters. If the offset plus the count is more than the length of the
data, all the text through the end of the string is removed. An error occurs if the offset or
length is out of range.

Chapter 9: Microsoft’s Document Object Model 127

procedure replaceData(offset: Integer; count: Integer; const data: WideString);
safecall;
This routine combines the previous two methods, deleting text from the offset for a given
number of characters, then inserting the new text in its place. An offset or length that is out
of range causes an error.

IXMLDOMText Interface

From the basic character data interface comes one for real textual nodes, IXMLDOMText, as shown
in Listing 9-9. Within these nodes appear the actual content of the XML document, as opposed to
the surrounding markup. Most of its abilities are inherited from the IXMLDOMCharacterData
interface.

Listing 9-9: The IXMLDOMText interface

// //
// Interface: IXMLDOMText

// Flags: (4544) Dual NonExtensible OleAutomation Dispatchable

// GUID: {2933BF87-7B36-11D2-B20E-00C04F983E60}

// //

IXMLDOMText = interface(IXMLDOMCharacterData)
['{2933BF87-7B36-11D2-B20E-00C04F983E60} ']
function splitText(offset: Integer): IXMLDOMText; safecall;
end;

TIP When a document is first loaded, all its text nodes are normalized. This means that no
text node is adjacent to another text node. Some type of markup node surrounds each one.
Using the normalize method of the IXMLDOMNode interface restores this format. Certain pro-
cesses, such as using XPath identifiers, assume that the hierarchy is in this state.

Text nodes do not have any children. Using the inherited methods or properties to attempt to
access or alter them results in errors or empty values as appropriate.
The method of an IXMLDOMText node is shown below:

function splitText(offset: Integer): IXMLDOMText; safecall;
This function cuts the current text node into two text nodes at the specified offset (starting at
zero). The original node now contains text up to the offset, while the new node contains the
remainder. A reference to the new node is the return value of the function. Using an offset or
length that is out of range generates an error.

IXMLDOMCDATASection Interface

CDATA sections within an XML document are denoted by their own interface, IXMLDOMCDATA-
Section (as seen in Listing 9-10). It inherits all the abilities of the basic character data and text
data nodes, but adds nothing new. Hence, it serves merely as a flag to indicate the origins of its
contained text within the document. Furthermore, CDATA sections are not affected when normal-
izing the DOM, i.e., when combining adjacent text nodes.

128

Part Il: The Document Object Model

Listing 9-10: The IXMLDOMCDATASection interface

// //
// Interface: IXMLDOMCDATASection
// Flags: (4544) Dual NonExtensible OleAutomation Dispatchable
// GUID: {2933BF8A-7B36-11D2-B20E-00C04F983E60}
//

IXMLDOMCDATASection = interface(IXMLDOMText)
[' {2933BF8A-7B36-11D2-B20E-00C04F983E60} ']
end;
Recall that CDATA sections can contain characters that would normally need to be escaped. Also,
CDATA section nodes do not have children, just like text nodes. Inherited properties and methods
that deal with child nodes return appropriate empty values or generate errors if used.

IXMLDOMComment Interface

Comments within the document are encapsulated by the IXMLDOMComment interface (see Listing
9-11) that builds on the character data definition. Note that this interface is just another flagging
interface, adding no new functionality.

Listing 9-11: The IXMLDOMComment interface

// //
// Interface: IXMLDOMComment

// Flags: (4544) Dual NonExtensible OleAutomation Dispatchable

// GUID: {2933BF88-7B36-11D2-B20E-00C04F983E60}

// //

IXMLDOMComment = interface(IXMLDOMCharacterData)
['{2933BF88-7B36-11D2-B20E-00C04FI83E60} ']
end;
All the text between the opening and closing sequences (<!-- and -->) in the XML document
makes up the content of the comment. Use the inherited nodeValue property to retrieve that text.
Comment nodes do not have any children. Trying to refer to them or add new ones returns an
appropriate empty value or an error.

IXMLDOMProcessinglnstruction Interface

Embedded commands for processing an XML document appear through the IXMLDOM-
ProcessingInstruction interface (see Listing 9-12). Processing instructions are the way to trans-
mit commands through the XML document for prospective readers. Comments, which may be
stripped from the DOM during processing, should not contain such information.

Listing 9-12: The IXMLDOMProcessingInstruction interface

// /]
// Interface: IXMLDOMProcessingInstruction

// Flags: (4544) Dual NonExtensible OleAutomation Dispatchable

// GUID: {2933BF89-7B36-11D2-B20E-00C04F983E60}

// /]

IXMLDOMProcessingInstruction = interface(IXMLDOMNode)
['{2933BF89-7B36-11D2-B20E-00C04F983E60} ']

Chapter 9: Microsoft’s Document Object Model 129

function Get_target: WideString; safecall;

function Get data: WideString; safecall;

procedure Set data(const value: WideString); safecall;

property target: WideString read Get_target;

property data: WideString read Get data write Set_data;

end;

Processing instruction nodes do not have children. Although the properties and methods inherited
from IXMLDOMNode let you interact with or manipulate child nodes, they return nil values or raise
errors if attempts are made to use them.

An IXMLDOMProcessingInstruction’s properties are described below:

property target: WideString read Get target;
An identifier for the application that knows how to interpret the following command is
available through this read-only property. It consists of the first token within the processing
instruction tag. The same value is returned by the nodeName property.

property data: WideString read Get data write Set data;
The actual command is retrieved through this property. Again, it is a simple renaming of an
inherited property, nodeValue. XML imposes no structure on the content of the command,
though the target program is sure to. All the text within the tag, from the first non-white
space character following the target up to the character immediately preceding the terminat-
ing ?>, is returned as its data.

IXMLDOMDocumentType Interface

Some information from the DTD for a document is available through the IXMLDOMDocumentType
interface (see Listing 9-13). Its abilities were intentionally limited since several related issues
were not fully resolved when the DOM was specified. The IXMLDOMDocument object refers to a
node of this type through its DocType property. If no DTD is available, this property returns nil.

Listing 9-13: The IXMLDOMDocumentType interface

// //
// Interface: IXMLDOMDocumentType

// Flags: (4544) Dual NonExtensible OleAutomation Dispatchable

// GUID: {2933BF8B-7B36-11D2-B20E-00C04F983E60}

// //

IXMLDOMDocumentType = interface (IXMLDOMNode)
['{2933BF8B-7B36-11D2-B20E-00C04F983E60} ']
function Get name: WideString; safecall;
function Get_entities: IXMLDOMNamedNodeMap; safecall;
function Get notations: IXMLDOMNamedNodeMap; safecall;
property name: WideString read Get name;
property entities: IXMLDOMNamedNodeMap read Get entities;
property notations: IXMLDOMNamedNodeMap read Get notations;
end;

The properties of an IXMLDOMDocumentType node are shown below:

property name: WideString read Get name;
Retrieve the name of the document element through this read-only property.

130

Part Il: The Document Object Model

property entities: IXMLDOMNamedNodeMap read Get entities;
Access to a list of the entities (excluding parameter entities) declared in the document is pro-
vided by this read-only property. The list is returned as an IXMLDOMNamedNodeMap, allowing
you to retrieve entries by their names. Items returned from the list are instances of
IXMLDOMEntity, whose abilities are described below.

property notations: IXMLDOMNamedNodeMap read Get notations;
Similarly, access to the notations declared in the document is gained through this property.
The list is also an IXMLDOMNamedNodeMap, although the underlying entries are instances of
IXMLDOMNotation, also covered below.

NOTES The name, entities, and notations that come from the DTD for a document are not
modifiable under Microsoft’s DOM (nor in the DOM specification). They can only be set when
loading a document. Any attempt to alter them generates an error.

The additional DOM Level 2 properties for a document type node—publicld, systemld, or
internalSubset—are not available through Microsoft’s DOM.

IXMLDOMENntity Interface

The IXMLDOMEnt ity interface, as shown in Listing 9-14, models entities declared within the XML
document. It does not model the declaration itself, merely the representation of that entity within
the document. They are available through the entities property of the document type node of the
document object. However, all entity nodes and their descendants are read-only, being set up when
the document is loaded.

Listing 9-14: The IXMLDOMEntity interface

// //
// Interface: IXMLDOMEntity

// Flags: (4544) Dual NonExtensible OleAutomation Dispatchable

// GUID: {2933BF8D-7B36-11D2-B20E-00C04F983E60}

// //

IXMLDOMEntity = interface(IXMLDOMNode)
['{2933BF8D-7B36-11D2-B20E-00C04F983E60} ']
function Get publicId: OleVariant; safecall;
function Get_systemld: OleVariant; safecall;
function Get notationName: WideString; safecall;
property publicId: OleVariant read Get publicld;
property systemld: OleVariant read Get systemld;
property notationName: WideString read Get notationName;
end;

When the Microsoft parser is in validation mode, it expands external parsed entities. This means
that their internal structures are present as children of this node. An entity reference has the same
structure beneath it as the entity node with the same name. Although the entity reference node

itself may be inserted and deleted, its children are read-only.
If the Microsoft parser is not validating documents, the external entities are not expanded.

Chapter 9: Microsoft’s Document Object Model 131

An IXMLDOMEntity’s properties are described below:

property nodeName: WideString read Get nodeName;
The name of the entity appears in this inherited read-only property.

property publicId: OleVariant read Get publicld;
Retrieve the public (logical) identifier for the DTD or schema attached to the current docu-
ment using this read-only property. For an internal entity, or an external entity without this
value specified, the property returns an empty string.

property systemId: OleVariant read Get systemld;
Obtain the system (physical) identifier for the DTD or schema through this read-only prop-
erty. Again, internal entities return an empty string.

property notationName: WideString read Get notationName;
For unparsed entities, this read-only property holds the type of that resource. It should refer
to one of the notations also declared in the DTD. Parsed entities return an empty string for
this property.

IXMLDOMENntityReference Interface

Occurrences of entities within the body of a document are represented by the
IXMLDOMEntityReference interface, as shown in Listing 9-15. Another flagging interface, it
merely indicates where the entity reference was encountered. Any children of this node must
match those of the corresponding IXMLDOMEnt ity node. Note that an XML parser may expand all
entity references before building the DOM, so that no entity reference nodes appear in the final
model.

Listing 9-15: The IXMLDOMEntityReference interface

// //
// Interface: IXMLDOMEntityReference

// Flags: (4544) Dual NonExtensible OleAutomation Dispatchable

// GUID: {2933BF8E-7B36-11D2-B20E-00C04F983E60}

// //

IXMLDOMEntityReference = interface(IXMLDOMNode)
[{2933BF8E-7B36-11D2-B20E-00CO4F983E60} ']
end;
This interface adds no new functionality, again acting as a flag to indicate the original source of the
contained nodes. The name of the entity being included is available in the inherited nodeName
property.

If the parser is not validating documents, it is not required to expand external entities. In this
case, the contents of the entity reference may not be available. Character entity references are
automatically expanded and appear as parts of text nodes only; they do not have parent entity ref-
erence nodes.

132

Part Il: The Document Object Model

IXMLDOMNOotation Interface

Declarations of notations within the DTD of the document appear as IXMLDOMNotation interface
objects (see Listing 9-16) and are accessible through the notations property of the document’s
document type node. These nodes represent the types of unparsed entities, attributes, and process-
ing instruction targets.

Listing 9-16: The IXMLDOMNotation interface

// //
// Interface: IXMLDOMNotation

// Flags: (4544) Dual NonExtensible OleAutomation Dispatchable

// GUID: {2933BF8C-7B36-11D2-B20E-00C04F983E60}

// //

IXMLDOMNotation = interface(IXMLDOMNode)
['{2933BF8C-7B36-11D2-B20E-00C04F983E60} ']
function Get publicId: OleVariant; safecall;
function Get systemld: OleVariant; safecall;
property publicId: OleVariant read Get publicld;
property systemld: OleVariant read Get systemld;
end;
As with the IXMLDOMEnt ity objects, these nodes model the notation itself, and not the declaration
of that notation within the DTD. Notation nodes cannot be changed once the document is loaded.

The properties of an IXMLDOMNotation node are shown below:

property nodeName: WideString read Get _nodeName;
The name of the notation appears in this inherited read-only property.

property publicId: OleVariant read Get publicld;
Retrieve the public (logical) identifier for the notation through this read-only property. If not
specified, this returns an empty string.

property systemId: OleVariant read Get systemld;

Obtain the system (physical) identifier for the notation from this read-only property. Again,
if not specified, it returns an empty string.

IXMLDOMDocumentFragment Interface

Being able to manipulate fragments of a document, or subtrees within the hierarchy, is a useful
ability, one that is provided through the IXMLDOMDocumentFragment interface as shown in Listing
9-17. Document fragments never form part of the DOM beneath a document node.

Listing 9-17: The IXMLDOMDocumentFragment interface

// //
// Interface: IXMLDOMDocumentFragment

// Flags: (4544) Dual NonExtensible OleAutomation Dispatchable

// GUID: {3EFAA413-272F-11D2-836F-0000F87A7782}

// //

IXMLDOMDocumentFragment = interface(IXMLDOMNode)
['{3EFAA413-272F-11D2-836F-0000F87A7782} ']
end;

Chapter 9: Microsoft’s Document Object Model 1 33

This is another flagging interface which adds no new functionality to the basic node definition. Its
use is in building up sub-structures and moving sections of the tree around. When a document
fragment is added to an existing document, the fragment node itself is not added, only its children
and descendants. The contents of a document fragment do not need to be a well-formed XML doc-
ument as a whole. However, each child node should be well-formed on its own (or be a text node).

IXMLDOMDocument Interface

Representing the entire XML document is the IXMLDOMDocument interface as shown in Listing
9-18. This is the primary entry point for creating and navigating the document model. An object of
this type is the only one created directly. Thereafter you should use the factory methods provided
by this class to correctly instantiate any other nodes that build up the document. Each such node
must exist within the context of a document, and so has its ownerDocument property set to the cre-
ating object.

Listing 9-18: The IXMLDOMDocument interface

// //
// Interface: IXMLDOMDocument

// Flags: (4544) Dual NonExtensible OleAutomation Dispatchable

// GUID: {2933BF81-7B36-11D2-B20E-00C04F983E60}

// //

IXMLDOMDocument = interface (IXMLDOMNode)

['{2933BF81-7B36-11D2-B20E-00C04F983E60} ']

function Get_doctype: IXMLDOMDocumentType; safecall;

function Get_implementation_: IXMLDOMImplementation; safecall;

function Get documentElement: IXMLDOMElement; safecall;

procedure Set documentElement(const DOMElement: IXMLDOMETement);
safecall;

function createElement(const tagName: WideString): IXMLDOMElement;
safecall;

function createDocumentFragment: IXMLDOMDocumentFragment; safecall;

function createTextNode(const data: WideString): IXMLDOMText;
safecall;

function createComment(const data: WideString): IXMLDOMComment;
safecall;

function createCDATASection(const data: WideString):
IXMLDOMCDATASection; safecall;

function createProcessingInstruction(const target: WideString;
const data: WideString): IXMLDOMProcessingInstruction; safecall;

function createAttribute(const name: WideString): IXMLDOMAttribute;
safecall;

function createEntityReference(const name: WideString):
IXMLDOMEntityReference; safecall;

function getElementsByTagName(const tagName: WideString):
IXMLDOMNodeList; safecall;

function createNode(type : OleVariant; const name: WideString;
const namespaceURI: WideString): IXMLDOMNode; safecall;

function nodeFromID(const idString: WideString): IXMLDOMNode;
safecall;

function Toad(xmlSource: OleVariant): WordBool; safecall;

function Get readyState: Integer; safecall;

function Get_parseError: IXMLDOMParseError; safecall;

function Get_url: WideString; safecall;

134 Part Il: The Document Object Model

function Get_async: WordBool; safecall;
procedure Set async(isAsync: WordBool); safecall;
procedure abort; safecall;
function ToadXML(const bstrXML: WideString): WordBool; safecall;
procedure save(destination: OleVariant); safecall;
function Get validateOnParse: WordBool; safecall;
procedure Set validateOnParse(isValidating: WordBool); safecall;
function Get_resolveExternals: WordBool; safecall;
procedure Set resolveExternals(isResolving: WordBool); safecall;
function Get preservelWhiteSpace: WordBool; safecall;
procedure Set_preserveWhiteSpace(isPreserving: WordBool); safecall;
procedure Set onreadystatechange(Paraml: OleVariant); safecall;
procedure Set ondataavailable(Paraml: OleVariant); safecall;
procedure Set ontransformnode(Paraml: OleVariant); safecall;
property doctype: IXMLDOMDocumentType read Get_doctype;
property implementation_: IXMLDOMImplementation
read Get implementation_;
property documentElement: IXMLDOMElement
read Get_documentElement write Set documentElement;
property readyState: Integer read Get readyState;
property parseError: IXMLDOMParseError read Get parseError;
property url: WideString read Get_url;
property async: WordBool read Get_async write Set async;
property validateOnParse: WordBool read Get validateOnParse
write Set validateOnParse;
property resolveExternals: WordBool read Get resolveExternals
write Set_resolveExternals;
property preservelhiteSpace: WordBool
read Get preserveWhiteSpace write Set preserveWhiteSpace;
property onreadystatechange: OleVariant write Set_onreadystatechange;
property ondataavailable: OleVariant write Set ondataavailable;
property ontransformnode: OleVariant write Set ontransformnode;
end;

The IXMLDOMDocument’s properties and methods are described below:

property implementation : IXMLDOMImplementation read Get implementation ;
This read-only property leads to an interface that allows you to inspect implementation
details outside the scope of any one document. See the IXMLDOMImplementation interface
section for more details.

NOTE In the Microsoft DOM package the previous property is called implementation, as it
is in the DOM specification. However, since this is a reserved word in Delphi, its name
changes to implementation_as part of the importing process for the type library.

property doctype: IXMLDOMDocumentType read Get doctype;
This read-only property returns the node that holds the lists of entities and notations defined
for the document, as a result of parsing the DTD. See the IXMLDOMDocumentType interface
for more details. It returns a nil for XML documents that do not specify a DTD.

property documentETement: IXMLDOMElement read Get documentElement write
Set documentElement;
Retrieve a reference to the single top-level element node within the document with this
property. This node could be reached by stepping through the child nodes of the document,

Chapter 9: Microsoft’'s Document Object Model 1 35

but this property makes access much easier. Recall that there can only be one top-level node
in a well-formed XML document. A nil is returned if the document has no root yet.

function createElement (const tagName: WideString): IXMLDOMElement; safecall;

Generate a new IXMLDOMETement node for use within the document. The name of the ele-
ment is passed as a parameter. A namespace-qualified element cannot be created with this
method—the namespaceURI property of the resulting node is always set to an empty string.
You must use the createNode method instead for namespace-qualified nodes.

The newly created node has its ownerDocument property set to this document, but it does
not automatically become part of the document. You must insert or append it as the child of
the document or one of its existing children. The node’s nodeType is set to NODE_ELEMENT.

function createDocumentFragment: IXMLDOMDocumentFragment; safecall;
Produces a new IXMLDOMDocumentFragment node for building up a sub-structure. Its
nodeType is set to NODE_DOCUMENT _FRAGMENT. These nodes are not added to the main DOM
structure.

function createTextNode(const data: WideString): IXMLDOMText; safecall;
Creates a new IXMLDOMText node for use within the document. The content of the node is
passed as a parameter, with its nodeType being set to NODE_TEXT. As with an element, the
newly constructed text node must still be added to the DOM as the child of an existing node.

function createComment (const data: WideString): IXMLDOMComment; safecall;
Generates a new IXMLDOMComment node for adding to the document, setting its nodeType
property to NODE_COMMENT. Text for the comment is passed as a parameter. Following cre-
ation you must add the new node to the DOM before it becomes part of the document.

function createCDATASection(const data: WideString): IXMLDOMCDATASection;
safecall;
Produces a new IXMLDOMCDATASection node for use within the document. The content of the
section is passed as a parameter, with the nodeType property being set to NODE_CDATA
SECTION. Add the new node to the DOM as the child of an existing node.

function createProcessingInstruction(const target: WideString; const data:
WideString): IXMLDOMProcessingInstruction; safecall;
Generates a new IXMLDOMProcessingInstruction node for adding to the document, setting
its nodeType property to NODE_PROCESSING_INSTRUCTION. The target of and data for the
instruction are passed as parameters. After construction, add the new instruction to the
DOM.

function createAttribute(const name: WideString): IXMLDOMAttribute; safecall;
Create anew IXMLDOMAttribute node for attaching to an element. The name of the attribute
is passed as a parameter, with the nodeType property being set to NODE_ATTRIBUTE. How-
ever, the value of that attribute must be set separately. To be useful, the new attribute must be
added to an element node.

136 Part Il: The Document Object Model

You cannot create a namespace-qualified attribute using this method—the
namespaceURI property of the resulting node is always set to an empty string. Use the
createNode method instead for namespace-qualified attributes.

function createEntityReference(const name: WideString): IXMLDOMEntityReference;
safecall;
Produce a new IXMLDOMEntityReference node for use within the document. The name of
the entity to be included is passed as a parameter, while its nodeType is set to NODE_ENTITY
REFERENCE. Following construction, add the new node to the DOM under an existing node.
Recall, however, that you cannot create new entities for your document as these are
read-only under DOM Level 2.

function getElementsByTagName(const tagName: WideString): IXMLDOMNodelList;

safecall;

As for element nodes, this returns a list of element nodes with a particular name. Use a name
of * to match with all element names. These nodes may come from anywhere within the
entire hierarchy of the document. Their order in the list reflects their order in a pre-order tra-
versal of the original structure. Pre-order means that the node itself is visited first, followed
by each of its children in turn from left to right. The resulting list is “live,” with updates
affecting the DOM directly. For more complex selection criteria, use the selectNodes
method instead.

function nodeFromID(const idString: WideString): IXMLDOMNode; safecall;
Retrieve a particular node based on the value of'its ID attribute. The definition of an attribute
as an ID type may not be available if the document’s DTD or schema cannot be loaded. In
this case the function returns nil.

NOTE The nodeFromID method corresponds to the getElementByld method defined in the
DOM specification. All the remaining properties and methods are value-added enhance-
ments provided by Microsoft, although some of them would be expected in any
implementation of the DOM. Missing methods from the DOM specification include
createETementNS and createAttributeNS, which can be duplicated by the createNode method
below, and getElementsByTagNameNS.

function createNode(type : OleVariant; const name: WideString; const namespaceURI:

WideString): IXMLDOMNode; safecall;

Construct a generic node with the given type and names. Note that the other node construc-
tion methods do not allow you to specify a namespace URI for the node. In fact, since the
namespaceURI property of a node is read-only, this is the only way to create a node with an
attached namespace. The type of the node must be one of the enumerated values from List-
ing 9-3 as either its numeric or string value. For node types that do not have names, you
should pass an empty string for the name and namespace parameters. An error is generated
if a qualified name is supplied, but no namespace URI is given.

TIP When you generate a new element through the createNode method and supply a quali-
fied name and a namespace URI, the DOM automatically includes the corresponding
namespace declaration in that element when it is output as XML.

Chapter 9: Microsoft’'s Document Object Model g 137

property validateOnParse: WordBool read Get validateOnParse write
Set _validateOnParse;
This property enables or disables any validation against the DTD or schema for a document.
When set to True (the default), any specified DTD or schema is loaded and used to validate
the contents of the document. When set to False, the validation is not performed, merely a
check for well-formedness.

property resolveExternals: WordBool read Get resolveExternals write

Set_resolveExternals;

This flag turns on or off the retrieval of external definitions, which include external DTD
subsets, external parsed entities, and resolvable namespaces. When set to True (the default),
external references are loaded and parsed into the document. When set to False, these enti-
ties are not retrieved, which may produce an incomplete document. The setting of this
property is independent of the value of the validateOnParse property. However, if exter-
nals cannot be resolved when validating a document, an error results. Loading a DTD or
schema allows default values for attributes to be obtained, as well as setting the types of
attributes and elements.

property preserveWhiteSpace: WordBool read Get preserveWhiteSpace write
Set _preserveWhiteSpace;
This property controls how white space in the document is handled. When set to True, all
white space in the document is retained, regardless of any xm1 : space attributes that may be
set. When itis False (the default), the xm1 : space attribute settings determine which space is
retained and which is not.

function load(xmlSource: OleVariant): WordBool; safecall;
Create a DOM with this method that takes a URL (including a filename), an IStream object,
or an IIS Request object (for scripting purposes) as input, and attempts to retrieve the docu-
ment at that location and parse it. A return value of True is provided if it succeeds, False
otherwise. If it fails, check out the parseError property to determine the cause. Any exist-
ing DOM structure in the document is discarded when invoking this method or ToadXML.

function ToadXML(const bstrXML: WideString): WordBool; safecall;
This method also creates a DOM but operates on an XML document that is already held in
memory as a string, returning the same status values as Toad. Any existing structure is dis-
carded when called. The supplied string must be in UTF-16 or UCS-2 encodings for this
method to work.

property url: WideString read Get url;
Which document has been read can be determined by looking at this read-only property. It
returns a value following a successful load. An empty string results when a document is
being built in memory. The value is not updated when the save method is called.

138 @ Part Il: The Document Object Model

property parseError: IXMLDOMParseError read Get parseError;
If something does go wrong with the parsing, you can find out what by looking at the con-
tents of this read-only property. It refers to an instance of the IXMLDOMParseError interface.

procedure save(destination: OleVariant); safecall;
Document models can be written to persistent storage with this method, which takes a file-
name (not a URL), ASP Response object, IXMLDOMDocument reference, or any IStream
implementation as a parameter. If necessary, a file is created or any existing file is overwrit-
ten when specifying a filename. Using the Response object sends the document back to the
client. Saving to another document is the equivalent of saving to a file and then reparsing it,
allowing you to verify the persistability of the current document.

External entity references in the document type, its entities, or notations, are not altered
during the save process. The encoding scheme used for the save comes from that specified in
the XML declaration in the document. If no scheme is defined, it defaults to UTF-8. No vali-
dation is performed during a save, which could result in an invalid document being written
out.

property async: WordBool read Get async write Set async;
Parsing can be performed asynchronously by setting this property to True (its default).
When True, the 1oad method returns immediately, letting you continue with other process-
ing. The progress of the load is monitored through the readyState property or the
onreadystatechange event.

procedure abort; safecall;
An asynchronous load can be halted with this method. Any structure built so far is dis-
carded. The parseError property then indicates that the download was terminated. If the
document is already loaded, this method has no effect.

property readyState: Integer read Get readyState;
The status of the parse process is available through this read-only property. Its value is 1 for
“Loading,” 2 for “Loaded,” 3 for “Interactive,” or 4 for “Completed.” Loading means that
the document is still being read from its source location. Loaded indicates that it has all
arrived, but has not yet been parsed. Interactive denotes that the parse process is in progress,
while Completed means that the entire DOM has been built and is available for use.

property onreadystatechange: OleVariant write Set onreadystatechange;
To monitor the progress of an asynchronous operation you can use this write-only property
to receive notification of changes to the readyState property.

property ondataavailable: OleVariant write Set ondataavailable;
Another event for scripting environments, this write-only property registers an event that
triggers as data is read. You can then start processing these chunks, rather than waiting for
the entire document.

Chapter 9: Microsoft’s Document Object Model 139

property ontransformnode: OleVariant write Set_ontransformnode;
As nodes are processed through an XSL transformation, you can receive events for each
node before it is operated on through this write-only property.

IXMLDOMDocument2 Interface

New in the October 2000 release of Microsoft’s DOM is the IXMLDOMDocument?2 interface (shown
in Listing 9-19). This extends the previous IXMLDOMDocument interface and adds new functionality
dealing with validation, and namespaces and their associated schema. The entire class is addi-
tional to the document functionality laid out in the DOM specification.

Listing 9-19: The IXMLDOMDocument?2 interface

// //
// Interface: IXMLDOMDocument2

// Flags: (4544) Dual NonExtensible OleAutomation Dispatchable

// GUID: {2933BF95-7B36-11D2-B20E-00C04F983E60}

// //

IXMLDOMDocument2 = interface(IXMLDOMDocument)
['{2933BF95-7B36-11D2-B20E-00C04F983E60} ']
function Get namespaces: IXMLDOMSchemaCollection; safecall;
function Get schemas: OleVariant; safecall;
procedure Set_schemas(otherCo]1ect10n: OleVariant); safecall;
function validate: IXMLDOMParseError; safecall;
procedure setProperty(const name: WideString; value: OleVariant);
safecall;
function getProperty(const name: WideString): OleVariant; safecall;
property namespaces: IXMLDOMSchemaCollection read Get namespaces;
property schemas: OleVariant read Get schemas write Set schemas;
end;

The properties and methods of the IXMLDOMImplementation object are described below:

property namespaces: IXMLDOMSchemaCollection read Get namespaces;
This read-only property returns a list of the namespaces used in the document. Each distinct
namespace has one entry in the list, returning the read-only IXMLDOMNode object that is the
top of the corresponding schema structure. The order of the items in the list does not neces-
sarily match their appearance in the document. Loading a new document clears this list. If
there are no namespaces defined in the document, an empty list is returned.

property schemas: OleVariant read Get_schemas write Set_schemas;
This property lets you associate preloaded schemas with particular namespaces. You can
also override the schemas used by the document you are about to load. New schemas read
during a document load are not automatically added to this list. Setting a schema collection
disables any DTD processing since DTDs and schemas cannot be mixed. Restoring this
property to nil enables DTDs again.

function getProperty(const name: WideString): OleVariant; safecall;
Retrieve the current setting for the named document property with this method. See below
for property names.

140

Part Il: The Document Object Model

procedure setProperty(const name: WideString; value: OleVariant); safecall;

Set a particular document property with this method. The current properties are listed
below:

SelectionlLanguage lets you control the language used in calls to the seTectNodes or
selectSingleNode methods. Its value is either XPath or XSLQuery (the default).

ServerHTTPRequest is set to True to use the server-safe ServerXMLHTTP component
when loading documents.

