
Component Writer’s Guide

Borland Software Corporation
100 Enterprise Way, Scotts Valley, CA 95066-3249
www.borland.com

Borland®

Delphi™ 7
for Windows®

Refer to the DEPLOY document located in the root directory of your Delphi 7 product for a complete list of files that
you can distribute in accordance with the Delphi 7 License Statement and Limited Warranty.

Borland Software Corporation may have patents and/or pending patent applications covering subject matter in this
document. Please refer to the product CD or the About dialog box for the list of applicable patents. The furnishing of
this document does not give you any license to these patents.

COPYRIGHT © 1983–2002 Borland Software Corporation. All rights reserved. All Borland brand and product names
are trademarks or registered trademarks of Borland Software Corporation in the United States and other countries.
All other marks are the property of their respective owners.

Printed in the U.S.A.

D7–CWG–0802

Contents

Chapter 1
Overview of component creation 1-1
Class library . 1-1
Components and classes 1-2
Creating components 1-3

Modifying existing controls 1-3
Creating windowed controls 1-4
Creating graphic controls 1-4
Subclassing Windows controls 1-5
Creating nonvisual components 1-5

What goes into a component? 1-5
Removing dependencies 1-5
Setting properties, methods,

and events 1-6
Properties 1-6
Methods 1-7
Events . 1-7

Encapsulating graphics 1-7
Registering components 1-8

Creating a new component 1-8
Creating a component with the

Component wizard 1-9
Creating a component manually 1-11

Creating a unit file 1-11
Deriving the component 1-12
 Registering the component 1-13

Creating a bitmap for a component 1-13
Installing a component on the

Component palette 1-15
Making source files available 1-16

Testing uninstalled components 1-16
Testing installed components 1-18

Chapter 2
Object-oriented programming for
component writers 2-1

Defining new classes 2-2
Deriving new classes 2-2

To change class defaults to
avoid repetition 2-2

To add new capabilities to a class 2-3
Declaring a new component class 2-3

Ancestors, descendants, and
class hierarchies 2-3

Controlling access 2-4
Hiding implementation details 2-5
Defining the component

writer’s interface 2-6
Defining the runtime interface 2-6
Defining the design-time interface 2-7

Dispatching methods 2-7
Static methods 2-7

An example of static methods 2-8
Virtual methods 2-8

Overriding methods 2-8
Dynamic methods 2-9

Abstract class members 2-10
Classes and pointers 2-10

Chapter 3
Creating properties 3-1
Why create properties? 3-1
Types of properties 3-2
Publishing inherited properties 3-3
Defining properties 3-3

Property declarations 3-4
Internal data storage 3-4
Direct access 3-5
Access methods 3-5

The read method 3-6
The write method 3-7

Default property values 3-7
Specifying no default value 3-8

Creating array properties 3-8
Creating properties for subcomponents 3-9
Creating properties for interfaces 3-11
Storing and loading properties 3-11

Using the store-and-load
mechanism 3-12

Specifying default values 3-12
Determining what to store 3-13
Initializing after loading 3-14
Storing and loading unpublished

properties 3-14
Creating methods to store and

load property values 3-15
Overriding the DefineProperties

method 3-15
iii

Chapter 4
Creating events 4-1
What are events? 4-1

Events are method pointers 4-2
Events are properties 4-3
Event types are method-pointer types . . . 4-3

Event-handler types are
procedures 4-3

Event handlers are optional 4-4
Implementing the standard events 4-5

Identifying standard events 4-5
Standard events for all controls 4-5
Standard events for

standard controls 4-5
Making events visible 4-6
Changing the standard event

handling 4-6
Defining your own events 4-7

Triggering the event 4-7
Two kinds of events 4-7

Defining the handler type 4-8
Simple notifications 4-8
Event-specific handlers 4-8
Returning information from

the handler 4-8
Declaring the event 4-9

Event names start with “On” 4-9
Calling the event 4-9

Chapter 5
Creating methods 5-1
Avoiding dependencies 5-1
Naming methods 5-2
Protecting methods 5-2

Methods that should be public 5-3
Methods that should be protected 5-3
Abstract methods 5-3

Making methods virtual 5-4
Declaring methods 5-4

Chapter 6
Using graphics in components 6-1
Overview of graphics 6-1
Using the canvas 6-3
Working with pictures 6-3

Using a picture, graphic, or canvas 6-4
Loading and storing graphics 6-4
Handling palettes 6-5

Specifying a palette for a control 6-5
Off-screen bitmaps 6-6

Creating and managing
off-screen bitmaps 6-6

Copying bitmapped images 6-7
Responding to changes 6-7

Chapter 7
Handling messages and system
notifications 7-1

Understanding the message-handling
system . 7-2

What’s in a Windows message? 7-2
Dispatching messages 7-3

Tracing the flow of messages 7-3
Changing message handling 7-4

Overriding the handler method 7-4
Using message parameters 7-4
Trapping messages 7-5

Creating new message handlers 7-6
Defining your own messages 7-6

Declaring a message identifier 7-6
Declaring a message-record type 7-6

Declaring a new message-handling
method 7-7

Sending messages 7-8
Broadcasting a message to all

controls in a form 7-8
Calling a control’s message

handler directly 7-9
Sending a message using the

Windows message queue 7-9
Sending a message that does not

execute immediately 7-10
iv

Responding to system notifications
using CLX 7-10

Responding to signals 7-11
Assigning custom signal handlers . . . 7-11

Responding to system events 7-12
Commonly used events 7-13
Overriding the EventFilter

method 7-15
Generating Qt events 7-15

Chapter 8
Making components available
at design time 8-1

Registering components 8-1
Declaring the Register procedure 8-2
Writing the Register procedure 8-2

Specifying the components 8-3
Specifying the palette page 8-3
Using the RegisterComponents

function 8-3
Providing Help for your component 8-4

Creating the Help file 8-4
Creating the entries 8-4
Making component Help

context-sensitive 8-6
Adding component Help files 8-6

Adding property editors 8-6
Deriving a property-editor class 8-7
Editing the property as text 8-8

Displaying the property value 8-8
Setting the property value 8-9

Editing the property as a whole 8-10
Specifying editor attributes 8-11
Registering the property editor 8-12

Property categories 8-13
Registering one property at a time 8-13
Registering multiple properties

at once 8-14
Specifying property categories 8-14
Using the IsPropertyInCategory

function 8-15
Adding component editors 8-16

Adding items to the context menu 8-16
Specifying menu items 8-16
Implementing commands 8-17

Changing the double-click behavior . . . 8-18
Adding clipboard formats 8-19
Registering the component editor 8-19

Compiling components into packages 8-20

Chapter 9
Modifying an existing component 9-1
Creating and registering the component . . . 9-1
Modifying the component class 9-2

Overriding the constructor 9-2
Specifying the new default

property value 9-3

Chapter 10
Creating a graphic control 10-1
Creating and registering the

component 10-1
Publishing inherited properties 10-2
Adding graphic capabilities 10-3

Determining what to draw 10-3
Declaring the property type 10-3
Declaring the property 10-4
Writing the implementation

method 10-4
Overriding the constructor

and destructor 10-5
Changing default

property values 10-5
Publishing the pen and brush 10-6

Declaring the class fields 10-6
Declaring the access properties 10-6
Initializing owned classes 10-7
Setting owned classes’ properties . . . 10-8

Drawing the component image 10-9
Refining the shape drawing 10-10

Chapter 11
Customizing a grid 11-1
Creating and registering the component . . . 11-1
Publishing inherited properties 11-3
Changing initial values 11-4
Resizing the cells 11-4
Filling in the cells 11-6

Tracking the date 11-6
Storing the internal date 11-7
Accessing the day, month,

and year 11-7
Generating the day numbers 11-9
Selecting the current day 11-11

Navigating months and years 11-11
v

Navigating days 11-12
Moving the selection 11-12
Providing an OnChange event 11-13
Excluding blank cells 11-14

Chapter 12
Making a control data aware 12-1
Creating a data browsing control 12-2

Creating and registering
the component 12-2

Making the control read-only 12-3
Adding the ReadOnly property 12-4
Allowing needed updates 12-4

Adding the data link 12-5
Declaring the class field 12-6
Declaring the access properties 12-6
An example of declaring

access properties 12-6
Initializing the data link 12-7

Responding to data changes 12-8
Creating a data editing control 12-9

Changing the default value
of FReadOnly 12-9

Handling mouse-down and
key-down messages 12-9

Responding to mouse-down
messages 12-10

Responding to key-down
messages 12-10

Updating the field data link class 12-11
Modifying the Change method 12-12
Updating the dataset 12-13

Chapter 13
Making a dialog box a component 13-1
Defining the component interface 13-2
Creating and registering the

component 13-2
Creating the component interface 13-3

Including the form unit 13-3
Adding interface properties 13-3
Adding the Execute method 13-4

Testing the component 13-6

Chapter 14
Extending the IDE 14-1
Overview of the Tools API 14-2
Writing a wizard class 14-3

Implementing the wizard interfaces . . . 14-4
Installing the wizard package 14-4

Obtaining Tools API services 14-5
Using native IDE objects 14-6

Using the INTAServices interface . . . 14-6
Adding an image to

the image list 14-6
Adding an action to

the action list 14-7
Deleting toolbar buttons 14-8

Debugging a wizard 14-9
Interface version numbers 14-9

Working with files and editors 14-10
Using module interfaces 14-10
Using editor interfaces 14-11

Creating forms and projects 14-12
Creating modules 14-12

Notifying a wizard of IDE events 14-15

Index I-1
vi

Tables

1.1 Component creation starting points 1-3
2.1 Levels of visibility within an object 2-4
3.1 How properties appear in the Object

Inspector 3-2
6.1 Canvas capability summary 6-3
6.2 Image-copying methods 6-7
7.1 TWidgetControl protected methods for

responding to system notifications 7-14
7.2 TWidgetControl protected methods for

responding to events from controls 7-14

8.1 Predefined property-editor types 8-7
8.2 Methods for reading and writing

property values 8-8
8.3 Property-editor attribute flags. 8-11
8.4 Property categories 8-14
14.1 The four kinds of wizards 14-3
14.2 Tools API service interfaces 14-5
14.3 Notifier interfaces. 14-16
vii

1.1 Visual Component Library
class hierarchy 1-2

1.2 Component wizard 1-10

7.1 Signal routing 7-11
7.2 System event routing 7-13

Figures

viii

C h a p t e r

1
Chapter1Overview of component creation

This chapter provides an overview of component design and the process of writing
components for Delphi applications. The material here assumes that you are familiar
with Delphi and its standard components.

• Class library
• Components and classes
• Creating components
• What goes into a component?
• Creating a new component
• Testing uninstalled components
• Testing installed components
• Installing a component on the Component palette

For information on installing new components, see “Installing component packages”
on page 16-10 of the Developer’s Guide.

Class library
Delphi’s components reside in a component library that includes the Visual
Component Library (VCL) and the Component Library for Cross-Platform (CLX).
Figure 1.1 shows the relationship of selected classes that make up the VCL hierarchy.
The CLX hierarchy is similar to the VCL hierarchy but Windows controls are called
widgets (therefore TWinControl is called TWidgetControl, for example), and there are
other differences. For a more detailed discussion of class hierarchies and the
inheritance relationships among classes, see Chapter 2, “Object-oriented
programming for component writers.” For an overview of how the hierarchies differ
from each other, see “WinCLX versus VisualCLX” on page 15-7 of the Developer’s
Guide and refer to the CLX online reference for details on the components.
O v e r v i e w o f c o m p o n e n t c r e a t i o n 1-1

C o m p o n e n t s a n d c l a s s e s
The TComponent class is the shared ancestor of every component in the component
library. TComponent provides the minimal properties and events necessary for a
component to work in the IDE. The various branches of the library provide other,
more specialized capabilities.

Figure 1.1 Visual Component Library class hierarchy

When you create a component, you add to the component library by deriving a new
class from one of the existing class types in the hierarchy.

Components and classes
Because components are classes, component writers work with objects at a different
level from application developers. Creating new components requires that you
derive new classes.

Briefly, there are two main differences between creating components and using them
in applications. When creating components,

• You access parts of the class that are inaccessible to application programmers.
• You add new parts (such as properties) to your components.

Because of these differences, you need to be aware of more conventions and think
about how application developers will use the components you write.
1-2 C o m p o n e n t W r i t e r ’ s G u i d e

C r e a t i n g c o m p o n e n t s
Creating components
A component can be almost any program element that you want to manipulate at
design time. Creating a component means deriving a new class from an existing one.
You can derive a new component in several ways:

• Modifying existing controls
• Creating windowed controls
• Creating graphic controls
• Subclassing Windows controls
• Creating nonvisual components

Table 1.1 summarizes the different kinds of components and the classes you use as
starting points for each.

You can also derive classes that are not components and cannot be manipulated on a
form, such as TRegIniFile and TFont.

Modifying existing controls

The simplest way to create a component is to customize an existing one. You can
derive a new component from any of the components provided in the component
library.

Some controls, such as list boxes and grids, come in several variations on a basic
theme. In these cases, the component library includes an abstract class (with the word
“custom” in its name, such as TCustomGrid) from which to derive customized
versions.

For example, you might want to create a special list box that does not have some of
the properties of the standard TListBox class. You cannot remove (hide) a property
inherited from an ancestor class, so you need to derive your component from
something above TListBox in the hierarchy. Rather than force you to start from the
abstract TWinControl (or TWidgetControl in CLX applications) class and reinvent all

Table 1.1 Component creation starting points

To do this Start with this type

Modify an existing component Any existing component, such as TButton or TListBox, or
an abstract component type, such as TCustomListBox

Create a windowed (or widget-
based in CLX applications) control

TWinControl (TWidgetControl in CLX applications)

Create a graphic control TGraphicControl

Subclassing a control Any Windows (VCL applications) or widget-based (CLX
applications) control

Create a nonvisual component TComponent
O v e r v i e w o f c o m p o n e n t c r e a t i o n 1-3

C r e a t i n g c o m p o n e n t s
the list box functions, the component library provides TCustomListBox, which
implements the properties of a list box but does not publish all of them. When you
derive a component from an abstract class like TCustomListBox, you publish only the
properties you want to make available in your component and leave the rest
protected.

Chapter 3, “Creating properties,” explains publishing inherited properties.
Chapter 9, “Modifying an existing component,” and Chapter 11, “Customizing a
grid,” show examples of modifying existing controls.

Creating windowed controls

Windowed controls in the component library are objects that appear at runtime and
that the user can interact with. Each windowed control has a window handle,
accessed through its Handle property, that lets the operating system identify and
operate on the control. If using VCL controls, the handle allows the control to receive
input focus and can be passed to Windows API functions. CLX controls are widget-
based controls. Each widget-based control has a handle, accessed through its Handle
property, that identifies the underlying widget.

All windowed controls descend from the TWinControl (TWidgetControl in CLX) class.
These include most standard windowed controls, such as pushbuttons, list boxes,
and edit boxes. While you could derive an original control (one that’s not related to
any existing control) directly from TWinControl (TWidgetControl in CLX), Delphi
provides the TCustomControl component for this purpose. TCustomControl is a
specialized windowed control that makes it easier to draw complex visual images.

Chapter 11, “Customizing a grid,” presents an example of creating a windowed
control.

Creating graphic controls

If your control does not need to receive input focus, you can make it a graphic
control. Graphic controls are similar to windowed controls, but have no window
handles, and therefore consume fewer system resources. Components like TLabel,
which never receive input focus, are graphic controls. Although these controls cannot
receive focus, you can design them to react to mouse messages.

You can create custom controls through the TGraphicControl component.
TGraphicControl is an abstract class derived from TControl. Although you can derive
controls directly from TControl, it is better to start from TGraphicControl, which
provides a canvas to paint on and on Windows, handles WM_PAINT messages; all
you need to do is override the Paint method.

Chapter 10, “Creating a graphic control,” presents an example of creating a graphic
control.
1-4 C o m p o n e n t W r i t e r ’ s G u i d e

W h a t g o e s i n t o a c o m p o n e n t ?
Subclassing Windows controls

In traditional Windows programming, you create custom controls by defining a new
window class and registering it with Windows. The window class (which is similar to
the objects or classes in object-oriented programming) contains information shared
among instances of the same sort of control; you can base a new window class on an
existing class, which is called subclassing. You then put your control in a dynamic-
link library (DLL), much like the standard Windows controls, and provide an
interface to it.

You can create a component “wrapper” around any existing window class. So if you
already have a library of custom controls that you want to use in Delphi applications,
you can create Delphi components that behave like your controls, and derive new
controls from them just as you would with any other component.

For examples of the techniques used in subclassing Windows controls, see the
components in the StdCtls unit that represent standard Windows controls, such as
TEdit. For CLX applications, see QStdCtls.

Creating nonvisual components

Nonvisual components are used as interfaces for elements like databases (TDataSet or
TSQLConnection) and system clocks (TTimer), and as placeholders for dialog boxes
(TCommonDialog (VCL applications) or TDialog (CLX applications) and its
descendants). Most of the components you write are likely to be visual controls.
Nonvisual components can be derived directly from TComponent, the abstract base
class for all components.

What goes into a component?
To make your components reliable parts of the Delphi environment, you need to
follow certain conventions in their design. This section discusses the following topics:

• Removing dependencies
• Setting properties, methods, and events
• Encapsulating graphics
• Registering components

Removing dependencies

One quality that makes components usable is the absence of restrictions on what they
can do at any point in their code. By their nature, components are incorporated into
applications in varying combinations, orders, and contexts. You should design
components that function in any situation, without preconditions.

An example of removing dependencies is the Handle property of TWinControl. If you
have written Windows applications before, you know that one of the most difficult
and error-prone aspects of getting a program running is making sure that you do not
O v e r v i e w o f c o m p o n e n t c r e a t i o n 1-5

W h a t g o e s i n t o a c o m p o n e n t ?
try to access a windowed control until you have created it by calling the
CreateWindow API function. Delphi windowed controls relieve users from this
concern by ensuring that a valid window handle is always available when needed.
By using a property to represent the window handle, the control can check whether
the window has been created; if the handle is not valid, the control creates a window
and returns the handle. Thus, whenever an application’s code accesses the Handle
property, it is assured of getting a valid handle.

By removing background tasks like creating the window, Delphi components allow
developers to focus on what they really want to do. Before passing a window handle
to an API function, you do not need to verify that the handle exists or to create the
window. The application developer can assume that things will work, instead of
constantly checking for things that might go wrong.

Although it can take time to create components that are free of dependencies, it is
generally time well spent. It not only spares application developers from repetition
and drudgery, but it reduces your documentation and support burdens.

Setting properties, methods, and events

Aside from the visible image manipulated in the Form designer, the most obvious
attributes of a component are its properties, events, and methods. Each of these has a
chapter devoted to it in this book, but the discussion that follows explains some of
the motivation for their use.

Properties
Properties give the application developer the illusion of setting or reading the value
of a variable, while allowing the component writer to hide the underlying data
structure or to implement special processing when the value is accessed.

There are several advantages to using properties:

• Properties are available at design time. The application developer can set or
change initial values of properties without having to write code.

• Properties can check values or formats as the application developer assigns them.
Validating input at design time prevents errors.

• The component can construct appropriate values on demand. Perhaps the most
common type of error programmers make is to reference a variable that has not
been initialized. By representing data with a property, you can ensure that a value
is always available on demand.

• Properties allow you to hide data under a simple, consistent interface. You can
alter the way information is structured in a property without making the change
visible to application developers.

Chapter 3, “Creating properties,” explains how to add properties to your
components.
1-6 C o m p o n e n t W r i t e r ’ s G u i d e

W h a t g o e s i n t o a c o m p o n e n t ?
Methods
Class methods are procedures and functions that operate on a class rather than on
specific instances of the class. For example, every component’s constructor method
(Create) is a class method. Component methods are procedures and functions that
operate on the component instances themselves. Application developers use
methods to direct a component to perform a specific action or return a value not
contained by any property.

Because they require execution of code, methods can be called only at runtime.
Methods are useful for several reasons:

• Methods encapsulate the functionality of a component in the same object where
the data resides.

• Methods can hide complicated procedures under a simple, consistent interface. An
application developer can call a component’s AlignControls method without
knowing how the method works or how it differs from the AlignControls method
in another component.

• Methods allow updating of several properties with a single call.

Chapter 5, “Creating methods,” explains how to add methods to your components.

Events
An event is a special property that invokes code in response to input or other activity
at runtime. Events give the application developer a way to attach specific blocks of
code to specific runtime occurrences, such as mouse actions and keystrokes. The code
that executes when an event occurs is called an event handler.

Events allow application developers to specify responses to different kinds of input
without defining new components.

Chapter 4, “Creating events,” explains how to implement standard events and how
to define new ones.

Encapsulating graphics

Delphi simplifies Windows graphics by encapsulating various graphics tools into a
canvas. The canvas represents the drawing surface of a window or control and
contains other classes, such as a pen, a brush, and a font. A canvas is like a Windows
device context, but it takes care of all the bookkeeping for you.

If you have written a graphical Windows application, you are familiar with the
requirements imposed by Windows’ graphics device interface (GDI). For example,
GDI limits the number of device contexts available and requires that you restore
graphic objects to their initial state before destroying them.

With Delphi, you do not have to worry about these things. To draw on a form or
other component, you access the component’s Canvas property. If you want to
customize a pen or brush, you set its color or style. When you finish, Delphi disposes
of the resources. Delphi caches resources to avoid recreating them if your application
frequently uses the same kinds of resource.
O v e r v i e w o f c o m p o n e n t c r e a t i o n 1-7

C r e a t i n g a n e w c o m p o n e n t
You still have full access to the Windows GDI, but you will often find that your code
is simpler and runs faster if you use the canvas built into Delphi components.

CLX graphics encapsulation works differently. A canvas is a painter instead. To draw
on a form or other component, you access the component’s Canvas property. Canvas
is a property and it is also an object called TCanvas. TCanvas is a wrapper around a Qt
painter that is accessible through the Handle property. You can use the handle to
access low-level Qt graphics library functions.

If you want to customize a pen or brush, you set its color or style. When you finish,
Delphi or Kylix disposes of the resources. CLX applications also cache the resources.

You can use the canvas built into CLX components by descending from them. How
graphics images work in the component depends on the canvas of the object from
which your component descends.Graphics features are detailed in Chapter 6, “Using
graphics in components.”

Registering components

Before you can install your components in the IDE, you have to register them.
Registration tells Delphi where to place the component on the Component palette.
You can also customize the way Delphi stores your components in the form file. For
information on registering a component, see Chapter 8, “Making components
available at design time.”

Creating a new component
You can create a new component two ways:

• Creating a component with the Component wizard
• Creating a component manually

You can use either of these methods to create a minimally functional component
ready to install on the Component palette. After installing, you can add your new
component to a form and test it at both design time and runtime. You can then add
more features to the component, update the Component palette, and continue
testing.

There are several basic steps that you perform whenever you create a new
component. These steps are described below; other examples in this document
assume that you know how to perform them.

1 Create a unit for the new component.

2 Derive your component from an existing component type.

3 Add properties, methods, and events.

4 Register your component with the IDE.
1-8 C o m p o n e n t W r i t e r ’ s G u i d e

C r e a t i n g a n e w c o m p o n e n t
5 Create a bitmap for the component.

6 Create a package (a special dynamic-link library) so that you can install your
component in the IDE.

7 Create a Help file for your component and its properties, methods, and events.

Note Creating a Help file to instruct component users on how to use the component is
optional.

When you finish, the complete component includes the following files:

• A package (.BPL) or package collection (.DPC) file
• A compiled package (.DCP) file
• A compiled unit (.DCU) file
• A palette bitmap (.DCR) file
• A Help (.HLP) file

You can also create a bitmap to represent your new component. See “Creating a
bitmap for a component” on page 1-13.

The chapters in the rest of Part V explain all the aspects of building components and
provide several complete examples of writing different kinds of components.

Creating a component with the Component wizard

The Component wizard simplifies the initial stages of creating a component. When
you use the Component wizard, you need to specify:

• The class from which the component is derived.
• The class name for the new component.
• The Component palette page where you want it to appear.
• The name of the unit in which the component is created.
• The search path where the unit is found.
• The name of the package in which you want to place the component.

The Component wizard performs the same tasks you would when creating a
component manually:

• Creating a unit.
• Deriving the component.
• Registering the component.

The Component wizard cannot add components to an existing unit. You must add
components to existing units manually.

1 To start the Component wizard, choose one of these two methods:

• Choose Component|New Component.
• Choose File|New|Other and double-click Component.
O v e r v i e w o f c o m p o n e n t c r e a t i o n 1-9

C r e a t i n g a n e w c o m p o n e n t
2 Fill in the fields in the Component wizard:

• In the Ancestor Type field, specify the class from which you are deriving your
new component.

Note In the drop-down list, many components are listed twice with different unit
names, one for VCL applications and one for CLX applications. The CLX-
specific units begin with Q (such as QGraphics instead of Graphics). Be sure to
descend from the correct component.

• In the Class Name field, specify the name of your new component class.

• In the Palette Page field, specify the page on the Component palette on which
you want the new component to be installed.

• In the Unit file name field, specify the name of the unit you want the component
class declared in. If the unit is not on the search path, edit the search path in the
Search Path field as necessary.

Figure 1.2Component wizard

3 After you fill in the fields in the Component wizard, either:

• Click Install. To place the component in a new or existing package, click
Component|Install and use the dialog box that appears to specify a package.
See “Testing uninstalled components” on page 1-16.

4 Click OK. The IDE creates a new unit.

Warning If you derive a component from a class whose name begins with “custom” (such
as TCustomControl), do not try to place the new component on a form until you
have overridden any abstract methods in the original component. Delphi cannot
create instance objects of a class that has abstract properties or methods.

To see the source code for your unit, click View Unit. (If the Component wizard is
already closed, open the unit file in the Code editor by selecting File|Open.) Delphi
creates a new unit containing the class declaration and the Register procedure, and
adds a uses clause that includes all the standard Delphi units.
1-10 C o m p o n e n t W r i t e r ’ s G u i d e

C r e a t i n g a n e w c o m p o n e n t
The unit looks like this:

unit MyControl;

interface

uses
Windows, Messages, SysUtils, Types, Classes, Controls;

type
TMyControl = class(TCustomControl)
private
{ Private declarations }
protected
{ Protected declarations }
public
{ Public declarations }
published
{ Published declarations }

end;

procedure Register;

implementation

procedure Register;
begin

RegisterComponents('Samples', [TMyControl]); //In CLX, use a different page than “Samples”
end;

end.

Note Where CLX applications uses separate units, they are replaced with units of the same
name that are prefaced with a Q. For example, QControls replaces Controls. If
descending from TCustomControl in the QControls unit, the only difference is the
uses clause, which looks like this:

uses
SysUtils, Types, Classes, QGraphics, QControls, QForms, QDialogs, QStdCtrls;

Creating a component manually

The easiest way to create a new component is to use the Component wizard. You can,
however, perform the same steps manually.

To create a component manually, follow these steps:

1 Creating a unit file

2 Deriving the component

3 Registering the component

Creating a unit file
A unit is a separately compiled module of Delphi code. Delphi uses units for several
purposes. Every form has its own unit, and most components (or groups of related
components) have their own units as well
O v e r v i e w o f c o m p o n e n t c r e a t i o n 1-11

C r e a t i n g a n e w c o m p o n e n t
When you create a component, you either create a new unit for the component or add
the new component to an existing unit.

To create a new unit for a component:

1 Choose either:

• File|New|Unit.

• File|New|Other to display the New Items dialog box, select Unit, and choose
OK.

The IDE creates a new unit file and opens it in the Code editor.

2 Save the file with a meaningful name.

3 Derive the component class.

To open an existing unit:

1 Choose File|Open and select the source code unit to which you want to add your
component.

Note When adding a component to an existing unit, make sure that the unit contains
only component code. For example, adding component code to a unit that contains
a form causes errors in the Component palette.

2 Derive the component class.

Deriving the component
Every component is a class derived from TComponent, from one of its more
specialized descendants (such as TControl or TGraphicControl), or from an existing
component class. “Creating components” on page 1-3 describes which class to derive
different kinds of components from.

Deriving classes is explained in more detail in the section “Defining new classes” on
page 2-2.

To derive a component, add an object type declaration to the interface part of the
unit that will contain the component.

A simple component class is a nonvisual component descended directly from
TComponent.

To create a simple component class, add the following class declaration to the
interface part of your component unit:

type
TNewComponent = class(TComponent)
end;

So far the new component does nothing different from TComponent. You have created
a framework on which to build your new component.

Deriving classes is explained in more detail in “Defining new classes” on page 2-2.
1-12 C o m p o n e n t W r i t e r ’ s G u i d e

C r e a t i n g a n e w c o m p o n e n t
 Registering the component
Registration is a simple process that tells the IDE which components to add to its
component library, and on which pages of the Component palette they should
appear. For a more detailed discussion of the registration process, see Chapter 8,
“Making components available at design time.”

To register a component:

1 Add a procedure named Register to the interface part of the component’s unit.
Register takes no parameters, so the declaration is very simple:

procedure Register;

If you are adding a component to a unit that already contains components, it
should already have a Register procedure declared, so you do not need to change
the declaration.

Note Although Delphi is a case insensitive language, the Register procedure is case
sensitive and must be spelled with an uppercase R.

2 Write the Register procedure in the implementation part of the unit, calling
RegisterComponents for each component you want to register. RegisterComponents is
a procedure that takes two parameters: the name of a Component palette page and
a set of component types. If you are adding a component to an existing
registration, you can either add the new component to the set in the existing
statement, or add a new statement that calls RegisterComponents.

To register a component named TMyControl and place it on the Samples page of the
palette, you would add the following Register procedure to the unit that contains
TMyControl’s declaration:

procedure Register;
begin

RegisterComponents('Samples', [TNewControl]);
end;

This Register procedure places TMyControl on the Samples page of the Component
palette.

Once you register a component, you can compile it into a package (see Chapter 8,
“Making components available at design time”) and install it on the Component
palette.

Creating a bitmap for a component

Every component needs a bitmap to represent it on the Component palette. If you
don’t specify your own bitmap, the IDE uses a default bitmap. Because the palette
bitmaps are needed only at design time, you don’t compile them into the
component’s compilation unit. Instead, you supply them in a Windows resource file
with the same name as the unit., but with the .dcr (dynamic component resource)
extension. You can create this resource file using the Image editor.
O v e r v i e w o f c o m p o n e n t c r e a t i o n 1-13

C r e a t i n g a n e w c o m p o n e n t
When you create a new component, you can define your own bitmaps for custom
components.

To create a new bitmap:

1 Choose Tools|Image Editor.

2 In the Image Editor dialog box, choose File|New|Component Resource File (.dcr).

3 In the untitled1.dcr dialog box, right-click Contents. Choose New|Bitmap.

4 In the Bitmaps Properties dialog box, change both the Width and Height to 24
pixels. Make sure VGA (16 colors) is checked. Click OK.

5 Bitmap and Bitmap1 appear below Contents. Select Bitmap1, right-click, and
choose Rename. Give the bitmap the same name as the class name for your new
component, including the T, using all uppercase letters. For example, if your new
class name is going to be TMyNewButton, name the bitmap TMYNEWBUTTON.

Note You must name all uppercase letters, no matter how you spell the class name in
the New Component dialog box.

6 Double-click TMYNEWBUTTON to display a dialog box with an empty bitmap.

7 Use the color palette at the bottom of the Image Editor to design your icon.

8 Choose File|Save As and give the resource file (.dcr or .res) the same base name as
the unit you want the component class declared in. For example, name the
resource file MyNewButton.dcr.

9 Choose Component|New Component. Follow the instructions for creating a new
component using the Component wizard on page 1-9. Make sure that the
component source, MyNewButton.pas, is in the same directory as
MyNewButton.dcr.
1-14 C o m p o n e n t W r i t e r ’ s G u i d e

I n s t a l l i n g a c o m p o n e n t o n t h e C o m p o n e n t p a l e t t e
The Component wizard, for a class named TMyNewButton, names the component
source, or unit, MyNewButton.pas with a default placement in the LIB directory.
Click the Browse button to find the new location for the generated component
unit.

Note If you are using a .res file for the bitmap rather than a .dcr file, then add a reference
to the component source to bind the resource. For example, if your .res file is
named MyNewButton.res, after ensuring that the .pas and .res are in the same
directory, add the following to MyNewButton.pas below the type section:

{*R *.res}

10 Choose Component|Install Component to install your component into a new or
existing package. Click OK.

Your new package is built and then installed. The bitmap representing your new
component appears on the Component palette page you designated in the
Component wizard.

Installing a component on the Component palette
To install components in a package and onto the Component palette:

1 Choose Component|Install Component.

The Install Component dialog box appears.

2 Install the new component into either an existing or a new package by selecting
the applicable page.

3 Enter the name of the .pas file containing the new component or choose Browse to
find the unit.

4 Adjust the search path if the .pas file for the new component is not in the default
location shown.

5 Enter the name of the package into which to install the component or choose
Browse to find the package.

6 If the component is installed into a new package, optionally enter a meaningful
description of the package.

7 Choose OK to close the Install Component dialog box. This compiles/rebuilds the
package and installs the component on the Component palette.

Note Newly installed components initially appear on the page of the Component palette
that was specified by the component writer. You can move the components to a
different page after they have been installed on the palette with the Component|
Configure Palette dialog box.

For component writers who need to distribute their components to users to install on
the Component palette, see “Making source files available” on page 1-16.
O v e r v i e w o f c o m p o n e n t c r e a t i o n 1-15

T e s t i n g u n i n s t a l l e d c o m p o n e n t s
Making source files available

Component writers should make all source files used by a component should be
located in the same directory. These files include source code files (.pas) and
additional project files (.dfm/.xfm, .res, .rc, and .dcr).

The process of adding a component results in the creation of a number of files. These
files are automatically put in directories specified in the IDE environment options
(use the menu command Tools|Environment Options, navigate to the Library tab
page). The .lib files are placed in the DCP output directory. If adding the component
entails creating a new package (as opposed to installing it into an existing package),
the .bpl file is put in the BPL output directory.

Testing uninstalled components
You can test the runtime behavior of a component before you install it on the
Component palette. This is particularly useful for debugging newly created
components, but the same technique works with any component, whether or not it is
on the Component palette. For information on testing already installed components,
see “Testing installed components” on page 1-18.

You test an uninstalled component by emulating the actions performed by Delphi
when the component is selected from the palette and placed on a form.

To test an uninstalled component,

1 Add the name of component’s unit to the form unit’s uses clause.

2 Add an object field to the form to represent the component.

This is one of the main differences between the way you add components and the
way Delphi does it. You add the object field to the public part at the bottom of the
form’s type declaration. Delphi would add it above, in the part of the type
declaration that it manages.

Never add fields to the Delphi-managed part of the form’s type declaration. The
items in that part of the type declaration correspond to the items stored in the form
file. Adding the names of components that do not exist on the form can render
your form file invalid.

3 Attach a handler to the form’s OnCreate event.

4 Construct the component in the form’s OnCreate handler.

When you call the component’s constructor, you must pass a parameter specifying
the owner of the component (the component responsible for destroying the
component when the time comes). You will nearly always pass Self as the owner.
In a method, Self is a reference to the object that contains the method. In this case,
in the form’s OnCreate handler, Self refers to the form.
1-16 C o m p o n e n t W r i t e r ’ s G u i d e

T e s t i n g u n i n s t a l l e d c o m p o n e n t s
5 Assign the Parent property.

Setting the Parent property is always the first thing to do after constructing a
control. The parent is the component that contains the control visually; usually it is
the form on which the control appears, but it might be a group box or panel.
Normally, you’ll set Parent to Self, that is, the form. Always set Parent before
setting other properties of the control.

Warning If your component is not a control (that is, if TControl is not one of its ancestors),
skip this step. If you accidentally set the form’s Parent property (instead of the
component’s) to Self, you can cause an operating-system problem.

6 Set any other component properties as desired.

Suppose you want to test a new component of type TMyControl in a unit named
MyControl. Create a new project, then follow the steps to end up with a form unit that
looks like this:

unit Unit1;
interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, MyControl; { 1. Add NewTest to uses clause }

type
TForm1 = class(TForm)

procedure FormCreate(Sender: TObject); { 3. Attach a handler to OnCreate }
private

{ Private declarations }
public

{ Public Declarations }
MyControl1: TMyControl1; { 2. Add an object field }

end;

var
Form1: TForm1;

implementation
{$R *.DFM}

procedure TForm1.FormCreate(Sender: TObject);
begin

MyControl1 := TMyControl.Create(Self); { 4. Construct the component }
MyControl1.Parent := Self; { 5. Set Parent property if component is a control }
MyControl1.Left := 12; { 6. Set other properties...)
ƒ ...continue as needed }

end;
end.
O v e r v i e w o f c o m p o n e n t c r e a t i o n 1-17

Testing installed components
You can test the design-time behavior of a component after you install it on the
Component palette. This is particularly useful for debugging newly created
components, but the same technique works with any component, whether or not it is
on the Component palette. For information on testing components that have not yet
been installed, see “Testing uninstalled components” on page 1-16.

Testing your components after installing allows you to debug the component that
only generates design-time exceptions when dropped on a form.

Test an installed component using a second running instance of the IDE:

1 Choose Project|Options|and on the Directories/Conditionals page, set the Debug
Source Path to the component’s source file.

2 Then select Tools|Debugger Options. On the Language Exceptions page, enable
the exceptions you want to track.

3 Open the component source file and set breakpoints.

4 Select Run|Parameters and set the Host Application field to the name and location
of the Delphi executable file.

5 In the Run Parameters dialog, click the Load button to start a second instance of
Delphi.

6 Then drop the components to be tested on the form, which should break on your
breakpoints in the source.
1-18 C o m p o n e n t W r i t e r ’ s G u i d e

C h a p t e r

2
Chapter2Object-oriented programming for

component writers
If you have written applications with Delphi, you know that a class contains both
data and code, and that you can manipulate classes at design time and at runtime. In
that sense, you’ve become a component user.

When you create new components, you deal with classes in ways that application
developers never need to. You also try to hide the inner workings of the component
from the developers who will use it. By choosing appropriate ancestors for your
components, designing interfaces that expose only the properties and methods that
developers need, and following the other guidelines in this chapter, you can create
versatile, reusable components.

Before you start creating components, you should be familiar with these topics,
which are related to object-oriented programming (OOP):

• Defining new classes
• Ancestors, descendants, and class hierarchies
• Controlling access
• Dispatching methods
• Abstract class members
• Classes and pointers
O b j e c t - o r i e n t e d p r o g r a m m i n g f o r c o m p o n e n t w r i t e r s 2-1

D e f i n i n g n e w c l a s s e s
Defining new classes
The difference between component writers and application developers is that
component writers create new classes while application developers manipulate
instances of classes.

