
Quick Start

Borland Software Corporation
100 Enterprise Way, Scotts Valley, CA 95066-3249

Borland®

Delphi™ 6
for Windows

Refer to the DEPLOY document located in the root directory of your Delphi 6 product for a complete list of files that
you can distribute in accordance with the Delphi License Statement and Limited Warranty.

Borland may have patents and/or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents.

COPYRIGHT © 1983, 2001 Borland Software Corporation. All rights reserved. All Borland brands and product names
are trademarks or registered trademarks of Borland Software Corporation. Other product names are trademarks or
registered trademarks of their respective holders.

Printed in the U.S.A.

HDE1360WW21000 1E0R0501
0102030405-9 8 7 6 5 4 3 2 1
PDF

iii

Chapter 1
Introduction 1-1
What is Delphi? 1-1
Finding information 1-1

Online Help 1-2
F1 Help . 1-2

Printed documentation 1-3
Developer support services and Web

site . 1-4
Typographic conventions 1-4

Chapter 2
A tour of the desktop 2-1
Starting Delphi 2-1
The IDE . 2-1
The menus and toolbars. 2-2
The Component Palette, Form Designer,

and Object Inspector 2-3
The Object TreeView 2-4
The Object Repository 2-5
The Code Editor 2-6

Code Insight 2-7
Class Completion 2-8
Code Browsing 2-8

The Diagram page 2-9
Viewing form code 2-10

The Code Explorer 2-11
The Project Manager 2-12
The Project Browser 2-13
To-do lists . 2-13

Chapter 3
Programming with Delphi 3-1
Creating a project 3-1

Adding data modules 3-2
Building the user interface 3-2

Placing components on a form 3-2
Setting component properties. 3-3

Writing code . 3-5
Writing event handlers. 3-5
Using the VCL and CLX libraries. 3-5

Compiling and debugging projects 3-6
Deploying applications 3-8
Internationalizing applications 3-8
Types of projects 3-8

CLX applications 3-9

Web server applications 3-9
Database applications. 3-10

BDE Administrator 3-10
SQL Explorer (Database Explorer) 3-11
Database Desktop 3-11
Data Dictionary 3-11

Custom components 3-11
DLLs . 3-12
COM and ActiveX. 3-12

Type libraries 3-12

Chapter 4
Creating a text editor—a tutorial 4-1
Starting a new application 4-1
Setting property values. 4-2
Adding components to the form 4-3
Adding support for a menu and a toolbar 4-6

Adding actions to the action manager 4-7
Adding standard actions to the

action manager. 4-9
Adding images to the image list 4-10

Adding a menu 4-13
Adding a toolbar 4-14

Clearing the text area (optional) 4-15
Writing event handlers 4-16

Creating an event handler for the
New command. 4-16

Creating an event handler for the
Open command 4-18

Creating an event handler for the
Save command. 4-19

Creating an event handler for the
Save As command 4-20

Creating a Help file 4-22
Creating an event handler for the

Help Contents command 4-22
Creating an event handler for the

Help Index command 4-23
Creating an About box 4-24
Completing your application 4-26

Chapter 5
Customizing the desktop 5-1
Organizing your work area 5-1

Arranging menus and toolbars 5-1
Docking tool windows 5-2
Saving desktop layouts 5-4

Contents

iv

Customizing the Component palette 5-5
Arranging the Component palette 5-5
Creating component templates 5-6
Installing component packages 5-7

Using frames 5-8
Adding ActiveX controls. 5-9

Setting project options. 5-9
Setting default project options 5-9

Specifying project and form templates
as the default. 5-9

Adding templates to the Object
Repository 5-10

Setting tool preferences. 5-11
Customizing the Form Designer. 5-11
Customizing the Code Editor 5-12
Customizing the Code Explorer 5-12

Index I-1

I n t r o d u c t i o n 1-1

C h a p t e r

1
Chapter1Introduction

This Quick Start provides an overview of the Delphi development environment to get
you started using the product right away. It also tells you where to look for details
about the tools and features available in Delphi.

Chapter 2, “A tour of the desktop” describes the main tools on the Delphi desktop, or
integrated desktop environment (IDE). Chapter 3, “Programming with Delphi”
explains how you use some of these tools to create an application. Chapter 4,
“Creating a text editor—a tutorial” takes you step by step through a tutorial to write
a program for a text editor. Chapter 5, “Customizing the desktop” describes how you
can customize the Delphi IDE for your development needs.

What is Delphi?
Delphi is an object-oriented, visual programming environment for rapid application
development (RAD). Using Delphi, you can create highly efficient applications for
Microsoft Windows 2000, Windows 98, and Windows NT with a minimum of
manual coding. Delphi also provides a simple cross-platform solution when used in
conjunction with Kylix, Borland’s RAD tool for Linux. Delphi provides all the tools
you need to develop, test, and deploy applications, including a large library of
reusable components, a suite of design tools, application and form templates, and
programming wizards.

Finding information
You can find information on Delphi in the following ways, described in this chapter:

• Online Help
• Printed documentation
• Borland developer support services and Web site

1-2 Q u i c k S t a r t

F i n d i n g i n f o r m a t i o n

For information about new features in this release, refer to What’s New in the online
Help Contents and to the www.borland.com Web site.

Online Help

The online Help system provides detailed information about user interface features,
language implementation, programming tasks, and the components in the Visual
Component Library Reference (VCL) and Borland Component Library for Cross
Reference (CLX). It includes all the material in the Delphi Developer’s Guide, Object
Pascal Language Guide, and a host of Help files for other features bundled with Delphi.

To view the table of contents, choose Help|Delphi Help and Help|Delphi Tools, and
click the Contents tab. To look up VCL or CLX objects or any other topic, click the
Index or Find tab and type your request.

F1 Help

You can get context-sensitive Help on the VCL, CLX, and any part of the
development environment, including menu items, dialog boxes, toolbars, and
components by selecting the item and pressing F1.

Press F1 on a property or
event name in the Object
Inspector to display VCL
Help.

In the Code editor, press
F1 on a language, VCL, or
CLX element.

I n t r o d u c t i o n 1-3

P r i n t e d d o c u m e n t a t i o n

Pressing the Help button in any dialog box also displays context-sensitive online
documentation.

Error messages from the compiler and linker appear in a special window below the
Code editor. To get Help with compilation errors, select a message from the list and
press F1.

Printed documentation
This Quick Start is an introduction to Delphi. To order additional printed
documentation, such as the Developer’s Guide, refer to shop.borland.com.

Press F1 on a
component on a form.

Press F1 on any
menu command,
dialog box, or
window to display
Help on that item.

1-4 Q u i c k S t a r t

D e v e l o p e r s u p p o r t s e r v i c e s a n d W e b s i t e

Developer support services and Web site
Borland also offers a variety of support options to meet the needs of its diverse
developer community. To find out about support, refer to
http://www.borland.com/devsupport/.

From the Web site, you can access many newsgroups where Delphi developers
exchange information, tips, and techniques. The site also includes a list of books
about Delphi, additional Delphi technical documents, and Frequently Asked
Questions (FAQs).

Typographic conventions
This manual uses the typefaces described below to indicate special text.

Table 1.1 Typographic conventions

Typeface Meaning

Monospace type Monospaced type represents text as it appears on screen or in code. It also
represents anything you must type.

Boldface Boldfaced words in text or code listings represent reserved words or compiler
options.

Italics Italicized words in text represent Delphi identifiers, such as variable or type
names. Italics are also used to emphasize certain words, such as new terms.

Keycaps This typeface indicates a key on your keyboard. For example, “Press Esc to exit
a menu.”

A t o u r o f t h e d e s k t o p 2-1

C h a p t e r

2
Chapter2A tour of the desktop

This chapter explains how to start Delphi and gives you a quick tour of the main
parts and tools of the desktop, or integrated desktop environment (IDE).

Starting Delphi
You can start Delphi in the following ways:

• Double-click the Delphi icon (if you’ve created a shortcut).
• Choose Programs|Borland Delphi 6|Delphi 6 from the Windows Start menu.
• Choose Run from the Windows Start menu, then enter Delphi32.
• Double-click Delphi32.exe in the Delphi\Bin directory.

The IDE
When you first start Delphi, you’ll see some of the major tools in the IDE. In Delphi,
the IDE includes the menus, toolbars, Component palette, Object Inspector, Object
TreeView, Code editor, Code Explorer, Project Manager, and many other tools. The
particular features and components available to you will depend on which edition of
Delphi you’ve purchased.

2-2 Q u i c k S t a r t

T h e m e n u s a n d t o o l b a r s

Delphi’s development model is based on two-way tools. This means that you can
move back and forth between visual design tools and text-based code editing. For
example, after using the Form Designer to arrange buttons and other elements in a
graphical interface, you can immediately view the form file that contains the textual
description of your form. You can also manually edit any code generated by Delphi
without losing access to the visual programming environment.

From the IDE, all your programming tools are within easy reach. You can design
graphical interfaces, browse through class libraries, write code, and compile, test,
debug, and manage projects without leaving the IDE.

To learn about organizing and configuring the IDE, see Chapter 5, “Customizing the
desktop.”

The menus and toolbars
The main window, which occupies the top of the screen, contains the main menu,
toolbars, and Component palette.

The Component palette
contains ready-made
components to add to
your projects.

Code editor displays
code to view and edit.

The Form Designer
contains a blank form
on which to start
designing the user
interface for your
application. An
application can include
several forms.

The Code Explorer shows you the classes, variables, and
routines in your unit and lets you navigate quickly.

The Object Inspector is
used to change objects’
properties and select event
handlers.

The Object TreeView displays a
hierarchical view of your components’
parent-child relationships.

The menus and toolbars access a host of features
and tools to help you write an application.

Main window
in its default
arrangement.

A t o u r o f t h e d e s k t o p 2-3

T h e C o m p o n e n t P a l e t t e , F o r m D e s i g n e r , a n d O b j e c t I n s p e c t o r

Delphi’s toolbars provide quick access to frequently used operations and commands.
Most toolbar operations are duplicated in the drop-down menus.

Many operations have keyboard shortcuts as well as toolbar buttons. When a
keyboard shortcut is available, it is always shown next to the command on the drop-
down menu.

You can right-click on many tools and icons to display a menu of commands
appropriate to the object you are working with. These are called context menus.

The toolbars are also customizable. You can add commands you want to them or
move them to different locations. For more information, see “Arranging menus and
toolbars” on page 5-1 and “Saving desktop layouts” on page 5-4.

For more information...
If you need help on any menu option, point to it and press F1.

The Component Palette, Form Designer, and Object Inspector
The Component palette, Form Designer, Object Inspector, and Object TreeView work
together to help you build a user interface for your application.

The Component palette includes tabbed pages with groups of icons representing visual
or nonvisual VCL and CLX components. The pages divide the components into
various functional groups. For example, the Standard, Additional, and Win32 pages
include windows controls such as an edit box and up/down button; the Dialogs page

You can use the right-click
menu to hide any toolbar. To
display a toolbar if it’s not
showing, choose View|Toolbars
and check the one you want.

To find out what a button does,
point to it for a moment until a
tooltip appears.

Run

Open
project

Save all Add file to
project

Open

Save

New
form

Remove
file from
projectNew

Toggle
form/unit

View
form

View
unit

Standard toolbar

Pause

Trace
into

Step
over

View toolbar

Debug toolbar

List of projects
you can run

Desktops toolbar

Name of saved
desktop layout

Set debug
desktop

Save current
desktop

New WebSnap
Page Module

New WebSnap
Data Module

External
Editor

Internet toolbar

New WebSnap
Application

2-4 Q u i c k S t a r t

T h e O b j e c t T r e e V i e w

includes common dialog boxes to use for file operations such as opening and saving
files.

Each component has specific attributes—properties, events, and methods—that
enable you to control your application.

After you place components on the form, or Form Designer, you can arrange
components the way they should look on your user interface. For the components
you place on the form, use the Object Inspector to set design-time properties, create
event handlers, and filter visible properties and events, making the connection
between your application’s visual appearance and the code that makes your
application run. See “Placing components on a form” on page 3-2.

