
 Import/Export of Databases Nov 26, 2012

To dump (export) a psql db:

 pg_dump dbname > dbname.out

To recreate (import) the db:

 createdb -D PGDATA_LOCAL -U postgres -E SQL_ASCII dbname

 psql -f dbname.out -U postgres dbname

The dump file (called dbname.out above) contains SQL statements for recreating the

tables, triggers and functions and also contains the ascii dump of all records in the tables.

This will be a VERY large file for a fully stocked IHFS db. The dump file generated by

the hd_ob5rhax db at OHD was approx 125 Mbytes. According to a user group posting

in July 2008 and FAQ 4.5, the size of the database on disk can be between 1.5 and 5

times the size of the dump file.

pg_dump can also be used to dump individual tables.

The “-D” option creates the database in the PGDATA_LOCAL partition. Note the

absence of a $ in front of the PGDATA_LOCAL partition name. This partition is

available at all RFCs. The PGDATA_LOCAL partition is sized at 32 GBytes. Before

databases can be created in this partition, the “initlocation” command must be run. See

Section 18.5 entitled “Alternative Locations” for more information.

If a database is created without the “-D” option, it will be created in the PGDATA

partition which is only .5 GBytes in size. If this partition fills up, the postgres engine will

crash!

The entire export and import process using pg_dump took less than 10 minutes at OHD

for the hd_ob5rhax db.

Note that if the "-U postgres" does not work, add the following line to the pg_hba.conf

file:

local all all trust

and either bounce postgres or execute "pg_ctl reload". See Section 19.2 of the

PostgreSQL Documentation for details on "trust authentication".

Dumping the Schema Only

To dump the schema of a database, use

 pg_dump -s dbname > dbname.out

The following command generates the schema for the location table from the hd_ob7oun

db and writes it to the file location.sql:

pg_dump -s -t location -f location.sql -d hd_ob7oun

Serial Column Values

When converting Informix database tables with serial columns, the user should reset the

serial value internally using the setval function described in Section 9.11 of the

PostgreSQL documentation. Failing to do this will result in the internal counter being set

incorrectly for future inserts.

Upgrading to New Versions of postgres

When upgrading between major releases such as 8.2 to 8.3, a dump and restore of the

database is required.

Generating a Table Schema

The following command generates the schema for the location table from the hd_ob7oun

db and writes it to the file location .sql:

pg_dump -s -t location -f location.sql -d hd_ob7oun

Dumping a Subset of the Tables

Use the “-t” option to list the tables to dump. Use the “-T” option to list tables to exclude

from dump. Note that multiple tables can be selected by writing multiple -t or multiple –T

switches.

Dumping Large Databases

For large databases, output from pg_dump can be

- redirected to a single file

- piped to gzip (to reduce the size of the output file)

- piped to split to split up the output into multiple files

For example,

pg_dump hd_ob92tar | gzip > hd_ob92tar.dump.gz

To restore,

gunzip hd_ob92tar.dump.gz | psql –f hd_ob92.dump -U postgres <db_name>

Dumping All Databases

The pg_dumpall command can be used to dump all databases in a postgres cluster. To

dump all databases

pg_dumpall > dumpall.out

to restore databases dumped by the above command

psql -U postgres -f dumpall.out postgres

At OHD, a pg_dumpall is run weekly from the postgres cron on genessee.

Using pg_dump with different postgres Versions

pg_dump is designed specifically to be able to dump

from all supported older versions so you can convert

the data “forwards”.

The key word in that sentence is "forwards". Dumping

from an 8.3 database with 9.0 pg_dump will likely

produce SQL that doesn't reload into an 8.3 server,

only into 9.0.

From 9.0 documentation:

"Because pg_dump is used to transfer data to newer

versions of PostgreSQL, the output of pg_dump can be

expected to load into PostgreSQL server versions newer

than pg_dump's version. pg_dump can also dump from

PostgreSQL servers older than its own version.

(Currently, servers back to version 7.0 are supported.)

However, pg_dump cannot dump from PostgreSQL servers

newer than its own major version; it will refuse to

even try, rather than risk making an invalid dump.

Also, it is not guaranteed that pg_dump's output can be

loaded into a server of an older major version — not

even if the dump was taken from a server of that

version. Loading a dump file into an older server may

require manual editing of the dump file to remove

syntax not understood by the older server. "

Dumping with Different Compression Levels

pg_dump allows different levels of compression using

the “-Z option”

-Z 0..9

--compress=0..9

Specify the compression level to use. Zero means no compression.