A class is essentially a type. As a programmer, you are always working with types
and instances, even if you do not use that terminology. For example, you create
variables of a type, such as Integer. Classes are usually more complex than simple
data types, but they work the same way: By assigning different values to instances of
the same type, you can perform different tasks.

For example, it is quite common to create a form containing two buttons, one labeled
OK and one labeled Cancel. Each is an instance of the class TButton, but by assigning
different values to their Caption properties and different handlers to their OnClick
events, you make the two instances behave differently.

Deriving new classes

There are two reasons to derive a new class:

• To change class defaults to avoid repetition
• To add new capabilities to a class

In either case, the goal is to create reusable objects. If you design components with
reuse in mind, you can save work later on. Give your classes usable default values,
but allow them to be customized.

To change class defaults to avoid repetition
Most programmers try to avoid repetition. Thus, if you find yourself rewriting the
same lines of code over and over, you place the code in a subroutine or function, or
build a library of routines that you can use in many programs. The same reasoning
holds for components. If you find yourself changing the same properties or making
the same method calls, you can create a new component that does these things by
default.

For example, suppose that each time you create an application, you add a dialog box
to perform a particular operation. Although it is not difficult to recreate the dialog
each time, it is also not necessary. You can design the dialog once, set its properties,
and install a wrapper component associated with it onto the Component palette. By
making the dialog into a reusable component, you not only eliminate a repetitive
task, but you encourage standardization and reduce the likelihood of errors each
time the dialog is recreated.

Chapter 9, “Modifying an existing component,” shows an example of changing a
component’s default properties.

Note If you want to modify only the published properties of an existing component, or to
save specific event handlers for a component or group of components, you may be
able to accomplish this more easily by creating a component template.
2-2 C o m p o n e n t W r i t e r ’ s G u i d e

A n c e s t o r s , d e s c e n d a n t s , a n d c l a s s h i e r a r c h i e s
To add new capabilities to a class
A common reason for creating new components is to add capabilities not found in
existing components. When you do this, you derive the new component from either
an existing component or an abstract base class, such as TComponent or TControl.

Derive your new component from the class that contains the closest subset of the
features you want. You can add capabilities to a class, but you cannot take them
away; so if an existing component class contains properties that you do not want to
include in yours, you should derive from that component’s ancestor.

For example, if you want to add features to a list box, you could derive your
component from TListBox. However, if you want to add new features but exclude
some capabilities of the standard list box, you need to derive your component from
TCustomListBox, the ancestor of TListBox. Then you can recreate (or make visible)
only the list-box capabilities you want, and add your new features.

Chapter 11, “Customizing a grid,” shows an example of customizing an abstract
component class.

Declaring a new component class

In addition to standard components, Delphi provides many abstract classes designed
as bases for deriving new components. Table 1.1 on page 1-3 shows the classes you
can start from when you create your own components.

To declare a new component class, add a class declaration to the component’s unit
file.

Here is the declaration of a simple graphical component:

type
TSampleShape = class(TGraphicControl)
end;

A finished component declaration usually includes property, event, and method
declarations before the end. But a declaration like the one above is also valid, and
provides a starting point for the addition of component features.

Ancestors, descendants, and class hierarchies
Application developers take for granted that every control has properties named Top
and Left that determine its position on the form. To them, it may not matter that all
controls inherit these properties from a common ancestor, TControl. When you create
a component, however, you must know which class to derive it from so that it
inherits the appropriate features. And you must know everything that your control
inherits, so you can take advantage of inherited features without recreating them.

The class from which you derive a component is called its immediate ancestor. Each
component inherits from its immediate ancestor, and from the immediate ancestor of
its immediate ancestor, and so forth. All of the classes from which a component
inherits are called its ancestors; the component is a descendant of its ancestors.
O b j e c t - o r i e n t e d p r o g r a m m i n g f o r c o m p o n e n t w r i t e r s 2-3

C o n t r o l l i n g a c c e s s
Together, all the ancestor-descendant relationships in an application constitute a
hierarchy of classes. Each generation in the hierarchy contains more than its
ancestors, since a class inherits everything from its ancestors, then adds new
properties and methods or redefines existing ones.

If you do not specify an immediate ancestor, Delphi derives your component from
the default ancestor, TObject. TObject is the ultimate ancestor of all classes in the
object hierarchy.

The general rule for choosing which object to derive from is simple: Pick the object
that contains as much as possible of what you want to include in your new object, but
which does not include anything you do not want in the new object. You can always
add things to your objects, but you cannot take things out.

Controlling access
There are five levels of access control—also called visibility—on properties, methods,
and fields. Visibility determines which code can access which parts of the class. By
specifying visibility, you define the interface to your components.

Table 2.1 shows the levels of visibility, from most restrictive to most accessible:

Declare members as private if you want them to be available only within the class
where they are defined; declare them as protected if you want them to be available
only within that class and its descendants. Remember, though, that if a member is
available anywhere within a unit file, it is available everywhere in that file. Thus, if you
define two classes in the same unit, the classes will be able to access each other’s
private methods. And if you derive a class in a different unit from its ancestor, all the
classes in the new unit will be able to access the ancestor’s protected methods.

Table 2.1 Levels of visibility within an object

Visibility Meaning Used for

private Accessible only to code in the unit
where the class is defined.

Hiding implementation details.

protected Accessible to code in the unit(s) where
the class and its descendants are
defined.

Defining the component writer’s interface.

public Accessible to all code. Defining the runtime interface.

automated Accessible to all code. Automation
type information is generated.

OLE automation only.

published Accessible to all code and accessible
from the Object Inspector. Saved in a
form file.

Defining the design-time interface.
2-4 C o m p o n e n t W r i t e r ’ s G u i d e

C o n t r o l l i n g a c c e s s
Hiding implementation details

Declaring part of a class as private makes that part invisible to code outside the
class’s unit file. Within the unit that contains the declaration, code can access the part
as if it were public.

The following example shows how declaring a field as private hides it from
application developers. The listing shows two VCL form units. Each form has a
handler for its OnCreate event which assigns a value to a private field. The compiler
allows assignment to the field only in the form where it is declared.

unit HideInfo;
interface

uses SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls, Forms, Dialogs;

type
TSecretForm = class(TForm) { declare new form }

procedure FormCreate(Sender: TObject);
private { declare private part }

FSecretCode: Integer; { declare a private field }
end;

var
SecretForm: TSecretForm;

implementation
{$R *.dfm}
procedure TSecretForm.FormCreate(Sender: TObject);
begin

FSecretCode := 42; { this compiles correctly }
end;
end. { end of unit }

unit TestHide; { this is the main form file }

interface
uses SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls, Forms, Dialogs,

HideInfo; { use the unit with TSecretForm }

type
TTestForm = class(TForm)

procedure FormCreate(Sender: TObject);
end;

var
TestForm: TTestForm;

implementation
procedure TTestForm.FormCreate(Sender: TObject);
begin

SecretForm.FSecretCode := 13; { compiler stops with "Field identifier expected" }
end;
end. { end of unit }
O b j e c t - o r i e n t e d p r o g r a m m i n g f o r c o m p o n e n t w r i t e r s 2-5

C o n t r o l l i n g a c c e s s
Although a program using the HideInfo unit can use classes of type TSecretForm, it
cannot access the FSecretCode field in any of those classes.

Note Names and locations of some of the units differ in CLX applications. For example, the
Controls unit is QControls in a CLX application.

Defining the component writer’s interface

Declaring part of a class as protected makes that part visible only to the class itself
and its descendants (and to other classes that share their unit files).

You can use protected declarations to define a component writer’s interface to the class.
Application units do not have access to the protected parts, but derived classes do.
This means that component writers can change the way a class works without
making the details visible to application developers.

Note A common mistake is trying to access protected methods from an event handler.
Event handlers are typically methods of the form, not the component that receives
the event. As a result, they do not have access to the component’s protected methods
(unless the component is declared in the same unit as the form).

Defining the runtime interface

Declaring part of a class as public makes that part visible to any code that has access
to the class as a whole.

Public parts are available at runtime to all code, so the public parts of a class define
its runtime interface. The runtime interface is useful for items that are not meaningful
or appropriate at design time, such as properties that depend on runtime input or
which are read-only. Methods that you intend for application developers to call must
also be public.

Here is an example that shows two read-only properties declared as part of a
component’s runtime interface:

type
TSampleComponent = class(TComponent)
private

FTempCelsius: Integer; { implementation details are private }
function GetTempFahrenheit: Integer;

public
property TempCelsius: Integer read FTempCelsius; { properties are public }
property TempFahrenheit: Integer read GetTempFahrenheit;

end;
ƒ
function TSampleComponent.GetTempFahrenheit: Integer;
begin

Result := FTempCelsius * 9 div 5 + 32;
end;
2-6 C o m p o n e n t W r i t e r ’ s G u i d e

D i s p a t c h i n g m e t h o d s
Defining the design-time interface

Declaring part of a class as published makes that part public and also generates
runtime type information. Among other things, runtime type information allows the
Object Inspector to access properties and events.

Because they show up in the Object Inspector, the published parts of a class define
that class’s design-time interface. The design-time interface should include any aspects
of the class that an application developer might want to customize at design time, but
must exclude any properties that depend on specific information about the runtime
environment.

Read-only properties cannot be part of the design-time interface because the
application developer cannot assign values to them directly. Read-only properties
should therefore be public, rather than published.

Here is an example of a published property called Temperature. Because it is
published, it appears in the Object Inspector at design time.

type
TSampleComponent = class(TComponent)
private

FTemperature: Integer; { implementation details are private }
published

property Temperature: Integer read FTemperature write FTemperature; { writable! }
end;

Dispatching methods
Dispatch refers to the way a program determines where a method should be invoked
when it encounters a method call. The code that calls a method looks like any other
procedure or function call. But classes have different ways of dispatching methods.

The three types of method dispatch are

• Static
• Virtual
• Dynamic

Static methods

All methods are static unless you specify otherwise when you declare them. Static
methods work like regular procedures or functions. The compiler determines the
exact address of the method and links the method at compile time.

The primary advantage of static methods is that dispatching them is very quick.
Because the compiler can determine the exact address of the method, it links the
method directly. Virtual and dynamic methods, by contrast, use indirect means to
look up the address of their methods at runtime, which takes somewhat longer.
O b j e c t - o r i e n t e d p r o g r a m m i n g f o r c o m p o n e n t w r i t e r s 2-7

D i s p a t c h i n g m e t h o d s
A static method does not change when inherited by a descendant class. If you declare
a class that includes a static method, then derive a new class from it, the derived class
shares exactly the same method at the same address. This means that you cannot
override static methods; a static method always does exactly the same thing no
matter what class it is called in. If you declare a method in a derived class with the
same name as a static method in the ancestor class, the new method simply replaces
the inherited one in the derived class.

An example of static methods
In the following code, the first component declares two static methods. The second
declares two static methods with the same names that replace the methods inherited
from the first component.

type
TFirstComponent = class(TComponent)

procedure Move;
procedure Flash;

end;

TSecondComponent = class(TFirstComponent)
procedure Move; { different from the inherited method, despite same declaration }
function Flash(HowOften: Integer): Integer; { this is also different }

end;

Virtual methods

Virtual methods employ a more complicated, and more flexible, dispatch mechanism
than static methods. A virtual method can be redefined in descendant classes, but
still be called in the ancestor class. The address of a virtual method isn’t determined
at compile time; instead, the object where the method is defined looks up the address
at runtime.

To make a method virtual, add the directive virtual after the method declaration. The
virtual directive creates an entry in the object’s virtual method table, or VMT, which
holds the addresses of all the virtual methods in an object type.

When you derive a new class from an existing one, the new class gets its own VMT,
which includes all the entries from the ancestor’s VMT plus any additional virtual
methods declared in the new class.

Overriding methods
Overriding a method means extending or refining it, rather than replacing it. A
descendant class can override any of its inherited virtual methods.

To override a method in a descendant class, add the directive override to the end of
the method declaration.
2-8 C o m p o n e n t W r i t e r ’ s G u i d e

D i s p a t c h i n g m e t h o d s
Overriding a method causes a compilation error if

• The method does not exist in the ancestor class.

• The ancestor’s method of that name is static.

• The declarations are not otherwise identical (number and type of arguments
parameters differ).

The following code shows the declaration of two simple components. The first
declares three methods, each with a different kind of dispatching. The other, derived
from the first, replaces the static method and overrides the virtual methods.

type
TFirstComponent = class(TCustomControl)

procedure Move; { static method }
procedure Flash; virtual; { virtual method }
procedure Beep; dynamic; { dynamic virtual method }

end;

TSecondComponent = class(TFirstComponent)
procedure Move; { declares new method }
procedure Flash; override; { overrides inherited method }
procedure Beep; override; { overrides inherited method }

end;

Dynamic methods

Dynamic methods are virtual methods with a slightly different dispatch mechanism.
Because dynamic methods don’t have entries in the object’s virtual method table,
they can reduce the amount of memory that objects consume. However, dispatching
dynamic methods is somewhat slower than dispatching regular virtual methods. If a
method is called frequently, or if its execution is time-critical, you should probably
declare it as virtual rather than dynamic.

Objects must store the addresses of their dynamic methods. But instead of receiving
entries in the virtual method table, dynamic methods are listed separately. The
dynamic method list contains entries only for methods introduced or overridden by a
particular class. (The virtual method table, in contrast, includes all of the object’s
virtual methods, both inherited and introduced.) Inherited dynamic methods are
dispatched by searching each ancestor’s dynamic method list, working backwards
through the inheritance tree.

To make a method dynamic, add the directive dynamic after the method declaration.
O b j e c t - o r i e n t e d p r o g r a m m i n g f o r c o m p o n e n t w r i t e r s 2-9

A b s t r a c t c l a s s m e m b e r s
Abstract class members
When a method is declared as abstract in an ancestor class, you must surface it (by
redeclaring and implementing it) in any descendant component before you can use
the new component in applications. Delphi cannot create instances of a class that
contains abstract members. For more information about surfacing inherited parts of
classes, see Chapter 3, “Creating properties,” and Chapter 5, “Creating methods.”

Classes and pointers
Every class (and therefore every component) is really a pointer. The compiler
automatically dereferences class pointers for you, so most of the time you do not
need to think about this. The status of classes as pointers becomes important when
you pass a class as a parameter. In general, you should pass classes by value rather
than by reference. The reason is that classes are already pointers, which are
references; passing a class by reference amounts to passing a reference to a reference.
2-10 C o m p o n e n t W r i t e r ’ s G u i d e

C h a p t e r

3
Chapter3Creating properties

Properties are the most visible parts of components. The application developer can
see and manipulate them at design time and get immediate feedback as the
components react in the Form Designer. Well-designed properties make your
components easier for others to use and easier for you to maintain.

To make the best use of properties in your components, you should understand the
following:

• Why create properties?
• Types of properties
• Publishing inherited properties
• Defining properties
• Creating array properties
• Storing and loading properties

Why create properties?
From the application developer’s standpoint, properties look like variables.
Developers can set or read the values of properties as if they were fields. (About the
only thing you can do with a variable that you cannot do with a property is pass it as
a var parameter.)

Properties provide more power than simple fields because

• Application developers can set properties at design time. Unlike methods, which
are available only at runtime, properties let the developer customize components
before running an application. Properties can appear in the Object Inspector,
which simplifies the programmer’s job; instead of handling several parameters to
construct an object, the Object Inspector supplies the values. The Object Inspector
also validates property assignments as soon as they are made.
C r e a t i n g p r o p e r t i e s 3-1

T y p e s o f p r o p e r t i e s
• Properties can hide implementation details. For example, data stored internally in
an encrypted form can appear unencrypted as the value of a property; although
the value is a simple number, the component may look up the value in a database
or perform complex calculations to arrive at it. Properties let you attach complex
effects to outwardly simple assignments; what looks like an assignment to a field
can be a call to a method which implements elaborate processing.

• Properties can be virtual. Hence, what looks like a single property to an
application developer may be implemented differently in different components.

A simple example is the Top property of all controls. Assigning a new value to Top
does not just change a stored value; it repositions and repaints the control. And the
effects of setting a property need not be limited to an individual component; for
example, setting the Down property of a speed button to True sets Down property of
all other speed buttons in its group to False.

Types of properties
A property can be of any type. Different types are displayed differently in the Object
Inspector, which validates property assignments as they are made at design time.

Table 3.1 How properties appear in the Object Inspector

Property type Object Inspector treatment

Simple Numeric, character, and string properties appear as numbers, characters, and
strings. The application developer can edit the value of the property directly.

Enumerated Properties of enumerated types (including Boolean) appear as editable strings.
The developer can also cycle through the possible values by double-clicking the
value column, and there is a drop-down list that shows all possible values.

Set Properties of set types appear as sets. By double-clicking on the property, the
developer can expand the set and treat each element as a Boolean value (true if it
is included in the set).

Object Properties that are themselves classes often have their own property editors,
specified in the component’s registration procedure. If the class held by a
property has its own published properties, the Object Inspector lets the developer
to expand the list (by double-clicking) to include these properties and edit them
individually. Object properties must descend from TPersistent.

Interface Properties that are interfaces can appear in the Object Inspector as long as the
value is an interface that is implemented by a component (a descendant of
TComponent). Interface properties often have their own property editors.

Array Array properties must have their own property editors; the Object Inspector has
no built-in support for editing them. You can specify a property editor when you
register your components.
3-2 C o m p o n e n t W r i t e r ’ s G u i d e

P u b l i s h i n g i n h e r i t e d p r o p e r t i e s
Publishing inherited properties
All components inherit properties from their ancestor classes. When you derive a
new component from an existing one, your new component inherits all the properties
of its immediate ancestor. If you derive from one of the abstract classes, many of the
inherited properties are either protected or public, but not published.

To make a protected or public property available at design time in the Object
Inspector, you must redeclare the property as published. Redeclaring means adding
a declaration for the inherited property to the declaration of the descendant class.

If you derive a component from TWinControl, for example, it inherits the protected
DockSite property. By redeclaring DockSite in your new component, you can change
the level of protection to either public or published.

The following code shows a redeclaration of DockSite as published, making it available
at design time.

type
TSampleComponent = class(TWinControl)
published

property DockSite;
end;

When you redeclare a property, you specify only the property name, not the type and
other information described in “Defining properties.” You can also declare new
default values and specify whether to store the property.

Redeclarations can make a property less restricted, but not more restricted. Thus you
can make a protected property public, but you cannot hide a public property by
redeclaring it as protected.

Defining properties
This section shows how to declare new properties and explains some of the
conventions followed in the standard components. Topics include:

• Property declarations
• Internal data storage
• Direct access
• Access methods
• Default property values
C r e a t i n g p r o p e r t i e s 3-3

D e f i n i n g p r o p e r t i e s
Property declarations

A property is declared in the declaration of its component class. To declare a
property, you specify three things:

• The name of the property.

• The type of the property.

• The methods used to read and write the value of the property. If no write method
is declared, the property is read-only.

Properties declared in a published section of the component’s class declaration are
editable in the Object Inspector at design time. The value of a published property is
saved with the component in the form file. Properties declared in a public section are
available at runtime and can be read or set in program code.

Here is a typical declaration for a property called Count.

type
TYourComponent = class(TComponent)
private

FCount: Integer; { used for internal storage }
procedure SetCount (Value: Integer); { write method }

public
property Count: Integer read FCount write SetCount;

end;

Internal data storage

There are no restrictions on how you store the data for a property. In general,
however, Delphi components follow these conventions:

• Property data is stored in class fields.

• The fields used to store property data are private and should be accessed only
from within the component itself. Derived components should use the inherited
property; they do not need direct access to the property’s internal data storage.

• Identifiers for these fields consist of the letter F followed by the name of the
property. For example, the raw data for the Width property defined in TControl is
stored in a field called FWidth.

The principle that underlies these conventions is that only the implementation
methods for a property should access the data behind it. If a method or another
property needs to change that data, it should do so through the property, not by
direct access to the stored data. This ensures that the implementation of an inherited
property can change without invalidating derived components.
3-4 C o m p o n e n t W r i t e r ’ s G u i d e

D e f i n i n g p r o p e r t i e s
Direct access

The simplest way to make property data available is direct access. That is, the read and
write parts of the property declaration specify that assigning or reading the property
value goes directly to the internal-storage field without calling an access method.
Direct access is useful when you want to make a property available in the Object
Inspector but changes to its value trigger no immediate processing.

It is common to have direct access for the read part of a property declaration but use
an access method for the write part. This allows the status of the component to be
updated when the property value changes.

The following component-type declaration shows a property that uses direct access
for both the read and the write parts.

type
TSampleComponent = class(TComponent)
private { internal storage is private}

FMyProperty: Boolean; { declare field to hold property value }
published { make property available at design time }

property MyProperty: Boolean read FMyProperty write FMyProperty;
end;

Access methods

You can specify an access method instead of a field in the read and write parts of a
property declaration. Access methods should be protected, and are usually declared
as virtual; this allows descendant components to override the property’s
implementation.

Avoid making access methods public. Keeping them protected ensures that
application developers do not inadvertently modify a property by calling one of
these methods.

Here is a class that declares three properties using the index specifier, which allows
all three properties to have the same read and write access methods:

type
TSampleCalendar = class(TCustomGrid)
public

property Day: Integer index 3 read GetDateElement write SetDateElement;
property Month: Integer index 2 read GetDateElement write SetDateElement;
property Year: Integer index 1 read GetDateElement write SetDateElement;

private
function GetDateElement(Index: Integer): Integer; { note the Index parameter }
procedure SetDateElement(Index: Integer; Value: Integer);

ƒ

Because each element of the date (day, month, and year) is an int, and because setting
each requires encoding the date when set, the code avoids duplication by sharing the
read and write methods for all three properties. You need only one method to read a
date element, and another to write the date element.
C r e a t i n g p r o p e r t i e s 3-5

D e f i n i n g p r o p e r t i e s
Here is the read method that obtains the date element:

function TSampleCalendar.GetDateElement(Index: Integer): Integer;
var

AYear, AMonth, ADay: Word;
begin

DecodeDate(FDate, AYear, AMonth, ADay); { break encoded date into elements }
case Index of

1: Result := AYear;
2: Result := AMonth;
3: Result := ADay;
else Result := -1;

end;
end;

This is the write method that sets the appropriate date element:

procedure TSampleCalendar.SetDateElement(Index: Integer; Value: Integer);
var

AYear, AMonth, ADay: Word;
begin

if Value > 0 then { all elements must be positive }
begin

DecodeDate(FDate, AYear, AMonth, ADay); { get current date elements }
case Index of { set new element depending on Index }

1: AYear := Value;
2: AMonth := Value;
3: ADay := Value;
else Exit;

end;
FDate := EncodeDate(AYear, AMonth, ADay); { encode the modified date }
Refresh; { update the visible calendar }

end;
end;

The read method
The read method for a property is a function that takes no parameters (except as
noted below) and returns a value of the same type as the property. By convention, the
function’s name is Get followed by the name of the property. For example, the read
method for a property called Count would be GetCount. The read method
manipulates the internal storage data as needed to produce the value of the property
in the appropriate type.

The only exceptions to the no-parameters rule are for array properties and properties
that use index specifiers (see “Creating array properties” on page 3-8), both of which
pass their index values as parameters. (Use index specifiers to create a single read
method that is shared by several properties. For more information about index
specifiers, see the Delphi Language Guide.)

If you do not declare a read method, the property is write-only. Write-only properties
are seldom used.
3-6 C o m p o n e n t W r i t e r ’ s G u i d e

D e f i n i n g p r o p e r t i e s
The write method
The write method for a property is a procedure that takes a single parameter (except
as noted below) of the same type as the property. The parameter can be passed by
reference or by value, and can have any name you choose. By convention, the write
method’s name is Set followed by the name of the property. For example, the write
method for a property called Count would be SetCount. The value passed in the
parameter becomes the new value of the property; the write method must perform
any manipulation needed to put the appropriate data in the property’s internal
storage.

The only exceptions to the single-parameter rule are for array properties and
properties that use index specifiers, both of which pass their index values as a second
parameter. (Use index specifiers to create a single write method that is shared by
several properties. For more information about index specifiers, see the Delphi
Language Guide.)

If you do not declare a write method, the property is read-only.

Write methods commonly test whether a new value differs from the current value
before changing the property. For example, here is a simple write method for an
integer property called Count that stores its current value in a field called FCount.

procedure TMyComponent.SetCount(Value: Integer);
begin

if Value <> FCount then
begin

FCount := Value;
Update;

end;
end;

Default property values

When you declare a property, you can specify a default value for it. Delphi uses the
default value to determine whether to store the property in a form file. If you do not
specify a default value for a property, Delphi always stores the property.

To specify a default value for a property, append the default directive to the
property’s declaration (or redeclaration), followed by the default value. For example,

property Cool Boolean read GetCool write SetCool default True;

Note Declaring a default value does not set the property to that value. The component’s
constructor method should initialize property values when appropriate. However,
since objects always initialize their fields to 0, it is not strictly necessary for the
constructor to set integer properties to 0, string properties to null, or Boolean
properties to False.
C r e a t i n g p r o p e r t i e s 3-7

C r e a t i n g a r r a y p r o p e r t i e s
Specifying no default value
When redeclaring a property, you can specify that the property has no default value,
even if the inherited property specified one.

To designate a property as having no default value, append the nodefault directive
to the property’s declaration. For example,

property FavoriteFlavor string nodefault;

When you declare a property for the first time, there is no need to include nodefault.
The absence of a declared default value means that there is no default.

Here is the declaration of a component that includes a single Boolean property called
IsTrue with a default value of True. Below the declaration (in the implementation
section of the unit) is the constructor that initializes the property.

type
TSampleComponent = class(TComponent)
private

FIsTrue: Boolean;
public

constructor Create(AOwner: TComponent); override;
published

property IsTrue: Boolean read FIsTrue write FIsTrue default True;
end;

ƒ
constructor TSampleComponent.Create(AOwner: TComponent);
begin

inherited Create(AOwner); { call the inherited constructor }
FIsTrue := True; { set the default value }

end;

Creating array properties
Some properties lend themselves to being indexed like arrays. For example, the Lines
property of TMemo is an indexed list of the strings that make up the text of the memo;
you can treat it as an array of strings. Lines provides natural access to a particular
element (a string) in a larger set of data (the memo text).

Array properties are declared like other properties, except that

• The declaration includes one or more indexes with specified types. The indexes
can be of any type.

• The read and write parts of the property declaration, if specified, must be
methods. They cannot be fields.

The read and write methods for an array property take additional parameters that
correspond to the indexes. The parameters must be in the same order and of the same
type as the indexes specified in the declaration.
3-8 C o m p o n e n t W r i t e r ’ s G u i d e

C r e a t i n g p r o p e r t i e s f o r s u b c o m p o n e n t s
There are a few important differences between array properties and arrays. Unlike
the index of an array, the index of an array property does not have to be an integer
type. You can index a property on a string, for example. In addition, you can
reference only individual elements of an array property, not the entire range of the
property.

The following example shows the declaration of a property that returns a string
based on an integer index.

type
TDemoComponent = class(TComponent)
private

function GetNumberName(Index: Integer): string;
public

property NumberName[Index: Integer]: string read GetNumberName;
end;

ƒ
function TDemoComponent.GetNumberName(Index: Integer): string;
begin

Result := 'Unknown';
case Index of

-MaxInt..-1: Result := 'Negative';
0: Result := 'Zero';
1..100: Result := 'Small';
101..MaxInt: Result := 'Large';

end;
end;

Creating properties for subcomponents
By default, when a property’s value is another component, you assign a value to that
property by adding an instance of the other component to the form or data module
and then assigning that component as the value of the property. However, it is also
possible for your component to create its own instance of the object that implements
the property value. Such a dedicated component is called a subcomponent.

Subcomponents can be any persistent object (any descendant of TPersistent). Unlike
separate components that happen to be assigned as the value of a property, the
published properties of subcomponents are saved with the component that creates
them. In order for this to work, however, the following conditions must be met:

• The Owner of the subcomponent must be the component that creates it and uses it
as the value of a published property. For subcomponents that are descendants of
TComponent, you can accomplish this by setting the Owner property of the
subcomponent. For other subcomponents, you must override the GetOwner
method of the persistent object so that it returns the creating component.

• If the subcomponent is a descendant of TComponent, it must indicate that it is a
subcomponent by calling the SetSubComponent method. Typically, this call is made
either by the owner when it creates the subcomponent or by the constructor of the
subcomponent.
C r e a t i n g p r o p e r t i e s 3-9

C r e a t i n g p r o p e r t i e s f o r s u b c o m p o n e n t s
Typically, properties whose values are subcomponents are read-only. If you allow a
property whose value is a subcomponent to be changed, the property setter must free
the subcomponent when another component is assigned as the property value. In
addition, the component often re-instantiates its subcomponent when the property is
set to nil. Otherwise, once the property is changed to another component, the
subcomponent can never be restored at design time. The following example
illustrates such a property setter for a property whose value is a TTimer:

procedure TDemoComponent.SetTimerProp(Value: TTimer);
begin

if Value <> FTimer then
begin

if Value <> nil then
begin

if Assigned(FTimer) and (FTimer.Owner = Self) then
FTimer.Free;

FTimer := Value;
FTimer.FreeNotification(self);

end
else //nil value
begin

if Assigned(FTimer) and (FTimer.Owner <> Self) then
begin
FTimer := TTimer.Create(self);
FTimer.Name := 'Timer'; //optional bit, but makes result much nicer
FTimer.SetSubComponent(True);
FTimer.FreeNotification(self);

end;
end;

end;
end;

Note that the property setter above called the FreeNotification method of the
component that is set as the property value. This call ensures that the component that
is the value of the property sends a notification if it is about to be destroyed. It sends
this notification by calling the Notification method. You handle this call by overriding
the Notification method, as follows:

procedure TDemoComponent.Notification(AComponent: TComponent; Operation: TOperation);
begin

inherited Notification(AComponent, Operation);
if (Operation = opRemove) and (AComponent = FTimer) then

FTimer := nil;
end;
3-10 C o m p o n e n t W r i t e r ’ s G u i d e

C r e a t i n g p r o p e r t i e s f o r i n t e r f a c e s
Creating properties for interfaces
You can use an interface as the value of a published property, much as you can use
an object. However, the mechanism by which your component receives notifications
from the implementation of that interface differs. In the previous topic, the property
setter called the FreeNotification method of the component that was assigned as the
property value. This allowed the component to update itself when the component
that was the value of the property was freed. When the value of the property is an
interface, however, you don’t have access to the component that implements that
interface. As a result, you can’t call its FreeNotification method.

To handle this situation, you can call your component’s ReferenceInterface method:

procedure TDemoComponent.SetMyIntfProp(const Value: IMyInterface);
begin

ReferenceInterface(FIntfField, opRemove);
FIntfField := Value;
ReferenceInterface(FIntfField, opInsert);

end;

Calling ReferenceInterface with a specified interface does the same thing as calling
another component’s FreeNotification method. Thus, after calling ReferenceInterface
from the property setter, you can override the Notification method to handle the
notifications from the implementor of the interface:

procedure TDemoComponent.Notification(AComponent: TComponent; Operation: TOperation);
begin

inherited Notification(AComponent, Operation);
if (Assigned(MyIntfProp)) and (AComponent.IsImplementorOf(MyInftProp)) then

MyIntfProp := nil;
end;

Note that the Notification code assigns nil to the MyIntfProp property, not to the
private field (FIntfField). This ensures that Notification calls the property setter, which
calls ReferenceInterface to remove the notification request that was established when
the property value was set previously. All assignments to the interface property must
be made through the property setter.

Storing and loading properties
Delphi stores forms and their components in form (.dfm in VCL applications and
.xfm in CLX applications) files. A form file stores the properties of a form and its
components. When Delphi developers add the components you write to their forms,
your components must have the ability to write their properties to the form file when
saved. Similarly, when loaded into Delphi or executed as part of an application, the
components must restore themselves from the form file.
C r e a t i n g p r o p e r t i e s 3-11

S t o r i n g a n d l o a d i n g p r o p e r t i e s
Most of the time you will not need to do anything to make your components work
with form files because the ability to store a representation and load from it are part
of the inherited behavior of components. Sometimes, however, you might want to
alter the way a component stores itself or the way it initializes when loaded; so you
should understand the underlying mechanism.

These are the aspects of property storage you need to understand:

• Using the store-and-load mechanism
• Specifying default values
• Determining what to store
• Initializing after loading
• Storing and loading unpublished properties

Using the store-and-load mechanism

The description of a form consists of a list of the form’s properties, along with similar
descriptions of each component on the form. Each component, including the form
itself, is responsible for storing and loading its own description.

By default, when storing itself, a component writes the values of all its published
properties that differ from their default values, in the order of their declaration.
When loading itself, a component first constructs itself, setting all properties to their
default values, then reads the stored, non-default property values.

This default mechanism serves the needs of most components, and requires no action
at all on the part of the component writer. There are several ways you can customize
the storing and loading process to suit the needs of your particular components,
however.

Specifying default values

Delphi components save their property values only if those values differ from the
defaults. If you do not specify otherwise, Delphi assumes a property has no default
value, meaning the component always stores the property, whatever its value.

To specify a default value for a property, add the default directive and the new
default value to the end of the property declaration.

You can also specify a default value when redeclaring a property. In fact, one reason
to redeclare a property is to designate a different default value.

Note Specifying the default value does not automatically assign that value to the property
on creation of the object. You must make sure that the component’s constructor
assigns the necessary value. A property whose value is not set by a component’s
constructor assumes a zero value- that is, whatever value the property assumes when its
storage memory is set to 0. Thus numeric values default to 0, Boolean values to False,
pointers to nil, and so on. If there is any doubt, assign a value in the constructor method.
3-12 C o m p o n e n t W r i t e r ’ s G u i d e

S t o r i n g a n d l o a d i n g p r o p e r t i e s
The following code shows a component declaration that specifies a default value for
the Align property and the implementation of the component’s constructor that sets
the default value. In this case, the new component is a special case of the standard
panel component that will be used for status bars in a window, so its default
alignment should be to the bottom of its owner.

type
TStatusBar = class(TPanel)
public

constructor Create(AOwner: TComponent); override; { override to set new default }
published

property Align default alBottom; { redeclare with new default value }
end;

ƒ
constructor TStatusBar.Create(AOwner: TComponent);
begin

inherited Create(AOwner); { perform inherited initialization }
Align := alBottom; { assign new default value for Align }

end;

Determining what to store

You can control whether Delphi stores each of your components’ properties. By
default, all properties in the published part of the class declaration are stored. You
can choose not to store a given property at all, or you can designate a function that
determines dynamically whether to store the property.

To control whether Delphi stores a property, add the stored directive to the property
declaration, followed by True, False, or the name of a Boolean function.

The following code shows a component that declares three new properties. One is
always stored, one is never stored, and the third is stored depending on the value of a
Boolean function:

type
TSampleComponent = class(TComponent)
protected

function StoreIt: Boolean;
public
ƒ
published

property Important: Integer stored True; { always stored }
property Unimportant: Integer stored False; { never stored }
property Sometimes: Integer stored StoreIt; { storage depends on function value }

end;
C r e a t i n g p r o p e r t i e s 3-13

S t o r i n g a n d l o a d i n g p r o p e r t i e s
Initializing after loading

After a component reads all its property values from its stored description, it calls a
virtual method named Loaded, which performs any required initializations. The call
to Loaded occurs before the form and its controls are shown, so you do not need to
worry about initialization causing flicker on the screen.

To initialize a component after it loads its property values, override the Loaded
method.

Note The first thing to do in any Loaded method is call the inherited Loaded method. This
ensures that any inherited properties are correctly initialized before you initialize
your own component.

The following code comes from the TDatabase component. After loading, the
database tries to reestablish any connections that were open at the time it was stored,
and specifies how to handle any exceptions that occur while connecting.

procedure TDatabase.Loaded;
begin

inherited Loaded; { call the inherited method first}
try

if FStreamedConnected then Open { reestablish connections }
else CheckSessionName(False);

except
if csDesigning in ComponentState then { at design time... }

Application.HandleException(Self) { let Delphi handle the exception }
else raise; { otherwise, reraise }

end;
end;

Storing and loading unpublished properties

By default, only published properties are loaded and saved with a component.
However, it is possible to load and save unpublished properties. This allows you to
have persistent properties that do not appear in the Object Inspector. It also allows
components to store and load property values that Delphi does not know how to
read or write because the value of the property is too complex. For example, the
TStrings object can’t rely on Delphi’s automatic behavior to store and load the strings
it represents and must use the following mechanism.

You can save unpublished properties by adding code that tells Delphi how to load
and save your property’s value.

To write your own code to load and save properties, use the following steps:

1 Create methods to store and load the property value.

2 Override the DefineProperties method, passing those methods to a filer object.
3-14 C o m p o n e n t W r i t e r ’ s G u i d e

S t o r i n g a n d l o a d i n g p r o p e r t i e s
Creating methods to store and load property values
To store and load unpublished properties, you must first create a method to store
your property value and another to load your property value. You have two choices:

• Create a method of type TWriterProc to store your property value and a method of
type TReaderProc to load your property value. This approach lets you take
advantage of Delphi’s built-in capabilities for saving and loading simple types. If
your property value is built out of types that Delphi knows how to save and load,
use this approach.

• Create two methods of type TStreamProc, one to store and one to load your
property’s value. TStreamProc takes a stream as an argument, and you can use the
stream’s methods to write and read your property values.

For example, consider a property that represents a component that is created at
runtime. Delphi knows how to write this value, but does not do so automatically
because the component is not created in the form designer. Because the streaming
system can already load and save components, you can use the first approach. The
following methods load and store the dynamically created component that is the
value of a property named MyCompProperty:

procedure TSampleComponent.LoadCompProperty(Reader: TReader);
begin

if Reader.ReadBoolean then
MyCompProperty := Reader.ReadComponent(nil);

end;
procedure TSampleComponent.StoreCompProperty(Writer: TWriter);
begin

Writer.WriteBoolean(MyCompProperty <> nil);
if MyCompProperty <> nil then

Writer.WriteComponent(MyCompProperty);
end;

Overriding the DefineProperties method
Once you have created methods to store and load your property value, you can
override the component’s DefineProperties method. Delphi calls this method when it
loads or stores the component. In the DefineProperties method, you must call the
DefineProperty method or the DefineBinaryProperty method of the current filer,
passing it the method to use for loading or saving your property value. If your load
and store methods are of type TWriterProc and type TReaderProc, then you call the
filer’s DefineProperty method. If you created methods of type TStreamProc, call
DefineBinaryProperty instead.