SelectionNamespaces is a list of space-delimited namespace declarations, like
xmins:math="http://www.w3.0rg/TR/REC-MathML". Once set, these namespaces can be
used in the context of the selectNodes and selectSingleNode methods.

function validate: IXMLDOMParseError; safecall;
Invoke the validation processing on the current document with this method. It returns a
parse error object that is separate from that found in the parseError property, with only the
errorCode and reason properties filled in. This method requires that a DTD or schema be
present for the document; it cannot just check well-formedness. It does not import new
schemas, but may use those in an existing cache. If a namespace has no schema attached, its
elements are not validated.

function selectNodes(const queryString: WideString): IXMLDOMSelection; safecall;

This method is redefined in IXMLDOMDocument? to return an IXMLDOMSelection list, rather
than an IXMLDOMNodeList.

IXMLDOMSchemaCollection Interface

Also added to the October 2000 release of Microsoft’s DOM, and not part of the DOM specifica-
tion, is the IXMLDOMSchemaCollection interface (shown in Listing 9-20). Schemas may be cached
through this interface and then made available to documents for their reuse, which results in faster
loading. Instances of this object are created with the CoXMLSchemaCache class.

Listing 9-20: The IXMLDOMSchemaCollection interface

// //
// Interface: IXMLDOMSchemaCollection

// Flags: (4544) Dual NonExtensible OleAutomation Dispatchable

// GUID: {373984C8-B845-449B-91E7-45AC83036ADE}

// //

IXMLDOMSchemaCollection = interface(IDispatch)

['{373984(C8-B845-449B-91E7-45AC83036ADE} ']

procedure add(const namespaceURI: WideString; var_: OleVariant);
safecall;

function get(const namespaceURI: WideString): IXMLDOMNode; safecall;

procedure remove(const namespaceURI: WideString); safecall;

function Get length: Integer; safecall;

function Get namespaceURI(index: Integer): WideString; safecall;

procedure addCollection(const otherCollection:
IXMLDOMSchemaCollection); safecall;

function Get newEnum: IUnknown; safecall;

property length: Integer read Get length;

property namespaceURI[index: Integer]: WideString

Chapter 9: Microsoft’s Document Object Model 141

read Get_namespaceURI; default;
property newEnum: IUnknown read Get_ newEnum;
end;

NOTE Microsoft supports schemas based on XML Data Reduced, which differs from the
W3C XML Schema specification.

Schema documents must be free-threaded (see the section titled “Threading the DOM” later in this
chapter) to be included in a cache. The cache can be shared between a number of documents, and a
single schema document can belong to many caches. To utilize the cache, set the schemas property
of the document (after its creation, but before loading) to point to the cache.

An IXMLDOMSchemaColTlection object’s properties and methods are detailed below:

property length: Integer read Get length;
The number of schemas in the collection is returned by this read-only property.

property namespaceURI[index: Integer]: WideString read Get namespaceURI; default;
Step through the schemas and retrieve their associated namespace URIs with this read-only
property. Note that this is the default property of the object, and thus it can be referenced just
with the brackets, omitting the property name.

function get(const namespaceURI: WideString): IXMLDOMNode; safecall;
This function returns a reference to the read-only node that contains the schema element for
the specified namespace URI.

procedure add(const namespaceURI: WideString; var_: OleVari ant); safecall;
Add a new schema to the cache with this method, specifying its associated namespace URI.
An empty string as the namespace URI denotes the default namespace. The schema refer-
ence can be its actual URI, in which case it is loaded synchronously with validation and
external resolution turned off, an existing DOM document, or a DOM node representing an
inline schema. Setting the schema reference to nil removes any schema for the supplied
namespace URI.

procedure addCollection(const otherCollection: IXMLDOMSchemaCollection);
safecall;
Add all the schemas from another cache into the current one. Existing schemas with names
matching those being added are overwritten.

procedure remove(const namespaceURI: WideString); safecall;
Delete the schema attached to the given namespace URI from the cache.

IXMLDOMSelection Interface

Another addition in the October 2000 release of Microsoft’s DOM is the IXMLDOMSeTection inter-
face (shown in Listing 9-21), also not part of the DOM specification. This list represents the nodes
that match a given XSL query or XPath expression, as returned by the selectNodes method of the
IXMLDOMDocument?2 interface.

142 Part Il: The Document Object Model

Listing 9-21: The IXMLDOMSelection interface

// //
// Interface: IXMLDOMSelection

// Flags: (4544) Dual NonExtensible OleAutomation Dispatchable

// GUID: {AA634FC7-5888-44A7-A257-3A47150D3A0E}

// //

IXMLDOMSelection = interface(IXMLDOMNodelList)
['{AA634FC7-5888-44A7-A257-3A47150D3A0E} ']
function Get_expr: WideString; safecall;
procedure Set expr(const expression: WideString); safecall;
function Get context: IXMLDOMNode; safecall;
procedure Set context(const ppNode: IXMLDOMNode); safecall;
function peekNode: IXMLDOMNode; safecall;
function matches(const pNode: IXMLDOMNode): IXMLDOMNode; safecall;
function removeNext: IXMLDOMNode; safecall;
procedure removeAll; safecall;
function clone: IXMLDOMSelection; safecall;
function getProperty(const name: WideString): OleVariant; safecall;
procedure setProperty(const name: WideString; value: OleVariant);
safecall;
property expr: WideString read Get expr write Set expr;
property context: IXMLDOMNode read Get context write Set_context;
end;

The properties and methods of the IXMLDOMSelection object are shown below:

property context: IXMLDOMNode read Get context write Set context;
This property returns or establishes the root node for the selection. Setting it resets the state
of the selection so that it can be stepped through again.

property expr: WideString read Get expr write Set expr;
Retrieve or set the XPath expression with this property. Setting it executes the query and
resets the selection state to the beginning of the list. If the expression is invalid, an error
results. Use the inherited Tength and item properties, or the reset and nextNode methods,
to traverse the list sequentially.

function peekNode: IXMLDOMNode; safecall;
Look at the next node without advancing the current position through this function. It
returns nil if there is no next node.

function matches(const pNode: IXMLDOMNode): IXMLDOMNode; safecall;
This function determines whether or not a given node exists in the selection. It returns the
node that, if set as the context of the query, would include the supplied node in its results. If
no such node exists, it returns nil.

function getProperty(const name: WideString): OleVariant; safecall;

procedure setProperty(const name: WideString; value: OleVariant); safecall;
These methods let you set or retrieve the value of the named property. The property name
would be SelectionLanguage to determine whether XSL or XPath syntax is currently in
effect.

function removeNext: IXMLDOMNode; safecall;
Delete the next node in the list with this function. It returns a reference to that node.

Chapter 9: Microsoft’s Document Object Model 143

procedure removeAll; safecall;
Delete all the nodes in the collection through this method.

function clone: IXMLDOMSelection; safecall;
This function returns an exact copy of the collection, including its current position and context.

IXMLDOMImplementation Interface

The IXMLDOMImpTlementation interface (see Listing 9-22) provides access to features and abilities
outside the scope of a single document.

Listing 9-22: The IXMLDOMImplementation interface

// //
// Interface: IXMLDOMImplementation

// Flags: (4544) Dual NonExtensible OleAutomation Dispatchable

// GUID: {2933BF8F-7B36-11D2-B20E-00C04F983E60}

// //

IXMLDOMImplementation = interface(IDispatch)
['{2933BF8F-7B36-11D2-B20E-00C04F983E60} ']
function hasFeature(const feature: WideString;

const version: WideString): WordBool; safecall;
end;

The IXMLDOMImplementation object’s methods are described below:

function hasFeature(const feature: WideString; const version: WideString):
WordBool; safecall;
This method lets you determine what abilities this implementation of the DOM has. Given a
feature name and an optional version, it returns a simple flag that indicates whether that fea-
ture can be used. The current implementation only recognizes the following features: XML,
DOM, and MS-DOM—and only version 1.0 for each.

NOTE The createDocument and createDocumentType methods from the DOM Level 2 speci-
fication do not appear in Microsoft’'s DOM. The package does provide alternate ways to
generate new documents, as shown later.

Document Traversal

The document traversal interfaces, also part of the DOM Level 2 specification, are not included in
Microsoft’s implementation.

The seTectNodes method of the IXMLDOMNode interface provides somewhat similar functional-
ity to the NodeIterator from the DOM Level 2. Through the XSL query passed to this method
you can select types of nodes, equivalent to the whatToShow property of a NodeIterator. Some
NodeFilter operations can be duplicated through predicates on the XSL query.

There is no equivalent of the TreeWalker interface within the Microsoft package.

144

Part Il: The Document Object Model

IXSLTemplate Interface

Support for XSL Transformations also comes in the Microsoft DOM package (another extension
beyond the DOM specification). In the IXMLDOMNode interface, there are transformNode and
transformNodeToObject methods that apply a given stylesheet to the current node. These take the
stylesheet as a hierarchy of nodes and must step through both that structure and the current node’s
to create the output tree.

The IXSLTemplate interface (shown in Listing 9-23) lets you prepare for transformations by
precompiling the stylesheet and caching the result. Processors for the stylesheet are then applied
to nodes as necessary, resulting in better performance.

Listing 9-23: The IXSLTemplate interface

// //
// Interface: IXSLTemplate

// Flags: (4544) Dual NonExtensible OleAutomation Dispatchable

// GUID: {2933BF93-7B36-11D2-B20E-00C04F983E60}

// //

IXSLTemplate = interface(IDispatch)
['{2933BF93-7B36-11D2-B20E-00C04F983E60} ']
procedure Set_sty]esheet(const stylesheet: IXMLDOMNode); safecall;
function Get_stylesheet: IXMLDOMNode; safecall;
function createProcessor: IXSLProcessor; safecall;
property stylesheet: IXMLDOMNode read Get stylesheet
write Set_stylesheet;
end;
Use the CoXSLTemplate class (for the latest version, or CoXSLTemplate26 or CoXSLTemplate30 for
specific versions) to create an instance of the template cache. Supply it with the structure for the
stylesheet and construct the required processors later.

The properties and methods of an IXSLTemplate object are shown below:

property stylesheet: IXMLDOMNode read Get stylesheet write Set stylesheet;
This property initializes the template object with the stylesheet to be applied later. Set it to
the node that is at the root of the stylesheet document. Thereafter that document is read-only,
until no longer used by the template.

function createProcessor: IXSLProcessor; safecall;
Create an apartment-threading model IXSLProcessor object with this method, based on the
template referenced by the stylesheet property. Multiple processors can be created from
the one template.
Each processor is a snapshot of the stylesheet document at the time it is created. The pro-
cessor can only be updated to reflect changes to a stylesheet by creating a new one.

Chapter 9: Microsoft’s Document Object Model 1 45

IXSLProcessor Interface

Having cached the compile stylesheet with the IXSLTemplate interface, you create an
IXSLProcessor object (see Listing 9-24) from it for application to a particular node. These proces-
sors are apartment-threaded and store the state for a single transformation call.

Listing 9-24: The IXSLProcessor interface

// //
// Interface: IXSLProcessor

// Flags: (4544) Dual NonExtensible OleAutomation Dispatchable

// GUID: {2933BF92-7B36-11D2-B20E-00C04F983E60}

// //

IXSLProcessor = interface(IDispatch)
['{2933BF92-7B36-11D2-B20E-00C04F983E60} ']
procedure Set input(pVar: OleVariant); safecall;
function Get input: OleVariant; safecall;
function Get ownerTemplate: IXSLTemplate; safecall;
procedure setStartMode(const mode: WideString;
const namespaceURI: WideString); safecall;
function Get startMode: WideString; safecall;
function Get startModeURI: WideString; safecall;
procedure Set output(pOutput: OleVariant); safecall;
function Get output: OleVariant; safecall;
function transform: WordBool; safecall;
procedure reset; safecall;
function Get readyState: Integer; safecall;
procedure addParameter(const baseName: WideString;
parameter: OleVariant; const namespaceURI: WideString); safecall;
procedure addObject(const obj: IDispatch;
const namespaceURI: WideString); safecall;
function Get stylesheet: IXMLDOMNode; safecall;
property input: OleVariant read Get input write Set input;
property ownerTemplate: IXSLTemplate read Get ownerTemplate;
property startMode: WideString read Get startMode;
property startModeURI: WideString read Get startModeURI;
property output: OleVariant read Get_output write Set_output;
property readyState: Integer read Get readyState;
property stylesheet: IXMLDOMNode read Get stylesheet;
end;

The IXSLProcessor object’s properties and methods are detailed below:

property stylesheet: IXMLDOMNode read Get stylesheet;
Gain access to the node hierarchy for the stylesheet through this read-only property. This is
the same structure that the IXSLTemplate object returns through its stylesheet property at
the time the processor is created, although the template may have been subsequently
changed.

property ownerTemplate: IXSLTemplate read Get ownerTemplate;
This read-only property gets you back to the template that created this processor.

property input: OleVariant read Get input write Set input;

The nodes to be transformed are set through this property, passing a reference to an
IXMLDOMNode.

146

Part Il: The Document Object Model

property output: OleVariant read Get_output write Set output;
The results of the transformation are sent to the destination designated by this property. It
may be an IXMLDOMDocument node, an ASP Response object, or any object that implements
the IStream interface. Setting it to one of these objects causes the transformed tree to be
written out to it in an appropriate format. The document’s encoding is determined by the
corresponding attribute on the xs1:output element in the stylesheet.

Alternately, the property can be left unspecified prior to the transformation. Thereafter,
reading this property value returns a string representing the output of the process. In an asyn-
chronous transformation, only the next chunk of the output is returned each time it is
referenced. String output is always created with the Unicode encoding, regardless of the
xs1:output setting.

procedure setStartMode(const mode: WideString; const namespaceURI: WideString);
safecall;
Use this method to set the starting mode for the transformation. Modes in stylesheets allow
different types of transformations to be applied to the same set of nodes—for example, one
mode for a table of contents, another for the body of the document. See http://www.w3.org/
TR/WD-xslt#modes for more information.

property startMode: WideString read Get startMode;
This read-only property returns the base name part of the start mode set above, with a default
of an empty string.

property startModeURI: WideString read Get startModeURI;
Retrieve the namespace URI part of the start mode set above through this read-only prop-
erty, again defaulting to an empty string.

property readyState: Integer read Get readyState;

During processing, this read-only property returns the current state of the transformation.
The value is one of READYSTATE_UNINITIALIZED (0), which indicates that some required
parameters still need to be set, READYSTATE_LOADING (1), not currently used, READYSTATE
LOADED (2), where all required properties are set and the transformation can begin,
READYSTATE INTERACTIVE (3), when the transformation is proceeding, or READYSTATE
COMPLETE (4), when it is all over. You can monitor this value during an asynchronous
transformation.

procedure addParameter(const baseName: WideString; parameter: OleVariant; const

namespaceURI: WideString); safecall;

Parameter values for use within the transformation (through xs1:param elements) are set
with this method. Supply the base name of the parameter, its value (as a simple value or as an
IXMLDOMNodeList or IXMLDOMNode, with the latter being converted into a node list with a sin-
gle entry), and an optional namespace URI. In the stylesheet these parameter values can
affect the way the transformation progresses. For asynchronous processing, a parameter
value may be updated in callbacks, with the new value taking immediate effect.

Chapter 9: Microsoft’'s Document Object Model a 147

y S0y O

procedure addObject(const obj: IDispatch; const namespaceURI: WideString);
safecall;
Entire objects are passed to the stylesheet with this method. The object itself is supplied
along with its full namespace URI. Within the stylesheet you refer to this namespace when
invoking methods on the object.

function transform: WordBool; safecall;
The heart of the entire transformation, this method starts or resumes the process, returning
True if successful and False otherwise. Certain properties must be set before the transfor-
mation can be started, specifically input.

procedure reset; safecall;
Calling this method restores the processor to the state it was in just before invoking trans-
form. Property values set previously are not affected by this call.

TIP Chapter 26 “Examination XML—Web Client” demonstrates the use of these transfor-
mation interfaces. The application described there delivers content from XML documents as
HTML over the Web. XSLT provides the formatting capabilities.

Loading the DOM

Before you can access any of the abilities of the DOM, you need to create an instance of the COM
object that implements it. Although the DOM Level 2 specification describes how to create
instances of a document, Microsoft does not follow this level of the DOM. Instead, you have sev-
eral other options with Microsoft’s version. Since it is a COM interface you can use
CreateOleObject from the ComObj unit:

var

XMLDoc: OTeVariant
XMLDoc := CreateOleObject('MSXML');
if Assigned(XMLDoc) then

or you can use CoCreatelnstance from the ActiveX unit:

var
XMLDoc: IXMLDOMDocument;
hRes: HResult;

hRes := CoCreateInstance(CLASS DOMDocument, nil,
CLSCTX_INPROC_SERVER, IID_IXMLDOMDocument, XMLDoc);

if hRes = S _OK then

or (probably the easiest) use the CoDOMDocument class generated within the MSXML type library:

var
XMLDoc: IXMLDOMDocument;
XMLDoc := CoDOMDocument.Create;

The first version creates a late-bound object, and so provides no checking of method names, etc.,
at compile time. Since the other versions declare the document as type IXMLDOMDocument, they can

148

Part Il: The Document Object Model

verify all interactions with the object during compilation. In each case you should free up the asso-
ciated resources when you have finished with them by setting your reference to VarNul1 (for the
first version) or nil (although they are also freed automatically when the variable goes out of
scope).

In this example, a generic viewer of XML documents, the last option is used. For this you must
include the ActiveX and MSXML2_t1b units (for version 3 of Microsoft’s DOM) in the uses clause
of your project to import the appropriate definitions. The DOM is created to read in an XML docu-
ment and to display its contents in a viewer that strives to exercise most of the node types.

When you are ready to use the DOM, declare a variable of type IXMLDOMDocument, and
instantiate it with a call to CoDOMDocument.Create (supplied by the type library conversion) as
shown in Listing 9-25. The various flags controlling the operation of the parser are set up as menu
items within the viewer. Each is a check menu item whose state is transferred directly to the corre-
sponding properties of the parser.

Listing 9-25: Using the Microsoft DOM

{ Load an XML document }
procedure TfrmXMLViewer.LoadDoc(Filename: string);
var
XMLDoc: IXMLDOMDocument;
begin
pgcDetails.ActivePage := tshDocument;
{ Initialize document-wide details for display }
InitDocumentDetails;
{ Load the source document }
memSource.Lines.LoadFromFile(Filename);
d1gOpen.Filename := Filename;
{ Instantiate the DOM }
XMLDoc := CoDOMDocument.Create;
trvXML. Items.BeginUpdate;
try
{ Parse the document }
XMLDoc.PreservelWhitespace := mniPreserveWhitespace.Checked;
XMLDoc.ResolveExternals := mniResolveExternals.Checked;
XMLDoc.ValidateOnParse := mniValidateOnParse.Checked;
if not XMLDoc.Load(Filename) then
raise Exception.Create(Format(NoLoadError,
[XMLDoc.ParseError.Line, XMLDoc.ParseError.LinePos,
XMLDoc.ParseError.Reason]));
edtSystemId.Text := XMLDoc.URL;
{ Add the structure to the tree view }
AddETlementToTree(XMLDoc, nil);
trvXML. Items[0] .Expand(False);
finally
trvXML. Items.EndUpdate;
{ Release the DOM }
XMLDoc := nil;
end;
end;

TIP If you use the CoDOMDocument class to instantiate your document, you always get an
object that reflects the latest version of the IXMLDOMDocument interface. If you need to tie your
application to a particular version, you can use the CoDOMDocument26 or CoDOMDocument30
classes to create specific implementations.

Chapter 9: Microsoft's Document Object Model 149

Once you have a reference to the DOM object, you ask it to parse a document by invoking its Load
method. As noted earlier, the DOM specification does not describe how a document model is cre-
ated from an existing document. In fact, until DOM Level 2, the specification did not even define
how to create a new document object, although once you have a document instance you can gener-
ate other nodes from it.

Another extension to the DOM specification is the ParseError property of the document
object. If something goes wrong during the parse process, this property provides useful informa-
tion in identifying the problem. The main details you want are the explanation of the problem,
Reason, and the line and column number of the offending characters within the document, Line
and LinePos. Microsoft’s implementation does not define a DOM exception, so you can raise a
standard one or define your own DOM-specific version.

Now that the document has been successfully parsed, you may access its contents through the
properties of the document object. The items encountered within the document are available
through its ChildNodes property, although you can go directly to the top-level element via the
DocumentElement property.

The MS DOM XML Viewer

As an example of using the Microsoft DOM to parse a document you can build an XML viewer
application to show the contents of any XML document. The viewer’s form contains a tree view to
show the structure of the entire document, with details about each item in the tree appearing on the
right-hand side as they are selected (see Figure 9-2).

T XML Viewer [MS DOM) [-[O]
File Yiew

Doc. Type |movis-watcher [~ Stand alone
Publc Id |
System Id |fiIe:.-".-".-"D:FData.-"KethmlB ook/movie-watches kml

R Pleasarty

Sample XML doct Version [10 | Encoding [UTF8

= #mlstyleshest
(=@ maviewatcher

= movies
=13 movie S -site hittp: /v, stanwars. co

=@ nane

Entities

hittp: /v, stamwars. comdepise GIF

GIF iview, exe

Figure 9-2: The XML viewer showing document details.

The document to parse can be specified through the command line, or by selecting the File | Open
menu items.

To build up the structure in the tree view, you work your way through the DOM in memory. At
each level, starting with the document itself, you add a tree node for the current DOM node and

150 Part Il: The Document Object Model

then call the routine recursively to process each of that node’s children (see Listing 9-26). The cur-
rent DOM node and the parent tree node are passed as parameters to each call.

Listing 9-26: Filling a tree view from the DOM

{ Add a TXMLElement to the tree view }
function AddETement(Parent: TTreeNode; Name: string;
Element: TXMLElement): TTreeNode;
begin
FList.Add(Element);
Result := trvXML.Items.AddChildObject(Parent, Name, Element);
with Result do

begin
ImageIndex := Ord(Element.ETementType);
SelectedIndex := ImageIndex;
end;
end;

{ Add current element to the treeview and
then recurse through children }
procedure AddETementToTree(Node: IXMLDOMNode;
TreeParent: TTreeNode);
var
Index: Integer;
DisplayName: string;
NewNode: TTreeNode;
Attribs: TStringlList;
Attrib: IXMLDOMAttribute;
begin
{ Generate name for display in the tree }
if Node.NodeType in
[NODE_TEXT, NODE_COMMENT, NODE_CDATA SECTION] then
begin
if Length(Node.NodeValue) > 20 then
DisplayName := Copy(Node.NodeValue, 1, 17) + '...
else
DisplayName := Node.NodeValue;
end
else
DisplayName := Node.NodeName;
{ Create storage for later display of node values }
case Node.NodeType of
NODE_ELEMENT:
begin
Attribs := TStringList.Create;
try
for Index := 0 to Node.Attributes.Length - 1 do
with Node.Attributes.Item[Index] do
Attribs.Values[NodeName] := NodeValue;
NewNode := AddElement(TreeParent, DisplayName,
TXMLETement.Create(xtElement, Node.NodeName,
Node.NamespaceURI, Node.BaseName, '', Attribs));
finally
Attribs.Free;
end;
end;
NODE_TEXT:
with Node as IXMLDOMText do
NewNode := AddETement(TreeParent, DisplayName,
TXMLETement.Create(xtText, '', '', '', Data, nil));
NODE_CDATA_SECTION:

Chapter 9: Microsoft’s Document Object Model 1 51

with Node as IXMLDOMCDATASection do

NewNode := AddElement(TreeParent, DisplayName,
TXMLETement.Create(xtCData, '', '', '', Data, nil));
NODE_ENTITY REFERENCE:

NewNode := AddETement(TreeParent, DisplayName,
TXMLElement.Create(xtEntityRef, Node.NodeName, '', '',
',onil))s

NODE_PROCESSING_INSTRUCTION:

with Node as IXMLDOMProcessingInstruction do

begin
NewNode := AddElement(TreeParent, DisplayName,

TXMLETement.Create(xtInstruction, Target, '', '',
Data, nil));
if UpperCase(Target) = XMLValue then
begin
{ Special handling for the XML declaration }
edtVersion.Text :=
Node.Attributes.GetNamedItem(VersionAttr).NodeValue;
Attrib := Node.Attributes.GetNamedItem(EncodingAttr) as
IXMLDOMAttribute;
if Assigned(Attrib) then
edtEncoding.Text := Attrib.NodeValue;
Attrib := Node.Attributes.GetNamedItem(StandAloneAttr) as
IXMLDOMAttribute;
if Assigned(Attrib) then
cbxStandAlone.Checked :=
(UpperCase (Attrib.NodeValue) = YesValue);
Attrib := nil;
end;
end;
NODE_COMMENT :

with Node as IXMLDOMComment do

NewNode := AddETement(TreeParent, DisplayName,
TXMLETement.Create(xtComment, '', '', '', Data, nil));
NODE_DOCUMENT :

NewNode := AddElement(TreeParent, XMLDocDesc,
TXMLETement.Create(xtDocument, XMLDocDesc, '', '',

"', onil));
NODE_DOCUMENT_TYPE:

with Node as IXMLDOMDocumentType do

begin
edtDocType.Text := Name;

NewNode := AddElement(TreeParent, DTDDesc,
TXMLETement.Create(xtvEntityRef, DTDDesc, '', '',
', onil));
end;
NODE_ENTITY:

with (Node as IXMLDOMEntity), stgEntities do
if NotationName <> '' then
begin

{ Unparsed entity }
if Cells[0, RowCount - 1] <> '' then
RowCount := RowCount + 1;
Cells[0, RowCount - 1] := NodeName;
Cells[1, RowCount - 1] := Publicld;
Cells[2, RowCount - 1] := Systemld;
Cells[3, RowCount - 1] := NotationName;
end
else
{ Parsed entity }

152 Part Il: The Document Object Model

NewNode := AddETement(TreeParent, DisplayName,
TXMLETement.Create(xtEntityRef, NodeName,
||’ ||’ ||’ n.|'|));

NODE_NOTATION:
with (Node as IXMLDOMNotation), stgNotations do
begin
if Cells[0, RowCount - 1] <> '' then
RowCount := RowCount + 1;
Cells[0, RowCount - 1] := NodeName;
Cells[1, RowCount - 1] := Publicld;
Cells[2, RowCount - 1] := Systemld;
end;
end;
{ And recurse through any children }
if Node.HasChildNodes then
for Index := 0 to Node.ChildNodes.Length - 1 do
AddETementToTree (Node.ChildNodes[Index], NewNode);
end;

Since all the nodes in the DOM ultimately derive from IXMLDOMNode, you can treat them generi-
cally at this level. The nodeType property indicates what sort of node you are dealing with, and
dictates how it is processed (through a case statement). The nodeName and nodeValue properties
provide basic details about each node, with further information depending on its type.

In constructing the tree view, you need to save additional data about each node so that it can be
retrieved for later display on the right-hand side of the form. Although you could save references
to the objects within the DOM itself, simpler TXMLETement objects hold the basic details. This
class provides storage for a node’s type, name(s), value, and attributes. The DOM and associated
resources can then be discarded after it has been loaded.

The text displayed in the tree view generally comes from the name of each node. For
non-text-type nodes this contains a meaningful value such as the element name or processing
instruction target application. However, for text type nodes the DOM supplies standard names
such as #text or #comment. To make the tree view more useful, you can extract the first 20 charac-
ters for these types of nodes and display them instead. This is what happens at the start of the
AddETementToTree method | pET——— —1=
with the DisplayName | Ee yiew

variable. ?gwes _ = ™
Then you look at the node || = @f Local name [movie
. = =
type to determine how the "G Sy T b TVake
node is to be interpreted. e wing PG
Generally, you add a node to B drector logoul __|SW1Hogo
Y,y 3 Geoge Lucas || g S it
the tree with the name = f;‘l’g
selected above, and attach a @f—i}iem“ee
newly created TXMLETement @a;a Ewan Me
. . . = tar
object with its values set B Jskelly
. =12 star
appropriately. For Element- E3 Natsie P
. (= synopsis =
Type nodes this means B il ;IJ

extracting the attribute values
from the DOM and Figure 9-3: Element details displayed within the viewer.

Chapter 9: Microsoft’'s Document Object Model R

3

transferring them to a string list for their later display. Figure 9-3 shows the viewer displaying an
element’s details.

Attribute nodes are handled as part of the processing for an element, and are thus not encoun-
tered while traversing the normal DOM hierarchy.

Text type nodes show up with truncated text in the tree view, while their full content appears on
the right. See Figure 9-4 for an example.

XML Viewer M5 DOM) =[O =]
Fie Miew
[movie | Test/COATA Section
=@ name (when the evil Trade Federation plats to take over the peaceful -
ER Sta\wWas - The P planet of Naboo, Jedi warior Qui-Gaon Jinn and his apprentice Dbits/an Kenobi
=51 length embark on an amazing adventue to save the planet. Wwith ther on thes joumey
&3 131 iz the poung queen Amidala, Gungan outcast Jarl ar Binks, and the powerful
E ; Captain Panaka, who vl all ravel to the faraway plansts of Tatoone
=g director and Coruscant in a fufile attempt to save their werld from Darth Sicdous,
£3 George Lucas leader of the Trade Federafion, and D asth Maul, the stongest Dark Lord
=2 staring of the Sith to ever wield a hghtsaber.
B star
L3 Liam Meeson
=EY dar
R Ewan MoGrer
B star
£3 Jake Liopd
= @ star
R Matslie Portm.
-2 synopsis
rEey o hen the ev Tra
2 mavie =
KT il -

Figure 9-4: Contents of a text node within the viewer.

The processing instruction that contains the XML prolog is singled out to extract further details
about the document itself. Otherwise, these appear like text nodes with their target showing in the
tree view and their command in the text pane.

Nodes containing DTD information—document type, entity, and notation nodes—are not
added to the growing tree view, but are added to controls found on the page for the document as a
whole. Only external unparsed entities are treated this way. Parsed entities are treated normally,
being added directly beneath the document node in the tree. Their content also appears in the body
of the document where they have been referred to.

Finally, in all cases, each child node is processed in the same way through a recursive call.
Thus, you work your way down through the document hierarchy, handling each node as it is
encountered.

Viewing Node Details

Once the DOM has been processed into the tree view and other controls, the program expands the
topmost node in the tree—the document node—and displays the associated document information
(see Figure 9-2). As each node is selected within the tree view, its corresponding details are dis-
played in the right panel.

