
8 The Delphi Magazine Issue 47

20 Rules For OOP In Delphi
by Marco Cantù

Most Delphi programmers use
their development environ-

ment as they would use Visual
Basic [Editor throws his hands up in
horror at the mere thought!], with-
out realising and taking advantage
of the power they have at their
hands. Delphi is based on an object
oriented architecture, which does
not only impact the VCL structure
but also each and every Delphi
application.

In this article I don’t want to
cover the theory of OOP, but just
suggest some simple rules which
might help you improve the struc-
ture of your programs. These rules
of thumb should be considered as
suggestions, to be applied or not
depending on the actual type of
application you are building. My
suggestion is simply to keep them
in mind.

The key principle I want to
underline is encapsulation. We
want to create flexible and robust
classes, which will allow us to
change the implementation later
on without affecting the rest of the
program. This is not the only
criterion for good OOP, but it
represents the foundation, so if I
actually over-stress it in this article
I have some good reasons to do so.

Finally, to underline the fact that
these principles should be used in
our daily work by all of us Delphi
programmers, I’m going to focus
mainly on the development of
forms, even if some of the rules
equally apply to the development
of components. Those who write
components must consider OOP
and classes as a central element.
Those who use components at
times forget about OOP: this article
can be considered as a reminder.

Part 1: A Form Is A Class
Programmers usually treat forms
as objects, while in fact they are
classes. The difference is that you
can have multiple form objects
based on the same form class. The
confusing thing is that Delphi

creates a default global object for
every form class you define. This is
certainly handy for newcomers,
but can turn into a bad habit.

Rule 1: One Class, One Unit
Always remember that the private
and protected portions of a class
are hidden only to classes and pro-
cedures in other units. Therefore,
if you want to have an effective
encapsulation you should use a
different unit for every class. For
simple classes, inheriting one from
the other, you can actually use a
shared unit, but only if the number
of classes is limited: Don’t place a
20-classes complex hierarchy in a
single unit, even if Borland does it
in the VCL source code...

If you think about forms, Delphi
follows the ‘one class, one unit’
principle by default, which is
certainly handy. When adding
non-form classes to a project,
create new separate units.

Rule 2: Name Components
It is very important to give a mean-
ingful name to each form and each
unit. Unluckily the two names must
be different, although I tend to use
similar names for the two, such as
AboutForm and About.pas.

It’s important to use descriptive
names for components too. The
most common notation is to use a
few lower case initial letters for the
class type, followed by the role of
the component, as in btnAdd or
editName. There are actually many
similar notations following this
style and there is really no reason
to say any one of them is best, it’s
up to your personal taste.

Rule 3: Name Events
It is even more important to give
proper names to event handling
methods. If you name the compo-
nents properly, the default name
of Button1Click, for example,
becomes btnAddClick. Although we
can guess what the method does
from the button name, I think it is

way better to use a name describ-
ing the effect of the method, not
the attached component. For
example, the OnClick event of the
btnAdd button can be named
AddToList. This makes the code
more readable, particularly when
you call the event handler from
another method of the class, and
helps developers attach the same
method to multiple events or to
different components, although I
have to say that using Actions is
currently my preferred choice for
non-trivial programs.

Rule 4: Use Form Methods
If forms are classes their code is
collected in methods. Besides the
event handlers, which play a spe-
cial role but can still be called as
other methods, it is often useful to
add custom methods to form
classes. You can add methods per-
forming actions and accessing to
the status of the form. It is much
better to add a public method to a
form than to let other forms
operate on its components
directly.

Rule 5:
Add Form Constructors
A secondary form created at
runtime can provide other specific
constructors beside the default
one (inherited form the TComponent
class). If you don’t need compati-
bility with versions of Delphi prior
to 4, my suggestion is to overload
the Create method, adding the
required initialisation parameters.
Listing 1 gives an example.

Rule 6:
Avoid Global Variables
Global variables (that is, variables
declared in the interface portion
of a unit) should be avoided. Here
are a few suggestions to help you
do this.

If you need extra data storage for
a form, add some private fields to
it. In this case each form instance
will have its own copy of the data.



10 The Delphi Magazine Issue 47

You might use unit variables
(declared in the implementation
portion of the unit) for data shared
among multiple instances of the
form class.