No matter which method you use to define the property, you pass it the methods that
store and load your property value as well as a boolean value indicating whether the
property value needs to be written. If the value can be inherited or has a default
value, you do not need to write it.
C r e a t i n g p r o p e r t i e s 3-15

S t o r i n g a n d l o a d i n g p r o p e r t i e s
For example, given the LoadCompProperty method of type TReaderProc and the
StoreCompProperty method of type TWriterProc, you would override DefineProperties
as follows:

procedure TSampleComponent.DefineProperties(Filer: TFiler);
function DoWrite: Boolean;
begin

if Filer.Ancestor <> nil then { check Ancestor for an inherited value }
begin

if TSampleComponent(Filer.Ancestor).MyCompProperty = nil then
Result := MyCompProperty <> nil

else if MyCompProperty = nil or
TSampleComponent(Filer.Ancestor).MyCompProperty.Name <> MyCompProperty.Name then

Result := True
else Result := False;

end
else { no inherited value -- check for default (nil) value }

Result := MyCompProperty <> nil;
end;

begin
inherited; { allow base classes to define properties }
Filer.DefineProperty('MyCompProperty', LoadCompProperty, StoreCompProperty, DoWrite);

end;
3-16 C o m p o n e n t W r i t e r ’ s G u i d e

C h a p t e r

4
Chapter4Creating events

An event is a link between an occurrence in the system (such as a user action or a
change in focus) and a piece of code that responds to that occurrence. The responding
code is an event handler, and is nearly always written by the application developer.
Events let application developers customize the behavior of components without
having to change the classes themselves. This is known as delegation.

Events for the most common user actions (such as mouse actions) are built into all the
standard components, but you can also define new events. To create events in a
component, you need to understand the following:

• What are events?
• Implementing the standard events
• Defining your own events

Events are implemented as properties, so you should already be familiar with the
material in Chapter 3, “Creating properties,” before you attempt to create or change a
component’s events.

What are events?
An event is a mechanism that links an occurrence to some code. More specifically, an
event is a method pointer that points to a method in a specific class instance.

From the application developer’s perspective, an event is just a name related to a
system occurrence, such as OnClick, to which specific code can be attached. For
example, a push button called Button1 has an OnClick method. By default, when you
assign a value to the OnClick event, the Form Designer generates an event handler
C r e a t i n g e v e n t s 4-1

W h a t a r e e v e n t s ?
called Button1Click in the form that contains the button and assigns it to OnClick.
When a click event occurs in the button, the button calls the method assigned to
OnClick, in this case, Button1Click.

To write an event, you need to understand the following:

• Events are method pointers.
• Events are properties.
• Event types are method-pointer types.
• Event-handler types are procedures.
• Event handlers are optional.

Events are method pointers

Delphi uses method pointers to implement events. A method pointer is a special
pointer type that points to a specific method in a specific class instance. As a
component writer, you can treat the method pointer as a placeholder: When your
code detects that an event occurs, you call the method (if any) specified by the user
for that event.

Method pointers work just like any other procedural type, but they maintain a
hidden pointer to a class instance. When the application developer assigns a handler
to a component’s event, the assignment is not just to a method with a particular
name, but rather to a method of a specific class instance. That instance is usually the
form that contains the component, but it need not be.

All controls, for example, inherit a dynamic method called Click for handling click
events:

procedure Click; dynamic;

The implementation of Click calls the user’s click-event handler, if one exists. If the
user has assigned a handler to a control’s OnClick event, clicking the control results in
that method being called. If no handler is assigned, nothing happens.

User clicks Button1 Button1.OnClick points to
Form1.Button1Click

Form1.Button1Click
executes

Occurrence Event Event handler
4-2 C o m p o n e n t W r i t e r ’ s G u i d e

W h a t a r e e v e n t s ?
Events are properties

Components use properties to implement their events. Unlike most other properties,
events do not use methods to implement their read and write parts. Instead, event
properties use a private class field of the same type as the property.

By convention, the field’s name is the name of the property preceded by the letter F.
For example, the OnClick method’s pointer is stored in a field called FOnClick of type
TNotifyEvent, and the declaration of the OnClick event property looks like this:

type
TControl = class(TComponent)
private

FOnClick: TNotifyEvent; { declare a field to hold the method pointer }
ƒ

protected
property OnClick: TNotifyEvent read FOnClick write FOnClick;

end;

To learn about TNotifyEvent and other event types, see the next section, “Event types
are method-pointer types.”

As with any other property, you can set or change the value of an event at runtime.
The main advantage to having events be properties, however, is that component
users can assign handlers to events at design time, using the Object Inspector.

Event types are method-pointer types

Because an event is a pointer to an event handler, the type of the event property must
be a method-pointer type. Similarly, any code to be used as an event handler must be
an appropriately typed method of a class.

All event-handler methods are procedures. To be compatible with an event of a given
type, an event-handler method must have the same number and type of parameters,
in the same order, passed in the same way.

Delphi defines method types for all its standard events. When you create your own
events, you can use an existing type if that is appropriate, or define one of your own.

Event-handler types are procedures
Although the compiler allows you to declare method-pointer types that are
functions, you should never do so for handling events. Because an empty function
returns an undefined result, an empty event handler that was a function might not
always be valid. For this reason, all your events and their associated event handlers
should be procedures.
C r e a t i n g e v e n t s 4-3

W h a t a r e e v e n t s ?
Although an event handler cannot be a function, you can still get information from
the application developer’s code using var parameters. When doing this, make sure
you assign a valid value to the parameter before calling the handler so you don’t
require the user’s code to change the value.

An example of passing var parameters to an event handler is the OnKeyPress event, of
type TKeyPressEvent. TKeyPressEvent defines two parameters, one to indicate which
object generated the event, and one to indicate which key was pressed:

type
TKeyPressEvent = procedure(Sender: TObject; var Key: Char) of object;

Normally, the Key parameter contains the character pressed by the user. Under
certain circumstances, however, the user of the component may want to change the
character. One example might be to force all characters to uppercase in an editor. In
that case, the user could define the following handler for keystrokes:

procedure TForm1.Edit1KeyPressed(Sender: TObject; var Key: Char);
begin

Key := UpCase(Key);
end;

You can also use var parameters to let the user override the default handling.

Event handlers are optional

When creating events, remember that developers using your components may not
attach handlers to them. This means that your component should not fail or generate
errors simply because there is no handler attached to a particular event. (The
mechanics of calling handlers and dealing with events that have no attached handler
are explained in “Calling the event” on page 4-9.)

Events happen almost constantly in a GUI application. Just moving the mouse
pointer across a visual component sends numerous mouse-move messages, which
the component translates into OnMouseMove events. In most cases, developers do not
want to handle the mouse-move events, and this should not cause a problem. So the
components you create should not require handlers for their events.

Moreover, application developers can write any code they want in an event handler.
The components in the class library have events written in such a way as to minimize
the chance of an event handler generating errors. Obviously, you cannot protect
against logic errors in application code, but you can ensure that data structures are
initialized before calling events so that application developers do not try to access
invalid data.
4-4 C o m p o n e n t W r i t e r ’ s G u i d e

I m p l e m e n t i n g t h e s t a n d a r d e v e n t s
Implementing the standard events
The controls that come with the component library inherit events for the most
common occurrences. These are called the standard events. Although all these events
are built into the controls, they are often protected, meaning developers cannot
attach handlers to them. When you create a control, you can choose to make events
visible to users of your control.

There are three things you need to consider when incorporating the standard events
into your controls:

• Identifying standard events
• Making events visible
• Changing the standard event handling

Identifying standard events

There are two categories of standard events: those defined for all controls and those
defined only for the standard windowed controls.

Standard events for all controls
The most basic events are defined in the class TControl. All controls, whether
windowed, graphical, or custom, inherit these events. The following events are
available in all controls:

The standard events have corresponding protected virtual methods declared in
TControl, with names that correspond to the event names. For vexample, OnClick
events call a method named Click, and OnEndDrag events call a method named
DoEndDrag.

Standard events for standard controls
In addition to the events common to all controls, standard windowed controls (those
that descend from TWinControl in VCL applications and TWidgetControl in CLX
applications) have the following events:

OnClick
OnDblClick

OnDragDrop
OnDragOver

OnEndDrag
OnMouseDown

OnMouseMove
OnMouseUp

OnEnter
OnKeyUp

OnKeyDown
OnExit

OnKeyPress
C r e a t i n g e v e n t s 4-5

I m p l e m e n t i n g t h e s t a n d a r d e v e n t s
Like the standard events in TControl, the windowed control events have
corresponding methods. The standard key events listed above respond to all normal
keystrokes.

Note To respond to special keystrokes (such as the Alt key), however, you must respond to
the WM_GETDLGCODE or CM_WANTSPECIALKEYS message from Windows. See
Chapter 7, “Handling messages and system notifications,” for information on writing
message handlers.

Making events visible

The declarations of the standard events in TControl and TWinControl (TWidgetControl
in CLX applications) are protected, as are the methods that correspond to them. If
you are inheriting from one of these abstract classes and want to make their events
accessible at runtime or design time, you need to redeclare the events as either public
or published.

Redeclaring a property without specifying its implementation keeps the same
implementation methods, but changes the protection level. You can, therefore, take
an event that is defined in TControl but not made visible, and surface it by declaring it
as public or published.

For example, to create a component that surfaces the OnClick event at design time,
you would add the following to the component’s class declaration.

type
TMyControl = class(TCustomControl)
ƒ
published

property OnClick;
end;

Changing the standard event handling

If you want to change the way your component responds to a certain kind of event,
you might be tempted to write some code and assign it to the event. As an
application developer, that is exactly what you would do. But when you are creating
a component, you must keep the event available for developers who use the
component.

This is the reason for the protected implementation methods associated with each of
the standard events. By overriding the implementation method, you can modify the
internal event handling; and by calling the inherited method you can maintain the
standard handling, including the event for the application developer’s code.

The order in which you call the methods is significant. As a rule, call the inherited
method first, allowing the application developer’s event-handler to execute before
your customizations (and in some cases, to keep the customizations from executing).
There may be times when you want to execute your code before calling the inherited
method, however. For example, if the inherited code is somehow dependent on the
4-6 C o m p o n e n t W r i t e r ’ s G u i d e

D e f i n i n g y o u r o w n e v e n t s
status of the component and your code changes that status, you should make the
changes and then allow the user’s code to respond to them.

Suppose you are writing a component and you want to modify the way it responds
to mouse clicks. Instead of assigning a handler to the OnClick event as a application
developer would, you override the protected method Click:

procedure click override { forward declaration }
ƒ

procedure TMyControl.Click;
begin

inherited Click; { perform standard handling, including calling handler }
ƒ { your customizations go here }
end;

Defining your own events
Defining entirely new events is relatively unusual. There are times, however, when a
component introduces behavior that is entirely different from that of any other
component, so you will need to define an event for it.

There are the issues you will need to consider when defining an event:

• Triggering the event
• Defining the handler type
• Declaring the event
• Calling the event

Triggering the event

You need to know what triggers the event. For some events, the answer is obvious.
For example, a mouse-down event occurs when the user presses the left button on
the mouse and Windows sends a WM_LBUTTONDOWN message to the application.
Upon receiving that message, a component calls its MouseDown method, which in
turn calls any code the user has attached to the OnMouseDown event.

However, some events are less clearly tied to specific external occurrences. For
example, a scroll bar has an OnChange event, which is triggered by several kinds of
occurrence, including keystrokes, mouse clicks, and changes in other controls. When
defining your events, you must ensure that all the appropriate occurrences call the
proper events.

Note For CLX applications, see “Responding to system notifications using CLX” on
page 7-10.

Two kinds of events
There are two kinds of occurrence you might need to provide events for: user
interactions and state changes. User-interaction events are nearly always triggered by
a message from Windows, indicating that the user did something your component
may need to respond to. State-change events may also be related to messages from
C r e a t i n g e v e n t s 4-7

D e f i n i n g y o u r o w n e v e n t s
Windows (focus changes or enabling, for example), but they can also occur through
changes in properties or other code.

You have total control over the triggering of the events you define. Define the events
with care so that developers are able to understand and use them.

Defining the handler type

Once you determine when the event occurs, you must define how you want the event
handled. This means determining the type of the event handler. In most cases,
handlers for events you define yourself are either simple notifications or event-
specific types. It is also possible to get information back from the handler.

Simple notifications
A notification event is one that only tells you that the particular event happened,
with no specific information about when or where. Notifications use the type
TNotifyEvent, which carries only one parameter, the sender of the event. All a handler
for a notification “knows” about the event is what kind of event it was, and what
component the event happened to. For example, click events are notifications. When
you write a handler for a click event, all you know is that a click occurred and which
component was clicked.

Notification is a one-way process. There is no mechanism to provide feedback or
prevent further handling of a notification.

Event-specific handlers
In some cases, it is not enough to know which event happened and what component
it happened to. For example, if the event is a key-press event, it is likely that the
handler will want to know which key the user pressed. In these cases, you need
handler types that include parameters for additional information.

If your event was generated in response to a message, it is likely that the parameters
you pass to the event handler come directly from the message parameters.

Returning information from the handler
Because all event handlers are procedures, the only way to pass information back
from a handler is through a var parameter. Your components can use such
information to determine how or whether to process an event after the user’s handler
executes.

For example, all the key events (OnKeyDown, OnKeyUp, and OnKeyPress) pass by
reference the value of the key pressed in a parameter named Key. The event handler
can change Key so that the application sees a different key as being involved in the
event. This is a way to force typed characters to uppercase, for example.
4-8 C o m p o n e n t W r i t e r ’ s G u i d e

D e f i n i n g y o u r o w n e v e n t s
Declaring the event

Once you have determined the type of your event handler, you are ready to declare
the method pointer and the property for the event. Be sure to give the event a
meaningful and descriptive name so that users can understand what the event does.
Try to be consistent with names of similar properties in other components.

Event names start with “On”
The names of most events in Delphi begin with “On.” This is just a convention; the
compiler does not enforce it. The Object Inspector determines that a property is an
event by looking at the type of the property: all method-pointer properties are
assumed to be events and appear on the Events page.

Developers expect to find events in the alphabetical list of names starting with “On.”
Using other kinds of names is likely to confuse them.

Note The main exception to this rule is that many events that occur before and after some
occurrence begin with “Before” and “After.”

Calling the event

You should centralize calls to an event. That is, create a virtual method in your
component that calls the application’s event handler (if it assigns one) and provides
any default handling.

Putting all the event calls in one place ensures that someone deriving a new
component from yours can customize event handling by overriding a single method,
rather than searching through your code for places where you call the event.

There are two other considerations when calling the event:

• Empty handlers must be valid.
• Users can override default handling.

Empty handlers must be valid
You should never create a situation in which an empty event handler causes an error,
nor should the proper functioning of your component depend on a particular
response from the application’s event-handling code.

An empty handler should produce the same result as no handler at all. So the code
for calling an application’s event handler should look like this:

if Assigned(OnClick) then OnClick(Self);
ƒ { perform default handling }

You should never have something like this:

if Assigned(OnClick) then OnClick(Self)
else { perform default handling };
C r e a t i n g e v e n t s 4-9

D e f i n i n g y o u r o w n e v e n t s
Users can override default handling
For some kinds of events, developers may want to replace the default handling or
even suppress all responses. To allow this, you need to pass an argument by
reference to the handler and check for a certain value when the handler returns.

This is in keeping with the rule that an empty handler should have the same effect as
no handler at all. Because an empty handler will not change the values of arguments
passed by reference, the default handling always takes place after calling the empty
handler.

When handling key-press events, for example, application developers can suppress
the component’s default handling of the keystroke by setting the var parameter Key
to a null character (#0). The logic for supporting this looks like

if Assigned(OnKeyPress) then OnKeyPress(Self, Key);
if Key <> #0 then ... { perform default handling }

The actual code is a little different from this because it deals with Windows
messages, but the logic is the same. By default, the component calls any user-
assigned handler, then performs its standard handling. If the user’s handler sets Key
to a null character, the component skips the default handling.
4-10 C o m p o n e n t W r i t e r ’ s G u i d e

C h a p t e r

5
Chapter5Creating methods

Component methods are procedures and functions built into the structure of a class.
Although there are essentially no restrictions on what you can do with the methods
of a component, Delphi does use some standards you should follow. These
guidelines include:

• Avoiding dependencies
• Naming methods
• Protecting methods
• Making methods virtual
• Declaring methods

In general, components should not contain many methods and you should minimize
the number of methods that an application needs to call. The features you might be
inclined to implement as methods are often better encapsulated into properties.
Properties provide an interface that suits the Delphi and are accessible at design time.

Avoiding dependencies
At all times when writing components, minimize the preconditions imposed on the
developer. To the greatest extent possible, developers should be able to do anything
they want to a component, whenever they want to do it. There will be times when
you cannot accommodate that, but your goal should be to come as close as possible.

This list gives you an idea of the kinds of dependencies to avoid:

• Methods that the user must call to use the component

• Methods that must execute in a particular order

• Methods that put the component into a state or mode where certain events or
methods could be invalid
C r e a t i n g m e t h o d s 5-1

N a m i n g m e t h o d s
The best way to handle these situations is to ensure that you provide ways out of
them. For example, if calling a method puts your component into a state where
calling another method might be invalid, then write that second method so that if an
application calls it when the component is in a bad state, the method corrects the
state before executing its main code. At a minimum, you should raise an exception in
cases when a user calls a method that is invalid.

In other words, if you create a situation where parts of your code depend on each
other, the burden should be on you to be sure that using the code in incorrect ways
does not cause problems. A warning message, for example, is preferable to a system
failure if the user does not accommodate your dependencies.

Naming methods
Delphi imposes no restrictions on what you name methods or their parameters.
There are a few conventions that make methods easier for application developers,
however. Keep in mind that the nature of a component architecture dictates that
many different kinds of people can use your components.

If you are accustomed to writing code that only you or a small group of programmers
use, you might not think too much about how you name things. It is a good idea to
make your method names clear because people unfamiliar with your code (and even
unfamiliar with coding) might have to use your components.

Here are some suggestions for making clear method names:

• Make names descriptive. Use meaningful verbs.

A name like PasteFromClipboard is much more informative than simply Paste or
PFC.

• Function names should reflect the nature of what they return.

Although it might be obvious to you as a programmer that a function named X
returns the horizontal position of something, a name like GetHorizontalPosition is
more universally understandable.

As a final consideration, make sure the method really needs to be a method. A good
guideline is that method names have verbs in them. If you find that you create a lot of
methods that do not have verbs in their names, consider whether those methods
ought to be properties.

Protecting methods
All parts of classes, including fields, methods, and properties, have a level of
protection or “visibility,” as explained in “Controlling access” on page 2-4. Choosing
the appropriate visibility for a method is simple.

Most methods you write in your components are public or protected. You rarely
need to make a method private, unless it is truly specific to that type of component,
to the point that even derived components should not have access to it.
5-2 C o m p o n e n t W r i t e r ’ s G u i d e

P r o t e c t i n g m e t h o d s
Methods that should be public

Any method that application developers need to call must be declared as public.
Keep in mind that most method calls occur in event handlers, so methods should
avoid tying up system resources or putting the operating system in a state where it
cannot respond to the user.

Note Constructors and destructors should always be public.

Methods that should be protected

Any implementation methods for the component should be protected so that
applications cannot call them at the wrong time. If you have methods that application
code should not call, but that are called in derived classes, declare them as protected.

For example, suppose you have a method that relies on having certain data set up for
it beforehand. If you make that method public, there is a chance that applications
will call it before setting up the data. On the other hand, by making it protected, you
ensure that applications cannot call it directly. You can then set up other, public
methods that ensure that data setup occurs before calling the protected method.

Property-implementation methods should be declared as virtual protected methods.
Methods that are so declared allow the application developers to override the
property implementation, either augmenting its functionality or replacing it
completely. Such properties are fully polymorphic. Keeping access methods
protected ensures that developers do not accidentally call them, inadvertently
modifying a property.

Abstract methods

Sometimes a method is declared as abstract in a Delphi component. In the
component library, abstract methods usually occur in classes whose names begin
with “custom,” such as TCustomGrid. Such classes are themselves abstract, in the
sense that they are intended only for deriving descendant classes.

While you can create an instance object of a class that contains an abstract member, it
is not recommended. Calling the abstract member leads to an EAbstractError
exception.

The abstract directive is used to indicate parts of classes that should be surfaced and
defined in descendant components; it forces component writers to redeclare the
abstract member in descendant classes before actual instances of the class can be
created.
C r e a t i n g m e t h o d s 5-3

M a k i n g m e t h o d s v i r t u a l
Making methods virtual
You make methods virtual when you want different types to be able to execute
different code in response to the same method call.

If you create components intended to be used directly by application developers, you
can probably make all your methods nonvirtual. On the other hand, if you create
abstract components from which other components will be derived, consider making
the added methods virtual. This way, derived components can override the inherited
virtual methods.

Declaring methods
Declaring a method in a component is the same as declaring any class method.

To declare a new method in a component, do the following:

• Add the declaration to the component’s object-type declaration.
• Implement the method in the implementation part of the component’s unit.

The following code shows a component that defines two new methods, one protected
static method and one public virtual method.

type
TSampleComponent = class(TControl)
protected

procedure MakeBigger; { declare protected static method }

public
function CalculateArea: Integer; virtual; { declare public virtual method }

end;
ƒ

implementation
ƒ
procedure TSampleComponent.MakeBigger; { implement first method }
begin

Height := Height + 5;
Width := Width + 5;

end;

function TSampleComponent.CalculateArea: Integer; { implement second method }
begin

Result := Width * Height;
end;
5-4 C o m p o n e n t W r i t e r ’ s G u i d e

C h a p t e r

6
Chapter6Using graphics in components

Windows provides a powerful graphics device interface (GDI) for drawing device-
independent graphics. The GDI, however, imposes extra requirements on the
programmer, such as managing graphic resources. Delphi takes care of all the GDI
drudgery, allowing you to focus on productive work instead of searching for lost
handles or unreleased resources.

As with any part of the Windows API, you can call GDI functions directly from your
Delphi application. But you will probably find that using Delphi’s encapsulation of
the graphic functions is faster and easier.

Note GDI functions are Windows-specific and do not apply to CLX applications.
However, CLX components use the Qt library.

The topics in this section include:

• Overview of graphics
• Using the canvas
• Working with pictures
• Off-screen bitmaps
• Responding to changes

Overview of graphics
Delphi encapsulates the Windows GDI (Qt in CLX applications) at several levels. The
most important to you as a component writer is the way components display their
images on the screen. When calling GDI functions directly, you need to have a handle
to a device context, into which you have selected various drawing tools such as pens,
brushes, and fonts. After rendering your graphic images, you must restore the device
context to its original state before disposing of it.
U s i n g g r a p h i c s i n c o m p o n e n t s 6-1

O v e r v i e w o f g r a p h i c s
Instead of forcing you to deal with graphics at a detailed level, Delphi provides a
simple yet complete interface: your component’s Canvas property. The canvas
ensures that it has a valid device context, and releases the context when you are not
using it. Similarly, the canvas has its own properties representing the current pen,
brush, and font.

The canvas manages all these resources for you, so you need not concern yourself
with creating, selecting, and releasing things like pen handles. You just tell the
canvas what kind of pen it should use, and it takes care of the rest.

One of the benefits of letting Delphi manage graphic resources is that it can cache
resources for later use, which can speed up repetitive operations. For example, if you
have a program that repeatedly creates, uses, and disposes of a particular kind of pen
tool, you need to repeat those steps each time you use it. Because Delphi caches
graphic resources, chances are good that a tool you use repeatedly is still in the cache,
so instead of having to recreate a tool, Delphi uses an existing one.

An example of this is an application that has dozens of forms open, with hundreds of
controls. Each of these controls might have one or more TFont properties. Though
this could result in hundreds or thousands of instances of TFont objects, most
applications wind up using only two or three font handles, thanks to a font cache.

Here are two examples of how simple Delphi’s graphics code can be. The first uses
standard GDI functions to draw a yellow ellipse outlined in blue on a window, the
way you would using other development tools. The second uses a canvas to draw the
same ellipse in an application written with Delphi.

procedure TMyWindow.Paint(PaintDC: HDC; var PaintInfo: TPaintStruct);
var

PenHandle, OldPenHandle: HPEN;
BrushHandle, OldBrushHandle: HBRUSH;

begin
PenHandle := CreatePen(PS_SOLID, 1, RGB(0, 0, 255)); { create blue pen }
OldPenHandle := SelectObject(PaintDC, PenHandle); { tell DC to use blue pen }
BrushHandle := CreateSolidBrush(RGB(255, 255, 0)); { create a yellow brush }
OldBrushHandle := SelectObject(PaintDC, BrushHandle); { tell DC to use yellow brush }
Ellipse(HDC, 10, 10, 50, 50); { draw the ellipse }
SelectObject(OldBrushHandle); { restore original brush }
DeleteObject(BrushHandle); { delete yellow brush }
SelectObject(OldPenHandle); { restore original pen }
DeleteObject(PenHandle); { destroy blue pen }

end;

procedure TForm1.FormPaint(Sender: TObject);
begin

with Canvas do
begin

Pen.Color := clBlue; { make the pen blue }
Brush.Color := clYellow; { make the brush yellow }
Ellipse(10, 10, 50, 50); { draw the ellipse }

end;
end;
6-2 C o m p o n e n t W r i t e r ’ s G u i d e

U s i n g t h e c a n v a s
Using the canvas
The canvas class encapsulates graphics controls at several levels, including high-level
functions for drawing individual lines, shapes, and text; intermediate properties for
manipulating the drawing capabilities of the canvas; and in the component library,
provides low-level access to the Windows GDI.

Table 6.1 summarizes the capabilities of the canvas.

For detailed information on canvas classes and their methods and properties, see
online Help.

Working with pictures
Most of the graphics work you do in Delphi is limited to drawing directly on the
canvases of components and forms. Delphi also provides for handling stand-alone
graphic images, such as bitmaps, metafiles, and icons, including automatic
management of palettes.

There are three important aspects to working with pictures in Delphi:

• Using a picture, graphic, or canvas
• Loading and storing graphics
• Handling palettes

Table 6.1 Canvas capability summary

Level Operation Tools

High Drawing lines and shapes Methods such as MoveTo, LineTo, Rectangle, and
Ellipse

Displaying and measuring text TextOut, TextHeight, TextWidth, and TextRect
methods

Filling areas FillRect and FloodFill methods

Intermediate Customizing text and graphics Pen, Brush, and Font properties

Manipulating pixels Pixels property.

Copying and merging images Draw, StretchDraw, BrushCopy, and CopyRect
methods; CopyMode property

Low Calling Windows GDI functions Handle property
U s i n g g r a p h i c s i n c o m p o n e n t s 6-3

W o r k i n g w i t h p i c t u r e s
Using a picture, graphic, or canvas

There are three kinds of classes in Delphi that deal with graphics:

• A canvas represents a bitmapped drawing surface on a form, graphic control,
printer, or bitmap. A canvas is always a property of something else, never a stand-
alone class.

• A graphic represents a graphic image of the sort usually found in a file or resource,
such as a bitmap, icon, or metafile. Delphi defines classes TBitmap, TIcon, and
TMetafile (VCL only), all descended from a generic TGraphic. You can also define
your own graphic classes. By defining a minimal standard interface for all
graphics, TGraphic provides a simple mechanism for applications to use different
kinds of graphics easily.

• A picture is a container for a graphic, meaning it could contain any of the graphic
classes. That is, an item of type TPicture can contain a bitmap, an icon, a metafile,
or a user-defined graphic type, and an application can access them all in the same
way through the picture class. For example, the image control has a property
called Picture, of type TPicture, enabling the control to display images from many
kinds of graphics.

Keep in mind that a picture class always has a graphic, and a graphic might have a
canvas. (The only standard graphic that has a canvas is TBitmap.) Normally, when
dealing with a picture, you work only with the parts of the graphic class exposed
through TPicture. If you need access to the specifics of the graphic class itself, you can
refer to the picture’s Graphic property.

Loading and storing graphics

All pictures and graphics in Delphi can load their images from files and store them
back again (or into different files). You can load or store the image of a picture at any
time.

Note You can also load images from and save them to a Qt MIME source, or a stream
object if creating cross-platform components.

To load an image into a picture from a file, call the picture’s LoadFromFile method. To
save an image from a picture into a file, call the picture’s SaveToFile method.

LoadFromFile and SaveToFile each take the name of a file as the only parameter.
LoadFromFile uses the extension of the file name to determine what kind of graphic
object it will create and load. SaveToFile saves whatever type of file is appropriate for
the type of graphic object being saved.

To load a bitmap into an image control’s picture, for example, pass the name of a
bitmap file to the picture’s LoadFromFile method:

procedure TForm1.LoadBitmapClick(Sender: TObject);
begin

Image1.Picture.LoadFromFile('RANDOM.BMP');
end;
6-4 C o m p o n e n t W r i t e r ’ s G u i d e

W o r k i n g w i t h p i c t u r e s
The picture recognizes .bmp as the standard extension for bitmap files, so it creates
its graphic as a TBitmap, then calls that graphic’s LoadFromFile method. Because the
graphic is a bitmap, it loads the image from the file as a bitmap.

Handling palettes

For VCL and CLX components, when running on a palette-based device (typically, a
256-color video mode), Delphi controls automatically support palette realization.
That is, if you have a control that has a palette, you can use two methods inherited
from TControl to control how Windows accommodates that palette.

Palette support for controls has these two aspects:

• Specifying a palette for a control
• Responding to palette changes

Most controls have no need for a palette, but controls that contain “rich color”
graphic images (such as the image control) might need to interact with Windows and
the screen device driver to ensure the proper appearance of the control. Windows
refers to this process as realizing palettes.

Realizing palettes is the process of ensuring that the foremost window uses its full
palette, and that windows in the background use as much of their palettes as
possible, then map any other colors to the closest available colors in the “real”
palette. As windows move in front of one another, Windows continually realizes the
palettes.

Note Delphi itself provides no specific support for creating or maintaining palettes, other
than in bitmaps. If you have a palette handle, however, Delphi controls can manage it
for you.

Specifying a palette for a control
To specify a palette for a control, override the control’s GetPalette method to return
the handle of the palette.

Specifying the palette for a control does these things for your application:

• It tells the application that your control’s palette needs to be realized.
• It designates the palette to use for realization.

Responding to palette changes
If your VCL and CLX control specifies a palette by overriding GetPalette, Delphi
automatically takes care of responding to palette messages from Windows. The
method that handles the palette messages is PaletteChanged.

The primary role of PaletteChanged is to determine whether to realize the control’s
palette in the foreground or the background. Windows handles this realization of
palettes by making the topmost window have a foreground palette, with other
windows resolved in background palettes. Delphi goes one step further, in that it
U s i n g g r a p h i c s i n c o m p o n e n t s 6-5

O f f - s c r e e n b i t m a p s
also realizes palettes for controls within a window in tab order. The only time you
might need to override this default behavior is if you want a control that is not first in
tab order to have the foreground palette.

Off-screen bitmaps
When drawing complex graphic images, a common technique in graphics
programming is to create an off-screen bitmap, draw the image on the bitmap, and
then copy the complete image from the bitmap to the final destination onscreen.
Using an off-screen image reduces flicker caused by repeated drawing directly to the
screen.

The bitmap class in Delphi, which represents bitmapped images in resources and
files, can also work as an off-screen image.

There are two main aspects to working with off-screen bitmaps:

• Creating and managing off-screen bitmaps.
• Copying bitmapped images.

Creating and managing off-screen bitmaps

When creating complex graphic images, you should avoid drawing them directly on
a canvas that appears onscreen. Instead of drawing on the canvas for a form or
control, you can construct a bitmap object, draw on its canvas, and then copy its
completed image to the onscreen canvas.

The most common use of an off-screen bitmap is in the Paint method of a graphic
control. As with any temporary object, the bitmap should be protected with a
try..finally block:

type
TFancyControl = class(TGraphicControl)
protected

procedure Paint; override; { override the Paint method }
end;

procedure TFancyControl.Paint;
var

Bitmap: TBitmap; { temporary variable for the off-screen bitmap }
begin

Bitmap := TBitmap.Create; { construct the bitmap object }
try

{ draw on the bitmap }
{ copy the result into the control's canvas }

finally
Bitmap.Free; { destroy the bitmap object }

end;
end;
6-6 C o m p o n e n t W r i t e r ’ s G u i d e

R e s p o n d i n g t o c h a n g e s
Copying bitmapped images

Delphi provides four different ways to copy images from one canvas to another.
Depending on the effect you want to create, you call different methods.

Table 6.2 summarizes the image-copying methods in canvas objects.

Responding to changes
All graphic objects, including canvases and their owned objects (pens, brushes, and
fonts) have events built into them for responding to changes in the object. By using
these events, you can make your components (or the applications that use them)
respond to changes by redrawing their images.

Responding to changes in graphic objects is particularly important if you publish
them as part of the design-time interface of your components. The only way to
ensure that the design-time appearance of the component matches the properties set
in the Object Inspector is to respond to changes in the objects.

To respond to changes in a graphic object, assign a method to the class’s OnChange
event.

The shape component publishes properties representing the pen and brush it uses to
draw its shape. The component’s constructor assigns a method to the OnChange
event of each, causing the component to refresh its image if either the pen or brush
changes:

type
TShape = class(TGraphicControl)
public

procedure StyleChanged(Sender: TObject);
end;

ƒ
implementation
ƒ
constructor TShape.Create(AOwner: TComponent);

Table 6.2 Image-copying methods

To create this effect Call this method

Copy an entire graphic. Draw

Copy and resize a graphic. StretchDraw

Copy part of a canvas. CopyRect

Copy a bitmap with raster operations. BrushCopy (VCL)

Copy a graphic repeatedly to tile an area. TiledDraw (CLX)
U s i n g g r a p h i c s i n c o m p o n e n t s 6-7

R e s p o n d i n g t o c h a n g e s
begin
inherited Create(AOwner); { always call the inherited constructor! }
Width := 65;
Height := 65;
FPen := TPen.Create; { construct the pen }
FPen.OnChange := StyleChanged; { assign method to OnChange event }
FBrush := TBrush.Create; { construct the brush }
FBrush.OnChange := StyleChanged; { assign method to OnChange event }

end;

procedure TShape.StyleChanged(Sender: TObject);
begin

Invalidate(); { erase and repaint the component }
end;
6-8 C o m p o n e n t W r i t e r ’ s G u i d e

C h a p t e r

7
Chapter7Handling messages and system

notifications
Components often need to respond to notifications from the underlying operating
system. The operating system informs the application of occurrences such as what
the user does with the mouse and keyboard. Some controls also generate
notifications, such as the results from user actions such as selecting an item in a list
box. The component library handles most of the common notifications already. It is
possible, however, that you will need to write your own code for handling such
notifications.

For VCL applications, notifications arrive in the form of messages. These messages can
come from any source, including Windows, VCL components, and components you
have defined. There are three aspects to working with messages:

• Understanding the message-handling system.
• Changing message handling.
• Creating new message handlers.

For CLX applications, notifications arrive in the form of signals and system events
instead of Windows messages. See “Responding to system notifications using CLX”
on page 7-10 for details on how to work with system notifications in CLX.
H a n d l i n g m e s s a g e s a n d s y s t e m n o t i f i c a t i o n s 7-1

U n d e r s t a n d i n g t h e m e s s a g e - h a n d l i n g s y s t e m
Understanding the message-handling system
All VCL classes have a built-in mechanism for handling messages, called message-
handling methods or message handlers. The basic idea of message handlers is that the
class receives messages of some sort and dispatches them, calling one of a set of
specified methods depending on the message received. If no specific method exists
for a particular message, there is a default handler.

The following diagram shows the message-dispatch system:

The Visual Component Library defines a message-dispatching system that translates
all Windows messages (including user-defined messages) directed to a particular
class into method calls. You should never need to alter this message-dispatch
mechanism. All you will need to do is create message-handling methods. See the
section “Declaring a new message-handling method” on page 7-7 for more on this
subject.

What’s in a Windows message?

A Windows message is a data record that contains several fields. The most important
of these is an integer-size value that identifies the message. Windows defines many
messages, and the Messages unit declares identifiers for all of them. Other useful
information in a message comes in two parameter fields and a result field.

One parameter contains 16 bits, the other 32 bits. You often see Windows code that
refers to those values as wParam and lParam, for word parameter and long parameter.
Often, each parameter will contain more than one piece of information, and you see
references to names such as lParamHi, which refers to the high-order word in the long
parameter.

Originally, Windows programmers had to remember or look up in the Windows
APIs what each parameter contained. Now Microsoft has named the parameters.
This so-called message cracking makes it much simpler to understand what
information accompanies each message. For example, the parameters to the
WM_KEYDOWN message are now called nVirtKey and lKeyData, which gives much
more specific information than wParam and lParam.

For each type of message, Delphi defines a record type that gives a mnemonic name
to each parameter. For example, mouse messages pass the x- and y-coordinates of the
mouse event in the long parameter, one in the high-order word, and the other in the
low-order word. Using the mouse-message structure, you do not have to worry
about which word is which, because you refer to the parameters by the names XPos
and YPos instead of lParamLo and lParamHi.

Event MainWndProc WndProc Dispatch Handler
7-2 C o m p o n e n t W r i t e r ’ s G u i d e

U n d e r s t a n d i n g t h e m e s s a g e - h a n d l i n g s y s t e m
Dispatching messages

When an application creates a window, it registers a window procedure with the
Windows kernel. The window procedure is the routine that handles messages for the
window. Traditionally, the window procedure contains a huge case statement with
entries for each message the window has to handle. Keep in mind that “window” in
this sense means just about anything on the screen: each window, each control, and
so on. Every time you create a new type of window, you have to create a complete
window procedure.

The VCL simplifies message dispatching in several ways:

• Each component inherits a complete message-dispatching system.

• The dispatch system has default handling. You define handlers only for messages
you need to respond to specially.

• You can modify small parts of the message handling and rely on inherited
methods for most processing.

The greatest benefit of this message dispatch system is that you can safely send any
message to any component at any time. If the component does not have a handler
defined for the message, the default handling takes care of it, usually by ignoring the
message.

Tracing the flow of messages
The VCL registers a method called MainWndProc as the window procedure for each
type of component in an application. MainWndProc contains an exception-handling
block, passing the message structure from Windows to a virtual method called
WndProc and handling any exceptions by calling the application class’s
HandleException method.

MainWndProc is a nonvirtual method that contains no special handling for any
particular messages. Customizations take place in WndProc, since each component
type can override the method to suit its particular needs.