154

Part Il: The Document Object Model

The code for this is shown in Listing 9-27. Each selection retrieves the TXMLETement object for
that node and examines it. Its type determines which detail page is shown and what values are used
to fill the controls upon it.

Listing 9-27: Showing details of a selected node

{ Display details for the selected XML element }
procedure TfrmXMLViewer.trvXMLChange(Sender: TObject;
Node: TTreeNode);
var
Index: Integer;
begin
with TXMLElement (trvXML.Selected.Data) do
case ElementType of
xtDocument:
{ Show document details, including entities
and notations }
pgcDetails.ActivePage := tshDocument;
xtElement:
begin
{ Show element details, including attributes }
pgcDetails.ActivePage := tshElement;

edtURI.Text := NamespaceURI;
edtLocalName.Text := LocalName;
with stgAttributes do
begin
if Attributes.Count = 0 then
RowCount := 2
else

RowCount := Attributes.Count + 1;
Rows[1].Clear;
for Index := 0 to Attributes.Count - 1 do
begin
Cell1s[0, Index + 1] := Attributes.Names[Index];
Cells[1, Index + 1] :=
Attributes.Values[Attributes.Names[Index]];
end;
end;
end;
else
begin
{ Show details for other nodes - text type }
pgcDetails.ActivePage := tshText;

memText.Lines.Text := Value;

case ElementType of
xtComment : 1bTNodeType.Caption := CommentDesc;
xtInstruction: 1bTNodeType.Caption :=

InstructionDesc;

xtEntityRef: 1b1NodeType.Caption := EntityRefDesc;
else 1bTNodeType.Caption := TextDesc;

end;

end;
end;
end;

Selecting the View | View source menu options allows you to see the underlying XML document
for comparison with the extracted structure. Figure 9-5 shows its contents.

Chapter 9: Microsoft’'s Document Object Model R

ESIXML Viewer (MS DOM)

Fle iew

| 2ml version="1.0" encoding="UTF-8"'%>

<IDOCTYPE movie-watcher SYSTEM “movie-watches did” [
<INOTATION HTML PUBLIC "/ A3C//DTD HTML 4.0 Transitional //EN">
<INOTATION GIF SYSTEM “iview. exe™
<IENTITY 5w 1-site SYSTEM "hittp: 2w, stanwars comfepisode-i# NDATA HTML:
<ENTITY 5'w1-logo SYSTEM

“hitp: A vene, starwars. com/spisode-i/palpatineAimgtop_logo.gif NDATA GIF:

<EMTITY PY "Pleasantvila">

I»
<l Sample XML document with data about movies
and when and where they are showing
Developed by Keith wWood, 28 Map 1999 -2
< 7uml shylashest type="text/xsl'" href="movie-watcher xsf ' 7>
<moviewatchers
<moviesy
<movie ida"ENT" ratings"PG-13">
<nare>Ertrapment</names
<lenathi> 112/ lengthe
<diectorsJon Amiel< /diecton
<slaning:
<shar> Sean Connery< fstary
<starxCathering ZetaJonesd /starr
</ sharming
<zynopazsFollowing the theft of a highly-secured piece of anwork,
An anent comanres her insurancs anencd emnlioes o alloe hes b

Figure 9-5: Compare with the original XML document.

Threading the DOM

The Microsoft implementation of the DOM provides different versions to deal with different
threading models. By default (using the CoDOMDocument and related classes), an apart-
ment-threaded DOM is created. Although the behavior of the two versions is identical,
apartment-threaded documents show better performance since the parser does not have to worry
about concurrent access.

If you want a free-threaded document instead, you can use the CoFreeThreadedDOMDocument
class to create it. As before, this constructs a latest-version object, with CoFreeThreadedDOM-
Document26 and CoFreeThreadedDOMDocument30 providing the specific versions. Free-threaded
documents are required for use with the schema cache.

Documents or nodes created with one threading model cannot be combined with those created
under the other model.

Summary

This chapter has examined the Document Object Model as implemented by Microsoft in its
MSXML.AIl or MSXML3.dll. These versions follow the DOM Level 1 specification fairly
closely, providing added functionality where necessary (notably in the IXMLDOMDocument inter-
face). Unfortunately, Microsoft does not yet support the full DOM Level 2 functionality. Some
aspects appear already, often with different names, but others do not.

Microsoft has added additional abilities in the areas of working with schemas and XSL trans-
formations. You can cache both of these to increase performance. Unfortunately, both support the
Microsoft versions of these standards, which have some differences from the W3C version.

Following a look at each of the interfaces that make up Microsoft’s offering, you saw how they
are used in creating an application that displays the contents and structure of any XML document.

156 @ Part II: The Document Object Model

Further abilities of the Microsoft DOM are described in Chapter 19, which takes a look at
using the DOM to generate XML; in Chapter 21, where XML documents are transformed using
XSL Transformations; and in some of the application examples in Part V, notably Chapter 26 on
using XSLT.

Chapter 10

CUESoft’s Document
Object Model

CUESoft.com has also implemented the DOM specification under Windows, this time as a set of
native Delphi objects. The advantage of having native objects is that the parser and DOM can be
compiled directly into your program, with no need to worry about mismatched DLLs.

The W3C DOM interfaces are implemented as classes in the CUEXmlI Delphi package, with
the class hierarchy shown in Figure 10-1. CUESoft.com follows the DOM Level 1 specification
very closely, although they also have several extensions for increased functionality and usability.
They do have some support for namespaces, but handle only string values, not the expected
WideStrings.

The CUESoft DOM is a commercial product. You can obtain the source for an additional fee.
If you have the source you can compile it into any 32-bit version of Delphi. Otherwise, there are
prepackaged libraries available for Delphi versions 3 through 5. In general, all you have to do to
install the package is as follows:

1. Unpack the files from CUESoft into an appropriate directory.

2 Select Component | Install Packages... from the Delphi menu.
3. Click the Add button.
4

Change the file type to Package collection (*.dpc), and browse to the directory where you
unpacked the files.

hd

Select cuexml2_X.dpc (where X is your version of Delphi) and click OK.

6. Click Finish on the package installation dialog and OK on the package dialog. The two
components in the package appear on the CUESoft tab in the component palette.

Each of the classes is described in further detail below. Differences from the DOM specification
are noted as they are encountered. Unless otherwise noted, all these classes appear in the
Xm10bjModel unit.

157

158 @ Part ll: The Document Object Model

¢

Figure 10-1: The CUESoft DOM class hierarchy.

TObject |
Exception |

TDOMException

TXmlParserError

TComponent
| TXmlObjModel |

_1 TXmIDOMImplementation |
_{ TXmiNamedNodeMap l
‘TXmlNode |
TXmiAttribute
_LTXmICharamerData |
|TXn1IGurnrnem I

TXmiCDataSection |

TXmlDocument

TXmiDocumentFragment |

ﬁ

TXmiDocumentType |

TXmlElement
TXmlEntity |

TXmiEntityReference |

TXmiNotation

I‘I‘XmIProcassEnglnstruction |

TXmiNodeList |

TDOMException Exception

General errors that occur during DOM processing within the CUESoft package are notified as
TDOMExceptions (see Listing 10-1). Following the DOM specification, it adds only a single
numeric code to denote which type of problem arose.

Chapter 10: CUESoft’s Document Object Model 1 59

Listing 10-1: The TDOMException exception

TDOMException = class(Exception)

public

constructor CreateCode(oCode: EExceptionCode);
property Code: EExceptionCode read FCode;

end;

The properties and methods of a TDOMException object are described below:

constructor CreateCode(oCode: EExceptionCode);
This constructor generates a new exception passing in the type of error encountered.
Typically you would not create these exceptions yourself, but would react to those raised by
the DOM during its processing.

property Code: EExceptionCode read FCode;
This read-only property indicates what type of problem arose. Its value is one of those
shown in Table 10-1. As you can see, these follow the DOM specification.

Table 10-1: CUESoft error codes

Error Code

ecNone

ecIndexSizeErr
ecWStringSizeErr
ecHierarchyRequestErr
ecWrongDocumentErr
ecInvalidNameErr
ecNoDataAllowedErr
ecNoModificationAllowedErr
ecNotFoundErr

ecNotSupportedErr

ecInuseAttributeErr

ecInvalidParamErr

Meaning

No error

An index or size is negative or greater than allowed.

The text does not fit into a WideString.

A node is inserted somewhere it does not belong.

A node from another document is used.

An invalid name is used (usually containing an illegal character).
Data is specified for a node that does not support data.
Attempting to modify a read-only node.

The specified node cannot be found in this context.

The action specified for the object is not supported under this
implementation.

An attribute already belonging to one element is being added to
another.

An invalid parameter is passed to a method.

TXmlParserError Exception

Errors arising from the parsing of a document are indicated through a TXm1ParserError exception
(see Listing 10-2). These include further details about the reason for and position of the error. This
class appears in the Xm1Parser unit.

160

Part Il: The Document Object Model

Listing 10-2: The TXmlParserError exception

TXmlParserError = class(Exception)
public
constructor CreateParseError(oFilePos, oLine, oLinePos: Integer;
oUr1, oReason: string);
property Reason: string read FReason;
property Line: Integer read FLine;
property LinePos: Integer read FLinePos;
property FilePos: Integer read FFilePos;
property Url: string read FUrl;
end;

A TXmTParserError object’s properties and methods are listed below:
constructor CreateParseError(oFilePos, olLine, oLinePos: Integer; oUrl,
oReason: string);
Build a new exception during the parse process with this constructor. The parameters set all
the properties for this exception. Generally the parser itself raises these errors, and you only
need to respond to them.
property Reason: string read FReason;
Retrieve a text description of the problem through this read-only property.
property Line: Integer read FLine;
This read-only property returns the line number in the XML document where the error was
detected.
property LinePos: Integer read FLinePos;
The character position within that line is given by this read-only property.
property FilePos: Integer read FFilePos;
Find the offset into the XML document as a whole with this read-only property.
property Url: string read FUrl;
This read-only property returns the source name of the XML document in error.

TXmINode Class

All nodes within the DOM structure derive from a common class that provides the basic function-
ality used by most of them. The TXm1Node class (shown in Listing 10-3) embodies this in the
CUESoft package.

Listing 10-3: The TXmINode declaration

TXmINode = class
protected

FNodeId: Integer;

FNodeName: string;

FNodeType: Integer;

FNodeValue: string;

function GetNodeStringType: string;
public

constructor Create;

destructor Destroy; override;

Chapter 10: CUESoft’s Document Object Model 1 61

property Attributes: TXmlNamedNodeMap read FAttributes;

property BaseName: string read GetBaseName;

property ChildNodes: TXmINodelList read FChildNodes;

property FirstChild: TXmINode read GetFirstChild;

property LastChild: TXmINode read GetlLastChild;

property LevelCode: string read GetlLevelCode;

property Namespace: string read GetNamespace;

property NextSibling: TXmINode read GetNextSibling;

property Nodeld: Integer read FNodeId write FNodeld;

property NodeName: string read FNodeName write FNodeName;

property NodeStringType: string read GetNodeStringType;

property NodeType: Integer read FNodeType;

property NodeValue: string read FNodeValue write FNodeValue;

property OwnerDocument: TXmlDocument read GetOwnerDocument;

property ParentNode: TXmINode read FParentNode;

property Prefix: string read GetPrefix;

property PreviousSibling: TXmlNode read GetPreviousSibling;

property Text: string read GetText;

property XmlDocument: string read GetXmlDocument;

procedure AddRef;

procedure AppendChild(oNewChild: TXmlNode);

function CloneNode(bDeep: Boolean = True): TXmlNode;

procedure ForceOwnerDocument (oNode: TXmlNode);

function GetChildNodesByNodeType(wType: Integer): TXmlNodelist;

function GetNodesByNodeType (wType: Integer): TXmINodelist;

function HasAttributes: Boolean;

function HasChildNodes: Boolean;

procedure InsertBefore(oNewChild, oRefChild: TXmINode);

function IsAfter(oNode: TXmINode): Boolean;

procedure Release;

procedure RemoveAll;

function RemoveChild(oRefChild: TXmlNode): TXmlNode;

function ReplaceChild(oNewChild, oRefChild: TXmINode): TXmlNode;
end;

Using functionality from the basic node when it is not applicable results in an exception being
thrown—for example, attempting to add child nodes to a text node. Simple properties return an
empty string or ni1 if they do not apply to the current node type.

The properties and methods of a TXm1Node object are detailed below:

constructor Create;
Do not create TXm1Nodes directly. They are only used within the DOM hierarchy as one of
TXm1Nodes’ subclasses.

property NodeType: Integer read FNodeType;
This read-only property identifies the type of node represented by this object, allowing it to
be safely cast to that type to access its additional abilities. The value is one of those shown in
Table 10-2.

Table 10-2: Node types

Node Type Implementing Class
ELEMENT_NODE TXmlElement
ATTRIBUTE_NODE TXmlAttribute

TEXT_NODE TXmlText

162 Part Il: The Document Object Model

Node Type Implementing Class
CDATA_SECTION_NODE TXmICDataSection
ENTITY REFERENCE_NODE TXmlEntityReference
ENTITY NODE TXmlEntity
PROCESSING_INSTRUCTION_NODE TXmlProcessinglnstruction
COMMENT_NODE TXmIComment
DOCUMENT_NODE TXmIDocument
DOCUMENT_TYPE_NODE TXmIDocumentType
DOCUMENT_FRAGMENT _NODE TXmIDocumentFragment
NOTATION_NODE TXmINotation

property NodeStringType: string read GetNodeStringType;
This read-only property retrieves the node’s type as a string value. It returns the node types
from Table 10-2 as text.

NOTE The NodeStringType property is an extension to the W3C DOM specification.

property NodeName: string read FNodeName write FNodeName;
The name of the node is given by this property. For some nodes this is a predefined value.
See Table 10-3 for the meaning of this property based on the node’s type.

Table 10-3: Node name and value by node type

Node Type Node Name Node Value
ELEMENT_NODE Name of element " (Empty string)
ATTRIBUTE_NODE Name of attribute Attribute value
TEXT_NODE #text Content of text
CDATA_SECTION_NODE #cdata-section Content of CDATA section
ENTITY_REFERENCE_NODE Name of entity !

ENTITY NODE Name of entity !
PROCESSING_INSTRUCTION_NODE Target of instruction Content excluding target
COMMENT_NODE #comment Content of comment
DOCUMENT_NODE #document !

DOCUMENT_TYPE_NODE Name of document type |"
DOCUMENT_FRAGMENT_NODE #document-fragment !

NOTATION_NODE Name of notation !

property BaseName: string read GetBaseName;
Retrieve the local part of the node’s name—the part after any namespace prefix—through
this read-only property.

NOTE In the W3C DOM Specification, the local part of the node’s name is given by the
TocalName attribute.

Chapter 10: CUESoft's Document Object Model g 163

property Prefix: string read GetPrefix;
This read-only property returns the namespace prefix—the part up to the colon (:)—from
the node’s name, or an empty string if there is no prefix.

property Namespace: string read GetNamespace;
The namespace descriptor for the node comes from this read-only property. It is blank if no
namespace applies to the node. Namespaces are declared through xm1ns prefixed attributes.

NOTE In the W3C DOM Specification, the namespace for the node is given by the
namespaceURI aftribute.

property NodeValue: string read FNodeValue write FNodeValue;
Retrieve or set the text value of the node through this property. Many node types do not use
this property, as shown in Table 10-3.

property Attributes: TXmINamedNodeMap read FAttributes;
Access the attributes of a node with this read-only property. It returns a named node map
containing TXmT1Attribute objects. Although it is defined on all nodes, only element nodes
use attributes. All other types return nil.

property OwnerDocument: TXmlDocument read GetOwnerDocument;
All nodes contain a reference to the document that created them, which is available through
this read-only property. For document nodes this returns nil.

property ParentNode: TXmINode read FParentNode;
Once placed into a DOM structure, this read-only property lets you reach the parent of the
node. The parentis ni1 for attribute, document, and document fragment nodes, as well as for
other nodes that have not yet been added to the tree.

property ChildNodes: TXmINodeList read FChildNodes;
Moving the other way through the tree uses this read-only property. It returns a “live” list of
ordered nodes, meaning that any changes to the nodes in the list immediately update the
main structure, and vice versa. If a node has no children, this property still returns a valid
list, but that list has no entries in it.

property FirstChild: TXmINode read GetFirstChild;
This convenience property returns the first entry in the ChildNodes list or ni1 if there are no
children.

property LastChild: TXmINode read GetLastChild;
Similarly, this property returns the last entry in the ChiTdNodes list, or ni1 if none.

property NextSibling: TXmINode read GetNextSibling;
Another convenience property, this one retrieves the node after the current one in its parent’s
list of children. Again, a nil is returned if there is no following node.

property PreviousSibling: TXmINode read GetPreviousSibling;
Conversely, this property retrieves the node before this one in its parent’s list. ni1 is returned
if there is no previous node.

164

Part Il: The Document Object Model

procedure AppendChild(oNewChild: TXmINode);
Adds the specified node to the end of this node’s list of children. If the supplied node is
already in the structure, it is first removed. Adding a document fragment node adds all of its
children instead.

procedure InsertBefore(oNewChild, oRefChild: TXmINode);
Place the new node immediately before the specified reference node within this node’s list
of children. If the reference node is ni1, the new node is placed at the end of the list. A new
node already in the tree is first removed. Inserting a document fragment node adds all of its
children instead.

function RemoveChild(oRefChild: TXmINode): TXmINode;
Removes the specified node from this node’s list of children. A reference to that node is
returned. The old node should be released once the method is finished.

function ReplaceChild(oNewChild, oRefChild: TXm1Node): TXmINode;
Remove the specified reference node and insert the new node in its place. The function
returns a pointer to the node that is removed.

function CloneNode(bDeep: Boolean = True): TXmINode;
Create a copy of the node through this method, including any attributes and their values.
Attributes resulting from default values in the DTD are also duplicated. If the bDeep parame-
ter is False, the process stops there. If it is True, all the descendants of this node are also
cloned under the copy. The new duplicate has no parent until it is placed back into the DOM
hierarchy.

function HasChildNodes: Boolean;
A convenience function, this returns True when there are child nodes in the list and False
when it is empty.

function HasAttributes: Boolean;
This method returns True when there are entries in the attributes list and False when there
are none.

NOTE Although the CUESoft package does not explicitly support DOM Level 2, it does
include several properties dealing with namespaces. Missing from the DOM Level 2 spec are
the normalize and isSupported methods. normalize does appear in the TXmI1Element class in
CUESoft's package, while isSupported is duplicated by the HasFeature method of the
TXm1DomImplementation class. The following properties and methods are extensions to the
DOM specification.

property Nodeld: Integer read FNodeld write FNodeld;
Use this property to define your own ID for each node, separate from any that may be
defined in the document itself.

property LevelCode: string read GetlLevelCode;
This read-only property returns the node’s location within the DOM hierarchy as a sequence
of numbers separated by periods. Each number represents the position of the node’s ances-
tors within their parent’s list of children (although counting here starts at one). For example,

Chapter 10: CUESoft's Document Object Model 1 65

4.1.2 is the node at the second position in the node at the first position in the node at the
fourth position in the document.

property Text: string read GetText;
Retrieve all the text from this node and its descendants concatenated together via this
read-only property.

property XmlDocument: string read GetXmlDocument;
Extract the XML fragment that corresponds to this node and all of its descendants from this
read-only property.

procedure RemoveAll;
Delete all child nodes from the list and destroy the node objects.

function IsAfter(oNode: TXmINode): Boolean;
This function returns True if the current node appears after the given node in a pre-order tra-
versal of the hierarchy, and False if it does not. For example, a node is after its parent and
any previous sibling, but it is not after any next sibling, nor any child nodes.

function GetChildNodesByNodeType(wType: Integer): TXmlNodelList;
Retrieve a node list containing all the immediate child nodes of a given type. The types are
specified using the values shown in Table 10-2.

function GetNodesByNodeType(wType: Integer): TXmINodelList;
Similarly, this method returns a list of all descendants of the specified type.

procedure ForceOwnerDocument (oNode: TXmINode)
Set the OwnerDocument property for the supplied node and all its descendants to be the same
as the current node. This lets you transfer nodes from one document to another.

procedure AddRef;
Add a reference count to this node. Use Release to decrement the count. This method is
automatically called when the node is created, and again when it is added to the tree.

procedure Release;
Decrement the reference count for this node. When the count reaches zero, the object is
destroyed. Be sure to call this method once you are finished with the node after adding it to
the tree.

TXmINodelist Class

The TXmINodeList class (see Listing 10-4) encapsulates an ordered collection of nodes. It is the
object returned by the ChiTdNodes property of a node, as well as by the various GetNode methods.
Items within the list are accessed sequentially by their position.

Listing 10-4: The TXmlNodeList declaration

TXmlNodeList = class

public
constructor Create;
destructor Destroy; override;

166

Part Il: The Document Object Model

property Length: Integer read GetlLength;

property XmlDocument: string read GetXmlDocument;

procedure Add(oNode: TXmlNode);

procedure Delete(wIndex: Integer);

procedure Empty;

function Exchange(wSrc, wDest: Integer): Boolean;

function IndexOf(oNode: TXmlNode): Integer;

procedure Insert(wIndex: Integer; oNode: TXmlNode);

function Item(wIndex: Integer): TXmlNode;

function Move(wSrc, wDest: Integer): Boolean;

procedure Replace(wIndex: Integer; oNode: TXmINode);

procedure Sort(sAttribute: string = ''; wOrder: Integer = 0);
end;

The TXm1NodeList object’s properties and methods are shown below:

constructor Create;
Lists are automatically created for you as the result of a query, or through a node’s
ChildNodes property.

property Length: Integer read GetlLength;
Find the number of entries in the list through this read-only property. Access the individual
items with indexes in the range zero to Length —1.

function Item(wIndex: Integer): TXmINode;
Access each entry in the list with this function, giving the item’s position within the list. If
the index value is out of range, the function returns nil.

NOTE All the remaining properties and methods are extensions to the DOM Level 2 specifi-
cation. The spec intentionally left out methods for manipulating the node list, other than
reading items out.

property XmlDocument: string read GetXmlDocument;
This read-only property returns all the items in the list as a formatted XML fragment. It is
not well-formed XML unless there is a single element type node in the list.

procedure Add(oNode: TXml1Node);
Add the given node to the end of the list.

procedure Insert(wIndex: Integer; oNode: TXmINode);
Places the specified node at the given position in the list.

procedure Replace(wIndex: Integer; oNode: TXmlNode);
Removes the item currently at the nominated index and put the new node in its place.

function Move(wSrc, wDest: Integer): Boolean;
Moves an item in the list from its source position to its new destination location. The func-
tion returns True if the move succeeds, and False otherwise.

function Exchange(wSrc, wDest: Integer): Boolean;
Swaps the positions of two entries in the list, given their locations. A True value returns if
the exchange succeeds, and a False returns otherwise.

Chapter 10: CUESoft’s Document Object Model 1 67

By R o

function IndexOf(oNode: TXmINode): Integer;
Finds the position of the specified node within the list. A -1 value is returned if the node can-
not be found.

procedure Sort(sAttribute: string = ''; wOrder: Integer = 0);

Order the nodes in the list with this method. If an attribute name is supplied, the nodes sort
by the value of that attribute. If the attribute name is left blank, the nodes appear in order of
their text content. Use the last parameter to sort in ascending (0, the default) or descending
(1) order.

If the node list is the ChiTldNodes of an element, then sorting physically reorders the
actual nodes within the DOM. For other lists, only that list is sorted, without affecting the
DOM hierarchy.

procedure Delete(wIndex: Integer);
Removes the indicated node from the list.

procedure Empty;
Deletes all the nodes from the list.

TXmINamedNodeMap Class

The TXm1NamedNodeMap class (see Listing 10-5) also manages a list of nodes, but provides primary
access to them via their names. Although you can also retrieve items by their position, this is
merely a convenience and does not imply any particular ordering of the nodes.

Listing 10-5: The TXmlNamedNodeMap declaration

TXm1NamedNodeMap = class
public
constructor Create;
destructor Destroy; override;
property Length: Integer read GetlLength;
procedure Add(oNode: TXmINode);
procedure Delete(wIndex: Integer);
procedure Empty;
function GetNamedItem(sName: string): TXmlNode;
function IndexOf(oNode: TXmINode): Integer;
procedure Insert(wIndex: Integer; oNode: TXmlNode);
function Item(wIndex: Integer): TXmlNode;
function RemoveNamedNode(sName: string): TXmlNode;
procedure Replace(wIndex: Integer; oNode: TXmINode);
function SetNamedItem(oNode: TXmINode): TXmINode;
end;

The properties and methods of the TXm1NamedNodeMap object are described below:

constructor Create;
As for node lists, these node maps are automatically created for you. The Attributes prop-
erty of the TXmINode class and the Entities and Notations properties of the
TXm1DocumentType class all return node maps containing their respective node types.

168

Part Il: The Document Object Model

function GetNamedItem(sName: string): TXmINode;
Retrieves the node from the mapping that has the given name. A nil is returned if no node
matches this name. The resulting node can be cast to its appropriate subclass to access its
specific abilities.

function SetNamedItem(oNode: TXmINode): TXmlNode;
Adds the given node to the mapping, using its NodeName as the index. If an entry already
exists with that name, the new node replaces it and a reference to the deleted node is
returned. Otherwise, the return value is nil.

function RemoveNamedNode (sName: string): TXmlNode;
Find the node in the mapping with the given name and remove it from the list. A reference to
that node is returned. If no matching node is found, return a ni1 instead.

property Length: Integer read GetlLength;
Return the number of entries in the map through this read-only property.

function Item(wIndex: Integer): TXmINode;
Access the entries in the list via their position. If the supplied index is out of range, a nil is
returned.

NOTE The remaining methods are all extensions to the DOM Level 2 specification. The
spec does not define how node maps are maintained, so as not to restrict how they are imple-
mented. Missing from that spec are the namespace-aware versions of the
Get/Set/RemoveNamedItem methods above.

procedure Add(oNode: TXmlNode);
Add the specified node to the list.

procedure Insert(wIndex: Integer; oNode: TXmINode);
Place the new node at a particular position within the list. If the index is out of range, an error
occurs.

procedure Replace(wIndex: Integer; oNode: TXmlNode);
Delete the node currently in the specified position and insert the new node in its place. An
error is raised if the index is out of range.

procedure Delete(wIndex: Integer);
Remove the node at the given position from the list. An out of range index is ignored.

procedure Empty;
Remove all the nodes from the list.

function IndexOf(oNode: TXmINode): Integer;
Return the position of the given node in the list. If the node is not found, the function returns
-1

TXmlElement Class

Chapter 10: CUESoft’s Document Object Model 1 69

Most of the nodes in the DOM will be TXm1E1ement objects (as shown in Listing 10-6). These rep-
resent the elements from the XML document, and typically have attributes and child nodes

attached to them.

Listing 10-6: The TXmlElement declaration

TXmlETlement = class(TXmlNode)

public
constructor Create;

destructor Destroy; override;

property ElementText: string read GetElementText;
property FullEndTag: Boolean read FFullEndTag write FFullEndTag;
property IgnoreEndTag: Boolean read FIgnoreEndTag

write FIgnoreEndTag;

property TagName: string read FNodeName write FNodeName;

function CreateChildCDataSection(sText: string): TXmlCDataSection;
function CreateChildElement(sElem: string): TXmlElement;

function CreateChildText(sText: string): TXmlText;

function FindElement(sName: string): TXmlElement;

function GetAttribute(sName: string): string;

function GetAttributeNode(sName: string): TXmlAttribute;

function GetChildElementsByTagName(sName: string): TXmINodeList;
function GetElementsByTagName(sName: string): TXmlNodelList;
function GetElementsByTagNameWithAttribute(

sName, sAttr, sValue: string):

TXm1NodeList;

function MatchExpression(sTerm: string): TXmINodelList;

procedure Normalize(bAddSpace: Boolean = False);

procedure RemoveAttribute(sName: string);

function RemoveAttributeNode(oO1dAttr: TXmlAttribute): TXmlAttribute;
function SelectNodes(sQuery: string): TXmINodeList;

function SelectSingleNode(sQuery: string): TXmlETement;

procedure SetAttribute(sName, sValue: string);

function SetAttributeNode(oNewAttr: TXmlAttribute): TXmlAttribute;

end;

The TXm1Element object’s properties and methods are listed below:

constructor Create;

Element nodes should not be created directly. Instead, use the CreateETement method on the
document object or the CreateChildElement method described later.

property TagName: string read FNodeName write FNodeName;
Set or retrieve the name of the element through this property. It maps directly onto the inher-

ited NodeName property.

function GetAttribute(sName: string): string;
Although you could use the Attributes property to deal with an element’s attributes, there
are several convenience methods to assist you. This one returns the string value of the
named attribute, or an empty string if it cannot be found.

procedure SetAttribute(sName, sValue: string);
Set the value of an attribute with this method. Any existing attribute with the same name has
its contents overwritten by the new value. The value supplied is not parsed at all.

170

Part Il: The Document Object Model

procedure RemoveAttribute(sName: string);
Remove the attribute with the given name using this method. Nothing happens if a matching
node is not found.

function GetAttributeNode(sName: string): TXmlAttribute;
Access the entire attribute node by name with this method. If the attribute cannot be found, it
returns nil.

function SetAttributeNode(oNewAttr: TXmlAttribute): TXmlAttribute;
Use this method to add attributes that have internal structure beyond a simple string value.
Build your attribute node and attach its children before calling this method. The new one
replaces any existing attribute with the same name. In this case, a reference to the deleted
node is returned. Otherwise, it returns nil.

function RemoveAttributeNode(o01dAttr: TXmlAttribute): TXmlAttribute;
Remove the specified attribute from the element’s list through this method. A reference to
that node is returned. If the given node is not an attribute of the element, nothing happens.

function GetElementsByTagName(sName: string): TXmINodelList;
Obtain a list of all the elements with a given name that are descendants of this node with this
function. Use a name of * to get all elements in the subtree. The entries in the list appear in
the same order as a pre-order traversal of the subtree.