If you need data shared among
forms of different types, you can
share them by placing the data in
the main form, or in a global object,
and use methods or properties to
access the data.

Rule 7:
Never Use Form1 In TForm1
You should never refer to a specific
object in a method of the class of
that object. In other words, never
refer to Form1 in a method of the
TForm1 class. If you need to refer to
the current object, use the self
keyword. Keep in mind that most of
the time this is not needed, as you
can refer directly to methods and
data of the current object.

If you don’t follow this rule,
you’ll get into trouble when you
create multiple instances of the
form.

Rule 8: Seldom Use
Form1 In Other Forms
Even in the code of other forms, try
to avoid direct references to global
objects, such as Form1. It is much
better to declare local variables or
private fields to refer to other
forms.

For example, the main form of a
program can have a private field
referring to a dialog box. Obviously
this rule becomes essential if you
plan creating multiple instances of
the secondary form. You can keep
a list in a field of the main form, or
simply use the Forms array of the
global Screen object.

Rule 9: Remove Form1
Actually, my suggestion is to
remove the global form object
which is automatically added by
Delphi to the program. This is pos-
sible only if you disable the auto-
matic creation of that form (again
added by Delphi), something
which I suggest you should get rid
of anyway.

I think that removing the global
form object is very useful for
Delphi newcomers, who then won’t
get confused between the class

and the global object anymore. In
fact, after the global object has
been removed, any reference to it
will result in an error.

Rule 10: Add Form Properties
As I’ve already mentioned, when
you need data for a form, add a pri-
vate field. If you need to access this
data from other classes, then add
properties to the form. With this
approach you will be able to
change the code of the form and its
data (including its user interface)
without having to change the code
of other forms or classes.

You should also use properties
or methods to initialise a second-
ary form or dialog box, and to read
its final state. The initialisation
can also be performed using a
constructor, as I have already
described.

Rule 11: Expose
Components Properties
When you need to access the
status of another form, you should
not refer directly to its compo-
nents. This would bind the code of
other forms or classes to the user
interface, which is one of the por-
tions of an application subject to
most changes. Rather, declare a
form property mapped to the com-
ponent property: this is accom-
plished with a Get method that
reads the component status and a
Set method that writes it.

Suppose you now change the
user interface, replacing the com-
ponent with another one. All you
have to do is fix the Get and Set
methods related with the prop-
erty, you won’t have to check and
modify the source code of all the
forms and classes which might
refer to that component. You can
see an example in Listing 2.

Rule 12: Array Properties
If you need to handle a series of
values in a form, you can declare
an array property. In case this is an
important information for the form
you can make it also the default
array property of the form, so that
you can directly access its value by
writing SpecialForm[3].

Listing 3 shows how you can
expose the items of a listbox as the
default array property of the form
hosting it.

Rule 13:
Use Side-Effects In Properties
Remember that one of the advan-
tages of using properties instead of
accessing global data is that you
can cause side-effects when writ-
ing (or reading) the value of a
property.

For example, you can draw
directly on the form surface, set
the values of multiple properties,
call special methods, change the
status of multiple components at
once, or fire an event, if available.

private
function GetText: String;
procedure SetText(const Value: String);

public
property Text: String
read GetText write SetText;

function TFormDialog.GetText: String;
begin
Result := Edit1.Text;

end;
procedure TFormDialog.SetText(const Value: String);
begin
Edit1.Text := Value;

end;

➤ Listing 2: You can add a property to a form to expose a property of
a component.

➤ Listing 1

public
constructor Create (Text: string); reintroduce; overload;

constructor TFormDialog.Create(Text: string);
begin
inherited Create (Application);
Edit1.Text := Text;

end;



14 The Delphi Magazine Issue 47

Rule 14: Hide Components
Too often I hear OOP purists com-
plaining because Delphi forms
include the list of the components
in the published section, an
approach that doesn’t conform to
the principle of encapsulation.
They are actually pointing out an
important issue, but most of them
seem to be unaware that the solu-
tion is at hand without rewriting
Delphi or changing the language.

The component references
which Delphi adds to a form can be
moved to the private portion, so
that they won’t be accessible by
other forms. This way you can
make compulsory the use of prop-
erties mapped to the components
(see Rule 11 above) to access their
status.