WndProc methods check for any special conditions that affect their processing so they
can “trap” unwanted messages. For example, while being dragged, components
ignore keyboard events, so the WndProc method of TWinControl passes along
keyboard events only if the component is not being dragged. Ultimately, WndProc
calls Dispatch, a nonvirtual method inherited from TObject, which determines which
method to call to handle the message.

Dispatch uses the Msg field of the message structure to determine how to dispatch a
particular message. If the component defines a handler for that particular message,
Dispatch calls the method. If the component does not define a handler for that
message, Dispatch calls DefaultHandler.
H a n d l i n g m e s s a g e s a n d s y s t e m n o t i f i c a t i o n s 7-3

C h a n g i n g m e s s a g e h a n d l i n g
Changing message handling
Before changing the message handling of your components, make sure that is what
you really want to do. The VCL translates most Windows messages into events that
both the component writer and the component user can handle. Rather than
changing the message-handling behavior, you should probably change the event-
handling behavior.

To change message handling in VCL components, you override the message-
handling method. You can also prevent a component from handling a message under
certain circumstances by trapping the message.

Overriding the handler method

To change the way a component handles a particular message, you override the
message-handling method for that message. If the component does not already
handle the particular message, you need to declare a new message-handling method.

To override a message-handling method, you declare a new method in your
component with the same message index as the method it overrides. Do not use the
override directive; you must use the message directive and a matching message
index.

Note that the name of the method and the type of the single var parameter do not
have to match the overridden method. Only the message index is significant. For
clarity, however, it is best to follow the convention of naming message-handling
methods after the messages they handle.

For example, to override a component’s handling of the WM_PAINT message, you
redeclare the WMPaint method:

type
TMyComponent = class(...)
ƒ
procedure WMPaint(var Message: TWMPaint); message WM_PAINT;

end;

Using message parameters

Once inside a message-handling method, your component has access to all the
parameters of the message structure. Because the parameter passed to the message
handler is a var parameter, the handler can change the values of the parameters if
necessary. The only parameter that changes frequently is the Result field for the
message: the value returned by the SendMessage call that sends the message.
7-4 C o m p o n e n t W r i t e r ’ s G u i d e

C h a n g i n g m e s s a g e h a n d l i n g
Because the type of the Message parameter in the message-handling method varies
with the message being handled, you should refer to the documentation on Windows
messages for the names and meanings of individual parameters. If for some reason
you need to refer to the message parameters by their old-style names (WParam,
LParam, and so on), you can typecast Message to the generic type TMessage, which
uses those parameter names.

Trapping messages

Under some circumstances, you might want your components to ignore messages.
That is, you want to keep the component from dispatching the message to its
handler. To trap a message, you override the virtual method WndProc.

For VCL components, the WndProc method screens messages before passing them to
the Dispatch method, which in turn determines which method gets to handle the
message. By overriding WndProc, your component gets a chance to filter out
messages before dispatching them. An override of WndProc for a control derived
from TWinControl looks like this:

procedure TMyControl.WndProc(var Message: TMessage);
begin

{ tests to determine whether to continue processing }
inherited WndProc(Message);

end;

The TControl component defines entire ranges of mouse messages that it filters when
a user is dragging and dropping controls. Overriding WndProc helps this in two
ways:

• It can filter ranges of messages instead of having to specify handlers for each one.
• It can preclude dispatching the message at all, so the handlers are never called.

Here is part of the WndProc method for TControl, for example:

procedure TControl.WndProc(var Message: TMessage);
begin

ƒ
if (Message.Msg >= WM_MOUSEFIRST) and (Message.Msg <= WM_MOUSELAST) then

if Dragging then { handle dragging specially }
DragMouseMsg(TWMMouse(Message))

else
ƒ { handle others normally }

end;
ƒ { otherwise process normally }
end;
H a n d l i n g m e s s a g e s a n d s y s t e m n o t i f i c a t i o n s 7-5

C r e a t i n g n e w m e s s a g e h a n d l e r s
Creating new message handlers
Because the VCL provides handlers for most common messages, the time you will
most likely need to create new message handlers is when you define your own
messages. Working with user-defined messages has three aspects:

• Defining your own messages.
• Declaring a new message-handling method.
• Sending messages.

Defining your own messages

A number of the standard components define messages for internal use. The most
common reasons for defining messages are broadcasting information not covered by
standard messages and notification of state changes. You can define your own
messages in the VCL.

Defining a message is a two-step process. The steps are:

1 Declaring a message identifier.

2 Declaring a message-record type.

Declaring a message identifier
A message identifier is an integer-sized constant. Windows reserves the messages
below 1,024 for its own use, so when you declare your own messages you should
start above that level.

The constant WM_APP represents the starting number for user-defined messages.
When defining message identifiers, you should base them on WM_APP.

Be aware that some standard Windows controls use messages in the user-defined
range. These include list boxes, combo boxes, edit boxes, and command buttons. If
you derive a component from one of these and want to define a new message for it,
be sure to check the Messages unit to see which messages Windows already defines
for that control.

The following code shows two user-defined messages.

const
MY_MYFIRSTMESSAGE = WM_APP + 400;
MY_MYSECONDMESSAGE = WM_APP + 401;

Declaring a message-record type
If you want to give useful names to the parameters of your message, you need to
declare a message-record type for that message. The message-record is the type of the
parameter passed to the message-handling method. If you do not use the message’s
parameters, or if you want to use the old-style parameter notation (wParam, lParam,
and so on), you can use the default message-record, TMessage.
7-6 C o m p o n e n t W r i t e r ’ s G u i d e

C r e a t i n g n e w m e s s a g e h a n d l e r s
To declare a message-record type, follow these conventions:

1 Name the record type after the message, preceded by a T.

2 Call the first field in the record Msg, of type TMsgParam.

3 Define the next two bytes to correspond to the Word parameter, and the next two
bytes as unused.

Or

Define the next four bytes to correspond to the Longint parameter.

4 Add a final field called Result, of type Longint.

For example, here is the message record for all mouse messages, TWMMouse, which
uses a variant record to define two sets of names for the same parameters.

type
TWMMouse = record

Msg: TMsgParam; (first is the message ID)
Keys: Word; (this is the wParam)
case Integer of (two ways to look at the lParam)

0: {
XPos: Integer; (either as x- and y-coordinates...)
YPos: Integer);

1: {
Pos: TPoint; (... or as a single point)
Result: Longint); (and finally, the result field)

end;

Declaring a new message-handling method

There are two sets of circumstances that require you to declare new message-
handling methods:

• Your component needs to handle a Windows message that is not already handled
by the standard components.

• You have defined your own message for use by your components.

To declare a message-handling method, do the following:

1 Declare the method in a protected part of the component’s class declaration.

2 Make the method a procedure.

3 Name the method after the message it handles, but without any underline
characters.

4 Pass a single var parameter called Message, of the type of the message record.

5 Within the message method implementation, write code for any handling specific
to the component.

6 Call the inherited message handler.
H a n d l i n g m e s s a g e s a n d s y s t e m n o t i f i c a t i o n s 7-7

C r e a t i n g n e w m e s s a g e h a n d l e r s
Here is the declaration, for example, of a message handler for a user-defined message
called CM_CHANGECOLOR.

const
CM_CHANGECOLOR = WM_APP + 400;

type
TMyComponent = class(TControl)
ƒ

protected
procedure CMChangeColor(var Message: TMessage); message CM_CHANGECOLOR;

end;

procedure TMyComponent.CMChangeColor(var Message: TMessage);
begin

Color := Message.lParam;
inherited;

end;

Sending messages

Typically, an application sends message to send notifications of state changes or to
broadcast information. Your component can broadcast messages to all the controls in
a form, send messages to a particular control (or to the application itself), or even
send messages to itself.

There are several different ways to send a Windows message. Which method you use
depends on why you are sending the message. The following topics describe the
different ways to send Windows messages.

Broadcasting a message to all controls in a form
When your component changes global settings that affect all of the controls in a form
or other container, you may want to send a message to those controls so that they can
update themselves appropriately. Not every control may need to respond to the
notification, but by broadcasting the message, you can inform all controls that know
how to respond and allow the other controls to ignore the message.

To broadcast a message to all the controls in another control, use the Broadcast
method. Before you broadcast a message, you fill out a message record with the
information you want to convey. (See “Declaring a message-record type” on page 7-6
for information on message records.)

var
 Msg: TMessage;
begin

Msg.Msg := MY_MYCUSTOMMESSAGE;
Msg.WParam := 0;
Msg.LParam := Longint(Self);
Msg.Result := 0;
7-8 C o m p o n e n t W r i t e r ’ s G u i d e

C r e a t i n g n e w m e s s a g e h a n d l e r s
Then, pass this message record to the parent of all the controls you want to notify.
This can be any control in the application. For example, it can be the parent of the
control you are writing:

Parent.Broadcast(Msg);

It can be the form that contains your control:

GetParentForm(self).Broadcast(Msg);

It can be the active form:

Screen.ActiveForm.Broadcast(Msg);

It can even be all the forms in your application:

for I:= 0 to Screen.FormCount - 1 do
Screen.Forms[I].Broadcast(Msg);

Calling a control’s message handler directly
Sometimes there is only a single control that needs to respond to your message. If
you know the control that should receive your message, the simplest and most
straightforward way to send the message is to call the control’s Perform method.

There are two main reasons why you call a control’s Perform method:

• You want to trigger the same response that the control makes to a standard
Windows (or other) message. For example, when a grid control receives a
keystroke message, it creates an inline edit control and then sends the keystroke
message on to the edit control.

• You may know what control you want to notify, but not know what type of
control it is. Because you don’t know the type of the target control, you can’t any
of its specialized methods, but all controls have message-handling capabilities so
you can always send a message. If the control has a message handler for the
message you send, it will respond appropriately. Otherwise, it will ignore the
message you send and return 0.

To call the Perform method, you do not need to create a message record. You need
only pass the message identifier, WParam, and LParam as parameters. Perform
returns the message result.

Sending a message using the Windows message queue
In a multithreaded application, you can’t just call the Perform method because the
target control is in a different thread than the one that is executing. However, by
using the Windows message queue, you can safely communicate with other threads.
Message handling always occurs in the main VCL thread, but you can send a
message using the Windows message queue from any thread in the application. A
call to SendMessage is synchronous. That is, SendMessage does not return until the
target control has handled the message, even if it is in another thread.
H a n d l i n g m e s s a g e s a n d s y s t e m n o t i f i c a t i o n s 7-9

R e s p o n d i n g t o s y s t e m n o t i f i c a t i o n s u s i n g C L X
Use the Windows API call, SendMessage, to send a message to a control using the
Windows message queue. SendMessage takes the same parameters as the Perform
method, except that you must identify the target control by passing its Window
handle. Thus, instead of writing

MsgResult := TargetControl.Perform(MY_MYMESSAGE, 0, 0);

you would write

MsgResult := SendMessage(TargetControl.Handle, MYMESSAGE, 0, 0);

For more information on the SendMessage function, see the Microsoft MSDN
documentation. For more information on writing multiple threads that may be
executing simultaneously, see “Coordinating threads” on page 13-11 of the
Developer’s Guide.

Sending a message that does not execute immediately
There are times you may want to send a message but you do not know whether it is
safe for the target of the message to execute right away. For example, if the code that
sends a message is called from an event handler on the target control, you may want
to make sure that the event handler has finished executing before the control
executes your message. You can handle this situation as long as you do not need to
know the message result.

Use the Windows API call, PostMessage, to send a message to a control but allow the
control to wait until it has finished any other messages before it handles yours.
PostMessage takes exactly the same parameters as SendMessage.

For more information on the PostMessage function, see the Microsoft MSDN
documentation.

Responding to system notifications using CLX
When using Windows, the operating system sends notifications directly to your
application and the controls it contains using Windows messages. This approach,
however, is not appropriate for CLX applications, because CLX is a cross-platform
library, and Windows messages are not used on Linux. Instead, CLX uses a platform-
neutral way to respond to system notifications

On CLX, the analog to Windows messages is a system of signals from the underlying
widget layer. Whereas in the VCL, Windows messages can originate either from the
operating system or from the native Windows controls that the VCL wraps, the
widget layer that CLX uses makes a distinction between these two. If the notification
originates from a widget, it is called a signal. If the notification originates with the
operating system, it is called a system event. The widget layer communicates system
events to your CLX components as a signal of type event.
7-10 C o m p o n e n t W r i t e r ’ s G u i d e

R e s p o n d i n g t o s y s t e m n o t i f i c a t i o n s u s i n g C L X
Responding to signals

The underlying widget layer emits a variety of signals, each of which represents a
different type of notification. These signals include system events (the event signal)
as well as notifications that are specific to the widget that generates them. For
example, all widgets generate a destroyed signal when the widget is freed, trackbar
widgets generate a valueChanged signal, header controls generate a sectionClicked
signal, and so on.

Each CLX component responds to signals from its underlying widget by assigning a
method as the handler for the signal. It does this using a special hook object that is
associated with the underlying widget. The hook object is a lightweight object that is
really just a collection of method pointers, each method pointer specific to a
particular signal. When a method of the CLX component has been assigned to the
hook object as the handler for a specific signal, then every time the widget generates
the specific signal, the method on the CLX component gets called.This is illustrated in
Figure 7.1.

Figure 7.1 Signal routing

Note The methods for each hook object are declared in the Qt unit. The methods are
flattened into global routines with names that reflect the hook object to which they
belong. For example, all methods on the hook object associated with the application
widget (QApplication) begin with ‘QApplication_hook.’ This flattening is necessary
so that the Delphi CLX object can access the methods of the C++ hook object.

Assigning custom signal handlers
Many CLX controls already assign methods to handle signals from the underlying
widget. Typically, these methods are private and not virtual. Thus, if you want to
write your own method to respond to a signal, you must assign your own method to
the hook object associated with your widget. To do this, override the HookEvents
method.

Note If the signal to which you want to respond is a system event notification, you must
not use an override of the HookEvents method. For details on how to respond to
system events, see “Responding to system events” later.

QWidget

QHook (Widget)

TWidgetControl

MethodEvent
Filter
H a n d l i n g m e s s a g e s a n d s y s t e m n o t i f i c a t i o n s 7-11

R e s p o n d i n g t o s y s t e m n o t i f i c a t i o n s u s i n g C L X
In your override of the HookEvents method, declare a variable of type TMethod. Then
for each method you want to assign to the hook object as a signal handler, do the
following:

1 Initialize the variable of type TMethod to represent a method handler for the signal.

2 Assign this variable to the hook object. You can access the hook object using the
Hooks property that your component inherits from THandleComponent or
TWidgetControl.

In your override, always call the inherited HookEvents method so that the signal
handlers that base classes assign are also hooked up.

The following code is the HookEvents method of TTrackBar. It illustrates how to
override the HookEvents method to add custom signal handlers.

procedure TTrackBar.HookEvents;
var
 Method: TMethod;
begin

// initialize Method to represent a handler for the QSlider valueChanged signal
// ValueChangedHook is a method of TTrackBar that responds to the signal.
QSlider_valueChanged_Event(Method) := ValueChangedHook;
// Assign Method to the hook object. Note that you can cast Hooks to the
// type of hook object associated with the underlying widget.
QSlider_hook_hook_valueChanged(QSlider_hookH(Hooks), Method);
// Repeat the process for the sliderMoved event:
QSlider_sliderMoved_Event(Method) := ValueChangedHook;
QSlider_hook_hook_valueChanged(QSlider_hookH(Hooks), Method);
// Call the inherited method so that inherited signal handlers are hooked up:
inherited HookEvents;

end;

Responding to system events

When the widget layer receives an event notification from the operating system, it
generates a special event object (QEvent or one of its descendants) to represent the
event. The event object contains read-only information about the event that occurred.
The type of the event object indicates the type of event that occurred.

The widget layer notifies your CLX component of system events using a special
signal of type event. It passes the QEvent object to the signal handler for the event.
The processing of the event signal is a bit more complicated than processing other
signals because it goes first to the application object. This means an application has
two opportunities to respond to a system event: once at the application level
(TApplication) and once at the level of the individual component (your
7-12 C o m p o n e n t W r i t e r ’ s G u i d e

R e s p o n d i n g t o s y s t e m n o t i f i c a t i o n s u s i n g C L X
TWidgetControl or THandleComponent descendant.) All of these classes (TApplication,
TWidgetControl, and THandleComponent) already assign a signal handler for the event
signal from the widget layer. That is, all system events are automatically directed to
the EventFilter method, which plays a role similar to the WndProc method on VCL
controls. The handling of system events is illustrated in Figure 7.2.

Figure 7.2 System event routing

EventFilter handles most of the commonly used system notifications, translating them
into the events that are introduced by your component’s base classes. Thus, for
example, the EventFilter method of TWidgetControl responds to mouse events
(QMouseEvent) by generating the OnMouseDown, OnMouseMove, and OnMouseUp
events, to keyboard events (QKeyEvent) by generating the OnKeyDown, OnKeyPress,
OnKeyString, and OnKeyUp events, and so on.

Commonly used events
The EventFilter method of TWidgetControl handles many of the common system
notifications by calling on protected methods that are introduced in TControl or
TWidgetControl. Most of these methods are virtual or dynamic, so that you can
override them when writing your own components and implement your own
responses to the system event. When overriding these methods, you do not need to
worry about working with the event object or (in most cases) any of the other objects
in the underlying widget layer.

When you want your CLX component to respond to system notifications, it is a good
idea to first check whether there is a protected method that already responds to the
notification. You can check the documentation for TControl or TWidgetControl (and
any other base classes from which you derive your component) to see if there is a
protected method that responds to the event in which you are interested. Table 7.1

QApplication

QHook(App)

TApplication

QEvent EventFilter()

Default Processing

QWidget

QHook (Widget)

TWidgetControl

EventFilter()

Default Processing

?

?

Operating
system

(XWindows
MSWindows)
H a n d l i n g m e s s a g e s a n d s y s t e m n o t i f i c a t i o n s 7-13

R e s p o n d i n g t o s y s t e m n o t i f i c a t i o n s u s i n g C L X
lists many of the most commonly used protected methods from TControl and
TWidgetControl that you can use.

In the override, call the inherited method so that any default processes still take
place.responds to signals

Note In addition to the methods that respond to system events, controls include a number
of similar methods that originate with TControl or TWidgetControl to notify the
control of various events. Although these do not respond to system events, they
perform the same task as many Windows messages that are sent to VCL controls.
Table 7.1 lists some of these methods.

Table 7.1 TWidgetControl protected methods for responding to system notifications

Method Description

BeginAutoDrag Called when the user clicks the left mouse button if the control has a
DragMode of dmAutomatic.

Click Called when the user releases the mouse button over the control.

DblClick Called when the user double-clicks with the mouse over the control.

DoMouseWheel Called when the user rotates the mouse wheel.

DragOver Called when the user drags the mouse cursor over the control.

KeyDown Called when the user presses a key while the control has focus.

KeyPress Called after KeyDown if KeyDown does not handle the keystroke.

KeyString Called when the user enters a keystroke when the system uses a multibyte
character system.

KeyUp Called when the user releases a key while the control has focus.

MouseDown Called when the user clicks the mouse button over the control.

MouseMove Called when the user moves the mouse cursor over the control.

MouseUp Called when the user releases the mouse button over the control.

PaintRequest Called when the system needs to repaint the control.

WidgetDestroyed Called when a widget underlying a control is destroyed.

Table 7.2 TWidgetControl protected methods for responding to events from controls

Method Description

BoundsChanged Called when the control is resized.

ColorChanged Called when the color of the control changes.

CursorChanged Called when the cursor changes shape. The mouse cursor assumes this
shape when it's over this widget.

EnabledChanged Called when an application changes the enabled state of a window or
control.

FontChanged Called when the collection of font resources changes.

PaletteChanged Called when the widget’s palette changes.
7-14 C o m p o n e n t W r i t e r ’ s G u i d e

R e s p o n d i n g t o s y s t e m n o t i f i c a t i o n s u s i n g C L X
Overriding the EventFilter method
If you want to respond to an event notification and there is no protected method for
that event that you can override, you can override the EventFilter method itself. In
your override, check the type of the Event parameter of the EventFilter method, and
perform your special processing when it represents the type of notification to which
you want to respond. You can prevent further processing of the event notification by
having your EventFilter method return True.

Note See the Qt documentation from TrollTech for details about the different types of
QEvent objects.

The following code is the EventFilter method on TCustomControl. It illustrates how to
obtain the event type from the QEvent object when overriding EventFilter. Note that,
although it is not shown here, you can cast the QEvent object to an appropriate
specialized QEvent descendant (such as QMouseEvent) once you have identified the
event type.

function TCustomControl.EventFilter(Sender: QObjectH; Event: QEventH): Boolean;
begin
 Result := inherited EventFilter(Sender, Event);
 case QEvent_type(Event) of
 QEventType_Resize,
 QEventType_FocusIn,
 QEventType_FocusOut:
 UpdateMask;
 end;
end;

Generating Qt events
Similar to the way a VCL control can define and send custom Windows messages,
you can make your CLX control define and generate Qt system events. The first step
is to define a unique ID for the event (similar to the way you must define a message
ID when defining a custom Windows message):

const
MyEvent_ID = Integer(QCLXEventType_ClxUser) + 50;

ShowHintChanged Called when Help hints are displayed or hidden on a control.

StyleChanged Called when the window or control’s GUI styles change.

TabStopChanged Called when the tab order on the form changes.

TextChanged Called when the control’s text changes.

VisibleChanged Called when a control is hidden or shown.

Table 7.2 TWidgetControl protected methods for responding to events from controls (continued)

Method Description
H a n d l i n g m e s s a g e s a n d s y s t e m n o t i f i c a t i o n s 7-15

R e s p o n d i n g t o s y s t e m n o t i f i c a t i o n s u s i n g C L X
In the code where you want to generate the event, use the QCustomEvent_create
function (declared in the Qt unit) to create an event object with your new event ID.
An optional second parameter lets you supply the event object with a data value that
is a pointer to information you want to associate with the event:

var
MyEvent: QCustomEventH;

begin
MyEvent := QCustomEvent_create(MyEvent_ID, self);

Once you have created the event object, you can post it by calling the
QApplication_postEvent method:

QApplication_postEvent(Application.Handle, MyEvent);

For any component to respond to this notification, it need only override its EventFilter
method, checking for an event type of MyEvent_ID. The EventFilter method can
retrieve the data you supplied to the constructor by calling the QCustomEvent_data
method that is declared in the Qt unit.
7-16 C o m p o n e n t W r i t e r ’ s G u i d e

C h a p t e r

8
Chapter8Making components available

at design time
This chapter describes the steps for making the components you create available in
the IDE. Making your components available at design time requires several steps:

• Registering components
• Providing Help for your component
• Adding property editors
• Adding component editors
• Compiling components into packages

Not all these steps apply to every component. For example, if you don’t define any
new properties or events, you don’t need to provide Help for them. The only steps
that are always necessary are registration and compilation.

Once your components have been registered and compiled into packages, they can
be distributed to other developers and installed in the IDE. For information on
installing packages in the IDE, see “Installing component packages” on page 16-10 of
the Developer’s Guide.

Registering components
Registration works on a compilation unit basis, so if you create several components
in a single compilation unit, you can register them all at once.

To register a component, add a Register procedure to the unit. Within the Register
procedure, you register the components and determine where to install them on the
Component palette.

Note If you create your component by choosing Component|New Component in the IDE,
the code required to register your component is added automatically.
M a k i n g c o m p o n e n t s a v a i l a b l e a t d e s i g n t i m e 8-1

R e g i s t e r i n g c o m p o n e n t s
The steps for manually registering a component are:

• Declaring the Register procedure
• Writing the Register procedure

Declaring the Register procedure

Registration involves writing a single procedure in the unit, which must have the
name Register. The Register procedure must appear in the interface part of the unit,
and (unlike the rest of Delphi) its name is case-sensitive.

Note Although Delphi is a case insensitive language, the Register procedure is case
sensitive and must be spelled with an uppercase R.

The following code shows the outline of a simple unit that creates and registers new
components:

unit MyBtns;
interface
type

ƒ { declare your component types here }

procedure Register; { this must appear in the interface section }
implementation

ƒ { component implementation goes here }

procedure Register;
begin

ƒ { register the components }
end;
end.

Within the Register procedure, call RegisterComponents for each component you want
to add to the Component palette. If the unit contains several components, you can
register them all in one step.

Writing the Register procedure

Inside the Register procedure of a unit containing components, you must register
each component you want to add to the Component palette. If the unit contains
several components, you can register them at the same time.

To register a component, call the RegisterComponents procedure once for each page of
the Component palette to which you want to add components. RegisterComponents
involves three important things:

1 Specifying the components.

2 Specifying the palette page.

3 Using the RegisterComponents function.
8-2 C o m p o n e n t W r i t e r ’ s G u i d e

R e g i s t e r i n g c o m p o n e n t s
Specifying the components
Within the Register procedure, pass the component names in an open array, which
you can construct inside the call to RegisterComponents.

RegisterComponents('Miscellaneous', [TMyComponent]);

You could also register several components on the same page at once, or register
components on different pages, as shown in the following code:

procedure Register;
begin

RegisterComponents('Miscellaneous', [TFirst, TSecond]); { two on this page... }
RegisterComponents('Assorted', [TThird]); { ...one on another... }
RegisterComponents(LoadStr(srStandard), [TFourth]); { ...and one on the Standard page }

end;

Specifying the palette page
The palette page name is a string. If the name you give for the palette page does not
already exist, Delphi creates a new page with that name. Delphi stores the names of
the standard pages in string-list resources so that international versions of the
product can name the pages in their native languages. If you want to install a
component on one of the standard pages, you should obtain the string for the page
name by calling the LoadStr function, passing the constant representing the string
resource for that page, such as srSystem for the System page.

Using the RegisterComponents function
Within the Register procedure, call RegisterComponents to register the components in
the classes array. RegisterComponents is a function that takes two parameters: the
name of a Component palette page and the array of component classes.

Set the Page parameter to the name of the page on the component palette where the
components should appear. If the named page already exists, the components are
added to that page. If the named page does not exist, Delphi creates a new palette
page with that name.

Call RegisterComponents from the implementation of the Register procedure in one
of the units that defines the custom components. The units that define the
components must then be compiled into a package and the package must be installed
before the custom components are added to the component palette.

procedure Register;
begin

RegisterComponents('System', [TSystem1, TSystem2]); {add to system page}
RegisterComponents('MyCustomPage',[TCustom1, TCustom2]); { new page}

end;
M a k i n g c o m p o n e n t s a v a i l a b l e a t d e s i g n t i m e 8-3

P r o v i d i n g H e l p f o r y o u r c o m p o n e n t
Providing Help for your component
When you select a standard component on a form, or a property or event in the
Object Inspector, you can press F1 to get Help on that item. You can provide
developers with the same kind of documentation for your components if you create
the appropriate Help files.

You can provide a small Help file to describe your components, and your Help file
becomes part of the user’s overall Delphi Help system.

See the section “Creating the Help file” on page 8-4 for information on how to
compose the Help file for use with a component.

Creating the Help file

You can use any tool you want to create the source file for a Windows Help file (in
.rtf format). Delphi includes the Microsoft Help Workshop, which compiles your
Help files and provides an online Help authoring guide. You can find complete
information about creating Help files in the online guide for Help Workshop.

Composing Help files for components consists of the steps:

• Creating the entries.
• Making component Help context-sensitive.
• Adding component Help files.

Creating the entries
To make your component’s Help integrate seamlessly with the Help for the rest of
the components in the library, observe the following conventions:

1 Each component should have a Help topic.

The component topic should show which unit the component is declared in and
briefly describe the component. The component topic should link to secondary
windows that describe the component’s position in the object hierarchy and list all
of its properties, events, and methods. Application developers access this topic by
selecting the component on a form and pressing F1. For an example of a
component topic, place any component on a form and press F1.

The component topic must have a # footnote with a value unique to the topic. The
footnote uniquely identifies each topic by the Help system.

The component topic should have a K footnote for keyword searching in the Help
system Index that includes the name of the component class. For example, the
keyword footnote for the TMemo component is “TMemo.”

The component topic should also have a $ footnote that provides the title of the
topic. The title appears in the Topics Found dialog box, the Bookmark dialog box,
and the History window.
8-4 C o m p o n e n t W r i t e r ’ s G u i d e

P r o v i d i n g H e l p f o r y o u r c o m p o n e n t
2 Each component should include the following secondary navigational topics:

• A hierarchy topic with links to every ancestor of the component in the
component hierarchy.

• A list of all properties available in the component, with links to entries
describing those properties.

• A list of all events available in the component, with links to entries describing
those events.

• A list of methods available in the component, with links to entries describing
those methods.

Links to object classes, properties, methods, or events in the Delphi Help system
can be made using Alinks. When linking to an object class, the Alink uses the class
name of the object, followed by an underscore and the string “object”. For
example, to link to the TCustomPanel object, use the following:

!AL(TCustomPanel_object,1)

When linking to a property, method, or event, precede the name of the property,
method, or event by the name of the object that implements it and an underscore.
For example, to link to the Text property which is implemented by TControl, use
the following:

!AL(TControl_Text,1)

To see an example of the secondary navigation topics, display the Help for any
component and click on the links labeled hierarchy, properties, methods, or
events.

3 Each property, method, and event that is declared within the component should
have a topic.

A property, event, or method topic should show the declaration of the item and
describe its use. Application developers see these topics either by highlighting the
item in the Object Inspector and pressing F1 or by placing the cursor in the Code
editor on the name of the item and pressing F1. To see an example of a property
topic, select any item in the Object Inspector and press F1.

The property, event, and method topics should include a K footnote that lists the
name of the property, method, or event, and its name in combination with the
name of the component. Thus, the Text property of TControl has the following K
footnote:

Text,TControl;TControl,Text;Text,

The property, method, and event topics should also include a $ footnote that
indicates the title of the topic, such as TControl.Text.

All of these topics should have a topic ID that is unique to the topic, entered as a #
footnote.
M a k i n g c o m p o n e n t s a v a i l a b l e a t d e s i g n t i m e 8-5

A d d i n g p r o p e r t y e d i t o r s
Making component Help context-sensitive
Each component, property, method, and event topic must have an A footnote. The A
footnote is used to display the topic when the user selects a component and presses
F1, or when a property or event is selected in the Object Inspector and the user
presses F1. The A footnotes must follow certain naming conventions:

If the Help topic is for a component, the A footnote consists of two entries separated
by a semicolon using this syntax:

ComponentClass_Object;ComponentClass

where ComponentClass is the name of the component class.

If the Help topic is for a property or event, the A footnote consists of three entries
separated by semicolons using this syntax:

ComponentClass_Element;Element_Type;Element

where ComponentClass is the name of the component class, Element is the name of the
property, method, or event, and Type is the either Property, Method, or Event

For example, for a property named BackgroundColor of a component named TMyGrid,
the A footnote is

TMyGrid_BackgroundColor;BackgroundColor_Property;BackgroundColor

Adding component Help files
To add your Help file to Delphi, use the OpenHelp utility (called oh.exe) located in
the bin directory or accessed using Help|Customize in the IDE.

You will find information about using OpenHelp in the OpenHelp.hlp file, including
adding your Help file to the Help system.

Adding property editors
The Object Inspector provides default editing for all types of properties. You can,
however, provide an alternate editor for specific properties by writing and
registering property editors. You can register property editors that apply only to the
properties in the components you write, but you can also create editors that apply to
all properties of a certain type.

At the simplest level, a property editor can operate in either or both of two ways:
displaying and allowing the user to edit the current value as a text string, and
displaying a dialog box that permits some other kind of editing. Depending on the
property being edited, you might find it useful to provide either or both kinds.

Writing a property editor requires these five steps:

1 Deriving a property-editor class.

2 Editing the property as text.

3 Editing the property as a whole.
8-6 C o m p o n e n t W r i t e r ’ s G u i d e

A d d i n g p r o p e r t y e d i t o r s
4 Specifying editor attributes.

5 Registering the property editor.

Deriving a property-editor class

Both the component library define several kinds of property editors, all of which
descend from TPropertyEditor. When you create a property editor, your property-
editor class can either descend directly from TPropertyEditor or indirectly through
one of the property-editor classes described in Table 8.1. The classes in the
DesignEditors unit can be used for both VCL and CLX applications. Some of the
property editor classes, however, supply specialized dialogs and so are specialized to
either VCL or CLX. These can be found in the VCLEditors and CLXEditors units,
respectively.

Note All that is absolutely necessary for a property editor is that it descend from
TBasePropertyEditor and that it support the IProperty interface. TPropertyEditor,
however, provides a default implementation of the IProperty interface.

The list in Table 8.1 is not complete. The VCLEditors and CLXEditors units also
define some very specialized property editors used by unique properties such as the
component name. The listed property editors are the ones that are the most useful for
user-defined properties.

Table 8.1 Predefined property-editor types

Type Properties edited

TOrdinalProperty All ordinal-property editors (those for integer, character, and enumerated
properties) descend from TOrdinalProperty.

TIntegerProperty All integer types, including predefined and user-defined subranges.

TCharProperty Char-type and subranges of Char, such as ‘A’..’Z’.

TEnumProperty Any enumerated type.

TFloatProperty All floating-point numbers.

TStringProperty Strings.

TSetElementProperty Individual elements in sets, shown as Boolean values

TSetProperty All sets. Sets are not directly editable, but can expand into a list of set-
element properties.

TClassProperty Classes. Displays the name of the class and allows expansion of the class’s
properties.

TMethodProperty Method pointers, most notably events.

TComponentProperty Components in the same form. The user cannot edit the component’s
properties, but can point to a specific component of a compatible type.

TColorProperty Component colors. Shows color constants if applicable, otherwise
displays hexadecimal value. Drop down list contains the color constants.
Double-click opens the color-selection dialog box.

TFontNameProperty Font names. The drop down list displays all currently installed fonts.

TFontProperty Fonts. Allows expansion of individual font properties as well as access to
the font dialog box.
M a k i n g c o m p o n e n t s a v a i l a b l e a t d e s i g n t i m e 8-7

A d d i n g p r o p e r t y e d i t o r s
The following example shows the declaration of a simple property editor named
TMyPropertyEditor:

type
TFloatProperty = class(TPropertyEditor)
public

function AllEqual: Boolean; override;
function GetValue: string; override;
procedure SetValue(const Value: string); override;

end;

Editing the property as text

All properties need to provide a string representation of their values for the Object
Inspector to display. Most properties also allow the user to type in a new value for
the property. TPropertyEditor and its descendants provide virtual methods you can
override to convert between the text representation and the actual value.

The methods you override are called GetValue and SetValue. Your property editor
also inherits methods for assigning and reading different sorts of values from
TPropertyEditor, as shown in Table 8.2.

When you override a GetValue method, you call one of the Get methods, and when
you override SetValue, you call one of the Set methods.

Displaying the property value
The property editor’s GetValue method returns a string that represents the current
value of the property. The Object Inspector uses this string in the value column for
the property. By default, GetValue returns “unknown.”

To provide a string representation of your property, override the property editor’s
GetValue method.

If the property is not a string value, GetValue must convert the value into a string
representation.

Table 8.2 Methods for reading and writing property values

Property type Get method Set method

Floating point GetFloatValue SetFloatValue

 Method pointer (event) GetMethodValue SetMethodValue

Ordinal type GetOrdValue SetOrdValue

String GetStrValue SetStrValue
8-8 C o m p o n e n t W r i t e r ’ s G u i d e

A d d i n g p r o p e r t y e d i t o r s
Setting the property value
The property editor’s SetValue method takes a string typed by the user in the Object
Inspector, converts it into the appropriate type, and sets the value of the property. If
the string does not represent a proper value for the property, SetValue should throw
an exception and not use the improper value.

To read string values into properties, override the property editor’s SetValue method.

SetValue should convert the string and validate the value before calling one of the Set
methods.

In the following example are the GetValue and SetValue methods for the Integer type
of TIntegerProperty. Integer is an ordinal type, so GetValue calls GetOrdValue and
converts the result to a string. SetValue converts the string to an integer, performs
some range checking, and calls SetOrdValue.

function TIntegerProperty.GetValue: string;
begin

with GetTypeData(GetPropType)^ do
if OrdType = otULong then // unsigned

Result := IntToStr(Cardinal(GetOrdValue))
else

Result := IntToStr(GetOrdValue);
end;

procedure TIntegerProperty.SetValue(const Value: string);
procedure Error(const Args: array of const);
begin

raise EPropertyError.CreateResFmt(@SOutOfRange, Args);
end;

var
L: Int64;

begin
L := StrToInt64(Value);
with GetTypeData(GetPropType)^ do

if OrdType = otULong then
begin // unsigned compare and reporting needed

if (L < Cardinal(MinValue)) or (L > Cardinal(MaxValue)) then
// bump up to Int64 to get past the %d in the format string
Error([Int64(Cardinal(MinValue)), Int64(Cardinal(MaxValue))]);

end
else if (L < MinValue) or (L > MaxValue) then

Error([MinValue, MaxValue]);
SetOrdValue(L);

end;

The specifics of the particular examples here are less important than the principle:
GetValue converts the value to a string; SetValue converts the string and validates the
value before calling one of the “Set” methods.
M a k i n g c o m p o n e n t s a v a i l a b l e a t d e s i g n t i m e 8-9

A d d i n g p r o p e r t y e d i t o r s
Editing the property as a whole

You can optionally provide a dialog box in which the user can visually edit a
property. The most common use of property editors is for properties that are
themselves classes. An example is the Font property, for which the user can open a
font dialog box to choose all the attributes of the font at once.

To provide a whole-property editor dialog box, override the property-editor class’s
Edit method.

Edit methods use the same Get and Set methods used in writing GetValue and
SetValue methods. In fact, an Edit method calls both a Get method and a Set method.
Because the editor is type-specific, there is usually no need to convert the property
values to strings. The editor generally deals with the value “as retrieved.”

When the user clicks the ‘...’ button next to the property or double-clicks the value
column, the Object Inspector calls the property editor’s Edit method.

Within your implementation of the Edit method, follow these steps:

1 Construct the editor you are using for the property.

2 Read the current value and assign it to the property using a Get method.

3 When the user selects a new value, assign that value to the property using a Set
method.

4 Destroy the editor.

The Color properties found in most components use the standard Windows color
dialog box as a property editor. Here is the Edit method from TColorProperty, which
invokes the dialog box and uses the result:

procedure TColorProperty.Edit;
var

ColorDialog: TColorDialog;
begin

ColorDialog := TColorDialog.Create(Application); { construct the editor }
try

ColorDialog.Color := GetOrdValue; { use the existing value }
if ColorDialog.Execute then { if the user OKs the dialog... }

SetOrdValue(ColorDialog.Color); { ...use the result to set value }
finally

ColorDialog.Free; { destroy the editor }
end;

end;
8-10 C o m p o n e n t W r i t e r ’ s G u i d e

A d d i n g p r o p e r t y e d i t o r s
Specifying editor attributes

The property editor must provide information that the Object Inspector can use to
determine what tools to display. For example, the Object Inspector needs to know
whether the property has subproperties or can display a list of possible values.