NOTE The following properties and methods are not part of the DOM Level 2 specification
for elements. Missing abilities include the namespace-aware versions of the methods above.
Also, the hasAttribute and hasAttributeNS methods are not implemented, although the
Index0f method of the Attributes node map provides similar information.

property ElementText: string read GetElementText;
This read-only property returns the value of the single text node child of this element. If
there is no single text child, it returns an empty string.

property FullEndTag: Boolean read FFullEndTag write FFullEndTag;
Set this property to True to force the output of a full closing tag when generating XML.
When False (the default), an element that has no children uses the shorthand syntax avail-
able in XML (placing a slash at the end of the opening tag). This property can be used to
maintain compatibility with some existing applications (specifically HTML).

property IgnoreEndTag: Boolean read FIgnoreEndTag write FIgnoreEndTag;
Setting this property to True causes the end tag to be omitted entirely if the element has no
children. By default, it is False, which always generates an end tag. Again, this is intended
for use with generating HTML, but should not be used in any true XML document.
function CreateChildCDataSection(sText: string): TXmlCDataSection;
This function creates a new CDATASection node and appends it to the element, returning a
reference to the new node. You can achieve the same thing through the CreateCDATA-
Section method on the document object, followed by an AppendChild call on this node.

Chapter 10: CUESoft's Document Object Model 1 71

function CreateChildETlement (sETem: string): TXmlElement;
Similarly, this function adds a newly created element node to the current element, and
returns a pointer to it.

function CreateChildText(sText: string): TXmlText;
Lastly, you can easily create and add a child text node with this method. Again, you receive a
reference to the new node as the return value.

function FindETlement (sName: string): TXm1Element;
Find the first descendant element node with the given tag name through this method. The
subtree is searched in a pre-order traversal. If no matching node is found, ani1 is returned.

function GetChildETlementsByTagName(sName: string): TXmINodelist;
Similar to the GetElementsByTagName method, this one only searches the immediate chil-
dren of the element.

function GetElementsByTagNameWithAttribute(sName, sAttr, sValue: string):
TXmINodeList;
Another variation on the GetElementsByTagName method, this one looks through all descen-
dants, returning those elements that have the given name and also an attribute with the
specified name and value.

function MatchExpression(sTerm: string): TXmINodelList;
This method searches the descendants of the element for nodes that match the given expres-
sion, and returns those found as a list. Their order in the list matches their order in a
pre-order traversal of the hierarchy.

procedure Normalize(bAddSpace: Boolean = False);
Combine adjacent text nodes in the entire subtree beneath this element. Setting the bAdd-
Space parameter to True causes an extra space character to be placed between the contents
of text nodes that are concatenated. Doing this is not standard DOM functionality. However,
the parameter has a default value of False and can safely be omitted.

NOTE In the DOM Level 2 specification, the Normalize functionality is moved to the Node
interface.

function SelectNodes(sQuery: string): TXmlNodelList;
Retrieves a list of all the nodes that match the given XPath expression. The current node acts
as the starting point for relative references. An empty list is returned if no matching nodes
are found.

function SelectSingleNode(sQuery: string): TXmlETlement;
This method acts like the previous one, but returns only the first element found, or nil if
there are none.

172

Part Il: The Document Object Model

TXmlAttribute Class

Attributes are attached to elements and are available through the Attributes property on the
TXml1Element nodes. Other than appearing in these lists, they do not form a part of the normal
DOM hierarchy. They have no parent and no siblings, so the corresponding properties return nil.
Their CUESoft definition is shown in Listing 10-7.

Listing 10-7: The TXmlAttribute declaration

TXmlAttribute = class(TXmlNode)
public
constructor Create; override;
destructor Destroy; override;
property Name: string read FNodeName write FNodeName;
property Specified: Boolean read FSpecified write FSpecified;
property Value: string read GetNodeValue write SetNodeValue;
function CloneNode(bDeep: Boolean = True): TXmINode; override;
end;

The properties and methods of the TXmTAttribute object are discussed below:

constructor Create;
As for elements, use the CreateAttribute factory method on the document object instead of
creating attributes yourself. You can also instantiate them through the SetAttribute
method of an element object.

property Name: string read FNodeName write FNodeName;
Retrieve or set the name of the attribute through this property. It maps directly onto the
inherited NodeName property.

property Value: string read GetNodeValue write SetNodeValue;
Read or write the string value of the attribute with this property. The inherited NodeValue
property has the same effect. Setting this value causes any children of the attribute to be dis-
carded and to be replaced with just the supplied text. The value is not parsed at all, so any
embedded entity references are ignored.

property Specified: Boolean read FSpecified write FSpecified;
This property returns True if the value for the attribute came from the body of the XML doc-
ument itself or was set through the Value property, and False if the value derives from a
default specified for this attribute in the DTD.

TXmlICharacterData Class

The TXm1CharacterData class (see Listing 10-8) is the basis of all textual nodes within the DOM.
It supplies common functionality for the various subclasses. The base class itself does not appear
in the hierarchy.

Listing 10-8: The TXmlCharacterData declaration

TXmlCharacterData = class(TXmINode)
public

Chapter 10: CUESoft’s Document Object Model 1 73

property Data: string read FNodeValue write FNodeValue;

property Length: Integer read Getlength;

procedure AppendData(sData: string);

procedure DeleteData(wOffset, wCount: Integer);

procedure InsertData(wOffset: Integer; sData: string);

procedure ReplaceData(wOffset, wCount: Integer; sData: string);

function SubStringData(wOffset, wCount: Integer): string;

end;

The TXm1CharacterData object’s properties and methods are listed below. As for the other imple-
mentations, all offsets start at zero.

property Data: string read FNodeValue write FNodeValue;
Retrieve or set the text content of the node through this property.

property Length: Integer read GetlLength;
Find the number of characters in the Data property, which may be zero.

procedure AppendData(sData: string);
Add the supplied text to the end of the existing value. Retrieve the combined text from the
Data property.

procedure DeleteData(wOffset, wCount: Integer);
Remove the text starting from the given offset, for the given number of characters.

procedure InsertData(wOffset: Integer; sData: string);
Insert the supplied text into any existing value at the specified offset.

procedure ReplaceData(wOffset, wCount: Integer; sData: string);
Delete the substring starting at the nominated offset and extending for the given number of
characters, then replace it with the supplied text.

function SubStringData(wOffset, wCount: Integer): string;
Extract the section of text from the specified offset, for the given number of characters.

TXmliText Class

Inheriting from the base character data node, the TXm1Text class (as shown in Listing 10-9) holds
the actual content of the XML document within the DOM. When a document is first loaded, some
other node type separates all text nodes from each other; contiguous sections of text in the docu-
ment are placed into a single text node. This state is restored by the Normalize method of the
element object.

Listing 10-9: The TXmlText declaration

TXm1Text = class(TXmlCharacterData)
public

constructor Create;

function SplitText(wOffset: Integer): TXmlText;

function CloneNode(bDeep: Boolean = True): TXmINode; override;
end;

174

Part Il: The Document Object Model

The properties and methods of the TXm1Text object are described below:

constructor Create;
Generate text nodes through the CreateTextNode method on the document object, or the
CreateChildText method on an element. Do not construct text nodes directly.

function SplitText(wOffset: Integer): TXmlText;
Create a new text node containing all the text from the current node past the specified offset,
and return a reference to that node. The current text node has that text deleted. The new node
becomes the immediately following sibling of the original node.

TXmICDataSection Class

Textual content containing characters that would normally be treated as markup can be flagged as
just straight text through CDATA sections. Within the DOM these appear as TXm1CDataSection
objects (as shown in Listing 10-10). This class inherits all the abilities of a normal text node and
simply serves as an indicator of its data’s origin.

Listing 10-10: The TXmlCDataSection declaration

TXmlCDataSection = class(TXmlText)
public

constructor Create; override;

function CloneNode (bDeep: Boolean = True): TXmINode; override;
end;

The TXm1CDataSection object’s methods are shown below:

constructor Create;
Do not construct CDATA section nodes directly. Use the CreateCDataSection method on
the document object or the CreateChildCDataSection method of an element instead.

TXmlIComment Class

Comments usually contain additional, non-essential information about a document. Within the
DOM they appear as TXm1Comment objects (see Listing 10-11). Another text-based node type, all
of its abilities are inherited.

Listing 10-11: The TXmlComment declaration

TXmlComment = class(TXmlCharacterData)
public

constructor Create; override;

function CloneNode (bDeep: Boolean = True): TXmINode; override;
end;

The methods of the TXm1Comment object are discussed below:

constructor Create;
Build comments with the CreateComment method of the document object. Do not create
them directly with this constructor.

Chapter 10: CUESoft’s Document Object Model 1 75

TXmlProcessinglnstruction Class

Processing instructions are designed to carry information through the document for use by appli-
cations using those documents. The TXm1ProcessingInstruction class (shown in Listing 10-12)
lets you access their contents.

Listing 10-12: The TXmlProcessingInstruction declaration

TXmlProcessingInstruction = class(TXmINode)
public
constructor Create; override;
property Data: string read FNodeValue write FNodeValue;
property Target: string read FNodeName write FNodeName;
function CloneNode (bDeep: Boolean = True): TXmINode; override;
end;

A TXmTProcessingInstruction object’s properties and methods are listed below:

constructor Create;
Use the document object’s CreateProcessingInstruction method to instantiate these
nodes, rather than this constructor.

property Target: string read FNodeName write FNodeName;
Retrieve or set the target application for the instruction with this property.

property Data: string read FNodeValue write FNodeValue;
The remainder of the tag’s content appears in this property, from the first non-white space
character following the target through to the character immediately before the closing ?7>.

TXmiIDocumentType Class

The TXm1DocumentType class (see Listing 10-13) encapsulates the declaration of the document
type for a document. It appears as the DocType property of the document, although this may be
nil. Within it are references to the entities and notations defined within the document.

Listing 10-13: The TXmlDocumentType declaration

TXm1DocumentType = class(TXmINode)
public

constructor Create; override;

destructor Destroy; override;

property Entities: TXmlNamedNodeMap read FEntities;

property Name: string read FNodeName write FNodeName;

property Notations: TXmlNamedNodeMap read FNotations;

function CloneNode(bDeep: Boolean = True): TXmINode; override;
end;

The properties and methods of the TXm1DocumentType object are shown below:

constructor Create;
Normally, a document type node is automatically created as a document is loaded. Even if
you did create one of these nodes, you cannot attach it to a document since the DocType
property is read-only.

176 Part Il: The Document Object Model

property Name: string read FNodeName write FNodeName;
Retrieve the name of the document type from this property. This corresponds to the name of
the single top-level element in the document.

property Entities: TXmINamedNodeMap read FEntities;
Obtain access to a list of the external entities defined within the document through this
read-only property. This does not include internal entities, which are automatically
expanded, nor parameter entities. Each item in the list is a TXmIEntity object.

property Notations: TXmlNamedNodeMap read FNotations;
Access the notations defined in the document’s DTD with this read-only property. Items in
the list are all TXmINotation objects.

TXmIEntity Class

The TXm1Entity class (see Listing 10-14) supplies the definitions of external entities read from the
document’s DTD. Access them via the Entities property of the document type node. No parame-
ter or internal entities appear in this list since these are automatically expanded and their value
included in the DOM. Only the definition of the entity is modeled, not the declaration itself.

Listing 10-14: The TXmlEntity declaration

TXmlEntity = class(TXmlNode)
public
constructor Create; override;
property NotationName: string read FNodeName write FNodeName;
property PublicId: string read FPublicId write FPublicld;
property SystemId: string read FSystemId write FSystemlId;
function CloneNode(bDeep: Boolean = True): TXmINode; override;
end;

The TXm1Entity object’s properties and methods are discussed below:

constructor Create;
Entity nodes are automatically created when a document is first loaded. They cannot be
added to a document type node thereafter.

property NodeName: string read FNodeName write FNodeName;
This inherited property provides the name of the entity.

NOTE Unfortunately, the current version of CUESoft's DOM returns the name of the entity’s
notation through the NodeName property, rather than the name of the entity itself. There is no
way to retrieve the entity’s name unless you go to the underlying parser and its OnEntityDec]
event.

property PublicId: string read FPublicIld write FPublicId;
Retrieve or set the public identifier for the entity from this property. If no public identifier is
specified, an empty string results.

Chapter 10: CUESoft's Document Object Model 177

property Systemld: string read FSystemId write FSystemlId;
This property reads or writes the system identifier for the entity. Again, it returns an empty
string if no system identifier is available.

property NotationName: string read FNodeName write FNodeName;
Unparsed entities return the name of their notation type through this property. For parsed
entities, it returns an empty string.

NOTE Although the NotationName property is mapped onto the node name field, it does
return the correct value. However, the node name field should hold the name of the entity
itself.

TXmlEntityReference Class

References to parsed entities are placed into the DOM with the TXm1EntityReference class (as
shown in Listing 10-15). The children of this reference duplicate those of the named entity node (if
available).

Listing 10-15: The TXmlEntityReference declaration

TXmlEntityReference = class(TXmINode)
public

constructor Create; override;

function CloneNode(bDeep: Boolean = True): TXmINode; override;
end;

NOTE The CUESoft parser always expands entity references within the body of the docu-
ment. So, when you load in a document, no entity reference nodes appear within the DOM,
only their corresponding entity’s subtree. Also, the contents of entities declared in external
subsets may not be available.

The properties and methods of the TXm1EntityReference object are described below:

constructor Create;
As before, do not build these objects directly. Instead, use the CreateEntityReference
method of the document object.

property NodeName: string read FNodeName write FNodeName;
This inherited property provides the name of the referenced entity.

TXmINotation Class

Notations can describe the format of unparsed entities, of attributes, and of target applications for
processing instructions. They are represented by the TXm1Notation class (see Listing 10-16) and
are retrieved from the Notations property of the document type node.

Listing 10-16: The TXmlNotation declaration

TXmlNotation = class(TXmINode)
public

178

Part Il: The Document Object Model

constructor Create; override;

property PublicId: string read FPublicIld write FPublicld;

property Systemld: string read FSystemlId write FSystemld;

function CloneNode (bDeep: Boolean = True): TXmINode; override;
end;

The TXm1Notation object’s properties and methods are listed below:

constructor Create;
Use the document object’s CreateNotation method to build new notation nodes.

property NodeName: string read FNodeName write FNodeName;
The name of the notation is found in this inherited property.

property Publicld: string read FPublicIld write FPublicId;
Retrieve the public identifier for this notation from this property, or an empty string if none
is specified.

property Systemld: string read FSystemld write FSystemld;
This property provides the system identifier for the notation, or an empty string if none is
supplied.

TXmIDocumentFragment Class

A document fragment never appears in the main DOM structure. Its purpose is to manage subtrees
of nodes outside of the document itself, allowing them to be constructed or extracted before add-
ing them back into the hierarchy. The TXm1DocumentFragment class (see Listing 10-17) provides
this functionality. It derives from the basic node without adding any new abilities.

Listing 10-17: The TXmlDocumentFragment declaration

TXmlDocumentFragment = class(TXmlNode)
public
constructor Create; override;
function CloneNode(bDeep: Boolean = True): TXmINode; override;
end;
When a document fragment is added to the main DOM, it is not inserted itself. Instead, all of its
child nodes are placed into the hierarchy in its place.

The methods of a TXm1DocumentFragment object are shown below:

constructor Create;
Build document fragment nodes with the CreateDocumentFragment method of the docu-
ment object.

Chapter 10: CUESoft’s Document Object Model 1 79

TXmIDocument Class

The primary access to the DOM is via the document object, as represented by the TXm1Document
class (shown in Listing 10-18). Another important function of this class is to create new nodes to
add to the DOM. Using the factory methods provided here ensures that the nodes are compatible
with the document and each other.

Listing 10-18: The TXmlDocument declaration

TXmlDocument = class (TXmlNode)
public
constructor Create; override;
destructor Destroy; override;
property ActualCDATA: Boolean read FActualCDATA write FActualCDATA;
property DocType: TXmlDocumentType read FDocType;
property DocumentElement: TXmlETement read GetDocumentElement;
property DomImplementation: TXmlDomImplementation
read FDomImplementation;
property FormattedOutput: Boolean read FFormattedOutput
write FFormattedOutput;
property IdAttribute: string read FIdAttribute write FIdAttribute;
property IgnoreCase: Boolean read FIgnoreCase write FIgnoreCase;
function CloneNode (bDeep: Boolean = True): TXmINode; override;
function CreateAttribute(sName: string): TXmlAttribute;
function CreateComment(sData: string = ''): TXmlComment;
function CreateCDataSection(sData: string = ''): TXmlCDataSection;
function CreateDocumentFragment: TXmlDocumentFragment;
function CreateElement(sTagName: string): TXmlElement;
function CreateEntityReference(sName: string): TXmlEntityReference;
function CreateProcessingInstruction(sTarget: string;
sData: string = ''): TXmlProcessingInstruction;
function CreateTextNode(sData: string = ''): TXmlText;
function GetElementsByTagName(sName: string): TXmINodeList;
procedure RemoveAll;
end;

The TXm1Document object’s properties and methods are discussed below:

constructor Create;
Documents are created as the result of loading an XML document through the
LoadDataSource or LoadMemory methods of the TXm10bjModel class. An empty document
node exists initially in the object model class that can be used to generate a new document.
All access should be through the Document property of the object model class.

property DomImplementation: TxmlDomImplementation read FDomImplementation;
Access the DOM implementation for this document through this read-only property.

NOTE Since implementation is a reserved word in Delphi, this W3C DOM attribute is
renamed DomImplementation in the CUESoft package.

property DocType: TXmlDocumentType read FDocType;
Ifa DTD exists for a loaded XML document, this read-only property returns the correspond-
ing TXm1DocumentType node. If no DTD is specified, and for HTML documents, it returns
nil.

180

Part Il: The Document Object Model

TIP You cannot create a document type declaration for a new document in memory since
this field property is read-only.

property DocumentElement: TXmlETement read GetDocumentElement;
Retrieve the single, top-level element in the document with this read-only property. You can
also reach it via the ChildNodes property of the document, but this property is more
convenient.

function CreateAttribute(sName: string): TXmlAttribute;
Build a new TXmlAttribute node using this method, by passing in the name of the new
attribute. The resulting node still needs to be added to an element to become part of the
DOM. Use the element’s SetAttributeNode method.

function CreateComment(sData: string = ''): TXmlComment;
Generate a new TXm1 Comment node with the supplied text through this method. Add the new
node to an existing one as one of its children.

function CreateCDataSection(sData: string = ''): TXmlCDataSection;
This method produces a new TXm1CDataSection node for adding to the DOM. Specify the
text content of the node when it is called. You can also use the CreateChildCDataSection
method of an element.

function CreateDocumentFragment: TXmlDocumentFragment;
Obtain a new TXm1DocumentFragment node with this method. Document fragments are not
added to the main DOM hierarchy, but are used instead to manage nodes outside of that
structure.

function CreateElement(sTagName: string): TXmlElement;
A new TXm1ETement node is created by this method, passing in the element’s name. Add it to
the DOM as a child of another node. If placed as the child of the document node itself, it also
becomes the value of the DocumentElement property. A new child element is automatically
added with the CreateChildETement method of an element node.

function CreateEntityReference(sName: string): TXmlEntityReference;
Build a new TXm1EntityReference node using this method. Specify the name of the entity
to be inserted, and add the new node to the DOM at the required position.

function CreateProcessingInstruction(sTarget: string; sData: string = ''):
XmlProcessingInstruction;
Generate a new TXm1ProcessingInstruction node via this method, passing in the name of
the target application and its command. Again, add the new node to the DOM structure as
the child of an existing node.

function CreateTextNode(sData: string = ''): TXmlText;
This method produces a new TXm1Text node, with the specified content, for adding to the
DOM. Alternately, you can use the CreateChildText method of an element to quickly add
text to an element.

Chapter 10: CUESoft’s Document Object Model 1 81

function GetElementsByTagName(sName: string): TXmINodelList;
Find all the elements that are descendants of the document and that have the given name.
Use a name of * to retrieve all nodes. The nodes appear in the order of a pre-order traversal
through the document tree. If no matching nodes are found, an empty list is returned.

function CloneNode(bDeep: Boolean = True): TXmINode; override;
Copy the document node and, if bDeep is True, all of'its children to create a new document.

NOTE Missing from the W3C DOM Level 2 specification are the importNode method (whose
functionality can be duplicated through the ForceOwnerDocument method of the TXmINode
class), the getElementById method, and the namespace-aware versions of the CreateElement,
CreateAttribute, and GetElementsByTagName methods. The following properties and methods
are extensions of the W3C specification.

property ActualCDATA: Boolean read FActualCDATA write FActualCDATA;
Set this property to True to output CDATA sections within the DOM as plain text instead of
surrounding them with the normal CDATA tags. Leave it as False (the default) to use the
CDATA syntax.

property FormattedOutput: Boolean read FFormattedOutput write FFormattedOutput;
When True, this property causes the XML generated by the DOM to be formatted for read-
ability. This involves adding line feeds and indentation surrounding the elements and text.
When False (the default), the output appears as a single string with no breaks.

property IdAttribute: string read FIdAttribute write FIdAttribute;
Specify a default attribute to be used as the elements’ IDs when querying with XSL and
XQL (XML Query Language) expressions.

property IgnoreCase: Boolean read FIgnoreCase write FIgnoreCase;
This property controls matching through the GetElementsByTagName and SelectNodes
methods. If set to True, matches are case-insensitive, whereas setting it to False (the
default) enforces matching on case.

procedure RemoveAll;
Completely empty the document of all its children with this method.

TXmIDomImplementation Class

The TXm1DomImplementation class (see Listing 10-19) provides functions outside of any docu-
ment. You access its abilities through the DOMImpTementation property of a document.

Listing 10-19: The TXmlDomImplementation declaration

TXm1DomImplementation = class
public

function HasFeature(sFeature, sVersion: string): Boolean;
end;

182 Part Il: The Document Object Model

The methods of the TXm1DomImplementation object are listed below:

function HasFeature(sFeature, sVersion: string): Boolean;
Determine whether this DOM implementation supports certain features with this method.
Given a particular feature name and required version, it returns True if that functionality is
available and False otherwise. The version parameter may be left blank to match on any
supported version. This implementation currently recognizes the features XML and HTML
(case-insensitive), and version 1.0 of each.

TXmlIObjModel Component

Since the DOM Level 1 specification, which is the level supported by this implementation, defines
no way of creating a document, it is left to the designers to provide this functionality. In the
CUESoft package, the TXm10bjModel component (shown in Listing 10-20) performs this neces-
sary task. Consequently, this entire class is an extension to the W3C DOM specification (at least at
Level 1).

Listing 10-20: The TXml0ObjModel declaration

TPreserveSpaceEvent = procedure(oOwner: TObject;
sElementName: string; var bPreserve: Boolean) of object;
TResolveEntityEvent = function (oOwner: TObject;
sName, sPublicId, sSystemld: string): string of object;

TXm10bjModel = class(TComponent)
protected
function GetErrorCount: Integer;
function GetOnPreserveSpace: TPreserveSpaceEvent;
procedure SetOnPreserveSpace(PreserveSpace: TPreserveSpaceEvent);
public
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;
property Document: read FDocument;
property ErrorCount: Integer read GetErrorCount;
property Errors: TStringlList read FErrors;
property XmlDocument: string read GetXmlDocument;
procedure ClearDocument;
function GetErrorMsg(wldx: Integer): String;
function LoadDataSource(sSource: String): Boolean;
function LoadMemory(cpMem: PChar): Boolean;
function SaveToFile(sFile: string): Boolean;
published
property FormattedOutput: Boolean read GetFormattedOutput
write SetFormattedOutput;
property IdAttribute: string read GetIdAttribute
write SetIdAttribute;
property IgnoreCase: Boolean read GetIgnoreCase write SetIgnoreCase;
property NormalizeData: Boolean read FNormalizeData
write FNormalizeData
property OnPreserveSpace: TPreserveSpaceEvent read GetOnPreserveSpace
write SetOnPreserveSpace;
property OnResolveEntity: TResolveEntityEvent read FOnResolveEntity
write SetOnResolveEntity;
property Password: string read GetPassword write SetPassword;

Chapter 10: CUESoft's Document Object Model 1 83

property RaiseErrors: Boolean read FRaiseErrors write FRaiseErrors;
property UserName: string read GetUserName write SetUserName;
end;
Since this class derives from TComponent, it can appear on the component palette and be dropped
onto a form when required. Then set its properties and load the required document in code. Alter-
nately, you can instantiate a copy entirely in code.
A TXm10bjModel component’s properties and methods are listed below:

constructor Create(AOwner: TComponent); override;
If you drag the component from the palette, you do not have to create an instance yourself.
Otherwise, use this constructor to generate an object model for your use.

destructor Destroy; override;
If you create the object model yourself, remember to free it up when you are finished.
Objects are automatically destroyed when you drop the component onto the form from the
component palette.

property Document: read FDocument;
This read-only property provides access to the document in memory and all its abilities. You
should only use the document through this mechanism.

property ErrorCount: Integer read GetErrorCount;
Find the number of errors that occurred during a parse through this read-only property.

property Errors: TStringlList read FErrors;
Retrieve each error from the parse in turn with this read-only property.

property FormattedOutput: Boolean read GetFormattedOutput write
SetFormattedOutput;
Duplicating the same property on the document object, this property controls the formatting
of any XML generated from the DOM. When True, indentation and line breaks are added to
make the text more legible. When False (the default), the text is just one long string.

property IdAttribute: string read GetIdAttribute write SetIdAttribute;
Also replicating a property on the document object, this one determines what attribute is
treated as the ID attribute for searches within the hierarchy.

property IgnoreCase: Boolean read GetIgnoreCase write SetlIgnoreCase;
Another property copied from the document object. When True, this property causes case to
be ignored in matches using XSL and XQL queries. When False (the default), case is used
in determining a match.

property NormalizeData: Boolean read FNormalizeData write FNormalizeData
Setting this property to True results in extra white space being stripped from character data
in the parse process. Otherwise, all text data is sent through as is (the default).

property OnPreserveSpace: TPreserveSpaceEvent read GetOnPreserveSpace write
SetOnPreserveSpace;
This event triggers once for each element encountered in the parse process. It supplies the
name of that element and the current space preservation setting, based on the Normalize-

184

Part Il: The Document Object Model

Data property and any xm1 : space attributes. An attached event handler may alter the preser-
vation flag.

property OnResolveEntity: TResolveEntityEvent read FOnResolveEntity write
SetOnResolveEntity;
External references can be resolved through this event. It passes across the name of the
entity, along with its public and system identifiers. Using these you can adjust the actual
path to the resource and send it back to the parser as the result of the handler function.

property Password: string read GetPassword write SetPassword;
When reading an XML file from an FTP site, this property establishes the password used to
gain access to that site.

property RaiseErrors: Boolean read FRaiseErrors write FRaiseErrors;
Set this property to True to have the parser pass TXm1ParserError exceptions through to the
application. Otherwise, they are trapped by this component (the default).

property UserName: string read GetUserName write SetUserName;
Complementing the Password property, this one sets the user ID for retrieving documents
from FTP sites. If not set, anonymous is used.

property XmlDocument: string read GetXmlDocument;
Generate an XML document from the DOM in memory with this read-only property.

procedure ClearDocument;
Delete the entire DOM with this method. A new document can then be constructed.

function GetErrorMsg(wIdx: Integer): String;
Retrieve individual error messages from the parse process with this method. Duplicating the
abilities of the Error property, the index ranges from zero to ErrorCount —1.

function LoadDataSource(sSource: String): Boolean;
The heart of the process, this method invokes the parser on the specified document. Files are
identified either as local filenames, or as HTTP or FTP URLSs. A return value of True results
if the document is successfully loaded and False is returned if problems are encountered. In
the latter case, check the Errors property for the reason(s).

function LoadMemory (cpMem: PChar): Boolean;
Similar to the previous method, this one parses a document held in memory at the supplied
location. Again, it returns True if successful and False if not.

function SaveToFile(sFile: string): Boolean;
Having created your DOM in memory, use this method to write it to a file. The document
type declaration is not included in the document, although the remainder is well-formed
XML. You can specify either a local filename or an FTP site to write to. The function returns
True if it succeeded and False if a problem arose.

185

Chapter 10: CUESoft's Document Object Model B

TXmlIParser Component

The CUESoft.com package relies on a built-in parser to process XML documents into the DOM
structure. CUESoft.com’s parser is non-validating, although it does check for well-formed docu-
ments. You can access the parser yourself and use it to do your own processing by registering
event handlers with it. The TXm1Parser component (see Listing 10-21) can also dwell on the com-
ponent palette, making it easy to incorporate into your project. This class appears in the Xm1Parser
unit.

Listing 10-21: The TXmlParser declaration

TAttributeEvent = procedure (oOwner: TObject;

sName, sValue: string; bSpecified: Boolean) of object;
TDocTypeDeclEvent = procedure (oOwner: TObject;

sDecl, sId0, sIdl: string) of object;
TEntityDeclEvent = procedure (oOwner: TObject;

sEntityName, sPublicId, sSystemId, sNotationName: string) of object;
TNonXMLEntityEvent = procedure (oOwner: TObject;

sEntityName, sPublicId, sSystemId, sNotationName: string) of object;
TNotationDeclEvent = procedure (oOwner: TObject;

sNotationName, sPublicId, sSystemId: string) of object;
TPreserveSpaceEvent = procedure (oOwner: TObject;

sElementName: string; var bPreserve: Boolean) of object;
TProcessInstrEvent = procedure (oOwner: TObject;

sName, sValue: string) of object;
TResolveEntityEvent = function (oOwner: TObject;

sName, sPublicId, sSystemlId: string): string of object;
TValueEvent = procedure (oOwner: TObject; sValue: string) of object;

TXmlParser = class(TComponent)
protected
property OnIgnorableWhitespace: TValueEvent
read FOnIgnorableWhitespace write FOnIgnorableWhitespace;
public
constructor Create(oOwner: TComponent);
destructor Destroy; override;
property ErrorCount: Integer read GetErrorCount;
property Errors: TStringlList read FErrors;
function GetErrorMsg(wIdx: Integer): string;
function ParseDataSource(sSource: string): Boolean;
function ParseMemory(cpMem: PChar): Boolean;
published
property NormalizeData: Boolean read FNormalizeData
write FNormalizeData;
property OnAttribute: TAttributeEvent read FOnAttribute
write FOnAttribute;
property OnCDATASection: TValueEvent read FOnCDATASection
write FOnCDATASection;
property OnCharData: TValueEvent read FOnCharData write FOnCharData;
property OnComment: TValueEvent read FOnComment write FOnComment;
property OnDocTypeDecl: TDocTypeDeclEvent read FOnDocTypeDecl
write FOnDocTypeDecl;
property OnEndDocument: TNotifyEvent read FOnEndDocument
write FOnEndDocument;
property OnEndElement: TValueEvent read FOnEndElement
write FOnEndElement;
property OnEntityDecl: TEntityDeclEvent read FOnEntityDecl

186

Part Il: The Document Object Model

write FOnEntityDecl;

property OnNonXMLEntity: TNonXMLEntityEvent read FOnNonXMLEntity
write FOnNonXMLEntity;

property OnNotationDecl: TNotationDeclEvent read FOnNotationDecl
write FOnNotationDecl;

property OnPreserveSpace: TPreserveSpaceEvent read FOnPreserveSpace
write FOnPreserveSpace;

property OnProcessingInstruction: TProcessInstrEvent
read FOnProcessingInstruction write FOnProcessingInstruction;

property OnResolveEntity: TResolveEntityEvent read FOnResolveEntity
write FOnResolveEntity;

property OnStartDocument: TNotifyEvent read FOnStartDocument
write FOnStartDocument;

property OnStartElement: TValueEvent read FOnStartElement
write FOnStartElement;

property Password: string read FPassword write FPassword;

property RaiseErrors: Boolean read FRaiseErrors write FRaiseErrors;

property UserName: string read FUserName write FUserName;

end;

TIP To see CUESoft’s parser in action, lock at the SAX1 demonstration in Chapter 15. The
project contains a SAX1-compatible parser using the CUESoft offering.