For more information...
See “Component palette” in the online Help index.

The Object TreeView
The Object TreeView displays a component’s sibling and parent-child relationships
in a hierarchical, or tree diagram. The tree diagram is synchronized with the Object
Inspector and the Form Designer so that when you change focus in the Object
TreeView, both the Object Inspector and the form change focus.

You can use the Object TreeView to change related components’ relationships to each
other. For example, if you add a panel and check box component to your form, the

Component palette pages, grouped by function

Components

Click to view
more pages.

After you place components on a form, the Object Inspector dynamically
changes the set of properties it displays, based on the component selected.

A t o u r o f t h e d e s k t o p 2-5

T h e O b j e c t R e p o s i t o r y

two components are siblings. But in the Object TreeView, if you drag the check box
on top of the panel icon, the check box becomes the child of the panel.

If an object’s properties have not been completed, the Object TreeView displays a red
question mark next to it. You can also double-click any object in the tree diagram to
open the Code editor to a place where you can write an event handler.

If the Object TreeView isn’t displayed, choose View|Object TreeView.

The Object TreeView is especially useful for displaying the relationships between
database objects.

For more information...
See “Object TreeView” in the online Help index.

The Object Repository
The Object Repository contains forms, dialog boxes, data modules, wizards, DLLs,
sample applications, and other items that can simplify development. Choose File|
New|Other to display the New Items dialog box when you begin a project. The New

The Object TreeView,
Object Inspector, and the
Form Designer work
together. When you click an
object on your form, it
automatically changes the
focus in both the Object
TreeView and the Object
Inspector and vice versa.

Press Alt-Shift-F11 to focus
on the Object TreeView.

2-6 Q u i c k S t a r t

T h e C o d e E d i t o r

Items dialog box is the same as the Object Repository. Check the Repository to see if
it contains an object that resembles one you want to create.

To edit or remove objects from the Object Repository, either choose Tools|Repository
or right-click in the New Items dialog box and choose Properties.

To add project and form templates to the Object Repository, see “Adding templates
to the Object Repository” on page 5-10.

For more information...
See “Object Repository” in the online Help index. The objects available to you will
depend on which edition of Delphi you purchased.

The Code Editor
As you design the user interface for your application, Delphi generates the
underlying Object Pascal code. When you select and modify the properties of forms
and objects, your changes are automatically reflected in the source files. You can add

The Repository’s tabbed pages include
objects like forms, frames, units, and
wizards to create specialized items.

When you’re creating an item based on
one from the Object Repository, you
can copy, inherit, or use the item:

Copy (the default) creates a copy of
the item in your project. Inherit means
changes to the object in the Repository
are inherited by the one in your project.
Use means changes to the object in
your project are inherited by the object
in the Repository.

You can add, remove, or
rename tabbed pages from
the Object Repository.

Click the arrows to change
the order in which a tabbed
page appears in the New
Items dialog box.

A t o u r o f t h e d e s k t o p 2-7

T h e C o d e E d i t o r

code to your source files directly using the built-in Code editor, which is a full-
featured ASCII editor.

Delphi provides various aids to help you write code, including the Code Insight
tools, class completion, and code browsing.

Code Insight
The Code Insight tools display context-sensitive pop-up windows.

Table 2.1 Code Insight tools

Tool How it works

Code completion Type a class name followed by a dot (.) to display a list of
properties, methods, and events appropriate to the class, select
it, and press Enter. In the interface section of your code you can
select more than one item. Type the beginning of an assignment
statement and press Ctrl+space to display a list of valid values for
the variable. Type a procedure, function, or method name to
bring up a list of arguments.

Code parameters Type a method name and an open parenthesis to display the
syntax for the method’s arguments.

Tooltip expression evaluation While your program has paused during debugging, point to any
variable to display its current value.

Tooltip symbol insight While editing code, point to any identifier to display its
declaration.

Code templates Press Ctrl+J to see a list of common programming statements that
you can insert into your code. You can create your own
templates in addition to the ones supplied with Delphi.

Components added
to the form are
reflected in the code.

Generated
code.

2-8 Q u i c k S t a r t

T h e C o d e E d i t o r

To turn these tools on or off, choose Tools|Editor Options and click the Code Insight
tab. Check or uncheck the tools in the Automatic features section.

Class Completion
Class completion generates skeleton code for classes. Place the cursor anywhere
within a class declaration of the interface section of a unit and press Ctrl+Shift+C or
right-click and choose Complete Class at Cursor. Delphi automatically adds private
read and write specifiers to the declarations for any properties that require them,
then creates skeleton code for all the class’s methods. You can also use class
completion to fill in class declarations for methods you’ve already implemented.

To turn on class completion, choose Tools|Environment Options, click the Explorer
tab, and make sure Finish incomplete properties is checked.

For more information...
See “Code Insight” and “class completion” in the online Help index.

Code Browsing
While passing the mouse over the name of any class, variable, property, method, or
other identifier, the pop-up menu called Tooltip Symbol Insight displays where the
identifier is declared. Press Ctrl and the cursor turns into a hand, the identifier turns
blue and is underlined, and you can click to jump to the definition of the identifier.

The Code editor has forward and back buttons like the ones on Web browsers. As
you jump to these definitions, the Code editor keeps track of where you’ve been in

With code completion, when you type the dot
in Button1. Delphi displays a list of
properties, methods, and events for the class.
As you type, the list automatically filters to the
selection that pertains to that class. Select an
item on the list and press Enter to add it to
your code.

Procedures and properties are colored as teal
and functions as blue.

You can sort this list alphabetically by right-
clicking and clicking Sort by Name.

The tooltip symbol insight displays declaration
information for any identifier when you pass
the mouse over it.

A t o u r o f t h e d e s k t o p 2-9

T h e C o d e E d i t o r

the code. You can click the drop-down arrows next to the Forward and Back buttons
to move forward and backward through a history of these references.

You can also move between the declaration of a procedure and its implementation by
pressing Ctrl+Shift+↑ or Ctrl+Shift+↓.

To customize your code editing environment, see “Customizing the Code Editor” on
page 5-12.

For more information...
See “Code editor” in the online Help index.

The Diagram page

The bottom of the Code editor may contain one or more tabs, depending on which
edition of Delphi you have. The Code page, where you write all your code, appears
in the foreground by default. The Diagram page displays icons and connecting lines
representing the relationships between the components you place on a form or data
module. These relationships include siblings, parent to children, or components to
properties.

To create a diagram, click the Diagram page. From the Object TreeView, simply drag
one or multiple icons to the Diagram page to arrange them vertically. To arrange
them horizontally, press Shift while dragging. When you drag icons with parent-
children or component-property dependencies onto the page, the lines, or connectors,
that display the dependent relationships are automatically added. For example, if
you add a dataset component to a data module and drag the dataset icon plus its
property icons to the Diagram page, the property connector automatically connects
the property icons to the dataset icon.

For components that don’t have dependent relationships but where you want to
show one, use the toolbar buttons at the top of the Diagram page to add one of four

Click the back arrow to
return to the last place
you were working in
your code. Then click
the forward arrow to
move forward again.

Press Ctrl and click or right-click and click Find
Declaration to jump to the definition of the identifier.

The Code editor maintains a list of the definitions you
jumped to.

2-10 Q u i c k S t a r t

T h e C o d e E d i t o r

connector types, including allude, property, master/detail, and lookup. You can also
add comment blocks that connect to each other or to a relevant icon.

You can type a name and description for your diagram, save the diagram, and print it
when you are finished.

For more information...
See “diagram page” in the online Help index.

Viewing form code

Forms are a very visible part of most Delphi projects—they are where you design the
user interface of an application. Normally, you design forms using Delphi‘s visual
tools, and Delphi stores the forms in form files. Form files (.dfm, or .xfm for a CLX
application) describe each component in your form, including the values of all
persistent properties. To view and edit a form file in the Code editor, right-click the
form and select View as Text. To return to the graphic view of your form, right-click
and choose View as Form.

Use the Diagram page
toolbar buttons—Property,
Master/Detail and Lookup—
to designate the relationship
between components and
components and their
properties. The appearance
of the connecting line varies
for each type of relationship.

Click the Comment block
button to add a comment,
and the Allude connector
button to draw a connection
to another comment or icon.

From the Object TreeView, drag
the icons of the components to
the Diagram page.

To view other diagrams you’ve named in the
current project, click the drop-down list box.

Type a name and description for your
diagram.

A t o u r o f t h e d e s k t o p 2-11

T h e C o d e E x p l o r e r

You can save form files in either text (the default) or binary format. Choose Tools|
Environment Options, click the Designer page, and check or uncheck the New forms
as text check box to designate which format to use for newly created forms.

For more information...
See “form files” in the online Help index.

The Code Explorer
When you open Delphi, the Code Explorer is docked to the left of the Code editor
window, depending on whether the Code Explorer is available in the edition of
Delphi you have. The Code Explorer displays the table of contents as a tree diagram
for the source code open in the Code editor, listing the types, classes, properties,
methods, global variables, and routines defined in your unit. It also shows the other
units listed in the uses clause.

You can use the Code Explorer to navigate in the Code editor. For example, if you
double-click a method in the Code Explorer, a cursor jumps to the definition in the
class declaration in the interface part of the unit in the Code editor.

Use View As
Text to view a
text description
of the form’s
attributes in the
Code editor.

2-12 Q u i c k S t a r t

T h e P r o j e c t M a n a g e r

To configure how the Code Explorer displays its contents, choose Tools|
Environment Options and click the Explorer tab. See “Customizing the Code
Explorer” on page 5-12.

For more information...
See “Code Explorer” in the online Help index.

The Project Manager
When you first start Delphi, it automatically opens a new project, as shown on
page 2-2. A project includes several files that make up the application or DLL you are
going to develop. You can view and organize these files—such as form, unit,
resource, object, and library files—in a project management tool called the Project
Manager. To display the Project Manager, choose View|Project Manager.

You can use the Project Manager to combine and display information on related
projects into a single project group. By organizing related projects into a group, such as
multiple executables, you can compile them at the same time. To change project
options, such as compiling a project, see “Setting project options” on page 5-9.

For more information...
See “Project Manager” in the online Help index.

Double-click an item in the Code
Explorer and the cursor moves to
that item’s implementation in the
Code editor. Press Ctrl+Shift+E to
move the cursor back and forth
between the last place you were in
the Code Explorer and Code editor.

Each item in the Code Explorer has
an icon that designates its type.

A t o u r o f t h e d e s k t o p 2-13

T h e P r o j e c t B r o w s e r

The Project Browser
The Project Browser examines a project in detail. The Browser displays classes, units,
and global symbols (types, properties, methods, variables, and routines) your project
declares or uses in a tree diagram. Choose View|Browser to display the Project
Browser.

By default, the Project Browser displays the symbols from units in the current project
only. You can change the scope to display all symbols available in Delphi. Choose
Tools|Environment Options, and on the Explorer page, check All symbols (VCL
included).

For more information...
See “Project Browser” in the online Help index.

To-do lists
To-do lists record items that need to be completed for a project. You can add project-
wide items to a list by adding them directly to the list, or you can add specific items

The Project Browser has two
resizeable panes: the
Inspector pane (on the left)
and the Details pane. The
Inspector pane has three tabs
for globals, classes, and units.

Globals displays classes,
types, properties, methods,
variables, and routines.

Classes displays classes in a
hierarchical diagram.

Units displays units, identifiers
declared in each unit, and the
other units that use and are
used by each unit.

2-14 Q u i c k S t a r t

T o - d o l i s t s

directly in the source code. Choose View|To-Do List to add or view information
associated with a project.

For more information...
See “to-do lists” in the online Help index.

Right-click on a to-do list to
display commands that let you
sort and filter the list.

Click the check
box when you’re
done with an item.