To specify editor attributes, override the property editor’s GetAttributes method.

GetAttributes is a method that returns a set of values of type TPropertyAttributes that
can include any or all of the following values:

Color properties are more versatile than most, in that they allow several ways for
users to choose them in the Object Inspector: typing, selection from a list, and
customized editor. TColorProperty’s GetAttributes method, therefore, includes several
attributes in its return value:

function TColorProperty.GetAttributes: TPropertyAttributes;
begin

Result := [paMultiSelect, paDialog, paValueList, paRevertable];
end;

Table 8.3 Property-editor attribute flags

Flag Related method Meaning if included

paValueList GetValues The editor can give a list of enumerated values.

paSubProperties GetProperties The property has subproperties that can display.

paDialog Edit The editor can display a dialog box for editing the entire
property.

paMultiSelect N/A The property should display when the user selects more
than one component.

paAutoUpdate SetValue Updates the component after every change instead of
waiting for approval of the value.

paSortList N/A The Object Inspector should sort the value list.

paReadOnly N/A Users cannot modify the property value.

paRevertable N/A Enables the Revert to Inherited menu item on the Object
Inspector’s context menu. The menu item tells the property
editor to discard the current property value and return to
some previously established default or standard value.

paFullWidthName N/A The value does not need to be displayed. The Object
Inspector uses its full width for the property name instead.

paVolatileSubProperties GetProperties The Object Inspector re-fetches the values of all
subproperties any time the property value changes.

paReference GetComponentValue The value is a reference to something else. When used in
conjunction with paSubProperties the referenced object
should be displayed as sub properties to this property.
M a k i n g c o m p o n e n t s a v a i l a b l e a t d e s i g n t i m e 8-11

A d d i n g p r o p e r t y e d i t o r s
Registering the property editor

Once you create a property editor, you need to register it with Delphi. Registering a
property editor associates a type of property with a specific property editor. You can
register the editor with all properties of a given type or just with a particular
property of a particular type of component.

To register a property editor, call the RegisterPropertyEditor procedure.

RegisterPropertyEditor takes four parameters:

• A type-information pointer for the type of property to edit.

This is always a call to the built-in function TypeInfo, such as
TypeInfo(TMyComponent).

• The type of the component to which this editor applies. If this parameter is nil, the
editor applies to all properties of the given type.

• The name of the property. This parameter only has meaning if the previous
parameter specifies a particular type of component. In that case, you can specify
the name of a particular property in that component type to which this editor
applies.

• The type of property editor to use for editing the specified property.

Here is an excerpt from the procedure that registers the editors for the standard
components on the Component palette:

procedure Register;
begin

RegisterPropertyEditor(TypeInfo(TComponent), nil, ‘‘, TComponentProperty);
RegisterPropertyEditor(TypeInfo(TComponentName), TComponent, ‘Name’,

TComponentNameProperty);
RegisterPropertyEditor(TypeInfo(TMenuItem), TMenu, ‘‘, TMenuItemProperty);

end;

The three statements in this procedure cover the different uses of
RegisterPropertyEditor:

• The first statement is the most typical. It registers the property editor
TComponentProperty for all properties of type TComponent (or descendants of
TComponent that do not have their own editors registered). In general, when you
register a property editor, you have created an editor for a particular type, and you
want to use it for all properties of that type, so the second and third parameters are
nil and an empty string, respectively.

• The second statement is the most specific kind of registration. It registers an editor
for a specific property in a specific type of component. In this case, the editor is for
the Name property (of type TComponentName) of all components.

• The third statement is more specific than the first, but not as limited as the second.
It registers an editor for all properties of type TMenuItem in components of type
TMenu.
8-12 C o m p o n e n t W r i t e r ’ s G u i d e

P r o p e r t y c a t e g o r i e s
Property categories
In the IDE, the Object Inspector lets you selectively hide and display properties based
on property categories. The properties of new custom components can be fit into this
scheme by registering properties in categories. Do this at the same time you register
the component by calling RegisterPropertyInCategory or RegisterPropertiesInCategory.
Use RegisterPropertyInCategory to register a single property. Use
RegisterPropertiesInCategory to register multiple properties in a single function call.
These functions are defined in the unit DesignIntf.

Note that it is not mandatory that you register properties or that you register all of
the properties of a custom component when some are registered. Any property not
explicitly associated with a category is included in the TMiscellaneousCategory
category. Such properties are displayed or hidden in the Object Inspector based on
that default categorization.

In addition to these two functions for registering properties, there is an
IsPropertyInCategory function. This function is useful for creating localization utilities,
in which you must determine whether a property is registered in a given property
category.

Registering one property at a time

Register one property at a time and associate it with a property category using the
RegisterPropertyInCategory function. RegisterPropertyInCategory comes in four
overloaded variations, each providing a different set of criteria for identifying the
property in the custom component to be associated with the property category.

The first variation lets you identify the property by the property’s name. The line
below registers a property related to visual display of the component, identifying the
property by its name, “AutoSize”.

RegisterPropertyInCategory('Visual', 'AutoSize');

The second variation is much like the first, except that it limits the category to only
those properties of the given name that appear on components of a given type. The
example below registers (into the ‘Help and Hints’ category) a property named
“HelpContext” of a component of the custom class TMyButton.

RegisterPropertyInCategory('Help and Hints', TMyButton, 'HelpContext');

The third variation identifies the property using its type rather than its name. The
example below registers a property based on its type, Integer.

RegisterPropertyInCategory('Visual', TypeInfo(Integer));

The final variation uses both the property’s type and its name to identify the
property. The example below registers a property based on a combination of its type,
TBitmap, and its name, ”Pattern.”

RegisterPropertyInCategory('Visual', TypeInfo(TBitmap), 'Pattern');

See the section “Specifying property categories,” for a list of the available property
categories and a brief description of their uses.
M a k i n g c o m p o n e n t s a v a i l a b l e a t d e s i g n t i m e 8-13

P r o p e r t y c a t e g o r i e s
Registering multiple properties at once

Register multiple properties at one time and associate them with a property category
using the RegisterPropertiesInCategory function. RegisterPropertiesInCategory comes in
three overloaded variations, each providing a different set of criteria for identifying
the property in the custom component to be associated with property categories.

The first variation lets you identify properties based on property name or type. The
list is passed as an array of constants. In the example below, any property that either
has the name “Text” or belongs to a class of type TEdit is registered in the category
‘Localizable.’

RegisterPropertiesInCategory('Localizable', ['Text', TEdit]);

The second variation lets you limit the registered properties to those that belong to a
specific component. The list of properties to register include only names, not types.
For example, the following code registers a number of properties into the ‘Help and
Hints’ category for all components:

RegisterPropertiesInCategory('Help and Hints', TComponent, ['HelpContext', 'Hint',
'ParentShowHint', 'ShowHint']);

The third variation lets you limit the registered properties to those that have a
specific type. As with the second variation, the list of properties to register can
include only names:

RegisterPropertiesInCategory('Localizable', TypeInfo(String), ['Text', 'Caption']);

See the section “Specifying property categories,” for a list of the available property
categories and a brief description of their uses.

Specifying property categories

When you register properties in a category, you can use any string you want as the
name of the category. If you use a string that has not been used before, the Object
Inspector generates a new property category class with that name. You can also,
however, register properties into one of the categories that are built-in. The built-in
property categories are described in Table 8.4:

Table 8.4 Property categories

Category Purpose

Action Properties related to runtime actions; the Enabled and Hint properties of TEdit are
in this category.

Database Properties related to database operations; the DatabaseName and SQL properties
of TQuery are in this category.

Drag, Drop,
and Docking

Properties related to drag-and-drop and docking operations; the DragCursor and
DragKind properties of TImage are in this category.

Help and Hints Properties related to using online Help or hints; the HelpContext and Hint
properties of TMemo are in this category.
8-14 C o m p o n e n t W r i t e r ’ s G u i d e

P r o p e r t y c a t e g o r i e s
Using the IsPropertyInCategory function

An application can query the existing registered properties to determine whether a
given property is already registered in a specified category. This can be especially
useful in situations like a localization utility that checks the categorization of
properties preparatory to performing its localization operations. Two overloaded
variations of the IsPropertyInCategory function are available, allowing for different
criteria in determining whether a property is in a category.

The first variation lets you base the comparison criteria on a combination of the class
type of the owning component and the property’s name. In the command line below,
for IsPropertyInCategory to return True, the property must belong to a TCustomEdit
descendant, have the name “Text,” and be in the property category 'Localizable'.

IsItThere := IsPropertyInCategory('Localizable', TCustomEdit, 'Text');

The second variation lets you base the comparison criteria on a combination of the
class name of the owning component and the property’s name. In the command line
below, for IsPropertyInCategory to return True, the property must be a TCustomEdit
descendant, have the name “Text”, and be in the property category 'Localizable'.

IsItThere := IsPropertyInCategory('Localizable', ‘TCustomEdit’, 'Text');

Layout Properties related to the visual display of a control at design-time; the Top and
Left properties of TDBEdit are in this category.

Legacy Properties related to obsolete operations; the Ctl3D and ParentCtl3D properties of
TComboBox are in this category.

Linkage Properties related to associating or linking one component to another; the
DataSet property of TDataSource is in this category.

Locale Properties related to international locales; the BiDiMode and ParentBiDiMode
properties of TMainMenu are in this category.

Localizable Properties that may require modification in localized versions of an application.
Many string properties (such as Caption) are in this category, as are properties
that determine the size and position of controls.

Visual Properties related to the visual display of a control at runtime; the Align and
Visible properties of TScrollBox are in this category.

Input Properties related to the input of data (need not be related to database
operations); the Enabled and ReadOnly properties of TEdit are in this category.

Miscellaneous Properties that do not fit a category or do not need to be categorized (and
properties not explicitly registered to a specific category); the AllowAllUp and
Name properties of TSpeedButton are in this category.

Table 8.4 Property categories (continued)

Category Purpose
M a k i n g c o m p o n e n t s a v a i l a b l e a t d e s i g n t i m e 8-15

A d d i n g c o m p o n e n t e d i t o r s
Adding component editors
Component editors determine what happens when the component is double-clicked
in the designer and add commands to the context menu that appears when the
component is right-clicked. They can also copy your component to the Windows
clipboard in custom formats.

If you do not give your components a component editor, Delphi uses the default
component editor. The default component editor is implemented by the class
TDefaultEditor. TDefaultEditor does not add any new items to a component’s context
menu. When the component is double-clicked, TDefaultEditor searches the properties
of the component and generates (or navigates to) the first event handler it finds.

To add items to the context menu, change the behavior when the component is
double-clicked, or add new clipboard formats, derive a new class from
TComponentEditor and register its use with your component. In your overridden
methods, you can use the Component property of TComponentEditor to access the
component that is being edited.

Adding a custom component editor consists of the steps:

• Adding items to the context menu
• Changing the double-click behavior
• Adding clipboard formats
• Registering the component editor

Adding items to the context menu

When the user right-clicks the component, the GetVerbCount and GetVerb methods of
the component editor are called to build context menu. You can override these
methods to add commands (verbs) to the context menu.

Adding items to the context menu requires the steps:

• Specifying menu items
• Implementing commands

Specifying menu items
Override the GetVerbCount method to return the number of commands you are
adding to the context menu. Override the GetVerb method to return the strings that
should be added for each of these commands. When overriding GetVerb, add an
ampersand (&) to a string to cause the following character to appear underlined in
the context menu and act as a shortcut key for selecting the menu item. Be sure to add
an ellipsis (...) to the end of a command if it brings up a dialog. GetVerb has a single
parameter that indicates the index of the command.
8-16 C o m p o n e n t W r i t e r ’ s G u i d e

A d d i n g c o m p o n e n t e d i t o r s
The following code overrides the GetVerbCount and GetVerb methods to add two
commands to the context menu.

function TMyEditor.GetVerbCount: Integer;
begin

Result := 2;
end;

function TMyEditor.GetVerb(Index: Integer): String;
begin

case Index of
0: Result := ‘&DoThis ...’;
1: Result := ‘Do&That’;

end;
end;

Note Be sure that your GetVerb method returns a value for every possible index indicated
by GetVerbCount.

Implementing commands
When the command provided by GetVerb is selected in the designer, the ExecuteVerb
method is called. For every command you provide in the GetVerb method, implement
an action in the ExecuteVerb method. You can access the component that is being
edited using the Component property of the editor.

For example, the following ExecuteVerb method implements the commands for the
GetVerb method in the previous example.

procedure TMyEditor.ExecuteVerb(Index: Integer);
var

MySpecialDialog: TMyDialog;
begin

case Index of
0: begin

MyDialog := TMySpecialDialog.Create(Application); { instantiate the editor }
if MySpecialDialog.Execute then; { if the user OKs the dialog... }

MyComponent.FThisProperty := MySpecialDialog.ReturnValue; { ...use the value }
MySpecialDialog.Free; { destroy the editor }

end;
1: That; { call the That method }

end;
end;
M a k i n g c o m p o n e n t s a v a i l a b l e a t d e s i g n t i m e 8-17

A d d i n g c o m p o n e n t e d i t o r s
Changing the double-click behavior

When the component is double-clicked, the Edit method of the component editor is
called. By default, the Edit method executes the first command added to the context
menu. Thus, in the previous example, double-clicking the component executes the
DoThis command.

While executing the first command is usually a good idea, you may want to change
this default behavior. For example, you can provide an alternate behavior if

• you are not adding any commands to the context menu.

• you want to display a dialog that combines several commands when the
component is double-clicked.

Override the Edit method to specify a new behavior when the component is double-
clicked. For example, the following Edit method brings up a font dialog when the
user double-clicks the component:

procedure TMyEditor.Edit;
var

FontDlg: TFontDialog;
begin

FontDlg := TFontDialog.Create(Application);
try

if FontDlg.Execute then
MyComponent.FFont.Assign(FontDlg.Font);

finally
FontDlg.Free

end;
end;

Note If you want a double-click on the component to display the Code editor for an event
handler, use TDefaultEditor as a base class for your component editor instead of
TComponentEditor. Then, instead of overriding the Edit method, override the
protected TDefaultEditor.EditProperty method instead. EditProperty scans through the
event handlers of the component, and brings up the first one it finds. You can change
this to look a particular event instead. For example:

procedure TMyEditor.EditProperty(PropertyEditor: TPropertyEditor;
Continue, FreeEditor: Boolean)

begin
if (PropertyEditor.ClassName = ‘TMethodProperty’) and

(PropertyEditor.GetName = ‘OnSpecialEvent’) then
// DefaultEditor.EditProperty(PropertyEditor, Continue, FreeEditor);

end;
8-18 C o m p o n e n t W r i t e r ’ s G u i d e

A d d i n g c o m p o n e n t e d i t o r s
Adding clipboard formats

By default, when a user chooses Copy while a component is selected in the IDE, the
component is copied in Delphi’s internal format. It can then be pasted into another
form or data module. Your component can copy additional formats to the Clipboard
by overriding the Copy method.

For example, the following Copy method allows a TImage component to copy its
picture to the Clipboard. This picture is ignored by the Delphi IDE, but can be pasted
into other applications.

procedure TMyComponent.Copy;
var

MyFormat : Word;
AData,APalette : THandle;

begin
TImage(Component).Picture.Bitmap.SaveToClipBoardFormat(MyFormat, AData, APalette);
ClipBoard.SetAsHandle(MyFormat, AData);

end;

Registering the component editor

Once the component editor is defined, it can be registered to work with a particular
component class. A registered component editor is created for each component of
that class when it is selected in the form designer.

To create the association between a component editor and a component class, call
RegisterComponentEditor. RegisterComponentEditor takes the name of the component
class that uses the editor, and the name of the component editor class that you have
defined. For example, the following statement registers a component editor class
named TMyEditor to work with all components of type TMyComponent:

RegisterComponentEditor(TMyComponent, TMyEditor);

Place the call to RegisterComponentEditor in the Register procedure where you register
your component. For example, if a new component named TMyComponent and its
component editor TMyEditor are both implemented in the same unit, the following
code registers the component and its association with the component editor.

procedure Register;
begin

RegisterComponents('Miscellaneous', [TMyComponent);
RegisterComponentEditor(classes[0], TMyEditor);

end;
M a k i n g c o m p o n e n t s a v a i l a b l e a t d e s i g n t i m e 8-19

C o m p i l i n g c o m p o n e n t s i n t o p a c k a g e s
Compiling components into packages
Once your components are registered, you must compile them as packages before
they can be installed in the IDE. A package can contain one or several components as
well as custom property editors. For more information about packages, see
Chapter 16, “Working with packages and components,” of the Developer’s Guide.

To create and compile a package, see “Creating and editing packages” on page 16-11
of the Developer’s Guide. Put the source-code units for your custom components in the
package’s Contains list. If your components depend on other packages, include those
packages in the Requires list.

To install your components in the IDE, see “Installing component packages” on
page 16-10 of the Developer’s Guide.
8-20 C o m p o n e n t W r i t e r ’ s G u i d e

C h a p t e r

9
Chapter9Modifying an existing component

The easiest way to create a component is to derive it from a component that does
nearly everything you want, then make whatever changes you need. What follows is
a simple example that modifies the standard memo component to create a memo that
does not wrap words by default.

The value of the memo component’s WordWrap property is initialized to True. If you
frequently use non-wrapping memos, you can create a new memo component that
does not wrap words by default.

Note To modify published properties or save specific event handlers for an existing
component, it is often easier to use a component template rather than create a new
class.

Modifying an existing component takes only two steps:

• Creating and registering the component.
• Modifying the component class.

Creating and registering the component
You create every component the same way: you create a unit, derive a component
class, register it, and install it on the Component palette. This process is outlined in
“Creating a new component” on page 1-8.

Note Names and locations of some of the units differ in CLX applications. For example, the
Controls unit is QControls in CLX applications.

For this example, follow the general procedure for creating a component, with these
specifics:

• Call the component’s unit Memos.

• Derive a new component type called TWrapMemo, descended from TMemo.

• Register TWrapMemo on the Samples page of the Component palette.
M o d i f y i n g a n e x i s t i n g c o m p o n e n t 9-1

M o d i f y i n g t h e c o m p o n e n t c l a s s
• The resulting unit should look like this:

unit Memos;
interface
uses

SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, StdCtrls;

type
TWrapMemo = class(TMemo)
end;

procedure Register;
implementation
procedure Register;
begin

RegisterComponents('Samples', [TWrapMemo]);
end;
end.

If you compile and install the new component now, it behaves exactly like its
ancestor, TMemo. In the next section, you will make a simple change to your
component.

Modifying the component class
Once you have created a new component class, you can modify it in almost any way.
In this case, you will change only the initial value of one property in the memo
component. This involves two small changes to the component class:

• Overriding the constructor.
• Specifying the new default property value.

The constructor actually sets the value of the property. The default tells Delphi what
values to store in the form (.dfm for VCL applications and .xfm for CLX applications)
file. Delphi stores only values that differ from the default, so it is important to
perform both steps.

Overriding the constructor

When a component is placed on a form at design time, or when an application
constructs a component at runtime, the component’s constructor sets the property
values. When a component is loaded from a form file, the application sets any
properties changed at design time.

Note When you override a constructor, the new constructor must call the inherited
constructor before doing anything else. For more information, see “Overriding
methods” on page 2-8.
9-2 C o m p o n e n t W r i t e r ’ s G u i d e

M o d i f y i n g t h e c o m p o n e n t c l a s s
For this example, your new component needs to override the constructor inherited
from TMemo to set the WordWrap property to False. To achieve this, add the
constructor override to the forward declaration, then write the new constructor in the
implementation part of the unit:

type
TWrapMemo = class(TMemo)
public { constructors are always public }

constructor Create(AOwner: TComponent); override; { this syntax is always the same }
end;

ƒ
constructor TWrapMemo.Create(AOwner: TComponent); { this goes after implementation }
begin

inherited Create(AOwner); { ALWAYS do this first! }
WordWrap := False; { set the new desired value }

end;

Now you can install the new component on the Component palette and add it to a
form. Note that the WordWrap property is now initialized to False.

If you change an initial property value, you should also designate that value as the
default. If you fail to match the value set by the constructor to the specified default
value, Delphi cannot store and restore the proper value.

Specifying the new default property value

When Delphi stores a description of a form in a form file, it stores the values only of
properties that differ from their defaults. Storing only the differing values keeps the
form files small and makes loading the form faster. If you create a property or change
the default value, it is a good idea to update the property declaration to include the
new default. Form files, loading, and default values are explained in more detail in
Chapter 8, “Making components available at design time.”

To change the default value of a property, redeclare the property name, followed by
the directive default and the new default value. You don’t need to redeclare the
entire property, just the name and the default value.

For the word-wrapping memo component, you redeclare the WordWrap property in
the published part of the object declaration, with a default value of False:

type
TWrapMemo = class(TMemo)
ƒ
published

property WordWrap default False;
end;

Specifying the default property value does not affect the workings of the component.
You must still initialize the value in the component’s constructor. Redeclaring the
default ensures that Delphi knows when to write WordWrap to the form file.
M o d i f y i n g a n e x i s t i n g c o m p o n e n t 9-3

9-4 C o m p o n e n t W r i t e r ’ s G u i d e

C h a p t e r

10
Chapter10Creating a graphic control

A graphic control is a simple kind of component. Because a purely graphic control
never receives focus, it does not have or need its own window handle. Users can still
manipulate the control with the mouse, but there is no keyboard interface.

The graphic control presented in this chapter is TShape, the shape component on the
Additional page of the Component palette. Although the component created is
identical to the standard shape component, you need to call it something different to
avoid duplicate identifiers. This chapter calls its shape component TSampleShape and
shows you all the steps involved in creating the shape component:

• Creating and registering the component.
• Publishing inherited properties.
• Adding graphic capabilities.

Creating and registering the component
You create every component in the same way: create a unit, derive a component
class, register it, compile it, and install it on the Component palette. This process is
outlined in “Creating a new component” on page 1-8.

For this example, follow the general procedure for creating a component, with these
specifics:

1 Call the component’s unit Shapes.

2 Derive a new component type called TSampleShape, descended from
TGraphicControl.

3 Register TSampleShape on the Samples page (or other page in a CLX application) of
the Component palette.
C r e a t i n g a g r a p h i c c o n t r o l 10-1

P u b l i s h i n g i n h e r i t e d p r o p e r t i e s
The resulting unit should look like this:

unit Shapes;
interface
uses SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls, Forms;
type

TSampleShape = class(TGraphicControl)
end;

procedure Register;
implementation
procedure Register;
begin

RegisterComponent('Samples', [TSampleShape]);
end;
end.

Note Names and locations of some of the units differ in CLX applications. For example, the
Controls unit is QControls in CLX applications.

Publishing inherited properties
Once you derive a component type, you can decide which of the properties and
events declared in the protected parts of the ancestor class you want to surface in the
new component. TGraphicControl already publishes all the properties that enable the
component to function as a control, so all you need to publish is the ability to respond
to mouse events and handle drag-and-drop.

Publishing inherited properties and events is explained in “Publishing inherited
properties” on page 3-3 and “Making events visible” on page 4-6. Both processes
involve redeclaring just the name of the properties in the published part of the class
declaration.

For the shape control, you can publish the three mouse events, the three drag-and-
drop events, and the two drag-and-drop properties:

type
TSampleShape = class(TGraphicControl)
published

property DragCursor; { drag-and-drop properties }
property DragMode;
property OnDragDrop; { drag-and-drop events }
property OnDragOver;
property OnEndDrag;
property OnMouseDown; { mouse events }
property OnMouseMove;
property OnMouseUp;

end;

The sample shape control now makes mouse and drag-and-drop interactions
available to its users.
10-2 C o m p o n e n t W r i t e r ’ s G u i d e

A d d i n g g r a p h i c c a p a b i l i t i e s
Adding graphic capabilities
Once you have declared your graphic component and published any inherited
properties you want to make available, you can add the graphic capabilities that
distinguish your component. You have two tasks to perform when creating a graphic
control:

1 Determining what to draw.

2 Drawing the component image.

In addition, for the shape control example, you will add some properties that enable
application developers to customize the appearance of the shape at design time.

Determining what to draw

A graphic control can change its appearance to reflect a dynamic condition, including
user input. A graphic control that always looks the same should probably not be a
component at all. If you want a static image, you can import the image instead of
using a control.

In general, the appearance of a graphic control depends on some combination of its
properties. The gauge control, for example, has properties that determine its shape
and orientation and whether it shows its progress numerically as well as graphically.
Similarly, the shape control has a property that determines what kind of shape it
should draw.

To give your control a property that determines the shape it draws, add a property
called Shape. This requires

1 Declaring the property type.

2 Declaring the property.

3 Writing the implementation method.

Creating properties is explained in more detail in Chapter 3, “Creating properties.”

Declaring the property type
When you declare a property of a user-defined type, you must declare the type first,
before the class that includes the property. The most common sort of user-defined
type for properties is enumerated.

For the shape control, you need an enumerated type with an element for each kind of
shape the control can draw.
C r e a t i n g a g r a p h i c c o n t r o l 10-3

A d d i n g g r a p h i c c a p a b i l i t i e s
Add the following type definition above the shape control class’s declaration.

type
TSampleShapeType = (sstRectangle, sstSquare, sstRoundRect, sstRoundSquare,

sstEllipse, sstCircle);
TSampleShape = class(TGraphicControl) { this is already there }

You can now use this type to declare a new property in the class.

Declaring the property
When you declare a property, you usually need to declare a private field to store the
data for the property, then specify methods for reading and writing the property
value. Often, you don’t need to use a method to read the value, but can just point to
the stored data instead.

For the shape control, you will declare a field that holds the current shape, then
declare a property that reads that field and writes to it through a method call.

Add the following declarations to TSampleShape:

type
TSampleShape = class(TGraphicControl)
private

FShape: TSampleShapeType; { field to hold property value }
procedure SetShape(Value: TSampleShapeType);

published
property Shape: TSampleShapeType read FShape write SetShape;

end;

Now all that remains is to add the implementation of SetShape.

Writing the implementation method
When the read or write part of a property definition uses a method instead of directly
accessing the stored property data, you need to implement the method.

Add the implementation of the SetShape method to the implementation part of the
unit:

procedure TSampleShape.SetShape(Value: TSampleShapeType);
begin

if FShape <> Value then { ignore if this isn't a change }
begin

FShape := Value; { store the new value }
Invalidate; { force a repaint with the new shape }

end;
end;
10-4 C o m p o n e n t W r i t e r ’ s G u i d e

A d d i n g g r a p h i c c a p a b i l i t i e s
Overriding the constructor and destructor

To change default property values and initialize owned classes for your component,
you must override the inherited constructor and destructor. In both cases, remember
always to call the inherited method in your new constructor or destructor.

Changing default property values
The default size of a graphic control is fairly small, so you can change the width and
height in the constructor. Changing default property values is explained in more
detail in Chapter 9, “Modifying an existing component.”

In this example, the shape control sets its size to a square 65 pixels on each side.

Add the overridden constructor to the declaration of the component class:

type
TSampleShape = class(TGraphicControl)
public { constructors are always public }

constructor Create(AOwner: TComponent); override { remember override directive }
end;

1 Redeclare the Height and Width properties with their new default values:

type
TSampleShape = class(TGraphicControl)
ƒ
published

property Height default 65;
property Width default 65;

end;

2 Write the new constructor in the implementation part of the unit:

constructor TSampleShape.Create(AOwner: TComponent);
begin

inherited Create(AOwner); { always call the inherited constructor }
Width := 65;
Height := 65;

end;
C r e a t i n g a g r a p h i c c o n t r o l 10-5

A d d i n g g r a p h i c c a p a b i l i t i e s
Publishing the pen and brush

By default, a canvas has a thin black pen and a solid white brush. To let developers
change the pen and brush, you must provide classes for them to manipulate at design
time, then copy the classes into the canvas during painting. Classes such as an
auxiliary pen or brush are called owned classes because the component owns them
and is responsible for creating and destroying them.

Managing owned classes requires:

1 Declaring the class fields.

2 Declaring the access properties.

3 Initializing owned classes.

4 Setting owned classes’ properties.

Declaring the class fields
Each class a component owns must have a class field declared for it in the
component. The class field ensures that the component always has a pointer to the
owned object so that it can destroy the class before destroying itself. In general, a
component initializes owned objects in its constructor and destroys them in its
destructor.

Fields for owned objects are nearly always declared as private. If applications (or
other components) need access to the owned objects, you can declare published or
public properties for this purpose.

Add fields for a pen and brush to the shape control:

type
TSampleShape = class(TGraphicControl)
private { fields are nearly always private }

FPen: TPen; { a field for the pen object }
FBrush: TBrush; { a field for the brush object }
ƒ

end;

Declaring the access properties
You can provide access to the owned objects of a component by declaring properties
of the type of the objects. That gives developers a way to access the objects at design
time or runtime. Usually, the read part of the property just references the class field,
but the write part calls a method that enables the component to react to changes in
the owned object.
10-6 C o m p o n e n t W r i t e r ’ s G u i d e

A d d i n g g r a p h i c c a p a b i l i t i e s
To the shape control, add properties that provide access to the pen and brush fields.
You will also declare methods for reacting to changes to the pen or brush.

type
TSampleShape = class(TGraphicControl)
ƒ
private { these methods should be private }

procedure SetBrush(Value: TBrush);
procedure SetPen(Value: TPen);

published { make these available at design time }
property Brush: TBrush read FBrush write SetBrush;
property Pen: TPen read FPen write SetPen;

end;

Then, write the SetBrush and SetPen methods in the implementation part of the unit:

procedure TSampleShape.SetBrush(Value: TBrush);
begin

FBrush.Assign(Value); { replace existing brush with parameter }
end;

procedure TSampleShape.SetPen(Value: TPen);
begin

FPen.Assign(Value); { replace existing pen with parameter }
end;

To directly assign the contents of Value to FBrush—

FBrush := Value;

—would overwrite the internal pointer for FBrush, lose memory, and create a number
of ownership problems.

Initializing owned classes
If you add classes to your component, the component’s constructor must initialize
them so that the user can interact with the objects at runtime. Similarly, the
component’s destructor must also destroy the owned objects before destroying the
component itself.

Because you have added a pen and a brush to the shape control, you need to initialize
them in the shape control’s constructor and destroy them in the control’s destructor:

1 Construct the pen and brush in the shape control constructor:

constructor TSampleShape.Create(AOwner: TComponent);
begin

inherited Create(AOwner); { always call the inherited constructor }
Width := 65;
Height := 65;
FPen := TPen.Create; { construct the pen }
FBrush := TBrush.Create; { construct the brush }

end;
C r e a t i n g a g r a p h i c c o n t r o l 10-7

A d d i n g g r a p h i c c a p a b i l i t i e s
2 Add the overridden destructor to the declaration of the component class:

type
TSampleShape = class(TGraphicControl)
public { destructors are always public}

constructor Create(AOwner: TComponent); override;
destructor Destroy; override; { remember override directive }

end;

3 Write the new destructor in the implementation part of the unit:

destructor TSampleShape.Destroy;
begin

FPen.Free; { destroy the pen object }
FBrush.Free; { destroy the brush object }
inherited Destroy; { always call the inherited destructor, too }

end;

Setting owned classes’ properties
As the final step in handling the pen and brush classes, you need to make sure that
changes in the pen and brush cause the shape control to repaint itself. Both pen and
brush classes have OnChange events, so you can create a method in the shape control
and point both OnChange events to it.

Add the following method to the shape control, and update the component’s
constructor to set the pen and brush events to the new method:

type
TSampleShape = class(TGraphicControl)
published

procedure StyleChanged(Sender: TObject);
end;

ƒ
implementation
ƒ
constructor TSampleShape.Create(AOwner: TComponent);
begin

inherited Create(AOwner); { always call the inherited constructor }
Width := 65;
Height := 65;
FPen := TPen.Create; { construct the pen }
FPen.OnChange := StyleChanged; { assign method to OnChange event }
FBrush := TBrush.Create; { construct the brush }
FBrush.OnChange := StyleChanged; { assign method to OnChange event }

end;

procedure TSampleShape.StyleChanged(Sender: TObject);
begin

Invalidate; { erase and repaint the component }
end;

With these changes, the component redraws to reflect changes to either the pen or the
brush.
10-8 C o m p o n e n t W r i t e r ’ s G u i d e

A d d i n g g r a p h i c c a p a b i l i t i e s
Drawing the component image

The essential element of a graphic control is the way it paints its image on the screen.
The abstract type TGraphicControl defines a method called Paint that you override to
paint the image you want on your control.

The Paint method for the shape control needs to do several things:

• Use the pen and brush selected by the user.
• Use the selected shape.
• Adjust coordinates so that squares and circles use the same width and height.

Overriding the Paint method requires two steps:

1 Add Paint to the component’s declaration.

2 Write the Paint method in the implementation part of the unit.

For the shape control, add the following declaration to the class declaration:

type
TSampleShape = class(TGraphicControl)
ƒ
protected

procedure Paint; override;
ƒ
end;

Then write the method in the implementation part of the unit:

procedure TSampleShape.Paint;
begin

with Canvas do
begin

Pen := FPen; { copy the component's pen }
Brush := FBrush; { copy the component's brush }
case FShape of

sstRectangle, sstSquare:
Rectangle(0, 0, Width, Height); { draw rectangles and squares }

sstRoundRect, sstRoundSquare:
RoundRect(0, 0, Width, Height, Width div 4, Height div 4); { draw rounded shapes }

sstCircle, sstEllipse:
Ellipse(0, 0, Width, Height); { draw round shapes }

end;
end;

end;

Paint is called whenever the control needs to update its image. Controls are painted
when they first appear or when a window in front of them goes away. In addition,
you can force repainting by calling Invalidate, as the StyleChanged method does.
C r e a t i n g a g r a p h i c c o n t r o l 10-9

A d d i n g g r a p h i c c a p a b i l i t i e s
Refining the shape drawing

The standard shape control does one more thing that your sample shape control does
not yet do: it handles squares and circles as well as rectangles and ellipses. To do that,
you need to write code that finds the shortest side and centers the image.

Here is a refined Paint method that adjusts for squares and ellipses:

procedure TSampleShape.Paint;
var

X, Y, W, H, S: Integer;
begin

with Canvas do
begin

Pen := FPen; { copy the component's pen }
Brush := FBrush; { copy the component's brush }
W := Width; { use the component width }
H := Height; { use the component height }
if W < H then S := W else S := H; { save smallest for circles/squares }

case FShape of { adjust height, width and position }
sstRectangle, sstRoundRect, sstEllipse:
begin

X := 0; { origin is top-left for these shapes }
Y := 0;

end;
sstSquare, sstRoundSquare, sstCircle:
begin

X := (W - S) div 2; { center these horizontally... }
Y := (H - S) div 2; { ...and vertically }
W := S; { use shortest dimension for width... }
H := S; { ...and for height }

end;
end;

case FShape of
sstRectangle, sstSquare:
Rectangle(X, Y, X + W, Y + H); { draw rectangles and squares }

sstRoundRect, sstRoundSquare:
RoundRect(X, Y, X + W, Y + H, S div 4, S div 4); { draw rounded shapes }

sstCircle, sstEllipse:
Ellipse(X, Y, X + W, Y + H); { draw round shapes }

end;
end;

end;
10-10 C o m p o n e n t W r i t e r ’ s G u i d e

C h a p t e r

11
Chapter11Customizing a grid

The component library provides abstract components you can use as the basis for
customized components. The most important of these are grids and list boxes. In this
chapter, you will see how to create a small one month calendar from the basic grid
component, TCustomGrid.

Creating the calendar involves these tasks:

• Creating and registering the component
• Publishing inherited properties
• Changing initial values
• Resizing the cells
• Filling in the cells
• Navigating months and years
• Navigating days

In VCL applications, the resulting component is similar to the TCalendar component
on the Samples page of the Component palette. In CLX applications, save the
component to a different page or create a new palette page. See “Specifying the
palette page” on page 8-3 or “Component palette, adding pages” in online Help.

Creating and registering the component
You create every component the same way: create a unit, derive a component class,
register it, compile it, and install it on the Component palette. This process is outlined
in “Creating a new component” on page 1-8.

For this example, follow the general procedure for creating a component, with these
specifics:

1 Call the component’s unit CalSamp.

2 Derive a new component type called TSampleCalendar, descended from
TCustomGrid.
C u s t o m i z i n g a g r i d 11-1

C r e a t i n g a n d r e g i s t e r i n g t h e c o m p o n e n t
3 Register TSampleCalendar on the Samples page (or other page in a CLX application)
of the Component palette.

The resulting unit descending from TCustomGrid in a VCL application should look
like this:

unit CalSamp;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs, Grids;

type
TSampleCalendar = class(TCustomGrid)
end;

procedure Register;

implementation

procedure Register;
begin

RegisterComponents('Samples', [TSampleCalendar]);
end;

end.

Note If descending from the CLX version of TCustomGrid, only the uses clause would
differ showing CLX units instead. Also, names and locations of some of the units
differ in CLX applications. For example, the Controls unit is QControls in CLX
applications.

If you install the calendar component now, you will find that it appears on the
Samples page. The only properties available are the most basic control properties.
The next step is to make some of the more specialized properties available to users of
the calendar.

Note While you can install the sample calendar component you have just compiled, do not
try to place it on a form yet. The TCustomGrid component has an abstract DrawCell
method that must be redeclared before instance objects can be created. Overriding
the DrawCell method is described in “Filling in the cells” on page 11-6.
11-2 C o m p o n e n t W r i t e r ’ s G u i d e

P u b l i s h i n g i n h e r i t e d p r o p e r t i e s
Publishing inherited properties
The abstract grid component, TCustomGrid, provides a large number of protected
properties. You can choose which of those properties you want to make available to
users of the calendar control.

To make inherited protected properties available to users of your components,
redeclare the properties in the published part of your component’s declaration.

For the calendar control, publish the following properties and events, as shown here:

type
TSampleCalendar = class(TCustomGrid)
published

property Align; { publish properties }
property BorderStyle;
property Color;
property Font;
property GridLineWidth;
property ParentColor;
property ParentFont;
property OnClick; { publish events }
property OnDblClick;
property OnDragDrop;
property OnDragOver;
property OnEndDrag;
property OnKeyDown;
property OnKeyPress;
property OnKeyUp;

end;

There are a number of other properties you could also publish, but which do not
apply to a calendar, such as the Options property that would enable the user to
choose which grid lines to draw.