The properties and methods of a TXm1Parser component are shown below (most of which corre-
spond directly with those in the TXmi0bjModel class):

constructor Create(oOwner: TComponent);
For easiest use, drag-and-drop one of these components from the palette, then set its proper-
ties at design time. Otherwise, use this constructor to build a parser in code for your use.

destructor Destroy; override;
If you create the parser yourself, do not forget to release its resources when finished.

property ErrorCount: Integer read GetErrorCount;
Find the number of errors from the parse process with this read-only property.

property Errors: TStringList read FErrors;
Retrieve all the reasons for errors during the parse through this read-only property.

property NormalizeData: Boolean read FNormalizeData write FNormalizeData;
Strip out extra white space from the document when this property is set to True. Otherwise,
all text is passed through unchanged to the OnCharData event (the default). CDATA sections
are not affected by this property.

property OnAttribute: TAttributeEvent read FOnAttribute write FOnAttribute;
Respond to attributes encountered in the document through this event, which fires before the
OnStartElement event for their containing element. The attribute name and value, and a
flag indicating the origin of that value, are passed to the event handler.

property OnCDATASection: TValueEvent read FOnCDATASection write FOnCDATASection;

CDATA sections from the document trigger this event, which receives the entire contents of
that section.

Chapter 10: CUESoft's Document Object Model 1 87

property OnCharData: TValueEvent read FOnCharData write FOnCharData;
Normal textual content causes this event to fire. Each contiguous section of text appears in
one event through the supplied parameter.

property OnComment: TValueEvent read FOnComment write FOnComment;
The entire content of a comment from the document is available within a handler attached to
this event.

property OnDocTypeDecl: TDocTypeDeclEvent read FOnDocTypeDecl write
FOnDocTypeDecl;
Encountering the document type declaration in the document causes this event to trigger.
The name of the document type, and its public and system identifiers are passed across to the
event handler. Note that unparsed entities and notations declared in the DTD are notified in
events that occur before this one.

property OnEndDocument: TNotifyEvent read FOnEndDocument write FOnEndDocument;
Once the entire document has been processed, this event fires. Use this to complete your
processing and to release any resources no longer required.

property OnEndETement: TValueEvent read FOnEndETement write FOnEndElement;
Receive notification of the end tag for an element through this event. The name of the ele-
ment is supplied. All the content of that element appears as events between this one and its
corresponding OnStartElement.

property OnEntityDecl: TEntityDeclEvent read FOnEntityDecl write FOnEntityDecl;
Unparsed entity declarations within the document type declaration trigger this event. Save
the entity’s name, public and system identifiers, and notation name from the parameters
passed in. These events occur before the OnDocTypeDec] event to which they apply.

property OnlgnorableWhitespace: TValueEvent read FOnIgnorableWhitespace write
FOnIgnorablelWhitespace;
White space outside of normal text content is notified through this event. However, the fact
that it can be ignored is only available if the document is validated against a DTD. Hence,
this event is not currently available and appears as a protected property on the parser.

property OnNonXMLEntity: TNonXMLEntityEvent read FOnNonXMLEntity write
FOnNonXMLEntity;
This event is triggered when a non-XML entity is encountered in the document. The call-
back lets you respond to this and perhaps provide some level of support for the entity within
your application.

property OnNotationDecl: TNotationDeclEvent read FOnNotationDecl write
FOnNotationDecl;
The notations used by entities and processing instructions trigger this event. Save the name,
public, and system identifiers for later use. These events arrive before the event for the docu-
ment type declaration to which they belong.

188

Part Il: The Document Object Model

property OnPreserveSpace: TPreserveSpaceEvent read FOnPreserveSpace write
FOnPreserveSpace;
Fired for each element encountered, this event lets you override the preservation flag set-
ting. Check the element name and current setting, and update the flag if required.

property OnProcessingInstruction: TProcessInstrEvent read FOnProcessing-
Instruction write FOnProcessingInstruction;
Each processing instruction found in the document triggers this event. The target applica-
tion and the actual command are supplied as parameters.

property OnResolveEntity: TResolveEntityEvent read FOnResolveEntity write
FOnResolveEntity;
You can perform resolution for external entities through this event. Given the entity’s name
and its public and system identifiers, you should return the name of the actual resource to
reference.

property OnStartDocument: TNotifyEvent read FOnStartDocument write
FOnStartDocument;
Fired once at the start of the parse process, use this event to initialize your application in
preparation for a new document.

property OnStartETement: TValueEvent read FOnStartElement write FOnStartETement;
The opening tag for each element triggers this event, supplying the name of the element
encountered. Recall that the attributes for that element have already appeared in OnAttri-
bute events prior to their containing element.

property Password: string read FPassword write FPassword;
Set this property to supply a password when accessing documents at FTP sites.

property RaiseErrors: Boolean read FRaiseErrors write FRaiseErrors;
When set to True, this property causes parse errors (TXm1ParserError exceptions) to be sent
directly to the application. Otherwise, they are trapped internally and end the parse process
in error (the default).

property UserName: string read FUserName write FUserName;
For accessing FTP sites, specify a user ID to give with this property. If not set, it defaults to
anonymous.

function GetErrorMsg(wIdx: Integer): string;
Retrieve individual error messages through this function. The index ranges from zero to
ErrorCount —1.

function ParseDataSource(sSource: string): Boolean;
Retrieve the document specified and parse its contents, invoking the appropriate events as
necessary. The source specification may be either a local filename, or an HTTP or FTP
URL. A True results if the parse succeeds and a False if it fails. Check the Errors property
in the latter case for the reason(s) it failed.

Chapter 10: CUESoft’s Document Object Model 1 89

function ParseMemory(cpMem: PChar): Boolean;
Similarly, this method parses a document in memory, returning True on success and False
on failure.

Loading the CUESoft DOM

For comparison purposes, you can build the same XML viewer from Chapter 9, but using the
CUESoft DOM. The TXm10bjModeT class is the main entry point into the package. Since this is a
Delphi component you can drag it from the component palette, or create it in code, as shown in
Listing 10-22. Do not forget to free it after use.

Listing 10-22: Loading the document

{ Load an XML document }
procedure TfrmXMLViewer.LoadDoc (Filename: string);
var
XMLDOM: TXm10bjModeT;
begin
pgcDetails.ActivePage := tshDocument;
{ Initialize document-wide details for display }
InitDocumentDetails;
{ Load the source document }
memSource.Lines.LoadFromFile(Filename);
dTgOpen.Filename := Filename;
{ Instantiate the DOM }
XMLDOM := TXmlObjModel.Create(nil);
trvXML. Items.BeginUpdate;
try
{ Suppress white space? }
XMLDOM.NormalizeData := mniSuppressWhitespace.Checked;
{ Parse the document }
if not XMLDOM.LoadDataSource(Filename) then
raise Exception.Create(
Format (NoLoadError, [XMLDOM.Errors.Text]));

edtSystemId.Text := Filename;
{ Add the structure to the tree view }
AddETementToTree (XMLDOM.Document, nil);
trvXML. Items[0].Expand(False);

finally
trvXML. Items.EndUpdate;
{ Release the DOM }
XMLDOM. Free;

end;

end;

An item on the menu in the viewer lets you suppress text nodes that contain only white space. This
value is transferred directly to the NormalizeData property of the DOM. Calling the
LoadDataSource method on the object model class then loads and parses the specified document,
returning a False value if it fails. In that case you can raise an exception with the list of problems
from the Errors property. Otherwise, pass the newly created document, accessed through the Doc-
ument property, to the routine that builds up the tree view on the page.

190

Part Il: The Document Object Model

Like the previous example, the construction of the tree view relies on recursive calls to the
AddETlementToTree routine (see Listing 10-23). Initially the nodes can be treated in a generic man-
ner to extract a meaningful display value for them. Thereafter, the node type determines what
additional information is required and how to retrieve it. Each type is cast to its appropriate sub-
class before accessing its attributes.

Listing 10-23: Reading the nodes

{ Add a TXMLElement to the tree view }
function AddElement (Parent: TTreeNode; Name: string;
Element: TXMLElement): TTreeNode;
begin
FList.Add(ETement);
Result := trvXML.Items.AddChildObject(Parent, Name, Element);
with Result do

begin
ImageIndex := Ord(Element.ElementType);
SelectedIndex := Imagelndex;
end;
end;

{ Add current element to the treeview and

then recurse through children }
procedure AddElementToTree(Node: TXmlNode; TreeParent: TTreeNode);
var

Index: Integer;

DisplayName: string;

NewNode: TTreeNode;

Attribs: TStringlList;

{ Extract an attribute value from a string }
function GetPseudoAttr(const Name, Data: string): string;

var
PosStart, PosEnd: Integer;
begin
Result =y

PosStart := Pos(Name, Data);
if PosStart = 0 then
Exit;

PosStart := PosStart + Length(Name) + 1;
PosEnd := Pos(Data[PosStart],
Copy(Data, PosStart + 1, Length(Data)));
if Posknd = 0 then
Result := ''
else
Result := Copy(Data, PosStart + 1, PosEnd — 1);
end;

begin
{ Generate name for display in the tree }
if Node.NodeType in
[TEXT_NODE, COMMENT_NODE, CDATA_SECTION_NODE] then
begin
if Length(Node.NodeValue) > 20 then
DisplayName := Copy(Node.NodeValue, 1, 17) + '...
else
DisplayName := Node.NodeValue;
end

191

Chapter 10: CUESoft's Document Object Model B

else

DisplayName := Node.NodeName;
{ Create storage for later display of node values }
case Node.NodeType of

ELEMENT_NODE:

with Node as Xml10bjModel.TXmlETement do

begin
Attribs := TStringlList.Create;
try

if HasAttributes then
for Index := 0 to Attributes.Length — 1 do
with Attributes.Item(Index) do
Attribs.Values[NodeName] := NodeValue;
NewNode := AddElement(TreeParent, DisplayName,
TXMLETement.Create(xtElement, NodeName,
Namespace, BaseName, '', Attribs));
finally
Attribs.Free;
end;
end;
TEXT_NODE:

with Node as TXmlText do

NewNode := AddETement(TreeParent, DisplayName,
TXMLElement.Create(xtText, "', '', '', Data, nil));
CDATA _SECTION_NODE:

with Node as TXm1CDATASection do

NewNode := AddETement(TreeParent, DisplayName,
TXMLElement.Create(xtCData, '', '', '', Data, nil));
ENTITY_REFERENCE_NODE:

NewNode := AddETement(TreeParent, DisplayName,
TXMLElement.Create(xtEntityRef, Node.NodeName,
ot Y, nil));

PROCESSING_INSTRUCTION NODE:

with Node as TXmlProcessingInstruction do

begin
NewNode := AddElement(TreeParent, DisplayName,

TXMLETement.Create(xtInstruction, Target,
"', ', Data, nil));
if UpperCase(Target) = XMLValue then

begin
{ Special handling for the XML declaration }
edtVersion.Text := GetPseudoAttr(VersionAttr, Data);
edtEncoding.Text := GetPseudoAttr(EncodingAttr, Data);

chxStandAlone.Checked := (UpperCase(GetPseudoAttr(
StandAToneAttr, Data)) = YesValue);
end;
end;
COMMENT_NODE :
with Node as TXmlComment do
NewNode := AddETement(TreeParent, DisplayName,
TXMLETement.Create(xtComment, '', '', '', Data, nil));
DOCUMENT_NODE :
with Node as TXmlDocument do
begin
NewNode := AddETement(TreeParent, XMLDocDesc,
TXMLETement.Create (xtDocument, XMLDocDesc, '', '', '', nil));
AddElementToTree(DocType, NewNode);
end;
DOCUMENT_TYPE_NODE:
with Node as TXmlDocumentType do

192

Part Il: The Document Object Model

begin
edtDocType.Text := Name;
NewNode := AddElement(TreeParent, DTDDesc,
TXMLETement.Create(xtEntityRef, DTDDesc, '', '', '', nil));
for Index := 0 to Entities.Length — 1 do
AddETementToTree(Entities.Item(Index), NewNode);
for Index := 0 to Notations.Length — 1 do
AddETementToTree (Notations.Item(Index), NewNode);
end;
ENTITY_NODE:
with (Node as TXmlEntity), stgEntities do
if NotationName <> '' then
begin
{ Unparsed entity }
if Cells[0, RowCount — 1] <> '' then
RowCount := RowCount + 1;
Cells[0, RowCount — 1] := NodeName;
Cells[1, RowCount — 1] := Publicld;
Cells[2, RowCount — 1] := SystemId;
Cells[3, RowCount — 1] := NotationName;
end
else
{ Parsed entity }
NewNode := AddElement(TreeParent, DisplayName,
TXMLETement.Create(xtEntityRef, NodeName,
“9 “s “s nl]));
NOTATION_NODE:
with (Node as TXmlNotation), stgNotations do
begin
if Cells[0, RowCount — 1] <> '' then
RowCount := RowCount + 1;
Cel1s[0, RowCount — 1] := NodeName;
Cells[1, RowCount — 1] := Publicld;
Cells[2, RowCount — 1] := Systemld;
end;
end;
{ And recurse through any children }
if Node.HasChildNodes then
for Index := 0 to Node.ChildNodes.Length — 1 do
AddETementToTree (Node.ChildNodes.Item(Index), NewNode);
end;

Elements have their attributes N TICT LT

. . . File iew
converted into a string list |~ =
. . . = movies AI
before saving all the details in - - ””'I :
. = m cal name |movie
a TXmlElement object. Note = neme —r
P B Srarwan
that this is a local class defined =@ lengh
. . . F = i r&ting FG
in the viewer unit, and does not @ diector logosl | SWidoge
refer to the TXm1ETement class i biant | O SWiste
of the CUESoft package. The |
local definition replaces the O el
external one, so all references | e
to this class use the internal e g
one. To access the original = nopsis |y
K i i

class, you must prefix it with

Figure 10-2: Displaying an element.

Chapter 10: C

UESoft’s Document Object Model T 1 93

the name of its unit, Xm10bjMode1.TXm1ETement. The results of processing an element are seen in

Figure 10-2.

Text type nodes, including
CDATA sections and com-
ments, simply copy their
content into the corresponding
field in the TXml1Element for
later use. An example of these
is shown in Figure 10-3. Pro-
cessing instructions follow a
similar path, placing their
command content in the data
field of the storage object. A
special case exists for the
XML declaration whereby its
pseudo-properties are extract-
ed and transferred to particular
fields on the document page of
the viewer.

The rest of the information
for the document page comes
from the document type node,
and its entity and notation
properties. The latter are not
actually children of the docu-
ment type node in the
CUESoft DOM, so you must
step through them within their
lists and manually invoke the
next level of node processing.
Thereafter, the notation and
unparsed entity nodes get

B2 ML Viewer [CueSoft DOM)

File Miew

Teut/COATA Section

= movie
| =@ name
L ER Starwas - TI
. = lengh
o T
= director
L0 LR Geoge Luce:
| =g starng
H = star
LR Lism Mee
=@ star
- fR Ewan Mc
L star
P fiR Jake Loy
i =12 star
[R Matdie Pt
| B synopsi
oo e
4] |

e the evil Trade Federation plots to take over the peaceful planet of Naboo, Jed =]
warior QukGon Jinn and hiz apprentice Obitwan Fenobi embark on an amazing
adventuee to save the planet w/ith them on ther journey is the young queen Amidala,
Gungan outcast Jarlar Binks. and the powerful Captain Panaka, who wil sl ravel to

the faraway planets of Tatoone and Coruzcant in a futile attempt to zave ther world

frorm Duaith Sidious, leader of the Trade Federation, and Darth Mau, the strongest

Dark Lord of the Sith to ever wizid a hahtsaber,

Figure 10-3: Text content within the viewer.

E=ML Viewer [CueSoft DOM)

File Miew

wrrd
1 Sarnple $ML dact
B ik stylesheet
=1 2 movie-watcher
-2 movies
- movie
=1 2 movie
== name
£2 5t
=12 length™
83 12
=1 direclc
£ G

(|- samin
SRS

&
SR

4] 3

| Doc. Type Im\'iewah::hen

[" Stand akone

Fubic Id |
System Id [D-4D ata K ethimiBaokimovie-watcher sl

Wersion I‘I o Encoding IUTF-B

Entilies

Fublic: 1d

IHatations:

i zme

GIF

Tview. exe

Figure 10-4: The document page in the viewer

added to the grids on the document page. The document type node also supplies the name of the
top-level element for the document. Figure 10-4 shows all this information on the document page

in the viewer.

Entity references do not appear within the CUESoft DOM since it expands all such references
during the parse process. Only the results of the expansion are passed along. Similarly, parsed
entities do not appear within the document type node’s list of entities.

Finally, each child of the current node is processed in turn through a recursive call. The newly
created TTreeNode is passed along to provide the context for any additions to the view.

194 Part II: The Document Object Model

¢

Summary

The CUESoft DOM implements the W3C DOM Level 1 specification very closely, and includes a
few elements of the Level 2 spec. However, it does not provide full support for namespaces, which
limits its usefulness in some situations.

Having the DOM available as Delphi components and classes makes it very simple to use
within your application. The initial steps can be performed without any coding by dragging the
TXm10bjModel component from the palette onto your form, then setting its properties in the
inspector. Once compiled, the parser and DOM become part of your executable, making it easier
to distribute.

The parser in this package can be used on its own without building the associated DOM.
Include the Xm1Parser unit in your project and create an instance of the TXm1Parser component,
or drag one from the component palette and drop it on your form. By registering event handlers
with the parser, you can respond to the items within the XML document as they are encountered.
See the SAX demonstration project in Chapter 15 for an example of its use.

NOTE Soon after writing this, CUESoft.com sold its XML technologies to TurboPower. A
re-worked version of the package should be available from them by the time you read this.

Chapter 11

Open XML's Document
Object Model

The Open XML project includes another implementation of the DOM specification under Win-
dows, also as a set of native Delphi objects. The XDOM package was written by Dieter Kohler and
is available from http://www.philo.de/xml/ and on the CD-ROM accompanying this book. It is
freely available, including the full source code.

The package conforms very closely to the Document Object Model (Core) Level 1 specifica-
tion from the W3C. Modifications and enhancements as described in the DOM Level 2
specification (the Candidate Recommendation as of March 7, 2000) have also been implemented.
Although the code was designed for Delphi 3, it runs just as well with later versions. The version
of XDOM discussed here is 2.2.12a.

Along with the standard DOM implementation, XDOM provides many extensions, especially
in the area of modeling DTDs. Many additional classes let you step through all the declarations in
the DTD (elements and attributes included), or create your own DTD within the document in
memory.

XDOM follows the same pattern as the other DOM packages, with classes corresponding to
the items in the DOM specification. The class hierarchy of the XDOM package is contained in the
XDOM. pas unit and is shown in Figure 11-1. Like CUESoft’s implementation, it is made up of
classes rather than interfaces. All string values within XDOM are WideStrings, and all string
comparisons are case-sensitive.

EDomException Exception

Errors within the XDOM package show up as exceptions, all of which derive from
EDomException. This class adds nothing to the basic Exception, but simply serves as a marker for
all errors related to the XML operations. Whereas the DOM specification uses an integer flag
within its exception to indicate the cause of the problem, XDOM defines each error type as a dif-
ferent subclass of EDomException. Listing 11-1 contains the full range of declared exceptions. As
usual, you can handle all DOM errors by trapping at the topmost level or by drilling down to a sub-
class for increased precision.

195

196
SR ‘

' Part Il: The Document Object Model

Figure 11-1: Class hierarchy for Open XMLs DOM.

| TObject |
—i Exception |

[TPersistent |

EDomException

| TComponent I

|
| TdomCustomParser I

L]

TXmlIToDomParser |

[TdomNode |

!
] Tdomimplementation |

TdomAttr |

TdomAttrDefinition

TdomCharacterData

TdomComment |

TdomText

L

TdomCDATASection

_| TdomCustomDeclaration |

TdomAttrList

TdomCustomEntity

TdomEntity

TdomEntityDeclaration |

TdomParameterEntity

| TObject |

_L TdomMNode |

TdomDocument |

TdomDocumentFragment |

TdomElement

TdomExternalParameterEntity |

TdomExternalParsedEntity |

TdomNametoken |

TdomMotation

TdomNotationDeclaration |

TdomParticle

TdomElementParticle |

TdomPcdataChoiceParticle |

TdomSequenceParticle |

TdomProcessinglnstruction |

TdomReference

TdomEntityReference l

TdomParameterEntityReference I

TdomTextDeclaration

TdomXmiDeclaration

TdomParameterEntityDeclaration I

TdomMNodeFilter

|
| TdomElementTypeDeclaration |

l TdomCustomDocumentType

TdomConditionalSection I

TdomDocumentType

TdomExternalSubset

TdominternalSubset |

TdomModelterator |

TdomNodeList

TdomNamedNodeMap |

_| TdomTreeWalker |

Team-F [y‘

Chapter 11: Open XML's Document Object Model

Listing 11-1: The XDOM exceptions

EDomException = class(Exception);

EIndex Size Err = class(EdomException);
EDomstring Size Err = class(EdomException);

EHierarchy Request Err = class(EdomException);

EWrong Document Err = class(EdomException);

EInvalid Character_Err = class(EdomException);
ENo_Data Allowed Err = class(EdomException);

ENo Modification Allowed Err = class(EdomException);
ENot_Found Err = class(EdomException);

ENot Supported Err = class(EdomException);

EInuse Attribute Err = class(EdomException);

EInvalid State Err = class(EdomException);

ESyntax_Err = class(EdomException);

EInvalid Modification Err = class(EdomException);
ENamespace Err = class(EdomException);

EInvalid Access Err = class(EdomException);

EInuse Node Err = class(EdomException);

EInuse AttributeDefinition Err = class(EdomException);
ENo_External Entity Allowed Err = class(EdomException);
EInvalid Entity Reference Err = class(EdomException);
EUnknown_Document Format Err = class(EdomException);

EParserException = class(Exception);
EInternalParserException = class(EParserException);

EParserFatalError = class(EParserException);
EParserError = class(EParserException);
EParserWarning = class(EParserException);

EParserMissingWhiteSpace Err = class(EParserFatalError);
EParserMissingQuotationMark Err = class(EParserFatalError);
EParserMissingEqualitySign Err = class(EParserFatalError);
EParserDoubleEqualitySign Err = class(EParserFatalError);
EParserInvalidETlementName Err = class(EParserFatalError);
EParserInvalidAttributeName Err = class (EParserFatalError);
EParserInvalidAttributeValue Err = class(EParserFatalError);
EParserDoubleAttributeName Err = class(EParserFatalError);
EParserInvalidEntityName Err = class(EParserFatalError);
EParserInvalidProcessingInstruction Err = class(EParserFatalError);
EParserInvalidXmlDeclaration Err = class(EParserFatalError);
EParserInvalidCharRef Err = class(EParserFatalError);
EParserMissingStartTag Err = class(EParserFatalError);
EParserMissingEndTag Err = class(EParserFatalError);
EParserInvalidEndTag_Err = class(EParserFatalError);
EParserInvalidCharacter Err = class(EParserFatalError);
EParserNotInRoot Err = class(EParserFatalError);
EParserDoubleRootElement Err = class(EParserFatalError);
EParserRootNotFound Err = class(EParserFatalError);
EParserWrongOrder Err = class(EParserFatalError);
EParserInvalidDoctype Err = class(EParserFatalError);
EParserInvalidTextDeclaration Err = class(EParserFatalError);

EParserDoubleDoctype Err = class(EParserInvalidDoctype Err);

EParserUnknownDeclarationType Err = class(EParserInvalidDoctype Err);
EParserInvalidEntityDeclaration_Err = c]ass(EParserInva]1dDoctype_Err);

EParserInvalidElementDeclaration Err =
class(EParserInvalidDoctype Err);

197

198 Part Il: The Document Object Model

EParserInvalidAttributeDeclaration Err =
class(EParserInvalidDoctype Err);

EParserInvalidNotationDeclaration Err =
class(EParserInvalidDoctype Err);

EParserInvalidConditionalSection_Err =
class(EParserInvalidDoctype Err);

EParserDouble Entity Decl Warning = class(EParserWarning);
EParserDouble Parameter Entity Decl Warning = class(EParserWarning);
EParserDouble Notation Decl Warning = class(EParseriWarning);
EParserUnusable_Entity Decl_Warning = class(EParserWarning);

TdomNode Class

As in the previous DOM implementations, TdomNode is the base for all the nodes that appear
within the object model. This class allows nodes to be treated in a generic way, without having to
cast them to their appropriate subclasses. However, not all of the properties and methods apply to
all of the possible descendants. For example, although TdomNode has methods for accessing child
nodes, attempting to add one to a TdomText node results in an exception since Text nodes do not
have children.

The public interface of the TdomNode class is shown in Listing 11-2. Note that many of the
properties are read-only, their values being initialized upon creation of the node.

Listing 11-2: The TdomNode declaration

TdomNode = class
public

constructor Create(const AOwner: TdomDocument);

destructor Destroy; override;

procedure Clear; virtual;

function InsertBefore(const newChild, refChild: TdomNode):
TdomNode; virtual;

function ReplaceChild(const newChild, oldChild: TdomNode) :
TdomNode; virtual;

function RemoveChild(const oldChild: TdomNode): TdomNode;
virtual;

function AppendChild(const newChild: TdomNode): TdomNode;
virtual;

function HasChildNodes: boolean; virtual;

function CloneNode(const deep: boolean): TdomNode; virtual;

function IsAncestor(const AncestorNode: TdomNode): boolean;
virtual;

procedure GetlLiteralAsNodes(const RefNode: TdomNode); virtual;

procedure normalize; virtual;

function supports(const feature, version: WideString): boolean;

virtual;
published

property Attributes: TdomNamedNodeMap read GetAttributes;
property ChildNodes: TdomNodeList read GetChildNodes;
property Code: WideString read GetCode;
property FirstChild: TdomNode read GetFirstChild;
property LastChild: TdomNode read GetlLastChild;
property LocalName: WideString read GetLocalName;
property NamespaceURI: WideString read GetNamespaceURI;

property NextSibling: TdomNode read GetNextSibling;

Chapter 11: Open XML's Document Object Model 1 99

property NodeName: WideString
property NodeType: TdomNodeType
property NodeValue: WideString

write SetNodeValue;
property OwnerDocument: TdomDocument

property ParentNode: TdomNode
property PreviousSibling: TdomNode
property Prefix: WideString
write SetPrefix;
end;

read
read
read

read
read
read
read

GetNodeName;
GetNodeType;
GetNodeValue

GetDocument;
GetParentNode;
GetPreviousSibling;
GetPrefix

The TdomNode’s properties and methods are described below:

constructor Create(const AOwner: TdomDocument);
You should not call this constructor directly. Instead use the appropriate method provided by
the TdomDocument class. The owning document of the node is passed in as a parameter.

property NodeType: TdomNodeType read GetNodeType;
The particular type of subclass derived from TdomNode is identified by this read-only prop-
erty. Its value is one of the constants listed in the TDomNodeType type. See Table 11-1 for the
correspondence between the node types and the implementing classes.

Table 11-1: XDOM node types

Node Type

ntUnknown

ntElement Node

ntAttribute Node

ntText Node

ntCDATA Section_Node

ntEntity Reference_Node
ntEntity Node
ntProcessing_Instruction_Node
ntComment_Node

ntDocument Node
ntDocument_Type Node

ntDocument Fragment Node
ntNotation_Node
ntXml_Declaration_Node
ntConditional_Section_Node
ntParameter Entity Reference Node
ntParameter Entity Node
ntEntity Declaration_Node
ntParameter Entity Declaration_Node
ntElement_Type_Declaration_Node

ntSequence_Particle_Node

Subclass

TdomETement

TdomAttr

TdomText

TdomCDATASection
TdomEntityReference
TdomEntity
TdomProcessingInstruction
TdomComment

TdomDocument
TdomDocumentType
TdomDocumentFragment
TdomNotation
TdomXmlDeclaration
TdomConditionalSection
TdomParameterEntityReference
TdomParameterEntity
TdomEntityDeclaration
TdomParameterEntityDeclaration
TdomETementTypeDeclaration

TdomSequenceParticle

200 Port ll: The Document Object Model

Node Type Subclass
ntChoice_Particle_Node TdomChoiceParticle
ntPcdata _Choice Particle Node TdomPcdataChoiceParticle
ntElement Particle Node TdomETementParticle
ntAttribute_List Node TdomAttrList

ntAttribute Definition_Node TdomAttrDefinition
ntNametoken_Node TdomNametoken

ntText Declaration_Node TdomTextDeclaration
ntNotation Declaration_Node TdomNotationDeclaration
ntExternal Parsed Entity Node TdomExternalParsedEntity
ntExternal Parameter Entity Node TdomExternalParameterEntity
ntExternal_Subset_Node TdomExternalSubset
ntInternal_Subset_Node TdomInternalSubset

Once the type of node is determined, the node can be cast to the correct subclass to gain access to
its unique abilities. The meaning of the NodeName and NodeValue properties depends on the node
type as shown in Table 11-2.