P r o g r a m m i n g w i t h D e l p h i 3-1

C h a p t e r

3
Chapter3Programming with Delphi

The following sections provide an overview of software development with Delphi,
including creating a project, working with forms, writing code, and compiling,
debugging, deploying, and internationalizing applications, and including the types
of projects you can develop.

Creating a project
A project is a collection of files that are either created at design time or generated
when you compile the project source code. When you first start Delphi, a new project
opens. It automatically generates a project file (Project1.dpr), unit file (Unit1.pas),
and resource file (Unit1.dfm; Unit1.xfm for CLX applications), among others.

If a project is already open but you want to open a new one, choose either File|New|
Application or File|New|Other and double-click the Application icon. File|New|
Other opens the Object Repository, which provides additional forms, modules, and
frames as well as predesigned templates such as dialog boxes to add to your project.
To learn more about the Object Repository, see “The Object Repository” on page 2-5.

When you start a project, you have to know what you want to develop, such as an
application or DLL. To read about what types of projects you can develop with
Delphi, see “Types of projects” on page 3-8.

For more information...
See “projects” in the online Help index.

3-2 Q u i c k S t a r t

B u i l d i n g t h e u s e r i n t e r f a c e

Adding data modules

A data module is a type of form that contains nonvisual components only. Nonvisual
components can be placed on ordinary forms alongside visual components. But if
you plan on reusing groups of database and system objects, or if you want to isolate
the parts of your application that handle database connectivity and business rules,
data modules provide a convenient organizational tool.

To create a data module, choose File|New|Data Module. Delphi opens an empty
data module, which displays an additional unit file for the module in the Code
Editor, and adds the module to the current project as a new unit. Add nonvisual
components to a data module in the same way as you would to a form.

When you reopen an existing data module, Delphi displays its components.

For more information...
See “data modules” in the online Help index.

Building the user interface
With Delphi, you first create a user interface (UI) by selecting components from the
Component palette and placing them on the main form.

Placing components on a form

To place components on a form, either:

1 Double-click the component; or
2 Click the component once and then click the form where you want the component

to appear.

Double-click a nonvisual
component on the Component
palette to place the component in
the data module.

Click a component on the Component palette.

P r o g r a m m i n g w i t h D e l p h i 3-3

B u i l d i n g t h e u s e r i n t e r f a c e

Select the component and drag it to wherever you want on the form.

For more information...
See “Component palette” in the online Help index.

Setting component properties

After you place components on a form, set their properties and code their event
handlers. Setting a component’s properties changes the way a component appears
and behaves in your application. When a component is selected on a form, its
properties and events are displayed in the Object Inspector.

Many properties have simple values—such as names of colors, True or False, and
integers. For Boolean properties, you can double-click the word to toggle between
True and False. Some properties have associated property editors to set more complex

Then click where you want to place it on the form.
Or choose a
component from
an alphabetical
list.

Or use this drop-down list to
select an object. Here,
Button1 is selected, and its
properties are displayed.

You can also click a plus sign to open a detail list.

Select a property and
change its value in the
right column.

Click an ellipsis to open
a dialog box where you
can change the
properties of a helper
object.

You can select a
component, or object, on
the form by clicking on it.

3-4 Q u i c k S t a r t

B u i l d i n g t h e u s e r i n t e r f a c e

values. When you click on such a property value, you’ll see an ellipsis. For some
properties, such as size, enter a value.

When more than one component is selected in the form, the Object Inspector displays
all properties that are shared among the selected components.

The Object Inspector also supports expanded inline component references. This
provides access to the properties and events of a referenced component without
having to select the referenced component itself. For example, if you add a button
and pop-up menu component to your form, when you select the button component,
in the Object Inspector you can set the PopupMenu property to PopupMenu1, which
displays all of the pop-up menu’s properties.

For more information...
See “Object Inspector” in the online Help index.

Double-click here to
change the value from
True to False.

Click on the down arrow to select from a list
of valid values.

Click any ellipsis to
display a property
editor for that property.

Set the Button
component’s
PopupMenu property
to PopupMenu1, and
all of the popup
menu’s properties
appear when you
click the plus sign (+).

Inline component
references are
colored red, and their
subproperties are
colored green.

P r o g r a m m i n g w i t h D e l p h i 3-5

W r i t i n g c o d e

Writing code
An integral part of any application is the code behind each component. While
Delphi’s RAD environment provides most of the building blocks for you, such as
preinstalled visual and nonvisual components, you will usually need to write event
handlers, methods, and perhaps some of your own classes. To help you with this
task, you can choose from thousands of objects in Delphi’s VCL and CLX class
libraries. To work with your source code, see “The Code Editor” on page 2-6.

Writing event handlers

Your code may need to respond to events that might occur to a component at
runtime. An event is a link between an occurrence in the system, such as clicking a
button, and a piece of code that responds to that occurrence. The responding code is
an event handler. This code modifies property values and calls methods.

To view predefined event handlers for a component on your form, select the
component and, on the Object Inspector, click the Events tab.

For more information...
See “events” in the online Help index.

Using the VCL and CLX libraries

Delphi comes with two class libraries made up of objects, some of which are also
components or controls, that you use when writing code. You can use the Visual
Component Library (VCL) for Windows applications and Borland Component
Library for Cross Platform (CLX) for Linux applications. These libraries include
objects that are visible at runtime—such as edit controls, buttons, and other user
interface elements—as well as nonvisual controls like datasets and timers. The

Select an existing event
handler from the drop-
down list.

Or double-click in the
value column, and Delphi
generates skeleton code
for the new event
handler.

Here, Button1 is selected and its type is displayed: TButton.
Click the Events tab in the Object Inspector to see the
events that the Button component can handle.

3-6 Q u i c k S t a r t

C o m p i l i n g a n d d e b u g g i n g p r o j e c t s

following diagram below shows some of the principal classes that make up the VCL
The CLX hierarchy is similar.

Objects descended from TComponent have properties and methods that allow them to
be installed on the Component palette and added to Delphi forms and data modules.
Because VCL and CLX components are hooked into the IDE, you can use tools like
the Form Designer to develop applications quickly.

Components are highly encapsulated. For example, buttons are preprogrammed to
respond to mouse clicks by firing OnClick events. If you use a VCL or CLX button
control, you don’t have to write code to handle generated events when the button is
clicked; you are responsible only for the application logic that executes in response to
the click itself.

Most editions of Delphi come with VCL and CLX source code and examples of Object
Pascal programming techniques.

For more information...
See “Visual Component Library Reference” and “CLX Reference” in the Help
contents and “VCL” in the online Help index. See http://www.borland.com/delphi
for open source and licensing options on CLX.

Compiling and debugging projects
After you have written your code, you will need to compile and debug your project.
With Delphi, you can either compile your project first and then separately debug it,
or you can compile and debug in one step using the integrated debugger. To compile
your program with debug information, choose Project|Options, click the Compiler
page, and make sure Debug information is checked.

Delphi uses an integrated debugger so that you can control program execution,
watch variables, and modify data values. You can step through your code line by
line, examining the state of the program at each breakpoint. To use the integrated

TObject

TPersistentTStreamException

TComponent TStringsTGraphicTGraphicsObject

TControl TCommonDialogTMenuTDataSet

TWinControlTGraphicControl

TCustomControlTScrollingWinControl

TApplication

TComObject

TCollection

TField

TInterface

TCustomForm

Most visual controls inherit
from TWinControl or in
CLX, TWidgetControl.

P r o g r a m m i n g w i t h D e l p h i 3-7

C o m p i l i n g a n d d e b u g g i n g p r o j e c t s

debugger, choose Tools|Debugger Options, click the General page, and make sure
Integrated debugging is checked.

You can begin a debugging session in the IDE by clicking the Run button on the
Debug toolbar, choosing Run|Run, or pressing F9.

With the integrated debugger, many debugging windows are available, including
Breakpoints, Call Stack, Watches, Local Variables, Threads, Modules, CPU, and
Event Log. Display them by choosing View|Debug Windows. Not all debugger
views are available in all editions of Delphi.

To learn how to combine debugging windows for more convenient use, see “Docking
tool windows” on page 5-2.

Once you set up your desktop as you like it for debugging, you can save the settings
as the debugging or runtime desktop. This desktop layout will be used whenever
you are debugging any application. For details, see “Saving desktop layouts” on
page 5-4.

For more information...
See “debugging” and “integrated debugger” in the online Help index.

Run button

Choose any of the debugging
commands from the Run
menu. Some commands are
also available on the toolbar.

You can combine several
debugging windows for
easier use.

3-8 Q u i c k S t a r t

D e p l o y i n g a p p l i c a t i o n s

Deploying applications
You can make your application available for others to install and run by deploying it.
When you deploy an application, you will need all the required and supporting files,
such as the executables, DLLs, package files, and helper applications. Delphi comes
bundled with a setup toolkit called InstallShield Express that helps you create an
installation program with these files. To install InstallShield Express, from the Delphi
setup screen, choose InstallShield Express Custom Edition for Delphi.

For more information...
See “deploying, applications” in the online Help index.

Internationalizing applications
Delphi offers several features for internationalizing and localizing applications. The
IDE and the VCL support input method editors (IMEs) and extended character sets to
internationalize your project. Delphi includes a translation suite, not available in all
editions of Delphi, for software localization and simultaneous development for
different locales. With the translation suite, you can manage multiple localized
versions of an application as part of a single project.

The translation suite includes three integrated tools:

• Resource DLL wizard, a DLL wizard that generates and manage resource DLLs.
• Translation Manager, a table for viewing and editing translated resources.
• Translation Repository, a shared database to store translations.

To open the Resource DLL wizard, choose File|New|Other and double-click the
Resource DLL Wizard icon. To configure the translation tools, choose Tools|
Translation Tools Options.

For more information...
See “international applications” in the online Help index.

Types of projects
All editions of Delphi support general-purpose 32-bit Windows programming, DLLs,
packages, custom components, multithreading, COM (Component Object Model)
and automation controllers, and multiprocess debugging. Some editions support
server applications such as Web server applications, database applications, COM
servers, multi-tiered applications, CORBA, and decision-support systems.

For more information...
To see what tools your edition supports, refer to the feature list on
www.borland.com/delphi.

P r o g r a m m i n g w i t h D e l p h i 3-9

T y p e s o f p r o j e c t s

CLX applications

With Delphi, you can develop a cross-platform application that can be ported to Kylix,
where you compile, debug, and deploy your project to run on Linux. To develop a CLX
application, choose File|New|CLX Application. The IDE is similar to that of a regular
Delphi application, except that only the components and items you can use in a CLX
application appear on the Component palette and in the Object Repository.
Windows-specific features supported on Delphi will not port directly to Linux
environments.

For more information...
To see which components are available for developing cross-platform applications,
see “CLX Reference” in the online Help contents.

Web server applications

A Web server application works with a Web server by processing a client’s request
and returning an HTTP message in the form of a Web page. To publish data for the
Web, Delphi includes two different technologies, depending on what edition of
Delphi you have.

To develop a basic Web server application, you create a Web module to dispatch
requests, define actions, create HTML pages, and write event handlers for both
Windows and Linux applications. To create a WebBroker Web server application,
choose File|New|Other and double-click the Web Server Application icon. You can
add components to your Web module from the Internet and InternetExpress
Component palette pages.

WebSnap adds to this functionality with adapters, additional dispatchers, additional
page producers, session support, and Web page modules. To create a new WebSnap
server application, select File|New|Other, click the WebSnap page, and double-click
the Web Server Application icon. You can add WebSnap components from the
WebSnap Component palette page.

You can create an
application to run on
various Web server
application types,
including a test server to
help you debug your Web
server application.

Choose whether you
want a data module or a
page module, which
displays your HTML page
as you work.

You can also access the
WebSnap Application data
module by choosing View|
Toolbars|Internet, and
clicking the New WebSnap
Application icon.

3-10 Q u i c k S t a r t

T y p e s o f p r o j e c t s

For more information...
See “Web applications” in the online Help index.

Database applications

Delphi offers a variety of database and connectivity tools to simplify the
development of database applications.