If Delphi places all the compo-
nents in the published section, this
is because of the way these fields
are bound to the components cre-
ated from the .DFM file. When you
set a component’s name the VCL
automatically attaches the compo-
nent object to its reference in the
form. This is possible only if the
reference is published, because

Delphi uses RTTI and TObject
methods to perform this.

If you want to understand the
details, refer to Listing 4, which has
the code of the SetReference
method of the TComponent class,
which is called by InsertComponent,
RemoveComponent and SetName.

Once you know this, you realise
that by moving the component ref-
erences from the published to the
private section you lose this auto-
matic behaviour. To fix the prob-
lem, simply make it manual, by
adding the following code for each
component in the OnCreate event
handler of the form:

Edit1 := FindComponent(‘Edit1’)
as TEdit;

The second operation you have to
do is register the component
classes in the system, so that their
RTTI information is included in the
compiled program and made avail-
able to the system. This is needed
only once for every component
class, and only if you move all the
component references of this type
to the private section. You can add

this call even if it is not required, as
an extra call to the RegisterClasses
method is harmless. The Register-
Classesmethod is usually added to
the initialization section of the
unit hosting the form:

RegisterClasses([TEdit]);

Rule 15:
The OOP Form Wizard
Repeating the two operations
above for every component of
every form is certainly boring and
time consuming. To avoid this
excessive burden, I’ve written a
simple wizard which generates the
lines of code to add to the program
in a small window. You’ll need to
do two simple copy and paste
operations for each form.

The wizard doesn’t automati-
cally place the source code in the
proper location: I’m working to fix
this and you can check my website
(www.marcocantu.com) for an
updated version.

Part 2: Inheritance
After a first set of rules devoted to
classes, and particularly form
classes, here comes another short
list of suggestions and tips related
to inheritance and visual form
inheritance.

Rule 16:
Visual Form Inheritance
This is a powerful mechanism, if
used properly. From my experi-
ence, its value grows with the size
of the project. In a complex pro-
gram you can use the hierarchical
relationship among forms to
operate on groups of forms with
polymorphism.

Visual form inheritance allows
you to share the common behav-
iour of multiple forms: you can
have common methods, proper-
ties, event handlers, components,
component properties, compo-
nent event handlers, and so on.

Rule 17: Limit Protected Data
When building a hierarchy of
classes, some programmers tend
to use mainly protected fields, as
private fields are not accessible by
subclasses. I won’t say this is
always wrong, but it is certainly

procedure TComponent.SetReference(Enable: Boolean);
var
Field: ^TComponent;

begin
if FOwner <> nil then begin
Field := FOwner.FieldAddress(FName);
if Field <> nil then
if Enable then
Field^ := Self

else
Field^ := nil;

end;
end;

➤ Listing 4: The VCL code used to hook a component to its reference in
the owner form.

type
TFormDialog = class(TForm)
private
ListItems: TListBox;
function GetItems(Index: Integer): string;
procedure SetItems(Index: Integer; const Value: string);

public
property Items[Index: Integer]: string read GetItems write SetItems; default;

end;
function TFormDialog.GetItems(Index: Integer): string;
begin
if Index >= ListItems.Items.Count then
raise Exception.Create('TFormDialog: Out of Range');

Result := ListItems.Items [Index];
end;
procedure TFormDialog.SetItems(Index: Integer; const Value: string);
begin
if Index >= ListItems.Items.Count then
raise Exception.Create('TFormDialog: Out of Range');

ListItems.Items [Index] := Value;
end;

➤ Listing 3: The definition of a default array property in a form.



July 1999 The Delphi Magazine 15

against encapsulation. The imple-
mentation of protected data is
shared among all inherited forms,
and you might have to update all of
them in case the original definition
of the data changes.

Notice that if you follow the rule
of hiding components (Rule 14) the
inherited forms can’t possibly
access the private components of
the base class. In an inherited form,
code such as Edit1.Text := ‘’; will
not be compiled anymore. I can see
this might not be terribly handy,
but at least in theory it should be
regarded as a positive thing, not
negative. If you feel this is too
much of a concession to encapsu-
lation, declare the component ref-
erences in the protected section of
the base form.