Table 11-2: NodeName and NodeValue meanings based on node type

Node Type NodeName NodeValue

ntAttribute Definition Node Name of attribute Default value of attribute

ntAttribute List Node Name of element " (Empty string)

ntAttribute_Node Name of attribute Value of attribute

ntCDATA Section_Node #cdata-section Content of the CDATA section

ntChoice_Particle_Node #choice-particle "

ntComment_Node #comment Content of the comment

ntConditional Section Node #conditional-section|"

ntDocument_Fragment Node #document-fragment "

ntDocument_Node #document "

ntDocument_Type Node Document type name | Entire content excluding name
and external ID

ntElement_Node Name of element "

ntETement_Particle_Node Name of element "

ntElement Type Declaration_Node Name of element Value of declaration

ntEntity Declaration Node Name of entity Value of entity

ntEntity Node Name of entity Value of entity

ntEntity Reference Node Name of entity !

ntExternal Parameter_Entity Node #external-parameter-|"

entity

Chapter 11: Open XML's Document Object Model 5

'-1 201

Node Type
ntExternal Parsed Entity Node

ntExternal_Subset_Node
ntinternal_Subset_Node
ntNametoken Node

ntNotation Declaration_Node
ntNotation_Node

ntParameter Entity Declaration_Node
ntParameter Entity Node
ntParameter Entity Reference Node
ntPcdata _Choice Particle Node
ntProcessing Instruction_Node

ntSequence_Particle_Node
ntText Declaration_Node
ntText Node

ntUnknown

ntXml Declaration_Node

NodeName

#external-parsed-
entity

#external-subset
#internal-subset
Name of name token
Name of notation
Name of notation

Name of parameter
entity

Name of parameter
entity

Name of parameter
entity

#pcdata-choice-
particle

Name of target

#sequence-particle
#text-declaration
#text

#xml-declaration

NodeValue

Value of parameter entity

Value of parameter entity

Entire content excluding the
target

Content of the text

property NodeName: WideString read GetNodeName;
This read-only property returns the name of the node. The actual value depends on the type
of the node, as shown in Table 11-2. For nodes within a namespace, this value includes the

associated prefix.

property NamespaceURI: WideString read GetNamespaceURI;

This read-only property finds the full URI that identifies the namespace for this node. If no
namespace applies to the node, an empty string is returned.

property Prefix: WideString read GetPrefix write SetPrefix;
The shorthand identifier for the above namespace (up to the colon) is returned by this prop-
erty. An empty string results if no namespace is applicable. Setting this value also updates
the NodeName property, as well as the TagName property of element nodes, and the Name prop-
erty of attribute nodes. An exception arises if the new value contains illegal characters, the
prefix is malformed, the NamespaceURI property is an empty string, or the prefix is a
reserved XML one without the corresponding namespace being specified.

property LocalName: WideString read GetLocalName;
The rest of the node’s name (after the colon) is retrieved through this read-only property. For
a node that does not belong to a namespace, this is the same as the NodeName property.

- 202

Part Il: The Document Object Model

property NodeValue: WideString read GetNodeValue write SetNodeValue;
This property contains the text value of the node, if applicable. For a text node, this is the
actual text, while a processing instruction node places its command data here. The value is
an empty string for those nodes that do not have a value. See Table 11-2 for the exact mean-
ing based on the node type. Attempting to alter this value on a read-only node results in an
exception being raised.

property Code: WideString read GetCode;
Use this read-only property to retrieve the XML text that corresponds to this node and all of
its children. When generating a document or document fragment with the DOM, you extract
the resulting XML from here before saving it to a file or sending it on to another process.

NOTE As with the previous DOMs, the Code property is an extension to the DOM specifica-
tion, but a necessary one for creating XML documents on the fly.

property Attributes: TdomNamedNodeMap read GetAttributes;
Access the attributes of an element node through this read-only property. For all other node
types the property returns nil. As in the specification, the result is a named node map, which
is covered in a later section.

property OwnerDocument: TdomDocument read GetDocument;
Traverse to the document that created the node via this read-only property. Nodes belong to
their creating document and cannot be moved between documents. For document nodes and
for document type nodes when not yet attached to a document, this property returns nil.

property ParentNode: TdomNode read GetParentNode;
The next node up in the DOM hierarchy is available via this read-only property. From the
root of the structure, a document or document fragment node, this returns nil. Attribute,
attribute definition, entity, and notation nodes also do not have a parent, nor does a newly
created node before it is added to a tree.

property ChildNodes: TdomNodelList read GetChildNodes;
Use this read-only property to move down through the DOM hierarchy. It returns a node list,
which is described in more detail below. If there are no children, this property still returns a
node list but it has no entries in it.

function HasChildNodes: boolean; virtual;
As a convenience, this function returns a flag indicating the presence or absence of children
on this node. You can also check the length of the ChildNodes list property.

property FirstChild: TdomNode read GetFirstChild;
This convenience property (read-only) returns the first child node of the current node, or ni1
if there are no children. You could achieve the same result through the Chi1dNodes property.

Chapter 11: Open XML's Document Object Model g 203

property LastChild: TdomNode read GetLastChild;
Similarly, this read-only property provides access to the last child in the current node’s list,
or nil if there are no children.

property PreviousSibling: TdomNode read GetPreviousSibling;
This read-only property returns the preceding node in this node’s parent’s list of children,
the current node’s sibling. If there is no node before this one at that level, ani1 is returned.

property NextSibling: TdomNode read GetNextSibling;
Conversely, this read-only property provides access to the next node in the parent’s child
list. Again, niT is returned if there is no following node at that level.

function InsertBefore(const newChild, refChild: TdomNode): TdomNode; virtual;

Add children to a node using this method. The new node passed in as a parameter is placed
immediately before the supplied reference node. If the latter is ni1, the new node is placed at
the end of the list of children. A pointer to the new node is returned by the function. If the
new node is already present in the tree, it is first removed. An exception occurs if the node
does not allow children of the new node’s type, if the new node is already an ancestor of the
current node, if the new node was created by another document, if the current or new node’s
parent is read-only, or if the reference node is not a child of the current node.

function ReplaceChild(const newChild, oldChild: TdomNode): TdomNode; virtual;
Insert a new node in place of an existing one with this method. This time a reference to the
node being replaced is returned by the function. Exceptions arise if the existing node cannot
be found as a child, if the current node is read-only, if the new node was created by another
document, if the new node is an ancestor of the current node, or if the new node type is not
allowed as a child of the current node. If the new node was already present in the DOM, it is
removed from that point before being inserted in its new spot.

function RemoveChild(const o1dChild: TdomNode): TdomNode; virtual;
Delete a particular child node with this method. A reference to the deleted node is returned
by the function. An exception occurs if the node to be deleted cannot be found as a child or if
the current node is read-only.

function AppendChild(const newChild: TdomNode): TdomNode; virtual;
Add a new node at the end of this node’s child list using this method. A pointer to the new
node is returned by the function. The node is removed from the DOM if it is already present.
Exceptions are raised for the same reasons as the InsertChild method. In fact,
InsertChild can provide the same functionality as this method when its reference node is
settonil.

TIP When adding a document fragment to a DOM, that node is not inserted directly.
Instead, all the children of that fragment are inserted in turn. This allows you to transfer nodes
or subtrees between sections of the document easily.

204

Part Il: The Document Object Model

function CloneNode(const deep: boolean): TdomNode; virtual;
Create a copy of the current node using this method and return a reference to it. This new
node has no parent until it is placed into the main DOM or a document fragment. If the deep
parameter is set to True, then all the nodes below the current one are also copied and placed
below its duplicate. Otherwise, only the single current node is replicated.

An element node always has its attributes copied, regardless of the deep setting, but any
text within it is only reproduced on a deep copy. Cloning a document type node also dupli-
cates its entity and notation nodes automatically. When a read-only node is copied, the
resulting node can be altered. This does not apply to entity and entity reference nodes whose
contents remain read-only.

procedure normalize; virtual;
Normalizing a node causes any adjacent text nodes within the subtree below it to be com-
bined. Thus there are only markup nodes (elements, comments, CDATA sections, entity
references, and processing instructions) surrounding text nodes. Note that CDATA sections
are not combined with text nodes. Performing this operation ensures that the DOM is in a
consistent state for either saving or for working with other technologies such as XPointer.

function supports(const feature, version: WideString): boolean; virtual;
Test whether or not a particular ability is supported by this DOM implementation through
this method. Given a feature name and required version, it returns True if those capabilities
are present and False otherwise.

NOTE Inthe DOM specification, the supports method is named isSupported. Missing from
the DOM spec is the hasAttributes method; however, looking at the Attributes property can
duplicate its functionality. The remaining methods are not part of the standard DOM.

procedure Clear; virtual;
Remove all children from this node using this method, except for those that are read-only.
An exception arises if the node itself is read-only. You can use this to prepare a node for a
new set of children.

function IsAncestor(const AncestorNode: TdomNode): boolean; virtual;
This convenience method returns True if the supplied node is an ancestor of the current
node, and False if it is not.

procedure GetLiteralAsNodes(const RefNode: TdomNode); virtual;
The functionality for this method has not yet been fully implemented.

Chapter 11: Open XML's Document Object Model 205

TdomNodelist Class

Node lists provide the structure within the DOM. Each node has a ChildNodes property that
returns an object of this type. Using this you can traverse down through the hierarchy and process
the entire XML document.

Listing 11-3 shows the public and protected declarations for TdomNodeList. These follow the
DOM specification very closely.

Listing 11-3: The TdomNodeList declaration

TdomNodeList = class
protected

function IndexOf(const Node: TdomNode): integer; virtual;
public

constructor Create(const NodelList: TList);

property Length: integer read GetlLength;

function Item(const index: integer): TdomNode; virtual;
end;

The properties and methods of TdomNodeList are detailed below:

constructor Create(const NodelList: TList);
Generate a new node list object, passing in the TList of nodes to be managed. Usually these
node lists are created automatically for you.

property Length: integer read GetlLength;
Retrieve the number of entries in the list with this read-only property.

function Item(const index: integer): TdomNode; virtual;
Access each entry in the list via its index (starting from zero) using this function. If the index
is not valid, a ni1 is returned.

function IndexOf(const Node: TdomNode): integer; virtual;
This protected function returns the index of a given node within its list. If the specified node
is not in the list, a value of -1 is returned. Note that this method is only available when sub-
classing the TdomNodeList class.

Various specialized node lists are also defined within the XDOM package, all deriving from the
basic node list. The TdomETementsNodeList provides an ordered collection of nodes from the doc-
ument based on a tag name passed into its constructor. TdomETlementsNodelListNS is a
namespace-aware version of the previous class. Similarly, the TdomSpecialNodeList gives access
to an ordered collection of nodes of one or more specified node types, selecting from a list of nodes
passed in as a parameter. These classes are used internally and you see them only as a normal
TdomNodeList outside the XDOM package.

206 Part Il: The Document Object Model

TdomNamedNodeMap Class

The named node map provides access to a list of nodes, just like the node list above, but primarily
does so through the nodes’ names, rather than their location within the list. Listing 11-4 shows the
declaration for the TdomNamedNodeMap class. It inherits the abilities of the normal node list, before
adding its own functionality. Although the parent class provides sequential access to the list
entries, this does not imply any particular order in their retrieval within this subclass.

Listing 11-4: The TdomNamedNodeMap declaration

TdomNamedNodeMap = class(TdomNodeList)
protected
function Removeltem(const Arg: TdomNode): TdomNode; virtual;
function GetNamedIndex(const Name: WideString): integer;
virtual;
public
constructor Create(const AOwner, AOwnerNode: TdomNode;
const NodelList: TList; const AllowedNTs: TDomNodeTypeSet);
virtual;
function GetNamedItem(const Name: WideString): TdomNode;
virtual;
function SetNamedItem(const Arg: TdomNode): TdomNode; virtual;
function RemoveNamedItem(const Name: WideString): TdomNode;
virtual;
function GetNamedItemNS(const namespaceURI, LocalName:
WideString): TdomNode; virtual;
function SetNamedItemNS(const Arg: TdomNode): TdomNode;
virtual;
function RemoveNamedItemNS(const namespaceURI, LocalName:
WideString): TdomNode; virtual;
published
property ownerNode: TdomNode read GetOwnerNode;
property namespaceAware: boolean read GetNamespaceAware
write SetNamespaceAware;
end;

TdomNamedNodeMap’s properties and methods are detailed below:

constructor Create(const AOwner, AOwnerNode: TdomNode; const NodelList: TList;
const AllowedNTs: TDomNodeTypeSet); virtual;
Build a new named node map for your use. The node that creates the map and the one that
uses the map (or nil if not used by a node) are passed in as parameters. Also supplied is a
TList of nodes to be managed by the map. Normally these lists are created for you
automatically.

property ownerNode: TdomNode read GetOwnerNode;
Find the node to which this map is attached with this read-only property, or return nil if
there is no such node.

property namespaceAware: boolean read GetNamespaceAware write SetNamespaceAware;
By default this property is set to False, indicating that the non-namespace versions of the
following methods should be used. When set to True, the namespace version must be used
(those with NS in their names). The value may be altered so long as there are no entries in the

Chapter 11: Open XML's Document Object Model _

list. If you attempt to access the wrong version of the remaining methods, an exception is
raised.

function GetNamedItem(const Name: WideString): TdomNode; virtual;
This function retrieves a node from the list, given its name. If the node cannot be found, a
nil is returned instead. If the namespaceAware property is set to True, an exception occurs
when calling this method.

function SetNamedItem(const Arg: TdomNode): TdomNode; virtual;
This property adds a new node to the list using its name as the key. An exception is raised if
the new node was created by another document, if this list is read-only, if a node is supplied
that already exists within the document, or if the namespaceAware property is set to True
when calling this method.

function RemoveNamedItem(const Name: WideString): TdomNode; virtual;
Delete the specified node from the list based on its name. An exception occurs if the node
cannot be found, if this list is read-only, or if the namespaceAware property is set to True
when calling this method.

NOTE If an attribute is removed from an element’s list, but that attribute has a default value
specified in the DTD, it should immediately reappear with that default value. This functionality
is not yet implemented in the XDOM package.

function GetNamedItemNS(const namespaceURI, LocalName: WideString): TdomNode;
virtual;
This method is the namespace-aware version of GetNamedItem. It works just like the origi-
nal except that it raises an exception if the namespaceAware property is set to False when it
is invoked.

function SetNamedItemNS(const Arg: TdomNode): TdomNode; virtual;
Similarly, this method is the namespace-aware version of SetNamedItem, with the opposite
behavior of the namespaceAware property.

function RemoveNamedItemNS(const namespaceURI, LocalName: WideString):
TdomNode; virtual;
Another namespace-aware method, this time for removeNamedItem. As above, it only works
when the namespaceAware property is set to True.

function Removeltem(const Arg: TdomNode): TdomNode; virtual;
This protected method deletes an entry from the list.

NOTE The replacement of deleted attribute nodes which have default values is not yet
implemented.

function GetNamedIndex(const Name: WideString): integer; virtual;
Given the name of a node, this method returns its index within the list, or -1 if it does not
appear at all. An exception is raised if the namespaceAware property is True. This method is
also protected.

208 Part Il: The Document Object Model

Internally the list of entities for a document is held (in the document type object) in a customized
subclass of TdomNamedNodeMap. However, the additional functionality is not used outside of the
XDOM package and the list can be treated just like an ordinary node map.

TdomElement Class

Most of the nodes within a DOM are of this type which represents an E1ement node. The declara-
tion for TdomETement is shown in Listing 11-5.

Listing 11-5: The TdomElement declaration

TdomETlement = class (TdomNode)
public
constructor Create(const AOwner: TdomDocument;
const NamespaceURI, TagName: WideString); virtual;
destructor Destroy; override;
function GetTagName: WideString; virtual;
function GetAttributes: TdomNamedNodeMap; override;
function GetAttribute(const Name: WideString): WideString;
virtual;
function SetAttribute(const Name, Value: WideString): TdomAttr;
virtual;
function RemoveAttribute(const Name: WideString): TdomAttr;
virtual;
function GetAttributeNode(const Name: WideString): TdomAttr;
virtual;
function SetAttributeNode(const NewAttr: TdomAttr): TdomAttr;
virtual;
function RemoveAttributeNode(const O1dAttr: TdomAttr):
TdomAttr; virtual;
function GetElementsByTagName(const Name: WideString):
TdomNodeList; virtuals
function GetAttributeNS(const namespaceURI, TocalName:
WideString): WideString; virtual;
function SetAttributeNS(const namespaceURI, qualifiedName,
value: WideString): TdomAttr; virtual;
function RemoveAttributeNS(const namespaceURI, localName:
WideString): TdomAttr; virtual;
function GetAttributeNodeNS(const namespaceURI, TocalName:
WideString): TdomAttr; virtual;
function SetAttributeNodeNS(const NewAttr: TdomAttr): TdomAttr;
virtual;
function GetElementsByTagNameNS(const namespaceURI, TocalName:
WideString): TdomNodeList; virtual;
function hasAttribute(const name: WideString): boolean;
virtual;
function hasAttributeNS(const namespaceURI, TocalName:
WideString): boolean; virtual;
procedure normalize; override;
published
property TagName: WideString read GetTagName;
end;

Chapter 11: Open XML's Document Object Model _

The properties and methods of TdomE1ement are detailed below:

constructor Create(const AOwner: TdomDocument; const NamespaceURI, TagName:
WideString); virtual;
As for TdomNode, this constructor should not be directly invoked. Ask a TdomDocument
object for a new element instead with its CreateElement or CreateElementNS methods.
This ensures that the new node is correctly set up.

property TagName: WideString read GetTagName;
Retrieve the name of the element through this property. This is the same value as returned by
the NodeName property. The name is read-only, having been set during the construction of the
element node.

function GetAttributes: TdomNamedNodeMap; override;
This function is overridden here to return a reference to the TdomNamedNodeMap object that
manages the attributes of this element. Although you could access the attributes in this man-
ner, there are numerous convenience methods defined on the element class to manipulate
them. See their definitions below.

function hasAttribute(const name: WideString): boolean; virtual;
Determine whether or not an attribute exists using this function. It returns True if the named
attribute is present and False otherwise. If the attribute list’s namespaceAware property is set
to True, this method raises an exception. Use the hasAttributeNS method in this case.

function GetAttribute(const Name: WideString): WideString; virtual;
Find the text value of a named attribute with this function. If the attribute does not exist on
this element, an empty string is returned. An exception occurs if the namespaceAware prop-
erty of the attributes is set to True when this method is invoked. In this case you should use
the GetAttributeNS method instead.

function SetAttribute(const Name, Value: WideString): TdomAttr; virtual;

Add an attribute with a particular value using this method. The name of the attribute and its
value are passed in, and a reference to the newly created TdomAttr object is returned. If an
attribute by the given name is already present, its value is changed to be the new one. An
exception occurs if an invalid character is specified as part of the name, or if the attribute
list’s namespaceAware property is set to True. In the latter case you should use the
SetAttributeNS method instead.

This method only allows you to set a straight textual value for an attribute. If you need
one that contains entity references you must build it up yourself before attaching it to the ele-
ment with the SetAttributeNode method.

function RemoveAttribute(const Name: WideString): TdomAttr; virtual;
Deletes an attribute with a given name. The function returns a reference to the deleted node.
Not finding the attribute or having the namespaceAware property of the attributes set to True
raises an exception. For namespace-defined attributes you should use the
RemoveAttributeNS method.

210

Part Il: The Document Object Model

NOTE |[f the atftribute is deleted but has a default value specified in the DTD, it should imme-
diately reappear on the element with that default value. However, this behavior is not yet
implemented in the XDOM package.

function GetAttributeNode(const Name: WideString): TdomAttr; virtual;
Instead of retrieving the text value of an attribute given its name, you can obtain a reference
to the entire node with this method. This allows you to examine other properties of the
attribute node, and to manipulate any child nodes it has. A nil is returned if the attribute
cannot be found. Using this method when the namespaceAware property of the attribute list
is True raises an exception. In this case you should use the GetAttributeNodeNS method
instead.

function SetAttributeNode(const NewAttr: TdomAttr): TdomAttr; virtual;
Use this function to add a new attribute to the element, having previously constructed it
yourself. If an attribute with that name already exists, the new one replaces it. When this
happens, a reference to the replaced attribute is returned by the function. Otherwise it
returns nil. An exception occurs if the attribute was created by another document, if the
attribute already belongs to another element, or if the attribute list is namespace aware. In
the latter case you can use the SetAttributeNodeNS method.

function RemoveAttributeNode(const O1dAttr: TdomAttr): TdomAttr; virtual;
Deletes an attribute when given a reference to it. A reference to the removed node is
returned. An exception is raised if the attribute is not found within this element.

NOTE As for RemoveAttribute, the attribute should immediately reappear on the element
with a default value if one is specified. However, this behavior is not yet implemented in the
XDOM package.

function GetAttributeNS(const namespaceURI, localName: WideString): WideString;
virtual;

function SetAttributeNS(const namespaceURI, qualifiedName, value: WideString):
TdomAttr; virtual;

function RemoveAttributeNS(const namespaceURI, TocalName: WideString): TdomAttr;
virtual;

function GetAttributeNodeNS(const namespaceURI, TocalName: WideString): TdomAttr;
virtual;

function SetAttributeNodeNS(const NewAttr: TdomAttr): TdomAttr; virtual;

function hasAttributeNS(const namespaceURI, TocalName: WideString): boolean;
virtual;
All of these methods function the same as their counterparts without the NS suffix. However,
they only work with namespace-defined attributes. The namespaceAware property of the
attribute list needs to be set to True for them to function. If set to False, calling any of these
methods generates an exception.

Chapter 11: Open XML's Document Object Model 21 1

function GetElementsByTagName(const Name: WideString): TdomNodelList; virtual;
Given the name of an element, this method retrieves a list (TdomNodeList) of such elements
from within the subtree beneath this node. The nodes appear in the list in the order that they
are encountered during a pre-order traversal of the tree (the same order as you would read
them within the XML document). Nodes within the list are “live”—any changes to them
also affect the original nodes within the subtree. You can access all the elements in the cur-
rent element’s subtree by passing the name *.

TIP The TdomNodelList created by the GetElementsByTagName method is only freed when the
element itself is released. Calling the function many times for different tag names results in
increasing memory usage. A better strategy is to use a node iterator or a tree walker instead
(see the corresponding sections below).

Furthermore, the requirement for “live” nodes means that the list must be traversed from
the beginning each time an item is referenced. This imposes a performance hit on the applica-
tion. Again, using a node iterator or a tree walker should be faster.

The same considerations apply to the namespace-aware version, GetElementsByTag-
NameNS.

function GetElementsByTagNameNS(const namespaceURI, TocalName: WideString):
TdomNodeList; virtual;
This method works like the GetETementsByTagName function but searches for namespace
defined elements. Pass in the full namespace URI and the local name to find the required
elements. As before, use * to match with all possible values.

procedure normalize; override;
As for the TdomNode class, this method combines adjacent text nodes within the element’s
subtree. This produces a standard tree for saving or other processing.

TdomAttr Class

Attributes are a special type of node. They do not sit within the normal DOM hierarchy, but are
instead managed by a named node map belonging to an element. Due to this, their ParentNode,
PreviousSibling, and NextSibling properties all return ni1. Attribute nodes are accessible via
the Attributes property of an element, which returns the node map itself, or through one of the
numerous convenience methods in the element class that deal with attributes.

Attributes do derive from the standard TdomNode class, and thus possess the same basic proper-
ties and abilities as other nodes. The definition of XDOM’s attribute class is shown in Listing
11-6.

Listing 11-6: The TdomAttr declaration

TdomAttr = class (TdomNode)
public
constructor Create(const AOwner: TdomDocument;
const NamespaceURI, Name: WideString; const Spcfd: boolean);
virtual;
procedure normalize; override;

212

Part Il: The Document Object Model

published
property Name: WideString read GetName;
property Specified: boolean read GetSpecified default false;
property Value: WideString read GetValue write SetValue;
property OwnerElement: TdomElement read GetOwnerElement;
end;
Most attributes have a simple text string as their value. For these, a single text node is sufficient to
hold that value. However, for attributes that contain entity references, their content must be speci-
fied through a combination of text nodes and entity reference nodes that make up the attribute’s
value as children.

TdomAttr’s properties and methods are detailed below:

constructor Create(const AOwner: TdomDocument; const NamespaceURI, Name:

WideString; const Spcfd: boolean); virtual;

Use the CreateAttribute or CreateAttributeNS methods of the TdomDocument class to
construct a new attribute node, rather than calling this constructor directly. The parameters
set the document that created the node, the namespace URI for the attribute along with its
local name, and a flag indicating where the attribute’s value came from. Alternately, have an
element create one automatically by calling the SetAttribute or SetAttributeNS methods
and supplying the attribute’s name and value.

property Name: WideString read GetName;
A renaming of the inherited NodeName property, this read-only property returns the attrib-
ute’s qualified name.

property Value: WideString read GetValue write SetValue;
This property retrieves the text equivalent of the attribute’s value. Any character and entity
references are replaced with their values and are combined with any text before being
returned. Setting this property removes all child nodes from the attribute and replaces them
with a single child text node containing the supplied value. Attempting to modify a
read-only attribute raises an exception, as does reading one that contains an unknown entity
reference.

property Specified: boolean read GetSpecified default false;

This read-only flag indicates the source of the attribute’s value. When True, the value comes
directly from the XML document as a listed attribute on that element. When False, the
value derives from a default or fixed value specified in the DTD for the document. If the
attribute is not listed in the document and does not have a default value specified, then no
attribute node for it appears within the DOM. This value is set when processing the docu-
ment and cannot be changed directly. However, setting the Value property of the attribute
does change this flag to True.

property OwnerElement: TdomElement read GetOwnerElement;
This property returns a reference to the element node that owns the attribute. It is set when
the attribute is added to an element and cannot be altered directly.

Chapter 11: Open XML's Document Object Model 21 3

By R o

procedure normalize; override;
As before, this method combines adjacent text nodes within the element’s subtree, creating a
standardized hierarchy.

TdomCharacterData Class

All textual data within the DOM have certain common abilities. These are encapsulated in the
TdomCharacterData class, which is then subclassed for the actual node types in the document.
Instances of this class itself do not appear in the DOM. The declaration for the class is shown in
Listing 11-7.

Listing 11-7: The TdomCharacterData declaration

TdomCharacterData = class (TdomNode)
public
constructor Create(const AOwner: TdomDocument); virtual;
function SubstringData(const offset, count: integer):
WideString; virtual;
procedure AppendData(const arg: WideString); virtual;
procedure InsertData(const offset: integer;
const arg: WideString); virtual;
procedure DeleteData(const offset, count: integer); virtual;
procedure ReplaceData(const offset, count: integer;
const arg: WideString); virtual;
published
property Data: WideString read GetData write SetData;
property length: integer read GetlLength;
end;
The properties and methods of the TdomCharacterData object are detailed below. Remember that

all offset values start from zero at the beginning of the text.

constructor Create(const AOwner: TdomDocument); virtual;
As this class is a base class for all text type nodes, it should never be instantiated on its own.
Subclasses call this constructor as necessary as part of their own initialization.

property Data: WideString read GetData write SetData;
This property returns the actual textual content of the node. It is a read-only property since
the initial value is set on creation, and other methods provide for manipulating the text. The
inherited NodeValue property holds the same value.

property length: integer read GetlLength;
Find the length of the contained text (in characters) with this read-only property. The
returned value may be zero, indicating an empty node.

function SubstringData(const offset, count: integer): WideString; virtual;
Extract a portion of the text using this function, specifying the starting offset and the number
of characters desired. If the total of the offset and count are greater than the length of the text,
then all the text up to the end is returned. If the offset is negative or greater than the length of
the string, or if the count is negative, an exception occurs.

214

Part Il: The Document Object Model

procedure AppendData(const arg: WideString); virtual;
Add the specified text to the end of the current data value. Retrieve the concatenated value
with the Data property.

procedure InsertData(const offset: integer; const arg: WideString); virtual;
Add new text within the body of the current data value. The offset parameter indicates the
starting point, and text beyond that is shifted along to make room. An offset that is negative
or greater than the length of the current text produces an exception.

procedure DeleteData(const offset, count: integer); virtual;
Remove a portion of the current text using this method. Specify the characters to delete with
the offset and count parameters. A count extending past the end of the current text removes
all text up to the end. As before, invalid offset or count values raise an exception.

procedure ReplaceData(const offset, count: integer; const arg: WideString);
virtual;
Combine the functionality of the previous two methods to remove text and then insert new
data in its place. As before, an exception occurs for invalid offset or count values.

TdomText Class

Text nodes contain the actual content of the document. When initially loaded, a single text node
encapsulates each contiguous section of text. You may then add other text nodes, or split the exist-
ing ones. Adjacent text nodes do not persist between instances of the DOM and may be
automatically combined through the normalize method of the TdomNode class.

Text nodes inherit all the abilities of the TdomCharacterData class, adding only one new
method. The declaration for a text node is shown in Listing 11-8.

Listing 11-8: The TdomText declaration

TdomText = class (TdomCharacterData)
public
constructor Create(const AOwner: TdomDocument); override;
function SplitText(const offset: integer): TdomText; virtual;
end;

The TdomText object’s methods are detailed below:

constructor Create(const AOwner: TdomDocument); override;
As before, you should not instantiate a text node directly. Instead, use the CreateTextNode
method on the TdomDocument class.

function SplitText(const offset: integer): TdomText; virtual;
This method breaks a text node into two parts at the specified offset (starting from zero). The
two nodes then exist as siblings beneath the parent of the original text node. Characters up to
the offset remain in the original node, while those after the offset are transferred to the new
node. The method returns a reference to the newly created node. If the offset is out of range,
an exception occurs.