To create a database application, first design your interface on a form using the Data
Controls page components. Second, add a data source to a data module using the
Data Access page. Third, to connect to various database servers, add a dataset and
data connection component to the data module from the previous or corresponding
pages of the following connectivity tools:

• dbExpress is a collection of database drivers for cross-platform applications that
provide fast access to SQL database servers, including DB2, InterBase, MySQL,
and Oracle. With a dbExpress driver, you can access databases using
unidirectional datasets.

• The Borland Database Engine (BDE) is a collection of drivers that support many
popular database formats, including dBASE, Paradox, FoxPro, Microsoft Access,
and any ODBC data source. SQL Links drivers, available with some versions of
Delphi, support servers such as Oracle, Sybase, Informix, DB2, SQL Server, and
InterBase.

• ActiveX Data Objects (ADO) is Microsoft's high-level interface to any data source,
including relational and nonrelational databases, e-mail and file systems, text and
graphics, and custom business objects.

• InterBase Express (IBX) components are based on the custom data access Delphi
component architectures. IBX applications provide access to advanced InterBase
features and offer the highest performance component interface for InterBase 5.5
and later. IBX is compatible with Delphi’s library of data-aware components.

Certain database connectivity tools are not available in all editions of Delphi.

For more information...
See “database applications” in the online Help index.

BDE Administrator
Use the BDE Administrator (BDEAdmin.exe) to configure BDE drivers and set up the
aliases used by data-aware VCL controls to connect to databases.

For more information...
From the Windows Start menu, choose Programs|Borland Delphi 6|BDE
Administrator. Then choose Help|Contents.

P r o g r a m m i n g w i t h D e l p h i 3-11

T y p e s o f p r o j e c t s

SQL Explorer (Database Explorer)
The SQL Explorer (DBExplor.exe) lets you browse and edit databases. You can use it
to create database aliases, view schema information, execute SQL queries, and
maintain data dictionaries and attribute sets.

For more information...
From the Delphi main menu, choose Database|Explore. Then choose Help|
Contents. Or see “Database Explorer” in the online Help index.

Database Desktop
The Database Desktop (DBD32.exe) lets you create, view, and edit Paradox and
dBase database tables in a variety of formats.

For more information...
From the Windows Start menu, choose Programs|Borland Delphi 6|Database
Desktop. Then choose Help|User’s Guide Contents.

Data Dictionary
When you use the BDE, the Data Dictionary provides a customizable storage area,
independent of your applications, where you can create extended field attribute sets
that describe the content and appearance of data. The Data Dictionary can reside on a
remote server to share additional information.

For more information...
Choose Help|Delphi Tools to see “Data Dictionary.”

Custom components

The components that come with Delphi are preinstalled on the Component palette
and offer a range of functionality that should be sufficient for most of your
development needs. You could program with Delphi for years without installing a
new component, but you may sometimes want to solve special problems or display
particular kinds of behavior that require custom components. Custom components
promote code reuse and consistency across applications.

You can either install custom components from third-party vendors or create your
own. To create a new component, choose Component|New Component to display
the New Component wizard. To install components provided by a third party, see
“Installing component packages” on page 5-7.

For more information...
See Part V, “Creating custom components,” in the Developer’s Guide and
“components, creating” in the online Help index.

3-12 Q u i c k S t a r t

T y p e s o f p r o j e c t s

DLLs

Dynamic-link libraries (DLLs) are compiled modules containing routines that can be
called by applications and by other DLLs. A DLL contains code or resources typically
used by more than one application. Choose File|New|Other and double-click the
DLL Wizard icon to create a template for a DLL.

For more information...
See “DLLs” in the online Help index.

COM and ActiveX

Delphi supports Microsoft’s COM standard and provides wizards for creating
ActiveX controls. Choose File|New|Other and click the ActiveX tab to access the
wizards. Sample ActiveX controls are installed on the ActiveX page of the
Component palette. Numerous COM server components are provided on the Servers
tab of the Component palette. You can use these components as if they were VCL
components. For example, you can place one of the Microsoft Word components onto
a form to bring up an instance of Microsoft Word within an application interface.

For more information...
See “COM” and “ActiveX” in the online Help index.

Type libraries
Type libraries are files that include information about data types, interfaces, member
functions, and object classes exposed by an ActiveX control or server. By including a
type library with your COM application or ActiveX library, you make information
about these entities available to other applications and programming tools. Delphi
provides a Type Library editor for creating and maintaining type libraries.

For more information...
See “type libraries” in the online Help index.

C r e a t i n g a t e x t e d i t o r — a t u t o r i a l 4-1

C h a p t e r

4
Chapter4Creating a text editor—a tutorial

This tutorial takes you through the creation of a text editor complete with menus, a
toolbar, and a status bar.

Note This tutorial is for all editions of Delphi and is for the Windows platform only.

Starting a new application
Before beginning a new application, create a directory to hold the source files:

1 Create a directory called TextEditor in your C:\Program Files\Borland\Delphi6\
Projects directory.

2 Open a new project.

Each application is represented by a project. When you start Delphi, it creates a
blank project by default. If another project is already open, choose File|New|
Application to create a new project.

When you open a new project, Delphi automatically creates the following files:

• Project1.dpr: a source-code file associated with the project. This is called a project
file.

• Unit1.pas: a source-code file associated with the main project form. This is called
a unit file.

• Unit1.dfm: a resource file that stores information about the main project form.
This is called a form file.

Each form has its own unit (Unit1.pas) and form (Unit1.dfm) files. If you create a
second form, a second unit (Unit2.pas) and form (Unit2.dfm) file are automatically
created.

4-2 Q u i c k S t a r t

S e t t i n g p r o p e r t y v a l u e s

3 Choose File|Save All to save your files to disk. When the Save dialog box appears:

• Navigate to your TextEditor folder.

• Save Unit1 using the default name Unit1.pas.

• Save the project using the name TextEditor.dpr. (The executable will be named
the same as the project name with an .exe extension.)

Later, you can resave your work by choosing File|Save All.

When you save your project, Delphi creates additional files in your project
directory. These files include TextEditor.dof, which is the Delphi Options file,
TextEditor.cfg, which is the configuration file, and TextEditor.res, which is the
Windows resource file. You don’t need to worry about these files but don’t delete
them.

Setting property values
When you open a new project, Delphi displays the project’s main form, named Form1
by default. You’ll create the user interface and other parts of your application by
placing components on this form.

Next to the form, you’ll see the Object Inspector, which you can use to set property
values for the form and the components you place on it. When you set properties,
Delphi maintains your source code for you. The values you set in the Object
Inspector are called design-time settings.

1 Find the form’s Caption property in the Object Inspector and type Text Editor
Tutorial replacing the default caption Form1. Notice that the caption in the heading
of the form changes as you type.

The drop-down list at the top of the Object Inspector
shows the currently selected component. In this case,
the component is Form1 and its type is TForm1.

When a component is selected, the Object Inspector
displays its properties.

C r e a t i n g a t e x t e d i t o r — a t u t o r i a l 4-3

A d d i n g c o m p o n e n t s t o t h e f o r m

2 Run the form now by pressing F9, even though there are no components on it.

3 To return to the design-time view of Form1, do one of the following:

• Click the X in the upper right corner of the title bar of your application
(the runtime view of the form);

• Click the Exit application button in the upper left corner of the title bar and click
Close;

• Choose View|Forms, select Form1, and click OK; or

• Choose Run|Program Reset.

Adding components to the form
Before you start adding components to the form, you need to think about the best
way to create the user interface (UI) for your application. The UI is what allows the
user of your application to interact with it and should be designed for ease of use.

Delphi includes many components that represent parts of an application. For
example, there are components (derived from objects) on the Component palette that
make it easy to program menus, toolbars, dialog boxes, and many other visual and
nonvisual program elements.

The text editor application requires an editing area, a status bar for displaying
information such as the name of the file being edited, menus, and perhaps a toolbar
with buttons for easy access to commands. The beauty of designing the interface
using Delphi is that you can experiment with different components and see the
results right away. This way, you can quickly prototype an application interface.

To start designing the text editor, add a RichEdit and a StatusBar component to the
form:

1 To create a text area, first add a RichEdit component. To find the RichEdit
component, on the Win32 page of the Component palette, point to an icon on the

Without any components on it,
the runtime view of the form
looks similar to the design-time
view, complete with the
Minimize, Maximize, and Close
buttons.

4-4 Q u i c k S t a r t

A d d i n g c o m p o n e n t s t o t h e f o r m

palette for a moment; Delphi displays a Help tooltip showing the name of the
component.

When you find the RichEdit component, either:

• Select the component on the palette and then click on the form where you want
to place the component; or

• Double-click the component to place it in the middle of the form.

Each Delphi component is a class; placing a component on a form creates an
instance of that class. Once the component is on the form, Delphi generates the
code necessary to construct an instance of the object when your application is
running.

2 With the RichEdit component selected, in the Object Inspector, click the drop-
down arrow of the Align property and set it to alClient.

Make sure the RichEdit1 component is
selected on the form.

Look for the Align property in the Object
Inspector. Click the down arrow to
display the property’s drop-down list.

Select alClient.

C r e a t i n g a t e x t e d i t o r — a t u t o r i a l 4-5

A d d i n g c o m p o n e n t s t o t h e f o r m

The RichEdit component now fills the entire form so you have a large text editing
area. By choosing the alClient value for the Align property, the size of the RichEdit
control will vary to fill whatever size window is displayed even if the form is
resized.

3 Double-click the StatusBar component on the Win32 page of the Component
palette. This adds a status bar to the bottom of the form.

4 To create one panel on the status bar to display the path and file name of the file
being edited by your text editor:

• Make sure the status bar is selected.
• After the SimpleText property, type untitled.txt. When you use the text editor,

if the file being edited is not yet saved, the file name will be untitled.txt.

• Click the (TStatusPanel) ellipse of the Panels property to open the Editing
StatusBar1.Panels dialog box.

• Click the New Action button on the toolbar of the dialog box to add a panel
to the status bar.

Tip You can also access the Editing StatusBar1.Panels dialog box by double-clicking
the status bar on your form.

5 Click the X to close the Editing StatusBar1.Panels dialog box.

Now the main editing area of the user interface for the text editor is set up.

Status bar

Editing area

Click the New Action button
of the dialog box’s toolbar.

Or, right-click the dialog
box to display a context
menu. Click Add to create a
panel on the status bar that
can hold persistent text.

The Panels property is a zero-based array
so that you can access each panel you
create based on its unique index value. By
default, the first panel has a value of 0.

Each time you click Add, you add an
additional panel to the status bar.

4-6 Q u i c k S t a r t

A d d i n g s u p p o r t f o r a m e n u a n d a t o o l b a r

Adding support for a menu and a toolbar
For the application to do anything, it needs a menu, commands, and, for
convenience, a toolbar. Though you can code the commands separately, Delphi
provides an action manager to help centralize the code and an image list to centralize
the images to add to the commands on your menus and toolbar.

By convention, the actions that are connected to menu commands are named with
the name of the top-level menu and the command name. For example, the FileExit
action refers to the Exit command on the File menu.

Following are the kinds of actions our sample text editor application needs:

To centralize both the code and images in an action manager, you need to add the
Action Manager editor to your project:

1 On the Additional page of the Component palette, double-click the ActionManager
component to drop it onto the form. Because it is nonvisual, you can place it
anywhere on the form.

Table 4.1 Planning Text Editor commands

Menu Command On Toolbar? Description

File New Yes Creates a new file.

File Open Yes Opens an existing file for editing.

File Save Yes Saves the current file to disk.

File Save As No Saves a file using a new name (also lets you save a new file
using a specified name).

File Exit Yes Quits the editor program.

Edit Cut Yes Deletes text and stores it in the clipboard.

Edit Copy Yes Copies text and stores it in the clipboard.

Edit Paste Yes Inserts text from the clipboard.

Help Contents No Displays the Help contents screen from which you can
access Help topics.

Help Index No Displays the Help index screen.

Help About No Displays information about the application in a box.