Rule 18:
Protected Access Methods
It is much better, instead, to keep
the component references in the
private section and add access
functions to their properties to the
base class. If these access func-
tions are used only internally and
are not part of the class interface,
you should declare them as pro-
tected. For example, the GetText
and SetText form methods
described in Rule 11 can become
protected and we could access the
edit text by calling:

SetText(‘’);

Actually, as the method was
mapped to a property, we can
simply write:

Text := ‘’;

Rule 19:
Protected Virtual Methods
Another key point to have a flexible
hierarchy is to declare virtual

methods you can call from the
external classes to obtain
polymorphism. If this is a common
approach, it is less frequent to see
protected virtual methods, called
by other public methods. This is an
important technique, as you can
customise the virtual method in a
derived class, modifying the
behaviour of the objects.

Rule 20: Virtual
Methods For Properties
Even property access methods can
be declared as virtual, so that a
derived class can change the
behaviour of the property without
having to redefine it. This
approach is seldom used by the
VCL but is very flexible and power-
ful. To accomplish this, simply
declare as virtual the Get and Set
methods of Rule 11. The base form
will have the code of Listing 5.

In the inherited form you can
now override the virtual method
SetText, to add some extra
behaviour:

procedure TFormInherit.SetText(
const Value: String);

begin
inherited SetText (Value);
if Value = ‘’ then
Button1.Enabled := False;

end;

The Code
All the code fragments in this arti-
cle can be found in the OopDemo
example project, included on this
month’s disk. You should check in
particular the secondary form (in
the frm2 unit) and the derived one
(in the inher unit). Notice that in
order to use, at the same time, a
custom constructor with initialis-
ation code and the private compo-
nent references, it is necessary to
set the OldCreateOrder property of

the form. Otherwise the initialis-
ation code in the form constructor
(which uses the components) will
be executed before the OnCreate
method of the form, which con-
nects the references to the actual
components.

On the disk you’ll also find the
compiled package of a first draft
version of the OOP Form Wizard,
but you should (hopefully) be able
to find a more complete version on
my website.

Conclusion
Programming in Delphi according
to good OOP principles is far from
obvious, as some of the rules I’ve
listed highlight. I don’t think that
you should consider all of my rules
compulsory, as some of them
might stretch your patience. The
rules should be applied in the
proper context, and become more
and more important as the size of
the application grows, along with
the number of programmers work-
ing on it. Even for smaller pro-
grams, however, keeping in mind
the OOP principles underlying my
rules (encapsulation before all
others) can really help.

There are certainly many other
rules of thumb you can come up
with, as I haven’t tried to get into
memory handling and RTTI issues,
which are so complex to deserve
specific articles.

My conclusion is that following
the rules I’ve highlighted has a
cost, in terms of extra code: it is
the price you have to pay to obtain
a more flexible and robust pro-
gram. It is the price of object ori-
ented programming. Let’s hope
that future Delphi versions help us
reduce that price.

Marco Cantù is the author of the
Mastering Delphi series, Delphi
Developer’s Handbook, and of
the free online book Essential
Pascal. He teaches classes on
Delphi foundations and advanced
topics. Check his website at
www.marcocantu.com for more
information. You can reach him
on his public newsgroups: see the
website for details.

type
TFormDialog = class(TForm)
procedure FormCreate(Sender: TObject);

private
Edit1: TEdit;

protected
function GetText: String; virtual;
procedure SetText(const Value: String); virtual;

public
constructor Create (Text: string); reintroduce; overload;
property Text: String read GetText write SetText;

end;

➤ Listing 5: A form with properties implemented with virtual methods.


	Part 1: A Form Is A Class
	Rule 1: One Class, One Unit
	Rule 2: Name Components
	Rule 3: Name Events
	Rule 4: Use Form Methods
	Rule 5: Add Form Constructors
	Rule 6: Avoid Global Variables
	Rule 7: Never Use Form1 In TForm1
	Rule 8: Seldom Use Form 1 in Other Forms
	Rule 9: Remove Form1
	Rule 10: Add Form Properties
	Rule 11: Expose Components Properties
	Rule 12: Array Properties
	Rule 13: Use Side-Effects In Properties
	Rule 14: Hide Components
	Rule 15: The OOP Form Wizard
	Part 2: Inheritance
	Rule 16: Visual Form Inheritance
	Rule 17: Limit Protected Data
	Rule 18: Protected Access Methods
	Rule 19: Protected Virtual Methods
	Rule 20: Virtual Methods For Properties
	The Code
	Conclusion