If you install the modified calendar component to the Component palette and use it
in an application, you will find many more properties and events available in the
calendar, all fully functional. You can now start adding new capabilities of your own
design.
C u s t o m i z i n g a g r i d 11-3

C h a n g i n g i n i t i a l v a l u e s
Changing initial values
A calendar is essentially a grid with a fixed number of rows and columns, although
not all the rows always contain dates. For this reason, you have not published the
grid properties ColCount and RowCount, because it is highly unlikely that users of the
calendar will want to display anything other than seven days per week. You still
must set the initial values of those properties so that the week always has seven days,
however.

To change the initial values of the component’s properties, override the constructor
to set the desired values. The constructor must be virtual.

Remember that you need to add the constructor to the public part of the
component’s object declaration, then write the new constructor in the
implementation part of the component’s unit. The first statement in the new
constructor should always be a call to the inherited constructor. Then add the
StdCtrls unit to the uses clause.

type
TSampleCalendar = class(TCustomGrid
public

constructor Create(AOwner: TComponent); override;
ƒ
end;

ƒ
constructor TSampleCalendar.Create(AOwner: TComponent);
begin

inherited Create(AOwner); { call inherited constructor }
ColCount := 7; { always seven days/week }
RowCount := 7; { always six weeks plus the headings }
FixedCols := 0; { no row labels }
FixedRows := 1; { one row for day names }
ScrollBars := ssNone; { no need to scroll }
Options := Options - [goRangeSelect] + [goDrawFocusSelected]; {disable range selection}

end;

The calendar now has seven columns and seven rows, with the top row fixed, or
nonscrolling.

Resizing the cells
Note When a user or application changes the size of a window or control, Windows sends

a message called WM_SIZE to the affected window or control so it can adjust any
settings needed to later paint its image in the new size. Your VCL component can
respond to that message by altering the size of the cells so they all fit inside the
boundaries of the control. To respond to the WM_SIZE message, you will add a
message-handling method to the component.
11-4 C o m p o n e n t W r i t e r ’ s G u i d e

R e s i z i n g t h e c e l l s
Creating a message-handling method is described in detail in “Creating new
message handlers” on page 7-6.

In this case, the calendar control needs a response to WM_SIZE, so add a protected
method called WMSize to the control indexed to the WM_SIZE message, then write
the method so that it calculates the proper cell size to allow all cells to be visible in the
new size:

type
TSampleCalendar = class(TCustomGrid)
protected

procedure WMSize(var Message: TWMSize); message WM_SIZE;
ƒ
end;

ƒ
procedure TSampleCalendar.WMSize(var Message: TWMSize);
var

GridLines: Integer; { temporary local variable }
begin

GridLines := 6 * GridLineWidth; { calculate combined size of all lines }
DefaultColWidth := (Message.Width - GridLines) div 7; { set new default cell width }
DefaultRowHeight := (Message.Height - GridLines) div 7; { and cell height }

end;

Now when the calendar is resized, it displays all the cells in the largest size that will
fit in the control.

Note In CLX applications, changes to the size of a window or control are automatically
notified by a call to the protected BoundsChanged method. Your CLX component can
respond to this notification by altering the size of the cells so they all fit inside the
boundaries of the control.

In this case, the calendar control needs to override BoundsChanged so that it calculates
the proper cell size to allow all cells to be visible in the new size:

type
TSampleCalendar = class(TCustomGrid)
protected

procedure BoundsChanged; override;
ƒ
end;

ƒ
procedure TSampleCalendar.BoundsChanged;
var

GridLines: Integer; { temporary local variable }
begin

GridLines := 6 * GridLineWidth; { calculate combined size of all lines }
DefaultColWidth := (Width - GridLines) div 7; { set new default cell width }
DefaultRowHeight := (Height - GridLines) div 7; { and cell height }
inherited; {now call the inherited method }

end;
C u s t o m i z i n g a g r i d 11-5

F i l l i n g i n t h e c e l l s
Filling in the cells
A grid control fills in its contents cell-by-cell. In the case of the calendar, that means
calculating which date, if any, belongs in each cell. The default drawing for grid cells
takes place in a virtual method called DrawCell.

To fill in the contents of grid cells, override the DrawCell method.

The easiest part to fill in is the heading cells in the fixed row. The runtime library
contains an array with short day names, so for the calendar, use the appropriate one
for each column:

type
TSampleCalendar = class(TCustomGrid)
protected

procedure DrawCell(ACol, ARow: Longint; ARect: TRect; AState: TGridDrawState);
override;

end;
ƒ
procedure TSampleCalendar.DrawCell(ACol, ARow: Longint; ARect: TRect;

AState: TGridDrawState);
begin

if ARow = 0 then
Canvas.TextOut(ARect.Left, ARect.Top, ShortDayNames[ACol + 1]); { use RTL strings }

end;

Tracking the date

For the calendar control to be useful, users and applications must have a mechanism
for setting the day, month, and year. Delphi stores dates and times in variables of
type TDateTime. TDateTime is an encoded numeric representation of the date and
time, which is useful for programmatic manipulation, but not convenient for human
use.

You can therefore store the date in encoded form, providing runtime access to that
value, but also provide Day, Month, and Year properties that users of the calendar
component can set at design time.

Tracking the date in the calendar consists of the processes:

• Storing the internal date
• Accessing the day, month, and year
• Generating the day numbers
• Selecting the current day
11-6 C o m p o n e n t W r i t e r ’ s G u i d e

F i l l i n g i n t h e c e l l s
Storing the internal date
To store the date for the calendar, you need a private field to hold the date and a
runtime-only property that provides access to that date.

Adding the internal date to the calendar requires three steps:

1 Declare a private field to hold the date:

type
TSampleCalendar = class(TCustomGrid)
private

FDate: TDateTime;
ƒ

2 Initialize the date field in the constructor:

constructor TSampleCalendar.Create(AOwner: TComponent);
begin

inherited Create(AOwner); { this is already here }
ƒ { other initializations here }
FDate := Date; { get current date from RTL }

end;

3 Declare a runtime property to allow access to the encoded date.

You’ll need a method for setting the date, because setting the date requires
updating the onscreen image of the control:

type
TSampleCalendar = class(TCustomGrid)
private

procedure SetCalendarDate(Value: TDateTime);
public

property CalendarDate: TDateTime read FDate write SetCalendarDate;
ƒ

procedure TSampleCalendar.SetCalendarDate(Value: TDateTime);
begin

FDate := Value; { set new date value }
Refresh; { update the onscreen image }

end;

Accessing the day, month, and year
An encoded numeric date is fine for applications, but humans prefer to work with
days, months, and years. You can provide alternate access to those elements of the
stored, encoded date by creating properties.

Because each element of the date (day, month, and year) is an integer, and because
setting each requires encoding the date when set, you can avoid duplicating the code
each time by sharing the implementation methods for all three properties. That is,
you can write two methods, one to read an element and one to write one, and use
those methods to get and set all three properties.
C u s t o m i z i n g a g r i d 11-7

F i l l i n g i n t h e c e l l s
To provide design-time access to the day, month, and year, you do the following:

1 Declare the three properties, assigning each a unique index number:

type
TSampleCalendar = class(TCustomGrid)
public

property Day: Integer index 3 read GetDateElement write SetDateElement;
property Month: Integer index 2 read GetDateElement write SetDateElement;
property Year: Integer index 1 read GetDateElement write SetDateElement;

ƒ

2 Declare and write the implementation methods, setting different elements for each
index value:

type
TSampleCalendar = class(TCustomGrid)
private

function GetDateElement(Index: Integer): Integer; { note the Index parameter }
procedure SetDateElement(Index: Integer; Value: Integer);

ƒ
function TSampleCalendar.GetDateElement(Index: Integer): Integer;
var

AYear, AMonth, ADay: Word;
begin

DecodeDate(FDate, AYear, AMonth, ADay); { break encoded date into elements }
case Index of

1: Result := AYear;
2: Result := AMonth;
3: Result := ADay;
else Result := -1;

end;
end;
procedure TSampleCalendar.SetDateElement(Index: Integer; Value: Integer);
var

AYear, AMonth, ADay: Word;
begin

if Value > 0 then { all elements must be positive }
begin

DecodeDate(FDate, AYear, AMonth, ADay); { get current date elements }
case Index of { set new element depending on Index }

1: AYear := Value;
2: AMonth := Value;
3: ADay := Value;
else Exit;

end;
FDate := EncodeDate(AYear, AMonth, ADay); { encode the modified date }
Refresh; { update the visible calendar }

end;
end;

Now you can set the calendar’s day, month, and year at design time using the Object
Inspector or at runtime using code. Of course, you have not yet added the code to
paint the dates into the cells, but now you have the needed data.
11-8 C o m p o n e n t W r i t e r ’ s G u i d e

F i l l i n g i n t h e c e l l s
Generating the day numbers
Putting numbers into the calendar involves several considerations. The number of
days in the month depends on which month it is, and whether the given year is a leap
year. In addition, months start on different days of the week, dependent on the
month and year. Use the IsLeapYear function to determine whether the year is a leap
year. Use the MonthDays array in the SysUtils unit to get the number of days in the
month.

Once you have the information on leap years and days per month, you can calculate
where in the grid the individual dates go. The calculation is based on the day of the
week the month starts on.

Because you will need the month-offset number for each cell you fill in, the best
practice is to calculate it once when you change the month or year, then refer to it
each time. You can store the value in a class field, then update that field each time the
date changes.

To fill in the days in the proper cells, you do the following:

1 Add a month-offset field to the object and a method that updates the field value:

type
TSampleCalendar = class(TCustomGrid)
private

FMonthOffset: Integer; { storage for the offset }
ƒ
protected

procedure UpdateCalendar; virtual; { property for offset access }
end;

ƒ
procedure TSampleCalendar.UpdateCalendar;
var

AYear, AMonth, ADay: Word;
FirstDate: TDateTime; { date of the first day of the month }

begin
if FDate <> 0 then { only calculate offset if date is valid }
begin

DecodeDate(FDate, AYear, AMonth, ADay); { get elements of date
FirstDate := EncodeDate(AYear, AMonth, 1); { date of the first }

FMonthOffset := 2 - DayOfWeek(FirstDate); { generate the offset into the grid }
end;
Refresh; { always repaint the control }

end;
C u s t o m i z i n g a g r i d 11-9

F i l l i n g i n t h e c e l l s
2 Add statements to the constructor and the SetCalendarDate and SetDateElement
methods that call the new update method whenever the date changes:

constructor TSampleCalendar.Create(AOwner: TComponent);
begin

inherited Create(AOwner); { this is already here }
ƒ { other initializations here }
UpdateCalendar; { set proper offset }

end;
procedure TSampleCalendar.SetCalendarDate(Value: TDateTime);
begin

FDate := Value; { this was already here }
UpdateCalendar; { this previously called Refresh }

end;
procedure TSampleCalendar.SetDateElement(Index: Integer; Value: Integer);
begin

ƒ
FDate := EncodeDate(AYear, AMonth, ADay); { encode the modified date
UpdateCalendar; { this previously called Refresh }

end;
end;

3 Add a method to the calendar that returns the day number when passed the row
and column coordinates of a cell:

function TSampleCalendar.DayNum(ACol, ARow: Integer): Integer;
begin

Result := FMonthOffset + ACol + (ARow - 1) * 7; { calculate day for this cell }
if (Result < 1) or (Result > MonthDays[IsLeapYear(Year), Month]) then

Result := -1; { return -1 if invalid }
end;

Remember to add the declaration of DayNum to the component’s type declaration.

4 Now that you can calculate where the dates go, you can update DrawCell to fill in
the dates:

procedure TCalendar.DrawCell(ACol, ARow: Longint; ARect: TRect; AState: TGridDrawState);
var

TheText: string;
TempDay: Integer;

begin
if ARow = 0 then { if this is the header row ...}

TheText := ShortDayNames[ACol + 1] { just use the day name }
else begin

TheText := ''; { blank cell is the default }
TempDay := DayNum(ACol, ARow); { get number for this cell }
if TempDay <> -1 then TheText := IntToStr(TempDay); { use the number if valid }

end;
with ARect, Canvas do

TextRect(ARect, Left + (Right - Left - TextWidth(TheText)) div 2,
Top + (Bottom - Top - TextHeight(TheText)) div 2, TheText);

end;

Now if you reinstall the calendar component and place one on a form, you will see
the proper information for the current month.
11-10 C o m p o n e n t W r i t e r ’ s G u i d e

N a v i g a t i n g m o n t h s a n d y e a r s
Selecting the current day
Now that you have numbers in the calendar cells, it makes sense to move the
selection highlighting to the cell containing the current day. By default, the selection
starts on the top left cell, so you need to set the Row and Column properties both
when constructing the calendar initially and when the date changes.

To set the selection on the current day, change the UpdateCalendar method to set Row
and Column before calling Refresh:

procedure TSampleCalendar.UpdateCalendar;
begin

if FDate <> 0 then
begin

ƒ { existing statements to set FMonthOffset }
Row := (ADay - FMonthOffset) div 7 + 1;
Col := (ADay - FMonthOffset) mod 7;

end;
Refresh; { this is already here }

end;

Note that you are now reusing the ADay variable previously set by decoding the
date.

Navigating months and years
Properties are useful for manipulating components, especially at design time. But
sometimes there are types of manipulations that are so common or natural, often
involving more than one property, that it makes sense to provide methods to handle
them. One example of such a natural manipulation is a “next month” feature for a
calendar. Handling the wrapping around of months and incrementing of years is
simple, but very convenient for the developer using the component.

The only drawback to encapsulating common manipulations into methods is that
methods are only available at runtime. However, such manipulations are generally
only cumbersome when performed repeatedly, and that is fairly rare at design time.

For the calendar, add the following four methods for next and previous month and
year. Each of these methods uses the IncMonth function in a slightly different manner
to increment or decrement CalendarDate, by increments of a month or a year.

procedure TCalendar.NextMonth;
begin

CalendarDate := IncMonth(CalendarDate, 1);
end;

procedure TCalendar.PrevMonth;
begin

CalendarDate := IncMonth(CalendarDate, -1);
end;

procedure TCalendar.NextYear;
begin

CalendarDate := IncMonth(CalendarDate, 12);
end;
C u s t o m i z i n g a g r i d 11-11

N a v i g a t i n g d a y s
procedure TCalendar.PrevYear;
begin

CalendarDate := DecodeDate(IncMonth(CalendarDate, -12);
end;

Be sure to add the declarations of the new methods to the class declaration.

Now when you create an application that uses the calendar component, you can
easily implement browsing through months or years.

Navigating days
Within a given month, there are two obvious ways to navigate among the days. The
first is to use the arrow keys, and the other is to respond to clicks of the mouse. The
standard grid component handles both as if they were clicks. That is, an arrow
movement is treated like a click on an adjacent cell.

The process of navigating days consists of

• Moving the selection
• Providing an OnChange event
• Excluding blank cells

Moving the selection

The inherited behavior of a grid handles moving the selection in response to either
arrow keys or clicks, but if you want to change the selected day, you need to modify
that default behavior.

To handle movements within the calendar, override the Click method of the grid.

When you override a method such as Click that is tied in with user interactions, you
will nearly always include a call to the inherited method, so as not to lose the
standard behavior.

The following is an overridden Click method for the calendar grid. Be sure to add the
declaration of Click to TSampleCalendar, including the override directive afterward.

procedure TSampleCalendar.Click;
var

TempDay: Integer;
begin

inherited Click; { remember to call the inherited method! }
TempDay := DayNum(Col, Row); { get the day number for the clicked cell }
if TempDay <> -1 then Day := TempDay; { change day if valid }

end;
11-12 C o m p o n e n t W r i t e r ’ s G u i d e

N a v i g a t i n g d a y s
Providing an OnChange event

Now that users of the calendar can change the date within the calendar, it makes
sense to allow applications to respond to those changes.

Add an OnChange event to TSampleCalendar.

1 Declare the event, a field to store the event, and a dynamic method to call the
event:

type
TSampleCalendar = class(TCustomGrid)
private

FOnChange: TNotifyEvent;
protected

procedure Change; dynamic;
ƒ
published

property OnChange: TNotifyEvent read FOnChange write FOnChange;
ƒ

2 Write the Change method:

procedure TSampleCalendar.Change;
begin

if Assigned(FOnChange) then FOnChange(Self);
end;

3 Add statements calling Change to the end of the SetCalendarDate and
SetDateElement methods:

procedure TSampleCalendar.SetCalendarDate(Value: TDateTime);
begin

FDate := Value;
UpdateCalendar;
Change; { this is the only new statement }

end;
procedure TSampleCalendar.SetDateElement(Index: Integer; Value: Integer);
begin

ƒ { many statements setting element values }
FDate := EncodeDate(AYear, AMonth, ADay);
UpdateCalendar;
Change; { this is new }

end;
end;

Applications using the calendar component can now respond to changes in the date
of the component by attaching handlers to the OnChange event.
C u s t o m i z i n g a g r i d 11-13

N a v i g a t i n g d a y s
Excluding blank cells

As the calendar is written, the user can select a blank cell, but the date does not
change. It makes sense, then, to disallow selection of the blank cells.

To control whether a given cell is selectable, override the SelectCell method of the
grid.

SelectCell is a function that takes a column and row as parameters, and returns a
Boolean value indicating whether the specified cell is selectable.

You can override SelectCell to return False if the cell does not contain a valid date:

function TSampleCalendar.SelectCell(ACol, ARow: Longint): Boolean;
begin

if DayNum(ACol, ARow) = -1 then Result := False { -1 indicates invalid date }
else Result := inherited SelectCell(ACol, ARow); { otherwise, use inherited value }

end;

Now if the user clicks a blank cell or tries to move to one with an arrow key, the
calendar leaves the current cell selected.
11-14 C o m p o n e n t W r i t e r ’ s G u i d e

C h a p t e r

12
Chapter12Making a control data aware

When working with database connections, it is often convenient to have controls that
are data aware. That is, the application can establish a link between the control and
some part of a database. Delphi includes data-aware labels, edit boxes, list boxes,
combo boxes, lookup controls, and grids. You can also make your own controls data
aware. For more information about using data-aware controls, see Chapter 19,
“Using data controls,” of the Developer’s Guide.

There are several degrees of data awareness. The simplest is read-only data
awareness, or data browsing, the ability to reflect the current state of a database. More
complicated is editable data awareness, or data editing, where the user can edit the
values in the database by manipulating the control. Note also that the degree of
involvement with the database can vary, from the simplest case, a link with a single
field, to more complex cases, such as multiple-record controls.

This chapter first illustrates the simplest case, making a read-only control that links
to a single field in a dataset. The specific control used will be the TSampleCalendar
calendar created in Chapter 11, “Customizing a grid.” You can also use the standard
calendar control on the Samples page of the Component palette, TCalendar (VCL
only).

The chapter then continues with an explanation of how to make the new data
browsing control a data editing control.
M a k i n g a c o n t r o l d a t a a w a r e 12-1

C r e a t i n g a d a t a b r o w s i n g c o n t r o l
Creating a data browsing control
Creating a data-aware calendar control, whether it is a read-only control or one in
which the user can change the underlying data in the dataset, involves the following
steps:

• Creating and registering the component.
• Adding the data link.
• Responding to data changes.

Creating and registering the component

You create every component the same way: create a unit, derive a component class,
register it, compile it, and install it on the Component palette. This process is outlined
in “Creating a new component” on page 1-8.

For this example, follow the general procedure for creating a component, with these
specifics:

• Call the component’s unit DBCal.

• Derive a new component class called TDBCalendar, descended from the
component TSampleCalendar. Chapter 11, “Customizing a grid,” shows you how to
create the TSampleCalendar component.

• Register TDBCalendar on the Samples page (or other page in CLX applications) of
the Component palette.

The resulting unit descending from TCustomGrid in a VCL application should look
like this:

unit CalSamp;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs, Grids;

type
TSampleCalendar = class(TCustomGrid)
end;

procedure Register;

implementation

procedure Register;
begin

RegisterComponents('Samples', [TSampleCalendar]);
end;

end.

Note If descending from the CLX version of TCustomGrid, only the uses clause would
differ showing CLX units instead.
12-2 C o m p o n e n t W r i t e r ’ s G u i d e

C r e a t i n g a d a t a b r o w s i n g c o n t r o l
If you install the calendar component now, you will find that it appears on the
Samples page. The only properties available are the most basic control properties.
The next step is to make some of the more specialized properties available to users of
the calendar.

Note While you can install the sample calendar component you have just compiled, do not
try to place it on a form yet. The TCustomGrid component has an abstract DrawCell
method that must be redeclared before instance objects can be created. Overriding
the DrawCell method is described in “Filling in the cells” on page 11-6.

Note Names and locations of some of the units differ in CLX applications. For example, the
Controls unit is QControls and there is no Windows or Messages unit in CLX
applications.

The resulting unit should look like this:

unit DBCal;

interface

uses SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Grids, Calendar;

type
TDBCalendar = class(TSampleCalendar)
end;

procedure Register;

implementation

procedure Register;
begin

RegisterComponents('Samples', [TDBCalendar]);
end;

end.

You can now proceed with making the new calendar a data browser.

Making the control read-only

Because this data calendar will be read-only with respect to the data, it makes sense
to make the control itself read-only, so users will not make changes within the control
and expect them to be reflected in the database.

Making the calendar read-only involves:

• Adding the ReadOnly property.
• Allowing needed updates.

Note Note that if you started with the TCalendar component from Delphi’s Samples page
instead of TSampleCalendar, it already has a ReadOnly property, so you can skip these
steps.
M a k i n g a c o n t r o l d a t a a w a r e 12-3

C r e a t i n g a d a t a b r o w s i n g c o n t r o l
Adding the ReadOnly property
By adding a ReadOnly property, you will provide a way to make the control read-
only at design time. When that property is set to True, you can make all cells in the
control unable to be selected.

1 Add the property declaration and a private field to hold the value:

type
TDBCalendar = class(TSampleCalendar)
private

FReadOnly: Boolean; { field for internal storage }
public

constructor Create(AOwner: TComponent); override; { must override to set default }
published

property ReadOnly: Boolean read FReadOnly write FReadOnly default True;
end;

ƒ
constructor TDBCalendar.Create(AOwner: TComponent);
begin

inherited Create(AOwner); { always call the inherited constructor! }
FReadOnly := True; { set the default value }

end;

2 Override the SelectCell method to disallow selection if the control is read-only. Use
of SelectCell is explained in “Excluding blank cells” on page 11-14.

function TDBCalendar.SelectCell(ACol, ARow: Longint): Boolean;
begin

if FReadOnly then Result := False { cannot select if read only }
else Result := inherited SelectCell(ACol, ARow); { otherwise, use inherited method }

end;

Remember to add the declaration of SelectCell to the type declaration of TDBCalendar,
and append the override directive.

If you now add the calendar to a form, you will find that the component ignores
clicks and keystrokes. It also fails to update the selection position when you change
the date.

Allowing needed updates
The read-only calendar uses the SelectCell method for all kinds of changes, including
setting the Row and Col properties. The UpdateCalendar method sets Row and Col
every time the date changes, but because SelectCell disallows changes, the selection
remains in place, even though the date changes.
12-4 C o m p o n e n t W r i t e r ’ s G u i d e

C r e a t i n g a d a t a b r o w s i n g c o n t r o l
To get around this absolute prohibition on changes, you can add an internal Boolean
flag to the calendar, and permit changes when that flag is set to True:

type
TDBCalendar = class(TSampleCalendar)
private

FUpdating: Boolean; { private flag for internal use }
protected

function SelectCell(ACol, ARow: Longint): Boolean; override;
public

procedure UpdateCalendar; override; { remember the override directive }
end;

ƒ
function TDBCalendar.SelectCell(ACol, ARow: Longint): Boolean;
begin

if (not FUpdating) and FReadOnly then Result := False { allow select if updating }
else Result := inherited SelectCell(ACol, ARow); { otherwise, use inherited method }

end;

procedure TDBCalendar.UpdateCalendar;
begin

FUpdating := True; { set flag to allow updates }
try

inherited UpdateCalendar; { update as usual }
finally

FUpdating := False; { always clear the flag }
end;

end;

The calendar still disallows user changes, but now correctly reflects changes made in
the date by changing the date properties. Now that you have a true read-only
calendar control, you are ready to add the data browsing ability.

Adding the data link

The connection between a control and a database is handled by a class called a data
link. The data link class that connects a control with a single field in a database is
TFieldDataLink. There are also data links for entire tables.

A data-aware control owns its data link class. That is, the control has the
responsibility for constructing and destroying the data link. For details on
management of owned classes, see Chapter 10, “Creating a graphic control.”

Establishing a data link as an owned class requires these three steps:

1 Declaring the class field.

2 Declaring the access properties.

3 Initializing the data link.
M a k i n g a c o n t r o l d a t a a w a r e 12-5

C r e a t i n g a d a t a b r o w s i n g c o n t r o l
Declaring the class field
A component needs a field for each of its owned classes, as explained in “Declaring
the class fields” on page 10-6. In this case, the calendar needs a field of type
TFieldDataLink for its data link.

Declare a field for the data link in the calendar:

type
TDBCalendar = class(TSampleCalendar)
private

FDataLink: TFieldDataLink;
ƒ
end;

Before you can compile the application, you need to add DB and DBCtrls to the unit’s
uses clause.

Declaring the access properties
Every data-aware control has a DataSource property that specifies which data source
class in the application provides the data to the control. In addition, a control that
accesses a single field needs a DataField property to specify that field in the data
source.

Unlike the access properties for the owned classes in the example in Chapter 10,
“Creating a graphic control,” these access properties do not provide access to the
owned classes themselves, but rather to corresponding properties in the owned class.
That is, you will create properties that enable the control and its data link to share the
same data source and field.

Declare the DataSource and DataField properties and their implementation methods,
then write the methods as “pass-through” methods to the corresponding properties
of the data link class:

An example of declaring access properties
Declare the DataSource and DataField properties and their implementation methods,
then write the methods as “pass-through” methods to the corresponding properties
of the data link class:

type
TDBCalendar = class(TSampleCalendar)
private { implementation methods are private }

ƒ
function GetDataField: string; { returns the name of the data field }
function GetDataSource: TDataSource; { returns reference to the data source }
procedure SetDataField(const Value: string); { assigns name of data field }
procedure SetDataSource(Value: TDataSource); { assigns new data source }

published { make properties available at design time }
property DataField: string read GetDataField write SetDataField;
property DataSource: TDataSource read GetDataSource write SetDataSource;

end;
ƒ
function TDBCalendar.GetDataField: string;
12-6 C o m p o n e n t W r i t e r ’ s G u i d e

C r e a t i n g a d a t a b r o w s i n g c o n t r o l
begin
Result := FDataLink.FieldName;

end;

function TDBCalendar.GetDataSource: TDataSource;
begin

Result := FDataLink.DataSource;
end;

procedure TDBCalendar.SetDataField(const Value: string);
begin

FDataLink.FieldName := Value;
end;

procedure TDBCalendar.SetDataSource(Value: TDataSource);
begin

FDataLink.DataSource := Value;
end;

Now that you have established the links between the calendar and its data link, there
is one more important step. You must construct the data link class when the calendar
control is constructed, and destroy the data link before destroying the calendar.

Initializing the data link
A data-aware control needs access to its data link throughout its existence, so it must
construct the data link object as part of its own constructor, and destroy the data link
object before it is itself destroyed.

Override the Create and Destroy methods of the calendar to construct and destroy the
datalink object, respectively:

type
TDBCalendar = class(TSampleCalendar)
public { constructors and destructors are always public }

constructor Create(AOwner: TComponent); override;
destructor Destroy; override;
ƒ

end;
ƒ
constructor TDBCalendar.Create(AOwner: TComponent);
begin

inherited Create(AOwner); { always call the inherited constructor first }
FDataLink := TFieldDataLink.Create; { construct the datalink object }
FDataLink.Control := self; {let the datalink know about the calendar }
FReadOnly := True; { this is already here }

end;

destructor TDBCalendar.Destroy;
begin

FDataLink.Free; { always destroy owned objects first... }
inherited Destroy; { ...then call inherited destructor }

end;

Now you have a complete data link, but you have not yet told the control what data
it should read from the linked field. The next section explains how to do that.
M a k i n g a c o n t r o l d a t a a w a r e 12-7

C r e a t i n g a d a t a b r o w s i n g c o n t r o l
Responding to data changes

Once a control has a data link and properties to specify the data source and data field,
it needs to respond to changes in the data in that field, either because of a move to a
different record or because of a change made to that field.

Data link classes all have events named OnDataChange. When the data source
indicates a change in its data, the data link object calls any event handler attached to
its OnDataChange event.

To update a control in response to data changes, attach a handler to the data link’s
OnDataChange event.

In this case, you will add a method to the calendar, then designate it as the handler
for the data link’s OnDataChange.

Declare and implement the DataChange method, then assign it to the data link’s
OnDataChange event in the constructor. In the destructor, detach the OnDataChange
handler before destroying the object.

type
TDBCalendar = class(TSampleCalendar)
private { this is an internal detail, so make it private }

procedure DataChange(Sender: TObject); { must have proper parameters for event }
end;

ƒ

constructor TDBCalendar.Create(AOwner: TComponent);
begin

inherited Create(AOwner); { always call the inherited constructor first }
FReadOnly := True; { this is already here }
FDataLink := TFieldDataLink.Create; { construct the datalink object }
FDataLink.OnDataChange := DataChange; { attach handler to event }

end;

destructor TDBCalendar.Destroy;
begin

FDataLink.OnDataChange := nil; { detach handler before destroying object }
FDataLink.Free; { always destroy owned objects first... }
inherited Destroy; { ...then call inherited destructor }

end;

procedure TDBCalendar.DataChange(Sender: TObject);
begin

if FDataLink.Field = nil then { if there is no field assigned... }
CalendarDate := 0 { ...set to invalid date }

else CalendarDate := FDataLink.Field.AsDateTime; { otherwise, set calendar to the date }
end;

You now have a data browsing control.
12-8 C o m p o n e n t W r i t e r ’ s G u i d e

C r e a t i n g a d a t a e d i t i n g c o n t r o l
Creating a data editing control
When you create a data editing control, you create and register the component and
add the data link just as you do for a data browsing control. You also respond to data
changes in the underlying field in a similar manner, but you must handle a few more
issues.

For example, you probably want your control to respond to both key and mouse
events. Your control must respond when the user changes the contents of the control.
When the user exits the control, you want the changes made in the control to be
reflected in the dataset.

The data editing control described here is the same calendar control described in the
first part of the chapter. The control is modified so that it can edit as well as view the
data in its linked field.

Modifying the existing control to make it a data editing control involves:

• Changing the default value of FReadOnly.
• Handling mouse-down and key-down messages.
• Updating the field data link class.
• Modifying the Change method.
• Updating the dataset.

Changing the default value of FReadOnly

Because this is a data editing control, the ReadOnly property should be set to False by
default. To make the ReadOnly property False, change the value of FReadOnly in the
constructor:

constructor TDBCalendar.Create(AOwner: TComponent);
begin

ƒ
FReadOnly := False; { set the default value }
ƒ

end;

Handling mouse-down and key-down messages

When the user of the control begins interacting with it, the control receives either
mouse-down messages (WM_LBUTTONDOWN, WM_MBUTTONDOWN, or
WM_RBUTTONDOWN) or a key-down message (WM_KEYDOWN) from Windows.
To enable a control to respond to these messages, you must write handlers that
respond to these messages.

• Responding to mouse-down messages.
• Responding to key-down messages.

Note If writing CLX applications, notification is from the operating system in the form of
system events. For information on writing components that respond to system and
widget events, see “Responding to system notifications using CLX” on page 7-10.
M a k i n g a c o n t r o l d a t a a w a r e 12-9

C r e a t i n g a d a t a e d i t i n g c o n t r o l
Responding to mouse-down messages
A MouseDown method is a protected method for a control’s OnMouseDown event. The
control itself calls MouseDown in response to a Windows mouse-down message.
When you override the inherited MouseDown method, you can include code that
provides other responses in addition to calling the OnMouseDown event.

To override MouseDown, add the MouseDown method to the TDBCalendar class:

type
TDBCalendar = class(TSampleCalendar);
ƒ

protected
procedure MouseDown(Button: TButton, Shift: TShiftState, X: Integer, Y: Integer);

override;
ƒ

end;

procedure TDBCalendar.MouseDown(Button: TButton; Shift: TShiftState; X, Y: Integer);
var

MyMouseDown: TMouseEvent;
begin

if not ReadOnly and FDataLink.Edit then
inherited MouseDown(Button, Shift, X, Y)

else
begin

MyMouseDown := OnMouseDown;
if Assigned(MyMouseDown then MyMouseDown(Self, Button, Shift, X, Y);

end;
end;

When MouseDown responds to a mouse-down message, the inherited MouseDown
method is called only if the control’s ReadOnly property is False and the data link
object is in edit mode, which means the field can be edited. If the field cannot be
edited, the code the programmer put in the OnMouseDown event handler, if one
exists, is executed.

Responding to key-down messages
A KeyDown method is a protected method for a control’s OnKeyDown event. The
control itself calls KeyDown in response to a Windows key-down message. When
overriding the inherited KeyDown method, you can include code that provides other
responses in addition to calling the OnKeyDown event.

To override KeyDown, follow these steps:

1 Add a KeyDown method to the TDBCalendar class:

type
TDBCalendar = class(TSampleCalendar);
ƒ

protected
procedure KeyDown(var Key: Word; Shift: TShiftState; X: Integer; Y: Integer);

override;
ƒ

end;
12-10 C o m p o n e n t W r i t e r ’ s G u i d e

C r e a t i n g a d a t a e d i t i n g c o n t r o l
2 Implement the KeyDown method:

procedure KeyDown(var Key: Word; Shift: TShiftState);
var

MyKeyDown: TKeyEvent;
begin

if not ReadOnly and (Key in [VK_UP, VK_DOWN, VK_LEFT, VK_RIGHT, VK_END,
VK_HOME, VK_PRIOR, VK_NEXT]) and FDataLink.Edit then
inherited KeyDown(Key, Shift)

else
begin

MyKeyDown := OnKeyDown;
if Assigned(MyKeyDown) then MyKeyDown(Self, Key, Shift);

end;
end;

When KeyDown responds to a mouse-down message, the inherited KeyDown method
is called only if the control’s ReadOnly property is False, the key pressed is one of the
cursor control keys, and the data link object is in edit mode, which means the field
can be edited. If the field cannot be edited or some other key is pressed, the code the
programmer put in the OnKeyDown event handler, if one exists, is executed.

Updating the field data link class

There are two types of data changes:

• A change in a field value that must be reflected in the data-aware control.
• A change in the data-aware control that must be reflected in the field value.

The TDBCalendar component already has a DataChange method that handles a change
in the field’s value in the dataset by assigning that value to the CalendarDate property.
The DataChange method is the handler for the OnDataChange event. So the calendar
component can handle the first type of data change.

Similarly, the field data link class also has an OnUpdateData event that occurs as the
user of the control modifies the contents of the data-aware control. The calendar
control has a UpdateData method that becomes the event handler for the
OnUpdateData event. UpdateData assigns the changed value in the data-aware control
to the field data link.

1 To reflect a change made to the value in the calendar in the field value, add an
UpdateData method to the private section of the calendar component:

type
TDBCalendar = class(TSampleCalendar);
private

procedure UpdateData(Sender: TObject);
ƒ

end;
M a k i n g a c o n t r o l d a t a a w a r e 12-11

C r e a t i n g a d a t a e d i t i n g c o n t r o l
2 Implement the UpdateData method:

procedure UpdateData(Sender: TObject);
begin

FDataLink.Field.AsDateTime := CalendarDate; { set field link to calendar date }
end;

3 Within the constructor for TDBCalendar, assign the UpdateData method to the
OnUpdateData event:

constructor TDBCalendar.Create(AOwner: TComponent);
begin

inherited Create(AOwner);
FReadOnly := True;
FDataLink := TFieldDataLink.Create;
FDataLink.OnDataChange := DataChange;
FDataLink.OnUpdateData := UpdateData;

end;

Modifying the Change method

The Change method of the TDBCalendar is called whenever a new date value is set.
Change calls the OnChange event handler, if one exists. The component user can write
code in the OnChange event handler to respond to changes in the date.

When the calendar date changes, the underlying dataset should be notified that a
change has occurred. You can do that by overriding the Change method and adding
one more line of code. These are the steps to follow:

1 Add a new Change method to the TDBCalendar component:

type
TDBCalendar = class(TSampleCalendar);
private

procedure Change; override;
ƒ

end;

2 Write the Change method, calling the Modified method that informs the dataset the
data has changed, then call the inherited Change method:

procedure TDBCalendar.Change;
begin

FDataLink.Modified; { call the Modified method }
inherited Change; { call the inherited Change method }

end;
12-12 C o m p o n e n t W r i t e r ’ s G u i d e

C r e a t i n g a d a t a e d i t i n g c o n t r o l
Updating the dataset

So far, a change within the data-aware control has changed values in the field data
link class. The final step in creating a data editing control is to update the dataset
with the new value. This should happen after the person changing the value in the
data-aware control exits the control by clicking outside the control or pressing the Tab
key. This process works differently between VCL and CLX applications.

Note VCL applications define message control IDs for operations on controls. For example,
the CM_EXIT message is sent to the control when the user exits the control. You can
write message handlers that respond to the message. In this case, when the user exits
the control, the CMExit method, the message handler for CM_EXIT, responds by
updating the record in the dataset with the changed values in the field data link class.
For more information about message handlers, see Chapter 7, “Handling messages
and system notifications.”

To update the dataset within a message handler, follow these steps:

1 Add the message handler to the TDBCalendar component:

type
TDBCalendar = class(TSampleCalendar);
private

procedure CMExit(var Message: TWMNoParams); message CM_EXIT;
ƒ

end;

2 Implement the CMExit method so it looks like this:

procedure TDBCalendar.CMExit(var Message: TWMNoParams);
begin

try
FDataLink.UpdateRecord; { tell data link to update database }

except
on Exception do SetFocus; { if it failed, don't let focus leave }

end;
inherited;

end;

Note In CLX applications, TWidgetControl has a protected DoExit method that is called
when input focus shifts away from the control. This method calls the event handler
for the OnExit event. You can override this method to update the record in the
dataset before generating the OnExit event handler.
M a k i n g a c o n t r o l d a t a a w a r e 12-13

C r e a t i n g a d a t a e d i t i n g c o n t r o l
To update the dataset when the user exits the control, follow these steps:

1 Add an override for the DoExit method to the TDBCalendar component:

type
TDBCalendar = class(TSampleCalendar);
private

procedure DoExit; override;
ƒ

end;

2 Implement the DoExit method so it looks like this:

procedure TDBCalendar.CMExit(var Message: TWMNoParams);
begin

try
FDataLink.UpdateRecord; { tell data link to update database }

except
on Exception do SetFocus; { if it failed, don't let focus leave }

end;
inherited; { let the inherited method generate an OnExit event }

end;
12-14 C o m p o n e n t W r i t e r ’ s G u i d e

C h a p t e r

13
Chapter13Making a dialog box a component

You will find it convenient to make a frequently used dialog box into a component
that you add to the Component palette. Your dialog box components will work just
like the components that represent the standard common dialog boxes. The goal is to
create a simple component that a user can add to a project and set properties for at
design time.