C r e a t i n g a t e x t e d i t o r — a t u t o r i a l 4-7

A d d i n g s u p p o r t f o r a m e n u a n d a t o o l b a r

2 To display the captions for nonvisual components you drop on the form, choose
Tools|Environment Options, click the Designer page, and select Show component
captions, and click OK.

Adding actions to the action manager

First you’ll add the actions to the action manager and set their properties. By
convention, you’ll name actions that are connected to menu commands with the
name of the top-level menu and the command name. For example, the FileExit action
refers to the Exit command on the File menu.

You will add both actions for which you set all the properties, and standard actions,
which have their properties automatically set.

1 Double-click the ActionManager component to open it.

The Editing Form1.ActionManager1 dialog box, or Action Manager editor,
appears.

2 Make sure the Actions tab is displayed. Click the drop-down arrow next to the
New Action button and click New Action.

Tip You can also right-click the Action Manager editor and choose New Action.

To display the captions for the
components you place on a form,
choose Tools|Environment
Options|Designer and click Show
component captions.

Because the ActionManager
component is nonvisual, you
cannot see it when the application
is running.

Click the drop-down
arrow next to the New
Action button to create
new actions for the
action manager.

When the Delete button
is activated, you can
remove existing actions
from the actions list.

4-8 Q u i c k S t a r t

A d d i n g s u p p o r t f o r a m e n u a n d a t o o l b a r

3 With No Category selected, in the Actions list, click Action1. In the Object
Inspector, set the following properties:

• After Caption, type &New. Note that typing an ampersand before one of the letters
makes that letter a shortcut to accessing the command.

• After Category, type File (this organizes the File commands in one place).
• After Hint, type Create file (this will be the Help tooltip).
• After ImageIndex, type 6 (this will associate image number 6 in your ImageList

with this action).
• After Name, type FileNew (for the File|New command) and press Enter to save

the change.

4 Click the drop-down arrow next to the New Action button and click New Action.

5 With No Category selected, click Action1. In the Object Inspector, set the following
properties:

• After Caption, type &Save.
• Click the drop-down arrow after Category and click File.
• After Hint, type Save file.
• After ImageIndex, type 8.
• After Name, enter FileSave (for the File|Save command).

6 Click the drop-down arrow next to the New Action button and click New Action.

7 With No Category selected, click Action1. In the Object Inspector, set the following
properties:

• After Caption, type &Index.
• After Category, type Help.
• After Name, enter HelpIndex (for the Help|Index command).

8 Click the drop-down arrow next to the New Action button and click New Action.

9 Next to (No Category), select Action1. In the Object Inspector, set the following
properties:

• After Caption, type &About.
• Make sure Category says Help.
• After Name, enter HelpAbout (for the Help|About command).

10 Keep the Action Manager editor on the screen.

With Action1 selected in
the Action Manager
editor, change its
properties in the Object
Inspector.

Caption is the name of
the action, Category is
the type of action, Hint is
a Help tooltip,
ImageIndex lets you
refer to an image in the
image list, and Name is
what the action called in
the code.

C r e a t i n g a t e x t e d i t o r — a t u t o r i a l 4-9

A d d i n g s u p p o r t f o r a m e n u a n d a t o o l b a r

Adding standard actions to the action manager

Next you’ll add the standard actions (open, save as, exit, cut, copy, paste, and help
contents) to the action manager.

1 The Action Manager editor should still be displayed. If it’s not, double-click the
ActionManager component to open it.

2 Click the drop-down arrow next to the New Action button and click New
Standard Action.

The Standard Actions Classes dialog box appears.

3 In the Standard Actions Classes dialog box, scroll to the Edit category and select
the TEditCut, TEditCopy, and TEditPaste. Click OK to add these actions to a new
Edit category in the Categories list of the Editing Form1.ActionManager1 dialog
box

4 Click the drop-down arrow next to the New Action button and click New
Standard Action.

5 Scroll to the File category and select the TFileOpen, TFileSaveAs, and TFileExit
actions. Click OK to add these actions to the File category.

6 Click the drop-down arrow next to the New Action button and click New
Standard Action.

7 In the Standard Actions Classes dialog box, scroll to the Help category and select
the THelpContents. Click OK to add this action to the Help category.

Note Adding a custom Help|Contents command will display a Help file with a Help
Contents tab. The standard Help|Contents command brings up the last tabbed
page that was displayed, either Contents, Index, or Find.

Now you’ve added all the standard actions you need for your application. The
standard actions have their properties set automatically, including the image
index.

Click the New Action button
drop-down arrow and choose
New Standard Action.

The available standard
actions are then displayed.

To add an action to the
Actions list, double-click it.

4-10 Q u i c k S t a r t

A d d i n g s u p p o r t f o r a m e n u a n d a t o o l b a r

8 Click (All Actions) to display both nonstandard and standard actions that you just
added.

9 Click the Close button to close the Action Manager editor.

10 Click File|Save All to save your changes.

Adding images to the image list

In this section, you’ll add images to the action manager for use on the menus and
toolbar.

The standard actions are associated with preassigned images from a built-in image
list that comes with Delphi. For example, the image index for the Edit|Cut action is 0.
All of the images you will use for your text editor commands are in this file.

To add the image list:

1 If you installed Delphi to the default directory, open C:\Program Files\Borland\
Delphi6\Source\Vcl\ActnRes.pas. The StandardsActions window opens.

2 Select the ImageList1 component and copy and paste it to your form. It is a
nonvisual component, so it doesn’t matter where you paste it. The ActnRes.pas
unit is added to the Code editor.

• To copy ImageList1, right-click the component, and click Edit|Copy. On your
form, right-click, and choose Edit|Paste.

3 Close the StandardActions window.

Clicking All
Actions displays
the actions you
just added for
every category.

C r e a t i n g a t e x t e d i t o r — a t u t o r i a l 4-11

A d d i n g s u p p o r t f o r a m e n u a n d a t o o l b a r

4 Double-click ImageList1 to display all the possible images you can use.

Following are the image index numbers that are used for each command:

Note You can add images from an entirely different list. In the Form1.ImageList dialog
box, click the Add button and navigate to the Buttons directory provided with the
product. The default location is C:\Program Files\Common Files\Borland
Shared\Images\Buttons.

For the File|Open command, for example, double-click fileopen.bmp. When a
message asks if you want to separate the bitmap into two separate ones, click Yes.
Each of the images includes an active and a grayed out version of the image. You’ll
see both images. Delete the grayed out (second) image. Then make sure the image
index in the Object Inspector matches the new number assigned to this image in
the image list.

5 Click OK to close the ImageList dialog box.

Command ImageIndex property

Edit|Cut 0

Edit|Copy 1

Edit|Paste 2

File|New 6

File|Open 7

File|Save 8

File|SaveAs 30

File|Exit 43

Help|Contents 40

The numbers underneath
the images correspond to
the image index property
for each action.

You can click the Add
button to add images
from another source.

4-12 Q u i c k S t a r t

A d d i n g s u p p o r t f o r a m e n u a n d a t o o l b a r

6 Select the ActionManager component and set its Images property to ImageList1.

Because you already set an image index for all of your actions, the images are
added to the correct action automatically. You’ve associated 8 images with your
actions.

7 To see the associated images in the action manager, open the ActionManager
component, make sure the Actions tab is selected, and click the All Actions
category.

8 Choose File|Save All to save your changes.

9 Keep the Action Manager editor open.

Now you’re ready to add the menu and toolbar.

Click the down arrow next to the Images property. Select ImageList1. This associates the images that
you’ll add to the image list with the actions in the action manager.

When you display the Action Manager
editor now, you’ll see the images
associated with the actions.

C r e a t i n g a t e x t e d i t o r — a t u t o r i a l 4-13

A d d i n g a m e n u

Adding a menu
In the next two sections, you’ll add a customizable menu bar and toolbar, called
action bands.

The main menu bar includes three drop-down menus—File, Edit, and Help—and
their menu commands. With the Action Manager editor, you can drag each menu
category and its commands onto the menu bar in one step.

1 From the Additional page of the Component palette, double-click a
ActionMainMenuBar component to add it to the form.

A blank menu bar appears at the top of the form.

2 Open the Action Manager editor if it isn’t already and select File in the Categories
list. The submenu commands are not in the exact order that you want them, but
you can easily change this by using the Move Up and Move Down buttons, or
Ctrl+↑ and Ctrl+↓.

• Select the Open action and click the Move Up button on the Action Manager
editor toolbar, so that the File commands are listed in the following order: New,
Open, Save, Save As, and Exit.

3 Drag File to the menu bar. The File menu and its submenu commands appear on
the menu bar.

Tip You can also reposition menu commands after you’ve dragged the menu category
to the menu bar. For example, click File on the menu bar so its submenu
commands appear, and drag Open above New and then back again.

4 From the Categories list of the Action Manager editor, drag Edit to the right of File
on the menu bar.

5 From the Categories list of the Action Manager editor, drag Help to the right of the
Edit on the menu bar.

When you select the File
category from the Action
Manager editor and drag it to
the menu bar, you drag all its
submenu commands with it.

4-14 Q u i c k S t a r t

A d d i n g a t o o l b a r

6 Click the Help menu to view its submenu commands. Drag the Contents
command to above the Index command.

7 Press Esc or click the Help menu again to close it.

8 Choose File|Save All to save your changes.

Now you’ll want to add a toolbar to provide easy access to the commands.

Adding a toolbar
Since you’ve set up actions in an action manager, you can add some of the same
actions that were used on the menus to an action band toolbar, which will resemble a
Microsoft Office 2000 toolbar when you’re finished with it.

1 On the Additional page of the Component palette, double-click the ActionToolBar
component to add it to the form.

A blank toolbar appears under the menu bar.

Tip You can also add an action band toolbar by opening the Action Manager editor,
clicking the Toolbars tab, and clicking the New button.

2 If the Action Manager editor isn’t displayed, open it and select File in the
Categories list.

3 In the Actions list, select New, Open, Save, and Exit and drag these items to the
toolbar. They automatically appear as buttons with each assigned image.

4 In the Action Manager editor, select Edit in the Categories list.

You can change the position
of submenu commands in
two ways:

You can select an action in
the Action Manager editor
and click the Move Up or
Move Down button. Or, after
you drag the Help category
to the menu bar, drag
Contents above About.

C r e a t i n g a t e x t e d i t o r — a t u t o r i a l 4-15

A d d i n g a t o o l b a r

• In the Actions list, select Cut, Copy, and Paste and drag these items to the
toolbar.

If you drag the wrong command onto the toolbar, you can drag it off again. Or you
can also select the item in the Object TreeView and click the delete key. You can
reposition the buttons simply by dragging them to the right or left of each other.

5 Choose File|Save All to save your changes.

6 Press F9 to compile and run the project.

Tip You can also run the project by clicking the Run button on the Debug toolbar or
choosing Run|Run.

When you run your project, Delphi opens the program in a runtime window like
the one you designed. The menus and toolbar buttons work although some of the
commands are grayed out.

Your text editor already has lots of functionality. You can type in the text area. If
you select text in the text area, the Cut, Copy, and Paste buttons should work.
However, there’s still more to do to activate the commands.

7 To return to design mode, click X in the upper right corner.

Clearing the text area (optional)

When you ran your program, the name RichEdit1 appeared in the text area. You can
remove that text using the Strings List Editor. If you don’t clear the text now, the text
should be removed when initializing the main form in the last step.

To clear the text area:

1 On the main form, click the RichEdit1 component.

2 In the Object Inspector, next to the Lines property, double-click the value (TStrings)
to display the Filter editor.

3 Select and delete the text (RichEdit1) you want to remove in the Filter editor and
click OK.

4 Save your changes and trying running the program again.

The text editing area is now cleared when the main form is displayed.

The ActionToolBar component
is added under the menu bar
by default.

You can move the menu
toolbar above the menu bar
and vice versa by dragging it.

You can drag buttons on and
off the toolbar.