Chapter 11: Open XML's Document Object Model

TdomCDATASection Class

CDATA sections are just like text nodes except that any metacharacters are ignored. This means
that what would normally be regarded as markup (tags and entity references) is left as normal text.
A TdomCDATASection node inherits all of its functionality from the normal text node and adds
nothing. Thus, it simply serves as a marker to indicate the different treatment of the contained
characters.

The declaration for a CDATA section node is shown in Listing 11-9.

Listing 11-9: The TdomCDATASection declaration

TdomCDATASection = class (TdomText)
public

constructor Create(const AOwner: TdomDocument); override;
end;

The methods of a TdomCDATASection object are shown below:

constructor Create(const AOwner: TdomDocument); override;
Do not instantiate these nodes directly. Instead use the TdomDocument class’s CreateCDATA-
Section method.

TdomComment Class

The TdomComment class (shown in Listing 11-10) represents comments within the DOM. Similar
to the CDATA section nodes, this class simply flags that the encapsulated text is treated differently
while inheriting all its abilities from the base character data class.

Listing 11-10: The TdomComment declaration

TdomComment = class (TdomCharacterData)
public

constructor Create(const AOwner: TdomDocument); override;
end;

The methods of a TdomComment object are detailed below:

constructor Create(const AOwner: TdomDocument); override;
Generate comment nodes with the TdomDocument class’s CreateComment method rather than
using this constructor directly.

216 Part Il: The Document Object Model

TdomProcessinglnstruction Class

Instructions for applications handling the document can be passed through processing instruction
nodes. Recall that XML imposes no structure on the data part of the instruction, assuming that the
target program understands it all. See Listing 11-11 for the declaration of the processing instruc-
tion node.

Listing 11-11: The TdomProcessingInstruction declaration

TdomProcessingInstruction = class (TdomNode)
public

constructor Create(const AOwner: TdomDocument;

const Targ: WideString); virtual;

published

property Target: WideString read GetTarget;

property Data: WideString read GetData write SetData;
end;

The TdomProcessingInstruction object’s properties and methods are described below:

constructor Create(const AOwner: TdomDocument; const Targ: WideString); virtual;
Use the CreateProcessingInstruction method of the TdomDocument class to generate
these nodes, rather than calling this constructor directly.

property Target: WideString read GetTarget;
Retrieve the identifier for the application that knows how to use the following instruction.
This value cannot be altered once set during creation. The returned value corresponds to the
inherited NodeName property.

property Data: WideString read GetData write SetData;
Read or update the actual command for the target application through this property. When
an instruction is parsed out of a document, this property contains all the text from the first
non-white space character following the target, up to the character immediately before the
closing ?>. Validating any syntax requirements for the data when setting its value is the
responsibility of the calling program. The inherited NodeValue property contains the same
value as this property.

TdomDocumentType Class

This node type represents the document type declaration within an XML document (the one that
starts with <!DOCTYPE). Such nodes are read-only, having their main properties set at the time of
creation. They have only two child nodes: one each of an internal (TdomInternalSubset) and an
external subset (TdomExternalSubset). These children are not read-only and contain the declara-
tions for the owning document.

Chapter 11: Open XML's Document Object Model .‘-_-'21 7

NOTE XDOM'’s document type node differs quite a bit from the DOM specification. This is
due to the former’s extensive support for DTDs within the DOM. According to the spec, docu-
ment type nodes may be created during parsing of a document, but cannot be altered during
normal processing of the hierarchy.

Document type nodes are created through the TdomImplementation or TdomDocument classes and
their CreateDocumentType or CreateDocumentTypeNS methods. They derive from the Tdom-
CustomDocumentType class (see Listing 11-12), which provides some common functionality
among different document types. The declaration for the TdomDocumentType class itself is shown
in Listing 11-13.

NOTE The DOM specification only provides for the creation of document type nodes
through the Implementation class.

Listing 11-12: The TdomCustomDocumentType declaration

TdomCustomDocumentType = class (TdomNode)
public
constructor Create(const AOwner: TdomDocument);
destructor Destroy; override;
published
property AttributeLists: TdomNamedNodeMap read GetAttributelLists;
property ParameterEntities: TdomNamedNodeMap
read GetParameterEntities;
end;

Listing 11-13: The TdomDocumentType declaration

TdomDocumentType = class (TdomCustomDocumentType)
protected
procedure detectUnusableEntities; virtual;
public
constructor Create(const AOwner: TdomDocument; const Name,
PubId, SysId: WideString); virtual;
destructor destroy; override;
published
property Entities: TdomEntitiesNamedNodeMap read GetEntities;
property ExternalSubsetNode: TdomExternalSubset
read GetExternalSubsetNode;
property InternalSubset: WideString read GetInternalSubset;
property InternalSubsetNode: TdomInternalSubset
read GetInternalSubsetNode;
property Name: WideString read GetName;
property Notations: TdomNamedNodeMap read GetNotations;
property PublicId: WideString read GetPublicld;
property SystemId: WideString read GetSystemlId;
end;

The TdomDocumentType object’s properties and methods (including those of TdomCustom-
DocumentType) are described below:

constructor Create(const AOwner: TdomDocument; const Name, PubId, SysId:
WideString); virtual;
Specify the top-level element name and optional references to an external DTD when con-
structing a document type node. These values cannot be altered later. As with other nodes,

218

Part Il: The Document Object Model

you should use the factory methods of the TdomImplementation or TdomDocument classes
instead of creating these directly.

property Name: WideString read GetName;
Retrieve the name of the top-level element for this DTD through this read-only property. It
cannot be changed after creation.

property PublicId: WideString read GetPublicld;
This property returns the public identifier for an external DTD. A public identifier is a
well-known name for a resource, which can then be mapped to an actual instance of the doc-
ument. Once set during instantiation, this value cannot be altered. It returns an empty string
if no public identifier is specified.

property SystemId: WideString read GetSystemld;
Retrieve the system identifier for an external DTD with this property. A system identifier is
the actual URI that locates the resource to be used. The value cannot be changed after cre-
ation of the node. Again, an empty string results if no system identifier is supplied.

property Entities: TdomEntitiesNamedNodeMap read GetEntities;
This read-only node list property (TdomNamedNodeMap) provides access to the general enti-
ties (not parameter entities) declared within the DTD, returning each as a TdomEntity. Each
new document type object automatically has five nodes in this list. These correspond to the
five default XML entities: 1t, gt, amp, quot, and apos.

property Notations: TdomNamedNodeMap read GetNotations;
Another node list (TdomNamedNodeMap), this read-only property returns the notations
declared in the DTD as TdomNotation objects.

property InternalSubset: WideString read GetInternalSubset;
Obtain the entire subset of the DTD specified within the XML document as a wide string
value using this read-only property. The internal subset cannot be updated via this property.

NOTE The remaining properties are extensions within XDOM and are not part of the DOM
specification.

property ExternalSubsetNode: TdomExternalSubset read GetExternalSubsetNode;
Get a reference to the child node that contains the external declarations from this read-only
property. This is a convenience property since you could find the node among the children
of the document type node.

property InternalSubsetNode: TdomInternalSubset read GetInternalSubsetNode;
Another convenience property, this read-only property returns a reference to the child node
that holds the internal declarations.

property ParameterEntities: TdomNamedNodeMap read GetParameterEntities;
All the parameter entities from the document reside in this read-only node list. They are
returned as TdomParameterEntity objects.

Chapter 11: Open XML's Document Object Model 21 9

property AttributelLists: TdomNamedNodeMap read GetAttributelLists;
Lists of attributes declared in the DTD are found in this read-only node list property. It is
indexed by the element name, and each entry is a TdomAttrList object.

TdominternalSubset Class

The part of the document type declaration within the XML document itself is called the internal
subset. Modeling this in the XDOM package is the TdomInternalSubset class (see Listing 11-14).
It is a child of the document type node and cannot be removed. All the type declarations within the
document appear as children of this node.

Listing 11-14: The TdomInternalSubset declaration

TdomInternalSubset = class (TdomCustomDocumentType)
public

constructor Create(const AOwner: TdomDocument); virtual;
end;

NOTE This class has no equivalent within the DOM specification.

This class derives from the TdomCustomDocumentType class (see Listing 11-12) which also forms
the basis for the normal document type node. No new functionality is added in this class, although
it does make use of some inherited abilities. It mainly serves to delineate the origin of the declara-
tions that it contains.

The properties and methods of the TdomInternalSubset object are detailed below:

constructor Create(const AOwner: TdomDocument); virtual;
A node of this type is created automatically when the document type node is constructed.
You should never create one yourself.

property AttributelLists: TdomNamedNodeMap read GetAttributelists;
Lists of attributes declared in the internal subset are found in this read-only node list prop-
erty. It is indexed by the element name, and each entry is a TdomAttrList object.

property ParameterEntities: TdomNamedNodeMap read GetParameterEntities;
All the parameter entities from the internal subset reside in this read-only node list. They are
returned as TdomParameterEntity objects.

TdomExternalSubset Class

Complementing the internal subset above, any type declarations loaded from an external DTD
appear beneath a TdomExternalSubset node (see Listing 11-15), which is the other child of the
document type node.

Listing 11-15: The TdomExternalSubset declaration

TdomExternalSubset = class (TdomCustomDocumentType)
public
constructor Create(const AOwner: TdomDocument); virtual;

220

Part Il: The Document Object Model

function CloneNode(const deep: boolean): TdomNode; override;
end;

NOTE This class has no equivalent within the DOM specification.

This class derives from the TdomCustomDocumentType class (see Listing 11-12), inheriting most
abilities and overriding one. Its main purpose, though, is to manage the nodes resulting from the
type declarations in the external DTD.

The TdomExternalSubset object’s properties and methods are described below:

constructor Create(const AOwner: TdomDocument); virtual;
When the document type node is created, a node of this type is automatically constructed as
one of its children. You should never create these nodes directly.

property AttributelLists: TdomNamedNodeMap read GetAttributelLists;
This read-only node list property holds the lists of attributes declared in the external subset.
They are indexed by the element name, and each entry is a TdomAttrList object.

property ParameterEntities: TdomNamedNodeMap read GetParameterEntities;
This read-only node list contains all the parameter entities from the external subset. They
are returned as TdomParameterEntity objects.

function CloneNode(const deep: boolean): TdomNode; override;
The external subset node overrides this method to ensure that all its children are set to be
read-only.

TdomConditionalSection Class

The TdomConditionalSection class (shown in Listing 11-16) represents a conditional section in
an external subset. It also derives from TdomCustomDocumentType, which can be found in Listing
11-12. Its children are only used if the value of its Included property is equal to INCLUDE.

Listing 11-16: The TdomConditionalSection declaration

TdomConditionalSection = class(TdomCustomDocumentType)
protected

function SetIncluded(const node: TdomNode): TdomNode; virtual;
public

constructor Create(const AOwner: TdomDocument;

const IncludeStmt: WideString); virtual;

published

property Included: TdomNode read GetIncluded;
end;

NOTE This class has no equivalent within the DOM specification.

Chapter 11: Open XML's Document Object Model 221

The properties and methods of the TdomConditionalSection object are listed below:

constructor Create(const AOwner: TdomDocument; const IncludeStmt: WideString);
virtual;
Build a conditional section in a DTD subset with this constructor. The second parameter
must be either the text INCLUDE or IGNORE, or the name of a parameter entity that evaluates to
one of these. An exception occurs if the IncTudeStmt value does not match the expected
text. As usual, these nodes should not be created directly. Use the CreateConditional-
Section method on the TdomDocument class instead.

property Included: TdomNode read GetIncluded;
Having been set during construction of this node, this read-only property refers to either a
text node with the value INCLUDE or IGNORE, or a parameter entity node containing such a
text node.

function SetIncluded(const node: TdomNode): TdomNode; virtual;
You can set the value of the Included property through this protected method, but only
within a subclass.

property AttributelLists: TdomNamedNodeMap read GetAttributelists;
Lists of attributes declared in the conditional section are found in this read-only node list
property. It is indexed by the element name, and each entry is a TdomAttrList object.

property ParameterEntities: TdomNamedNodeMap read GetParameterEntities;
All the parameter entities from the conditional section reside in this read-only node list.
They are returned as TdomParameterEntity objects.

TdomEntity Class

Entities refer to sections of the document that may appear in several places or that are held exter-
nally. TdomEnt ity nodes represent these entities within the document type node, and are retrieved
through the Entities property of the document type node. The TdomEntityDeclaration class
maintains the declaration of the entity separately.

TdomEntity derives from the TdomCustomDeclaration (see Listing 11-17) and TdomCustom-
Entity (see Listing 11-18) classes, gaining functionality as it goes. Its own declaration is shown in
Listing 11-19.

Listing 11-17: The TdomCustomDeclaration declaration

TdomCustomDeclaration = class (TdomNode)
public
constructor Create(const AOwner: TdomDocument;
const Name: WideString);
published
property Value: WideString read GetValue write SetValue;
end;

222 Part Il: The Document Object Model

Listing 11-18: The TdomCustomEntity declaration

TdomCustomEntity = class (TdomCustomDeclaration)
public
constructor Create(const AOwner: TdomDocument;
const Name, PubId, SysId: WideString);
function InsertBefore(const newChild, refChild: TdomNode): TdomNode;

override;
function ReplaceChild(const newChild, oldChild: TdomNode): TdomNode;
override;
function AppendChild(const newChild: TdomNode): TdomNode; override;
published

property PublicId: WideString read GetPublicld;
property SystemId: WideString read GetSystemlId;
property IsInternalEntity: boolean read GetIsInternalEntity;
end;
Listing 11-19: The TdomEntity declaration

TdomEntity = class (TdomCustomEntity)
public
constructor create(const AOwner: TdomDocument;
const Name, PubId, SysId, NotaName: WideString); virtual;
function cloneNode(const deep: boolean): TdomNode; override;
property isUnusable: boolean read getIsUnusable write SetIsUnusable
default false;
property NotationName: WideString read GetNotationName;
end;
The TdomEntity object’s properties and methods (including those of its custom ancestors) are

detailed below:

constructor create(const AOwner: TdomDocument; const Name, PubId, SysId, NotaName:
WideString); virtual;
Construct a new entity node with this method. You should use the CreateEntity method of
the TdomDocument class instead to ensure the nodes are initialized properly.

property NodeName: WideString read GetNodeName;
This inherited read-only property contains the name of the entity.

property Publicld: WideString read GetPublicId;
External entities return their public identifier through this read-only property. It may be an
empty string if no public identifier is defined, or if the entity is internal.

property SystemId: WideString read GetSystemld;
Retrieve the system identifier for the entity via this read-only property. For internal entities
it returns an empty string, as do entities without a system identifier specified.

property NotationName: WideString read GetNotationName;
For unparsed entities (non-XML external resources), this read-only property holds the name
of the format for that data. It is an empty string for all parsed entities.

NOTE The remaining properties are not part of the DOM specification.

Chapter 11: Open XML's Document Object Model

property Value: WideString read GetValue write SetValue;
For an internal entity, this property contains the actual text value of the entity. It is an empty
string for external entities.

property IsInternalEntity: boolean read GetIsInternalEntity;
This read-only property returns True if the entity is declared internally, and False other-
wise. An internal entity has no public or system identifier, but does have a value.

property isUnusable: boolean read getIsUnusable write SetIsUnusable default false;
Monitor this property to determine whether or not the entity has been fully loaded and can be
used. It returns True if the other properties are valid, and False if they are not. An entity may
not be usable if it is declared externally but the document is not validated, in which case
external references are not followed.

function cloneNode(const deep: boolean): TdomNode; override;
Entities override this method to make sure that all their children are set to be read-only.

TdomEntityDeclaration Class

Whereas the previous class modeled the value of an entity, this one models the type declaration for
that entity. Objects of the TdomEntityDeclaration class (see Listing 11-20) appear within an
internal or external subset. They are derived from the TdomCustomEntity class (shown in Listing
11-18).

Listing 11-20: The TdomEntityDeclaration declaration

TdomEntityDeclaration = class (TdomCustomEntity)
public
constructor Create(const AOwner: TdomDocument;
const Name, EntityValue, PubId, SysId, NotaName: WideString);
virtual;
property ExtParsedEnt: TdomExternalParsedEntity read GetExtParsedEnt
write SetExtParsedEnt;
property NotationName: WideString read GetNotationName;
end;

NOTE This class has no equivalent within the DOM specification.

The properties and methods of the TdomEntityDeclaration object are shown below:

constructor Create(const AOwner: TdomDocument; const Name, EntityValue, Publd,
SysId, NotaName: WideString); virtual;
Entity declaration nodes should be created through the CreateEntityDeclaration method
of the document object, rather than with this constructor.

property NodeName: WideString read GetNodeName;
This inherited read-only property returns the name of the entity.

224

Part Il: The Document Object Model

property Value: WideString read GetValue write SetValue;
For an internal entity, this property contains the actual text value of the entity. It is an empty
string for external entities. Setting this property discards any existing children and replaces
them with a single text node that has the value given. The contents of this value are not
parsed.

property PublicId: WideString read GetPublicld;
This read-only property returns the public identifier for external entities. An empty string
results if no public identifier is defined, or if the entity is internal.

property SystemId: WideString read GetSystemld;
For external entities this read-only property retrieves the system identifier for the entity. For
internal entities it returns an empty string, as do entities without a system identifier
specified.

property NotationName: WideString read GetNotationName;
This read-only property holds the name of the format for the data for unparsed entities
(non-XML external resources). It is an empty string for all parsed entities.

property IsInternalEntity: boolean read GetIsInternalEntity;
This read-only property returns True if the entity is declared internally, and False other-
wise. An internal entity has no public or system identifier, but does have a value.

property ExtParsedEnt: TdomExternalParsedEntity read GetExtParsedEnt write
SetExtParsedEnt;
Access the external parsed entity node corresponding to this declaration through this prop-
erty. For internal entities it is nil. Attempting to set this property for an internal entity
generates an error.

TdomEntityReference Class

Placing entities within the body of the document uses the TdomEntityReference class. A node of
this type is positioned where the replacement text should appear. The class itself derives from
TdomReference (see Listing 11-21), which provides common base functionality for references. Its
declarations are shown in Listing 11-22.

Listing 11-21: The TdomReference declaration

TdomReference = class (TdomNode)
public
constructor Create(const AOwner: TdomDocument; const Name:
WideString); virtual;
published
property Declaration: TdomCustomEntity read GetDeclaration;
end;

Chapter 11: Open XML's Document Object Model _-.‘-_-'225

Listing 11-22: The TdomEntityReference declaration

TdomEntityReference = class (TdomReference)
public
constructor Create(const AOwner: TdomDocument;
const Name: WideString); override;
function CloneNode(const deep: boolean): TdomNode; override;
end;
The properties and methods of a TdomEntityReference object (including those of its ancestors)
are described below:

constructor Create(const AOwner: TdomDocument; const Name: WideString); virtual;
Use the CreateEntityReference method of the TdomDocument class rather than this con-
structor to generate a new entity reference node.

NOTE The remaining properties and methods are not part of the DOM specification.

property Declaration: TdomCustomEntity read GetDeclaration;
This read-only property contains a reference to the TdomEntity node that defines the entity
and its contents.

function CloneNode(const deep: boolean): TdomNode; override;
Entity reference nodes override this method to ensure that all its children are made
read-only.

TdomNotation Class

The formats for external resources must be declared through notation entries in the DTD. See List-
ing 11-23 for the definition of the TdomNotation class. This class only represents the content of the
notation node. Notation declarations are modeled separately through the TdomNotation-
Declaration class.

Listing 11-23: The TdomNotation declaration

TdomNotation = class (TdomNode)
public
constructor Create(const AOwner: TdomDocument; const Name,
PubId, SysId: WideString); virtual;
published
property PublicId: WideString read GetPublicld;
property SystemId: WideString read GetSystemld;
end;

The TdomNotation object’s properties and methods are shown below:

constructor Create(const AOwner: TdomDocument; const Name, PubId, SysId:
WideString); virtual;
Build new notations with the CreateNotation method of the TdomDocument class rather
than this constructor.

property NodeName: WideString read GetNodeName;
Retrieve the name of the notation through this inherited read-only property.

226 Part Il: The Document Object Model

property PublicId: WideString read GetPublicld;
Retrieve the public identifier for this notation through this property. Once the identifier is set
during construction of the notation, it cannot be altered. The public identifier is a well-
known name for the resource. If no public identifier is specified, an empty string is returned.

property SystemId: WideString read GetSystemld;
This property provides the system identifier for the notation. Again, it is read-only after
being set during construction. The system identifier is an actual location (URI) for the nota-
tion, although the resource at that location may be anything (or may not exist at all). An
empty string results if the system identifier is not supplied.

TdomNotationDeclaration Class

Modeling the declaration of a notation within the internal or external subset is the purpose of the
TdomNotationDeclaration class (see Listing 11-24).

Listing 11-24: The TdomNotationDeclaration declaration

TdomNotationDeclaration = class (TdomNode)
public
constructor Create(const AOwner: TdomDocument;
const Name, Publd, SysId: WideString); virtual;
published
property PublicId: WideString read GetPublicld;
property SystemId: WideString read GetSystemId;
end;

NOTE This class has no equivalent within the DOM specification.

The properties and methods of a TdomNotationDeclaration object are described below:

constructor Create(const AOwner: TdomDocument; const Name, PubId, SysId:
WideString); virtual;
Use the CreateNotationDeclaration method of the document object to build these objects.
Do not instantiate them directly.

property NodeName: WideString read GetNodeName;
This inherited read-only property returns the name of the notation.

property PublicId: WideString read GetPublicld;
Retrieve the public identifier for this notation through this read-only property. Its value is
established at the time of creation and cannot be changed thereafter. An empty string returns
if the value is not set.

property SystemId: WideString read GetSystemld;
Similarly, the system identifier for the notation is set during construction and is unalterable
later. Obtain its value from this read-only property. An empty string returns if it is not set.

Chapter 11: Open XML's Document Object Model 227

TdomElementTypeDeclaration Class

The main part of the DTD is the definition of the elements that make up a valid document. The
TdomElementTypeDeclaration class in the XDOM package (shown in Listing 11-25) models
these.

Listing 11-25: The TdomElementTypeDeclaration declaration

TdomElementTypeDeclaration = class (TdomCustomDeclaration)
public
constructor Create(const AOwner: TdomDocument;
const Name: WideString; const Contspec: TdomContentspecType);
virtual;
function AppendChild(const newChild: TdomNode): TdomNode; override;
function InsertBefore(const newChild, refChild: TdomNode): TdomNode;
override;
published
property Contentspec: TdomContentspecType read GetContentspec;
end;

NOTE This class has no equivalent within the DOM specification.

A TdomElementTypeDeclaration object’s properties and methods are detailed below:

constructor Create(const AOwner: TdomDocument; const Name: WideString; const
Contspec: TdomContentspecType); virtual
As usual, you should not call this constructor directly, but should use the CreateElement-
TypeDecTlaration method of the document object.

property NodeName: WideString read GetNodeName;
This inherited read-only property returns the name of the element.

property Contentspec: TdomContentspecType read GetContentspec;
This read-only property returns the type of content allowed in this element. Once set during
construction it cannot be altered. Its value is one of those shown in Table 11-3. The child of
this node (and there can be only one) defines the actual content model, if applicable.

Table 11-3: Element content types

Content Specification |Meaning

ctEmpty The element cannot have any content. In the DTD the EMPTY keyword
denotes this model.

ctAny Any element may be a child of this one. In the DTD the ANY keyword
indicates this model.

ctMixed The content of the element consists of free text, optionally mixed with
other elements. In the DTD this model starts with #PCDATA.

ctChildren Only the nominated elements may appear within this element, and only in
the order and number defined. In the DTD this appears as a list of the
specified sub-elements.

228 Part Il: The Document Object Model

function AppendChild(const newChild: TdomNode): TdomNode; override;
The class overrides this method to add a check regarding the content specification. If you
attempt to add a child to a node marked as empty or accepting any content an error is gener-
ated. An error also occurs if you try to add more than one child.

function InsertBefore(const newChild, refChild: TdomNode): TdomNode; override;
Similarly, this method is overridden to apply the same tests as above.

Content Models

An element uses the classes described in this section, collectively known as particles, to define its
valid content. One of these nodes becomes the child of the element type declaration (unless its
content specification is for an empty node or for any content). All except the element particle can
then have further children to build up the model hierarchy.

NOTE None of these classes has an equivalent within the DOM specification.

Basic functionality for a particle comes from the TdomParticle class shown in Listing 11-26.
Objects of this type are not created directly; one of its subclasses is used instead.

Listing 11-26: The TdomParticle declaration

TdomParticle = class (TdomNode)
public
constructor Create(const AOwner: TdomDocument;
const Freq: WideString);
published
property Frequency: WideString read GetFrequency;
end;

The properties and methods of the TdomParticle object are shown below:

constructor Create(const AOwner: TdomDocument; const Freq: WideString);
Do not create particle objects themselves. Build one of the subclasses instead.

property Frequency: WideString read GetFrequency;
Retrieve the occurrences applicable to this particle within the content model through this
read-only property. Its value is set at creation time, and must be one of those listed in Table
11-4. An error occurs if it is not one of these values.

Table 11-4: Particle frequencies

Frequency Meaning
 (an empty string) | This particle must appear once and once only.
? This particle may appear once or not at all.

+ This particle must appear at least once, but may appear multiple times.
*

This particle may appear multiple times or not at all.

Chapter 11: Open XML's Document Object Model 229

By R o

The TdomSequenceParticle class (see Listing 11-27) defines a sequence of items within a content
specification. In the DTD these items appear separated by a comma (,). The children of this node,
themselves other particles, list the set of nodes that must appear in this order.

Listing 11-27: The TdomSequenceParticle declaration

TdomSequenceParticle = class (TdomParticle)
public
constructor Create(const AOwner: TdomDocument;
const Freq: WideString); virtual;
end;

The TdomSequenceParticle object’s methods are listed below:

constructor Create(const AOwner: TdomDocument; const Freq: WideString); virtual;
Create sequence particles with the CreateSequenceParticle method of the document
object, rather than through this constructor.

Alternate items in the content specification use the TdomChoiceParticle class (shown in Listing
11-28) to define those options. Vertical bars (|) separate these choices in the DTD. The children of
this node (more particles) specify the options.

Listing 11-28: The TdomChoiceParticle declaration

TdomChoiceParticle = class (TdomParticle)
public
constructor create(const AOwner: TdomDocument;
const Freq: WideString); virtual;
end;

The methods of a TdomChoiceParticle object are detailed below:

constructor create(const AOwner: TdomDocument; const Freq: WideString); virtual;
Do not use this constructor directly. Instead use the CreateChoiceParticle method on the
document object.

The TdomPcdataChoiceParticle class (see Listing 11-29) represents mixed content in the content
specification. Use this when the element type node’s content is set to ctMixed. The children of this
node should all be unique element particles. In the DTD they appear separated by vertical bars (|)
following an initial #PCDATA.

Listing 11-29: The TdomPcdataChoiceParticle declaration

TdomPcdataChoiceParticle = class (TdomParticle)
public
constructor create(const AOwner: TdomDocument;
const Freq: WideString); virtual;
end;

The TdomPcdataChoiceParticle object’s methods are described below:

constructor create(const AOwner: TdomDocument; const Freq: WideString); virtual;
Use the CreatePcdataChoiceParticle method of the document object to instantiate these
objects, not this constructor. Note that the frequency for these nodes must be set to *, with an
error occurring if any other value is used.

230

Part Il: The Document Object Model

Finally, individual elements within the content specification appear as TdomETementParticle
objects (see Listing 11-30). In the DTD they appear as the element name.

Listing 11-30: The TdomElementParticle declaration

TdomElementParticle = class (TdomParticle)
public
constructor Create(const AOwner: TdomDocument;
const Name, Freq: WideString); virtual;
end;

The methods of the TdomETementParticle object are listed below:

constructor Create(const AOwner: TdomDocument; const Name, Freq: WideString);
virtual;
Instead of using this constructor, use the CreateElementParticle method on the document
object. Specify the name of the element appearing at this location.

property NodeName: WideString read GetNodeName;
Retrieve the name of the element with this inherited read-only property.

TdomAtirList Class

Definitions for valid attributes also appear in the DTD. In the XDOM package the TdomAttrList
class (shown in Listing 11-31) represents these, managing the set of attributes for a single element.

Listing 11-31: The TdomAttrList declaration

TdomAttrList = class(TdomCustomDeclaration)
public
constructor Create(const AOwner: TdomDocument;
const Name: WideString); virtual;
destructor Destroy; override;
function RemoveAttributeDefinition(const Name: WideString):
TdomAttrDefinition; virtual;
function GetAttributeDefinitionNode(const Name: WideString):
TdomAttrDefinition; virtual;
function SetAttributeDefinitionNode (
const NewAttDef: TdomAttrDefinition): boolean; virtual;
function RemoveAttributeDefinitionNode(
const OTdAttDef: TdomAttrDefinition): TdomAttrDefinition; virtual;
published
property AttributeDefinitions: TdomNamedNodeMap
read GetAttributeDefinitions;
end;

NOTE This class has no equivalent within the DOM specification.

The TdomAttrList object’s properties and methods are shown below:

constructor Create(const AOwner: TdomDocument; const Name: WideString); virtual;
Again, use the CreateAttributelist method on the document object instead of this con-
structor. The name supplied is that of the element to which the contained attributes belong.

Chapter 11: Open XML's Document Object Model 231

By R o

property NodeName: WideString read GetNodeName;
This inherited read-only property returns the name of the element.

property AttributeDefinitions: TdomNamedNodeMap read GetAttributeDefinitions;
Access the list of attribute definitions for this element through this read-only property. Each
item in the list is a TdomAttrDefinition object.

function GetAttributeDefinitionNode(const Name: WideString): TdomAttrDefinition;
virtual;
Retrieve a single attribute definition, given its name, with this method. If a matching attrib-
ute cannot be found, nil is returned.

function SetAttributeDefinitionNode(const NewAttDef: TdomAttrDefinition):
boolean; virtual;
Add a new attribute definition with this method. It returns True if the definition is added,
and False if an existing attribute already exists under the same name. In the latter case, the
new definition is ignored. Attribute definitions cannot be shared between elements.

function RemoveAttributeDefinition(const Name: WideString): TdomAttrDefinition;
virtual;
Delete the named attribute definition from the list through this method. An error occurs if
the definition cannot be found.

function RemoveAttributeDefinitionNode(const O1dAttDef: TdomAttrDefinition):
TdomAttrDefinition; virtual;
This method duplicates the previous one, but takes a reference to the entire node as its
parameter rather than just the attribute’s name. Again, an error occurs if the attribute is not
found.