Making a dialog box a component requires these steps:

1 Defining the component interface

2 Creating and registering the component

3 Creating the component interface

4 Testing the component

The Delphi “wrapper” component associated with the dialog box creates and
executes the dialog box at runtime, passing along the data the user specified. The
dialog-box component is therefore both reusable and customizable.

In this chapter, you will see how to create a wrapper component around the generic
About Box form provided in the Delphi Object Repository.

Note Copy the files ABOUT.PAS and ABOUT.DFM into your working directory.

There are not many special considerations for designing a dialog box that will be
wrapped into a component. Nearly any form can operate as a dialog box in this
context.
M a k i n g a d i a l o g b o x a c o m p o n e n t 13-1

D e f i n i n g t h e c o m p o n e n t i n t e r f a c e
Defining the component interface
Before you can create the component for your dialog box, you need to decide how
you want developers to use it. You create an interface between your dialog box and
applications that use it.

For example, look at the properties for the common dialog box components. They
enable the developer to set the initial state of the dialog box, such as the caption and
initial control settings, then read back any needed information after the dialog box
closes. There is no direct interaction with the individual controls in the dialog box,
just with the properties in the wrapper component.

The interface must therefore contain enough information that the dialog box form
can appear in the way the developer specifies and return any information the
application needs. You can think of the properties in the wrapper component as
being persistent data for a transient dialog box.

In the case of the About box, you do not need to return any information, so the
wrapper’s properties only have to contain the information needed to display the
About box properly. Because there are four separate fields in the About box that the
application might affect, you will provide four string-type properties to provide for
them.

Creating and registering the component
Creation of every component begins the same way: create a unit, derive a component
class, register it, compile it, and install it on the component palette. This process is
outlined in “Creating a new component” on page 1-8.

For this example, follow the general procedure for creating a component, with these
specifics:

• Call the component’s unit AboutDlg.
• Derive a new component type called TAboutBoxDlg, descended from TComponent.
• Register TAboutBoxDlg on the Samples page of the component palette.

The resulting unit should look like this:

unit AboutDlg;
interface
uses

SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls, Forms;
type

TAboutBoxDlg = class(TComponent)
end;

procedure Register;
implementation
procedure Register;
begin

RegisterComponents('Samples', [TAboutBoxDlg]);
end;
end.
13-2 C o m p o n e n t W r i t e r ’ s G u i d e

C r e a t i n g t h e c o m p o n e n t i n t e r f a c e
Note Names and locations of some of the units differ in CLX applications. For example, the
Controls unit is QControls in CLX applications.

The new component now has only the capabilities built into TComponent. It is the
simplest nonvisual component. In the next section, you will create the interface
between the component and the dialog box.

Creating the component interface
These are the steps to create the component interface:

1 Including the form unit.

2 Adding interface properties.

3 Adding the Execute method.

Including the form unit

For your wrapper component to initialize and display the wrapped dialog box, you
must add the form’s unit to the uses clause of the wrapper component’s unit.

Append About to the uses clause of the AboutDlg unit.

The uses clause now looks like this:

uses
Windows, SysUtils, Messages, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,

Forms,
About;

The form unit always declares an instance of the form class. In the case of the About
box, the form class is TAboutBox, and the About unit includes the following
declaration:

var
AboutBox: TAboutBox;

So by adding About to the uses clause, you make AboutBox available to the wrapper
component.

Adding interface properties

Before proceeding, decide on the properties your wrapper needs to enable
developers to use your dialog box as a component in their applications. Then, you
can add declarations for those properties to the component’s class declaration.

Properties in wrapper components are somewhat simpler than the properties you
would create if you were writing a regular component. Remember that in this case,
you are just creating some persistent data that the wrapper can pass back and forth to
the dialog box. By putting that data in the form of properties, you enable developers
to set data at design time so that the wrapper can pass it to the dialog box at runtime.
M a k i n g a d i a l o g b o x a c o m p o n e n t 13-3

C r e a t i n g t h e c o m p o n e n t i n t e r f a c e
Declaring an interface property requires two additions to the component’s class
declaration:

• A private class field, which is a variable the wrapper uses to store the value of the
property

• The published property declaration itself, which specifies the name of the
property and tells it which field to use for storage

Interface properties of this sort do not need access methods. They use direct access to
their stored data. By convention, the class field that stores the property’s value has
the same name as the property, but with the letter F in front. The field and the
property must be of the same type.

For example, to declare an integer-type interface property called Year, you would
declare it as follows:

type
TMyWrapper = class(TComponent)
private

FYear: Integer; { field to hold the Year-property data }
published

property Year: Integer read FYear write FYear; { property matched with storage }
end;

For this About box, you need four string-type properties—one each for the product
name, the version information, the copyright information, and any comments.

type
TAboutBoxDlg = class(TComponent)
private

FProductName, FVersion, FCopyright, FComments: string; { declare fields }

published
property ProductName: string read FProductName write FProductName;
property Version: string read FVersion write FVersion;
property Copyright: string read FCopyright write FCopyright;
property Comments: string read FComments write FComments;

end;

When you install the component onto the component palette and place the
component on a form, you will be able to set the properties, and those values will
automatically stay with the form. The wrapper can then use those values when
executing the wrapped dialog box.

Adding the Execute method

The final part of the component interface is a way to open the dialog box and return a
result when it closes. As with the common dialog box components, you use a boolean
function called Execute that returns True if the user clicks OK, or False if the user
cancels the dialog box.
13-4 C o m p o n e n t W r i t e r ’ s G u i d e

C r e a t i n g t h e c o m p o n e n t i n t e r f a c e
The declaration for the Execute method always looks like this:

type
TMyWrapper = class(TComponent)
public

function Execute: Boolean;
end;

The minimum implementation for Execute needs to construct the dialog box form,
show it as a modal dialog box, and return either True or False, depending on the
return value from ShowModal.

Here is the minimal Execute method for a dialog-box form of type TMyDialogBox:

function TMyWrapper.Execute: Boolean;
begin

DialogBox := TMyDialogBox.Create(Application); { construct the form }
try

Result := (DialogBox.ShowModal = IDOK); { execute; set result based on how closed }
finally

DialogBox.Free; { dispose of the form }
end;

end;

Note the use of a try..finally block to ensure that the application disposes of the
dialog box object even if an exception occurs. In general, whenever you construct an
object this way, you should use a try..finally block to protect the block of code and
make certain the application frees any resources it allocates.

In practice, there will be more code inside the try..finally block. Specifically, before
calling ShowModal, the wrapper will set some of the dialog box’s properties based on
the wrapper component’s interface properties. After ShowModal returns, the wrapper
will probably set some of its interface properties based on the outcome of the dialog
box execution.

In the case of the About box, you need to use the wrapper component’s four interface
properties to set the contents of the labels in the About box form. Because the About
box does not return any information to the application, there is no need to do
anything after calling ShowModal. Write the About box wrapper’s Execute method so
that it looks like this:

Within the public part of the TAboutDlg class, add the declaration for the Execute
method:

type
TAboutDlg = class(TComponent)

public
function Execute: Boolean;

end;

function TAboutBoxDlg.Execute: Boolean;
M a k i n g a d i a l o g b o x a c o m p o n e n t 13-5

T e s t i n g t h e c o m p o n e n t
begin
AboutBox := TAboutBox.Create(Application); { construct About box }
try

if ProductName = '' then { if product name's left blank... }
ProductName := Application.Title; { ...use application title instead }

AboutBox.ProductName.Caption := ProductName; { copy product name }
AboutBox.Version.Caption := Version; { copy version info }
AboutBox.Copyright.Caption := Copyright; { copy copyright info }
AboutBox.Comments.Caption := Comments; { copy comments }
AboutBox.Caption := 'About ' + ProductName; { set About-box caption }
with AboutBox do begin

ProgramIcon.Picture.Graphic := Application.Icon; { copy icon }
Result := (ShowModal = IDOK); { execute and set result }

end;
finally

AboutBox.Free; { dispose of About box }
end;

end;

Testing the component
Once you have installed the dialog box component, you can use it as you would any
of the common dialog boxes, by placing one on a form and executing it. A quick way
to test the About box is to add a command button to a form and execute the dialog
box when the user clicks the button.

For example, if you created an About dialog box, made it a component, and added it
to the Component palette, you can test it with the following steps:

1 Create a new project.

2 Place an About box component on the main form.

3 Place a command button on the form.

4 Double-click the command button to create an empty click-event handler.

5 In the click-event handler, type the following line of code:

AboutBoxDlg1.Execute;

6 Run the application.

When the main form appears, click the command button. The About box appears
with the default project icon and the name Project1. Choose OK to close the dialog
box.

You can further test the component by setting the various properties of the About
box component and again running the application.
13-6 C o m p o n e n t W r i t e r ’ s G u i d e

C h a p t e r

14
Chapter14Extending the IDE

You can extend and customize the IDE with your own menu items, tool bar buttons,
dynamic form-creation wizards, and more, using the Open Tools API (often
shortened to just Tools API). The Tools API is a suite of over 100 interfaces that
interact with and control the IDE, including the main menu, the tool bars, the main
action list and image list, the source editor’s internal buffers, keyboard macros and
bindings, forms and their components in the form editor, the debugger and the
process being debugged, code completion, the message view, and the To-Do list.

Using the Tools API is simply a matter of writing classes that implement certain
interfaces, and calling on services provided by other interfaces. Your Tools API code
must be compiled and loaded into the IDE at design-time as a design-time package or
in a DLL. Thus, writing a Tools API extension is somewhat like writing a property or
component editor. Before tackling this chapter, make sure you are familiar with the
basics of working with packages (Chapter 16, “Working with packages and
components,” of the Developer’s Guide) and registering components (Chapter 8,
“Making components available at design time”).

This chapter covers the following topics:

• Overview of the Tools API
• Writing a wizard class
• Obtaining Tools API services
• Working with files and editors
• Creating forms and projects
• Notifying a wizard of IDE events
E x t e n d i n g t h e I D E 14-1

O v e r v i e w o f t h e T o o l s A P I
Overview of the Tools API
All of the Tools API declarations reside in a single unit, ToolsAPI. To use the Tools
API, you typically use the designide package, which means you must build your
Tools API add-in as a design-time package or as a DLL that uses runtime packages.
For information about package and library issues, see “Installing the wizard
package” on page 14-4.

The main interface for writing a Tools API extension is IOTAWizard, so most IDE
add-ins are called wizards. C++Builder and Delphi wizards are, for the most part,
interoperable. You can write and compile a wizard in Delphi, then use it in
C++Builder, and vice versa. Interoperability works best with the same version
number, but it is also possible to write wizards so they can be used in future versions
of both products. To use the Tools API, you write wizard classes that implement one
or more of the interfaces defined in the ToolsAPI unit. A wizard makes use of
services that the Tools API provides. Each service is an interface that presents a set of
related functions. The implementation of the interface is hidden within the IDE. The
Tools API publishes only the interface, which you can use to write your wizards
without concerning yourself with the implementation of the interfaces. The various
services offer access to the source editor, form designer, debugger, and so on. The
section “Obtaining Tools API services” on page 14-5 examines this topic in depth.

The service and other interfaces fall into two basic categories. You can tell them apart
by the prefix used for the type name:

• The NTA (native tools API) grants direct access to actual IDE objects, such as the
IDE’s TMainMenu object. When using these interfaces, the wizard must use
Borland packages, which also means the wizard is tied to a specific version of the
IDE. The wizard can reside in a design-time package or in a DLL that uses runtime
packages.

• The OTA (open tools API) does not require packages and accesses the IDE only
through interfaces. In theory, you could write a wizard in any language that
supports COM-style interfaces, provided you can also work with the Delphi
calling conventions and Delphi types such as AnsiString. OTA interfaces do not
grant full access to the IDE, but almost all the functionality of the Tools API is
available through OTA interfaces. If a wizard uses only OTA interfaces, it is
possible to write a DLL that is not dependent on a specific version of the IDE.

The Tools API has two kinds of interfaces: those that you, the programmer, must
implement and those that the IDE implements. Most of the interfaces are in the latter
category: the interfaces define the capability of the IDE but hide the actual
implementation. The kinds of interfaces that you must implement fall into three
categories: wizards, notifiers, and creators:

• As mentioned earlier in this section, a wizard class implements the IOTAWizard
interface and possibly derived interfaces.

• A notifier is another kind of interface in the Tools API. The IDE uses notifiers to
call back to your wizard when something interesting happens. You write a class
that implements the notifier interface, register the notifier with the Tools API, and
the IDE calls back to your notifier object when the user opens a file, edits source
14-2 C o m p o n e n t W r i t e r ’ s G u i d e

W r i t i n g a w i z a r d c l a s s
code, modifies a form, starts a debugging session, and so on. Notifiers are covered
in “Notifying a wizard of IDE events” on page 14-15.

• A creator is another kind of interface that you must implement. The Tools API
uses creators to create new units, projects, or other files, or to open existing files.
The section “Creating forms and projects” on page 14-12 discusses this subject in
more depth.

Other important interfaces are modules and editors. A module interface represents
an open unit, which has one or more files. An editor interface represents an open file.
Different kinds of editor interfaces give you access to different aspects of the IDE: the
source editor for source files, the form designer for form files, and project resources
for a resource file. The section “Working with files and editors” on page 14-10 covers
these topics in more depth.

The following sections take you through the steps of writing a wizard. Refer to the
online help files for the complete details of each interface.

Writing a wizard class
There are four kinds of wizards, where the wizard kind depends on the interfaces
that the wizard class implements. Table 14.1 describes the four kinds of wizards.

The four kinds of wizards differ only in how the user invokes the wizard:

• A menu wizard is added to the IDE’s Help menu. When the user picks the menu
item, the IDE calls the wizard’s Execute function. Plain wizards offer much more
flexibility, so menu wizards are typically used only for prototypes and debugging.

• Form and project wizards are called repository wizards because they reside in the
Object Repository. The user invokes these wizards from the New Items dialog box.
The user can also see the wizards in the object repository (by choosing the Tools|
Repository menu item). The user can check the New Form checkbox for a form
wizard, which tells the IDE to invoke the form wizard when the user chooses the
File|New Form menu item. The user can also check the Main Form checkbox. This
tells the IDE to use the form wizard as the default form for a new application. The
user can check the New Project checkbox for a project wizard. When the user
chooses File|New Application, the IDE invokes the selected project wizard.

• The fourth kind of wizard is for situations that don’t fit into the other categories. A
plain wizard does not do anything automatically or by itself. Instead, you must
define how the wizard is invoked.

Table 14.1 The four kinds of wizards

Interface Description

IOTAFormWizard Typically creates a new unit, form, or other file

IOTAMenuWizard Automatically added to Help menu

IOTAProjectWizard Typically creates a new application or other project

IOTAWizard Miscellaneous wizard that doesn’t fit into other categories
E x t e n d i n g t h e I D E 14-3

W r i t i n g a w i z a r d c l a s s
The Tools API does not enforce any restrictions on wizards, such as requiring a
project wizard to create a project. You can just as easily write a project wizard to
create a form and a form wizard to create a project (if that’s something you really
want to do).

Implementing the wizard interfaces

Every wizard class must implement at least IOTAWizard, which requires
implementing its ancestors, too: IOTANotifier and IInterface. Form and project
wizards must implement all their ancestor interfaces, namely, IOTARepositoryWizard,
IOTAWizard, IOTANotifier, and IInterface.

Your implementation of IInterface must follow the normal rules for Delphi interfaces,
which are the same as the rules for COM interfaces. That is, QueryInterface performs
type casts, and _AddRef and _Release manage reference counting. You might want to
use a common base class to simplify writing wizard and notifier classes. For this
purpose, the ToolsAPI unit defines a class, TNotifierObject, which implements
IOTANotifier interface with empty method bodies.

Although wizards inherit from IOTANotifier, and must therefore implement all of its
functions, the IDE does not usually make use of those functions, so your
implementations can be empty (as they are in TNotifierObject). Thus, when you write
your wizard class, you need only declare and implement those interface methods
introduced by the wizard interfaces, accepting the TNotifierObject implementation of
IOTANotifier.

Installing the wizard package

As with any other design-time package, a wizard package must have a Register
function. (See Chapter 8, “Making components available at design time,” for details
about the Register function.) In the Register function, you can register any number of
wizards by calling RegisterPackageWizard, and passing a wizard object as the sole
argument, as shown below:

procedure Register;
begin

RegisterPackageWizard(MyWizard.Create);
RegisterPackageWizard(MyOtherWizard.Create);

end;

You can also register property editors, components, and so on, as part of the same
package.

Remember that a design-time package is part of the main Delphi application, which
means any form names must be unique throughout the entire application and all
other design-time packages. This is the main disadvantage to using packages: you
never know what someone else might name their forms.

During development, install the wizard package the way you would any other
design-time package: click the Install button in the package manager. The IDE will
14-4 C o m p o n e n t W r i t e r ’ s G u i d e

O b t a i n i n g T o o l s A P I s e r v i c e s
compile and link the package and attempt to load it. The IDE displays a dialog box
telling you whether it successfully loaded the package.

Obtaining Tools API services
To do anything useful, a wizard needs access to the IDE: its editors, windows,
menus, and so on. This is the role of the service interfaces. The Tools API includes
many services, such as action services to perform file actions, editor services to access
the source code editor, debugger services to access the debugger, and so on. Table
14.2 summarizes all the service interfaces.

To use a service interface, cast the BorlandIDEServices variable to the desired service
using the global Supports function, which is defined in the SysUtils unit. For
example,

procedure set_keystroke_debugging(debugging: Boolean);
var
 diag: IOTAKeyboardDiagnostics
begin
 if Supports(BorlandIDEServices, IOTAKeyboardDiagnostics, diag) then
 diag.KeyTracing := debugging;
end;

If your wizard needs to use a specific service often, you can keep a pointer to the
service as a data member of your wizard class.

Table 14.2 Tools API service interfaces

Interface Description

INTAServices Provides access to native IDE objects: main menu, action list,
image list, and tool bars.

IOTAActionServices Performs basic file actions: open, close, save, and reload a file.

IOTACodeCompletionServices Provides access to code completion, allowing a wizard to install
a custom code completion manager.

IOTADebuggerServices Provides access to debugger.

IOTAEditorServices Provides access to source code editor and its internal buffers.

IOTAKeyBindingServices Permits a wizard to register custom keyboard bindings.

IOTAKeyboardServices Provides access to keyboard macros and bindings.

IOTAKeyboardDiagnostics Toggle debugging of keystrokes.

IOTAMessageServices Provides access to message view.

IOTAModuleServices Provides access to open files.

IOTAPackageServices Queries the names of all installed packages and their
components.

IOTAServices Miscellaneous services.

IOTAToDoServices Provides access to the To-Do list, allowing a wizard to install a
custom To-Do manager.

IOTAToolsFilter Registers tools filter notifiers.

IOTAWizardServices Registers and unregisters wizards.
E x t e n d i n g t h e I D E 14-5

O b t a i n i n g T o o l s A P I s e r v i c e s
Using native IDE objects

Wizards have full access to the main menu, tool bars, action list, and image list of the
IDE. (Note that the IDE’s many context menus are not accessible through the Tools
API.) This section presents a simple example of how a wizard can use these native
IDE objects to interact with the IDE.

Using the INTAServices interface
The starting point for working with native IDE objects is the INTAServices interface.
Use this interface to add an image to the image list, an action to the action list, a menu
item to the main menu, and a button to a tool bar. You can tie the action to the menu
item and tool button. When the wizard is destroyed, it must clean up the objects it
creates, but it must not delete the image it added to the image list. Deleting an image
would scramble the indices for all images added after this wizard.

The wizard uses the actual TMainMenu, TActionList, TImageList, and TToolBar objects
from the IDE, so you can write code the way you would any other application. It also
means you have a lot of scope for crashing the IDE or otherwise disabling important
features, such as deleting the File menu.

Adding an image to the image list
Suppose you want to add a menu item to invoke your wizard. You also want to
enable the user to add a toolbar button that invokes the wizard. The first step is to
add an image to the IDE’s image list. The index of your image can then be used for
the action, which in turn is used by the menu item and toolbar button. Use the Image
Editor to create a resource file that contains a 16 by 16 bitmap resource. Add the
following code to your wizard’s constructor:

constructor MyWizard.Create;
var

Services: INTAServices;
Bmp: TBitmap;
ImageIndex: Integer;

begin
inherited;
Supports(BorlandIDEServices, INTAServices, Services);
{ Add an image to the image list. }
Bmp := TBitmap.Create;
Bmp.LoadFromResourceName(HInstance, 'Bitmap1');
ImageIndex := Services.AddMasked(Bmp, Bmp.TransparentColor,

'Tempest Software.intro wizard image');
Bmp.Free;

end;

Be sure to load the resource by the name or ID you specify in the resource file. You
must choose a color that will be interpreted as the background color for the image. If
you don’t want a background color, choose a color that does not exist in the bitmap.
14-6 C o m p o n e n t W r i t e r ’ s G u i d e

O b t a i n i n g T o o l s A P I s e r v i c e s
Adding an action to the action list
The image index is used to create an action, as shown below. The wizard uses the
OnExecute and OnUpdate events. A common scenario is for a wizard to use the
OnUpdate event to enable or disable the action. Be sure the OnUpdate event returns
quickly, or the user will notice that the IDE becomes sluggish after loading your
wizard. The action’s OnExecute event is similar to the wizard’s Execute method. If you
are using a menu item to invoke a form or project wizard, you might even want to
have OnExecute call Execute directly.

NewAction := TAction.Create(nil);
NewAction.ActionList := Services.ActionList;
NewAction.Caption := GetMenuText();
NewAction.Hint := 'Display a silly dialog box';
NewAction.ImageIndex := ImageIndex;
NewAction.OnUpdate := action_update;
NewAction.OnExecute := action_execute;

The menu item sets its Action property to the newly created action. The tricky part of
creating the menu item is knowing where to insert it. The example below looks for
the View menu, and inserts the new menu item as the first item in the View menu. (In
general, relying on absolute position is not a good idea: you never know when
another wizard might insert itself in the menu. Future versions of Delphi are likely to
reorder the menu, too. A better approach is to search the menu for a menu item with
a specific name. The simplistic approach is shown below for the sake of clarity.)

for I := 0 to Services.MainMenu.Items.Count - 1 do
begin

with Services.MainMenu.Items[I] do
begin

if CompareText(Name, 'ViewsMenu') = 0 then
begin

NewItem := TMenuItem.Create(nil);
NewItem.Action := NewAction;
Insert(0, NewItem);

end;
end;

end;

By adding the action to the IDE’s action list, the user can see the action when
customizing the toolbars. The user can select the action and add it as a button to any
toolbar. This causes a problem when your wizard is unloaded: all the tool buttons
end up with dangling pointers to the non-existent action and OnClick event handler.
To prevent access violations, your wizard must find all tool buttons that refer to its
action, and remove those buttons.
E x t e n d i n g t h e I D E 14-7

O b t a i n i n g T o o l s A P I s e r v i c e s
Deleting toolbar buttons
There is no convenient function for removing a button from a toolbar; you must send
the CM_CONTROLCHANGE message, where the first parameter is the control to
change, and the second parameter is zero to remove it or non-zero to add it to the
toolbar. After removing the toolbar buttons, the destructor deletes the action and
menu item. Deleting these items automatically removes them from the IDE’s
ActionList and MainMenu.

procedure remove_action (Action: TAction; ToolBar: TToolBar);
var

I: Integer;
Btn: TToolButton;

begin
for I := ToolBar.ButtonCount - 1 downto 0 do
begin

Btn := ToolBar.Buttons[I];
if Btn.Action = Action then
begin

{ Remove "Btn" from "ToolBar" }
ToolBar.Perform(CM_CONTROLCHANGE, WPARAM(Btn), 0);
Btn.Free;

end;
end;

end;

destructor MyWizard.Destroy;
var

Services: INTAServices;
Btn: TToolButton;

begin
Supports(BorlandIDEServices, INTAServices, Services);
{ Check all the toolbars, and remove any buttons that use this action. }

 remove_action(NewAction, Services.ToolBar[sCustomToolBar]);
 remove_action(NewAction, Services.ToolBar[sDesktopToolBar]);
 remove_action(NewAction, Services.ToolBar[sStandardToolBar]);
 remove_action(NewAction, Services.ToolBar[sDebugToolBar]);
 remove_action(NewAction, Services.ToolBar[sViewToolBar]);
 remove_action(NewAction, Services.ToolBar[sInternetToolBar]);

NewItem.Free;
NewAction.Free;

end;

As you can see from this simple example, you have a lot of flexibility in how your
wizard interacts with the IDE. With the flexibility comes responsibility, however. It is
easy to wind up with dangling pointers or other access violations. The next section
presents some tips to help you diagnose these kinds of problems.
14-8 C o m p o n e n t W r i t e r ’ s G u i d e

O b t a i n i n g T o o l s A P I s e r v i c e s
Debugging a wizard

When writing wizards that use the native tools API, you can write code that causes
the IDE to crash. It is also possible that you write a wizard that installs but does not
act the way you want it to. One of the challenges of working with design-time code is
debugging. It’s an easy problem to solve, however. Because the wizard is installed in
Delphi itself, you simply need to set the package’s Host Application to the Delphi
executable (delphi32.exe) from the Run|Parameters… menu item.

When you want (or need) to debug the package, don’t install it. Instead, choose Run|
Run from the menu bar. This starts up a new instance of Delphi. In the new instance,
install the already-compiled package by choosing Components|Install Package…
from the menu bar. Back in the original instance of Delphi, you should now see the
telltale blue dots that tell you where you can set breakpoints in the wizard source
code. (If not, double-check your compiler options to be sure you enabled debugging;
make sure you loaded the right package; and double-check the process modules to
make extra sure that you loaded the .bpl file you wanted to load.)

You cannot debug into the VCL, CLX, or RTL code this way, but you have full debug
capabilities for the wizard itself, which might be enough to tell what is going wrong.

Interface version numbers

If you look closely at the declarations of some of the interfaces, such as
IOTAMessageServices, you will see that they inherit from other interfaces with similar
names, such as IOTAMessageServices50, which inherits from IOTAMessageServices40.
This use of version numbers helps insulate your code from changes between releases
of Delphi.

The Tools API follows the basic principle of COM, namely, that an interface and its
GUID never change. If a new release adds features to an interface, the Tools API
declares a new interface that inherits from the old one. The GUID remains the same,
attached to the old, unchanged interface. The new interface gets a brand new GUID.
Old wizards that use the old GUIDs continue to work.

The Tools API also changes interface names to try to preserve source-code
compatibility. To see how this works, it is important to distinguish between the two
kinds of interfaces in the Tools API: Borland-implemented and user-implemented. If
the IDE implements the interface, the name stays with the most recent version of the
interface. The new functionality does not affect existing code. The old interfaces have
the old version number appended.

For a user-implemented interface, however, new member functions in the base
interface require new functions in your code. Therefore, the name tends to stick with
the old interface, and the new interface has a version number tacked onto the end.
E x t e n d i n g t h e I D E 14-9

W o r k i n g w i t h f i l e s a n d e d i t o r s
For example, consider the message services. Delphi 6 introduced a new feature:
message groups. Therefore, the basic message services interface required new
member functions. These functions were declared in a new interface class, which
retained the name IOTAMessageServices. The old message services interface was
renamed to IOTAMessageServices50 (for version 5). The GUID of the old
IOTAMessageServices is the same as the GUID of the new IOTAMessageServices50
because the member functions are the same.

Consider IOTAIDENotifier as an example of a user-implemented interface. Delphi 5
added new overloaded functions: AfterCompile and BeforeCompile. Existing code that
used IOTAIDENotifier did not need to change, but new code that required the new
functionality had to be modified to override the new functions inherited from
IOTAIDENotifier50. Version 6 did not add any more functions, so the current version
to use is IOTAIDENotifier50.

The rule of thumb is to use the most-derived class when writing new code. Leave the
source code alone if you are merely recompiling an existing wizard under a new
release of Delphi.

Working with files and editors
Before going any further, you need to understand how the Tools API works with
files. The main interface is IOTAModule. A module represents a set of logically related
open files. For example, a single module represents a single unit. The module, in
turn, has one or more editors, where each editor represents one file, such as the unit
source (.pas) or form (.dfm or .xfm) file. The editor interfaces reflect the internal state
of the IDE’s editors, so a wizard can see the modified code and forms that the user
sees, even if the user has not saved any changes.

Using module interfaces

To obtain a module interface, start with the module services (IOTAModuleServices).
You can query the module services for all open modules, look up a module from a
file name or form name, or open a file to obtain its module interface.

There are different kinds of modules for different kinds of files, such as projects,
resources, and type libraries. Cast a module interface to a specific kind of module
interface to learn whether the module is of that type. For example, one way to obtain
the current project group interface is as follows:

{ Return the current project group, or nil if there is no project group. }
function CurrentProjectGroup: IOTAProjectGroup;
var

I: Integer;
Svc: IOTAModuleServices;
Module: IOTAModule;

begin
Supports(BorlandIDEServices, IOTAModuleServices, Svc);
for I := 0 to Svc.ModuleCount - 1 do
14-10 C o m p o n e n t W r i t e r ’ s G u i d e

W o r k i n g w i t h f i l e s a n d e d i t o r s
begin
Module := Svc.Modules[I];
if Supports(Module, IOTAProjectGroup, Result) then

Exit;
end;
Result := nil;

end;

Using editor interfaces

Every module has at least one editor interface. Some modules have several editors,
such as a source (.pas) file and form description (.dfm) file. All editors implement the
IOTAEditor interface; cast the editor to a specific type to learn what kind of editor it
is. For example, to obtain the form editor interface for a unit, you can do the
following:

{ Return the form editor for a module, or nil if the unit has no form. }
function GetFormEditor(Module: IOTAModule): IOTAFormEditor;
var

I: Integer;
Editor: IOTAEditor;

begin
for I := 0 to Module.ModuleFileCount - 1 do
begin

Editor := Module.ModuleFileEditors[I];
if Supports(Editor, IOTAFormEditor, Result) then

Exit;
end;
Result := nil;

end;

The editor interfaces give you access to the editor’s internal state. You can examine
the source code or components that the user is editing, make changes to the source
code, components, or properties, change the selection in the source and form editors,
and carry out almost any editor action that the end user can perform.

Using a form editor interface, a wizard can access all the components on the form.
Each component (including the root form or data module) has an associate
IOTAComponent interface. A wizard can examine or change most of the component’s
properties. If you need complete control over the component, you can cast the
IOTAComponent interface to INTAComponent. The native component interface enables
your wizard to access the TComponent pointer directly. This is important if you need
to read or modify a class-type property, such as TFont, which is possible only
through NTA-style interfaces.
E x t e n d i n g t h e I D E 14-11

C r e a t i n g f o r m s a n d p r o j e c t s
Creating forms and projects
Delphi comes with a number of form and project wizards already installed, and you
can write your own. The Object Repository lets you create static templates that can be
used in a project, but a wizard offers much more power because it is dynamic. The
wizard can prompt the user and create different kinds of files depending on the
user’s responses. This section describes how to write a form or project wizard.

Creating modules

A form or project wizard typically creates one or more new files. Instead of real files,
however, it is best to create unnamed, unsaved modules. When the user saves them,
the IDE prompts the user for a file name. A wizard uses a creator object to create such
modules.

A creator class implements a creator interface, which inherits from IOTACreator. The
wizard passes a creator object to the module service’s CreateModule method, and the
IDE calls back to the creator object for the parameters it needs to create the module.

For example, a form wizard that creates a new form typically implements GetExisting
to return false and GetUnnamed to return true. This creates a module that has no name
(so the user must pick a name before the file can be saved) and is not backed by an
existing file (so the user must save the file even if the user does not make any
changes). Other methods of the creator tell the IDE what kind of file is being created
(e.g., project, unit, or form), provide the contents of the file, or return the form name,
ancestor name, and other important information. Additional callbacks let a wizard
add modules to a newly created project, or add components to a newly created form.

To create a new file, which is often required in a form or project wizard, you usually
need to provide the contents of the new file. To do so, write a new class that
implements the IOTAFile interface. If your wizard can make do with the default file
contents, you can return nil from any function that returns IOTAFile.

For example, suppose your organization has a standard comment block that must
appear at the top of each source file. You could do this with a static template in the
Object Repository, but the comment block would need to be updated manually to
reflect the author and creation date. Instead, you can use a creator to dynamically fill
in the comment block when the file is created.

The first step is to write a wizard that creates new units and forms. Most of the
creator’s functions return zero, empty strings, or other default values, which tells the
Tools API to use its default behavior for creating a new unit or form. Override
GetCreatorType to inform the Tools API what kind of module to create: a unit or a
form. To create a unit, return sUnit. To create a form, return sForm. To simplify the
code, use a single class that takes the creator type as an argument to the constructor.
14-12 C o m p o n e n t W r i t e r ’ s G u i d e

C r e a t i n g f o r m s a n d p r o j e c t s
Save the creator type in a data member, so that GetCreatorType can return its value.
Implement NewImplSource and NewIntfSource to return the desired file contents.

TCreator = class(TInterfacedObject, IOTAModuleCreator)
public
 constructor Create(const CreatorType: string);

{ IOTAModuleCreator }
function GetAncestorName: string;
function GetImplFileName: string;
function GetIntfFileName: string;
function GetFormName: string;
function GetMainForm: Boolean;
function GetShowForm: Boolean;
function GetShowSource: Boolean;
function NewFormFile(const FormIdent, AncestorIdent: string): IOTAFile;
function NewImplSource(const ModuleIdent, FormIdent, AncestorIdent: string): IOTAFile;
function NewIntfSource(const ModuleIdent, FormIdent, AncestorIdent: string): IOTAFile;
procedure FormCreated(const FormEditor: IOTAFormEditor);

{ IOTACreator }
function GetCreatorType: string;
function GetExisting: Boolean;
function GetFileSystem: string;
function GetOwner: IOTAModule;
function GetUnnamed: Boolean;

private
FCreatorType: string;

end;

Most of the members of TCreator return zero, nil, or empty strings. The boolean
methods return true, except GetExisting, which returns false. The most interesting
method is GetOwner, which returns a pointer to the current project module, or nil if
there is no project. There is no simple way to discover the current project or the
current project group. Instead, GetOwner must iterate over all open modules. If a
project group is found, it must be the only project group open, so GetOwner returns
its current project. Otherwise, the function returns the first project module it finds, or
nil if no projects are open.

function TCreator.GetOwner: IOTAModule;
var

I: Integer;
Svc: IOTAModuleServices;
Module: IOTAModule;
Project: IOTAProject;
Group: IOTAProjectGroup;

begin
{ Return the current project. }
Supports(BorlandIDEServices, IOTAModuleServices, Svc);
Result := nil;
for I := 0 to Svc.ModuleCount - 1 do
begin

Module := Svc.Modules[I];
if Supports(Module, IOTAProject, Project) then
E x t e n d i n g t h e I D E 14-13

C r e a t i n g f o r m s a n d p r o j e c t s
begin
{ Remember the first project module}
if Result = nil then
Result := Project;

end
else if Supports(Module, IOTAProjectGroup, Group) then
begin

{ Found the project group, so return its active project}
Result := Group.ActiveProject;
Exit;

end;
end;

end;

The creator returns nil from NewFormSource, to generate a default form file. The
interesting methods are NewImplSource and NewIntfSource, which create an IOTAFile
instance that returns the file contents.

The TFile class implements the IOTAFile interface. It returns –1 as the file age (which
means the file does not exist), and returns the file contents as a string. To keep the
TFile class simple, the creator generates the string, and the TFile class simply passes it
on.

TFile = class(TInterfacedObject, IOTAFile)
public
 constructor Create(const Source: string);

function GetSource: string;
function GetAge: TDateTime;

private
FSource: string;

end;

constructor TFile.Create(const Source: string);
begin

FSource := Source;
end;

function TFile.GetSource: string;
begin

Result := FSource;
end;

function TFile.GetAge: TDateTime;
begin

Result := TDateTime(-1);
end;

You can store the text for the file contents in a resource to make it easier to modify,
but for the sake of simplicity, this example hardcodes the source code in the wizard.
The example below generates the source code, assuming there is a form. You can
easily add the simpler case of a plain unit. Test FormIdent, and if it is empty, create a
plain unit; otherwise create a form unit. The basic skeleton for the code is the same as
14-14 C o m p o n e n t W r i t e r ’ s G u i d e

N o t i f y i n g a w i z a r d o f I D E e v e n t s
the IDE’s default (with the addition of the comments at the top, of course), but you
can modify it any way you desire.

function TCreator.NewImplSource(
const ModuleIdent, FormIdent, AncestorIdent: string): IOTAFile;

var
FormSource: string;

begin
FormSource :=
'{ --- ' + #13#10 +
'%s - description'+ #13#10 +
'Copyright © %y Your company, inc.'+ #13#10 +
'Created on %d'+ #13#10 +
'By %u'+ #13#10 +
' --- }' + #13#10 +
#13#10;

return TFile.Create(Format(FormSource, ModuleIdent, FormIdent,
 AncestorIdent));
}

The final step is to create two form wizards: one uses sUnit as the creator type, and
the other uses sForm. As an added benefit for the user, you can use INTAServices to
add a menu item to the File|New menu to invoke each wizard. The menu item’s
OnClick event handler can call the wizard’s Execute function.

Some wizards need to enable or disable the menu items, depending on what else is
happening in the IDE. For example, a wizard that checks a project into a source code
control system should disable its Check In menu item if no files are open in the IDE.
You can add this capability to your wizard by using notifiers, the subject of the next
section.

Notifying a wizard of IDE events
An important aspect of writing a well-behaved wizard is to have the wizard respond
to IDE events. In particular, any wizard that keeps track of module interfaces must
know when the user closes the module, so the wizard can release the interface. To do
this, the wizard needs a notifier, which means you must write a notifier class.

All notifier classes implement one or more notifier interfaces. The notifier interfaces
define callback methods; the wizard registers a notifier object with the Tools API, and
the IDE calls back to the notifier when something important happens.
E x t e n d i n g t h e I D E 14-15

N o t i f y i n g a w i z a r d o f I D E e v e n t s
Every notifier interface inherits from IOTANotifier, although not all of its methods are
used for a particular notifier. Table 14.3 lists all the notifier interfaces, and gives a
brief description of each one.