4-16 Q u i c k S t a r t

W r i t i n g e v e n t h a n d l e r s

Writing event handlers
Up to this point, you’ve developed your application without writing a single line of
code. By using the Object Inspector to set property values at design time, you’ve
taken full advantage of Delphi‘s RAD environment. In this section, you’ll write
procedures called event handlers that respond to user input while the application is
running. You’ll connect the event handlers to the items on the menus and toolbar, so
that when an item is selected your application executes the code in the handler.

For the nonstandard actions, you must create an event handler. For the standard
actions, such as the File|Exit and Edit|Paste commands, the events are included in
the code. However, for some of the standard actions, such as the File|Save As
command, you will want to write your own event handler to customize the
command.

Because all the menu items and toolbar actions are consolidated in the Action
Manager editor, you can create the event handlers from there.

Creating an event handler for the New command

To create an event handler for the New command:

1 Choose View|Units and select Unit1 to display the code associated with Form1.

2 You need to declare a file name that will be used in the event handler, adding a
custom property for the file name to make it globally accessible. Early in the
Unit1.pas file, locate the public declarations section for the class TForm1 and on
the line after { Public declarations }, type:

FileName: String;

Your screen should look like this:

3 Press F12 to go back to the main form.

Tip F12 is a toggle that takes you back and forth from the form to the associated code.

4 Double-click the ActionManager to open it.

This line defines FileName
as a string which is globally
accessible from any other
methods.

C r e a t i n g a t e x t e d i t o r — a t u t o r i a l 4-17

W r i t i n g e v e n t h a n d l e r s

5 In the Action Manager editor, select the File category and then double-click the
New action.

Tip You can also double-click the File|FileNew action in the Object TreeView.

The Code editor opens with the cursor inside the event handler.

6 Right where the cursor is positioned in the Code editor (between begin and end),
type the following lines:

RichEdit1.Clear;
FileName := 'untitled.txt';
StatusBar1.Panels[0].Text := FileName;

Your event handler should look like this when you’re done:

Save your work and that’s it for the File|New command.

Note You can resize the code portion of the window to reduce horizontal scrolling.

Double-click the action to
create an empty event
handler where you can
specify what will happen when
users execute the command.

This line clears the text area
when you create a new file.

This line calls the new file
“untitled.txt.”

This line puts the file name
into the status bar.

4-18 Q u i c k S t a r t

W r i t i n g e v e n t h a n d l e r s

Creating an event handler for the Open command

To open a file in the text editor, you want a standard Windows Open dialog box to
appear. You’ve already added a standard File|Open command to the Action
Manager editor, which automatically includes the dialog box. However, you still
need to customize the event handler for the command.

1 Press F12 to locate the main form (or select View|Forms and choose Form1).

2 Double-click the Action Manager editor to open it. Select the File|Open action.

3 In the Object Inspector, click the plus sign to the left of the Dialog property to
expand its properties. Delphi names the dialog box FileOpen1.OpenDialog by
default. When OpenDialog1‘s Execute method is called, it invokes the standard
dialog box for opening files.

4 Set the following properties of FileOpen1.Dialog:

• Set DefaultExt to txt.

• Double-click the text area next to Filter to display the Filter editor. In the first
row under the Filter Name column, type Text files (*.txt). In the Filter
column, type *.txt. In the second row under the Filter Name column, type All
files (*.*) and in the Filter column, type *.*. Click OK.

• After Title, type Open file. These words will appear at the top of the Open dialog
box.

5 Click the Events tab. Double-click the OnAccept event so that FileOpen1Accept
appears.

6 The Code editor opens with the cursor inside the event handler.

7 Right where the cursor is positioned in the Code editor (between begin and end),
type the following lines:

RichEdit1.Lines.LoadFromFile(FileOpen1.Dialog.FileName);
FileName := FileOpen1.Dialog.FileName;
StatusBar1.Panels[0].Text := FileName;

Use the Filter editor to define
filters for the
FileOpen1.Dialog and
FileSaveAs1.Dialog actions.

C r e a t i n g a t e x t e d i t o r — a t u t o r i a l 4-19

W r i t i n g e v e n t h a n d l e r s

Your FileOpen event handler should look like this when you’re done:

That’s it for the File|Open command and the Open dialog box.

Creating an event handler for the Save command

To create an event handler for the Save command:

1 Press F12 to display the form. Double-click the ActionManager component to open
it.

2 Double-click the File|Save action.

The Code editor opens with the cursor inside the event handler.

Tip You can also double-click the File|FileSave action in the Object TreeView.

3 Right where the cursor is positioned in the Code editor (between begin and end),
type the following lines:

if (FileName = 'untitled.txt') then
FileSaveAs1.Execute

else
RichEdit1.Lines.SaveToFile(FileName);

This code tells the text editor to display the SaveAs dialog box if the file isn’t
named yet so the user can assign a name to it. Otherwise, save the file using its
current name. The SaveAs dialog box is defined in the event handler for the Save
As command on page 4-20. FileSaveAs1BeforeExecute is the automatically generated
name for the Save As command.

This line inserts the text
from the specified file.

This line sets the file name
to the one in the Open
dialog box.

This line puts the file name
into the status bar.

With the Object TreeView,
you can access the event
handlers for each action.

Double-click the action to
open the Code editor and
write a new event handler.

4-20 Q u i c k S t a r t

W r i t i n g e v e n t h a n d l e r s

Your event handler should look like this when you’re done:

That’s it for the File|Save command.

Creating an event handler for the Save As command

When SaveDialog‘s Execute method is called, it invokes the standard Windows Save
As dialog box for saving files. To create an event handler for the Save As command:

1 Press F12 to display the form. Double-click the ActionManager component to open
it.

2 Select the File|SaveAs action.

3 In the Object Inspector, click the Properties tab, and set the following properties
for the FileSaveAs1 dialog box. Delphi names it FileSaveAs1.Dialog by default.

4 Click the plus sign to the left of the Dialog property and set the following
properties:

• Set DefaultExt to txt.

• Double-click the text area next to Filter to display the Filter editor. In the Filter
editor, specify filters for file types as in the Open dialog box. In the first row
under the Filter Name column, type Text files (*.txt). In the Filter column,
type *.txt. In the second row under the Filter Name column, type All files
(*.*) and in the Filter column, type *.*. Click OK.

• Set Title to Save as.

5 In the Object Inspector, click the Events tab. Double-click the text area next to
BeforeExecute so that FileSaveAs1BeforeExecute appears. The Code editor opens with
the cursor inside the Code editor.

6 Right where the cursor is positioned in the Code editor, type the following line:

FileSaveAs1.Dialog.InitialDir := ExtractFilePath(Filename);

7 In the Object Inspector, the Events tab should still be displayed. Double-click the
text area next to the OnAccept event so that FileSaveAs1Accept appears.

These lines state that if the
file is untitled, the File Save
As dialog box appears.

Otherwise, the file is saved
with the current file name.

C r e a t i n g a t e x t e d i t o r — a t u t o r i a l 4-21

W r i t i n g e v e n t h a n d l e r s

8 The Code editor opens with the cursor inside the event handler. Type the
following lines.

RichEdit1.Lines.SaveToFile(FileSaveAs1.Dialog.FileName);
FileName := FileSaveAs1.Dialog.FileName;
StatusBar1.Panels[0].Text := FileName;

Your FileSaveAs event handler should look like this when you’re done:

That’s it for the File|SaveAs command.

9 Choose File|Save All to save your project.

10 To see what it looks like so far, run the application by pressing F9.

Most of the buttons and toolbar buttons work but you’re not finished yet.

If you receive any error messages at the bottom of the Code editor, click them to go
right to the place in the code where the error occurred. Make sure you’ve followed
the steps as described in the tutorial.

11 To return to design mode, click X in the upper right corner.

This line sets the default
directory to the last one
accessed.

This line saves the text to
the specified file.

This sets the main form’s
FileName to the name
specified in the SaveAs
dialog box.

This puts the file name in
the status bar.

Your application has full
functionality. The images
appear next to commands
with which you associated an
image index.

Notice that the nonvisual
components aren’t there.The
menus, toolbar, text area, and
status bar all appear on the
form.

4-22 Q u i c k S t a r t

C r e a t i n g a H e l p f i l e

Creating a Help file
It’s a good idea to create a Help file that explains how to use your application. Delphi
provides Microsoft Help Workshop in the C:\Project Files\Borland|Delphi6\Help\
Tools directory which includes information on designing and compiling a Windows
Help file. In the sample text editor application, users can choose Help|Contents or
Help|Index to access a Help file with either the contents or index displayed.

Earlier, you created HelpContents and HelpIndex actions in the action manager for
displaying the Contents tab or Index tab of a compiled Help file. You need to assign
constant values to the Help parameters and create event handlers that display what
you want.

To use the Help commands, you’ll have to create and compile a Windows Help file.
Creating Help files is beyond the scope of this tutorial. However, you can download
a sample rtf file (TextEditor.rtf), Help file (TextEditor.hlp) and contents file
(TextEditor.cnt):

1 From your C:\Project Files\Borland\Delphi6\Help directory, open D6X1.zip.

2 Extract and save the .hlp and .cnt files in your Text Editor directory; by default,
C:\Project Files\Borland\Delphi6\Projects\TextEditor.

Note You can use any HLP or CNT file (such as one of the Delphi Help files and its
associated CNT file) in your project. You will have to rename them as
TextEditor.hlp and TextEditor.cnt for the application to find them.

Creating an event handler for the Help Contents command

To create an event handler for the Help Contents command:

1 Double-click the ActionManager component to open it.

2 On the Action Manager editor, select the Help category, then double-click the
HelpContents action.

The Code editor opens with the cursor inside the event handler.

3 Right before where the cursor is positioned in the text editor, that is, right before
begin, type the following lines:

const
 HELP_TAB = 15;
 CONTENTS_ACTIVE = -3;

Right after begin, type:

Application.HelpCommand(HELP_TAB, CONTENTS_ACTIVE);

This code assigns constant values to the HelpCommand parameters. Setting
HELP_TAB to 15 displays the Help dialog and setting CONTENTS_ACTIVE to -3
displays the Contents tab.

C r e a t i n g a t e x t e d i t o r — a t u t o r i a l 4-23

C r e a t i n g a H e l p f i l e

Your event handler should look like this when you’re done:

Note To get Help on the HelpCommand event, put the cursor next to HelpCommand in
the editor and press F1.

That’s it for the Help|Contents command.

Creating an event handler for the Help Index command

To create an event handler for the Help Index command:

1 The Action Manager editor should still be displayed. If it’s not, double-click the
ActionManager component on the form.

2 In the Action Manager editor, select the Help category and then double-click the
HelpIndex action.

The Code editor opens with the cursor inside the event handler.

3 Right before where the cursor is positioned in the text editor, that is right before
begin, type the following lines:

const
 HELP_TAB = 15;
 INDEX_ACTIVE = -2;

Right after begin, type

Application.HelpCommand(HELP_TAB, INDEX_ACTIVE);

This code assigns constant values to the HelpCommand parameters. Setting
HELP_TAB to 15 again displays the Help dialog box and setting INDEX_ACTIVE
to -2 displays the Index tab.

These lines define the
command and data
parameters of the
HelpCommand method
of TApplication.

This says to display the
Help dialog with the
contents tab displayed.

4-24 Q u i c k S t a r t

C r e a t i n g a n A b o u t b o x

Your event handler should look like this when you’re done:

That’s it for the Help|Index command.

Creating an About box
Many applications include an About box which displays information on the product
such as the name, version, logos, and may include other legal information including
copyright information.

You’ve already set up a Help About command on the action manager.

To add an About box:

1 Choose File|New|Other to display the New Items dialog box and click the Forms
tab.

2 On the Forms tab, double-click About Box.

A new form is created that simplifies creation of an About box.

3 Select the form itself (click the grid portion) and in the Object Inspector, change its
Caption property to About Text Editor.

These lines define the
command and data
parameters of the
HelpCommand method of
TApplication.

This says to display the
Help dialog with the index
tab displayed.