TdomAttrDefinition Class

Individual attributes for an element appear as TdomAttrDefinition objects (see Listing 11-32)
within the AttributeDefinitions property of the element’s attribute list.

Listing 11-32: The TdomAttrDefinition declaration

TdomAttrDefinition = class(TdomNode)
public
constructor Create(const AOwner: TdomDocument;
const Name, AttType, DefaultDecl, AttValue: WideString); virtual;
published
property AttributeType: WideString read GetAttributeType;
property DefaultDeclaration: WideString read GetDefaultDeclaration;
property Name: WideString read GetName;
property ParentAttributelList: TdomAttrList
read GetParentAttributelist;
end;

NOTE This class has no equivalent within the DOM specification.

232

Part Il: The Document Object Model

The properties and methods of the TdomAttrDefinition object are detailed below:

constructor Create(const AOwner: TdomDocument; const Name, AttType, DefaultDecl,
AttValue: WideString); virtual;
Do not use this constructor. Instead, use the CreateAttributeDefinition method of the
document object. An error occurs if the attribute type or default declaration is invalid, if a
default value is defined when the default declaration is #REQUIRED or #IMPLIED, or the
default is missing when the default declaration is #FIXED or blank.

property Name: WideString read GetName;
Retrieve the name of the attribute through this read-only property. Set during construction, it
cannot be changed later.

property AttributeType: WideString read GetAttributeType;
This read-only property, set during creation, returns the attribute’s type. It should be one of
the standard XML types, such as ID, IDREF, ENTITY, etc., or CDATA for a list of valid enumer-
ated values. These values then appear as TdomNametoken children of the definition node.

property DefaultDeclaration: WideString read GetDefaultDeclaration;
Obtain the attribute’s default setting with this read-only property. It may be #REQUIRED,
#IMPLIED, #FIXED, or blank.

property NodeValue: WideString read GetNodeValue write SetNodeValue;
This inherited property returns the default value for the attribute, or an empty string if no
default is specified.

property ParentAttributelList: TdomAttrList read GetParentAttributelist;
Access the owning attribute list through this read-only property.

TdomNametoken Class

The TdomNametoken class (see Listing 11-33) holds individual enumerated values for use in attrib-
ute definitions for the DTD. These nodes are set as children of a TdomAttrDefinition node that
has its AttributeType set to CDATA.

Listing 11-33: The TdomNametoken declaration

TdomNametoken = class (TdomNode)
public
constructor Create(const AOwner: TdomDocument;
const Name: WideString); virtual;
procedure SetNodeValue(const Value: WideString); override;
end;

NOTE This class has no equivalent within the DOM specification.

Chapter 11: Open XML's Document Object Model

The TdomNametoken object’s methods are shown below:

constructor Create(const AOwner: TdomDocument; const Name: WideString); virtual;
Use the CreateNametoken method of the document object instead of this constructor.

property NodeName: WideString read GetNodeName;
Retrieve the name of the token with this inherited read-only property.

procedure SetNodeValue(const Value: WideString); override;
This method is overridden to force an error if you try to change the node value.

TdomXmliDeclaration Class

The TdomXm1Declaration class (see Listing 11-34) represents the XML declaration at the start of
a document. It must appear as the first child of the document object.

Listing 11-34: The TdomXmlDeclaration declaration

TdomXm1Declaration = class (TdomNode)
public
constructor Create(const AOwner: TdomDocument;
const Version, EncD1, SdD1: WideString); virtual;
published
property VersionNumber: WideString read GetVersionNumber;
property EncodingDecl: WideString read GetEncodingDecl
write SetEncodingDecl;
property SDDecl: WideString read GetStandalone write SetStandalone;
end;

NOTE This class has no equivalent within the DOM specification.

The TdomXm1Declaration object’s properties and methods are described below:

constructor Create(const AOwner: TdomDocument; const Version, EncD1, SdD1:
WideString); virtual;
Do not use this constructor; rather use the CreateXmlDeclaration method on the document
object. An error occurs if any of the version number, encoding scheme, or standalone decla-
ration is invalid.

property VersionNumber: WideString read GetVersionNumber;
Retrieve the XML version number through this read-only property, which is set during con-
struction. It should always be 1.0.

property EncodingDecl: WideString read GetEncodingDecl write SetEncodingDecl;
This property retrieves or updates the encoding scheme used by the document. An error
occurs if the encoding is invalid.

property SDDecl: WideString read GetStandalone write SetStandalone;
Get or set the standalone declaration with this property. If the value is not yes, no, or an
empty string, an error is generated.

234 Part Il: The Document Object Model

TdomTextDeclaration Class

Similar to the XML declaration described above, a text declaration may appear at the start of an
external entity to define its type and encoding. The TdomTextDeclaration class (shown in Listing
11-35) represents this in the XDOM package.

Listing 11-35: The TdomTextDeclaration declaration

TdomTextDeclaration = class (TdomNode)
public
constructor Create(const AOwner: TdomDocument;
const Version, EncD1: WideString); virtual;
published
property VersionNumber: WideString read GetVersionNumber;
property EncodingDecl: WideString read GetEncodingDecl
write SetEncodingDecl;
end;

NOTE This class has no equivalent within the DOM specification.

The properties and methods of the TdomTextDeclaration object are shown below:

constructor Create(const AOwner: TdomDocument; const Version, EncD1: WideString);
virtual;
Call the CreateTextDeclaration method on the document object rather than this construc-
tor. Errors are generated if the version or encoding is invalid.

property VersionNumber: WideString read GetVersionNumber;
Retrieve the XML version through this read-only property. Again, it should always be 1.0.

property EncodingDecl: WideString read GetEncodingDecl write SetEncodingDecl;
Obtain or update the encoding scheme with this property. Supplying an invalid encoding
generates an error.

TdomDocumentFragment Class

Nodes of this type do not appear within the normal DOM structure. They are intended for use in
constructing and transferring subtrees within the normal hierarchy.

The definition of the TdomDocumentFragment class (shown in Listing 11-36) adds no new
functionality. It simply serves as a marker to restrict the child nodes that may be added to it and to
invoke special processing when it is added to a document or one of its nodes. In the latter case, the
fragment itself is not added; all of its child nodes are added in its place.

Listing 11-36: The TdomDocumentFragment declaration

TdomDocumentFragment = class (TdomNode)
public

constructor Create(const AOwner: TdomDocument); virtual;
end;

Chapter 11: Open XML's Document Object Model ‘-_-'.235

A fragment may contain any number of child nodes, including elements, compared to a document,
which may only have one element node as a child. Thus, fragments might not be well-formed
XML. This is acceptable, and indeed useful, while manipulating the DOM. In the end though,
fragments are discarded and it is the document node that ends up being used.

The methods of the TdomDocumentFragment object are shown below:

constructor Create(const AOwner: TdomDocument); virtual;
Use the factory method of the TdomDocument object to build new document fragments rather
than this constructor directly.

TdomDocument Class

Managing all the node type objects is the domain of the TdomDocument class (shown in Listing
11-37). It provides a number of factory methods that let you create the other nodes as you need
them. This ensures that the nodes are correctly registered with their owning document.

Listing 11-37: The TdomDocument declaration

TdomDocument = class (TdomNode)
protected
function DuplicateNode(Node: TdomNode): TdomNode; virtual;
procedure InitDoc(const TagName: wideString); virtual;
procedure InitDocNS(const NamespaceURI, QualifiedName: WideString);
virtual;
public
constructor Create(const AOwner: TDomImplementation); virtual;
destructor Destroy; override;
procedure Clear; override;
procedure ClearInvalidNodelterators; virtual;
function CreateElement(const TagName: WideString): TdomElement;
virtual;
function CreateElementNS(const NamespaceURI, QualifiedName:
WideString): TdomElement; virtual;
function CreateDocumentFragment: TdomDocumentFragment; virtual;
function CreateTextNode(const Data: WideString): TdomText; virtual;
function CreateComment(const Data: WideString): TdomComment; virtual;
function CreateConditionalSection(const IncludeStmt: WideString):
TdomConditionalSection; virtual;
function CreateCDATASection(const Data: WideString):
TdomCDATASection; virtual;
function CreateProcessingInstruction(const Targ, Data : WideString):
TdomProcessingInstruction; virtual;
function CreateXmlDeclaration(const Version, EncD1, SdD1:
WideString): TdomXmlDeclaration; virtual;
function CreateAttribute(const Name: WideString): TdomAttr; virtual;
function CreateAttributeNS(const NamespaceURI, QualifiedName:
WideString): TdomAttr; virtual;
function CreateEntityReference(const Name: WideString):
TdomEntityReference; virtual;
function CreateParameterEntityReference(const Name: WideString):
TdomParameterEntityReference; virtual;
function CreateDocumentType(const Name, Publd, SysId: WideString):
TdomDocumentType; virtual;
function CreateNotation(const Name, PubId, SysId: WideString):
TdomNotation; virtual;

236 Part Il: The Document Object Model

function CreateNotationDeclaration(const Name, PubId, SysId:
WideString): TdomNotationDeclaration; virtual;

function CreateEntity(const Name, PubId, SysId, NotaName:
WideString): TdomEntity; virtual;

function CreateParameterEntity(const Name, PubId, SysId: WideString):
TdomParameterEntity; virtual;

function CreateEntityDeclaration(const Name, EntityValue, Publd,
SysId, NotaName: WideString): TdomEntityDeclaration; virtual;

function CreateParameterEntityDeclaration(const Name, EntityValue,
PubId, SysId: WideString): TdomParameterEntityDeclaration; virtual;

function CreateElementTypeDeclaration(const Name: WideString;
const Contspec: TdomContentspecType): TdomElementTypeDeclaration;
virtual;

function CreateSequenceParticle(const Freq: WideString):
TdomSequenceParticle; virtual;

function CreateChoiceParticle(const Freq: WideString):
TdomChoiceParticle; virtual;

function CreatePcdataChoiceParticle: TdomPcdataChoiceParticle;
virtual;

function CreateElementParticle(const Name, Freq: WideString):
TdomElementParticle; virtual;

function CreateAttributelList(const Name: WideString): TdomAttrList;
virtual;

function CreateAttributeDefinition(const Name, AttType, DefaultDecl,
AttValue: WideString) : TdomAttrDefinition; virtual;

function CreateNametoken(const Name: WideString): TdomNametoken;
virtual;

function CreateTextDeclaration(const Version, EncD1: WideString):
TdomTextDeclaration; virtual;

function CreateExternalParsedEntity: TdomExternalParsedEntity;
virtual;

function CreateExternalParameterEntity: TdomExternalParameterEntity;
virtual;

function CreateExternalSubset: TdomExternalSubset; virtual;

function CreatelnternalSubset: TdomInternalSubset; virtual;

procedure FreeAllNodes(const Node: TdomNode); virtual;

procedure FreeTreeWalker(const TreeWalker: TdomTreeWalker); virtual;

function GetElementById(const elementId: WideString): TdomElement;
virtual;

function GetElementsByTagName(const TagName: WideString):
TdomNodeList; virtual;

function GetElementsByTagNameNS(const namespaceURI, TocalName:
WideString): TdomNodeList; virtual;

function ImportNode(const importedNode: TdomNode;
const deep: boolean): TdomNode; virtual;

function InsertBefore(const newChild, refChild: TdomNode): TdomNode;
override;

function ReplaceChild(const newChild, oldChild: TdomNode): TdomNode;
override;

function AppendChild(const newChild: TdomNode): TdomNode; override;

function CreateNodeIterator(const root: TdomNode;
whatToShow: TdomWhatToShow; nodeFilter: TdomNodeFilter;
entityReferenceExpansion: boolean): TdomNodeIterator; virtual;

function CreateTreeWalker(const root: TdomNode;
whatToShow: TdomWhatToShow; nodeFilter: TdomNodeFilter;
entityReferenceExpansion: boolean): TdomTreeWalker; virtual;

property codeAsString: string read GetCodeAsString;

property codeAsWideString: WideString read GetCodeAsWideString;

property defaultView: TdomAbstractView read FDefaultView;

property doctype: TdomDocumentType read GetDoctype;

Chapter 11: Open XML's Document Object Model _

property documentElement: TdomElement read GetDocumentElement;

property domImplementation: TDomImplementation read FDomImpl;

property filename: TFilename read GetFilename write SetFilename;

property xmlDeclaration: TdomXmlDeclaration read GetXmlDeclaration;

end;

A document is itself a node, although it is one of the few node types that have no parent. Thus, it
has a node name and children as usual. Special properties provide access to particular nodes that
only apply to a document, such as the single top-level element and the document type node.

The TdomDocument object’s properties and methods are described below:

constructor Create(const AOwner: TDomImplementation); virtual;
The document itself should be initially generated using the CreateDocument or Create-
DocumentNS methods of the TdomImpTementation class, rather than through this constructor.
Again, this ensures that the document is properly managed by the XDOM package. It also
allows for custom documents to be produced based on types registered with the implemen-
tation object.

property codeAsString: string read GetCodeAsString;
Use this read-only property to retrieve a string version of the DOM for this document. The
contents are encoded using UTF-8, and this is reflected in any XML declaration for the doc-
ument. Single line feed characters within the text are replaced by a carriage return/line feed
combination.

property codeAsWideString: WideString read GetCodeAsWideString;
Similar to the previous property, this one (also read-only) returns the entire DOM as a for-
matted wide string. The encoding is set to UTF-16BE and the text starts with the $FEFF
sequence.

property doctype: TdomDocumentType read GetDoctype;
Gain access to the document type node (TdomDocumentType) for the document through this
read-only property. If the document has no type specified it returns nil.

property documentElement: TdomETement read GetDocumentElement;
Quickly locate the top-level element node with this read-only property. It returns a Tdom-
Element node. You could find the node by stepping through the child nodes of the document,
but this property makes it much easier.

property domImplementation: TDomImplementation read FDomImpl;
Retrieve the DOM implementation that created this document through this read-only

property.

NOTE Since implementation is a reserved word in Delphi, the previous property is named
domImplementation instead. The following properties, filename and xmlDeclaration, are
extensions to the DOM specification.

property filename: TFilename read GetFilename write SetFilename;
Documents loaded from the local file system set this property to the full name of that file.
Otherwise, it returns an empty string.

238

Part Il: The Document Object Model

property xmlDeclaration: TdomXmlDeclaration read GetXmlDeclaration;
Access the XML declaration node for this document through this property. It returns nil if
there is no declaration associated with the document. Again, you could search through the
child nodes for this one if you wanted to.

function CreateElement (const TagName: WideString): TdomElement; virtual;
Construct a new element node (TdomElement) for this document with the specified name.
Until the element is added to a document or document fragment it has no parent. Providing
an invalid name raises an exception.

function CreateElementNS(const NamespaceURI, QualifiedName: WideString):
TdomETlement; virtual;
The same as the previous method except that it takes a namespace qualified name for the ele-
ment. Using a malformed name, such as one of the reserved prefixes (xm1*) without the
corresponding namespace or a prefixed name with no namespace, generates an exception.

function CreateAttribute(const Name: WideString): TdomAttr; virtual;
Build a new attribute node (TdomAttr) with the specified name. After setting the attribute’s
value and other properties, add it to the appropriate element with its SetAttributeNode
method. Supplying an invalid name raises an exception.

function CreateAttributeNS(const NamespaceURI, QualifiedName: WideString):
TdomAttr; virtual;
Create a namespace-aware attribute, then treat it like a normal attribute from above. As fora
namespace-aware element, an exception occurs if the name is malformed.

function CreateDocumentFragment: TdomDocumentFragment; virtual;
Produce a document fragment (TdomDocumentFragment) node. These nodes can hold struc-
tures as they are being worked on, separate from the document. Usually they are inserted
into that document at some stage, at which time all the children of the fragment are inserted
in turn, but not the fragment itself.

function CreateText(const Data: WideString): TdomText; virtual;
Generate a new text node (TdomText), containing the supplied text, to hold the actual content
of the document. Text nodes have no children and appear only at the bottommost levels in
the DOM hierarchy. The node has no parent until it is added to the document or a fragment.

function CreateCDATASection(const Data: WideString): TdomCDATASection; virtual;
Produce a new CDATA section node (TdomCDATASection), containing the supplied text.
Characters that would normally denote markup within the text are ignored as such. Like text
nodes, these have no children. The node has no parent until it is added to the document or a
fragment.

function CreateComment (const Data: WideString): TdomComment; virtual;
Construct a new comment node (TdomComment), containing the supplied text. Comments
add explanation to the document, but should not be relied upon to carry processing informa-
tion, as they may be stripped from the document upon loading. Comments have no children.

Chapter 11: Open XML's Document Object Model _

function CreateProcessingInstruction(const Targ, Data : WideString):
TdomProcessingInstruction; virtual;
Build a new processing instruction node (TdomProcessingInstruction) for the specified
target application and command sequence. Use these nodes to pass processing details
through to a client application. Processing instructions have no children.

function CreateEntityReference(const Name: WideString): TdomEntityReference;
virtual;
Generate a new entity reference node (TdomEntityReference) given the entity’s name.

function CreateDocumentType(const Name, PubId, SysId: WideString):
TdomDocumentType; virtual;
Construct a new document type node (TdomDocumentType) given the name of the top-level
element, and the public and/or system identifier for an external DTD.

NOTE The DOM specification creates document type nodes from the Implementation
object. However, the XDOM package provides this functionality at the document level instead.

function CreateNotation(const Name, PubId, SysId: WideString): TdomNotation;

virtual;

Produce a new notation node (TdomNotation) given its name, and the public and/or system
identifier that corresponds to it. Use empty strings for the latter two if the values are not
known. These notations are placed within the Notations property of a document type node.
They represent the result of parsing the document containing a notation declaration. To gen-
erate the declaration itself, you need to use the CreateNotationDeclaration method
described below.

function CreateEntity(const Name, PubId, SysId, NotaName: WideString): TdomEntity;

virtual;

Build a new entity node (TdomEntity) given its name, the public and/or system identifier
that references an external document, and the notation name that specifies its type. For
external entities, either or both of the external identifiers must be given (use empty strings
for the unknown ones). For unparsed entities, you must supply the notation name. As for
notations above, these nodes represent the entities defined in the document, but not the dec-
larations themselves. As such, only unparsed entities appear in the Entities property of the
document type node. Use the CreateEntityDeclaration method below to define an entity
within the document.

function GetElementById(const elementId: WideString): TdomElement; virtual;
Return a reference to the node that has the supplied ID value, or ni1 if none can be found.
Results are unpredictable if more than one node has the specified ID value. The DOM must
know (through a DTD) which attributes contain ID values before it can match on them,
returning nil from this function if that information is unknown.

240

Part Il: The Document Object Model

function GetElementsByTagName(const TagName: WideString): TdomNodelList; virtual;
Find all the elements with the given tag name and return them in a node list in the order that
they appear in the document text. Use a name of * to retrieve all the elements in the docu-
ment in a flat list.

TIP The GetElementsByTagName method creates a new node list for each name given. These
lists are not released until the document is destroyed or its Clear method is called. This can
increase memory usage with many calls to the function with different names. A better method
is to create a node iterator or tree walker with a filter instead.

Furthermore, the DOM requirement for a live result set means that the list must be tra-
versed from the beginning for each reference to an indexed item. This is much slower than
using an equivalent node iterator or tree walker.

function GetElementsByTagNameNS(const namespaceURI, TocalName: WideString):
TdomNodeList; virtual;
This is the namespace-aware version of the above method. It has the same abilities and
limitations.

function ImportNode(const importedNode: TdomNode; const deep: boolean): TdomNode;
virtual;
The functionality is identical to the C1oneNode method, creating a copy of a node, except for
the fact that the original node may belong to another document. Attempting to import a doc-
ument or document type node raises an exception.

NOTE The following two methods appear in the DOM specification under the
DocumentTraversal interface. In the XDOM package this interface is wrapped into the docu-
ment, which is the appropriate place for it.

function CreateNodelterator(const root: TdomNode; whatToShow: TdomWhatToShow;
nodeFilter: TdomNodeFilter; entityReferenceExpansion: boolean):
TdomNodeIterator; virtual;
Construct a new node iterator (TdomNodeIterator) over the subtree beneath the specified
node. That root node may be included in the selection depending on the filter settings. You
can specify what types of nodes are considered, and can apply a filter to them (use ni1 if no
filter is used). Setting the appropriate parameter expands entity references. An exception
occurs if the root is nil.

function CreateTreeWalker(const root: TdomNode; whatToShow: TdomWhatToShow;
nodeFilter: TdomNodeFilter; entityReferenceExpansion: boolean):
TdomTreeWalker; virtual;
Similar to the above method, this one creates a new tree walker (TdomTreeWalker) for the
specified nodes. Although the parameters are the same, the result of CreateNodeIteratoris
a sequential list of the nodes found, while this method returns the nodes still in a tree
structure.

Chapter 11: Open XML's Document Object Model 241

NOTE The following methods are not part of the DOM specification. The Create methods
construct the remaining nodes intfroduced in the XDOM package, mainly to support the defi-
nition of a DTD.

function CreateXmlDeclaration(const Version, EncD1, SdD1: WideString):
TdomXmlDeclaration; virtual;
Produce a new XML prolog node (TdomXm1Declaration) to appear at the start of the docu-
ment. The parameters determine the contents of that node, indicating the version of XML in
use (currently 1.0), the encoding scheme used for the document, and whether or not the doc-
ument can be used standalone (yes, no, or ' '). An exception occurs if any supplied value is
invalid. Add the new node to the document as the first child.

function CreateTextDeclaration(const Version, EncD1: WideString):
TdomTextDeclaration; virtual;
Generate a new text prolog node (TdomTextDeclaration) for an external entity. It accepts
the same version and encoding parameters as the XML prolog above.

function CreateExternalSubset: TdomExternalSubset; virtual;
Construct a new external subset node (TdomExternalSubset) for the document’s DTD. You
should not have to call this method since an external subset is automatically created as a
child of a document type node.

function CreatelnternalSubset: TdomInternalSubset; virtual;
Create a new internal subset node (TdomInternalSubset) for the document’s DTD. Like the
external subset, a node of this type is automatically created in the document type node, so
you should not have to call this method yourself.

function CreateNotationDeclaration(const Name, PubId, SysId: WideString):
TdomNotationDeclaration; virtual;
Generate a new notation declaration node (TdomNotationDeclaration) for the document’s
DTD.

function CreateParameterEntity(const Name, PubId, SysId: WideString):
TdomParameterEntity; virtual;
This method builds a new parameter entity node (TdomParameterEntity) given its name,
and the public and/or system identifier that references an external document (or empty
strings if internally defined).

function CreateParameterEntityReference(const Name: WideString):
TdomParameterEntityReference; virtual;
Constructs a new parameter entity reference node (TdomParameterEntityReference) given
the entity’s name. Use it within the DTD section as shorthand for other content or markup.

function CreateEntityDeclaration(const Name, EntityValue, PubId, SysId, NotaName:
WideString): TdomEntityDeclaration; virtual;
Builds a new entity declaration node (TdomEntityDeclaration) given its name, and value
or public and/or system identifier. Internal entities have a value only (the external identifiers
are empty strings). External entities have no value, but either or both of the identifiers.

242

Part Il: The Document Object Model

Unparsed entities also have their notation specified. These entities appear within the context
of the DTD within the document, and produce appropriate declarations when the DOM is
output.

function CreateParameterEntityDeclaration(const Name, EntityValue, PubId, SysId:
WideString): TdomParameterEntityDeclaration; virtual;
Similar to the above method, this one instead creates a new parameter entity declaration
node (TdomParameterEntityDeclaration). As before, internal entities have a value only
(the external identifiers are empty strings), while external entities have no value, but either
or both of the identifiers. Again, these entities belong within an internal subset within the
document, and generate declarations when output.

function CreateConditionalSection(const IncludeStmt: WideString):
TdomConditionalSection; virtual;
Generates a new conditional section node (TdomConditionalSection) for use in the DTD
section of the document. The supplied text must be INCLUDE, IGNORE, or the name of a
parameter entity reference that refers to one of these strings.

function CreateElementTypeDeclaration(const Name: WideString; const Contspec:
TdomContentspecType) : TdomElementTypeDeclaration; virtual;
Builds an element definition node (TdomElementTypeDeclaration) for the document’s
DTD. The method takes the element’s name and an indication of its content: ctEmpty,
ctAny, ctMixed, or ctChildren. Add the new node to the DTD of the document.

function CreateSequenceParticle(const Freq: WideString): TdomSequenceParticle;

virtual;

Constructs a particle definition node (TdomSequenceParticle) for an element’s content
model. Elements of type ctMixed or ctChildren may use these particles to build up their
model hierarchy. Children of this particle must appear as the element’s children in the same
order for the element to be valid. Specify the occurrences of the sequence with the required
parameter: ' ' for once only, ? for zero or once, + for once or more, or * for zero or more. An
exception occurs if it is not one of these values.

function CreateChoiceParticle(const Freq: WideString): TdomChoiceParticle;
virtual;
Produces a particle definition node (TdomChoiceParticle) for an element’s content model.
Any of this particle’s children can match with an element’s next child for the document to be
valid. Only elements of type ctMixed or ctChildren may use these particles. Supply the
occurrences as for the sequence particle above. Again, an invalid value raises an exception.

function CreatePcdataChoiceParticle: TdomPcdataChoiceParticle; virtual;
Generates a particle definition node (TdomPcdataChoiceParticle) that represents mixed
content (type ctMixed). The occurrences value is automatically set to * (for zero or more
entries). Straight text or one of the children of this node must match the element’s children to
be valid.

Chapter 11: Open XML's Document Object Model 243

function CreateElementParticle(const Name, Freq: WideString): TdomElement-
Particle; virtual;
Builds a particle definition node (TdomETementParticle) that represents a single element.
Generally these are placed as children of one of the other particle node types. An exact
match between this node and the element’s next child makes it valid. Specify occurrences as
described above.

function CreateAttributelList(const Name: WideString): TdomAttrList; virtual;
Constructs a new list for attributes declarations (TdomAttrList) of a specified element.
Attach the actual declarations to the list within the DOM.

function CreateAttributeDefinition(const Name, AttType, DefaultDecl, AttValue:
WideString): TdomAttrDefinition; virtual;
Produces a new attribute declaration (TdomAttrDefinition) for the document’s DTD.
Specify its name, its type (as text, like (yes | no) or ID), its default declaration (#REQUIRED,
#IMPLIED, #FIXED, or ' "), and its default value. Place this definition within the correspond-
ing attribute list.

function CreateNametoken(const Name: WideString): TdomNametoken; virtual;
Generates a new nametoken node (TdomNametoken) for use as an attribute’s value when it
has an enumerated type. Add it to the appropriate attribute definition.

function CreateExternalParsedEntity: TdomExternalParsedEntity; virtual;
Builds a new external parsed entity node (TdomExternalParsedEntity), which is referred
to by an entity declaration object.

function CreateExternalParameterEntity: TdomExternalParameterEntity; virtual;
Constructs a new external parameter entity node (TdomExternalParameterEntity), which
is referenced by a parameter entity declaration object.

procedure Clear; override;
Releases all nodes, node lists, node iterators, and tree walkers belonging to this document.
You can then start building a new document.

procedure FreeAllNodes(const Node: TdomNode); virtual;
Releases the specified node (created by this document) and all of its children. The target
node must be removed from any document or fragment in which it appears before it can be
freed. Exceptions appear if the node belongs to another document, if the node is the docu-
ment itself, or if the node is still attached to the DOM.

procedure ClearInvalidNodelterators; virtual;
Frees all node iterators that have a state of invalid (those that have been detached).

procedure FreeTreeWalker(const TreeWalker: TdomTreeWalker); virtual;
Releases the supplied tree walker. If the tree walker was created by another document, an
exception occurs.

function DuplicateNode(Node: TdomNode): TdomNode; virtual;
Create a copy of a node internally with this protected method. All the attributes of an

244 Part Il: The Document Object Model

element are copied during this process, as are any entities and notations attached to a docu-
ment type node. Other node types just return a straight copy of that one node.

procedure InitDoc(const TagName: wideString); virtual;
Given a tag name, this method initializes the document by creating the top-level element
node for the hierarchy. The CreateDocument methods of the TdomImplementation class call
this method as part of that process. Subclasses of TdomDocument may override this protected
method to perform their own initialization. Calling this procedure on a document that
already has a document element results in an exception, as does calling it with an invalid tag
name.

procedure InitDocNS(const NamespaceURI, QualifiedName: WideString); virtual;
Similar to the previous method, this one creates a document element node that belongs to a
specified namespace. Otherwise, it functions just like the normal version. An exception
occurs if this procedure is called with a malformed name, such as using a reserved prefix
without the corresponding namespace or specifying a prefixed name but no namespace.

Tdomimplementation Class

To access functionality that is outside of any one document you use the TdomImplementation class
(whose declaration appears in Listing 11-38). It allows you to create documents to fill with content
nodes, and to determine what abilities are available within this implementation of the DOM.

Listing 11-38: The TdomImplementation declaration

TdomImplementation = class (TComponent)
public
constructor Create(aOwner: TComponent); override;
destructor Destroy; override;
procedure Clear; virtual;
procedure FreeDocument(const doc: TdomDocument); virtual;
procedure FreeDocumentType(const docType: TdomDocumentType); virtual;
function hasFeature(const feature, version: WideString): boolean;
virtual;
function createDocument(const name: WideString;
doctype: TdomDocumentType): TdomDocument; virtual;
function createDocumentNS(const namespaceURI, qualifiedName:
WideString; doctype: TdomDocumentType): TdomDocument; virtual;

The following two methods have been removed from this version of
the XDOM, but will be reintroduced in a further release.

function createDocumentType(const name, publicId, systemId:
WideString): TdomDocumentType; virtual;

function createDocumentTypeNS(const qualifiedName, publicld,
systemld: WideString): TdomDocumentType; virtual;

function GetDocumentClass(const aNamespaceUri, aQualifiedName:
wideString): TdomDocumentClass; virtual;

class procedure RegisterDocumentFormat(const