To see how to use notifiers, consider the previous example. Using module creators,
the example creates a wizard that adds a comment to each source file. The comment
includes the unit’s initial name, but the user almost always saves the file under a
different name. In that case, it would be a courtesy to the user if the wizard updated
the comment to match the file’s true name.

To do this, you need a module notifier. The wizard saves the module interface that
CreateModule returns, and uses it to register a module notifier. The module notifier
receives notification when the user modifies the file or saves the file, but these events
are not important for this wizard, so the AfterSave and related functions all have
empty bodies. The important function is ModuleRenamed, which the IDE calls when
the user saves the file under a new name. The declaration for the module notifier
class is shown below:

TModuleIdentifier = class(TNotifierObject, IOTAModuleNotifier)
public
 constructor Create(const Module: IOTAModule);

destructor Destroy; override;
function CheckOverwrite: Boolean;
procedure ModuleRenamed(const NewName: string);
procedure Destroyed;

private
FModule: IOTAModule;
FName: string;
FIndex: Integer;

end;

Table 14.3 Notifier interfaces

Interface Description

IOTANotifier Abstract base class for all notifiers

IOTABreakpointNotifier Triggering or changing a breakpoint in the debugger

IOTADebuggerNotifier Running a program in the debugger, or adding or deleting
breakpoints

IOTAEditLineNotifier Tracking movements of lines in the source editor

IOTAEditorNotifier Modifying or saving a source file, or switching files in the editor

IOTAFormNotifier Saving a form, or modifying the form or any components on the form
(or data module)

IOTAIDENotifier Loading projects, installing packages, and other global IDE events

IOTAMessageNotifier Adding or removing tabs (message groups) in the message view

IOTAModuleNotifier Changing, saving, or renaming a module

IOTAProcessModNotifier Loading a process module in the debugger

IOTAProcessNotifier Creating or destroying threads and processes in the debugger

IOTAThreadNotifier Changing a thread’s state in the debugger

IOTAToolsFilterNotifier Invoking a tools filter
14-16 C o m p o n e n t W r i t e r ’ s G u i d e

N o t i f y i n g a w i z a r d o f I D E e v e n t s
One way to write a notifier is to have it register itself automatically in its constructor.
The destructor unregisters the notifier. In the case of a module notifier, the IDE calls
the Destroyed method when the user closes the file. In that case, the notifier must
unregister itself and release its reference to the module interface. The IDE releases its
reference to the notifier, which reduces its reference count to zero and frees the
object. Therefore, you need to write the destructor defensively: the notifier might
already be unregistered.

constructor TModuleNotifier.Create(const Module: IOTAModule);
begin

FIndex := -1;
FModule := Module;
{ Register this notifier. }
FIndex := Module.AddNotifier(self);
{ Remember the module’s old name. }
FName := ChangeFileExt(ExtractFileName(Module.FileName), '');

end;

destructor TModuleNotifier.Destroy;
begin

{ Unregister the notifier if that hasn’t happened already. }
if Findex >= 0 then

FModule.RemoveNotifier(FIndex);
end;

procedure TModuleNotifier.Destroyed;
begin

 { The module interface is being destroyed, so clean up the notifier. }
if Findex >= 0 then
begin

{ Unregister the notifier. }
FModule.RemoveNotifier(FIndex);
FIndex := -1;

end;
FModule := nil;

end;

The IDE calls back to the notifier’s ModuleRenamed function when the user renames
the file. The function takes the new name as a parameter, which the wizard uses to
update the comment in the file. To edit the source buffer, the wizard uses an edit
position interface. The wizard finds the right position, double checks that it found the
right text, and replaces that text with the new name.

procedure TModuleNotifier.ModuleRenamed(const NewName: string);
var

ModuleName: string;
I: Integer;
Editor: IOTAEditor;
Buffer: IOTAEditBuffer;
Pos: IOTAEditPosition;
Check: string;

begin
{ Get the module name from the new file name. }
ModuleName := ChangeFileExt(ExtractFileName(NewName), '');

 for I := 0 to FModule.GetModuleFileCount - 1 do
E x t e n d i n g t h e I D E 14-17

N o t i f y i n g a w i z a r d o f I D E e v e n t s
begin
 { Update every source editor buffer. }

Editor := FModule.GetModuleFileEditor(I);
if Supports(Editor, IOTAEditBuffer, Buffer) then
begin

Pos := Buffer.GetEditPosition;
 { The module name is on line 2 of the comment.

Skip leading white space and copy the old module name,
to double check we have the right spot. }

Pos.Move(2, 1);
Pos.MoveCursor(mmSkipWhite or mmSkipRight);

 Check := Pos.RipText('', rfIncludeNumericChars or rfIncludeAlphaChars);
 if Check = FName then

begin
Pos.Delete(Length(Check)); // Delete the old name.
Pos.InsertText(ModuleName); // Insert the new name.
FName := ModuleName; // Remember the new name.

end;
end;

end;
end;

What if the user inserts additional comments above the module name? In that case,
you need to use an edit line notifier to keep track of the line number where the
module name sits. To do this, use the IOTAEditLineNotifier and IOTAEditLineTracker
interfaces, which are described in the Online Help.

You need to be cautious when writing notifiers. You must make sure that no notifier
outlives its wizard. For example, if the user were to use the wizard to create a new
unit, then unload the wizard, there would still be a notifier attached to the unit. The
results would be unpredictable, but most likely, the IDE would crash. Thus, the
wizard needs to keep track of all of its notifiers, and must unregister every notifier
before the wizard is destroyed. On the other hand, if the user closes the file first, the
module notifier receives a Destroyed notification, which means the notifier must
unregister itself and release all references to the module. The notifier must remove
itself from the wizard’s master notifier list, too.

Below is the final version of the wizard’s Execute function. It creates the new module,
uses the module interface and creates a module notifier, then saves the module
notifier in an interface list (TInterfaceList).

procedure DocWizard.Execute;
var

Svc: IOTAModuleServices;
Module: IOTAModule;
Notifier: IOTAModuleNotifier;

begin
{ Return the current project. }
Supports(BorlandIDEServices, IOTAModuleServices, Svc);
Module := Svc.CreateModule(TCreator.Create(creator_type));
Notifier := TModuleNotifier.Create(Module);

 list.Add(Notifier);
end
14-18 C o m p o n e n t W r i t e r ’ s G u i d e

N o t i f y i n g a w i z a r d o f I D E e v e n t s
The wizard’s destructor iterates over the interface list and unregisters every notifier
in the list. Simply letting the interface list release the interfaces it holds is not
sufficient because the IDE also holds the same interfaces. You must tell the IDE to
release the notifier interfaces in order to free the notifier objects. In this case, the
destructor tricks the notifiers into thinking their modules have been destroyed. In a
more complicated situation, you might find it best to write a separate Unregister
function for the notifier class.

destructor DocWizard.Destroy; override;
var

Notifier: IOTAModuleNotifier;
I: Integer;

begin
{ Unregister all the notifiers in the list. }

 for I := list.Count - 1 downto 0 do
begin

Supports(list.Items[I], IOTANotifier, Notifier);
{ Pretend the associated object has been destroyed.

That convinces the notifier to clean itself up. }
Notifier.Destroyed;
list.Delete(I);

end;
list.Free;
FItem.Free;

end;

The rest of the wizard manages the mundane details of registering the wizard,
installing menu items, and the like.

E x t e n d i n g t h e I D E 14-19

14-20 C o m p o n e n t W r i t e r ’ s G u i d e

I n d e x I-1

A
About box 13-2, 13-3

adding properties 13-4
executing 13-5

About unit 13-3
AboutDlg unit 13-2
abstract classes 1-3
ancestor classes 2-3 to 2-4
applications

graphical 1-7, 6-1
realizing palettes 6-5

arrays 3-2, 3-8
assignment statements 3-2
attributes, property editors 8-11

B
BeginAutoDrag method 7-14
bitmaps 6-4

adding to components 1-13
drawing surfaces 6-4
graphical controls vs. 10-3
loading 6-4
offscreen 6-6 to 6-7

Boolean values 3-2, 3-12, 12-5
BorlandIDEServices variable 14-5
BoundsChanged method 7-14
Broadcast method 7-8
Brush property 6-3
BrushCopy method 6-3, 6-7
brushes 10-6

changing 10-8

C
caching resources 6-2
calendars 11-1 to 11-14

adding dates 11-6 to 11-11
defining properties and events 11-3, 11-7, 11-12
making read-only 12-3 to 12-5
moving through 11-11 to 11-14
resizing 11-4
selecting current day 11-11

Canvas property 1-7, 1-8
canvases 1-7, 6-2, 6-3

default drawing tools 10-6
palettes 6-5 to 6-6

Change method 12-12
characters 3-2
circles, drawing 10-10

class fields 10-4
declaring 10-6
naming 4-3

class pointers 2-10
classes 1-2, 1-3, 2-1, 3-2

abstract 1-3
accessing 2-4 to 2-7, 10-6
ancestor 2-3 to 2-4
creating 2-2
default 2-4
defining 1-12, 2-2

static methods and 2-8
virtual methods and 2-8

deriving 2-2, 2-8
descendant 2-3 to 2-4, 2-8
hierarchy 2-4
inheritance 2-8
instantiating 2-2
passing as parameters 2-10
properties as 3-2
property editors as 8-7
public part 2-6
published part 2-7

click events 4-1, 4-2, 4-8
Click method 4-2, 7-14

overriding 4-7, 11-12
Clipboard formats, adding 8-16, 8-19
CLX

signals 7-11 to 7-12
system notifications 7-10 to 7-16

CM_EXIT message 12-13
CMExit method 12-13
code 5-4
Code editor, displaying 8-18
ColorChanged method 7-14
common dialog boxes 13-1, 13-2

creating 13-2
executing 13-4

compile-time errors, override directive and 2-9
component editors 8-16 to 8-19

default 8-16
registering 8-19

component interfaces
creating 13-3
properties, declaring 13-3

component libraries, adding components 1-15
Component palette

adding components 8-1
adding custom bitmaps 1-13
moving components 1-15

Index

I-2 C o m p o n e n t W r i t e r ’ s G u i d e

component templates 2-2
Component wizard 1-9
component wrappers 1-5, 13-2

initializing 13-3
components 1-1, 2-1, 3-3

abstract 1-3
adding to Component Palette 8-1
adding to existing unit 1-12
adding to units 1-12
bitmaps 1-13
changing 9-1 to 9-3
context menus 8-16, 8-16 to 8-17
creating 1-2, 1-8
customizing 1-3, 3-1, 4-1
data-aware 12-1
data-browsing 12-2 to 12-8
data-editing 12-9 to 12-13
dependencies 1-5 to 1-6
derived classes 1-3, 1-12, 10-2
double-click 8-16, 8-18
initializing 3-14, 10-7, 12-7
installing 8-20
interfaces 2-4, 13-2

design-time 2-7
runtime 2-6

moving 1-15
nonvisual 1-5, 1-12, 13-3
online help 8-4
packages 8-20
palette bitmaps 1-13
registering 1-13
registration 8-2
resources, freeing 13-5
responding to events 4-6, 4-8, 4-9, 12-8
testing 1-16, 1-18, 13-6

constructors 1-16, 3-13, 5-3, 11-4, 11-5, 12-7
overriding 9-2
owned objects and 10-6, 10-7

Contains list (packages) 8-20
context menus, adding items 8-16 to 8-17
controls

changing 1-3
custom 1-5
data-browsing 12-2 to 12-8
data-editing 12-9 to 12-13
graphical 6-4, 10-1 to 10-10

creating 1-4, 10-3
drawing 10-3, 10-9 to 10-10
events 6-7

palettes and 6-5 to 6-6
receiving focus 1-4
repainting 10-8, 10-9, 11-4, 11-5
resizing 6-7, 11-4
shape 10-8
windowed 1-4

CopyMode property 6-3
CopyRect method 6-3, 6-7
creators 14-3, 14-12 to 14-15
CursorChanged method 7-14
custom controls 1-5

libraries 1-5
customizing components 3-1

D
data links 12-5 to 12-7

initializing 12-7
data, accessing 12-1
data-aware controls 12-1

creating 12-2 to 12-14
data-browsing 12-2 to 12-8
data-editing 12-9 to 12-13
destroying 12-7
responding to changes 12-8

databases 12-1
access properties 12-6 to 12-7

DataChange method 12-11
DataField property 12-6
DataSource property, data-aware controls 12-6
Day property 11-6
DblClick method 7-14
.dcr files 1-13, 1-14
debugging wizards 14-9
declarations

classes 2-10, 10-6
public 2-6
published 2-7

event handlers 4-6, 4-9, 11-13
message handlers 7-4, 7-6, 7-8
methods 5-4

dynamic 2-9
public 5-3
static 2-7
virtual 2-8

new component types 2-3
properties 3-3, 3-3 to 3-7, 3-8, 3-13, 4-9, 10-4

stored 3-13
user-defined types 10-3

I n d e x I-3

default
ancestor class 2-4
directive 3-12, 9-3
handlers

events 4-10
message 7-3
overriding 4-10

property values 3-7
changing 9-2, 9-3
specifying 3-12 to 3-13

reserved word 3-7
DefaultHandler method 7-3
delegation 4-1
deploying IDE extensions 14-4 to 14-5
dereferencing object pointers 2-10
deriving classes 2-8
descendant classes 2-3 to 2-4

redefining methods 2-8
design-time interfaces 2-7
destructors 5-3, 12-7

owned objects and 10-6, 10-7
device contexts 1-7, 6-1
device-independent graphics 6-1
.dfm files 3-11
dialog boxes 13-1 to 13-6

creating 13-1
property editors as 8-10
setting initial state 13-2
Windows common 13-2

creating 13-2
executing 13-4

directives
default 3-12, 9-3
dynamic 2-9
override 2-8, 7-4
protected 4-6
public 4-6
published 3-3, 4-6, 13-4
stored 3-13
virtual 2-8

Dispatch method 7-3, 7-5
DoExit method 12-13
DoMouseWheel method 7-14
double-clicks

components 8-16
responding to 8-18

drag-and-drop events 10-2
DragOver method 7-14
Draw method 6-3, 6-7
drawing tools 6-2, 6-7, 6-8, 10-6

changing 10-8
dynamic directives 2-9
dynamic methods 2-9

E
Edit method 8-10, 8-11
editors, Tools API 14-3, 14-10 to 14-11
Ellipse method 6-3
ellipses, drawing 10-10
EnabledChanged method 7-14
enumerated types 3-2, 10-3
event handlers 1-7, 4-2, 12-8

declarations 4-6, 4-9, 11-13
default, overriding 4-10
displaying the Code editor 8-18
empty 4-9
methods 4-3, 4-5, 4-6
parameters 4-3, 4-8, 4-10

notification events 4-8
passing parameters by reference 4-10
pointers 4-2, 4-3, 4-9
types 4-3 to 4-4, 4-8

EventFilter method, system events 7-15
events 1-7, 4-1 to 4-10

accessing 4-6
defining new 4-7 to 4-10
graphical controls 6-7
implementing 4-2, 4-3, 4-5
inherited 4-5
message handling 7-4, 7-6
naming 4-9
providing help 8-4
responding to 4-6, 4-8, 4-9, 12-8
retrieving 4-4
standard 4-5, 4-5 to 4-7

exceptions 5-2, 7-3, 13-5
Execute method dialogs 13-4

F
field datalink class 12-11
fields

databases 12-6, 12-8
message records 7-2, 7-4, 7-7

files, graphics 6-4
FillRect method 6-3
finally reserved word 6-6, 13-5
flags 12-5
FloodFill method 6-3
focus 1-4
Font property 6-3
FontChanged method 7-14
form wizards 14-3
forms, as components 13-1
FReadOnly 12-9
freeing resources 13-5

I-4 C o m p o n e n t W r i t e r ’ s G u i d e

functions 1-7
events and 4-3
graphics 6-1
naming 5-2
reading properties 3-6, 8-8, 8-11
Windows API 1-4, 6-1

G
GDI applications 1-7, 6-1
geometric shapes, drawing 10-10
GetAttributes method 8-11
GetFloatValue method 8-8
GetMethodValue method 8-8
GetOrdValue method 8-8
GetPalette method 6-5
GetProperties method 8-11
GetStrValue method 8-8
GetValue method 8-8
Graphic property 6-4
graphical controls 1-4, 6-4, 10-1 to 10-10

bitmaps vs. 10-3
creating 1-4, 10-3
drawing 10-3, 10-9 to 10-10
events 6-7
saving system resources 1-4

graphics 6-1 to 6-8
complex 6-6
containers 6-4
drawing tools 6-2, 6-7, 6-8, 10-6

changing 10-8
functions, calling 6-1
loading 6-4
methods 6-3, 6-4, 6-6

copying images 6-7
palettes 6-5

redrawing images 6-7
resizing 6-7
saving 6-4
standalone 6-3
storing 6-4

graphics methods, palettes 6-5
grids 11-1, 11-3, 11-6, 11-12

H
Handle property 1-4, 1-5, 6-3
HandleException method 7-3
Help 8-4
Help systems 8-4

files 8-4
keywords 8-4

hierarchy (classes) 2-4
HookEvents method 7-11

I
icons 6-4

adding to components 1-13
IDE

adding actions 14-7
adding images 14-6
customizing 14-1
deleting buttons 14-8

identifiers
class fields 4-3
events 4-9
message-record types 7-7
methods 5-2
property settings 3-6

Image Editor, using 1-14
images 6-3

drawing 10-9
redrawing 6-7
reducing flicker 6-6

index reserved word 11-8
indexes 3-8, 3-9
inherited

events 4-5
methods 4-6
properties 10-2, 11-3

publishing 3-3
inheriting from classes 2-8
input focus 1-4
Install Components dialog box 1-15
instances 4-2
INTAComponent 14-11
INTAServices 14-5, 14-6, 14-15
interfaces 2-4, 13-2, 13-3

design-time 2-7
nonvisual program elements 1-5
properties 3-11
properties, declaring 13-3
runtime 2-6
Tools API 14-1, 14-4

version numbers 14-9 to 14-10
Invalidate method 10-9
IOTAActionServices 14-5
IOTABreakpointNotifier 14-16
IOTACodeCompletionServices 14-5
IOTAComponent 14-11
IOTACreator 14-12
IOTADebuggerNotifier 14-16
IOTADebuggerServices 14-5
IOTAEditLineNotifier 14-16
IOTAEditor 14-11
IOTAEditorNotifier 14-16
IOTAEditorServices 14-5

I n d e x I-5

IOTAFile 14-12, 14-14
IOTAFormNotifier 14-16
IOTAFormWizard 14-3
IOTAIDENotifier 14-16
IOTAKeyBindingServices 14-5
IOTAKeyboardDiagnostics 14-5
IOTAKeyboardServices 14-5
IOTAMenuWizard 14-3
IOTAMessageNotifier 14-16
IOTAMessageServices 14-5
IOTAModule 14-10
IOTAModuleNotifier 14-16
IOTAModuleServices 14-5, 14-10
IOTANotifier 14-16
IOTAPackageServices 14-5
IOTAProcessModNotifier 14-16
IOTAProcessNotifier 14-16
IOTAProjectWizard 14-3
IOTAServices 14-5
IOTAThreadNotifier 14-16
IOTAToDoServices 14-5
IOTAToolsFilter 14-5
IOTAToolsFilterNotifier 14-16
IOTAWizard 14-2, 14-3
IOTAWizardServices 14-5

K
K footnotes (Help systems) 8-4
keyboard events 4-4, 4-10
key-down messages 4-6, 12-9
KeyDown method 7-14, 12-10
KeyPress method 7-14
KeyString method 7-14
KeyUp method 7-14
keywords 8-4

protected 4-6

L
labels 1-4
leap years 11-9
libraries, custom controls 1-5
Lines property 3-8
LineTo method 6-3
Linux system notifications 7-10 to 7-16
list boxes 11-1
Loaded method 3-14
LoadFromFile method, graphics 6-4
LParam parameter 7-9
lParam parameter 7-2

M
MainWndProc method 7-3
memo controls 3-8
memory management, dynamic vs. virtual

methods 2-9
menu wizards 14-3
message handlers 7-2, 7-3, 11-5

creating 7-6 to 7-8
declarations 7-6, 7-8
default 7-3
methods, redefining 7-7
overriding 7-4

message handling 7-4 to 7-5
messages 7-1 to 7-8, 11-4

cracking 7-2
defined 7-1, 7-2
handlers declarations 7-4
identifiers 7-6
key 12-9
Linux See system notifications
mouse 12-9
mouse- and key-down 12-9
multithreaded applications 7-9
record types, declaring 7-6
records 7-2, 7-4
sending 7-8 to 7-10
trapping 7-5
user-defined 7-6, 7-8
Windows 7-1 to 7-10

metafiles 6-4
method pointers 4-2, 4-3, 4-9
methods 1-7, 5-1, 11-11

calling 4-6, 5-3, 10-4
declaring 5-4

dynamic 2-9
public 5-3
static 2-7
virtual 2-8

dispatching 2-7
drawing 10-9, 10-10
event handlers 4-3, 4-5, 4-6

overriding 4-6
graphics 6-3, 6-4, 6-6, 6-7

palettes 6-5
inherited 4-6
initialization 3-14
message-handling 7-2, 7-3, 7-5
naming 5-2
overriding 2-8, 7-4, 7-5, 11-12
properties and 3-5 to 3-7, 5-1, 5-2, 10-4

I-6 C o m p o n e n t W r i t e r ’ s G u i d e

protected 5-3
public 5-3
redefining 2-8, 7-7
virtual 2-8, 5-4

Modified method 12-12
modules 1-11

Tools API 14-3, 14-10 to 14-11
Month property 11-6
months, returning current 11-9
mouse events 10-2
mouse messages 7-2, 12-9
mouse-down messages 12-9
MouseDown method 7-14, 12-10
MouseMove method 7-14
MouseUp method 7-14
MoveTo method 6-3
Msg parameter 7-3
multi-threaded applications, sending

messages 7-9
MyEvent_ID type 7-16

N
naming conventions

events 4-9
fields 4-3
message-record types 7-7
methods 5-2
properties 3-6

native tools API 14-2, 14-6 to 14-9
New command 1-12
New Unit command 1-12
nonvisual components 1-5, 1-12, 13-3
notification events 4-8
notifiers 14-2

Tools API 14-15 to 14-19
writing 14-18

numbers 3-2
property values 3-12

O
Object Inspector 3-2, 8-6

editing array properties 3-2
help with 8-4

Object Repository wizards 14-3
object-oriented programming 2-1 to 2-10

declarations 2-3, 2-10
classes 2-6, 2-7
methods 2-7, 2-8, 2-9

objects
instantiating 4-2
owned 10-6 to 10-8

initializing 10-7
temporary 6-6

offscreen bitmaps 6-6 to 6-7
OnChange event 6-7, 10-8, 11-13, 12-12
OnClick event 4-1, 4-3, 4-5
OnCreate event 1-16
OnDataChange event 12-8, 12-11
OnDblClick event 4-5
OnDragDrop event 4-5
OnDragOver event 4-5
OnEndDrag event 4-5
OnEnter event 4-5
OnExit event 12-13
OnKeyDown event 4-5, 7-13, 12-10
OnKeyPress event 4-5, 7-13
OnKeyString event 7-13
OnKeyUp event 4-5, 7-13
online help 8-4
OnMouseDown event 4-5, 7-13, 12-10
OnMouseMove event 4-5, 7-13
OnMouseUp event 4-5, 7-13
Open Tools API See Tools API
optimizing system resources 1-4
override directive 2-8, 7-4
overriding methods 2-8, 7-4, 7-5, 11-12
owned objects 10-6 to 10-8

initializing 10-7
Owner property 1-16

P
packages 8-20

components 8-20
Contains list 8-20
Requires list 8-20

Paint method 6-6, 10-9, 10-10
PaintRequest method 7-14
palette bitmap files 1-13
PaletteChanged method 6-5, 7-14
palettes 6-5 to 6-6

default behavior 6-5
specifying 6-5

parameters
classes as 2-10
event handlers 4-3, 4-8, 4-10
messages 7-2, 7-3, 7-4, 7-6, 7-9, 7-10
property settings 3-6, 3-7

array properties 3-8
Parent property 1-17
Pen property 6-3
pens 10-6

changing 10-8
Perform method 7-9
picture objects 6-4
pictures 6-3 to 6-6
Pixel property 6-3

I n d e x I-7

pointers
classes 2-10
default property values 3-12
method 4-2, 4-3, 4-9

PostMessage method 7-10
preexisting controls 1-5
private properties 3-5
procedures 1-7, 4-3

naming 5-2
property settings 8-12

project wizards 14-3
properties 3-1 to 3-14

accessing 3-5 to 3-7
array 3-2, 3-8
as classes 3-2
changing 8-6 to 8-12, 9-2, 9-3
common dialog boxes 13-2
declaring 3-3, 3-3 to 3-7, 3-8, 3-13, 4-9, 10-4

stored 3-13
user-defined types 10-3

default values 3-7, 3-12 to 3-13
redefining 9-2, 9-3

editing as text 8-8
events and 4-1, 4-3
inherited 3-3, 10-2, 11-3
interfaces 3-11
internal data storage 3-4, 3-6, 3-7
loading 3-14
nodefault 3-8
overview 1-6
providing help 8-4
published 11-3
read and write 3-5
reading values 8-8
read-only 2-6, 2-7, 3-7, 12-3
redeclaring 3-12, 4-6
specifying values 3-12, 8-9
storing 3-13
storing and loading unpublished 3-14 to 3-16
subcomponents 3-9
types 3-2, 3-9, 8-8, 10-3
updating 1-7
viewing 8-8
wrapper components 13-3
write-only 3-6
writing values 3-7, 8-8

property editors 3-2, 8-6 to 8-12
as derived classes 8-7
attributes 8-11
dialog boxes as 8-10
registering 8-12

property settings
reading 3-8
writing 3-8

protected
directive 4-6
events 4-6
keyword 3-3, 4-6

public
directive 4-6
keyword 4-6
part of classes 2-6
properties 3-12

published 3-3
directive 3-3, 4-6, 13-4
keyword 4-6
part of classes 2-7
properties 3-12, 3-13

example 10-2, 11-3

Q
QApplication_postEvent method 7-16
QCustomEvent_create function 7-16
QEvent 7-12
QKeyEvent 7-13
QMouseEvent 7-13
Qt events messages 7-15

R
raster operations 6-7
read method 3-6
read reserved word 3-8, 10-4
reading property settings 3-6
read-only properties 2-6, 2-7, 3-7, 12-3
ReadOnly property 12-4, 12-9, 12-10
realizing palettes 6-5
Rectangle method 6-3
rectangles, drawing 10-10
redefining methods 2-8
redrawing images 6-7
Register procedure 1-13, 8-2
RegisterComponents procedure 1-13, 8-2
registering

component editors 8-19
components 1-13
property editors 8-12

RegisterPropertyEditor procedure 8-12
repainting controls 10-8, 10-9, 11-4, 11-5
Requires list (packages) 8-20
.res files 1-15
resizing controls 11-4

graphics 6-7
resources 1-7, 6-1

caching 6-2
freeing 13-5
system, optimizing 1-4

Result parameter 7-7

I-8 C o m p o n e n t W r i t e r ’ s G u i d e

RTTI 2-7
runtime interfaces 2-6
runtime type information 2-7

S
SaveToFile method, graphics 6-4
search lists (Help systems) 8-4
SelectCell method 11-14, 12-4
Self parameter 1-16
sending messages 7-8 to 7-10
SendMessage method 7-9
services, Tools API 14-2, 14-5 to 14-11
set types 3-2
SetFloatValue method 8-8
SetMethodValue method 8-8
SetOrdValue method 8-8
sets 3-2
SetStrValue method 8-8
SetValue method 8-8, 8-9
ShowHintChanged method 7-15
signals, responding to (CLX) 7-11 to 7-12
simple types 3-2
squares, drawing 10-10
standard events 4-5, 4-5 to 4-7

customizing 4-6
static methods 2-7
stored directive 3-13
StretchDraw method 6-3, 6-7
strings 3-2, 3-8

returning 3-9
StyleChanged method 7-15
subclassing Windows controls 1-5
subcomponents properties 3-9
system events, customizing 7-15
system notifications 7-10 to 7-16
system resources, conserving 1-4

T
TabStopChanged method 7-15
TApplication system events 7-13
TBitmap 6-4
TCalendar 11-1
TCharProperty type 8-7
TClassProperty type 8-7
TColorProperty type 8-7
TComponent 1-5
TComponentProperty type 8-7
TControl 1-4, 4-5, 4-6
TCustomControl 1-4
TCustomGrid 11-1, 11-3
TCustomListBox 1-4
TDateTime type 11-6
TDefaultEditor 8-16

temporary objects 6-6
TEnumProperty type 8-7
testing

components 1-16, 1-18, 13-6
values 3-7

TextChanged method 7-15
TextHeight method 6-3
TextOut method 6-3
TextRect method 6-3
TextWidth method 6-3
TFieldDataLink 12-5
TFloatProperty type 8-7
TFontNameProperty type 8-7
TFontProperty type 8-7
TGraphic 6-4
TGraphicControl 1-4, 10-2
THandleComponent 7-12
TIcon 6-4
TiledDraw method 6-7
TIntegerProperty type 8-7, 8-9
TKeyPressEvent type 4-4
TLabel 1-4
TListBox 1-3
TMessage 7-5, 7-6
TMetafile 6-4
TMethod type 7-12
TMethodProperty type 8-7
TNotifyEvent 4-8
TObject 2-4
Tools API 14-1 to 14-19

creating files 14-12 to 14-15
creators 14-3, 14-12 to 14-15
debugging 14-9
editors 14-3, 14-10 to 14-11
modules 14-3, 14-10 to 14-11
notifiers 14-2
services 14-2, 14-5 to 14-11
wizards 14-2, 14-3 to 14-5

ToolsAPI unit 14-2
TOrdinalProperty type 8-7
TPicture type 6-4
TPropertyAttributes 8-11
TPropertyEditor class 8-7
transfer records 13-2
try reserved word 6-6, 13-5
TSetElementProperty type 8-7
TSetProperty type 8-7
TStringProperty type 8-7
TWinControl 1-4, 4-5
type declarations, properties 10-3
types

message-record 7-6
properties 3-2, 3-9, 8-8
user-defined 10-3

I n d e x I-9

U
units, adding components 1-12
UpdateCalendar method 12-4
user-defined messages 7-6, 7-8
user-defined types 10-3

V
values 3-2

Boolean 3-2, 3-12, 12-5
default property 3-7, 3-12 to 3-13

redefining 9-2, 9-3
testing 3-7

var reserved word event handlers 4-4
VCL 1-1 to 1-2
virtual

directive 2-8
method tables 2-8
methods 2-8, 5-4

properties as 3-2
property editors 8-8 to 8-9

VisibleChanged method 7-15

W
WidgetDestroyed property 7-14
window

class 1-5
controls 1-4
handles 1-4, 1-6
message handling 11-4
procedures 7-3

Windows
API functions 1-4, 6-1
common dialog boxes 13-2

creating 13-2
executing 13-4

controls, subclassing 1-5
device contexts 1-7, 6-1
events 4-5
messages 7-2, 7-3
messaging 7-1 to 7-10

wizards
Component 1-9
creating 14-2, 14-3 to 14-5
debugging 14-9
installing 14-4 to 14-5
responding to IDE events 14-15
Tools API 14-2
types 14-3

WM_APP constant 7-6
WM_KEYDOWN message 12-9
WM_LBUTTONBUTTON message 12-9
WM_MBUTTONDOWN message 12-9
WM_PAINT message 7-4
WM_RBUTTONDOWN message 12-9
WM_SIZE message 11-4
WndProc method 7-3, 7-5
WordWrap property 9-1
WParam parameter 7-9
wParam parameter 7-2
wrappers 1-5, 13-2

initializing 13-3
 See also component wrappers

write method 3-7
write reserved word 3-8, 10-4
write-only properties 3-6

Y
Year property 11-6

I-10 C o m p o n e n t W r i t e r ’ s G u i d e

	Component Writer’s Guide
	Contents
	Tables & Figures
	Ch 1: Overview of component creation
	Class library
	Components and classes
	Creating components
	Modifying existing controls
	Creating windowed controls
	Creating graphic controls
	Subclassing Windows controls
	Creating nonvisual components

	What goes into a component?
	Removing dependencies
	Setting properties, methods, and events
	Properties
	Methods
	Events

	Encapsulating graphics
	Registering components

	Creating a new component
	Creating a component with the Component�wizard
	Creating a component manually
	Creating a unit file
	Deriving the component
	Registering the component

	Creating a bitmap for a component

	Installing a component on the Component palette
	Making source files available

	Testing uninstalled components
	Testing installed components

	Ch 2: Object-oriented programming for component writers
	Defining new classes
	Deriving new classes
	To change class defaults to avoid�repetition
	To add new capabilities to a class

	Declaring a new component class

	Ancestors, descendants, and class hierarchies
	Controlling access
	Hiding implementation details
	Defining the component writer’s interface
	Defining the runtime interface
	Defining the design-time interface

	Dispatching methods
	Static methods
	An example of static methods

	Virtual methods
	Overriding methods

	Dynamic methods

	Abstract class members
	Classes and pointers

	Ch 3: Creating properties
	Why create properties?
	Types of properties
	Publishing inherited properties
	Defining properties
	Property declarations
	Internal data storage
	Direct access
	Access methods
	The read method
	The write method

	Default property values
	Specifying no default value

	Creating array properties
	Creating properties for subcomponents
	Creating properties for interfaces
	Storing and loading properties
	Using the store-and-load mechanism
	Specifying default values
	Determining what to store
	Initializing after loading
	Storing and loading unpublished properties
	Creating methods to store and load�property�values
	Overriding the DefineProperties method

	Ch 4: Creating events
	What are events?
	Events are method pointers
	Events are properties
	Event types are method-pointer types
	Event-handler types are procedures

	Event handlers are optional

	Implementing the standard events
	Identifying standard events
	Standard events for all controls
	Standard events for standard controls

	Making events visible
	Changing the standard event handling

	Defining your own events
	Triggering the event
	Two kinds of events

	Defining the handler type
	Simple notifications
	Event-specific handlers
	Returning information from the handler

	Declaring the event
	Event names start with “On”

	Calling the event

	Ch 5: Creating methods
	Avoiding dependencies
	Naming methods
	Protecting methods
	Methods that should be public
	Methods that should be protected
	Abstract methods

	Making methods virtual
	Declaring methods

	Ch 6: Using graphics in components
	Overview of graphics
	Using the canvas
	Working with pictures
	Using a picture, graphic, or canvas
	Loading and storing graphics
	Handling palettes
	Specifying a palette for a control

	Off-screen bitmaps
	Creating and managing off-screen bitmaps
	Copying bitmapped images

	Responding to changes

	Ch 7: Handling messages and system notifications
	Understanding the message-handling system
	What’s in a Windows message?
	Dispatching messages
	Tracing the flow of messages

	Changing message handling
	Overriding the handler method
	Using message parameters
	Trapping messages

	Creating new message handlers
	Defining your own messages
	Declaring a message identifier
	Declaring a message-record type

	Declaring a new message-handling method
	Sending messages
	Broadcasting a message to all controls�in�a�form
	Calling a control’s message handler directly
	Sending a message using the Windows�message�queue
	Sending a message that does not execute�immediately

	Responding to system notifications using CLX
	Responding to signals
	Assigning custom signal handlers

	Responding to system events
	Commonly used events
	Overriding the EventFilter method
	Generating Qt events

	Ch 8: Making components available at design time
	Registering components
	Declaring the Register procedure
	Writing the Register procedure
	Specifying the components
	Specifying the palette page
	Using the RegisterComponents function

	Providing Help for your component
	Creating the Help file
	Creating the entries
	Making component Help context-sensitive
	Adding component Help files

	Adding property editors
	Deriving a property-editor class
	Editing the property as text
	Displaying the property value
	Setting the property value

	Editing the property as a whole
	Specifying editor attributes
	Registering the property editor

	Property categories
	Registering one property at a time
	Registering multiple properties at once
	Specifying property categories
	Using the IsPropertyInCategory function

	Adding component editors
	Adding items to the context menu
	Specifying menu items
	Implementing commands

	Changing the double-click behavior
	Adding clipboard formats
	Registering the component editor

	Compiling components into packages

	Ch 9: Modifying an existing component
	Creating and registering the component
	Modifying the component class
	Overriding the constructor
	Specifying the new default property value

	Ch 10: Creating a graphic control
	Creating and registering the component
	Publishing inherited properties
	Adding graphic capabilities
	Determining what to draw
	Declaring the property type
	Declaring the property
	Writing the implementation method

	Overriding the constructor and destructor
	Changing default property values

	Publishing the pen and brush
	Declaring the class fields
	Declaring the access properties
	Initializing owned classes
	Setting owned classes’ properties

	Drawing the component image
	Refining the shape drawing

	Ch 11: Customizing a grid
	Creating and registering the component
	Publishing inherited properties
	Changing initial values
	Resizing the cells
	Filling in the cells
	Tracking the date
	Storing the internal date
	Accessing the day, month, and year
	Generating the day numbers
	Selecting the current day

	Navigating months and years
	Navigating days
	Moving the selection
	Providing an OnChange event
	Excluding blank cells

	Ch 12: Making a control data aware
	Creating a data browsing control
	Creating and registering the component
	Making the control read-only
	Adding the ReadOnly property
	Allowing needed updates

	Adding the data link
	Declaring the class field
	Declaring the access properties
	An example of declaring access properties
	Initializing the data link

	Responding to data changes

	Creating a data editing control
	Changing the default value of FReadOnly
	Handling mouse-down and key�down�messages
	Responding to mouse-down messages
	Responding to key-down messages

	Updating the field data link class
	Modifying the Change method
	Updating the dataset

	Ch 13: Making a dialog box a component
	Defining the component interface
	Creating and registering the component
	Creating the component interface
	Including the form unit
	Adding interface properties
	Adding the Execute method

	Testing the component

	Ch 14: Extending the IDE
	Overview of the Tools API
	Writing a wizard class
	Implementing the wizard interfaces
	Installing the wizard package

	Obtaining Tools API services
	Using native IDE objects
	Using the INTAServices interface
	Adding an image to the image list
	Adding an action to the action list
	Deleting toolbar buttons

	Debugging a wizard
	Interface version numbers

	Working with files and editors
	Using module interfaces
	Using editor interfaces

	Creating forms and projects
	Creating modules

	Notifying a wizard of IDE events

	Index
	A - C
	D
	E - F
	G - I
	K - M
	N - P
	Q - R
	S - T
	U - Y