The About Box is one
of several forms
predesigned for Delphi.

When Copy is selected
by default, a copy of
the About Box is added
to your project.

C r e a t i n g a t e x t e d i t o r — a t u t o r i a l 4-25

C r e a t i n g a n A b o u t b o x

4 In the Object Inspector, click the Properties tab and change the Caption properties
for the following TLabel items:

• Change Product Name to Text Editor.
• Add 1.0 after Version.
• Add the year after Copyright.

5 Save the About box form by choosing File|SaveAs and saving it as About.pas.

6 In the Delphi Code editor, you should have three unit files displayed: Unit1,
ActnRes, and About. Click the Unit1 tab to display Unit1.pas. You don’t need the
ActnRes unit but you can leave it there.

7 Click the Unit1 tab, and add the new About unit by typing the word About to the
list of included units in the uses clause.

8 Press F12 to return to design mode. Double-click the ActionManager component to
open it.

The Object Repository
contains a standard About
box that you can modify as
you like to describe your
application.

When you create a new form for your application, you need to add it to
the uses clause of the main form. Here you’re adding the About box.

Click the tab to display a file associated with a unit. If you open
other files while working on a project, additional tabs appear on the
Code editor.

4-26 Q u i c k S t a r t

C o m p l e t i n g y o u r a p p l i c a t i o n

9 Double-click the HelpAbout action to create an event handler. Right where the
cursor is positioned in the Code editor, type the following line:

AboutBox.ShowModal;

This code opens the About box when the user clicks Help|About. ShowModal opens
the form in a modal state, a runtime state when the user can’t do anything until the
form is closed.

Completing your application
The application is almost complete. However, you still have to specify some items on
the main form. To complete the application:

1 Press F12 to locate the main form.

2 Check that focus is on the form itself, not any of its components. The list box at the
top of the Object Inspector should say Form1: TForm1. (If it doesn’t, select Form1 from
the drop-down list.)

3 Click the Events tab, and next to the OnCreate event, choose FormCreate from the
drop-down list to create an event handler that describes what happens when the
form is created (that is, when you open the application).

4 Right where the cursor is positioned in the Code editor, type the following lines:

Application.HelpFile := ExtractFilePath(Application.ExeName) + 'TextEditor.hlp';
FileNew.Execute

Check here to make sure focus is on the
main form. If it’s not, select Form1 from the
drop-down list.

Double-click here to create an event handler
for the form’s OnCreate event.

C r e a t i n g a t e x t e d i t o r — a t u t o r i a l 4-27

C o m p l e t i n g y o u r a p p l i c a t i o n

This code initializes the application by application by associating a Help file,
setting the value of FileName to untitled.txt, putting the file name into the status
bar, and clearing out the text editing area.

5 Choose File|SaveAll to save your changes.

6 Press F9 to run the application.

Congratulations! You’re done.

This line initializes the
application.

This line calls the
FileNew.Execute
procedure that you first
wrote for the File|New
action on page 4-16.

4-28 Q u i c k S t a r t

C u s t o m i z i n g t h e d e s k t o p 5-1

C h a p t e r

5
Chapter5Customizing the desktop

This chapter explains some of the ways you can customize the tools in Delphi’s IDE.

Organizing your work area
The IDE provides many tools to support development, so you’ll want to reorganize
your work area for maximum convenience, including rearranging your menus and
toolbars, combining tool windows, and saving a new way your desktop looks.

Arranging menus and toolbars

In the main window, you can reorganize the menu, toolbars, and Component palette
by clicking the grabber on the left-hand side of each one and dragging it to another
location.

You can move menus and toolbars within the main window. Drag the
grabber (the double bar on the left) of an individual toolbar to move it.

5-2 Q u i c k S t a r t

O r g a n i z i n g y o u r w o r k a r e a

You can separate parts from the main window and place them elsewhere on the
screen or remove them from the desktop altogether. This is useful if you have a dual
monitor setup.

You can add or delete tools from the toolbars by choosing View|Toolbars|
Customize. Click the Commands page, select a category, select a command, and drag
it to the toolbar where you want to place it.

For more information...
See “toolbars, customizing” in the online Help index.

Docking tool windows

You can open and close individual tool windows and arrange them on the desktop as
you wish. Many windows can also be docked to one another for easy management.
Docking—which means attaching windows to each other so that they move
together—helps you use screen space efficiently while maintaining fast access to
tools.

From the View menu, you can bring up any tool window and then dock it directly to
another. For example, when you first open Delphi in its default configuration, the

Main window
organized
differently.

On the Commands
page, select any
command and drag it
onto any toolbar.

On the Options page,
click Show tooltips to
make sure the hints for
components and
toolbar icons appear.

C u s t o m i z i n g t h e d e s k t o p 5-3

O r g a n i z i n g y o u r w o r k a r e a

Code Explorer is docked to the left of the Code editor. You can add the Project
Manager to the first two to create three docked windows.

To dock a window, click its title bar and drag it over the other window. When the
drag outline narrows into a rectangle and it snaps into a corner, release the mouse.
The two windows snap together.

Here the Project Manager and Code
Explorer are docked to the Code editor.

You can combine, or
“dock” windows with
either grabbers, as on
the right, or tabs, as
on page 5-4.

To get docked windows with
grabbers, release the
mouse when the drag
outline snaps to the
window’s corner.

5-4 Q u i c k S t a r t

O r g a n i z i n g y o u r w o r k a r e a

You can also dock tools to form tabbed windows.

To undock a window, double-click its grabber or tab.

To turn off automatic docking, either press the Ctrl key while moving windows
around the screen, or choose Tools|Environment Options, click the Designer page,
and uncheck the Auto drag docking check box.

For more information...
See “docking” in the online Help index.

Saving desktop layouts

You can customize and save your desktop layout. The Desktops toolbar in the IDE
includes a pick list of the available desktop layouts and two icons to make it easy to
customize the desktop.

To get docked windows that are
tabbed, release the mouse before
the drag outline snaps to the other
window’s corner.

Set debug
desktop

Save current
desktop

Named desktop
settings are listed here.

C u s t o m i z i n g t h e d e s k t o p 5-5

C u s t o m i z i n g t h e C o m p o n e n t p a l e t t e

Arrange the desktop as you want, including displaying, sizing, and docking
particular windows.

On the Desktops toolbar, click the Save current desktop icon or choose View|
Desktops|Save Desktop, and enter a name for your new layout.

For more information...
See “desktop layout” in the online Help index.

Customizing the Component palette
In its default configuration, the Component palette displays many useful VCL or
CLX objects organized functionally onto tabbed pages. You can customize the
Component palette by:

• Hiding or rearranging components.
• Adding, removing, rearranging, or renaming pages.
• Creating component templates and adding them to the palette.
• Installing new components.

Arranging the Component palette

To add, delete, rearrange, or rename pages, or to hide or rearrange components, use
the Palette Properties dialog box. You can open this dialog box in several ways:

• Choose Component|Configure Palette.
• Choose Tools|Environment Options and click the Palette tab.

Enter a name for the
desktop layout you want
to save and click OK.

5-6 Q u i c k S t a r t

C u s t o m i z i n g t h e C o m p o n e n t p a l e t t e

• Right-click the Component palette and choose Properties.

For more information...
Click the Help button in the Palette Properties dialog box.

Creating component templates

Component templates are groups of components that you add to a form in a single
operation. Templates allow you to configure components on one form, then save
their arrangement, default properties, and event handlers on the Component palette
to reuse on other forms.

To create a component template, simply arrange one or more components on a form
and set their properties in the Object Inspector, and select all of the components by
dragging the mouse over them. Then choose Component|Create Component
Template. When the Component Template Information dialog box opens, select a
name for the template, the palette page on which you want it to appear, and an icon
to represent the template on the palette.

You can rearrange the palette
and add new pages.

C u s t o m i z i n g t h e d e s k t o p 5-7

C u s t o m i z i n g t h e C o m p o n e n t p a l e t t e

After placing a template on a form, you can reposition the components
independently, reset their properties, and create or modify event handlers for them
just as if you had placed each component in a separate operation.

For more information...
See “templates, component” in the online Help index.

Installing component packages

Whether you write custom components or obtain them from a vendor, the
components must be compiled into a package before you can install them on the
Component palette.

A package is a special DLL containing code that can be shared among Delphi
applications, the IDE, or both. Runtime packages provide functionality when a user
runs an application. Design-time packages are used to install components in the IDE.
Delphi packages have a .bpl extension.

5-8 Q u i c k S t a r t

C u s t o m i z i n g t h e C o m p o n e n t p a l e t t e

If a third-party vendor’s components are already compiled into a package, either
follow the vendor’s instructions or choose Component|Install Packages.

For more information...
See “installing components” and “packages” in the online Help index.

Using frames
A frame (TFrame), like a form, is a container for components that you want to reuse.
A frame is more like a customized component than a form. Frames can be saved on
the Component palette for easy reuse and they can be nested within forms, other
frames, or other container objects. After a frame is created and saved, it continues to
function as a unit and to inherit changes from the components (including other
frames) it contains. When a frame is embedded in another frame or form, it continues
to inherit changes made to the frame from which it derives.

To open a new frame, choose File|New|Frame.

For more information...
See “frames” and “TFrame” in the Help index.

These components come preinstalled
in Delphi. When you install new
components from third-party vendors,
their package appears in this list.

Click Components to see what
components the package contains.

You can add whatever visual
or nonvisual components
you need to the frame. A new
unit is automatically added to
the Code editor.

C u s t o m i z i n g t h e d e s k t o p 5-9

S e t t i n g p r o j e c t o p t i o n s

Adding ActiveX controls
You can add ActiveX controls to the Component palette and use them in your Delphi
projects. Choose Component|Import ActiveX Control to open the Import ActiveX
dialog box. From here you can register new ActiveX controls or select an already
registered control for installation in the IDE. When you install an ActiveX control,
Delphi creates and compiles a “wrapper” unit file for it.

For more information...
Choose Component|Import ActiveX Control and click the Help button.

Setting project options
If you need to manage project directories and to specify form, application, compiler,
and linker options for your project, choose Project|Options. When you make
changes in the Project Options dialog box, your changes affect only the current
project; but you can also save your selections as the default settings for new projects.

Setting default project options

To save your selections as the default settings for all new projects, in the lower-left
corner of the Project Options dialog box, check Default. Checking Default writes the
current settings from the dialog box to the options file Defproj.dof, located in the
Delphi6\Bin directory. To restore Delphi’s original default settings, delete or rename
the Defproj.dof file.

For more information...
See “Project Options dialog box” in the online Help index.

Specifying project and form templates as the default
When you choose File|New|Application, Delphi creates a standard new application
with an empty form, unless you specify a project template as your default project. You
can save your own project as a template in the Object Repository on the Projects page
by choosing Project|Add to Repository (see “Adding templates to the Object
Repository” on page 5-10). Or you can choose from one of Delphi’s existing project
templates from the Object Repository (see “The Object Repository” on page 2-5).

To specify a project template as the default, choose Tools|Repository. In the Object
Repository dialog box, under Pages, select Projects. If you’ve saved a project as a

5-10 Q u i c k S t a r t

S p e c i f y i n g p r o j e c t a n d f o r m t e m p l a t e s a s t h e d e f a u l t

template on the Projects page, it appears in the Objects list. Select the template name,
check New Project, and click OK.

Once you’ve specified a project template as the default, Delphi opens it automatically
whenever you choose File|New|Application.

In the same way that you specify a default project, you can specify a default new form
and a default main form from a list of existing form templates in the Object Repository.
The default new form is the form created when you choose File|New|Form to add
an additional form to an open project. The default main form is the form created
when you open a new application. If you haven’t specified a default form, Delphi
uses a blank form.

You can override your default project or form temporarily by choosing File|New|
Other and selecting a different template from the New Items dialog box.

For more information...
See “templates, adding to Object Repository,” “projects, specifying default,” and
“forms, specifying default” in the online Help index.

Adding templates to the Object Repository

You can add your own objects to the Object Repository as templates to reuse and share
with other developers over a network. Reusing objects lets you build families of
applications with common user interfaces and functionality that reduces
development time and improves quality.

The Object Repository’s pages
contain project templates only,
form templates only, or a
combination of both.

To set a project template as the
default, select an item in the
Objects list and check New
Project.

To set a form template as the
default, select an item in the
Objects list and check New Form
or Main Form.

C u s t o m i z i n g t h e d e s k t o p 5-11

S e t t i n g t o o l p r e f e r e n c e s

For example, to add a project to the Repository as a template, first save the project
and choose Project|Add To Repository. Complete the Add to Repository dialog box.

The next time you open the New Items dialog box, your project template will appear
on the Projects page (or the page to which you had saved it). To make your template
the default every time you open Delphi, see “Specifying project and form templates
as the default” on page 5-9.

For more information...
See “templates, adding to Object Repository” in the online Help index.

Setting tool preferences
You can control many aspects of the appearance and behavior of the IDE, such as the
Form Designer, Object Inspector, and Code Explorer. These settings affect not just the
current project, but projects that you open and compile later. To change global IDE
settings for all projects, choose Tools|Environment Options.

For more information...
See “Environment Options dialog box” in the online Help index, or click the Help
button on any page in the Environment Options dialog box.

Customizing the Form Designer

The Designer page of the Tools|Environment Options dialog box has settings that
affect the Form Designer. For example, you can enable or disable the “snap to grid”
feature, which aligns components with the nearest grid line; you can also display or
hide the names, or captions, of nonvisual components you place on your form.

For more information...
In the Environment Options dialog box, click the Designer page and click the Help
button.

Enter a title, description,
and author. In the Page list
box, choose Projects so that
your project will appear on
the Repository’s Projects
tabbed page.

5-12 Q u i c k S t a r t

S e t t i n g t o o l p r e f e r e n c e s

Customizing the Code Editor

One tool you may want to customize right away is the Code editor. Several pages in
the Tools|Editor Options dialog box have settings for how you edit your code. For
example, you can choose keystroke mappings, fonts, margin widths, colors, syntax
highlighting, tabs, and indentation styles.

You can also configure the Code Insight tools that you can use within the editor on
the Code Insight page of Editor Options. To learn about these tools, see “Code
Insight” on page 2-7.

For more information...
In the Editor Options dialog box, click the Help button on the General, Display, Key
Mappings, Color, and Code Insight pages.

Customizing the Code Explorer

When you start Delphi, the Code Explorer (described in “The Code Explorer” on
page 2-11) opens automatically. If you don’t want Code Explorer to open
automatically, choose Tools|Environment Options, click the Explorer tab, and
uncheck Automatically show Explorer.

You can change the way the Code Explorer’s contents are grouped within the Code
Explorer by right-clicking in the Code Explorer, choosing Properties, and, under
Explorer categories, checking and unchecking the check boxes. If a category is
checked, elements in that category are grouped under a single node. If a category is
unchecked, each element in that category is displayed independently on the
diagram’s trunk. For example, if you uncheck the Published category, the Published
folder disappears but not the items in it.

For more information...
See “Code Explorer, Environment options” in the online Help index.

In the Code Explorer, you
can sort all source elements
alphabetically or in the order
in which they are declared
in the source file.

To display the folder for
each type of source
element in the Code
Explorer, check an
Explorer category.

I n d e x I-1

A
About box, adding 4-24
action bands 4-13
Action Manager editor 4-7 to 4-10
actions, adding to an application 4-7, 4-9
ActiveX

Component palette page 3-12
installing controls 5-9

adding components to a form 4-3, 4-13
adding items to Object Repository 2-5
ADO 3-10
applications

compiling and debugging 3-6, 4-15
creating 3-1, 3-9
database 3-10
deploying 3-8
internationalizing 3-8
Web server 3-9

B
BDE 3-10
BDE Administrator 3-10
bitmaps, adding to an application 4-10
Borland Component Library for Cross Platform

(CLX) 3-5
Browser 2-13

C
character sets, extended 3-8
Class Completion 2-8
class libraries 3-5
classes, defined 4-4
closing a form 4-3
CLX

adding components 2-3
applications, creating 3-9
defined 3-5

code
event handlers 3-5
help in writing 2-7 to 2-8
viewing and editing 2-6 to 2-12
writing 3-5

code completion 2-7
Code editor

combining with other windows 5-2
customizing 5-12
using 2-6 to 2-9

Code Explorer
customizing 5-12
using 2-11

Code Insight tools 2-7
Code Parameters 2-7
Code Templates 2-7
compiling applications 3-6
Component palette

adding custom components 3-11
adding pages 5-5
customizing 5-5 to 5-8
defined 2-3
using 3-2

component templates, creating 5-6
components

adding to a form 3-2, 4-3
adding to Component palette 5-5
arranging on Component palette 5-5
creating custom 3-11
customizing 3-11, 5-6
defined 4-3
installing 3-11, 5-7
setting properties 3-3, 4-2

context menus, accessing 2-3
controls, adding to a form 3-2, 4-3
customizing

Code editor 5-12
Code Explorer 5-12
Component palette 2-2
Form Designer 5-11
IDE 5-1 to 5-12

D
Data Dictionary 3-11
data modules

adding 3-2
creating 2-5

database applications, creating 3-10
Database Desktop 3-11
Database Explorer 3-11
dbExpress 3-10
debugging programs 3-6 to 3-7, 4-15
default

project and form templates 5-9
project options 5-9

Delphi
customizing 5-1 to 5-12
introduction 1-1
programming 3-1
starting 2-1

Index

I-2 Q u i c k S t a r t

deploying applications 3-8
design-time view, closing forms 4-3
desktop

organizing 5-1 to 5-5
saving layouts 5-4

developer support 1-4
.dfm files 2-10, 4-1
Diagram page 2-9
dialog boxes, in Object Repository 2-5
DLLs

creating 2-5
defined 3-12
deploying 3-8

docking windows 5-2 to 5-4
documentation, ordering 1-3
.dpr files 4-1

E
Editing StatusBar1.Panels dialog box 4-5
Editor Options dialog box 2-8, 5-12
Environment Options dialog box 2-8, 5-11
error messages 4-21
event handlers

creating 4-16 to 4-21
defined 3-5

executables, deploying 3-8

F
files

form 2-10, 4-1
project 4-1
resource 4-2
saving 4-2
unit 4-1

Form Designer
customizing 5-11
defined 2-4

form files
defined 4-1
viewing code 2-10

forms
adding components to 3-2, 4-3
closing 4-3
finding 2-5
main 4-2, 5-10
specifying as default 5-10

frames 5-8

G
global symbols 2-13
GUIs, creating 4-2

H
Help files, adding to an application 4-22
Help tooltips 4-4
Help, F1 1-2

I
IDE

customizing 5-1 to 5-12
defined 1-1
organizing 5-1
tour of 2-1

images, adding to an application 4-10
IMEs 3-8
information, finding 1-1
input method editors 3-8
installing custom components 5-7
integrated debugger 3-6
integrated development environment (IDE)

customizing 5-1 to 5-12
tour of 2-1

InterBase 3-10
internationalizing applications 3-8

K
keystroke mappings 5-12
Kylix

defined 1-1
developing applications for 3-9

L
localizing applications 3-8

M
main form, defined 5-10
menus

adding to an application 4-13
context 2-3
in Delphi 2-3
organizing 2-2, 5-1

messages, error 4-21

N
new features 1-2
new form, defined 5-10
New Items dialog box

saving templates to 5-9, 5-11
using 2-5, 4-24

newsgroups 1-4

I n d e x I-3

O
Object Inspector

defined 2-4
inline component references 3-4
using 3-3 to 3-4, 4-2

Object Repository
adding templates to 5-9, 5-10
defined 2-5, 3-1
using 2-5 to 2-6

Object TreeView 2-4
objects, defined 3-5
ODBC 3-10
online Help files 1-2
options, setting for projects 5-9

P
packages 5-7
Paradox 3-10
parent-child relationships 2-4
.pas files 4-1
programming with Delphi 3-1
programs

CLX applications 3-9
compiling and debugging 3-6, 4-15
deploying 3-8
internationalizing 3-8
Web server applications 3-9

Project Browser 2-13
project files, default names 4-1
project groups 2-12
Project Manager 2-12
Project Options dialog box 5-9
project templates 5-10
projects

adding items to 2-5
creating 3-1
managing 2-12
saving 4-2
setting options as default 5-9
specifying as default 5-9
types 3-8 to 3-11

properties, setting 3-3, 4-2, 4-8, 4-9

R
Resource DLL Wizard 3-8
resource files (.res) 4-2
right-click menus 2-3
running an application 3-6, 4-15

S
sample program 4-1 to 4-27
saving

desktop layouts 5-4
projects 4-2

setting properties 3-3, 4-2, 4-8, 4-9
source code

files 4-1
help in writing 2-7 to 2-8

SQL database servers 3-10
SQL Explorer 3-11
SQL Links 3-10
SQL Server 3-10
starting Delphi 2-1
support services 1-4

T
tabbed windows, docking 5-4
technical support 1-4
templates

adding to Object Repository 5-10
specifying as default 5-9

text editor tutorial 4-1 to 4-27
to-do lists 2-13
tool windows, docking 5-2
toolbars 2-2

adding and deleting components from 5-2
adding to an application 4-14
organizing 5-1

Tooltip Expression Evaluation 2-7
Tooltip Symbol Insight 2-7
tooltips 4-4
translation tools 3-8
tutorial 4-1 to 4-27
type libraries, defined 3-12
typographic conventions 1-4

U
unit files 4-1
user interfaces, creating 3-2, 4-2, 4-3

V
Visual Component Library (VCL)

adding components 2-3
using 3-5

W
Web server applications, creating 3-9
Web site, Borland 1-4
WebSnap, introduction 3-9
windows, combining 5-2
wizards, finding 2-5

X
.xfm files 2-10

I-4 Q u i c k S t a r t

	Quick Start
	Contents
	Ch1: Introduction
	What is Delphi?
	Finding information
	Online Help
	F1 Help

	Printed documentation
	Developer support services and Web site
	Typographic conventions

	Ch2: A tour of the desktop
	Starting Delphi
	The IDE
	The menus and toolbars
	The Component Palette, Form Designer, and Object Inspector
	The Object TreeView
	The Object Repository
	The Code Editor
	The Diagram page
	Viewing form code

	The Code Explorer
	The Project Manager
	The Project Browser
	To-do lists

	Ch3: Programming with Delphi
	Creating a project
	Adding data modules

	Building the user interface
	Placing components on a form
	Setting component properties

	Writing code
	Writing event handlers
	Using the VCL and CLX libraries

	Compiling and debugging projects
	Deploying applications
	Internationalizing applications
	Types of projects
	CLX applications
	Web server applications
	Database applications
	Custom components
	DLLs
	COM and ActiveX

	Ch4: Creating a text editor—a tutorial
	Starting a new application
	Setting property values
	Adding components to the form
	Adding support for a menu and a toolbar
	Adding actions to the action manager
	Adding standard actions to the action manager
	Adding images to the image list

	Adding a menu
	Adding a toolbar
	Clearing the text area (optional)

	Writing event handlers
	Creating an event handler for the New command
	Creating an event handler for the Open command
	Creating an event handler for the Save command
	Creating an event handler for the Save As command

	Creating a Help file
	Creating an event handler for the Help Contents command
	Creating an event handler for the Help Index command

	Creating an About box
	Completing your application

	Ch5: Customizing the desktop
	Organizing your work area
	Arranging menus and toolbars
	Docking tool windows
	Saving desktop layouts

	Customizing the Component palette
	Arranging the Component palette
	Creating component templates
	Installing component packages

	Setting project options
	Setting default project options

	Specifying project and form templates as the default
	Adding templates to the Object Repository

	Setting tool preferences
	Customizing the Form Designer
	Customizing the Code Editor
	Customizing the Code Explorer

	Index

